
Drug Delivery
Systems in
Cancer Therapy

Edited by

Dennis M. Brown

CANCER DRUG DISCOVERY AND DEVELOPMENTCANCER DRUG DISCOVERY AND DEVELOPMENT

Drug Delivery
Systems in
Cancer Therapy

Edited by

Dennis M. Brown



Drug Delivery Systems in Cancer Therapy



CANCER DRUG DISCOVERY AND DEVELOPMENT

Beverly A. Teicher, Series Editor

Hematopoietic Growth Factors in Oncology: Basic Science and Clinical
Therapeutics, edited by George Morstyn, MaryAnn Foote, and Graham
J. Lieschke, 2004

Handbook of Anticancer Pharmacokinetics and Pharmacodynamics, edited by
William D. Figg and Howard L. McLeod, 2004

Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials,
and Approval, Second Edition, edited by Beverly A. Teicher, 2004

Handbook of Cancer Vaccines, edited by Michael A. Morse, Timothy M. Clay,
and Kim H. Lyerly, 2004

Drug Delivery Systems in Cancer Therapy, edited by Dennis M. Brown, 2004
Oncogene-Directed Therapies, edited by Janusz Rak, 2003
Cell Cycle Inhibitors in Cancer Therapy: Current Strategies, edited by

Antonio Giordano and Kenneth J. Soprano, 2003
Chemoradiation in Cancer Therapy, edited by Hak Choy, 2003
Fluoropyrimidines in Cancer Therapy, edited by Youcef M. Rustum, 2003
Targets for Cancer Chemotherapy: Transcription Factors and Other Nuclear

Proteins, edited by Nicholas B. La Thangue and Lan R. Bandara, 2002
Tumor Targeting in Cancer Therapy, edited by Michel Pagé, 2002
Hormone Therapy in Breast and Prostate Cancer, edited by V. Craig

Jordan and Barrington J. A. Furr, 2002
Tumor Models in Cancer Research, edited by Beverly A. Teicher, 2002
Tumor Suppressor Genes in Human Cancer, edited by David E. Fisher, 2001
Matrix Metalloproteinase Inhibitors in Cancer Therapy, edited by

Neil J. Clendeninn and Krzysztof Appelt, 2001
Farnesyltransferase Inhibitors in Cancer, edited by Saïd M. Sebti

and Andrew D. Hamilton, 2001
Platinum-Based Drugs in Cancer Therapy, edited by Lloyd R. Kelland

and Nicholas P. Farrell, 2000
Apoptosis and Cancer Chemotherapy, edited by John A. Hickman

and Caroline Dive, 1999
Signaling Networks and Cell Cycle Control: The Molecular Basis

of Cancer and Other Diseases, edited by J. Silvio Gutkind, 1999



Edited by

Dennis M. Brown
ChemGenex Therapeutics, Inc.

Menlo Park, CA

Humana Press   Totowa, New Jersey

Drug Delivery Systems
in Cancer Therapy



© 2004 Humana Press Inc.
999 Riverview Drive, Suite 208
Totowa, New Jersey 07512

www.humanapress.com

For additional copies, pricing for bulk purchases, and/or information about other Humana titles,
contact Humana at the above address or at any of the following numbers: Tel.: 973-256-1699;
Fax: 973-256-8341; E-mail: humana@humanapr.com or visit our Website: http://humanapress.com

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise without written permission
from the Publisher.

All articles, comments, opinions, conclusions, or recommendations are those of the author(s), and do not necessarily reflect
the views of the publisher.

Due diligence has been taken by the publishers, editors, and authors of this book to ensure the accuracy of the information
published and to describe generally accepted practices. The contributors herein have carefully checked to ensure that
the drug selections and dosages set forth in this text are accurate in accord with the standards accepted at the time of
publication. Notwithstanding, as new research, changes in government regulations, and knowledge from clinical expe-
rience relating to drug therapy and drug reactions constantly occurs, the reader is advised to check the product information
provided by the manufacturer of each drug for any change in dosages or for additional warnings and contraindications.
This is of utmost importance when the recommended drug herein is a new or infrequently used drug. It is the respon-
sibility of the health care provider to ascertain the Food and Drug Administration status of each drug or device used in
their clinical practice. The publisher, editors, and authors are not responsible for errors or omissions or for any conse-
quences from the application of the information presented in this book and make no warranty, express or implied, with
respect to the contents in this publication.

Production Editor: Mark J. Breaugh.

Cover illustration:Hollow and porous microparticles of PLAGA prepared using ethyl acetate and poly(vinyl alcohol) at a
magnification of ×1250. (See Fig. 3 on page 120.)  Microscopic images of PLAGA microparticles containing 5-fluorouracil
after 21 days of degradation in phosphate buffered saline. (See Fig. 8 on page 128.)

Cover design by Patricia F. Cleary.

This publication is printed on acid-free paper.
ANSI Z39.48-1984 (American National Standards Institute) Permanence of Paper for Printed Library Materials.

Photocopy Authorization Policy:
Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted
by Humana Press Inc., provided that the base fee of US $25.00 per copy, is paid directly to the Copyright Clearance
Center at 222 Rosewood Drive, Danvers, MA 01923. For those organizations that have been granted a photocopy license
from the CCC, a separate system of payment has been arranged and is acceptable to Humana Press Inc. The fee code
for users of the Transactional Reporting Service is: [0-89603-888-2/04 $25.00].

Printed in the United States of America.   10   9   8   7   6   5   4   3   2   1

E-ISBN:1-59259-427-1

Library of Congress Cataloging-in-Publication Data

Drug delivery systems in cancer therapy / edited by Dennis M. Brown.
p. ; cm. -- (Cancer drug discovery and development)

Includes bibliographical references and index.
ISBN 0-89603-888-2 (alk. paper)
1. Antineoplastic agents--Administration. 2. Drug delivery systems.  I. Brown, Dennis

M., 1949– II. Series.
[DNLM:  1. Drug Delivery Systems--methods. 2. Neoplasms--drug therapy. 3.

Antineoplastic Agents--administration & dosage. 4. Drug Delivery Systems--trends. QZ
267 D7932 2003]
RS431.A64D78 2003
616.99'4061--dc21

2003042321



Preface

v

The use of drug delivery systems to improve the efficacy of cancer che-
motherapy remains an important strategy for achieving progress against this dis-
ease. Over the past 20 years, the number of novel therapeutic approaches has
expanded from traditional small chemical medicinals to a wide variety of
biomolecules, including peptide/protein- and nucleic acid-based therapeutics. All
of these therapies require the administration of stable dosage forms in adequate
concentrations and exposure periods to realize their potential. For the treatment
of many forms of cancer, the presentation and maintenance of adequate drug con-
centrations to the target disease tissues without overexposure to drug-sensitive
normal tissues is the major limitation for successful chemotherapy.

The purpose of Drug Delivery Systems in Cancer Therapy is to provide a
general overview of the drug delivery technologies available for research
oncologists looking to improve the potential utility of their novel lead candidates.
This text focuses on a number of important topics critical for successful cancer
chemotherapy development. Pharmacological considerations of conventional and
non-conventional routes of drug administration are reviewed and opportunities
for product development are identified. The use of novel formulation technolo-
gies, including synthetic polymers and biomaterials for prolonged or sustained
drug release to achieve potentially greater therapeutic indices, is outlined and
discussed. The technologies described have resulted in a number of approved and
late-stage clinical products. These are profiled as well.

The intent of this book is to serve as a springboard for a scientist, not
necessarily affiliated with this field, to become “comfortable” to explore a broader
platform of formulation and delivery system strategies during the preclinical phases
of development.  It is hoped that the subjects covered and referenced in this vol-
ume would help expand the pharmaceutical potential for a new agent.  In addi-
tion, for formulation scientists, experimental pharmacologists, and medicinal chem-
ists, chapters are devoted to new therapeutic areas where their expertise may be
needed to help secure a successful product outcome.

In Drug Delivery Systems in Cancer Therapy the focus has primarily been
on small molecule delivery. However, many of the technologies described can be
applied to larger biomolecules. We are fortunate to have assembled leading ex-
perts in the fields of cancer medicine, experimental therapeutics, pharmacology,
biomaterials and formulation design to provide a broad view of this exciting and
fruitful field of cancer research.
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I PHARMACOLOGICAL CONSIDERATIONS

FOR DRUG DELIVERY SYSTEMS

IN CANCER MEDICINE





1. INTRODUCTION

Although the use of drugs in the management of cancer has made a significant
impact on the outcome of most types of malignancies, one of the lingering challenges
in cancer therapeutics is how to influence the outcome of cancer treatment by optimal
and careful application of anticancer drugs. Addressing this challenge requires the
adoption of treatment strategies that employ sound pharmacologic principles in the use
of anticancer agents.

The majority of drugs used in cancer treatment are administered systemically, orally, or
loco-regionally (Table 1). Of these, only loco-regional delivery presumes restriction of an
administered drug to the site or location of the tumor. Thus, because the concentration of
the antineoplastic agent at the tumor site is enhanced, systemic exposure is avoided or sig-
nificantly minimized. Consequently, it is assumed that the therapeutic benefits as well as
therapeutic window of the drug are improved upon. However, these assumptions are not
always true because the loco-regional delivery of drugs could present unique and/or similar
adverse events in comparison to systemically administered antineoplastics (1–4).

Systemic delivery of cytotoxic anticancer drugs has and will continue to play a cru-
cial role in cancer therapeutics, however, one of the major problems with this form of
drug delivery is the exposure of normal tissues/organs to the administered drug.
Clearly, any new strategy to enhance systemic delivery of anticancer drugs should be
intended to ameliorate this problem.

2. RATIONALE AND TYPES OF SYSTEMIC DRUG DELIVERY

The systemic delivery of anticancer drugs provides a unique opportunity for the
treatment of micrometastatic disease as well as assisting in local control of a malig-
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Table 1
Methods of Drug Delivery for Commonly Used Antineoplastics

Drugs Mode of action Potential uses Route of drug delivery

Nitrogen mustards
Cyclophosphamide Crosslinking DNA Leukemia, lymphoma, sarcomas, Ca breast, ovary, cervix intravenous, oral

and lung, multiple myeloma, retinoblastoma, mycosis 
fungoides

Ifosfamide Crosslinking DNA Germ cell testicular Ca, sarcomas, pediatric solid tumors intravenous
resistant to cyclophosphamide, lymphoma

Melphalan Crosslinking DNA Multiple myeloma, ovarian Ca, sarcomas, ALL, amyloidosis, intravenous
lymphoma, breast Ca, neuroblastoma

Chlorambucil Crosslinking DNA Chronic lymphocytic leukemia, Waldenstrom’s oral
macroglobulinemia, lymphoma, Ca of breast, testis, ovary,
and choricarcinoma, nephrosis

Mechlorethamine Crosslinking DNA Lymphoma, cutaneous histiocytosis intravenous

Nitrosoureas
Carmustine (BCNU) Crosslinking DNA Brain tumors lymphoma, melanoma, GI tumors intravenous, loco-

regional (intracranial)
Lomustine (CCNU) Similar to CCNU Melanoma, brain tumors, colon Ca, lymphoma oral
Fotemustine Crosslinking DNA Brain tumors, lung Ca, melanoma intravenous
Streptozocin Inhibition of DNA synthesis Carcinoid tumors, pancreatic islet cell Ca intravenous

by methylation of DNA

Ethyleneimine
Thiotepa Crosslinking DNA Ca breast, ovary, brain tumors lymphoma, Ewing’s intravenous, loco-

sarcoma (?), leptomeningeal metastases regional (intracavity)
Hexamethylamine Crosslinking DNA Ovarian carcinoma intravenous
Alkane sulfonates
Busulfan Crosslinking DNA Chronic myelogenous leukemia oral, intravenous

(investigational)
Treosulfan Crosslinking DNA Ovarian carcinoma intravenous
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Tetrazine
Temozolomide Crosslinking DNA Brain tumors, melanoma oral
Dacarbazine Multifactorial, but includes Melanoma, lymphoma, brain tumors, sarcomas intravenous, oral

DNA alkylation
Procarbazine Crosslinking DNA Lymphoma, glioma, melanoma oral
Mitomycin C Alkylation of DNA Anal squamous cell carcinoma, Ca of breast, prostate intravenous

and lungq
Platinum compounds
Cisplatin Inhibits DNA precursors Most adult solid tumors and osteosarcoma, brain, tumors intravenous, loco-

neuroblastoma in pediatrics regional (intracavity)
Carboplatin Similar to cisplatin Similar to cisplatin similar to cisplation

Pyrimidine analogs
5-Fluorouracil Inhibits DNA and RNA Head/neck, colorectal, breast, pancreatic GI cancers liver, intravenous

synthesis by: incorporation 
of active metabolites, 5-FUTP
into RNA and inhibition
of thymidylate synthase

Capecitabine similar to 5-FU after Similar to 5-FU oral
activation by tumor cells

Gemcitabine Inhibits DNA synthesis by: Locally advanced and metastatic pancreatic cancer, intravenous
termination of DNA chain, head- and neckcancer, lymphoma
elongation through competitive 
inhibition by GEM-TP and 
GEM-DP

Cytosine arabinoside Inhibits DNA synthesis by direct Leukemia, lymphoma intravenous, intrathecal
inhibition of DNA polymerase

(Continued)
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Table 1 (Continued)

Drugs Mode of action Potential uses Route of drug delivery

Purine analogs
6-Mercaptopurine Inhibits DNA synthesis by blockade Leukemia oral
6-thioguanine of purine synthesis, through oral

incorporation of 6-TGN into 
DNA and RNA templates

Fludarabine Inhibits purine synthesis by inhibit- Chronic leukemia intravenous, oral
ing DNA polymerase and ribo-
nucleotide reductase enzymes

Pentostatin Inhibits purine synthesis by Hairy cell leukemia intravenous
inhibiting adenosine deaminase

Other antimetabolites
Cladribine Inhibition of DNA synthesis by Hairy cell leukemia AML, CLL, lymphoma, Waldenstrom’s intravenous

formation of DNA breaks, macroglobinemia
NAD and ATP depletion

Hydroxyurea Inhibits DNA synthesis and repair CML, acute leukemia with hyperleukocytosis, sickle oral
hemoglobinopathy, essential thrombocytosis,
polycythemia vera

Folate analogs
Methotrexate Inhibition of purine and Sarcomas, Ca of breast, head/neck, colon, ovarian bladder intravenous,

thymidylate synthesis by and lung, leukemia, lymphoma subcutaneous, oral 
inhibiting DHFR enzyme intrathecal

Trimetrexate Similar to methotrexate Brainstem gliomas, neuroblastoma, renal cell Ca oral

Anthracyclines
Doxorubicin Inhibition of DNA/RNA Breast Ca, sarcomas intravenous

synthesis, by intercalating 
DANN

Daunorubicin Inhibition of DNA synthesis Acute leukemia, sarcomas, melanoma intravenous
Epirubicin Similar to doxorubicin Breast cancer, bladder Ca intravenous
Idarubicin Same as daunorubicin acute leukemia intravenous
Mitoxantrone Inhibition of DNA synthesis by Acute leukemia, lymphoma intravenous

topo II inhibition and 
intercalating DNA
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Taxanes
Taxol Inhibits DNA synthesis by stabi- Ca breast, ovary, cervix, prostate NSCLC, gastric intravenous

lizing microtubule assembly carcinoma, lymphoma
Taxotere Similar to taxol Sarcomas, head and neck Ca, ovarian, breast and intravenous

pancreatic cancer
Vinca alkaloids
Vincristine Inhibit DNA synthesis by Leukemia, lymphoma, brain tumors, Ca of Breast, lung, intravenous

blockade of tubulin assembly liver and multiple myeloma
Vinblastine Similar to vincristine Prostate carcinoma intravenous

Topoisomerase (topo) 
I inhibitors

Irinotecan (CPT-11) Inhibition of DNA synthesis by 5-FU refractory colorectal carcinoma intravenous
inhibiting topo I enzyme

Topotecan Similar to irinotecan Cisplatin refractory ovarian carcinoma intravenous
Topoisomerase (topo) 

II inhibitors
Etoposide (VP-16) Inhibition of DNA synthesis by Leukemia, lymphoma, Kaposi’s sarcoma, cancer of lung, intravenous, oral

inhibiting topo II enzyme testis
Teniposide Similar to etoposide Refractory leukemia intravenous

Other anticancer drugs
Hormonal agents
Tamoxifen Inhibition of estradiol binding to Metastatic (estrogen) receptor positive breast cancer oral

estrogen receptor
Anastrozole aromatase inhibitor Breast cancer oral
Flutamide inhibition of androgen binding to Metastaic prostate cancer oral

cytosolic DHT receptors
Bicalutamide similar to flutamide Similar to flutamide oral
Enzyme
L-Asparaginase depletion of L-asparagine in Leukemia intramuscular

tumor cells
Bleomycin single-strand scission of DNA Germ cell tumors, Hodgkin’s disease Non-Hodgkin’s intravenous, intramus-

lymphoma cular, subcutaneous,
loco-regional (intra-
cavity)



nancy. It is therefore imperative that strategies aimed at improving the efficacy of sys-
temically delivered drugs are undertaken. In this regard, different strategies, including
modification in administration schedules and/or infusion regimens (bolus, intermittent,
or continuous infusion), are being used to administer antineoplastics. Several investiga-
tors have demonstrated that the efficacy of some anticancer drugs, including
antimetabolites and anthracyclines, are schedule-dependent (5). Also, some cytotoxics
are thought to be effective against tumor cells that are in a specific phase of the cell
cycle. Therefore it is conceivable that the type of infusion schedule used in the sys-
temic delivery of anticancer drugs could play a significant role in determining optimal
efficacy. Of the commonly employed regimens for systemic drug delivery, continuous
infusion would appear to present the best opportunity for a tumor cell to be exposed to
an antineoplastic agent at a specific phase of the cell cycle. Carlson (5) reviewed some
of the factors that predicted superiority of continuous infusion chemotherapy over
other forms of systemic drug delivery. Nevertheless, it should be noted that some anti-
neoplastics are cell cycle nonspecific in tumor cell kill; as a result, modifying infusion
schedules for anticancer drugs will not be a panacea for improving the efficacy of all
antineoplastics.

Furthermore, there are other factors that could also influence the dosing schedule of
a drug. One such factor is the systemic clearance of the drug. A drug that is slowly
eliminated from the body might not be required to be given as a continuous infusion
because there is the likelihood of therapeutic blood concentrations being maintained at
a tumor site over a longer period of time. In contrast, a drug with high systemic clear-
ance will probably need to be administered either on a more frequent basis or as con-
tinuous infusion therapy in situations where desired pharmacodynamic effects require
prolonged exposure to the drug. Notwithstanding, high systemic clearance does not
preclude a drug from being administered as a once-a-day infusion over a short period
of time. It is obvious that irrespective of infusion schedules and the clearance of an
anticancer drug, in the majority of cases it is the intracellular concentration of an anti-
cancer agent that determines antitumor effect. Interestingly, because there are clear evi-
dences linking drug administration modalities and pharmacokinetics to desired
pharmacodynamic endpoints, it is not clearly understood how the different forms of
systemic delivery of an anticancer drug affect intracellular drug concentration with
some classes of drugs (6–8).

Another consideration in designing strategies for the systemic delivery of drugs is
the mechanism of action of an anticancer agent. Most antineoplastic agents bring about
cell death by an interruption or aberration of cell kinetics through intermediate mecha-
nisms. In a few instances, as with some alkylating agents, such mechanisms have been
demonstrated to be greatly enhanced by the presence or coadministration of other com-
pounds or biochemical modulators (9). In situations like these, the schedule for the sys-
temic delivery of an anticancer drug should be in relation to deriving optimal benefit
from the presence of the biochemical modulator(s). Although the various modalities of
drug delivery are intended to improve the efficacy of administered anticancer agents,
toxicities associated with individual drugs continue to be a problem in cancer therapeu-
tics. This complication has remained the bane of cancer therapeutics and necessitates
the need for drug delivery strategies that will allow only selective drug delivery to a
tumor cell or target organ, or ensure maximum protection for normal tissues from the
administered antineoplastic agent. Such strategies will lead to improved efficacy by
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increasing the therapeutic window of an anticancer agent while minimizing the
chances of any systemic drug-related toxicity. These considerations have, so far, led to
the use of novel drug formulations or delivery systems including controlled-release
biodegradable polymers, polymeric microsphere carriers, or liposomes in the systemic
delivery of anticancer drugs, as well as the coadministration of cytoprotective agent(s)
with antineoplastics (10–15). Some of these strategies have been shown to result in
favorable outcomes. Presant et al. (16) observed minimal toxicity and significant anti-
tumor activity when liposomal preparations of doxorubicin were used to treat patients
with doxorubicin-resistant Kaposi’s sarcoma. However, although some of these drug
delivery strategies have been shown to result in favorable outcomes, more studies are
needed; some of the vehicles for delivery of water-soluble drugs into cell cytoplasm
have been demonstrated to be limited by a rapid uptake from circulation by the reticu-
loendothelial system (17).

As our knowledge of cancer biology continues to expand, our understanding of the
unique characteristics of individual tumor types should allow for systemic drug delivery
techniques that will take advantage of this new knowledge. For example, the long sched-
uling of intravenous 5-fluorouracil in the treatment of cancer is usually done to optimize
the effect of the drug in the presence of leucovorin. In this instance, leucovorin increases
cellular levels of reduced folates, thereby increasing the stability of a ternary complex
formed from the association of fluorodeoxyuridine monophosphate (FdUMP), thymidy-
late synthetase, and reduced folate (18). Another scenario involves adopting a strategy to
overcome drug resistance secondary to unique tumor characteristics. Thus, knowing that
a significant expression of thymidylate synthase confers drug resistance in patients with
gastric carcinoma (19) presents an opportunity for designing drug delivery strategies that
utilize prodrugs that are activated only at the tumor site. This approach provides for
selective exposure of the tumor to a high concentration of the antineoplastic agent. In
this regard, capecitabine, an oral analog of 5-fluorouracil, which is activated within the
tumor, has been used to increase efficacy and decrease systemic toxicity owing to the
drug (20). Alternatively, compounds that are known to modulate repair proteins unique
to, or overexpressed by, a particular tumor are being coadministered with systemically
delivered anticancer agent as a way to increase efficacy (21,22).

Though resistance by tumor cells to anticancer drugs is through various mechanisms
(23), there are data to suggest that the concentration of a drug at the tumor site plays a
significant role in tumor cell kill (24). Therefore, for systemically delivered antineoplas-
tics to be more efficacious, ways of increasing the therapeutic window must be explored.
Such strategies currently include the use of high doses of drug in combination with sup-
portive measures such as the use of colony-stimulating factors, hematopoietic transplan-
tation to ameliorate the toxicity of a drug, and coadministration of compounds that
protect normal tissues from the anticancer agent(s). However, because the practice of
combining systemic high-dose chemotherapy with hematopoietic transplantation has
been used for selected chemosensitive tumors to improve the efficacy of cytotoxic drugs,
this approach, though successful in some types of malignancies, has not proven to be
useful in some types of cancer such as glioblastoma multiforme (25).

Another consideration for the systemic delivery of anticancer drugs is related to the
location of a tumor. In situations where a tumor is inaccessible for surgery or loco-
regional therapy, any chance of effective therapy can only be realized by either par-
enteral or oral delivery of anticancer drug(s). Because anticancer agents delivered
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systemically are not subject to an initial hepatic first-pass metabolism, the use of this
form of drug delivery in the foregoing cases potentially ensures the delivery of a signif-
icant amount of drug to the tumor site. The flipside of this phenomenon, however, is
that normal tissues/organs are also likely to be exposed to the same high drug concen-
trations as the tumor mass. This exposure will account significantly for the disparity in
observed adverse effects between the different drug delivery modalities.

Notwithstanding, it should be noted, as illustrated in Fig. 1, that with the probable
exclusion of lung tumors, a drug delivered systemically would have to circulate
through the pulmonary system before being distributed to the tumor site. It is worth
noting that the lungs also have been shown to function as a metabolic organ (26,27).
The implication, therefore, is that systemically delivered drugs could potentially be
subject to significant metabolism in this organ system.

The efficacy of systemically delivered drugs relies also on factors such as the
physicochemical properties of the drug, the characteristics of a biological membrane,
and the perfusion of the tumor bed/locale. For example, using the systemic route for
drug delivery of therapy for malignant brain tumors implies that the efficacy of the
administered drug will be determined to a large degree by the extent of passive diffu-
sion of the drug through an interface, namely the blood–brain barrier (BBB). However,
many systemically delivered chemotherapeutic agents are precluded from penetrating
the BBB because they are large, water soluble, charged, or excessively protein-bound.
To address the problem of drug diffusion across the BBB, it is clear that “membrane
modifiers” will have to be considered where appropriate. An illustration of this strategy
is the use of compounds that disrupt the BBB by osmosis (e.g., mannitol [28,29]) or
that selectively increase permeability of the BBB (e.g., bradykinin analog, RMP7
[30]). When used in combination with systemically delivered chemotherapeutic agents

10 Part I / Pharmacological Considerations

Fig. 1. Schematic illustration of initial (drug) circulation after intravenous Administration.
(IVC/SVC (infusion) → RAT → RVT → PA → L (pulmonary circulation) → PV → LAT → LVT →
AO (“Systemic exposure/distribution”). AO: aorta; IVC: inferior vena cava; SVC: superior vena cava;
L: lung; LAT: left atrium; LVT: left ventricle; PA: pulmonary artery; PV: pulmonary vein; RAT: right
atrium; RVT: right ventricle.



for treatment of brain tumors, these compounds have proven very useful. It should be
noted also that although the use of hyperosmotic solutions usually resulted in exposure
of normal brain tissue to the administered drug(s), RMP7 delivery was significantly
tumor-specific while sparing normal brain tissue.

3. ADVANTAGES AND DISADVANTAGES

3.1. Advantages
Systemic delivery of antineoplastics presents unique advantages. In cases of

advanced or disseminated cancer, this form of drug delivery provides an opportunity to
ensure optimal exposure of tumor masses to administered anticancer agent(s). The sys-
temic delivery of anticancer drugs is therefore an assured way of effectively treating
micrometastatic disease as well as assisting in local control of a malignancy. Thus, this
form of delivery of antineoplastic agents will continue to be a major and important
route for drug administration in cancer treatment.

Although the oral route of drug delivery should potentially assure systemic exposure
to an antineoplastic, this form of drug delivery is often compromised by problems such
as hepatic first-pass metabolism and the need for proper formulation of the drug (31).
Most anticancer drugs are not usually administered orally because of the lack of suit-
able oral formulations. In addition, oral drug delivery presents such problems as the
following: lack of bioequivalence of oral formulations, low patient compliance, poor
drug absorption, variability in achievable plasma/tissue concentrations owing to inter-
and intraindividual differences in drug absorption and disposition, and drug–drug inter-
actions because most cancer patients are also using other medications. On the contrary,
systemic delivery of anticancer drugs obviates some of these problems, thereby, pro-
viding an opportunity for optimizing the therapeutic benefits of anticancer agents.

Another recognized advantage of systemic delivery of anticancer drugs is the ease
with which it can be done in an outpatient setting, and with minimal expertise required.
Also, schedule variations can be carried out as required. In contrast, loco-regional drug
delivery involves highly technical procedures that cannot be routinely done in outpatient
settings, frequently requiring the use of sophisticated materials (e.g., microspheres, pro-
grammable infusion pumps), and patients cannot be exposed to this therapy frequently.

3.2. Disadvantages
Given the fact that drugs delivered systemically also interact with normal tissue, sys-

temic toxicity from these agents continues to be the major problem plaguing this form
of drug delivery. Undisputedly, minimizing toxicity will greatly impact the overall out-
come of chemotherapeutic management of cancer. Toxicity is usually generalized or
organ-specific. Although loco-regional therapy is designed to minimize systemic toxic-
ity of cancer drugs, this has not been found to be universal (32).

Nevertheless, there are studies examining ways of alleviating this problem, includ-
ing strategies for minimizing toxicity of systemically delivered drugs by the use of sys-
temic neutralizing agents. One example is the systemic administration of leucovorin to
permit prolonged exposure of tumor tissues to methotrexate, given the cell cycle phase-
specificity of the drug. Other investigators are studying the use of gene therapy to
manipulate stem cells to be resistant to known pharmacodynamic endpoints of a drug
(33), and others have used cytoprotective agents to minimize the adverse effects of
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anticancer agents (18,19). In contrast, loco-regional or tumor-specific drug delivery
usually results in minimal toxicity. Thus, this form of drug delivery provides a unique
opportunity to increase the therapeutic window of an antineoplastic and does not
require the use of supportive measures such as hematopoietic transplantation or
hematopoietic growth factors. Compared to oral means of drug delivery, systemic
delivery is invasive, and often requires the use of a secured catheter in a major blood
vessel. Another disadvantage of systemic delivery of anticancer drugs is the cost in
comparison with that of the oral route of delivery. This could be significant in situa-
tions where effective oral cytotoxics are available.

4. COMPLICATIONS AND TREATMENT

4.1. Local
Because systemic delivery of drugs requires the use of veins, either peripheral or

central, this method of therapy can expose a patient to local complications. Phlebitis is
a common local complication that results from the use of peripheral veins for systemic
drug delivery. It does not usually result in a severe complication. Most of the dangers in
the administration of systemic therapy arise as a result of extravasation of a drug lead-
ing to vesicant/tissue damage at the local site. Common examples are vinca alkaloids
and anthracyclines. In the case of the vinca alkaloids, treatment involves the immediate
application of heat to the affected area, several times a day for 3–5 d, and injection of
hyaluronidase solution subcutaneously through six clockwise injections into the infil-
trated area. For the anthracyclines, management includes application of ice immedi-
ately to the affected area for up to 60 min, then every 15 min for a day, and elevation of
the extremity for up to 48 h. If symptoms or signs of extravasation persist for greater
than 48 h, the patient is usually seen by a surgeon for possible debridement surgery.
Clearly, in the systemic delivery of anticancer drugs, careful consideration is required
in ensuring that a drug is infused directly into a vein to avoid any local complication(s).

4.2. Systemic
Systemic complications arising from this form of drug delivery are usually sec-

ondary to hypersensitivity reactions, coagulopathy, and organ damage—especially pul-
monary damage. Management of such cases usually depends on the drug(s) in
question. For drugs that are well-characterized in clinical studies to result in systemic
complications, preventive measures are usually instituted before, during, and after infu-
sions of such compounds. However, some of the adverse events may be anaphylactoid
in nature and this renders it usually difficult to predict which patients will manifest any
untoward reactions. For the prevention of hypersensitivity reactions because of the
delivery vehicle used in the formulation of the anticancer drug (e.g., Cremophor® EL in
50% ethanol, for paclitaxel formulation), premedications consisting of corticosteroids
and histamine blockers have been found to be useful.

5. CONCLUSION

Systemic delivery of anticancer drugs is highly desirable in cancer therapeutics.
However, because this mode of delivery of anticancer drugs continues to be a major
way to administer these agents, it is now more important than ever before, for imple-
mentation of strategies to improve this form of drug delivery. To do so would require
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strategies that channel systemically administered antineoplastics to tumor sites only,
thereby minimizing the toxicity of cancer agents to normal tissues, or the use of sup-
portive measures including growth factors or hematopoietic stem cell transplantation to
ameliorate toxicities. In addition, drug administration schedules could be formulated to
potentially target molecular characteristics of a specific tumor.

It is clear that, apart from the presence of a drug at the tumor site, factors unique to a
tumor might dictate the degree of activity of an antineoplastic agent. This is particu-
larly true if a drug has to be converted by enzymes significantly expressed by the tumor
type in question. Such a situation is well characterized by the use of 5-florouracil
analogs, where intratumoral biotransformation of a prodrug, and not the route of
administration, determines the extent of tumor cell kill.

Finally, it is obvious that, while systemic toxicity continues to be a major problem
with systemically delivered drugs, other modalities for antineoplastic delivery have not
been clearly demonstrated to be significantly devoid of fewer undesirable events.
Future strategies aimed at developing more selective agents are needed to decrease the
need for regional delivery of anticancer agents.
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1. INTRODUCTION

Regional antineoplastic drug delivery is not a new concept. Following the initial
recognition that cytotoxic alkylating agents could cause shrinkage of tumor masses and
a reduction in the quantity of malignant ascites in patients with advanced ovarian can-
cer, investigators in the 1950s instilled the drugs directly into the peritoneal cavity in an
effort to treat the malignancy (1).

Similarly, intrathecal administration of methotrexate in the treatment and prevention
of meningeal leukemia (2), intravesical treatment of superficial bladder cancer (3), and
direct administration of drugs into blood vessels feeding a localized cancer (4), have
been evaluated for more than a decade as therapeutic strategies in the management of
malignant disease.

In this chapter, the basic pharmacokinetic rationale supporting regional antineoplas-
tic drug delivery will be presented, followed by a discussion of theoretical concerns
and practical issues associated with this treatment approach. The chapter will conclude
with several examples of regional antineoplastic therapy which have been accepted as
“standard of care” in the management of certain clinical settings, and other more
experimental strategies employing the regional route of drug delivery.

2. PHARMACOKINETIC RATIONALE

The basic aim of regional antineoplastic drug delivery is to deliver a higher concen-
tration of the agent to the tumor present within a particular region of the body, and to
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expose the tumor to the active drug for longer periods of time than are safely possible
with systemic administration (5–9). A favorable pharmacokinetic advantage for expo-
sure of the body compartment (e.g., peritoneal cavity, liver, bladder) compared to that
of the systemic compartment can be measured by increases in the peak concentration
of drug, a greater AUC (area-under-the-concentration-versus-time curve), or both
(Table 1).

The entire pharmacokinetic advantage associated with regional drug delivery occurs
during the first pass of the agent through the area perfused or infused. Even if the drug
subsequently reaches the tumor through the normal capillary flow into the area, there
will be no additional pharmacokinetic benefit associated with this delivery compared to
what would have been achieved following systemic administration of the agent.

2.1. Mathematical Model Describing Regional Antineoplastic Drug Delivery
It is possible to define the pharmacokinetic advantage resulting from regional drug

delivery by comparing the amount of the agent gaining entry into the region following
this method of administration to that achieved with systemic (generally intravenous)
treatment (Table 2, Equation 1). A similar calculation can be derived for the relative
reduction in systemic exposure associated with regional drug delivery by comparing
the concentration of drug found in the systemic compartment after regional and sys-
temic treatments (Table 2, Equation 2).

Combining these two calculations provides an estimate of the overall relative pharma-
cokinetic advantage resulting from the regional treatment strategy (Table 2, Equation 3).

2.2. Clinical Implications of the Model
Careful examination of Equation 3 (Table 2) leads to several important conclusions

relevant to the clinical use of regional antineoplastic drug delivery (Table 3).
The relative pharmacokinetic advantage associated with regional drug administra-

tion will be enhanced by measures which either reduce the clearance of the agent from
the region and/or increase the clearance from the systemic compartment. Examples of
measures which have been employed in the clinical setting to enhance the pharmacoki-
netic advantage of regional drug delivery are briefly outlined in Table 3.

Analysis of the model leads to several additional implications. First, antineoplastic
agents that are not able to be cleared rapidly from the systemic circulation following
perfusion/infusion through a region (by first-pass metabolism or artificial removal) will
be associated with a relatively less favorable pharmacokinetic advantage, compared to
drugs that exhibit this characteristic. However, even in this circumstance there may be
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Table 1
Rationale for Regional Antineoplastic Drug Delivery

1. Higher peak levels of drug in contact with tumor in the region of the body infused/perfused
(when compared with systemic compartment).

2. Prolong exposure of tumor present within the region to antineoplastic drugs (particularly
relevant for cycle-specific cytotoxic agents).

3. Reduction in systemic toxicity.
4. Improve opportunity to observe clinically relevant concentration-dependent synergy between

antineoplastic agents.



a valuable contribution associated with regional drug delivery, depending upon other
clinical conditions, for example, inherently slow blood flow through a region or highly
active cytotoxic drug in the tumor type being treated.

Second, whether the pharmacokinetic advantage associated with regional drug
administration of a particular drug is great (e.g., > 100-fold), or relatively minor (e.g.,
10-fold), will be only one factor in determining whether a regional treatment strategy is
a reasonable therapeutic option in a particular clinical setting.

An important consideration is the actual antineoplastic effectiveness of the agent
against the tumor type in question. The regional administration of a drug with a >1000-
fold pharmacokinetic advantage (either in peak concentrations or AUC) will not convert
a totally inactive drug against a particular tumor type into a useful therapeutic agent.

However, the modest or major increases in tumor–drug interactions possible with
regional drug administration have the theoretical potential to result in enhanced cyto-
toxicity for agents whose activity is known to be concentration-dependent or cycle-
specific (10,11). In certain clinical circumstances, regional drug delivery can increase
both peak levels and duration of exposure far beyond what can be safely accomplished
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Table 2
Pharmacokinetic Advantage Associated with Regional Antineoplastic Drug Delivery

Equation 1: Relative increase in exposure to infused/perfused region:

Rlocal = Clocal(regional)/Clocal(IV)

Equation 2: Relative decrease in exposure to systemic compartment:

Rsystemic = Csystemic(regional)/Csystemic(IV)

Equation 3: Overall pharmacokinetic advantage associated with regional drug delivery:

R =
Rlocal =

Clocal(regional)/Clocal (IV)
Rsystemic Csystemic(regional)/Csystemic (IV)

Code: Rlocal = relative increased exposure to infused/perfused region; Rsystemic = relative decreased expo-
sure to systemic compartment; Clocal(regional) = local concentration following regional drug delivery;
Clocal(IV) = local concentration following systemic drug delivery; Csystemic(regional) = systemic concentra-
tion following local drug delivery; Csystemic(IV) = systemic concentration following systemic drug delivery;
R = overall pharmacokinetic advantage associated with regional drug delivery.

Table 3
Opportunities to Improve the Pharmacokinetic Advantage Observed 

with Regional Antineoplastic Drug Delivery

1. Removal of agent during first pass through perfused organ (e.g., hepatic artery infusion
therapy for colon cancer metastatic to the liver).

2. Removal of agent after perfusion through the treated organ, but prior to entry into the
systemic circulation (e.g., isolation-perfusion techniques for treating extremity melanomas).

3. Systemic administration of an antagonist for a cytotoxic agent delivered regionally, with the
aim to neutralize the drug prior to the production systemic side effects (e.g., intravenous
leucovorin following intrathecal methotrexate in the treatment of meningeal leukemia).

4. Use of materials to decrease rate of blood flow through the perfused organ and enhance drug
removal (e.g., starch microspheres during hepatic artery infusion).



with systemic administration (8). Clinically relevant examples include: the intraperi-
toneal delivery of cisplatin in patients with ovarian cancer, which achieves a 20-fold
increased exposure to the peritoneal cavity when compared with the systemic compart-
ment (12,13), and hepatic artery infusion of floxuridine (FUDR®), which results in 15-
fold higher tumor drug levels when compared to those levels resulting from portal vein
infusion of the drug (14).

Because significant limitations of preclinical models in predicting activity of anti-
neoplastic drugs in patients are well recognized, data demonstrating the relative impor-
tance of concentration and duration of exposure in model systems can be helpful in
selecting drug(s) for inclusion in human trials of regional antineoplastic therapy (15).
For example, if an in vitro model demonstrates that administering concentrations of
drug “A” at levels 100 times higher than are achievable with systemic delivery will not
produce a significantly greater degree of tumor cell kill, and the regional pharmacoki-
netic advantage associated with this drug is only 10–50-fold, drug “A” would not be an
attractive candidate for this method of delivery.

Conversely, if the cytotoxic potential of drug “B” is demonstrated to be highly con-
centration-dependent and the levels producing major tumor cell kill can only be
achieved (at least in theory) at concentrations attainable following regional delivery
(e.g., hepatic arterial infusion for colon cancer metastatic to the liver), drug “B” might
be an ideal agent to consider for regional antineoplastic therapy.

3. THEORETICAL CONCERNS WITH REGIONAL 
ANTINEOPLASTIC DRUG THERAPY

Despite the attraction of regional antineoplastic drug delivery in the management of
cancers principally confined to a particular location in the body, there are a number of
theoretical objections raised regarding this therapeutic concept.

First, even if one accepts the hypothesis that higher tumor–drug interactions (higher
peak levels and AUC) associated with regional therapy will result in enhanced cytotox-
icity, there is legitimate concern that the delivery of a drug to cancer cells not directly
in contact with the perfused/infused area will not be beneficial. Furthermore, for regional
treatments not employing the vascular compartment (e.g., intraperitoneal, intrapleural,
intrathecal drug delivery), it might be argued that delivery of drug to tumor by capillary
flow will be reduced, resulting in negative impact on therapeutic efficacy. Considera-
tion of this issue leads to the conclusion that it is critically important to measure drug
levels in the systemic compartment following regional delivery. If insufficient concen-
trations of drug are found in the systemic circulation following regional drug adminis-
tration, it may be necessary to treat patients both regionally and intravenously to achieve
optimal therapeutic results.

Second, it is well-recognized that despite the high concentrations achievable at the
surface of tumor(s) following regional drug delivery, the actual depth of penetration of
these agents directly into tumor tissue is quite limited (16–21).

Thus, the increase in tissue concentrations of drug following regional drug delivery,
when compared to standard systemic treatment, is quite modest, despite the often
extremely dramatic increases in drug concentration measurable in the plasma or the
body cavity containing the tumor. This concern is particularly relevant for regional
approaches not employing the vascular compartment, which rely exclusively on direct
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uptake of drug from the body cavity for any therapeutic advantage associated with
regional delivery.

This important issue leads to the logical conclusion that regional therapy will have
its greatest theoretical potential for exhibiting an improved clinical outcome in patients
with smaller tumor nodules or only microscopic disease in the perfused/infused body
compartment. In these patients, the largest possible tumor volume will be exposed to
the higher cytotoxic drug concentrations achievable with regional drug administration.
Data generated evaluating the role of intraperitoneal therapy in the management of
ovarian cancer strongly support this conclusion (22).

A third theoretical concern with regional delivery relates to unique considerations of
the specific strategy in question. For example, it has been shown that when a drug is
infused into a rapidly flowing blood vessel, the drug does not completely mix in the
plasma (the so-called “streaming effect”), resulting in nonuniform drug distribution to
the perfused tissue (23,24). The clinical impact of this laboratory observation is uncer-
tain, but the potential exists that portions of the tumor within the organ will be exposed
to significantly lower concentrations of drug than are necessary to achieve the desired
optimal cytotoxic effect.

A second example is that of the potential for inadequate distribution of an antineo-
plastic agent instilled into a body cavity (e.g., peritoneum, pleura) (25–27). As blood
flow through the region is not employed to deliver drug to the tumor, there is concern
that regions of the body compartment will not be exposed to the necessary high con-
centrations of cytotoxic agent. This may be due to interference with uniform distribu-
tion by the presence of normal organs (e.g., bowel), tumor(s), or adhesions.

4. PRACTICAL CONSIDERATIONS ASSOCIATED WITH REGIONAL
ANTINEOPLASTIC DRUG THERAPY

A number of practical issues must be considered when designing an experimental
regional antineoplastic strategy or when employing a standard regional treatment
approach in the clinical management of malignant disease (Table 4).

The establishment of safe, convenient, and cost-effective techniques for the adminis-
tration of regional antineoplastic therapy is an important issue in the development of
these strategies for routine clinical use.

For example, while a peritoneal dialysis catheter can be inserted at the time of each
ip treatment, this method of delivery will significantly restrict the application of the
regional approach. Only a limited number of physicians will feel comfortable with
placing such catheters in patients who have previously undergone one or more laparo-
tomies and who do not have ascites. In addition, time and resources required for this
drug delivery technique can be considerable. Finally, even if employed by well-trained
physicians, there is a finite risk that catheter insertion performed without direct visual-
ization of the peritoneal cavity will lead to bowel puncture and associated complica-
tions (28,29).

The time, effort, and complications associated with achieving access to the arteries
can pose greater concerns (30,31). For patients being considered for more than one or
two courses of intraarterial therapy, the surgical placement of semipermanent delivery
systems would appear to be the optimal method of regional drug delivery (31–33). This
situation would also be relevant for patients scheduled to receive weekly or more fre-
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quent intrathecal drug administration for the prevention or treatment of meningeal
leukemia (34,35).

Considerable caution is advised regarding the potential for unique toxicities associ-
ated with regional antineoplastic drug administration. The toxicity profile of an anti-
neoplastic agent may be well-established when the drug is administered systemically at
standard dose levels. However, the side effects associated with the extremely high con-
centrations achievable following regional delivery, or the toxicity to tissues that would
normally not come into direct contact with the drug after iv infusion, potentially may
be excessive.

For example, the direct hepatic artery administration of FUDR can be associated with
the development of sclerosing cholangitis or biliary cirrhosis (36,37); ip delivery of a
number of cytotoxic agents, including doxorubicin or mitoxantrone, can lead to severe
peritonitis, extensive adhesion formation, and subsequent bowel obstruction (8,38,39).

A number of proposed regional antineoplastic drug delivery methods require exten-
sive surgery (e.g., isolation-perfusion of mesenteric arterial vessels, hyperthermic
intraperitoneal chemotherapy), or are associated with considerable risk for the develop-
ment of serious morbidity or death (40–42). Such strategies will require extensive eval-
uation and favorable results achieved in well-designed randomized trials before they
can leave their current realm of highly experimental treatment programs and be consid-
ered reasonable therapeutic regimens in standard clinical practice.

Even regional antineoplastic drug delivery programs which do not require such
intensity of treatment or are not associated with excessive toxicity will require the per-
formance of randomized trials to be certain that the theoretical advantages of these
novel therapeutic strategies can be translated into clinical benefit for individuals with
malignant disease.

5. CLINICAL EXAMPLES OF REGIONAL 
ANTINEOPLASTIC DRUG DELIVERY

5.1. Intrathecal Therapy for the Prevention 
and Treatment of Meningeal Leukemia

One of the most established regional antineoplastic drug delivery approaches is that
employed to either prevent or treat established leukemia in the central nervous system
(2,43–45). In certain specific clinical settings, the risk for the development of
meningeal involvement with leukemia has been demonstrated to be substantially
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Table 4
Practical Considerations in Regional Antineoplastic Drug Delivery

1. Development of a safe, convenient, and cost-effective delivery system (e.g., intraarterial 
and ip infusion devices).

2. Unique complications associated with regional drug delivery (e.g., peritonitis associated
with ip drug administration).

3. Complications associated with drug delivery systems (e.g., infection, bowel perforation,
laceration of blood vessel).

4. Requirement to demonstrate improved therapeutic efficacy associated with regional drug
delivery (randomized Phase III trials).



reduced with prophylactic intrathecal or intraventricular treatment. Established
meningeal leukemia (documented by cerebral spinal fluid cytology) can also be effec-
tively treated in many patients with several established regional antineoplastic drug
regimens.

5.2. Intraperitoneal Therapy in the Management of Ovarian Cancer
The ip administration of antineoplastic agents in the management of ovarian cancer

has been extensively examined in Phase I toxicity and pharmacology studies and Phase
II efficacy trials involving a number of drugs with demonstrated activity in ovarian can-
cer, for example, cisplatin, carboplatin, paclitaxel, and/or doxorubicin (8,22,46).

More recently, the therapeutic potential of this method of drug delivery has been
examined in the randomized Phase III trial setting (47,48). In a study involving newly
diagnosed patients with small-volume, residual advanced ovarian cancer following sur-
gical cytoreduction, the ip administration of cisplatin (in combination with iv
cyclophosphamide) resulted in an improvement in overall survival, when compared
with a control regimen of iv cisplatin administered with iv cyclophosphamide (47).

A recently reported randomized trial comparing iv cisplatin and paclitaxel with a
regimen of iv paclitaxel and ip cisplatin has reached similar conclusions (48). This
trial, also involving newly diagnosed advanced ovarian cancer patients with small vol-
ume residual disease, demonstrated a statistically significant improvement in progres-
sion-free survival and borderline improvement in overall survival associated with the
regional treatment program. It should be noted that this study employed two courses of
moderately dose-intensive iv carboplatin (AUC 9) prior to the administration of the
regional program, designed to chemically debulk any residual tumor before the use of
the regional drug delivery strategy.

5.3. Intrahepatic Arterial Therapy for Colon Cancer Metastatic to the Liver
Phase III trials have demonstrated a higher objective response rate associated with

the direct intrahepatic arterial administration of FUDR, when compared to systemic
delivery of the agent in the treatment of colon cancer metastatic to the liver (49–55).
Several of these studies have been criticized because a crossover design was employed,
whereby the patients randomized to iv drug delivery were permitted to receive intraar-
terial therapy at the time of disease progression. The impact of such crossover on the
ultimate outcome has been debated extensively in the medical literature.

There have also been questions raised regarding the overall benefits of this strategy,
in view of the morbidity and costs of the regional treatment approach. However, data
available though the conduct of these trials support the clinical utility of this therapeu-
tic strategy in carefully selected individuals with colon cancer metastatic to the liver.
These clinical characteristics include adequate patient performance status, absence of
serious comorbid medical conditions that might increase potential morbidity of the
treatment regimen, and the presence of metastatic disease localized in the liver only.

5.4. Intravesical Therapy of Localized Bladder Cancer
The intravesical administration of both cytotoxic (e.g., mitomycin, thiotepa, doxoru-

bicin) and biological (e.g., bacille Calmette-Guérin [BCG]) agents has been demon-
strated to be effective treatment of superficial bladder cancer and carcinoma in situ in
the bladder (56,57).
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The ease of administering high concentrations of antineoplastic drugs directly into
the bladder, and the simplicity of measuring the effects of treatment through the perfor-
mance of urinary cytology and/or bladder wall biopsy, makes the bladder an ideal
organ to employ regional therapy.

Intravesical antineoplastic therapy has been shown to prevent the progression from
superficial to invasive cancer and to reduce the requirement for more radical surgical
interventions, including the performance of a cystectomy.

6. CONCLUSION

Over the past decade, the regional administration of antineoplastic drugs has
evolved from a theoretical concept to a rational treatment strategy in a number of clini-
cal settings.

The rather profound pharmacokinetic advantage associated with regional drug deliv-
ery is appealing, but a number of theoretical and practical issues limit patient popula-
tions where this therapeutic approach is a reasonable option in both clinical trials and
standard oncologic practice.

Randomized controlled trials will be required to demonstrate if the potential for
enhanced tumor cell kill associated with increased drug concentrations and more pro-
longed exposure can be translated into improved outcomes for patients with malignant
disease.
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1. INTRODUCTION

Large amounts of data on tumor cell survival as a function of exposure to anticancer
drugs, drug pharmacokinetics, drug distribution in the body, and other aspects of drug
delivery and effectiveness are continually being generated. Cancer therapies are
becoming increasingly complex, and it is now possible to choose the time schedule of
drug delivery, the site of delivery, the size, lipophilicity, release kinetics and other
properties of a carrier, and numerous other options. However, it is clearly impossible to
perform sufficient animal experiments or clinical trials to determine the optimal
choices of all these variables. Even for drugs that have been used for decades, doses
and schedules are often based on past experience and medical tradition rather than on
rational analysis. These circumstances suggest an increasing need for theoretical mod-
els of anticancer drug delivery. Such models can provide a framework for synthesizing
and interpreting available experimental data, and a rational basis for optimizing thera-
pies using existing drugs and for guiding development of new drugs.

A synthesis is needed of two main bodies of anticancer drug research: studies on
cellular responses to drugs, and studies on how the method of drug administration
affects an animal or patient. Improved understanding is needed of the relation between
the mode and schedule of therapy and the resulting drug exposure of cancer cells and
normal cells that are responsible for limiting toxicities. This requires consideration of
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the steps involved in drug transport from the infusion site to the tumor (1–3). Here, the-
oretical modeling can play an important role, by predicting cellular exposure and toxi-
city as a function of treatment mode and schedule, taking into account whole-body
pharmacokinetics and transport processes leading to spatial and temporal variations of
drug concentrations within the tumor and other tissues.

The focus of this review is on the use of theoretical models to investigate the rela-
tionship between delivery of anticancer drugs and their cellular effects, with the goal of
optimizing anticancer therapies. First, theoretical models for the dependence of tumor
cell kill on cellular drug exposure are considered. The importance of host tissue toxic-
ity is then discussed. Next, studies aimed at optimizing intravenous (iv) delivery are
examined, along with studies on alternative delivery methods. Finally, potential direc-
tions for future research are considered.

2. ANTITUMOR EFFECTS OF CELLULAR DRUG EXPOSURE

Several theories have been developed to describe the relation between cellular expo-
sure to anticancer drugs and effect, measured as tumor cell kill or surviving fraction of
clonogenic cells. In this context, “exposure” refers to the time course of extracellular
concentration. Because response to a drug generally increases with increased drug lev-
els and with increased exposure time, the area under the (extracellular) concentration-
time curve, generally called AUC, is often used as a predictor of effectiveness. In most
in vitro experiments, the extracellular concentration is held constant, so that AUC is C
× T, the product of extracellular concentration and exposure time. Data sets with only
one exposure time (and several different concentrations) or only one concentration
(and varying exposure time) cannot be used to test whether AUC by itself properly pre-
dicts drug effect. Data on cell kill for different combinations C1 T1 = C2 T2 where C1 ≠
C2 are needed. Walker et al. (4) and Erlichman et al. (5) obtained such data for two dif-
ferent human bladder cancer cell lines and concluded that AUC alone predicted cell
kill. Walker et al. (4) reported this observation for doxorubicin, epodyl, mitomycin C,
and thiotepa; Erlichman et al. (5) found it to hold for melphalan, cisplatin, doxorubicin,
mitomycin C, and 5-fluorouracil, but not for vincristine. Ozawa et al. (6) concluded
that AUC predicts cell kill for Chinese hamster cells exposed to mitomycin C, from
their data showing that log(IC90) (where IC90 is the concentration required for 90%
growth inhibition) plotted vs log(T) is linear with slope –1. Kurihara et al. (7) exposed
gastric cancer cell lines to cisplatin for different times, and also concluded that AUC
was a predictor of effect.

A cell kill that depends only on AUC, independent of the time course of concentra-
tion, is to be expected if the proportional rate of cell kill is linearly related to the con-
centration. In particular, if cell kill is rapid enough to be considered instantaneous, then
cell kill is dependent only on AUC, if and only if the number of cells n(t) satisfies

(1/n) dn/dt = –kc [Eq. 1]

where c(t) is the drug concentration and k is a constant. Linear models for cell kill are
clearly limited in their applicability. Most pharmacologic responses are nonlinear in con-
centration, showing saturation at high levels. Furthermore, cooperative behavior is often
seen at low-concentration levels, giving a sigmoidal dependence of response on concen-
tration. In such cases, AUC alone cannot predict cell kill. For example, the effects of dou-
bling the concentration and halving the exposure time (while holding AUC constant) do

26 Part I / Pharmacological Considerations



not cancel each other as they do when the response is linear. Therefore, it is not surprising
that AUC has been found to be an inadequate predictor of effect in many studies. For
example, Nozue et al. (8) determined the (extracellular) drug level needed for 50% growth
inhibition (IC50) for a number of anticancer drugs at four different exposure times, for
four different cell lines. In Table 1, some of their data are tabulated as AUC50 rather than
IC50. (Here, AUCx is defined as the AUC needed to achieve x percent growth inhibition.)
If AUC predicted cell kill, AUC50 would not vary with exposure time, but Table 1 shows
that AUC50 does vary. For many drugs, higher AUC50 is needed at longer exposure times,
while other drugs show nonmonotonic variation of AUC50 with exposure time.
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Table 1
AUC50 (in µg-h/mL) for Various Anticancer Drugs, for Different Infusion Times, 

Based on Data of Nozue et al., 1995.

A. The GCIY Cell Line

Drug 1 h 6 h 24 h 72 h Nonmonotonic?

neocarzinostatin 2.0 15.0 33.6 381.6
mitomycin-C 96.0 237.6
actinomycin-D 1.18 0.78 1.92 5.76 *
doxorubicin 47.4 105.6 302.4
pirarubicin 1.40 2.16 7.68 14.4
epirubicin >100 28.8 96.0 244.8 *
daunorubicin 5.0 22.2 40.8 111.6
mitoxantrone 1.80 9.9 13.9 136.8
vindesine sulfate 5.6 31.2 1.44 0.72 *
SN-38 4.32 18.7 40.3
cyclophosphamide 4.26 18.7 40.3
ifosfamide 18.0 67.2 194.4
cisplatin 24.0 37.2 133.2
5-fluorouracil 1008.0 2592.0

B. The JR-St Cell Line

Drug 1 h 6 h 24 h 72 h Nonmonotonic?

mitomycin-C 50.4 72.0 116.6
actinomycin-D 0.16 0.36 0.24 0.72 *
doxorubicin 0.9 6.0 4.56 8.64 *
pirarubicin 0.4 2.16 10.56 18.0
epirubicin 3.3 8.4 14.4 23.0
daunorubicin 3.3 9.6 38.4 72.0
mitoxantrone 105.6 316.8
vincristine 1.45 3.24 20.64 51.8
vinblastine 0.16 1.02 3.6 0.72 *
vindesine 0.14 0.54 1.44 0.72 *
SN-38 1.6 22.8 81.6 56.16 *
etoposide 420.0 984.0 936.0 *
cisplatin 40.2 79.2 237.6
5-fluorouracil 432.0 576.0
methotrexate 24.0 7.92 *

* Denotes a drug for which AUC50 does not increase monotonically with exposure time



Many other studies show that drug effect is not predicted by AUC alone, although
this may not be readily apparent, because survival fraction is often plotted vs. drug
concentration. When the data are plotted as survival fraction vs AUC for different
exposure times, failure of the curves to coincide implies that AUC alone is not an ade-
quate predictor of effect. Table 2 lists a number of studies that found such behavior.
Some of the drugs appearing in Tables 1 and 2 were also used in studies mentioned ear-
lier that found that AUC alone predicted effect. This suggests that the relation between
effect and exposure depends on the cell type. Also, studies reporting a close correlation
with AUC might have found the correlation to break down had they sampled more con-
centrations or exposure times.

Because AUC may not adequately predict effect, the relation (IC50)n T = k, or more
generally (ICx)n T = k, where k is a constant and x is percent growth inhibition, has
been used by several investigators. If n = 1, this reduces to AUC50 = k, i.e., the effect
then depends only on AUC. A larger value of n implies a greater importance of concen-
tration overexposure time; conversely, values of n < 1 weight exposure duration as hav-
ing relatively greater importance. Levasseur et al. (22) gathered a large amount of in
vitro dose-response data at different exposure times for a number of drugs, and corre-
lated the data with IC50 T(1/n) = k, which is equivalent. Their fitted values of n differ
significantly from 1 for many drugs. Millenbaugh et al. (18) found n values from 1.04
up to 1.46 for the response of two different cell lines to mitomycin C.
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Table 2
Studies Showing That Exposure Time is Needed in Addition to AUC to Predict Drug Effect

Drug Tumor/Cell Type Source Replote

Cisplatin Colon carcinoma (9), Table 5 yes
Cisplatin Head and neck cancer (10), Fig. 4 no
Cisplatin Chinese hamster cells (11), Fig. 1 yes
Doxorubicin Human colorectal carcinoma (12), Figs. 1 and 2 yes
Doxorubicin Mouse sarcoma cell line (13), Table 1 no
Methotrexate Chinese hamster, HeLa, HAK (14) no
Mitomycin-C Human bladder (15), Fig. 3 yes
Mitomycin-C Human ovarian cancer (16), Fig. 2 yes
Mitomycin-C Human colon adenocarcinoma (17), Table 1 yes
Mitomycin-C Human bladder cancer, human (18) no

pharynx cancer
3 drugsa Jurkat leukemia (19) no
4 drugsb Human ovarian carcinoma (20) no
Many drugsc Murine neuroblastoma (21), Figs. 2 and 3 yes
Many drugsd Human ovarian and ileocecal carcinoma (22) no
Many drugs Human lung adenocarcinoma (23) no

a Taxol, camptothecin, DACA.
b Doxorubicin, cisplatin, vinblastine, and hydroxyurea.
c Including doxorubicin, cisplatin, melphalan, methotrexate.
d Including cisplatin, doxorubicin, paclitaxel, trimetrexate, raltitrexed, methotrexate, AG2034.
e Data are plotted vs extracellular concentration in the cited study.



Although it generally allows a better fit to the data, the equation (IC50)n T = k has
some limitations. Many drugs have a threshold value below which they will have no
effect, no matter how long the exposure time (e.g., methotrexate, Chabner and Longo
[24]), but this equation does not allow for such a threshold. Similarly, the equation
(IC50)n T = k implies, unrealistically, that if a high enough concentration is used, a
response can be achieved in extremely short time. Another limitation of the equation is
the fact that it predicts a monotonic increase (if n > 1) or decrease (if n < 1) of the
AUC50 with increasing exposure time, i.e., AUC50 = k1/n = T1–1/n. In Table 1, asterisks
indicate drugs that do not exhibit such monotonic behavior. Other data sets exhibiting
nonmonotonic behavior include the Schmittgen et al. (15) study of mitomycin C acting
on human bladder cells (their Fig. 3, although the authors fit this data to the Cn T form)
and the Eichholtz-Wirth and Hietel (11) data on cisplatin (their Fig. 1).

Apart from the above limitations, a single correlation (ICx)n T = k for any particular
x (such as 50 or 90) is not sufficient, and a correlation for a range of x values is needed.
Recognizing this need, Levasseur et al. (22) combined the equation (IC50)n T = k with a
Hill model to give mathematical expressions for effect at any concentration and expo-
sure duration. These equations were then fit to a large body of data for seven different
anticancer drugs. While this model can describe a wider range of behavior than the cor-
relation (ICx)n T = k, it does not generalize readily to cases in which concentration
varies with time (as generally occurs in vivo). Also, this model cannot be extrapolated
to time periods longer than the 24-h range of the fitted data, because the empirical qua-
dratic dependence of one of the parameters on T does not apply for longer periods.

The “exponential kill” model of Gardner (25) has the advantage that it is based on a
consideration of the kinetics of cell kill. Although results are presented for exposure to
constant drug levels, such a model can also be used to predict the response to time-
varying concentrations. Other features of this model are that it includes effects of cell
cycle time phase on the response of cells to cell-cycle phase-specific drugs, and that it
allows for a “plateau” in the response such that cell kill is independent of drug concen-
tration at high concentration levels. However, the applicability of the model is
restricted by the assumption that the fractional rate of cell kill at each instant (a quan-
tity having units of inverse time) is given (for cell-cycle phase-nonspecific drugs) by
1–exp(–aC) and a corresponding expression for cell-cycle phase-specific drugs. These
expressions are dimensionless, and should therefore be replaced with k[1–exp(–aC)],
where k is an additional parameter with units of inverse time. The need for the parame-
ter k is further shown in the limit of large concentration, where the survival fraction at a
fixed exposure time T approaches a plateau at a survival fraction B(T) = exp(–T). This
expression cannot be reconciled with experimental observations because it lacks a
parameter to scale the argument of the exponential so that it is dimensionless. With the
parameter k, it becomes B(T) = exp(–kT). Furthermore, the assumed dependence of
cell-kill rate on concentration leads to the conclusion (for cell-cycle phase-nonspecific
drugs) that the AUC required for a given level of cell kill decreases with increasing
exposure time to a constant level of drug, whereas many such drugs show the opposite
trend (Table 1).

Different drugs and cell lines show a wide variety of cellular responses to drug dose,
and any given model is necessarily restricted in its applicability. Baguley and Finlay
(19) found that for 1-h exposures to the drug DACA, survival fraction did not always
decrease as concentration increased. Rather, there was a maximum cell kill at a finite
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concentration, indicative of drug self-inhibition. None of the mathematical forms dis-
cussed in the foregoing can predict such nonmonotonic behavior of survival fraction
with concentration at fixed exposure time. Similarly complex behavior is suggested by
data of Slee et al. (16), whose curves for survival fraction of ovarian cancer cells vs
mitomycin C concentration at different exposure times intersect. Table 3 of Nozue et
al. (8), part of which was retabulated in terms of AUC50 (Table 1), also shows a few
drugs and cell lines for which IC50 does not decrease monotonically in time, including
neocarzinostatin, mitoxantrone, SN-38, vincristine, and pirarubicin.

In summary, a number of empirical relationships between cellular exposure and
growth inhibition have been proposed. For most anticancer drugs, AUC is not an ade-
quate predictor of effect. The common practice of correlating data on tumor cell kill
with the AUC of plasma drug concentration vs time can lead to the incorrect inference
that the schedule of drug administration has no bearing on efficacy. Correlations that
include exposure time T as well as AUC are needed, and may provide a basis for opti-
mizing treatment schedules. A mathematical form that adequately correlates effect with
concentration and exposure time for one drug may be inadequate for a different drug or
even for the same drug acting on a different cell line. Consideration of the kinetics of
cell kill (25) may be helpful in developing improved models.

Many anticancer drugs must enter tumor cells before they can take effect and this
takes finite time. For example, equilibration of extracellular and intracellular concen-
trations of doxorubicin takes hours (26). A deficiency of the models described so far is
that they do not take into account the kinetics of this transport process. Experimental
studies are needed in which intracellular concentration is measured along with growth
inhibition. Such data can provide a basis for more realistic models to predict antitumor
effect. Other factors may have to be included in some cases, such as self-inhibition of
toxicity, cell-cycle specificity, and different mechanisms of cell kill at different concen-
trations (27).

3. DRUG EXPOSURE AND HOST TOXICITY

Information on the relation between host toxicity and exposure is essential for opti-
mization of drug delivery. All anticancer therapies are subject to limits on allowable
host toxicity. A crude measure of host toxicity is maximum tolerated dose (MTD),
determined as an average over some patient population. Use of MTD has serious limi-
tations. Some patients have medical conditions besides cancer that give them lower tol-
erance, such as renal and liver failure, or heart disease. For example, Sadoff (28) found
severe enhancement of 5-fluorouracil toxicity in patients with diabetes. Clearance of
drug shows considerable individual variation. Patients with more rapid than average
drug clearance might receive suboptimal treatment if given an average MTD. These
considerations have led to the use of pharmacokinetic monitoring to individualize the
dose so that patients have equivalent plasma levels rather than equivalent injected dose
(29). However, as with drug effectiveness, toxicity may depend not only on the total
amount of drug, but also on the schedule of administration. For example, total lifetime
limits of doxorubicin are around 500 mg/m2 for bolus injection, but have been pushed
to 700 mg/m2 with continuous infusion (30).

Many researchers have correlated host toxicity with AUC. However, just as AUC has
limitations as a predictor of antitumor drug effect, AUC is not necessarily a good pre-
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dictor of host toxicity. Table 3A lists some studies, including a review (35), that found
correlations of hematological toxicity with AUC. Table 3B lists studies that found other
measures of exposure to be more relevant.

Lokich and Anderson (41) surveyed anticancer drugs to determine whether the max-
imum tolerated dose and dose intensity were different for bolus injection and for infu-
sion. Dose intensity is a measure of plasma exposure rather than amount injected, and
reflects the individual variation in clearance of drug or other factors such as binding of
drug to plasma proteins, and so on. Unfortunately, they defined bolus administration as
any taking less than 24 h, and continuous infusion as any taking longer than 24 h. Sig-
nificant variation of response with infusion times may be overlooked when schedules
of administration are lumped in these two categories. Even so, that review (41) shows
that the schedule of administration influences the maximum tolerated dose, and there-
fore must influence toxicity.

Although the studies in Table 3A reported a correlation of toxicity with AUC, they
did not establish that these correlations would apply to schedules or modes of adminis-
tration that differ significantly from the type used in obtaining the correlation. For
example, Dhodapkar et al. (33) give correlations for the hematological toxicity of
pyrazine dizohydroxide that involve AUC. They note that “Since AUC and Cpeak were
highly correlated, either parameter may be used to predict hematologic toxicity.” For
bolus iv infusion, AUC and Cpeak may indeed be correlated. However, with another
schedule such as long-time continuous infusion, a high AUC may be achieved with a
low Cpeak. For such schedules, it is important to determine whether AUC or Cpeak deter-
mines the hematological toxicity, or whether neither quantity provides a reliable indi-
cator of toxicity.
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Table 3A
Reported Correlations of Host Hematological Toxicity with Drug AUC

Drug Toxicity Source

Carboplatin Thrombocytopenia 31
Cisplatin Thrombocytopenia 32
Pyrazine diazohydroxide Leukopenia 33
Topotecan Myelosuppression 34
Many drugs Hematological 35

Table 3B
Reported Correlations of Host Toxicity with Measures of Drug Exposure Other Than AUC

Drug Toxicity Correlating factor Source

Cisplatin Nephrotoxicity Duration above threshold level (plasma) 36,37
Doxorubicin Cardiotoxicity Peak plasma levels 38
Etoposide Myelosuppression Peak plasma levels 39
Methotrexate Neurotoxicity Duration above threshold level (plasma) 24
Paclitaxel Myelosuppression Duration above threshold level (plasma) 40



Several of the studies in Table 3B correlated toxicity with the period that plasma
drug concentrations exceeded a threshold level. Although such correlations may be
adequate to fit a data set wherein the threshold was exceeded in all cases, their form is
not suitable for determining optimum exposure. Mathematically, they suggest that the
optimum schedule is a plasma concentration just below the threshold for infinite time.
This is clearly unrealistic. Mathematical forms that do not include artificial discontinu-
ities (e.g., toxicity dropping abruptly to zero) are more likely to lead to plausible results
when used to optimize exposure.

In conclusion, quantitative relations between the limiting toxicities of anticancer
drugs and exposure, including schedule dependence, are needed. Studies correlating
hematological toxicities with AUC or steady-state plasma values should be reexamined
to determine whether the findings apply only for a particular schedule of administra-
tion, or whether they are schedule-independent. More in vitro studies relating host cell
toxicity to extracellular drug level would also be valuable.

4. OPTIMIZATION OF INTRAVENOUS DELIVERY

To address the question of what therapy offers the best probability of success, results
of studies at the cellular level should ideally be incorporated into models for cost and
benefit for the whole body. Optimization should obviously involve maximization of
benefit with minimization of cost, but this involves the difficult problem of choosing
measures of cost and benefit. At the cellular level, survival fraction or percent growth
inhibition are obvious measures of effect. At the whole-body level, the most indis-
putable measure of benefit is statistically significant prolonged survival of a human
patient population (perhaps with quality-of-life considerations added). However, con-
trolled clinical trials are scarce, take many years to yield long-term survival data, sel-
dom analyze more than one variable relating to treatment, and often have several
confounding variables. Therefore, it is extremely difficult to relate long-term survival
to the numerous factors that could be varied to optimize treatment. For this reason,
most theoretical studies use survival fraction or percent growth inhibition for tumor
cells as measures of benefit at the whole-body level. This admittedly has a serious
drawback, in that treatments leading to greater short-term response (e.g., greater imme-
diate tumor cell kill) do not necessarily lead to improved long-term survival. For exam-
ple, intraarterial delivery of 5-fluorouracil for liver metastases of colon cancer gives
better short-term response than iv therapy, but does not result in increased survival
(42). Similarly, long-time infusion of 5-fluorouracil produces a higher response rate
than bolus injection for colorectal cancer, but with no statistically significant increase
in survival (43).

Minimization of “cost” is also complicated for cancer therapy. Given that many can-
cers are life-threatening diseases, significant permanent damage to the host may be
acceptable if it is accompanied by sufficient tumor cell kill. Thus, for many life-threat-
ening cancers, cost should logically be fixed at the highest level short of killing or too
severely disabling the patient (a subjective choice in some cases). Rather than setting
toxicity at the maximum tolerable level, some investigators have used the steepness of
the dose-response curve as a criterion (12,35). For therapy that has a chance of cure,
the rationale for stopping at the point of diminishing returns is not clear, however, since
an increase in toxicity to achieve a small additional cell kill can be worthwhile if it
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results in prolonged survival. On the other hand, for palliative therapy (i.e., therapy that
is known a priori to have no chance of being curative), the acceptable level of toxicity
should perhaps be lower. Whereas not all toxicities are easily quantified, certain com-
mon dose-limiting toxicities such as thrombocytopenia and leukopenia have objective
measures. These measures can be correlated with probability of surviving treatment, so
that the remaining subjective element is choosing an acceptable level of risk. It may be
best to optimize therapy as a function of this risk level, leaving it as a parameter to be
chosen for each patient.

4.1. Optimization of Plasma Exposure
Several researchers have used data on the dependence of tumor cell toxicity on

exposure schedule to determine optimal delivery schedules. Some of these studies
assume implicitly that tumor extracellular exposure is identical with plasma exposure,
even though other researchers have emphasized that this is not necessarily the case
(1–3). Such studies are reviewed here, with particular attention to the criteria chosen to
optimize treatment.

Millenbaugh et al. (18) fitted the relation CnT = h, where h is a measure of drug
effect, to cell kill data for mitomycin C, and stated that “when the n value deviates from
1.0, even to a relatively minor extent, different treatment schedules can result in large
differences in the CnT product” and that this is “important for deciding on the treat-
ment schedules that produce the highest effect.” Many years earlier, Skipper (44) made
the key observation that the basis of successful therapy is the difference between the n
values for tumor and host tissue. If CnT = h holds with different n values for the tumor
cells and the normal cells that give rise to dose-limiting toxicity, then therapy can be
optimized by changing the schedule of administration.

In an in vitro study screening 24 drugs for effect on gastric cancer, Nozue et al. (8)
maximized the quantity AUC/∆IC50, where ∆IC50 is a composite measure of IC50 for
four different gastric cancer cell lines and AUC is the clinically achievable exposure, as
a criterion for effectiveness. The rationale was that a large achievable AUC is favorable
since it means that more drug can be administered, whereas a low IC50 means that less
drug is needed to achieve 50% growth inhibition. One drawback was noted: the achiev-
able AUC is actually schedule-dependent, and use of a single value neglects substantial
variation that might be achieved by changing the schedule of administration. A further
drawback is that the schedule dependence of the tumor cell kill was neglected. More-
over, ICx can show complicated dependence on x. Since therapy aims for a much higher
fractional cell kill than 50%, it is not clear that behavior at 50% cell kill (i.e., IC50)
should be used in optimization. Nozue et al. (8) noted that their predictions for 5-fluo-
rouracil and mitomycin C did not agree well with clinical observations.

Link et al. (12) determined optimal exposure times by another criterion. They deter-
mined survival vs. concentration curves for various exposure times. Then for each
exposure time, the concentration IC50 and the slope of the curve at that point (α) were
determined. The time T for which IC50 T/α was minimum was taken as optimum. The
rationale for this choice was not stated, but appears to be as follows. IC50 T is AUC,
assumed to measure toxicity to normal tissue. Where 1/α is smallest, the benefit from
increasing the concentration is largest. However, as mentioned previously, the logic of
using the steepness of the dose-response curve as a criterion is questionable. Further-
more, the dose-response curves are nonlinear, and the behavior at 50% cell kill may
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differ from that at higher cell kill. The scatter in the data makes accurate estimation of
α difficult. A simpler and more robust approach, retaining the assumption that AUC
measures toxicity, would be to plot survival as a function of AUC and choose the expo-
sure time that maximizes the cell kill when AUC is set at the maximum tolerable level.

In summary, some studies attempted to optimize treatment schedules under the
assumption that tumor cell extracellular exposure can be approximated by plasma
exposure. Some of the optimization criteria, e.g., use of single parameters such as IC50
or the slope of the dose-response curve at one point to create a measure of drug effec-
tiveness, have questionable rationales. Taking into account the entire three-dimensional
concentration-time-effect surface might give significantly different predictions, given
the nonlinearity of drug exposure-effect relations (22). In particular, the relative perfor-
mance of various drugs at 50% growth inhibition will not necessarily be the same as at,
say, 95% growth inhibition. Despite studies showing schedule-dependence of toxicity
to normal tissues for many drugs, AUC is generally used as a measure of toxicity.
Future work in this area should aim to develop consistent criteria for optimization of
therapy, with attention given to the dependence of host toxicity on treatment schedule.

4.2. Mathematical Models
Mathematical models for pharmacokinetics, pharmacodynamics, and tissue trans-

port of intravenously injected drugs have existed for some time. However, the synthesis
of these separate components into a single model predicting effect and toxicity for typ-
ical tumors in the human body has been addressed by few researchers. Early whole-
body models for anticancer drugs (e.g., 45–47) neglected the time lags associated with
transport of drug from plasma to tumor, and also spatial gradients within the tumor,
which can be important (1–3).

Some recent studies have addressed the question of optimal schedule and dose of
chemotherapeutic agents, with models that include tumor growth kinetics (48–50).
Such studies raise the question of whether tumor growth over the time interval of treat-
ment is significant. The mean volume doubling time for human tumors is in the range
17–632 d (51). For optimizing treatments with durations up to 24 h, tumor growth dur-
ing treatment seems unlikely to be a major factor, although growth may be relevant in
optimization of fractionated therapy of faster-growing tumors, with treatment cycles
separated by 1 wk or more.

The predictions of such models are sensitive to the assumed dependence of cell pro-
liferation and death on cell population (n) and on drug concentration (c). The simplest
assumption is linear dependence on both quantities:

dn/dt = k1 n–k2 c n [Eq. 2]

a generalization of Eq. 1. This equation may be solved explicitly, giving a survival
fraction

nfinal/ninitial = exp[k1 T–k2 (AUC)] [Eq. 3]

independent of the time course of c(t), where T is the duration of drug administration
and k1 and k2 are constants. In this case, for a given AUC, the survival fraction is inde-
pendent of the treatment schedule. Optimization of the treatment schedule, if toxicity
is assumed measured by AUC, is possible only if nonlinear dependence on n and/or c
is included.
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In the model of Jackson and Byrne (49), nonlinear (saturable) dependence of cell
growth rate on population is assumed, but the rate of cell kill is assumed to be directly
proportional to drug concentration. The conclusion is that bolus injection gives a slight
advantage over continuous infusion, for a given AUC. However, most anticancer drugs
have a saturable response to increasing dose (22). Inclusion of this effect in the model
would likely lead to the opposite conclusion, because a saturable response reduces the
effectiveness of short, high-level doses relative to slower infusions.

Apart from this saturation effect, other factors influence the choice between bolus
injection and continuous infusion. For cell cycle-specific drugs, if the drug is adminis-
tered over too short a time, it is possible that some cells not in the sensitive part of the
cell cycle will escape therapy (48). Iliadis and Barbolosi (50) point out that the AUC is
not necessarily a good predictor of dose-limiting hematological toxicity. Instead, they
model white cell population kinetics, and impose the constraint that the number of
white cells must not fall below a certain level. Their model includes nonlinear (Gom-
pertzian) growth kinetics, and linear dependence of cell kill on concentration above a
threshold level. The optimal therapy is then an initial high-dose infusion, until the
white cells reach their nadir, followed by a “maintenance” continuous infusion at a
lower level. This approach has the potential problem that while most patients can
recover from a certain level of leukopenia, the outcome may be less favorable if this
level is maintained over an extended period.

Consideration of transport processes between plasma and tumor cells may also
affect the optimization of iv drug delivery. To a first approximation, transport between
plasma and tumor space may be represented by a compartmental model, as assumed in
(50). Spatial gradients within tumors may be significant as a result of boundary effects
or variations in vascular density or flow. The model of Jackson and Byrne (49) is for-
mulated for a spherical tumor and includes terms representing diffusive and convective
transport of cells and drug resulting from spatial gradients. The convective velocity for
drugs is assumed equal to the cell velocity associated with tumor growth, but this
neglects convective fluid motion through the extracellular spaces driven by filtration
from blood vessels (52). Also, the extracellular fraction may vary depending on
whether the tumor is growing or regressing. These factors, which may significantly
influence spatial gradients of drugs in tumors, are not included in the model.

Many drugs must enter cells to kill them, and kinetics of cellular uptake of the drug
may therefore be significant. This aspect of drug transport is considered in a model
(53) comparing bolus injection of doxorubicin with continuous infusion of varying
duration. Because the doxorubicin molecule is small, spatial variations in concentra-
tion within the extracellular space of the tumor are neglected, assuming that the tumor
is adequately vascularized. The time scales for drug clearing from plasma, crossing the
vessel wall, and crossing the cell membrane are accounted for. Published data (54)
show that fractional survival depends on peak cellular levels rather than cellular AUC
and that transport of doxorubicin from the extracellular space to the cell interior is sat-
urable with slow equilibration (26). Based on these data, the model predicts dose-
dependent optimal durations of continuous infusion in the range of 1–3 h. Bolus
injection or shorter infusion times are less favorable because the resulting high drug
concentrations lead to saturation of cellular uptake, whereas the low plasma levels cor-
responding to longer infusion times limit the peak cellular level that can be achieved.
This study shows that the kinetics of drug uptake by cells can be a key factor in deter-
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mining optimal treatment schedules. In the model, the hematological toxicities limiting
the dose that can be administered on a single cycle are assumed to be predicted by AUC
(55). As discussed in Subheading 3, more detailed studies might show that the toxicity
is schedule-dependent, and the model would then require modification.

Once a drug has entered the cell, it may be retained there and remain active even
when drug is not present outside the cell. In the models (49,50) and also in (25) dis-
cussed earlier, the rate of cell kill is assumed to be a function of the instantaneous
extracellular concentration. In a study of effects of paclitaxel on six human cancer cell
lines in vitro, Au et al. (56) found the delayed response (survival fraction measured at
96 h) to be substantially different from the immediate response (survival fraction mea-
sured at cessation of extracellular exposure) for exposure durations of 3–72 h. This
suggests that intracellular drug continues to contribute to cell kill after extracellular
levels are reduced to zero. The concept of noninstantaneous response is suggested in
Panetta’s model (48) which has an “active time” for the drug that may exceed the expo-
sure time, due to the finite time for drug clearance from the body.

The models discussed so far have explicitly computed tumor cell kill. Some other
models have focused on predicting extracellular concentration profiles of drug, without
attempting to relate these to cell kill (52,57,58). Baxter and Jain (52) included convec-
tive currents due to the absence of tumor lymphatics, and predicted highly nonuniform
concentration profiles for large drugs that are transported primarily by convection.
Although these models provide insight into effects of spatial gradients, they have yet to
be integrated into models that predict antitumor response.

In summary, development of theoretical models to predict optimal schedules of iv
drug delivery is at a relatively early stage. Several models have been developed, but most
have significant deficiencies. In particular, nonlinear dependence of cell kill or growth
inhibition on concentration has been neglected in some models, but can strongly influ-
ence the results. Other factors that may need more attention include drug transport in tis-
sue and spatial gradients in concentration, the kinetics of drug uptake and retention by
cells, cell-cycle specificity of some drugs, and measures of host toxicity.

5. CARRIERS FOR INTRAVENOUS ADMINISTRATION

Carriers have been developed for anticancer drugs, with the goal of reducing either
toxicity or altering pharmacokinetics (e.g., keeping a drug in circulation longer). Lipo-
somes have received the most attention (59). For drugs encapsulated in liposomes, sev-
eral additional parameters can potentially be optimized, including liposome size, rate
of drug release, charge, and other surface properties. Of these, only the rate of drug
release appears to have been examined with mathematical modeling (53,60,61).

For doxorubicin, Harashima et al. (61) considered the dependence of tumor extracel-
lular AUC on clearance rates of drug and liposomes and on liposome release kinetics.
Comparing three values of the first-order kinetic rate constant for release by liposomes,
i.e., 0.6, 0.06, and 0.006 h–1, they concluded that 0.06 h–1 was the optimal value. As
discussed earlier, AUC is not a good predictor of cell kill for doxorubicin. Use of a
more realistic predictor might lead to a different conclusion regarding the optimal
release rate.

As aforementioned, data for doxorubicin (54) indicate that peak intracellular con-
centration is a good predictor of cell survival fraction. This information and data on the
kinetics of doxorubicin uptake by cells formed the basis for the model (53) described in
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Subheading 4.2, which was also used to determine optimal release rates of doxorubicin
from liposomes. The resulting optimal time constants were relatively short (1–2 h) and
dose-dependent. With more rapid release than this, drug enters the extracellular space
faster than cells can incorporate it, because of the saturable uptake kinetics, and drug
clears back into the plasma and is wasted. On the other hand, slower release of drug
leads to extracellular and intracellular levels that are always low.

In contrast, the results of Harashima et al. (61) imply a much longer release time
constant of about 17 h. This discrepancy illustrates that different assumptions for the
dependence of cell kill on exposure can result in very different conclusions regarding
optimal treatment methods. As shown in Subheading 2, the dependence of antitumor
effect on exposure may vary considerably even for the same drug acting on different
cell lines. Clearly, more data on the relationship between effect and exposure for differ-
ent drugs and different cell types is needed as a basis for optimizing rates of drug
release by carriers.

6. REGIONAL DELIVERY MODALITIES

A number of alternatives to iv injection have been developed, with the goal of provid-
ing regional delivery, that is, selective delivery to the tumor region. Examples of such
“regional” therapies are polymeric implants, ip infusion, intrapleural infusion, intra-arte-
rial delivery, chemoembolization, and inhalation of aerosols. An important question is
whether these therapies actually achieve selective delivery to tumors. When such thera-
pies are found clinically to give improved outcome, this may be caused by altered phar-
macokinetics. Theoretical considerations can be used to address this issue, and to
examine whether such treatments are likely to be superior to intravenous delivery.

6.1. Intraperitoneal Delivery
Intraperitoneal (ip) administration of chemotherapy has been studied extensively for

ovarian carcinoma and other abdominal tumors. Despite clinical trials (62,63), it is still
not clear how this modality compares to intravenous administration. Few controlled
comparisons of ip and iv delivery using equivalent patient populations and the same
doses of the same drugs are available. The recent study of Polyzos et al. (64) did not
confirm the survival benefit for ip vs iv found by Alberts et al. (63), but found reduced
toxicity, suggesting the possibility of using higher doses with ip delivery. Polyzos et al.
(64) suggested differences in tumor size as a possible reason for the different findings.

Using a rat model to study the penetration of cisplatin into intraperitoneal tumors,
Los et al. (65) found that ip delivery gave a higher concentration in the periphery of
tumors than iv delivery, with the advantage extending up to 1.5 mm inward. This sug-
gests a limit on size of nodules for which drug can diffuse from the cavity into the
tumor during the time that ip levels remain elevated. A molecule the size of cisplatin
has a diffusivity in tissue about 2 × 10–6 cm2/s, and would therefore take about 3 h to
diffuse the distance of 1.5 mm. By comparison, the half-life of cisplatin in the peri-
toneal cavity is about 1.8 h (66), and plasma drug concentration reaches significant lev-
els within less than 1 h (because of capillary uptake; 65).

An unresolved question is whether convection could have a significant role in trans-
porting small-molecular-weight drugs (such as cisplatin) from the cavity to adjacent
peritoneal metastases. If k represents a rate constant for drug uptake by capillaries and
cells, the penetration distance resulting from diffusive transport scales as (D/k)1/2 (67).
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Similarly it can be shown that the penetration distance from convection scales as u/k,
where u is the fluid velocity. A fluid loss rate of 5 mL/h can be obtained in dialysis of
200–300 g rats (68). Such rats have peritoneal surface area 450 cm2 (69), giving an
approximate fluid velocity near the peritoneal surface of 3 × 10–6 cm/s. For a drug the
size of cisplatin, diffusion results in much further penetration for this rate of fluid loss.
However, higher convective flow rates could in principle be achieved by either increas-
ing hydrostatic pressure inside the cavity, or infusing with hypotonic solution, which
causes convective flow out of the cavity (70). Tsujitani et al. (71) and Kondo et al. (72)
found that cisplatin administered ip in hypotonic solutions enhanced therapeutic effect
in a mouse model, but this was attributed to increased cellular uptake rather than tissue
convection.

For larger drugs, convective transport outpaces diffusive transport in normal tissue
(73). However, the model of Baxter and Jain (52) predicts a convective current directed
from the interior of a tumor nodule outward (because of the absence of lymphatics in
the tumor to absorb fluid that has transported out of microvessels into tissue). The con-
vective flow out of the cavity would have to be strong enough to overcome this current,
which rises rapidly for tumors up to about 2 mm, and levels off around 7 × 10–6 cm/s
for larger tumors (based on parameter values from [52]).

Intraperitoneal administration is referred to as a “regional” means of delivery,
implying that drug reaches peritoneal metastases primarily through direct diffusion or
convection from the peritoneal cavity rather than from the circulation. However, the
outcome of ip delivery may also differ from that of iv delivery because it results in
altered plasma pharmacokinetics. In the study of Los et al. (65), the plasma AUC was
approx the same for iv and ip administration, but the exposure was more prolonged for
ip administration. As discussed in Subheading 2, the time-course of exposure may sig-
nificantly alter cell kill, even for a fixed AUC.

6.2. Intraarterial Delivery
Intraarterial therapy is used extensively in Japan, especially for primary liver

tumors, but appears to be less popular in the United States. Several early theoretical
studies predicted benefits of intraarterial delivery (74–77), but clinical trials did not
match these expectations, as discussed by Dedrick (78). A possible explanation, not
mentioned by Dedrick (78), is offered here. Theoretical studies to date have assumed
that tumor cell kill is directly correlated either with plasma concentrations in the tumor
microvascular bed, or with total tumor or tumor extracellular uptake. However, most
chemotherapeutic drugs must enter tumor cells to be effective, and equilibration of
intracellular with extracellular or plasma concentrations is not instantaneous. Intraarte-
rial delivery is based on the premise of significant drug extraction on the first pass
through the tumor microcirculatory bed, but the processes of cellular uptake—and for
some drugs, extravasation and diffusion to the tumor cells—may take longer than the
residence time of blood in the tumor microvasculature.

A consideration of time scales illustrates this. The time for circulation of plasma
through the body is approx 1 min, and transit times through the microcirculation are
approx 5–10 s. Small molecular weight chemotherapeutic drugs will be considered
here since their case is the most favorable. Sufficient quantities of drug to supply the
tissue surrounding each microvessel can transport across the vessel wall in 1–10 min
(depending on whether vascular density is high or low), and can diffuse through the
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extracellular space to tumor cells most distant from microvessels in 1–26 min (depend-
ing again on vascular density) (3). Equilibration of intracellular with extracellular drug
concentrations takes hours for doxorubicin (26), and over 20 min for melphalan and
methotrexate (79,80). Maximal accumulation of free intracellular 5-fluorouracil occurs
within 200 s, but the drug continues to transport inside the cell subsequent to this,
because of binding within the cell (24). Based on these time scales, the intracellular
concentration achieved on the first pass is probably small or negligible for the drugs
mentioned above. Short-term high extracellular concentrations do not result in signifi-
cant cell kill if the drug clears out of the extracellular space before it can be taken up by
the cells (53). These factors should be considered in studies (12) aiming to determine
optimal infusion times for intraarterial delivery of various drugs. Future studies of
intraarterial delivery should emphasize drugs that enter cells quickly.

6.3. Chemoembolization
Chemoembolization has been developed mainly for primary liver tumors (81) but also

for liver metastases of other cancers. The premise is that simultaneous intraarterial deliv-
ery of the drug and an agent that occludes the supplying vessels results in regional deliv-
ery to the tumor. Occlusion has been accomplished with iodized oils or gelfoams, and also
with microparticles of varying sizes. One clinical trial (Kato et al. [81]) used 225 µm par-
ticles, but smaller ones (10–30 µm [82]) have been developed in preclinical studies. Theo-
retical considerations of diffusion times indicate that such therapy is feasible only if the
drug penetrates the entire microvasculature of the tumor bed, because even small molecu-
lar weight drugs cannot diffuse from arterioles to all the surrounding tissue in reasonable
time. Particles of 225 µm size cannot enter capillaries, which generally have diameters of
8–30 microns. Even 10–30 µm particles cannot readily enter liver sinusoids, with a typi-
cal diameter of 7 µm. Further understanding of the effects of chemoembolization on
microvascular flow is needed to predict the effect of such therapies, since even a small
residual microvascular flow could strongly enhance drug distribution.

7. FUTURE DIRECTIONS AND CONCLUSIONS

Use of theoretical analyses for investigating and optimizing anticancer therapies is
at an early stage. In addition to the topics discussed previously, many other effects will
eventually have to be considered. The earlier discussion has focused on commonly
used chemotherapeutic drugs, but other agents such as antibody immunoconjugates
and prodrugs should be considered. A number of strategies have been developed,
aimed at improving the effectiveness or delivery of anticancer drugs, including hyper-
thermia, agents that alter tumor blood flow, and agents that alter tumor oxygenation.
The effect of these interventions on drug transport and on toxicity to both tumor and
normal cells must be better understood in order to optimize their use with anticancer
drugs. Tumors have special properties compared to most normal tissues, such as irregu-
lar vessel architecture, which can lead to heterogeneous drug delivery, poor oxygena-
tion, low pH, and so on (Table 3 in ref. [3]). These properties can affect drug response
and transport. In some cases, incorporation of these factors into theoretical models
must await the availability of more complete experimental data.

Predictions of the optimal schedule and mode of administration of an anticancer
drug require knowledge in three main areas: how cellular exposure affects response;
what cellular exposure results from a certain therapy; and what host toxicity results
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from the therapy. This article has reviewed work on quantifying these three issues, as
well as on the synthesis of these types of information into whole-body theoretical mod-
els that can be used to optimize therapies. Even the fundamental issue of how cellular
exposure is related to growth inhibition is not well understood. Simplistic and some-
times misleading assumptions, such as that plasma AUC predicts antitumor response,
continue to be made despite studies refuting them. More work remains to be done in
many areas. Computational complexity associated with the models is not the main lim-
iting factor. A major obstacle is lack of experimental data to quantify the various input
functions and parameters needed for theoretical models. Relations between exposure,
antitumor effect, and toxicity should be quantified in forms that are valid over the
entire range of possible therapies. Where possible, experimental data should not be
presented in forms that presuppose particular types of correlations, as this can severely
limit the usefulness of the data. For example, data on cell kill should not be presented
only in terms of its dependence on a single measure of drug exposure, such as AUC,
peak concentration, or period above a given threshold. Data showing the dependence
on both duration and intensity of exposure are much more useful.

Some researchers take the viewpoint that each individual cancer patient or tumor is
so different from others, and that the parameters needed for optimizing drug therapy
vary so widely, that a theoretical approach is useless. Nonetheless, the studies reviewed
here suggest considerable scope for more rational choice of therapies if improved
understanding of basic principles of drug delivery can be achieved. Progress is slowed
by lack of communication between theoretical modelers and clinicians, even though
such communication is increasingly needed. On the clinical side, therapies are becom-
ing too complex to be understood solely by a trial-and-error approach. On the theoreti-
cal side, the utility of models is limited if they are based on poor assumptions, do not
address relevant problems, or do not present their results in forms that clinicians can
use. It is hoped that this article will help to facilitate the interaction of theoretical mod-
elers and clinicians in this area, with the ultimate goal of developing improved anti-
cancer drug therapies.
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II TECHNOLOGIES AVAILABLE FOR USE

IN CANCER DRUG DELIVERY SYSTEMS





1. INTRODUCTION

Traditional chemotherapy treats tumors by systemic treatment via parenteral or oral
application, by intratumoral injection, or by interstitial placement of drugs. New drug
delivery systems can be used for local delivery to reduce side effects, to improve the
bioavailability, or to target specific sites. Most of these specifically designed dosage
forms in cancer treatment are based on polymeric materials to control the release of the
active agent via dissolution, matrix erosion and degradation, diffusion, or cleavage of
prodrugs. The focus of this chapter is on parenteral biodegradable carrier systems,
which present a main form of drug delivery or targeting in local or systemic
chemotherapy. Enhanced local drug retention at the tumor site can be achieved by
administration of drug-loaded monolithic polymer implants of different shapes,
microparticles, or a polymeric gel vehicle. In addition, chemoembolization provides
higher local therapeutic concentrations. The expression chemoembolization connotes a
bipartite anticancer effect through occlusion of the tumor vascular bed via metal coils,
ethanol, glues, or particulate systems (1) coupled with cytotoxic drug administration
either via embolization followed by chemotherapy or embolization with microparticu-
late drug delivery systems (2,3). In systemic chemotherapy, biomaterials can also be
used for sustained-release formulations that yield steady drug levels and avoid side
effects caused by toxic peaks or for dosage forms that allow drugs to selectively lodge
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in tumors. Furthermore, prodrugs based on a drug attached to a polymer are utilized,
which liberate the active drug in vivo through an enzymatic or chemical cleavage
process. This bioreversible polymeric modification can result in enhanced permeability
retention in tumor tissue (4), a change in the in vivo drug distribution (5), and alteration
of the drug pharmacokinetics (6), as well as selective activation in target cells (7).

The development of new biomaterials represents a key to successful drug delivery,
and many researchers are engaged in devising polymeric materials based on new chem-
ical entities, tailoring degradation properties, improving compatibility, evaluating new
composites or organic/inorganic hybrid materials, and optimizing drug release profiles.
A broad spectrum of synthetic polymers has been designed for cancer treatment, rang-
ing from polyvinyl alcohol, polyanhydrides, poly-α-hydroxyacids, and cyanoacrylates,
to polyorthoesters. In contrast to this, synthetic approach scientists also look to nature
as a source for macromolecules. The natural materials used for drug delivery can gen-
erally be classified based on their chemical character into proteinous materials such as
collagen, gelatin, or albumin and carbohydrates such as chitosan, hyaluronic acid, or
starch. These materials of biological origin frequently claim to be relatively safer and
more biocompatible, readily available, relatively inexpensive, and capable of a multi-
tude of chemical modifications. However, the pros and cons of each natural material
have to be weighed individually. This chapter will evaluate the properties and applica-
tions of biopolymers in cancer treatment.

2. COLLAGEN

A variety of proteinous biomaterials have been described for local drug delivery in
cancer treatment (Table 1) with collagen, gelatin, albumin, and fibrin being the most
thoroughly investigated materials. Most synthetic polymers represent mixtures of
chains with variable length composed of repeating units. They show physical and
chemical properties that are, to a considerable extent, determined by polymerization
steps. In contrast, proteins have a specific amino acid sequence, molecular weight, and
structure, all of which define their basic qualities as a biomaterial suitable for medical
products.

2.1. Chemical and Biological Properties
Collagen comprises a family of more than 20 genetically distinct molecules that are

constructed from three polypeptide chains, each consisting of more than 1000 amino
acids. Here, the discussion will be limited to collagen type I, which is the chief struc-
tural protein of tendon, bone, and skin with only minor differences in its amino acid
sequences between vertebrate species (8). Most collagenous biomaterials are based on
this type. Its primary sequence is characterized by glycine as every third amino acid
allowing for close package into a helix (Fig. 1A). Approximately one-fourth of the
sequence is occupied by proline and hydroxyproline, which stiffen the triple helix
because of their alicyclic nature, forming hydrogen bonds that limit rotation (9). As a
secondary arrangement, the chains represent left-handed helices (Fig. 1B) and on the
third level three polypeptide chains intertwine to form a right-handed triple helix with
an average molecular weight of approx 300 kD, a length of 300 nm, and a diameter of
1.5 nm (Fig. 1C). In addition, short telopeptide regions at both ends of the molecule are
not incorporated into the helical structure. On the fourth level of order, the triple helical
molecules are staggered into fibrils of 10 to 500 nm in diameter depending on the type
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of tissue and developmental stage (Fig. 1D) (10). This packaging of the triple helices
provides tensile strength and resilience to collagen fibers. Further mechanical and
chemical stability derives from intra- and intermolecular crosslinks.

Probably as a result of its function as the primary structural protein in the body, col-
lagen is peculiarly resistant to attacks by neutral proteases. At neutral pH, only specific
collagenases assisted by elastase and cathepsins cleave the native helix (11). Once the
triple helix is split, the collagen molecule is further degraded by gelatinases and non-
specific proteinases. Activation of macrophages has been shown to cause a pH decrease
(12) and together with the excretion of cathepsin (13) this creates an acidic path for
collagen breakdown. In vitro the degradation is usually simulated by incubation with
bacterial collagenase, cathepsin, pepsin, or trypsin.

Cattle are the main source for collagen. In addition to porcine, equine, ovine, and
marine collagen varieties, recombinant human collagen expressed in Escherichia coli
or derived from transgenic animals have been described (10). An alternative offers
autologous collagen material (14). Collagen is known for excellent biocompatibility
caused by low toxicity and mild antigenicity (15,16). Bovine collagen poses the risk of
bovine spongiform encephalopathy (BSE) or transmissible spongiform encephalopathy
(TSE) contamination, which has to be evaluated based on the country of origin and ani-
mal environment, the starting material, risk-reducing procedures during manufacturing
such as alkali treatment, the amount of animal raw material required to produce the
daily dose, the number of daily doses, and the route of administration (17,18). The
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Table 1
Amino Acid Composition of Type I Collagen from Calfskina

Amino Acid α(I)-Chain α2(I)-Chain

alanine 124 (2) 111 (3)
arginine 53 (2) 56 (1)
asparagine 13 23
aspartic acid 33 (3) 24 (2)
glutamic acid 52 (2) 46 (2)
glutamine 27 (3) 24 (1)
glycine 345 (6) 346 (6)
histidine 3 (1) 8
hydroxylysine 4 9
hydroxyproline 114 99
isoleucine 9 (1) 18
leucine 22 (3) 33
lysine 34 (2) 21 (1)
methionine 7 4
phenylalanine 13 (1) 15 (3)
proline 127 (4) 108 (1)
serine 37 (5) 35 (1)
threonine 17 (1) 20
tyrosine 5 (5) 4 (3)
valine 17 (1) 34
TOTAL 1056 (42) 1038 (24)

a The values in parentheses are the residues contributed by the
non-helical telopeptide regions (data from Piez, 1985).
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Fig. 1. Chemical structure of collagen type I: (A) primary amino acid sequence. (B) secondary left-
handed helix. (C) triplehelical tertiary arrangement. (D) staggered quaternary structure (with permis-
sion from Friess, 2000).



most commonly used extraction media are neutral salt solution or dilute acid (19),
which dissolve freshly synthesized and negligibly crosslinked collagen molecules.
Dilute acidic solvents are more efficient because labile intermolecular crosslinks are
dissociated (20). These solubilized collagen molecules can be reconstituted into large
fibrils by adjusting pH or temperature of the solution. The remaining insoluble colla-
gen can be further disintegrated by alkali (21) or enzyme treatment (9) to cleave addi-
tional crosslinks and truncate the nonhelical telopeptide regions. Instead of disintegration
and transfer into soluble material, extensively crosslinked collagen can be dispersed as
fibrillar suspensions after chemical and mechanical fragmentation, usually at acidic
pH. In additional steps, collagen can be subjected to chemical modifications such as
succinylation, acetylation, methylation, mineralization, grafting of polymers, or attach-
ment of molecules via biotinylation (10).

Owing to dissociation of natural crosslinks in the course of the aforementioned iso-
lation processes, reconstituted forms of collagen can lack sufficient strength and resis-
tance to biodegradation. This can be compensated by the introduction of exogenous
crosslinking. Chromium or aluminum tanning results in formation of ionic bonds (22).
Covalent crosslinks in collagen can be created by various organic reagents such as
formaldehyde, glutaraldehyde, hexamethylenediisocyanate or polyepoxy reagents,
preferably with the ε-amino groups of lysine and hydroxylysine residues (23). Albeit
approved for medical devices, general concerns arise from cytotoxicity due to primary
release of extractables and secondary degradation and monomer release (24–27).
Crosslinking with water soluble carbodiimides or via acyl azide intermediate formation
offers the advantage that this only facilitates the formation of amide bonds without
becoming part of the actual linkage, and the material is well tolerated (28,29). Dehy-
drothermal treatment (e.g., at 110°C and 50 mtorr for a few days) and UV irradiation
results in both additional crosslinking and partial denaturation (30,31). Sterility of the
material can be achieved by aseptic processing or sterile filtration of soluble collagen.
Ethylene oxide gas treatment leads to little denaturation, but it reacts with amino
groups, causes decrease in helix stability, and changes enzymatic degradation rate (32).
In contrast, both γ-irradiation and dry heat induce chain scission and crosslinks simul-
taneously (33,34).

Collagen has found broad use in medical practice as aqueous injectable solutions or
dispersion or dried into a variety of forms such as sheets, tubes, sponges, and powders
(35). Attempts have been made to apply these systems for drug delivery in ophthalmol-
ogy or tissue engineering. Successful uses in cancer treatment are injectable gels for
intratumoral injection, injectable collagen rods, and chemoembolization using collagen
materials.

2.2. Anticancer Application of Collagen
2.2.1. AQUEOUS INJECTABLES FOR INTRATUMORAL DELIVERY

Collagen gels are primarily used for subcutaneous (sc) injection for the repair of
dermatological defects. For this application, crosslinking with GTA can be used to
reduce the rate of biodegradation. The biological response is characterized by fibrob-
last invasion, neovascularization and little, if any, evidence of inflammation (36). Cal-
cification was found and certain areas were undergoing ossification which identified a
potential complication in various treatment modalities. Hyaluronic acid, polymers such
as dextran, and small molecules such as maltose can be used as lubricants to improve
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the ease of intrusion into soft tissue (37,38). The delivery of small molecules via
injectable collagen preparations is pursued emphatically under the aspect of intratu-
moral cytostatica injection. Typically, not more than 12% of a systemically applied
dose reaches the tumor, with the remainder distributed to healthy tissues all over the
body, resulting in side effects. Injection of drug solution directly into solid tumors has
not been successful because the drug levels in the tumor drop off rapidly and are typi-
cally cleared within 20–30 min after injection. Matrix Pharmaceutical, Inc. (technol-
ogy now owned by Chiron Corporation), investigated two gels based on approx 2%
bovine collagen and 0.1% epinephrine loaded with either CDDP or 5-FU. The
CDDP/epinephrine system was studied in Phase III clinical trials for treatment of head-
and-neck cancer and other solid tumors such as metastatic breast cancer, esophageal
cancer, or malignant melanoma, and in Phase II studies in treatment of liver tumors
both primary and metastatic (39). Prior to application, the formulation is prepared by
combination of a CDDP/epinephrine preparation and a bovine collagen dispersion via
syringe-to-syringe mixing (40).

The system resulted in 8.4-fold increase in intratumoral concentration of 5-FU 30
min postinjection and a 7–9-fold increase in the local AUC when compared with a local
injection of drug solution tested in a human pancreatic cancer xenograft model in mice
(Fig. 2) (40,41). It is important to note that the effect can be attributed to both the colla-
gen network and the effect of the vasoconstrictor epinephrine, which temporarily
reduces the local body fluid supply (Fig. 3) (42). In vitro, 50% was released after 4 h
and 80% after 24 h from 5-FU gel (43). In patients with malignant tumors of various
types repeated intratumoral injection was performed for 4 wk with an initial dose of 1
mg CDDP per cm3 tumor volume, with escalation to 6 mg CDDP per cm3 allowed. The
overall tumor response rate was 50%, with 40% of these complete responses (44). The
CDDP/epinephrine gel treatments were generally well tolerated in the clinical trials
and no nephro-, neuro-, or ototoxic effects were reported (44,45).

The collagen gel loaded with 5-FU has been tested in Phase I/II studies for treatment of
tumors in the chest wall from advanced or recurrent breast cancer. It was applied shortly
prior to radiation treatment and the combination resulted in more severe damage to tumor
cells than radiation alone or 5-FU in solution administered intravenously with or without
radiation treatment. Thus, the formulation is considered a radiopotentiator. The matrix
with 5-FU has also proved to be highly effective in studies against superficial squamous
cell carcinoma with 96% complete tumor clearing (45), basal cell carcinoma with 91%
complete tumor resolution (46), and condylomata acuminata with 77% complete response
(47,42). Intratumoral administration of 4 mg/mL CDDP using the collagen/epinephrine-
gel into a murine SCCVII squamous cell carcinoma model resulted in an average tumor
growth delay time of 1.5 ± 2.8 d, approximately six times longer than CDDP suspension
applied intratumorally or intraperitoneally. When combined with a single dose radiation
of 10 gy, CDDP in the collagen matrix was 2.0–3.6-fold more effective than when admin-
istered as intratumoral suspension or intraperitoneal (ip) solution (48).

The collagen gel conveying CDDP provides advantage after perinephric VX-2
tumor resection bed injection in rabbits. The matrix prevented tumor recurrence in all
animals and led to a significant increase in local CDDP levels at days 1, 4, 20, and 7
(49). The system may also allow for improvement in the therapeutic index of radioim-
munotherapy. As a study with 111In or 90Y attached to monoclonal antibodies demon-
strated, the use of the collagen system markedly enriched the radioisotopes in tumors,
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Fig. 2. Effects of intratumorally administered collagen/epinephrin gels on BxPC-3 human pancre-
atic tumor weight in athymic mice (8 mg/kg doxorubicin, 8 mg/kg cisplatin or 60 mg/kg 5-fluo-
rouracil) at day 28 after the first treatment (injection on Days 1 and 4; 1 injection on days 1, 4, 8, and
12) (modified from Smith et al., 1995)—a second study demonstrated no effect of 5-FU solution
injected intratumorally.

Fig. 3. Contribution of components of 5-fluorouracil/epinephrine/collagen gel formulation on clini-
cal efficacy after intralesional injection in condylomata acuminata in human (modified from Swine-
hart et al., 1997b).



enhanced the antitumor efficacy, and reduced systemic toxicity when compared with
systemic administration (50). Application of the CDDP collagen/epinephrine gel also
improved the treatment of advanced head-and-neck cancer by intratumoral injection
followed by interstitial laser hyperthermia (51). Combination chemotherapy using both
5-FU and CDDP gels has also been tested and proved to be more effective than both
drugs given intraperitoneally or application of either drug alone. Treatment sequences
starting with 5-FU were superior in delaying tumor growth when compared with
courses initiated with CDDP gel (43).

In order to diffusionally control the release rate of a drug that is soluble in the aque-
ous collagen matrix it is necessary that the mesh size of the protein fiber network
approach the size of the drug molecule (52). Fibrillar collagen matrices were capable
of moderating the release rates of fibrinogen (mol wt, 340 kD) only and a significant
non-fibrillar content was necessary to modulate the diffusivity of smaller proteins such
as chymotrypsinogen (mol wt, 23 kD). Drug release from collagen gels can also be
affected by interactions with collagen and the release of positively charged lysozyme
(mol wt, 14 kD; isoelectrical point, approx 11.0) could be further reduced by an increase
in negative net charge of the native collagen molecules by succinylation (53). Low
apparent diffusivities of lysozyme from collagen matrices were not only because of
electrostatic interactions, but also hydrophobic interactions (54). It is important to note
that the source of collagen material plays a crucial role for the binding capacity of col-
lagen as a result of differences in amino acid composition and isoelectrical point. The
viability of adsorption/desorption and subsequent diffusion as a release mechanism
was also evaluated for gentamicin (53). Owing to small size and, hence, large diffusion
coefficients of the antibiotic, as well as its high water solubility, a prolonged release
cannot be obtained by simple Fickian diffusion or interactions with collagen. Conse-
quently, cytostatica retention in the collagen matrices presents more of a mechanical
effect of the intact gel formulation forming a three-dimensional depot as compared to a
liquid that spreads rapidly. Rapid diffusion of water-soluble compounds or slower dis-
solution for drugs which are insoluble in the gel matrix should be decisive.

Thus, the collagen gel system is designed to be used with a variety of cancer treat-
ment modalities. It focuses high drug concentrations for hours to days in solid tumors,
increases the exposure of the cancer cells to the chemotherapeutic agent to allow more
cancer cells to be attacked during their vulnerable stage of growth and replication, and
limits total body confrontation with the cytotoxic agent.

2.2.2. DENSE COLLAGEN MATRICES

For local treatment of soft tissue and bony tumors, the use of a collagen sponge was
suggested by Stemberger (55). Collagen sponges were originally developed as wound
dressings and hemostats. They are used in combination with growth factors for tissue
repair (56,57) and with antibiotics in the treatment and prophylaxis of soft tissue infec-
tions (58). Drug release occurs rapidly because of minimal hindrance of diffusion but
the liberation of mitoxantrone in vitro could be sustained for several days with different
poly(α)-hydroxyester coatings (55). Dense collagen films can be formed by air-drying
casted collagen preparation. Their main biomaterial application is as barrier mem-
branes. These systems exhibit substantial swelling and rapid release of low and high
molecular weight drug compounds within several hours in vitro (59). Introduction of
exogenous crosslinks yields reduction in swelling and enclosure of macromolecular
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compounds in the fibrous matrix network. Concomitantly, crosslinking reduces the rate
of degradation and the dense crosslinked collagen systems are characterized by diffu-
sional release of a fraction of the loaded drug as systems swell, followed by liberation
of the proportion mechanically entrapped in the devices as cleavage of the matrix pro-
ceeds. In mice, significant activity of an immunostimulating extract from Mycobac-
terium bovis (bacille Calmette-Guérin; BCG vaccine) against S180 murine sarcoma
cells was sustained for at least 32 h after sc insertion (60). The systems activated a pro-
nounced cellular response and an almost complete resorption of the carrier system after
14 d. In order to tailor the release profile, several collagen layers can be laminated (61).

Besides films, injectable drug-loaded collagen rods approx 1 mm in diameter and
10–15 mm length, called minipellets, have been tested intensively. The systems are
prepared by extrusion of a highly concentrated (up to 30%) gel of atelocollagen with-
out further crosslinking or modification (15). The starting material is obtained by solu-
bilization through pepsin treatment, resulting in removal of telopeptide moieties and
reduced immunogenicity. Initial investigations demonstrated only rather short-release
periods for low-molecular weight drugs such as 5-FU after sc injection (62). However,
the results achieved with interferon-α (IFN) and interleukin 2 (IL-2) are very promis-
ing. Most currently available IFN preparations must be administered intramuscularly
several times per week because of the rapid elimination of IFN from the body. After sc
injection of the minipellet system, an initial-burst phenomenon was suppressed and
adequate plasma levels of IFN were sustained for more than 1 wk (Fig. 4) (15,63). In
contrast, the plasma level peaked 30 min after injection of the aqueous solution and
after 48 h the detection limit was reached. The in vitro and in vivo release profile
depends on various processing parameters such as gel concentration prior to drying and
the drying process itself (64). After a short lag phase, the release can be explained by
the infiltration of water and swelling of the system over 24 h, with the protein dissolv-
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Fig. 4. Interferon-α serum concentration in healthy volunteers after subcutaneous administration of
interferon-α minipellet and aqueous solution (modified from Fujioka et al., 1998).



ing simultaneously. The protein is retained within the collagen matrix in a dissolved
state and after a short lag phase is gradually released by diffusion (15). In vivo, the
IFN-loaded minipellet still maintained its original shape after 1 wk, indicating that ero-
sion of the matrix is of minor impact on drug release. However, a clear relationship
between the protein molecular weight and its diffusion rate was not found (65). More-
over, the release profile might be influenced by binding of the protein to the collagen
fibers. Two sc administrations at an interval of 10 d significantly inhibited the growth
of nude mouse-implantable human renal tumor cells and the effect was more promi-
nent than with an aqueous solution (15). In humans, both time of peak drug concentra-
tion and half-life of IFN were increased with fewer side effects due to a reduction in
the peak drug concentration (66). Local treatment with the IFN minipellet was evalu-
ated after sc injection vs peritumor injection in mice carrying human renal cell carci-
noma. Substantial IFN levels remained detectable in both tumor tissue and serum up to
10 d after peritumor injection of the minipellet, and tumor growth was inhibited signif-
icantly with the effect being superior to sc application (67).

The second protein drug tested with the minipellet system is IL-2. High-dose intra-
venous (iv) injection of IL-2 and adoptive immunotherapy consisting of IL-2 injection
and lymphokine activated killer (LAK) cells have been introduced for cancer treatment
(68). Following sc injection of the IL-2 minipellet in mice, the serum IL-2 concentra-
tion reached its peak after 6 h and IL-2 was detectable in the serum for up to 72 h after
injection with an increase in half-life from 15 to 360 min (69). The IL-2 minipellet sys-
tem induced natural killer and lymphokine-activated killer cells in mice, and was stud-
ied against murine tumors testing LAK cells administered concomitantly with IL-2 as
an aqueous solution or with the IL-2 minipellet (70). The collagen matrix formulation
was most powerful and its effect was further augmented by simultaneous use of adop-
tive immunotherapy (Fig. 5). Histological studies revealed significant infiltration of
lymphocytes into the tumor region and the parenchyma, as well as necrosis of tumor

56 Part II / Technologies Available

Fig. 5. Effect of IL-2 minipellet and aqueous solution (administered twice on days 8 and 10) in con-
junction with lymphokine-activated killer cells (LAK) on murine fibrosarcoma (modified from
Fujioka et al., 1998).



cells in the IL-2 minipellet-treated groups. Furthermore, therapy with the IL-2 minipel-
let in a colorectal adenocarcinoma liver metastases model resulted in elevated killer
cell activities as well as a reduced number of metastatic nodules (71). Thus, the colla-
gen minipellet appears to be a promising candidate for sustained-release formulation of
protein drugs used in anticancer therapy.

2.2.3. CHEMOEMBOLIZATION

For chemoembolization in hepatic and renal cancer, microfibrillar collagen material
has been developed (Angiostat®, Regional Therapeutic Inc., Pacific Palisades, CA;
Avitene®, Alcon Laboratories Inc., Fort Worth, TX). A study in 1998 with 30 patients
undergoing one to three hepatic artery chemoembolizations by injection of bovine colla-
gen material with CDDP, doxorubicin, and mitomycin C demonstrated a decrease in
lesion density or size and a decrease in the baseline carcinoembryonic antigen levels,
with transient mild-to-moderate toxicity (72). However, the responses are measured in
months and all patients had eventual progression of disease. Another study in patients
with liver metastasis from colorectal cancer treated with two or three cycles of
chemoembolization using a collagen suspension with doxorubicin, mitomycin C, and
CDDP combined with systemic chemotherapy did not yield an improvement in complete
response rate or time to progression when compared with standard systemic chemother-
apy (73). The tissue platinum deposition 2.5 h following left renal injection in rabbits
with CDDP increased dose-dependently, being 220 times that in the contralateral kidney
at 10 mg/mL collagen. At 10 mg/mL of Angiostat, chemoembolized porcine liver had
two times the hepatic platinum concentration when compared with iv and intraarterial
infusion of CDDP (74). In mongrel dogs, hepatic ischemic injury was shown to be tran-
sient and to reverse within 48–72 h by recanalization. Over 2–3 mo, the collagen was
removed and normal vascular anatomy was restored (75). The prophylactic use of antibi-
otics decreased the prevalence of infectious complications (76). Thus, chemoemboliza-
tion using other biopolymers like starch or gelatin, as well as using polyvinyl alcohol,
may be superior and has been studied more thoroughly. In conclusion, collagen gels and
dense collagen matrices may play a more important role in intratumoral and systemic
drug delivery in the future as commercial products arrive on the market.

3. GELATIN

3.1. Chemical and Biological Properties
Gelatin is obtained by extraction and purification following either acid or alkaline

treatment of collagenous parts of the body, especially white connective tissue, bone,
and hide from swine and cattle. Partial hydrolysis of collagen yields gelatin and ren-
ders the tough fibrous precursor structures into water-soluble material by cleavage of
natural crosslinks, dissolution of the helical arrangement, and cleavage of the polypep-
tide chain. Based on the method of disintegration gelatin is differentiated into an acid
type (pH 6–9) and an alkaline type (pH ~5.0). The amino acid composition is similar
to that of collagen, but a difference in the isoelectrical point is caused by conver-
sion of asparagin and glutamin into the corresponding acid in the presence of alkali
(Table 1). Gelatin contains fractions termed α, β, and γ, which represent single chains,
dimeric species, and triple helical forms similar to the higher order structures present in
collagen (Subheading 2.1.). In addition, higher molecular weight oligomeric species
and a microgel fraction of approx 1.5 × 107 Da are found in size exclusion chromatog-
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raphy (77) as well as lower molecular weight fractions starting at approx 10,000. For
process engineering reasons, gelatin is technically characterized by its gel strength,
given in Bloom, and not by its molecular weight. The gel strength reflects the weight
necessary to give a 4-mm depression in a gel containing 6.67% gelatin in water using a
defined plunger (78). For gelatin material of 250 Bloom and 50–60 Bloom, mean
molecular weights of approx 120 and 60–80 kD, respectively, were found (79). These
properties can be manipulated by treatment time (several weeks) and temperature.
Gelatin is practically insoluble in common organic solvents, but can easily be dissolved
in water forming a colloidal solution by warming after swelling in chilled water. The
aqueous solution reversibly changes from the sol to the gel state upon cooling. In order
to stabilize gelatin formulations which otherwise rapidly dissolve in water, the systems
are stabilized via crosslinking, preferably by means of glutaraldehyde or heat treatment
(Subheadings 2.1. and 4.2.1.).

Gelatin is described as biocompatible with low toxicity and antigenicity (80). One of
its major medical applications is as porous gelatin sponges for hemostasis. In surgical
wounds, gelatin sponges are resorbed within 4–6 wk (81), whereas the sponges liquid-
ify on mucosa within 2–5 d. In addition, plasma expanders have been developed based
on modified gelatin, e.g., succinylated gelatin. After iv administration, the gelatin half-
life ranges from 7.8 min for 2700 da to 315 min for 99,000 da material; it is barely
accumulated in heart, lung, and spleen, mostly accumulated in carcass, and is finally
excreted via kidneys with the rate increasing with molecular weight (80).

3.2. Anticancer Application of Gelatin
Gelatin has been extensively studied as a natural polymer from microencapsulation

to sustained drug release. In addition, gelatin binds to fibronectin, and gelatin micros-
pheres have a similar avidity as, for example, BCG cells, which are used in treatment
of bladder cancer. Thus, gelatin particles may enhance interaction with fibronectin-
bearing surfaces of tumors (77,82). Fujita tested viscous gelatin solutions for ip appli-
cation of mitomycin C in mice. This formulation led to a significantly higher mean
residence time and time of peak drug concentration, whereas the peak drug concentra-
tion was decreased (Fig. 6) (83). Consequently, the lifespan of S-180 sarcoma ascites
tumor-bearing mice was increased. For treatment of resected non-small cell lung can-
cer with positive surgical margin, radioactive 125I or 103Pd seeds embedded in gelatin
plaque have been successfully utilized. Patients received an intraoperative lung implant
with gelatin pellets in combination with external beam radiation, and the technique is
described as safe, reproducible, and effective (84). However, the most important appli-
cation is gelatin microspheres.

3.2.1. GELATIN MICROSPHERES AND NANOSPHERES FOR SUSTAINED RELEASE

Microspheres of 15–40 µm can be obtained from an emulsion of an aqueous drug
containing gelatin solution in, for example, paraffin oil at 80°C, which is cooled; the
particles are hardened with glutaraldehyde, separated, and washed (85). The degree of
crosslinking is a decisive factor for drug release (86), and emulsification and surfactant
concentration are important for particle size (87). Incorporated TAPP-Br (2-bromo
derivative of p-amidino phenoxy neo-pentane) was still active in vitro against human
leukemia cells (85), but release was incomplete (approx 60% maximum reached after
40 h). Oxidized sugars or dextran offer alternatives as crosslinking agents (88–90).
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Studies with MTX incorporated in gelatin microspheres of 5–25 µm indicated that the
lung-targeting efficiency in mice was increased 3 to 35 times, and the kinetic of the
drug in the lung could be described by an open one-compartment model, with the
residual time increased by 10 h (91).

Small gelatin microparticles crosslinked with glutaraldehyde of approx 2 µm can
also be loaded by swelling in drug solution, for example, thiotepa. Upon iv injection,
the AUC was strongly increased and the clearance rate reduced (92). Similarly, PS1, a
polysaccharide complex derived from Mycobacterium bovis (BCG) with immunostim-
ulating antitumor activity (93), was loaded onto gelatin microspheres. In vitro dissolu-
tion experiments demonstrated sustained-release behavior, with a half-life of approx 8
h. Injected into mice bearing S180 sarcoma cells, PS1 in solution and the suspension of
PS1-loaded gelatin microparticles resulted in almost identical dose-related suppression
of the tumor cell growth, but only PS1 formulated in gelatin microspheres presented an
enhanced activity over 24–48 h (94). The effect may be related to activation of
macrophages (see Subheading 3.2.2.).

3.2.2. GELATIN MICROSPHERES FOR ACTIVATION OF MACROPHAGES

Gelatin microspheres may also be used to deliver drugs to macrophages. Macrophage
activation by biological response modifiers is potentially of great importance for stimu-
lation of the host defense against primary and metastatic tumors. However, macrophage-
activating agents are rapidly catabolized and cleared, which make high doses necessary
with the risk of serious side effects (95). One way to overcome this hurdle is to target the
stimulants to the macrophages via particulate carriers. This approach takes advantage of
the inherent avidity of macrophages to ingest foreign material, and gelatin in particular
works as a strong opsonin which enhances phagocytosis (96). The incorporated micros-
pheres will be degraded and the conveyed drug will slowly be released in the macrophages
and can more effectively activate the antitumor activity.
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Fig. 6. Plasma concentration of mitomycin C after intraperitoneal administration of gelatin viscous
solution (7.5 mg/kg MMC) in rats (modified from Fujita et al., 1997).



In another study, gelatin microparticles were prepared using glutaraldehyde
crosslinking of alkaline-type gelatin emulsion droplets containing recombinant human
interferon alpha A/D (IFN) which were dispersed in a mixture of toluene, chloroform,
and Span 80®. The size was adjusted to 1.5 µm by sonication to allow for macrophage
phagocytosis (97). In vitro degradation and IFN release can be controlled via the
crosslinking degree. The numbers of microspheres taken up by macrophages were pro-
portional to the numbers of microspheres added until saturation of phagocytosis
process was observed (Fig. 7). The extent of phagocytosis was reduced with decreasing
concentration of gelatin and glutaraldehyde used in the manufacturing process which
was related to changes in swelling and surface properties (7). The phagocytosed
microspheres were gradually degraded and IFN was released based on enzymatic
hydrolysis. Whereas macrophages in cell culture pretreated with free IFN scarcely
inhibited the growth of murine fibrosarcoma cells, the inhibitory activity was drasti-
cally augmented by addition of gelatin microspheres containing IFN, and the amount
of IFN required for activity induction was strongly reduced (7). Intratumoral injection
of gelatin microspheres containing IFN and free IFN into mouse footpads bearing solid
tumors indicated that the microspheres were more effective in suppressing tumor
growth. Moreover, a distinct preventive effect of the iv injection of gelatin micros-
pheres containing IFN on the incidence of pulmonary metastasis was observed. How-
ever, in an experiment with ascitic tumors in mice, the intraperitoneally applied gelatin
microspheres containing IFN were not consistent in the suppression of tumor growth,
which was caused by the absence of systemic antitumor effects of IFN (98). As an
alternative, muramyl-dipeptide (99), interferon (100), IL-1 (101), and tumor necrosis
factor (102) were conjugated to gelatin via carbodiimide. The conjugates were effec-
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Fig. 7. In vitro macrophage phagocytosis of gelatin microspheres with different glutaraldehyde
amounts and gelatin concentrations used in microsphere preparation (modified from Tabata & Ikada,
1996).



tively taken up by macrophages via pinocytosis and this augmented macrophage
recruitment and activity in treatment of ascitic tumor growth in the peritoneal cavity in
contrast to gelatin microspheres loaded with IFN.

The same macrophage targeting approach via gelatin microspheres can be used to
enhance antibody production. In mice, IgG antibody levels after immunization with
gelatin microspheres containing the model proteinaceous antigen human γ-globulin
were higher than those after application of antigen incorporated in Freund’s incomplete
adjuvant. The IgG antibody production was dependent on the size of the microspheres,
and the balance between the extent of macrophage phagocytosis and the rate of antigen
release (7).

An alternative approach used gelatin nanoparticles for liver targeting (103). After iv
injection, selective uptake by the liver occurs, depending on particle diameter, like
other colloidal preparations of similar size, and could allow delivery of drugs to the
liver. The nanoparticles can be made by adding a desolvating agent to a gelatin solution
and then the particles have to be stabilized by chemical crosslinking (77,104). Gelatin
micro- and nanoparticles have also been tested as carriers for recombinant aden-
oviruses. Administration of the adenovirus-containing microspheres to human tumor
nodules engrafted in mice showed that the viral transgene was transferred to the tumor
cells (105).

3.2.3. GELATIN MICROPARTICLES FOR EMBOLIZATION

Besides PVA and starch, gelatin is one of the major sources for biodegradable
embolic particles to infarct tumors and to locally enhance therapeutic drug levels
caused by shifts in the local blood supply. The normal liver has a double circulation but
is primarily supplied from portal circulation. In contrast, in malignant primary and sec-
ondary tumors, the blood supply is provided more than 90% by the hepatic artery
(106). Thus, closure of the hepatic artery is a valuable target to trigger the effect of
chemotherapeutic agents. Physicians are most familiar with the absorbable gelatin
powder, Gelfoam® (Pharmacia & Upjohn, Kalamazoo, MI). The crosslinked pork skin
gelatin has its primary use in hemostasis. In soft tissue, the material is absorbed com-
pletely within 4–6 wk. During intravascular catheterization, the gelatin particles pro-
duce vessel occlusion, hasten clot formation, and become liquefied within 1 wk or less.

Transcatheter arterial chemoembolization using gelatin microparticles has become a
standard procedure in the treatment of hepatocellular carcinoma (107–111). Chemoem-
bolization with gelatin particles causes massive shrinkage as a result of ischemia and
increases local drug exposure. Some of the major complications are acute hepatic fail-
ure, liver infarction or abscess, intrahepatic biloma, multiple intrahepatic aneurysms,
cholecystitis, and gastrointestinal bleeding (112,113). Gelatin particles have also been
used in treatment of bone metastasis and spinal column neoplasms (114,115), adrenal
tumors (116), and embolization of various arteries for treatment of soft tissue carcino-
mas (117). Testing of different particle sizes in transcatheter arterial embolization in
patients and mongrel dogs suggest that the optimal size of gelatin sponge particles is
between 500 and 1000 µm (118,119).

There are many different protocols for treatment of inoperable tumors or for
metastatic liver tumors, for example, regimens prior to surgery or transplantation (120).
The chemoembolization with gelatin particles may be performed in combination with
many different drugs such as mitomycin C, CDDP, 5-FU, or epirubicin, or in an emul-
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sion of iodized poppy-seed oil (Lipiodol®) (121,122), as well as in combination with
irradiation or systemic chemotherapy protocols. Therefore, the results are difficult to
compare (110,123–125).

A few studies describe the use of drug-loaded gelatin microspheres for emboliza-
tion. Particles of 50 µm loaded with mitomycin C were developed for transcatheter
arterial embolization, but mitomycin C was rapidly released from the microspheres (6).
In order to overcome this problem, mitomycin C was conjugated with dextran, which
liberated mitomycin C by a base-catalyzed hydrolysis with a half-life of approx 24 h.
Thus, hydrolysis became the rate-limiting step in the release of mitomycin C from
gelatin microparticles loaded with dextran-conjugated mitomycin C (6). Remainders of
gelatin microspheres of 70 µm loaded with mitomycin C and 131I were found 1 mo
after hepatic embolization and still exhibited radioactivity (126). These particles
allowed local internal radiation to be concentrated in the tumor along with local
chemotherapeutic treatment (127). In addition to biodegradable gelatin microspheres,
nonresorbable particles have been developed as particulate embolization material
based on a trisacryl gelatin polymer core and hydrophilic surface characteristics
(128,129). In summary, the application of gelatin microspheres proceeded in human
studies only for chemoembolization. Both chemoembolization using drug-loaded
spheres, macrophage targeting, and sustained-release formulations have been evaluated
to different degrees, but have not been pursued further up to the end of the 1990s.

4. ALBUMIN

4.1. Chemical and Biological Properties
Albumin is one of the most frequently investigated proteins for medical use. Its main

source include human (HSA) and bovine (BSA) material. Albumin (mol wt, approx
65,000) represents the major plasma protein (approx 55%). It consists of 585 amino
acids, has an ellipsoid form with diameters of 14.0 and 4.0 nm, respectively, and does not
show glycosilation sites. Because of its isoelectrical point of 4.8, it is negatively charged
under physiological conditions. Albumin has a high water-binding capacity and is
involved in maintaining the colloid osmotic pressure in the blood. In addition, it binds to
a number of endogenous and exogenous substances including bilirubin, steroid hor-
mones, and many mainly acidic drugs (130). Albumin is separated by ion-exchange
chromatography or Cohn fractionation using ethanol at low temperature, with albumin
being one of the last plasma proteins to precipitate (Cohn fraction V) (131). Albumin can
be stabilized in solution by the addition of sodium acetyltryptophanate and sodium
caprylate, which allows for pasteurization at 60 °C for at least 10 h (132).

Albumin solutions of 4–5% are used for plasma volume replacements, and to restore
colloid osmotic pressure in case of acute hypovolemic shock, burns, and severe acute
albumin loss; these also serve as an exchange fluid in therapeutic plasmapheresis or in
cases of neonatal hyperbilirubinemia (133,134). Concentrated albumin solutions of
15–25% have been suggested for short-term management of edema, hypoproteinemia
in hepatic diseases, and in diuretic-resistant patients with nephrotic syndrome. Adverse
effects to albumin infusion occur rarely, and include nausea, vomiting, increased sali-
vation, febrile reactions, and allergic reactions (130). Upon infusion, albumin is distrib-
uted throughout the intravascular space, partially passes into the interstitium, but is
recirculated via the lymphatic system, showing a half-life of approx 19 d (131). Besides
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infusion, the second medical application for albumin is diagnostic, with a number of
official pharmacopeia monographs about 125I, 131I, and 99mTc-labeled solutions and
aggregated albumin injections. Technetium labeled albumin solutions are used in diag-
nostics of hemodynamics, as the radioactivity remains in the vascular system for an
adequate time to allow arterio- or phleboscintigraphy. Labeled albumin particles,
crosslinked by heat treatment (see Subheading 4.2.1.) with a diameter just slightly
above the lumina of the terminal blood vessels, are retained in the capillaries and allow
imaging of the local blood flow in the terminal artery region. Because the microspheres
are degradable, the vessels are not permanently blocked. Biodegradability is strongly
dependent on the manufacturing process, especially temperature, but usually degrada-
tion occurs within 12–24 h (ranging from 2.4 h to 144 h with temperature treatment
increasing from 118 to 165°C) (135). Particles injected intravenously enable imaging
of the perfusion conditions of the lung, whereas intraarterial injection allows for imag-
ing of the situation in the supplied region, for example, a tumor, or to control the posi-
tion of a selectively placed arterial catheter. The aggregated albumin may also be used
for embolization (136). The European Pharmaceopeia (137) describes 99mTc macrosalb
albumin particles, which can also contain nondenatured albumin, with the particle size
limited between 10 and 150 µm. The macrosalb particles are introduced into the blood
capillaries of the lung for imaging and then degrade with a half-life of 4–8 h (138).
Smaller nanoparticles pass through the capillaries, are ingested by the reticulo-
endothelial system, and enable its imaging. Whereas the surface charge of the nanopar-
ticles influences the phagocytic uptake in vitro, differences in the in vivo distribution of
albumin carriers in rats could not be observed (139). The effect is probably due to
adsorption of plasma components on the surface which leads to a similar surface
charge for all spheres.

In addition, air-filled albumin microspheres of 3–5 µm (maximum, 32 µm) produced
by sonification are used as an aid for ultrasound contrast enhancement of ventricular
chambers, and with transvaginal ultrasound to assess fallopian tube patency. The gas
microspheres are stabilized by a thin shell of heat-modified human albumin. Applied iv
via catheter, the microspheres are cleared via phagocytosis in the liver with a plasma
half-life of less than 1 min; after 24 h, 75% of radioactively labeled material is excreted
in the urine as free iodide (140). In order to visualize myocardial perfusion, a gas of
low blood solubility, octafluoropropane, is used to fill particles that remain echogenic
in the blood for more than 5 min (141).

4.2. Anticancer Application of Albumin Microspheres
These particulate albumin systems for diagnostic use form the basis for application

as micro- or nanoparticles loaded with or without drug for chemoembolization in can-
cer treatment. The manufacturing process has been transferred to drug-loaded
microparticles (142–144). For drug-loaded microparticle preparation, usually a
10–30% albumin solution is dispersed in an immiscible oil with or without stabilizer
(e.g., Span 80, Span 85, hydroxypropylcellulose) and albumin covalently crosslinked
by heating (100–180°C) or by adding a crosslinking agent (e.g., glutaraldehyde,
formaldehyde, 2,3-butanedione). Upon thermal treatment, crosslinking through forma-
tion of lysinoalanine occurs (145). As the number of crosslinks increase, the protein
becomes water-insoluble and swells less in an aqueous environment, resulting in retar-
dation of drug release and biodegradation. Compounds with reasonably high solubility
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in oil, for example, 5-FU, are not totally incorporated (146). In general, the encapsula-
tion process has to be adjusted for drugs that are susceptible to heat decomposition,
e.g., adriamycin and mitomycin C, or for drugs that interact with crosslinking agents,
e.g., methotrexate. Because a crosslinking process cannot be omitted, application to
peptide or protein drugs must take into account the risk of denaturation, aggregation,
and conjugation of the drug with the carrier material, which could result in inactivation
or increased toxicity, specifically immunogenicity (146).

Drug release is generally biphasic: an initial fast-release phase followed by slower
first-order release by diffusion through the hydrated swollen matrix and aqueous chan-
nels (147). Release of water-soluble drugs occurs rapidly whereas release of hydropho-
bic drugs such as 5-FU is retarded by dissolution as the rate-limiting step rather than
diffusion through the matrix or erosion of the carrier. In addition, drug release can be
influenced by particle size, drug loading, pH and concentration of the albumin solution,
degree and nature of crosslinking, interaction between drug and matrix, as well as the
presence of additives (146).

Detailed toxicity studies carried out with albumin microspheres have demonstrated
LD50 values of 200 mg/kg or 30,000 particles per gram of body weight in mice. Over
30 d, 50 mg per animal did not lead to distressful side effects without indications of
inflammation or necrosis after multiple im and sc injections (144). In vivo degradation
of the crosslinked albumin spheres by proteases is hard to predict from the in vitro
results.

4.2.1. INTRAVENOUS APPLICATION OF ALBUMIN SPHERES

Albumin spheres have been investigated for targeted delivery of anticancer agents
by nanospheres for passive targeting and by microspheres for active targeting via
intraarterial delivery of magnetic delivery. In general, particle size plays a major role,
not only for the release properties but also for distribution in the body. It can be
reduced by increasing the oil viscosity, stirring speed, and oil amount, or by decreasing
the amount of protein or aqueous phase (146). After iv application of 1 µm, micros-
pheres localize mainly in the liver. Microspheres of 15 µm or larger are entrapped in
the first capillary bed they encounter, for example, in the tumor region after intraarter-
ial injection (second-order targeting) and predominantly in the lungs (first-order target-
ing) owing to mechanical filtration after iv application (144).

Adriamycin-loaded albumin microspheres of 7–80 µm, crosslinked with glutaralde-
hyde, have been evaluated for drug targeting to lungs in rats. Whereas free adriamycin
was detectable in serum for only 6 h, administration through microspheres led to six
times lower initial concentrations of 40 ng/mL in the serum, approx 5 ng/mL after 48 h,
and the detection limit was reached after 4 d. The adriamycin microspheres were
entrapped in the lung with 50% left after 24 h, and became completely degraded after
4 d (148). Following administration of 5-FU entrapped in submicron microspheres,
almost 45% of the dose was maintained in the liver for 24 h when compared with only
3% found after 2 h after injection as free drug (149). Whereas drug release was hardly
influenced by the crosslinking process, swelling and thus particle size in vivo was
reduced at higher stabilization temperatures, resulting in decreased lung deposition.

Albumin nanoparticles can be prepared via desolvation of an aqueous solution,
resulting in a coacervation phase. Standard methods include crosslinking with glu-
taraldehyde, removal of excess crosslinking agent by addition of sodium metabisulfite,
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and purification via gel permeation chromatography, yielding nonporous particles
(150). As an alternative procedure, a nanoemulsion in the inner-phase size range below
200 nm can be prepared using ultrasound, and the particles are subsequently
crosslinked (151). The drug-payload ranges from 0.2% to 15%. Beside the standard
crosslinking agents for microspheres (Subheading 4.2.), methyl polyethylene glycol-
modified oxidized dextran has been tested as a possible crosslinker, which results in a
polyethylene oxide surface layer (152) and other surface modifications that change
plasma protein adsorption (153). The nanoparticles appear to be endocytosed by tumor
cells. In vitro sensitivity of B16 and MMTV cells was reduced when 5-FU or doxoru-
bicin was incorporated in albumin nanoparticles. These results correlated with studies
of the two cell types injected in mice; the increase in animal survival time required
higher doses of the nanoparticulate form intravenously vs free drug, whereas toxicity
seemed to be reduced, and the therapeutic index was increased from approx 1.5 for 5-
FU and doxorubicin to approx 2.5 (150). Nanoparticles are taken up by the spleen
(154) and could also be capable of targeting macrophages for activation of the immune
system (155). In addition, nanoparticles with a monoclonal antibody coupled to albu-
min and containing adriamycin have been tested in vitro and exhibited strong activity
against bladder cancer cells (156) as antibody-linked particles might be capable of
enhancing binding to tumor cells (157).

Another approach to target albumin particles to the tumor site is the incorporation of
magnetic material into the particles to apply an extracorporal magnetic field. After
intraarterial injection, the magnetically responsive particles containing adriamycin or
doxorubicin and magnetite could be selectively localized with an efficiency of 50–80%
in the capillaries of Yoshida sarcoma tumors in rat tails exposed to a 5.5 kGauss external
field for 30 min (158). The particles led to sustained release of the drug with substan-
tially reduced delivery to nontarget tissues and marked tumor regression. Similar results
could be demonstrated with albumin particles injected intravenously and directed mag-
netically to lung metastases from AH 7974 tumor cells (159). The presence of magnetite
increased the level of drug entrapment and the initial burst, but significantly reduced the
release rate of entrapped adriamycin from albumin microspheres (147).

4.2.2. INTRAPERITONEAL APPLICATION OF ALBUMIN MICROSPHERES

Beside the targeting aspect of the iv administration of albumin microspheres,
research groups focused their interest on local drug retention by injecting the particles
intraperitoneally, intratumorally, or intraarterially for chemoembolization. Albumin
microspheres loaded with adriamycin and 5-FU have been tested for potential applica-
tion in the treatment of ovarian cancer. Truter found that, whereas activity of 5-FU
against tumor cells was maintained in vitro, toxic effects in rats were only mild to mod-
erate (160). In a study in S-180 sarcoma ascites-bearing mice, it was demonstrated that
30% of the animals survived for more than 6 mo after ip treatment with daunomycin
incorporated into human albumin microspheres, whereas all the animals in the control
groups treated with daunomycin solution or no treatment died within 21 and 14 d,
respectively (161). Considering the fact that a single microsphere dose may not deliver
effective amounts of drug for an adequate duration due to fast release, a multiple-dos-
ing regimen of adriamycin microspheres was tested against Ehrlich ascites. Adminis-
tration on days 1, 5, and 9 was superior in increasing the lifespan of mice when
compared with multiple doses of free drug (162).
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The adriamycin payload can be increased, the release prolonged, and local adverse
effects reduced by incorporation or conjugation of albumin with anionic polymers such
as heparin (163) or polyglutamic acid (164). The ip injection of adriamycin-loaded
albumin-heparin-conjugate microspheres led to enhanced survival times of L1210
tumor-bearing mice and improved tumor growth delay in CC531 tumor-bearing rats
(163). Such albumin-heparin microspheres can be obtained via double crosslinking
technique by stabilization of an aqueous mixture of albumin and heparin with 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide followed by glutaraldehyde. The process
allows control of particle size, swelling, and enzymatic degradation rate (165). After
intrahepatic administration the microspheres were degraded within 2 wk with a half-
life of approx 1 d without adverse effects (166).

Souza and Pourfarzib examined a combination therapy of iv methotrexate and
intraperitoneal recombinant human macrophage colony-stimulating factor ip against
melanoma induced by sc injection of B-16 tumor cells in mice (167). The group that
received both methotrexate solution and rhM-CSF in albumin microparticles demon-
strated significant increase in survival time (30.4 ± 3.3 d) vs the no treatment group
(11.8 ± 1.9 d), the methotrexate treatment only group (19.4 ± 5.0 d), and the methotrex-
ate treatment + rhM-CSF solution intraperitoneal group (21.0 ± 2.2 d). The increases in
TNF-α and IL-1β levels upon treatment with encapsulated rhM-CSF indicated
macrophage activation as could be demonstrated by the same group in other studies
using albumin microspheres (168,169).

4.2.3. INTRATUMORAL APPLICATION OF ALBUMIN SPHERES

The antitumor activity of drugs in tumor tissue can be potentiated using albumin
microspheres for local injection. Cummings et al. investigated pharmacokinetics and
metabolism of mitomycin C after intratumoral injection in mice bearing MAC 16 colon
adenocarcinoma. The microspheres produced steady drug levels when compared with
injection of free mitomycin C, avoiding an early peak (20.5 vs 98.9 µg per tumor) and
reducing the systemic levels (1.8 vs 6.8 µg/mL·h) (170). In contrast, the key intermedi-
ate in mitomycin C quinone bioreduction, 2,7-diaminomitosene, reached peak levels
that were 10-fold higher with an AUC that was fivefold higher than those with the par-
ticulate formulation. Intratumoral injection of albumin microspheres containing epiru-
bicin resulted in a steady release in vitro over 3 d; the growth of solid MDA-MB-231
breast cancer was reduced (Fig. 8) with marked intracellular calcification and necrosis
in the group treated with the microsphere-entrapped epirubicin (171).

4.2.4. ALBUMIN MICROSPHERES FOR EMBOLIZATION

Embolization with albumin microparticles has been tested in different clinical set-
tings using drug-free and drug-loaded microspheres, primarily for liver cancer (172).
Drug-free albumin microspheres were studied in a Phase II trial in a combined intra-
hepatic treatment administering angiotensin II to redistribute the arterial blood flow
toward the tumor, intraarterially injecting albumin microspheres every 4–6 wk, and
giving 5-FU bolus in the intervening weeks. Toxicity was minimal, response was seen
in seven of 21 patients (173), and survival was prolonged. However, benefits were
modest. Studies with radiolabeled microspheres in patients demonstrated a median bio-
logical half-life of 2.4 d (1.5–11.7 d) (174).

In patients with liver tumors, Fujimoto et al. have reported superior tumor response
to intraarterial chemoembolization with BSA microspheres (approx 45 µm) incorporat-
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ing 5% mitomycin when compared with conventional infusion (175). This trial was
preceded by animal studies employing rabbits bearing VX-2 tumors on the hind leg.
After application through the femoral artery, the microspheres were detected in the
arterioles of the tumor tissue (176). The microspheres led to sustained high drug levels
in the tumor tissue of approx 1 µg/mL for up to 8 h, whereas injection of mitomycin C
solution resulted in less than 0.003 µg/mL up to 4 h. During manufacturing of the par-
ticles, it should be noted that mitomycin C is susceptible to heat decomposition, and
glutaraldehyde crosslinking results in a covalent adduct and an isomeric form of intact
mitomycin C as the two major decomposition products, totaling approx 10% (177).

In another clinical study, second-order drug targeting with CDDP-loaded albumin
microspheres in patients with hypervascular liver tumors was performed. Following
administration of 15–35 µm spheres through the artery, particles were predominantly
retained in the tumor vasculature (178). The retention of CDDP in albumin micros-
pheres could be enhanced by admixing chitin or chitosan. CDDP albumin micros-
pheres were prepared with various chitin concentrations, and CDDP release in vitro
and antitumor effect in a VX-2 hepatocellular tumor model in rabbits following injec-
tion into the hepatic artery were determined. As the concentration of chitin increased,
CDDP entrapment in the microspheres increased, enhancing the antitumor effect
(179,180). The results also indicated that the size of the microspheres and the CDDP
dose were strongly correlated with the augmentation of the antitumor effect by the
composite microspheres (181).

Furthermore, Doughty et al. treated a breast cancer patient with adriamycin-loaded
albumin microspheres. A complete response was observed and prolonged local control
was achieved until the patient’s death from disseminated disease (182). No systemic
toxicity was observed.

The interest in albumin as a biomaterial for drug delivery peaked in the 1980s and
early 1990s and has markedly receded. The most encouraging activities were directed
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Fig. 8. Size of breast cancer implanted into mice treated on day 1, 5, and 9 with epirubicin (5 mg/kg)
containing albumin microspheres (modified from Novotny & Zinek, 1994).



toward embolization, and both intratumoral and ip applications may have higher poten-
tial. However, no major clinical trials evaluating these approaches are underway
despite the vast experience with albumin spheres in diagnostics.

5. FIBRIN/FIBRINOGEN

Fibrin sealant is used for local cancer treatment with the idea that in combination with
surgical resection the intraoperative application may reduce the tumor recurrence rate
(183) or to treat local cancerous lesions, for example, superficial gastric cancer (184).

5.1. Chemical and Biological Properties
Fibrin glue consists of two components: fibrinogen (factor I, mol wt, 3.6 · 105 D)

concentrate, also containing factor XIII, and thrombin, containing factor IIa (Fig. 9).
When combined, thrombin activates the removal of two fibrinopeptides from the fib-
rinogen molecules in the presence of calcium and incites polymerization of the result-
ing fibrin monomers (185). In addition, thrombin cleaves an activation peptide from
factor XIII, creating an active transglutaminase (factor XIIIa) which immediately
(within 3–5 min) induces the formation of covalent bonds between the fibrin mole-
cules. Thus, fibrin glue reflects the last step of the blood clotting cascade. In order to
avoid early fibrinolysis and removal of the clot by plasmin, a suitable protease inhibitor
such as aprotinin is added. Consequently, an insoluble, mechanically stable clot is
formed. Fibrin glue is generally created in situ from the two components using, for
example, a double syringe. It is used clinically as a temporary tissue replacement, a sur-
gical sealant to improve wound healing, or a spray to bleeding surfaces to control hem-
orrhage (186). The fibrin clot degrades by enzymatic fibrinolysis, complemented by
cellular metabolism and phagocytosis by granulocytes and macrophages, with only
mild foreign-body reaction (187). The resorption rate depends on the local fibrinolytic
activity, the thickness of the sealant layer, and the amount of aprotinin present.

5.2. Anticancer Application of Fibrin/Fibrinogen
The fibrin meshwork formed within the clot will provide a matrix that slows the lib-

eration of drug. In local chemotherapy mitomycin C/fibrin glue exhibits stronger
effects in vitro and in animals when compared with mitomycin C solution on gastric
and esophageal cancer cell lines (188) and a glioma cell line (189). In vitro release
from the coagulate testing of 0.3, 0.6, and 1 mg mitomycin C/100 µL fibrin glue
demonstrated that 54, 18, and 15%, respectively, were released after 30 min, and the
1 mg dose was the most suitable with a steady release for at least 24 h (190,191). Inoc-
ulation of tumor tissue with mitomycin C/fibrin glue resulted in replacement of the
tumor tissue by plasma cells and lymphocytes. Injection of the combination in Balb/c
mice into the tumor or the direct local application of the gel to the tumor surface signif-
icantly decreased the tumor growth rate and increased the survival time when com-
pared with injection of mitomycin C solution or drug-free fibrin glue (Fig. 10). In
addition, the abdominal aorta, vena cava, and intestine were not damaged by the local
application at the high dose (190).

Fibrin glue was also tested in animals in combination with CDDP for treatment of
osteosarcoma (192) and with 5-FU for head and neck cancer (193). Almost all of the
MTX was released from fibrin glue within 1–3 d, and murine 9L-gliosarcoma decreased
soon after administration and disappeared in four out of five animals after 10 d (194). In
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patients with a malignant brain tumor, sustained-release drug was detected for more than
1 wk, and tumor decrease occurred. Kabuto et al. found that the local concentration after
covering C6 gliomas in rat brains with fibrin glue containing nitrosourea was more than
sufficient for 50% inhibition of cell growth in vitro for 12 h; after 5 d tumor cell damage
could be shown to a depth of 2–3 mm (183).

Fibrin glue has not only been successfully used for local retention of low molecular
weight cytostatica but, as no chemical crosslinking agent or temperature is applied, can
be used to embed more sensitive agents. OK-432, an attenuated strain of Streptococcus
pyogenes, induces the production of various cytokines by monocytes and lymphocytes,
and has been recognized as an effective biological response modifier (195). The effect
of OK-432 on colorectal cancer is markedly augmented when it is injected intratu-
morally together with fibrinogen. Extensive fibrin meshwork formation is induced in
cancer tissues with high urokinase-type plasminogen activator levels such as colorectal
cancer. Subsequently, macrophages infiltrate along the fibrin meshwork leading to
granuloma development with giant cells followed by extensive tumor necrosis
(196,197). The inflammatory cells that migrate into the fibrin matrix phagocytose OK-
432 produce chemotactic factors and cytokines that promote antitumor immunity, and
numerous cytotoxic CD4+ lymphocytes surround the residual cancer cells (198). The
concept has been applied for treatment of patients with pancreatic cancer (199) but it
was less effective for breast cancer. When fibrinogen is injected into breast cancer,
which has low urokinase-type plasminogen activator levels, a dense fibrin clot is
formed instead of a loose fibrin meshwork suitable for macrophage migration (200).
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Addition of activated macrophages that produce urokinase-type plasminogen activators
assists in the formation of a loose fibrin meshwork and results in tumor regression.

In order to enhance local drug retention, polymers can be added to the fibrin glue to
obtain a denser network or charge interactions. Sugitachi showed that a fibrin clot con-
taining gelatin and loaded with adriamycin or CDDP, when placed intra-abdominally
in ascites hepatoma AH130-bearing rats, exhibited sustained-release drug levels for
approx 14 d and substantially increased the antitumor effect when compared with
intraperitoneally injected adriamycin or CDDP (201). Whereas almost all rats treated
with the conventional formulation died within 20 d with massive ascites and metasta-
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sis, 68% of the fibrin glue/gelatin/adriamycin-treated animals survived for more than
200 d and evidence of malignancy disappeared. A similar system has been used in
patients for therapy of serious malignant pleural effusion (202). Enhanced drug reten-
tion was demonstrated for a combination fibrin glue/sodium alginate/doxorubicin in
vitro and in vivo using microdialysis to assess the concentration in the extracellular
fluid of an AH60C tumor in the back of rats (203). The tumor volume was inversely
correlated with tumor extracellular-fluid AUC to plasma AUC ratios.

In a pilot study, spraying of fibrin glue in combination with CDDP offered an alter-
native in the treatment of lung cancer, especially as an adjuvant for postoperative
purification (204), but further studies have not been reported. Furthermore, bovine fib-
rinogen microspheres containing 5-FU, adriamycin or mitomycin C, prepared by an
emulsion heat-hardening method, have been described (147).

Thus, fibrin glue appears to a promising candidate to sustain local drug retention
after surgical tumor resection with encouraging results. In addition, the simple mode of
application by admixing drug to commercially available fibrin glues and the avoidance
of additional chemical or heat crosslinking offer major advantages.

6. CHITOSAN

6.1. Chemical and Biological Properties
Chitosan is a polysaccharide obtained by deacetylation of chitin, which is the major

constituent of the exoskeleton of crustaceous water animals and insects and is found in
the cell wall of bacteria and fungi. At present, most chitosan is obtained by a concen-
trated alkali treatment of chitin using the shells of crab, shrimp, lobster, and krill, being
the most available sources, but production in fungus cell culture has also been evaluated
(205). Chitin represents a mucopolysaccharide family consisting predominantly of
water-insoluble, unbranched β1→4-N-acetyl-D-glucosamine chains having a molecular
weight > 1 · 106 (Fig. 11A). Purity, polymorphous structure, the degree of deacetylation
(usually 70–95%), and the molecular weight of chitosan (1 · 105 D–1.2 · 106 D) can vary
widely because many factors in the manufacturing process influence the characteristics
of the final product. Chitosan is insoluble in water, alkali, and organic solvents but is sol-
uble and forms viscous preparations in aqueous media at pH < 6.0. Different methods
have been described to obtain low-molecular weight and water-soluble chitosan (205).
Chemical modification, e.g., succinylation, can also render water-soluble material.

Different types of chitin and chitosan materials have been described as biocompati-
ble and biodegradable (206,207). Tissue response to implanted chitin and chitosan is
mild, except for highly deacetylated, rapidly degrading material, in which case signifi-
cantly larger quantities of low molecular weight compounds are rapidly formed that
elicit an acute inflammation reaction (208). Some recent reports indicate problems of
chitosan with respect to blood compatibility and cell viability after parenteral applica-
tion; the drawbacks seem to depend on chemical and physical characteristics such as
deacetylation degree, molecular weight, and counter ion species (209,210). Upon ip
injection, chitosan (50% hydrolyzed) moves rapidly into kidney and urine and is
scarcely distributed into liver, spleen, abdominal edema, and plasma. It is hydrolyzed
to small molecular weight products and excreted into urine typically within 2 wk (209).
Chitosan is mainly depolymerized enzymatically by lysozyme (211), which binds to
specific chitosan sequences (212). The degradation rate decreases with an increase in
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the degree of deacetylation (208,211). Therefore, lysozyme is used for in vitro assays
testing chitosan degradation. Intravenous administration of succinylated chitosan and
glycolchitosan as water-soluble materials demonstrated half-lives in the blood circula-
tion of more than 2 d. For succinylated material only marginal distribution into other
tissues occurred, whereas the glycol derivative was found to a high extent in the kidney.
Furthermore, succinylated material was less partitioned to the tumor tissue but accu-
mulated there more easily than glycol-chitosan. This suggests an enhanced permeabil-
ity and retention (EPR) effect for succinylated chitosan and may explain the increase in
antitumor activity by conjugation of cytostatica to water-soluble succinylated chitosan
(Subheading 6.2.2.) (213).

A variety of biological effects have been attributed to chitosan ranging from marked
affinity for proteins, for example, laminin which is considered to be involved in tumor
invasion (214) to the inhibition of tumor cells (215), antimicrobial activity, acceleration
of wound healing, and stimulation of the immune system (216–219). Oral administra-
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Fig. 11. Repeating units of chitosan (A), hyaluronan (B), starch—amylose (C), starch—amylopectin
(D), and dextran (E).



tion of chitosan stimulated an increase in IgA, IgG, and IgM concentrations in serum
and mesenteric lymph nodes lymphocytes (219). In contrast, intravenous application of
phagocytosable chitin particles primed alveolar macrophages due to, at least in part,
direct activation by IFN-γ which is produced by NK1.1+CD4-cells. In addition, chi-
tosan stimulates the migration of cells and accelerates reformation of connective tissue
and angiogenesis (205), probably because of induction of IL-8 (220). Additionally, it
has been shown that chitosan is mucoadhesive (221) and increases the permeability of
epithelial tight junctions which may enhance, e.g., nasal or intestinal drug absorption
and may affect gating properties of the blood–brain barrier (222). The biomedical
applications of chitosan include bandages and sponges as wound dressings (taking
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advantage of its hemostatic properties), artificial blood vessels, and matrices for cell
encapsulation (223). It has been tested for numerous other applications, for example,
oral controlled-release formulations (224) and cosmetic products, especially hair con-
ditioner or fixative (225). The properties can be adapted by formation of macromolecu-
lar complexes between the polycationic chitosan and other polymers (226). Compared
to other biopolymers such as collagen or hyaluronic acid, chitosan is relatively heat sta-
ble and less sensitive to electrolytes.

6.2. Anticancer Application of Chitosan
The application of chitosan in cancer treatment has two major aspects: microparti-

cles and conjugates with drugs attached via the amino groups or complexes with
holmium or platinum. In addition, chitosan can be used to prepare gels for photosensi-
tizer-enhanced laser treatment (227,228). This study combined the photosensitizer with
glycated chitosan as an immunoadjuvant which also functioned as the gel-former and
prolonged retention of the dye at the injection site. After the immediate photothermal
destruction of neoplastic cells, the treatment stimulated the immunological defense
system against residual and metastatic tumor cells in rats. It was hypothesized that chi-
tosan elicits an immune reaction against the remaining tumor cell population by com-
bining with cellular antigens released from the disrupted tumor cells to form an in situ
autovaccine (227). The treatment resulted in an increase in survival rate, the eradication
of tumor burden, both primary and metastatic, as well as an augmentation of resistance
to rechallenge. Because of its highly positive charges, chitosan can be used for DNA
delivery and offers possibilities in gene delivery (229,230).

6.2.1. CHITOSAN MICROSPHERES

Chitosan microspheres can be prepared by emulsifying a drug-containing acidic
aqueous chitosan solution in an oil phase (e.g., rape-seed oil or paraffin) followed by
crosslinking with glutaraldehyde, or via heat (231,232) and final particle separation.
Drug release from microparticles occurs relatively fast in vitro for both hydrophobic
and hydrophilic drugs (233) and is mostly controlled by dissolution and diffusion
rather than matrix degradation (233). Drug liberation is affected to some extent by size,
drug loading, and additional coats of chitosan or derivatives that delay the release from
the particles (234). In vivo degradation occurs within 1–2 mo after sc injection (235).

The ability of chitosan to chelate metal ions (236) has been used to form a chemical
complex between CDDP and chitosan named plachitin, which is transferred into
microparticles. Chemoembolization with CDDP-chitosan microspheres (approx 75
µm; 20% CDDP) in dogs resulted in a reduction of the AUC and hepatic tissue concen-
trations three times higher after infusion into the hepatic artery when compared with a
CDDP solution (91,237). Angiograms revealed a decrease in the number of arterioles
in liver, necrosis, and hepatic cell degeneration in the embolized region, with particles
still present after 4 wk. The addition of chitin to CDDP-chitosan-microspheres reduced
the CDDP release rate and enhanced the efficacy for embolization through the hepatic
artery (91). Successful use in liver cancer patients was reported with transient and few
adverse effects (91,238). The material can also be used for intraperitoneal chemother-
apy of gastrointestinal cancer (239) and as a local agent for treatment of solid tumors
(240,241). The potential of mitoxantrone-loaded chitosan microspheres for sustained
drug delivery has been shown in vitro and in vivo (242). The mean survival time of
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Ehrlich ascites carcinoma bearing mice upon intraperitoneal injection was increased
from 4.6 d for 2 mg of free mitoxantrone to 50 d with an equivalent amount of micros-
pheres. Chitosan itself has been shown to diminish glycolysis in Ehrlich ascites tumor
cells and to decrease glucose uptake and ATP levels. This is caused by inhibition of a
tumor-specific variant of pyruvate kinase from fraction B (215) and may enhance the
effect of cytostatica. Magnetic chitosan microspheres of approx 0.5 µm loaded with
oxantrozole were shown to enhance delivery to the brain after injection with the head
under a magnetic field. Oxantrozole concentrations were at least 100-fold increased
after application of the magnetic microsphere system (243,244).

6.2.2. DRUG CONJUGATES WITH CHITOSAN

Drug conjugates with chitosan can profit from the continuous drug release by pro-
drug cleavage. In addition, the enhanced permeability and retention effect of chitosan
materials in tumor tissue, and their immunostimulating and anti-tumor effects, can
improve cancer therapy. Cytarabine, which is rapidly inactivated and excreted from the
body, can be conjugated using N4-(4-carboxybutyryl)-cytarabine in the presence of car-
bodiimide. Cytarabine generation from the conjugate was shown to be pH-dependent
with approx 56% at pH 7.4 within 7 d (235). The conjugate significantly enhanced the
survival time of leukemia-bearing mice whereas neither chitosan nor cytarabine exhib-
ited a positive effect. In addition, toxicity studies after ip injection showed that the
maximum tolerable dose was more than 3 g/kg.

For local delivery of mitomycin C, conjugates have been presented. In vitro, drug
release from the conjugates followed a mono-exponential liberation profile with an
apparent half-life of 180 h and 6.2 h for mitomycin C conjugated with N-succinyl-chi-
tosan and 6-O-carboxymethyl-chitin, respectively (Fig. 12). Such water-soluble conju-
gates show long systemic retention and tumor accumulation (213). Upon intraperitoneal
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Fig. 12. Plasma concentration of MMC after intraperitoneal injection of 5 mg/kg MMC and 15
mg(eq)/kg MMC conjugated with N-succinyl-chitosan or with 6-O-carboxymethyl-chitin (modified
from Onishi et al., 1997).



injection of 15 mg mitomycin C/kg, the mitomycin C plasma level reached its maximum
at 30 min after injection of mitomycin C solution. Injecting 6-O-carboxymethyl-chitin
conjugated mitomycin C, the time of peak plasma concentration was at 2 h and N-suc-
cinyl-chitosan conjugates resulted in low consistent levels over the 24-h test period.
The water-soluble conjugates did not show a substantial improvement in the survival
time of tumor-bearing mice. But whereas survival time was inversely related to the
dose of free mitomycin C injected indicating toxic effects, the lifespan was extended
with increasing conjugated mitomycin C dose (235,245).

Chitin may also be coupled to polypeptide sequences which interfere with cell adhe-
sion and may be used to control cancer metastasis (246,247). Synthetic peptides
derived from adhesion molecules have been shown to be involved in regulation of the
metastatic process. RGDS (Arg-Gly-Asp-Ser), a sequence that is based on fibronectin,
has been shown to interfere with tumor metastasis in murine tumor models. Studies
employing spontaneous metastasis models indicated that 6-O-sulfated- and 6-O-car-
boxymethyl-chitin inhibit metastasis and lung tumor colonization of murine melanoma
(248). In addition, chitin suppressed tumor cell invasion of the reconstituted basement
membrane and tumor—induced angiogenesis by its specific binding to laminin and
fibronectin and/or by inhibiting enzymatic activities of cell-derived heparanase and
type IV collagenase. Therefore, conjugates of cell adhesive RGDS peptide with 6-O-
sulfated- and 6-O-carboxymethyl-chitin, which are structurally related to heparin, were
developed. These macromolecular compounds are more effective for inhibition of liver
and lung metastasis than chitin, RGDS, or their mixture after intravenous injection
(246,248,249). The ip injection of RGDS conjugates increased the survival time of
mice carrying extensive peritoneal-seeding tumor cells and may present a treatment
option against the dissemination of scirrhous gastric cancer (247).

Similar to platinum, holmium may interact with chitosan, and this phenomenon can
be used to enhance the retention of 166Ho for internal radionuclide therapy. Analysis
after intrahepatic injection in rats and mice revealed that most of the radioactivity is
localized at the administration site; only low levels are detected in liver, spleen, lung,
and bone. Application of free 166Ho results in high radioactive concentrations in the
blood and many organs and tissues (250). After intratumoral administration of the com-
plex in B16 melanoma, the radioactivity is localized at the site of administration with-
out distribution to other organs and tissues (250). Toxicity of the complex results in a
slight decrease in erythrocyte number and an increase in liver and lung weight at an
early stage after administration, but this is reversible within 14 d (251).

In summary, chitosan and its derivatives have recently demonstrated great potential
in cancer treatment. Leading candidates will be conjugates with platinum, holmium, or
RGDS, all of which still require thorough investigation and clinical evaluation.

7. HYALURONAN

7.1. Chemical and Biological Properties
Hyaluronic acid is a naturally occurring polyanionic linear polysaccharide com-

posed of disaccharide units with the structure D-glucuronic acid-β (1,3)-N-acetyl-D-
glucosamine-β(1,4) (Fig. 11B). Its molecular weight ranges from several hundred to
> 106 D, with an average of 1–2 · 106 D (252). Hyaluronic acid and sodium hyaluronate,
which represent the predominant entity under physiological conditions, together form
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hyaluronan (HA). HA acts as a lubricant and shock absorbant throughout the body, sta-
bilizing the cartilage matrix and controlling the water homeostasis of tissues (253,254).
It binds to proteins in the extracellular matrix and on cell surfaces, and influences the
migration, adhesion, proliferation of cells, and the leukocyte functions (252). Hyaluro-
nan was previously isolated from disparate sources such as bovine vitreous humor,
rooster comb, or umbilical cord. The resulting material varies in molecular weight, its
three-dimensional organization of chains, as well as the degree of contamination with
other tissue constituents (254). Development of HA production from Streptococcus
zooepidemicus cell culture gave access to material of higher purity at a more reason-
able price, and the procedure is now applied on industrial scale (255). The unique
physicochemical properties of HA, such as the rheological behavior of aqueous solu-
tions, its polyelectrolytic properties, and molecular weight characteristics have been
described in detail by Berriaud (256).

In vivo, HA is degraded by a slow, specific enzymatic pathway via hyaluronidase
and/or in a fast process by hydroxyl radicals. Hyaluronidase is present in various mam-
malian tissues with the highest activity in hepatic and lymphatic lysosomes. It ran-
domly cleaves the 1,4-linkages between the N-acetyl-β-D-glucosamine and the
D-glucuronate units. Hyaluronidase typically displays its maximum activity at an acidic
pH (257). HA has a half-life of 0.5–2.5 d in tissues; it is rapidly cleared from plasma by
HA receptor-mediated uptake in the liver with a half-life of several minutes and an
upper limit for renal excretion of approx 25,000 D (258). A variety of chemically mod-
ified HA-based materials have been developed by crosslinking with glutaraldehyde or
EDC, as well as by esterification of the carboxylic groups with reduced susceptibility
to enzymatic degradation (252). Generally, good biocompatibility of HA materials has
been reported (259–262), and HA does not induce antibody-formation following injec-
tion into animals or humans (254).

The major clinical applications of HA are for injectable treatment of osteoarthritis in
the knee, and in the field of viscosurgery or viscosupplementation in ophthalmology to
maintain eye shape and protect delicate tissues during cataract removal, corneal trans-
plantation, or glaucoma surgery (252). Furthermore, the cosmetic industry takes advan-
tage of the moisturizing properties (225). HA has been tested as a base material for
barrier membranes (263), as an injectable formulation in combination with basic
fibroblast growth factor to accelerate bone fracture healing (264), and as an adjuvant in
ophthalmic drug delivery to enhance drug absorption through mucus tissue (252). A
project to commercialize an injectable HA formulation with enhanced local retention
of diclofenac was discontinued (265).

7.2. Anticancer Application of Drug Conjugates with Hyaluronan
Considerable progress has been made in understanding the physiological and patho-

physiological importance of HA-receptors located on cell surfaces. The two selective
receptors, CD44 and RHAMM, are involved in cell adhesion (266), proliferation,
migration (267), and metastasis of tumors (268). The synthesis and accumulation of
HA is associated with the migration of cells not only as part of developmental and
wound healing events, but also in tumorigenesis and metastasis (254). It could be
shown that the receptors are overexpressed in metastatic cells, and a high proportion of
HA-positive cancer cells appears to be predictive for poor survival rate of patients
(269,270). HA specifically binds to colon cancer cells in a saturable mechanism, is
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specifically taken up by the cells through endocytosis (271), and upon iv injection, HA
targets liver metastases of a colon adenocarcinoma in rats (272). Thus, using HA-bio-
conjugates could allow cell-selective targeting of anticancer drugs and localizing of a
slow release formulation at a specific site in the body.

Akima coupled mitomycin C to HA and epirubicin to acetylated HA. The antitumor
activity was evaluated by the inhibition of lymph node metastasis, growth suppression
of implanted MH-134 ascites tumor, and reduction of Lewis lung carcinoma metasta-
sis. After sc injection, the HA-epirubicin conjugate concentration in the regional lymph
nodes was significantly higher than that in the liver (5). The HA-mitomycin C conju-
gate exhibited higher antitumor activity against MH-134 tumors than did free mito-
mycin C and proved to be a potent antimetastatic agent at a dose of only 0.01 mg/kg. In
addition, toxicity was strongly reduced by coupling mitomycin C to HA. The Lewis
lung carcinoma cells also internalize HA but the HA-epirubicin complex did not show
a clear advantage over free epirubicin. Coradini et al. evaluated a conjugate of sodium
butyrate to HA in order to increase the half-life of sodium butyrate and found an
improvement in the antiproliferative activity against mamma adenocarcinoma cells in
mice (273). Thus, the idea of HA-conjugates is intriguing but major effort is necessary
to follow-up on the initial studies.

7.3. Anticancer Application of Hyaluronidase
Cancer cells not only overexpress HA receptors, but also produce high levels of

hyaluronan, forming a halo that protects them against lymphocytes or macrophages,
shields them from cytostatics, and additionally promotes migration and metastasis.
This raises the question about the biological role of hyaluronidase and its potential
application to tumor treatment which is discussed briefly here in the context of HA. On
the one hand, increased hyaluronidase activity in the extracellular space can facilitate
invasiveness and, on the other hand, enhanced levels of hyaluronidase activity in the
serum can provide better protection against the development of tumors (257). In addi-
tion, hyaluronidase increases TNF sensitivity of cancer cells and counteracts with
TGF-β mediated TNF-resistance, and suppresses TGF-β1 gene expression in L929
cells in a serum-dependent manner (274). Moreover, hyaluronidase antagonized TGF-
β-mediated inhibition of epithelial cell growth. Hyaluronidase has also been shown to
reduce the interstitial fluid pressure in solid tumors (275). Several working groups have
focused on the addition of hyaluronidase to chemotherapy in order to attack the HA
coating surrounding the tumor cells, loosening the cell-to-cell contact and the intersti-
tial connective tissue, making them more easily accessible to both the anticancer drug
and cytotoxic lymphocytes (257).

Hyaluronidase was shown to enhance the efficacy of cytostatic agents in a number of
preclinical and clinical trials (257,276–278). Muckenschnabel and colleagues could
show that the intratumoral concentration after sc administration of vinblastine in
murine melanoma was significantly increased by simultaneous local injection of
hyaluronidase (279). Hyaluronidase could also lead to selective melphalan enrichment
in malignant melanoma (280). Kohno could show that the addition of hyaluronidase
enhanced the penetration and cell-killing effect of doxorubicin (281). The approach
was also successfully used in the treatment of bladder cancer with mitomycin C (282)
and of head-and-neck carcinoma with polychemotherapy, radiation, and hyaluronidase
(277). Ex vivo experiments with vital brain tumor samples demonstrated that
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hyaluronidase promoted the penetration of CDDP into tumor tissue with a matrix rich
in hyaluronic acid. In a corresponding pilot study with 19 children suffering from
malignant brain tumors, supportive hyaluronidase resulted in significantly fewer
relapses and better survival (283). Furthermore, hyaluronidase offers potential to
reverse forms of both intrinsic and acquired drug resistance in solid tumors that are
sensitive to its antiadhesive effects as shown for multidrug resistant EMT-6 tumors in
mice (284,285). Disa reported an additional protection by local hyaluronidase injection
against the ulcer formation upon sc injection with doxorubicin in an animal model.
This phenomenon was referred to the ability of hyaluronidase to temporarily decrease
the viscosity of the extracellular matrix, increasing the transport of doxorubicin into
surrounding tissue (286). A similar effect has been shown for paclitaxel (287).
Although proven to be effective as additive to local chemotherapy, a randomized study
failed to show synergy to chemotherapy after systemic application in high-grade astro-
cytomas (288). In addition, a supportive effect of hyaluronidase in treatment of adeno-
carcinoma in the liver of rats with mitomycin C could not be demonstrated (289).
Further clinical studies have to be awaited.

8. OTHER BIOPOLYMERS FOR PARENTERAL 
DRUG DELIVERY IN CANCER TREATMENT

8.1. Starch
Next to cellulose, starch is one of the most abundant polysaccharides available for

industrial exploitation. It is isolated commercially from a variety of crop plants as
starch granules. The isolated granules represent clusters of tightly bound starch mole-
cules, composed of two basic polysaccharides: amylopectin and amylose (Fig. 11C,D).
Both are based on repeating α-D-(1,4)-glucose chains, with amylose presenting a linear
chain forming tight helices (approx 1 · 106 D) and amylopectin with additional ran-
domly attached α-D-(1,4)-glucose chains (approx 5 · 108 D). Dissolution in water is
difficult due to strong hydrogen bonds, especially in amylose and frequently starch is
supplied in a prehydrolyzed version obtained by temperature, acid, or oxidation treat-
ment. Degradable starch microspheres (DSM) of approx 45 µm in diameter have been
specifically developed for chemoembolization (Spherex®, Pharmacia & Upjohn, Kala-
mazoo, MI). The particles are produced from partially hydrolyzed potato starch in a
common emulsion process and crosslinked with epichlorohydrin, also called amilomer
(290). After intraarterial administration of DSM, the particles settle in precapillary ves-
sels, slowing the blood flow through the arteriolar-capillary bed. The particles are dis-
integrated into oligomeric fragments (mol wt, approx 1 kD) by serum α-amylase and
subsequently further digested (290). The in vitro half-life in serum is approx 25 min
and is proportional to the diameter and the degree of crosslinking (291,292). Thus,
DSMs induce a transient ischemia for 15–80 min permitting repetitive cycles as com-
pared to collagen, gelatin, albumin, or polyvinyl alcohol, which occlude the blood flow
for 1.5 d up to several weeks (293). DSMs are well tolerated, nonimmunogenic, and no
adverse effects associated with DSM injection were observed (290).

DSMs have been shown to enhance the antitumor efficacy of several cytotoxic drugs in
animal experimental models, and in a number of noncomparative and randomized clinical
trials in more than 1000 patients suffering from unresectable, advanced, malignant liver
tumors, and in patients with pancreatic or breast cancer (291,294–296). In addition, DSMs
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reduce energy dissipation in heated tumors and have been found to aid localized hyperther-
mia treatment (297). DSMs are administered via the artery prior to regional cytotoxic
delivery. The transient circulatory arrest and redistribution provide time for local drug
deposition in the organ, reduce systemic cytotoxic exposure and toxicity, and enhance
tumor response when compared with drug alone. In different studies, the ratios of doxoru-
bin and fluoxuridine concentrations in tumor/liver were increased by factors between 2.5
and 5 by intrahepatic coadministration of DSM (291). Peak plasma concentrations and
plasma AUCs of a variety of drugs have been found to be significantly reduced following
intraarterial coadministration with DSM (290,291,293). In order to take advantage of the
pharmacokinetic modulation and the redistribution of blood flow to hypovascular tumor
areas, a near-complete occlusion without causing unacceptable toxicity should be achieved
by individual adjustment of the DSM dose (293). Deurloo and coworkers describe the
intratumoral administration of CDDP in starch rods, but release was completed within 2 h
(298,299). Swelling and rapid degradation are the main obstacles for application of starch
as a carrier material for drug delivery systems. Thus, starch is currently limited to DSMs,
which are coadministered with drugs for chemoembolization.

8.2. Dextran
Dextran is based on poly α-(1→6)-D-glucose chains with a high number of

α-(1→4)-branches (Fig. 11E). The base material of approx 4 · 107 Da is produced in
Leuconoster mesenteroides cultures (300) and subsequently becomes hydrolyzed to
any desired molecular weight, typically 4–8 · 105 D. Dextran is enzymatically cleaved
in vivo and lacks intrinsic toxicity (301). Primarily it is used as a plasma expander and
as an iron complex for treatment of anemia. However, it represents a potent antigen, but
antibody production in vivo does not occur when infused, probably because of an
“immunological paralysis” (302).

Dextran has been conjugated with different anticancer drugs, such as mitomycin C,
to form long-acting prodrugs (Subheading 3.2.3.). Recently, iv injections of platinum
complexes with oxidized dextran and dicarboxymethyldextran have been demonstrated
to be effective in mice against colon 26 tumors (Fig. 13) (303,304). The results of fur-
ther studies have to be awaited. Dextran magnetite has been reported to be an agent for
selective heating by electromagnetic induction (305,306) and can be used as a nanopar-
ticulate superparamagnetic contrast agent (307,308). Such magnetic dextran nanos-
pheres (10–20 nm) have been described to surpass the blood–brain barrier. Brain tumor
targeting was demonstrated by a 2–21-fold increase in magnetite concentrations in
brain tumors when compared with normal brain in rats bearing RG-2 tumors. Animals
were sacrificed after 30 min and 6 h, respectively, and levels of 41–48% of the dose
were found in the presence of a magnetic field (309). The concentrations were signifi-
cantly higher than those achieved with microspheres (approx 1 µm) of cationic
aminodextran which, again, were superior to neutral dextran (310). Neutral magnetic
microspheres loaded with mitomycin C conjugated to dextran were significantly
enriched in the brain tumor; however, within 45 min following application, all animals
treated with particles died, possibly because of redistribution of particles to the lung
(311,312). Additionally, sulfated dextran, which is used for gel permeation chromatog-
raphy, has also been proposed as microparticulate carrier (313). Thus, dextran conju-
gates, especially magnetic and nanoparticulate forms, have demonstrated their positive
effects in cancer treatment but still lack sufficient clinical data.
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8.3. Cellulose and Derivates
Cellulose is the major structural polysaccharide; it is composed of β-D-(1,4)-glu-

cose chains (approx 1–2 · 106 Da). As it slowly degraded in vivo, cellulose was evalu-
ated in a preliminary clinical trial for permanent vascular occlusion (314). Two
cellulose derivates, hydroxypropylcellulose and ethylcellulose, have been used as
drug carriers in cancer treatment. Kato et al. reviewed their experience with intraarte-
rial infusion of mitomycin C, CDDP, or peplomycin encapsulated in ethylcellulose
microcapsules in 1013 patients (315). The particles were prepared by coating mito-
mycin C crystals in an organic solution of ethylcellulose (316). The target sites in the
1996 trial were mostly liver, kidney, intrapelvic organs, lung, and head-and-neck
tumors. A tumor reduction of more than 50% was seen in 28% of the tumors. The
response rate depended on both tumor size and treatment number, with the highest
response rate obtained for mitomycin C. Local mitomycin C activity could still be
found 6 h after injection, whereas mitomycin C as free drug was not detectable after
injection and mitomycin C serum levels were decreased in the microencapsulated
form. Hydroxypropylcellulose-doxorubin conjugates were of interest owing to the
mucoadhesive properties that enhanced retention after installation within the urinary
bladder in a trial to treat superficial bladder carcinoma (317). The doxorubicin con-
centration in tumors were increased and the antitumor effect in patients could be fur-
ther improved by combination with local hyperthermia treatment (318). An
alternative offers the application of the cytotoxic drug, peplomycin, in a 1% hydroxy-
propylcellulose formulation (319). A single application when compared with 10
repetitive doses of peplomycin in saline resulted in significantly higher response rates
in the peplomycin-hydroxypropylcellulose group.
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Fig. 13. Growth inhibition effects of Dach-Pt platinum complex (8 mg/kg) as conjugate with oxi-
dized dextran or as free drug in colon 26 tumor bearing mice intravenously injected on days 10, 14,
and 18 (modified from Ohya et al., 1998).



9. SUMMARY

Biopolymers have been shown to be useful in drug delivery for cancer therapy, espe-
cially in local treatment, with chemoembolization as the most frequent application.
Many clinical trials of different dosage forms and carriers failed to produce evidence of
an advantage in survival when compared with systemic therapy. Clinical data are often
limited to Phase II studies. However, a few applications, such as collagen gels, were
carried toward approval. Most natural polymers are hydrophilic and require dissolution
or suspension in aqueous media, as well as chemical crosslinking to stabilize forms
such as microspheres. This hydrophilicity leads to rapid water uptake, swelling, and
diffusional drug release. Thus, synthetic polymers such as poly-α-hydroxyacids may
be superior to achieve systemic controlled release from microspheres. Therefore, inter-
actions between polymer and drug (e.g., between chitosan and platinum) and specific
biological activities of the biopolymers (e.g., enhancement of tissue regeneration by
collagen, infiltration of macrophages along a fibrin meshwork, or inhibition of tumor
cells by chitosan) have to be the tools that researchers use in cancer treatment.
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1. INTRODUCTION TO HYDROGELS

Hydrogels have played a vital role in the development of controlled-release drug
delivery systems. A hydrogel (also called an aquagel) is a three-dimensional (3-D) net-
work of hydrophilic polymers swollen in water (1). The 3-D polymer network of a
hydrogel is maintained in the form of elastic solid in the sense that there exists a
remembered reference configuration to which the system returns even after being
deformed for a very long time. By definition, hydrogels usually contain water at least
10% of the total weight. The term hydrogel implies that the material is already swollen
in water. Dried hydrogels (or xerogels) absorb water to swell, and the size of the
swollen gel depends on how much water is absorbed. A hydrogel swells for the same
reason that an analogous linear polymer dissolves in water to form an ordinary polymer
solution. The extent of swelling is usually measured by the swelling ratio, which is the
volume (or weight) of the swollen gel divided by the volume (or weight) of the xerogel.
If the weight of absorbed water exceeds 95% of the total weight, a hydrogel is often
called a superabsorbent. Thus, 20 g of fully swollen superabsorbent will have 1 g or
less of polymer network and 19 g or more of water (i.e., the swelling ratio is more than
20). The swelling ratio of many hydrogels can easily reach greater than 100. Despite
such a large quantity of water, highly swollen hydrogels still maintain solid forms.

1.1. Preparation of Hydrogels
Hydrogels can be divided into chemical and physical gels depending on the nature of the

crosslinking. Figure 1 shows chemical and physical gels. Chemical gels are those that have
covalently crosslinked networks. Thus, chemical gels will not dissolve in water or other
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organic solvent unless covalent crosslinks are cleaved. Chemical gels can be prepared by
two different approaches. First, chemical gels can be made by polymerizing water-soluble
monomers in the presence of bi- or multifunctional crosslinking agents (i.e., by crosslink-
ing polymerization). Second, chemical gels can be prepared by crosslinking water-soluble
polymer molecules using typical organic chemical reactions that involve functional groups
of the polymers. Physical gels (also called physical networks, association networks, or
pseudogels) are the continuous, disordered 3-D networks formed by associative forces
capable of forming noncovalent crosslinks. The point covalent crosslinks found in chemi-
cal gels are replaced by weaker and potentially more reversible forms of chain–chain inter-
actions. These interactions include hydrogen bonding, ionic association, hydrophobic
interaction, stereocomplex formation, and solvent complexation.

A weak and noncovalent molecular association is sometimes more than sufficient to
result in a supramolecular assembly. For example, pullulan, which was partly substituted
by cholesterol moieties (i.e., cholesterol-bearing pullulan, or CHP), formed monodisper-
sive nanoparticles (20–30 nm) as shown in Fig. 2 (2). The CHP self-aggregate can be
regarded as a hydrogel, in which microdomains provided noncovalent crosslinking points
arising from the association of hydrophobic cholesterol moieties. One of the advantages
of this type of physical gel nanoparticles is that complexes can be formed with various
hydrophobic substances such as adriamycin, and even various soluble proteins and
enzymes. Physical and biochemical stability of insulin, for example, is known to be dras-
tically increased upon complexation (2,3). When a 3-D structure of a chemical gel is
formed, the network extends from one end to the other and occupies the entire reaction
vessel. For this reason, the hydrogel formed is essentially one molecule, no matter how
large the hydrogel is. Thus, there is no concept of molecular weight for hydrogels. Hydro-
gels can be prepared in various sizes and shapes, depending on the application.

1.1.1. MONOMERS USED FOR MAKING HYDROGELS

Any monomers that become hydrophilic polymers can be used to make hydrogels.
Table 1 lists some of the monomers and crosslinkers commonly used to prepare hydro-
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Fig. 1. Chemical (A) and physical (B) gels. In physical gels, a substantial fraction of a polymer chain
is involved in the formation of stable contacts between polymer chains. Association of certain linear
segments of long polymer molecules form extended “junction zones,” which is distinguished from
well-defined point crosslinks of chemical gels.



gels. The monomers shown in Table 1 are all vinyl monomers, since they are most
widely used in preparation of hydrogels. Most monomers in Table 1 are hydrophilic
and highly water-soluble. Some monomers are not freely water-soluble. For example,
hydroxyethyl methacrylate (HEMA) is not hydrophilic enough to be soluble in water,
but a poly(hydroxyethyl methacrylate) (polyHEMA) matrix, whether crosslinked or
not, takes up sufficient amount of water to be called a hydrogel. PolyHEMA does not
dissolve in water even in the absence of crosslinking. To form a crosslinked network, a
crosslinking agent is added to a monomer solution, and the mixture is polymerized
using an initiator. Any combination of monomer and crosslinker in Table 1 can be used
to form hydrogels. More than one type of monomer can be used to form hydrogels. It is
quite common to use two different types of monomers, and in this case, the obtained
polymer is known as a copolymer instead of a homopolymer. For example, if acrylic
acid and HEMA are used as monomers, the obtained hydrogel is known as crosslinked
poly(acrylic acid-co-HEMA). Vinyl monomers are polymerized by free radical poly-
merization using an initiator. Commonly used initiators are azo initiators (e.g., azobi-
sisobutyronitrile), peroxide (e.g., benzoyl peroxide), persulfate (ammonium persulfate),
and redox initiators (e.g., ammonium persulfate and tetramethylethylenediamine). The
monomer concentration is adjusted by diluting with suitable solvents, usually water.
The monomer mixture containing a crosslinking agent and an initiator can be dispersed
in organic solvent to form hydrogels in droplets. Hydrogels can also be prepared by
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Fig. 2. Chemical structure of cholesterol-bearing pullulan (CHP) and schematic representation of
self-aggregation of CHP into a hydrogel nanoparticle. From ref. (2) with permission.



mixing different types of polymers. The concentrations of monomer and crosslinking
agent affect the mesh size of the polymer network and thus, the release property of the
loaded drugs from a hydrogel matrix. The drug release rate from collagen-
poly(HEMA) hydrogels is known to be controlled by adjusting the crosslinking density
of the hydrogels. Crosslinked hydrogels released methotrexate (MTX) at a slower rate
than an uncrosslinked hydrogel (4).

1.1.2. POLYMERS USED FOR MAKING HYDROGELS

Hydrophilic polymers can be crosslinked, either by chemical reaction or by physi-
cal associations, to form hydrogels. Hydrophilic polymers include not only synthetic
polymers, but also natural polymers such as proteins and polysaccharides. Commonly
used proteins are collagen, gelatin, fibrin, and mucin. Widely used polysaccharides
are agarose, alginate, carrageenan, cellulose derivatives, chitosan, chondroitin sulfate,
dextran, guar gum, heparin, hyaluronic acid, pectin, and starch. To make a
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Table 1
Examples of Monomers, Crosslinkers, and Initiators Frequently 

Used for Preparation of Hydrogels by Free Radical Polymerization



crosslinked network from polymer molecules, the polymers have to possess chemi-
cally active functional groups for crosslinking. Thus, polymers with carboxyl groups,
such as acrylic acid, or with amine groups, such as chitosan, can be easily crosslinked
to form hydrogels. Polymers with hydroxyl groups can also be easily crosslinked.
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1.2. Drug Loading into Hydrogels and Release 
from Hydrogels

Anticancer drugs and imaging agents, such as X-ray contrast or radiopaque materi-
als, can be loaded into hydrogels by a number of methods. Drugs can be added to the
monomer solution before crosslinking polymerization or to the polymer solution
before crosslinking reaction. In this case, relatively large concentrations of drugs can
be added, but the prepared hydrogels may have to be purified to remove residual ini-
tiators, monomers, and crosslinkers, although their concentrations may be small.
However, the washing step may remove the loaded drugs as well. Ara-C was added to
the mixture of monomers (HEMA and vinylpyrrolidone) and a crosslinking agent
(EGDMA) at the concentration of 34% (v/v). The solution was then polymerized to
obtain an optically transparent hydrogel, indicating complete solubility of ara-C in
the matrix (5). The same approach was used to load ara-C into poly(HEMA) hydrogel
crosslinked with EGDMA (6,7). Prepared hydrogels can be dried for storage. The
prepared hydrogel was cut into disks which contain ara-C from 5 to 25 mg/disk.
Release of ara-C from disks was varied from 1 d to 16 d by adjusting the concentra-
tion of the crosslinking agent used (5).

The drug can be loaded into hydrogels after they are purified. In this case, the con-
centration of the loaded drug will be rather limited because the drug loading is lim-
ited by the concentration of the drug in the loading solution. 5-Fluorouracil (5-FU),
MTX, and ara-C were loaded into poly(HEMA) hydrogels by immersing the hydro-
gels into aqueous solutions saturated with drug molecules (8,9). Since purified hydro-
gels are used in this approach, the prepared drug-loaded hydrogels are ready to use.
5-FU was also loaded into hydrogels of poly(acrylamide-co-monomethyl itaconate)
and poly(acrylamide-co-monopropyl itaconate). Sodium salt of 5-FU has a solubility
of 65 mg/mL, which is five times higher than that of 5-FU (13 mg/mL). Thus, in
order to trap the maximum amount of 5-FU in the xerogel (dried hydrogel) disk,
aqueous solutions of 5-FU neutralized with NaOH were used instead of water in the
feed mixture of polymerization (10,11). Adriamycin (ADR) was loaded into CHP
aggregates by simply mixing ADR with CHP suspensions. ADR formed complexes
with hydrophobic cholesterol moieties of CHP. ADR was spontaneously dissociated
from the complex as a function of time. Less than 30% of complexed ADR was
released even after 7 d in phosphate buffered saline (PBS, pH 7.4) at 25°C. The disso-
ciation significantly increased as the medium temperature increased to 37°C and/or
the medium pH decreased to 5.9 or 3.7. Approximately 20% of the loaded ADR was
released at pH 7.4, whereas more than 50% was released at lower pH readings in 24 h
(Fig. 3). The enhanced dissociation of ADR from the complex at lower pH is
expected to be caused by the increase in its water solubility in an acidic medium. The
chemical stability of ADR was largely improved by the complexation. The in vitro
cytotoxicity of ADR was also diminished by the complexation. The diminished cyto-
toxicity of the CHP-ADR complex would be ascribed to either retarded release of
ADR from the complex or decreased cell internalization of the complex (2,3).

If both polymer chains and drug molecules have chemically active groups, drug
molecules can be covalently attached to the polymer chains. The immobilized drug
molecules are released by chemical or enzymatic dissociation from polymer chains.
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One of the advantages of this approach is that the drug-polymer conjugates can be puri-
fied without losing the grafted drug molecules.

1.3. Swelling Kinetics
As it is preferred to prepare final hydrogel dosage forms in the dried state (i.e., xero-

gels) for long-term storage before in vivo applications, the swelling kinetics of the
xerogels also contribute significantly to controlling the drug release kinetics. During
the drying process of hydrogels, water evaporates from a gel and the surface tension of
water causes collapse of polymer chains and thus shrinking of the hydrogel body to
only a small fraction of its swollen size. The physical state of xerogels is known to be
glassy. Water absorption into the glassy polymer occurs by diffusion, which is a very
slow process, leading to very slow swelling. This slow swelling property is used to
slowly release loaded drug molecules.

If water is removed without collapsing the polymer network either by lyophilization
(i.e., freeze drying) or by extraction with organic solvents, then a xerogel is porous. The
pore size is typically less than 10 µm. When bubbles of air (or nitrogen or carbon dioxide)
are introduced during hydrogel formation, the formed hydrogel contains very large pores
of approx 100 µm even in the dried state. These hydrogels are called superporous hydro-
gels (12). Superporous hydrogels absorb water through the interconnected pores forming
open channels (i.e., by capillary action); the water absorption is very fast and swelling can
be completed in a matter of minutes instead of hours for the glassy xerogels. Swelling
ratios can be as high as a few hundred. The rapid and large swelling properties can be
highly useful in certain applications, such as endovascular chemoembolization.
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Fig. 3. Dissociation of adriamycin (ADR) from CHP-ADR complex at 37°C and at pH 3.7 (●), 5.9
(■), and 7.4 (▲). The concentrations of ADR and CHP were 3.6×10–6M and 4.1×10–8M, respectively.
From ref. (2) with permission.



2. HYDROGELS IN ANTICANCER THERAPY

2.1. Endovascular Chemoembolization
Blocking the blood vessel feeding a tumor and thus starving the tumor of blood and

oxygen is an effective way of treating cancer. In addition to antiangiogenesis therapy,
endovascular chemoembolization is another means of blocking the blood supply to a
tumor. Endovascular chemoembolization is the method of simultaneously administer-
ing into the blood vessel of the tumor tissue the vascular occlusion materials and anti-
tumor agents that block the supply of nutrients to the tumor tissue as well as contribute
cytotoxic action of the anticancer agents. Blocking of the artery decreases the blood
flow rate, thereby increasing the dwell time and the concentration of anticancer agents
in the tumor tissue. Arterial chemoembolization with microencapsulated drugs has
been used clinically since 1978 (13). This mode of treatment can be applied to a variety
of tumor lesions with remarkable therapeutic effect and minimal systemic cytotoxicity.
Vascular occlusion in chemoembolization has been accomplished by using different
embolizing agents as listed in Table 2. All materials in Table 2, except Lipiodol®, are
hydrogels in a microparticulate form. Degradable starch microspheres (Spherex®, Phar-
macia, Sweden) without anticancer drug have been frequently used for embolization
(14). Starch microspheres, which were first used for scintigraphic imaging in the diag-
nosis of lung emboli, are currently used for transient occlusion of blood flow (14). The
most important feature of degradable starch microspheres is that the degradation time
can be regulated by means of the degree of crosslinking to suit various organs and
applications. Degradable starch microspheres have been delivered to the liver, kidney,
and mesenterium without harm. Poly(HEMA) microparticles grafted with MTX were
also used for chemoembolization (15). Unlike starch microspheres, poly(HEMA)
microparticles are not degradable. Although many materials were used for the purpose
of embolization and drug reservoir, there was no effort to control the drug release.
Adverse effects of anticancer agents are frequent, involving more than 60% of patients,
although they are often transitory. The adverse effects were caused by rapid release of
drug from embolization materials. Thus, it is necessary to use embolizing materials
with the ability to control the drug release rate.

When injected intraarterially into the target organ, microparticles of a suitable size
(e.g., 500 µm) become trapped in arteriolae. The hydrogel microparticles can release
anticancer drugs locally for extended periods of time. The locally released drug from
microspheres can cross the capillary walls and enter the cells of the target organ within
the time of circulatory arrest. This targeted delivery of anticancer drugs would reduce
the systemic concentration significantly (22,23). This regional cancer chemotherapy
can strongly increase the efficiency of the drug, while limiting the toxic effects. One of
the advantages of this approach is that chemotherapy can be combined with emboliza-
tion. Hydrogel microparticles can swell to block blood vessels and thus the supply of
blood to tumors. For this particular application, fast-swelling superporous hydrogels
are more useful than conventional hydrogels. For biodegradable hydrogels, the occlu-
sion of the blood vessels can be transient until all drug is released. Permanent occlu-
sion for tumor necrosis can be achieved using nondegradable hydrogel microparticles.
Endovascular embolization before surgery (i.e., preoperative embolization) is thought
to reduce the risk of hemorrhage and to decrease the release of tumor cells into the
blood stream during surgical removal of solid tumors (24). Successful emboli materials
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are expected to be nontoxic, nonantigenic, hydrophilic, nonthrombogenic, chemically
stable, and radiopaque. At present, there is no standard emboli material that meets all
the required properties. Rapid advances in polymer chemistry, however, are expected to
produce ideal emboli materials in the near future. In addition to endovascular emboliza-
tion, microparticles can also be employed for intratumoral, subcutaneous, extravascular,
and intravascular administration.

Chemoembolization using different microparticles has been used for metastatic col-
orectal carcinoma of the liver and hepatocellular carcinoma (18,20). Although there
was an increase in the mean survival time in many cases, there was no statistical signif-
icance for most of materials used. This is mainly due to the use of inadequate
embolization materials. For this approach to work effectively, hydrogel microparticles
should swell rapidly to a size large enough to block the blood vessel. Currently, there
are no hydrogels that can swell rapidly in blood, especially when they are dried. Recent
development of superporous hydrogels that swell extremely fast in aqueous solution
(12) provides an approach to develop effective chemoembolization or embolization
materials.

2.2. Intratumoral Administration
Higher anticancer concentrations in tumors during the course of a fractionated irra-

diation treatment are known to increase therapeutic efficacy (25). One way of achiev-
ing localized high concentrations is to implant a rod-shaped hydrogel in the center of
subcutaneous tumors. The drug enhancement ratio for the group of mice treated with
intratumoral hydrogel rods was higher than those for other groups where drug in solu-
tion was administered intraperitoneally or intratumorally. In this approach, the release
kinetics of cisplatin from the implanted hydrogel rods was important. If the drug
release was too slow, the drug distribution within tumors became inhomogeneous,
resulting in low therapeutic effect (26). The highest response, which showed a delay of
tumor growth for 55 d, was obtained with a hydrogel formulation that released 56% of
cisplatin in 4 d with 14% of water uptake. Figure 4 shows in vitro release profiles of
platinum [i.e., cis-diamminedichloroplatinum(II) or cisplatin] from polyether hydro-
gels. The water uptakes of three different polyether hydrogel rods (1.5 mm diameter ×
5 mm length) containing 10% (w/w) cisplatin were 4%, 14%, and 40% (w/w). The
polyether hydrogel rods, which absorbed only 4% of water, are by definition not hydro-
gels. Polyether hydrogel rods released only 10% of cisplatin in 4 d and 17% in 11 d.
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Table 2
Examples of Materials Used in Chemoembolization

Name Component Size References

Gelfoam® Gelatin 90 µm in diameter 16,17
Ivalon® Poly(vinyl alcohol) 150–250 µm in diameter 18
Spherex® Starch 45 µm in diameter 19
Angiostat® Microfibrillar collagen (Crosslinked) 5 µm × 75 µm 20

(diameter × length)
Albumin Albumin + chitosan (glutaraldehyde 21

microspheres crosslinked)
Lipiodol® Iodised poppyseed oil 25 µm in diameter 18



The 14%-hydrogel released 56% and 75% of the incorporated cisplatin in 4 d and 11 d,
respectively. The 40%-hydrogel released almost 90% on day 1 and the remaining drug
was released on day 2. The absolute amount of the drug released from hydrogels
increased with increasing the payload (i.e., loading amount), but the cumulative frac-
tional release decreased with increasing the payload (27). The intratumoral implants
have a therapeutic advantage over systemic therapy. Implantation of hydrogel rods,
which release cisplatin during the period of a fractionated radiotherapy, was shown to
be an effective method of administering the drug. Such treatment may be useful in
patients with inoperable pelvic or head-and-neck tumors in which hydrogel rods could
be implanted under ultrasound guidance (25).

Complexes of hydrogels with radiotherapeutic agents were also used to maintain
high concentrations of therapeutic agents (28). Chitosan is soluble under acidic condi-
tions, but becomes gel under basic conditions. The Holmium-166-chitosan complex
solution becomes a gel upon administration into the body. Higher radioactivity at the
administration site was obtained with the administration of the complex than that of
Holmium-166 alone (29).

Hydrogels can also be used to deliver α-interferon. Ocular inserts were made of
hybrid polymers of maleic anhydride-alkyl vinyl ether copolymers and human serum
albumin (30). α-Interferon was loaded into transparent, flexible, and coherent hydrogel
films by a low temperature casting procedure. The ocular inserts exhibited a gel-like
behavior with a strong morphological stability even at a fairly high level of water
uptake. The water uptake into the inserts showed that about 90% of the equilibrium
swelling was observed after 10–12 h. The swelling ratio was more than 30 and the
insert diameter was increased from 3 mm to 10–12 mm, while maintaining the shape
and integrity of disk-like inserts (30). The most hydrophilic matrix, based on the

106 Part II / Technologies Available

Fig. 4. In vitro release of Pt(or cisplatin) from polyether hydrogel rods with water uptake of 4%
(■), 14% (●), and 40% (▲). The hydrogel rods contained 10% (w/w) cisplatin. From ref. (27)
with permission.



methyl ester of poly(MAn-alt-Peg3VE), showed the lowest hydration, probably owing
to the stronger interactions occurring between the hydrophilic portions of the polymer
and the protein. The percent released protein was proportional to polymer hydropho-
bicity (see Fig. 5). Initial-burst release was observed during the first 18 h, and it was
more pronounced for the esters of copolymer based on maleic anhydride and mono-O-
methyloligoethyleneglycol vinyl ether. The initial-burst release was followed by an
almost constant release for the next 10–15 d. During this period, the percent releases of
the protein virtual load were 40%, 30%, and 15%, respectively, for the inserts based on
butyl ester of poly(MAn-alt-Peg1VE) (MP1b in Fig. 5), methyl ester of poly(MAn-alt-
Peg1VE) (MP1m in Fig. 5), and methyl ester of poly(MAn-alt-Peg3VE) (MP3m in
Fig. 5) (30). The more hydrophobic hydrogels released more proteins. Again, this may
be because of the interaction of hydrophilic polymer chains with proteins, resulting in
an increase of effective crosslinking density. The study indicated that erosion of hydro-
gel matrices also contributed to the initial-burst releases. This was supported by kinetic
measurements of weight losses of hydrogel inserts, which showed rapid weight loss in
the first several hours (30).

2.3. Implantation of Hydrogels
One of the most effective ways for treating cancer could be delivering high concen-

trations of anticancer drugs to the cancerous lesions for periods long enough to kill all
of the cancer cells. Anticancer drugs can be infused directly into the artery supplying
blood to the neoplastic tissue. While this approach achieves targeted introduction of
anticancer drugs into tumor tissues, its effect is only short-term unless the catheter is
left in the vessel for a long time (15). A pronounced therapeutic effect usually requires
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Fig. 5. Kinetic profiles of the protein release of inserts based on partial esters of poly(maleic anhy-
dride-alt-alkyl vinyl ether)s in PBS at 37°C. Samples MP1m (●), MP1b (■), and MP3m (▲). From
ref. (30) with permission.



that the procedures must be repeated many times. In addition, such treatment may still
be accompanied by the same toxic side effects as conventional treatments. An alterna-
tive approach may be local delivery of anticancer agents from controlled-release
devices, such as drug-loaded hydrogels. Various hydrogels have been used for subcuta-
neous delivery of anticancer agents. Examples are narciclasine-containing poly(HEMA)
(31,32), cytarabine (ara-C)-containing α, β-polyasparthydrazide hydrogel (33), and 5-
fluorouracil-containing poly(acrylamide-co-monomethyl itaconate) or poly(acry-
lamide-co-monopropyl itaconate) (10,11).

The drug release rate from hydrogel implants can be controlled by adjusting
crosslinking density and/or by adding water-soluble components. Figure 6 shows
examples of narciclasin release from polyHEMA implants. PolyHEMA forms hydro-
gels even in the absence of a crosslinking agent, but addition of a crosslinking agent
delays the drug release. The addition of TMPTMA, a crosslinking agent shown in
Table 1, to the narciclasin-HEMA mixture significantly delayed the drug release. In the
absence of a crosslinking agent (Fig. 6, line 4), more than 80% of the drug was released
in 3 d. On the other hand, when the TMPTMA concentration was 20% (v/v) (Fig. 6,
line 1), only about 20% of the drug was released even after several days. The addition
of poly(ethylene glycol) methyl ether (MPEG), a water-soluble component, resulted in
release of most of the drug within a day (Fig. 6, lines 5–7).

Hydrogels swell to a large extent in aqueous solution and this effect tends to result in
mechanically weak structures that may limit their pharmaceutical and medical applica-
tions (34). The mechanical strength of hydrogels can be improved by making an inter-
penetrating network with collagen. Collagen-poly(HEMA) hydrogel pellets were
loaded with drugs, such as 5-fluorouracil, mitomycin C, bleomycin A2 (35,36), and
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Fig. 6. Release profiles of narciclasin from polyHEMA matrices containing different concentration
(v/v) of TMPTMA or MPEG. 1, HEMA:TMPTMA (80:20); 2, HEMA:TMPTMA (85:15); 3,
HEMA:TMPTMA (90:10); 4, HEMA; 5, HEMA:MPEG (90:10); 6, HEMA:MPEG (75:25); and 7,
HEMA:MPEG (50:50). From ref. (32) with permission.



camptothecin derivatives (37). The drug-loaded collagen-poly(HEMA) hydrogel pel-
lets were subcutaneously implanted into rats with solid tumor fibrosarcoma (37,38) or
into mice (37). In both cases, the drug was released at zero-order rate for more than
several days. The main advantage of using implantable hydrogels is that the long-term
delivery of anticancer agents can eliminate daily administration of the drugs and
reduce the potential side effects (33). Figure 7 shows the in vitro cumulative drug
release profiles of 5-fluorouracil, mitomycin C, bleomycin A2 from the hydrated colla-
gen-poly(HEMA) hydrogel pellets (10 mm diameter × 3 mm thick) in phosphate buffer
at 37°C and pH 7.4 (35). As shown in Fig. 7, the release profiles were different. The
release of 5-fluorouracil indicated burst release followed by the zero-order release,
whereas that of bleomycin showed the lag-time effect before reaching the steady state.
No burst release or lag time was observed with mitomycin C. The burst release of 5-flu-
orouracil is most likely owing to migration of the drug to the surface during drying.
The molecular weights of 5-fluorouracil, mitomycin C, and bleomycin A2 are 130,
334, and 1400, respectively (35). The highest molecular weight of bleomycin A2 may
be responsible for the observed lag time. The hydrogel may have to swell before allow-
ing diffusion of large molecules such as bleomycin A2. Because all three drugs showed
the zero-order release at steady state, the release rate decreased in the order of 5-fluo-
rouracil > bleomycin A2 > mitomycin C. The slow release of mitomycin C may be
owing to interaction with collagen in the hydrogel pellets (35).

Copolymers of N-(2-hydroxypropyl)methacrylamide and N,O-dimethacryloyl
hydroxylamine were used to prepare hydrolytically degradable hydrogels for the
release of doxorubicin and polymer-doxorubicin conjugates (39,40). D-galactosamine
was attached to the polymer-doxorubicin conjugate as a targeting moiety to hepato-
cytes. When the hydrogel was implanted intraperitoneally into DBA2 mice, 35% of the
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Fig. 7. In vitro cumulative release of 5-fluorouracil (●), mitomycin C (■), and bleomycin A2 (▲)
from collagen-poly(HEMA) hydrogel matrices. From ref. (35) with permission.



targeted conjugates accumulated in the liver, whereas only 2% of the control conju-
gates were found in the liver 48 h after implantation.

Albumin microparticular (100–500 µm) hydrogels were prepared by crosslinking
albumin with polyethylene glycol disuccinate (41,42). Anticancer agents and diagnos-
tic agents were covalently attached in stoichiometric quantities. The hydrogel
microparticles effectively reduced the risk of local tumor recurrence in a rat model
when implanted locally after surgical tumor removal. The albumin microparticles were
degraded by proteases released from macrophages. Typically, 1-mL samples that were
implanted into paraspinal muscles of rats were completely absorbed within 4 wk and
its constituents were metabolized.

2.4. Peroral and Oral Administration of Hydrogels
α, β-Polyasparthydrazide microparticles have been used for peroral administration

of anticancer agents (43). α, β-Polyasparthydrazide is a linear polymer and a promising
plasma expander and drug carrier with interesting properties such as water-solubility,
and absence of toxicity and antigenicity (44). A different crosslinking degree was
obtained by varying the ratio of crosslinking agent/polymer that influenced the
swelling behavior of the gel. 5-Fluorouracil was incorporated into the matrices during
the crosslinking reaction, and in vitro release studies were performed in simulated gas-
tric juice (pH 1.1) and in pH 7.4 buffer solution. The dried hydrogel samples were
ground, and the particles obtained were analyzed by sieving on a mechanical shaker to
obtain sizes ranging 20–90 µm. The prepared hydrogels were chemically stable in the
dissolution media. The observed data demonstrated the potential application of these
new matrices for peroral administration of anticancer agents (43).

One of the salient features of the gastrointestinal (GI) tract is the large pH change
from stomach to intestine. Quite often, such a pH change is exploited for targeted
delivery of drugs either to the stomach or to the intestine. A semi-interpenetrating poly-
mer network of poly(vinylpyrrolidone-co-acrylic acid) and poly(ethylene glycol) con-
taining 5-fluorouracil was prepared (45). Poly(vinylpyrrolidone-co-poly[ethylene
glycol]) containing 5-fluorouracil was also synthesized using poly(ethylene glycol
diacrylate) (46). Because these dosage forms were able to release the entrapped drug
for periods of days/weeks, their clinical applicability is highly limited as the GI transit
time is only several hours or less. The hydrogel formulation for the delivery of anti-
cancer agent in the GI tract requires an effective platform that maintains the delivery
module at the area of tumors.

2.5. Topical Applications
Gel-forming hydrophilic polymers are commonly used to prepare semisolid dosage

forms, such as dermatological, ophthalmic, dental, rectal, vaginal, and nasal hydrogels.
These are especially useful for application of therapeutic agents to mucous membranes
and ulcerated tissues because their high water content reduces irritation (47).
Carbopol® hydrogels, which are loosely crosslinked poly(acrylic acid), were used to
formulate topical delivery systems for treatment of multiple actinic keratoses and
superficial basal cell carcinoma with 5-fluorouracil (47,48). Mycosis fungoides, the
most common type of cutaneous T-cell lymphoma, progresses in three clinical phases:
the premycotic, mycotic, and tumor stages. Treatment with chemotherapy and radio-
therapy in the earlier stages can result in cure of mycosis fungoides. Topically treated
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hydrogels in sheet form (Nu-Gel® Wound Dressing, Johnson & Johnson Medical, Inc.,
Arlington, TX) can absorb exudate, contain odor, and reduce pain upon dressing
removal from patients in the tumor stage of mycosis fungoides (49). Hydrogel sheets
have also been used to deliver recombinant interferon α2c and interferon β for treat-
ment of condylomata acuminata (50,51).

2.6. Rectal Applications
Eudispert® hydrogels were used for rectal delivery of hydrophilic 5-fluorouracil in

rats (52). The addition of capric acid or linolenic acid to the hydrogel increased the per-
meability of 5-fluorouracil through the rectal membranes. Eudispert hydrogels with
capric acid may be a useful preparation for increasing the maximum plasma level and
improving the absolute bioavailability of 5-fluorouracil after rectal administration.

3. APPLICATIONS OF HYDROGELS IN THE CANCER-RELATED AREA

3.1. Assessment of Tumor Cell-Induced Angiogenesis
Hydrogels were used to develop a quantitative assay system for in vivo evaluation of

angiogenesis induced by human tumor cells in mice (53,54). The human epidermoid car-
cinoma A431 cells cultured on microcarriers were microencapsulated with agarose hydro-
gel to isolate them from the immune system of the C57BL/6 mice after subcutaneous
dorsal midline implantation. When A431 cell-containing microcapsules (diameter, 300
µm) were subcutaneously injected into mice, notable angiogenesis was observed at the
site of implantation. The extent of angiogenesis was quantitated by measuring the hemo-
globin content in the implanted site using a mouse hemoglobin (mHb) enzyme-linked
immunosorbent assay system. This type of simple system allows quantitative evaluation
of angiogenesis in mice induced by xenogeneic cells such as human tumor cells. This may
be useful in testing antiangiogenic properties of various agents using human tumor cells.
There are many hydrogel systems that can be used to microencapsulate cells. Alginate has
been commonly used to encapsulate cells and proteins in various sizes and shapes.

3.2. Removal of Adriamycin from Blood
Anthracyclines, such as adriamycin, generally possess a long plasma half-life that

might produce serious toxicity to myeloproliferative and cardiac cells. In patients with
impaired liver function or biliary obstruction, cytotoxic blood levels tend to be main-
tained for excessive periods with resultant severe, and potentially lethal, acute toxicity.
Acrylic hydrogel-coated activated charcoal was used for hemoperfusion of beagle dogs
4 h after an intravenous bolus of adriamycin (2.5 mg/kg) (55–57). Throughout the 3-h
hemoperfusion period, the extraction of adriamycin averaged 43%, which was a 20-
fold increase in total body elimination of adriamycin. The extended hemoperfusion
would have resulted in reduction of tissue concentrations of adriamycin. The role of the
hydrogel coating was to increase blood compatibility. Hemoperfusion using hydrogel-
coated activated charcoal may be useful in reducing blood levels of adriamycin in cases
of accidental overdose or in patients with hepatic disease.

3.3. Solid-Phase Radioimmunoassay
A sensitive, rapid method for the measurement of MTX in biologic fluids has been

developed using hydrogel-based, solid-phase radioimmunoassay. Rabbit antimethotrex-
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ate antisera were added to hydroxyethylmethacrylate monomer before polymerization.
The resultant hydrogel was lyophilized, ground to fine powder, and aliquoted into 3-
mL syringes fitted with a fritted filter disk (58). A dose-response curve expressing per-
cent bound MTX versus antiserum concentration allowed measurement of drug
concentrations less than 1 ng/mL. The controlled entrapment of antiserum into a hydro-
gel matrix was shown to be simple, inexpensive, and stable. The porosity of the hydro-
gels, which is related to the utility of the hydrogel as a solid phase, can be easily
controlled by the concentration of crosslinking agent.

3.4. Hydrogels as a Culture Medium
Agar has been commonly used as the supporting gel for testing of antimicrobial sus-

ceptibility. The results of such testing are known to be influenced by both the nutrient
milieu and the supporting gel (59). Agar, obtained from red seaweed, is a complex mix-
ture of neutral and acidic polysaccharides with variable quantities of lipids, metallic
cations, and other unknown substances. Some of the components in agar may antago-
nize or boost certain antimicrobial or anticancer agents. Synthetic hydrogels with well-
defined amino acid medium may yield reproducible solid medium without potential
antagonistic or booster effects of some components of agar. Such a medium could be
used as a reference medium for testing anticancer effects of various drugs.

4. FUTURE HYDROGEL TECHNOLOGIES

Hydrogels possess many properties useful for controlled drug delivery. Because of
very high water content, hydrogels are known to be biocompatible, however, most
polymers used in hydrogel synthesis are not degradable in the body. Thus, to avoid
manual removal of hydrogel matrices after all drug is released, the use of biodegrad-
able hydrogels is preferred. One way of preparing biodegradable hydrogels is to use
proteins and polysaccharides. Currently available biodegradable polymers, such as
poly(lactic acid) or poly(glycolic acid), are not water-soluble and cannot be used for
making hydrogels. Synthesis of new biodegradable, hydrophilic polymers is needed.
Another property that will make hydrogels even more useful is improved mechanical
strength. Because of the absorption of large amounts of water, hydrogels are usually
weak and may not be able to withstand pressures occurring in the body. Currently,
hydrogels can be made to swell rapidly with large swelling ratios by making intercon-
nected pores inside the hydrogels (12). Such superporous hydrogels can be effectively
used for chemoembolization, and the high mechanical strength of such hydrogels
would make them more useful. Certain types of anticancer drugs have high molecular
weights. For example, many angiogenesis inhibitors (60,61) are peptides or proteins.
Delivery of peptide and protein drugs can be easily achieved using macro (or super)
porous hydrogels and/or biodegradable hydrogels.

It is only 40 yr since the first synthetic hydrogels were proposed for bioapplications
(62). During this relatively short time period, remarkable advances have been made in
the development of hydrogels with numerous properties. Hydrogels that respond (i.e.,
either expand, shrink, or degrade) to changes in environmental factors, such as temper-
ature, pH, or salt concentration, are known as smart hydrogels (63). Poly(acrylic acid)
hydrogels respond to changes in environmental pH or salt concentration, while poly(N-
isopropylacrylamide) hydrogels respond to temperature changes. These smart hydro-
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gels can be used to target delivery of anticancer agents by exploiting small changes in
pH naturally occurring in the body as well as artificial changes in local temperatures.
Further advances in hydrogel research will undoubtedly result in hydrogels with new
properties ideal for anticancer therapy.
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1. INTRODUCTION

Tremendous opportunities exist for utilizing advanced drug delivery systems for can-
cer treatments. One such formulation type that has already begun to fulfill its promise is
injectable microencapsulated delivery systems. Biodegradable microspheres containing
leutinizing hormone-releasing hormone (LHRH) are already used for treatment of hor-
mone dependent cancers and precocious puberty. This product is the Lupron® Depot and
its in vivo results will be discussed later in this chapter. In addition, other in vitro and in
vivo results from microparticulate delivery systems for traditional cancer-fighting agents
will be described. The more recent developments in gene delivery and utilization of tar-
geted delivery and angiogenic factors will be discussed briefly with an emphasis on the
possibilities that have yet to be realized. A more complete analysis of some of these
future directions of cancer therapy may be found in Part IV of this volume.

2. MICROENCAPSULATION TERMINOLOGY
First, some of the more basic information on the methods of preparing microparticulate

formulations must be discussed, with an emphasis on biodegradable microparticles. The
terminology used to describe microparticulate formulations can sometimes be inconsis-
tent and confusing to readers unfamiliar with the field. Essentially, the term “microparti-
cle” refers to a particle with a diameter of 1–1000 µm, irrespective of the precise interior
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or exterior structure. Within the broad category of microparticles, “microspheres” specifi-
cally refers to spherical microparticles and the subcategory of “microcapsules” applies to
microparticles which have a core surrounded by a material which is distinctly different
from that of the core. The core may be solid, liquid, or even gas.

Despite the specific and logical subcategories, many researchers use the terms inter-
changeably, often to the confusion of the reader. It is usually assumed that a formula-
tion described as a microparticle is comprised of a fairly homogeneous mixture of
polymer and active agent, whereas microcapsules have at least one discrete domain of
active agent and sometimes more. Some variations on microparticle structures are
given in Fig. 1. As the domains and subdomains of active agent within microcapsules
become progressively smaller, the microcapsules become microparticles.

3. PREPARATION OF MICROPARTICLES

There are innumerable methods for preparing microparticles for use in applications
as diverse as carbonless paper to ion exchange resins to cosmetics to drug delivery.
Here, we will concentrate on the materials, biodegradable and nonbiodegradable,
which have been studied for drug delivery specifically for cancer treatment.

An overwhelming majority of methods used for encapsulating drugs in a submil-
limeter spherical polymer matrix involve the use of liquid emulsions. A simple defini-
tion of an emulsion as applied to liquids is the dispersion and stabilization of one liquid
within another to which it is immiscible. The most common emulsion type is oil-in-
water, however, oil-in-oil and multiple emulsions (water-oil-water, oil-oil-water, solid-
oil-water, and so on) are used frequently (1–14). There are numerous materials
available for creating these emulsions and we discuss a few specific examples here.
The main criterion for creating an emulsion is that the dispersed phase (solution con-
taining polymer and drug) must be immiscible (or nearly so) in the continuous phase
(external phase containing dissolved surfactant).

4. PREPARATION OF BIODEGRADABLE MICROPARTICLES

4.1. Poly(lactic-co-glycolic Acid)
Most systems that use oil–water emulsions to prepare microparticles consist of an

organic phase comprised of a volatile solvent with dissolved polymer and the drug to be
encapsulated, emulsified in an aqueous phase containing dissolved surfactant (see Fig. 2).
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Two common examples of volatile organic solvents used for the organic-phase solvent are
dichloromethane and ethyl acetate. There are numerous examples of biodegradable poly-
mers that can be used for the microparticle matrix, however, polylactic acid (PLA) and the
copolymer of lactic and glycolic acid (PLAGA) are the most frequently used due to their
high biocompatibility and government approval (15). The PLAGA polymer degrades
hydrolytically over time to its monomeric components, which are easily removed from
the body through natural life processes. A surfactant is also included in the aqueous phase
to prevent the organic droplets from coalescing once they are formed. Once the droplets
are formed via physical means, the organic solvent leaches out of the droplet into the
external aqueous phase before evaporating at the water–air interface. Emulsions are sim-
ply created by using a propeller or magnetic bar for mixing the organic and aqueous
phases. The organic-phase solvent should be able to dissolve the polymer up to reason-
ably high concentrations, preferably in the hundreds of mg/mL, but does not necessarily
need to be a good solvent for the drug. The solvent should be completely or almost com-
pletely immiscible in water such that a two-phase system can be easily obtained. If the
solvent is slightly soluble in water, then steps to control the extraction rate of the solvent
into the external aqueous phase need to be considered. A high extraction rate will result in
the formation of microparticles with a high porosity that could lead to the untimely and
immediate release of drug (16,17). Scanning electron microscopy (SEM) images of
microparticles prepared using poly(lactic acid-co-glycolic acid) (PLAGA) and ethyl
acetate dispersed in an aqueous PVA solution are shown in Fig. 3. Since ethyl acetate is
slightly soluble in water (10% v/v) it partitions upon mixing to the external phase at an
increased rate, relative to an immiscible solvent such as dichloromethane, such that the
resultant microparticles are highly porous and/or hollow. Saturating the external aqueous
phase with ethyl acetate and minimizing its volume will significantly reduce the extraction
rate of the ethyl acetate leading to the formation of microparticles with reduced porosity.

Chapter 6 / Microparticle Drug Delivery Systems 119

Fig. 2. Encapsulation using oil-in-water emulsion technique.



When the drug is not soluble in the organic solvent, it may be encapsulated as a solid
provided its form is of small size. Nominally, the size of the drug crystals should be at
least an order of magnitude smaller than the desired microparticle diameter in order to
avoid large bursts associated with dissolution of larger crystals. Smaller crystals will be
more homogeneously distributed throughout the organic droplets created in the emul-
sion. This results in a solid-in-oil-in-water emulsion (S/O/W) and may be used with
any hydrophilic drug (e.g., cisplatin, 5-fluorouracil, and doxorubicin).

The most serious challenge with encapsulating hydrophilic materials is loss of drug to
the external aqueous phase during the formation of the microparticles. Along with the
loss of drug to the external phase, the remaining material may migrate to the surface of
the droplet before hardening. To minimize these problems, the organic droplets should
be hardened into microparticles as quickly as possible following their formation. An in-
liquid drying process is often used to harden the organic droplets into solid microparti-
cles (see Fig. 4) (18). The method typically involves the use of a viscous organic solution
of polymer and drug and a large secondary volume of water that essentially extracts the
organic solvent into the external aqueous phase immediately, thus leaving only the
microparticle with encapsulated drug. Again, care has to be taken to ensure that high-
quality microparticles are produced. Parameters that control the porosity of the resultant
microparticles formed from an in-liquid drying/extraction process include the viscosity
of the organic solution, volume of organic solvent used, time interval at which the large
volume of water is added, and the volume of water used to extract the organic solvent
from the particles. The highly viscous dispersed phase serves two purposes. First, the
volume of volatile organic solvent is at a minimum, facilitating its quick removal from
the droplet. Second, highly viscous material will make the migration of the solid drug
particles/crystals to the surface of the droplet more difficult, resulting in a more homoge-
nous distribution of drug within the microparticle.

As an alternative to S/O/W emulsions, hydrophilic drugs may be encapsulated in a poly-
mer matrix using a multiple water-in-oil-in-water (W/O/W) or oil-in-oil (O/O) emulsions.
If a W/O/W emulsion is used, the drug is first dissolved in water and emulsified in an
organic phase containing the polymer and a surfactant (see Fig. 5). This emulsion is then
dispersed in another aqueous phase containing more surfactant. A complication with this
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alcohol) at a magnification of ×1250.
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Fig. 4. Schematic diagram of in-liquid drying process for microparticle preparation.

Fig. 5. Schematic diagram of multiple emulsion process for microparticle preparation.



type of emulsion occurs when the inner emulsion is not sufficiently stabilized such that
aqueous droplets containing dissolved drug are lost to the external aqueous phase. The
choice of surfactants that can be used to stabilize the inner emulsion is limited to materials
that will dissolve in the organic solvent. Typically, the fatty acid esters of polyoxyethylene
sorbitan or sorbitan are used due to their high solubility in organic solvents and good bio-
compatibility. With the O/O method, the drug may be suspended or dissolved in the oil
phase before being dispersed in another oil phase. One example might use
dichloromethane as the solvent for the polymer and dispersant for the drug, and cottonseed
oil with the appropriate surfactant added as the external phase in the emulsion. The greatest
concern with using highly viscous oil such as cottonseed oil for the external phase is the
difficulty in collection and washing of the particles. Filtration of viscous material is signifi-
cantly more difficult than filtering aqueous suspensions, and washing the microparticles
requires the use of yet another organic solvent (typically hexane or heptane).

Encapsulation of hydrophilic drugs may also be achieved by chemically conjugating
the drug to the polymer (19–28). The synthesis of such materials will not be discussed
here, but typically involves the activation of hydroxyl groups on the polymer, which then
react with amino groups located on the drug (24,29). Polyethylene glycol and dextran are
often used as the drug carriers; however, it is also possible to conjugate drugs to PLAGA
and other biodegradable polymers (30–33). These polymeric “prodrugs” are often
administered as intravenous (iv) solutions (if they are soluble in water, dextrans, PEGs,
and so on), however, they also may be fashioned into microparticles using the same
methods discussed above. The overall drug encapsulation efficiency may not be better
than other methods but, assuming all of the drug that ends up attached to the polymer is
encapsulated in the microparticles, it allows for easier and more reproducible control
over the quantity of drug in the microparticles. Furthermore, because drug will not be
released from the microparticles until the hydrolytic degradation of the bond between
drug and polymer, there is usually little burst of drug from such particles.

Hydrophobic drugs are typically much easier to encapsulate because they are often
highly soluble in the volatile organic solvents used in the formulations and thus lack the
thermodynamic drive to partition to the external aqueous phase. Encapsulation efficien-
cies greater than 90% are typical, with little manipulation of formulation parameters.
Challenges arise only when the solubility of the drug is low in the desired dispersed-phase
solvent. In these cases, drug loadings may have to be limited to the maximum concentra-
tion obtained in the dispersed phase. Alternatively, it may be possible to use a cosolvent
system (e.g., dichloromethane and methanol) where the second component is used to
increase the concentration of drug in the dispersed phase. If a cosolvent is used for the dis-
persed phase, it is best if both components are immiscible in water, however, this may not
be possible depending on the solubility of the active agent in the various components
available. The problems associated with using acetone or methanol as the second compo-
nent in the dispersed phase is that these are both soluble in water in all proportions. Thus,
if acetone or methanol is used to increase the solubility of active agent in the dispersed
phase, they may also serve to carry the active agent to the surface of the droplet before
partitioning to the aqueous phase. This leaves microparticles with an inordinate amount of
active agent at or near the surface, resulting in undesirable release kinetics.

The last method for preparing biodegradable PLAGA microparticles that we will
mention here is spray-drying as it is a widely used method in the pharmaceutical indus-
try and has been investigated by several researchers as a method for formulating
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biodegradable microparticles (34–40). Although no such studies attempting to encapsu-
late anticancer agents in biodegradable microparticles using this technique are found in
the literature, there is no reason this method could not be used for this purpose. This
method for formulating microparticles typically uses drug dissolved or suspended in a
polymer solution (either organic or aqueous solvent, depending on the polymer used).
This solution/suspension is then fed into the spray-drying apparatus, of which the most
important component is the nozzle. Nebulization of the polymer/drug solution may be
carried out at the nozzle using different mechanisms (40). Basically, the polymer/drug
solution is mixed rapidly with air and forced through a small diameter orifice. Nebuliza-
tion of the polymer/drug solution occurs at the nozzle and the resultant droplets are very
quickly dried by evaporation (under high-pressure air) before collection. Significant
advantages of using this technique include high encapsulation efficiencies and no resid-
ual surfactant on the surface of the microparticles. There is no external aqueous phase
that can act as a sink for the drug, and of course there is no surfactant present anywhere
in the formulation. Parameters that can affect microparticle size and morphology are
temperature, pressure (air used for drying), nozzle diameter, air/solution volume mix-
ture, and of course, polymer/drug concentrations as is the case for emulsions.

4.2. Albumin-Containing Microparticles
Microparticles of bovine serum albumin (BSA) may be prepared using an emulsion

of aqueous BSA in cottonseed oil (41). Sufficient elevation of the temperature of the
emulsion will set the BSA microparticles. Any drug may be included, either in solution
along with the BSA or in suspension, for water-insoluble drugs. The microparticles are
cooled and then washed with ether (or another appropriate solvent) and collected usu-
ally by filtration or centrifugation.

To add greater functionality to albumin microspheres, some research groups have
included other biodegradable polymers in the microparticles. Specifically, dextran sul-
fate has been added to these microparticles to add ion-exchange characteristics (42).
For this microparticle synthesis, a bovine serum albumin solution was made which also
contained sodium dodecyl sulfate and dextran sulfate sodium salt. This phase was
emulsified in olive oil, and an aqueous solution of glutaraldehyde was then added to
chemically crosslink the albumin. These particular particles were washed with light
petroleum, followed by isopropanol followed by distilled water.

4.3. Fibrinogen Microparticles
Microparticles may be prepared from fibrinogen using procedures very similar to

those used to make albumin microparticles. One specific method combines fibrinogen
and drug in an aqueous solution and then emulsifies this solution in cottonseed oil con-
taining 10% Span 85® (43). This emulsion is added to more cottonseed oil and heated
to 100 or 140°C to set the fibrinogen. After 30 min of stirring, the solution is cooled,
the particles are washed with ether and dried. Clearly, all of these methods for prepar-
ing microparticles of albumin and fibrinogen should be effective for encapsulating
water-soluble drugs, which are not proteins, for cancer treatment. Drugs that are more
soluble in the oil phase can easily partition out of the microparticles during the stirring
step, as the microparticles are in a swollen state during preparation. Also, it is impossi-
ble to encapsulate active proteins within these microspheres as the drug will be dena-
tured during the setting or crosslinking step when the microparticles are formed.
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5. PREPARATION OF NONBIODEGRADABLE MICROPARTICLES

For nonbiodegradable microparticles to be useful in drug delivery, the active agents
must be adsorbed onto the surface of the particles. Such solid particles have been used
in specific treatments of embolization to block the blood flow to cancer tissue. Very few
permanent microparticle systems have been studied, with the exception of magnetic
microparticles that are currently being used by FeRx Incorporated. FeRx uses magnetic
targeted carriers as delivery vehicles for the site-specific targeting, retention, and sus-
tained release of cancer-fighting active agents. These carriers approx 0.5 to 5 µm in
diameter and are composed of elemental iron and activated carbon. The drugs to be
delivered are bound to the surface of the particles, which are then localized using a
small externally positioned magnetic field that directs the particles, and the drug
adsorbed on them, specifically to the cancerous tissue.

6. RELEASE BEHAVIOR OF ANTICANCER 
COMPOUNDS FROM MICROPARTICLES

This and following sections present predominately a review of the work published in
the last five years, categorized according to the active agent being delivered. This direct
comparison should help to point out the diverse approaches using microencapsulation
techniques that are being investigated and used to control the delivery of cancer-treat-
ing drugs. Of course, with the approval already in place for PLAGA for in vivo appli-
cations, many different research groups have focused their work on that polymer
family. This chapter will not be addressing formulations that are either liposomes,
micelles, or polymer conjugates as those topics are covered elsewhere in this volume.

7. ENCAPSULATION AND IN VITRO RELEASE

7.1. Hydrophilic Drugs
The encapsulation of hydrophilic compounds such as doxorubicin and 5-fluorouracil

within hydrophobic biodegradable polymers presents a serious challenge because of
the thermodynamic drive of these drugs to partition to the aqueous external phase in an
O/W emulsion. Some methods used to alleviate these challenges include using O/O
emulsions to avoid the use of water, in-liquid drying processes to harden the micropar-
ticles quickly, and covalently attaching the drug to the polymer used for the biodegrad-
able matrix before preparing the microparticles.

7.1.1. DOXORUBICIN

Doxorubicin is widely used for the treatment of many types of cancer and is moder-
ately hydrophilic, with a solubility of the hydrochloride salt in water of approx 10
mg/mL. Doxorubicin has been encapsulated in a wide range of microparticles prepared
from albumin, albumin-dextran sulfate, fibrinogen, and poly(lactic acid) (41–44).
Methods involved W/O emulsion for fibrinogen or albumin microparticles, O/W emul-
sion for PLA, and an ion-exchange W/O method for albumin-dextran sulfate. It should
also be possible to encapsulate doxorubicin using W/O/W or S/O/W methods.

Albumin particles with an average diameter of approx 1 µm encapsulating doxoru-
bicin were prepared using a W/O emulsion (41). Encapsulation efficiencies were low
(23%) and the resulting drug loading was slightly over 2% by mass. Because cottonseed
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oil was used as the external phase, very high encapsulation efficiencies would have been
expected. The authors did not discuss the unusually low encapsulation efficiency of the
doxorubicin in their formulation. The in vitro release of doxorubicin from these particles
in tris buffer was biphasic with approx 1/3 of the drug released in the first 6 h, followed
by the release of the remaining drug over the next 90 h. The initial burst of drug is
typically due to surface-bound drug. The relatively short release time (approx 4 d) is a
function of the microparticle size (1 µm) and the nature of the material used for the
microparticle matrix, in this case, water-soluble bovine serum albumin (BSA).

Another microparticle formulation containing doxorubicin and prepared from
bovine serum albumin using a W/O emulsion resulted in particles with a size range of
20–60 µm (42). Dextran sulfate was also encapsulated into the albumin microparticles.
In this case, doxorubicin was loaded after the preparation of the microparticles. The
particles were first swollen with ethanol, and water was then added to a doxorubicin
solution. After 1 h, essentially all the drug was taken up by the particles via an ion-
exchange mechanism with the sulfate groups of the derivatized dextran already encap-
sulated in the albumin microparticles. Drug loadings were as high as 50% by mass as a
result of the very efficient ion exchange process. Release of doxorubicin in phosphate
buffered saline (PBS) was nearly constant and lasted for approx 10 h. The release time
was doubled by including iron in the formulation, which is known to complex with
doxorubicin.

Although these microparticles containing albumin and dextran are considerably
larger than those previously mentioned containing only albumin, the total time required
to release the doxorubicin is considerably less (90 h vs 10 h). This is owing to the method
used to encapsulate the drug. The ion-exchange method encapsulates the doxorubicin
after the microparticles are formed. Therefore, the drug diffuses into the microparticles
and is held there only by the strength of the ionic interaction with the sulfate groups of
the derivatized dextran. Consequently, the release of doxorubicin under sink conditions
will be governed primarily by this ionic interaction because diffusion is quite rapid.
The release of doxorubicin from the smaller diameter microparticles mentioned earlier
will be governed by degradation and diffusion as the drug was encapsulated at the time
of microparticle formation.

Fibrinogen particles containing doxorubicin have also been prepared from a W/O
emulsion (43). Again, the external oil phase used was cottonseed oil. Drug loadings
were approx 10% with encapsulation efficiencies of 40–45%. Particle diameters aver-
aged 2–3 µm with all particles under 10 µm in diameter. Sustained release of the drug
had occurred for at least 7 d when the studies were stopped after 10–20% of the drug
had been released. There was no initial burst from the fibrinogen microspheres, indicat-
ing that the fibrinogen was a very effective encapsulant for the doxorubicin. The fib-
rinogen microparticles appear to swell much less than albumin microparticles, even
when preparation conditions are similar. The degradation, both in vitro and in vivo,
may also be slower for the fibrinogen.

Doxorubicin has also been encapsulated in varying molecular weight oligomers of
polylactic acid with particle diameters of approx 100 µm using an O/W emulsion (44).
Drug loadings ranged from 0.5 to 2.5% by mass with encapsulation efficiencies of
30–90%. The relatively high encapsulation efficiencies were attributed to the doxoru-
bicin being slightly soluble in the dichloromethane (2–3 µg/mL) that was used as the
organic solvent for the dispersed phase. Thus, the drug will partition to the external
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aqueous phase at a decreased rate relative to a formulation in which doxorubicin is
insoluble in the organic solvent. There was also a strong correlation between doxoru-
bicin encapsulation efficiency and molecular weight of PLA used for the matrix. The
lower molecular weight PLA used resulted in higher doxorubicin encapsulation effi-
ciencies. Sustained release of drug was observed in tris buffer for a period of several
days with an initial burst that increased with increased drug loadings.

7.1.2. CISPLATIN

Significant efforts have also focused on the encapsulation of cisplatin in biodegrad-
able microspheres. Cisplatin is slightly soluble in water (1 mg/mL), making it a candi-
date for S/O/W and W/O/W emulsions. Because it is less soluble in water than
doxorubicin, encapsulation efficiencies are typically higher when using an aqueous
external phase in the emulsion. Cisplatin has been encapsulated in PLAGA/PLA
microparticles by a number of research groups (44–51). Particle size ranges have var-
ied between 1 and 300 µm with high encapsulation efficiencies (> 90%). However,
depending on the type of emulsion used, a large burst was often observed in the in vitro
release profiles. Release times, in vitro, vary between a few days to months depending
on the diameter of the microparticles and the molecular weight of the polymer used.

Cisplatin encapsulated in PLA microspheres and prepared using an O/O method pro-
duced particles with a diameter of 100 µm (48). Dimethyl formamide and castor oil were
used for the dispersed and external-phase solvents, respectively. The microparticles con-
tained 4% drug by mass and released their contents in vitro within 3 d. This is an unex-
pectedly fast release considering the diameter of the spheres involved. The quick release
of cisplatin from these microparticles was attributed to the burst effect from surface-
bound drug, suggesting that all encapsulated cisplatin was at or near the surface of the
microparticles. Similar results have been obtained by other researchers when encapsulat-
ing cisplatin in PLAGA microparticles using an O/O emulsion (44,47–49). High encap-
sulation efficiencies and drug loadings are achieved, but the in vitro release displays
large bursts within the first few hours that increase with the drug loading. These initial
bursts of drug may be as high as 80% of the total amount of drug encapsulated in the
microparticles. As the amount of the drug in the particles increased so did the burst, and
the subsequent duration of the controlled release decreased significantly.

More satisfactory results were obtained by using a more traditional S/O/W method
with dichloromethane as the dispersed-phase solvent and a PVA solution for the exter-
nal phase (45). Microparticles of a diameter between 100–200 µm exhibited a slow
sustained release of drug in vitro for a period of 60 d before the remaining drug was
released over a period of approx 1 wk. The release of drug in this manner is consistent
with a diffusion mechanism that is followed by the degradation of the polymer to a
point where the microparticles release the remaining drug. Similar results have been
obtained with 5-fluorouracil encapsulated in PLAGA microspheres, as discussed in the
following section. Other studies have also used the S/O/W emulsions to encapsulate
cisplatin in PLAGA microparticles with excellent results showing high encapsulation
efficiencies and little or no burst (46,50,51).

7.1.3. 5-FLUOROURACIL

Another slightly hydrophilic drug widely used in cancer treatments, with a solubility
in water of approx 1 mg/mL, is 5-fluorouracil (5-FU). Microparticles (3–6 µm) pre-
pared from PLA using a S/O/W emulsion contained 5–15% 5-FU by mass and released
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drug in vitro over a period of about 5 d (52). There was a substantial burst (20–40% of
encapsulated drug) from these particles that increased with the initial drug loading.
Microparticles using cross-linked chitosan and containing 5-FU have been prepared
using a W/O emulsion (53). Drug loadings were as high as 20% by mass. However,
these particles released the drug in saline in just a few hours despite their relatively
large diameters (490–760 µm), indicating that any crosslinking was not effective in
controlling the release of the 5-FU.

As with cisplatin, it is possible to encapsulate the hydrophilic drug 5-FU with high
efficiency and drug loadings and still obtain a desirable release profile with little to
no burst and relatively constant release. In our research group, we have prepared 5-
FU microparticles from high and low molecular weight PLAGAs as well as a mixture
of molecular weights. A S/O/W emulsion was used in conjunction with a highly vis-
cous organic phase and an in-liquid drying process. The resulting microparticles were
50–60 µm in diameter with encapsulation efficiencies as high as 75% and drug load-
ings as high as 25%. Release profiles in buffered saline from PLAGA microparticles
are shown in Fig. 6. The initial release is slow and sustained with no burst and lasts
three or more weeks, depending on the molecular weight of the PLAGA samples
used, with higher molecular weight polymers yielding formulations with longer con-
trolled-release duration. After the polymer degradation reaches a critical phase, the
remaining drug is quickly released over a period of about 1 wk. Thus the release is
controlled by both diffusion and polymer hydrolysis rates, resulting in a biphasic
release profile. The time lag between the slower release phase and the faster release
phase can be controlled by using different molecular weight PLAGA or a blend of
PLAGA polymers with differing molecular weights. Because higher molecular
weight PLAGA will hydrolyze at a slower rate, the initial slow-release phase will last
longer when using higher molecular weight PLAGA, either alone or in a blend. The
release profile can be made monophasic by including low molecular weight PLAGA
and hydrophilic polyethylene glycol (PEG) in the formulation, as shown in Fig. 7. At
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Fig. 6. In vitro drug delivery in buffered saline at 37°C for 5-fluorouracil from microparticles pre-
pared from various ratios of 50:50 PLAGA (mol wt: 13,000) and 75:25 PLAGA (mol wt: 65,000).



approx 3.5% PEG (mol wt: 6000), the microparticles release 5-FU at a nearly con-
stant rate for the entire profile. The hydrophilic PEG will release quickly (relative to
hydrolysis rate of PLAGA) through diffusion, creating a more porous microparticle
relative to those without PEG, enabling the encapsulated 5-FU to diffuse out of the
microparticle at a higher rate. This combination of release behaviors then gives a
monophasic release profile. Some microscopic images of these microparticles during
degradation are shown in Fig. 8. These figures show that, while particles composed of
PLAGA remain essentially spherical only until after all drug delivery has been com-
pleted, those microparticles containing PEG show significant physical changes and
degradation during the drug delivery phase.
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Fig. 7. In vitro drug delivery in buffered saline at 37°C for 5-fluorouracil from microparticles pre-
pared from various ratios of 50:50 PLAGA (mol wt: 13,000), 75:25 PLAGA (mol wt: 65,000), and
PEG (mol wt: 6,000).

Fig. 8. Microscopic images of PLAGA microparticles containing 5-fluorouracil after 21 days of
degradation in phosphate buffered saline. The relative ratios of 50:50 PLAGA (mol wt: 13,000) to
75:25 PLAGA (mol wt: 65,000) to PEG (mol wt: 6000) are (A) 2:5:0; (B) 2:5:0.5; and (C) 2:5:1.



7.1.4. LEUTINIZING HORMONE RELEASING HORMONE (LHRH)
Proteins present a unique problem when being encapsulated in polymer matrices

using the techniques described above. Leutinizing hormone releasing hormone
(LHRH) is not only one of the best known peptides studied for controlled-release for-
mulations from biodegradable microparticles but it also is one of the very few commer-
cially available products using this technology (Lupron® Depot) (54,55). LHRH in
cancer treatment is used to suppress the production of sex hormones that lead to hor-
mone-dependent cancers. Proteins in general are notorious for chemical instabilities,
especially when exposed to organic solvents. Thus, proteins and peptides are almost
always formulated into microparticles using a W/O/W emulsion. The use of an inner
aqueous phase serves to protect the dissolved protein from the harsh environment of
the organic solvent.

LHRH has been encapsulated in PLAGA microparticles using a W/O/W emulsion
(56) and by cryogenic grinding of extruded PLG containing homogeneously distrib-
uted peptide (57). Microparticles prepared using a W/O/W emulsion containing 75:25
PLAGA (mol wt: 14,000) and 5% LHRH released in vitro for several weeks (>4) with
no initial burst of hormone. That a water-soluble drug could be efficiently entrapped in
a PLAGA microparticle and display no initial burst using the W/O/W method is some-
what unusual and very encouraging for researchers in the field. For example, numerous
research groups have used the W/O/W method to encapsulated various proteins (e.g.,
BSA) and the in vitro release typically displays a moderate to large burst. That LHRH
has both high encapsulation efficiency and no initial burst has been attributed to the
formation of a micelle-like structure between the PLAGA chains and the drug (57).
The release of the hormone is then strictly regulated by polymer degradation rather
than diffusion.

7.2. Hydrophobic Drugs
Hydrophobic drugs often present less of a challenge to formulate in slowly degrad-

able microparticle systems, relative to hydrophilic drugs, as they are often soluble in
the organic solvents used, but are insoluble in water. Some hydrophobic anticancer
agents that have been encapsulated in biodegradable microparticles include taxol, acla-
cinomycin, and camptothecin (water-insoluble forms) (58–65).

Anticancer agents such as taxol, aclacinomycin, camptothecin, and related analogs
have been successively encapsulated in PLAGA microparticles with high efficiency
(> 90%) (58,61,63). The maximum amount of drug encapsulated in the microparticles
typically depends on its solubility in the organic solvent used in the formulation. Taxol
is now a common anticancer agent used against a wide variety of solid tumors includ-
ing breast and ovarian cancers. It is insoluble in water and has a limited solubility in
ethanol. Therefore, commercial formulations of taxol use a 50:50 mixture of ethanol
and Cremophor® EL (polyethoxylated castor oil) which are then designed to be diluted
in saline or other intravenous infusion solutions. Alternative dosage forms are desired
not only for the controlled release, but also to reduce adverse reactions to the relatively
large amount of Cremophor EL used in the commercial formulation (63).

Taxol has been encapsulated in PLAGA microparticles of varying LA/GA ratios
using very simple O/W emulsions (63). The authors used dichloromethane as the sol-
vent for both PLAGA (mol wt: 10,000) and taxol. A 4% gelatin solution was used as
the continuous phase with simple mechanical mixing. An encapsulation efficiency of
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98% from microparticles with an average diameter of 30 µm was achieved using 75:25
PLAGA with no additional additives. The in vitro release displayed a slow-sustained
release of taxol with no initial burst. In fact, the release was so slow that isopropyl
myristate was added to change the microparticle matrix to allow the formation of chan-
nels that would allow for faster diffusion of taxol from the microparticle. These results
are not unexpected considering the hydrophobic nature of the drug and the immiscible
nature of the solvents used for both phases of the emulsion. Thermodynamically, taxol
must remain solvated in the dichloromethane until which time the solvent is com-
pletely removed and, thus, the drug is homogeneously encapsulated in the newly
formed microparticle. Because the release of taxol from PLGA microparticles is typi-
cally quite slow, the most significant obstacle in formulating these microparticles is
obtaining a sustained release of therapeutic levels of drug. Thus, additives such as iso-
propyl myristate, sucrose, and the use of PLAGAs of varying molecular weight and
hydrolytic degradation rates have been investigated as a means of accelerating the
release of taxol (63,64).

Camptothecin (CPT) is a promising anticancer agent being investigated in the treat-
ment of a wide variety of tumors (59). Because of the low solubility of camptothecin in
water (3.8 µg/mL) and dichloromethane (10 µg/mL) the drug poses a somewhat differ-
ent challenge with regard to formulating microparticles for controlled release. There are
basically two options when formulating such compounds through the use of emulsions:
encapsulate the drug in a solid form using a S/O/W emulsion or use a cosolvent system
that will dissolve both polymer and drug to desired levels. Dimethlyformamide (DMF) is
an excellent solvent for CPT and is also highly miscible with dichloromethane, there-
fore, it serves well as the second solvent component for the dispersed phase in a
microparticle emulsion. However, DMF is also miscible with water, an undesirable
property for any component of the dispersed-phase solvent. The authors’ results are as
expected: higher encapsulation efficiencies with decreased DMF volume and higher
concentration of PLAGA in the dispersed-phase solvent. Drug release profiles are also
consistent with expectations; the burst was minimized by decreasing the volume of
DMF and increasing the concentration of PLAGA.

8. IN VIVO STUDIES

Although limited in terms of the number of studies reported in the public literature,
data for the in vivo release of anticancer agents encapsulated in biodegradable
microparticles demonstrates advantages over administration of the free drug. Doxoru-
bicin, 5-FU, cisplatin, irinotecan (synthetic derivative of camptothecin), and LHRH
have been administered into tumor-bearing rats and/or mice using biodegradable
microparticles (43,48,49,52,66–68).

Fibrinogen microparticles (average diameter, 2–3 µm) containing varying amounts
of doxorubicin were injected into mice inoculated with Ehrilich ascites carcinoma
cells, and survival times recorded versus those of mice treated with a doxorubicin solu-
tion (43). Relative to the control animals, where half of the mice had died at 20 d (with
no survivors at 29 d), the injection of doxorubicin solution decreased the lifespan of the
mice, with half dead at 10 d (with no survivors at 28 d), whereas injection of fibrinogen
microspheres containing doxorubicin significantly increased the lifespan of the mice,
with more than half surviving longer than 60 d. These results were obtained for dox-
orubicin administered at a level of 13.7 mg/kg. The authors interpreted these results as
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an indication that biodegradable fibrinogen microspheres containing doxorubicin could
be used to administer increased amounts of doxorubicin with decreased toxicity, thus
reducing systemic side effects caused by the drug.

PLAGA microparticles containing 5-FU have been stereotactically implanted in the
brains of rats with malignant gliomas to test their toxicity and efficacy (66). Similar
microparticles (diameter, 3–6 µm) containing 5-FU were also injected into the tail
veins of mice in order to measure the in vivo distribution of the drug particles (52).
Stereotactically implanted microparticles effectively decreased the mortality of malig-
nant tumor-bearing rats. However, the decreased mortality was found to be statistically
significant only for the slow-releasing microspheres where the 5-FU was released over
18 d, as opposed to fast-releasing microspheres where the 5-FU was released over 3 d.
Microparticles containing 5-FU, which were injected into the tail veins of mice, were
found primarily in the lungs and liver within 24 h postinjection.

Microparticles containing cisplatin have been studied in vivo as a general aid to
understanding the effect on surrounding muscle tissue in rabbits and mice as well as
their ability to increase the survival time of tumor-bearing mice (48,49). For mice inoc-
ulated intraperitoneally with P815 mastocytoma cells, the mean survival times were
compared to those mice injected with (1) cisplatin containing microspheres, (2) cis-
platin solutions (free cisplatin), (3) blank microspheres, and (4) phosphate-buffered
saline (PBS). Several different doses of cisplatin were also studied (49). All tumor-
bearing mice injected with blank microspheres or PBS died within 20–30 d. At lower
levels of cisplatin (<200 µg), the mice died from the tumors within 40–60 d and at
higher levels of cisplatin (>350 µg), the mice died of drug toxicity in less than 7 d. For
cisplatin-containing microspheres, the mice survived for an average as long as 140 d.
From this study it seems clear that using a microparticle controlled-release formulation
is advantageous in terms of relative toxicity and efficacy of the drug formulation.

The in vivo effectiveness of the release of irinotecan hydrochloride, a semisynthetic
derivative of camptothecin, was also studied for microparticle formulations of PLA as
well as 75:25 and 50:50 PLAGA (67). These studies, where mice were transplanted
intraperitoneally with sarcoma 180 cells, showed a mean survival time for the control
groups of approx 11 d. Treatment was begun 3 d after inoculation; irinotecan hydrochlo-
ride solutions at 50 mg eq/kg, 100 mg eq/kg, and 250 mg eq/kg showed mean survival
times of 22, 16, and 16 d, respectively. Microparticle formulations prepared with PLA
and at the same equivalent drug dosages showed mean survival times of 20, 16, and 32 d,
respectively. Formulations at the 100 mg eq/kg level for 75:25 PLAGA and 50:50
PLAGA showed 20 and 24 d mean survival time. These studies demonstrated that, for
the microparticle formulations to be significantly more effective in terms of survival time
than the drug solution, the drug loading must be at least 250 mg eq/kg.

9. INDUSTRIAL EFFORTS, PRODUCTS, AND CLINICAL TRIALS

The one product currently on the market which uses microparticle formulations to
treat cancer is the Lupron® Depot from TAP Pharmaceuticals (69). The Lupron® Depot
is available in 4-, 3-, and 1-mo formulations which are approved in the United States
for palliative treatment of advanced prostate cancer. These formulations contain 30,
22.5, and 7.5 mg of leuprolide acetate, respectively. In an open-label, noncomparative,
multicenter clinical study of the 4-mo formulation, 49 patients with stage D2 prostatic
adenocarcinoma (with no prior treatment) were enrolled. The objectives were to deter-
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mine whether this 30 mg depot formulation, injected once every 16 wk, would reduce
and maintain serum testosterone levels at castrate levels (less than or equal to 50
ng/dL). In the majority of patients, testosterone levels increased 50% or more above the
baseline during the first week of treatment, however, these levels were subsequently
suppressed to castrate levels within 30 d of the first injection in 94% of patients and
within 43 d in all 49 patients during the initial 32-wk treatment period.

Lupron® Depot, available in formulations of 11.25 mg (3-mo dose) and 3.75 mg
(1 mo dose), is also used with iron before surgery in the management of endometriosis
and to treat anemia caused by fibroid tumors in the uterus when iron alone is not effec-
tive. For precocious puberty, the dosage is 7.5, 11.25, or 15 mg once per month,
depending upon the weight of the child. Lupron® Depot has also been reported to have
been used, quite effectively in some cases and questionably in others, in “off-label” sit-
uations such as infertility treatments for humans and adrenal tumor treatment in ferrets.

Although there are a vast number of clinical trials addressing cancer treatment at any
time, very few of these are testing microencapsulated formulations. There are at least
1200 open clinical trials in the United States at any time and a recent review of those
listed with the National Center Institute revealed only one to be testing a microparticu-
late delivery system for controlled drug delivery. Far more address the use of liposomal
delivery systems, which are more widely used for cancer treatment than microparticu-
late systems. One clinical trial mentioned a study with PEGylated interferon, with a
few underway with other pro-drug types of targeted delivery systems.

Although there are assuredly a number of clinical trials under way and not overly pub-
licized, we will mention just a few here. The work that FeRx has done with magnetic tar-
geted carriers has already been mentioned earlier in this chapter. The company also
conducted a Phase I/II clinical trial in 1999 for delivery of doxorubicin for treatment of
patients with primary liver cancer (70). Paragon Medical introduced SIR-Spheres® in
1997, which are radioactive particles that are placed in liver cancers. The formulation is
marketed in Australia, New Zealand, and Asia, with additional human studies being con-
ducted in Hong Kong, Australia, and New Zealand (71). Another set of clinical trials
scheduled recently were to examine the treatment of human papillomavirus-associated
cervical dysplasia, which can progress to cervical cancer. Zycos, Inc., and Chesapeake
Biological Laboratories are collaborating on Biotope CD™, a PLAGA-based delivery
system to deliver DNA-based drugs with increased potency (72,73). Specifically for the
cervical application, their plasmid DNA is encoded with disease-specific epitopes, which
are designed to program cytotoxic Tcells to recognize and destroy the targeted disease.

10. FUTURE DIRECTIONS

Because it is clear that there is a great deal of potential for the use of microparticu-
late drug delivery formulations to treat cancer, only a few of these formulations have
progressed enough in human studies to have proven their worth both in enhancing the
efficacy of the drugs being delivered and in minimizing the undesirable side effects of
traditional chemotherapy. Within the next 5–10 yr, we should certainly see some of the
formulations currently in laboratories progress to the clinical setting and perhaps to a
large number of cancer patients whose lives will be improved by using these advanced
formulations. It should be emphasized that microparticulate formulations that provide
controlled delivery can provide more than just a better-regulated chemotherapy regi-
men. They may also deliver cell-specific drugs, based on biotechnology and DNA,
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directly to the site of interest. This element of intelligent engineering is present to a
smaller degree in liposomal formulations but, especially in biodegradable particles, its
promise has yet to be realized or even understood.
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1. INTRODUCTION

Prior to the advent of biotechnology, use of protein drugs was largely limited to
products isolated from human donor plasma such as serum albumin, immunoglobulin,
and clotting factors. Use of these agents requires stringent protocols for collection,
purification, and removal of infectious agents such as bacteria, virus, and, more
recently, prions. Although for diabetics who require insulin, porcine sources were use-
ful, use of animal or bacterial or other nonhuman-derived proteins was, and continues
to be, complicated by the potential formation of antibodies that may rapidly clear the
drug from the body or lead to anaphylactoid reactions and “allergic responses.”

The ability to clone and express commercially useful quantities of recombinant
human proteins in bacterial, insect cell, yeast fermentation systems, or transgenic ani-
mals has enabled the development and introduction into the marketplace of otherwise
unavailable life-saving protein drugs. Numerous recombinant human protein and
biotechnology products are in clinical trials or pending regulatory agency approval.

In addition to the cloning and expression of “normal or wild-type” human proteins
in the aforementioned manner, the design and production of mutant forms of human
and other proteins is possible. Such “muteins” include chimeric or “humanized” mouse
antibodies and a variety of fragments such as single chains, Fab and Fab2, fusion pro-
teins, toxins, and enzymes. Human serum albumin fusion proteins are designed to have
a more prolonged circulating life than the native protein product (1). Human growth
hormone and α-interferon human serum albumin fusions are being developed by Prin-
cipia Pharmaceuticals, Inc. (Philadelphia, PA), recently acquired by Human Genome
Sciences. Like nonhuman proteins, muteins may elicit an antibody or immune reaction
that may or may not be clinically relevant.

With the sequencing of the human genome completed, the accelerated discovery of
genes and gene products regulating growth and development, as well as disease, is
likely to fuel the identification of novel protein therapeutics and drug targets. For each
of the protein drugs seeking development, issues related to optimum circulating life,
polyethylene glycol (PEG)ylation might address dosing levels and frequency of admin-
istration, as well as safety. However, not all that could are being pursued in this fash-
ion; when and how to apply PEG technology is itself an emerging science.

To understand PEGylation, it is essential to understand what PEG does and does not
do vis-a-vis drug performance, as well as proposed mechanisms of action.

2. WHAT IS PEG?

PEG is a polymer comprised of the repeating unit (–CH2CH2O–)n produced by poly-
merization of ethylene oxide. The polymer may be linear or be prepared as a branch
chain or dendritic construct with varying numbers of branches. PEGs of different mol-
ecular weights and geometries have been used in pharmaceutical products.

For coupling reactions, PEG must be activated. Monomethoxy PEG [CH3
(––O––CH2––CH2)n––OH] has been activated by several methods including cyanuric chlo-
ride, 1,1′-carbonyldiimidazole, phenylchloroformate, or succidinimidyl active ester
(2–4) to enable conjugation to proteins. The activating agent may also act as a linker
between PEG and the protein. Multiple PEG strands may be attached to a protein or bis
or multivalent activated PEGs may be used to “crosslink” or polymerize multiple pro-
tein molecules or subunits. Typically, pharmacokinetics and pharmacodynamics of any
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PEG-protein conjugate are dependent on PEG molecular weight, the chemistry used
for conjugation, the stability of any linker, the number of PEG strands per each mole-
cule of protein, and the geometry of the PEG used. The PEG strands are capable of
assuming some interactions with the protein surface as well as having certain surfac-
tant-like properties (5–7).

For many applications, linear methoxy PEG (blocked at one end) and activated at
the other has been used to achieve the desired performance benefit. In general, acti-
vated PEGs nonselectively couple to such nucleophilic groups as amino, hydroxyl, and
sulhydryl moieties available on the surface of the protein. The degree of PEGylation is
dependent on reaction conditions such as pH and reagent concentrations. More
recently, proteins have been modified at the level of the gene so as to insert groups suit-
able for conjugation or to remove those that might contribute to loss of activity or
destabilization.

The rationale for selection of PEGylation chemistry and geometry is based on the
structure of the protein to be PEGylated and the role that potential coupling sites play
in any desired activity. The extent of PEGylation deemed optimal will also be driven by
the need to prevent any potential allergic or immune reactions. For example, a nonhu-
man protein is likely to require more PEG substitution than a recombinant human one.
The optimal PEG geometry and molecular weight to be selected is driven by the
desired effect in terms of prolongation of circulating life.

The degree of PEGylation and the location of the PEGylation sites can have a dra-
matic impact on the desired activity of the PEGylated protein. In some cases, losses of
activity of 20–95% have been reported (2–8). The mechanism by which loss of activity
occurs may vary. For an enzyme, it may be because of loss of key charged residues at
or near an active site, or the blocking or prevention of interaction with substrate, or an
allosteric regulator and important conformational changes. For receptor-directed lig-
ands such as cytokines, PEGylation may interfere with ligand docking and site interac-
tions that lead to receptor conformational changes and the activation of signal
transduction cascades or effector proteins.

The PEGylation process may also contribute to loss of biological activity caused by
adverse coupling conditions such as extremes of pH, temperature, or the presence of
oxidizing or reducing agents, reaction byproducts, or side reactions (2–10). Table 1
lists examples of “coupling chemistries” and conditions that may be used in the PEGy-
lation of proteins and peptides.

Scientists at PolyMasc Inc. (London, UK) have proposed the use of tresyl chloride
(2,2,2-trifluoroethanesulphonyl chloride) to attach PEG directly via a stable secondary
amine bond to the NH2 groups of proteins under physiological conditions (11–14). The
authors have noted that the nitrogen atom to which the PEG chain is attached retains
the ability to protonate conserving surface charges that may be essential for bioactivity.

The nature of the activation chemistry to be used in any PEGylation strategy
requires special consideration both in terms of stability (in the vial and body) as well as
potential for promotion of immune or allergic reaction.

The nature of activated PEG in terms of purity and polydispersity is also of critical
importance to the control of reactions and the assurance of the most homogeneous
product possible. In the absence of highly purified activated PEG, unwanted crosslink-
ing, aggregation, and precipitation of protein may occur, reducing overall yield and
activity.

Chapter 7 / PEG Conjugation of Protein 139



3. WHAT DOES PEG DO?

Plasma kinetics of PEG are likely to depend on molecular weight and geometry, as
well as route of administration (15–17). Yamaoka et al. (16) have described the circu-
lating lifetimes of radiolabeled linear PEGs with molecular weights of 6000 (PEG-6),
20,000 (PEG-20), 50,000 (PEG-50), and 170,000 (PEG-170) after intravenous (iv)
administration to mice (Fig. 1). Similar to other polymers such as dextrans, polyvinyl
pyrrilidone, and similar materials (18,19), plasma concentrations and areas under the
curve (AUCs) of the higher molecular weight PEGs are substantially greater than those
of the lower molecular weight polymers (Table 2, Fig. 2). The half-lives of the poly-
mers also progressively increase with molecular weight. The relationship between half-
life and PEG molecular weight appears sigmoidal.

The most likely explanation for differences in plasma half-life of the tested PEGs
may be differences in renal excretion rates. Chang et al. (20) reported that, in rats, renal
elimination of “stiff” linear neutral dextrans with molecular weights of approx 10,000
occurred without any restriction. Excretion rates of dextrans with larger molecular
weights progressively decreased and approached zero at molecular weights of approx
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Table 1
Examples of “Coupling Chemistries” and Conditions 

That May Be Used in the PEGylation of Proteins and Peptides

Chemistry Conditons

Cyanuric chloride 1 h, pH 9.2–9.8, RT
Phenychloroformate 1–5 h, pH 8.3–9.3, RT
PEG-acetaldehyde pH 8.5, borohydride
PEG-acetaldehyde 18 h, pH 7, 37°C, cyanoborohydride
PEG-propionaldehyde 1 h, pH, RT, cyanoborohydride

Fig. 1. Blood radioactivity time courses after iv administration of PEG with different molecular weights.
Key: (▲) PEG-170,000; (▲) PEG-50,000; (●) PEG-20,000; (●) PEG-6000. Adapted from (16).



40,000. PEG, unlike “stiff” dextran polymers, is flexible in its backbone and may be
excreted through the kidney at even substantially higher molecular weights.

When attached to proteins and peptides, PEG has been shown to prolong circulation
time. The increase in circulating lifetime being proportional to the number of attached
PEG strands, their molecular weight, and geometry. The molecular weight of the
PEGylated protein is also of importance, as is any protein specific uptake or metabolic
events. In addition to the likelihood of decreased renal filtration, it is also likely PEGy-
lation contributes to a decreased rate of degradation by protease and extravasation that
might otherwise occur.

Increasing circulating lifetime and maintaining consistent drug levels that eliminate
large “peak-to-trough” fluctuations can reduce the incidence and severity of peak-related
side effects. PEG does not promote cellular uptake or necessarily improve protein stabil-
ity, although some reports suggesting utility in the latter have been cited in the literature.

4. METABOLISM, TOXICITY, AND EXCRETION

There is limited information on the metabolism of PEG in the body. It may be that to
some extent PEG undergoes cytochrome P-450 oxidation, resulting in the formation of
ketone, ester, and aldehyde groups (21,22).

In general, it has been shown that with iv, subcutaneous (sc), or intramuscular (im)
administration, PEGs ranging in molecular weight from 6000 to 170,000 do not distrib-
ute significantly to heart, lung, liver, spleen, kidney, and thyroid gland, but rather dis-
tribute to the gastrointestinal tract via the bile (21), and what is not excreted in the
urine is excreted in the feces.
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Table 2
Mean ± SD of AUC and Terminal Half-Life of PEGs 

of Increasing Molecular Weight After iv Administration to Mice

Parameter PEG-6 PEG-20 PEG-50 PEG-170

AUC, % dose/h/mL 6.17 ± 2.18 110 ± 7.17 600 ± 11.9 1110 ± 27.0
t1/2, min 17.6 ± 5.90 169 ± 20.0 987 ± 70.0 1390 ± 57.0

Adapted from (16).

Fig. 2. Relationship between the plasma half-life of PEG and its molecular weight. Adapted from (16).



5. REDUCED ANTIGENICITY AND 
IMMUNE OR ALLERGIC REACTIONS

PEG itself is inert. PEGylation at or near sites on a protein or peptide surface possi-
bly responsible for immune or allergic reactions may contribute to the masking of these
sites and, therefore, to a reduced risk. The protective benefit of PEGylation to proteins,
liposomes, or nanoparticles may be because of the high mobility of the PEG chains and
the shrouding of much or all of the “offending” regions on the protein or liposomal par-
ticle (23–25) surface. It is also likely that PEGylation decreases uptake and recognition
of “antigen” by cells of the immune surveillance system as well as interference with
“antigen digestion” and processing. More specifically, PEGylation may alter the nature
of peptides produced and presented by antigen presenting cells (APC) or even the abil-
ity of produced peptides to be recognized by the appropriate receptors.

The degree of reduction of immune or allergic reactions is likely to be a function of
the degree of PEGylation, PEG molecular weight, geometry, chemistry of linkage and,
more importantly, site of attachment. Empirical experimentation is the most likely
approach to yield an optimized formulation.

Examples of PEGylated protein preparations showing blunted or reduced immune or
allergic reactions are shown in Table 3.

6. PEG DRUGS: PAST AND PRESENT

Each year, approx 1.5 million Americans are newly diagnosed with cancer. About
1,220,000 cases were expected for the year 2000. Since 1990, nearly 13 million cases
excluding skin and certain other cancers have been diagnosed. About 10 million Amer-
icans are presently living and coping with a cancer diagnosis and treatment history.
Each year, approx 550,000 deaths or nearly one-quarter of disease-associated mortal-
ity in America is cancer-related. One in four Americans has been projected to experi-
ence cancer at some point during his or her lifetime. Cancer is the number two disease
killer of Americans and will be the leading cause of death from disease in children
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Table 3
Example of PEGylated Protein Preparations Showing 
Blunted or Reduced, Immune or Allergic Reactions

PEG-Protein Antigenicity Test System References

Asparaginase blunted precipitin 26,27
Adenosine deaminase blunted immunodiffusion 28
Uricase blunted immunodiffusion precipitin 29–31
Superoxide dismutase reduced immunodiffusion 32
Catalase blunted reduced immunodiffusion ELISA 33,34
Arginase blunted immunodiffusion 35
Streptokinase reduced blunted RIA neutralisation precipitin 36–38
β-Glucuronidase reduced immunodiffusion RIA 39
Trypsin blunted immunodiffusion 40
Phenylalanine ammonia-lyase reduced preciptin immunodiffusion 41
Bovine albumin blunted immunodiffusion 42



ages 1–14. Nearly 90% of cases will be solid tumors with metastases distal to the pri-
mary tumor site.

Cancers causing the most deaths in the United States for both sexes are lung and col-
orectal, followed by breast and uterine cancer in women, and prostate cancer in men.
Management of metastatic disease remains one of the most challenging aspects of
oncology care to date.

The principal treatment modalities for cancer are surgery, radiation therapy, and the
use of chemotherapeutic agents. Of these, surgery, if performed at an early stage of dis-
ease progression, offers the greatest chance for cure. Radiotherapy does not discrimi-
nate between normal and healthy tissue and must rely on external methods of targeting
radiation beams to the desired location. Collateral damage to healthy organs and tissues
can be high with devastating side effects. Chemotherapeutic agents, although capable
of “killing” tumor cells, also kill healthy cells.

Most patients will experience chemotherapy and/or radiation treatments as well as
surgery at some point during the course of their disease. Side effects will be so severe
as to limit treatment. Surgery is likely to be disfiguring. Cancer-associated pain will be
extreme and often require chronic, high doses of analgesics. Constipation, mental
clouding, depression, respiratory depression, and distress may accompany analgesic
use. For most, the prognosis will be poor.

Despite tremendous progress in understanding the underlying mechanisms of can-
cer generation and the emergence of biotechnology based therapeutics, chemothera-
peutic agents designed to “kill” cancerous cells distributed systemically via im or sc
injection, iv infusion, or oral administration remain the mainstay of anticancer therapy.
Many of these cytotoxic agents are designed to affect rapidly dividing cells at the level
of the DNA. Side-effect profiles reflecting the simultaneous “killing” of rapidly divid-
ing “normal” cells and sensitive tissues, such as found in the bone marrow. Decreased
platelet and blood cell formation are likely to contribute to patient death. Dose-limit-
ing side effects may also curb an ability to “kill” tumors with higher concentration of
drug, whereas suboptimal concentrations may favor the appearance of resistant clono-
genic cells and disease.

While some progress has been made in the treatment of certain tumor types, nearly
half of all patients will fail to respond or will relapse to metastatic disease. Despite the
appearance of nearly 70 approved chemotherapeutic agents for the treatment of cancer,
overall results have been disappointing. There is a desperate need for novel anticancer
agents and ancillary treatment products.

7. THE PROBLEM

The primary problem in the treatment of cancer is that differences between normal
cells of origin and malignant cells are subtle and difficult to identify, quantify, and
translate to beneficial therapy. Shared properties between normal and tumor cells have
confounded the development of tumor-specific agents.

7.1. Properties of Tumors and Malignant Cells
Normal tissues may be considered as those that are continuously renewing their cell

populations (e.g., bone marrow, intestine), those that proliferate slowly but may regen-
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erate in response to damage (e.g., liver, lung), or those that are relatively static (e.g.,
muscle and nerve).

Cancer can be defined as the emergence of cellular clusters resulting from continu-
ous production of abnormal cells that invade and destroy normal tissues.

Human tumors often arise first in renewing tissues. The tumor cells are able to
divide endlessly, without differentiating into a mature state and regardless of the func-
tion of the tissue they are in. As they begin to multiply, angiogenesis factors, growth
factors, and cytokines to stimulate the formation of collateral blood vessels and other
“support” tissues are released. Some tumors may increase in malignancy with time and
shed clonogenic cells that will give rise to metastatic nodules and eventually additional
tumor masses. Tumor cells are believed to be genetically unstable and subject to a high
degree of random mutation during clonal expansion that gives rise to lethal or disad-
vantageous mutations, as well as greater autonomy and growth advantages to those
cells that will go on to become tumor producers.

It is not surprising then, that tumors are heterogeneous in their origins and properties,
extending to almost any property measured, including surface markers, karyotype, mor-
phology, metastatic potential, and sensitivity to therapeutic agents. Nutritional hetero-
geneity may also occur and reflects the immature and (often) slower growing vasculature
associated with tumors. Typically, nutritional and oxygen gradients appear as distance
from the vascular tree increases. A dramatic influence on metabolic function and prolifer-
ation can be expected across cell layers. In some instances, regions of tumor necrosis may
emerge. The development of subclones may be a key underlying mechanism for tumor
progression and the emergence of resistance. Subclones with varying degrees of resis-
tance may contribute to the “hitting a moving target” challenge for the cancer therapist.

It is the spread of cancerous cells and the appearance of metastases and resistance
that represents the most difficult challenge to the oncologist. Routes and sites of metas-
tases vary with different primary tumors. As cancers breakthrough the surface of the
organ in which they originated, cells may shed, lodge, and begin to grow on the surface
of adjacent organs. Tumor cells may also migrate into the lymphatic system and be car-
ried to the lymph nodes and blood vessels. As malignant cells migrate through the
blood stream, many die. Others become trapped in vessels too small to let them pass.
Tumor cells originating in the GI tract may be stopped in the liver or eventually the
lung. Other tumor cells originating in other parts of the body may be stopped first in the
microvasculature of the lung. Smaller clusters of tumor cells, present as micrometaste-
ses, may remain relatively dormant and escape detection.

Four stages for cancer progression have been defined with increasing severity of dis-
ease and seriousness.

• Stage 1: Tumors are small and localized and, depending on location, may be removed
surgically.

• Stages 2 and 3: Tumors are larger and may have broken through the initial organ to attach
to additional surrounding organs and tissues; lymph node involvement is likely.

• Stage 4: Tumors are metastasized to other parts of the body, usually with nodal involvement.

Human tumors vary widely in their properties. They may arise in different parts of the
body, and they vary in retention of normal differentiation pattern, grade, extent of expan-
sion into surrounding normal tissue, and metastases or stage. It is likely that this variability
reflects the different or individual initial genetic alterations at the root of the cancer emer-
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gence and the cells that ultimately will constitute the tumor mass. The collective biological
properties of the tumor cells will determine the overall tumor phenotype. Cancer cells,
even when spread throughout the body, are likely to retain at least some physical and bio-
logical characteristics of the tissue in which they originated. Tumors arising from
endocrine tissue, for example, may continue to produce and release hormones. The more
de-differentiated a tumor, the more aggressive its growth and ability to generate metastases.

Although the cause of cancer is not completely understood, a combination of hered-
itary factors, virus or environmental exposures, and lifestyle has been implicated. Link-
age between cigarette smoking and lung cancer, for example, is widely accepted.
Typically, more than 140,000 people each year will be newly diagnosed with lung can-
cer. Epidemiologists are predicting that even with cessation of smoking programs,
these numbers are likely to continue for at least the next three decades.

Recently, specific genetic events have been implicated in the emergence of cancer
and the control of cell growth. Use of agents to specifically turn these genes off or on
has become the focus of intense preclinical and clinical research. It is likely that these
agents will find use in conjunction with known cytotoxic agents and newer formula-
tions as part of a “combination” or “cocktail” approach to cancer treatment.

Three major cancer subtypes have been described:

• Sarcomas: Arising from connective and supportive tissues, i.e., bone, cartilage, nerve,
blood vessels, muscle, and fat.

• Carcinomas: Arising from epithelial tissue, i.e., skin, body cavity and organ linings,
glandular tissue, breast, and prostate; squamous tumors resembling skin—adenocarcino-
mas resembling glandular tissue.

• Leukemia and lymphomas: Arising from blood cell-forming tissue and involving lymph
nodes, spleen, and bone marrow with an overproduction of lymphocytes.

The ideal anticancer chemotherapy is one that is specific for cancer cells yet capable
of diverse application to multiple tumor types and clonogenic lines while effectively,
but safely, shrinking primary tumors, as well as preventing or eliminating metastatic
nodules.

Present approaches in seeking to achieve this end include:

1. Tumor targeting and promotion of drug accumulation in solid tumor masses or nodules.
2. Tumor-specific or selectively acting agents based upon a unique feature of cancer cells.
3. Tumor-selective drugs using a cancer-specific activation mechanism or metabolic

requirement.

In the latter regard, it has been shown earlier that certain tumors have essential
requirements for amino acids such as asparagine, arginine, glutamine, and methionine.
The targeting of these amino acids using metabolic enzymes from various sources has
been one approach by which to “metabolically” select against tumor cells. Many of the
enzymes that have been suggested to be useful are of nonhuman origin, and PEGyla-
tion has been explored for the reduction or blunting of any immune reaction, as well as
for the prolongation of circulating life and minimizing of dosing frequency.

8. PEG ASPARAGINASE

Acute lymphoblastic leukemia (ALL) is a hematologic malignancy diagnosed in more
than 3000 adults and children in the United States each year (43). Substantial progress in
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treatment of acute lymphoblastic leukemia has been made. In the 1960s, the 5-yr survival
rate was as low as 4% of patients. Today, more than 73% of pediatric patients are expected
to survive 5 or more years. The response rate in adults, however, remains lower (44).

In the early 1950s, the observation was made that a component in guinea pig serum
had antitumor activity (45,46). This component was later identified as the enzyme
asparaginase which hydrolyses asparagine to aspartic acid and ammonia (45,46). Up
until that time, it had been thought that the nonessential amino acid asparagine played
no critical role in tumor growth. Depletion of asparagine experiments in cell culture
however, revealed the essential need for this amino acid in a number of neoplasms,
most likely as a result of a lack of activity or presence of the enzyme asparagine syn-
thase (46,47). In 1964 (46), asparaginase from Escherichia coli was found to be as
effective as guinea pig serum in treating experimental tumors, and a supply of the
enzyme in commercial quantities could be produced for human clinical trials. Active
enzyme was also isolated from Erwinia carotovora and other sources (48). With suc-
cess in human trials, asparaginase entered the clinical setting for the treatment of acute
lymphoblastic leukemia. Despite response to treatment, more than 50% of patients that
obtain a complete remission have relapse (49). Further, among those receiving asparag-
inase, more than 70% experience hypersensitivity reactions including life-threatening
anaphylaxis (50), an event that requires these patients to be closely monitored during
treatment (51). For those seeking reinduction of remission even years after time of
diagnosis and initial treatment, hypersensitivity reactions still occur (50).

Other limitations observed with asparaginase include a relatively short half-life of 20
h and a requirement for daily dosing for up to 14 d. Given the need for close monitoring,
the repeated doses require a lengthy hospitalization or daily doctor office visits (52).
Other toxicities associated with the use of asparaginase include neurological distur-
bances and hepatic damage (52). Nevertheless, asparaginase has been shown to be useful
for prolonged use during consolidation and maintenance therapy for ALL; use of the
drug for 20 wk after remission induction improved disease–free survival in children (46).

To prevent the formation of antibodies and anaphylactoid reactions on repeated use
of asparaginase, as well as to allow the use of enzyme where such antibodies had
already been formed, PEGylated asparaginase was prepared and developed through the
clinical trial process. Asparaginase, isolated from both E. coli and Erwinia carotovora
was PEGylated. Several studies (53–59) have documented the usefulness of PEG
asparaginase for the treatment of various cancers in both humans and animals. Ho et al.
(55,57) showed that plasma half-life of the conjugated enzyme in humans (55)
increased from 20 h (for native enzyme) to 357 h (for the conjugate). The increase in
the plasma half-life was caused by a decrease in clearance of the enzyme (55,57).
Some improvements in toxicity and efficacy were reported (53,59). PEGylated
asparaginase (pegaspargase) has since been approved by the FDA and marketed for the
treatment of ALL in patients who are hypersensitive to native forms of L-asparaginase.

Recently, Dr. Thomas C. Abshire of the Pediatric Oncology Group Operations Office
in Chicago, IL, et al. evaluated remission rates and toxicity of treatment with PEGylated
asparaginase in 144 children with B-precursor ALL in first relapse, with 95% of children
having received native asparaginase during initial therapy (60). In all cases, reinduction
therapy included doxorubicin, prednisone, and vincristine. In addition, children were
randomized to receive either weekly or biweekly doses of the PEGylated enzyme.

Complete remission occurred in 90% of cases overall, but occurred significantly
more often in children given weekly, rather than biweekly, doses of PEGylated
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asparaginase. Low asparaginase levels were associated with high antibody titers to
asparaginase, whereas high asparaginase levels were associated with a higher rate of
complete remission. High-grade infectious toxicity occurred in half of the patients,
although only four died of sepsis during treatment, and other toxicities were infrequent
and hypersensitivity was rare.

9. PEG METHIONINASE

Many tumors have been shown to have a metabolic requirement for methionine.
Colon, breast, prostate, ovary, kidney, larynx, melanoma, sarcoma, lung, brain, stomach,
bladder, varieties of leukemia, and lymphomas have been studied and implicated.
Methionine dependence has been defined as the lack of tumor growth when methionine
is replaced with homocysteine in growth media (61,62). Methionine depletion has been
suggested to synchronize tumor cells so that they become more sensitive to antimitotic
agents (63,64). Hoffman et al. have proposed and are evaluating the use of methionase as
an anticancer enzyme to “metabolically target” the elevated methionine dependency of
tumors in conjunction with antimitotic agents. Tan et al. (65) have cloned the gene for
methioninase (rMETase) from Pseudomonas putida and produced the protein in E. coli.
The IC-50 for rMETase tested against breast, renal, colon, prostate, melanoma, and CNS
tumor cells averaged 0.12 ± 0.06 U/mL whereas the observed IC-50 for normal cells tis-
sues averaged 1.53 ± 1.39 U/mL. Depletion of methionine induced apoptosis.

The efficacy of recombinant rMETase alone and in combination with cisplatin
(CDDP) was also examined in human colon cancer in nude mice (66). Results demon-
strated growth arrest of human colon tumors in nude mice at doses of 100 or 200 U
injected intraperitoneally every 8 h (T/C values were 23% and 20%, respectively, when
compared with control; p < 0.01 in both groups). Cisplatin, given at 7 mg/kg intraperi-
toneally at day 1 of therapy in combination with the lower dose of rMETase, resulted in
tumor regression (T/C value was 8% when compared with control; p < 0.01) with
apparent cures in two of six animals. Neither CDDP nor the lower dose of rMETase
alone caused tumor regression. Similar results have been observed with cotreatment
using 5-FU (67).

A pilot Phase I clinical trial has been initiated in order to determine rMETase toxic-
ity, rMETase pharmacokinetics, MET-depletion, and maximum tolerated dose (68,69).
Results from 15 high-stage breast and other cancer patients have demonstrated thus far
that doses up to 20,000 U are not toxic and can deplete serum methionine to levels
shown to be therapeutic preclinically. However, it is likely that the bacterium-sourced
enzyme will be antigenic.

Tan et al. (70) have thus also demonstrated that PEGylation of rMETase with PEG 5000
strands allows for retention of 70% of the enzyme activity while doubling the plasma half-
life and quadrupling the time period in which methionine levels could be reduced in rats.
Prolonged survival in tumor-bearing animals has also been shown. The utility of PEGy-
lated rMETase in human clinical study warrants further investigation (71–74).

10. PEG ARGINASE AND PEG ARGININE DEIMINASE

Malignant melanoma and hepatoma kill approx 16,000 Americans each year. It has
been suggested that arginine may be an “essential” amino acid for the growth and
metastasis of malignant melanoma and certain hepatomas (75).
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Arginase from a variety of sources has been identified and purified. A PEG with a
conjugate of arginase (molecular weight, 5000) was shown to retain 65% of its activity
and to possess a half-life prolonged from 1–12 h (76). Some improvement in survival
time of mice carrying Taper liver tumors was reported with no benefit seen for the non-
PEGylated enzyme (77).

Arginine deiminase (ADI: arginine dihydrolase, arginine desiminase, or guanidin-
odesiminase) is an enzyme that hydrolyzes the guanidino group of L-arginine to release
L-citrulline and ammonia. ADI has been obtained from mycoplasma, pseudomonas,
and streptococcus. Each host strain produces a different structural form of the protein
including variations in the active site.

Clark (78,79) and others have explored the utility of various PEGylated forms of
ADI for the treatment of cancer. Phoenix Pharmaceuticals Inc., Kentucky developed a
PEGylated ADI that recently was granted Orphan Drug Status by the FDA. Experi-
ments in animals have shown that PEGylated ADI is likely to be useful in the treatment
of human disease (78,79).

Other PEG ADI conjugates have been suggested (80), for example, ADI isolated
from Mycoplasma arginini and conjugated with methoxy-polyethylene glycol 4,6-
dichloro-1,3,5-triazine. Filpula and Wang (81,82) have suggested that the levels of
retained ADI activity provided by this and other approaches have been too low to be
useful in human disease, as shown in published growth inhibition studies. It has been
postulated that certain lysine attachment points on the enzyme are intimately connected
with the enzyme active site and that the protein would benefit from engineering. There-
fore, highly modified conjugates that demonstrate higher levels of retained activity are
being explored (81,82).

11. PEG IL-2

An alternative approach to chemotherapy for the treatment of cancer has been the
use of agents that stimulate the patient’s own immune system to reject tumors or
pathogens. Interleukin 2 (IL-2) is a lymphokine that stimulates the proliferation of T
lymphocytes, stimulates B lymphocytes, and induces production and release of inter-
feron-γ and activation of natural killer cells. Along with other cytokines, IL-2 serves as
a regulator of immune function, amplifying a response to an antigen. Recombinant
human IL-2 (rIL-2) when expressed in E. coli unlike the native protein is not glycosy-
lated, has limited solubility and requires high and long-term dosing for optimal benefit
(tumor regression or reconstituted immune function). Aggregation of protein may also
occur. Antibodies to rIL-2 have been found in patients undergoing clinical trials or
treatment. These antibodies could interfere with the effectiveness of the drug or lead to
unwanted side effects.

The current standard of therapy for stage 4 and recurrent kidney cancer is based on
IL-2. Kidney cancer patients were among the first to be treated with this form of
immunotherapy. IL-2 under the trade name Proleukin® was approved by the FDA for
use in patients with kidney cancer in 1992. In 1997, approx 30,600 people in the
United States were diagnosed and 12,000 people died with kidney cancer.

The four stages of kidney cancer are:

• Stage 1: Cancer is found only in the kidney and is 7 cm or less in size.
• Stage 2: Cancer is found only in the kidney and is more than 7 cm in size.
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• Stage 3: Cancer has spread to the fat around the kidney, or to the renal vein, inferior vena
cava, or nearby lymph nodes.

• Stage 4: Cancer has spread to other organs including the bowel, pancreas, lungs, or
bones.

The treatment for stages 1–3 kidney cancer is usually surgical removal of the kidney,
with or without removal of the adjacent tissues and lymph nodes.

PEGylated IL-2 has been manufactured and tested in human clinical trials by the
Chiron Corporation (Emeryville, CA). Earlier studies in animals (83,84) and humans
(85) showed that PEG conjugation would increase stability, decrease clearance, and
increase plasma half-life (>20-fold) of IL-2. Utility as an anticancer agent as well as
immune system enhancer for treatment of HIV-AIDS has been explored (86–91).

In one study examining immune system enhancement, all patients demonstrated
high levels of lymphokine-activated killer cell activity. Limiting dilution analysis
revealed an increase in the frequency of IL-2-responsive cells starting from abnormally
low levels and rising to above normal during the course of injections. In a subgroup of
four patients with greater or equal to 400 CD4+ T cells/µL at entry, there was a trend to
sustained increases in CD4+ T-cell numbers. However, this increase did not reach sta-
tistical significance. This subset of patients also exhibited higher proliferation
responses to phytohemagglutinin as mitogen. Several of these effects persisted for 3–6
mo after cessation of therapy.

Goodson and Katre (92) have used a PEG maleimmide reagent to selectively PEGy-
late IL-2 at the glycosylation site found in the recombinant protein as expressed in an
E.coli system. Full biological activity was maintained and a four-fold increase in circu-
lating half-life was observed. In studies examining the correlation between PEGylated
IL-2 administration and levels of predictive lymphokines in cancer therapy, responding
patients did not show a consistent pattern (93).

12. PEG GMCSF AND PEG GCSF

Most anticancer agents that are cytotoxic and directed toward the cellular DNA of
rapidly dividing cells have dose-limiting toxicities linked to destruction of the bone
marrow and the ability to produce blood cells and platelets. One approach to overcome
these “cytopenias” is to utilize agents that promote recovery of bone marrow function
so as to restore blood cell and platelet levels but also to allow for a higher dosing of
cytotoxic chemotherapeutic such that resistant tumors might be eradicated.

Growth and maturation of blood cells and platelets is under the control of a “cascade
of cytokines.” Both granulocyte-stimulating and granulocyte/macrophage-stimulating
factors are important regulators of quantity and quality of white blood cell function.

Recombinant human granulocyte colony-stimulating factor has been prepared in E.
coli (rhG-CSF) as a 156 amino acid protein (94). Recombinant human granulocyte/
macrophage colony-stimulating factor (rhGM-CSF) has been prepared in yeast as a
127 amino acid protein. Both proteins have a plasma half-life of approx 2–4 h and
require frequent injections to achieve desired neutrophil levels in patients receiving
chemotherapy.

Both molecules have been prepared in PEGylated form and studied in preclinical
models (95–97). Tanaka et al. (95) reported that conjugation of rhG-CSF with PEG
increased the plasma half-life from 1.8 h to 7 h in mice and increased observed neu-
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trophil counts. Similar results (98) were obtained in neutropenic mice that had been
treated with the anticancer agents, cyclophosphamide and 5-FU.

Satake-Ishikawa et al. (99) reported that G-CSF coupled to two or three strands of
10,000 molecular weight PEG, was more potent and longer acting in vivo than when
coupled to five strands of 5000 molecular weight PEG.

The question of relationship between molecular weight and number of attachment
sites, and potency and circulating life, has led to a number of studies examining PEG
molecular weights of 20,000 and 40,000, linkage chemistry on preservation of activity,
potency, and performance in animal models.

Thus, Malik et al. have prepared GMCSF (96,97) with a single linear strand with
molecular weights of approx 20,000 or 40,000. From a circulating lifetime perspective,
the authors predicted that this construct could be expected to have similar molecular
radii and, hence, similar rates of renal clearance to conjugates containing an average of
four or eight strands of PEG with a molecular weight of 5000.

Using PEG activation chemistries and reaction conditions designed to limit the
degree of PEGylation the authors demonstrated (Fig. 3) that over a period of several
days PEG GMCSF (murine) could be made with the desired properties. Analysis of
PEG fractions was by size exclusion HPLC.

Injection of mice with a chromatographic pool containing PEG GMCSF with one or
two strands of approx 40,000 molecular weight per molecule of GMCSF resulted in
dose-dependent increases in numbers of eosinophils, neutrophils, and monocytes in
peripheral blood (Fig. 4). Mice received two injections per day of the indicated doses
for 6 d, and their blood was sampled on day 7. Increases in counts of each cell type
were calculated relative to counts in mice injected with 100 ng GMCSF. Native
GMCSF given at the same doses had negligible effects.

From the standpoints of both regulatory acceptability and cost-effectiveness, mono-
or di-PEGylated conjugates may offer substantial advantages over the usual mixtures
of a less homogenous PEGylated species with a larger range of lower molecular weight
strands. Further, the attachment of fewer higher molecular weight strands may allow
for greater retention of potency while preserving the increased circulating life benefit
of “multiple” PEG attachments (100,101).
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13. PEG HEMOGLOBIN

With periodic or seasonal shortages of blood cells and platelets for transfusion as
well as with the discovery that virus, prions, and other infectious agents can be trans-
mitted by transfusion, emphasis has been placed on the search for a blood substitute.
Of the different blood cellular components that which lends itself toward substitution is
the red blood cell. The red blood cell functions to deliver oxygen from the lungs to the
tissues and return carbon dioxide from the tissues to the lung.

Oxygen-carrying perflourocarbon emulsions as well as various purified hemoglobin
preparations are being explored in human clinical studies (102,103). Aside from the
potential use of hemoglobin as a “red blood cell substitute” the potential exists for the
use of hemoglobin-based oxygen carriers for the treatment of cancer.

A characteristic of many human tumors is that as they grow various regions may
become hypoxic because of an inability for mature vascularization to develop despite
the release of angiogenic factors. Typically, a gradient of oxygenation is present, but
with less oxygen available with increasing distance from the nearest blood vessel. The
result is a metabolic gradient of activity within the tumor (104).

Of the patients being treated for cancer, it has been estimated that at least 60% will
receive radiation therapy sometime during the course of their disease. Since the
1950s, however, it has been known that oxygen is required to be present in the irradi-
ated tissue for the radiation energy to generate oxygen-free radicals and destroy
tumor cells. Studies in animals and humans have suggested that 10% to more than
50% of cells within a tumor mass may be hypoxic (oxygen pressure < 5–10 mmHg).
Tumor hypoxia has been found to limit remission rates and decrease prospects for
long-term survival or cure.

Among the more hypoxic tumors are breast, lung, colorectal, prostate, head-and-
neck, bladder, brain, cervical, and fibrous histiocytoma (105–109).

Several approaches to tumor sensitization to radiation have been proposed and
explored using agents that produce free radicals in response to radiation or inhibit
DNA repair after damage by ionizing radiation, but a comparatively simple possibility
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may be the raising of the degree of tumor oxygenation. Attempts to achieve this
through the use of hyperbaric oxygen chambers, allosteric regulators of hemoglobin
oxygen affinity (110,111), and oxygen-delivering solutions have been reported and
continue to be explored in clinical trials.

Use of hemoglobin-based solutions has also been explored. However, mammalian
hemoglobins are multimeric and can readily dissociate from tetramers to dimers. Fur-
ther, both dimers and tetramers can extravasate through the blood vessels into the
“third space” and scavenge nitric oxide along the way.

The limited ability to be retained within the blood stream and the ability to scavenge
nitric oxide of hemoglobin dimers and tetramers has been blamed for a variety of side
effects ranging from elevated blood pressure, esophageal or gastric intestinal spasm
and upset, to kidney damage. Further, for a red blood cell substitute to be useful, a rel-
atively long circulating life (measured in days) is highly desirable (102,103).

Attempts to crosslink by genetic means and produce “stabilized” or polymerized
hemoglobin by recombinant means or to achieve such stabilization by use of chemical
crosslinkers and polymerization agents has been reported (103). Several such agents
have been developed through the clinical trial regulatory process (112–117).

An alternative to genetic or chemical crosslinking and/or polymerization for limiting
the extravasation and side effects inherently associated with hemoglobin is PEGyla-
tion. A number of laboratories have pursued this approach and reported significant
improvements over unmodified hemoglobin or genetic or chemically crosslinked
preparations (102,103). Human, bovine, and other sourced hemoglobins have been
examined (102,103,118).

An important consideration in the use of human-derived hemoglobin as a starting
point for chemical modification or PEGylation is the removal of infectious disease
agents from collected donor blood. Of special concern are strains of human immunod-
eficiency virus (HIV) and hepatitis (HBC, HCV). In addition to the benefit of protein
purification protocols relative to infectious agent removal, specific virus inactivation
steps such as sterilization and filtration have been adopted by those seeking to develop
human hemoglobin-based products. These steps include rigorous screening of donor
blood by a variety of diagnostic assays for infectious agents.

With respect to animal-derived hemoglobin, an important consideration has always
been the removal of any adventitious viral or bacterial infectious agents that might
transmit disease to humans. Most recent concerns have been prions. These have been
identified as the likely causative agent in bovine spongiform encephalitis (BSE or “mad
cow disease”). The corresponding disease in man is the rare disorder Creutzfeld Jacob
disease (CJD). Recent increases in the number of CJD cases and, in particular, a modi-
fied strain of the disease appearing in young people in England and other parts of
Europe has been linked to the consumption of beef or beef products obtained from
infected cows. Transmittal of the culprit prion from cattle to man has been suggested
and is strongly supported by recent experimental evidence. Public fears have emerged
as a major barrier to the development of bovine-derived products (119).

The risk of passage of infectious disease agents into final products derived from ani-
mal sources can be greatly diminished not only by the use of protein purification, steril-
ization, and filtration technology but also by limiting the collection of raw materials to
those animals segregated in controlled herds. Such herds are maintained to be self propa-

152 Part II / Technologies Available



gating. Many consider this approach an essential component of any animal-derived prod-
uct development plan. A process for purification of bovine hemoglobin from collected
red blood cells and PEGylation has been described in the literature (120–122).

Studies at Enzon, Inc. (Piscataway, NJ) have focussed in particular on the benefits of
PEGylated hemoglobin (bovine-sourced) relative to tumor oxygenation (104).

Researchers at Harvard’s Dana-Farber Cancer Institute have examined the ability of
PEG hemoglobin to oxygenate models of animal and human tumors in rodents. Oxy-
genation of hypoxic or near hypoxic tumors was found to increase from 100–300%
after intravenous infusion of PEG hemoglobin. A detailed description of study materi-
als, methods and results is given in (104).

An increased response to radiation treatment consistent with increased oxygenation
of tumors was also observed. In osteogenic sarcoma rodent models a greater than 80%
response rate was seen compared with a 10% response rate seen in animals receiving
radiation but no PEG hemoglobin (123). In other studies, PEG hemoglobin was shown
to oxygenate tumors to varying degrees dependent on animals breathing room air, or
oxygen levels at 28% or 95%. A correlation between tumor oxygenation and increased
tumor growth delay in radiation or chemotherapy treatment was shown (124).

PEGylated bovine hemoglobin has been studied recently in a human clinical trial for
the oxygenation of tumors as an adjunct to radiation therapy of cancer.

14. PEG URICASE

Increased levels of uric acid in blood (hyperuricemia) or urine (hyperuricosuria)
(125,126) are associated with a number of diseases and disorders. Primary among these
are lymphoid malignancies, severe gout, and certain patients receiving organ trans-
plant. Whereas most hyperuricemia (gout) patients will respond to the drug of choice,
allopurinol, a significant number do not. It has been estimated that approx 2% of
patients respond poorly to allopurinol treatment (127). It has also been reported that
allopurinol may be contraindicated in patients undergoing therapy for leukemia or lym-
phoma or for organ graft rejection (125,126,128). As a result, these patients may suffer
from painful and disabling deposits of uric acid in their joints and connective tissues
(tophi). Some are at risk for kidney failure.

Although most mammals possess urate oxidase (uricase) and metabolize uric acid to
more readily excreted products, humans do not. Rather, humans possess two “nonsense
mutations” in the gene for uricase (129). Treatment of patients with injection of nonhu-
man uricase is complicated by the high risk of serious immune responses (130).

Mountain View Pharmaceuticals, Inc. (Menlo Park, CA) is investigating PEG conju-
gates of genetically engineered mammalian uricase (131–133). A product for human
use (PURICASE) is being codeveloped with Biotechnology General, Inc. (Metro Park,
NJ). The advantages of PEG-modified recombinant mammalian uricase over the fungal
uricase that is currently used in a few European countries (130) are likely to include
longer circulating lifetime and reduced immunogenicity.

15. PEG PHOSPHOLIPASE-ACTIVATING PROTEIN

PEGylation of peptides using the relatively non-site-directed chemistries that have
been described for proteins can often result in the attachment of PEG strands to sites
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that are critical for biological activity. The disadvantage of the approach is especially
acute with peptides of lower molecular weight where the probability of attachment to a
critical site is proportionally increased.

One approach is to seek to attach PEG to either the amino or carboxyl end of the
peptide during or postsynthesis (134). The PEGylation of a fibrinectin related tripep-
tide (arg-gly-asp) in the latter manner has been described (135). The tripeptide was
coupled to amino PEG by activation of the aspartic acid side chain with dicyclohexyl-
carbodiimide and hydroxybenzotriazole. In mouse models of cancer reduction in tumor
metastases, presumably through interference with cell–cell adhesion, was noted.

Mensi-Fattohi et al. (136) describe a process for synthesizing peptides with PEGylation
of specifically predetermined sites in the peptide sequence. The authors report the prepara-
tion of PEGylated intermediates that can be inserted during peptide chain elongation.

More recently, PEGylated phospholipase activating protein (PLAP) derived peptides
have been prepared and evaluated as novel anticancer agents. Phospholipase A2 activat-
ing protein is an endogenous stimulator of phospholipase A2 (137,138). The enzyme
cleaves the sn-2 fatty acid from phospholipids in eukaryotic cells. Frequently in mam-
malian cells the sn-2 fatty acid is arachidonic acid, which may go on to be oxygenated
to form prostaglandins, leukotrienes, and other eicosinoid metabolites. The phospholi-
pase-activating protein gene has been cloned and sequenced from human and animal
sources. A peptide sequence responsible for the phospholipase enzyme activation has
been identified (137).

Interestingly, PLAP and the stimulatory domain peptide have been shown to activate
infiltrating lymphocytes and on injection into rabbit knee joint to induce arthropathies
that resemble rheumatoid arthritis (139,140). PLAP and the stimulatory domain peptide
have both been shown to increase eicosinoid and inflammatory cytokine production.

The notion that PLAP peptide might stimulate tumor-infiltrating lymphocytes and
thus an immune response as an anticancer strategy has been explored (141). In that
study, PLAP peptide and a nonphospholipase-stimulating control peptide were each
immobilized onto carrier beads and injected separately into rodent air pouches contain-
ing syngeneic tumors. Controls received nonactivating peptide; treated animals
received activating peptide. Dramatic activation of tumor infiltrating lymphocytes was
observed, with marked invasion of tumor tissue by NK cells and tumor shrinkage.
Injection of peptide only without carrier bead immobilization showed no effect, sug-
gesting the need for PEGylation to enhance circulating lifetime and systemic delivery.

PEGylated peptide (ESPLIAKVLTTEPPIITPVRRT) was prepared using linear
methoxy PEG aldehyde (molecular weight, 5000) obtained from Shearwater Polymers,
Inc. (Huntsville, AL). Mice bearing Lewis Lung tumors were evaluated in a study com-
paring equivalent doses of PEGylated peptide or paclitaxel. These results are summa-
rized in Table 4.

16. PEG MEGAKARYOCYTE FACTOR

Platelets play an essential role in health and thrombosis. They are produced from
bone marrow megakaryocytes. If the level of circulating platelets drops below a given
threshold, thrombocytopenia occurs and the patient is at risk for hemorrhage.

Many cancer chemotherapeutics attack the bone marrow cells which produce the
precursors for the blood cell components, including platelets. Patients who receive
chemotherapy for cancer are often pancytopenic. The loss of immune protection and
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the propensity for hemorrhage are major contributors to mortality in the treatment of
cancer.

Whereas erythropoietin and the granulocyte stimulatory factors have been developed
for the treatment of anemia and leukopenia, little is available to stimulate platelet pro-
duction or increase platelet count other than transfusion of donor-derived platelets. More
than 7 million units of platelet concentrates are transfused annually in the United States.

It has been known for quite some time that a humoral factor present in the plasma of
patients with severe thrombocytopenia could increase the platelet count when injected
into animals. This factor has been named thrombopoietin or TPO. The isolation of this
cytokine, however, proved to be difficult because of its low concentration in plasma
and the lack of reliable assays. It was not until 1994 that TPO was cloned. Throm-
bopoietin moved from the laboratory to the clinic in less than 2 yr since its cloning.
Two forms of recombinant TPO have been developed for clinical use. The full-length
molecule (Genentech, Inc., San Francisco, CA) is referred to as recombinant human
thrombopoietin, and a truncated version of the molecule (Amgen, Thousand Oaks, CA)
is referred to as PEGylated recombinant human megakaryocyte growth and develop-
ment factor or MGDF.

Proposed advantages of PEGylation include the reduction of antibody formation,
which may limit the development of antibodies that could interfere with clinical treat-
ments or cause unwanted side effects, and increased circulating life.

Both forms of TPO have been evaluated in human clinical trials. In a sample study,
Fanucchi et al. (142) conducted a randomized, double-blind, placebo-controlled dose-
escalation study of MGDF in 53 patients with lung cancer who were treated with carbo-
platin and paclitaxel. The patients were randomly assigned in blocks of four in a 1:3 ratio
to receive by sc injection either placebo or MGDF (0.03, 0.1, 0.3, 1.0, 3.0, or 5.0 µg per
kilogram of body weight per day). No other marrow-active cytokines were given.

In the 38 patients who received MGDF after chemotherapy, the median nadir
platelet count was 188,000 per cubic millimeter (range, 68,000 to 373,000), compared
to 111,000 per cubic millimeter (range, 21,000 to 307,000) in 12 patients receiving
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Table 4
Comparison of PLAP and Paclitaxel Anticancer Activity

Dose mg/kg PEGlated PLAP time to death (d) Paclitaxel time to death (d)

none 17 17
0.5 21
1.0 21
5.0 23a 19
15 24b 22a

25 26 c 7d

a p <0.5
b p <0.05
c p <0.001 significantly improved survival vs untreated animals
d p <0.001 significantly worsened survival vs untreated animals.
Animals were treated with 5000 MW PEG-PLAP peptide following development of an air pouch on the

animals’s backs that had been implanted with 101 Lewis Lung cancer cells. Survival was monitored. There
were 20 animals in each group. Data are presented as the mean survival at each day examined; SD was less
than 5%.



placebo (p = 0.013). The platelet count recovered to baseline levels in 14 d in the
treated patients compared to more than 21 d in those receiving placebo (p < 0.001).
Among all 40 patients treated with MGDF, one patient had deep venous thrombosis
and pulmonary embolism, and another had superficial thrombophlebitis.

It was concluded that PEG MGDF has potent stimulatory effects on platelet produc-
tion in patients with chemotherapy-induced thrombocytopenia.

In general, administration of TPO or MGDF elicits an increase in circulating platelet
count by several-fold in patients who have normal hematopoiesis before chemotherapy.
The response in platelets is accompanied by a significant increase in bone marrow
megakaryocytes, an increase in frequency and the number of bone marrow progenitor
cells of multiple cell lineages, and a marked mobilization of progenitor cells into the
peripheral blood. The results of early trials suggest that TPO or MGDF attenuates
thrombocytopenia and enhances platelet recovery after chemotherapy.

However, in 1998, Amgen announced that it was ceasing clinical development of
PEG MGDF because of a follow-up onset of thrombocytopenia and the appearance of
neutralizing antibodies in patients. Piacibello et al. (143) demonstrated that TPO may
stimulate growth of human leukemic blasts and human leukemic progenitors. Concerns
about widespread clinical use of TPO or PEG MDFK in the proposed treatment of
thrombocytopenias of leukemic and preleukemic disorders have been raised.

17. PEG CONCANAVALIN A

Phytohemagglutinins, phytagglutinins, and lectins are proteins that are found in
many mono- and dicotyledon plants, molds, and lichens. Lectins bind carbohydrates in
a very specific manner. Lectins bind with free sugar or with sugar residues of polysac-
charides, glycoproteins, or glycolipids in solution or bound to cell membranes.

The function of lectins in plants is the subject of considerable investigation. Lectins
may be involved cell–cell recognition and regulation of physiological functions.
Lectins may be multimeric with subunits with different binding sites. Specificity of
binding sites implies the presence of endogenous saccharide receptors on other cells or
glycoconjugates or in the tissues from which they are derived.

The biological activity of many lectins is dependant on the availability of metal ions.
Lectins are well characterized as toxic molecules in animal models. The use of ribo-
some-inhibiting proteins such as ricin as fusion products or conjugates to antibodies
directed against tumor selected antigens has been suggested. Understanding the bind-
ing specificity of lectins has been of great importance in elucidating the nature of mam-
malian glycoproteins as well as in their purification and in exploring the relationship
between structure and function.

Glycoproteins or carbohydrate residues present on the surface of tumor cells have
been suggested as targets for therapeutic purposes using lectins or antibodies. It has
been found that treatment with antilectin antibodies can suppress growth of tumor cells
in agarose and inhibit lung colonization in vivo. Lectins also have the potential use in
cancer treatment strategies where lectins promote internalization by endocytosis.

Wheat germ lectin has been found to induce lectin-dependent macrophage-mediated
cytotoxicity against human bladder cancer cells. Studies have also revealed that human
alveolar macrophage tumoricidal activity can be induced by wheat germ lectin (144–156).

Concanavalin is a protein with a molecular weight of 104,000 that at pH 4.5–5.6
exists as a single dimer. At pH > 7.0 it is predominantly tetrameric. Concanavalin A
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binds two transition metal ions per monomer. Both ions must be present for binding to
nonreducing alpha-D-glucose and alpha-D-mannose residues.

Concanavalin A agglutinates red blood cells and forms complexes with blood group
substances, immunoglobulin glycopeptides, and carcino-embryonic antigens. Con-
canavalin A exhibits mitogenic activity with lymphocytes. Cancer cells are readily
aggregated by concanavalin A; normal cells are not.

For use of concanavalin A (or other lectins) as a therapeutic directly or via conjuga-
tion or fusion to other proteins and ligands, their plant origin should be considered as
this raises the potential for immune or allergic reactions in humans.

Ueno et al. (157) have proposed the use of concanavalin A as an agent for the stimula-
tion of antitumor cytotoxicity by lymphocytes. They prepared PEGylated concanavalin
A (Con A) using 2,4-bis[O-methoxypoly(ethyleneglycol)]-6-chloro-s-triazine-activated
PEG. The immunoreactivity of anti-Con A antibodies toward PEG-Con A was found to
be dependant on the degree of PEGylation of amino groups. Circulating life in mice
was also shown to be increased. Although the mitogenic activity of PEG Con A toward
murine spleen cells was reduced by the conjugation, administration of PEG-Con A to
mice enhanced the antitumor cytotoxicity of peripheral lymphocytes against melanoma
B 16 cells.

18. PEG ANTIBODIES AND IMMUNOTOXINS

The discovery that antibodies could recognize antigens with a great deal of speci-
ficity contributed to the hope for “magic bullets” that could be used for the treatment of
cancer. This hope was predicated on the identification of antigens that would be unique
or at least highly selective for tumors and either of themselves therapeutic or able by
some strategy to “bring” along a cytotoxic or other therapeutic agent or event. A major
consideration for antibody-based therapy is whether or not binding is limited to the tar-
get cell surface or if postbinding internalization occurs.

To bring immunotherapy to human clinical trials has required the discovery of solu-
tions to such problems as antigen identification, antibody production, chemical and
genetic fusion approaches, and optimization of routes of delivery and dosing sched-
ules. To date, substantial progress has been made and more than 200 antibody-based or
combination agent human clinical trials are listed by the NIH (for latest update, see
http://www.clinicaltrials.gov).

Advances in antigen identification and the ability to produce monoclonal antibodies
as well as their fragments have enabled a variety of new approaches (158–160).

Relative to the need for PEGylation, an important observation has been that antibod-
ies produced by murine cells or in nonhuman species or cells, are themselves likely to
promote an immune or allergic response. HAMAs (human antimouse antibodies) have
been of particular concern, thus, considerable time and expense have been used to pre-
pare the most promising antibodies in a humanized form.

For chimeric or mutein constructs as well as the use of antibody fragments the bene-
fit of PEGylation relative to prolongation of circulating life has also been an attractive
approach. For example, Kitamura et al. (161) have studied the PEGylation of the
murine monoclonal antibody A7. This antibody has been suggested to be selective for
colon and pancreatic tumors (162,163). PEGylation of F(ab′)2 fragments using acti-
vated linear strands of PEG of 5000 molecular weight has demonstrated longer circu-
lating half-life and higher tumor accumulation when compared with non-conjugated
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F(ab′)2. However, the tumor:blood ratio of the free F(ab′)2 fraction was higher than
that for the conjugate.

Takashina et al. (164) compared conjugation of the A7 antibody or its fragments to
linear strands of PEG (molecular weight, 5000) and dextran (molecular weight,
70,000). In vitro characterization showed retention of antigen binding activity. On iv
administration the PEGylated antibody had twice the half-life of the nonconjugated
antibody. Dextran conjugates showed a higher clearance rate and shorter half-life,
when compared with nonconjugated and PEGylated antibody.

Eno-Amooquaye et al. (165) have also studied the benefits of PEGylation of anti-
body enzyme conjugates and report benefits to circulating lifetime as well as altered
biodistribution. IgG, F(ab′)2, and Fab′ fragments of the anti-CEA antibody A5B7 have
been PEGylated with activated linear strands of PEG with molecular weight of 5000,
labeled with 125I; the pharmacokinetics were compared with the unmodified forms in
the LS174T colonic xenograft model in nude mice (166). In this study, PEGylation of
the intact antibody had little effect on biodistribution other than slight reduction of
tumor accumulation.

In contrast, PEGylation of F(ab′)2 and Fab′A5B7 significantly prolonged plasma
half-life and increased labeled antibody accumulation in the tumor and to a lesser
extent in normal tissues. Some reduction in tissue to blood ratios was also observed.
Prior to PEGylation, Fab′ A5B7 cleared more rapidly from the circulation than did
F(ab′)2. After PEGylation, their biodistribution and circulating lifetimes were more
similar, whereas the tumor to blood ratios were reduced and resembled that of the
intact antibody. The authors suggest that enhanced tumor accumulation, reduced nor-
mal tissue to blood ratios, and potentially reduced immunogenicity of fragments after
PEGylation warrants further investigation.

As PEG modification of substances with anti-tumor activity was shown to enhance
penetration into growing solid tumors and extend antitumor effects (123), Hurvitz et al.
(167) introduced as modifier two types of monoclonal antibodies (N12 and L26) specific
to the ErbB2 (HER2) oncoprotein. These antibodies suppress the growth of tumors over-
expressing ErbB2 (e.g., N87 human tumor) and the effect of PEG on their antitumor
activity was evaluated. Methoxy-PEG-maleimmide conjugated to sulfhydryl groups at
the hinge region of the antibodies, impaired their antibody binding to N87 tumor cells,
and did not enhance the antitumor inhibitory activity in tumor-bearing mice.

A branched N-hydroxysuccinimide-activated PEG (PEG2), conjugated through amino
groups of the protein, was used for binding to the whole antibody (Ab) or to its
monomeric Fab′ fragment. When tested against N87 cells in vitro, the binding activity
and antitumor cytotoxic effects of Ab-PEG2 were mostly preserved. PEG2 modification
did not seem to alter the tumor-inhibitory activity of the antibodies in vivo, and the same
pattern of tumor development was observed during the first few weeks following admin-
istration. However, the stimulating effects of PEG were observed at later stages of tumor
growth since tumor development was either slowed down or completely arrested. Fur-
thermore, a second tumor implanted into these mice during the later stage was signifi-
cantly or completely inhibited, contrasting with the results in mice injected with the
unmodified antibody. The Fab′-PEG2 monomeric derivative was also shown to be effec-
tive in inhibiting the growth of a second tumor. The extended and prolonged enhancing
effect of PEG on the antitumor activity of antibodies or Fab′ fragments directed against
ErbB2 may be of importance in the treatment of ErbB2-overexpressing neoplasms.
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Mouse A33 antibody has been shown to target metastatic colon cancer and to be of
some antitumor benefit (168,169). However, because of the development of human
anti-mouse reactivity, only a single treatment was possible. A humanized version of
mAb A33 (huA33) has been prepared and evaluated in patients who were treated in
cycles of four weekly escalating iv doses. Significant toxicity was observed at the high-
est dose tested. However, partial responses were observed, although in some patients
continued treatment in the presence of the humanized antibody resulted in the develop-
ment of systemic reactions.

PEGylation of huA33 with linear methoxy-PEG (molecular weight, 5000 or 20,000)
has been investigated. For the 5000 molecular weight PEG (32%–34% of primary
amines conjugated) or the molecular weight 20,000 PEG (16%–18% conjugated) more
than 50% of binding to SW1222 colon cancer cells could be preserved relative to non-
conjugated antibody. In mice, after repeated immunization with PEGylated antibody,
antiantibody titers occurred in less than 5% compared with titers of the non-PEGylated
controls. Microdistribution of antibody uptake in xenograft models suggested that the
PEGylated preparations reached the same peak staining intensity as native huA33,
although more slowly. The authors suggest that PEGylation levels sufficient to sup-
press immunogenicity may be achieved (170).

With the availability of tumor-selective antibodies as well as the discovery of recep-
tors and ligands that may be selective for tumors, the notion of the use of toxins as anti-
cancer agents coupled to these targeting moieties has received considerable attention.
Like antibodies themselves, issues that have emerged for the toxins as well as chimera
include potential immune or allergic reactions to repeat administrations, short circulat-
ing lifetimes, and systemic effects.

Pseudomonas exotoxin A (PE) is composed of three structural and functional
domains. Domain Ia is responsible for cell recognition, domain II for translocation of
PE across the cell membrane, and domain III for ADP-ribosylation of elongation factor
2, thereby being toxic to cells. Pastan et al. (171) have investigated the role of the
amino acids exposed on the surface of domain III and have determined conditions for
PEGylation such that cytotoxic activity might be maintained but circulating lifetime
increased and potential immune or allergic reactions blunted. The authors demon-
strated that PEGs modified by a single linear PEG strand (molecular weight, 5000) via
a disulfide or a thioether bond retained high levels of cytotoxic activity, but when a sin-
gle linear strand (molecular weight, 20,000) was used activity was reduced.

Chimeric proteins or muteins have been explored to target Pseudomonas exotoxin to
tumors. As aforementioned in such constructs the targeting moiety may be an antibody
(or fragment) or receptor ligand directed to an antigen or receptor selective for tumors.
Wang et al. (172) have constructed a chimera suitable for PEGylation, i.e., an engi-
neered mutein composed of human transforming growth factor alpha (TGFα) fused to
a fragment of Pseudomonas exotoxin (PE38) devoid of its cell-binding domain. The
new protein, termed TGFα R29-L2-CH2-PE38QQ δ (TCP), has no lysine residues in
the TGF α and PE38 portions. Human IgG4 constant region CH2 and a tetradecapep-
tide linker, L2, were inserted between TGF alpha and PE38. Together, L2 and CH2
contain 13 lysine residues that serve as potential PEGylation sites.

PEG conjugates of TCP (PEG-TCP) have been prepared and reaction products have
been separated by ion exchange chromatography. Two PEG-TCP species termed B4
and B6 retained 15% and 4% of cytotoxicity, respectively, and 26% of their receptor
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binding activity when compared with unmodified TCP. Both B4 and B6 had prolonged
circulation times in the blood and reduced toxicity in animals. The mean residence
times of B4 and B6 were 37 and 68 min, respectively, compared to 7 min for TCP.
When administered intraveneously to tumor-bearing mice, both B4 and B6 produced
marked antitumor effects, whereas the unmodified TCP had none. The authors suggest
that the prolonged circulating time and reduced toxicity of PEG-TCP compensate for a
diminished cytotoxic activity and significantly enlarge the therapeutic window of this
and other chimeric toxin or immunotoxin constructs. More recently, an SS1(dsFv)-
PE38 immunotoxin construct has been studied in human clinical trials. SS1(dsFv) rec-
ognizes the antigen mesothelin, which is normally associated with cells lining cavities
in the body but is also found associated with certain head-and-neck, lung, cervix, and
ovarian cancers (173–176).

Another recent preparation, PEGylated recombinant anti-Tac(Fv)-PE38 (LMB-2) is
a recombinant immunotoxin composed of a single-chain Fv fragment of the antihuman
Tac monoclonal antibody to the IL-2 receptor α-subunit fused to a 38-kDa fragment of
Pseudomonas exotoxin (177,178). For site-specific PEGylation with linear methoxy
PEG (molecular weights of 5000 or 20,000), one cysteine residue was introduced into
the peptide linker between the Fv and the toxin (177). When compared with the non-
PEGylated LMB-2, both PEGylated immunotoxins showed similar cytotoxic activities
in vitro but a five- to eight-fold increase in plasma half-life in mice, and a three- to
four-fold increase in anti-tumor activity. This was accompanied by a substantial
decrease in animal toxicity and immunogenicity.

19. PEG PACLITAXEL

The biodistribution of anticancer agents has been shown to be altered by conjugation
to polymers or by inclusion into various liposomal formulations (123,179–185). In
part, the change is a result of the hyperpermeability of tumors and the absence of a
mature lymphatic drainage system (186–188). This anatomic feature allows for the
passive accumulation in tumors of various drug substances dependent on molecular
weight, charge, and Stokes radius of any conjugates or liposomes. Murakami et al.
(184) have characterized the relationship of PEG molecular weight (linear strands) and
accumulation in rodent tumor models. As might be expected, the higher the molecular
weight, the greater the degree of tumor accumulation.

Paclitaxel is an anticancer agent originally isolated from the bark of the Pacific yew
tree (Taxus brevifolia). It has been approved by the FDA to treat breast, ovarian, and
lung cancers, as well as AIDS-related Kaposi’s sarcoma. Numerous clinical trials are
examining the use of paclitaxel alone or in combination with other therapies for the
treatment of additional cancers (for latest updates, see http://www.clinicaltrials.gov).

Rather than function by intercalation or cutting of DNA as do many chemotherapeu-
tic agents, paclitaxel affects microtubules. In normal cell growth microtubules are
formed as cells begin dividing. When division stops microtubules are broken down or
destroyed. Paclitaxel blocks microtubule breakdown, preventing further cell division.
Like many anticancer agents, paclitaxel and related taxoids are poorly soluble in water.

Although paclitaxel was first evaluated in 1984, it was not until 1992 that the FDA
approved the use of paclitaxel for refractory ovarian cancer. In 1994, the FDA approved
paclitaxel for treating breast cancers that recur within 6 mo after adjuvant chemotherapy,
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as well as breast cancers that had not responded to combination chemotherapy. In 1997,
paclitaxel was also approved by the FDA as a treatment for the AIDS-related cancer
called Kaposi’s sarcoma. In 1998, it was approved for first-line therapy for the treatment
of ovarian cancer in combination with cisplatin and, in combination with other anti-
cancer drugs, for the treatment of certain forms of advanced lung cancer.

Although operating through a different mechanism than many chemotherapeutics,
the side effects associated with paclitaxel use are predominately the same, i.e., tempo-
rary damage to the bone marrow. In addition to altering biodistribution and promoting
tumor accumulation, chemical conjugation of polymers to anticancer agents has been
suggested to reduce side effects (123). It is reasonable, then, to pursue polymeric con-
jugated forms of paclitaxel in an attempt to reduce dose-limiting side effects, and to use
water-soluble polymers to help resolve solubility and formulation issues for this excit-
ing drug.

Li et al. (189) have reported the conjugation of a linear strand of PEG with a molec-
ular weight of 5000 to the 2′ position of paclitaxel through a spacer succinyl group.
The resultant PEGylated paclitaxel prodrug was highly water soluble (> 20 mg equiv.
paclitaxel/mL). The rate of release of PEG from the paclitaxel conjugate was pH
dependent with a half-life release rate of 7.6, 54, and 311 min at pH levels of 9.0, 7.4,
and 6.0, respectively. The ability to inhibit growth of B16 melanoma cells in culture
was similar for both the PEG conjugate and nonconjugated paclitaxel. In MCA-4 mam-
mary tumor-bearing mice, a single dose of PEG-paclitaxel (40 mg equiv. paclitaxel/kg
body weight) significantly delayed tumor growth.

Enzon, Inc. (Piscataway, NJ) has reported the preparation of water-soluble 2’ taxol
PEG esters as prodrugs (190). The concept of a prodrug that would be activated by a
tumor-selective mechanism or be released as conjugates that accumulate in tumors is
an attractive approach to discovering safer and more effective anticancer compounds
(123,191,192). To optimize circulating lifetime with the rate of ester release, a 40,000
molecular weight linear PEG strand was used. Evaluation in rodent tumor models has
suggested the PEG paclitaxel analogues are active against ovarian, colon, and lung
tumors and possibly with less toxicity than with a non-PEGylated drug. This company
has filed an IND with plans to pursue clinical development of PEGylated paclitaxel
(December 2000). In addition to PEGylation, conjugation of paclitaxel to other poly-
mers such as polyglutamic acid or its inclusion in a variety of foams, particles, and
films has also been reported.

PG-TXL, a polyglutamate paclitaxel conjugate in preclinical animal studies, demon-
strated fewer side effects and significantly improved tumor killing activity when com-
pared with nonconjugated paclitaxel alone, including disappearance of tumors in
established animal breast cancer models in which similar doses of paclitaxel merely
slowed tumor growth. Paclitaxel is linked to the carboxylic residues of the polygluta-
mate backbone through an ester bond (about 10% of the carboxylic groups are conju-
gated). The highly charged glutamates help to make the complex highly water soluble.
A total weight of 50,000 is believed to be optimal for tumor accumulation. PG-TXL
remains inactive until paclitaxel is released within the tumor tissue by enzymatic
action. Kinetic studies show that six times more PG-paclitaxel gets into tumors when
compared with the nonconjugated drug (193). Studies done on Lewis lung and
melanoma models extended these results to a range of tumors (194).
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Cell Therapeutics, Inc. (Seattle, WA) in collaboration with The Cancer Research
Campaign (CRC) sponsored a UK Phase I clinical trial of PG-TXL, and Phase II trials
have been scheduled in the United States.

In addition to its use as an anticancer agent, paclitaxel has also found uses in the
treatment of other diseases and conditions. The use of PEGylated or other polymeric
conjugated forms of paclitaxel may warrant investigation here as well. In 1998,
Angiotech Pharmaceuticals, Inc. (Vancouver, BC) announced encouraging preliminary
results from the treatment extension phase of its Phase I/II clinical study of paclitaxel
for the treatment of secondary progressive multiple sclerosis.

20. PEG DAUNORUBICIN/DOXORUBICIN

The anthracycline antibiotics doxorubicin and daunorubicin are among the most fre-
quently prescribed anticancer agents. Their use is often as part of a cocktail of other
agents. Doxorubicin hydrochloride is available for recommended use with leukopenia,
thrombocytopenia, and anemia in a single, rapid iv infusion repeated after 21 d. Dox-
orubicin can extravasate causing local tissue necrosis. Doxorubicin is effective in acute
leukemias, malignant lymphomas, breast cancer and—when combined with cyclophos-
phamide, vincristine, procarbazine, and other agents—in Hodgkin’s disease and non-
Hodgkin’s lymphomas. Together with cyclophosphamide and cisplatin, it has been
used for treatment of ovarian carcinoma; it has routinely been used for chemotherapy
of small cell carcinoma of the lung, sarcomas, metastatic thyroid carcinoma, carcino-
mas of the endometrium, testes, prostate, cervix, head-and-neck, and for plasma cell
myeloma.

As with most anticancer agents, myelosuppression is a major dose-limiting compli-
cation. Cardiomyopathy is an additional and unique complicating side effect of the
anthracycline antibiotics. Cumulative dose-related toxicity may be manifested by con-
gestive heart failure that is unresponsive to digitalis. Daunorubicin hydrochloride is
also available for intravenous use. Daunorubicin is useful in the treatment of acute
lymphocytic and acute granulocytic leukemias. Its activity against solid tumors in
adults however appears to be minimal. Polymer conjugation with tumor accumulation
benefits and alteration of biodistribution may enhance the safety and efficacy of the
anthracycline antibiotics.

Greenwald et al. (195,196) have developed methods for the PEGylation of prodrugs
containing amino groups based on the trimethyl block reaction. PEG-daunorubicin
prodrugs, with a half-life of 2 h, were evaluated in an in vivo solid tumor model and
found to be more efficacious against ovarian tumors than nonconjugated drug.

Rodrigues et al. (197) have prepared doxorubicin maleimmide derivatives containing
an amide or acid-sensitive hydrazone linker coupled to alpha-methoxy-poly(ethylene
glycol)-thiopropionic acid amide (molecular weight, 20,000), α, Ω-bis-thiopropionic
acid amide poly(ethylene glycol) (molecular weight, 20,000) or α-tert-butoxy-
poly(ethylene glycol)-thiopropionic acid amide (molecular weight, 70,000). Like many
of the polymer conjugates, the previously described drug derivatives were designed to
release doxorubicin within tumors. In this case, the PEG linkage cleaved by acid-catal-
ysis of the hydrazone bond after uptake by endocytosis. PEG carboxylic hydrazone
bonds exhibited in vitro activity against human BXF T24 bladder carcinoma and LXFL
529L lung cancer cells, resulting in IC70 values in the range of 0.02–1.5 µM. PEG
amide doxorubicin conjugates showed no activity in vitro.
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The use of PEGylated anticancer agents in combination with PEGylated antibody
enzyme conjugates for activation of prodrug posttumor accumulation has attracted atten-
tion (198–200). Cheng et al. (198) have modified E. coli β glucuronidase to improve sta-
bility and pharmacokinetics of antibody conjugates for activation of glucuronide
prodrugs in tumor cells. Antibodies binding PEG have also been prepared to accelerate
clearance of PEG-modified proteins using an IgM (199,200) and improving tumor
blood ratios of activating enzyme.

To complement a prodrug-enzyme activation approach, 7-aminocephalosporin dox-
orubicin (AC-Dox) has also been prepared (201) by condensation with monomethoxy-
poly(ethylene glycol)-propionic acid N-hydroxysuccinimide ester (5000 molecular
weight PEG) or with a branched form of poly(ethylene glycol, 10,000 molecular
weight)-propionic acid N-hydroxysuccinimide ester to form M-PEG-AC-Dox or
B-PEG-AC-Dox, respectively. As part of a prodrug release strategy, PEG conjugates
were designed so that doxorubicin would be released upon Enterobacter cloacae
β-lactamase (bL)-catalyzed hydrolysis. Both M-PEG-AC-Dox and B-PEG-AC-Dox
were found to be less toxic to human lung adenocarcinoma cells than native doxorubicin.
In addition, the polymers were relatively stable in mouse plasma (< 26% hydrolysis after
24 h at 37°C) and were less toxic to mice (maximum tolerated dose > 52 µmol/kg) than
doxorubicin (maximum tolerated dose = 13.8 µmol/kg). Pharmacokinetic studies were
performed in mice bearing subcutaneous 3677 melanoma tumors. B-PEG-AC-Dox
cleared from the blood more slowly than M-PEG-AC-Dox and was retained to a 2.1-fold
greater extent in human 3677 melanoma tumor xenografts over a 4-h period. The intra-
tumoral concentrations of both polymers far exceeded that of doxorubicin. As shown
for other polymer conjugates, accumulation in tumors is achievable, and PEG-AC-Dox
polymers offer the possibility of generating large intratumoral doxorubicin concentra-
tions, reduced toxicities, and doxorubicin release upon β-lactam ring hydrolysis for
localized tumor killing.

Like many anticancer agents, anthracycline antibiotics are subject to resistance via
the P-glycoprotein multidrug resistance pathway. Stastny et al. (202) have examined
N-(2-hydroxypropyl)methacrylamide (HPMA)-conjugated doxorubicin in models of
drug resistance. In addition to HPMA polymers, various antibody conjugation strate-
gies were used to promote active as well as passive targeting in vivo. Testing against
mouse and human multiple drug resistant-cell lines (P388-MDR, CEM/VLB) suggested
partially decreased resistance. HPMA-conjugated doxorubicin were studied in UK
Phase II clinical trials and galactosamine-targeted HPMA-bound doxorubicin were
studied in UK Phase I clinical trials. It is possible that PEGylation may also offer bene-
fits to overcoming drug resistance.

Many anticancer drugs are hydrophobic and, depending on the nature of PEGylation
or other polymer attachment chemistries and conditions, the formation of micelles could
be favored. Such polymeric micelles may have desirable properties as drug carriers.
Polymeric micelles based on AB block copolymers of polyethylene oxide (PEO) and
poly(aspartic acid) [p(Asp)] with covalently bound adriamycin (ADR) have been pre-
pared in radiolabeled form (203,204). Long circulation times in blood for some compo-
sitions of PEO-p[Asp(ADR)] conjugates were evident in mice, a result the authors
propose as atypical of colloidal drug carriers. This was attributed to the low interaction
of the PEO corona region of the micelles with biocomponents (e.g., proteins, cells). The
authors also report that biodistribution of the PEO-p[Asp(ADR)] conjugates is dependent
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on micelle stability, i.e., stable micelles maintain circulation in blood, whereas unstable
micelles readily form free polymer chains which rapidly undergo renal excretion. Long
circulation times in blood of PEO-p[Asp(ADR)] conjugates are thought to be the prereq-
uisite for enhanced uptake at target sites (e.g., tumors).

21. PEG LIGNAN PODOPHYLLOTOXIN

Podophyllum species produce lignans that are among the natural plant products use-
ful for the treatment of cancer. Although podophyllotoxin itself is cytotoxic and cannot
be used directly, its modified forms, etoposide and teniposide, serve as effective treat-
ments for various cancers and lymphomas (205). A summary of the rationale and the
evidence supporting lignan use in the treatment of cancer can be found in (205–211).

As with the other anticancer agents already proposed and aforementioned, lignans
may benefit from polymer conjugation strategies like PEGylation. Greenwald et al.
(212) have prepared a series of PEG acyl derivatives of podophyllotoxin. Improved
activity in a murine leukemia model over non-modified podophyllotoxin was observed.
In a solid lung tumor (A549) model, some conjugated analogs were equivalent to a
podophyllotoxin/intralipid emulsion, whereas others were more toxic. The authors sug-
gest that evaluation of PEG lignan in leukemic models is warranted.

22. PEG 5-FU

5-Fluorouracil is a member of a class of agents that have in common the capacity to
inhibit the biosynthesis of pyrimidine nucleotides or to mimic these natural metabolites to
a point of interference in synthesis or function. Analogs of deoxycytidine and thymidine
have been synthesized as inhibitors of DNA synthesis, and an analog of uracil, 5-FU,
effectively inhibits both RNA function and/or processing and synthesis of thymidylate.
5-FU requires enzymatic ribosylation and phosphorylation to activate its cytotoxic activity.

5-FU has been used to treat metastatic carcinomas of the breast and the GI tract,
hepatoma, carcinomas of the ovary, cervix, urinary bladder, prostate, pancreas, and
oropharyngeal areas, as well as colorectal cancers. Improved response rates are seen
when 5-FU is used in combination with other agents, such as cyclophosphamide and
methotrexate (breast cancer), cisplatin (ovary and head-and-neck cancer), and leucov-
orin (colorectal cancer). As with most anticancer agents, a dose-limiting side effect is
myelosuppression. Mucosal ulcerations throughout the GI tract that may lead to fulmi-
nant diarrhea, shock, and death have also been reported.

Ouchi et al. (213) have explored the preparation of a prodrug form of PEGylated
5-FU in an attempt to limit side effects while maintaining anticancer activity. PEGyla-
tion used a urethane or urea bond. Survival benefit was tested against p388 lympho-
cytic leukemia in female CDF1 mice by intraperitoneal injection. The release rate of
5-FU from the 5-FU-terminated PEG conjugates via urethane or urea bond was quick
but dependent on PEG chain length and the addition or not of any hydrophobic spacer
groups. PEGylated 5-FU analogs were shown to be effective anticancer agents in this
model, with signs of acute toxicity seen at the highest doses tested.

23. PEG PHOTODYNAMIC THERAPY

Photodynamic therapy (PDT) is based upon the use of light of selected wavelength
for the activation of specific compounds in the production of cytotoxic agents. Treat-
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ment starts with the iv injection of a photosensitizer; this subsequently binds to circu-
lating low-density lipoproteins that are taken up into tumor cells to support rapid
growth. After a sufficient concentration of drug has accumulated in the target cells, the
drug is activated with (nonburning) light via fiber optic delivery to internal cavities
(e.g., lung, esophagus) or via LEDs for skin cancer of a particular wavelength for the
formation of single oxygen and, thus, tumor cell death.

Two levels of selectivity against tumors are available with this approach: first,
directing the light source and, second, targeting the photodynamic therapeutic agent to
tumors.

Photofrin (QLT, Inc., Vancouver, BC), using a combination of laser light of specific
wavelength and fiber optic delivery devices to kill cancerous cells selectively with min-
imal side effects has been approved by the FDA for the treatment of esophageal cancer.

Krueger et al. prepared a tetra-substituted polyethylene glycol conjugate of meta-
tetrahydroxyphenylchlorin (PEGylated mTHPC) for the treatment of malignant
mesothelioma (214). Intraoperative photodynamic therapy (PDT) following surgical
tumor resection to enhance local tumor control has been proposed. Preclinical testing in
nude mice bearing human mesothelioma xenografts and on intrathoracic tissues of
minipigs has been described. Results demonstrate extensive PDT-related necrosis of
mesothelioma xenografts using PEGylated mTHPC. The half-life of PEGylated mTHPC
in pigs exceeds 90 h. The authors propose that PEGylated mTHPC may be used safely
and effectively and may warrant further investigation. Evaluation of the safety and utility
of PEG mTHPC in rat models by Hornung et al. (215) supports this notion.

In contrast, Rovers et al. (216) have examined the kinetics of a tetra-PEGylated
derivative of meta-tetra(hydroxyphenyl)chlorin (mTHPC-PEG) in comparison to
native meta-tetra(hydroxyphenyl)chlorin (mTHPC) in a rat liver tumor model. Both
kinetics and bioactivity in normal liver tissue were determined. PEGylation of mTHPC
resulted in a twofold increase in circulating half-life and a fivefold decrease in liver
uptake with an increase in tumor selectivity at the early time points. However, PEG
mTHPC levels in liver increased over time with a loss of tumor selectivity at all but the
earliest time points. Native mTHPC tumor selectivity increased with time. For both
drugs, the time course of bioactivity in the liver followed drug levels with extensive
necrosis after irradiation of mTHPC-PEG-sensitized liver tissue up to drug–light inter-
vals of 120 h. The authors conclude that PEG mTHPC offers no benefit over native
mTHPC for the treatment of liver tumors.

Hornung et al. (217,218) also examined PEG mTHPC PDT as a minimally invasive
procedure to debulk pelvic ovarian cancer in rats. The pelvic ovarian cancer model has
been well characterized as a PDT model. PEG mTHPC was administered intra-
venously; 8 d later, laser light at 652 nm and optical doses ranging from 100–900 J
cm(–1) diffuser-length were delivered by an interstitial cylindrical diffusing optical
fiber inserted blindly into the pelvis. Three days following the light application, the
volume of necrosis was measured and damage to pelvic organs was assessed histologi-
cally; the assessment of PDT-induced necrosis showed a nonlinear dose response for
both the photosensitizer dose and the optical dose. The lowest drug dose activated with
the highest optical dose did not induce more necrosis than that seen in the tumor-bear-
ing control animals. Mean overall survival of untreated tumor-bearing rats was 25.0
± 4.5 d compared to 38.4 ± 3.8 d and 40.0 ± 3.6 d for rats treated with 3 mg kg(–1) or 9
mg kg(–1) PEG mTHPC mediated PDT, respectively (p < 0.05). A comparison to non-
PEGylated mTHPC was not included in the study.
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24. PEG TRICOSANTHIN

Trichosanthin, also known as compound Q or GLQ233, is a 27,000 molecular
weight, single-chain ribosome-inactivating protein. Trichosanthin isolated from the
root tuber of the Chinese medicinal herb Trichosanthes kirilowii is the active ingredient
of Tian Hua Fen. Trichosanthin has been used in China to induce abortion and to treat
choriocarcinoma. Based on studies suggesting that the drug may selectively kill HIV-
infected lymphocytes, trichosanthin has also been evaluated in clinical trials for
HIV/AIDS treatment. Side effects associated with trichosanthin include allergic reac-
tions, neurotoxicity, a flu-like syndrome, and anaphylactic shock.

PEGylation, as well as modification of the structure of tricosanthin, may maintain
the therapeutic utility of the drug while making it safer to use. He et al. (219) have pre-
pared tricosanthin mutants with site-directed cysteine insertion and PEGylated proteins
using linear PEG 5000-maleimmide or PEG 20,000-maleimmide strands. Circulating
lifetime increased as much 100-fold, however, ribosome-inactivating activity and cyto-
toxicity were decreased. The PEG 5000 had little effect on immunogenicity. PEGyla-
tion with the strand having a molecular weight of 20,000 reduced immunogenicity and
showed a weaker systemic anaphylactic reaction in guinea pigs.

25. PEG TUMOR NECROSIS FACTOR (TNF)

TNF-α is a protein cytokine comprised of 185 amino acids glycosylated at positions
73 and 172. It is synthesized as a precursor protein of 212 amino acids. TNF has anti-
cancer and proinflammatory activity. TNF-α is produced by many different cell types.
Primary sources are stimulated monocytes, fibroblasts, and endothelial cells.
Macrophages, T cells, and B lymphocytes, granulocytes, smooth muscle cells,
eosinophils, chondrocytes, osteoblasts, mast cells, glial cells, and keratinocytes also pro-
duce TNF-α after stimulation. Monocytes express at least five different molecular forms
of TNF-α with molecular weights of 21,500–28,000. They differ mainly by posttransla-
tional alterations such as glycosylation and phosphorylation. The use of TNF in the treat-
ment of cancer has been explored but has been complicated by side effects and toxicity.

The benefits of PEGylation relative to increased tumor accumulation, as well as
increased circulating life make PEGylation of TNF an interesting strategy by which to
increase antitumor activity and improve safety.

It has been reported (220) that PEGylated tumor necrosis factor-α (MPEG-TNF-α),
in which 56% of the TNF-α-lysine amino groups are coupled with PEG, has about
100-fold greater antitumor effect than native TNF-α. Evaluation of MPEG-TNF-α as a
systemic antitumor therapeutic drug, using B16-BL6 melanoma and colon-26 adeno-
carcinoma, compared with Meth-A fibrosarcoma has also been described. The authors
report that MPEG-TNF-alpha markedly inhibits the growth of both tumors without
causing any TNF-α-mediated side effects, whereas native TNF-α has no antitumor
effects and caused adverse side effects under test conditions. In addition, MPEG-TNF-
α drastically inhibited the metastatic colony formation of B16-BL6 melanoma when
compared with native drug.

Tsunoda et al. (221,222) have explored in vitro the utility of PEGylated TNF using a
novel pH-reversible amino-protective reagent, dimethylmaleic anhydride (DMMAn).
PEGylated TNF-α, PEG-TNF-α(+), which was pretreated with DMMAn before
PEGylation, had 20% to 40% higher specific activity than PEG-TNF-α(–) which was
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not treated with DMMAn. Moreover, PEG-TNF-α(+) more potently caused tumor
necrosis in Meth-A solid tumors in mice than did PEG-TNF-α(–). Of the various PEG
constructs tested, that considered by the authors to be optimal induced a 30-fold higher
degree of tumor necrosis than the native TNF-α and twofold higher than the most
potent MPEG-TNF-α(–), which was at a similar molecular weight. Significantly,
improvements in antitumor activity in vivo were more marked than were the changes in
specific activity. Furthermore, native TNF-α caused a dose-dependent body weight loss
in mice, whereas no obvious side effects were observed in any PEG-TNF-α-treated
mice. These results suggest that PEGylation using DMMAn is a useful approach for
the clinical use of cytokines such as TNF.

26. PEG CAMPTOTHECIN

Camptothecin is a naturally occuring quinoline alkaloid found in the bark of the Chi-
nese tree (Camptotheca accuminata). It and its close chemical relatives (aminocamp-
tothecin, CPT-11 [irinotecan], DX-8951f, and topotecan) are the only known naturally
occurring DNA topoisomerase I inhibitors.

In 1996, the FDA approved topotecan as a treatment for advanced resistant ovarian
cancers. Topotecan, which worked as well as or better than paclitaxel in clinical trials,
is sold under the trade name Hycamtin® (SmithKline Beecham Pharmeceuticals). In
1996, injectable irinotecan HC1 was approved as a treatment for metastatic cancer of
the colon or rectum. The drug is available as a generic drug and under the trade name
Camptosar® (Pharmacia & Upjohn)

Like other anticancer agents that attack certain aspects of the cellular reproductive
machinery, camptothecin drugs and analogs can produce potentially severe diarrhea,
nausea, damage to bone marrow, and leukopenia.

As for paclitaxel, 5-FU, and the anthracyclines, camptothecin and its analogs are
excellent targets for PEGylation. Greenwald et al. at Enzon, Inc. (223–229) have
explored a variety of PEGylation strategies and have investigated benefits in cell cul-
ture and animal models. PEG-camptothecin has been prepared as a water-soluble
macromolecular prodrug and the rates of hydrolysis were studied in phosphate-
buffered saline, as well as rat and human plasma. In vivo efficacy screens were per-
formed against P388/0 murine leukemia and LS174T human colon solid-tumor
xenograft models. Results showed that rates of hydrolysis varied in both rat and human
plasma according to the nature of the amino acid spacer used. PEG-alanine camp-
tothecin was evaluated across a range of solid tumor types (colon, ovarian, mammary,
lung, pancreatic, and prostate) and the preparation demonstrated significant antitumor
activity in all tested xenograft models.

Relative to PEG molecular weights, Greenwald et al. (Enzon, Inc.) have primarily
focused on PEGs of higher molecular weights, in particular PEG 20,000 and PEG 40,000.

PEG 20,000-conjugated camptothecin-O-glycinate was examined in biodistribution
studies in nude mice bearing colorectal carcinoma xenografts with tritium-labeled
drug. A blood circulating half-life (α phase) of approx 6 min with a β phase of 10.2 h
was observed. It was also found that more PEGylated-labeled drug than native drug
accumulated in tumors.

PEG camptothecin has been studied in human clinical trials (230) under the trade
name Prothecan®. In a Phase I study cohorts of 1–3 patients with advanced disease
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received iv drug once every 21 d. Doses ranged 600–4800 mg/m2 with dose-limiting
toxicity observed at 4800 mg/m2. Preliminary pharmacokinetic data suggest a circulat-
ing half-life of 72 h. In November 2000, it was claimed by the company that one-third
of patients receiving drug achieved stabilization and that one patient (subsequently ter-
minal) had responded and had been receiving drug for more than 1 yr. Phase II clinical
trials were then initiated.

27. THE FUTURE OF PEGYLATION

Important advances in biotechnology as well as combinatorial chemistry, gene map-
ping, and informatics are converging on the identification of the biochemical specifics
of disease. Novel targets and drugs for treatment are expected to follow. It is likely that
as a better understanding of gene regulation emerges, drugs that are designed to modify
regulatory events will also be developed. In this scenario, drug delivery technology is
likely to play an important role in the targeting of drugs to specific cells or organelles
and tissue types. The need for sustained-release or optimized pharmacokinetics is also
likely to increase. In combination with devices for regional delivery or more conve-
nient dosing, considerable improvements in safety, efficacy, and patient compliance
can be expected.

PEGylation has been demonstrated in numerous animal or human clinical studies to
prolong the circulating lifetime of proteins. As most protein drugs are given by iv, im,
or sc injection, decrease in frequency and number of injections will be an important
patient benefit. Lowering or blunted potential for immune or allergic reactions has also
been demonstrated for PEGylated proteins. This latter feature of PEGylation has
enabled the use of bovine-derived adenosine deaminase for the treatment of adenosine
deaminase deficiency linked immunodeficiency and the use of bacterial-derived
asparaginase for the treatment of acute lymphoblastic leukemia. Although these drugs
have been approved for some time, it has been FDA approval and demonstration of the
clinical benefits of PEGylated α interferon that has truly fueled widespread acceptance
and the increased practice of PEGylation. More specifically, PEGylation of α inter-
feron has shown that increased circulating lifetime can correlate with improved safety
and efficacy of protein drugs. This is an intriguing finding, and one that should be taken
into consideration when selecting future PEGylation candidates. For some proteins, a
prolonged circulating lifetime may not be desirable, as increased exposure may con-
tribute to increased toxicity or tachyphylaxis.

The success of PEGylation has also sparked the exploration of alternative
approaches by which to achieve similar or more prolonged circulating lifetimes. Chief
among these competitive approaches are the development of technologies for produc-
tion of proteins as fusions to serum albumin or other plasma proteins. Conjugation to
polymers, both synthetic and natural is also being explored. Although not prolonging
circulating lifetime per se, incorporation of proteins into sustained-release gels, foams,
or pellets to achieve maintenance of a steady-state level of drug has also been explored.

Use of fusion proteins may be complicated by changes in activity of the fused protein,
or the new mutein may be antigenic and lead to immune or allergic reactions. In the lat-
ter scenario, use of PEGylation to blunt such a response may be considered synergistic.

An exciting advance in the use of PEGylation has been the application of the tech-
nology to small molecule drugs. Anticancer therapies and other agents with limited sol-
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ubility have been shown to be made soluble and to have altered and more favorable
biodistribution patterns. Passive accumulation of drugs into a tumor mass, for example,
may contribute to safer and more efficacious cancer chemotherapy.

An additional benefit of PEGylation has been the improvement of the circulating
lifetime of various liposome and nanoparticle preparations. Use of PEG-lipids in the
preparation of “stealth liposomes” has been enabling for some products. Use of PEG
block copolymers for drug encapsulation is an intriguing possibility.

Based on expanded understanding of the benefits of PEGylation and its extension to
small molecule drugs, liposomes, and nanoparticles, we can expect continued new
developments not only in the practice of the technology but, with FDA approvals, the
subsequent introduction of new PEGylated drugs as well.
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1. INTRODUCTION

Anticancer agents are typically hydrophobic and unstable in water, making formula-
tion development a major undertaking. For this reason emulsion, the semihomoge-
neous mixture of two immiscible liquids, is an attractive dosage form for anticancer
drugs. However, because of processing difficulties, lack of physiologically safe ingre-
dients, and thermodynamic instability of the emulsion system, development of
injectable emulsion formulations, particularly those containing anticancer drugs, has
not been very successful. However, an intravenous (iv) emulsion containing a water
insoluble and heat labile anticancer agent, penclomedine, was successfully developed
and tested in clinical trials (1–3).

This chapter will explore advances in and problems associated with development of
emulsions as viable dosage forms for anticancer drugs. The first section will review
the emulsion as a dosage form and the second section will focus on research related to
emulsions as delivery systems for anticancer drugs.

2. EMULSION AS A DOSAGE FORM

2.1. Definitions
Generally, emulsions are heterogeneous, or “semi-homogenous” as stated in the fore-

going: liquid-dispersed formulations with two distinct and immiscible liquid phases sep-
arated by interfacial boundaries. The continuous phase is the medium in which no
boundaries among the phase ingredients exist, and the discontinuous or disperse phase is
the other liquid that has been distributed throughout the continuous phase as small
droplets with discrete boundaries separating each from the other. Disperse phase droplets
suspend within the structure of the continuous phase by means of one or more disper-
sants. A dispersant, also called a surfactant, emulsifying agent, or surface active agent, is
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an amphiphilic molecule, a molecule with both hydrophilic and lipophilic moieties, that
aids dispersion by situating itself in the interfacial boundaries, hence, preventing the coa-
lescence of the dispersed droplets and giving physical stability to the emulsion.

Emulsions have been used in various industries and most of the scientific disci-
plines. However, it is beyond the scope of this chapter to cover all of these delivery sys-
tems and their processing within the pharmaceutical industry. Rather, this chapter will
focus on the emulsions used to deliver anticancer agents because the lack of sufficient
aqueous solubility makes the emulsion an ideal dosage form.

Emulsions and self-emulsifying systems may also be used to enhance the oral
bioavailability of anticancer agents. This chapter will review emulsions for oral as well
as parenteral administration of anticancer drugs.

2.2. Types of Emulsions
There are several different types of emulsions, and Table 1 provides a list and

description of these varieties. Among these various emulsion types, only oil-in-water
(O/W) and water-in-oil-in-water (W/O/W) emulsions have been used directly in deliv-
ery of anticancer medications. On the other hand, oil-in-oil (O/O) emulsions have been
used indirectly in developing microencapsulated forms of anticancer agents (4–6).

Emulsions are thermodynamically unstable systems, and formulating a physically
stable emulsion is always a challenge. This thermodynamic instability is generally
exacerbated when preparing multiple emulsions. Various stabilization approaches have
been suggested, but Kawashima (7) used an innovative method to stabilize a multiple
emulsion by simply increasing the concentration of the solutes in the inner aqueous
phase. Various types are schematically presented in Fig. 1.

2.3. Formulation Development
When a parenteral emulsion, based on preformulation work or based on a deliberate

decision, appears to be an optimum approach for a specific anticancer agent, the phar-
maceutical scientist responsible for development will need to consider various factors
associated with designing, developing, and manufacturing the final product.

Besides the active ingredient(s) and water, two major components of emulsion formu-
lations are oil and dispersant(s). These components play a major role in the toxicity, ele-
gance, and stability of the final product, and we will provide some relevant examples.
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Table 1
Description of Different Types of Emulsions

Type of Emulsion Description Known as

Oil in Water Oil dispersed in water O/W
Water in Oil Water dispersed in oil W/O
Oil in Oil Oil dispersed in oil O/O
Water in Oil in Water Water dispersed in oil and the formed W/O W/O/W

emulsion dispersed in water again
Oil in Water in Oil Oil dispersed in water and the formed O/W O/W/O

emulsion dispersed in oil again



2.3.1. SELECTION OF THE OIL PHASE

Oil is generally composed of various mono-, di-, and triglycerides. The fatty acid
moieties of the oil are not only a caloric energy source but also play a role in various
physiological and biological processes. For example, Mousa et al. (8) have demon-
strated that the oleic acid component of an O/W emulsion has activated lymphocytes in
rats. In addition, Waitzberg et al. (9) showed a moderate decrease in bactericidal func-
tion of human neutrophils after injection of a lipid emulsion composed of long chain
fatty acids. However, Lavoie and Chessex (10) have shown that an imbalance in the
production of vasoconstricting and vasodilating prostanoids after injection of lipid
emulsions is related to hydroperoxide contamination in oils used in the lipid emulsions.
Fatty acid composition of the oil is also important. For example, the manufacturer of a
parenteral emulsion containing safflower oil claims that its product can be used to treat
essential fatty acid deficiency.

Vegetable oils such as soybean oil, safflower oil, and cottonseed oil were the first
oils used in parenteral emulsions to provide caloric requirements. The oil should be
highly purified, and free from hydrogenation and naturally saturated fatty acids and
glycerides. This purification is generally achieved by a process called winterization,
i.e., storing the oil at a cold temperature for a long period of time to allow the precipi-
tation of fatty materials and waxes before filtration. The oil should also be free of pesti-
cides and herbicides. The American manufacturer of an emulsion containing
cottonseed oil withdrew its product from the market based on reports of toxic side
effects owing to the contamination of the oil with a trace amount of gossypol (11).

Chemical stability of the oil and the solubility of the drug in the oil are other impor-
tant aspects to consider. For the emulsion to be stable and pharmaceutically elegant,
with a small droplet size for iv administration, the amount of oil in the emulsion should
not exceed 20% of the total volume.

2.3.2. SELECTION OF DISPERSANTS

Two immiscible phases separate naturally from each other because the cohesive
force on the molecules within each phase is greater than the adhesive force on the mol-
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Fig. 1. Schematic presentation of the emulsion types.



ecules between the two phases. By situating itself on the oil–water interface, the dis-
persant generates a monomolecular layer causing a reduced interfacial tension, hence,
avoiding separation of the two immiscible phases.

Physical stability of an emulsion generally depends on the molecular structure of the
dispersant and its hydrophilic-lipophilic balance (HLB) value, a measure set forth by
Griffith (12). A high HLB value means that the dispersant is more water soluble and
hence more suitable for stabilizing O/W emulsions. Conversely, a dispersant with a low
HLB value is used to stabilize W/O emulsions. Two or more emulsifying agents are
commonly used to further stabilization of the emulsion systems or impart different
characteristics to the emulsions (13).

Naturally occurring phospholipids, commercially called lecithins, are common emul-
sifying agents in parenteral emulsions. Tabibi et al. (14–15) have shown that the size of
the oil droplets of the emulsions will not be further reduced by increasing the concentra-
tion of the phospholipids. The type of natural phospholipid used varies from supplier to
supplier and may affect the overall physical stability of the emulsion. Degradation by
hydrolysis of the phospholipids (phosphatidylcholine and phosphatidylethanolamine)
may affect the long-term storage stability of emulsions. Lundberg (16) studied the stabi-
lization effect of other dispersants in combination with phosphatidylcholine and found
that polysorbate 80 provided superior results when compared with other surface-active
agents including block copolymers (Pluronic® or Poloxamer® series).

Dispersants are used as detergents in various industries and, as such, they have both
pharmacologic and toxicologic effects (17–21). However, such effects are beyond the
scope of this review.

2.3.3. OTHER INGREDIENTS

Emulsions generally have a low osmotic pressure and are made iso-osmotic by the
addition of inert compounds. Reducing sugars or electrolytes are commonly used to
make parenteral products isotonic, but are incompatible with phospholipids. Polyalco-
hols such as glycerin are widely used for this purpose. Sorbitol and xylitol have also
been used. To prevent the oxidation of unsaturated fatty acid moieties of the oil and
phospholipids, antioxidants such as vitamin E or vitamin E acetate may be added.

2.3.4. PARTICLE SIZE

Monodispersity, or uniformity in particle size, helps maintain the stability of an
emulsion. Nakashima et al. (22) designed a membrane emulsification apparatus to con-
trol the droplet size and were able to obtain monodispersed multiple emulsions.

2.4. Preparation
Figure 2 briefly outlines the steps involved in preparing an emulsion. A detailed

account would be too involved for this review, however, a few aspects of the preparation
process should be emphasized for those who may want to use contemporaneous emul-
sion formulations for proof of principle in their research. To ensure a low level of biobur-
den, it is recommended that both phases of the emulsion be filtered through suitably
sized and compatible filters (i.e., hydrophilic filters for the aqueous phase and hydropho-
bic filters for the oil phase). For iv O/W emulsions, the droplet size of the dispersed
phase should be at least similar to or smaller than the smallest particles in the blood
stream, preferably in the range of less than 200 nm (23–24). For this reason, homoge-
nization of the crude emulsion to reduce droplet size is an important step (25–26).
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3. EMULSIONS IN CANCER THERAPY

3.1. Locoregional Therapy
3.1.1. TARGETING THE LYMPHATIC SYSTEM

When an emulsion is injected into tissue, it is rarely taken up by the vasculature,
and thus it remains in the tissue for a relatively extended period, slowly distributing to
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Fig. 2. Schematic representation of the various emulsion types.



the surrounding tissues and regional lymph nodes. This phenomenon prompted Taka-
hashi et al. (27) to test the ability of three types of emulsions, O/W, W/O, and W/O/W,
to deliver the anticancer agent 5-fluourouracil (5-FU) to the lymph nodes. They
injected the formulation into rat testes and followed the presence of both the oil
droplets by a fat-staining method and 3H 5-FU by radioactivity count in lumbar and/or
renal lymph nodes. Although it was a crude test using emulsifying agents not approved
for human use, the results indicated that, in contrast to intravenous administration,
intratesticular administration of the W/O/W emulsion, and the W/O emulsion to a
lesser extent, yielded high radioactivity counts in the lymph nodes, with a maximum
attained at 3 h.

In a series of experiments, Nakamoto et al. (28–29) attempted to prevent metastasis
formation in rats by delivering mitomycin C and bleomycin C to the lymph nodes
using both W/O and O/W emulsions. Both intraperitoneal and intramuscular injections
of the W/O emulsion delivered more drug to the lymph nodes than either the O/W
emulsion or aqueous solution via these routes. Results also showed that gelatin served
as a better emulsifier than polysorbate 80. Both mitomycin C and bleomycin C showed
similar lymphatic delivery, the latter being more lipophilic than the former. Bleomycin
showed better results with the W/O emulsion when compared with the mitomycin C in
the same system.

Takahashi et al. (30) also evaluated the use of a fat emulsion to deliver bleomycin C
in rats and humans. Compared to systemic or intratumoral administration of aqueous
solution, intratumoral injection of the emulsion resulted in a significantly higher con-
centration of bleomycin C in the tumor tissue of rats. In a clinical setting, six of eight
patients with either local recurrence breast adenocarcinoma or squamous cell carci-
noma of the skin responded favorably to treatment using an emulsion system.

In a clinical trial, Hanaue et al. (31) evaluated the effectiveness of oral administra-
tion of tegafur, 1-(2-tetrahydrofuryl)-5-fluorouracil, in W/O and O/W emulsions in
eight postoperative patients with gastric cancer. The concentrations of 5-FU in thoracic
lymph and peripheral blood were determined. The results indicated that the concentra-
tions of the drug in both lymph and plasma were much higher when the W/O emulsion
was used when compared with those obtained with the use of the O/W emulsion. The
study clearly showed that the W/O emulsion could reduce the unwanted toxicity to the
nervous system caused by tegafur by reducing its circulating concentration, but could
not improve tegafur’s rate of conversion to 5-FU.

Yarkoni et al. (32) administered the emulsified mycobacterial glycolipid, trehalose-
6,6′-dimycolate, into established fibrosarcomas of mice. This resulted in dose-depen-
dent antitumor activity with complete regression in some animals.

3.1.2. CHEMOEMBOLIZATION

Chemoembolization is a palliative treatment for cancer whereby a mixture of
chemotherapeutic drugs and oil are delivered directly to a tumor via the artery that sup-
plies its blood. The artery is blocked, thereby depriving the tumor of nutrients and oxy-
gen, preventing chemotherapeutic agents from being washed out of the tumor, and
limiting the side effects of these agents in other organ systems.

Iodized poppy-seed oil has been used in various emulsions for treatment of hepatic
cancer. This compound has good solvent action and, when administered via the hepatic
artery, selectively accumulates in hepatocellular carcinomas. Novell et al. (33–34) has
used this compound for locoregional targeting. However, because of rapid separation of
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the drug from the oil at the site of action, the usefulness of this technique has been lim-
ited. Various types of emulsions have been tested and have provided better results when
compared with the oily solution currently used in chemoembolization. The following is a
brief description of the methodology with some important comparative results.

Higashi et al. (35) prepared by extrusion through a fine-pore glass membrane a
W/O/W multiple emulsion containing epirubicin, the water-soluble anticancer drug,
and evaluated the physicochemical properties of the preparation. Median droplet size
of the inner emulsion, W/O, was 0.55 ± 0.43 µm, and the median droplet size of the
outer emulsion, O/W, was 30.1 ± 0.71 µm. The emulsion was stable for at least 40 d at
room temperature. The in vitro drug release from the multiple emulsion in the presence
of lipase at 37°C after 7 d was 3% of the initial amount. They reported no critical side
effects after 24 arterial infusions for 21 patients, but a rise in body temperature above
37.5°C was observed in all patients. Based on the deposition of the multiple emulsion
in the tumors, the antitumor effect, determined by the reduction in tumor size, was 13%
(i.e., 1/8) for low-dose patients and 86% (i.e., 6/8) for high-dose patients. These results
demonstrated that an anticancer agent formulated as a W/O/W emulsion and injected
into the liver could remain in the hepatocellular carcinoma without separating from the
oil phase droplets.

In other trials, Higashi et al. (36–38) studied the effect of droplet size of the outer
emulsion. They used 30 and 70 µm W/O/W emulsions containing 60 mg epirubicin in
the inner aqueous phase. They randomly assigned 16 patients to each group and mea-
sured the amount of α-fetoprotein (AFP), a surrogate marker for hepatocellular carci-
noma, immediately before and 7 d after intraarterial administration of the multiple
emulsion. The decline in AFP was significantly greater in the group receiving the large-
droplet-size emulsion. From the results, they concluded that optimizing the droplet size
of the outer emulsion in multiple emulsions played a major role in the outcome of the
treatment of hepatocarcinoma by hepatic artery embolism. The effect of droplet size on
the efficacy of the emulsion in chemoembolization has also been studied by Nakanishi
(22) with similar results.

Kanematsu (39) compared the effects of iodized oil and the W/O emulsion in
patients with single nodular HCC who were candidates for hepatectomy. The aqueous
phase of the W/O emulsion contained epirubicin HCl and mitomycin C dissolved in
iohexol, a nonionic aqueous contrast medium. Three different water-to-oil ratios were
evaluated: 1:1, 1:2, and 1:3. In vitro release rates presented in Table 2 indicate that the
emulsion with the lowest water content has a considerably slower release rate. Because
the 1:3 emulsion yielded longer retention of the iodized oil in the HCC, no significant
therapeutic effect was observed. This lack of therapeutic effect is due to the slower
release rate of the drug from the thicker oil wall of the O/W emulsion, which provides
lower than efficacious concentration in the site of action.

De Baere et al. (40) studied the effect of droplet size of W/O and O/W emulsions con-
taining doxorubicin HCl in the aqueous phase and pure iodized oil as the oil phase. The
droplet size of each emulsion was either 10–40 µm (small) or 30–120 µm (large). The
emulsions were injected in vitro into a silicon macroscopic model of the artery tree and
in vivo into the iliac arteries of rabbits. Their properties were evaluated by means of
Doppler flow and their microvascular behavior in the arterial tree of the rabbit cremaster
muscle using video microscopy. The results showed that O/W emulsions were mixed
well in the in vitro model with the glycerin solution while the W/O emulsions were not.
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The results of this study clearly demonstrate that the formulation of the emulsion with
respect to type and characteristics of size play a major role in the effectiveness of the
therapy. Because changes in the droplet size of the emulsions containing the same pro-
portions of drug and iodized oil will change the distribution of iodized oil in the arterial
tree, the location at which the drug will be released to produce effect, and the better dis-
tribution of the oil droplet in O/W type emulsions, reduces the embolic action.

3.1.3. ADJUVANT THERAPY

Realizing that solid tumors are hypoxic, which would impede the activity of anti-
cancer agents, Teicher et al. (41–48) studied the effect of oxygenation in combination
with chemotherapy on tumor growth. They used perfluorochemical emulsions as an
oxygen supply and showed that the level of cellular oxygenation plays an important
role in the efficacy of many anticancer agents. Although this formulation was not used
to treat cancer, the solubilizing power of perfluorochemicals suggests that it would be
an effective delivery system.

Sadtler et al. (49), however, used the marker carboxyfluorescein to study its diffu-
sion from the internal water phase of fluorocarbon emulsions. Using a fluorinated sur-
factant, they obtained very good emulsion stability with a particle size of less than 0.22
µm. The results indicated that fluorocarbon emulsions could be used as a promising
potential drug delivery system through the pulmonary route with the possibility of reg-
ulating drug release. Another type of adjuvant therapy in which emulsions are used is
anticancer vaccine. Holmerg et al. (50) studied the effectiveness of emulsified THER-
ATOPE® STn-KLH vaccine in developing anti-STn lytic cells in breast and ovarian
cancer patients following stem cell transplant. They concluded that the vaccine was
well tolerated by the patients but the treatment effects were not statistically significant.
However, their data suggest that the THERATOPE vaccine might decrease the risk of
relapse and death, which warrants further study.

3.1.4. SYSTEMIC DELIVERY

Ames and Kovach (51) studied an emulsion formulation of hexamethylmelamine, a
water-insoluble anticancer agent, in the rabbit. To prepare the intravenous emulsion,
they dissolved the drug in either ethanol or dimethylacetamide and then added the drug
solution to a 20% fat emulsion (Intralipid®). The drug disposition from emulsion was
similar to that of an acidic solution of the compound. Tabibi and Siciliano (52) pre-
pared without organic solvent containing 4 mg of hexamethylmelamine an emulsion
formulation that can be scaled up and sterilized either by heat or by filtration.
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Table 2
In Vitro Drug Release from Various W:O Ratio Emulsions

%Drug Release

Epirubicin HCl Mitomycin C

Water: Oil Ratio 10 h 24 h 10 h 24 h

1:3 5 6 7.5 10
1:2 62.5 62.5 67.5 67.5
1:1 87.5 87.5 85 85



Yalkowsky (53) formulated an O/W emulsion for parenteral administration consist-
ing of paclitaxel with triacetin used for the oil phase and found that it was stable for at
least 3 months. In another attempt, Tabibi and Yalkowsky (54) prepared an intravenous
emulsion that could be used in combination therapy consisting of paclitaxel in tribu-
tyrin, which had a better stability profile than emulsion containing triacetin. Chu et al.
(55) used a mixed emulsifying system consisting of a nonionic surfactant and phospho-
lipid to prepare an O/W emulsion containing paclitaxel. After 3 mo of treatment in
tumor-bearing mice, the emulsion was stable and effective in blocking the proliferation
of HeLa cells with a marked improvement in survival time of the tumor-bearing mice.

Flavopiridol was formulated as an emulsion to overcome the potential gelling prob-
lem of high concentration of drug in the presence of its current excipients (56). Maran-
hao et al. (57) studied the removal rate of an O/W emulsion prepared to resemble a
low-density lipoprotein (LDL) in patients with acute myeloid leukemia. The prepara-
tion contained 14C-labeled cholesteryl oleate, phospholipids, cholesteryl oleate, nones-
terified cholesterol, and triglycerides. Results showed that the removal rate of the
emulsions resembled that of LDL in these patients, suggesting that microemulsions
resembling LDL could be used to deliver anticancer drugs to neoplastic cells, thus
avoiding the toxic effects of these drugs to normal tissues.

Lundberg (58) assembled a complex of prednimustine, a lipophylic anticancer
agent, and a model LDL to evaluate its cytotoxicity in vitro against T-47D breast can-
cer cells and normal 3T3 fibroblasts. The model LDL was prepared by emulsification
of the oily composition containing prednimustine, and the delipidated apolipoprotein B
was added to the microemulsion to form the complex. The complex was dialyzed
against phosphate-buffered saline (PBS) and filtered through a 0.22 µm filter prior to
use. The surfactant system of this emulsion, which seems very harsh for any in vivo
system, consisted of egg phosphatidylcholine, Pluronic F68, and Triton X-100. This
study indicated that the activity of prednimustine-lipoprotein complex was higher than
that of free drug.

Fukui et al. (59) found that trioctanoylglyceride improves the stability of α-linolenic
acid emulsified with cholesterol-bearing pullulan. They then investigated the selective
cytotoxicity of α-linolenic acid in an O/W emulsion. Intraperitoneal administration of
the emulsion effectively prolonged the survival of mice bearing peritoneally transplanted
MM46 mammary tumor cells. In mice bearing subcutaneously transplanted MM46, iv
injection of the emulsion resulted in tumor suppression without loss of body weight.

Lundberg (60) solubilized lipophilic derivatives of podophyllotoxins in lipid emul-
sions and studied their cytotoxic effects in cell culture against T-47D breast cancer and
K562 erythroleukemic cells. Both etoposide oleate and teniposide oleate accumulated in
these cells with a high cell kill value. In another study, Lundberg (61) prepared a very
fine lipid emulsion containing paclitaxel. The emulsion had a droplet size of about 40 nm
and was physico-chemically stable for several months at refrigerated conditions (4°C).
The emulsion was also freeze-dried in the presence of glucose and was able to be recon-
stituted to its original state with distilled water. The cytotoxicity of the drug in emulsion
against the T-47D cell line was retained and its 50% inhibitory dose (ID50) was 7 nM
compared to 35 nM using Diluent 12 and 10 nM using a liposomal formulation.

Versluis et al. (62) prepared a lipophylic prodrug of daunorubicin (LAD) by cou-
pling it to a cholesteryl oleate analog through a degradable peptidic spacer. They for-
mulated this compound in a lipid emulsion containing apolipoprotein E for LDL
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receptor mediated tumor targeting. They showed that the LAD was not separated from
the emulsion droplets, indicating a strong association with the surface of the lipid
droplets. In subsequent studies (63–64), they used liposomal formulation in cell culture
and tumor-bearing mice and showed that the LAD accumulates in tumor cells that
express elevated levels of LDL receptors.

Lundberg (65) prepared oleic acid esters of the DNA topoisomerase I inhibitor
camptothecin (CPT) and its analogs and incorporated them into liposomes and
microemulsions. He showed that these lipophylic molecules of CPT were intercalated
into the lipid layers of the delivery system, hence chemically protecting the hydroxy-
lactone ring of the CPT and preventing its loss of activity by hydrolytic degradation.
He also showed that the in vitro cytotoxic activity of these formulations against T-47D,
Caco 2, and Raji cells was equal to or higher than that of the parent drugs. This would
suggest that drug-lipid carrier complexes could be suitable formulations for intra-
venous or intramuscular administration of lipophilic CPT analogs by providing a
higher concentration of the active lactone form of the drugs in the circulation.

Lundberg et al. have coupled an antibody with a long-circulating lipid emulsion to
enhance the efficacy of the LL2 monoclonal antibody. The conjugation efficiency was
approx 85%, which was independent of the emulsion particle size and concentration
of surface-bound polyethylene glycol modified phosphatidylethanolamine. Using
various immunoreactivity tests, they showed that the binding of the conjugates to
anti-idiotype antibody was increased by increasing the surface density of LL2, indi-
cating that this type of emulsion can be a useful tool in delivering biotechnologic
drugs into the target (66).

In a review article, Fukushima et al. (67) examined, and eloquently explained, the
progression of development of an O/W emulsion for the antitumor agent prostaglandin
from preclinical experimentation, process development, and selection of the optimal
formulation for clinical trials.

Ravichandran et al. (68) tested an emulsion to treat pancreatic tumors where the oil
phase, consisting of essential fatty acids (EFAs), was the active ingredient. The emul-
sion allowed a larger dose of EFA into the circulation while reducing or eliminating
the unwanted side effects of these medicaments. By means of a validated microcul-
ture tetrazolium in vitro assay, they showed that the EFA emulsion had antitumor
activity in vitro. Concentrations of 25 and 68 µM resulted in a 50% growth inhibition
of human pancreatic cancer cell lines MIA PaCa-2 and Pane-1, whereas the con-
trolled lipid emulsion had no effect on these cell lines. However, no antitumor effect
was observed in mice.

To overcome short circulation half-life and severe side effects of 6-mercaptopurine,
Khopade and Jain (69) developed stealth multiple emulsions with a mean particle size
of 150 nm. The W/O/W emulsion was prepared by a two-step method. First, the oil
phase containing corn oil, palmitic acid, and phosphatydil choline was dispersed in
internal water phase containing the active ingredient to make the W/O emulsion. Then
this was further emulsified in phosphate buffer by the aid of taurodeoxycholate and
butyric acid. The multiple emulsions were then coated by sphingomyelins (SM),
monosialogangliosides (GM1), or polyethylene-glycol-grafted phosphatidylcholine
lipid (PEG-PC). The third compound provided stealth characteristics, whereas the first
two provided a solid-like coating on the droplet surface, preventing rupture and coales-
cence. The stealth W/O/W multiple emulsion provided better tissue distribution than
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the emulsions coated with SM or GM1. Because there was no difference between the
emulsions containing SM and GM1, they provided a better tissue distribution than the
control W/O/W emulsion.

In conclusion, one should consider emulsions as useful drug delivery systems when
low aqueous solubility is a major concern.
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III CURRENT APPLICATIONS

PRODUCTS APPROVED OR IN ADVANCED

CLINICAL DEVELOPMENT





1. INTRODUCTION

Liposomes are currently one of the most well-studied drug delivery systems used in
the treatment of cancer. They are being employed in the treatment of a wide variety of
human malignancies (1–4). Their large size relative to the gaps in the vasculature of
healthy tissues inhibits their uptake by these tissues, thus avoiding certain nonspecific
toxicities. However, the “leaky” microvasculature supporting solid tumors allows for
the uptake of these large (~ 100 nm) drug carriers (5–8) and their subsequent interac-
tion with cancer cells (9), or release of the encapsulated drug specifically near the
tumor, where it can diffuse into the tumor in its free form (10,11). Liposomes have
many other potential advantages over the corresponding free drugs, including favorable
pharmacokinetic properties, where encapsulation of a usually rapidly cleared drug
results in a considerable increase in the circulation lifetime for the drug (12–14). In
addition, encapsulation or complexation of a normally labile therapeutic agent, such as
DNA, antisense oligonucleotides, or the lactone ring of camptothecins, can protect the
agent from premature degradation by enzymes in the plasma or from simple hydroly-
sis. The result of liposome formulation can thus be a substantial increase in antitumor
efficacy when compared to the free drug or standard chemotherapy regimens (15–17).
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A diagram of a liposome is given in Fig. 1. Liposomes are composed of a lipid bilayer
that may contain both phospholipids, such as phosphatidylcholine, and neutral lipids,
such as cholesterol. The lipid bilayer encloses an internal aqueous space that can be uti-
lized to carry antineoplastic drugs, imaging agents, proteins, and even genes. The surface
of the liposome can be modified with hydrophilic polymers, such as polyethlene glycol
(PEG), to reduce interactions with reticuloendothelial cells responsible for their elimina-
tion from the systemic circulation (13,18–21). The pharmacological properties of lipo-
somes can be widely varied by modifying the lipid composition of the liposome, the
therapeutic agent to be encapsulated, the method of drug encapsulation, the surface
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Fig. 1. Diagram of a sterically stabilized liposome containing the antineoplastic drug, doxorubicin.
Liposomes are composed of a lipid membrane that encloses an internal aqueous space. This aqueous
space can be used to entrap drugs following passive loading of the agent by its inclusion in the hydration
media or remote-loading using ion- or pH-gradients. The lipids used to compose the liposomal mem-
brane can be both phospholipids, such as phosphatidylcholine, and neutral lipids, such as cholesterol. In
addition sterically stabilized liposomes contain a lipid-anchored PEG-coating that reduces its uptake by
macrophages. Finally, targeting ligands, such as single-chain antibody fragments, can be attached to the
terminal ends of PEG and used to actively direct the liposomal carriers to tumor-specific antigens.



charge density, the presence or absence of steric stabilization, the size of the carrier, the
presence of a targeting ligand on the liposome surface, the dose to be administered, and
the route of administration. Thus, it is essential that the cancer researcher understand how
these various properties affect the pharmacokinetics, biodistribution, and the bioavailabil-
ity of the entrapped therapeutic agent to maximize the therapeutic index. Several addi-
tional reviews discuss in detail how these different characteristics act to modify the
pharmacological properties of liposomes and liposomal drugs (3,12,13,22–26).

2. FORMULATION ISSUES

2.1. Effects of Liposome Physical Properties 
on Pharmacokinetics and Tissue Distribution

There are many formulation issues to consider when designing a liposomal or lipid-
based carrier system for a particular therapeutic agent. The various properties of the
carrier have to be considered when taking into account the interactions of liposomes
with the biological milieu. Many of the optimal properties for design of a liposome-
based therapeutic are given in Table 1. For example, relatively small unilamellar lipo-
somes (70–150 nm) are often desirable when treating solid tumors because they are
taken up less readily by reticuloendothelial system (RES) macrophages (12,26,27) and
able to extravasate more readily into solid tumors (5,28). However, large multilamellar
vesicles have been used when the drug was administered at a peripheral site and effec-
tively acted as a slow release depot for the drug from that site (29), or where the drug
was targeted to the RES, as is the case for some infectious diseases (30). Surface
charge is another important and often misunderstood property of liposomal carriers
that affects their disposition in vivo (3,26,31,32). Although certain anionic phospholipid
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Table 1
Important Considerations in the Design of Liposome-Formulated Therapeutics

Component Considerations for optimum design

Liposome Stability
Stable as intact construct in vivo
Lipid components chemically stable during storage

Pharmacokinetics
Long circulating (small diameter, steric stabilization, charge optimization)

Tumor penetration
Capable of extravasation in solid tumors
Small diameter improves penetration into tumor tissue

Drug Encapsulation
Efficient, high capacity (remote loading or passive entrapment)
Encapsulated drug resists leakage during storage and minimizes leakage in 

systemic circulation
Bystander Effect

Agent affects tumor cells not directly targeted (bystander cells)
Interaction with Tumor Cells

Effective against target cell population
If internalized, therapeutic agent capable of escaping internal organelles 

and/or stable to degradative environment in lysosomes



components have been shown to increase liposome clearance in vivo (26,33), other
sterically shielded anionic lipids have been shown to substantially increase circulation
half-lives of liposomal carriers (19,31,34,35). In addition, surface charge density and
the presence of gel phase phospholipid components may also play a role in the magni-
tude of the charge effect on liposome clearance (3,32,36).

Along with surface charge and size, other physical characteristics of the carrier such
as membrane fluidity play a role in liposome and drug circulation lifetimes. In the
absence of steric stabilization, liposomes that contain fluid-phase lipid components,
such as unsaturated phospholipids, are cleared more rapidly from the circulation than
liposomes containing gel-phase phospholipids (26,37). This is presumably due to the
increased potential for binding of serum opsonins to liposomes that, in turn, bind
macrophages and result in more rapid uptake of the carrier by macrophages (38–40).
The presence of cholesterol in the formulation also prevents disintegration of the car-
rier by lipoproteins in the blood and, thus, is thought to be essential in maintaining a
stable liposome formulation in vivo (41,42). Steric stabilization of liposomal carriers,
by addition of polymer-coated lipid conjugates, is thought to both reduce the binding
of serum opsonins to the liposome surface and reduce interactions of bound opsonins
with receptors on the surface of RES macrophages, thus reducing clearance (43–47).
Depending on the nature of the ligand attached, ligands such as antibodies, used for
specific targeting of receptor-overexpressing cancer cells, can also alter the pharmaco-
kinetics of liposomes (Subheading 5.). The importance of understanding the interac-
tions of these relative physical properties, and their effect on liposome disposition in
vivo, cannot be emphasized enough.

2.2. Formulation Stability
There are other formulation issues, such as in vivo formulation stability, degree of drug

entrapment, and ability to make the agent bioavailable at the site of action, that determine
the degree of success of a delivery-specific approach to treating cancer. In order to carry a
cytotoxic agent specifically to solid tumors while avoiding healthy tissues, the drug must
be stably encapsulated in the liposome interior when in the general circulation. Drugs vary
in their ability to be stably entrapped depending on the physicochemical properties of the
drug, the method of drug entrapment, and the lipid composition of the carrier (3,23,48). In
general, amphipathic drugs such as doxorubicin and vincristine are the most ideal for deliv-
ery via liposomes. These drugs can be entrapped inside liposomes at concentrations
exceeding their aqueous solubility by using remote-loading techniques involving pH or ion
gradients across the membrane surface (49–54). Using one of these methods, the degree of
entrapment can approach 100% for certain drugs. The presence of cholesterol and high-
phase transition phospholipids, such as sphingomyelin (SM) and highly saturated phos-
pholipids, enhance the stability of these formulations (55,56). Hydrophobic drugs, such as
paclitaxel, are carried in the lipid bilayer rather than the aqueous interior (57–59). How-
ever, they usually require a large excess of lipid to completely solubilize the drug and pre-
vent their recrystallization. In addition, this class of drugs/therapeutic agents is often
rapidly redistributed to extraliposomal sites including plasma lipoproteins (57,60,61). A
third class of compounds, the highly hydrophilic class, are able to be stably entrapped in
liposomes by passive entrapment, although at low yields (< 33%) relative to active loading.
However, release of the drug from the liposome may be slow and require an external trig-
ger such as pH (62–65) or temperature (66–68) to release the drug from the carrier.

194 Part III / Current Applications



2.3. Release of Therapeutic Agents from Liposomal Carriers
Another important, yet often neglected parameter in designing liposomal carriers is

the rate of release of drug from the liposome. In order to be effective in treating a par-
ticular malignancy, liposomes must be able to make their drug bioavailable, preferably
at the site of the tumor. Upon release, the drug can subsequently diffuse into the target
cell by passive diffusion or be taken up by membrane transporters, such as nucleoside
transporters (69,70) or the reduced folate carrier (71,72). The majority of drugs studied
thus far have been amphipathic in nature and thus able to passively diffuse from the
liposomal carrier with a rate that depends on the lipid composition of the carrier, the
mode of drug entrapment, the osmolarity of the entrapped species, and the effects of
local stimuli (3,50,68,73–76). These liposomal drugs can either be released rapidly (t1/2
= minutes to hours), where an important fraction of the drug is released from the carrier
while in the circulation, or slowly (t1/2 = hours to days), where the liposome accumu-
lates in the tumor at a rate more rapid than the rate for drug release. More complicated
liposome systems are also being developed that rely on programmed loss of a protec-
tive PEG coating (77–79), temperature-mediated (67,68) or pH-mediated (62,64)
membrane destabilization, or specific enzymatic destabilization of liposomes (80).
Continued optimization of drug leakage rates is needed to more fully take advantage of
the increased tumor accumulation of drug afforded by liposome encapsulation.

3. ANIMAL PHARMACOLOGY

3.1. Pharacokinetics and Biodistribution of Liposomal Drugs
The half-life of sterically-stabilized liposomal doxorubicin (SSL-DOX) in the sys-

temic circulation (t1/2) is approx 22–24 h in rats (81,82), and 45 h in humans (15). For
SSL-DOX, the t1/2 is relatively independent of dose (15), while for conventional formula-
tions without the steric PEG coat, the T1/2 increases rapidly with increasing dose. This
increase in circulation lifetimes with increasing dose is thought to be because of either
saturation of RES macrophages with liposomal lipid (12,26,27) or drug-induced toxicity
of RES macrophages (55,83), with either mechanism resulting in reduced clearance.
Drug-induced toxicity has been observed with SSL-DOX as well, but only at relatively
high doses (2). The rate of clearance for SSL-DOX in rats is approx 60-fold lower than
free doxorubicin in rats (82). This translates into a similar increase in the area under the
curve (AUC) for concentration versus time for SSL-DOX when compared to free doxoru-
bicin. The significant increases in plasma AUCs and reductions in clearance following
liposome encapsulation were also observed in humans (15,84,85), although the relative
difference was considerably less for conventional formulations (84,85) than for a steri-
cally stabilized formulation (15). As mentioned earlier, these effects are likely due to the
ability of the steric PEG coat to reduce recognition of liposomes by RES macrophages.
Fig. 2A shows the effect of liposome encapsulation on clearance of vincristine (VCR)
from the circulation of SCID mice bearing A431 tumors (73). This figure emphasizes the
importance of formulation stability on liposome clearance. When 1,2-distearoyl-3-sn-
phosphatidylcholine (DSPC) is replaced with sphingomyelin, the liposome is able to
more readily retain vincristine when in the circulation, and this translates into reduced
drug clearance. For doxorubicin, DSPC/Chol liposomes are sufficient to hold the drug
while in the circulation and, thus, the importance of tailoring the liposomal carrier to the
drug to be encapsulated is demonstrated (Subheading 2.2.). The increased circulation
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lifetime of liposomal drugs also helps translate into increased tumor accumulation of drug
(36,86–88). As can be seen in Fig. 2B, the more stable SM/Chol liposomal vincristine for-
mulation shows considerably greater levels of vincristine accumulation in the tumor.

The biodistribution of liposomal and free drugs are determined by a variety of fac-
tors, including circulation lifetimes, the presence of phagocytic cells, and the vascular
barrier of the particular tissue. Most free drugs redistribute rapidly to tissues due to
their small size and membrane-permeable amphipathic nature, and they are often
rapidly excreted by the kidneys. The result is a large volume of distribution for the free
drug. Stable liposomal formulations, on the other hand, have a relatively small volume
of distribution that is not much greater than the volume of the central compartment
(15,82,85). This is because of the inability of liposomes to pass through the vasculature
and accumulate in these tissues as a result of their prohibitively large size (~100 nm).
Liposomes distribute primarily to the liver and spleen owing to the high number of
phagocytic macrophages in these tissues that are responsible for their elimination
(33,89,90). The presence of a steric coat reduces the rate of liposome accumulation in
these organs, although the spleen and liver remain the major sites for their disposition
in vivo (21,43,89). The ability to avoid uptake by these two major tissues allows for a
greater probability of their accumulation in other target tissues, such as sites of inflam-
mation (91–93) or various malignancies (15,19,36,87–89).

Accumulation of liposomal drugs in solid tumors occurs as a result of extravasation
through a discontinuous microvasculature supporting the tumor and the absence of
functioning lymphatics (6–8,94–97). The average size of the discontinuities varies
greatly depending on the tumor microenvironment but, in general, are much greater
(100–780 nm) than the size of the most commonly employed liposomes (~100 nm)
(5,7). Factors that control the rate of accumulation of liposomal drugs in tumors are not
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Fig. 2. Pharmacokinetics of free and liposome-encapsulated vincristine. Plasma (A) and tumor (B)
levels of vincristine were determined after administration of free vincristine (▲), or vincristine
entrapped in DSPC/Chol (●) or SM/Chol (●) liposomes. The tumor model used was that of a squa-
mous cell carcinoma (A431 tumors) in SCID mice. The dose of vincristine was 2 mg/kg for all sam-
ples and the lipid dose for the liposome formulations was 20 mg/kg. (This figure was taken from
Webb et al. Br J Cancer 1995; 72:896–904, with permission.)



fully understood at this time. Factors such as the size of the liposome relative to the
gaps in the microvasculature, the stability of the formulation, the tumor microenviron-
ment, and the presence of a PEG coat are likely involved in determining how rapidly
liposomes extravasate across the tumor vasculature (3,5,7,36,98–100). In general, the
accumulation of free drug in tumor is relatively fast, reaching maximal levels within 1
hour. However, liposomal accumulation is much slower, with maximal accumulation in
tumors varying from 8–48 h, depending on the formulation (11,36,88,98,101–103).
Total drug levels in the tumor can peak much earlier if the formulation at least partially
leaks its contents while in the circulation, as is the case for rapid-release systems such
as phosphatidylcholine derived from egg (eggPC:Chol) liposomes (100,103), although
the overall tumor AUC is considerably lower than for long-circulating slow-release for-
mulations. The ability to manipulate vascular permeability, pharmacokinetic parame-
ters, and the biodistribution of liposomal drugs for increased specificity of delivery to
malignant tissues is extremely important in the design of more efficacious and less
toxic liposomal drug delivery systems.

3.2. Antitumor Efficacy of Liposomal Drugs
Both sterically stabilized liposomal (SSL-) and conventional liposomal (CL-) drugs

have been examined for antitumor efficacy in a wide variety of different tumor models
(9,19,20,59,81,87,98,101,104–107). Liposomal anthracycline formulations have been
by far the most widely studied, although in recent years other liposomal drugs and
combinations of drugs have been increasingly developed (59,73,105,106,108). Many
of these studies demonstrated a considerable survival advantage or reduction in tumor
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Fig. 3. Antitumor efficacy of free DOX (●) and SSL-DOX (● ●), either alone (●, ●) or in combi-
nation with liposomal IL-2 (●), in the treatment of M109 pulmonary metastases. Control animals
treated with saline (■) or liposomal IL-2 alone (▲) are also shown. BALB/c mice were inoculated
intravenously (iv) with M109 tumor cells (106 cells) and DOX or SSL-DOX was administered on Day
7 after tumor inoculation at a dose of 8 mg/kg and IL-2 at a dose of 50,000 Cetus U/dose on Days 10,
13, and 16. (This figure was modified from Cabanes et al. Clin Cancer Res 1999; 5:687–693, with
permission.)



size following treatment with liposomal therapeutics when compared to free drug con-
trols. When conventional and sterically stabilized formulations were compared directly
at clinically relevant doses, the sterically stabilized formulations showed superior effi-
cacy in most instances (36,89,103,109). In a few studies, where exceedingly high and
nonrelevant doses were used (83,98) or where the tumor was localized to either the
liver or spleen (the major depots for liposomes in vivo) (110), conventional formula-
tions were shown to have similar efficacy to SSL formulations. Combinations of lipo-
somal drugs with other therapeutic agents, such as interleukin 2 (IL-2) have been
shown to increase therapeutic efficacy even further (Fig. 3) (106). The use of drug com-
binations employing liposomal drugs will help increase the effectiveness of anticancer
treatments by allowing drugs with different modes of action and drug resistance to be
administered with a reduction in many of their dose-limiting toxicities. These studies
give rise to significant hope that liposomal drugs will provide considerable improve-
ments in therapeutic efficacy in addition to their well-documented reductions in many
common toxicities (Subheading 4.2.).

4. CLINICAL RESULTS

There are presently many liposomal agents for the treatment of cancer that are
already approved, awaiting approval by the appropriate drug regulatory agencies, in
clinical trials, or in development by an everincreasing number of liposome or lipid-
based formulation companies. A list of these products and their current status of devel-
opment is given in Table 2. The most developed of liposome-formulated products are
those containing anthracyclines. Anthracyclines are good candidates for liposome
encapsulation due to their broad activity against a wide variety of human malignancies
(111,112) and the physicochemical properties that facilitate their stable entrapment
inside liposomes (3,23,48). However, other drugs such as vincristine (4,113) and lur-
totecan (114,115) are beginning to show considerable promise in early clinical studies.

4.1. Efficacy of Liposomal Drugs
Encapsulation of a therapeutic agent inside liposomes can result in a reduction in the

grade of certain important toxicities, an increase in efficacy due to preferential accumu-
lation in tumors or active targeting, a better quality of life owing to the mode of deliv-
ery or shift in toxicities, or a combination of these outcomes. Until recently,
AIDS-related Kaposi’s sarcoma had been the most commonly treated neoplasm in clin-
ical trials using liposomal agents (16,17,85,86,116–119). Single agent therapy using
standard chemotherapy was ineffective in treating Kaposi’s sarcoma and combination
regimens including doxorubicin (DOX), bleomycin, and VCR (ABV regimens), or
simply bleomycin and VCR (BV regimens), have been used in the clinical setting.
However, both SSL-DOX and CL-daunorubicin have shown significant activity against
Kaposi’s sarcoma in various clinical trials (16,17,85,86,116–119). Response rates var-
ied considerably depending on the trial design and patient characteristics, but these
approached 70–75% as a single agent in some trials (116,118,120,121) and was more
effective than either free doxorubicin or the standard chemotherapy regimens (16,17).

SSL-DOX was also effective in the treatment of breast (122) and ovarian cancers
(123,124). In addition, there were fewer problems with patient compliance because of
the moderate degree of most toxicities (Subheading 4.2.; 125). SSL-DOX was shown
to accumulate in bone metastases from patients with breast carcinomas (126). Rapid-
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Table 2
Liposome- or Lipid-Based Therapeutics for the Treatment of Cancer

Company Product Progress

Alza Corporation Doxil: sterically stabilized Approved for the treatment of 
(Palo Alto, CA) (Stealth®) liposome formula- ovarian cancer and Kaposi’s 

tion of doxorubicin sarcoma

Elan Pharmaceuticals Myocet: eggPC/Chol liposome Approved in Europe 
(Dublin, Ireland) formulation of doxorubicin

TLC ELL-12: liposomal ether 
lipid

Gilead Sciences DaunoXome: DSPC/Chol lipo- Approved for the treatment of 
(Foster City, CA) some formulation of Kaposi’s sarcoma

daunorubicin
NX 211: Liposomal lurtotecan Phase I: solid tumors, hemato-

logical malignancies
Inex Pharmaceuticals Onco TCS: SM/Chol formulation Phase III: relapsed lymphoma

(Vancouver, BC, of vincristine Phase II: small cell lung cancer 
Canada) and first line lymphoma

INXC-6295: liposomal In development
mitoxantrone

INCX-3001: liposomal In development
camptothecins

Hermes Biosciences, Anti-HER2 directed immuno- Scale-up for phase I clinical 
Inc. (San Francisco, liposome containing trials (HER2 breast cancers)
CA) doxorubicin

Endovasc Ltd., Inc. Liprostin TM: liposomal PGE1 In development
(Montgomery, TX) formulation

DepoTech (San Diego, DepoCyt: a sustained-release Approved in US for lymphoma-
CA)/Skye Pharma multivesicular lipid-based tous meningitis
PLC (London, UK) formulation of cytosine 

arabinoside

Biomira Inc. (Edmonton, Theratope®: MUC1-specific Phase III: metastatic breast 
AB, Canada) vaccine cancer

Valentis, Inc. Cationic lipid-DNA complexes Phase I/II: head and neck tumors
(Burlingame, CA) of IL-12 gene

Cationic lipid-DNA complexes Phase IIa: malignant melanoma 
of IL-2 gene (w/superantigen)

Phase IIb: head and neck 
(w/chemotherapy)

Aronex Pharmaceuticals, Platar (Aroplatin™): liposomal Phase II: mesothelioma (lung 
Inc. (The Woodlands, form of cis-Bis-neodecanoato- cancer)
TX) trans-R,R-1,2-diaminocyclo- Phase II: renal cell carcinoma

hexane plantinum(II)
Atragen: liposomal form of Phase II: Promyelocytic leukemia

all-trans retinoic acid Phase II: Prostate cancer
Phase I/II: Renal cell carcinoma
Phase I/II: Bladder cancer

(Continued)



release CL-DOX had similar efficacy against metastatic breast cancer but was adminis-
tered at almost twice the dose (75 mg/m2) as that used for SSL-DOX (127). Elevation
to even greater doses (135 mg/m2 every 3 wk) was not associated with any additional
clinical benefit (128). In another study, CL-DOX was combined with cyclophos-
phamide and 5-fluorouracil to achieve a response rate of 73%, and a median duration of
response of approx 11 mo in the treatment of metastatic breast cancer (129). Other
combinations are also being enthusiastically explored. A Phase I study combining
SSL-DOX with vinorelbine for the treatment of metastatic breast cancer has been com-
pleted with relatively few toxicities observed (130). SSL-DOX is also currently being
combined with paclitaxel (131,132) or cyclophosphamide (133) for the treatment of
metastatic breast cancer in different clinical trials. Combinations of CL-DOX with doc-
etaxel or Herceptin® in clinical trials are also planned. Although both CL-DOX and
SSL-DOX have been shown to be effective in treating ovarian and metastatic breast
cancer when used as single agents, combinations with drugs having nonoverlapping
modes of action or drug resistance may give rise to greater response rates and milder
toxicities when compared to standard chemotherapy regimens.

Liposomal doxorubicin (L-DOX) and L-Daunorubicin are being studied in clinical
trials in a number of other cancers as well. SSL-DOX was found to be ineffective for
the treatment of soft tissue sarcomas (134) or advanced hepatocellular carcinoma
(135), despite the mild toxicity profile. Both of these studies were completed with
patients who had advanced disease and a poor prognosis. CL-daunorubicin was also
ineffective against hepatocellular carcinomas using doses of 100 mg/m2 every 3 wk
(136). CL-daunorubicin is being studied for the treatment of tumors of the central ner-
vous system (137,138), with some effectiveness being noted in early trial results. SSL-
DOX is being studied in combination with conventionally fractionated radiotherapy for
the treatment of both head-and-neck cancer and non-small cell lung cancer (139). This
approach was shown to be feasible, although further study was suggested to determine
the exact role of such a combination in the treatment of these cancers.

One of the most promising nonanthracycline liposome formulations is CL-vin-
cristine. Liposomes in this formulation are composed of SM and Chol, and are loaded
with vincristine using a pH-gradient method (4,73). Phase I trials have been completed
and have shown the liposomal formulation to be considerably less neurotoxic than the
free drug (4). In addition, preliminary Phase II trial results for the treatment of non-
Hodgin’s lymphomas (NHL) have shown CL-vincristine to be effective against trans-
formed or aggressive NHL, but relatively ineffective in treating indolent NHL (113).
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Table 2
(Continued)

Company Product Progress

Annamycin: lipid-based anthra- Phase II: breast cancer
cycline formulation (not 
recognized by MDR transporter)

NeoPharm, Inc. LEP: liposome-encapsulated Phase II: various neoplasms
(Bannockburn, IL) / paclitaxel
Pharmacia (Peapack, LED: liposome-encapsulated Phase II: prostate and breast 
NJ) doxorubicin cancer



Some preclinical studies have been completed with a SSL-vinorelbine as well, but clin-
ical studies with these or similar formulations have not yet been performed (108,140).
A number of other liposomal drugs are also in clinical trials and continue to show
promise in the treatment of cancer (Table 2). The full potential of liposomes in increas-
ing the efficacy of antineoplastic agents has yet to be fully realized and further
improvements in carrier design and treatment approach should lead to even greater
advances in the future.

4.2. Toxicity Profiles of Liposomal Drugs
Liposome encapsulation results in a substantial shift in the toxicity profile of antineo-

plastic agents. For example, many of the common toxicities associated with free doxoru-
bicin are considerably milder upon encapsulation of the drug inside liposomes
(82,90,122,141). These include cardiotoxicity, alopecia, nausea, vomiting, and local tissue
necrosis at the site of injection due to extravasation of the drug. Cardiotoxicity is the ther-
apy-limiting toxicity of many anthracyclines (111,142), whereas myelosuppression is
often the dose-limiting toxicity (111,143,144) of the free drug. The reduced ability of
liposomal drugs to pass through the healthy endothelium into healthy tissues, such as car-
diac muscle (145), reduces considerably these toxicities (90,117,141,146,147). Myelo-
suppression remains the dose-limiting toxicity for the two CL-anthracycline formulations
in the clinical setting (84,117,146,148), although at reduced levels when compared to free
drug; this toxicity can be partially controlled through the addition of colony-stimulating
factors (146). The severity of many of the common toxicities are dependent on the rate of
leakage from the liposomal carrier (90,149,150). Liposomes that leak their contents more
readily while in the circulation, for example, fast-release systems such as eggPC:Chol,
usually have higher degrees of these toxicities. Liposome encapsulation of vincristine was
shown to reduce the severity of neurotoxicity observed with the free drug (4) and the asso-
ciation of antitumor ether lipids with liposomes reduces the incidence of hemolytic ane-
mia seen with other formulations of these lipids (151,152).

However, depending on the mode of liposome encapsulation, certain other toxicities
may be amplified. For example, with CL formulations, there is a greater risk of acquir-
ing opportunistic infections (153) owing to localization of the drug in RES
macrophages and the resulting macrophage toxicity (154–156). This problem is accen-
tuated in immune deficient patients, such as AIDS patients with Kaposi’s sarcoma. In
patients treated with SSL-DOX, palmar-plantar erythrodysesthesia syndrome, or hand
and foot syndrome (H-F syndrome), they become dose limiting (122,157,158). This
painful desquamation of the skin on the hands and feet can be overcome by modifying
the dose intensity (122,159). In addition, mucositis is also slightly elevated in patients
receiving SSL-DOX (15,125,158). However, similar to H-F syndrome, this toxicity can
be controlled by simple dose reduction. It is interesting to note that both of these toxic-
ities are also seen in patients treated with prolonged infusions of certain chemothera-
peutic drugs, such as doxorubicin (125,160,161). Thus, the increase in these toxicities
may result from either increased accumulation of long-circulating SSL in skin or
because of the slow release of free doxorubicin from the liposomal carrier over an
extended duration of time while in the circulation. Thus, although many of the com-
monly observed toxicities for free anthracyclines are reduced upon liposome encapsu-
lation, the presence of alternative toxicities prevents dose intensification to achieve
greater efficacy.
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5. ACTIVE TARGETING OF LIPOSOMES

Thus far, we have been concerned primarily with liposomes that are passively targeted
to solid tumors owing to their favorable pharmacokinetic parameters and the enhanced
permeability of the tumor microvasculature. However, an additional increase in anti-
cancer cytotoxicity or antitumor efficacy has been observed in cancers treated with lig-
and-directed liposomes to tumor-specific antigens located on the surface of cancer cells
(9,24,162–167). An important criteria for their enhanced effectiveness is internalization
of the bound liposome; this allows the liposomal drug access to the interior of the cancer
cell, limits diffusion of the active agent away from the site of action, and results in the
degradation of the carrier and, thus, release of the active agent from the confines of its
carrier (3,162). Vitamin and growth factor receptors are some of the more attractive tar-
gets because of their elevated levels of expression on neoplastic tissues and their ability
to be internalized following binding to certain epitopes (24,25,168–170). These types of
targets have been the most commonly exploited in our laboratories.

There are many additional barriers to be overcome when actively targeting lipo-
somes in vivo. Some preferable characteristics of ligand-targeted liposomal therapeu-
tics and their targeted receptors are given in Table 3. These should be considered in
addition to the properties of the carrier described in Table 1 for nontargeted liposomal
therapeutics. For example, if liposomal drug formulations were unable to retain their
drug while in the circulation, then little clinical benefit would result from active target-
ing owing to loss of the active agent before reaching the target site. Ligands can be
covalently bound to liposomes using a variety of different chemical linkages (171–178).
To ensure binding to cell surface receptors, ligands have been placed at the ends of
PEG spacers to place them at a significant distance from the liposome surface and thus
prevent steric hinderance of binding due to other moieties (44,177), such as the PEG-
DSPE used to increase circulation lifetimes in vivo. A very important characteristic of
the targeting ligand is that it should be relatively nonimmunogenic. The attachment of
antibodies to the surface of liposomes, either directly (179), or via a PEG spacer
(180–184), has been shown to result in increased clearance and greater accumulation in
RES organs. This effect is even more pronounced after repeated administration (180).
Fab’ fragments can be attached to liposomes in an orientation-specific manner
(177,185,186), and are less immunogenic due to their lack of an Fc region which can
cause recognition by the Fc receptor on macrophages (187,188). In addition, “human-
ized” antibody fragments have been conjugated to liposomes in an attempt to further
reduce the immunogenicity (9,25,165,177,189). Repeated administration of these lipo-
somes resulted in no observed differences in pharmacokinetic parameters (190).
Another important characteristic is the nature of the hydrophobic anchor. As was men-
tioned above, PEG is often used as a spacer to prevent steric hinderance of the attached
ligand to its receptor. However, this spacer can also result in the conjugate being more
hydrophilic and thus more readily extracted from the liposome while in the circulation.
The conjugate should have a minimum of a distearoylglycero-based lipid anchor to
prevent its extraction (191). These characteristics of the liposomal carrier control the
disposition in vivo and will ultimately help determine its effectiveness as a drug deliv-
ery vehicle. Thus, while valuable, the addition of targeting ligands to the liposome for-
mulation results in a considerable increase in the complexity of drug delivery with a
significant number of new in vivo barriers to overcome.
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Table 3
Desirable Ligand-Targeted Liposomal Therapeutics

Component Considerations for optimum design

Target antigen Expression:
Highly and homogenously overexpressed in target tissue

Function:
Vital to tumor progression, so that down-modulation does not occur or 

is associated with therapeutic benefit
Shedding of antigen:

Limited, to avoid binding to soluble antigen and accelerated clearance
Targeting ligand

Affinity:
High enough to ensure binding at low liposome concentrations
Low enough to avoid “binding-site barrier” effect (Weinstein)

Immunogenicity:
Humanized MAb, to remove murine sequences. Use fragments without 

Fc portion (Fab′, scFv) to avoid interaction with Fc receptor
Small molecular weight ligands should not be immunogenic; may act as 

haptens
Internalization:

Efficient endocytosis by target cells is desirable for increasing drug 
release from the carrier

Drug should be stable following internalization or able to efficiently 
escape the endosomal and lysosomal compartments (e.g., pH-sensi-
tive liposomes)

Production:
Easy and economical scale-up, e.g., by efficient bacterial expression 

system
Stable during storage

Membrane anchor
Stability:

Covalent attachment to hydrophobic anchor, stable in blood
Protein ligands are stable during storage

Attachment site
Away from the binding site, to ensure correct orientation of antibody or 

ligand molecule.
Well-defined, to ensure reproducibility and uniformity of coupling
Avoids steric hindrance (e.g., from PEG) of ligand binding and 

internalization
Potential for being inserted into preformed and drug-loaded liposomes

Chemical nature of the linker
Non-toxic, non-immunogenic, and avoids opsonization
Does not affect drug loading or membrane stability
Excess linker may be quenched to avoid non-specific coupling to bio

molecules
Good availability, economical manufacturing process



The antigen being targeted should be located on the cell surface, be overexpressed
on tumors and minimally expressed on healthy tissues having access to the vasculature,
preferably be endocytosed following liposome binding, be vital to tumor progression
so that the targeted antigen is not completely downmodulated, and have limited shed-
ding. The accessibility of the targeted receptor is also a serious consideration. Targets
that are readily accessible, such as those having direct exposure to the vasculature are
in theory more attractive for active targeting. Small metastases, hematological cancers,
and endothelial cells are examples of this class of targets and have been targeted using
ligand-directed liposomes (163,164,182,192–194). However, when considering targets
such as small metastases or hematological cancers, the heterogeneity of expression
becomes very important. The failure of a certain subset of tumor cells or metastases to
express the desired receptor may result in a population of resistant tumors.

Solid tumors are thought to be relatively more difficult to treat because of the poor
penetration of liposomes into the tumor mass (95) and owing to the binding site barrier
(195–197) whereby targeted liposomes are localized to target receptors on the surface
of the tumor mass. However, by using small molecular weight and low-affinity ligands
to target receptors on the tumor surface liposomes are able to partially bypass the bind-
ing site barrier and distribute more uniformly within the tumor (Kirpotin et al., unpub-
lished observations) (3,24). The enhanced activity in solid tumors may be because of
an enhanced bioavailability of the drug following degradation in the lysosomes of can-
cer cells and the reduced diffusion of released drug from the tumor. Solid tumors will
likely suffer less from receptor heterogeneity because neighboring nonoverexpressing
cancer cells may be killed by drug released from adjacent or dying cells: the bystander
effect. One important consideration when targeting internalizing receptors is the stabil-
ity of the drug to be encapsulated. Because endocytosis often results in accumulation
of liposomes in the degradative and acidic environment of late endosomes and lyso-
somes, a therapeutic agent labile under these conditions may be ineffective (198). It
should be noted that, unlike targeting more accessible antigens, liposomes targeted to
receptors on solid tumors do not accumulate in these tumors to an extent greater than
for similar nontargeted formulations (102,189). This suggests that accumulation of tar-
geted liposomes in solid tumors is limited not by specific binding to cell surface recep-
tors, but by the rate of extravasation across the tumor microvasculature and the degree
of trapping in these tumors owing to the lack of a functioning lymphatics. It also sug-
gests that the observed increases in efficacy are caused by differences in the bioavail-
ability and distribution of the drug in the tumor following extravasation. These results
with solid tumors are encouraging and suggest that, using optimized liposome con-
structs, other solid tumors may be effectively targeted in the future.

6. CONCLUSIONS

Great progress has been and is continuing to be made in the development of liposo-
mal drugs for treating human malignancies. Greater optimization of physical properties
controlling both pharmacokinetic parameters of liposomal drugs and drug release rates
from liposomal carriers are still needed and could yield even greater increases in the
therapeutic index of these drugs. Combinations of liposomal drugs or conventional free
drugs with liposomal drugs need to be explored further in the clinical setting, and many
of these studies are currently underway with the anthracycline formulations Doxil® or
Evacet™. Tremendous opportunities also remain in increasing the specificity of deliv-
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ery by ligand-directed targeting of liposomes to tumor-specific antigens located on
tumor cell surfaces. The mechanisms affecting their delivery in vivo have yet to be
fully explored and continued study in this area is needed. Finally, advances in the
development of delivery systems for therapeutic genes and antisense oligonucleotides
using cationic lipid-based formulations are beginning to offer promise for the develop-
ment of complimentary therapies. The considerable achievements in the liposome field
over the past several decades, and the excitement of the yet unknown, provide signifi-
cant promise and opportunity that drug delivery systems such as liposomes will pro-
vide unprecedented increases in the therapeutic index of anticancer drugs and give rise
to great improvements in the overall quality of life for cancer patients.
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1. INTRODUCTION

Designing effective therapies for patients with malignant brain tumors represents a
major challenge. Despite significant advances in neuroimaging, microsurgery, and
radiation therapy, the prognosis of patients harboring malignant gliomas still remains
poor (1). The addition of systemic chemotherapy does not provide significant impact
on survival of patients (1,2). One of the reasons for such failure is that systemic
chemotherapy has several limitations that reduce its effectiveness in fighting the pro-
gressive nature of central nervous system (CNS) malignancies. First, the blood–brain
barrier keeps a large number of chemotherapeutic agents from reaching the brain
parenchyma. Second, the amount of drug administered is limited by variable systemic
toxicities. Because the goals of chemotherapy for brain tumors should be achieving and
sustaining cytotoxic concentrations of drug in the brain with minimal systemic concen-
trations, local delivery of these agents could result in a more effective treatment. More-
over, the notions that 80% of malignant gliomas recur within 2 cm of the original
tumor site, and that extra CNS metastases are exceedingly rare (3) strengthen the ratio-
nale for strategies aiming at controlling local disease.
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One approach for intratumoral delivery of chemotherapy is the development of poly-
mer systems capable of sustained release of drugs to be surgically placed at the tumor
site. Direct implant of drug-embedded polymers makes it possible to overcome the lim-
itations imposed by the blood–brain barrier and to achieve high local concentrations of
anticancer agents while greatly decreasing systemic toxicity. Additionally, polymer-
mediated delivery of drugs provides continuous release of active drugs which, systemi-
cally, would often have a short half-life. Finally, this technology has opened the door to
the testing of new therapeutic agents that, in the past, could not be used because of their
systemic toxicity for the treatment of brain tumors. In this chapter, we describe the
steps necessary to develop this novel approach: from the selection of a physiologically
and biologically promising biodegradable polymer system; to the preclinical studies
demonstrating the safety and efficacy of polymer drug delivery to the brain; to the clin-
ical trials that finally lead to the FDA approval of BCNU (carmustine) loaded polymer
(Gliadel®) for the treatment of malignant glial tumors. Finally, we discuss potential
applications of controlled-release polymers, providing an insight into future develop-
ment of local delivery of antineoplastic agents.

2. SELECTION OF CONTROLLED-RELEASE POLYMER

Although many types of polymers are available for local delivery of drugs (4), only a
few meet the criteria required for their use in clinical settings, such as absence of toxicity,
and sustained releasing of drug with both high and low molecular weight. Polymers that
have been investigated belong to two different categories identified by their mechanism of
release: diffusion-regulated and degradation-regulated polymers. Nonbiodegradable poly-
mers are an example of compounds that release the drug by means of diffusion at the
interface of polymer/tissue. These polymers were first described by Langer and Folkman
who discovered that macromolecules could be incorporated into a nonbiodegradable eth-
ylene-vinyl acetate co-polymer (EVAc) capable of highly predictable and reproducible
drug-release profile (4,5). The major disadvantage of this system, however, is that the
empty polymer matrix remains at the site of implantation indefinitely, thus, theoretically
necessitating a follow-up surgery to remove the foreign body. Conversely, biodegradable
polymer systems provide controlled drug delivery through the surface erosion, over time,
of the matrix itself (6). Because these polymers degrade as they release the drug, surgical
removal is not necessary. Based on these observations we thought that a biodegradable
polymer would be more suitable for implantation into the brain.

The polyanhydride poly[1,3-bis (carboxyphenoxy) propane-co-sebacic-acid] (PCPP-
SA) matrix is an example of a biodegradable polymer. Polyanhydride copolymers react
with water to form dicarboxylic acids leading to the sustained release of the incorporated
drug. In addition, polyanhydride copolymers are extremely hydrophobic, thus protecting
chemotherapeutic agents incorporated into the matrix from hydrolysis and enzymatic
degradation. Therefore, as the matrix degrades at a steady rate, drugs that would last only
a few minutes when systemically administered can be released in a biologically active
form, over a period of weeks, at a relatively steady concentration. Moreover, the time
period of polymer breakdown, and therefore of drug release, can be modulated by modi-
fying the ratio of carboxyphenoxypropane (PCPP) to sebacic acid (SA) in the polymer
formulation. Indeed, the rate of degradation can be increased significantly with increas-
ing percentages of SA. Thus, considering that a 1-mm disk of pure PCPP (without
sebacic acid) degrades in approx 3 yr, it has been estimated that altering the CPP-to-SA
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ratio could achieve nearly any degradation rate between 1 d and several years (7). The
20:80 PCPP-SA copolymer, obtained by mixing the two monomeres in a 1:4 ratio,
degrades over 5 wk (8). The process of manufacturing the copolymers PCPP-SA has
been established. Drugs are incorporated into the matrix at low temperature (below
37°C) and compressed under high pressure. The solid polymeric matrix can then be
shaped into any configuration, including wafers, rods, sheets, and microspheres (9).

The fatty acid dimer-sebacic acid (FAD-SA) copolymer, is another example of a
biodegradable polymer that shares with the PCPP-SA system both the mechanism of
release and the possibility to vary the release kinetic by varying the ratio of the two
monomers. However, whereas PCPP-SA copolymers are designed to release hydropho-
bic molecules, the FAD-SA copolymers have been specifically developed to deliver
hydrophilic compounds (10).

3. SELECTION OF CHEMOTHERAPEUTIC AGENT

We chose the chemotherapeutic alkylating agent 1,3-bis(2-chloroethyl)-1-
nitrosourea (BCNU, carmustine) as the first candidate for our polymer-based treatment
strategy because of its known activity against both experimental and human malignant
gliomas and the extensive pharmacological experience with this drug. BCNU is a lipid-
soluble nitrosourea that alkylates the nitrogen bases of DNA, e.g., the alkylation of O-6
position of guanine. The accumulation of DNA damage results in mutagenesis, car-
cinogenesis, and cytoxicity. Being lipophilic, BCNU is capable of some degree of pen-
etration through the blood–brain barrier and has been the most widely used
chemotherapeutic agent for the treatment of brain tumors to date. However, BCNU sys-
temic administration has significant toxicity, including bone marrow suppression and
pulmonary fibrosis. Furthermore, BCNU’s systemic activity is limited by its serum
half-life of approx 15 min (11). Therefore, we postulated that delivering BCNU inter-
stitially via a biodegradable polymer would clinically improve its efficacy.

4. PRECLINICAL STUDIES

4.1. Biocompatibility Studies
The safety of implantation of the PCPP-SA was studied in rabbit cornea, and in rat,

rabbit, and monkey brains. The implantation of the polymers in the rabbit cornea did
not show signs of inflammation over a 6-wk period after surgery. Specifically, there
was no evidence of neovascularization or edema or inflammatory infiltrates on histo-
logical examination (12,13). The polymers were also well tolerated after implantation
into the brain of rats and rabbits. Animals were followed over 5 wk (rats) and 9 wk
(rabbits) and serially sacrificed at specified time points. All animals survived to their
scheduled date of sacrifice without showing any signs of behavioral changes or neuro-
logical deficits indicative of significant toxicity from the polymer implant. The histo-
logical evaluation of the site of implant revealed transient and minimal inflammatory
signs similar to the reactions elicited by common hemostatic implants such as oxidized
cellulose (Surgicel®) and gelatin sponges (Gelfoam®) (8,14). PCPP-SA polymers were
finally implanted into the frontal lobe of Cynomolgus monkeys. No signs of behavioral
or neurological deterioration or hematological changes have been detected in these ani-
mals after the implantation of polymers with or without carmustine. Post-mortem
analysis of brain tissue from these animals showed only a localized reaction at the site
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of implantation. Additionally, in this study, the safety of combining local BCNU with
radiotherapy was demonstrated (15).

4.2. In Vivo Kinetics of Drug Release from the Polymers
The release of the BCNU in vivo from the PCPP-SA polymers was determined in

rabbit and monkey brains using radiolabeled markers. Autoradiography-radiolabeled
BCNU delivered to the rabbit brain, either by direct injection or by BCNU-impreg-
nated polymers, demonstrated that drug released from the polymers was extensively
distributed for a longer period of time. In fact, tissue concentrations of BCNU, two
standard deviations above background, were detected in the polymer-implanted hemi-
sphere 21 d after the implant. By contrast, no detectable levels of drug were present 72
h after direct injection (16). Further kinetic studies have been carried out in monkeys
demonstrating that brain concentrations of BCNU released by intracerebrally
implanted 20%-loaded polymers were 1200 times higher than that achieved by intra-
venous (iv) infusion of the drug. Moreover, using quantititative autoradiography and
thin-layer chromatography, this study demonstrated that tumoricidal concentrations of
BCNU were detectable at the following: at 4 cm of distance from the site of polymer
implantation 1 d after surgery, at 2 cm on day 7, and at 1.3 cm on day 30 (17).

4.3. Efficacy Studies
The efficacy of local delivery of BCNU by means of PCPP-SA copolymers or EVAc

polymers, was investigated against 9L gliosarcoma tumors implanted either subcuta-
neously (sc) or orthotopically into the brain of Fisher 344 rats. These studies consistently
and clearly demonstrated the superior effectiveness of local delivery of BCNU by poly-
mers when compared with systemic administration. Animals bearing established intracra-
nial tumors and treated locally by intratumoral implantation of BCNU–impregnated
polymers showed a statistically significant improvement of survival when compared with
the group treated with empty polymer or intraperitoneal (ip) administration of BCNU.
Moreover, local delivery of BCNU resulted in 17% of long-term survivors whereas no
long-term survivors were seen among systemically treated animals (Fig. 1) (18).

5. CLINICAL STUDIES

The aforementioned preclinical studies aimed at assessing the biocompatibility,
biodistribution, and efficacy of BNCU-loaded PCPP-SA polymers constituted the basis
for the subsequent translation into the clinical field. Several clinical trials were
designed in order to test the safety and efficacy of this new approach.

5.1. Gliadel for the Treatment of Recurrent Malignant Gliomas
The safety of the PCPP-SA copolymer (20:80 formulation) has been assessed first

with a Phase I–II multicentric trial. A total of 21 patients affected by recurrent malig-
nant gliomas were enrolled in this study (19). Eligibility criteria included the follow-
ing: histologic diagnosis of malignant glioma, previous external radiotherapy,
radiographic evidence of single focus of recurrence of 1.5 cm or greater, KPS >60,
indication for surgical reoperation, no chemotherapy within 1 mo, and no nitrosoureas
within 6 wk before enrollment. These patients underwent surgical debulking of their
lesions followed by the placement of BCNU-impregnated wafers in the resection cav-
ity (Fig. 2). Three different formulations of wafers with increasing concentrations of
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BCNU were studied: 1.93%, 3.85%, and 6.35%; these yielded 3.85, 7.7, and 12.7 mg
of carmustine, respectively. Five patients received wafers with the lowest concentration
of drug, and another five patients received wafers with the intermediate concentration;
11 patients received the highest BCNU-wafer formulation. A maximum of eight wafers
were implanted for each patient, therefore, the final dose of BCNU per each group was
31, 62, and 102 mg. No evidence of systemic toxicity and no signs of neurological
deterioration were observed in any of the treatment groups. Blood cell count,
chemistries, and urinalysis did not show changes accounting for bone marrow, hepatic,
or renal injury. Postoperative imaging with CT scan and MRI revealed, in most cases,
the presence of a thin layer of contrast-enhancing ring surrounding the wafers. These
changes were detectable only in the first 7 wk from time of surgery. The quality of the
MRI was not affected by the presence of the wafers, which are, instead, clearly visible
as areas of markedly decreased signal on T1-weighted sequences. The average survival
period after reoperation for the lowest, intermediate, and highest dose group was,
respectively, 65, 64, and 32 wk. The overall mean survival time was 48 wk from reop-
eration, and 94 wk from the original operation. Eighteen (86%) of 21 patients lived
more than 1 yr from the time of their initial diagnosis and eight (38%) of 21 patients
lived more than 1 yr after intracranial implantation of the polymer. The results of the
trial indicated that the BCNU-PCPP-SA polymer was safe when implanted intracra-
nially into patients and prompted the start of a placebo-controlled clinical trial.

The encouraging results obtained with the safety studies motivated us to evaluate the
efficacy of local delivery of BCNU by polymers for the treatment of malignant
gliomas. The study was carried out using 3.8% BCNU-loaded wafers in patients with
recurrent malignant gliomas who had failed standard therapy. A total of 222 patients
from 27 medical centers in the United States and Canada were entered into this ran-
domized, placebo-controlled double-blinded prospective, Phase III clinical trial. The
enrollment criteria for this study were similar to those in a Phase I–II study. Patients
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Fig. 1. Survival curves of animals bearing brain tumors treated with either systemic (9L/IP BCNU)
or interstitial (9L-BCNU-EVAc and 9L-BCNU-PCPP:SA) BCNU. Reprinted with permission from
AACR (Can Res 1993; 53:331).



were divided into two groups equally distributed for all known prognostic factors (e.g.,
median age, neurologic performance, prior treatment, time from previous surgical opera-
tion, and histologic grade). One group of 110 patients received BCNU wafer and the other
(112 patients) empty polymers. Overall median survival was 31 wk for the BCNU group
and 23 wk for the placebo group (hazard ratio=0.67, p=0.006, after accounting for the
effects of prognostic factors) (Fig. 3). Moreover, 6 mo survival for patients with glioblas-
toma was 50% greater in the active group than in the placebo group (mortality=32 of 72
[42%] vs 47 of 73 [64%], p=0.02). No deleterious effects occurred as a result of wafer
implants. There were no statistically significant differences between active and placebo
group regarding the incidence of either seizures or intracranial infections, which both
occurred within the range of the expected rate of postcraniotomy complications. KPS was
not affected by the wafer implants and no signs of systemic side effects were detected
(20). This study demonstrated that BCNU delivered via polyanhydride polymers is a safe,
effective treatment for patients with recurrent malignant gliomas. This trial, together with
the others previously mentioned, also provided the basis of the FDA approval of BCNU-
loaded polymer (Gliadel) as a treatment for patients with recurrent glioblastoma. To date,
Gliadel has received clinical approval in more than 20 countries.

5.2. Treatment of Newly Diagnosed Malignant Gliomas
Once demonstrated that BCNU wafer implants were safe and effective for the pallia-

tive therapy of recurrent gliomas, our attention turned to evaluating the safety and efficacy
of such an approach for the initial treatment of malignant gliomas. A Phase I trial with 22
patients newly diagnosed with malignant glioma was conducted to evaluate the overall
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Fig. 2. Intraoperative photograph showing the resection cavity lined with Gliadel wafers. (Courtesy
of Dr. Henry Brem.)
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Fig. 3. Kaplan-Meier survival curves for patients with recurrent malignant gliomas treated with
either Gliadel™ or empty wafers. (A) Overall survival by treatment group; (B) Overall survival by
treatment group after adjustment for prognostic factors. Reprinted with permission from Elsevier Sci-
ence (Lancet 1995; 345:1011).



safety of BCNU-loaded wafers and also the safety of concurrent standard external beam
radiation therapy. Eligibility criteria included the following: age of 18 or older, unilateral
single focus of disease greater than 1 cm in diameter, and KPS above 60. Twenty-one
patients had a diagnosis of glioblastoma multiforme and one patient had an anaplastic
astrocytoma. Each patient received gross removal of the lesion followed by the implanta-
tion of seven or eight 3.85% BCNU-loaded wafers (PCPP-SA, 20–80). All patients
received adjuvant standard postsurgical radiation therapy averaging 50 Gy. No evidence
of systemic or neurological toxicity was detected. This study not only demonstrated the
safety of BCNU-polymers as initial therapy for malignant gliomas, but also established
the safety of combining local chemotherapy with conventional radiotherapy (21).

Subsequently, a prospective, randomized, placebo-controlled Phase III trial was con-
ducted in Scandinavia by Valtonen et al. aiming at assessing safety and efficacy of
BCNU wafers as an adjunctive therapy with surgery and radiation in newly diagnosed
patients. Thirty-two patients, 27 with glioblastoma and 5 with other malignant gliomas,
were enrolled in this study and randomized to receive either BCNU wafers or empty
polymers. All patients had subsequent radiation therapy. Median survival was 58 wk for
the active arm vs 40 wk for the placebo arm (p=0.001) (Fig. 4). Patients bearing glioblas-
toma had a median survival of 53 wk when treated with local BCNU compared to 40 wk
when treated with placebo (p=0.0083). One-year survival in patients receiving BCNU
wafers was 63% compared to 19% for those receiving empty polymers. For treated
group vs placebo group, 2-yr survival was 31% vs 6%, and 3-yr survival was 25% vs
6%, respectively. Also, no signs of either systemic or local toxicity were recorded (22).

Recently, Westphal et al. have repeated a subsequent Phase III randomized, prospec-
tive, placebo-controlled study of Gliadel as the initial treatment. This 240-patient study
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Fig. 4. Kaplan-Meier survival curves for patients with newly diagnosed malignant gliomas treated
with Gliadel or empty polymers. Reprinted with permission from Lippincott Williams & Wilkins
(Neurosurg 1997; 41:47).



showed a similar, statistically significant prolongation of survival in patients treated
with Gliadel (23). In February 2003, the FDA approved the use of Gliadel as initial
treatment for malignant gliomas in the United States.

6. LESSONS LEARNED FROM GLIADEL®

AND FUTURE DIRECTIONS

6.1. Future Applications for Interstitial Chemotherapy
Recent laboratory studies have demonstrated that increasing concentrations of up to

20% of BCNU are safe and more effective than lower doses in prolonging survival of
rats bearing 9L gliosarcoma tumors. Therefore, a study was performed in monkeys
which has shown that 20% BCNU polymers are well-tolerated and yield effective sus-
tained distribution of BCNU throughout the brain (24). In view of these observations,
we have completed, through the NABTT CNS Consortium, a Phase I multicenter, mul-
tilabeled clinical trial of escalating doses in patients with recurrent glioma. Gliadel
wafers containing 6.5%, 10%, 14.5%, 20%, and 28% concentrations of BCNU have
been tested in patients undergoing surgery for recurrent gliomas. No major drug-
related toxicity has been identified in the first four groups, although three of four
patients receiving the 28% polymers experienced serious adverse events (seizures and
brain edema). This study demonstrated that wafers containing BCNU concentrations
up to 20% can be safely administered to patients with recurrent gliomas (25). Based on
these results, additional Phase III studies are planned to evaluate the added efficacy of
BCNU wafers at the established maximum tolerated dose (20% BCNU).

6.2. Future Developments
The results achieved with BCNU-loaded polymers have opened the door to use of

biodegradable polymers as a vehicle for a variety of other chemotherapeutic drugs. In
particular, this approach has renewed interest in experimentally promising agents that
have been not utilized clinically because of brain barrier impermeability or systemic tox-
icity. For example, the microtubule stabilizator paclitaxel (Taxol®) has been shown to
possess potent antitumor action against glioma cell cultures (26). Its utility is limited,
however, because it does not penetrate the blood–brain barrier (27). As a consequence,
despite its potency against gliomas in vitro, clinical trials in which it was administered
systemically have failed to show benefit. This makes it an ideal drug for local delivery to
the brain tumor with sustained-release polymers. Therefore, paclitaxel has been incorpo-
rated into PCPP-SA polymers where it is released in a sustained fashion for up to 1000 h.
Local deliveries of paclitaxel by 40%- and 20%-loaded polymers were capable of dou-
bling and tripling survival times of rats bearing 9L gliosarcomas when compared with
controls treated with empty polymers (mean survival: 38 d with 40% paclitaxel, 61.5 d
with 20% paclitaxel, 19.5 d with placebo) (28). Moreover, in studies conducted in pri-
mates, tumoricidal concentrations of paclitaxel were measured up to 5 cm from the site
of the implant of paclitaxel-loaded polymers for as long as 30 d after implantation.

The topoisomerase I inhibitor camptothecin is another ideal candidate for antitumor
local therapy owing to its poor bioavailability and high systemic toxicity. We showed
that camptothecin released by the nonbiodegradable polymer EVAc significantly
extends survival of rats bearing intracranial 9L gliosarcomas. More specifically, local
delivery of camptothecin resulted in 59% long-term survivors, whereas none of the
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control animals survived longer than 32 d (29). A variety of potent camptothecin deriv-
atives are being prepared for future clinical trials (30).

Platinum drugs are another class of agents that also have shown promise in the treat-
ment of CNS tumors including malignant glioma, medulloblastoma, optic pathway
glioma, brainstem glioma, and ependymoma (31–36). Unfortunately, the systemic use
of platinum-based drugs is limited by marked toxicity, particularly hematological toxi-
city (37). Furthermore, being water soluble, these drugs barely cross the blood–brain
barrier. Hence, controlled-release polymers constitute an ideal tool to overcome those
limitations and exploit the antitumor potential of platinum drugs. Carboplatin is
potently effective in vitro against CNS tumors (32) and, when delivered directly to the
CNS, it is less neurotoxic than other platinum-based compounds (38). Therefore, we
have optimized the delivery of carboplatin by incorporating it into both the FAD:SA
and PCPP:SA biodegradable polymers (39). We also developed a method to encapsu-
late carboplatin into ethylcellulose microcapsules (40) that offer the possibility to be
injected stereotactically when surgical resection is not indicated. We found that local
delivery of carboplatin via either polymers or microcapsules is safe and highly effec-
tive against F98 gliomas in rats (39). Based on these promising findings, studies are
underway to assess safety and toxicity of carboplatin-based polymers in primates.

Cyclophosphamide (Cytoxan®) is an alkylating agent not suitable for systemic
treatment of brain tumors because its active metabolite, 4-hydroxy-cyclophosphamide
(4-HC), does not cross the blood–brain barrier. We developed a process to incorporate
4-hydroperoxy-cyclophosphamide (a hydrophilic derivative of cyclophosphamide
which spontaneously converts to the active form 4-HC) into FAD-SA polymers. We
demonstrated that controlled release of 4-HC by polymers extend median survival of
animals intracranially challenged with F98 glioma cells from 14 d (placebo controls) to
77 d (treated animals) (41).

The use of polymers to treat brain tumors has largely focused on the delivery of
chemotherapeutic drugs. Advances in basic and clinical research in brain tumor biol-
ogy and immunology, however, have led to new therapeutic strategies that could poten-
tially benefit controlled-release biodegradable polymer technology. Local delivery of
minocycline, a semisynthetic derivative of tetracycline, by controlled-release polymers
has been shown to be effective in inhibiting tumor-induced neovascularization in rabbit
corneas (42), as well as in extending the survival of rats challenged intracranially with
9L gliosarcoma cells (43). Local treatment with minocyline also showed synergistic
properties with the systemic administration of BCNU (43).

Cytokines have been increasingly used in cancer therapy and one of them, inter-
leukin 2 (IL-2), is currently FDA approved for systemic administration to treat patients
with metastatic renal cancer. Given the rationale for using local chemotherapy to treat
brain tumors, as well as considering the idea that cytokines exert their immunomodula-
tory activity in a paracrine fashion, we hypothesized that local cytokine-based
immunotherapy could be utilized to control tumor growth in the brain. The delivery of
a cytokine by genetically modified cells directly to the brain, bypassing the blood bar-
rier, has proven to be highly effective in treating established brain tumors in animals in
our laboratory (44–46). Although efficacious in animal models, many practical consid-
erations may limit the translation of this strategy into the clinical setting for treatment
of human brain tumors. We reasoned that, by incorporating controlled-release technol-
ogy, we could develop a simpler strategy to achieve paracrine cytokine production at
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the tumor site as a more practical alternative to genetically modified cells. Thus, we
tested the ability of IL-2- and IL-12-containing microspheres to act against metastatic
and primary brain tumor models. IL-2 microspheres were highly effective in the treat-
ment of metastatic B16-melanoma brain tumors in mice and 9L gliosarcomas in rats
(47,48). In addition to IL-2, we recently developed a similar process to encapsulate
interleukin 12 (IL-12) into microspheres. IL-12 loaded microspheres have been shown
to be as effective against 9L glioma tumors in rats as 9L cells engineered to secrete IL-
12 (49). Thus, we demonstrated that polymers can be used to locally deliver sustained
cytokine concentrations for the safe and effective treatment of experimental brain
tumors. Because of its ease of use and reproducibility compared to genetically modi-
fied cells, this polymeric system may be the ideal candidate for the delivery of
cytokine-based immunotherapy to human brain tumors.

Finally, promising results have been achieved by the combination of local chemo- and
immunotherapy. Given the theoretical and experimental evidence of increased anti-
genicity of tumors after exposure to cytotoxic drugs (50,51), we hypothesized that the
combination of paracrine immunotherapy and local delivery of chemotherapy by
biodegradable polymers may act synergistically against brain tumor models. We initially
established the validity of this hypothesis using cells genetically engineered to secrete
IL-2 in combination with either BCNU- or carboplatin-loaded polymers against a
metastatic murine brain tumor (52). We then tested the efficacy of the combination of IL-
2 microspheres and either BCNU, carboplatin, or adriamycin incorporated in polymers
against rat primary malignant brain tumor models (9L gliosarcomas and F98 gliomas).
Our results clearly confirmed the effectiveness of this novel, promising strategy.

7. CONCLUSIONS

The use of biodegradable polymers to deliver high concentrations of drugs locally at
the tumor site is a powerful tool which has been added to the neurosurgical armamen-
tarium against brain tumors. Controlled interstitial drug delivery to brain tumors repre-
sents an effective means of bypassing the limits imposed by the blood–brain barrier,
thus achieving elevated local concentrations of drug while minimizing systemic expo-
sure and toxicity. The success achieved in the preclinical and clinical fields with Gli-
adel validates the concept that biodegradable polymers could represent an effective
vehicle for several other drugs that are otherwise ineffective against brain tumors.
Moreover, the concept of local delivery of chemotherapeutic drugs can be broadened to
include other classes of antitumor agents such as inhibitors of neovascularization or
immunotherapeutic agents that, alone or in combination with chemotherapeutic drugs,
offer promising perspectives.

Although the prognosis of patients affected by brain tumors remains poor, the fur-
ther development and expansion of the concept of utilizing biodegradable polymers to
deliver antineoplastic agents and biologically active agents to the brain holds consider-
able promise for the treatment of these patients.
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1. INTRODUCTION

Management of solid tumors continues to be a major challenge in cancer therapy. Two
traditional approaches for local disease are surgical excision and radiation therapy,
although treatment of metastatic disease requires systemic chemotherapy. Researchers
have explored the concept of intratumoral chemotherapy via simple injection of drugs
directly into tumors as an additional option along with surgery or radiation to manage
locally confined malignant tumors. However, intratumoral injection of aqueous solutions
of cytotoxic agents has had only marginal success. The heterogenous blood supply and
interstitial pressure in solid tumors can limit drug penetration and dispersion throughout
the tumor (1). Moreover, aqueous drugs are rapidly cleared from the tumor mass. Thus,
inclusion of drugs into slow-release systems provides an attractive alternative.

Novel drug systems developed by Matrix Pharmaceutical Inc.* have been specially
designed to treat local tumors with the goal of achieving high, sustained, and
homogenous intratumoral drug concentrations without the toxicities typically
observed with systemically administered agents. The injectable drug systems use a
carrier matrix that can be formulated with a variety of hydrophilic drugs. Two exam-
ples of this approach for therapy of solid tumors and cutaneous epitheliomas are the
cisplatin/epinephrine gel (CDDP/epi) gel and the fluorouracil/epinephrine (5-FU/epi)
gel that have been extensively evaluated experimentally in clinical trials with veteri-
nary and human patients.
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The injectable gels are composed of a uniform suspension of CDDP or 5-FU and
epinephrine in an aqueous collagen matrix. The major active drugs are antineoplastic
agents with a long history of proven effectiveness. The gel matrix entraps and provides
a uniform suspension of the drug, and is believed to provide enhanced drug retention
by inhibiting fluid flow, thus slowing drug clearance from the tumor. The second active
component, epinephrine, acts as a vasoconstrictor to further inhibit clearance of the
cytotoxic drug from the injection site. These localized delivery systems also produce
slowed and reduced entry of the drug into the systemic circulation, resulting in mini-
mal exposure of distant tissues to the drug and a lower incidence of systemic side
effects. The efficacy in terms of tumor response can be achieved with a total drug dose
substantially lower than those administered systemically.

The pharmacology of the active drugs, CDDP and 5-FU, and epinephrine has been
well-characterized. Preclinical studies in various tumor models with intratumorally
administered CDDP/epi gel and 5-FU/epi gel have shown the gels to be efficacious and
superior to aqueous solutions of these cytotoxic drugs administered either intratu-
morally or systemically. Epinephrine was documented as essential to optimize the anti-
tumor effect.

This chapter will summarize the scope of clinical studies that have been conducted
with CDDP/epi injectable gel and 5-FU/epi-injectable gel for local tumor control.

2. INTRALESIONAL CHEMOTHERAPY WITH 
COLLAGEN GELS FOR TREATMENT OF SPONTANEOUS 

TUMORS IN VETERINARY PATIENTS

2.1. Overview of Drugs and Regimens
The protein carrier matrix system comprised of bovine collagen gel combined with

chemotherapeutics such as fluorouracil (5-FU) and cisplatin (CDDP) had been initially
validated in experimental mouse tumor models. Compared with a free drug, collagen
gel drug delivery enhanced drug concentration of 5-FU and CDDP and retention time
in tumor tissue (2–4), delayed tumor regrowth, and resulted in lower systemic side
effects (5). To advance these therapeutic opportunities a pilot study was conducted to
assess technical feasibility, local and systemic adverse reactions, and tumor responses
of intralesional chemotherapy of collagen gels in veterinary patients with sponta-
neously occurring skin and subcutaneous tumors (6).

A total of 247 patients including small domestic companion animals, horses, and a
variety of other animals were involved in studies conducted in university and private
veterinary clinics. A total of 638 cutaneous tumors were evaluated including 23 his-
tologically distinct tumor types; the majority (85%) of patients had squamous cell
carcinoma (SCC), equine sarcoid, canine oral melanoma, equine and feline fibrosar-
coma, and feline eosinophilic granuloma. Therapeutic regimens in open-label drug
protocols consisted of either a single drug delivered in a collagen gel or up to three
drugs given sequentially in a series of gels. Specific regimens were based on sensitiv-
ity and the clinical response of the diseased tissue. The investigational agents were
comprised of the carrier protein (purified bovine collagen), epinephrine (epi; 0.1
mg/mL of gel) and a chemotherapeutic drug including one of the following seven
agents: 5-FU (30 mg/mL); CDDP (1–3 mg/mL); methotrexate (6 mg/mL); vinblastine
(0.5–1.0 mg/mL); bleomycin (15 U/mL); carmustine (BCNU, 32 mg/mL); or triamci-
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nolone (1–8 mg/mL). Each chemotherapeutic agent had been previously character-
ized by in vitro and in vivo pharmacokinetic drug-release studies in mouse tumor
models.

Small animals were treated under anesthesia; large animals were restrained prior to
treatment and anesthetized when necessary. Up to three collagen gel treatments were
administered intralesionally (1–3 mL) in a 1- to 2-wk period. For tumors with less than
50% reduction in tumor volume, subsequent treatments were with a second drug in a
collagen gel. Feasibility of delivery of the seven different therapeutic agents was
demonstrated. Of all tumors in cats, dogs, and horses treated with the collagen gel for-
mulations, 72% had a 50% or greater reduction in tumor size, and 45% of these had
complete clinical regressions. An average of three treatments with a single drug elicited
these responses. The drug regimen of two drugs given sequentially, 5-FU/epi gel fol-
lowed by CDDP/epi gel, resulted in 82% of all SCCs in all species to have a partial
response (50% tumor reduction) with 62% of these having a complete response. Recur-
rent canine oral melanoma was treated effectively with CDDP/epi gel alone; 10 of 11
tumors (91%) had partial or better responses and 55% had complete responses. These
animals had had previous therapy with surgical debulking or cryotherapy. Fibrosarco-
mas in horses were effectively treated with a multiple-drug regimen of 5-FU/epi gel,
methotrexate/epi gel, and CDDP/epi gel, whereas feline fibrosarcoma was responsive
to CDDP/epi gel followed by methotrexate/epi gel.

2.2. Use for Canine Squamous Cell Carcinoma
SCC is the most frequently reported malignant epithelial tumor in dogs. As in

humans, chronic sun exposure causes actinic damage, which ultimately results in SCC.
Several breeds of dogs with lightly pigmented skin or sparsely haired regions of the
abdomen and inner thighs are at increased risk. They sunbathe lying on their backs
exposing the abdomen to ultraviolet radiation, which eventually results in premalignant
and malignant skin changes. The sun-induced SCC is typically well-differentiated and
has a low metastatic potential. Thus, the dog serves as a useful model to investigate
new therapeutic approaches for similar human malignant epitheliomas. Traditional
therapy for SCC in dogs has included surgical excision and radiation therapy, or
cryosurgery and topical or systemic 5-FU.

Dogs with large, single SCC or fields of multiple SCC were treated with sustained-
retention collagen gels containing either 5-FU (30 mg in the 5-FU/epi gel) or cisplatin
(3.3 mg in the CDDP/epi gel) (7). Treatments were given while dogs were under general
anesthesia. The drug was injected intralesionally using a fanning pattern to ensure uni-
form distribution of the gel throughout the lesion. Treatments began with 5-FU/epi gel
given for a minimum of three treatments at weekly intervals. Dogs who did not achieve a
complete response (no clinical evidence of disease at the treated site) were then treated
with CDDP/epi gel for a minimum of three injections or until a complete response. The
rationale for using 5-FU as the initial treatment agent followed by CDDP was based on
the increased efficacy of this drug sequence reported in murine tumors (8).

From one to 11 primary, recurrent, or refractory SCCs were treated per dog (tumor
size 0.2–92.4 cm2, mean cumulative tumor area of 40.7 cm2 per dog). All animals had
at least a 50% reduction in cumulative tumor area with 5-FU/epi gel. More than half
(7 of 13) had a complete response after treatment with the 5-FU and CDDP gels. The
mean disease-free interval for dogs with complete response was 153 wk (range,
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9–461). Three dogs with partial response had residual tumor excised and remained
alive from 87 to 268 wk. The injectable gel therapy was well tolerated. Local necrosis,
limited to the treatment site, occurred in most tumors (17 of 20), and was an expected
reaction associated with tumor response. Systemic adverse events were minimal. None
of the owners reported clinical signs associated with the toxicity often reported for
CDDP given systemically. CDDP toxicity was not expected because the small dose of
CDDP (mean dose, 5.3 mg/cm3 of tumor) used in the study represented a substantially
lower dose than that used for intravenous (iv) CDDP for the treatment of disseminated
disease (50–70 mg/m2 of body surface area). The study demonstrated the feasibility,
safety, and efficacy of collagen gel chemotherapy for spontaneous sun-induced SCC,
and the potential application of this local therapy for human cutaneous cancers.

2.3. Use for Malignant Melanoma in Horses and Dogs
Regional chemotherapy with CDDP/epi gel has been investigated as adjuvant or pri-

mary therapeutic approach for malignant melanoma. The first report involved use of
the injectable collagen gel containing CDDP (5 mg) and epinephrine (0.375 mg) to
treat residual tumor margins after excision of melanoma in the foot of a horse (9). The
surgical defect healed with granulation and the horse remained clinically free of dis-
ease for 2 yr before disease recurrence. This form of local chemotherapy was advo-
cated for future use in clinical situations where surgery is only moderately successful
and there is the need to reduce the number of residual, viable tumor cells.

The CDDP/epi gel was evaluated for treatment of primary oral malignant melanoma
in dogs (10). Twenty dogs were treated including 16 with advanced local disease
(Stage II, III, or IV) with a primary tumor > 2 cm diameter; 13 of the tumors were
recurrent. One dog had multiple primary nodules and was treated to palliate local oral
disease only. Mean tumor volume was 7.0 cm3 (range, 0.19–35 cm3). Animals were
treated at weekly intervals for a mean of 5.2 treatments with CDDP/epi gel only (17
dogs); empirically, one was treated with a methotrexate/epi gel after the CDDP/epi gel,
and two dogs received methotrexate/epi gel and BCNU/epi gel after the CDDP/epi gel.

Melanomas in 14 (70%) of the 20 dogs had a 50% decrease in tumor volume; 11
(55%) of these had a complete tumor response. The median survival of 51 wk in the
dogs with complete responses was substantially greater than that of dogs without local
tumor control, median of 10.5 wk. The survival duration exceeded that reported for
mandibular melanomas treated with surgery, radiation therapy, or radiation therapy
plus hyperthermia. This observation was considered pertinent because most of the
tumors in the study were recurrent after previous surgery and had a poor prognosis for
further local control.

3. CISPLATIN/EPINEPHRINE INJECTABLE GEL

Introduced three decades ago, cisplatin (CDDP) as a single agent or in combination
with other cytotoxic drugs, administered intravenously (iv), has shown significant
activity in the treatment of a variety of primary and metastatic tumors including head
and neck squamous cell carcinoma (HNSCC) (11,12). Cisplatin plus 5-FU is one of the
standard regimens for recurrent or metastatic HNSCC, with an overall response rate of
30% and a 5% complete response rate (13). There is evidence to support a dose-
response relationship for CDDP in sensitive tumors. Attempts to increase dose inten-
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sity have been limited by toxicity, commonly nephrotoxicity, peripheral neuropathy,
ototoxicity, myelosuppression, and electrolyte and magnesium wasting (14). Nausea
and vomiting can be severe, necessitating the use of potent antiemetics (15).

To improve the efficacy of CDDP chemotherapy, the drug system, cisplatin/epi
injectable gel (CDDP/epi gel), was designed for direct intratumoral injection in order
to achieve high, sustained concentrations of CDDP within the tumor and to minimize
systemic exposure. The injectable gel is comprised of CDDP (4 mg/mL) and the vaso-
constrictor epinephrine (0.1 mg/mL) in a purified bovine dermal collagen as the carrier
matrix.

In the initial clinical experience with CDDP/epi gel (a multicenter dose-escalation
pilot study including 45 patients with 82 solid tumors) it was shown that the adverse
effects typical of systemically administered cisplatin were rare and mild (16). Objec-
tive tumor responses, complete or partial, were achieved in half (41 of 82) of the
tumors, of which 33 were complete responses.

The CDDP/epi gel was used in a number of Phase II and III trials to further evaluate
the safety and efficacy of local chemotherapy in patients with a variety of solid tumors.
Most patients had generally undergone extensive prior therapy with surgery or
chemotherapy, or had received near-maximum tolerated radiation. Many tumors were
considered inoperable having recurred or having not responded to previous treatment.
Many patients with advanced disease were often poor candidates for aggressive combi-
nation therapy, or had refused further therapy. Therefore, CDDP/epi gel was used in an
attempt to provide effective local or regional control of the tumor or to palliate symp-
toms associated with the tumor.

The Phase II studies in patients with metastatic breast cancer, cutaneous and soft tis-
sue metastases of malignant melanoma, and esophageal and gastric cancers used a dose
of 0.5 mL/cm3 (equivalent to CDDP 2 mg/cm3) of tumor volume. Doses of 0.25
mL/cm3 (equivalent to CDDP 1 mg/cm3) of tumor volume were used in the Phase III
placebo-controlled trials for patients with HNSCC. A maximum of 10 mL injectable
gel was permitted for each treatment visit. Intratumoral injections of the drug were
given at weekly intervals for up to six treatments in an 8-wk period. In the Phase II
studies of primary hepatocellular carcinoma (HCC) and colorectal metastases to the
liver, the maximum dose was 10 mL of CDDP/epi gel administered percutaneously
into liver lesions under ultrasound or computed tomography (CT) guidance. From four
to eight injections were given at weekly intervals.

Objective tumor responses were based on the responses of individual tumors treated
for local control. A complete response was defined as a 100% reduction in tumor vol-
ume (no detectable tumor); partial response was defined as 50% to <100% reduction in
tumor volume, both sustained for at least 28 d. In some studies the “patient benefit”
(also referred to a “clinical benefit”) was assessed. A new quality of life instrument, the
Treatment Goals Questionnaire© (TGQ) was designed and used to evaluate patient ben-
efit achieved during treatment of local or regional disease (17). Patient benefit was
based on patient’s progress toward achieving prospectively selected primary treatment
goals by patient and investigator for the most troublesome (symptomatic) tumor. From
the TGQ patients selected one of eight palliative goals: wound care, pain control, abil-
ity to see, ability to hear, ability to smell, physical appearance, obstructive symptoms,
or mobility. The investigator could select one of the eight palliative goals but also had
the option of selecting one of three preventative goals: prevention of invasion, obstruc-
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tion, or subcutaneous tumor breakthrough. All benefits had to be sustained for at least
28 d. The association between tumor response and achievement of patient benefit was
also assessed.

3.1. Use in Head and Neck Cancer
HNSCC is diagnosed yearly in more than 600,000 persons worldwide and in about

40,000 Americans. The majority of patients present with locally or regionally advanced
disease, invasion of local structures, nodal metastases, and/or distant metastases.
Despite aggressive therapy about 60% of patients have recurrences (18). Recurrent
tumors are often symptomatic and impair function. Therapeutic options for these
patients with advanced disease are limited. Local-regional therapies are frequently
associated with significant toxicity or morbidity, as is systemic chemotherapy, which is
characterized by brief durations of remission but has little effect on survival (13).

Intratumoral chemotherapy with CDDP/epi gel was evaluated as a new local therapy
in patients with advanced HNSCC who had problematic tumors that might benefit from
a form of local intervention. Two prospective, randomized, double-blind, placebo-con-
trolled Phase III studies of similar design were conducted in North American and in
Europe/Israel involving a total of 178 intensely pretreated patients with recurrent or
refractory head and neck cancer (19). The comprehensive results from the individual
studies have also been reported (20,21). A crossover from the blinded phase to open-
label phase of study was permitted for patients with disease progression.

Combined results from the two trials (178 evaluable patients by intent to treat analy-
sis) confirmed objective tumor responses in 35 of 119 (29%) including 33 tumors
(19%) with complete responses achieved with CDDP/epi gel, vs only 1 of 59 (2%) for
placebo (p < 0.001). Stable disease was maintained in 29 of 119 (24%) of patients.
Tumor responses generally occurred within 2–3 wk of the first treatment. The median
duration of response was 78 d (range, 30–554+). Many patients with responses were
unable to extend participation in the study beyond a few months owing to the advanced
stage of their disease with subsequent systemic disease progression, general physical
debilitation, or death.

The response rates for patients who rolled over from placebo to active drug treat-
ment were similar to those patients treated with active drug during the blinded phase:
27% (11 of 41). These responses were notable because between the times of the first
placebo treatment in the blinded phase until the first treatment with CDDP/epi gel,
median tumor sizes had almost doubled from 5.7 cm3 to 10.8 cm3. Similar response
rates were also attained in patients who had previously received systemic cisplatin or
carboplatin treatment (29%, 14 of 48) and in patients who were “platinum naïve”
(30%, 2 of 7).

Patient benefit was evaluated using the validated Treatment Goals Questionnaire®.
The most frequently selected goals were improved pain control, improved wound care,
relief of obstructive symptoms, and improved physical appearance. The patients
treated with CDDP/epi gel achieved significant palliative clinical benefits when com-
pared with patients treated with placebo gel: 27% vs 12% (p < 0.05). There was a sig-
nificant and positive association between tumor response and attainment of patient
benefit compared to patients without tumor responses (p = 0.006). Patients with tumor
responses were three times more likely to benefit from treatment than nonresponders
(47% vs 15%, respectively).
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Pain during injection was the most common side effect of the treatment procedure:
24% (29 of 119) patients treated with CDDP/epi gel reported immediate injection pain
(within –20 min) as did 17% (10 of 60) of the placebo patients. Local cytotoxic effects
at the treatment site were expected including inflammation, bleeding, erosion, ulcera-
tion, necrosis, and eschar observed in 88% of the treated tumors treated with active
drug versus 63% in the placebo group. As tumor necrosis proceeds, the diseased tissues
are replaced by normal healing and reepithelialization. Four cases of cerebrovascular
events occurred early in the North American Phase III study; none occurred after proto-
cols were modified to exclude tumors directly invading or in immediate proximity to
that carotid artery. The CDDP/epi gel treatment had a favorable adverse event profile in
comparison to iv cisplatin with a markedly lower incidence of chemotherapy-related
systemic events.

Intratumoral CDDP/epi-injectable gel may find a role in the current treatments regi-
mens for patients with HNSCC who can benefit from local tumor control and who can-
not be managed with surgery or radiation alone, or as an alternative to systemic
chemotherapy. Preeclinical investigations in support of further explorations of combi-
nation therapy include a report on the use of CDDP/epi gel to prevent local tumor
growth after margin-positive resection (22) and reports on radiosensitization by intratu-
moral CDDP/epi gel in combination with radiation (3,23,24).

3.2. Use in Metastatic and Recurrent Breast Cancer
Breast cancer is the second most common cause of cancer death in American

women. When diagnosed early, the disease is often curable with surgical excision alone
or surgery and adjuvant therapy (i.e., hormonal, chemo-, and/or radiation therapy).
However, advanced disease is rarely curable. Treatment for these patients focuses on
prolongation of life when possible, and management of the disease, both the metastatic
and local symptoms caused by tumor masses.

CDDP/epi injectable gel was evaluated in patients with advanced disease to provide
palliation of tumor symptoms, and local tumor control with higher local drug concen-
trations and much milder toxicity than possible with systemically administered cis-
platin chemotherapy.

Patients with recurrent or metastatic, histologically confirmed breast cancer were
enrolled in a multicenter, open-label Phase II trial (25,26). All 27 evaluable patients
had previously undergone surgery, chemotherapy, hormonal or radiation therapy; 78%
had been treated with all three modalities. Seventy percent of tumors were in previ-
ously irradiated fields. The 27 patients presented with 72 tumors that were treated at
the first visit; a total of 89 tumors, including newly emergent lesions, were treated dur-
ing the course of study. One tumor per patient was identified as the most troublesome;
this target tumor was monitored for objective tumor response and used to assess patient
benefit. Median baseline tumor volume for target tumors (27) was 3.4 cm3 (range,
0.4–413 cm3); for all 89 tumors treated, the median was 0.65 cm3.

Overall, 52% (14 of 27) target tumors had objective responses, 6 complete and 8
partial responses, after a median of three (1–7) treatments. The median duration of
response was 82 d (range, 29–211), although some patients retained responses for more
than 2 yr, as reported anecdotally after study completion. Many patients discontinued
follow-up beyond 28 d as a result of progressive systemic disease. For all tumors
treated, 40% (36 of 89) had objective responses, 26 complete and 10 partial responses.
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This therapy provided clinical benefit (e.g., pain control, improved wound care) for 11
(41%) of the patients as assessed by the validated Treatment Goals Questionnaire (17).
Response of the target tumor and attainment of patient benefit were strongly associ-
ated; patients who had tumor responses were four times more likely to gain benefit
(64%) than nonresponding patients (15%).

As expected with this local treatment, almost all patients experienced necrosis at the
treatment sites. Other related tissue conditions included eythema and swelling, as well
as ulceration/eosion and eschar formation. No systemic toxicities typically associated
with intravenous cisplatin administration (nephrotoxicity, ototoxicity, myelosupres-
sion) were reported.

The CDDP/epi-injectable gel provides a new treatment option for local tumor con-
trol and palliation in patients with advanced breast cancer. It may be complementary to
systemic chemotherapy and/or radiation. A preliminary study combining radiation and
intratumoral 5-FU gel, as a radiopotentiator (27), supports further exploration of the
potential of CDDP/epi gel as a potentiator of standard radiotherapy.

3.3. Use in Malignant Melanoma
The primary treatment goal for metastatic melanoma is palliation because the use of

immunomodulatory treatment modalities and systemic chemotherapy has been ineffec-
tive in improving survival. Local-regional therapies have provided the most effective
means of managing this disease. Surgery is the standard therapy for Stage I and II
melanoma, can be curative for Stage III melanoma, and can provide considerable pallia-
tive benefits (relief of obstruction, perforation, bleeding). Both radiotherapy and isolated
limb profusion have been used, however, these are often associated with significant toxi-
city or morbidity as is systemic chemotherapy. Less invasive local therapies for cuta-
neous metastases have been explored in order to provide improved quality of life,
including CO2 laser therapy, photodynamic therapy, and intralesional injections of dini-
trochlorobenzene and bacilli Calmette-Guerin, with varying degrees of success (28).

The feasibility of treating refractory or recurrent cutaneous and soft tissue
melanoma metastases with CDDP/epi injectable gel was evaluated in an open-label,
multicenter Phase II trial (29). The primary consideration was local tumor control and
palliation of symptoms especially in a group of patients with a poor prognosis for long-
term survival. The opportunity to limit toxicity typical of intravenous chemotherapy
was important to maximize or maintain their quality of life.

Treatments were usually performed as an outpatient procedure. The gel (0.5 mL/cm3

of tumor volume) was injected directly into tumors which were located by direct visual
examination or palpation. Up to six weekly treatments with CDDP/epi gel were given
or until a complete response was achieved. Additional cycles of therapy were given if
patients developed a new tumor(s) during the follow-up period or if a treated tumor
recurred or regressed less than 100%.

A total of 25 patients with 244 lesions were treated during the study, with one patient
receiving treatment for 72 tumors. Median baseline tumor volume of all tumors treated
was 0.02 cm3 (range, 0.001–201 cm3). Objective tumor responses were attained in 53%
(130 of 244 tumors); complete responses occurred in 114 (47%) and partial responses in
16 tumors (7%). The median duration of response was 347 d (range, 30–783 d).

The CDDP/epi gel produced significant but expected local cytotoxic reactions (ero-
sion, ulceration, eschar, bleeding) that are associated with the therapeutic effect of the
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agent. These effects were managed by delaying the treatment or by ordinary supportive
care.

Additional studies are warranted to determine how best to utilize CDDP/epi
injectable gel to treat metastatic melanoma; therapy appears appropriate to treating
multiple, recurrent, cutaneous, and subcutaneous metastases. Because of the localized
nature of this intratumoral chemotherapy and generally mild systemic toxicity profile,
the drug may serve as an additive therapy to surgery and radiation.

3.4. Use in Malignant Dysphagia in Esophageal Cancer
Therapy for advanced esophageal cancer aims to relieve dysphagia with minimal

treatment-related morbidity. Most patients with this cancer present when the disease is
too far advanced for any prospect of cure, although many can be treated for palliation
of dysphagia that plagues them for the duration of their illness. A minimum number of
interventions and minimal morbidity are mandatory. Established palliative techniques
for patients not suitable for surgery or radiotherapy and/or chemotherapy are endo-
scopic insertion of prostheses (stents), alcohol injection, and laser therapy. Each
modality has limitations regarding functional outcome, requirement of expensive
equipment, and specialized skills, and safety, respectively.

The CDDP/epi gel was evaluated in a Phase II, multicenter, open-label trial as a
potential alternative palliative treatment for malignant dysphagia (30). Patients had
inoperable esophageal cancer (adenocarcinoma and SCC) and dysphagia caused by
exophytic tumor in the esophagus, accessible for direct endoscopic injection, and with
an estimated tumor volume of 0.5–20 cm3.

Tumors were injected through an endoscope using a 23- or 25-gauge, 5-mm scle-
rotherapy needle attached to a Luer-lock syringe containing the drug. The procedure
was performed under mild sedation; number of injection sites and volume of gel
injected (typically 0.1 mL to 0.5 mL) depended on size of the tumor nodule and ease of
access to inject the calculated dose of 0.5 mL/cm3.

Twenty-four patients were enrolled in the study; 18 patients were evaluable for
response and all 24 were included in the safety assessment. Patients received a
median of three treatments (range, 1–6), usually at weekly intervals. Dysphagia grade
improved in four (duration, 30–45 d), stabilized in 11; lumen patency improved in six
(duration, 29–111 d), stabilized in 10; and exophytic tumor volume decreased in eight
(duration, 29–114 d). Eight of 18 (44%) of patients judged their ability to swallow as
improved. The length of response in these patients was short, which was unfortunately
similar to the duration of response of all palliative treatments. However, the improved
or stable dysphagia is encouraging, especially in this advanced group of patients who
were less likely to demonstrate a clinical benefit.

The endoscopic administration of CDDP/epi gel was generally well tolerated and
involved none of the medically significant toxicities typically associated with systemic
cisplatin, particularly nephrotoxicity, severe nausea and vomiting, or electrolyte abnor-
malities. One patient with intramural and exophytic tumor injected with CDDP/epi gel
developed a tracheoesophageal fistula, possibly related to treatment.

Injecting CDDP/epi gel endoscopically was feasible and tolerable as confirmed by
others for both esophageal (31) and gastric carcinomas (32). This therapy has the
potential to serve in the palliation of endoscopically accessible tumors in the upper and
lower gastrointestinal tract where debulking of exophytic tumor is needed to relieve
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obstruction. It may be used either alone or as an adjunct to stent insertion with or with-
out concomitant radiation therapy.

3.5. Use in Unresectable Primary and Metastatic Liver Cancer
The worldwide incidence of HCC is reported to be approx 500,000 cases per year;

overall, the median survival after diagnosis is less than 1 yr. HCC often develops sec-
ondary to cirrhosis and chronic viral hepatitis. This highly malignant disease is a major
health problem throughout Asia, Africa, southern Europe, and increasingly in the United
States. Surgical resection or orthotopic liver transplantation (OLT) offer the only possi-
bility for long-term survival, but is applicable in only 10–20% of cases. The majority of
patients are not candidates for resection, either because of the presence of advanced dis-
ease, inadequate liver function as a result of underlying cirrhosis, or both. Nonsurgical
treatments for patients with unresectable HCC include systemic chemotherapy,
chemoembolization, and radiation therapy. The overall treatment results are poor.

Patients with small tumors confined to the liver, but considered unresectable with
surgery, may be considered candidates for OLT or local ablative therapies such as
radiofrequency ablation, ethanol injection, or microwave coagulation. These local
modalities are typically only appropriate for patients with small tumors (5 cm diame-
ter) and with few (3) lesions. The goal of these ablative procedures is to produce a high
degree of necrosis in the tumor and tumor margins without toxicity to surrounding liver
parenchyma and structures.

CDDP/epi injectable gel was evaluated in a multicenter, open-label Phase II trial in
patients with localized unresectable HCC who had no more than three tumors, each
with a maximum diameter of 7 cm, and a total tumor volume up to 200 cm3 (33,34). A
separate pharmacokinetic study on a subset of six patients who received intratumoral
CDDP/epi gel has been reported (35). Patients were treated percutaneously with
CDDP/epi gel under ultrasound or CT guidance, delivering up to 10 mL of agent per
treatment; four weekly treatments over a 6-wk period for a maximum of two cycles.
The primary endpoint was tumor response defined as percent change in total viable
tumor volume (total lesion volume minus total necrotic tumor volume) based on
repeated CT imaging. The appearance of any new tumors in an untreated site was not
considered a treatment failure.

A total of 51 patients with histologically confirmed, unresectable HCC with no
extrahepatic or major vascular involvement, and no prior therapy other than surgical
resection were evaluable for response. The objective response rate was 53% (27 of 51
patients) including 16 complete and 11 partial responses after a median of four treat-
ments (range, 1–8). Of the 27 responders, 14 (52%) subsequently developed progres-
sive disease, but only one patient (7%) developed new tumor at a previously treated
liver site. The median survival for responders was 22.5 mo compared to 11.4 mo for
nonresponders; these patients were similarly matched prior to treatment for Child-Pugh
liver function and levels of α-fetoprotein.

The pathology of six treated lesions in three patients was examined histologically;
two patients received OLT after completion of treatment with CDDP/epi gel, and the
third had an autopsy. Histological examination of the livers revealed extensive necrosis
for lesions treated with CDDP/epi gel; there was a good correlation in four of five
lesions between the CT scan assessment of degree of necrosis and the microscopic
examination (36).
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The percutaneous treatment procedure was well tolerated with only minor side
effects, including immediate injection-associated pain, transient hypertension, and
tachycardia. Nausea and vomiting, common cisplatin-related side effects, were
observed in 22% and 24% of patients, respectively, and were easily managed. Two
deaths, considered related to treatment, occurred during study.

Intrahepatic colorectal cancer metastases result in significant cancer-related mortal-
ity worldwide, accounting for more that 50% of deaths in newly diagnosed patients.
Only 10–20% of these patients are candidates for surgical resection, which still
remains the only potentially curative regional therapy. However, the option for surgical
resection is often limited due to multiple tumors involving both lobes, location of
metastases close to major vessels, poor liver reserve, or comorbid conditions.

CDDP/epi injectable gel has also been evaluated in 31 patients with colorectal can-
cer metastatic to the liver. The Phase II, multicenter, open-label study used the same
study design, dosing schedule, and tumor response evaluation criteria as the trial for
HCC (34,37). Many (61%) patients had received previous therapy for their primary or
metastatic disease with multiple (2–4) modalities. The hepatic metastases were consid-
ered unresectable primarily because of location/difficulty to resect (15 of 31), prior
lobectomy/hepatectomy (6), both lobes involved (5), patient refused resection (3), and
poor surgical risk (2). Median total viable tumor treated was 60 cm3 (range, 4–776
cm3; 1–3 tumors per patient).

The overall response rate was 29% (9 of 31 patients) including six complete
responses and three partial responses; 10 (32%) had stable disease. The median
duration of response was 10.2 mo; median time to progression in all patients was 8.1
mo. The group of patients who had previously received systemic chemotherapy had
an objective response rate of 25% (6 of 24) suggesting that this local therapy may be
useful in liver-limited metastases in patients for whom chemotherapy is no longer an
option.

Progression or relapse was seen frequently at new sites not treated with CDDP/epi
gel. Twenty-one patients (4 responders, 17 nonresponders) subsequently had progres-
sive disease; in 81% (17 of 21) progression was limited to the liver. No further treat-
ment had been permitted in these patients by protocol design. Results of this study
suggest that the efficacy of CDDP/epi gel for colorectal cancer metastases could be fur-
ther enhanced by treating new tumors or tumors that progress after the initial course of
therapy, or by using the drug in combination with systemic chemotherapy.

In conclusion, percutaneous intratumoral injection of CDDP/epi gel is efficacious
for localized treatment of unresectable HCC and intrahepatic metastases of colorectal
cancer. Side effects are tolerable. Owing to the echogenic nature of the drug, it is read-
ily visible under ultrasound or real-time CT scan. This property is unique among all the
local ablative therapies and can facilitate proper placement and distribution of the drug
in the tumor. The extent of drug infiltration is clearly visible, thus allowing the physi-
cian to inject the drug close to tumor margins and avoid irritation of the liver capsule.
This results in less pain than with other ablative therapies.

Based on the safety profile of CDDP/epi gel, it is a potential treatment for new,
emerging, or recurrent tumors. It could be used to manage HCC in patients awaiting
liver transplantation, and should be evaluated in combination with systemic chemother-
apy for unresectable metastatic tumors in the liver.
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4. FLUOROURACIL/EPINEPHRINE INJECTABLE GEL

4.1. Human Clinical Trials: Treatment of Cutaneous 
Malignancies and Benign Hyperplasia

Local chemotherapy has been used for decades for treatment of various cutaneous
premalignant, malignant, and virally induced lesions, sometimes with limited success
but frequently limitations in safety and efficacy. A drug formulation comprised of fluo-
rouracil and epinephrine in a collagen gel as a carrier matrix, administered intralesion-
ally, has been extensively evaluated clinically as a site-specific means of achieving
uniform drug concentrations at target lesion sites that are not possible with topical
5-FU cream or intratumoral injection of aqueous 5-FU alone.

The cytotoxic drug 5-FU has a long history of use as an antiproliferative agent,
applied topically for treatment of actinic keratosis, Bowen’s disease, superficial basal
cell carcinoma (BCC) (38,39), and condylomata acuminata (genital warts) (40–42).
The highest success has been for multiple, small, nonkeratinizing genital warts. Inade-
quate drug penetration, low cure rates, and high recurrence rates make topical 5-FU
unsuitable for nodular BCC. Some improvements in efficacy have been reported when
an intralesional injection of the aqueous 5-FU was used for nodular BCC (43,44) and
keratoacanthoma (43,45).

4.2. Use for SCC and BCC
Cutaneous neoplasms are usually treated with ablative procedures such as surgical

excision, curettage and electrosurgery, cryosurgery, or irradiation (46). A nonsurgical
treatment alternative to conserve tissue and obtain better cosmetic outcome would be
of value in selected patients with an aversion to surgery or who are not good surgical
candidates.

The safety and efficacy of 5-FU/epi gel was evaluated in an open-label, multicenter
pilot study of 25 patients with histologically proven SCC on sun-exposed skin of the
face, head, neck, trunk, or extremities (47). A single well-defined tumor of 0.6–3.0 cm
diameter was selected per patient. Each lesion was confined to the upper half of the
reticular dermis with the absence of nodular involvement or metastases. Each tumor
site was treated with up to 1.0 mL of 5-FU/epi gel at weekly intervals for up to 6 wk.
The tumor and surrounding tumor margins of at least 0.5 cm were injected intrader-
mally using a 30-gauge needle on a Luer-Lok syringe by fanning or multiple injections
to provide uniform drug distribution. After at least 4 wk of follow-up and assessment of
cosmetic outcome, the tumor site was completely excised, then step-sectioned for his-
tological examination. The absence of tumor in all sections was defined as a complete
response.

Twenty-two of the 23 SCCs (96%) in patients who completed treatment had a histo-
logically confirmed complete tumor clearing. Only one SCC did not respond com-
pletely, but this lesion had focal Bowen’s disease at the surgical margin and no
evidence of invasive malignancy. Evaluations of the cosmetic appearance of treated
sites were rated as good to excellent by both clinical investigators and patients, and
these were generally in close agreement.

BCCs are the most common form of skin cancer primarily resulting from actinic
damage. About 85% of all BCCs occur on the face, head, and neck. As with SCC, the
treatment goal focuses on complete tumor removal and tissue sparing to minimize cos-
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metic and functional defects. A total of 20 patients, each with biopsy-proven nodular
BCC of 0.6–1.5 cm diameter with clinically well-defined margins were evaluated in an
open-label pilot study (48). Patients were randomly assigned to one of two doses of
5-FU/epi gel, either 0.25 mL (7.5 mg 5-FU) or 0.5 mL (15 mg 5-FU) and treated
weekly by intralesional injections for up to 6 wk. To maintain a double-blind study, one
investigator at each site prepared and administered the drug and the second investiga-
tor, not informed about dose, assessed the tissue conditions and determined the percent
improvement of the test sites on the basis of overall response related to size and
appearance before and after treatment. After 18 wk, the entire treatment site was
excised and serial sections of tissue examined histologically for residual tumor.

Eight (80%) of the 10 patients treated with 0.5 mL of 5-FU/epi gel showed histolog-
ically confirmed elimination of tumor as did six (60%) of the 10 patients who received
the lower dose. There was no statistical difference in responses between the two treat-
ment groups. Before excision, most lesions had disappeared clinically. In two cases
with an apparent clinical cure, the excision specimens showed residual tumor. Prior to
excision at 18 wk, most tissue conditions had disappeared, with the exception of mild
erythema and/or induration in a few patients. The treatment was well tolerated and no
clinically significant side effects were reported. The doses of 5-FU in the 5-FU/epi gel
were approximately one-third to one-twelfth less than doses reported for intralesional
injection of aqueous drug in the treatment of BCC (43,44).

To optimize the dose and treatment schedule for 5-FU/epi gel in patients with BCC,
a second open-label, randomized study was conducted with 122 patients with biopsy-
proven superficial and nodular BCC (49). Two doses (0.5 mL and 1.0 mL) were exam-
ined in six different treatment regimens including: once weekly for 6 wk, twice weekly
for 3 wk, twice weekly for 4 wk, or three times weekly for 2 wk (0.5 mL). Injections
were intradermally at the base of the lesion, infiltrating the lesion and margins. Overall,
91% of evaluable treated tumors (106 of 116) in all regimens had histologically con-
firmed complete responses. The best response rate, tolerance, and patient compliance
were in patients receiving 0.5 mL three times weekly for 2 wk. In this group, the histo-
logical response was 100%. The 5-FU/epi gel was both safe and efficacious, resulting
in complete response rates comparable to surgery, thus providing a potential nonsurgi-
cal treatment alternative in selected patients.

4.3. Use in Psoriatic Plaques
Both topical 5-FU cream and intralesional aqueous 5-FU have been used on a lim-

ited basis for treatment of psoriasis, a benign hyperproliferative skin disease. The pri-
mary mechanism of action of 5-FU as an antimetabolite is thought to inhibit DNA
synthesis by competitive inhibition of thymidylate synthesis and, thus, in psoriasis the
intent of use is to attenuate the hyperproliferation of the epidermal keratinocytes char-
acteristic of this skin disease.

A pilot study with 5-FU/epi gel represented the first application of this form of local
chemotherapy for treatment of psoriatic plaques (50). Fifty-three plaques (2.5 cm
diameter) in 11 patients were randomly assigned to one of five treatment groups
including 0.1, 0.33, or 1.0 mL 5-FU/epi gel injectable gel, an epinephrine gel without
5-FU (0.33 mL) and untreated control. A single treatment produced responses in 20 of
33 (60%) of plaques receiving 5-FU/epi gel. Responses were characterized by 50% or
greater improvement in clinical appearance and complete clearing in four of 33
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plaques. Qualitative responses were comparable with all three doses; no responses
occurred with the two controls. The area of plaque response was related to dose vol-
ume, presumably because the dose increments from 0.1 to 1.0 mL permitted greater
distribution of the drug in the plaques. These plaque responses after the single treat-
ment were comparable to results produced with topical psoriasis therapies where twice
daily applications for up to 2 wk are usually required. The intralesional gel increased
the therapeutic index by increasing drug exposure within the diseased tissue, and
thereby limiting the cutaneous reactions typically seen with topical 5-FU preparations
or injection of 5-FU aqueous solution. The plaque responses observed in this single
dose study suggest that 5-FU/epi gel would be clinically useful to treat chronic recalci-
trant plaque psoriasis that is nonresponsive to other therapies.

4.4. Use for Condylomata Acuminata
Condylomata acuminata, highly contagious warts in the genital and perianal region,

represent a common sexually transmitted disease that is a therapeutic challenge
because current topical and ablative treatments yield low response rates and may lead
to adverse events (51). Although genital warts are usually benign growths, patients are
concerned about the cosmetic appearance of warts, the psychosocial issues of having a
sexually transmitted disease, the risk of transmission to a sexual partner, and fears of
the association of human papillomavirus infection with cervical cancer.

The 5-FU/epi gel was evaluated in two Phase II, randomized, double-blind placebo-
controlled studies involving 324 men and women with new, recurrent, or recalcitrant
genital warts (52). The purpose of the study was to evaluate the contribution of each
component of the formulation and consisted of eight treatment groups. Up to six injec-
tions were administered intralesionally to each wart. Patients treated with the 5-FU/epi
gel had a significantly higher (p < 0.05) complete response rate of 65% and a lower
cumulative 90-d recurrence rate than those lesions treated with 5-FU gel without epi-
nephrine or with individual or various combinations of components.

In a subsequent Phase III randomized, double-blind study of the safety and efficacy of 5-
FU/epi gel was compared with 5-FU gel (without epinephrine) and placebo (53). A total of
359 patients with 1926 condylomata underwent evaluation. Each lesion was injected once
a week for up to 6 wk, and patients were followed for 3 mo. The minimum dose adminis-
tered per wart (1 to <30 mm2) was 0.25 mL with a maximum weekly dose of 150 mg 5-FU
delivered in up to 5 mL of gel. The complete response rate for all lesions treated with 5-
FU/epi gel was 77%, which was significantly (p < 0.002) more effective than 5-FU gel
without epinephrine (complete response rate, 43%); both were superior to placebo (com-
plete response rate, 5%). The treatment was well tolerated and no clinically significant
drug-related systemic reactions occurred. Thus, intralesional chemotherapy with 5-FU/epi
gel provides a new safe and effective treatment modality for condylomata acuminata.

5. CONCLUSION

Extensive experience in human clinical trials has demonstrated the safety and effi-
cacy of local chemotherapy using novel drug systems designed to deliver cisplatin,
CDDP/epi gel, and fluorouracil, 5-FU/epi gel, using purified bovine collagen as the
carrier matrix. These formulations are injected directly into tumors with the goal of
achieving high, sustained, and homogeneous intralesional drug concentrations for
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extended periods of time, but without the atttendent toxicities typically observed with
systemically administered CDDP or 5-FU.

The 5-FU/pei gel was used to treat almost 900 patients with cutaneous diseases
including malignant epitheliomas (BCC and SCC) and benign, hyperproliferative
lesions (psoriasis and genital warts). The injectable gel provided the opportunity to
overcome the limitations of inadequate drug penetration and low cure rates of topical
5-FU and intralesional aqueous 5-FU, often used for decades to treat these skin dis-
eases. For cutaneous neoplasms, the drug has shown potential as a nonsurgical treat-
ment alternative to conserve tissue and to obtain a better cosmetic outcome in selected
patients who are not good surgical candidates or have an aversion to surgery. No clini-
cally significant drug-related systemic side effects were reported. Tissue reactions at
the site of injection occurred in many patients as an expected event associated with the
cytotoxic or antiproliferative activity of the drug. In the experimental arena of the clin-
ical studies, strict adherence to protocols often required up to six treatments given at
weekly intervals, thus not allowing attenuation of dosing to potentially reduce tissue
reactions. Determination of the minimum number of treatments would be warranted in
order to produce response and a better concomitant cutaneous reaction profile.

CDDP/epi injectable gel was evaluated as a single drug in more than 450 patients
with a variety of solid tumors, primarily those with recurrent, local-regional carcino-
mas, who could benefit from local tumor control and palliation of tumor-related symp-
toms. All patients involved in the clinical studies had advanced disease, especially
those with head and neck cancers, and had experienced local tumor recurrences after
primary therapy with conventional surgery, radiation, or multiple modalities. Recurrent
tumors can be painful and can invade vital structures, resulting in impaired function
and curtailment of normal activities. Patients with recurrent tumors are often not candi-
dates for repeated irradiation or resection because these tumors occur in previously
irradiated fields and surgical excision is associated with excessive morbidity, slow
recovery, and cost. Many patients are too fragile to tolerate the additional high-dose
systemic chemotherapy that would be required to achieve substantial rates of local
tumor control. For these patients, CDDP/epi gel can have a substantial impact.

The CDDP/epi injectable gel is easy to administer, although treatment is not without
some toxicity. Local pain during and following intratumoral injection was the most
common problem. This was rarely severe and could be controlled as needed with
appropriate administration of pain medications and/or local anesthetics. Necrosis and
skin breakdown are frequent consequences of progressing tumors. These manifesta-
tions were necessarily increased by treatment with CDDP/epi gel which caused rapid
tumor killing; necrosis was found to occur and had a positive association with tumor
response. Finally, the systemic side effects typically associated with iv administration
of CDDP were milder or much reduced in the clinical setting of local intratumoral
treatment. No nephrotoxicity, ototoxicity, or neurotoxicity were reported. Most impor-
tant, however, is that treatment with CDDP/epi gel did not affect patients adversely to
preclude additional treatment with other therapies as needed.

In all tumors treated with CDDP/epi injectable gel, the tumor responses were of high
quality and patients had appreciable palliative clinical benefits. Efficacy is clearly
demonstrated, even in patients with advanced disease, and suggests that the drug could
be used in patients with earlier stage disease as a promising therapeutic option, either
as a single agent, or added to the armamentarium of therapies in combination with radi-
ation and /or systemic chemotherapy.
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1. SUSTAINED-RELEASE DRUG DELIVERY

Sustained-release drug delivery systems, which meter out the encapsulated drug
over a long period of time, augment the effectiveness of therapy in several ways. An
ideal sustained-release drug delivery system prolongs the half-life of the drug while
maintaining the concentration of the released drug in the therapeutic range during the
entire duration of drug release (Fig. 1). For cell-cycle phase-specific drugs in particu-
lar, prolonging the half-life of the administered drug has a profound effect on its effi-
cacy by increasing the area under the “exposure vs time” curve for a given amount of
drug while, at the same time, decreasing toxicity by reducing the high concentration
peak of drug which otherwise occurs immediately after injection. Tissue distribution of
the drug is often altered, resulting in higher concentrations and greater efficacy at the
desired site, and lower exposure and toxicity elsewhere. Sustained-release formulations
are an effective tool in cases where patient compliance is a problem. The feasibility of
delivering treatment with fewer injections may enable outpatient treatment that can
markedly improve the patient’s quality of life. There are, of course, economic incen-
tives. For parenteral products that require administration and monitoring by medical
personnel, decreasing the number of injections may reduce overall treatment cost. Pro-
prietary sustained-release formulations can extend the economic viability of a com-
pound beyond the termination of its patent life.

2. DEPOFOAM TECHNOLOGY

The DepoFoam® drug delivery system was developed to permit sustained release of
drugs from a depot after direct injection into a body compartment or a tissue. The
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DepoFoam particles are made up of synthetic cognates of lipids that occur naturally in
the human body, such as phospholipids, cholesterol, and triglycerides. Unlike many
types of microspheres, there are no foreign chemical entities in DepoFoam, and the
delivery system itself completely disintegrates over time. When the particles are sus-
pended in physiologic saline, the final product has the appearance and consistency of
skim milk. During storage at 4–8°C, the drug remains inside the chambers of the Depo-
Foam particle. However, when the particle is injected into the patient, gradual reorgani-
zation of the structure of the particle occurs with the intermittent rupture of individual
chambers and the sequential release of increments of drug. The duration of release can
be up to 6–8 wk, which is a significantly longer duration than that obtained with cur-
rent commercial lipid-based delivery systems. Appropriate injection routes include
subcutaneous (sc), intramuscular (im), intrathecal, intraarticular, intraocular, intraperi-
toneal (ip), intrapleural, and epidural injections. The name DepoFoam reflects the
foam-like appearance of the particles comprising the delivery system and the fact that,
upon injection, they act as a depot for releasing the drug over time. DepoFoam particles
are also known, as shown in the literature cited in this chapter, as multivesicular lipo-
somes or multivesicular lipid particles. The technology is versatile, in that both small
organic molecules and large macromolecules such as proteins and nucleic acids can be
encapsulated in and released from DepoFoam particles.

2.1. Structure
Structurally, DepoFoam particles consist of microscopic spherical particles (average

diameter 10–20 µm) composed of nonconcentric chambers, each separated from adja-
cent chambers by a bilayer lipid membrane (1,2). In contrast to unilamellar vesicles
with a single spherical membranous shell, or multilamellar vesicles with multiple con-
centric membranes arranged like the layers of an onion, the lipids of a multivesicular
liposome particle are arranged in a structure possessing hundreds of contiguous non-
concentric chambers (Fig. 2). Each chamber sequesters a small amount of the drug to
be delivered. The individual internal compartments within a DepoFoam particle are
typically on the order of a micron in diameter, whereas the diameter of the particle as a
whole is on the order of tens of microns. The characteristic nonconcentric nature of a
DepoFoam particle results in a higher aqueous-to-lipid ratio than for a concentric struc-
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ture such as a multivesicular liposome, resulting in greater encapsulation efficiency for
water-soluble drugs. The large size of a DepoFoam particle relative to unilamellar lipo-
somes further increases the encapsulation efficiency, because the internal volume
scales as the cube of the radius of the particle.

Although a DepoFoam particle resembles a simple aggregate of separate and indi-
vidual large unilamellar liposomes, there is a profound structural difference. The mem-
branes of the internal compartments of a DepoFoam particle are interconnected (1,2).
A single bilayer lipid membrane separates any two adjacent aqueous compartments
(Fig. 3). Where three internal compartments meet, there is an intersection of mem-
branes called a “plateau border:” this is a topological feature commonly observed with
the watery films of soap bubble aggregates (1). The multiple chambers with intersect-
ing membranes give DepoFoam particles a greater mechanical strength and stability
than possessed by traditional liposomes of equivalent size and aqueous content.

2.2. Methods of Preparation
In order to obtain the unique multivesicular structure of DepoFoam particles, there

are two requirements (2–4). The first is that, in addition to the phospholipids and cho-
lesterol, a triglyceride or other biodegradable oil must be present to hold the individual
chambers together in an organized structure (2,3). In the absence of such oil, the struc-
tures obtained are a combination of multi-, oligo-, or unilamellar liposomes (Fig. 2).
The second is that a double-emulsification process must be used (2,4). In this process,
an aqueous solution of the drug is emulsified with a solution of lipids in an immiscible
solvent phase to produce a water-in-oil emulsion. The water-in-oil emulsion is then
broken up into solvent spherules by mixing it in an excess of a second aqueous solu-
tion, typically an isotonic solution of dextrose and lysine, resulting in a water-in-oil-in-
water double emulsion. The solvent is stripped from the spherules resulting in the
formation of DepoFoam particles (Fig. 4). The suspending aqueous medium can then
be exchanged for a solution suitable for injection, such as normal saline.
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Fig. 2. Structural differences between conventional liposomes and DepoFoam.



2.3. Formulation Variables
A number of parameters can be varied to obtain the desired rate of drug release from

DepoFoam formulations. Increasing the acyl chain length of the phospholipids results
in an increase in encapsulation efficiency, as well as slower rates of release (5,6). Use
of higher molecular weight triglycerides leads to slower rates of release when com-
pared with the use of shorter chain lower molecular weight oils. Blends of triglycerides
give rise to intermediate rates of release (7). Acids and osmotic spacers dissolved in the
first aqueous solution containing the drug also act as release rate modifiers (8,9).
Although the system works best with hydrophilic drugs, hydrophobic and amphipathic
compounds may also be encapsulated, as long as they do not disrupt the membranes. In
some cases, it is possible to solubilize hydrophobic compounds by forming complexes
with cyclodextrins (10) or by conversion into soluble salts. Although there is concern
that exposure to the solvent may denature proteins during encapsulation, this has not
been a problem, possibly because of the presence of phospholipids and cholesterol at
the interface between solvent and water. Whereas chemical stability is a function of the
individual polypeptide involved, DepoFoam encapsulation has been shown with
numerous proteins not to lead to aggregation, oxidation of sulfhydryls or methionines,
deamidation, or diminished bioactivity (11).
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The formulation variables aforementioned have been successfully used to encapsu-
late into DepoFoam a variety of molecules including cytarabine (3,12–15), methotrex-
ate (16,17), amikacin (18,19), gentamycin (20), bleomycin (21), tobramycin (22,23),
morphine (7, 24–27), bupivacaine, 5-fluorouridine-5′-monophosphate (15,28–30), 2-
nor-cyclic-GMP (31), interferon-alpha (α) (32), interleukin-2 (IL-2) (11), granulocyte
colony stimulating factor (7), granulocyte-macrophage colony stimulating factor (7),
insulin (7), leutinizing hormone releasing hormone (11), insulin-like growth factor I
(IGF-1) (33), antisense oligonucleotides, and DNA (7,9).

2.4. Pharmacokinetics
The ability of DepoFoam encapsulation to prolong in vivo half-life has been demon-

strated for a large number of drugs (Table 1). For injections of DepoFoam formulations
into a body cavity (e.g., intrathecal, intraventricular, intraperitoneal, epidural), the
pharmacokinetics typically show a biphasic profile, with an initial distribution phase
followed by an elimination phase. In the case of sc and im injections, the pharmacoki-
netic profile may be either mono- or biphasic, depending on the drug.

Because the drug is released slowly, it is possible to inject a larger total amount of
the drug at a single time with a DepoFoam formulation than with the unencapsulated
drug. For example, the maximum tolerated dose of epidurally injected morphine sul-
fate in dogs is approx 5 mg, whereas with a DepoFoam formulation of morphine, doses
as high as 30 mg can be safely injected by the epidural route without producing severe
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Fig. 4. Confocal micrographs of DepoFoam and its precursors, the first emulsion (oil-in-water) and
the second emulsion (water-in-oil-in-water). The distribution of lipids and aqueous phases are visual-
ized by use of a phospholipid or an aqueous fluorescent probe.
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Table 1
Comparison of Elimination Half-Life Values Obtained for a Single Bolus Injection of DepoFoam Formulations  

with Those Obtained for a Single Bolus Injection of Unencapsulated Drugs

Elimination Half-Life, T1/2 (h)a

Route of 
Drug Dose Species DepoFoam Unencapsulated Administration Reference

Cytarabine 2 mg Monkey 156 0.74 Intrathecal 36
Cytarabine 1 mg Mouse 21 0.26 ip 42
Cytarabine 1 mgb Mouse 165 0.26 ip 37
Cytarabine 1 mg Rat 148 2.7 Intrathecal 38
Cytarabine 1.1 mg Mouse 96 0.16 sc 43
Cytarabine 6 mg Rabbit 52.5 0.2 Subconjuctival 14
Methotrexate 100 µg Rat 96 7.2 Intrathecal 17
Methotrexate 100 µg f Rat 216 0.72 Intrathecal 17
Methotrexate 10 mg/kg Mouse 50.4 0.16 sc 44
Methotrexate 10 mg/kg Mouse 45.6 0.54 ip 44
Methotrexate 10 mg/kg f Mouse 62.4 0.45 ip 44
Morphine 250µg Rat 82 2.6 Epidural 25
Morphine 10 mg Dog 7.5±0.4 3.5±0.2c Epidural 26
Morphine 30 mg Dog 10.0±0.6 3.5±0.2c Epidural 26
Morphine 1 mg Mouse 62.16±3.84 11.04±0.96 sc 24
IGF-1d 20 mg/kg Rat 26 4 sc 33
Interferon α-2b 30,000 IU Mouse 20 1.5 ip 32
Interferon α-2b 30,000 IU f Mouse 13 1.3 ip 32
Bleomycin 2 mg Mouse 31.8 0.13 sc 21
2′3′Deoxycytidine 50 µg Rat 23 1.1 Intraventricular 45
5-FUMPe 1 mg Rabbit 124 4.5 Intravitreal 15

a For intracavitary delivery (intrathecal, intraventricular, intravitreal, and epidural), the pharmacokinetic profile shows an initial distribution and a later elimination phase.
Only elimination half-life values are reported here. Unless noted otherwise, T1/2 values were calculated using the concentration of drug vs time profiles;

b With a predose of blank DepoFoam;
c With a 5-mg dose of unencapsulated morphine sulfate;
d IGF-1;
e 5-fluorouridine-5′-monophosphate;
f Half-life values were calculated using the amount of drug vs time profiles.



opiate side effects (26). This is because the concentration of morphine outside the
DepoFoam particles at any given time during its release from the delivery system is
subtoxic.

3. DEPOCYT

3.1. Description
DepoCyt® is the first product based on the DepoFoam technology to be approved by

the FDA. DepoCyt (cytarabine liposome injection) is a sterile, injectable suspension of
the antimetabolite cytarabine (ara-C), encapsulated into multivesicular lipid-based par-
ticles. Chemically, cytarabine is 4-amino-1-β-D-arabinofuranosyl-2 (1H)-pyrimidi-
none, also known as cytosine arabinoside (C9H13N3O5; molecular weight, 243.22).
DepoCyt is available in 5-mL ready-to-use single-use vials containing 50 mg cytara-
bine. DepoCyt is formulated as a sterile, nonpyrogenic, white to off-white suspension
of cytarabine in sodium chloride 0.9% w/v in water for injection (34). DepoCyt is
preservative-free. Cytarabine, the active ingredient, is present at a concentration of 10
mg/mL and is encapsulated in the particles. The DepoCyt particles are approx 10–15
µm in diameter. Inactive ingredients at their respective approximate concentrations are:
cholesterol, 4.1 mg/mL; triolein, 1.2 mg/mL; dioleoylphosphatidylcholine (DOPC),
5.7 mg/mL; and dipalmitoylphosphatidylglycerol (DPPG), 1.0 mg/mL. The pH of the
product falls within the range of 5.5–8.5. DepoCyt is stable for more than 2 yr at 4 °C.

3.2. Neoplastic Meningitis
DepoCyt was developed for the treatment of neoplastic meningitis. Neoplastic

meningitis, a devastating complication of cancer produced by metastasis to lep-
tomeninges surrounding the brain and spinal cord, is ultimately fatal if left untreated.
Current standard therapy of neoplastic meningitis consists of radiation therapy to any
sites of tumor that are visible on an MRI or CT scan, plus the administration of an anti-
cancer drug 2–3 times per week into the cerebrospinal fluid (CSF) either by lumbar
puncture into the lumbar sac, or by injection into a reservoir implanted under the scalp
and connected to a catheter positioned in a lateral ventricle of the brain. There are two
major problems with current therapy. All three of the agents available for intrathecal
administration (cytarabine, methotrexate, and thioTEPA) have relatively short CSF
half-lives, and are so rapidly cleared from the CSF that they do not spread evenly
throughout the CSF. Even injection of the drug 2–3 times per week does not produce a
pharmacologically optimal exposure to the CSF, and the resulting response rates and
overall therapeutic success is poor.

The rationale for developing a slow-release formulation of cytarabine (ara-C) is that
it is a cell-cycle-specific antimetabolite that kills tumor cells only when they enter the
synthesis phase (S phase) of the cell cycle. Thus, its cytotoxicity is a function of both
concentration and the duration of exposure. Intracellularly, cytarabine is converted into
cytarabine-5′-triphosphate (ara-CTP), which is the active metabolite. The mechanism
of action is primarily through inhibition of DNA synthesis. Thus, longer duration expo-
sures permit a larger fraction of the tumor cells in the population to enter the sensitive
phase of the cell cycle in which they are at risk to be killed.

When ara-C is injected intravenously, it is rapidly metabolized to the inactive com-
pound ara-U (1-β-D-arabinofuranosyluracil or uracil arabinoside) which is then
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excreted in the urine. In contrast, when ara-C is injected into the CSF, its conversion to
ara-U is negligible because of the very low cytidine deaminase activity in the central
nervous system tissues and CSF, and it is cleared primarily by bulk flow at a rate of
0.24 mL/min. Nevertheless, it disappears from the CSF with a half-life of only 3.4 h.
Thus, a formulation of ara-C capable of releasing free drug into the CSF at a rate
approximating its clearance has the potential of maintaining high free ara-C concentra-
tions in the CSF for prolonged periods of time and producing a more favorable phar-
macokinetic profile.

3.3. Preclinical Pharmacokinetics
The distribution, metabolism, and excretion of dioleoylphosphatidylcholine

(DOPC), the predominant phospholipid component of DepoCyt, was determined after
lumbar intrathecal injection of double-radiolabeled (14C-DOPC, 3H-cytarabine) sus-
tained-release encapsulated cytarabine in rats prepared with chronic spinal catheters
(35). Both radiolabels distributed rapidly throughout the neuraxis after injection. Lev-
els of both labels declined in a biphasic manner from CSF and plasma, with an initial
rapid decline over the first 96 h, followed by a much slower rate of decline up to 504 h.
More than 90% of the drug was excreted in urine. The plasma kinetic profiles of the
drug and lipid are similar suggesting that the release of drug is related directly to
breakdown of the particles. The lipids enter standard catabolic pathways after break-
down of the DepoCyt particles in the intrathecal space.

The pharmacokinetics of ara-C released from DepoCyt were studied in six rhesus
monkeys after intrathecal injection into the lumbar sac (36). Following a single 2-mg
dose, the concentration of ara-C associated with DepoCyt particles decreased biexpo-
nentially with initial and terminal half-lives of 14.6 and 156 h, respectively. The con-
centration of the free drug, released from DepoCyt particles, remained above 0.1
µg/mL for more than 672 h. In contrast, the half-life of ara-C following an intrathecal
bolus injection of unencapsulated drug in a single animal was 0.74 h.

Following ip injection of unencapsulated ara-C, the amount of ara-C in the peri-
toneal cavity decreases exponentially with a half-life of 16 min (37,38). Following
injection of DepoCyt, the clearance of cytarabine from the peritoneal cavity was
markedly reduced with a half-life of approx 21 h. The peritoneal clearance of DepoCyt
was further improved by pretreatment with nondrug-containing placebo DepoFoam
formulation. In this case, the half-life was 165 h.

The intrathecal half-life of ara-C associated with DepoCyt particles was 148 h, in
contrast to the half-life of 2.7 h for an injection of unencapsulated ara-C in a Sprague-
Dawley rat model (38).

Subcutaneous administration of DepoCyt to BDF1 mice resulted in slow first-order
release from skin, with a half-life of 4 d (37). The half-life was 10 min for unencapsu-
lated cytarabine. A single-dose SC treatment of BDF1 mice, inoculated intravenously
with 105 L1210 leukemia cells 24 h previously, resulted in long-term survivors over a
wide dose range.

3.4. Clinical Pharmacokinetics
Pharmacokinetic data on DepoCyt were obtained as part of a Phase I trial (19

patients) and two population pharmacokinetic studies, one trial performed in the USA
(11 patients) and one in Europe (13 patients). Pharmacokinetic data for different routes
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of administration are summarized in Table 2. The Phase I study was an open-label
dose-escalation trial. Nineteen patients with various types of neoplastic meningitis
received treatment via intraventricular (IVT) and/or lumbar sac (LP) injection. The
dose was escalated from 12.5 to 25, 37.5, 50, 75, and finally, 125 mg. Patients received
between two and eight cycles once every 2–4 wk, with an average of 3.9 cycles per
patient. CSF and plasma samples were collected from either the ventricle or lumbar sac
at various times up to 21 d, and were analyzed for free (unencapsulated) and encapsu-
lated ara-C by HPLC. In addition, DepoFoam particle counts in the CSF were deter-
mined microscopically. The AUC of free and encapsulated ara-C after IVT injection of
DepoCyt increased linearly with dose. As shown in Fig. 5, as determined in an earlier
study (1), the half-life of free ara-C in the CSF following administration of free drug is
3.4 h. In contrast, the ventricular concentration of free ara-C following intraventricular
injection of 50 mg of DepoCyt, the dose that was recommended for the subsequent
controlled trials, decreased biexponentially with an initial half-life of 9.4 ± 1.6 h and a
terminal half-life of 141 ± 23 h. Free ara-C concentrations of 0.02 µg/mL were main-
tained in both the ventricle and lumbar sac for 14 d in most patients. This concentration
of drug is sufficient to kill almost all types of tumor cells when continuous exposure is
used. Importantly, injection of DepoCyt into the lumbar sac resulted in therapeutically
effective concentrations of ara-C in the lateral ventricles. The levels of free ara-C and
its metabolite ara-U were generally below detectable levels in plasma, irrespective of
the route of administration. Particle counts demonstrated that, following IVT injection,
the count in the ventricle and lumbar sac were the same within 24 h, and that the kinet-
ics of particle disappearance were subsequently identical at both ends of the neuraxis.

Thus, when the patient is dosed every 14 d, there is essentially continuous exposure
to concentrations of ara-C that are highly cytotoxic to almost all types of cells. This
represents an enormous increase in the “concentration x time” exposure to ara-C over
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Table 2
Elimination Half-Life (T1/2) Values for DepoCyt in Humans as a Function of Dose by 
Different Routes of Administration into the CSF and Different Methods of Sampling

Dose (mg) Elimination Half-Life, T1/2 (h)a Route of Administration Reference

12.5 47±22 Intrathecal 12
25 229±70 Intrathecal 12
37.5 75±16 Intrathecal 12
50 87±15 Intrathecal 12
75 95±16 Intrathecal 12
125 161±75 Intrathecal 12
75 86.4 Intralumbarb 46
75 58 Intralumbarc 46
75 95 Intraventricularb 46
75 149 Intraventricularc 46
75 127±33 Intraventricular 41

a For intracavitary delivery (intrathecal, intraventricular, intravitreal, and epidural), the pharmacokinetic
profile shows an initial distribution and a later elimination phase. Only elimination half-life values are
reported here;

b Samples were taken by the intralumbar route;
c Samples were taken by the intraventricular route.



what can be attained when ara-C is administered intrathecally in its free form, and over
what can be achieved when the drug is administered intravenously. Thus, there is a rea-
sonable basis for the expectation that DepoCyt will be active against both solid tumor
neoplastic meningitis and lymphomatous meningitis.

The two population pharmacokinetic trials addressed the question of whether drug
exposure was adequate irrespective of whether the DepoCyt was injected via the LP or
IVT route. The results of these trials confirmed the findings of the Phase 1 trial. Ara-C
concentrations after IVT and LP administration of DepoCyt were maintained at ≥0.02
µg/mL for 2 wk in most patients. Ara-C was generally undetectable in plasma samples
and, when detectable, was within the range of 0.3–5 ng/mL. The maximum concentra-
tion in the lumbar sac after LP injection was three-fold higher than the maximum con-
centration in the ventricle after IVT injection.

3.5. Efficacy
Figure 6 presents a schematic diagram of the DepoCyt clinical studies. To date, a total of

237 patients have been entered in these trials; 189 have received DepoCyt (the remaining
patients received the control drug in the controlled trials). Patients were scored as having a
response if the CSF cytology converted from positive to negative at all sites previously
shown to be positive, as has been done in prior published trials. However, additional rigor
was added by also requiring that the patient remain neurologically stable at the time the
CSF conversion was documented. All studies used a blinded central cytology review.

In a prospective randomized trial, DepoCyt was compared to ara-C for the treatment
of patients with lymphomatous meningitis (39). Twenty-eight patients with lymphoma
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Fig. 5. Schematic diagram of DepoCyt clinical trials. Completed trials are shown as shaded boxes
and trials currently underway are shown as unshaded boxes.



and positive CSF cytology results were randomized to receive either DepoCyt 50 mg
once every 2 wk or free ara-C 50 mg twice per week for 1 mo. Patients whose CSF
cytology converted from positive to negative and who did not have neurologic progres-
sion received an additional 3 mo of consolidation followed by 4 mo of maintenance
therapy. All patients received dexamethasone 4 mg orally twice per day on days 1–5 of
each 2-wk cycle. The response rate was 71% for DepoCyt and 15% for ara-C on an
intent-to-treat basis (p = 0.006). All of the patients on the DepoCyt arm, but only 53%
of those on the ara-C arm, were able to complete the planned 1-mo induction therapy.
Time to neurologic progression and survival trended in favor of DepoCyt (median, 78.5
vs 42 d and 99.5 vs 63 d, respectively; p > 0.05). DepoCyt treatment was associated
with an improved mean change in Karnofsky Performance Score (KPS) at the end of
induction (p = 0.041). Thus, DepoCyt injected once every 2 wk produced a higher
response rate and a better quality of life as measured by KPS relative to that produced
by free ara-C injected twice per week. This is the only randomized trial ever performed
in patients with lymphomatous meningitis.

In a second randomized prospective trial, DepoCyt was compared to methotrexate
for the treatment of solid tumor neoplastic meningitis (40). Sixty-one patients with his-
tologically proven cancer and positive CSF cytology results were randomized to
receive intrathecal DepoCyt (31 patients) or intrathecal methotrexate (30 patients).
Patients received up to six 50-mg doses of DepoCyt or up to 16 10-mg doses of
methotrexate over 3 mo. Treatment arms were well balanced with respect to demo-
graphic and disease-related characteristics. On an intent-to-treat basis, responses
occurred in 26% of DepoCyt-treated and 20% of methotrexate-treated patients (p =
0.76). Median survival was 105 d in the DepoCyt and 78 d on the methotrexate arm
(log rank, p = 0.15). The DepoCyt group experienced a greater median time to neuro-
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Fig. 6. Free ara-C concentration in ventricular CSF following intraventricular administration of
either 30 mg of free ara-C or 50 mg DepoCyt. NB: The curve for free ara-C following administration
of 30 mg free ara-C was redrawn from a figure in ref. 47.



logic progression (58 vs 30 d; log rank, p = 0.007) and longer neoplastic meningitis-spe-
cific survival (log rank p = 0.074; median, 343 vs 98 d). Factors predictive of longer pro-
gression-free survival included absence of visible central nervous system disease on
neuroimaging studies (p < 0.001), longer pretreatment duration of CSF disease
(p < 0.001), history of intraparenchymal tumor (p < 0.001), and treatment with DepoCyt
(p = 0.002). Thus, in patients with solid tumor neoplastic meningitis, DepoCyt produced
a response rate comparable to that of methotrexate, and significantly increased time to
neurologic progression, while offering the benefit of a less demanding dose schedule.

The activity of DepoCyt in patients with solid tumor neoplastic meningitis is being
explored further in a Phase IV single-arm trial. To date, 89 patients with either a positive
CSF cytology result (72 patients) or other findings sufficient to document neoplastic
meningitis (17 patients) have been given DepoCyt 50 mg every 2 wk for 1 mo of induc-
tion therapy by lumbar puncture or intraventricular injection. Responding patients who
did not have neurologic progression received an additional 3 mo of consolidation ther-
apy. All patients received dexamethasone 4 mg orally twice per day on days 1–5 of each
cycle. Fifty-eight of the 72 patients with a positive baseline CSF cytology had sufficient
repeat CSF sampling to be evaluable for response and 15 (26%) responded. Among the
patients who attained a response, 77% did so within two cycles and the remaining did so
within four cycles. Median time to neurologic progression was 55 d; median overall sur-
vival was 88 d. Among patients with neurologic deficits at baseline, 18% improved after
the two induction cycles. This trial confirmed the results of the prior randomized studies
indicating that DepoCyt injected once every 2 wk produced a response rate comparable
to that attainable with methotrexate given twice per week.

3.6. Safety
Patients with neoplastic meningitis are generally seriously ill, and they suffer a rela-

tively large number of adverse events related to their underlying disease that are not
always readily distinguishable from drug-related adverse events. Because most of the
adverse events that occurred in these studies were transient, their frequency was exam-
ined separately for each cycle of treatment.

The most common adverse events observed in all the trials were headache, nausea, and
vomiting, symptoms already known to accompany any form of intrathecal chemotherapy.
In the Phase I trial, the dose-limiting toxicity, which occurred at a dose of 125 mg, was
encephalopathy (41). In the controlled trials, there were no major differences in the over-
all frequencies of drug-related adverse events between DepoCyt, ara-C, and methotrexate
groups that altered patient management. The majority of adverse events were grade 1 or 2
for all three drugs used in these studies. Of the drug-related adverse events, 75% of those
occurring in DepoCyt-treated patients were grade 1 or 2, as were 86% and 78% of those
occurring in ara-C and methotrexate-treated patients, respectively. There were very few
drug-related grade 4 adverse events, and the rates of occurrence were similar across study
drug groups. The adverse events that were scored as drug-related were transient. For
example, episodes of headache recorded as discrete events had a median duration of <1 d.
The types of events observed with DepoCyt were the same as those observed with ara-C
and methotrexate; DepoCyt produced no new types of adverse events. In none of the
studies was there any evidence of cumulative toxicity.

One of the major problems with this disease is that infiltration of the meninges by
tumor cells causes headache, and many of the patients who entered these studies had
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headache prior to starting treatment. However, headache also occurred during treatment,
and this event was analyzed in more detail because it is a recognized toxicity of all forms
of intrathecal chemotherapy. Table 3 shows by grade the percentage of cycles at which
headache occurred for the two controlled trials and the Phase IV trial. There was a higher
frequency of headache on each of the DepoCyt arms, consistent with the desired persis-
tence of drug in the CSF. The incidence of headache was generally lower in the Phase IV
trial. It is likely that this is a reflection of the higher degree of compliance to concurrent
dexamethasone administration that occurred during the Phase IV trial.

Arachnoiditis was the only medically important complication of intrathecal
chemotherapy observed in these studies. A significant fraction of patients in all the
studies had arachnoiditis as a result of tumor invasion of the meninges prior to the start
of treatment. For example, in the controlled trial of DepoCyt vs methotrexate, disease-
related arachnoiditis was already present in 13/29 (45%) of the patients on the
DepoCyt arm and 13/30 (43%) of the patients on the methotrexate arm, even before
they received any intrathecal drug. Table 4 shows the percent of cycles in which arach-
noiditis occurred for each of the three trials. There is no medically significant differ-
ence in the per cycle frequency of arachnoiditis for any of the three different drugs used
in these trials. When it occurred, arachnoiditis was transient, resolved within several
days, and the most severe episodes did not prevent on-schedule administration of addi-
tional cycles of treatment for any of the three drugs. There is no evidence that the risk
of arachnoiditis increased with increasing cycles of treatment.
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Table 3
Comparison Between Trials of the Percent of Cycles on Which 

Drug-Related Headache Occurred

Controlled Trial Controlled Trial 
Lymphomatous Meningitis Solid Tumor Meningitis Phase IV Trial

DepoCyt Ara-C DepoCyt MTX DepoCyt

Number of Cycles 74 44.5 102 69.5 306
Grade 1 9% 0% 7% 4% 4%
Grade 2 12% 2% 6% 1% 6%
Grade 3 5% 0% 4% 1% 3%
All Grades 27% 2% 17% 7% 12%

Table 4
Comparison of the Percent of Cycles on Which Arachnoiditis Occurred Between Trials

Controlled Trial 
Lymphomatous Controlled Trial 

Meningitis Solid Tumor Meningitis Phase IV Trial

DepoCyt Ara-C DepoCyt MTX DepoCyt

Number of Cycles 74 44.5 102 69.5 306
Arachnoiditis (any grade) 22% 13% 23% 19% 15%
Arachnoiditis (grade 3 or 4) 8% 7% 5% 3% 6%



4. CONCLUSIONS

DepoFoam is a sustained-release delivery system for water-soluble and water-stable
drugs capable of delivering drugs for periods extending from a few days to a few
weeks. The duration of release is intermediate to that of microspheres and traditional
liposomes. Because their size is larger than that of traditional liposomes, DepoFoam
particles encapsulate a higher volume of drug solution per gram of lipid. The encapsu-
lated molecules, particularly macromolecules, maintain full bioactivity and stability.
DepoFoam particles are comprised of lipids identical to those occurring naturally
within the body, an advantage in terms of toxicity, regulatory approval, and patient
acceptance. DepoFoam formulations enhance efficacy, avoid high peak levels of drug
that can cause toxicity, and may broaden indications through increased efficacy and
safety. Because of the prolonged release of encapsulated molecules, the frequency of
injections required is reduced, resulting in a decrease in the cost and inconvenience of
treatment and a potential increase in patient compliance. With DepoFoam, nonvascular
depot delivery is possible by a number of routes including intrathecal, epidural, sc, im,
intraocular, and intraarterial. Although the possibility of targeting specific cell types
has not yet been explored, targeting is currently accomplished by local administration.
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1. INTRODUCTION

The concept of vaccination is based on the idea that the patient’s immune system is
able to recognize antigens expressed by the tumor and that activation of the immune
system may result in antitumor immunity. Tumor-associated antigens have been identi-
fied for a number of tumors such as melanoma and virus-associated tumors. These anti-
gens have renewed the interest and enthusiasm for the development of cancer vaccines
and they provide the basis for antigen-specific vaccines in the form of peptide, protein,
or recombinant DNA encoding for such an antigen. At present, the number of relevant
tumor-associated antigens against which the patient can be vaccinated is growing,
although for the majority of tumors, such tumor-associated antigens are still not identi-
fied. Cancer vaccines for these tumors may rely on the use of tumor cells themselves as
the source of antigens.

Following the original concept of Burnet (1) that tumors arising in vivo are efficiently
eliminated by immune surveillance, an increasing body of data indicate that tumor cells
may efficiently escape from immune surveillance by several mechanisms. Such mecha-
nisms include the generation of tumor cell variants lacking tumor antigens and HLA
antigens, deregulation of antigen processing machinery, and expression of inhibitory
molecules that promote tumor cell escape, e.g., Fas ligand and TGF-β. Furthermore,
tumors can induce tolerance to their tumor-associated antigens similar to the natural
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mechanism of tolerance induction to self-tissue antigens during ontogeny. Activation of
T cells requires antigen-specific signals delivered through the T-cell receptor following
binding to the appropriate peptide major histocompatibility complex (MHC) complex, as
well as costimulatory signals delivered by antigen-presenting cells (APCs). Engagement
of the TCR in the absence of the proper costimulatory signals results in anergy. Vaccina-
tion strategies should aim at preventing anergy and overcoming tolerance.

Melanoma serves as paradigm of an immunogenic human tumor. Metastatic lesions are
often easily accessible because of their localization in the skin, subcutis, and lymph
nodes, which facilitates the collection of tumor material and tumor-infiltrating lympho-
cytes; most human tumor antigens recognized by MHC class I-restricted cytotoxic T lym-
phocyte (CTL) that are identified have been isolated from peripheral blood or
tumor-infiltrating lymphocytes of melanoma patients. Moreover, early stage melanoma
cells have several functions of professional APCs. For instance, they can use the HLA
class II route to stimulate T-helper cells, and may express B7 costimulatory molecules and
certain cytokines. For these reasons, most novel vaccination strategies have been initiated
in metastatic melanoma patients. On the other hand, melanomas often escape from the
immune system. Melanoma cells are able to downregulate HLA molecules or β2-
microglobulin and express a cytokine profile similar to Th2 cells, thus skewing the
immune response away from a CD8+ cytotoxic T-cell response and expressing Fas ligand.

Vaccines have evolved from nonspecific immune stimulants to much more specific
and potent strategies. Phase I and Phase II clinical trials that include peptides, whole pro-
tein, recombinant viruses encoding tumor antigens, vaccination with dendritic cells
expressing tumor antigens or tumor derived RNA, and/or naked DNA vaccines, are now
technically feasible and have already been initiated. A major challenge will be to identify
the vaccination strategies that are the most promising. Subsequently, large prospective
randomized clinical trials in cancer patients without large tumor burden, i.e., who have
minimal residual tumor following cytoreductive conventional chemotherapy, need to be
performed to establish the long-term efficacy of the approach in large patient cohorts.

2. RECOGNITION OF TUMOR ANTIGENS BY THE IMMUNE SYSTEM

The immune system has two means of response to antigen: the humoral and the cel-
lular immune response. Antibodies recognize antigens as native, folded protein at the
cell surface. T lymphocytes, through their T-cell receptor, recognize antigen as a short
fragment of protein complexed with a MHC molecule on the cell surface (2,3). CD8+ T
cells recognize the complex of MHC class I and the peptides that are generally 8–10
amino acids in length, whereas CD4+ T cells recognize the complex of MHC class II
and the peptides that are 14–25 amino acids long. Some peptides are present abun-
dantly, whereas others exist only in low amounts on the cell surface. MHC molecules
are highly polymorphic and the different alleles have distinct peptide-binding speci-
ficity. Sequencing of eluted peptides revealed allele-specific motifs, which correspond
to critical anchor residues that fit into specific pockets of MHC molecules (4–6).
Because all endogenous intracellular proteins can be presented to the immune system
in this way, any tumor-specific structure may function as a potential tumor-specific
antigen and be recognized by T cells.

APCs are critical for the antigen-specific priming of T lymphocytes. They express
costimulatory molecules and high levels of MHC class I and class II molecules that
present the processed antigen epitopes to naive and memory T cells to prime for anti-
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gen-specific responses and optimally activate antigen-specific T cells (7–15). APCs
capture antigen and migrate to central lymphoid organs where optimal priming of T
cells can occur and immune responses are initiated. If peptide is presented by MHC
class II molecules in the absence of appropriate co-stimulatory signals, cell death or
unresponsiveness of T cells (T cell anergy) may result. Providing the two signals,
namely antigen and costimulatory signals, is a particular function of professional anti-
gen-presenting cells. Dendritic cells (DCs) are the most potent stimulatory APCs. DCs
constitute heterogeneous populations of cells and can differentiate from bone marrow
and peripheral blood precursors.

3. TUMOR ANTIGENS

The rational design of cancer vaccines depends upon the identification of tumor anti-
gens that can be targeted by the immune system, as well as the strategies in antigen
presentation to overcome tolerance (Table 1). In the past, to characterize target antigens
by serologic methods had been largely unsuccessful. In 1991, the group of Boon
reported on the discovery of a gene encoding an antigen recognized by a CTL clone
(16). This gene was subsequently named MAGE-1 (melanoma antigen 1). The discov-
ery of the MAGE-1 gene was the result of a huge research effort by Boon et al. This
group used cDNA libraries generated from tumor cell-derived mRNA to transfect
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Table 1
Examples of Human Tumor Antigens That Are 

Potential Targets for Vaccination in Cancer Patients

Type of antigen Type of cancer

Tumor-specific antigens
MAGE-1, -2, -3 Melanoma, breast, lung cancer
BAGE Melanoma, breast caner
GAGE-1, -2 Melanoma, breast, lung, bladder cancer
PRAME Melanoma, lung cancer, head-and-neck cancer

Differentiation antigens
Tyrosinase Melanoma
TRP-1 Melanoma
MART-1/Melan-A Melanoma
gp100 Melanoma
Mucin-1 Gastrointestinal cancer, breast cancer
Prostate-specific antigen Prostate cancer

Mutated oncogenic or fusion protein
ras Gastrointestinal cancer, lung cancer
p53 Colorectal, breast, lung cancer
bcr-abl Chronic myelogenous leukemia

Overexpressed proteins
HER-2/neu Breast, ovarian, lung cancer

Viral proteins
Human papilloma virus E6, E7 Cervical cancer
Epstein-Barr virus Burkitt’s lymphoma, nasopharyngeal cancer
Hepatitis B and C Hepatocellular carcinoma 



either recipient COS cells transfected with the appropriate MHC restriction gene or
antigen-loss tumor cell variants. They subsequently screened the transfected cells for
expression of the tumor-specific antigen by their ability to stimulate T-cell clones. They
identified three different categories of tumor-associated antigens recognized by T cells.
The first category consists of the shared tumor antigens which are expressed in many
tumors, and during development, but not in normal adult tissue with the exception of
placenta and testis. For this reason, these antigens are often referred to as cancer testis
antigens. The second category consists of differentiation antigens, such as tyrosinase in
melanomas, which is expressed by both melanocytes and melanomas. These and other
antigens are also normally expressed by the tissue from which the tumor has arisen. A
third category consists of unique tumor antigens expressed exclusively in the tumor
from which they were identified. The latter include mutated antigens specific to an
individual tumor. Other categories of tumor-associated antigens that are identified by
various investigators include antigens encoded by dominant oncogene or tumor sup-
pressor genes and viral antigens.

3.1. Tumor-Specific Antigens
The first melanoma antigen that was identified (MAGE-1) and the subsequently

identified MAGE-2 and -3, were the original family of human melanoma-specific anti-
gens (Table 1; 16,17). CTL epitopes presented by several HLA class I proteins, includ-
ing HLA-A1, -A2, and Cw16.01, have been identified (18–21). The MAGE genes are
also expressed in carcinomas of breast and lung (Table 1; 22,23). The function of
MAGE has not been yet elucidated. BAGE and GAGE (24,25) were identified in
melanoma and shown to be expressed in a number of other tumors (Table 1). Using a
similar approach with CTLs, another antigen named RAGE was identified in renal cell
carcinoma (26,27), and a testis antigen named CAMEL/LAGE-1 was identified in
melanoma (28)—CAMEL being an antigen derived from an alternative reading frame
of LAGE-1. PRAME (preferentially expressed antigen on melanoma) has been cloned
by using a CTL clone expressing an NK inhibitory receptor (29). It is expressed in a
high percentage of melanomas (95%), as well as in a variety of other tumors, including
lung carcinomas (70%), renal carcinomas, head-and-neck squamous cell carcinomas,
sarcomas, and breast carcinomas (Table 1).

3.2. Differentiation Antigens
The second group of antigens identified by Boon et al. is specific for melanocytic

differentiation and these antigens are shared by melanoma and melanocytes (e.g.,
tyrosinase, MART-1/Melan-A, gp100; Table 1). The melanoma antigens MART-
1/Melan-A, gp100, tyrosinase, tyrosinase-related protein-1 (TRP-1 or gp75), and TRP-
2 represent differentiation antigens expressed by normal melanocytes that were shown
to be recognized by CTLs derived from melanoma patients (30–44). Tyrosinase is a
key enzyme in the melanin synthesis pathway in pigmented cells, the function of the
other genes is not known. HLA-A2 is the most frequent MHC class I allele found in
Caucasians and appears to be the predominant restriction element for an antime-
lanoma-directed immune response. The observed immunogenicity of these melanocyte
differentiation antigens demonstrates that an immune mechanism against a normal
self-antigen with limited tissue distribution can be induced in cancer patients and that it
is possible to overcome tolerance to self-antigens.
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Other differentiation antigens include carcinoembryonic antigen (CEA) expressed in
colorectal and other adenocarcinomas, prostate-specific antigen (PSA) in prostate car-
cinoma, and MUC-1 (Mucin1, PEM). MUC-1 is a large molecular carbohydrate anti-
gen on the cell surface that is aberrantly glycosylated and upregulated in breast,
ovarian, colon, and pancreatic carcinoma. MHC-unrestricted MUC-1 specific CTLs
have been isolated from patients with breast, ovarian, and pancreatic cancer (45,46).
Studies utilizing tumor-specific CTLs to identify other antigens expressed in breast
carcinoma and other epithelial tumors are ongoing (47).

3.3. Unique Tumor Antigens
The third category of antigens are unique antigens resulting from point mutations

expressed by the individual patient’s tumor (e.g., MUM-1, CDK4, and β-catenin
[48–50]). A CTL-epitope encoded by a mutated intron was identified and the gene
product resulting from incomplete mRNA splicing was named MUM-1. Other intronic
sequences that yield CTL epitopes include p15 and N-acetylglucosaminyltransferase V.
Mutated cyclin-dependent kinase 4 (i.e., CDK4, a protein involved in cell cycling)
encodes for another CTL epitope. Beta-catenin is involved in cell–cell adhesion.

3.4. Dominant Oncogene and Tumor Suppressor Gene Products
The predominance of oncogene activation in human cancer make the mutated onco-

gene products attractive candidates for immunotherapy (Table 1; 51,52). Mutated ras is
frequently found in gastrointestinal adenocarcinomas. Mutant ras peptides are there-
fore candidates for a vaccine for specific immunotherapy in pancreatic and colon carci-
noma patients. The p53 tumor suppressor protein represents another potential target
(53,54) as p53 mutations are found in more than 50% of malignant tumors.

Chromosomal translocations may generate fusion proteins such as the bcr-abl fusion
protein in chronic myelogenous leukemia. CTLs specific for bcr-abl peptides that bind
to HLA class I molecules can be generated (56–59). Fusion proteins are common in
human malignancy and are candidate antigens for vaccine trials.

HER-2/neu is an oncogene (a growth factor receptor homologous to epidermal
growth factor receptor) that is activated by gene amplification in 15–30% of human
adenocarcinomas. The HER-2/neu gene amplification results in increased expression
of a normal gene product. In patients with overexpression of HER-2/neu, both T cells
and antibodies reactive to HER-2/neu could be demonstrated (60–63), indicating that
tolerance to this self-antigen can be overcome. Animal studies indicate that vaccines
consisting of subdominant epitopes derived from these self-proteins may elicit an
effective immune response (64).

3.5. Virus-Associated Tumor Antigens
Viral antigens associated with tumor pathogenesis include the Epstein-Barr virus

(EBV) which is associated with lymphoma and nasopharyngeal cancer, human papil-
loma virus (HPV) associated with cervical cancer, and HBV/HCC associated with
hepatocellular carcinoma (Table 1). A number of HLA-A2-binding peptides encoded
by the viral oncogenes E6 and E7 from human papilloma virus type 16 are identified
(65–67), although only a small number of patients with HPV16-associated cervical
lesions were shown to have a natural CTL response to these peptides (68).
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4. CANCER VACCINES

The concept of using tumor cells to treat cancer is far from new. Historically, the ini-
tial cancer vaccines were cell-based, using tumor cells themselves as a source of anti-
gen. In order to induce an immune response, it is necessary to use an adjuvant, e.g.,
Freund’s adjuvant, Bacille Calmette-Guerin (BCG), or keyhole limpet hemocyanin
(KLH). This is necessary to induce an inflammatory response so that APCs taking up
antigen are adequately activated. To trigger the immune system efficiently, factors such
as bacterial or viral components, e.g., bacterial DNA, dsRNA, proinflammatory cytokine
(e.g., IL-1, TNF-α), or interaction with T helper cells providing stimulation through
CD40 and MHC class II proteins, could be of major importance to activate DCs effi-
ciently. It has recently become clear that there are many factors that promote DC matu-
ration. Clearly, the presence of the proper conditions to efficiently maturate DCs may
determine the outcome of the vaccination strategy. Throughout the last decades, both
autologous and allogeneic cell lines have been used as vaccines. Most of the studies
with nonmodified tumor cell vaccines have been performed in melanoma, renal cell,
and colorectal carcinoma patients.

4.1. Cell-Specific Vaccines
The approach of a vaccine prepared from tumor cells is designed to stimulate the

patient’s immune system against a wide spectrum of tumor antigens. As most antigens
remain unknown, the advantage of the use of whole cells is that it contains the com-
plete set of relevant antigens. A disadvantage of tumor cell vaccines is that tumor cells
have poor expression of MHC and costimulatory molecules and they are poor profes-
sional antigen-presenting cells; thus, a drawback of this approach is the development of
tolerance.

One approach is the use of autologous tumor cells as vaccine. Vaccines based on
autologous tumor cells are labor-intensive. Major disadvantages of autologous tumor
cell vaccines is the uncertain outcome of the culture procedure, the time-consuming
and laborious process to cultivate tumor cells for each individual patient, and the diffi-
culty of evaluating autologous tumor cell vaccines for antigen expression. An alterna-
tive strategy is to use more universally applicable allogeneic cell-based vaccines
because many tumor antigens are shared rather than unique. Allogeneic tumor cell vac-
cines are easy to prepare and standardize with respect to assessment of antigen expres-
sion by the vaccine tumor cells. The use of allogeneic tumor cell vaccines is justified in
that a high percentage of tumors express common shared tumor antigens, such as in
melanoma.

Experimental animal studies using a wide array of tumor models have indicated that
the gene transfer of cytokine genes (costimulatory molecules such as B7.1 and B7.2)
and foreign MHC molecules may render tumor cells more immunogenic. Vaccination
with such transfected tumor cells, or with tumor cells admixed with similarly trans-
fected bystander cells, are able to elicit protective antitumor immune response in naive
animals and therapeutic response in tumor-bearing hosts.

Hybrid cell vaccination is a new approach in which vaccines are generated by fusion
of the patient’s tumor cells with allogeneic MHC class II-expressing cells in order to
create an immunogenic cell that combines the tumor’s antigenicity with the immuno-
genicity of allogeneic MCH molecules. The generated hybrid cell will express all anti-
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gens of the tumor and be highly immunogenic by the known strong effect of allogeneic
MHC class II and costimulatory molecules contributed by the fusion partner cell
(69,70). Animal studies have confirmed the strength of this approach, resulting in cure
of the animals from transplanted tumors and the generation of long-lasting immunity to
subsequent challenge with the same tumor.

4.2. Antigen-Specific Vaccines
Another approach is to design specific vaccines aiming at stimulating the immune

response to selected antigens. Directing the immune response toward a selected antigen
has the advantage of being more practical for use in clinical studies, as the product can
be much more easily standardized. The advantage is that, for most tumors, tumor-asso-
ciated antigens have not been identified and they may not be the most potent antigen
involved in the rejection of a particular tumor. To this purpose, peptide vaccines (single
or multivalent peptide vaccine), peptides linked to lipids, administered as liposomes, or
peptides pulsed onto antigen-presenting cells may be explored.

Until now, most of the peptide vaccines have used HLA class I-restricted peptides
(usually nonamers or decamers). Another approach is to vaccinate with much larger
overlapping peptides, whole proteins, proteins linked to lipids, or peptides pulsed onto
antigen-presenting cells. Such vaccines will result in vivo in a greater set of relevant
peptides against which the immune response can now be directed.

Naked DNA can also induce tumor antigen-specific immunity. Direct injection of
DNA into skin or muscle results in the expression of the gene product and can stimu-
late an immune response. Vaccines containing DNA-encoding tumor antigens, admin-
istered by gene gun for intradermal injection or intramuscular injection, or DNA linked
to lipids could potentially be used for vaccination. Antigen-presenting cells, transduced
with DNA-encoding tumor antigens or a minigene containing multiple CTL epitopes,
may be more effective in triggering an immune response. The relative simple technol-
ogy of DNA-based vaccinations with naked DNA encoding tumor antigen may super-
sede the more complex technology of other gene therapy protocols.

Recombinant viruses encoding tumor antigens, and/or genes encoding cytokine,
costimulatory molecules, or other genes to enhance the immune response, may be used
to vaccinate patients against their tumor.

5. TUMOR CELL VACCINES, NONMODIFIED OR GENE MODIFIED

Various clinical trials employing autologous or allogeneic tumor-cell vaccines have
been reported (71–80). In some studies, development of antibodies directed against
tumor-associated antigens expressed by melanoma correlated with survival, suggesting
either a specific effect of vaccination or identification of a subpopulation of patients
with more favorable immunobiological characteristics. Morton et al. (74) observed a
survival benefit in stage IIIA and IV melanoma patients following vaccination with an
allogeneic whole-cell vaccine comprised of three melanoma cell lines, that expressed
multiple immunogenic tumor antigens, plus BCG. A large, multicenter, randomized
trial with the three melanoma cell line vaccines is ongoing. In 54 melanoma patients
with in-transit metastases treated at John Wayne Cancer Institute during the period of
1985–1997 with this melanoma cell vaccine, nine (17%) objective responses were
observed, including 13% complete remissions (79). Recently, an adjuvant trial in 412
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stage II and stage III colorectal cancer patients (following surgical resection) random-
ized between observation and autologous tumor cell-BCG vaccine administration; the
long-term results failed to demonstrate any survival benefit in the patients who received
active specific immunotherapy (ASI) (80). Vermorken et al. (81) reported the results of
a study in 254 stage II and stage III colorectal cancer patients randomized to receive
immunization with autologous tumor vaccine plus BCG or observation. Patients who
received ASI appeared to have a reduction in risk of disease in the recurrence-free
period (particularly stage II patients).

With the developments in molecular genetics and the cloning of genes encoding
immune system regulatory molecules, a new generation of cell-based vaccine strategies
has arisen through transduction of tumor cells with genes encoding immunologically
active molecules. The use of genetically modified tumor cells to vaccinate against
tumor has been extensively studied in animal models. In general, the types of immuno-
logically active genes that have been introduced into tumor cells can be divided into
three categories: MHC genes, cytokine genes, and genes encoding membrane associ-
ated costimulatory molecules. This may result in increased antitumor responses to both
gene modified, as well as nonmodified tumor cells. Genetically modified vaccines aim
at converting the tumor cell itself into an effective antigen-presenting cell, which can
now stimulate T lymphocytes directly and aim at enhancing cross priming. Owing to
the change in tumor cell and microenvironment (resulting in influx of immune cells
and enhanced tumor cell degradation), APC progenitors will be attracted to the site of
vaccination where they may differentiate to dendritic cells. Following ingestion and pro-
cessing of released tumor antigen, DCs will migrate to lymph nodes where they may pre-
sent tumor antigen-derived peptide by their MHC class molecules to activate T cells.

Several investigators reported prevention of tumor and/or rejection of small estab-
lished tumors following immunization with tumor cells genetically modified with
cytokine cDNA encoding IL-2, IL-4, IL-7, IFN-γ, TNF-α, G-CSF, and GM-CSF
(82–93). Similar strong antitumor responses were obtained following vaccination with
gene-modified tumor cells expressing foreign/allogeneic MHC gene class I or class II
molecules or the B7 costimulatory molecule (94–102). We have initiated a clinical
study in cancer melanoma patients to evaluate the toxicity and antitumor efficacy of
injections of an HLA class I-matched, irradiated allogeneic melanoma cell line, which
expresses most of the in melanoma identified tumor antigens, and secretes IL-2 follow-
ing genetic modification (103). Inflammatory reactions of metastases accompanied by
apoptosis and necrosis have been observed, as well as one complete, and one nearly
complete, regression of metastases lasting for more than 1 yr. A number of patients
experienced mixed responses and stabilization of the disease. An increase in antitumor
CTLp frequencies was found in some of the patients. Similar studies employing vac-
cines with autologous or allogeneic tumor cells engineered to express cytokine, costim-
ulatory molecules or vaccines consisting of nonmodified tumor cells admixed with
cytokine-gene-modified autologous fibroblasts have been mainly performed in
melanoma patients (104–107, see also Chapter 14).

6. PEPTIDE-BASED VACCINES

The advantages of synthetic peptides are that the preparations show chemical con-
sistency from batch to batch and that immunological monitoring of defined T-cell epi-
tope is easier. Another advantage is the relatively simple and inexpensive production of
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large quantities, and the possibilities of constructing multiepitope vaccines by combin-
ing CTL-epitopes derived from different tumor antigens. The limitation of peptide-
based vaccines is the limitation of HLA-restriction, necessitating the a priori
knowledge of the patient’s HLA haplotype (108) in order to choose appropriate pep-
tides compatible with that particular haplotype. Another limitation is the tumor hetero-
geneity, as not all tumor cells will express the target T-cell epitope. For a peptide-based
vaccine to be widely applicable, it will be necessary to identify multiple peptide epi-
topes that are presented by all the major MHC class alleles. Persistence of peptide anti-
gen in vivo will be limited by clearance and degradation. The presence of serum
peptidases may alter the antigenicity of peptides or rapidly inactivate peptides. To raise
the immunogenicity, peptides can be injected in the following ways: with adjuvants, in
liposomes, or by direct attachment of lipids (109).

Analysis of more than 4000 peptides eluted from MHC molecules has identified
over 100 motifs binding to a wide range of MHC molecules. These motifs can be used
to analyze proteins to identify potential T-cell epitopes. Further analysis of the binding
properties of potential T-cell epitopes and their ability to stimulate an appropriate T-
cell response, may identify subdominant peptides that can now be tested as vaccines in
the treatment of cancer patients.

Various peptide-based vaccines studies have been performed in melanoma patients
and resulted in clinical responses in some trials. Marchand et al. (110) reported signifi-
cant tumor regressions (one complete remission) in three out of 12 HLA-A1 positive
tumor-bearing melanoma patients who were immunized with subcutaneous injections
of the synthetic HLA-A1-binding MAGE-3 peptide. Jaeger et al. (111) vaccinated six
HLA-A+ metastatic melanoma patients intradermally with multiple CTL-epitopes, i.e.,
peptides derived from MART-1/Melan-A, tyrosinase, and gp100/Pmel17. The
influenza matrix peptide was administered as a control. DTH reactions were observed
in five of six patients. Generation of peptide-specific CTL was documented against
MART-1/Melan-A-derived peptide epitopes, the tyrosinase signal peptide, and the
influenza matrix peptide after vaccination. No tumor regressions were observed.

The group of Rosenberg has performed a number of clinical studies with synthetic
HLA-A2 binding peptides derived from the melanoma differentiation antigens MART-
1/Melan-A and with immunodominant gp100 peptides as well as with modified gp100
peptides (112,117). Because the immunodominant gp100 peptides have relatively low
binding affinity to HLA-A2, peptides modified at the HLA-A2-binding anchor posi-
tions were selected based on MHC binding affinity (113). Two high-affinity binding
peptides containing an amino acid substitution in gp100aa209–217 and gp100aa209–289
seem to be more immunogenic than the native epitopes. Clinical studies with these
modified high-affinity binding peptides, resulted in an increase in vaccine-specific T-
cell frequency. Another peptide study was performed in melanoma patients utilizing
tyrosinase peptides in combination with GM-CSF (118). Vaccination of cancer patients
with mutant ras peptide-pulsed antigen-presenting cells from peripheral blood indi-
cated that vaccination of end-stage pancreatic carcinoma patients resulted in a transient
ras-specific proliferative T-cell response in some patients (119,120). Khleif et al. (121)
conducted a Phase I trial in which they immunized patients with advanced cancer with
13-mer mutated ras peptides reflecting codon 12 mutations. Fifteen patients were vac-
cinated. Tumors from 139 potential patients were screened; tumors from 37 of the 139
patients were found to carry the appropriate mutation. Three of 10 patients generated a
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mutant ras-specific CD4+ and/or CD8+ response; CD8+ CTLs specific for Gly to Val
mutation at codon 12 were capable of lysing an HLA-A2-matched tumor cell line car-
rying the corresponding ras mutation.

Vaccination of 12 patients with chronic-phase CML with bcr-abl fusion peptides
plus QS-21 as immunological stimulant generated peptide-specific T-cell proliferative
responses (122). However, no CTL responses could be identified and no clinical remis-
sions were induced.

Interestingly, intradermal immunization of breast and ovarian cancer patients with
selected subdominant 15–18 amino acids-long peptides (derived from intracellular and
extracellular domain HER-2/neu mixed with GM-CSF as an adjuvant) elicited both
peptide-specific, as well as protein-specific CD4+ T-cell responses, demonstrating that
tolerance for this self-antigen can be broken (123).

Steller et al. (124) immunized 12 patients with refractory cervical carcinoma with an
HPV-16 E7 lipopeptide. There were no clinical responses or treatment toxicities. T-cell-
mediated immune responses against HPV were retained following vaccination in patients
who mounted a cellular immune response before vaccination. Anti-HPV responses were
induced in two of three patients who were nonreactive before vaccination.

MacLean et al. (125,126) administered a vaccine containing STn-KLH (STn is a
synthetic epitope of a natural mucin) with or without chemotherapy (consisting of low-
dose cyclophosphamide) to patients with metastatic adenocarcinoma. Antibodies
against mucin-associated sialyl-Tn epitopes correlated with survival, whereas survival
was significantly longer in patients with breast cancer receiving the combination of the
vaccine and cyclophosphamide than in patients receiving the vaccine only.

7. PROTEIN VACCINES

Several lines of evidence may support the delivery of entire proteins rather than the
use of a peptide-based vaccine as following the use of a protein-based vaccine, patients
are not excluded based on HLA haplotype restriction. In addition, the protein will pro-
vide a wider range of multiple HLA class I and class II epitopes. Therefore, whole pro-
teins may provide T-cell epitopes that have not already been identified in the context of
other, common HLA alleles. In a Phase I study, 18 colorectal cancer patients without
macroscopic disease were immunized with recombinant human CEA with (n=9) or
without (n=19) GM-CSF as adjuvant (127). Strong anti-CEA responses were particu-
larly seen following immunization with rHuCEA plus GM-CSF. No signs of autoim-
mune reaction were observed.

Complete molecular remissions were induced in lymphoma patients after vaccina-
tion with patient-specific idiotype protein plus GM-CSF (128). Tumor-specific CD4
and cytotoxic CD8 T cells were uniformly found (19 of 20 patients), whereas antibod-
ies were detected. Vaccination was associated with long-term disease-free survival.

8. DENDRITIC CELLS PULSED WITH PEPTIDE, 
TUMOR LYSATES, OR PROTEIN

Animal models have clearly shown that bone marrow-derived DCs pulsed with
tumor-derived peptide or genetically engineered to express costimulatory cytokines
may effectively generate antitumor CTLs in vivo. DCs have unique abilities to induce
T-cell-dependent immunity, are capable of presenting processed antigen for days, and

272 Part III / Current Applications



traffic to lymphoid organs. DCs pulsed with peptides may induce protective immunity
against tumor challenge making them potent professional APCs (129–131). These and
other experiments generate enormous enthusiasm to clinically apply DCs as cancer
vaccines in patients. Various approaches utilizing DCs can be followed. Genetic modi-
fication of DCs with cDNA encoding tumor antigen will result in a wealth of tumor
peptides already expressed in the proper HLA context of each individual patient. In
addition, tumor antigens can be loaded onto DCs’ MHC antigen-presenting molecules
by pulsing the cells with synthetic peptides, purified proteins, tumor lysates or crude
lysates eluded from tumor cells, tumor-derived RNA encoding for tumor antigens, or
apoptotic bodies. Also, such tumor antigen-loaded DCs or hybrid fusion cells, gener-
ated by fusion between DC and tumor cell, will result in a wide range of tumor-derived
peptides against which a T-cell response can now be efficiently generated. Because
autologous cells serve as source of antigen, such vaccines are available to all patients,
irrespective of HLA type.

DCs have recently become easier to isolate (132). They can be expanded in vitro
from CD34+ cells or from peripheral blood monocytes using IL-4 and GM-CSF
(133–135). A major disadvantage of preparing DCs is the time consumption and costly
procedure to generate mature and functionally active DCs. DCs have been adminis-
tered in the skin or intravenously. Thus far, DC-based clinical trials have shown
promising results in patients with B-cell lymphoma, melanoma, and prostate cancer.

8.1. DCS Pulsed with Peptide or Tumor Lysate
Mukherji et al. (135) monitored patients who were immunized with a vaccine con-

sisting of autologous APCs pulsed with MAGE-1 peptide. Autologous tumor and pep-
tide-specific responses were observed following vaccination. Chakraborty et al. (136)
immunized 17 melanoma patients intradermally with tumor-lysate-pulsed autologous
APC. The vaccine was administered monthly in a dose-escalating fashion, from 105 to
107 cells/injection, during a 4-mo period. Antigen-specific CD8+ T-cell responses could
be generated from in vitro expanded vaccine-infiltrating lymphocytes.

Nestle et al. (137) reported on the vaccination of 16 melanoma patients with pep-
tide- and tumor-lysate-pulsed DCs. KLH was added as a CD4+ helper antigen and
immunological tracer molecule. Five of 16 patients demonstrated objective responses
to the DC vaccination, including two complete and three partial responses.

Following vaccination with mature monocyte-derived DC pulsed with MAGE-3
HLA-A2.1-binding peptides and influenza matrix HLA-A2.1-control peptides, as well
as the recall antigen tetanus toxoid, antigen-specific CD8+ effector T cells were gener-
ated and were detectable in all eight patients in blood directly ex vivo. Regression of
individual metastases was observed in 6 of 11 patients. Nonregressing metastases
lacked MAGE-3 mRNA expression (138,139).

MacKensen et al. (140) performed a Phase I study with DC-pulsed with a pool of
peptides that included MAGE-1, MAGE-3 (HLA-A1), Melan-A/MART-1, gp100, and
tyrosinase (HLA-A2) in HLA-A1+ or -A2+ melanoma patients. Antitumor responses
were observed in two of the 14 immunized patients.

8.2. DCS Pulsed with Protein
B-cell malignancies abundantly express a unique tumor-specific cell surface antigen

(immunoglobulin). Each individual lymphoma has a unique idiotype immunoglobulin,
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and antiidiotype strategies must, therefore, be tailored to individual patients. Four
patients with follicular B-cell lymphoma received a series of three or four infusions of
antigen-pulsed, i.e., tumor-specific idiotypic protein-pulsed, dendritic cells followed by
sc injections of antiidiotype 2 wk later (141). All patients developed antitumor cellular
immune responses, whereas two complete and one partial remission were observed. In
a follow-up report, Hsu et al. (142) reported the results of vaccination with idiotype
protein-pulsed dendritic cells in 41 patients with B-cell lymphoma. Fifty percent of the
patients experienced a specific immune response against the idiotypes of their tumor
immunoglobulin. Of these, two experienced a complete regression of residual disease.
The ability to generate an immune response correlated with improved clinical outcome.

Lim et al. (143) reported their results of vaccination with dendritic cells pulsed with
idiotypic protein and KLH as a control in six multiple myeloma patients. Peripheral
blood mononuclear cell proliferative antiidiotype responses in most patients and an
increase in CTL precursor frequency against idiotype-pulsed autologous tumor cells in
some patients were observed.

8.3. Hybrid Cells
Kugler et al. (144) reported on 17 patients with renal carcinoma who were vacci-

nated subcutaneously in close proximity to inguinal lymph nodes with allogeneic DCs
fused to autologous tumor cells. Cells were immediately administered following elec-
trofusion and 200 Gy irradiation of the generated hybrid cells. No serious side effects
occurred, and 7 of the 17 patients responded favorably to the hybrid cell vaccination
(complete tumor remission, 4; partial remission, 2; mixed response, 1). The vaccina-
tion is an example of an individualized immune therapeutic therapy. Given the hetero-
geneity of tumor cells within one lesion, a strategy aimed at the induction of CTLs
directed against multiple different tumor-associated antigens may account for the
results obtained in this study. However, the validity of the DC-tumor cell hybrid sys-
tem is still uncertain as other researchers have not been able to confirm these data.

Trefzer et al. (145) reported on the results of their hybrid cell vaccination in metasta-
tic melanoma patients. Results obtained were complete response (1), partial response
(1), and stable disease (5), in 16 melanoma patients who were immunized with hybrids
of allogeneic peripheral blood mononuclear cells enriched for B cells, and freshly iso-
lated melanoma cells, or melanoma cell lines.

9. RECOMBINANT VIRAL VECTORS

In animal models, it has been shown that immunization with recombinant viruses
encoding model tumor antigens elicits a strong specific immune response against the
model tumor antigen, whereas the same model antigen presented by tumor cells is not
immunogenic (145). Several viruses encoding model tumor antigens have been shown
to express antigens within the cytoplasm of infected cells, resulting in the induction of
murine immunity. This approach carries a safety risk because the delivery of whole
genes encoding tumor antigens that are involved in carcinogenesis may lead to malig-
nant transformation of recombinant virus-infected cells. Viral vector vaccines contain-
ing the functional human papilloma virus E6 and HPV E7 oncogenes, mutated
oncogenes, or tumor antigens such as MAGE, GAGE, and BAGE (whose function is
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still unknown) should not be considered safe. In contrast, cloning of the genetic code
for one or multiple CTL epitopes (147,148) derived from such tumor antigens into viral
vectors to use as recombinant viral vaccine may result in T-cell immunity without
introducing potential risks.

Several studies investigating the use of recombinant viral vectors engineered to
express candidate tumor antigens such as CEA and PSA (149–155) have been initiated.
In one study, 26 patients with metastatic adenocarcinoma (gastrointestinal, lung, and
breast) were immunized with dermal scarification monthly with a recombinant vac-
cinia virus (rV) containing the self-antigen carcinoembryonic antigen (CEA). No
severe toxicity was encountered. Immunological monitoring showed that tolerance can
be broken by vaccination with rV-CEA (149); CTL responses to a specific CEA epi-
tope could be demonstrated after prolonged in vitro culture of peripheral blood lym-
phocytes from patients after vaccination and the CTLs were able to lyse tumor cells
expressing CEA.

Comparison between intradermal vs sc immunization with rV-CEA administered to
20 metastatic adenocarcinoma patients failed to show a more favorable immune
response following intradermal vaccination (152).

Immunization with a canary pox vector (ALVAC) containing the gene encoding for
CEA resulted in significant increases in CTL precursors specific for CEA in PBMCs
after vaccination compared with before the treatment (153).

Rosenberg et al. (154) used recombinant adenovirus encoding MART-1 or gp100
melanoma antigens, either alone or followed by IL2, to immunize metastatic melanoma
patients. One of 16 vaccinated patients receiving only rAd-MART-1 experienced a
complete remission, whereas none of the patients receiving rAd-gp100 alone had an
antitumor response.

In other studies, a similar approach was taken; men with rising PSA levels after
treatment for prostate cancer were immunized with vaccinia viral vectors encoding
prostate-specific antigen (155). A number of patients had stable disease for 11–25 mo,
whereas PSA levels were stable. Immunological studies demonstrated a specific T-cell
response to a peptide derived from PSA. Other clinical studies involve the use of viral
vectors encoding MUC-1 to immunize patients with adenocarcinoma.

Cervical carcinoma is associated with human papilloma virus (HPV) types. The
HPV E6 and HPV E7 genes encode for oncoproteins that are able to deregulate cell
growth by inactivating the products of p53 and Rb, respectively. Because E6 and E7 are
viral proteins without sequence homology to human cellular proteins, there does not
seem to be a risk of inducing an autoimmune response by targeting E6 and E7.
Borysiewicz et al. (156) vaccinated late-stage HPV-16-positive cervical cancer patients
by dermal scarification with a recombinant vaccinia viral construct encoding modified
E6 and E7 genes of HPV 16 and 18. All eight patients mounted an antivaccinia anti-
body response, whereas three patients produced antibodies to HPV. HPV-specific CTLs
were detected in one of three evaluated patients.

10. DNA VACCINATION

DNA delivery methods have been shown in animals to be efficient enough to raise
immune responses (157–160). In the case of naked DNA vaccines, the host cell manu-
factures the protein and CTL epitope. Plasmids are easy to manipulate and can accom-
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modate large sequences of foreign DNA. These can be produced at a high level of
purity and are associated with low immunogenicity.

The “gene gun” gene delivery system (161–163) is an effective means of introduc-
ing antigen-encoding expression vectors into the epidermis. The immunization of the
skin results in the temporal presence of DNA and expression of antigen, but elicits
humoral and cellular immune responses and protective immunity. The skin is rich in
dendritic cells and ballistic cutaneous genetic immunization may lead to in vivo trans-
fection of skin-derived dendritic cells. Endogenously synthesized antigen can access
the MHC class I-restricted pathway of transfected DCs. Following migration to
regional lymphoid organs, the DCs can present the tumor antigen to T cells with appro-
priate costimulatory signals for T-cell activation. DNA immunization can produce
long-term humoral and cellular immune responses (159).

Although treatment of B-cell lymphoma patients with antiidiotype antibody has
been demonstrated to be successful, analysis of lymphoma cells at the time of relapse
has demonstrated that, because of antigenic selection, clonal expansion of lymphoma
cells with mutation in the idiotypic variable genes (idiotypic escape) had occurred.
Importantly, loss of surface immunoglobulin does not appear to occur. Therefore, a
more recent strategy has involved the molecular cloning of the idiotype sequence of
both the light chain (VL) and the heavy chain (VH). Variable region gene sequences
coding for the lymphoma idiotype can be isolated directly from biopsy material by
polymerase chain reaction (PCR) amplification, cloned, and DNA sequence analysis of
the cloned PCR product performed. Light chain and heavy chain can be assembled
with flexible linker sequences to encode a single-chain fusion. If needed, the idiotype
sequence can be further subcloned into a vector and idiotype protein produced in a suit-
able system. A clinical trial has been initiated to test the safety of the genetic approach
to personalized idiotypic vaccination with DNA encoding the idiotypic V gene (164).

Nabel et al. (165) showed that the introduction of allogeneic HLA-B7 DNA cationic
liposome complexes into cutaneous melanoma metastases by direct injection resulted in
expression of HLA-B7 protein in the tumor cells near the site of injection. Regression of
metastases occurred, suggesting that allogeneic effects may indeed enhance antitumor
immune response. In an update on 10 patients, Nabel et al. (166) reported that HLA-B7
gene transfer did not markedly alter the frequency of circulating tumor-specific CTL in
peripheral blood, whereas T-cell migration into treated lesions was enhanced in the major-
ity of patients. In one patient, subsequent treatment with tumor-infiltrating lymphocytes
derived from gene-modified tumor, resulted in a complete regression of the residual dis-
ease. Thus, immunological monitoring of lymphocytes from metastatic sites could be
more informative than such monitoring of T cells from the peripheral blood compartment.

11. CONCLUSION

Advances in molecular genetics and in tumor immunology enables us to explore the
application of genetically modified tumor cell vaccines, tumor peptide and protein or
DNA-based tumor antigen vaccines in cancer patients. Until now, cancer vaccines have
shown a favorable toxicity and safety profile. Antitumor responses vary in reported
studies. The low numbers of patients entered in these studies preclude any statistically
meaningful conclusion about the efficacy of the approach. Increasing efforts will be
made to explore the value of dendritic cells to initiate an effective immune response
and to prevent or break tolerance.
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In the coming years, various new approaches including adoptive cellular
immunotherapy with DCs loaded with peptides or proteins or genetically modified to
express tumor antigens will be explored. Clinical investigation of new adjuvants is
required in order to optimize novel vaccination approaches. Decisions regarding type
of vaccination strategy should include assessment of tumor antigen and HLA class I
expression in the individual patient’s tumor. Careful analysis of current trials and direct
comparison of different approaches will be necessary to establish vaccination as an
effective treatment modality for cancer patients.

Immunological monitoring of clinical vaccination trials is critical to our understand-
ing of the complex events that happen in vivo following administration of a vaccine.
Therefore, efforts should be made to further develop and validate assays, such as the
ELISPOT- and MHC-tetramer technologies, for efficient monitoring of the state of
immunization of cancer patients against tumor antigens. Monitoring of lymphocytes
migrating to the sites of metastases could be more relevant than monitoring of circulat-
ing blood lymphocytes. Until now in vaccination studies, DTH, T-cell proliferative, or
CTL responses have been observed, although not consistently. Various adjuvants have
been coadministered in various studies, and their specific contribution to the observed
clinical and immunological effect is difficult to assess.

Results from animal studies and human trials of various vaccine types, indicate that
active immunization against a patient’s preexisting tumor is likely to be effective only
when the tumor load is small. Unfortunately, the vast majority of clinical trials have
enrolled patients with widespread disease. Once the feasibility and safety of a new pro-
tocol has been shown, patients with small tumor volume and minimal residual disease
should be selected for vaccination strategies.
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IV FUTURE DIRECTIONS:
NOVEL CANCER DRUG TARGETS

AND DELIVERY SYSTEMS





1. INTRODUCTION

Our knowledge of the human genome and the technological development of molec-
ular biology have enabled the development of gene therapy (1). Gene therapy can be
defined as the introduction of genetic material into “defective” somatic cells to restore
normal function and produce a therapeutic effect. Gene therapy may replace a missing
gene, restore a gene function that is altered by mutation, increase the expression of a
gene, introduce a new gene, or abrogate the expression of a gene. Somatic gene therapy
involves the transfer of genetic material into nongermline cells.

Historically, somatic cell gene therapy has been thought of as a treatment for and
potential cure of classical inherited diseases based on single gene defects. This is in con-
trast to the multifactorial inherited disorders that involve multiple genes and environ-
mental factors. In patients with single gene disorders such as hemophilia, severe
combined immunodeficiency (SCID), cystic fibrosis, and Duchenne’s muscular dystro-
phy, gene replacement therapy involving transfer of the normal gene and continued
expression of the normal protein is desired. In dominantly inherited disorders where the
presence of an abnormal protein interferes with the function and development of organ
or tissue, selective mutation of the mutant gene could result in a therapeutic effect.

Critical requirements in gene therapy are efficient gene transfer techniques and gene
expression at appropriate levels for therapy. Gene transfer can be achieved by two methods:
direct transfer in vivo or ex vivo. The in vitro gene transfer techniques are currently most
widely used for clinical trials because these techniques are generally more efficient. Vari-
ous gene transfer methods, including the use of defective viruses, are currently under
development. Each of these defective viruses has specific advantages and disadvantages.
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2. VECTORS OF GENE THERAPY

For introduction of genes into living cells, a number of methods are available at
present. Vehicles that facilitate the transfer of genes into a cell are called vectors. A
vector carries the DNA to the desired site, i.e., the nucleus of the cell. Vectors can be
divided into viral and nonviral delivery systems. The most commonly used viral vec-
tors are derived from retrovirus and adenovirus. Other viral vectors include vectors
derived from adenoassociated virus (AAV), herpes simplex virus type 1 (HSV-1),
and vaccinia virus. The characteristics of vectors that have been generated are shown
in Table 1. Important features that distinguish the different viral vectors include the
size of the gene that can be accommodated, the duration of expression, target cell
infectivity, and integration into the genome. Most gene delivery systems are noninte-
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Table 1
Characteristics of Vectors for Gene Transfer

Virus Properties Clinical Applications

Retrovirus Only 8–9 kb insert Integrates in host genome
7–10 kb ss RNA Integrates randomly Long-term expression in dividing cells

Wide target cell range Suitable for permanent correction
Adenovirus 15 kb insert Suitable for non-dividing cells
36-kb ds DNA Wide target cell range Transient transgene expression

High titre production No chronic administration
Immunogenic, inflammatory reactions

AAV Limited size insert No known disease in humans
4.7-kb ss DNA Integrates into chromosome Considered a safe vector

19 of the host genome?
Wide target range
Difficult large scale production
May require adenovirus 

products for efficient 
transduction

HSV-1 Large genome Suitable for specific (e.g.,neurologi-
152 kb ds DNA Easy to manipulate cal) diseases

Insert up to 30 kb Does not integrate into host genome
Vaccinia virus Accommodates large inserts Considered safe
190 kb ds DNA
Liposomes Low transfer efficiency Transient expression

Commercially available
Non-toxic
Repeated administration possible
Fewer safety issues

Naked DNA Simple production Inefficient entry into cells
Safe Not stable
No size limitation Fewer safety issues

Complexed DNA More efficient uptake than Inefficient cell entry
naked DNA Not stable

Targetable Fewer safety issues



grating, indicating that the exogenous DNA will remain extra chromosomal in the
nucleus and will not be passed on to daughter cells as the cells divide. Integrating
vectors insert their genes into chromosomes and will pass the integrated gene to all
daughter cells.

Viruses are very efficient at transferring genetic information. They have evolved the
mechanism to insert their genetic material into cells of the host so that the host cell
machinery can be used to permit the virus to replicate. Viral vectors can be produced
by removing some or all of the genes that encode viral proteins, and replacing them
with a therapeutic gene. These vectors are produced by cells that also express any pro-
tein necessary for producing a viral particle. A risk of viral vectors is that they might
recombine to generate replication-competent virus capable of multiple rounds of repli-
cation that could cause disease in humans.

Available nonviral vectors include plasmids (circular double-stranded DNA) which
can be propagated in bacteria, or oligonucleotides that can be synthesized chemically.
Plasmids can transfer a therapeutic gene into a cell, whereas oligonucleotides inhibit
the expression of endogenous genes. In contrast to viral vectors, transfer of nonviral
vectors into cells is inefficient. The effect is generally transient, but these vectors do
not carry the risk of generating (replication-competent) wild-type virus.

2.1. Viral Vectors
2.1.1. RETROVIRAL VECTORS

Retroviruses are lipid-enveloped particles comprised of two copies of a positive sin-
gle-strand RNA genome of 7–11 kb. All retroviruses have two long terminal repeat
(LTR) sequences at their ends. The LTR sequences frame the gag, pol, and env genes.
The gag molecule is required to form the viral core and functions in viral RNA incor-
poration into the core during packaging. Pol is the viral reverse transcriptase that con-
verts viral DNA into double-stranded proviral DNA. Integrase, a virus-encoded
protein, mediates random integration of the proviral DNA into the host chromosome.
Env is the viral envelope glycoprotein. Retroviruses contain a membrane envelope con-
taining a virus-encoded glycoprotein that specifies the host range of cell types that can
be infected by binding to a cellular receptor. Each virus strain has a particular env that
determines its infectivity host range. Following entry into target cells, their RNA
genome is retrotranscribed into linear double-stranded DNA, which integrates stably
into random sites of the host genome by a mechanism involving the virus-encoded
enzyme integrase.

Retroviral vectors for gene transfer are defective and have been constructed by
replacing the viral protein-coding regions with the cDNA of interest, thus making these
vectors replication-defective. The cDNA of interest is flanked by the retroviral LTRs
that drive the expression of the inserted gene. In order to produce retroviral particles
for gene delivery, recombinant retrovirus vectors are transfected into packaging cell
lines that stably produce the gag, pol, and env proteins. This production system avoids
generation of infectious retrovirus beyond the initial retrovirus infection into the host
(replication competent virus is not generated).

The most widely used retroviral vectors are derived from the retrovirus Moloney
murine leukemia virus (MLV). MLV is capable only of infecting dividing cells, as
transfer of the DNA to the nucleus occurs only during disruption of the nuclear mem-
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brane during mitosis. Just a fraction of cells pass through mitosis at any given time, and
this severely limits the application of retroviral vectors in gene therapy.

Retroviral vectors lack retroviral genes and result in high-level long-term expression
owing to their ability to integrate into chromosomes (2,3). Once the vector is inte-
grated, the vector genes become a stable part of the inheritance of that cell, being
passed along to all cell progeny during normal cell division. This feature is particularly
important for the possibility of permanent cure of genetic diseases. The host range of
cells that they infect includes epithelial cells and fibroblasts; cells of lymphoid origin
are more resistant. One major disadvantage of MLV-based retroviral vectors for many
gene applications is the fact that they only transduce dividing cells. For some applica-
tions, such as targeting of proliferating tumor vascular endothelial cells as opposed to
quiescent endothelial cells, this may be advantageous. At present, a major obstacle to
effective gene transfer by retroviral vectors is the fact that not all tumor cells in a cer-
tain tumor are replicating and that not all replicating cells are transduced (4). Also, they
integrate randomly and this random integration implies that vector gene expression
may vary by each cell and that the integration event could result in activation of an
oncogene or inactivation of a tumor suppressor gene. Random vector integration could
thus contribute to the malignant transformation of that cell. Other disadvantages are the
low production titre, resulting in reduced transduction efficiency into solid tumors.
Retroviral vectors are also limited by the size of the transgene that can be inserted. Fur-
thermore, the in vivo use of retroviral vectors is limited resulting from inactivation by
complement (5).

2.1.2. LENTIVIRAL VECTORS

Recently developed lentiviral vectors transduce nondividing cells, but there are con-
cerns regarding the safety of these vectors (6,7). Lentiviruses (such as HIV and other
immunodeficiency viruses) are retroviruses that, in contrast to other members of the fam-
ily, can infect both dividing and nondividing cells. Lentiviruses have a more complex
genome than other retroviruses: in addition to gag, pol, and env, they encode two regula-
tory genes, tat and rev, essential for expression of the genome, and a variable set of acces-
sory genes. Unlike retroviruses, they rely on active transport of the preinitiation complex
through the nucleopore by the nuclear import machinery of the target cell enabling infec-
tion of nondividing cells. The latter makes them an attractive vector for gene therapy. The
recent development of novel vector packaging systems can significantly facilitate avail-
ability, and new self-inactivating lentiviral vectors can allow safer use (8,9).

There is a substantial risk of genetic recombination between infectious HIV and an
HIV vector. These combinatorial events could possibly lead to new infectious HIV
viruses, rendering HIV vectors unsuitable for clinical use. One possibility to minimize
the risk is to include a suicide gene in the vector. This gene confers a selective toxicity
to drugs and the transfer of such a vector would result in cellular destruction when the
patient is treated with the prodrug.

2.1.3. ADENOVIRAL VECTORS

Adenoviruses are common double-stranded DNA viruses that produce infection of
the upper respiratory tracts. Adenovirus has a natural tropism for respiratory epithe-
lium, the cornea, and the gastrointestinal tract. The adenoviral genome is divided into
four early regions, E1–E4, which are expressed prior to viral DNA replication, and the
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late genes L1–L5, which encode primarily viral structural proteins. Current adenoviral
vectors are primarily derived from adenovirus type 2 and 5, the most common
serotypes to which most adults have been exposed. To improve safety of adenoviral
vectors, they have been made replication-deficient by deletion of all or part of their reg-
ulatory sequences. The first-generation adenoviral vectors were obtained by substitu-
tion of the early E1A and E1b regulatory sequences by the transgene and by deletion of
the E3 regions of the genome. The sequences necessary for replication and packaging
are provided by the packaging cell line, usually the 293 cell line. Adenoviral vectors
are able to transfer genes into most tissues of the body; the major advantage of aden-
oviral vectors is the high efficiency of gene transfer, not only in dividing but also in
nondividing cells (10–13).

Entry of adenoviruses into susceptible cells requires two sequential steps mediated by
interaction of two viral capsid proteins with receptors on the surface of the target cell
(14–20). The initial binding of the adenovirus to the “coxsackievirus and adenovirus
receptor CAR” (14–16) occurs via the carboxy-terminal knob domain of the fiber (17,18).
The subsequent step involves interaction of Arg-Gly-Asp (RGD) peptide sequences in the
penton base of the adenovirus with host cell integrins and internalization by receptor-
mediated endocytosis (19,20). After cell entry, the viral particle contains proteins that pro-
mote lysis of the endosomes. Thereafter, the vector may enter the nucleus.

Because adenoviruses have larger genomes than retroviruses, more regions can be
removed allowing up to 36 kb of DNA to be inserted. Adenoviral vectors are able to
transfer genes into most tissues of the body, e.g., liver, lung, brain, muscle, and heart.
In contrast to retroviral vectors, adenoviral vectors can be produced at high titres.
There are several disadvantages to the use of adenoviral vectors. For instance, the lim-
ited (transient) transgene expression as a consequence of nonintegration, suggests that
the transferred vector and transgene sequences are not inherited by daughter cells.
Thus, with the proliferation of transduced cells, vector sequences are lost, with the con-
sequence of limited duration of transgene expression. Administration of the vector may
induce an antiviral immune response that may result in a significant local inflammatory
and systemic immune response (21–25). The transient expression is, therefore, primar-
ily caused by the immune response to residual adenoviral genes or the transgene in
early generation vectors. This antiviral immune response will limit the effects of
repeated administration. Long-term expression, especially in proliferating cells,
requires repeated administration of the vector, whereas the immune response will pre-
clude effective repeated administration. In cell types with low proliferative index, the
adenoviral vector may result in expression for months.

Adenoviral vectors contain many adenoviral genes, although “gutless” adenoviral vec-
tors in which all viral coding sequences have been deleted but which expresses a transgene
and is packaged in a functional adenoviral capsid, have been developed recently (26).

Another major problem for the application in gene therapy of adenoviral vectors has
been the presence of replication-competent adenovirus (RCA) in batches of replica-
tion-defective adenovirus. RCAs are generated by recombination between sequences in
the adenovector and homologous sequences in helper cells, resulting in the acquisition
by the vector of early region E1. To prevent the generation of RCA, a new helper cell
line named PER was developed. Propagation of matched adenoviral vectors, which
lack Ad5 nucleotides 459–3510 in one of the PER clones (PER.C6) does not result in
the generation of RCA, thus generating a safe vector for clinical application (27).
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2.1.4. AAV VECTORS

The AAV vectors lack AAV genes and can transduce nondividing cells (28–30).
They have resulted in long-term expression, although it is unclear if, following trans-
duction, they remain episomal or integrate into the chromosome in nondividing cells.
Production of large amounts of AAV vector is difficult. AAV vectors have potential
risks of insertional mutagenesis, generation of wild-type AAV, and administration of
contaminating adenovirus. It is theoretically possible that AAV could activate an onco-
gene or inactivate a tumor suppressor gene by integrating into the chromosome in vivo.
As AAV has not been shown to be pathogenic and is not capable of efficient replication
in the absence of helper virus, the possible generation of wild-type AAV may not be a
serious concern in human gene therapy. Careful testing of AAV vectors for the pres-
ence of contaminating helper virus would reduce the risk of coadministration of aden-
ovirus. It appears that AAV vectors are relatively safe, although long-term studies are
necessary.

2.2. Nonviral Vectors
Nonviral vectors include any method of gene transfer that does not involve produc-

tion of a viral particle. The size of the insert accepted varies considerably among the
different nonviral vectors. A major problem of nonviral vectors is the difficulty to effi-
ciently transfer the highly charged DNA molecules into a cell. Larger pieces of DNA
are transferred less efficiently than smaller pieces. For ex vivo transfer, genes are usu-
ally transferred into the cell by using calcium phosphate coprecipitation, electropora-
tion, cationic lipids, or liposomes. For most cell types, only a minor proportion of the
cells can be modified. In vitro, transfected cells can be enriched by the use of a selec-
table marker present on the section of DNA.

2.2.1. PLASMIDS

Plasmids are double-stranded circular DNA molecules that contain a bacterial origin
of replication. They are easily amplified to a high copy number in bacteria or eukary-
otic cells, produced at a high level of purity, and are associated with low immunogenic-
ity. Plasmids are easy to manipulate and can accommodate large sequences of foreign
DNA. A major disadvantage of nonviral vectors is the transient and low level of gene
expression. Most plasmids remain episomal. However, plasmids can integrate at low
frequency into the chromosome, particularly when—in vitro—a procedure is used to
select clones exhibiting long-term expression.

2.2.2. LIPOSOMES AND LIPIDS

Efficient in vivo transfer is somewhat more difficult to achieve than ex vivo gene
transfer. Many investigators have used liposomes, cationic lipids, or anionic lipids.
Liposomes are gene delivery vehicles based on artificially generated lipid vesicles.
Liposomes entrap DNA and allow cell membrane fusion through the lipid portion of
the molecule. The lipid coating allows for the DNA to survive in vivo, bind to cells, and
be endocytosed into the cell. Liposomal vectors are often composed of cationic lipids
mixed with cholesterol and dioleoylphosphatidylethanolamine. Liposome/DNA com-
plexes were expected to be less immunogenic than viral vectors, but these vectors can
also generate significant inflammatory responses that are probably related to the
immunogenicity of bacterial-derived DNA (31,32).
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Despite major improvements in the effectiveness of cationic lipids for gene transfer,
several limitations still remain including the stability of the lipid:DNA complexes in
the systemic circulation, their biodistribution, lack of specificity for relevant target
cells, and their inability to mediate sustained expression.

2.2.3. NAKED DNA AND THE GENE GUN

Another method of gene transfer into the cell is direct injection of “naked DNA”
(DNA not coated and not bound to lipid, protein, or antibody) into specific tissue or
infused through a vascular bed (e.g., liver). Alternatively, microscopic (gold) particles
attached to DNA are “shot” into the target cell using a ballistic device referred to as a
“gene gun.” By this method, a large number of cells can be treated, and it can be used
in vivo as well. The DNA gun-gene delivery system is an effective means of introduc-
ing gene-encoding expression vectors into the epidermis, resulting in temporal pres-
ence of DNA and expression of antigen.

2.2.4. RECEPTOR-MEDIATED ENDOCYTOSIS

Selective delivery of a nonviral vector to a specific organ or cell type would be desir-
able for some applications and may involve linking of DNA to a targeting ligand, that
will bind to a specific cell-surface receptor, inducing internalization and transfer of the
DNA into the cells. For example, DNA has been targeted to the asialoglycoprotein
receptor of hepatocytes by complexing the DNA with polylysine-conjugated asialogly-
coprotein. Similarly, cells expressing a transferrin or folate receptor may be targeted by
complexing DNA to the ligand.

A risk of using nonviral vectors for gene therapy is the potential toxicity of the com-
pounds that are used to facilitate the entry of DNA into a cell and the insertional mutage-
nesis that could activate oncogenes or inactivate tumor suppressor genes if the plasmid
integrates.

2.2.5. OLIGONUCLEOTIDES

Oligonucleotides are short nucleotide strands designed to bind specifically to DNA
or RNA sequences. Oligonucleotides probably enter the cell via receptor-mediated
endocytosis. Oligonucleotides can modulate gene expression in cells by formation of
triplex DNA, i.e., three associated deoxynucleotides strands, usually involving binding
of oligonucleotide in the major groove of a DNA double helix. The binding can block
access of transcription factors, thus, inhibiting transcription of a gene. Oligonu-
cleotides can act as an antisense molecule (33) by inhibiting gene expression through
binding to the mRNA counterpart via base pairing, thereby blocking the initiation
codon, translational initiation, or resulting in degradation of mRNA by RNAse H (an
enzyme that degrades the RNA portion of an RNA–DNA hybrid). Oligonucleotides
can also bind to transcription factors, preventing association of the oligonucleotides
with endogenous genes.

The major toxicity of oligonucleotides relates to the administration of large doses to
achieve the clinical effect. Oligonucleotides are unlikely to have any long-term toxicity
as they do not integrate into the chromosome. Their use for gene therapy will be proba-
bly limited to diseases where transient expression is sufficient. A potential problem of
oligonucleotides may be the rapid degradation in vivo.
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3. STRATEGIES TO IMPROVE VECTORS

3.1. Replicative Vector Systems
The major limitation of current gene therapy vectors is the suboptimal tumor trans-

duction of therapeutic genes in vivo. One method to overcome this is to use a replica-
tion-competent virus that selectively replicates in tumor but not in normal tissues (34).
A replication-competent virus would be used to replicate selectively within infected
tumor cells, leaving normal tissues unaffected. Production of progeny virions from the
infected tumor cells would then result in infection of surrounding tumor cells. This
would increase the number of cells infected with virus and markedly improve tumor
transduction efficiency. In addition, the use of viruses that display a lytic life cycle
would allow virus-mediated oncolysis. This effect would occur irrespective of the
delivered transgene and amplification of the antitumor effect would be achieved. For
clinical application of this strategy, both recombinant adenoviruses and herpesviruses
have the potential to provide the required properties. Also, hybrid vectors (chimeras)
that match elements of established vector systems are being developed.

Mutant adenoviruses have been designed to replicate selectively in cells lacking
functional p53. E1B 55 kDa-deleted adenovirus, ONYX-015, has recently been shown
to replicate selectively in, and lyse, tumor cells lacking functional p53 both in vitro and
in vivo (35–37). The normal function of E1B protein is to bind and inactivate the p53
protein in infected cells. Because these modified viruses lack E1B, they cannot repli-
cate in cells with functional p53, because it cannot activate p53. Instead, these viruses
will replicate in cells with nonfunctional p53. Because p53 is mutated in more than
50% of tumors, the replication of this lytic adenovirus would be selective in many
tumors. Based on this concept, clinical trials using this virus are ongoing, and encour-
aging preliminary results have been obtained. However, studies in a variety of cell lines
and animal tumor models have to date failed to confirm the selective properties of the
virus to replicate only in p53 mutant tumors (38–39).

Herpesviruses have also been developed that replicate conditionally in dividing or
tumor cells. This selectivity is based on several possible mutations engineered in the
viral genome that prevent it from replicating unless the infected cell provides for a sub-
stituting molecular activity. Brain tumors, which are surrounded by nonmitotic cells,
form an ideal model for testing replication-conditional herpes vectors. Clinical trials
using adenovirus and herpesvirus-based replicative vector systems for the treatment of
human cancer are ongoing.

3.2. Strategies to Prevent Immunogenicity of Vectors
Gene delivery via adenoviral vectors has been associated in vivo with the induction

of characteristically intense inflammatory and immunological responses, and with
attenuation of expression of the transferred therapeutic gene due, at least in part, to loss
of the vector-transduced cells. To modulate the antiviral immune response recombinant
viral vectors can be genetically engineered to delete viral genes encoding highly
immunogenic or cytotoxic viral proteins. However, viral vectors with most of their
genomes deleted are more difficult to propagate and purify, and transgene expression
tends to be unstable. Alternatively, different serotypes and species of adenoviruses are
being screened for their ability to elicit an immune response and to use selected aden-
ovirus strains for vectors in order to minimize the stimulus for an immune response.
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3.3. Selective and Efficient Gene Delivery
Any approach to cancer gene therapy requires a high level of efficiency of gene

transfer specifically to the tumor cells. Viral vectors or retroviral vector-producing cells
expressing a toxin gene have been directly injected into localized tumors. The
presently available vectors are inadequate for the treatment of metastatic disease. In
order to achieve gene delivery to disseminated cancer cells, the vector must be admin-
istered intravenously. Limitations of current vectors preclude genetic modification of a
high percentage of cells in tumors and specificity of gene delivery to the tumor cells
could overcome this limitation.

3.4. Tumor Targeting
Targeted gene therapy for cancer can be accomplished by delivery of a vector that

binds selectively to the target cancer cell. Alternatively, the therapeutic gene can be
placed under the control of tumor-specific transcriptional regulatory sequences that are
activated in tumor cells but not in normal cells and, therefore, target expression selec-
tively to the tumor cell.

Adenoviral vector modifications are being developed to achieve tumor targeting and
enhance infectivity. Strategies to alter adenoviral tropism are based on modification of
the viral capsid proteins, fiber and penton base, to allow the recognition of alternative
cell-specific receptors (40). In contrast to adenoviruses, retroviruses use only one enve-
lope glycoprotein for binding to cellular receptors and the subsequent step of mem-
brane fusion. For this reason, modification of retroviral tropism has proven more
difficult (41,42). The envelope protein of retroviral vectors has been modified to
include various targeting ligands. For instance, various molecules, including single-
chain antibodies, growth factors such as epidermal growth factor, and cytokines, have
been genetically incorporated into the retroviral envelope glycoprotein, thus providing
novel binding properties to the retroviral particles (43–49). However, the retroviral
envelope protein is not only involved in the initial attachment to the cell membrane, but
is also involved in production of infectious retroviral particles and in the virion cell
fusion process. Therefore, modification of the retroviral envelope carries the risk of
abrogating additional functions of successful targeted gene transfer.

3.5. Targeting by Use of Tissue-Specific Promoters
Tumor- or tissue-specific regulatory sequences, e.g., the CEA-, tyrosinase-, prostate-

specific antigen (PSA), and α-fetoprotein promoter, have been employed to restrict
expression of the transgene or prodrug-converting enzyme specifically to target cancer
cells (50–52; see also subheading 4.2.). For example, targeting of adenoviral
vector–expressing toxin genes under the control of the tumor-specific α-fetoprotein
promoter have been employed in approaches to hepatocellular carcinoma (53), whereas
the tyrosinase promotor may be used to target melanoma. A limitation of this approach
may be that certain regulatory sequences are too large to be accommodated in currently
used vectors.

4. APPROACHES TO GENE THERAPY

In cancer, approaches to gene therapy may include the insertion of a normal copy of
a tumor supressor gene into tumors with mutated tumor suppressor genes or lost genes,
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the inhibition of a dominant oncogene, or down-regulation of an overexpressed growth
factor receptor gene. Other strategies involve tumor modification with prodrug-activat-
ing enzyme genes, followed by treatment with prodrug (resulting in death of the trans-
duced tumor cells, i.e., suicide), introduction of multidrug resistance genes into bone
marrow or stem cells, and immunogene therapy utilizing gene-modified tumor cells as
vaccines, or adoptive cellular therapy with gene-modified effector cells. Furthermore,
antiangiogenic gene therapy strategies aiming at destruction of tumor vasculature are
being currently explored.

4.1. Tumor Suppressor Gene Replacement and Inhibition 
of Dominant Oncogene Expression

Inactivation of tumor suppressor genes contributes to the neoplastic phenotype by
abrogating critical cell cycle checkpoints, DNA repair mechanisms, and proapoptotic
controls. Preclinical studies have demonstrated expression of the wild-type protein
after gene delivery and reversion of the malignant phenotype. Mutations of several
tumor suppressor genes have been described in human cancers. Normal p53, RB1, and
BRCA1 are currently being administered in clinical trials as gene replacement therapy
for the corresponding mutated gene.

For dominant oncogenes, the goal of therapeutic intervention is to inhibit expression
of the dominant oncogene that causes the malignant transformation. Inhibition of onco-
genic function can be attempted at different levels. Transcription of the oncogene can
be inhibited by triplex-forming oligonucleotides or specific antisense sequences pre-
venting translation of the oncogene messenger RNA into protein or promoting degra-
dation of the complementary message. Oligonucleotides are currently undergoing
clinical evaluation.

Human tumors are often heterogeneous with regard to the expression of relevant
oncogenes. Thus, therapeutic targeting of a single molecular abnormality may not be
effective. Furthermore, corrective gene therapy requires extremely efficient gene trans-
fer vectors to achieve permanent incorporation and expression of the gene of interest.

4.1.1. TUMOR SUPPRESSOR GENE REPLACEMENT OF P53

The p53 gene is the most commonly mutated gene identified in human cancer to
date. It is a tumor-suppressor gene that protects the cells from DNA damage by sensing
the damage and either stopping cell division to allow for repair or inducing cell death
(if damage is too extensive). Loss or damage of p53 allows cells to accumulate exten-
sive chromosomal damage. Most effort has been put into correcting the effects of p53
mutations. Retroviral and adenoviral vectors have been used to carry wild-type p53. In
vitro and experimental animal studies have shown that, following transduction and
restoration of p53 function, the malignant phenotype is reverted and tumor growth is
suppressed. Also, restoration of wild-type p53 function markedly increases the sensi-
tivity to chemotherapeutic agents (54).

4.2. Suicide Gene Therapy
Another approach to the treatment of localized cancer is suicide gene therapy. Sui-

cide gene therapy concerns the transfer of a gene that is not normally expressed in
mammalian cells and is directly toxic to the cell or that codes for an enzyme capable of
activating an inactive prodrug to a potent cytotoxic drug. Commonly, a nontoxic pro-

296 Part IV / Future Directions



drug is administered that requires activation in genetically modified cells in order to be
transformed into a toxic metabolite that ultimately leads to cell death (55–58).

The most widely used system to accomplish cell killing (“cell suicide”) has been the
herpes simplex virus thymidine kinase (HSV-TK) gene given in combination with the
prodrug ganciclovir. In contrast to normal mammalian thymidine kinase, HSV-TK pref-
erentially converts the normally nontoxic nucleoside analog ganciclovir (GCV) into a
form toxic to the cell. Ganciclovir is then further phosphorylated by cellular kinases to
produce triphosphates that are incorporated into cellular DNA (Fig. 1). The incorpora-
tion of the triphosphate form of ganciclovir causes inhibition of DNA synthesis and of
RNA polymerase, leading to cell death. Thus, tumor cells (or any other cell undergoing
mitosis) transduced to express the viral thymidine kinase gene have enhanced sensitiv-
ity to cell killing after exposure to ganciclovir. Because the HSV-TK GCV regimen is
most effective against cells in the S-phase, repeated gene therapy cycles may be more
effective (similar to chemotherapy cycles). The toxicity and efficacy of the transfer of
HSV-TK are currently being tested in a large number of human clinical trials, including
tumors of the brain, ovary, prostate, and head and neck.
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Fig. 1. Mode of action of the herpes simplex virus thymidine kinase ganciclovir system. Ganciclovir
(GCV) diffuses into cells. In contrast to nontransduced cells, the transduced HSV-TK-expressing
tumor cells are able to phosphorylate GCV efficiently. Phosphorylated GCV does not diffuse across
cell membranes, but passes through gap junctions to adjacent tumor cells. This way, phosphorylated
GCV is able to mediate the cytotoxic effect to untransduced adjacent cells. Monophosphate (MP);
Diphosphate (DP); Triphosphate (TP).



One limitation is the inability to genetically modify 100% of the tumor cells with the
toxin gene. In a number of experimental tumor models, it has been shown that not all
tumor cells need to contain the HSV-TK gene to obtain complete eradication of the
tumor. It has been demonstrated that the efficacy of the HSV-TK-ganciclovir approach
was mediated in part by the so-called bystander effect (59–61). This “bystander effect”
seen in suicide gene therapy indicates that not all tumor cells in a solid tumor need to
be transduced to achieve efficient killing. Nontransduced HSV-TK-negative tumor cells
surrounding HSV-TK-positive tumor cells can still be killed because of transfer of toxic
metabolites from transduced cells to nontransduced cells through gap junctions (Fig.
1). This bystander effect can also be produced by the generation of an immunostimula-
tory environment in vivo that enhances immune responses against tumors (62).

Several other combinations of enzyme/prodrug have been developed to improve the
efficacy of suicide gene therapy (63–66). For example, the gene encoding for the
Escherichia coli cytosine deaminase enzyme, which converts the nontoxic 5-fluorocy-
tosine prodrug into cytotoxic 5-fluorouracil.

To enhance the therapeutic efficacy of suicide gene therapy the development of new
prodrugs with higher affinity for the suicide gene are being explored. Also, combina-
tion with other treatment modalities such as chemotherapy and radiotherapy may
enhance efficacy of the treatment.

4.3. Immunogene Therapy
One attractive approach to the treatment of disseminated cancer is to enhance the

immunogenicity of tumor cells, thus allowing systemic immune-mediated tumor cell
kill. Several experimental animal studies have shown that immunization with tumor cells
engineered to produce IL-2 or other cytokines, e.g., IL-4, IL-7, IFN-γ, TNF-α, G-CSF,
GM-CSF, results in enhanced immunogenicity and decreased tumorigenicity (67–77).
Most of these reports indicate that this approach is highly effective to protect animals
from subsequent tumorigenic doses of nonmodified tumor cells, whereas few studies
indicate that this approach is also effective in eradication of already established tumors
(73,77). Similar strong antitumor responses were obtained following vaccination with
tumor cells engineered to express foreign MHC genes class I or II or the B7 (costimula-
tory molecule) cDNA (78–83). The repertoire of effector cells that mediate the observed
reduced tumor regression in these animal studies may differ depending on the molecule
introduced and have included CD4+ and CD8+ T cells, macrophages, and eosinophils.

The advantage of a genetically modified autologous cell vaccine is that it contains the
whole collection of tumor proteins and therefore has the greatest chance to induce an
immune response against relevant tumor antigens. However, growing autologous tumor
cells in vitro to establish tumor cell lines is labor-intensive and often not successful. Fol-
lowing administration, allogeneic tumor cells that share an HLA class I allele, may in
vivo either directly present shared immunodominant tumor peptides to class I restricted
CTLs or may first be degraded and processed by professional antigen-presenting cells
(APCs). These APCs will process and select the appropriate epitopes, which will enter
the class II or even the class I route to stimulate the patient’s CD4+ or CD8+ T cells.

Another approach to gene therapy of cancer is the genetic modification of immune
effector cells, e.g., blood T lymphocytes or tumor-infiltrating lymphocytes (TILs). The
first gene-marking study already demonstrated that such tumor-derived T lymphocytes
may home to metastatic melanoma deposits. In subsequent therapeutic studies, T lym-
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phocytes expressing cytokines following transduction, were reinfused into patients. As
the systemic administration of TNF has significant side effects, attempts to genetically
alter T lymphocytes to deliver high concentrations of TNF directly to the tumor have
been made. Also, several groups are now working on gene modified T cells to express
tumor-specific TCRs to obtain a more universally applicable product for adoptive cel-
lular immunotherapy.

Genetically modified lymphocytes that are transduced with (retroviral) vectors con-
taining the HSV-TK gene can be infused into the patient to decrease morbidity and mor-
tality associated with GVHD following allogeneic bone marrow and stem cell
transplantation. Bordignon et al. (84) have demonstrated that adoptive cellular
immunotherapy with such gene-modified lymphocytes is feasible. Transduced cells
were present up to 12 mo after infusion and in the two patients who developed GVHD,
transduced cells were eliminated following ganciclovir administration, resulting in
regression of hepatic and cutaneous GVHD. Similar protocols to treat GVHD in trans-
plantation patients have been developed.

4.4. Bone Marrow Protection from Chemotherapy
Gene therapy can be used to protect against hematological toxicity produced by

chemotherapy used for the treatment of cancer patients. This approach of gene therapy
may be accomplished by the insertion of the multiple-drug-resistance type 1 (MDR-1)
gene into stem cells of bone marrow, thus allowing the administration of higher drug
doses without reaching an otherwise limiting myelosuppression (85–87). The use of
the MDR gene is of interest because the gene product, a transmembrane molecule that
serves as an efflux pump for various drugs, confers resistance to several commonly
used chemotherapeutic agents. At present, the low transduction efficiency of the target
human hematopoietic cells with retrovirus vectors, the dose-limiting effects deter-
mined by other nonhematological toxicities, inadvertent transduction of contaminating
cancer cells in the marrow with the drug-resistance gene which could rapidly give rise
to clones of treatment-resistant tumor cells, are major limiting factors precluding clini-
cal success. Therefore, autologous peripheral stem cell transplantation provides a more
practical solution to support high-dose chemotherapy trials.

4.5. Antiangiogenic Gene Therapy of Cancer
Targeting of tumor vasculature is rapidly developing as a field of research. Tumors

are dependent for their growth on the development of a blood vessel network and may
trigger angiogenesis by release of specific growth factors such as vascular endothelial
growth factor (VEGF). The tumor vasculature is pivotal for the survival of the tumor
cells, suggesting that strategies that can compromise the function of the tumor vascula-
ture may have therapeutic potential (88–92). Because vascular endothelial cells are in
direct contact with the blood, they are likely to be easier to transduce with systemati-
cally administered vectors than tumor cells because the diffusion of vector into the
tumor stroma will not be an issue. Moreover, as limited destruction of tumor-associated
vasculature may result in massive tumor cell death, even relatively modest gene trans-
fer efficiencies may well have a dramatic effect on tumor growth (93,94). Numerous
genes, induced at the sites of angiogenesis, are candidates for use in cancer gene ther-
apy, e.g., the (flk-1 and flt-1) VEGF receptor genes, VEGF itself, angiostatin, throm-
bospondin, and platelet factor 4 (95–104).
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The enhanced proliferation of tumor-associated endothelial cells allows the use of
retroviral vectors for this purpose. There is evidence that ganciclovir-mediated antitu-
mor activity observed in experimental brain tumor models following the administration
of retroviral packaging cell lines encoding HSV-TK can be attributed to transduction of
proliferating tumor-associated vascular endothelial cells.

5. APPROVAL FROM REGULATORY AUTHORITIES 
TO INITIATE GENE THERAPY TRIALS

The first gene therapy protocol was a gene-marking study using retrovirally trans-
duced tumor-infiltrating lymphocytes (TILs) marked with the neomycin-resistance
gene that were infused into metastatic melanoma patients (105). The protocol received
NIH Recombinant DNA Advisory Committee (RAC) approval in October 1988 and
NIH approval in March 1989. Thereafter, the first gene therapy study was performed in
children suffering from SCID, who received retrovirally transduced autologous lym-
phocytes now expressing the normal ADA gene (106).

The first human gene marking was approved and conducted in the United States, and
a series of marrow gene-marking studies followed. The aim of these marking studies was
insertion of marker genes using retroviral vectors into the bone marrow of leukemia
patients in remission and undergoing autologous, purged bone marrow transplantation.
These first studies have identified leukemic relapses that occurred from the gene-marked
marrow, although there was no evidence of leukemic cells in the infused marrow at the
time of transplantation. Apparently, marrow-purging techniques were not optimal. For
these studies retroviral vectors were used that apparently inserted into dividing tumor
cells and thereafter—in vivo—the gene was passed to all daughter tumor cells.

Subsequent to the first gene-marking and gene-therapy studies, several gene therapy
protocols have been initiated worldwide. The number of gene protocols in the United
States received by the Office of Recombinant DNA Activities (ORDA) as of May 1999
was 313 cell-marking studies and 277 therapeutic studies. Of these protocols, 189 pro-
tocols concerned cancer therapy.

In the United States, a detailed clinical protocol plus investigator brochure has to be
approved by one or more institutional review boards, biosafety committees, the RAC and
the Food and Drug Administration (FDA). Compliance with the NIH guidelines for
research involving recombinant DNA research is mandatory. Protocols involving human
gene transfer are required to be simultaneously submitted to the FDA for Investigational
New Drug (IND). Despite intended harmonization, the routing to apply for a permit to
perform a clinical gene therapy trial and the number of committees that have to approve
still varies from country to country in Europe. The complicated routes necessary to obtain
approval from the regulatory authorities are often cumbersome and time consuming for
the investigator, whereas the tremendous costs of manufacturing of GMP-approved prod-
ucts for gene-therapy studies preclude rapid progress in the field of gene therapy.

6. CLINICAL TRIALS

6.1. Brain Tumors
Astroglial brain tumors, including the highly malignant glioblastoma multiforme,

are the most common primary brain tumors. They have a poor prognosis despite con-
ventional therapy such as surgery and radiotherapy and, therefore, present a target for
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gene therapy. Brain tumors in general do not metastasize; death usually results from
increase in intracerebral pressure. Therefore, local therapy is required and as the
patient’s brain cells do not divide while the tumor cells are mitotically active, brain
tumors are an attractive target for suicide gene therapy as this method will be cytotoxic
only to dividing cells.

Retroviral vectors that selectively infect dividing (tumor) cells in the central nervous
system are attractive vectors to use in the treatment of brain tumors. However, a major
obstacle to the present direct gene therapy is the inability to transduce the majority of
cells within the tumor. Furthermore, although theoretically retroviral vectors seem
advantageous in brain tumors, even in the most malignant brain tumors the percentage
of actively dividing tumor cells is low, precluding 100% transduction efficiency. For
this reason, other vectors such as adenoviral vectors may be as efficient as retroviral
vectors.

In an early clinical trial, an HSV-TK vector-producing murine cell line was injected
via an Ommaya reservoir after debulking of recurrent glioblastoma tumor(s), followed
2 wk later by administration of ganciclovir, or was injected following resection of the
tumor (107). A large multicenter Phase III study was performed in which patients were
randomized to receive surgery plus radiotherapy or surgery, retroviral vector-producing
cell-HSV-TK suicide gene therapy, and radiotherapy. No significant difference was
observed between the two arms of the study. Recently, Ram et al. (108) have reported
the results of an HSV-TK clinical trial in patients with brain tumors. Clinical remissions
were obtained in five patients with smaller tumors (1.4 ± 0.5 mL). In situ hybridization
for HSV-TK demonstrated survival of vector-producing cells at 7 d, but indicated lim-
ited gene transfer to tumors, suggesting that indirect “bystander” mechanisms provide
local antitumor activity.

6.2. Head-and-Neck Cancer
Thirty end-stage patients who had failed conventional treatments for advanced

recurrent squamous carcinoma of the head and neck were enrolled in a dose escalation
trial (109); each of the 30 patients was injected with Adp53 vector. Seventeen nonre-
sectable patients underwent Ad-p53 intratumoral injections every other day for 2 wk,
were observed for 2 wk, and then repeated the treatment cycle. The remaining 13
patients with resectable tumors received Ad-p53 every other day for 2 wk, had intraop-
erative injections 3 d later, during resection, and a last injection 3 d postresection. Vec-
tor-related toxicity was minimal. No adverse side effects attributable to the p53 gene
were observed in any of the 30 patients. The 17 nonresectable patients continued treat-
ment cycles until progression. Five of the 17 patients had stable disease and two exhib-
ited partial regression (> 50% reduction in tumor volume). At the time of the report,
three of the 13 resectable patients had died of cancer and five displayed a total disap-
pearance of all measurable signs of cancer for more than 6 mo posttherapy. At the time
of surgery, one patient demonstrated a complete pathological response to Ad-p53.

Clinical trials using selectively replicating E1B-deleted adenoviral vectors such as
ONYX-015 virus to target p53-deficient tumors seem to be encouraging. In a Phase II
trial in 40 patients with recurrent head-and-neck cancer, ONYX-015 was directly
injected into the tumor. No serious toxicity was demonstrated. Evidence of antitumor
activity was found as 14% of patients had partial to complete regression and 41% had
stable disease (110).
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6.3. Lung Cancer
The most widely used vector in lung gene therapy has been replication-incompetent

recombinant adenovirus. Disadvantages of adenoviruses are that they result in only
transient gene expression and that they elicit a prominent local and systemic inflamma-
tory response. This inflammatory response, which initially involves cytokine release
and subsequently results in the generation of neutralizing antiadenoviral antibodies and
cytotoxic T lymphocytes, has been the primary source of adenoviral vector toxicity and
has limited the amount of vector that can be delivered.

One of the most common genetic abnormalities in nonsmall-cell lung cancer is
mutation of the tumor suppressor gene p53. Phase I clinical trials in humans using gene
transfer of p53 have been reported. Viral vectors encoding wild-type p53 were injected
into the tumors of patients with nonsmall-cell lung cancer by means of a bronchoscope
or percutaneous computed tomography (CT) guided needles. In the first trial, a retrovi-
ral vector was used in nine patients who failed conventional treatment (111). The treat-
ments were well tolerated, with minimal side effects. Some evidence of gene transfer
was noted in patients given higher doses (highest dose 5 × 108 CFU). Three patients
showed evidence of regression of the injected tumors and the tumor growth of three
other patients stabilized. No effects on noninjected tumors were noted.

Swisher et al. (112) used up to six monthly intratumoral injections of an adenovirus
p53 vector in conjunction with administration of cisplatin in 28 patients. No dose-lim-
iting toxicity was observed and treatment was well tolerated. Although the repeated
administration of the adenoviral vector induced antiadenoviral antibodies, gene trans-
fer was detected in these patients. Apoptosis and areas of tumor necrosis were observed
following treatment. No change was observed in inflammatory cells infiltrating the
tumor. Therapeutic activity was observed in some patients, including two (8%) of the
25 evaluable patients showing a partial remission and 16 (84%) showing stabilization
of disease.

Sterman et al. (113) conducted a Phase I clinical trial of adenoviral vector encoding
HSV-TK that was delivered intrapleurally to 21 patients with pleural mesothelioma fol-
lowed by ganciclovir therapy. Side effects were minimal and dose-related gene transfer
was confirmed in 11 of 20 evaluable patients. However, strong antiadenoviral immune
responses, including high titres of neutralizing antibody and proliferative T-cell
responses, were induced by the administration of the adenoviral vector. Patients who
received the higher doses of vector partial tumor regressions were observed. Transduc-
tion efficiency in mesothelioma may improve by multiple administrations of vector in
combination with surgical tumor debulking.

6.4. Hematological Malignancies
BCL-2 antisense therapy was explored in patients with non-Hodgkin lymphoma

(114). Daily subcutaneous (sc) infusions were administered for 2 wk to nine patients
with BCL-2+ relapsed non-Hodgkin lymphoma. Antisense therapy led to an improve-
ment in symptoms, objective biochemical and radiological evidence of tumor response,
and downregulation of the BCL-2 protein in some patients.

In a Phase I study, p53 antisense oligonucleotide was administered to 16 patients
with hematological malignancies (six with refractory acute myelogenous leukemia and
10 with advanced myelodysplastic syndrome). No specific toxicity was related to the
p53 oligonucleotide administration (115).
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6.5. Melanoma
Thirty-one metastatic melanoma patients received three injections of a IL-2 gene

modified, allogeneic melanoma cell line, which shared one or more HLA class I alleles
with the patient, and expressed all of the known melanoma antigens identified at that
time. Patients were evaluated for toxicity and antitumor efficacy (116). No severe side
effects were observed. Interestingly, vaccination induced inflammatory reactions in dis-
tant metastases containing necrosis and apoptosis, along with T-cell infiltration. Apopto-
sis occurred only in BCL-2 negative areas, but not in BCL-2 expressing parts of the
metastases. One complete remission lasting for more than 1 yr, one almost complete
remission, and several minor responses were observed following administration of the
gene-modified melanoma cells. Seven of the 33 patients had disease stabilization for a
period of several months to more than 4 yr. Vaccination induced a change in the number
of antivaccine cytotoxic T lymphocytes in peripheral blood. In two of five patients, the
frequency of antiautologous tumor CTL was significantly higher than before vaccina-
tion. In some of the other reported human gene therapy trials employing a similar
approach with either allogeneic or autologous tumor cells engineered to express costim-
ulatory molecules or to secrete cytokines for the treatment of patients with cancer
(117–119), enhancement of the immune response against the autologous tumor of the
patients was shown. Metastatic lesions resected after vaccination with GM-CSF gene-
modified autologous melanoma cells were shown to be densely infiltrated with lympho-
cytes and plasma cells, and showed extensive tumor destruction (118).

Another approach is to enhance the anti-tumor immune response by in vivo injec-
tion of a foreign HLA class I gene, i.e., HLA B7, by DNA liposome complexes directly
into tumor deposits. Nabel et al. (120) showed that following the direct injection of a
gene coding for (allogeneic) HLA-B7 protein into cutaneous melanoma metastases,
HLA-B7 protein was expressed in the tumor cells near the site of injection and its cor-
responding transferred plasmid DNA (detected by PCR). No systemic toxicity was
observed and regression of a distant lung metastasis occurred in one of the five
reported patients. In all five patients, antitumor (autologous) and anti-HLA-B7 (allo-
geneic) cytotoxic lymphocyte immune responses were detected. In one patient, two
injected nodules regressed completely, as well as other distant noninjected metastatic
lung lesions. In an update on 10 patients, Nabel et al. (121) reported that T-cell migra-
tion into treated lesions was enhanced in the majority of patients and tumor-infiltrating
frequency of lymphocyte reactivity was enhanced in the two patients studied. In one
patient, subsequent treatment with tumor-infiltrating lymphocytes derived from gene-
modified tumors resulted in a complete regression of the residual disease. On the basis
of this study, other Phase I HLA-B7 gene therapy clinical trials were initiated using
HLA-B7 DNA-cationic lipid vector in HLA-B7-negative patients with melanoma
(122), renal cell carcinoma, and colon carcinoma. In most posttreatment biopsies, the
plasmid DNA and HLA-B7 protein could be detected. Moreover, most patients devel-
oped a lymphocyte-proliferative response to HLA-B7, indicating that immunization
against the foreign HLA protein was successful. Clinical responses were seen in
metastatic melanoma patients.

A Phase I study was conducted in patients with accessible p53-aberrant breast or
melanoma skin lesions (123). Following intratumoral injection of adenoviral wild-type
p53, vector-specific wild-type p53 RNA sequences could be detected after the lowest
and highest dose of viral particles in five of the six patients (dose range 2 × 107 to 5 ×
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108 pfu per patient). Immune responses to the adenoviral component of the vector,
indicating effective biological delivery of the vector, were also documented.

6.6. Ovarian Cancer
A Phase I trial using the BRCA1 breast cancer gene in chemoresistant recurrent or

persistent ovarian cancer, patients received daily intraabdominal infusions of BRCA1
retroviral vectors through a catheter for four consecutive days (124). Side effects were
minimal. Three of twelve patients experienced an immune reaction resulting in severe
but transient abdominal pain. The BRCA1 gene and its expression were detected in can-
cer cells. Tumor reduction was observed in three of 12 patients. In a subsequent Phase
II study in which ovarian cancer patients with less-extensive disease received vector
infusions via surgically implanted catheters, vector instability, rapid antibody develop-
ment, but no clinical responses, were observed (125).

6.7. Prostate Cancer
Prostate cancer is particularly suitable to study the use of gene therapy. Prostate can-

cer is the most common cancer and the second leading cause of death in males. The
prostate gland produces products such as PSA and prostate acid phosphatase that are
relatively unique to the prostate. Each protein may be exploited for vector targeting or
vaccine immunization. Gene expression can be confined to the prostate by incorporat-
ing prostate-specific promoters into vectors to direct the prostate-specific expression of
the gene of interest. Also, the prostate is an ideal target for gene therapy because it is
easily accessible by transurethral, transperineal, and transrectal approaches for the
intratumoral administration of gene therapy, and the effects of treatment can be easily
evaluated by ultrasound, digital rectal examination, MRI, and CT scan. Because
prostate cancer has generally a low proliferation index, (retroviral) vectors that require
cell division are not suitable for the treatment of prostate cancer.

Various ongoing clinical trials are investigating the effects of suicide gene therapy in
recurrent prostate cancer or as neoadjuvant treatment before cytoreductive surgery. In
contrast to, for instance, brain tumors, there is no need to distinguish normal prostate
tissue from cancerous prostate tissue, because the prostate gland does not have a criti-
cal function. Herman et al. (126) reported a Phase I dose-escalating study in which they
injected increasing concentrations of replication-deficient adenovirus containing HSV-
TK intraprostatic under ultrasound guidance. In three of the 18 patients treated, a fall of
more than 50% in PSA, sustained for 6 wk to 1 yr, was observed. Other trials include
vaccination with gene-modified prostate cancer cells secreting cytokines such as IL-2
or IL-12, aiming at an immunological response against the patient’s own tumor.

7. CONCLUSION

Although the field of gene therapy is still in its infancy, genes have been safely and
successfully transferred into animals and patients. Until now, early Phase I and II clini-
cal gene therapy trials have been conducted often at submaximal doses in a limited
number of cancer patients who generally had large tumor burdens. Further technologi-
cal advances are required to improve inefficient and transient gene delivery and inap-
propriate regulation of gene expression before successful gene therapy can become a
reality. The major challenge is posed by inefficient gene delivery. Even more important
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will be optimization of existing vectors (such as “gutless” adenoviral vectors that
express no endogenous viral genes, or improved liposomal preparations) or develop-
ment of new vectors that induce minimal inflammatory responses and permit repeated
administration. Improved vectors will have enhanced specificity for a single target cell
type. By employing genetic methods viral vectors can be engineered to redirect the tro-
pism of viral vectors away from the natural cellular receptor and toward surface pro-
teins that are highly expressed on target cells.

Another approach in cancer gene therapy may be the development of replicating
viral vectors that can kill tumors by primary viral lysis or enhanced delivery of thera-
peutic genes to cancer cells. Some tumor cell specificity has been achieved with repli-
cating vectors. Clinical trials currently underway are using modified adenoviruses that
lack the E1B gene (a deletion that allows the virus to replicate selectively in tumor
cells) or have tumor-selective promoters driving key viral genes, such as E1A.

Significant barriers to the success of gene therapy in cancer remain the insufficient
efficiency and accuracy of gene delivery. The identification of genes and the unraveling
of the human genome is occurring much faster than the development of in vivo gene
delivery methods. Therefore, further technical advances to optimize gene delivery and
regulation of gene expression are critically needed before gene therapy can be widely
and successfully applied in the 21st century.
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1. INTRODUCTION

With the recent FDA approval of Vitravene™, the first drug based on antisense tech-
nology to be commercialized, the new technology has achieved an important mile-
stone. Although the basic questions have been addressed, there are still many
unanswered questions.

This chapter will provide an overview of the progress in converting the antisense
concept into broad therapeutic reality, and provide advice concerning appropriate
experimental design and interpretation of data with regard to the therapeutic potential
of the technology.

2. PROOF OF MECHANISM

2.1. Factors That May Influence Experimental Interpretations
Clearly, the ultimate biological effect of an oligonucleotide will be influenced by the

local concentration of the oligonucleotide at the target RNA, the concentration of the
RNA, the rates of synthesis and degradation of the RNA, type of terminating mecha-
nism, and the rates of the events that result in termination of the activity of the RNA. At
present, we understand essentially nothing about the interplay of these factors.

2.1.1. OLIGONUCLEOTIDE PURITY

Currently, phosphorothioate oligonucleotides can be prepared consistently and with
excellent purity (1). However, this has only been the case for the past three to four years.
Prior to that time, synthetic methods were evolving and analytical methods were inade-
quate. In fact, our laboratory reported that different synthetic and purification procedures
resulted in oligonucleotides that varied in cellular toxicity (2), and that potency varied
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from batch to batch. Although there are no longer synthetic problems with phosphoroth-
ioates, they undoubtedly complicated earlier studies. More importantly, with each new
analog class, new synthetic, purification, and analytical challenges are encountered.

2.1.2. OLIGONUCLEOTIDE STRUCTURE

Antisense oligonucleotides are designed to be single stranded. We now understand
that certain sequences, e.g., stretches of guanosine residues, are prone to adopt more
complex structures (3). The potential to form secondary and tertiary structures also
varies as a function of chemical class. For example, higher affinity 2′-modified
oligonucleotides have a greater tendency to self-hybridize, resulting in more stable
oligonucleotide duplexes than would be expected based on rules derived from
oligodeoxynucleotides (Freier, unpublished results).

2.1.3. RNA STRUCTURE

RNA is structured. The structure of the RNA has a profound influence on the affinity
of the oligonucleotide and on the rate of binding of the oligonucleotide to its RNA tar-
get (4,5). Moreover, RNA structure produces asymmetrical binding sites that then
result in very divergent affinity constants, depending on the position of oligonucleotide
in that structure (5–7). This, in turn, influences the optimal length of an oligonucleotide
needed to achieve maximal affinity. We understand very little about how RNA structure
and RNA protein interactions influence antisense drug action.

2.1.4. VARIATIONS IN IN VITRO CELLULAR UPTAKE AND DISTRIBUTION

Studies in several laboratories have clearly demonstrated that cells in tissue culture
may take up phosphorothioate oligonucleotides via an active process, and that the
uptake of these oligonucleotides is highly variable depending on many conditions
(2,8). Cell type has a dramatic effect on total uptake, kinetics of uptake, and pattern of
subcellular distribution. At present, there is no unifying hypothesis to explain these dif-
ferences. Tissue culture conditions, such as the type of medium, degree of confluence,
and the presence of serum, can have enormous effects on uptake (8). Oligonucleotide
chemical class obviously influences the characteristics of uptake as well as the mecha-
nism of uptake. Within the phosphorothioate class of oligonucleotides, uptake varies as
a function of length, but not linearly. Uptake varies as a function of sequence, and sta-
bility in cells is also influenced by sequence (8,9).

Given the foregoing, it is obvious that conclusions about in vitro uptake must be
very carefully made and generalizations are virtually impossible. Thus, before an
oligonucleotide could be said to be inactive in vitro, it should be studied in several cell
lines. Furthermore, although it may be correct that receptor-mediated endocytosis is a
mechanism of uptake of phosphorothioate oligonucleotides (10), it is obvious that the
generalization that all phosphorothioates are taken up by all cells in vitro primarily by
receptor-mediated endocytosis is unwarranted.

Finally, extrapolations from in vitro uptake studies to predictions about in vivo phar-
macokinetic behavior are entirely inappropriate and, in fact, there are now several lines
of evidence in humans and animals that, even after careful consideration of all in vitro
uptake data, one cannot predict in vivo pharmacokinetics of the compounds (8,11–13).

2.1.5. EFFECTS OF BINDING TO NONNUCLEIC ACID TARGETS

Phosphorothioate oligonucleotides tend to bind to many proteins and those interac-
tions are influenced by many factors. The effects of binding can influence cell uptake,
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distribution, metabolism, and excretion. They may induce nonantisense effects that can
be mistakenly interpreted as antisense or complicate the identification of an antisense
mechanism. By inhibiting RNase H, protein binding may inhibit the antisense activity
of some oligonucleotides. Finally, binding to proteins can certainly have toxicological
consequences.

In addition to proteins, oligonucleotides may interact with other biological mole-
cules, such as lipids or carbohydrates, and such interactions like those with proteins
will be influenced by the chemical class of oligonucleotide studied. Unfortunately, lit-
tle or no data bearing on such interactions are currently available.

A complicated experimental situation is encountered in many in vitro antiviral assays:
high concentrations of drugs, viruses, and cells are often coincubated. The sensitivity of
each virus to nonantisense effects of oligonucleotides varies depending on the nature of
the virion proteins and the characteristics of the oligonucleotides (14,15). This has
resulted in considerable confusion. In particular for HIV, herpes simplex viruses,
cytomegaloviruses, and influenza virus, the nonantisense effects have been so dominant
that identifying oligonucleotides that work via an antisense mechanism has been diffi-
cult. Given the artificial character of such assays, it is difficult to know whether non-anti-
sense mechanisms would be as dominant in vivo or result in antiviral activity.

2.1.6. TERMINATING MECHANISMS

It has been amply demonstrated that oligonucleotides may employ several terminating
mechanisms. The dominant terminating mechanism is influenced by RNA receptor site,
oligonucleotide chemical class, cell type, and probably many other factors (16). Obvi-
ously, as variations in terminating mechanism may result in significant changes in anti-
sense potency, and studies have shown significant variations from cell type to cell type in
vitro, it is essential that the terminating mechanism be well understood. Unfortunately, at
present, our understanding of terminating mechanisms remains rudimentary.

2.1.7. EFFECTS OF “CONTROL OLIGONUCLEOTIDES”
A number of types of control oligonucleotides have been used, including random-

ized oligonucleotides. Unfortunately, we know little about the potential biological
effects of such “controls,” and the more complicated the biological system and test, the
more likely that “control” oligonucleotides may have activities that complicate our
interpretations. Thus, when a control oligonucleotide displays a surprising activity, the
mechanism of that activity should be explored carefully before concluding that the
effects of the control oligonucleotide prove that the activity of the putative antisense
oligonucleotide is not caused by an antisense mechanism.

2.1.8. KINETICS OF EFFECTS

Many rate constants may affect the activities of antisense oligonucleotides, e.g., the
rate of synthesis and degradation of the target RNA and its protein, the rates of uptake
into cells, the rates of distribution, extrusion, and metabolism of an oligonucleotide in
human cells and similar pharmacokinetic considerations in animals. Despite this, rela-
tively few time-courses have been reported, and in vitro studies have ranged from a few
hours to several days. In animals, we have a growing body of information in pharmaco-
kinetics, but in most studies reported to date, the doses and schedules were chosen arbi-
trarily and little information on duration of effect and onset of action has been presented.

Clearly, more careful kinetic studies with rational in vitro and in vivo dose schedules
are required.
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2.2. Recommendations
2.2.1. POSITIVE DEMONSTRATION OF ANTISENSE MECHANISM AND SPECIFICITY

Until more is understood about how antisense drugs work, it is essential to positively
demonstrate effects consistent with an antisense mechanism. For RNase H-activating
oligonucleotides, Northern blot analysis showing selective loss of the target RNA is the
best choice, and many laboratories are publishing reports in vitro and in vivo of such
activities (17–20). Ideally, a demonstration that closely related isotypes are unaffected
should be included.

More recently, in our laboratories we have used RNA protection assays and DNA
chip assays. These assays provide a great deal of information about the levels of vari-
ous RNA species. Coupled to careful kinetic analysis, such approaches can help assure
that the primary mechanism of action of the drug is antisense, and identify events that
are secondary to antisense inhibition of a specific target. This can then support the
assignment of a target to a particular pathway, and the analysis of the roles of a particu-
lar target and the factors that regulate its activity. We have adapted all these methods
for use in animals, and we will determine their utility in clinical trials.

For proof of mechanism, the following steps are recommended.

• Perform careful dose response curves in vitro using several cell lines and methods of in
vitro delivery.

• Correlate the rank order potency in vivo with that observed in vitro after thorough dose
response curves are generated in vivo.

• Perform careful “gene walks” for all RNA species and oligonucleotide chemical classes.
• Perform careful time courses before drawing conclusions about potency.
• Demonstrate the proposed mechanism of action by measuring the target RNA and/or pro-

tein.
• Evaluate specificity and therapeutic indices via studies on closely related isotypes and

with appropriate toxicological studies.
• Perform sufficient pharmacokinetics to define rational dosing schedules for pharmacolog-

ical studies.
• Determine the mechanisms involved when control oligonucleotides display surprising

activities.

3. MOLECULAR MECHANISMS OF ANTISENSE DRUGS

3.1. Occupancy-Only Mediated Mechanisms
Classic competitive antagonists are thought to alter biological activities because they

bind to receptors preventing natural agonists from binding the inducing normal biolog-
ical processes. Binding of oligonucleotides to specific sequences may inhibit the inter-
action of the RNA with proteins, other nucleic acids, or other factors required for
essential steps in the intermediary metabolism of the RNA or its utilization by the cell.

3.1.1. INHIBITION OF SPLICING

A key step in the intermediary metabolism of most messenger RNA (mRNA) mole-
cules is the excision of introns. These splicing reactions are sequence specific and
require the concerted action of spliceosomes. Consequently, oligonucleotides that bind
to sequences required for splicing may prevent binding of necessary factors or physi-
cally prevent the required cleavage reactions. This, then, would result in inhibition of
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the production of the mature mRNA. Although there are several examples of oligonu-
cleotides directed to splice junctions, none of the studies present data showing inhibi-
tion of RNA processing, accumulation of splicing intermediates, or a reduction in
mature mRNA. Nor are there published data in which the structure of the RNA at the
splice junction was probed and the oligonucleotides demonstrated to hybridize to the
sequences for which they were designed (21–24). Activities have been reported for
anti-c-myc and antiviral oligonucleotides with phosphodiester, methylphosphonate,
and phosphorothioate backbones. Very recently, an oligonucleotide was reported to
induce alternative splicing in a cell-free splicing system and, in that system, RNA
analyses confirmed the putative mechanism (25).

In our laboratory, we have attempted to characterize the factors that determine
whether splicing inhibition is effected by an antisense drug (26). To this end, a number
of luciferase-reporter plasmids containing various introns were constructed and trans-
fected into HeLa cells. Then the effects of antisense drugs designed to bind to various
sites were characterized. The effects of RNase H-competent oligonucleotides were
compared to those of oligonucleotides that do not serve as RNase H substrates. The
major conclusions from this study were: First, that most of the earlier studies in which
splicing inhibition was reported were probably due to nonspecific effects. Second, less
effectively spliced introns are better targets than those with strong consensus splicing
signals. Third, the 3′-splice site and branchpoint are usually the best sites to which to
target the oligonucleotide to inhibit splicing. Fourth, RNase H-competent oligonu-
cleotides are usually more potent than the higher affinity oligonucleotides that inhibit
by occupancy only.

3.1.2. TRANSLATIONAL ARREST

One mechanism for which the many oligonucleotides have been designed is to arrest
translation of targeted protein by binding to the translation initiation codon. The posi-
tioning of the complementary initiation codon within the area of the oligonucleotide
and the length of the oligonucleotide used have varied considerably. Only in relatively
few studies have the oligonucleotides, in fact, been shown to bind to the sites for which
they were designed, and data that directly support translation arrest as the mechanism
have been lacking.

Target RNA species that have been reported to be inhibited by a translational arrest
mechanism include HIV, vesicular stomatitis virus (VSV), n-myc, and a number of nor-
mal cellular genes (27–33). In our laboratories, we have shown that a significant num-
ber of targets may be inhibited by binding to translation initiation codons. For example,
ISIS 1082 hybridizes to the AUG codon for the UL13 gene of herpes virus types 1 and
2. RNase H studies confirmed that it binds selectively in this area. In vitro protein syn-
thesis studies confirmed that it inhibited the synthesis of the UL13 protein, and studies
in HeLa cells showed that it inhibited the growth of herpes type 1 and type 2 with IC50
of 200–400 ηM by translation arrest (34). Similarly, ISIS 1753, a 30-mer phosphoroth-
ioate complementary to the translation initiation codon and surrounding sequences of
the E2 gene of bovine papilloma virus, was highly effective and its activity was shown
to be a result of translation arrest. ISIS 2105, a 20-mer phosphorothioate complemen-
tary to the same region in human papilloma virus, was shown to be a very potent
inhibitor. Compounds complementary to the translation initiation codon of the E2 gene
were the most potent of the more than 50 compounds studied complementary to other
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regions in the RNA (35). We have shown inhibition of translation of a number of other
mRNA species by compounds designed to bind to the translation codon as well.

In conclusion, translation arrest represents an important mechanism of action for
antisense drugs. A number of examples purporting to employ this mechanism have
been reported, and recent studies on several compounds have provided data that unam-
biguously demonstrate that this mechanism can result in potent antisense drugs. How-
ever, little is understood about the precise events that lead to translation arrest.

3.1.3. DISRUPTION OF NECESSARY RNA STRUCTURE

RNA adopts a variety of three-dimensional (3D) structures induced by intramolecu-
lar hybridization, the most common of which is the stem loop. These 3D structures
play crucial roles in a variety of functions. They are used to provide additional stability
for RNA and as recognition motifs for a number of proteins, nucleic acids, and ribonu-
cleoproteins that participate in the intermediary metabolism and other activities of
RNA species. Given the potential general activity of the mechanism, it is surprising
that occupancy-based disruption RNA has not been more extensively exploited.

As an example, we designed a series of oligonucleotides that bind to the important
stem-loop present in all RNA species in HIV, i.e., the transactivator response (TAR)
element. We synthesized a number of oligonucleotides designed to disrupt TAR, and
then demonstrated that several bound to TAR, disrupted the structure, and inhibited the
TAR-mediated production of a reporter gene (36). Furthermore, general rules useful in
disrupting stem-loop structures were developed as well (7).

Although designed to induce relatively nonspecific cytotoxic effects, two other
examples are noteworthy. Oligonucleotides designed to bind to a 17-nucleotide loop in
Xenopus 28 S RNA, required for ribosome stability and protein synthesis, inhibited
protein synthesis when injected into Xenopus oocytes (37). Similarly, oligonucleotides
designed to bind to highly conserved sequences in 5.8 S RNA inhibited protein synthe-
sis in both rabbit reticulocyte and wheat germ systems (38).

3.2. Occupancy-Activated Destabilization
RNA molecules regulate their own metabolism. A number of structural features of

RNA are known to influence stability, various processing events, subcellular distribu-
tion, and transport. It is likely that, as RNA intermediary metabolism is better under-
stood, many other regulatory features and mechanisms will be identified.

3.2.1. 5′-CAPPING

A key early step in RNA processing is 5′-capping. This stabilizes pre-mRNA and is
important for the stability of mature mRNA. It also is important in binding to the
nuclear matrix and transport of mRNA out of the nucleus. As the unique structure of
the cap is understood, it presents an interesting target.

Several oligonucleotides that bind near the cap site have been shown to be active,
presumably by inhibiting the binding of proteins required to cap the RNA. For exam-
ple, the synthesis of SV40 T antigen was reported to be most sensitive to an oligonu-
cleotide linked to polylysine and targeted to the 5′-cap site of RNA (39). Again, in no
published study has this putative mechanism been rigorously demonstrated. In fact, in
no published study have the oligonucleotides been shown to bind to the sequences for
which they were designed.
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In our laboratory, we have designed oligonucleotides to bind to 5′-cap structures and
reagents to specifically cleave the unique 5′-cap structure (40). These studies demon-
strate that 5′-cap targeted oligonucleotides were capable of inhibiting the binding of
the translation initiation factor eIF-4a (41).

3.2.2. INHIBITION OF 3′-POLYADENYLATION

In the 3′-untranslated region of pre-mRNA molecules are sequences that result in the
posttranscriptional addition of long tracts of polyadenylate that consist of hundreds of
nucleotides. Polyadenylation stabilizes mRNA and may play other roles in the interme-
diary metabolism of RNA species. Theoretically, interactions in the 3′-terminal region
of pre-mRNA could inhibit polyadenylation and destabilize the RNA species. Although
there are a number of oligonucleotides that interact in the 3′-untranslated region and
display antisense activities, to date, no study has reported evidence for alterations in
polyadenylation (17).

3.3. Other Mechanisms
In addition to 5′-capping and 3′-adenylation, there are clearly other sequences in the

5′-and 3′-untranslated regions of mRNA that affect the stability of the molecules.
Again, there are a number of antisense drugs that may work by these mechanisms.

Zamecnik and Stephenson reported that 13 mer targeted to untranslated 3′- and 5′-
terminal sequences in Rous sarcoma viruses was active (42). Oligonucleotides conju-
gated to an acridine derivative and targeted to a 3′-terminal sequence in type A
influenza viruses were reported to be active. Against several RNA targets, studies in
our laboratories have shown that sequences in the 3′-untranslated region of RNA mole-
cules are often the most sensitive (43–45). For example, ISIS 1939, a 20-mer phospho-
rothioate that binds to and appears to disrupt a predicted stem-loop structure in the
3′-untranslated region of the mRNA for the intercellular adhesion molecule (ICAM) is
a potent antisense inhibitor. However, inasmuch as a 2′-methoxy analog of ISIS 1939
was much less active, it is likely that, in addition to destabilization to cellular nucle-
olytic activity, activation of RNase H is also involved in the activity of ISIS 1939 (17).

3.4. Activation of RNase H
RNase H is a ubiquitous enzyme that degrades the RNA strand of an RNA-DNA

duplex. It has been identified in organisms as diverse as viruses and human cells (46).
At least two classes of RNase H have been identified in eukaryotic cells. Multiple
enzymes with RNase H activity have been observed in prokaryotes (46).

Although RNase H is involved in DNA replication, it is found in the cytoplasm as
well as the nucleus and may play other roles in the cell (47). However, the concentra-
tion of the enzyme in the nucleus is thought to be greater and some of the enzyme
found in cytoplasmic preparations may be because of nuclear leakage.

RNase H activity is quite variable in cells. It is absent or minimal in rabbit reticulocytes
but present in wheat germ extracts (46,48). In HL-60 cells, for example, the level of activ-
ity in undifferentiated cells is greatest, relatively high in DMSO and vitamin D-differenti-
ated cells and much lower in PMA-differentiated cells (Hoke, unpublished data).

The precise recognition elements for RNase H are not known. However, it has been
shown that oligonucleotides with DNA-like properties as short as tetramers can acti-
vate RNase H (49). Changes in the sugar influence RNase H activation, as sugar modi-
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fications that result in RNA-like oligonucleotides, e.g., 2′-fluoro or 2′-methoxy, do not
appear to serve as substrates for RNase H (50,51). Alterations in the orientation of the
sugar to the base can also affect RNase H activation as α-oligonucleotides are unable to
induce RNase H or may require parallel annealing (52,53). Additionally, backbone
modifications influence the ability of oligonucleotides to activate RNase H.
Methylphosphonates do not activate RNase H (54,55). In contrast, phosphorothioates
are excellent substrates (34,56,57). In addition, chimeric molecules have been studied
as oligonucleotides that bind to RNA and activate RNase H (58,59). For example,
oligonucleotides comprised of wings of 2′-methoxy phosphonates and a five-base gap
of deoxyoligonucleotides bind to their target RNA and activate RNase H (58,59). Fur-
thermore, a single ribonucleotide in a sequence of deoxyribonucleotides was shown to
be sufficient to serve as a substrate for RNase H when bound to its complementary
deoxyoligonucleotide (60).

That it is possible to take advantage of chimeric oligonucleotides designed to acti-
vate RNase H and have greater affinity for their RNA receptors and to enhance speci-
ficity has also been demonstrated (61,62). In a recent study, RNase H-mediated
cleavage of target transcript was much more selective when deoxyoligonucleotides
comprised of methylphosphonate deoxyoligonucleotide wings and phosphodiester
gaps were compared to full phosphodiester oligonucleotides (62).

Despite the accumulating information about RNase H and the evidence that many
oligonucleotides may activate RNase H in lysate and purified enzyme assays, relatively
little is known about the role of structural features in RNA targets in activating RNase
H (63–65). In fact, direct proof that RNase H activation is the mechanism of action of
oligonucleotides in cells is largely lacking.

Recent studies in our laboratories provide additional, albeit indirect, insights into
these questions. ISIS 1939 is a 20-mer phosphorothioate complementary to a sequence
in the 3′-untranslated region of ICAM-1 RNA (17). It inhibits ICAM production in
human umbilical vein endothelial cells, and Northern blots demonstrate that ICAM-1
mRNA is rapidly degraded. A 2′-methoxy analog of ISIS 1939 displays higher affinity
for the RNA than the phosphorothioate, is stable in cells, but inhibits ICAM-1 protein
production much less potently than ISIS 1939. It is likely that ISIS 1939 destabilizes
the RNA and activates RNase H. In contrast, ISIS 1570, an 18-mer phosphorothioate
that is complementary to the translation initiation codon of the ICAM-1 message,
inhibited production of the protein, but caused no degradation of the RNA. Thus, two
oligonucleotides that are capable of activating RNase H had different effects depending
on the site in the mRNA at which they bound (17).

A more direct demonstration that RNase H is likely a key factor in the activity of
many antisense oligonucleotides was provided by studies in which reverse-ligation
PCR was used to identify cleavage products from bcr-abl mRNA in cells treated with
phosphorothioate oligonucleotides (66).

Given the emerging role of chimeric oligonucleotides with modifications in the 3′-
and 5′-wings designed to enhance affinity for the target RNA and nuclease stability and
a DNA-type gap to serve as a substrate for RNase H, studies focused on understanding
the effects of various modifications on the efficiency of the enzyme(s) are of consider-
able importance. In one such study on Escherichia coli RNase H, we reported that the
enzyme displays minimal sequence specificity. When a chimeric oligonucleotide with
2′-modified sugars in the wings was hybridized to the RNA, the initial site of cleavage

318 Part IV / Future Directions



was the nucleotide adjacent to the methoxy-deoxy junction closest to the 3′-end of the
RNA substrate. The initial rate of cleavage increased as the size of the DNA gap
increased, and the efficiency of the enzyme was considerably less against an RNA tar-
get duplexed with a chimeric antisense oligonucleotide than against a full DNA-type
oligonucleotide (67).

In subsequent studies, we evaluated in more detail the interactions of antisense
oligonucleotides with structured and unstructured targets, and the impacts of these
interactions on RNase H (68). Using a series of noncleavable substrates and michaelis-
monten analyses, we were able to evaluate both binding and cleavage. We demon-
strated that, in fact, E. coli RNase H1 is a double-strand RNA-binding protein. The Kd

for our RNA duplex was 1.6 µM, the Kd for a DNA duplex was 176 µM, and the Kd for
single-strand DNA was 942 µM. In contrast, the enzyme could only cleave RNA in an
RNA-DNA duplex. Any 2′ modification in the antisense drug at the cleavage site inhib-
ited cleavage, but significant charge reduction and 2′ modifications were tolerated at
the binding site. Finally, placing a positive charge (e.g., 2′ propoxyamine) in the anti-
sense drug reduced affinity and cleavage.

We have also examined the effects of antisense oligonucleotide-induced RNA struc-
tures on the activity of E. coli RNase H1 (69). Any structure in the duplex substrate was
found to have a significant negative effect on the cleavage rate. Further, cleavage of
selected sites was inhibited entirely, and this was explained by sterric hindrance imposed
by the RNA loop traversing either the minor or major grooves of the hetroduplex.

Recently, we succeeded in cloning, expressing, and characterizing a human RNase
H that is homologous to E. coli RNase H1 and has properties comparable to the type 2
enzyme (70). Additionally, we have cloned and expressed a second RNase H homolo-
gous to E. coli RNase H2 (Wu and Crooke, unpublished observations). Given these
steps, we are now able to evaluate the roles of each of these enzymes in cellular activi-
ties and antisense pharmacology. We are also characterizing these proteins and their
enzymological properties.

3.5. Activation of Double-Strand RNase
By using phosphorothioate oligonucleotides with 2′ modified wings and a ribonu-

cleotide center, we have shown that mammalian cells contain enzymes that can cleave
double-strand RNAs (70). This is an important step forward because it adds to the
repertoire of intracellular enzymes that may be used to cleave target RNAs and because
the 2′ modified wings of chimeric oligonucleotides and the gaps of chimeric oligori-
bonucleotides have higher affinity for RNA targets than chimeras with oligodeoxynu-
cleotide gaps.

3.6. Selection of an Optimal RNA Binding Site
It has been amply demonstrated that a significant fraction of every RNA species is

not accessible to phosphorothioate oligodeoxynucleotides in a fashion that permits
antisense effects (71). Thus, substantial efforts have been directed to the development
of methods that might predict optimal sites for binding within RNA species. Although
a number of screening methods have been proposed (72–75), in our experience the cor-
relation between these antisense effects in cells is insufficient to warrant their use
(Wyatt, unpublished results).
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Consequently, we have developed rapid throughput systems that use a 96-well for-
mat and 96-channel oligonucleotide synthesizer coupled to an automated RT-PCR
instrument. This provides rapid screening of up to 80 sites in an RNA species for two
chemistries under consistent highly controlled experimental conditions. We are hopeful
that, based on such a system (evaluating two genes per week), we will be able to
develop improved methods that predict optimal sites.

4. CHARACTERISTICS OF PHOSPHOROTHIOATE
OLIGODEOXYNUCLEOTIDES

4.1. Introduction
In the first-generation oligonucleotide analogs, the class that has resulted in the

broadest range of activities and about which the most is known, is the phosphoroth-
ioate class. Phosphorothioate oligonucleotides were first synthesized in 1969 when a
poly rI-rC phosphorothioate was synthesized (76). This modification clearly
achieves the objective of increased nuclease stability. In this class of oligonu-
cleotides, one of the oxygen atoms in the phosphate group is replaced with a sulfur
atom. The resulting compound is negatively charged, is chiral at each phosphoroth-
ioate phosphodiester, and much more resistant to nucleases than the parent phospho-
rothioate (77).

4.2. Hybridization
The hybridization of phosphorothioate oligonucleotides to DNA and RNA has

been thoroughly characterized (1,78–80). The Tm of a phosphorothioate oligodeoxy-
nucleotide for RNA is approx 0.5°C less per nucleotide than for a corresponding
phosphodiester oligodeoxynucleotide. This reduction in Tm per nucleotide is virtually
independent of the number of phosphorothioate units substituted for phosphodiesters.
However, sequence context has some influence as the ∆ Tm can vary from –0.3–1.0°C
depending on sequence. Compared with RNA and RNA duplex formation, a phos-
phorothioate oligodeoxynucleotide has a Tm approx –2.2°C lower per unit (4). This
means that to be effective in vitro, phosphorothioate oligodeoxynucleotides must typ-
ically be 17–20 mer in length and that invasion of double-stranded regions in RNA is
difficult (6,36,61,81).

Association rates of phosphorothioate oligodeoxynucleotide to unstructured RNA
targets are typically 106–107M–1S–1 independent of oligonucleotide length or sequence
(4,6). Association rates to structured RNA targets can vary from 102–108M–1S–1

depending on the structure of the RNA, site of binding in the structure, and other fac-
tors (4). In other words, association rates for oligonucleotides that display acceptable
affinity constants are sufficient to support biological activity at therapeutically achiev-
able concentrations. A recent study using phosphodiester oligonucleotides coupled
with fluoroscein, showed that hybridization was detectable within 15 min after
microinjection into K562 cells (82).

The specificity of hybridization of phosphorothioate oligonucleotides is, in general,
slightly greater than phosphodiester analogs. For example, a T-C mismatch results in a
7.7 or 12.8°C reduction in Tm, respectively, for a phosphodiester or phosphorothioate
oligodeoxynucleotide 18 nucleotides in length, with the mismatch centered (4). Thus,
from this perspective, the phosphorothioate modification is quite attractive.
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4.3. Interactions with Proteins
Phosphorothioate oligonucleotides bind to proteins. The interactions with proteins

can be divided into nonspecific, sequence-specific, and structure-specific binding
events—each of which may have different characteristics and effects. Nonspecific
binding to a wide variety of proteins has been demonstrated. Exemplary of this type of
binding is the interaction of phosphorothioate oligonucleotides with serum albumin.
The affinity of such interactions is low. The Kd for albumin is approx 200 µM and, thus,
in a similar range with aspirin or penicillin (83,84). Furthermore, in this study, no com-
petition was observed between phosphorothioate oligonucleotides and several drugs
that bind to bovine serum albumin (BSA). In this study, binding and competition were
determined in an assay in which electrospray mass spectrometry was used. In contrast,
in a study in which an equilibrium dissociation constant was derived from an assay
using albumin loaded on a CH-Sephadex column, the Km ranged from 1–5 × 10–5 M
for BSA and 2–3 × 10–4 M for human serum albumin. Moreover, warfarin and
indomethacin were reported to compete for binding to serum albumin (85). Clearly,
much more work is required before definitive conclusions can be drawn.

Phosphorothioate oligonucleotides can interact with nucleic acid-binding proteins
such as transcription factors and single-strand nucleic acid-binding proteins. However,
little is known about these binding events. Additionally, it has been reported that phos-
phorothioates bind to an 80-Kd membrane protein that was thought to be involved in
cellular uptake processes (10). However, little is known about the affinities, sequence,
or structure specificities of these putative interactions. More recently, interactions with
30 Kd and 46 Kd are surface proteins in T15 mouse fibroblasts were reported (86).

Phosphorothioates interact with nucleases and DNA polymerases. These compounds
are slowly metabolized by both endo- and exonucleases and inhibit these enzymes
(78,87). The inhibition of these enzymes appears to be competitive, and this may
account for some early data suggesting that phosphorothioates are almost infinitely sta-
ble to nucleases. In these studies, the oligonucleotide-to-enzyme ratio was very high
and the enzyme was inhibited. Phosphorothioates also bind to RNase H when in an
RNA-DNA duplex and the duplex serves as a substrate for RNase H (88). At higher
concentrations, presumably by binding as a single strand to RNase H, phosphoroth-
ioates inhibit the enzyme (67,78). Again, the oligonucleotides appear to be competitive
antagonists for the DNA-RNA substrate.

Phosphorothioates have been shown to be competitive inhibitors of DNA polymerase
α and β with respect to the DNA template, and noncompetitive inhibitors of DNA poly-
merases γ and ∆ (88). Despite this inhibition, several studies have suggested that phos-
phorothioates might serve as primers for polymerases and be extended (9,56,89). In our
laboratories, we have shown extensions of only 2–3 nucleotides. At present, a full expla-
nation as to why longer extensions are not observed is not available.

It has been reported that phosphorothioate oligonucleotides are competitive
inhibitors for HIV-reverse transcriptase and that they inhibit RT-associated RNase H
activity (90,91). They have been reported to bind to the cell surface protein, CD4, and
to protein kinase C (92). Various viral polymerases have also been shown to be inhib-
ited by phosphorothioates (56). Additionally, we have shown potent, nonsequence-spe-
cific inhibition of RNA splicing by phosphorothioates (26).

Like other oligonucleotides, phosphorothioates can adopt a variety of secondary
structures. As a general rule, self-complementary oligonucleotides are avoided, if pos-
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sible, to prevent duplex formation between oligonucleotides. However, other structures
that are less well understood can also form. For example, oligonucleotides containing
runs of guanosines can form tetrameric structures called G-quartets, and these appear
to interact with a number of proteins with relatively greater affinity than unstructured
oligonucleotides (3).

In conclusion, phosphorothioate oligonucleotides may interact with a wide range of
proteins via several types of mechanisms. These interactions may influence the phar-
macokinetic, pharmacologic, and toxicologic properties of these molecules. They may
also complicate studies on the mechanism of action of these drugs, and may obscure an
antisense activity. For example, phosphorothioate oligonucleotides were reported to
enhance lipopolysacchoride-stimulated synthesis or tumor necrosis factor (93). This
would obviously obscure antisense effects on this target.

4.4. Pharmacokinetic Properties
To study the pharmacokinetics of phosphorothioate oligonucleotides, a variety of

labeling techniques have been used. In some cases, 3′- or 5 32P end-labeled or fluores-
cently labeled oligonucleotides have been used for in vitro or in vivo studies. These are
probably less satisfactory than internally labeled compounds because terminal phos-
phates are rapidly removed by phosphatases, and fluorescently labeled oligonu-
cleotides have physicochemical properties that differ from the unmodified
oligonucleotides. Consequently, either uniformly (35). S-labeled or base-labeled phos-
phorothioates are preferable for pharmacokinetic studies. In our laboratories, a tritium
exchange method that labels a slowly exchanging proton at the C-8 position in purines
was developed and proved to be quite useful (94). Recently, a method that added
radioactive methyl groups via S-adenosyl methionine has also been successfully used
(95). Finally, advances in extraction, separation, and detection have resulted in meth-
ods that provide excellent pharmacokinetic analyses without radiolabeling (83).

4.4.1. NUCLEASE STABILITY

The principle metabolic pathway for oligonucleotides is cleavage via endo- and
exonucleases. Phosphorothioate oligonucleotides, while quite stable to various nucle-
ases, are competitive inhibitors of nucleases (16,88,96–98). Consequently, the stability
of phosphorothioate oligonucleotides to nucleases is probably a bit less than initially
thought, as high concentrations of oligonucleotides that inhibited nucleases were
employed in the early studies. Similarly, phosphorothioate oligonucleotides are
degraded slowly by cells in tissue culture with a half-life of 12–24 h and are slowly
metabolized in animals (11,16,96). The pattern of metabolites suggests primarily
exonuclease activity with, perhaps, modest contributions by endonucleases. However, a
number of lines of evidence suggest that, in many cells and tissues, endonucleases play
an important role in the metabolism of oligonucleotides. For example, 3′- and 5′-modi-
fied oligonucleotides with phosphodiester backbones have been shown to be relatively
rapidly degraded in cells and after administration to animals (13,99). Thus, strategies in
which oligonucleotides are modified at only the 3′- and 5′-terminus as a means of
enhancing stability have not proven to be successful.

4.4.2. IN VITRO CELLULAR UPTAKE

Phosphorothioate oligonucleotides are taken up by a wide range of cells in vitro
(2,16,88,100,101). In fact, uptake of phosphorothioate oligonucleotides into a prokary-
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ote, Vibrio parahaemoyticus, has been reported, as has uptake into Schistosoma man-
soni (102,103). Uptake is time and temperature dependent. It is also influenced by cell
type, cell-culture conditions, media and sequence, and length of the oligonucleotide
(16). No obvious correlation between uptake and the lineage of cells—whether the
cells are transformed or whether the cells are virally infected—has been identified (16).
Nor are the factors understood that result in differences in uptake of different
sequences of oligonucleotide. Although several studies have suggested that receptor-
mediated endocytosis may be a significant mechanism of cellular uptake, the data are
not yet compelling enough to conclude that receptor-mediated endocytosis accounts
for a significant portion of the uptake in most cells (10).

Numerous studies have shown that phosphorothioate oligonucleotides, once taken
up, distribute broadly in most cells (16,79). Again, however, significant differences in
subcellular distribution between various types of cells have been noted.

Cationic lipids and other approaches have been used to enhance uptake of phospho-
rothioate oligonucleotides in cells that take up little oligonucleotide in vitro (104–106).
Again, there are substantial variations from cell type to cell type. Other approaches to
enhanced intracellular uptake in vitro have included treatment of cells by streptolysin
D, and the use of dextran sulfate and other liposome formulations, as well as physical
means such as microinjections (16,66,107).

4.4.3. IN VIVO PHARMACOKINETICS

Phosphorothioate oligonucleotides bind to serum albumin and α-2 macroglobulin.
The apparent affinity for albumin is low (200–400 µM) and comparable to the low
affinity binding observed for a number of drugs, e.g., aspirin, penicillin (83–85). Serum
protein binding, therefore, provides a repository for these drugs and prevents rapid
renal excretion. As serum protein binding is saturable at higher doses, intact oligomer
may be found in urine (89,108). Studies in our laboratory suggest that, in rats, oligonu-
cleotides administered intravenously at doses of 15–20 mg/kg saturate the serum pro-
tein binding capacity (Leeds, unpublished data).

Phosphorothioate oligonucleotides are rapidly and extensively absorbed after par-
enteral administration. For example, in rats, after an intradermal dose 3.6 mg/kg of
14C-ISIS 2105 (a 20-mer phosphorothioate), approx 70% of the dose was absorbed
within 4 h and total systemic bioavailability was in excess of 90% (12). After intrader-
mal injection in humans, absorption of ISIS 2105 was similar to that observed in rats
(8). Subcutaneous administration to rats and monkeys results in somewhat lower
bioavailability and greater distribution to lymph as would be expected (Leeds, unpub-
lished observations).

Distribution of phosphorothioate oligonucleotides from blood after absorption or
intravenous (iv) administration is extremely rapid. We have reported distribution half-
lives of less than 1 h, and similar data have been reported by others (11,12,89,108).
Blood and plasma clearance is multiexponential, with a terminal elimination half-life
from 40–60 h in all species except humans. The terminal elimination half-life may be
somewhat longer in humans (8).

Phosphorothioates distribute broadly to all peripheral tissues. Liver, kidney, bone
marrow, skeletal muscle, and skin accumulate the highest percentage of a dose, but
other tissues display small quantities of drug (11,12). No evidence of significant pene-
tration of the blood-brain barrier has been reported. The rates of incorporation and
clearance from tissues vary as a function of the organ studied: liver accumulates drug
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most rapidly (20% of a dose within 1–2 h) and other tissues accumulate drug more
slowly. Similarly, elimination of drug is more rapid from liver than any other tissue,
e.g., terminal half-life in liver, 62 h; in renal medulla, 156 h. The distribution into the
kidney has been studied more extensively; drug has been shown to be present in Bow-
man’s capsule, the proximal convoluted tubule, the bush border membrane, and within
renal tubular epithelial cells (109). The data suggested that the oligonucleotides are fil-
tered by the glomerulus, then reabsorbed by the proximal convoluted tubule epithelial
cells. Moreover, the authors suggested that reabsorption might be mediated by interac-
tions with specific proteins in the bush border membranes.

At relatively low doses, clearance of phosphorothioate oligonucleotides is primarily
caused by metabolism (11,12,108). Metabolism is mediated by exo- and endonucleases
that result in shorter oligonucleotides and, ultimately, nucleosides that are degraded by
normal metabolic pathways. Although no direct evidence of base excision or modifica-
tion has been reported, these are theoretical possibilities that may occur. In one study,
radioactive material of larger molecular weight was observed in urine, but was not fully
characterized (89). Clearly, the potential for conjugation reactions and extension of
oligonucleotides via these drugs serving as primers for polymerases must be explored
in more detail. In a thorough study, 20 nucleotide phosphodiester and phosphorothioate
oligonucleotides were administered intravenously at a dose of 6 mg/kg to mice. The
oligonucleotides were internally labeled with 3H-CH3 by methylation of an internal
deoxycytidine residue using Hha1 methylase and S-(3H) adenosyl methionine (95).
The observations for the phosphorothioate oligonucleotide were entirely consistent
with those made in our studies. Additionally, in this study, autoradiographic analyses
showed drug in renal cortical cells (95).

One study of prolonged infusions of a phosphorothioate oligonucleotide in humans
has been reported (110). In this study, five patients with leukemia were given 10-d iv
infusions at a dose of 0.05 mg/kg/h. Elimination half-lives reportedly varied from
5.9–14.7 d. Urinary recovery of radioactivity was reported to be 30–60% of the total
dose, with 30% of the radioactivity being intact drug. Metabolites in urine included
both higher and lower molecular weight compounds. In contrast, when GEM-91 (a 25-
mer phosphorothioate oligodeoxynucleotide) was administered to humans as a 2-h iv
infusion at a dose of 0.1 mg/kg, a peak plasma concentration of 295.8 mg/mL was
observed at the cessation of the infusion. Plasma clearance of total radioactivity was
biexponential with initial and terminal eliminations half-lives of 0.18 and 26.71 h,
respectively. However, degradation was extensive and intact drug pharmacokinetic
models were not presented. Nearly 50% of the administered radioactivity was recov-
ered in urine, but most of the radioactivity represented degradates. In fact, no intact
drug was found in the urine at any time (111).

In a more recent study in which the level of intact drug was carefully evaluated using
capillary gel electrophoresis, the pharmacokinetics of ISIS 2302 (a 20-mer phosphoroth-
ioate oligodeoxynucleotide) after a 2-h infusion were determined. Doses from 0.06
mg/kg to 2.0 mg/kg were studied; the peak plasma concentrations were shown to
increase linearly with dose, with the 2 mg/kg dose resulting in peak plasma concentra-
tions of intact drug of approx 9.5 µg/mL. Clearance from plasma, however, was dose
dependent, with the 2 mg/kg dose having a clearance of 1.28 mL min–1kg–1, whereas that
of 0.5 mg/kg was 2.07 mL min–1kg–1. Essentially, no intact drug was found in urine.

Clearly, the two most recent studies differ from the initial report in several facets.
Although a number of factors may explain the discrepancies, the most likely explana-
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tion is related to the evolution of assay methodology, not difference between com-
pounds. Overall, the behavior of phosphorothioates in the plasma of humans appears to
be similar to that in other species.

In addition to the pharmacological effects that have been observed after phospho-
rothioate oligonucleotides have been administered to animals (and humans), a number
of other lines of evidence show that these drugs enter cells in organs. Autoradiographic,
fluorescent, and immunohistochemical approaches have shown that these drugs are
localized in endopromal convoluted tubular cells, various bone marrow cells, and cells
in the skin and liver (109,112,113).

Perhaps more compelling and of more long-term value are studies recently reported
showing the distribution of phosphorothioate oligonucleotides in the liver of rats
treated intravenously with these drugs at various doses (114). This study showed that
the kinetics and extent of the accumulation into Kuppfer, endothelial, and hepatocyte
cell population varied and that, as doses were increased, the distribution changed.
Moreover, the study showed that subcellular distribution also varied.

We have also performed oral bioavailability experiments in rodents treated with an
H2 receptor antagonist to avoid acid-mediated depurination or precipitation. In these
studies, very limited (<5%) bioavailability was observed (Crooke, unpublished obser-
vations). However, it seems likely that a principal limiting factor in the oral bioavail-
ability of phosphorothioates may be degradation in the gut rather than absorption.
Studies using everted rat jejunum sacs demonstrated passive transport across the
intestinal epithelium (115). Further, studies using more stable 2′-methoxy phospho-
rothioate oligonucleotides showed a significant increase in oral bioavailability that
appeared to be associated with the improved stability of the analogs (116).

In summary, pharmacokinetic studies of several phosphorothioates demonstrate that
these are well absorbed from parenteral sites, distribute broadly to all peripheral tis-
sues, do not cross the blood-brain barrier, and are eliminated primarily by slow metab-
olism. Thus, once a day or every other day, systemic dosing should be feasible.
Although the similarities between oligonucleotides of different sequences are far
greater than the differences, additional studies are required before determining whether
there are subtle effects of sequence on the pharmacokinetic profile of this class of
drugs.

4.5. Pharmacological Properties
4.5.1. MOLECULAR PHARMACOLOGY

Antisense oligonucleotides are designed to bind to RNA targets via Watson-Crick
hybridization.

As RNA can adopt a variety of secondary structures via Watson-Crick hybridization,
one useful way to think of antisense oligonucleotides is as competitive antagonists for
self-complementary regions of the target RNA. Obviously, creating oligonucleotides
with the highest affinity per nucleotide unit is pharmacologically important, and a com-
parison of the affinity of the oligonucleotide to a complementary RNA oligonucleotide
is the most sensible comparison. In this context, phosphorothioate oligodeoxynu-
cleotides are relatively competitively disadvantaged, as the affinity per nucleotide unit
of oligomer is less than RNA (> –2.0°C Tm per unit) (117). This results in a require-
ment of at least 15–17 nucleotides in order to have sufficient affinity to produce biolog-
ical activity (81).
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Although multiple mechanisms are possible by which an oligonucleotide may termi-
nate the activity of an RNA species to which it binds, examples of biological activity
have been reported for only three of these mechanisms. Antisense oligonucleotides
have been reported to inhibit RNA splicing, effect translation of mRNA, and induce
degradation of RNA by RNase H (17,22,27). Without question, the mechanism that has
resulted in the most potent compounds and is best understood is RNase H activation.
To serve as a substrate for RNase H, a duplex between RNA and a “DNA-like”
oligonucleotide is required. Specifically, a sugar moiety in the oligonucleotide that
induces a duplex conformation equivalent to that of a DNA-RNA duplex and a charged
phosphate are required (118). Thus, phosphorothioate oligodeoxynucleotides are
expected to induce RNase H-mediated cleavage of the RNA when bound. As will be
discussed later, many chemical approaches that enhance the affinity of an oligonu-
cleotide for RNA result in duplexes that are no longer substrates for RNase H.

Selection of sites at which optimal antisense activity may be induced in a RNA mol-
ecule is complex, dependent on the terminating mechanism and influenced by the
chemical class of the oligonucleotide. Each RNA appears to display unique patterns of
sites of sensitivity. Within the phosphorothioate oligodeoxynucleotide chemical class,
studies in our laboratory have shown antisense activity can vary from undetectable to
100% by shifting an oligonucleotide by just a few bases in the RNA target (17,78,119).
Although significant progress has been made in developing general rules that help
define potentially optimal sites in RNA species, to a large extent, this remains an
empirical process that must be performed for each RNA target and every new chemical
class of oligonucleotides.

Phosphorothioates have also been shown to have effects inconsistent with the antisense
mechanism for which they were designed. Some of these effects are caused by sequence or
are structure specific. Others are a result of nonspecific interactions with proteins. These
effects are particularly prominent in in vitro tests for antiviral activity as, often, high con-
centrations of cells, viruses, and oligonucleotides are coincubated (15,120). Human
immune deficiency virus (HIV) is particularly problematic as many oligonucleotides bind
to the gp120 protein (3). However, the potential for confusion arising from the misinterpre-
tation of an activity as being caused by an antisense mechanism when, in fact, it is owing to
nonantisense effects is certainly not limited to antiviral or in vitro tests (121–123). These
data urge caution and argue for careful dose response curves, direct analyses of target pro-
tein or RNA, and inclusion of appropriate controls before drawing conclusions concerning
the mechanisms of action of oligonucleotide-based drugs. In addition to protein interac-
tions, other factors, such as overrepresented sequences of RNA and unusual structures that
may be adopted by oligonucleotides, can contribute to unexpected results (3).

Given the variability in cellular uptake of oligonucleotides, the variability in potency as
a function of binding site in an RNA target, and potential nonantisense activities of
oligonucleotides, careful evaluation of dose-response curves and clear demonstration of
the antisense mechanism are required before drawing conclusions from in vitro experi-
ments. Nevertheless, numerous well-controlled studies have been reported in which anti-
sense activity was conclusively demonstrated. As many of these studies have been
reviewed previously, we believe that antisense effects of phosphorothioate oligodeoxynu-
cleotides against a variety of targets are well documented (1,9,56,78,124).

4.5.2. IN VIVO PHARMACOLOGICAL ACTIVITIES

A relatively large number of reports of in vivo activities of phosphorothioate oligonu-
cleotides have appeared, documenting activities after both local and systemic administra-
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tion (125). However, only a few of these reports include sufficient studies to draw rela-
tively firm conclusions concerning the mechanism of action. Consequently, I will review
in some detail only a few reports that provide sufficient data. Local effects have been
reported for phosphorothioate and methylphosphonate oligonucleotides. A locally applied
phosphorothioate oligonucleotide designed to inhibit c-myb production was shown to
inhibit intimal accumulation in the rat carotid artery (126). In this study, a Northern blot
analysis demonstrated a significant reduction in c-myb RNA in animals treated with the
antisense compound, but showed no effect by a control oligonucleotide. In a recent study,
the effects of the oligonucleotide were suggested to be caused by a nonantisense mecha-
nism (122). However, only one dose level was studied. Similar effects were reported for
phosphorothioate oligodeoxynucleotides designed to inhibit cyclin-dependent kinases
(CDC-2 and CDK-2). Again, the antisense oligonucleotide inhibited intimal thickening
and cyclin-dependent kinase activity, whereas a control oligonucleotide had no effect
(127). Additionally, local administration of a phosphorothioate oligonucleotide designed
to inhibit N-myc resulted in reduction in N-myc expression and slower growth of a subcu-
taneously transplanted human tumor in nude mice (128).

Antisense oligonucleotides administered intraventricularly have been reported to
induce a variety of effects in the central nervous system. Intraventricular injection of
antisense oligonucleotides to neuropeptide-y-y1 receptors reduced the density of the
receptors and resulted in behavioral signs of anxiety (129). Similarly, an antisense
oligonucleotide designed to bind to NMDA-R1 receptor channel RNA inhibited the
synthesis of these channels and reduced the volume of focal ischemia produced by
occlusion of the middle cerebral artery in rats (129).

In a series of well-controlled studies, antisense oligonucleotides administered intra-
ventricularly selectively inhibited dopamine type-2 receptor expression, dopamine
type-2 receptor RNA levels, and behavioral effects in animals with chemical lesions.
Controls included randomized oligonucleotides and the observation that no effects
were observed on dopamine type-1 receptor or RNA levels (130–132). This laboratory
also reported the selective reduction of dopamine type 1 receptor and RNA levels with
the appropriate oligonucleotide (133).

Similar observations were reported in studies on AT-1 angiotensin receptors and
tryptophan hydroxylase. In studies in rats, direct observations of AT-1 and AT-2 recep-
tor densities in various sites in the brain after administration of different doses of phos-
phorothioate antisense, sense, and scrambled oligonucleotides were reported (134).
Again, in rats, intraventricular administration of phosphorothioate antisense oligonu-
cleotide resulted in a decrease in tryptophan hydroxylase levels in the brain, whereas a
scrambled control did not (135).

Injection of antisense oligonucleotides to synaptosomal-associated protein-25 into
the vitreous body of rat embryos reduced the expression of the protein and inhibited
neurite elongation by rat cortical neurons (136).

Aerosol administration to rabbits of an antisense phosphorothioate oligodeoxynu-
cleotide designed to inhibit the production of antisense A1 receptor has been reported to
reduce receptor numbers in the airway smooth muscle and to inhibit adenosine, house
dust mite allergen, and histamine-induced bronchoconstriction (137). Neither control
or oligonucleotide complementary to bradykinin B2 receptors reduced the density of
adenosine A1 receptors, although the oligonucleotides complementary to bradykin in
B2 receptor mRNA reduced the density of these receptors.
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In addition to local and regional effects of antisense oligonucleotides, a growing
number of well-controlled studies have demonstrated systemic effects of phosphoroth-
ioate oligodeoxynucleotides. Expression of interleukin-1 in mice was inhibited by sys-
temic administration of antisense oligonucleotides (138). Oligonucleotides to the
NF-κB p65 subunit administered intraperitoneally at 40 mg/kg every 3 d slowed tumor
growth in mice transgenic for the human T-cell leukemia viruses (139). Similar results
with other antisense oligonucleotides were shown in another in vivo tumor model after
either prolonged subcutaneous infusion or intermittent subcutaneous injection (140).

Several recent reports further extend the studies of phosphorothioate oligonucleotides as
antitumor agents in mice. In one study, a phosphorothioate oligonucleotide directed to inhi-
bition of the bcr-abl oncogene was administered intravenously at a dose of 1 mg/day for 9
d intravenously to immunodeficient mice injected with human leukemic cells. The drug
was shown to inhibit the development of leukemic colonies in the mice and to selectively
reduce bcr-abl RNA levels in peripheral blood lymphocytes, spleen, bone marrow, liver,
lungs, and brain (19). However, it is possible that the effects on the RNA levels were sec-
ondary to effects on the growth of various cell types. In the second study, a phosphoroth-
ioate oligonucleotide antisense to the protooncogene myb, inhibited the growth of human
melanoma in mice. Again, myb mRNA levels appeared to be selectively reduced (141).

A number of studies from our laboratories have been completed that directly exam-
ined target RNA levels, target protein levels and pharmacological effects using a wide
range of control oligonucleotides, and the effects on closely-related isotypes. Single
and chronic daily administration of a phosphorothioate oligonucleotide designed to
inhibit mouse protein kinase C-α, (PKC-α), selectively inhibited expression of protein
kinase C PKC-α RNA in mouse liver without effects on any other isotype. The effects
lasted at least 24 h postdose, and a clear dose response curve was observed with an ip
dose of 10–15 mg/kg, reducing PKC-α RNA levels in liver by 50% 24 h postdose (18).

A phosphorothioate oligonucleotide designed to inhibit human PKC-α expression
selectively inhibited expression of PKC-α RNA and PKC-α protein in human tumor
cell lines implanted subcutaneously in nude mice after iv administration (142). In these
studies, effects on RNA and protein levels were highly specific and observed at doses
lower than 6 mg/kg. A large number of control oligonucleotides failed to show activity.

In a similar series of studies, Monia et al. demonstrated highly specific loss of
human c-raf kinase RNA in human tumor xenografts and antitumor activity that corre-
lated with the loss of RNA (143,144).

Finally, a single injection of a phosphorothioate oligonucleotide designed to inhibit
cAMP-dependent protein kinase type 1 was reported to selectively reduce RNA and
protein levels in human tumor xenografts and to reduce tumor growth (145).

Thus, there is a growing body of evidence that phosphorothioate oligonucleotides
can induce potent systemic and local effects in vivo. More importantly, there are now a
number of studies with sufficient controls and direct observation of target RNA and
protein levels that suggest highly specific effects that are difficult to explain by any
mechanism other than antisense. As would be expected, the potency of these effects
varies depending on the target, the organ, and the endpoint measured, as well as the
route of administration and the postdose time point when the effect is measured.

In conclusion, although it is of obvious importance to interpret in vivo activity data
cautiously, and it is clearly necessary to include a range of controls and to evaluate the
effects on target RNA and protein levels and control RNA and protein levels directly, it
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is difficult to argue with the conclusion that some effects have been observed in ani-
mals that are likely primarily caused by an antisense mechanism.

Additionally, in studies on patients with cytomegalovirus-induced retinitis, local
injections of ISIS 2922 have resulted in impressive efficacy, although it is obviously
impossible to prove the mechanism of action is antisense in these studies (146). This
drug has now been approved for commercialization by the FDA. Recently, ISIS 2302,
an ICAM-1 inhibitor, was reported to result in statistically significant reductions in
steroid doses and prolonged remissions in a small group of steroid-dependent patients
with Crohn’s disease. As this study was randomized, double-blinded, and included ser-
ial colonoscopies, it may be considered the first study in humans to demonstrate the
therapeutic activity of an antisense drug after systemic administration (147). Finally,
ISIS 5132 has been shown to reduce c-raf kinase message levels in peripheral blood
mononuclear cells of patients with cancer after iv dosing (148).

4.6.Toxicological Properties
4.6.1. IN VITRO

In our laboratory, we have evaluated the toxicities of scores of phosphorothioate
oligodeoxynucleotides in a significant number of cell lines in tissue culture. As a gen-
eral rule, no significant cytotoxicity is induced at concentrations below 100 µM
oligonucleotide. With a few exceptions, no significant effect on macromolecular syn-
thesis is observed at concentrations below 100 µM (79,100).

Polynucleotides and other polyanions have been shown to cause release of cytokines
(149). Also, bacterial DNA species have been reported to be mitogenic for lymphocytes in
vitro (150). Furthermore, oligodeoxynucleotides (30–45 nucleotides in length) were
reported to induce interferons and enhance natural killer cell activity (151). In the latter
study, the oligonucleotides that displayed natural killer cell (NK)-stimulating activity con-
tained specific palindromic sequences and tended to be guanosine rich. Collectively, these
observations indicate that nucleic acids may have broad immunostimulatory activity.

It has been shown that phosphorothioate oligonucleotides stimulate B lymphocyte
proliferation in a mouse splenocyte preparation (analogous to bacterial DNA), and the
response may underlie the observations of lymphoid hyperplasia in the spleen and
lymph nodes of rodents caused by repeated administration of these compounds (152).
We also have evidence of enhanced cytokine release by immunocompetent cells when
exposed to phosphorothioates in vitro (153). In this study, both human keratinocytes
and an in vitro model of human skin released interleukin 1-α when treated with 250
µM–1 mm of phosphorothioate oligonucleotides. The effects appeared to be dependent
on the phosphorothioate backbone and independent of sequence or 2′-modification. In
a study in which murine B lymphocytes were treated with phosphodiester oligonu-
cleotides, B-cell activation was induced by oligonucleotides with unmethylated CpG
dinucleotides (154). This has been extrapolated to suggest that the CpG motif may be
required for immune stimulation of oligonucleotide analogs such as phosphorothioates.
This clearly is not the case regarding release of IL-1α from keratinocytes (153). Nor is
it the case regarding in vivo immune stimulation.

4.6.2. GENOTOXICITY

As with any new chemical class of therapeutic agents, concerns about genotoxicity
cannot be dismissed, as little in vitro testing has been performed and no data from
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long-term studies of oligonucleotides are available. Clearly, given the limitations in our
understanding about the basic mechanisms that might be involved, empirical data must
be generated. We have performed mutagenicity studies on two phosphorothioate
oligonucleotides, i.e., ISIS 2105 and ISIS 2922, and found them to be nonmutagenic at
all concentrations studied (8).

Two mechanisms of genotoxicity that may be unique to oligonucleotides have been
considered. One possible mechanism is that an oligonucleotide analog could be inte-
grated into the genome and produce mutagenic events. Although integration of an
oligonucleotide into the genome is conceivable, it is likely to be extremely rare. For
most viruses, viral DNA integration is itself a rare event and, of course, viruses have
evolved specialized enzyme-mediated mechanisms to achieve integration. Moreover,
preliminary studies in our laboratory have shown that phosphorothioate oligodeoxynu-
cleotides are generally poor substrates for DNA polymerases, and it is unlikely that
enzymes such as integrases, gyrases, and topoisomerases (that have obligate DNA
cleavage as intermediate steps in their enzymatic processes) will accept these com-
pounds as substrates. Consequently, it would seem that the risk of genotoxicity caused
by genomic integration is no greater, and probably less, than that of other potential
mechanisms, for example, alteration of the activity of growth factors, cytokine release,
nonspecific effects on membranes that might trigger arachidonic acid release, or inap-
propriate intracellular signaling. Presumably, new analogs that deviate significantly
more from natural DNA would be even less likely to be integrated.

A second possible mechanism is the risk that oligonucleotides might be degraded to
toxic or carcinogenic metabolites. However, metabolism of phosphorothioate
oligodeoxynucleotides by base excision would release normal bases, which presum-
ably would be nongenotoxic. Similarly, oxidation of the phosphorothioate backbone to
the natural phosphodiester structure would also yield nonmutagenic (and probably
nontoxic) metabolites. Finally, it is possible that phosphorothioate bonds could be
hydrolyzed slowly, releasing nucleoside phosphorothioates that presumably would be
rapidly oxidized to natural (nontoxic) nucleoside phosphates. However, oligonu-
cleotides with modified bases and/or backbones may pose different risks.

4.6.3. IN VIVO

The acute LD50 in mice of all phosphorothioate oligonucleotides tested to date is in
excess of 500 mg/kg (Kornbrust, unpublished observations). In rodents, we have had
the opportunity to evaluate the acute and chronic toxicities of multiple phosphoroth-
ioate oligonucleotides administered by multiple routes (155,156). The consistent dose-
limiting toxicity was immune stimulation manifested by lymphoid hyperplasia,
spelnomegaly, and a multiorgan monocellular infiltrate. These effects were dose-
dependent and occurred only with chronic dosing at doses >20 mg/kg. The liver and
kidney were the organs most prominently affected by monocellular infiltrates. All of
these effects appeared to be reversible and chronic intradermal administration appeared
to be the most toxic route, probably because of high local concentrations of the drugs
resulting in local cytokine release and initiation of a cytokine cascade. There were no
obvious effects of sequence. Minor increases in liver enzyme levels and mild thrombo-
cytopenia were observed at doses ≥100 mg/kg.

In monkeys, the toxicological profile of phosphorothioate oligonucleotides is quite
different. The most prominent dose-limiting side effect is sporadic reductions in blood

330 Part IV / Future Directions



pressure associated with bradycardia. When these events are observed, they are often
associated with activation of C-5 complement, and they are dose related and peak
plasma concentration related; this appears to be related to the activation of the alterna-
tive pathway (157). All phosphorothioate oligonucleotides tested to date appear to
induce these effects through there may be slight variations in potency as a function of
sequence and/or length (156,158,159).

A second prominent toxicologic effect in monkeys is the prolongation of activated
partial thromboplastin time. At higher doses, evidence of clotting abnormalities is
observed. Again, these effects are dose and peak plasma-concentration dependent
(156,159). Although no evidence of sequence dependence has been observed, there
appears to be a linear correlation between number of phosphorothioate linkages and
potency between 18–25 nucleotides (Nicklin, P., unpublished observations). The mech-
anisms responsible for these effects are likely very complex, but preliminary data sug-
gest that direct interactions with thrombin may be at least partially responsible for the
effects observed (160).

The toxicological profile differs in humans. When ISIS 2922 is administered intrav-
itreally to patients with cytomegalovirus retinitis, the most common adverse event is
anterior chamber inflammation that is easily managed with steroids. A relatively rare
and dose-related adverse event is morphological changes in the retina associated with
loss in peripheral vision (146).

ISIS 2105 (a 20-mer phosphorothioate designed to inhibit the replication of human
papilloma viruses that cause genital warts) is administered intradermally at doses as
high as 3 mg/wart per wk for 3 wk; essentially no toxicities have been observed,
including (remarkably) a complete absence of local inflammation (Grillone L., unpub-
lished results).

Administration of 2-h intravenous infusions on every second day of ISIS 2302 at
doses as high as 2 mg/kg resulted in no significant toxicities, including no evidence of
immune stimulation and no hypotension. A slight, subclinical increase in APTT was
observed at the 2 mg/kg dose (161).

4.7. Therapeutic Index
Putting toxicities and their dose response relationships in a therapeutic context is

particularly important, as considerable confusion has arisen concerning the potential
utility of phosphorothioate oligonucleotides for selected therapeutic purposes deriving
from unsophisticated interpretation of toxicological data. The immune stimulation
induced by these compounds appears to be particularly prominent in rodents and
unlikely to be dose-limiting in humans. We have not, to date, observed hypotensive
events in humans. Thus, this toxicity appears to occur at lower doses in monkeys than
in humans and certainly is not dose limiting in the latter.

We believe that the dose-limiting toxicity in man will be clotting abnormalities and
this will be associated with peak plasma concentrations well in excess of 10 µg/mL. In
animals, pharmacological activities have been observed with iv bolus doses from 0.006
mg/kg to 10–15 mg/kg depending on the target, the end point, the organ studied, and
the postdose time-point when the effect is measured. Thus, it would appear that phos-
phorothioate oligonucleotides have a therapeutic index that supports their evaluation
for a number of therapeutic indications.
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4.8. Conclusions
Phosphorothioate oligonucleotides have outperformed many expectations. They dis-

play attractive parenteral pharmacokinetic properties. They have produced potent sys-
temic effects in a number of animal models and, in many experiments, the antisense
mechanism has been directly demonstrated as the hoped-for selectivity. Further, these
compounds appear to display satisfactory therapeutic indices for many indications.

Nevertheless, phosphorothioates clearly have significant limits. Pharmacodynami-
cally, they have relatively low affinity per nucleotide unit. This means that longer
oligonucleotides are required for biological activity and that invasion of many RNA
structures may not be possible. At higher concentrations, these compounds inhibit
RNase H as well. Thus, the higher end of the pharmacologic dose response curve is
lost. Pharmacokinetically, phosphorothioates do not cross the blood-brain barrier, are
not significantly orally bioavailable and may display dose-dependent pharmacokinet-
ics. Toxicologically, the release of cytokines, activation of complement, and interfer-
ence with clotting will pose dose limits if they are encountered in the clinical setting.

As several clinical trials are in progress with phosphorothioates and other trials will
be initiated shortly, we shall soon have more definitive information about the activities,
toxicities, and value of this class of antisense drugs in humans.

5. THE MEDICINAL CHEMISTRY OF OLIGONUCLEOTIDES

5.1. Introduction
The core of any rational drug discovery program is medicinal chemistry. Although

the synthesis of modified nucleic acids has been a subject of interest for some time, the
intense focus on the medicinal chemistry of oligonucleotides dates, perhaps, to no
more than 5–7 yr prior to this chapter. Consequently, the scope of medicinal chemistry
has recently expanded enormously, but the biological data to support conclusions about
synthetic strategies are only beginning to emerge.

Modifications in the base, sugar, and phosphate moieties of oligonucleotides have
been reported. The subjects of medicinal chemical programs include approaches to cre-
ate enhanced affinity and more selective affinity for RNA or duplex structures; the abil-
ity to cleave nucleic acid targets; enhanced nuclease stability, cellular uptake, and
distribution; and in vivo tissue distribution, metabolism, and clearance.

5.2. Heterocycle Modifications
5.2.1. PYRIMIDINE MODIFICATIONS

A relatively large number of modified pyrimidines have been synthesized, incorpo-
rated into oligonucleotides, and evaluated. The principle sites of modification are C-2,
C-4, C-5, and C-6. These and other nucleoside analogs have been thoroughly reviewed
(162). A brief summary of the analogs that displayed interesting properties follow.

Inasmuch as the C-2 position is involved in Watson-Crick hybridization C-2 modified
pyrimidine containing oligonucleotides have shown unattractive hybridization properties.
An oligonucleotide containing 2-thiothymidine was found to hybridize well to DNA and,
in fact, even better to RNA ∆ Tm 1.5°C modification (Swayze et al., unpublished results).

In contrast, several modifications in the 4-position that have interesting properties
have been reported. 4-Thiopyrimidines have been incorporated into oligonucleotides
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with no significant negative effect on hybridization (163). A bicyclic and an N4-
methoxy analog of cytosine were shown to hybridize with both purine bases in DNA
with Tm values approx equal to natural base pairs (164). Additionally, a fluorescent
base has been incorporated into oligonucleotides and shown to enhance DNA-DNA
duplex stability (165).

A large number of modifications at the C-5 position have also been reported, includ-
ing halogenated nucleosides. Although the stability of duplexes may be enhanced by
incorporating 5-halogenated nucleosides, the occasional mispairing with G and the
potential that the oligonucleotide might degrade and release toxic nucleosides analogs
cause concern (162).

Furthermore, oligonucleotides containing 5-propynylpyrimidine modifications have
been shown to enhance the duplex stability ∆ Tm 1.6°C/modification, and support the
RNase H activity. The 5-heteroarylpyrimidines were also shown to influence the stabil-
ity of duplexes (120,166). A more dramatic influence was reported for the tricyclic 2′-
deoxycytidine analogs, exhibiting an enhancement of 2–5°C/modification depending
on the positioning of the modified bases (167). It is believed that the enhanced binding
properties of these analogs are a result of extended stacking and increased hydrophobic
interactions.

In general, modifications in the C-6 position of pyrimidines are highly duplex desta-
bilizing (168). Oligonucleotides containing 6-aza pyrimidines have been shown to
reduce Tm by 1–2°C per modification, but to enhance the nuclease stability of oligonu-
cleotides and to support RNase H-induced degradation of RNA targets (162).

5.2.2. PURINE MODIFICATIONS

Although numerous purine analogs have been synthesized, when incorporated into
oligonucleotides, they usually have resulted in destabilization of duplexes. However,
there are a few exceptions where a purine modification had a stabilizing effect. A brief
summary of some of these analogs is discussed later.

Generally, N1 modifications of purine moiety has resulted in destabilization of the
duplex (169), as have C-2 modifications. However, 2–6-diaminopurine has been
reported to enhance hybridization by approx 1 °C per modification when paired with T
(170). Of the 3-position substituted bases reported to date, only the 3-deaza adenosine
analog has been shown to have no negative effective on hybridization.

Modifications at the C-6 and C-7 positions have likewise resulted in only a few
interesting bases from the point of view of hybridization. Inosine has been shown to
have little effect on duplex stability, but because it can pair and stack with all four nor-
mal DNA bases, it behaves as a universal base and creates an ambiguous position in an
oligonucleotide (171). Incorporation of 7-deaza inosine into oligonucleotides was
destabilizing, and this was considered to be caused by its relatively hydrophobic nature
(172). 7-Deaza guanine was similarly destabilizing, but when 8-aza-7-deaza guanine
was incorporated into oligonucleotides, it enhanced hybridizations (173). Thus, on
occasion, introduction of more than one modification in a nucleobase may compensate
for destabilizing effects of some modifications. 7-Iodo 7-deazaguanine residue was
recently incorporated into oligonucleotides and shown to enhance the binding affinity
dramatically (∆Tm 10.0°C/modification when compared with 7-deazaguanine) (174).
The increase in Tm value was attributed to the hydrophobic nature of the modification,
increased stacking interaction, and favorable pKa of the base.
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In contrast, some C-8 substituted bases have yielded improved nuclease resistance
when incorporated in oligonucleotides, but also seem to be somewhat destabiliz-
ing (162).

5.2.3. OLIGONUCLEOTIDE CONJUGATES

Although conjugation of various functionalities to oligonucleotides has been
reported to achieve a number of important objectives, the data supporting some of
the claims are limited. Generalizations are not possible based on the data presently
available.

5.2.3.1. Nuclease Stability. Numerous 3′-modifications have been reported to
enhance the stability of oligonucleotides in serum (169). Both neutral and charged sub-
stituents have been reported to stabilize oligonucleotides in serum and, as a general
rule, the stability of a conjugated oligonucleotide tends to be greater as bulkier sub-
stituents are added. Inasmuch as the principle nuclease in serum is a 3′-exonuclease, it
is not surprising that 5′-modifications have resulted in significantly less stabilization.
Internal modifications of base, sugar, and backbone have also been reported to enhance
nuclease stability at or near the modified nucleoside (169). In a recent study, thiono tri-
ester (e.g., adamantyl, cholesteryl) modified oligonucleotides have shown improved
nuclease stability, cellular association, and binding affinity (175).

The demonstration that modifications may induce nuclease stability sufficient to
enhance activity in cells in tissue culture and in animals has proven to be much more
complicated because of the presence of 5′-exonucleases and endonucleases. In our lab-
oratory, 3′-modifications and internal point modifications have not provided sufficient
nuclease stability to demonstrate pharmacological activity in cells (96). In fact, even a
5-nucleotide long phosphodiester gap in the middle of a phosphorothioate oligonu-
cleotide resulted in sufficient loss of nuclease resistance to cause complete loss of phar-
macological activity (81).

In mice, neither a 5′-cholesterol nor 5′-C-18 amine conjugate altered the metabolic
rate of a phosphorothioate oligodeoxynucleotide in liver, kidney, or plasma (83). Fur-
thermore, blocking the 3′- and 5′-termini of a phosphodiester oligonucleotide did not
markedly enhance the nuclease stability of the parent compound in mice (13). How-
ever, 3′-modification of a phosphorothioate oligonucleotide was reported to enhance its
stability in mice relative to the parent phosphorothioate (176). Moreover, a phospho-
rothioate oligonucleotide with a 3′-hairpin loop was reported to be more stable in rats
than its parent (175). Thus, 3′-modifications may enhance the stability of the relatively
stable phosphorothioates sufficiently to be of value.

5.2.3.2. Enhanced Cellular Uptake. Although oligonucleotides have been
shown to be taken up by a number of cell lines in tissue culture, with perhaps the
most compelling data relating to phosphorothioate oligonucleotides, a clear objec-
tive has been to improve cellular uptake of oligonucleotides (2,8). Inasmuch as the
mechanisms of cellular uptake of oligonucleotides are still poorly understood, the
medicinal chemistry approaches have been largely empirical and based on many
unproven assumptions.

Because phosphodiester and phosphorothioate oligonucleotides are water soluble,
the conjugation of lipophilic substituents to enhance membrane permeability has
been a subject of considerable interest. Unfortunately, studies in this area have not
been systematic and, at present, there is little information about the changes in
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physicochemical properties of oligonucleotides actually affected by specific lipid
conjugates. Phospholipids, cholesterol and cholesterol derivatives, cholic acid, and
simple alkyl chains have been conjugated to oligonucleotides at various sites in the
oligonucleotide. The effects of these modifications on cellular uptake have been
assessed using fluorescent or radiolabeled oligonucleotides, or by measuring pharma-
cological activities. From the perspective of medicinal chemistry, very few systematic
studies have been performed. The activities of short alkyl chains, e.g., adamantine,
daunomycin, fluorescein, cholesterol, and porphyrin-conjugated oligonucleotides,
were compared in one study (177). A cholesterol modification was reported to be
more effective at enhancing uptake than the other substituents. It also seems likely
that the effects of various conjugates on cellular uptake may be affected by the cell
type and target studied. For example, we have studied cholic acid conjugates of phos-
phorothioate deoxyoligonucleotides or phosphorothioate 2′-methoxy oligonu-
cleotides, and we observed enhanced activity against HIV and no effect on the
activity of ICAM-directed oligonucleotides.

Additionally, polycationic substitutions and various groups designed to bind to cel-
lular carrier systems have been synthesized. Although many compounds have been
synthesized, the data reported to date are insufficient to draw firm conclusions about
the value of these approaches or their structure-activity relationships (169).

5.2.3.3. RNA Cleaving Groups. Oligonucleotide conjugates were recently
reported to act as artificial ribonucleases, albeit in low efficiencies (178). Conjugation
of chemically reactive groups such as alkylating agents, photoinduced azides,
prophine, and psoralene have been utilized extensively to effect a crosslinking of
oligonucleotide and the target RNA. In principle, this treatment may lead to translation
arrest. In addition, lanthanides and their complexes have been reported to cleave RNA
by means of a hydrolytic pathway. Recently, a novel europium complex was covalently
linked to an oligonucleotide and shown to cleave 88% of the complementary RNA at
physiological pH (179).

5.2.3.4. In Vivo Effects. To date, relatively few studies have been reported in vivo.
The properties of a 5′-cholesterol and 5′-C-18 amine conjugates of a 20-mer phospho-
rothioate oligodeoxynucleotide have been determined in mice. Both compounds
increased the fraction of an iv bolus dose found in the liver. The cholesterol conjugate,
in fact, resulted in more than 80% of the dose accumulating in the liver. Neither conju-
gate enhanced stability in plasma, liver, or kidney (83). Interestingly, the only signifi-
cant change in the toxicity profile was a slight increase in effects on serum
transamineses and the histopathological changes indicative of slight liver toxicity asso-
ciated with the cholesterol conjugate (180). A 5′-cholesterol phosphorothioate conju-
gate was also recently reported to have a longer elimination half-life, more potency,
and the ability to induce greater liver toxicity in rats (181).

5.2.4. SUGAR MODIFICATIONS

The focus of second-generation oligonucleotide modifications has centered on the
sugar moiety. In oligonucleotides, the pentofuranose sugar ring occupies a central con-
necting manifold that also positions the nucleobases for effective stacking. A sympo-
sium series has been published on the carbohydrate modifications in antisense research
that covers this topic in great detail (182). Therefore, the content of the following dis-
cussion is restricted to a summary.
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A growing number of oligonucleotides in which the pentofuranose ring is modified
or replaced have been reported (183). Uniform modifications at the 2′-position have
been shown to enhance hybridization to RNA and, in some cases, to enhance nuclease
resistance (183). Chimeric oligonucleotides containing 2′-deoxyoligonucleotide gaps
with 2′-modified wings have been shown to be more potent than parent molecules (61).

Other sugar modifications include α-oligonucleotides, carbocyclic oligonucleotides,
and hexapyranosyl oligonucleotides (183). Of these, α-oligonucleotides have been the
most extensively studied. These hybridize in parallel fashion to single-stranded DNA
and RNA and are nuclease resistant. However, they have been reported to be oligonu-
cleotides designed to inhibit Harvey ras (Ha-ras) expression. All these oligonucleotides
support RNase H and, as can be seen, a direct correlation between affinity and potency
exists.

A growing number of oligonucleotides in which the C-2′-position of the sugar ring is
modified have been reported (169,178). These modifications include lipophilic alkyl
groups, intercalators, amphipathic amino-alkyl tethers, positively charged polyamines,
highly electronegative fluoro or fluoro alkyl moities, and sterically bulky methylthio
derivatives. The beneficial effects of a C-2′-substitution on the antisense oligonucleotide
cellular uptake, nuclease resistance, and binding affinity have been well documented in
the literature. In addition, excellent review articles have appeared in the last few years on
the synthesis and properties of C-2′-modified oligonucleotides (178,184–186).

Other modifications of the sugar moiety have also been studied including other sites
as well as more substantial modifications. However, much less is known about the anti-
sense effects of these modifications (16).

2′-Methoxy-substituted phosphorothioate oligonucleotides have recently been
reported to display enhanced oral bioavailability and to be more stable in mice than
their parent compounds (116,175). The analogs displayed tissue distribution similar to
that of the parent phosphorothioate.

Similarly, we have compared the pharmacokinetics of 2′-propoxy modified phosphodi-
ester and phosphorothioate deoxynucleotides (83). As expected, the 2′-propoxy modifica-
tion increased lipophilicity and nuclease resistance, and the 2′-propoxy phosphorothioate
was too stable in murine liver or kidney to measure an elimination half-life.

Interestingly, the 2′-propoxy phosphodiester was less stable than the parent phos-
phorothioate in all organs—except the kidney in which the 2′-propoxy phosphodiester
was remarkably stable. The 2′-propoxy phosphodiester did not bind to albumin signifi-
cantly, whereas the affinity of the phosphorothioate for albumin was enhanced. The
only difference in toxicity between the analogs was a slight increase in renal toxicity
associated with the 2′-propoxy phosphodiester analog (180).

Incorporation of the 2′-methoxyethyoxy group into oligonucleotides increased the
Tm by 1.1°C per modification when hybridized to the complement RNA. In a similar
manner, several other 2′-O-alkoxy modifications have been reported to enhance the
affinity (187). The increase in affinity with these modifications was attributed to the
favorable gauche effect of the side chain and additional solvation of the alkoxy sub-
stituent in water.

More substantial carbohydrate modifications have also been studied. Hexose-con-
taining oligonucleotides were created and found to have very low affinity for RNA
(188). Also, the 4′-oxygen has been replaced with sulfur. Although a single substitution
of a 4′-thio-modified nucleoside resulted in destabilization of a duplex, incorporation
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of two 4′-thio-modified nucleosides increased the affinity of the duplex (189). Finally,
bicyclic sugars have been synthesized with the hope that preorganization into more
rigid structures would enhance hybridization. Several of these modifications have been
reported to enhance hybridization (182).

5.2.5. BACKBONE MODIFICATIONS

Substantial progress in creating new backbones for oligonucleotides that replace the
phosphate or the sugar-phosphate unit has been made. The objectives of these pro-
grams are to improve hybridization by removing the negative charge, enhance stability,
and potentially improve pharmacokinetics.

Numerous modifications (16,182) have been made that replace phosphate, retain
hybridization, alter charge, and enhance stability. Since these modifications are now
being evaluated in vitro and in vivo, a preliminary assessment should be possible shortly.

Replacement of the entire sugar-phosphate unit has also been accomplished and the
oligonucleotides produced have displayed very interesting characteristics. Peptide
nucleic acid (PNA) oligonucleotides have been shown to bind to single-stranded DNA
and RNA with extraordinary affinity and high sequence specificity. They have been
shown to be capable of invading some double-stranded nucleic acid structures. PNA
oligonucleotides can form triple-stranded structures with DNA or RNA.

PNA oligonucleotides were shown to be able to act as antisense and transcriptional
inhibitors when microinjected in cells (190). PNA oligonucleotides appear to be quite
stable to nucleases and peptidases as well.

In the past 5–7 yr, enormous advances in the medicinal chemistry of oligonu-
cleotides have been reported. Modifications at nearly every position in oligonucleotides
have been attempted and numerous potentially interesting analogs have been identified.
Although it is too early to determine which of the modifications may be most useful for
particular purposes, it is clear that a wealth of new chemicals is available for systematic
evaluation and that these studies should provide important insights into the SAR of
oligonucleotide analogs.

5.3. Conclusions
Although many questions about antisense remain to be answered, progress has con-

tinued to be gratifying. As more is learned, we will understand more of the factors that
determine whether an oligonucleotide actually works via antisense mechanisms. We
should also have the opportunity to learn a great deal more about this class of drugs as
additional studies are completed in humans.
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1. SUMMARY

Recent advances in the understanding of the molecular basis governing the interac-
tions between the immune system and tumor cells in humans occurred mainly by
studying patients with metastatic melanoma. Several melanoma-associated antigens
(MA) and their epitopes recognized by HLA class I-restricted cytotoxic T cells (CTL)
have been identified (1,2). Most of these MA were noted to be nonmutated molecules
expressed by most melanoma cell lines (3). The demonstration that MA expression is
shared by tumors from different patients stimulated interest in the development of MA-
specific vaccines suitable for broad patient populations. Repeated in vitro stimulation
of peripheral blood mononuclear cells (PBMC) with MA-derived epitopes demon-
strated a high frequency of MA-reactive T cells in patients with melanoma (4,5). The
same epitopes could be utilized to enhance MA-specific T-cell reactivity in vivo when
administered in combination with Incomplete Freund’s Adjuvant (IFA) (6,7). Epitope-
based vaccinations however, have not shown strong clinical effectiveness unless com-
bined with the administration of interleukin 2 (IL-2) (8). Thus, paradoxically, it is
possible to detect immunization against cancer but this does not seem to correspond to
regression of tumors. In this chapter, we will discuss in detail some examples of clini-
cal trials in which cancer vaccines have successfully induced immunization and criti-
cally evaluate the possible mechanisms that allowed tumors to escape immune
destruction in the context of these studies.

2. INTRODUCTION AND HISTORICAL BACKGROUND

The immune response against pathogens is composed of a humural and a cellular
arm. Although the former is directed toward extracellular pathogens, the latter is
directed toward proteins produced by infectious agents replicating within permissive
cells. Intracellular proteins produced by infectious agents are enzymatically degraded
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into short peptides (9–11 amino acids in length) and presented on the surface of
infected cells in association with major histocompatibility complex (MHC) class I mol-
ecules. The complex of peptide and the MHC molecule (epitope) is what is required for
triggering of T cells. Vaccines aimed at prevention of disease might be particularly
effective because they can arm the host with neutralizing antibodies against subsequent
infections, which may dramatically reduce the number of pathogens reaching the host’s
cells. After the pathogen is hidden in cells, the immune system relies predominantly on
T-cell function (9). Most known tumor antigens are intracellular molecules and it is,
therefore, likely that the cellular response is the prevalent immunological defense of
the organism against tumors (10). Furthermore, experimental models suggest that the
cellular rather than the humoral arm of the immune response plays a major role in the
elimination of cancer (11).

With the identification of the human T-cell growth factor, IL-2, stable human T-cell
lines were expanded that could specifically recognize autologous tumor cells (12).
Because the 5-yr survival of patients with metastatic melanoma is less than 2%, and
chemotherapy is not effective in improving it (13), alternative approaches were
attempted including the administration of IL-2 (14). Administration of high-dose IL-2
resulted in 7% complete and 10% partial tumor regressions in patients with metastatic
melanoma (15). IL-2 does not have direct activity on cancer cells but works through
stimulation of the immune system (16). IL-2 could also be utilized to expand in vitro
lymphokine-activated killer (LAK) cells generated by culturing PBMC (17) or tumor-
infiltrating lymphocytes (TIL) expanded from single-cell suspensions of tumor (18).
Although able to kill tumor targets in vitro, LAK cells did not prove useful in random-
ized clinical trials for the treatment of patients with metastatic melanoma and renal
cancer (17). The adoptive transfer of ex vivo expanded TIL suggested, on the other
hand, an additional advantage over the administration of IL-2 alone. Treatment of 86
patients with metastatic melanoma using TIL plus IL-2 resulted in 34% objective
response rates in patients that included those who had previously failed treatment with
high-dose IL-2 alone (15). Because of the ease with which tumor-specific TIL could be
obtained from melanoma patients, and their potential therapeutic relevance, melanoma
has served as the prototype model for human tumor immunology.

2.1. The Identification of MA
Interest in the TIL phenomenon brought to the identification of MA (12,18,19).

Kawakami et al. had shown that the majority of TIL recognized “shared” antigens
because they could kill melanoma cell lines from different patients that expressed the
relevant MHC (HLA in humans) molecule (20). This observation encouraged efforts to
identify them with the assumption that they could be broadly used for antimelanoma
immunization.

The identification of MA was done on the basis of their HLA restriction. The region
encoding for the HLA class I molecules is located in chromosome 6 in humans and
includes three genes termed HLA-A, -B, and -C. Each of the HLA genes is extremely
polymorphic (21). Thus, most individuals are heterozygous for each HLA gene and
express six different HLA alleles on the cell surface. Most of the HLA polymorphism is
clustered within the peptide-binding or T-cell receptor (TCR)-interacting domains of
the HLA molecule (22). Thus, HLA alleles are very stringent with respect to ligand
specificity and the stringency of the requirements for TCR/HLA interaction is referred
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to as “HLA restriction.” HLA-restricted recognition of MA was formally proved by
transduction of the appropriate HLA allele (restriction element) for a particular TIL
into melanoma cells which did not express such alleles. Recognition of the transfected
tumor cell (but not the wild type) by the TIL constituted a formal proof of the HLA-
restricted recognition of shared MA (20). For the identification of MA, a cDNA library
from a melanoma cell line was established. Genes from the library were transfected
into nonmelanoma cells. The transfected target cells were then tested for recognition
by TIL specific for the melanoma from which the cDNA library was generated. The
cDNA clones that caused recognition upon transfection were then isolated and
sequenced for identification of the antigen (15,23).

Two major categories of MA were identified. The first category includes Tumor Dif-
ferentiation Antigens (TDA) such as MART-1/MelanA, gp100/Pmel17, tyrosinase and
TRP-1, and TRP-2. TDA are expressed by melanoma cells as well as normal
melanocytes (24–27) but not other malignancies and normal tissues (28). Tumor-spe-
cific antigens (TSA) represent another large family of MA. TSA are not expressed by
normal melanocytes, but are found in testes (cancer-testis antigens) and in a subset of
patients with melanoma or other malignancies. TSA include the MAGE, BAGE, and
GAGE families, and NY-ESO-1 (29). Although the identification of the first MA
occurred in association with HLA-A*0101 (23), owing to the prevalence of HLA-
A*0201 in the melanoma population (30,31) a significant number of MA were subse-
quently identified in association with this allele. These include MART-1/Melan A
(32,33), gp100/Pmel 17 (34), tyrosinase (35), MAGE-3 (36), N-Acetylglucosaminyl-
transferase V (37), and NY-ESO-1 (38). Among them, MART-1 has received particular
attention because of its “immunodominance” in the context of HLA-A*0201 (32).
Approximately 90% of TIL originated from HLA-A*0201 patients recognize MART-
127–35 (39). The second MA most commonly recognized by TIL is gp100. Analysis of
217 fresh metastatic melanoma specimens showed heterogeneous expression of
MART-1 and gp100 in vivo (26). However, the majority of lesions expressed these MA
in at least 50–75% of their cells. Because of the frequency of their expression in tissues
and their immunodominance in HLA-A*0201 patients, these two MA have been the
main focus of vaccination efforts.

2.2. Peptide-Based Vaccines
Among multiple peptides, only MART-127–35 was found to be consistently recog-

nized by MART-specific, tumor-recognizing T cells (4). At least five HLA-A*0201-
restricted peptides could be identified for the larger gp100 molecule that could be used
in vitro to generate melanoma specific CTL (40). However, gp100 epitopes were not as
efficient as MART-127–35 for in vitro induction of anti-gp100 CTL. Thus, to enhance
their immunogenicity, single amino acid substitutions were made to increase their
binding affinity to HLA-A*0201. A peptide was identified (G9–209–2M:
IMDQVPFSV, natural sequence: ITDQVPFSV), which had increased immunogenic
reactivity in vitro and in vivo (7,41). Thus, MART-127–35 or G9–209–2 have been
mostly used for vaccination at National Institutes of Health.

Because HLA-A*0201 is the predominant allele in the melanoma population (30),
peptide-based vaccinations restricted to HLA-A*0201 patients were initiated by subcu-
taneously administering MART-127–35 emulsified in IFA. Comparison of in vitro-
elicited reactivity of PBMC obtained before and after vaccination demonstrated strong
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enhancement of immune-competence toward MART-1 by the vaccination (6). In a sec-
ond trial, melanoma patients were treated with g209–2M alone or in combination with
high-dose iv IL-2. Successful immunization could be documented in patients immu-
nized with g209–2M; however, in spite of strong CTL responses, no clinical responses
were observed unless IL-2 treatment was added (8).

2.3. Dendritic Cell (DC)-Based Vaccines
Preclinical studies suggest that the administration of peptide alone for the treatment

of cancer is not as efficient (42) as the addition of an appropriate adjuvant. Among
adjuvants, DCs play a critical role because they are highly specialized antigen present-
ing cells (APC) with unique immunostimulatory properties. DCs can induce primary
cellular immune responses (43). Activated DCs are capable of migration from areas of
antigen capture in the peripheral tissues to areas infiltrated with naïve T cells such as
those of lymphoid organs. The key role of DCs in the initiation of immune responses
has focused the attention of many investigators on the potential efficacy of these cells
in tumor immunotherapy. Several groups have shown that DCs can be an efficient adju-
vant for MHC class I-restricted antitumor sensitization in vivo (44–50). Importantly,
peptide-pulsed DCs appeared more efficient in inducing antitumor immunity than
immunization with peptide alone (45,48) or emulsified in IFA (49). The successes of
TAA-pulsed DCs in murine models supported the use of autologous, peptide-pulsed
DCs in recent clinical trials (51,52).

DCs can be expanded from CD34+ hematopoietic progenitor cells in the presence of
granulocyte/macrophage-colony-stimulating factor (GM-CSF) and matured to func-
tional DCs with TNF-α (53,54). DCs can be also generated from PBMC by culture of
adherent cells for 5–7 d in medium containing GM-CSF and IL-4 (55–58). A signifi-
cant difference between the two methods of preparation is that, although CD34+
derived DCs can actively proliferate ex vivo, DCs derived from PBMC do not prolifer-
ate. Therefore, the number of DCs obtainable with the latter method is a constant frac-
tion (~approx 10–20%) of the starting PBMC number (59).

DCs cultured in IL-4 and GM-CSF could sensitize in vitro PBMC from melanoma
patients against HLA-A*0201 restricted epitopes including MART-127–35 and g9-209-
2M by a single exposure of responder cells to the relevant MA (60). These findings
stimulated a Phase I clinical trial in which patients with metastatic melanoma were
immunized with DCs pulsed with MART-1 and gp100 epitopes. The MART-127–35
or the g9-209-2M peptides were separately pulsed onto the surface of autologous
DCs, which were then delivered to patients within the same day in separate aliquots.
Previously reported clinical studies had generally used minimal numbers of DCs,
compared with the potential yield of DCs from a standard leukapheresis, and had
applied different routes of administration (51,52). A first cohort of patients (n=3)
was treated with 6 × 107 DCs and a second cohort (n=5) with 2 × 108 DCs (both reg-
imens, half of the DCs pulsed with MART-127–35 and half with gp-100-209-2M). In
a final cohort under accrual (n=2), the latter dose of DC was administered in combi-
nation with IL-2 (720,000 IU/kg every 8 h). DCs could be safely administered with-
out serious toxicity. Because of the minimal toxicity noted, it was concluded that the
iv administration of DCs could safely be performed on an outpatient basis. One
patient experienced a temporary partial response to DC treatment with regression of
sc and pulmonary metastases; however, the duration of the response was short and
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correlated with loss of gp100 and MART-1 expression in the recurring metastases
(26). Monitoring of the systemic T-cell response pre-, postsecond, and postfourth
vaccination could not identify strong immune reactivity compared with treatment
with peptide alone.

Nestle et al. reported high rates of tumor regression in response to the intralymphatic
administration of a small number of DCs prepared with methods similar to the those
used in the NCI study and pulsed either with MAderived peptides or with tumor prepa-
rations (51). It is possible that the different routes of administration used in the two
studies could account for the differences noted in clinical outcome.

2.4. Whole Antigen Vaccines
Usage of MA-derived peptides requires knowledge of the amino acid sequence of

the epitopic determinant specific for each HLA allomorph (61). Various strategies
have been reported to obviate this problem. The use of unfractionated acid-eluted
tumor-derived peptides (47) has been proposed. Other strategies have taken advan-
tage of the ability of APC to incorporate exogenous particles or messenger-RNA and
present them to T cells in an MHC class I restricted fashion (62,63). Bhardwaj et al.
(64) demonstrated that DCs can be infected efficiently by influenza virus and they
are permissive for the expression of viral products. We infected DCs with viral con-
structs encoding for MA to be used as immunogen in an autologous human system
(60,65). Using this model, we could show that DCs are permissive to pox virus-dri-
ven expression of MA. Virally induced MA into DCs were naturally processed
through the endogenous pathway, presented as relevant epitopes bound to the appro-
priate HLA class I restriction element (65), and efficiently induced MA-specific T
cells (60).

With virally infected DCs, we have extensively analyzed the stringent allele/epitope
requirement characteristics of MART-1 immunodominance in the context of HLA-
A*0201 (66). Those studies demonstrated that autologous induction of MART-1 CTL
by whole antigen processing and presentation by virally infected DC is restricted to a
unique allele/ligand combination and is excluded by minimal changes in HLA struc-
ture. Thus, the use of whole antigen as an immunization strategy aimed at utilizing
multiple epitopes associated with multiple restriction elements may not be useful for
small molecular size proteins. Contrary to MART-1, DCs infected with rVV-gp 100
(five- to six-fold larger than MART-1) could elicit CTL against more than one epitope
recognized in the context of HLA-A*0201 (66) or other HLA alleles (67). Further-
more, multiple epitopes could be identified for tyrosinase in association with various
HLA alleles using similar strategies (68). Thus, future clinical studies should consider
the use of whole antigen vaccines.

Adenoviral vectors have been tested in a Phase I clinical trial in which 54 patients
received escalating doses of virus encoding either MART-1 or gp100 (69). These
recombinant vectors were administered either alone or in combination with iv IL-2.
One of 16 patients receiving adeno-MART-1 experienced a complete response. Other
objective responses (two complete and two partial responses) occurred in patients
receiving IL-2 simultaneously. No consistent evidence of immunization to MART-1 or
gp-100 could be demonstrated in contrast with the results described for peptide vac-
cines. Possibly, neutralizing antibodies generated by exposure to the virus eliminated
the vector before it could generate antigen for immunization (69).
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3. ESCAPE FROM VACCINE-INDUCED IMMUNE RESPONSES

A remarkable breakthrough in the understanding of human tumor immunology
resulted when studies demonstrated that the host can mount immune responses against
antigens expressed by autologous cancer cells (1,2,70). It was previously believed that
the immune system could control tumor growth by recognizing as foreign “new” mole-
cules expressed by tumor cells (71,72). Obviously, self/nonself-discrimination does not
apply broadly to tumor immunology because most identifiable immune responses
against cancer are directed against self-molecules (1,2,70).

MA-specific vaccination studies have shown that immunization induces detectable
MA-specific CTL responses (6–8) but does not yield the clinical responses predicted
by murine models. Human treatments deal with the polymorphic nature of tumors and
the human immune system. Furthermore, the extreme heterogeneity of cancer cells has
to be acknowledged and, therefore, tumor escape mechanisms may play a bigger role
in human disease than in prefabricated olygo-clonal murine models. Immune escape
and immune tolerance are general terms that include a variety of mechanisms. Inade-
quate immune responses in patients with cancer and other chronic illness have been
attributed to decreased T-cell receptor (TCR) signaling capacity (73,74). However,
there is no convincing evidence that cancer patients are immune compromised. Flu-
specific CTL reactivity is not different between healthy controls and patients with
melanoma (5). Furthermore, MA-specific CTL reactivity is easier to induce in patients
with melanoma than in nontumor-bearing individuals (5,75). Deletion of T cells by
excessive stimulation has been implicated in the induction of systemic, epitope-specific
immune tolerance (76–81). However, because MA-specific T cells can be activated and
expanded in vivo by antigen-specific vaccines (6–8), deletion of tumor reactive clones
may not play a significant role in human cancers (76,79,82–84).

Localization of MA-specific CTL at the tumor site is expected for their effector
function. Adoptive transfer of 111Indium-labeled TIL has shown that their localization
is necessary for a clinical response to occur (85). However, in some cases, although
TIL home (i.e., localize) within the tumor, no regression is observed, suggesting that
other factors within the tumor microenvironment may influence the status of T-cell
activation or the sensitivity of tumor cells to them.

Paradoxically, TIL can be routinely expanded ex vivo from growing melanoma
metastases and shown to be able to effectively kill in vitro tumor cells. Thus,
TIL/tumor cell interactions observed in vitro do not explain in vivo phenomena. This
discrepancy may reflect lack of sufficient stimulation in vivo as the expansion ex vivo
of TIL requires incubation not only with tumor cells but also with IL-2. Matzinger’s
“danger model” (86,87) proposes an explanation for the coexistence of effector and tar-
get cells in tissues without the development of tumor rejection suggesting that the
default interaction between tumor cells and host immune system is absent or minimal.
This model suggests that immune responses start when tissue distress (danger; “signal
one”) is detected which provides a second signal bearer of the environmental condi-
tions in which the immune interaction is occurring (88,89). The second signal can be
provided either by cytokines (“help”) or by costimulatory molecules expressed by APC
(90) during tissue distress. Cancer cells do not constitutively express costimulatory
molecules and do not secrete immune stimulatory cytokines. Thus, by offering only
signal one, tumors might induce tolerance because the interaction of antigen-specific T
cells with signal one in the absence of the second signal causes their deletion (87).
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Expression of MHC class I molecules is necessary for tumor recognition by CTL
(91–93). Thus, complete loss of expression of either MA or HLA has, as an undisputed
consequence, loss of recognition by MA-specific CTL. It is, however, still controver-
sial whether decreased expression of MA and/or HLA affects significantly tumor/host
interactions in vivo. An extensive description of MA and HLA loss or downregulation
has recently been prepared (94). In humans, MA expression is quite heterogeneous.
TSA are variably expressed in tumors (23) in correlation with a genome-wide
demethylation process associated with tumor progression (95–97). Treatment with
demethylating agents such as 5-Aza-2′-deoxycytidine can induce expression of TSA
and sensitize cell lines to lysis by TAA-specific CTL (95,98,99). The ability of
demethylating agents to restore recognition of tumor cells by CTL has not been
exploited in clinical grounds because of the widespread effects that these agents have
on normal cells (95,98). TDA are more commonly expressed than TSA. Earlier studies
detected MART-1/MelanA mRNA in all cell lines and melanoma lesions tested (33).
These studies, however, might have underestimated the heterogeneity of TDA protein
expression. IHC analysis with mAb specific for gp100/Pmel17, MART-1/MelanA, and
tyrosinase revealed that their expression is not as ubiquitous as suggested by molecular
methods (24,25,34,35,100–106). Furthermore, contrary to TSA, the frequency of TDA
expression decreases with disease progression (26,107–110) probably because TSA are
not related to neoplastic transformation. In particular, gp100/Pmel17 is less frequently
expressed than MART-1/MelanA, which is less frequently expressed than tyrosinase
(24,26,27,109,110).

About 25% of synchronous metastases of patients with melanoma display signifi-
cant differences in the percent of tumor cells expressing a given MA (26,109,110). In
addition, IHC of metastatic lesions has shown heterogeneity not only in the percentage
of tumor cells expressing a MA but also in the level of MA expression by demonstrat-
ing differences in intensity of staining (24,26,107). These findings have been corrobo-
rated in cell lines by analysis of TDA by FACS analysis (111) and by quantitative
RT-PCR (109). In vitro studies have also shown a correlation between variability of
expression of MA and recognition of tumor cells by CTL (25,111–113). Variation in
the level of MA expression may explain the coexistence of MA-specific TIL in tissues
expressing the target MA. Decreased expression of MA and/or HLA class I molecules
has been noted in residual tumors following immunotherapy (26,109,110,114). A
recent analysis of pooled metastases from HLA-A*0201 melanoma patients showed a
significant increase in frequency of gp100 negative lesions (29% of 155 lesions) after
immunization compared with metastases analyzed before immunization (18% of 175)
(109). Another study has shown a reduced expression of the ErbB-2 protooncogene in
HLA-A2-expressing breast cancer lesions compared with HLA-A2-negative lesions
(115). Because this antigen has a well-defined HLA-A2-associated epitope, this finding
suggests that lesions expressing HLA alleles other than HLA-A2 may experience
reduced immune pressure.

Within the tumor environment, immunological mediators—particularly cytokines
(116)—may control host defenses. Wojtowicz-Praga suggested a predominant role of
transforming growth factor-β (TGF-β) as a cause of “tumor-induced immune suppres-
sion” (74). In situ expression of various isoforms of TGF (TGF-β1 –β2 and –β3) is
common in tumors and correlates with progression of melanoma (117–119) and other
skin tumors (120). In murine models, TGF-β modulates melanoma growth by inducing
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immunosuppression of the host (121,122). It is not clear, however, whether the
immunosuppressive effects of TGF-β produced by tumor cells are limited to the tumor
microenvironment or can affect the entire host immune system. In patients with
melanoma, a correlation exists between plasma levels of TGF-β and disease progres-
sion (74). This association, however, may simply reflect the higher tumor burden in
patients with progressive disease. TGF-β has been shown to act synergistically to IL-10
to induce immune privilege (123). It is not known whether IL-10 produced by
melanoma cells plays a similar role by turning tumors into immune privileged sites.

Interactions between the vascular endothelium and tumor cells may also affect the
outcome of the antitumor immune response (124,125). By selectively recognizing a
target tissue, CTL may trigger in situ an inflammatory cascade by producing TNF-α,
IFN-γ, and other cytokines. Some tumors might be more sensitive than others to these
inflammatory signals. As TNF-α is one of the cytokines secreted by activated CTL, it is
reasonable to postulate that factors modulating its antitumor effects could play a signif-
icant role in determining the sensitivity of a tumor to T-cell attack. Recently, Wu et al.
have shown that melanoma cell lines produce a cytokine called Endothelial-Monocyte-
Activating Polypeptide II (EMAPII), which increases sensitivity of endothelial cells to
TNF-α (126). Melanoma cell lines secreting higher amounts of EMAPII are more sen-
sitive in vivo to the antineoplastic effects of TNF-α.

Fas ligand (FasL) has been reported to be expressed in melanoma lesions (127) sug-
gesting a novel mechanism of tumor escape through interaction with Fas on the surface
of TIL. This model, however, is not supported by the available experimental data. Riv-
oltini et al. reported that TIL are insensitive to FasL (128) and, in murine models, the
implantation of FasL transduced tumors does not abrogate antitumor immune
responses (129,130). Furthermore, a recent analysis of a large panel of melanoma cell
lines found no evidence of FasL in melanoma (131,132). Thus, the available informa-
tion indicates that the expression of FasL in malignant lesions is minimal and its role in
inducing immune escape is limited, as recognized by the same group which had origi-
nally proposed this theory (133).

4. SUMMARY

The identification of MA and their respective CTL epitopes has raised interest in
peptide-based vaccinations (1) as clinical studies have shown that MA-specific vac-
cines can powerfully enhance MA-specific CTL reactivity (6–8). However, systemic
CTL responses to the vaccines most often do not correspond to clinical regression leav-
ing investigators with the paradoxical observation of identifiable CTL reactivity that is
not capable of destroying the targeted tissues. Among the questions raised by this para-
dox stands the enigma of whether tumors resist immunotherapy because the immune
response elicited is insufficient (87) or because tumor cells rapidly adapt to immune
pressure by switching into less immunogenic phenotypes (94). It is possible that a bal-
ance between subliminal immune responses and fading immunogenicity of tumors
governs the fine equilibrium, allowing tumor survival in the immune competent host.

Antigen-specific vaccination protocols for the immunotherapy of melanoma,
although disappointing in their clinical results, have given us the unique opportunity of
comparing systemic T-cell responses with localization and status of activation of the
same T cells in the target organ. At the same time an accurate analysis of the molecules

354 Part IV / Future Directions



targeted by the vaccination can be performed. Prospective analyses of large cohorts of
patients undergoing these “immunologically simplified” treatments may allow, in the
near future, an expedited understanding of the immune biology governing cancer rejec-
tion by the host.
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1. INTRODUCTION

Telomerase has been associated with almost 90% of all malignant human cancers,
making it the most prominent molecular marker known to date. Because of its associa-
tion with malignancy, telomerase is also regarded as a novel diagnostic marker and a
specific target for gene therapy or chemotherapy. This chapter provides a general
overview of the telomerase field, its relationship to telomere biology, and the potential
roles of telomeres and telomerase in human cancer diagnosis and treatment, as well as
in treatment of age-associated disorders.

Normal human somatic cells have a limited replicative lifespan in culture, followed
by a process known as cellular senescence or the Hayflick limit (1). Unique structures
at the end of the chromosomes (telomeres) are necessary for chromosomal integrity
and overall genomic stability (2). Vertebrate telomeres are composed of a hexameric
sequence (TTAGGG) repeated for many kilobases (3). Telomeres continuously shorten
with successive cell divisions owing to the inability of normal DNA polymerases to
replicate the ends of linear molecules. This “end replication problem” occurs on the
lagging strand during DNA synthesis, leaving a gap between the final priming event
and the end of the chromosome (4,5). Without appropriate mechanisms to offset telom-
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ere shortening, normal human cells proliferate for a certain number of divisions, or
population doublings (PDs), followed by growth arrest or cellular senescence (6–8).

The decline in proliferative capacity correlates with progressive telomere shortening
in aging cells. This shortening is counterbalanced in specific germ-line cells, stem
cells, and most immortal cells through the telomere lengthening activity of telomerase.
The ribonucleoprotein, telomerase, provides the necessary enzymatic activity to restore
telomere length (9). Telomerase utilizes its associated RNA component as a template
for catalyzing DNA addition at the telomere (10,11). Telomerase is a reverse transcrip-
tase that restores telomeres by adding G-rich repeats (TTAGGG for vertebrates) to the
3′ single-stranded overhang at the end of the chromosomes. In humans, at least two
components of telomerase are required for the synthesis of telomeric DNA: a protein
catalytic subunit (hTERT) and an integral RNA template (hTR). hTERT is the limiting
component for reconstituting telomerase activity in normal cells. This protein contains
multiple reverse transcriptase motifs essential for enzymatic activity that are conserved
among similar genes in diverse organisms such as Saccharomyces cerevisiae Est2 and
Euplotes aediculatus p123. Because most normal cells that undergo senescence experi-
ence telomere shortening, telomere attrition has been proposed as a primary cause of
cellular aging or senescence (12,13).

In the absence of telomerase, normal human cells in culture have a finite lifespan
and undergo cellular senescence typically after 40 to 70 PDs. This stage of the cellu-
lar life cycle has become known as Mortality stage 1 (M1). The functions of normal
tumor suppressor proteins, such as p53 and pRb, are required for the M1 block to
cell division (13). The onset of M1 is thought to be primarily caused by shortened
telomeres, which are recognized as damaged DNA. The ensuing DNA damage
response involves the mechanistic action of p53 and pRb, along with a host of other
cellular proteins. Viral oncoproteins like human papillomavirus type 16 E6 and E7
can block the progression to senescence (block M1) leading to an extended lifespan
until affected cells reach Mortality stage 2 (M2) (14,15). M2 may be caused by
extreme telomere shortening, where there exists a natural balance between cell divi-
sion and cell death. For cells to become immortal, they must overcome the normal
block to cell proliferation (M1), acquire additional mutations in the extended lifes-
pan, and bypass crisis (M2) (13). The process of immortalization almost always
requires the activation of telomerase to maintain structural integrity at the ends of
the chromosomes (16).

The creation of the PCR-based telomerase assay (TRAP assay) has allowed for
assessment of telomerase activity in a wide variety of immortal and tumor-derived cell
lines as well as human tumors (16,17). Telomerase activity has been detected in
85–90% of a wide variety of malignant human tumors tested to date (reviewed in 18)
(Table 1). Thus, detection of telomerase activity may be a potentially important and
novel method for cancer diagnostics. Moreover, because telomerase activity is required
for continuous tumor cell proliferation, it is also an attractive anticancer target. Loss of
heterozygosity at chromosome 3 correlates tightly with telomerase activation (19), and
repression of telomerase in immortal cell lines results in telomere shortening followed
by the eventual restoration of cellular senescence (20–22). Thus, the study of the regu-
lation of the telomerase holoenzyme is critical to further understand the cellular factors
involved in controlling telomerase activity and for developing novel diagnostic and
therapeutic strategies.
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2. TELOMERE SHORTENING AND SENESCENCE

With the cloning of the gene corresponding to the catalytic subunit of telomerase
(23–26), telomerase activity was exogenously expressed in a cell-free system and in cul-
tured normal human cells (27–31). Using an in vitro transcription/translation system, both
the RNA component (hTR) and the protein subunit (hTERT) were expressed in vitro and
reconstituted activity with properties similar to native telomerase (27,30). Because normal
diploid cells express hTR without detectable telomerase activity, transient transfection of
the hTERT cDNA into primary cells resulted in expression of telomerase activity (27,29).
These results indicate that hTERT is the catalytic subunit of telomerase, that hTERT and
hTR are required to reconstitute telomerase activity, and that hTERT is the limiting factor
for the activation of telomerase in normal human diploid cells (27).

To determine if telomere shortening contributed to cellular senescence, we and oth-
ers have taken advantage of the results obtained with the transiently transfected primary
cells to directly test whether telomerase activity would result in extension of cellular
lifespan (28,31). Although ectopic hTERT allows expression of telomerase activity in
normal cells, the most important criteria for assessing the role of telomeres in cellular
senescence was to directly determine if this activity was fully functional, resulting in
maintenance of telomere lengths and an increase in cellular lifespan. Stable clones
expressing telomerase activity were found to be capable of maintaining or even elongat-
ing telomeres, resulting in prevention of cellular senescence and, ultimately, an exten-
sion of in vitro cellular lifespan. Currently, these clones have more than quadrupled
their proliferative capacity without signs of cancer-associated changes (31,32), sug-
gesting that telomerase is not responsible for malignant transformation and is, there-
fore, not oncogenic. Together, these results provide direct experimental evidence that
telomere erosion in normal diploid cells is one of the primary causes of cellular senes-
cence. It may even be the molecular clock that controls the number of cell divisions
prior to senescence. Although telomerase activation on its own may confer cellular
immortality, many additional genetic alterations affecting cell cycle controls, invasive-
ness, and metastasis are likely required for a cell to become tumorigenic or malignant.
Nevertheless, telomerase activation is linked to cancer, with approx 90% of human
malignant cancers testing positive for telomerase activity, suggesting that maintenance
of telomere length is required for the sustained growth of tumor cells.
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Table 1
Prevalence of Telomerase in a Variety of Tissues and Tumor Typesa

Pathology Normal Benign/Premalignant Malignant

Breast 0% 15% 88%
Lung 3% 54% 81%
Prostate 0% 9% 87%
Bladder 0% 40% 92%
Kidney ndb ndb 83%
Liver 0% 29% 86%
Endometrium 0% 0% 100%

a Summarized from ref. 18
b nd – not determined



3. POTENTIAL TREATMENT AND UTILITY OF TELOMERASE
EXPRESSION IN THE PREMATURE AGING OF CELLS

Ectopic expression of telomerase in normal somatic cells maintains telomeres and
leads to an extended lifespan, establishing an experimental model for preventing aging
in a tissue culture system. This has far-reaching implications for the treatment of many
types of human diseases (Table 2) (34), including heart disease and blindness, as well as
replacement therapy for patients with severe burns and those receiving bone marrow
transplants. Data on allogenic bone marrow transplants indicate that the donor cells,
when transplanted to the recipient, shorten their telomeres nearly 1000 base pairs over
the course of bone marrow regeneration within the first year (35–38). This may be the
reason for the aged-related problems that occur 5–10 yr after the transplant, which
include several different forms of leukemia.

In addition, the cells of certain accelerated aging syndromes, such as Hutchison-
Guilford Progeria, have significantly shorter telomeres than age-matched controls (12),
which may be responsible for the increase in age-related medical problems, which
include heart disease and thinning of the skin. Introduction of telomerase into some of
the affected cells may allow for increased cell proliferation and elimination of aging
for the treated cells. One excellent target for telomerase-mediated therapy would be for
cardiovascular disease, where aging of the vascular endothelial cells is thought to pre-
vent the uptake of cholesterol and induce the formation of plaques. If telomerase can
be targeted to these cells specifically, one may be able to prevent premature senescence
in the endothelial, allowing for increased cholesterol uptake and metabolism and
decreased plaque formation. Clearly, prevention of aging in many cell types will be
useful for the treatment of age-related disease, and the use of telomerase to prevent
telomere shortening may be a critical tool for accomplishing that task.

4. CANCER DIAGNOSTICS AND TELOMERASE

Being associated with the vast majority of human cancers, telomerase is a leading
candidate for molecular diagnostic strategies. Yet, there are currently no diagnostic
tests that have been approved for general clinical use. It is also very important to note
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Table 2
Telomerase Expression as a Potential Therapy for Age-Related Diseases

Problem Cause Possible Future Outcome

Aging Diseases Blindness Reverse aging in retinal cells
Heart disease Eliminate senescence in cells of blood 

vessels and decrease plaque formation
Replacement Bone marrow transplants Regenerate bone marrow cells from 

healthy donors
Burn victims Replace burns with healthy skin cells
AIDS Rejuvenate immune cells not infected 

with HIV
Basic Science Produce permanent cell lines Production of human vaccines and 

without a cancer phenotype reduction of normal cell procurement



that detection of telomerase activity in tumor biopsies or resections does not always
indicate malignancy, especially considering the number of normal cells that express
telomerase activity (including lymphocytes, stem cells of the intestine and skin, germ
cells, and so on) (39–41). Although the current best method for cancer diagnosis is
conventional pathology, even pathologists are looking for less qualitative and more
reliable quantitative measures for assessing malignancy in order to reduce the number
of false negatives (as well as false positives).

Clearly, the use of the TRAP assay will be critical for validation of diagnostic stud-
ies; however, molecular diagnosticians are more interested in nucleic acid-based strate-
gies rather than those assays that rely on protein or enzymatic activity. Therefore, the
conversion of protein-based assays into nucleic acid methodology will be highly desir-
able. Because hTERT is such a low abundant molecule (on the order of 10 copies of
mRNA per cancer cell) (Kim N.W., personal communication), amplification tech-
niques, such as reverse-transcriplase polymerase chain reaction (RT-PCR), will be nec-
essary. To realistically be considered as a feasible molecular diagnostic assay, an
RT-PCR-based telomerase approach should have high throughput potential and accu-
rate quantification capabilities, as well as controls for false-negative assessment of
PCR inhibition (use of an internal control). However, because hTERT is alternatively
spliced with multiple variants expressed in most immortalized and cancer cells and
some of these variants have the capacity to induce dominant-negative effects on telom-
erase (42,43), appropriate steps will be required to control for assessment of wild-type
hTERT expression.

For instance, appropriate primers will have to be designed to assess only those hTERT
mRNA molecules that would express active enzyme. To ensure that wild-type hTERT is
amplified, primer sequences should be used that would occur for the most common
splice variants, including α, β, and α/β deletions (48,49).

One can envision techniques that utilize fluorescent-based amplification of the tar-
gets (in this case, hTERT and hTR) as a multiplex RT-PCR strategy in a 96-well plate,
while compensating for the alternatively spliced forms of the genes with appropriately
engineered primers. For instance, one method may involve the amplification of hTERT
(with a fluorescein tag) and hTR (with a Texas Red label) simultaneously in a single
tube using real-time measurement, followed by a comparison of the ratio of hTERT
and hTR amplification with overall telomerase activity as measured by the TRAP
assay. Because hTR is ubiquitously expressed, it can serve as an appropriate quantita-
tive internal control. At least initially, telomerase activity levels will have to assessed in
order to determine the feasibility of the test, but subsequent RT-PCR assays may be
useful for estimating the relative telomerase activity levels based solely on the amplifi-
cation profile of the hTERT and hTR components. Importantly, it has been shown that
hTERT levels correlate with activity in most cancer cases (44–47).

Because it is desirable to convert this assay to a fluorescent-based, real-time assay,
differentiation of spliced vs wild-type hTERT based on size would not be appropriate.
Converting the standard telomerase activity assay into a nucleic acid-based molecular
diagnostic assay may not be applicable for every type of cancer, but it will certainly be
capable of assisting pathologists in the diagnosis of some human cancers.

Detection of telomerase in benign or preneoplastic conditions may also be useful for
determining malignant potential or severity of disease. Currently many “benign” tumors
are pathologically classified as being of very low malignant potential, yet some have
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detectable telomerase activity, which may suggest that these tumors may have significant
proliferative and progressive potential. It may also indicate that these presumably benign
lesions harbor malignant cells with the capacity to form a neoplasm. In addition, high
levels of telomerase activity have routinely been associated with increased tumor grade,
decreased prognosis, and reduced sampling error. Although there are some examples of
this in the literature (50,51), the more likely reason for elevated telomerase levels is
caused by increased tumor homogeneity. Many tumors are sampled from frozen gross
specimens, which contain a significant amount of normal tissue, as well as interspersed
cancer. Because telomerase extraction typically utilizes homogenization and lysis of the
entire tumor section rather than microdissection of only malignant tissue, the contribu-
tion of telomerase-negative normal cells will be significantly more in those lower-graded
lesions that contain fewer cancer cells. During progression, increased tumor homogene-
ity results, and more cancer cells (and fewer normal cells) will be sampled, which will
result in the detection of increased telomerase activity. Thus, while telomerase activity
levels appear to be elevated as tumors increase their overall grade, it is more likely that
telomerase activity on a per-cell basis is less variable.

In addition to using telomerase as an early screening marker for malignant poten-
tial, it may also be useful for detecting recurrence of malignant disease and monitoring
treatment response. The fact that telomerase activity is specifically detected in the
urine of patients with bladder cancer (52) provides an attractive, noninvasive means to
monitor tumor recurrence as well as response to therapy. The ability to detect telom-
erase activity in upper tract urothelial (53) and intestinal lavage solutions (54) could
also assist in the diagnosis and management of individuals with renal and colorectal
cancers, respectively.

In the vast majority of cases, endstage malignancy is not caused by primary cancers
but by secondary tumors that develop and cause problems associated with tumor inva-
sion and metastasis. During removal of the primary tumor, it is critical for surgeons to
obtain cleared margins; that is, the area of normal tissue surrounding the malignancy
should be free of tumor cells. Pathologists typically analyze frozen specimens while the
patient is on the operating table, but because they are virtually searching for a “needle in
a haystack,” these micrometastatic cells go undetected. The use of telomerase to assess
the level of occult micrometastasis may be advantageous in that only the tumor cells
(telomerase-positive) would be detected in the TRAP assay, whereas the surrounding
normal tissue is expected to be telomerase-negative. Obviously, a critical control for this
experiment is testing the primary tumor for telomerase activity. If it turns out to be one of
the rare telomerase-negative tumors, this would not be a useful diagnostic test. Yet most
malignancies (approx 90%) have telomerase activity, making this type of approach
potentially quite useful. One other caveat is that the current telomerase detection proto-
cols are quite time-consuming. As previously stated, it will be necessary to improve the
efficiency of the telomerase assay by making it quantitative and reliable, eliminating the
radioactivity and gel running steps, and decreasing the overall time required for analysis.
Current experimentation indicates that the overall protocol can be streamlined into
approx 4 h from sample preparation to real-time analysis of telomerase activity (55),
which still remains too long for patients to wait during surgery. However, additional
methods for quantitative telomerase activity are currently being explored which, in addi-
tion to traditional pathology, may be extremely useful for cancer diagnostics, especially
for those cases that are difficult to differentiate as benign or malignant.
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5. TELOMERES AND TELOMERASE AS TARGETS 
FOR CANCER THERAPY

Tumor development is initiated by multiple genetic events that ultimately result in
either a block in terminal differentiation/senescence or activation of an inappropriate
growth stimulatory pathway, the net result being the clonal expansion of a subset of
cells with infinite proliferative potential. As cells approach senescence, telomere ero-
sion is one of the obstacles that has to be overcome in order to proliferate indefinitely.
Those cells with uninterrupted growth continue to shorten their telomeres, and the rare
cell that does immortalize/transform almost always activates telomerase to maintain
telomere lengths. There are some reports of telomerase-independent modes of immor-
talization (termed ALT for alternative lengthening of telomeres) in in vitro culture
(56), yet most advanced human cancers—conservatively estimated at 95%—have
detectable telomerase (18), suggesting that the ALT pathway may play only a minor
role in immortalization and tumor formation. Still, there is some concern that inhibi-
tion of telomerase as a means of cancer therapy might trigger this ALT pathway and
result in a more aggressive tumor. However, the studies to date suggest that blocking
telomerase in tumor-derived cells results either in the reappearance of the senescence
pathway (22), activation of an apoptosis pathway (57–61), or a more differentiated
state (59). Therefore, it seems that although the ALT pathway is a viable alternative for
cellular immortalization during in vitro culture, it appears to be less relevant when dis-
cussing telomerase inhibition and cancer therapy. This suggests that those cells that are
committed to a telomerase-dependent immortalization pathway remain as such, and
that conversion to the ALT pathway does not occur.

So, what influences the fate of a cancer cell following telomerase inhibition? Cer-
tainly, it will likely be dependent on a variety of factors including, but not limited to,
overall telomere length within the tumor, the levels of telomerase activity, the status of
p53, and so on. Telomere length in the tumor is most certainly a critical component that
will determine the pathway a cell will take after telomere/telomerase inhibition. Those
tumors harboring short telomeres may be more likely to undergo programmed cell
death or apoptosis, while those with much longer telomeres may follow a senescence
pathway (62).

There are a number of potential therapeutic agents directed at both the telomerase
enzyme and the telomere. Because telomerase is a reverse transcriptase, traditional
reverse transcriptase inhibitors may be applicable for cancer therapy. Compounds,
such as dideoxyguanosine (ddG) and azidothymidine (AZT), exist that specifically
block the activity of retroviral reverse transcriptases. Telomerase-positive cell lines
have previously been subjected to treatment with these inhibitors to determine the
effect on telomerase activity and telomere length in cells in culture (63). Indeed, both
ddG and AZT inhibit telomerase activity, but the telomeres in these cells were highly
unstable and did not appear to differ in length from the untreated controls. Because of
the use of high concentrations of these compounds, deleterious effects on cellular
polymerases, such as mitochondria RNA and DNA polymerases, may be contributing
to the observed decline in proliferation under these conditions. Thus, it is likely that
RT-inhibitors will lack specificity for telomerase inhibition, resulting in a host of addi-
tional nonspecific problems for normal cells, as well as side effects for patients.
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Antisense expression of either RNA complementary hTR (11,64) or RNA comple-
mentary to telomeric sequences (64) in human cell lines results in repression of telom-
erase activity, telomere shortening, and eventual cellular crisis. Others have used more
stable oligonucleotide analogs to enhance the specificity and affinity of directed inhibi-
tion of telomerase, using hTR as a target. Norton et al. (65) inhibited telomerase activ-
ity using peptide nucleic acids (PNAs) complementary to the template region of hTR
with inhibitory concentrations (IC50) of 1–5 nM. Others have followed this example
with similar results using antisense hTR sequences within the framework of stable
inhibitory oligonucleotides (59,66,67). Hammerhead ribozymes used to cleave hTR
have been shown to inhibit telomerase activity in vitro and in cell culture systems (68).
In this system, ribozymes designed to cleave hTR near the templating region were
more effective at reducing telomerase activity in cultured cells than ribozymes that
cleave elsewhere in hTR.

Additional gene modulation directed at the hTERT subunit has been shown to
induce a programmed cell death (apoptosis) response in a variety of cell lines express-
ing telomerase. This dominant-negative approach utilizes expression of a mutated
hTERT sequence in tumor-derived cell lines that causes a dramatic decline in telom-
erase activity. The dominant-negative hTERT cells undergo growth arrest and eventu-
ally apoptosis, dependent on the length of the telomere—the shorter the telomere, the
more profound the effect of hTERT blockage. Most of these gene-directed approaches
may be useful for studying the effects of telomerase inhibition on cells, but may not be
practical for therapeutic treatment of actual cancer patients.

Numerous chemotherapeutic compounds are capable of inducing terminal differen-
tiation or an exit from the cell cycle (quiescence). Many of the pathways for telomerase
regulation and repression are summarized in Fig. 1. Presumably, nondividing nonrepli-
cating cells would not require a telomere maintenance function, as they do not shorten
their telomeres, resulting in a downregulation of telomerase activity. In fact, activation
of differentiation pathways causes a gradual decline in telomerase activity, an event
that is irreversible (69–72). In addition, cells that undergo a quiescent state, either by
removal of critical growth factors or by elimination of mitogen stimulation, also down-
regulate telomerase activity, but in a reversible manner. That is, if stimulated to enter
the cell cycle and undergo cell division, telomerase will be upregulated (70,73). Cells
treated with chemotherapeutic drugs, such as adriamycin or 5–fluorouracil, undergo a
growth arrested state as well (74). Treatment of wild-type p53 breast tumor cells,
MCF-7, with clinically relevant, acute doses of adriamycin results in growth arrest and
downregulation of telomerase, similar to previous results using induction of quiescence
(75). What makes this an extremely novel finding is that these adriamycin-treated
MCF-7 cells repress hTERT transcription within the first 24 h of treatment and undergo
a prolonged growth arrest indicative of cellular senescence as a result of telomere dys-
function (75a). Interestingly, after 14–21 d, some cells start dividing and recover their
telomerase activity (75a). Breast tumor cell lines with mutated p53 treated with adri-
amycin growth arrest as well, and eventually undergo a delayed apoptosis without an
immediate decline in telomerase activity or hTERT transcription. Current evidence
also suggests that p53 interacts with the Sp1, and perhaps Sp3, transcription factors to
downregulate hTERT transcription (76,77), while c-myc, either directly or indirectly,
activates transcription of the hTERT promoter (78). Taken together, these data suggest
that adriamycin treatment of cells with mutated p53 are more inclined toward apoptosis
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rather than senescence in breast tumor cells and that p53 may play a role in hTERT
transcriptional silencing. Importantly, our results indicate that the mechanism of adri-
amycin-induced senescence in breast tumor cells is dependent upon p53 and telomere
dysfunction (75a).

G-quartet stabilizers are another potential telomere-targeting agent. After adding
each telomeric repeat, telomerase pauses and repositions its integral RNA template
component (hTR) prior to synthesizing the next repeat. During this translocation step,
telomerase dissociates from the telomere and realigns itself for the next round of elon-
gation. This step is facilitated by telomeric secondary structures in the form of a
tetraplex, which is held together by the G-quartet structures (79,80). This structure
needs to be dissociated in order for telomerase to function properly and add telomeric
tracts to the ends of the chromosomes. Thus, G-quartet stabilizing molecules, including
porphyrins and anthraquinones, interact with the G4-quadruplex and functionally stabi-
lize the structure (81,82). This stabilization results in prevention of the telomerase-
telomere association and inactivates the overall telomerase function by preventing the
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Fig. 1. Regulation of human telomerase. Current evidence suggests multiple avenues for telomerase-
positive cells to regulate the activity of telomerase. Telomerase can either be repressed in cells that
continue to divide (Cell Proliferation) or as a consequence of growth arrest (Cell Cycle Exit). During
late embryogenesis, after introduction of a normal human chromosome 3, and following fusion of
normal cells to telomerase-positive cancer cells, all result in repression of telomerase, followed by
telomere shortening, and eventually cellular senescence. In some cases, introduction of exogenous
genes (including a dominant-negative hTERT) causes induction of apoptosis rather than senescence,
perhaps because of the lack of wild-type p53 or their critically short telomeres (57). Cell Cycle Exit
results in nonmitotic cells and indirectly causes the repression of telomerase in multiple cell systems.
Resting, quiescent lymphocytes contain little or no active telomerase, whereas their activated counter-
parts have robust telomerase activity levels. Cells can be induced to either terminally differentiate by
addition of differentiating agents or undergo a quiescent state after growth factor removal, contact
inhibition, or activation of reversible senescence (70). Together, both the proliferative and cell cycle
exit pathways are viable alternatives for inhibiting telomerase activity as a means of cancer treatment.



enzyme from using the telomere as a substrate (62). However, as is the case for the RT-
inhibitors, G-quartet stabilizers have proven ineffective at low concentrations and only
high levels are capable of blocking telomerase activity.

Another potential target for telomerase inhibition is the interaction of molecular chap-
erones, specifically the hsp90 chaperone complex, with telomerase. The hTERT compo-
nent functionally interacts with both hsp90 and p23, an acidic phosphoprotein (83).
Hsp90 and p23 directly participate in the assembly of the enzyme complex and may be
associated with functional enzyme. The benzoquinone ansamycin, geldanamycin,
specifically blocks the binding of p23 to hsp90 by associating in the ATP binding pocket
and preventing ATP hydrolysis. In vitro reconstitution of telomerase activity is blocked
by the addition of geldanamycin to the assembly reaction. Treatment of quiescent tumor-
derived cells with serum (to progress them into the cell cycle) and low concentrations of
geldanamycin (to block hsp90/telomerase function) results in entry of the cells into the
cell cycle but repression of telomerase activity (83). Recent evidence indicates that
malignant cells have substantially more hsp90, p23, and hsp70 than normal or benign tis-
sues (84), suggesting that the use of geldanamycin for chaperone inhibition therapy may
be a plausible treatment. However, one of the caveats for a chaperone-based cancer treat-
ment is the lack of specificity. Hsp90 is a ubiquitously expressed chaperone that is
required for numerous cellular functions independent of telomerase activity, including
hormone receptor activation. Thus, the use of antichaperone treatment as a cancer ther-
apy would likely be as detrimental to normal proliferating cells as cancer cells.

Telomerase inhibitors, if specific, would certainly be a novel and effective therapeu-
tic strategy. However, inhibition of telomerase should not be considered as the first line
of defense. For most solid tumors, surgical resection is critical for reducing tumor bur-
den. After the tumor is removed, treatments should be designed to eliminate the recur-
rence of more aggressive disease. Often either local radiation and/or chemotherapy
are used as adjuvant treatments. However, specifically inhibiting telomerase in
micrometastatic cells that were not surgically removed with the original tumor could
be a more precise and effective therapy to prevent recurring cancer. As suggested by
Kondo (60), inhibition of telomerase increases the sensitivity of cancer cells to cis-
platin-induced apoptosis, suggesting that telomerase inhibition may also represent a
new chemosensitization for tumors resistant to conventional chemotherapeutics. One
other consideration when discussing telomerase inhibitors is the effect on the “normal”
cells in the body that express telomerase activity, such as lymphocytes, germ cells, and
stem cells (39–41,85–88). The effects on such cells using antitelomerase treatments
would be expected to produce cellular toxicity for significantly prolonged regimens. It
is critical to note that while the vast majority of tumors have considerably shorter
telomeres and higher proliferation rates, progenitor and germ cells with telomerase
have much longer, more stable telomere lengths, and divide only rarely. Thus, treat-
ment should only be necessary for short periods of time; that is, long enough to shorten
cancer cell telomeres to a senescent or apoptotic length without adversely affecting the
viability of immune, germ, or stem cells during therapy.

6. TUMOR SUPPRESSION USING TELOMERASE?

In this chapter, there are two paradoxical issues that have yet to be addressed,
namely, that telomerase is associated with over 90% of malignant human cancer and
that telomerase expression can prevent cellular aging. If telomerase and cancer go
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hand-in-hand, why don’t normal cells with ectopically expressed telomerase also
become tumorigenic? Although this is a very relevant question, the generalized answer
is quite simple. As cells progress past senescence and crisis, toward immortality,
genomic instability is enhanced, which results in increased frequencies of mutation
and, ultimately, the eventual immortalization process. As has been previously discussed
(89), introduction of telomerase into normal cells prior to the onset of senescence may
prevent much of the genomic instability and increased mutation frequency that would
typically occur if viral oncoproteins were expressed. Because telomerase-expressing
normal cells have not bypassed senescence, they should be considered as extended
lifespan rather than immortalized, which by definition requires numerous mutations, an
atmosphere of genomic instability, and reactivation of endogenous telomerase (Fig. 2).
With the extended lifespan or “telomerized” cells, none of these things have taken
place, yet the cells continuously divide in a normal fashion without changes in kary-
otype, growth characteristics, or tumor suppressor function (32,33). The difference
between the telomerase-expressing extended lifespan cells and the oncogene-induced
extension of lifespan cells is that the latter have bypassed senescence, whereas the
telomerized cells prevent the senescence process altogether.

The classic definition of immortalization has always been continuous growth beyond
a certain number of population doublings (i.e., beyond the Hayflick limit), usually more
than 100 doublings, depending on the cell type. However, we are compelled to rethink
this classic usage of “immortality” as the current definition has progressed into a more
global meaning with more relevance to cancer. Immortalization is currently deemed as
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Fig. 2. The M1/M2 hypothesis revisited. Three differing fates of normal cells: First, cells can pro-
ceed normally with telomere shortening to senescence (M1). Second, oncogenes can be introduced
prior to senescence to inactivate p53 and pRB, bypass senescence, and allow for continued telomere
shortening, increased genomic instability and mutation, and progression to crisis (M2). At this point,
cell death and cell division are balanced, and the rare cell that immortalizes almost always reactivates
telomerase. These cells are then considered functionally immortal. Third, expression of hTERT in
normal cells prior to senescence provides telomere maintenance and an extended lifespan without the
changes typically associated with immortalization. Senescence has been prevented, rather than
bypassed, with cells exhibiting normal morphology, karyotype, and tumor suppressor function.
Therefore, these cells should be considered either extended lifespan cells (89) or telomerized cells
(34), rather than immortal.



cells that have bypassed crisis and have undergone the functional and morphological
changes typical of a cell prone to transformation. Immortalization appears to be the req-
uisite step in the process of tumor cell conversion to a malignant state and almost exclu-
sively involves the reactivation of endogenous telomerase. If telomerase is expressed
prior to the changes in genomic integrity, senescence, and perhaps progression toward
immortalization, are prevented. However, if telomerase is expressed after oncogene
expression, it is likely that telomerase would not be capable of overcoming or correct-
ing the instability/mutations that would normally occur upon oncoprotein expression.

The telomere maintenance function of telomerase provides cells with the ability to
continuously proliferate in the absence of cell cycle or karyotypic changes. In fact, cur-
rent evidence indicates that telomerase expression results in the prevention of p16
methylation (90), a functional step required for mammary epithelial cells to sponta-
neously inactivate the pRB arm of cellular senescence, a stage known as M0 (91). Recent
findings suggest that telomerase and its telomere maintenance function may also prevent
some of the karyotypic changes associated with age and/or oncogene expression (32,33).
In fact, we have recently found that expression of telomerase in human cells prone to
spontaneous crisis and immortalization provides for maintenance of telomere function
and extension of lifespan without the karyotypic abnormalities associated with the spon-
taneous event (92). Thus, it seems likely that telomerase expression in normal cells may
allow for increased genetic and genomic stability, not only preventing senescence and
aging, but blocking immortalization and progression to a tumorigenic state as well.

7. FINAL THOUGHTS

Although not found in normal somatic cells, telomerase is associated with approx
90% of all human malignancies, making it the most prominent molecular cancer
marker known to date. Because it is found in almost all cancers, telomerase is an obvi-
ous candidate for improved diagnostic and therapeutic strategies. Understanding its
functional role in tumor cells is critically important for determining how to inhibit
telomerase as a means of cancer treatment.

Because progression from normal cells to cancer is a multistep process involving
many genetic changes, the activation of telomerase is quite often one of the final, rate-
limiting occurrences in the in vitro model of immortalization. With that in mind, data
are accumulating to indicate that expression of telomerase in normal somatic cells pre-
vents cellular aging and may protect cells from cancer-associated changes. Therefore,
telomerase may be useful for prevention and early detection, as well as being an impor-
tant chemotherapeutic target. Thus, the goals of prevention, detection, and treatment of
human cancer are all relevant to telomerase: 1) use telomerase to prevent both cellular
aging and progression to cancer; 2) if there is detectable cancer, find it early using
telomerase as a screen and increase the chances for a full, cancer-free recovery; and 3)
if the cancer has progressed, use a novel anti-telomerase adjuvant therapy (together
with tumor resection or conventional therapies) to specifically and effectively inhibit
tumor growth and prevent recurrence with minimal side effects.

The prospects of the current studies and the ability to translate the findings of basic
research into a clinically practical setting makes telomeres and telomerase an extremely
novel set of diagnostic and therapeutic targets. It is an exciting time in the field of cancer
biology, and telomerase research will surely serve to more rapidly advance this disci-
pline in the areas of prevention, diagnosis, and treatment.
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A
Aclacinomycin

encapsulation and in vitro release,
129–130

Actinic keratoses
carbopol hydrogels

5-fluorouracil, 110
Actinomycin-D

AUC50, 27t
Acute lymphoblastic leukemia (ALL)

PEG asparaginase, 145–147
Adenocarcinoma

metastatic, 275
Adenoviral vectors, 290–291, 292
Adjuvant therapy

emulsions, 182
Adrenal tumors

transcatheter arterial chemoembolization
gelatin microparticles, 61

Adriamycin, 103f, 163
hydrogels, 102

Adriamycin-loaded albumin microspheres,
64

Adriamycin microspheres
Ehrlich ascites, 65

Adriamycin removal
hydrogel, 111

Aging
premature

telomerase, 364
Albumin, 62–68

chemical and biological properties, 62–63
microspheres, 63–64

embolization, 66–67
intraperitoneal application, 65–66

spheres
intratumoral application, 66
intravenous application, 64–65

Albumin-containing microparticles
preparation, 123

Albumin microspheres, 105t
adriamycin-loaded, 64
epirubicin

breast cancer, 67f

Alkane sulfonates
drug delivery, 4t

ALL
PEG asparaginase, 145–147

Allergic reactions
polyethylene glycol (PEG), 142

Alpha interferon
hydrogels, 106–107
subcutaneous administration, 55f

Amino acids
type I collagen, 49t

Anastrozole
drug delivery, 7t

Angiostat, 105t
Annamycin, 200t
Anthracyclines, 201–202

adverse effects, 12
drug delivery, 6t

Antiangiogenic gene therapy, 299–300
Antigenicity

polyethylene glycol (PEG), 142
Antigen-presenting cells (APC), 298–299
Antigen-specific vaccines, 269
Anti-HER2, 199t
Antiidiotype antibody, 276
Antineoplastics

drug delivery, 4t–7t
theoretical analyses and simulation,

25–40
Antisense technology, 311–337

double-strand RNase, 319
molecular mechanisms, 314–322
occupancy-activated destabilization,

316–317
occupancy-only mediated mechanisms,

314–316
oligonucleotide purity, 311–313
positive demonstration, 314
RNA binding site, 319–320
RNase H, 317–319
RNA structure disruption, 316
splicing inhibition, 314–315
translational arrest, 315–316

f: figure;
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APC, 298–299
Aqueous injectables for intratumoral delivery

collagen, 51–54
Arachnoiditis, 259
Area under concentration-time curve (AUC),

26–30
host hematological toxicity, 31t

Arterial chemoembolization, 104
Atragen, 199t
AUC, 26–30

host hematological toxicity, 31t
Autologous tumor cells

vaccine, 268

B

Bacille Calmette-Guerin (BCG), 268
Basal cell carcinoma

carbopol hydrogels
5-fluorouracil, 110

fluorouracil/epinephrine (5-FU/epi) gel,
240–241

BBB, 10
B-cell lymphoma, 276
BCG, 268

localized bladder cancer, 21–22
BCL-2 antisense therapy

non-Hodgkin lymphoma, 302
BCNU, 217

brain tumors, 219f
drug delivery, 4t

BCNU/epi gel
dogs

malignant melanoma, 232
Benign hyperplasia

fluorouracil/epinephrine (5-FU/epi) gel, 240
Bicalutamide

drug delivery, 7t
Biodegradable microparticles

preparation, 118–123
Biopolymers

parenteral drug delivery, 47–82
Bladder cancer

localized
intravesical therapy, 21–22

Bleomycin, 198–199
drug delivery, 7t
release from polyhydroxyethyl

methacrylate (polyHEMA), 109f
Blood–brain barrier (BBB), 10
Bone marrow protection

chemotherapy, 299

Bone metastasis
transcatheter arterial chemoembolization

gelatin microparticles, 61
Bovine collagen, 49
Bovine serum albumin (BSA), 125

microparticles
preparation, 123

Bovine spongiform encephalopathy (BSE),
49, 152

Brain tumors
BCNU, 219f
gene therapy, 300–301

Breast cancer
epirubicin

albumin microspheres, 67f
metastatic, 200

cisplatin/epinephrine (CDDP/epi) gel,
235–236

recurrent
cisplatin/epinephrine (CDDP/epi) gel,

235–236
BSA, 125

microparticles
preparation, 123

BSE, 49, 152
Busulfan

drug delivery, 4t

C

Calmette-Guerin (BCG)
localized bladder cancer, 21–22

Camptothecin, 223
encapsulation and invitro release, 129–130

Cancer
defined, 144
progression, 144
subtypes, 145

Cancer vaccines, 263–277
Canine squamous cell carcinoma

collagen gels intralesional chemotherapy,
231–232

Capecitabine
drug delivery, 5t

Carboplatin, 224
ovarian cancer, 21

Carbopol hydrogels
5-fluorouracil, 110

Carboxyphenoxypropane, 216
Carcinoembryonic antigen (CEA), 267
Carcinomas, 145
Carmustine (BCNU), 217
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brain tumors, 219f
drug delivery, 4t

Carmustine (BCNU)/epi gel
dogs

malignant melanoma, 232
Cationic lipid-DNA complex, 199t
CCNU

drug delivery, 4t
CDDP/epi gel. see Cisplatin/epinephrine

(CDDP/epi) gel
CEA, 267
Cell-specific vaccines, 268–269
Cellular drug exposure

antitumor effects, 26–30
Cellulose, 81
Cervical carcinoma

HPV, 275
Chemical hydrogels, 97–98, 98f
Chemoembolization, 39

arterial, 104
emulsions, 180–182
endovascular

hydrogels, 104–105
materials, 105t
transcatheter arterial

gelatin microparticles, 61
Chemotherapy

bone marrow protection, 299
Chitosan, 71–76, 106

anticancer application, 74–75
chemical and biological properties,

71–74
drug conjugates, 75–76
microspheres, 74–75
repeating units, 72f–73f

Chitosan microspheres
mitoxantrone

Ehrlich ascites, 75
Chlorambucil

drug delivery, 4t
Cholesterol-bearing pullulan (CHP)

chemical structure, 99f
CHP

chemical structure, 99f
Cisplatin, 105, 106f, 230

AUC50, 27t
drug delivery, 5t
encapsulation and in vitro release, 126
microparticles, 131

Cisplatin/epinephrine (CDDP/epi) gel,
229–230, 232–239

canine squamous cell carcinoma, 231–232
head and neck squamous cell carcinoma

(HNSCC), 232–235
malignant dysphagia

esophageal cancer, 237–238
malignant melanoma, 236–237

horses, 232
metastatic breast cancer, 235–236
recurrent breast cancer, 235–236
unresectable liver cancer, 238–239

Cladribine
drug delivery, 6t

Collagen, 48–57
anticancer application, 51–57
aqueous injectables for intratumoral

delivery, 51–54
chemical and biological properties, 48–54
dense matrices, 54–57
5-fluorouracil, 52

condylomata acuminata, 53t
source, 49

Collagen gels intralesional chemotherapy
spontaneous tumors

veterinary patients, 230–232
Colon cancer

liver metastases
intrahepatic arterial therapy, 21

metastatic
Mouse A33 antibody, 159

Condylomata acuminata
collagen

5-fluorouracil, 53t
fluorouracil/epinephrine (5-FU/epi) gel,

242
Continuous infusion

systemically administered drugs, 8
Continuous phase

defined, 175
Controlled-release polymer

selection, 216–217
Control oligonucleotides, 313
Conventional liposomal (CL)-daunorubicin,

200
Conventional liposomal (CL)-vincristine,

200
CPT-11

drug delivery, 7t
Creutzfeld Jacob disease (CJD), 152
Cutaneous malignancy

fluorouracil/epinephrine (5-FU/epi) gel,
240
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Cyclophosphamide, 224
AUC50, 27t
drug delivery, 4t
metastatic breast cancer, 200

Cytarabine
chitosan, 75

Cytosine arabinoside
drug delivery, 5t

D

Dacarbazine
drug delivery, 5t

Daunorubicin, 162–164
AUC50, 27t
drug delivery, 6t

DaunoXome, 199t
7-Deaza guanine, 333
Degradable starch microspheres (DSM), 79
Dendritic cell based vaccines, 350–351
Dendritic cells

peptide, 272–273
DepoCyt, 199t, 253–255

vs ara-C
lymphomatous meningitis, 256–257

clinical pharmacokinetics, 254–256
description, 253
efficacy, 256–257
neoplastic meningitis, 253–254
preclinical pharmacokinetics, 254
safety, 258–259

DepoFoam
formulation variables, 250–251
half-life, 252t
pharmacokinetics, 251–253
structure, 248–249
sustained-release drug delivery, 247–259
technology, 247–253

Dextran, 81, 125
Differentiation antigens, 266
Dimethylformamide (DMF), 130
Discontinuous phase

defined, 175
Dispersants

defined, 175
Dispersants selection

emulsions, 177–178
Disperse phase

defined, 175
DMF, 130
DNA

naked, 293

DNA liposome, 303
DNA vaccination, 275–276
Dogs

malignant melanoma
cisplatin/epinephrine (CDDP/epi)

gel, 232
Dominant oncogene expression, 296
Double-strand RNase, 319
Doxil, 199t
Doxorubicin, 198–199

AUC50, 27t
drug delivery, 6t
encapsulation and in vitro release,

124–125
fibrinogen, 125
intravenous administration

carriers, 36
liposomes, 192f
localized bladder cancer, 21–22
microparticles

fibrinogen, 130
ovarian cancer, 21

Drug exposure
host toxicity, 30–32

DSM, 79

E

EBV, 267
Ehrlich ascites

adriamycin microspheres, 65
doxorubicin

fibrinogen microparticles, 130
mitoxantrone

chitosan microspheres, 75
Embolization

albumin microspheres, 66–67
microparticles

gelatin, 61–62
Emulsifying agent

defined, 175
Emulsion, 175–185

adjuvant therapy, 182
cancer therapy, 179–185
chemoembolization, 180–182
defined, 175–176
dispersants selection, 177–178
dosage form, 175–178
formulation development, 176–178
locoregional therapy, 179–185
oil phase selection, 177
pancreatic tumors, 184
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particle size, 178
preparation, 178
systemic delivery, 182–185
types, 176, 176t

schematic presentation, 177f
schematic representation, 179f

Endovascular chemoembolization
hydrogels, 104–105

Env, 289
Enzymes

drug delivery, 7t
Epirubicin, 181

albumin microspheres
breast cancer, 67f

AUC50, 27t
drug delivery, 6t
hyaluronan, 78

Epstein-Barr virus (EBV), 267
Esophageal cancer

cisplatin/epinephrine (CDDP/epi) gel
malignant dysphagia, 237–238

Ethyleneimine
drug delivery, 4t

Etoposide (VP-16)
drug delivery, 7t

Exponential kill model, 29

F

FDA
gene therapy, 300

Fibrin, 68–71
anticancer application, 68–69
chemical and biological properties, 68

Fibrinogen, 68–71
anticancer application, 68–69
chemical and biological properties, 68
doxorubicin, 125
microparticles

doxorubicin, 130
preparation, 123

Fludarabine
drug delivery, 6t

5-fluorouracil (5-FU), 230
AUC50, 27t
carbopol hydrogels, 110
collagen, 52

condylomata acuminata, 53t
drug delivery, 5t
encapsulation and in vitro release,

126–128, 128f
hydrogel, 111

hydrogels, 102
metastatic breast cancer, 200
PLAGA microparticles

malignant gliomas, 131
release from polyhydroxyethyl

methacrylate (polyHEMA), 109f
5-fluorouracil/epinephrine (5-FU/epi) gel,

229–230
basal cell carcinoma, 240–241
benign hyperplasia, 240
canine squamous cell carcinoma, 231–232
condylomata acuminata, 242
cutaneous malignancy, 240
dogs

malignant melanoma, 232
psoriatic plaques, 241–242
squamous cell carcinoma, 240–241

Flutamide
drug delivery, 7t

Folate analogs
drug delivery, 6t

Fotemustine
drug delivery, 4t

Freund’s adjuvant, 268
5-FU. see 5-fluorouracil (5-FU)
5FU/epi gel. see 5-fluorouracil/epinephrine

(5-FU/epi) gel

G

Gag molecule, 289
Ganciclovir, 297
GCSF, 149–150
Gelatin, 57–62

anticancer application, 58–59
chemical and biological properties, 57–58
intraperitoneal administration

mitomycin C, 59f
microparticles

embolization, 61–62
transcatheter arterial

chemoembolization, 61
microspheres, 58–59

glutaraldehyde, 60f
macrophage phagocytosis, 60f
macrophages, 59–61

nanospheres, 58–59
Gelfoam, 105t
Gemcitabine

drug delivery, 5t
Gene delivery

selective and efficient, 295
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Gene gun delivery system, 276, 293
Gene therapy, 287–305

antiangiogenic, 299–300
approaches, 295–300
clinical trials, 300–304
regulatory authorities, 300
vectors, 288–293

Gene transfer
vectors, 288t

Gliadel, 215–226
biocompatibility studies, 217–218
chemotherapeutic agent selection, 217
clinical studies, 218–219
efficacy studies, 218
future, 223–225
intraoperative photograph, 220f
malignant gliomas, 220–223
preclinical studies, 217–218
recurrent malignant gliomas, 218–219
in vivo kinetics, 218

Glioma tumors
interleukin 2 (IL-2) microspheres, 225

Glutaraldehyde
gelatin microspheres, 60f

H

Hand and foot syndrome (H-F syndrome),
201

4-HC, 224
Head and neck cancer

gene therapy, 301
Head and neck squamous cell carcinoma

(HNSCC)
cisplatin/epinephrine (CDDP/epi) gel,

232–235
HEMA, 99
Hematological malignancies

gene therapy, 302
Hepatic artery administration

FUDR, 20
Hepatitis, 152
Hepatocellular carcinoma

chemoembolization, 105
transcatheter arterial chemoembolization

gelatin microparticles, 61
Hepatoma

PEG arginase, 147–148
Herpes simplex virus thymidine kinase

(HSV-TK), 297
Hexamethylamine

drug delivery, 4t

H-F syndrome, 201
HIV, 152
HLA B7, 303
HNSCC

cisplatin/epinephrine (CDDP/epi) gel,
232–235

Hormonal agents
drug delivery, 7t

Horses
malignant melanoma

cisplatin/epinephrine (CDDP/epi)
gel, 232

Host toxicity
drug exposure, 30–32

HPV, 267
cervical carcinoma, 275

HPV-16 E7 lipopeptide, 272
HSV-TK, 297
HuA33

PEGylation, 159
Human immunodeficiency virus (HIV), 152
Human papilloma virus (HPV), 267

cervical carcinoma, 275
Human papilloma virus (HPV)-16 E7

lipopeptide, 272
Hyaluronan, 76–79

chemical and biological properties, 76–77
drug conjugates

anticancer application, 77–78
epirubicin, 78
mitomycin C, 78

Hyaluronidase
anticancer application, 78–79

Hybrid cell vaccination, 268, 274
Hydrogel microparticles, 104
Hydrogels, 97–113

adriamycin, 102
adriamycin removal, 111
alpha interferon, 106–107
anticancer therapy, 104–111
ara-C, 102
chemical, 97–98, 98f
crosslinkers

free radical polymerization, 101t
culture medium, 112
endovascular chemoembolization,

104–105
5-fluorouracil, 102, 111
future, 112–113
implantation, 107–110
intratumoral administration, 105–106
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microparticles
in-liquid drying process, 120, 121f

monomers, 98–99
free radical polymerization, 100t

oil-in-oil (O/O) emulsions, 120–122, 121f
oral administration, 110
peroral administration, 110
physical, 97–98, 98f
polymers, 100–101
preparation, 97–101
rectal application, 111
solid-phase radioimmunoassay, 111–112
solids-in-oil-in-water emulsion (S/O/

W), 120, 121f
swelling kinetics, 103
topical applications, 110–111
tumor cell-induced angiogenesis, 111
water-in-oil-in-water emulsion (W/O/W),

120, 121f
Hydrophilic drugs

encapsulation, 122
encapsulation and in vitro release, 124–130

Hydrophobic drugs
encapsulation and invitro release,

129–130
4-hydroxy-cyclophosphamide (4-HC), 224
Hydroxyethyl methacrylate (HEMA), 99
Hydroxyurea

drug delivery, 6t

I

Idarubicin
drug delivery, 6t

Ifosfamide
AUC50, 27t
drug delivery, 4t

IL-2. see Interleukin 2 (IL-2)
Immune reactions

polyethylene glycol (PEG), 142
Immune system

tumor antigen, 264–265
Immunogene therapy, 298–299
Immunotherapy, 225
INCX-3001, 199t
Injectable collagen gel formulations

intralesional chemotherapy, 229–243
Insulin, 98
Interleukin 2 (IL-2)

microspheres, 225
murine fibrosarcoma

lymphokine-activated killer cells
(LAK), 56f

renal cancer, 224
Intraarterial delivery

liver tumors, 38–39
Intrahepatic arterial therapy

liver metastases
colon cancer, 21

Intraperitoneal administration
gelatin

mitomycin C, 59f
Intraperitoneal application

albumin
microspheres, 65–66

Intraperitoneal therapy
ovarian cancer, 21, 37–38

Intrathecal therapy
meningeal leukemia, 20–21

Intratumoral application
albumin

spheres, 66
Intravenous administration

carriers, 36–37
initial drug circulation, 10
optimization, 32–36

mathematical models, 34–36
Intravenous application

albumin
spheres, 64–65

Intravesical therapy
localized bladder cancer, 21–22

INXC-6295, 199t
Irinotecan (CPT-11)

drug delivery, 7t
Ivalon, 105t

K

Kaposi’s sarcoma, 198–199, 201
Keyhole limpet hemocyanin (KLH), 268
Kidney cancer

interleukin 2 (IL-2), 224
PEG IL-2, 148–149
stages, 148–149

KLH, 268

L

LAK
murine fibrosarcoma

IL-2, 56f
L-asparaginase

drug delivery, 7t
L-daunorubicin, 200



384 Index

L-DOX, 200
LED, 200t
Lentiviral vectors, 290
LEP, 200t
Leukemia, 145
Leutinizing hormone releasing hormone

(LHRH)
encapsulation and invitro release, 129

LHRH
encapsulation and invitro release, 129

Ligand-targeted liposomal therapeutics, 203t
Lipid-based therapeutics, 199t–200t
Lipids, 292–293
Lipiodol, 105t
Liposomal doxorubicin (L-DOX), 200
Liposomal drug delivery systems, 191–205

animal pharmacology, 195–196
clinical results, 198–201
formulation, 193–195

stability, 194
therapeutic agent release, 195

Liposomal drugs, 199t–200t
antitumor efficacy, 197–198
efficacy, 198–199
pharmacokinetics and biodistribution, 195–

196
toxicity profiles, 201–202

Liposome
design, 193t
DNA, 303
PEG, 192
tissue distribution, 193–194

Liposome-encapsulated doxorubicin
(LED), 200t

Liposome-encapsulated paclitaxel
(LEP), 200t

Liposomes, 292–293
active targeting, 202–204
doxorubicin, 192f

Liprostin TM, 199t
Liver

metastatic colorectal carcinoma
chemoembolization, 105

Liver cancer
unresectable

cisplatin/epinephrine (CDDP/epi) gel,
238–239

Liver metastases
colon cancer

intrahepatic arterial therapy, 21

Liver tumors
embolization

albumin microspheres, 66–67
intraarterial delivery, 38–39

Localized bladder cancer
intravesical therapy, 21–22

Lomustine (CCNU)
drug delivery, 4t

Long terminal repeat (LTR), 289
LTR, 289
Lung cancer

gene therapy, 302
Lupron Depot, 131–132
Lymphatic system

emulsion, 179–180
Lymphokine-activated killer cells (LAK)

murine fibrosarcoma
IL-2, 56f

Lymphomas, 145
Lymphomatous meningitis

DepoCyt vs ara-C, 256–257

M

MA, 347
identification, 348–349

Macrophages
microspheres

gelatin, 59–61
MAGE-1 (melanoma antigen 1), 265, 266
Malignant cells

properties, 143–145
Malignant gliomas

5-fluorouracil
PLAGA microparticles, 131

Gliadel, 220–223
recurrent

Gliadel, 218–219
Kaplan-Meier survival curves, 221f

Malignant melanoma
cisplatin/epinephrine (CDDP/epi) gel, 236–

237
horses, 232

PEG arginase, 147–148
Maximum tolerated dose (MTD), 30
Mechlorethamine

drug delivery, 4t
Melanoma

gene therapy, 303–304
Melanoma antigen 1, 265, 266
Melanoma antigens, 266
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Melanoma-associated antigens (MA), 347
identification, 348–349

Melphalan
drug delivery, 4t

Meningeal leukemia
intrathecal therapy, 20–21

6-mercaptopurine
drug delivery, 6t

Metastatic adenocarcinoma, 275
Metastatic breast cancer, 200

cisplatin/epinephrine (CDDP/epi) gel,
235–236

Metastatic colon cancer
Mouse A33 antibody, 159

Metastatic colorectal carcinoma
liver

chemoembolization, 105
Methotrexate

vs DepoCyt
neoplastic meningitis, 257

drug delivery, 6t
Methotrexate/epinephrine gel

dogs
malignant melanoma, 232

Microcapsules
defined, 118

Microencapsulation terminology, 117–118
Microparticle drug delivery systems,

117–133
clinical trials, 131–132
future, 132
industrial efforts, 131–132

Microparticles
albumin-containing

preparation, 123
antineoplastics release behavior from,

124
biodegradable

preparation, 118–123
cisplatin, 131
defined, 117–118
encapsulation, 119f
fibrinogen

doxorubicin, 130
formulations, 118f
gelatin

embolization, 61–62
hydrogel, 104
nonbiodegradable

preparation, 124
PLAGA

5-fluorouracil, 131

spray-drying, 122–123
preparation, 118

Microspheres
adriamycin

Ehrlich ascites, 65
adriamycin-loaded albumin, 64
albumin, 63–64, 105t

adriamycin-loaded, 64
embolization, 66–67
epirubicin, 67f
intraperitoneal application, 65–66

chitosan, 74–75
mitoxantrone, 75

defined, 118
degradable starch, 79
gelatin, 58–59

glutaraldehyde, 60f
macrophage phagocytosis, 60f
macrophages, 59–61

interleukin 2 (IL-2), 225
starch, 104

Mitomycin C, 181
AUC50, 27t
chitosan, 75
drug delivery, 5t
hyaluronan, 78
localized bladder cancer, 21–22
release from polyhydroxyethyl

methacrylate (polyHEMA), 109f
Mitoxantrone

AUC50, 27t
drug delivery, 6t
Ehrlich ascites

chitosan microspheres, 75
MLV, 289–290
Modified tumor cell vaccines, 269–270
Moloney murine leukemia virus (MLV),

289–290
Mouse A33 antibody

metastatic colon cancer, 159
MTD, 30
Multiple actinic keratoses

carbopol hydrogels
5-fluorouracil, 110

Murine fibrosarcoma
lymphokine-activated killer cells (LAK)

IL-2, 56f
Mycosis fungoides, 110
Myocet, 199t
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N

Naked DNA, 293
Nanospheres

gelatin, 58–59
Narciclasin, 108f
National Institutes of Health (NIH)

gene therapy, 300
Neocarzinostatin

AUC50, 27t
Neoplastic meningitis

DepoCyt, 253–254
methotrexate vs DepoCyt, 257

NIH
gene therapy, 300

Nitrogen mustard
drug delivery, 4t

Nitrosoureas
drug delivery, 4t

Nonbiodegradable microparticles
preparation, 124

Non-Hodgkin lymphoma
BCL-2 antisense therapy, 302

Nonmodified tumor cell vaccines, 269–270
Nonsmall-cell lung cancer

p53, 302
Nonviral vectors, 292–293
NX 211, 199t

O

Oil-in-oil (O/O) emulsions, 176t
hydrogels, 120–122, 121f

Oligodeoxynucleotides
phosphorothioate, 320–332

Oligonucleotide conjugates, 334–335
backbone modifications, 337
enhanced cellular uptake, 334–335
nuclease stability, 334
RNA cleaving groups, 335
sugar modifications, 335–337
in vivo effects, 335

Oligonucleotides, 293
control, 313
heterocycle modifications, 332–337
kinetics, 313
medicinal chemistry, 332–337
nonnucleic acid target binding, 312–313
purine modifications, 333–334
pyrimidine modifications, 332–333
RNA structure, 312
structure, 312

terminating mechanisms, 313
in vitro cellular uptake and distribution,

312
Oncogene suppressor gene products, 267
Onco TCS, 199t
ONYX-015, 301
O/O emulsions, 176t

hydrogels, 120–122, 121f
Opportunistic infections, 201–202
Ovarian cancer

gene therapy, 304
intraperitoneal delivery, 37–38
intraperitoneal therapy, 21

P

P53
nonsmall-cell lung cancer, 302
tumor suppressor gene, 296

Paclitaxel (Taxol), 223
ovarian cancer, 21
vs PLAP, 155f
SSL-DOX, 200

Palmar-plantar erythrodysesthesia
syndrome, 201

Pancreatic tumors
emulsions, 184

Parenteral drug delivery
biopolymers, 47–82

PEG. see Polyethylene glycol (PEG)
PEGylation

future, 168–169
Pentostatin

drug delivery, 6t
Peptide

dendritic cells, 272–273
Peptide-based vaccines, 270–272, 349–350
Peritoneal dialysis catheters, 19
Phlebitis

systemically administered drugs, 12
Phosphorothioate oligodeoxynucleotides,

320–332
genotoxicity, 329–330
hybridization, 320
molecular pharmacology, 325–326
nuclear stability, 322
pharmacokinetic properties, 322–325
pharmacological properties, 325–329
protein interactions, 321–322
therapeutic index, 331
toxicological properties, 329–331
in vitro cellular uptake, 322–323
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in vivo pharmacokinetics, 323–325
in vivo pharmacological activities,

326–329
Photofrin, 165
Physical hydrogels, 97–98, 98f
Pirarubicin

AUC50, 27t
PLA, 119
PLAGA, 118–120
PLAGA microparticles

5-fluorouracil
malignant gliomas, 131

Plasma exposure
optimization, 33–34

Plasmids, 292
Platar, 199t
Platinum drugs, 224

delivery, 5t
Poly(lactic acid-co-glycolic acid ) (PLAGA),

118–120, 119, 120f, 289
Polyethylene glycol (PEG)

allergic reactions, 142
antibodies and immunotoxins, 157–160
antigenicity, 142
arginase, 147–148
asparaginase, 145–147
camptothecin, 167–168
concanavalin A, 156–157
conjugation

protein and small molecule drugs,
137–169

coupling chemistries, 140f
daunorubicin/doxorubicin, 162–164
defined, 138–139
deiminase, 147–148
drugs, 142–143
5-fluorouracil, 164
GMCSF, 149–150
hemoglobin, 151–153
IL-2, 148–149
immune reactions, 142
lignan podophyllotoxin, 164
liposome, 192
megakaryocyte factor, 154–156
metabolism, toxicity and excretion, 141
methioninase, 147
paclitaxel, 160–162
phospholipase-activating protein (PLAP),

153–154
vs paclitaxel, 155f

photodynamic therapy, 164–165

plasma half-life, 141t
tricosanthin, 166
tumor necrosis factor (TNF), 166–167
uricase, 153
utilization, 140–141

PolyHEMA, 99, 108, 109f
Polyhydroxyethyl methacrylate

(polyHEMA), 99, 108, 109f
Polylactic acid (PLA), 119
Poly(lactic acid-co-glycolic acid )

(PLAGA) microparticles
5-fluorouracil

malignant gliomas, 131
spray-drying, 122–123

Premature aging
telomerase, 364

Procarbazine
drug delivery, 5t

Prodrugs, 122
Prostate cancer

gene therapy, 304
Prostate-specific antigen (PSA), 267, 275
Protein

dendritic cells, 273–274
Protein and small molecule drugs

polyethylene glycol conjugation, 137–169
Protein vaccines, 272
PSA, 267, 275
Pseudomonas exotoxin A, 159
Psoriatic plaques

fluorouracil/epinephrine (5-FU/epi) gel,
241–242

Pullulan, 98
Purine analogs

drug delivery, 6t
Pyrimidine analogs

drug delivery, 5t

R

Receptor-mediated endocytosis, 293
Recombinant human granulocyte/

macrophage colony-stimulating factor
(rhGM-CSF), 149

Recombinant viral vectors, 274–275
Recurrent breast cancer

cisplatin/epinephrine (CDDP/epi) gel,
235–236

Recurrent malignant gliomas
Gliadel, 218–219
Kaplan-Meier survival curves, 221f
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Regional antineoplastic drug delivery,
15–22

clinical examples, 20–22
colon cancer

intrahepatic arterial therapy, 21
intrathecal therapy

meningeal leukemia, 20–21
intravesical therapy

localized bladder cancer, 21–22
mathematical models, 16–18

clinical implications, 17–18
ovarian cancer

intraperitoneal therapy, 21
pharmacokinetic advantage, 17t
pharmacokinetic rationale, 15–18
practical considerations, 19–20, 20t
theoretical concerns, 18–19

Regional antineoplastic drug delivery
modalities, 37–39

chemoembolization, 39
future, 39–40
intraarterial delivery, 38–39
intraperitoneal delivery, 37–38

Regulatory authorities
gene therapy, 300

Renal cancer
interleukin 2 (IL-2), 224
PEG IL-2, 148–149
stages, 148–149

Replicative vector systems, 294
Retroviral vectors, 289–291
RhGM-CSF, 149
RNase H

antisense technology, 317–319

S

Sarcomas, 145
Sebacic acid, 216
SN-38

AUC50, 27t
Solid-phase radioimmunoassay

hydrogel, 111–112
Solids-in-oil-in-water emulsion (S/O/W)

hydrogels, 120, 121f
S/O/W

hydrogels, 120, 121f
Spheres

albumin
intratumoral application, 66
intravenous application, 64–65

Spherex, 105t

Spinal column neoplasms
transcatheter arterial chemoembolization

gelatin microparticles, 61
Spontaneous tumors

collagen gels intralesional chemotherapy
veterinary patients, 230–232

Spray-drying
PLAGA microparticles, 122–123

Squamous cell carcinoma
canine

collagen gels intralesional
chemotherapy, 231–232

fluorouracil/epinephrine (5-FU/epi) gel,
240–241

SSL-DOX. see Sterically-stabilized liposo-
mal doxorubicin (SSL-DOX)

SSL-vinorelbine, 201
Stabilized liposomal (SSL)-vinorelbine, 201
Starch, 79–81

microspheres, 104
Sterically-stabilized liposomal doxorubicin

(SSL-DOX), 195–196, 198–199
adverse effects, 201
paclitaxel, 200

Streptozocin
drug delivery, 4t

Suicide gene therapy, 296–297
Surface active agent

defined, 175
Surfactants

defined, 175
Systemically administered drugs, 3–13

advantages, 11
complications, 12
concentration at tumor site, 9
continuous infusion, 8
disadvantages, 11–12
emulsions, 182–185
mechanism of action, 8–9
rationale, 3–11
systemic clearance, 8
tumor location, 9–10
types, 3–11

T

Tamoxifen
drug delivery, 7t

Taxanes
drug delivery, 7t

Taxol. see Paclitaxel (Taxol)
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Taxol
drug delivery, 7t
encapsulation and invitro release, 129–130

Taxotere
drug delivery, 7t

Telomerase, 361–372
cancer diagnostics, 364–366
premature aging, 364
targets, 367–370
tumor suppression, 370–372

Telomere
shortening and senescence, 363

Telomeres
targets, 367–370

Temozolomide
drug delivery, 5t

Teniposide
drug delivery, 7t

Tetrazine
drug delivery, 5t

Theratope, 199t
6-thioguanine

drug delivery, 6t
Thiotepa

drug delivery, 4t
localized bladder cancer, 21–22

Thrombopoietin (TPO), 155
Tissue-specific promoters, 295
TLC ELL-12, 199t
Topoisomerase II inhibitors

drug delivery, 7t
Topoisomerase I inhibitors

drug delivery, 7t
Topotecan

drug delivery, 7t
TPO, 155
Transcatheter arterial chemoembolization

gelatin microparticles, 61
Transmissible spongiform encephalopathy

(TSE), 49
Treosulfan

drug delivery, 4t
Trimetrexate

drug delivery, 6t
TSE, 49
Tumor antigen, 265–267

immune system, 264–265
unique, 267

Tumor cell-induced angiogenesis
hydrogel, 111

Tumor cell vaccines, 269–270

Tumor lysates
dendritic cells, 273

Tumors
properties, 143–145

Tumor-specific antigens, 266
Tumor suppression

telomerase, 370–372
Tumor suppressor gene

p53, 296
replacement, 296

Tumor suppressor gene products, 267
Tumor targeting, 295
Tumor vaccines, 347–355

historical background, 347–351
Type I collagen

amino acids, 49t
chemical structure, 50f

U

Unresectable liver cancer
cisplatin/epinephrine (CDDP/epi) gel,

238–239
Vaccine-induced immune response

escape, 352–354
Vaccines

antigen-specific, 269
autologous tumor cells, 268
cancer, 263–277
cell-specific, 268–269
dendritic cell based, 350–351
DNA, 275–276
hybrid cell, 268, 274
modified tumor cell, 269–270
nonmodified tumor cell, 269–270
peptide-based, 270–272, 349–350
tumor cell, 269–270
whole antigen, 351

Vectors
gene therapy, 288–293
gene transfer, 288t
immunogenicity

prevention, 294
improving, 294–295

Vinblastine
drug delivery, 7t

Vinca alkaloids
adverse effects, 12
drug delivery, 7t

Vincristine
drug delivery, 7t
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Vindesine sulfate
AUC50, 27t

Viral vectors, 289–292
Virus-associated tumor antigens, 267
VP-16

drug delivery, 7t

W

Water-in-oil-in-water emulsion
(W/O/W), 176t

hydrogels, 120, 121f
Whole antigen vaccines, 351
W/O/W, 176t

hydrogels, 120, 121f
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