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Foreword 

The main goal of Wavelets in Soft Computing is to furnish a synthesis on the 
state of integration of wavelet theory into soft computing. Wavelet methods in 
soft computing can be classified into 5 main categories that form the backbone of 
the book: 

-Preprocessing methods 
-Automatic generation of a fuzzy system from data 
-Wavelet networks 
-Wavelet-based nonparametric estimation and regression techniques 
-Multiresolution genetic algorithms and search methods. 

The main new contributions of Wavelets in Soft Computing to these topics are in 
the domain of the automatic generation of a fuzzy system from data (fuzzy-
wavelet, fuzzy wavenets for on-line learning), wavelet networks and wavelet 
estimators (extension to biorthogonal wavelets) and multiresolution search 
methods. These new methods have been either implemented in commercial fire 
detectors or used during development. Despite the fact that over 2000 articles 
have combined elements of wavelet theory to soft computing, no book has been 
dedicated to that topic yet. The topic has grown to such proportions that it is not 
possible anymore to offer an exhaustive review. For that reason, the emphasis is 
placed on topics, that are not specifics to a particular application. A special place 
is given to methods that have been implemented in real world applications. This 
is especially the case of the different techniques combining fuzzy logic, neural 
networks to wavelet theory. These methods have been implemented during the 
development of several products and have found applications in intelligent 
systems, such as for instance in fire detection. 

Industry is certainly one of the driving force behind soft computing. In many 
industrial products, very extensive computations are not feasible, either because it 
would make the product too costly, too slow, or sometimes the limitation may 
simply be the power consumption as for instance in devices powered with 
batteries. In spite of all this limitations, many products, such as for instance 
sensors, require complex algorithms for data processing. This is where soft 
computing finds one of its best field of applications. 

Multiresolution analysis and wavelet theory are a natural complement to soft 
computing methods. Soft computing deals with solving computationally intensive 
problems with a limited amount of computing power and memory by giving up 
some of the precision. Multiresolution analysis can be used to determine how and 
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where to give up the precision. Also several standard methods in multiresolution 
analysis could be easily classified as being part of soft computing. This is the 
case of algorithms such as the matching pursuit or of some wavelet-based 
regression and denoising methods. 

Multiresolution analysis is of central importance in the mechanisms of 
perception and decision. Humans are particularly good at such tasks. For 
instance, image processing in the brain relies heavily on the analysis of the 
signals at several levels of resolution. Extracting details of importance out of a 
flow of information is an essential part of any decision process. Soft computing 
covers a range of methods that are somewhat tolerant of imprecision, uncertainty 
and partial truth. Hybrid methods combining soft computing methods to wavelet 
theory have therefore the potential to accommodate two central elements of the 
human brain, the capability of selecting an appropriate resolution to the 
description of a problem and to be somewhat tolerant to imprecision. 

The main goal of this book is to present the state of integration of wavelet theory and 
multiresolution analysis into soft computing, represented here schematically by three of 

its main techniques. 

The success of wavelet theory and multiresolution analysis can be explained 
by different factors. Wavelet theory offers both a formal and practical framework 
to understand problems that require the analysis of signals at several resolutions. 
Despite the fact that several aspects of multiresolution analysis did precede the 
development of wavelet theory, wavelet theory furnishes an unifying platform to 
the discussion of multiresolutional signal processing. This is certainly one of the 
great merit of wavelet theory. From the point of view of applications, wavelet 
analysis possesses the very nice feature to be easily implementable. 
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There are a number of excellent books on wavelet theory (see for instance 
Chui, 1992; Daubechies, 1992; Kaiser, 1994; Mallat, 1998; Meyer, 1992; 
Vetterli, 1995; Wickerhauser, 1994). In this book, we have deliberately chosen 
the view of presenting wavelet theory quite pragmatically. Theory is limited to 
the minimum necessary to understand the ideas behind wavelet theory in order to 
apply them correctly. The same holds for the different soft computing techniques. 

Learning is a central theme to that book. A significant development in recent 
years has been the recognition of the complementarity and similarities existing 
between neural network, wavelets analysis and fuzzy logic. The degree of 
maturity of the different hybrid techniques combining two or more soft 
computing methods is quite different. On the one hand, neurofuzzy has been used 
in numerous industrial projects. On the other hand, the combination of wavelet 
theory with fuzzy logic is emerging: only a few products using fuzzy-wavelet 
techniques are now commercialized. Excellent books on neurofuzzy techniques 
have been written (see for instance Brown and Harris, 1994; Babuska, 1998; 
Jang, 1997; Kosko, 1992; Nauck, 1992; Nie and Linkens, 1995; a large range of 
applications can be found in recent proceedings of EUFIT or TOOLMET). As 
our approach follows the line of the book by Brown and Harris (1994), we refer 
especially to that book for an introduction to neurofuzzy. A main theme is the 
integration of wavelet theory into neurofuzzy methods. These hybrid techniques 
are referred either as fuzzy wavenets or as fuzzy wavelet networks, depending on 
the details of the applied method. 

OVERVIEW OF THE BOOK 
Wavelet theory is presented in a self-contained manner, adding new concepts 

as they become necessary to the comprehension of the different hybrid methods 
combining wavelet theory to soft computing. 

Part 1 presents wavelet theory from different complementary perspectives. It 
explains first wavelet theory in simple terms by discussing the differences and the 
similarities between Fourier analysis and wavelet theory. In particular, the short-
time Fourier transform is compared to the wavelet transform. Fundamental 
definitions (wavelet, orthogonality, biorthogonality, multiresolution, nested 
spaces) are given. After having introduced multiresolution analysis from the 
mathematical perspective, the signal processing approach, also called subband 
coding, is presented. The most important algorithm, the fast wavelet 
decomposition algorithm, is then presented in the framework of filter theory. It is 
shown that a wavelet decomposition can be carried out using a cascade of filters. 
The final sections present a number of examples showing the power of wavelet 
analysis for data compression, data analysis and denoising. More recent 
developments of wavelet theory, for instance the lifting scheme or nonlinear 
wavelets, are presented gradually in the following parts. 

The majority of publications on applications of wavelet analysis in soft 
computing are in the domain of preprocessing. Wavelet preprocessing has been 
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used in a large number of different applications, from signal denoising, feature 
extraction to data compression. Part 2 is dedicated to wavelet theory in 
preprocessing. The first sections focus on two central problems in signal 
processing: the curse of dimensionality and the complexity issue. The curse of 
dimensionality is an expression that characterizes the fact that the sample size 
needed to estimate a function grows often exponentially with the number of 
variables. The complexity issue refers to the increase of the computing power to 
solve hard problems with many inputs. In hard problems in many dimensions, 
both the curse of dimensionality and the complexity issues are relevant and one 
can speak of a double curse. Different methods for reducing the dimension of an 
input space are briefly presented. In particular, the classical dimension reduction 
based on the Karhunen-Loeve transform is explained An important section 
discusses the contributions of wavelet theory to dimension reduction. The two 
main methods, the matching pursuit and the best basis are presented. Wavelet 
theory also finds applications to exploratory knowledge extraction to discover 
nonlinear interactions between variables or non-significant variables. In the last 
sections, a number of representative applications combining wavelet 
preprocessing and soft computing are reviewed with an emphasis on 
classification problems and applications to intelligent sensing. 

Parts 3-6 are dedicated to wavelet-based methods that are suited to the 
automatic development of a fuzzy system from data. It introduces first the reader 
to off-line methods for data on a regular grid (fuzzy-wavelet). In subsequent 
parts, on-line learning schemes are explained in the framework of wavelet-based 
neural networks and nonparametric wavelet-based estimation and regression 
techniques. Part 3 gives an overview of wavelet-based spline approximation and 
compression algorithms. Part 3 is a pre-requisite to part 4-6 on learning. After an 
introduction on splines, the main families of spline-based wavelet constructions 
are presented. Emphasis is set on approximation and compression methods based 
on the matching pursuit algorithm and wavelet thresholding. 

Part 4 explains the connection existing between wavelet-based spline 
modeling and the Takagi-Sugeno fuzzy model in so-called fuzzy-wavelet 
methods. It is shown how wavelet modeling can be used to develop a fuzzy 
system automatically from a set of data on a regular grid. One starts from a 
dictionary of pre-defined membership functions forming a multiresolution. The 
membership functions are dilated and translated versions of a scaling function. 
Appropriate fuzzy rules are determined by making a wavelet decomposition, 
typically with B-wavelets and keeping the most significant coefficients. Part 4 
treats a number of issues central to the application of fuzzy-wavelet methods in 
applications (boundary processing, interpretability and transparency of the fuzzy 
rules). 

Part 5 is on wavelet networks. After a presentation of wavelet networks and 
wavenets and their applications, the methods in part 4 are extended to on-line 
learning. The resulting multiresolutional neurofuzzy method permits to determine 
and validate fuzzy rules on-line with very efficient algorithms using elements of 
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wavelet theory. The data are modeled by an ensemble of feedforward neural 
networks using, each, wavelet and scaling functions of a given resolution as 
activation function. Rules are validated, on-line, by comparing the results at two 
consecutive resolutions with the fast wavelet decomposition algorithm. When 
only few datapoints are known, the fuzzy rules use low resolution membership 
functions. With an increasing number of points, a larger number of rules are 
validated and the fuzzy system is refined by taking higher resolution membership 
functions. Different approaches are explained, that have in common to be easily 
implementable. 

Part 6 presents an alternative method to the neural network approach using 
nonparametric wavelet-based estimation and regression techniques. After an 
introduction on (orthogonal) wavelet estimation and regression techniques, we 
show how to extend these techniques to biorthogonal wavelets. The main 
motivation is that it makes possible to implement these regression techniques to 
determine appropriate fuzzy rules describing an incoming flow of datapoints. 
Advantageous in that technique is that the datapoints do not have to be stored and 
also that the wavelet-based validation methods described in part 5 are still 
applicable. 

Part 7 discusses pragmatically our experience with wavelet-based learning 
techniques. Some reflections are made on how to develop optimally intelligent 
products using multiresolution-based fuzzy techniques. We explain how 
important it is to keep at all time the man in the loop. It is of vital importance to 
have a clearly defined interface between the computer assisted learning method 
and the development team that allows the verification of all automatically 
generated rules. We show further how template methods can be applied to 
compare and validate the knowledge of different experts. These methods 
facilitate the fusion and the comparison of information from different sources 
(human, databank,...). With the help of this computer tool, new rules can be 
proposed to reconcilate conflicting experts. 

Part 8 explores the connections existing between genetic algorithms and 
wavelets. In the first sections, the classical discussion on deceptive functions, 
based on Walsh partition functions, is reformulated within the framework of 
multiresolution analysis. In the following sections, a very simple genetic 
algorithm is presented. The algorithm uses a single operator that tries to catch 
into a single operator some of the main features of the crossover and mutation 
operators in the standard genetic algorithm. Analytical results on the expectation 
of the population are expressed in terms of the wavelet coefficients of the fitness 
function. This simple model permits to discover some important relationships 
between sampling theory and multiresolution analysis. At the end of this part, the 
model is generalized to multiresolution search methods. 
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1. Introduction to Wavelet Theory 

Marc Thuillard 

Siemens Building Technologies AG, Cerberus Division 

A short overview on the development of wavelet theory 

Wavelet analysis started in the 80's. Scientists processing recordings of seismic 
waves recognized the need for methods allowing the analysis of signals at 
different resolutions. In the 90's, multiresolution analysis had grown into a very 
active field, with the appearance of very efficient computing methods. 

Multiresolution analysis has become a quite standard tool in signal 
processing. Wavelet theory has been applied to basically all scientific fields, 
including fields as different as quantum mechanics, econometrics or social 
sciences. Despite the large variety of wavelet applications, the main domain of 
applications is still in image processing. The image processing community has 
been using algorithms containing elements of multiresolution analysis for already 
quite some years. The new standard JPEG 2000 is for instance based on wavelet 
data compression schemes. 

Historically, one generally finds the roots of wavelet theory in the work of 
Morlet, a scientist by Elf-Aquitaine, who worked in the domain of oil research. 
Morlet recognized the need for signal processing techniques going beyond Gabor 
analysis of short-time signals. Morlet modified the Gaussian window used by 
Gabor. In order to palliate to a drawback of Gabor's approach, namely the bad 
resolution obtained at high frequencies due to the constant window-size, Morlet 
used variable-sized windows. Morlet tagged the name wavelet, meaning little 
wave (Burke Hubbard, 1996). Due to lack of funding and interest by his 
company, no real-world applications appeared then. Grossmann grasped rapidly 
the potential of Morlet' s wavelet and contributed significantly to further 
developments. 

After the pioneering work by Morlet and Grossmann (Grossmann, 1984), the 
next major development was the axiomatic formulation of wavelet theory. This 
work was mostly carried out within the mathematical community. The 
development of wavelet theory represents a good example of the importance of 
cross-fertilization between different fields in science. A first illustration is given 
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by the development of perfect reconstruction filters within the filter theory 
community. Perfect reconstruction allows a signal to be split into downsampled 
subband signals and then reconstructed perfectly. It was later shown that subband 
coding and wavelet theory are essentially equivalent. The equivalency between 
subband coding and wavelet theory has permitted the development of efficient 
algorithms for wavelet decomposition and reconstruction. Possibly as important, 
it offered a view on multiresolution analysis that was more familiar to the signal 
processing community, than the mathematicians' approach. 

One can trace the take off of wavelet methods in signal processing to the 
creation of the fast wavelet decomposition algorithm. The discovery of a fast 
wavelet decomposition and reconstruction algorithm marks the beginning of a 
new era for wavelets. The fast wavelet decomposition algorithm allows for an 
efficient computation of the wavelet coefficients using a cascade of filters. This 
algorithm, originally proposed by Mallat (1989), reduces very considerably the 
computing burden of a wavelet transform. A fast wavelet decomposition consists 
of the iterative decomposition of a signal into a coarse and a detail 
approximation. The original signal can be reconstructed with a second algorithm. 
The possibility of reconstructing the signal after decomposition has resulted in 
several applications in the domain of noise reduction and data compression. A 
full wavelet decomposition is invertible in 0(N) operations, making the wavelet 
transform well suited to lossless compression of a signal. 

Recently, wavelets of the second generation have appeared. They are more 
flexible and permit to solve important problems, such as the representation of a 
signal on an irregular grid or on a sphere. Second generation wavelets are closely 
related to multiresolution methods used in computer graphics. An important asset 
of second generation wavelets is that they provide a geometric interpretation of 
wavelet theory. Also second generation wavelets have lead to elegant solutions to 
the problem of endpoints processing, that has plagued wavelet methods for years. 

New developments have shown the utility of wavelet theory and 
multiresolution analysis in the domain of soft computing. Soft computing is a fast 
developing field in computer science. It deals with solving computationally 
intensive problems with a limited amount of computing power and memory by 
giving up some of the precision. Soft computing is also often defined by the 
techniques it uses, such as neural network, fuzzy logic, genetic algorithms and to 
some extent multiresolution analysis. One of the major developments in recent 
years has been the recognition of the complementarity and similarities existing 
between neural network, genetic algorithms, wavelets analysis and fuzzy logic. 
Soft computing and multiresolution are by many aspects very complementary. 
Everyday experience, teaches that the difference between two actions lies often in 
small details. Finding the important details is difficult, since experience also 
shows that focusing only on details leads to a tremendous waste of time and 
unproductive works. Finding the right balance between details and coarse 
features or actions is a highly human activity, that finds its mathematical 
expression in the combination of wavelet theory and soft computing. 
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In part 1, the wavelet transform is introduced as an extension of the Fourier 
transform, following here the historical development of wavelet theory. Wavelet 
theory has been originally developed to process non-stationary signals 
encountered in seismic waves. Before wavelet theory, non-stationary signals 
were essentially processed with the short-time Fourier transform, also called the 
Gabor transform. Wavelet theory offers a very flexible alternative to the short-
time Fourier transform. A wavelet decomposition is often compared to a 
mathematical microscope (fig. 1.1). A signal is analyzed at different resolution 
levels and each level corresponds to a magnification factor. 

cro 
Signal 

Time 

Figure 1.1: The wavelet decomposition of a signal corresponds to a multiresolution 
analysis of the signal. A wavelet decomposition can be considered as a kind of 

mathematical microscope. 

The analogy between wavelet theory and Fourier theory offers a simple 
framework to grasp the main ideas behind multiresolution analysis and wavelet 
theory. Both a discrete wavelet transform and a continuous wavelet transform can 
be defined. The discrete wavelet decomposition of a signal corresponds to the 
projection of a signal on a series of translated and dilated versions of a wavelet. 
The analogy to the discrete Fourier transform is clear as one recalls that the 
Fourier coefficients in the discrete Fourier transform correspond to the projection 
of a signal onto a series of dilated sine and cosine (the cosine is a translated 
version of the sine function!). 
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Lately, major efforts have been undertaken to develop nonlinear 
multiresolution construction methods. Nonlinear constructions are being used 
mostly for lossless image processing. Nonlinear operators are introduced that 
round off the wavelet and approximation coefficients on integers, permitting an 
efficient storage of the coefficients. These nonlinear multiresolution projection 
methods have the particularity to be invertible. 

In this first part, we will present the standard wavelet approach based on the 
analogy to the Fourier formalism. Wavelet theory is then explained more 
formally on the basis of the axiomatic formalism of multiresolution analysis and 
in the framework of subband coding. Second generation wavelets and nonlinear 
constructions are discussed in the annex of the book (Annex A-B). At the end of 
the chapter, a number of standard and historical applications of wavelet theory 
are discussed. One of the first applications of multiresolution analysis was in the 
domain of data compression. Multiresolution techniques were successfully 
implemented to compress the FBI fingerprint datafiles. An early application of 
multiresolution analysis in the domain of noise reduction has been the processing 
of the only recording of Brahms playing a sonate (Berger, 1994). The recording 
was of such bad quality that transposing the music was not possible. After 
processing with multiresolution techniques, it became possible to compare 
Brahms partition with its own interpretation. 

Wavelet transform versus Fourier transform 

Fourier series 
Wavelet theory can be considered as an extension of Fourier theory. In a discrete 
Fourier decomposition, a periodic signal is represented by a weighted sum of sine 
and cosine. The coefficients of the sine and cosine correspond to the projection of 
the signal on sine and cosine. More precisely, the projection on the sine and 
cosine is an orthogonal projection. The projection is therefore unique and the 
functions {sin(k • i),cos(k • i)} form an orthonormal basis. 

A square-integrable periodic signal of period T can be decomposed into a 
sum of sine and cosine: 

f(t) = ̂ ]ak -sin(k-i) + bk -cos(k-i) (1-la) 

k 

T T 

ak =2jf(t)-sin(2-7t-k-t)-dt; bk =2Jf (t) • cos(2 • TI • k • t) • dt (1.1b) 
o o 
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The functions {sin(k • i),cos(k • i)} form an orthonormal basis: 

i 

fsin(m-2-7ix)sin(n-2-7tx)dx = 0,m *n (l-2a) 
o 

I 

[cos(m-2-it-x)-cos(n-2-7t-x)dx = 0,m^n (l-2b) 
o 

l 

fsin(m-2-7ix)-cos(n-2-7tx)dx = 0 , m ^ n (1.2c) 

o 

The Fourier decomposition possesses the important property to be invertible. 
In many cases, a limited number of coefficients is sufficient to compute a good 
approximation of the signal. Fourier analysis can be extended to wavelet theory. 
Instead of projecting the signal on sine and cosine, the signal can be projected on 
another set of orthogonal functions. This permits to analyze non-periodic signals. 
Figure 1.2 shows an example of such a function, a so-called Daubechies wavelet 
(Daubechies, 1992). The function is well localized and has a zero integral. Such a 
function is called a mother wavelet. We will show later that a signal can be 
projected on a series of dilated and translated versions of a mother wavelet. 
Similarly to the Fourier transform, the projection is unique and invertible. 

0.25 p 

0.2 -

0.15 • 

0.1 -

0.05 -

0 -

-0.05 -

-0.1 -

-0.15-

-0 2* ' ' ' 1 i 

0 

Figure 1.2: Example of a wavelet. 
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Continuous Fourier transform 

A second important category of Fourier transform is the continuous Fourier 
transform. The Fourier transform of an absolutely integrable function f(t) is 
defined by 

oo 

F(co) = jf(t)-exp(-i-co-t)-dt (1.3) 
- 0 0 

The inverse Fourier transform is given by 

00 

f(t) = — • fF(co)-exp(i-(o-t)-dt (1.4) 
— 00 

The power spectrum of the function f(t) is |F(<o)| . The power spectrum is a 

measure of the energy content of the signal at the different frequencies co. The 
continuous Fourier transform can also be generalized to the continuous wavelet 
transform. 

Short-time Fourier transform versus wavelet transform 

Practical applications of the Fourier transform request some adaptation of the 
method. The main problem encountered is that a signal is seldom stationary, so 
that the period of the signal tends to infinity. In order to satisfy the Fourier 
condition for convergence, the signal must be integrated from 0 to infinity. 
Several approaches permit to analyze the signal more locally in order to extract 
information on the local energy content of the signal or to decompose the signal 
in such a way that a good signal reconstruction is possible locally with a limited 
number of coefficients. The classic approach is the short-time Fourier transform, 
also called the Gabor transform (Gabor, 1946). 

A short-time Fourier transform is obtained by first multiplying the signal by a 
window function G(t - co) and then by performing the Fourier transform of the 
obtained signal. 

SF(co, t) = f G * (t - T) • f(t) • exp(-i • co • t) • dx (1.5) 

The window used by Gabor is the Gaussian window (fig. 1.3): 

G(t) = aexp( -b t 2 ) (1.6) 

The result of the transform depends on the time t, but also on the frequency 
co. The parameter b controls the width or the spread in time. Its Fourier transform 
is given by 

G(co) = a • (TI/ b)°5 • exp(-(co-co0 )
2 / 4b) (1.7) 
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0 

Figure 1.3: Example of a gaussian window (or Gabor window) used in windowed Fourier 
transform. 

The spread of the function G(t) is the same as the one of its translate. 
Similarly the half-width of G(ra) is independent of the centered frequency co0 . 

In order to carry out a time-frequency analysis, the signal must be projected 
on a series of windowed functions. Perfect reconstruction from the projection is 
possible provided a large number of windows is taken. The projection is then 
very redundant. Perfect reconstruction requires a number of operations 0(N2 

log2N) for a signal of period N (Mallat, 1998). 
One of the main ideas of wavelet analysis is already contained in the short-

time Fourier transform, namely the decomposition of a signal on dilated and 
translated versions of a basis function. Figure 1.4 compares the windows of the 
short-time Fourier transform to the wavelet transform. The main difference 
between the wavelet transform and the Gabor transform is that the time-
frequency window of the Gabor transform is independent of the position and 
dilation of the window, while for the case of a wavelet transform, the time-
frequency window depends on the dilation factor of the wavelet. At low 
frequency, the time-window is much larger than at higher frequencies. This 
property of wavelets is in many applications a useful feature. Indeed, it is often 
desirable to have a result on the high-frequency part of the signal with a good 
time resolution, while a less good resolution for the low frequencies is not so 
much of a problem in most applications. 
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Figure 1.4: Time-frequency tiling of the time frequency domain. Left: Fourier transform, 
Right: Wavelet transform. Below example of dilated and translated wavelets. 

Discrete wavelet decomposition 

Let us start with a definition of wavelets englobing both orthogonal and non-
orthogonal constructions. 

Definition: 

A function \|/ is called a wavelet if there exists a dual function vj/ such that a 

function f e L2(9l) can be decomposed as 



Introduction to Wavelet Theory 11 

f(x)=E<f'^ 
m,n m,n 

(x) (1.8) 
m,n 

The series representation of f is called a wavelet series. The wavelet 
coefficients cm n are given by 

V n =<f>HV„ > (!•') 

A function t|/e L2 (9?) is called an orthogonal wavelet, if the family 

{vj/mn}is an orthonormal basis of L2 (9?) that is 
CO 

<¥m„n1>Vm2,n2 >= jVm„n, to• HV2,n2 to• dx = 8mi >mi - 8 ^ ^ and every f eL2 (9?) 
- o o 

can be written as 

f ( x ) = I > m , n - V | V „ ( x ) (1.10) 
m,n 

with 

V m n (x) = 2m/2-v l;(2m-x-n) (1.11) 

m,n G Z. 

The wavelet coefficients cmn of an orthogonal wavelets are given by 

cmn =<f,v|/mn >. This follows from the fact that for an orthogonal wavelet the 

dual function vj/ is identical to the wavelet \y . 
The definition of an orthogonal wavelet is quite similar to the definition of a 

Fourier series. Actually the only difference lies in the definition of the candidates 
functions for the projection. Projecting the signal on wavelets permits to suppress 
the condition that the function must be periodic in order to guarantee perfect 
reconstruction. In a Fourier series, cosine and sine are used as basis functions 
together with integer dilated of the two basis functions cos(2©t) and sin(2cot). In 
orthogonal wavelets, dilated and translated of a function are taken: 
y ra „ (x) = 2m / 2 • v(2m • x - n ) . The dilation factor is also different (m versus 2m/2). 

The simplest example of an orthogonal wavelet is the Haar wavelet (fig. 1.5) 
defined as 

1 0 < y < l / 2 

H/H(x) = -1 1 / 2 < X < 1 (1.12) 

0 otherwise 
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Figure 1.5: Example of an orthogonal wavelet, the Haar wavelet. 

The orthogonality of the Haar wavelet can be easily verified, as schematically 
explained on fig. 1.6. 

Orthogonal i ty of 
two translates of 
the Haar wavelet 

Orthogonal i ty of 
two dilated of the 

Haar wavelet 

r M M W - - \ • 

Figure 1.6: The Haar wavelets form an orthonormal basis. 

Continuous wavelet transform 

As for the Fourier analysis, a continuous wavelet transform can be defined. The 
integral wavelet transform is defined by 

* ,x-b x W¥f(a, b) = 1 / VI J f(x) • v* (^-^)dx (1.13) 

Contrarily to the wavelet series, the factor a is continuous. The interpretation 
of the wavelet transform is generally difficult and not too intuitive. Figure 1.7 
shows an example of a continuous wavelet transform. The value of the wavelet 
transform is coded as a grey level. 

Recent applications of the continuous wavelet analysis are found in a number 
of different domains. Continuous wavelet analysis has been implemented in 
vibration monitoring (Staszewski, 1997), heart rhythm perturbations monitoring 
(Thonet, 1998), in power system waveform analysis (Pham, 1999), ship detection 
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(Magli, 1999). Important applications of the continuous wavelet analysis in 
relation to atmospheric and oceanographic modeling have been made (Torrance, 
1998). For instance, studies of the El Nino are of vital importance. El Nino 
corresponds to a phase in which, due to the periodic variation of the water 
currents, warm water poor in nutrients surges along the south American coast. 
The analysis of sea surface temperature with the continuous wavelet analysis has 
shown that the El Nino-southern oscillation index was significantly higher during 
some periods (1880-1920 and 1960-90). Considering the devastating effects of El 
Nino, such studies are of vital importance to the future of the many south 
American countries. An increase of El Nino due to pollutants might ruin the 
economy of these countries by causing enormous problems to fishery and 
agriculture. 

i.:„ r.., -: Hi. 

&¥&*&• 

Figure 1.7: Continuous wavelet transform of the logistic map: 
x(n + l) = 4-x(n)-(l-x(n)). 

The fast wavelet transform 

The Fast Fourier Transform is probably one of the algorithms that has had the 
most influence on science and engineering. The main idea of the FFT can already 
found in a paper by Gauss. The idea was rediscovered by James Cooley and John 
Tukey in 1965. The FFT reduces from N2 to N log2N the number of necessary 
operations for a Fourier transform of a signal with N values. We will show that 
similarly to the Fourier transform, there exists a fast wavelet transform. 

The fast wavelet transform is from the practical point of view the most 
important algorithm in multiresolution analysis. Contrarily to the fast Fourier 
transform that can be applied in most cases without a deep knowledge of the 
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algorithm, it is recommendable to understand the fast wavelet algorithm before 
using wavelets in an application. 

The fast wavelet transform, permits the computation of the wavelet 
transform. At each level of the transform, the data are processed through a low-
pass and a high-pass filter. The high-pass filtered data are known as the detail 
wavelet coefficients. The result of the low-pass transform is used as input data to 
compute the next level of detail wavelet coefficients. 

In order to explain the fast wavelet transform algorithm, we will first 
introduce a few new concepts that represent the foundations of multiresolution 
analysis. 

The dilation equations (or two-scales relations) 

We will not discuss here in much details how to construct wavelets. We will 
restrict our discussion to giving the main ideas behind the construction scheme. 
From the practical point of view, it is generally sufficient to know the main 
properties of the different wavelet families, in order to choose appropriately the 
best wavelet family for an application. As we will see in the next chapter, a 
wavelet analysis reduces to a cascade of filters. It is therefore important to 
understand the properties of the filters. The form of the filter coefficients is 
essentially determined by the properties of the wavelet family associated to the 
filter. 

One of the most important concept of multiresolution analysis lies in the 
definition of nested spaces. Nested spaces are like russian dolls, they fit nicely 
into eachother and the smaller doll is contained in the larger dolls. Figure 1.8 
shows an example of a nested space, together with a representation of the 
complementary spaces W0 and W_i. 

Figure 1.8: Example of nested spaces: V.j c V0 c Vj. The space W_i is the 
complementary space of V.i with W., © V.,. Similarly V0 = W0 ©V0. 
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The concept of nested spaces (Daubechies, 1992) can be applied to spaces 
generated by linear combinations of a function, say (j). We define Vi as the space 
generated by <|>(2x) and its integer translates. The space Vi corresponds to all 
possible combinations of ((> and its integer translates: V^ {<|)(2x-n)}. Let us 
consider now a second space V0, generated by the 2x dilated function (|>(x) and its 
translates: V0: {(j)(x-n)}. The space V0 is nested in V] if V0 a Vi. Generally 
speaking, it follows from V0 c: V! that any function in V0 can be written as a 
linear combination of the functions generating Vi. 

((.(x) = Xgn-<l>(2x-n) (1.14) 
n 

Since V o c V ] the space V0 can be written as Vj = V0 © W0. The space W0 is 
the complement of the space V0. Following the same line of thought as 
previously, we have W0 c Vi which follows that any function \y in W0 can be 
written as a linear combination of the basis functions in V\. 

i|/(x) = 2>B-<K2x-n) (1.15) 
n 

The two equations are the so-called dilation equations or two-scales relations. 
These two equations are central to multiresolution analysis. They permit the 
reconstruction of a signal starting from the wavelet coefficients (or detail 
coefficients) and the lowest level of approximation coefficients. Also most 
constructions of new types of wavelets start from the dilation equations (we come 
back to this point as we will sketch how to build wavelets). 

Function in V, 

Functions in V1 

V0 c V, 4>,(x)= <K2x) +<|>(2x-l) 

Figure 1.9: Example illustrating the dilation equation for the characteristic function. 

As an example, let us take as function <|)(2x-n), the characteristic function, 
then V0 is the space of piecewise constant function consisting of zero order 
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polynomials defined on [n,n+l) with n an integer. In the example of the 
characteristic function (fig. 1.9), the 2x dilated characteristic function generates a 
space Vo that is nested in Vf. V o c V j . Any function in V0 can be expressed as a 
linear combination of the generating functions in V]. Figure 1.10 shows another 
example using a second order spline function. 

Figure 1.10: Illustration of the two-scales relation for the second order B-spline. The 
triangular spline function can be decomposed into the sum of translated triangular 

functions at the higher level of resolution. 

Decomposition and reconstruction algorithms 

Since Vi = V0 © Wo, a function in V] can be written as the sum of two functions 
with the first function in Vo and the second function in Wo. It follows that a basis 
function in Vi can be expressed as the weighted sum of the basis functions of V0 

and W0 (for an exact derivation of the relation below, see Chui (1992)). 

<K2x-k) = £p k _ 2 n -<t)(x-n) + qk_2n -v|/(x-n) (1.16) 
k 

k e Z 
This relation is called the decomposition relation. The function (|) is called the 

scaling function, while the function y is the mother wavelet. 
The decomposition algorithm of a function f e Vj can be computed from the 

decomposition relation (fig. 1.11). One obtains 

Cm-l,n =ZPk-2n-Cm,k (1.17a) 
k 

dm-l,n =SClk-2n-Cm,k (1.17b) 
k 

The proof is according the following line. Take fm(x) = V c m n <j)mn with 
n 

fm e Vm, then use the decomposition relation to obtain an expression for fm.i(x): 

m.k 'Pk-2n ••m-lJc + d m . k 'qk-2n " V m - l i ( L 1 8 > 
k n 
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The decomposition algorithm can be used iteratively in a cascade of filters, so 
that a function f may be decomposed into the sum: 

f = g 0 + g - l + g - 2 + - + g-N+ f-N <119> 

with g.j eW 

d„ „ : wavelet 
m,n 

coefficients or details 
coefficients at the mth 

level of decomposition 

ri H d High-pass filter 
.., m-1.n ._, m-2,n 7 m-3,n 

' V A 

C C A C „ C , Low-pass filter 
m,n m-1,n m-2,n m-3,n 

c m n : approximation 
coefficients or coarse 
approximation 
coefficients 

Figure 1.11: Decomposition algorithm. 

The reconstruction algorithm is given by the following algorithm: 

cm,n = X g n - 2 k 'cm-l,k + n n - 2 k 'dm-l ,k (1-20) 
k 

The coefficients g and h are defined by the two-scales relation. The proof is 
very similar to the decomposition algorithm and we will skip it. 

The fast wavelet decomposition corresponds to a cascade of filters. The 
signal is iteratively filtered with a low-pass and a high pass filter. The detail 
coefficients correspond to the high-passed signal coefficients, while the 
approximation coefficients result from the low-pass filtering. The low-pass 
coefficients are then decimated by a factor two and used as input signal at the 
next level of resolution. After the decimation, the same two filters are applied to 
the data. The algorithm is invertible and the signal can be reconstructed 
iteratively from the detail coefficients together with the last level coefficients of 
the low-pass filter as shown in fig. 1.12. 
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dm n : wavelet coefficients or details 
coefficients 

c m n : approximation coefficients or 
coarse approximation coefficients 

First reconstruction 
level 

m-2,n 

m-3,n 

m-3,n 

Second reconstruction 
level 

m-2,n 

r> 

^o> m-3,n 

C m-1,n W ^ ' C m .2 j | )S^S5i^C m^_n 

Third reconstruction 
level m-1,n s\ m-2,n ^ m-3,n 

C m>n ^s^sjwasC ^ ^ s p ^ i d X m_2in~-*gH55S»C m _3 j n 

Figure 1.12: Reconstruction algorithm. 

The filter coefficients corresponding to an orthogonal wavelet family can be 
generated from a single filter defined by its Fourier transform. Both the filter 
coefficients for the decomposition and the reconstruction algorithms are the 
same, what makes the filter very simple and efficient. An orthogonal 
decomposition is often optimal to compress information, since there is no 
redundancy in an orthogonal decomposition. Figure 1.13 shows an example of a 
wavelet decomposition using orthogonal wavelets. 
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0 100 200 300 400 Input Data 

50 100 150 200 0 50 100 150 200 

Low-pass Filter LEVEL 1 High-Pass Filter 

4 I 1 1 1 1 

A I I I I I 

20 40 60 80 100 0 20 40 60 80 100 

Low-pass Filter LEVEL 2 High-Pass Filter 

10 20 30 40 50 0 10 20 30 40 50 

Low-pass Filter LEVEL 3 High-Pass Filter 

Figure 1.13: Example of a wavelet decomposition with a Haar wavelet. 

A wavelet can be constructed from the filter coefficients by using the 
reconstruction algorithm. At each level, the wavelet approximation is refined as 
shown in fig. 1.14. 
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Figure 1.14: The scaling function and wavelet can be computed with the reconstruction 
algorithm setting all zeros but a one as input, a) Top: wavelet; Bottom: scaling function; 

b) Left: Approximation of the Daubechies-4 wavelet at the 4 first levels; right: 
Approximation of the Daubechies-4 scaling function at the 4 first levels. 

Definition of a multiresolution 

In the previous section, some of the main concepts behind multiresolution were 
presented somewhat informally. As a complement, we will give here an exact 
definition of a multiresolution following Daubechies' book, Ten Lectures on 
Wavelets. This definition is broadly accepted and forms the foundation of wavelet 
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theory. A multiresolution analysis consists of a sequence of embedded closed 
subspaces ...V2 c V | c V 0 c V_,... with the following properties: 

-Upward completeness 
M vm = L2(R)(the ensemble of square-integrable functions on R in a Hilbert 
meZ 

space) 
Downward Completeness 

Dv
m=w 

meZ 

Scale Invariance 
f (x ) eV m of (2 m x)eV 0 

Shift invariance 
f(x)eV0 o f ( x - n , ) e V 0 for all n e Z 
Existence of a Basis 
There exists cp e V0 such that 

{cp(x - n) n E Z} 

is an orthonormal basis for Vo. 
The above definition is axiomatically fundamental, as it permits to define and 

verify in practice if a basis forms a multiresolution. 

Biorthogonal wavelets 

A second central definition in wavelet theory is the definition of a Riesz basis 
(Mallat, 1998). 

A family {q>n}of a Hilbert space H is a Riesz basis if for any y GH, there 
exists A>0, B>0 such that 

AllylNZHy'^H'^lylP (1-21) 

n 

and {cpn} are linearly independent. 
A Riesz basis can be regarded as a basis in which the orthogonality 

conditions are relaxed. The usefulness of the concept of Riesz basis will become 
clear soon. An important theorem (Mallat, 1998) states that if {cpn}is a Riesz 
basis, then there exists a dual basis {<j>n}such that a function y in H can be 
decomposed as 

neZ neZ 
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From this expression, it can be deduced easily that the bases {cpn} and {cpn} fulfill 
the following biorthogonality condition. Biorthogonality is obtained from (1.22). 
Setting y = (pp, one gets 

neZ 

Since the basis is formed of linearly independent functions, the equation 
follows 

<(pp,(Pn >=§(p-n) (1.24) 

This relation is called the biorthogonality condition. For an orthogonal basis 
function, cpp = <j>, and the expression reduces to the orthogonality condition. A 

second important theorem states that if a sequence of subspaces satisfies the 
definition of a multiresolution then there exists an orthogonal basis {v|/mn} for 

the orthogonal complement of Vm in Vm_i with 

MVn=2m/2-i |/(2mx-n) (1.25) 

In other words, the space spanned by Vm and its orthogonal complement Wm 

is the space V „,.,: Vm e Wm = Vm_! 
In the orthogonal case, the function \\i can be constructed by writing 

<Kx) = 2- 1 / 2 -£g[n]-<K2x-n) (1.26) 
neZ 

V(x) = 2-1/2-£h[n]-(|)(2x-n) (1.27) 
neZ 

Taking the Fourier transform, one obtains after some manipulation an 
expression relating the Fourier transform of g to the Fourier transform of h: 

H(ejro) = -e-JC0-G*(ej(<B+,t)) (1.28) 

or in the time domain: 

h[n] = (-l)n-g[-n + l] (1.29) 

Inserting (1.29) in (1.25), one obtains 

V(x) = 2-1 / 2-X(-i)n-g[-n + l]-<l>(2x-n) (1.30) 
neZ 

This shows that a wavelet \j/(x) can be expressed as a weighted sum of 

scaling functions <|>(2x - n ) . 
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Wavelets and subband coding 

Wavelet theory has been created first by researchers with a background in 
physics and mathematics. Subband coding has been developed mostly by the 
electrical engineering community (Croisier, 1976). At one point, both 
communities realized the parenty between the two subjects (Vetterli, 1984, 
1992). 

Independently from wavelet theory, filters were found that allow a signal to 
be split into downsampled subband signals and then reconstructed perfectly. 
These filters are called perfect reconstruction filters and can be shown to be 
equivalent to the filters used in the fast wavelet algorithm. Figure 1.15 shows an 
example of perfect reconstruction filters associated to Daubechies wavelet. From 
the practical point of view, the understanding that subband coding was equivalent 
to wavelet theory has had great practical implications, as it offered the signal 
processing community a bridge to filter theory. 

We will present succinctly subband coding, emphasizing the similarities to 
the approach presented in the previous sections. We will introduce a number of 
new aspects, that are better explained within the framework of subband coding. 
In particular, the conditions on the filters to ensure perfect reconstruction are 
given. 

lT(a0l2 

Figure 1.15: Filter characteristics of two filters satisfying the power complementarity 
condition (Daubechies-4.). 

The close connection between wavelet theory and filter theory can be 
understood by looking first at series expansions of discrete-time series. A discrete 
signal x[n] can be expanded orthogonaly or biorthogonaly. Orthogonal expansion 
conserves the energy. This property is very useful for spectral analysis, as the 
energy in the different subbands sums up to the total signal energy. Biorthogonal 
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expansions extend series expansions to a large number of filters. In many 
problems, orthogonal expansions are not suited and biorthogonal expansions are 
necessary, as for instance in wavelet-based fuzzy methods. Consider a signal 
x[n]. An orthogonal expansion of x[n] on an orthogonal basis {cpk} is 

x[n] = £x[k]-cpk[n] (1.31) 
keZ 

with 

X[n] = £ q>* [n] • x[n] =< q>*, x[n] > (1.32) 
keZ 

Energy conservation can be expressed under the form: 

|x|2 =|X|2 (1.33) 

For dual bases {cpk}, {<pk} satisfying the biorthogonality condition 

<cpk[n],(p,[n]>=5[k-l] (1.34) 

the biorthogonal expansion is given by one of the two expansions: 

x[n] = £x[k]cp k[n] (1.35a) 
keZ 

x[n] = £x[k]-qik[n] (1.36a) 
k€Z 

with 

X[n] = ^ cp*k [n] • x[n] =< cpk, x[n] > (1.35b) 
keZ 

X[n] = £ $k [n] • x[n] =< y*k, x[n] > (1.36b) 
keZ 

Similarly to the continuous series expansion, the expansion is stable only if a 
condition similar to the one in the definition of a Riesz basis is fulfilled: there 
exists A>0 and B>0 such that 

A-SjX[k]|2 <j|x||2 <B-S|X[k]|2 (1.37) 
n n 

In the biorthogonal case, energy conservation (1.33) is replaced by a different 
energy conservation relation: 

|x||2 =<X[k],X[k]> (1.38) 
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The recognition that the wavelet series formulation and the theory of perfect 
reconstruction filter banks are deeply related is a major achievement in signal 
processing. The link between filter banks and wavelet theory has lead to the 
development of fast algorithms to implement practically and efficiently the 
wavelet ideas in practical applications. Following the line of presentation by 
Vetterli (1995), let us discuss this. 

Consider the four filters P,Q,G,H with the impulse responses p, q, g, h 
satisfying the relations 

cp2k[n] = g[2k-n] (1.39a) 

cp2k+1[n] = h[2k-n] (1.39b) 

92kW = P[n-2k] (1.39c) 

$2k+1[n] = q[n-2k] (1.39d) 
The filters P,Q correspond to the decomposition filter coefficients (1.17-18), 

while the filters G,H are the reconstruction filters. After some manipulations, it 
can be shown that perfect reconstruction is achieved if the following relation is 
fulfilled: 

Zg[k]-p[2n-k] = 5[n] (1.40) 
keZ 

Zh[k]-q[2n-k] = 5[n] (1.41) 
keZ 

In words, perfect recognition is achieved if the biorthogonality relations 
(1.34) are fulfilled. 

For an orthogonal basis, all the filter coefficients can be derived from just one 
filter. The impulse responses q, g, h are given by 

h[n] = ( - l ) n g[2K- l -n ] (1.42a) 

p[n] = g[-n] (1.42b) 

q[n] = h[-n] (1.42c) 

with K the filter length. 
There are several methods to construct wavelets, either using the Fourier 

approach, the lifting scheme or the z-transform. The z-transform is defined as 
CO 

F(z) = £f[n] • z~n . Using the z-transform the perfect reconstruction condition can 
n=0 

be expressed as: 

P(z)-G(z) + Q(z)-H(z) = 2 (1.43a) 
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P(z)G(-z) + Q(z)H(-z) = 0 (1.43b) 

A number of wavelet constructions start from the above expression (Mallat, 
1998). 

The two-channels filter bank is given by the diagram in fig. 1.16, in which 
the symbol with the arrow pointing towards the bottom represents downsampling, 
while the other symbol with the reverse arrow is for upsampling. 

Q 

$H 

Figure 1.16: Two channels filter bank with analysis filters P,Q and synthesis filters G,H. 

Applications 

It is not possible anymore to offer a complete review of wavelet applications. 
Several reviews have been written to cover some particular fields of applications. 
Biomedical applications have been reviewed by Unser (1996), Kumar et al. 
(1997) survey geophysical applications. Image compression and pattern 
recognition are discussed by Vetterli (1999), Tang (2000) and Szu (1996a). 
Applications to chemical analysis are reviewed by Leung (1998). 

In this first section dedicated to applications, only a few significant 
applications will be discussed to furnish a rapid overview of the main domains of 
applications. Numerous other examples will be discussed in other chapters. 

Data Analysis 

There is a large number of applications, such as in astronomy, medical imaging 
or satellite imaging, for which the simple analysis of images at a well-chosen 
resolution permits to discover features in an image that would have otherwise 
stayed not clearly visible (Li, 1995a, 1995b). The good edge detecting properties 
of wavelets have been also used in data fusion (Fonseca, 1996) for images 
obtained from different satellites. The images are fused by constructing a wavelet 
pyramid using the more dominant high frequency wavelet coefficients among the 
two images. 
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Data compression 

Multiresolution and subband coding have been used to compress video signals, 
still images or sound. The JPEG format is for instance a compression method 
using discrete cosine transform. The discrete cosine transform (DCT) is defined 
as 

N-l 

X(k) = ]T x(n) • cos(2n(2N +1) - K / 4n) (1.44) 
n=0 

In many applications, the blocky appearance of JPEG compressed images is not 
acceptable. Several wavelet-based compression codes have been developed 
(JPEG). The JPEG 2000 will most likely replace the JPEG standard. The JPEG 
2000 standard uses wavelet for compression. The standard supports several 
decomposition schemes and most wavelets. Figure 1.17 shows an example of the 
superior quality of image compression, by comparing to images reconstructed at 
0.125 bits per pixel. 

JPfcG!£000 «£ t.vO'ii ^-= 

Figure 1.17: Example comparing the quality of an image with JPEG and JPEG 2000. By 
courtesy from C.Christopoulos (Christopoulos, 1999). 
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One of the first real world application of wavelets in data compression is the 
FBI fingerprint digitalization standard (Brislawn, 1995). Fingerprint images are 
digitized at a resolution of 500 pixels per inch with 256 levels of gray. A single 
fingerprint needs about 0.6 Mbytes to store. The FBI has collected about 30 
millions fingerprints from the beginning of the century. Obviously data 
compression is necessary. Compared to JPEG, the quality of the wavelet-based 
compressed image at a 15:1 compression factor is better. Roughly speaking 
wavelet-based methods are superior to JPEG to compress images, for when most 
of the information is contained in the image contours. The FBI compression 
standard combines two methods: wavelet packets and best basis (see part 2). The 
idea consists of determining at each level of decomposition the best basis. The 
best basis is defined as the basis chosen in a wavelet dictionary that minimizes 
the entropy (Coifman, 1992). In other words, the basis is kept for which most of 
the signal is contained in a small number of coefficients. The entropy is defined 
as 

S=Zdm,n-log2dm>n (1.45) 
n,m 

with dm n the wavelets coefficients at level m. 

Denoising 

Certainly one of the most interesting applications of multiresolution analysis is in 
the domain of denoising (Donoho, 1994). The main idea of the so-called 
thresholding methods is quite simple. Remove all the coefficients below a given 
threshold. This approach consists of approximating the signal with only the 
largest coefficients. The problem is then to determine a threshold that is not too 
high, in order to keep the essential signal features and also not too low to reach 
efficient denoising. For a signal corrupted with white noise, the wavelet 
denoising approach can be justified. The fast wavelet transform consists of a 
number of linear operations on the data. The wavelet transform of a white noise 
results into normally distributed values of the wavelet coefficients. The operation 
of removing all the small coefficients at all levels of resolution is a way of 
filtering the signal in the whole frequency range. 

One distinguishes between soft and hard thresholding. With hard 
thresholding, the coefficients are estimated with the expression 

dm,n i f dm,n > ^ 

dm,n = d-46) 

0 otherwise 
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In the soft thresholding method, each coefficient is reduced by a small value. 
An example of soft thresholding is given below 

sgn(dmjn)-(|dm>n|->0 if dmn>X 

dm,„ = d-47) 

0 otherwise 

Opinions diverge strongly on which method is the best. Donoho and 
Johnstone (1994) have proposed several methods to choose the value of the 
threshold. An example of such a threshold is 

X = ^2-a2logn (1.48) 

with a2 the variance from the original data set containing n values. 
Another method to estimate the threshold A, is to minimize Stein risk 

function: 

n 

S=n + a(X)-(A.2-2)+ ^ d 2 . (1.49) 
k=a(A.)+l 

with SL(X) the number of coefficients less than equal to the threshold X and dk 
the wavelets coefficients rearrange into an increasing series. 

Denoising is a very active and fast developing field. It is difficult at time to 
make a simple statement on the merits of the different thresholding methods. 
Thresholding methods rely often on different assumptions on the signal and on 
the noise distribution. A certain type of thresholding may prove to be almost 
optimal for a certain class of problems. In real world applications, it is often 
difficult to compare the different results. The evaluation of the results of 
denoising, for instance in denoising of images or videos, may depend quite much 
on the subjective judgement of the observer. 
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2. Preprocessing: The Multiresolution Approach 

An impressive number of applications combine wavelet analysis to another 
standard signal processing method. In many applications, a wavelet 
decomposition is used for preprocessing. The goal of preprocessing is very often 
the reduction of a problem' s dimensionality or complexity. This chapter takes 
the stand to identify some of the major issues in signal preprocessing and to 
explain the contributions of wavelet theory to these issues. The methodological 
aspects are privileged at the expense of an exhaustive presentation of the 
multitude of combinations between standard signal processing methods and 
multiresolution analysis. 

It is very difficult to define exactly what is preprocessing. The boundary 
between preprocessing and processing is often very fuzzy. Tentatively, 
preprocessing may be defined as the transformation of data into a form suitable 
for processing with a standard processing method. We focus primary on two 
related topics that are not only central to signal preprocessing, but are also at the 
very heart of soft computing: 

-The curse of dimensionality: 
This expression refers to the fact that the sample size needed to estimate a 

function grows very often exponentially with the number of variables. 
-The complexity issue: 
Some problems are intrinsically difficult to solve exactly. The necessary 

computing time to solve a difficult problem increases often very rapidly with the 
size of the problem (the size of a problem is often characterized by the number of 
inputs). Some of the science and art in signal processing consists of choosing the 
right method to find satisfactory solutions to hard problems with a limited 
amount of computing time. 

Let us recall that soft computing deals with solving computationally intensive 
problems with a limited amount of computing power and memory by giving up 
some of the precision. Soft computing covers a range of methods that are 
somewhat tolerant of imprecision, uncertainty and partial truth. The necessary 
computing power to solve a problem depends on the difficulty of the problem and 
on the necessary accuracy of the solution. Also the number of necessary 
datapoints in learning depends on these factors. In this chapter, we present a 
number of methods to determine or to decrease the dimensionality of a problem, 
through projection techniques, pursuits and data transforms. 

33 
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The double curse: dimensionality and complexity 

Recently a financial software company claimed that 90 % of the development and 
computing time in financial problems is used for preprocessing. It is very 
difficult to argue against or to confirm such a provocative statement as the 
concept of preprocessing cannot be defined in a general manner. The boundary 
between preprocessing and processing is in many problems quite difficult to 
draw. Preprocessing can be defined as the preparation or the transformation of 
the data into a form suitable for processing with a standard method. This 
definition reports the problem onto defining what is a standard method. 

Some of the most powerful tools in signal processing perform badly at high 
dimensions. Therefore a very important part of preprocessing deals with the 
problem of dimension reduction. The general reasons involved for the failure of 
many classical signal processing methods at high dimensions are 

-The curse of dimensionality 
-The increasing complexity of many problems as the dimension increases. 
In the first part of this chapter, we will discuss these two problems. We 

should nevertheless not hide the reality: the true reasons for an unsatisfactory 
modeling are, more often than one wants to admit, not the signal processing part. 
In many cases, the failure to describe a problem correctly or to find a solution is 
related to the difficulty for the human brain to deal with more than 3 dimensions. 
For that reason, high-dimensional problems are often ill-posed and the following 
difficulties occur: 

-Missing variables 
-Inappropriate variables were chosen 
Other common problems are 
-Missing data 
-Wrong data 
-Noisy data 
Publication on these problems are scarce. Understandably, one prefers to 

report on a success than on failures. Also it is difficult to learn from failures as 
the necessary know-how is very often specific to a given and well specified 
problem. This situation is nevertheless unsatisfactory and may lead to a 
broadening of the gap between applications and fundamental research. 

Fortunately, one observes a new trend in many commercial signal processing 
tools. Many programs include diagnostics tools, often based on statistical 
methods, to diagnose automatically outliers, reject insignificant variables or even 
suggest that some results are most likely not significant due to a lack of data. 

In the next chapter, we will discuss preprocessing with a biased mind. We 
have selected a number of preprocessing methods and show how multiresolution 
may improve them. Among the multiresolution methods, we focus here 
essentially on wavelet theory. 

Wavelet preprocessing may be used in connection to many problems. Feature 
extraction, classification, modeling, data compression and denoising are the 
problems that have benefited most of multiresolution preprocessing. Different 
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goals may be set to the preprocessing stage. In image and speech processing, data 
reduction is very often the issue. Wavelet preprocessing permits to reduce the 
dimensionality of the problem. Wavelets can be also used to filter data, remove 
noise in data or to carry out a segmentation of the input space. Applications using 
wavelet preprocessing include fire detectors, filtering of satellite images, 
detection of emergency states in neurosurgical patients, quality control and 
inspection, denoising of magnetic resonance images, Chinese character 
recognition, face classification, image compression, classification of EEG 
signals, features extractions in seismic waves. Generally wavelet preprocesing 
results into the selection of a number of significant wavelet coefficients on which 
a standard processing method is applied (fig. 2.1). 

Neural Networks 

Classifiers (CART,...) 

Hidden Markov Model 

Fuzzy Logic 

Figure 2.1: Wavelet preprocessing has been used in a number of applications (image 
processing, pattern recognition, spectral analysis, controllers,...) in connection with 

standard signal processing methods. The preprocessing stage corresponds generally to 
selecting a number of significant wavelet coefficients for further processing with a 

standard method. 

Curse of dimensionality 

The curse of dimensionality is a term coined by Bellman (1961). It refers to the 
fact that in many problems, the sample size needed to estimate a function to a 
given accuracy grows exponentially with the number of variables. It is only in 
recent years, that this expression has taken a widespread significance. 
Paradoxically, it is only as an impressive computing power became available in 
the last years, that the implications of the curse of dimensionality became fully 
appreciated. This may be explained by the fact that the exponential growth of 
computing power has encouraged many industries and universities to address 
problems of increasing complexities in which the curse of dimensionality did 
strike more often than expected. 

Wavelet 
Decomposition 

Selection of 
significant 

Coefficients 
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The curse of dimensionality is about to become a new icon in signal 
processing, in the same class as the butterfly effect for chaos theory. One of the 
problems with the curse of dimensionality expression is that depending on the 
scientific community, the definition of the dimension is different. Take the 
example of an image. For the physicist, an image is essentially a two-dimensional 
object. For the mathematician, an image is often considered as a surface 
embedded into a 3-dimensional space, while in digital signal processing its 
dimension corresponds to the number of pixels. In Bellman's views, the curse of 
dimensionality refers to the exponential growth of hypervolume as a function of 
dimensionality. It corresponds the best to the signal processing vision. Beating 
the curse of dimensionality consists of finding through diverse preprocessing 
techniques an acceptable representation of the information with a reduced 
number of variables. 

The expression curse of dimensionality covers only one part of the problem 
described in the introduction. The second part consists of the increasing 
complexity of a problem with the number of inputs. In order to describe this 
aspect, another approach based on the classification of problems according to 
their difficulty is necessary. 

Classification of problems' difficulty 

The level of difficulty of mathematically posed problems may be measured by 
the time, number of steps and memory space required to solve them (respectively 
time complexity, computational and space complexity). Much effort in 
mathematics have been made to characterize the computational complexity of 
problems. One often distinguishes between so-called easy and hard problems. 
Depending on how the number of steps necessary to solve a problem scales with 
the size of the number N of inputs, the problem is defined as easy or hard. 

An easy problem is a problem that is verifiable and solvable in polynomial 
time. This means that a known algorithm is guaranteed to terminate within a 
number of steps, which is a polynomial function of the size of the problem. 

A very hard problem is a problem, that is neither solvable, nor verifiable in 
polynomial time. Many problems may be classified into an intermediate class, the 
so-called NP problems. A problem is NP if no polynomial function of the number 
of inputs N describes correctly the increase with N of the number of necessary 
steps to solve the problems with a deterministic Turing machine/algorithm, but a 
solution is verifiable in polynomial time 

Finally a problem is called NP- hard if solving it in polynomial time would 
make it possible to solve all problems in class NP in polynomial time (Garay, 
1979). 
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An important example of an NP-hard problem. 
From the point of view of soft computing, an important NP-hard problem is 

the determination of an optimal approximation of a signal using a redundant 
dictionary (see definition below). It follows that 

-the search for an optimal decomposition of a signal using a redundant 
wavelet dictionary is NP-hard problem. 

-the search for an optimal fuzzy controller using a redundant dictionary of 
membership functions is NP-hard 

Definition: dictionary/optimal approximation 
Let H be a N-dimensional Hilbert. A dictionary D for H is a family of 

functions g; of norm 1 in H, such that linear combinations of functions g j in the 
dictionary are dense in H. The smallest possible dictionary is called a base of H, 
while the dictionary is redundant otherwise. We define an optimal approximation 

f of a function f, to be a linear combinations of functions g; in the dictionary 

such that II f -f 11 is minimum. 
Summarizing the above discussion, we conclude that in many problems there 

are two curses to face. On the one hand, the curse of dimensionality that leads 
with increasing dimension to an exponentially growing dataset. On the other 
hand, many problems, such as decomposing optimally a signal with a redundant 
dictionary are NP-hard. The number of operations necessary to solve them 
increases also exponentially with the size of the dictionary. 

A possible strategy to fight the double curse is to reduce the dimension of the 
problem and/or the accuracy of the requested solution to the problem. We discuss 
below these two approaches. 

Dimension reduction 

The Karhunen-Loeve transform is the classical linear method to reduce the 
dimension of a dataset with a projection technique. The Karhunen-Loeve method 
corresponds to a change of basis. The new basis is formed by a linear transform 
of the original orthogonal basis. The Karhunen-Loeve method is the ideal method 
to reduce the dimension of a dataset of gaussian random vectors. The dataset 
approximated on the most significant Karhunen-Loeve basis minimizes the error 
in comparison to any other linear basis transform. 

If the number of different bases is large, then the Karhunen-Loeve method 
becomes intractable. This is the case of many on-line problems. For such cases, a 
principal component analysis may be approximated by using neural networks, 
such as for instance Oja' s network. The Karhunen-Loeve method is often more 
efficient on preprocessed data. We present an example (the problem of finding 
the best coordinates to represent data in a fuzzy system) for which wavelet 
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preprocessing is necessary in order to implement efficiently the Karhunen-Loeve 
transform. 

In nonlinear problems, the Karhunen-Loeve transform does not generally 
furnish good results. Nonlinear projections techniques are possible alternatives. 
Projection pursuit regression and exploratory projection pursuit have been 
applied with success to a number of problems. In recent years, these methods 
have been completed by wavelet-based methods. The best basis and the matching 
pursuit algorithms are two good examples of wavelet-based methods. The best 
basis corresponds to searching within a redundant basis, an orthogonal basis that 
approximates best the Karhunen-Loeve basis by minimizing an entropy function. 
The matching pursuit searches iteratively for the best matching between a basis 
contained in a dictionary and some portion of a signal. The algorithm is a greedy 
algorithm, in the sense that the contribution of the best matching basis is removed 
from the signal and the algorithm iterated on the residue. 

Karhunen-Loeve transform (principal components analysis 

Principal component analysis is the classical linear method to search for a low 
dimension space to embed data. A principal component analysis consists of a 
Karhunen-Loeve transform. The Karhunen-Loeve transform corresponds to a 
change of basis. It furnishes an orthogonal basis of vectors that represent optimal 
direction of projections. The new basis corresponds to the eigenvectors of the 
covariance operator R[n,m] = E{Y[n] Y*[m]}. 

For random gaussian vectors Y of zero mean, the realizations of Y 
(sometimes called objects) define a cloud of points in 9TN. The Karhunen-Loeve 
transform furnishes an orthogonal basis of vectors gn giving the directions of the 
principal axes of the cloud. The most useful properties as well as the limitations 
of the Karhunen-Loeve may be understood from the theorem below (Vetterli, 
1995). The theorem states that provided the data points are randomly distributed, 
the Karhunen-Loeve transform is the ideal tool to determine the optimal low-
dimensional representation of data. The error obtained by removing the 
dimensions corresponding to the lowest eigenvalues equals the sum of the 
removed eigenvalues. A central condition in the theorem is that Y is a random 
vector. If this condition is not fulfilled, the process may be highly non-uniform 
and the Karhunen-Loeve may not provide good approximations of the process. In 
these cases, a nonlinear dimension compression method is generally necessary. 

Theorem: 

Let {gm}o<m<N be an orthogonal basis such as a gaussian random vector Y of zero 
J V - 1 

mean can be decomposed as Y= £_l<Y,gm> gm. Define YM, as 
m=0 

YM = Z_!<Y,gm>gm For all M>1, the approximation error 
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s(M)= E{ IIY-YM II2 } is minimum if and only if {gm}o<m<N is a Karhunen-Loeve 
basis ordered by increasing eigenvalues EL 

Figure 2.2: Principal component analysis with Oja's networks, a) the principal component 
gives the main direction of the data, b) example showing the failure of the principal 

component analysis approach for nonlinear data. 

Principal components analysis can be implemented also with neural networks 
(fig. 2.2). In comparison to the normal computation method, these networks have 
the advantage that they can be computed on-line without having to store the 
covariance vector as in the matrix approach. Several types of neural networks 
have been used to extract the main component of the signal. Let us mention for 
instance the bottleneck networks (Baldi,1989) and Oja's networks (Oja, 1982). 
The network searches for projections Ax of the data that maximize the correlation 
tox. 
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Search for good data representation with multiresolution principal 

components analysis 

Many problems in soft computing correspond to finding out a good description of 
a control surface. The description of some knowledge can often be very much 
simplified by choosing the right cartesian axis. For instance, the complexity of a 
fuzzy controller may be sometimes considerably reduced if the membership 
functions are chosen according to a preferred direction of the data. This is 
achieved by rotating the axis such as the control surface becomes aligned 
according to the preferred direction. 

y I PCI 

Figure 2.3: Principal components analysis of the points defined on a square grid: a) Input 
data; the first principal component is along the x-axis; b) Wavelet coefficients; The first 

principal component gives correctly the main direction of the triangular bump in fig. 2.3a. 
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Consider the surface in fig. 2.3a defined on a regular grid. The surface is 
defined by the value f(i,j) of the function on a regular two-dimensional grid, 
defined by its coordinates (i j ) . The naive processing of the data points with a 
PCA of the input vectors (ij,f(ij)) gives a principal axis that is not well 
correlated to the direction of the triangular bump. This can be corrected by 
preprocessing the data first with a wavelet transform to obtain the wavelet 
coefficients d. In a second stage, the vectors (i'j',d(i',j')) with an absolute value 
above a given threshold are processed with PCA. Figure 2.3b shows a one level 
wavelet decomposition of the surface in fig. 2.3a with a one-dimensional Haar 
wavelet. The correct main direction is given by the PCA of the wavelet 
coefficients. 

The method can be further improved by weighing the different data points 
with their corresponding wavelet coefficients. 

Y = 

d r i - i i d i , i-Ji 

Vdmax,max • ' m a x d max.max 'J max j 

(2.1) 

Figure 2.4 shows that the weighing of the different points with wavelet 
coefficients has the effect to concentrate the points with low wavelet coefficients 
towards the origin and to give more weight to the points containing much energy 
(high values of d). 

Figure 2.4: Illustration of the principal component analysis method using the transform 
defined in.(2.1). The projection on the plane of the original points are shown in fig. 2.4a. 

The main component is given by the line assuming d=l for all points, b) The wavelets 
coefficients of the points marked as diamonds are assumed to have lOOx larger 

coefficients (d=T00) than the points marked as squares. The main line gives the direction 
of the principal component, which is almost aligned with the direction given by the 

diamonds. 

The above method can be also applied to different problems. Recently, a 
number of applications have demonstrated the potential of multiresolution PCA 
methods. In those applications, features are extracted by combining the ability of 



42 Wavelets in Soft Computing 

PCA to decorrelate the different variables with the tendency of orthogonal 
wavelets to decorrelate signals. After the PCA of the wavelet coefficients is 
carried out, only a number of relevant features at different resolution levels are 
kept for further analysis. 

Feng et al. (2000) show that face recognition based on PCA is improved if 
the principal component analysis is carried out on a midrange frequency subband. 
Okimoto and Lemonds (1999) claim that principal component analysis in the 
wavelet domain provides powerful features for underwater object recognition. 
Bakshi (1999) reviews multiresolution principal analysis in process monitoring. 
In the same spirit, Szu et al. (1998a) have combined wavelet preprocessing to 
independent component analysis (Szu, 1998a). 

A different approach was used for fusion of satellite images (Jun Li, 1999). In 
that approach, images are first analyzed with a PCA. The k-principal components 
are subsequently decomposed with wavelets. Finally, low-resolution images are 
enhanced by adding the wavelet coefficients of the k-principal components of 
high-resolution images. 

Projection pursuit regression 

Parameter estimation becomes often unpractical in a high-dimensional space due 
to the sparseness of the data. The dimension of the problem can be reduced by 
projecting the data in several low-dimensional spaces. The purpose of projection 
pursuit regression (Friedman, 1981) is to find simple approximations of a 
function f(x) from n observations. The first stage consists of estimating a vector a 
e 9td and a smooth function g, such as a spline or a polynomial, that minimize 
the residue ri with 

r,=f(x)-g(aT-x) (2.2) 

The process is iterated, starting from the residue r; ( i>l), till the residue is 
small enough. Dimension reduction is achieved by keeping the largest values of a 
and setting the others to zero. 

Exploratory projection pursuit 

Exploratory projection pursuits are methods that search for interesting low-
dimensions projections. The basic motivation to the method is furnished by the 
observation that the projection of mixtures of gaussian distribution (typically 
d>10) to a low-dimensional space (typically d=2) is normal (Diaconis, 1984). An 
interesting projection is therefore a projection in a low-dimensional space that 
differs strongly from a gaussian distribution. A projection index is used to 
characterize the projection. Exploratory projection pursuit searches for 
projections that maximize the projection index. Different indexes can be 
employed and we refer to Huber (1985) for a review paper. 
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Strong connections do exist between exploratory projection pursuit and 
neural networks. Back-propagation can be regarded as a projection pursuit., the 
mean-squares error taking the role of a projection index. The unsupervised BCM 
neuron can also be interpreted as a projection pursuit algorithm (Intrator, 1992). 
The above methods have been used in various speech or face classification 
problems and in unsupervised feature extraction problems. 

Dimension reduction through wavelets-based projection 
methods 

Best basis 

The best basis method is, together with the wavelet matching pursuit algorithm 
(Davis, 1994), the main wavelet-based algorithms for dimension reduction. The 
best basis (Coifman, 1992) consists of choosing a redundant basis of orthogonal 
functions to compress the signal. The orthogonal redundant basis is chosen such 
as the decomposition algorithm may be obtained from one set of filter 
coefficients. 

The algorithm is best understood, if one starts from the wavelet 
decomposition algorithm. In the wavelet decomposition algorithm, the wavelet 
coefficients are computed with a decomposition tree made of a cascade of filters. 
At each decomposition level, the signal is decomposed into a low frequency and 
a high frequency component. At the next decomposition level, the low-frequency 
component of the signal is processed after decimation with the same two filters 
(fig. 2.5b). Using the same two filters, a large number of different signal 
decomposition are possible, by processing the high-frequency components of the 
signal further. A full decomposition tree at level J is given by the 2J possible 
decompositions with 2 orthogonal filters. Each node corresponds to the 
projection on a different function. Each basis function is orthogonal to the other 
bases. The full decomposition tree for J=3 is represented in fig. 2.5b. The best 
basis method searches for a subtree (fig 2.5c) in which the signal is optimally 
projected. The best basis algorithm furnishes a method to choose a good basis for 
data compression among the set defined by the full tree. 
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Wavelet Decomposition 
Tree 

a) 

Full Decomposition Tree 

b) 

Example of a partial 
Decomposition Tree 

Low-pass 

High-pass 

c) 

Figure 2.5: Different decomposition trees: wavelet decomposition tree, full 
decomposition tree, partial decomposition tree. The best basis method determines the 

partial decomposition tree that minimizes the entropy of the decomposition coefficients. 

The search for the best basis among a dictionary of orthogonal bases consists 
of finding the basis that minimizes the approximation error: 

-5>f'9" (2.3) 

This search requires very often too much computing time. The problem can 
be simplified, to the cost of optimality, by searching to minimize a cost function 
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y(x). The best basis is obtained by minimizing this cost function. The chosen 
basis is the partial tree with the minimum value of the cost function. 

£Y(|<f,gm>f#||2) (2-4) 
m 

For orthogonal wavelets, the entropy function S(x)= -x log x is taken and the 
best basis is obtained by minimizing the cost function. 

£S(|<f,gm>|2)/||f|2) (2.5) 
m 

This cost function has the advantage to be additive. The methods of dynamic 
programming can be used, what simplifies much the search. Generally speaking, 
it can be shown that the basis that minimizes the cost function in (2.5) 
corresponds to the Karhunen-Loeve basis. Since the Karhunen-Loeve basis does 
seldom belong to the dictionary, only a suboptimal solution is found by the best 
basis method. It follows that the best basis can be regarded as a method of finding 
a basis among a dictionary of redundant basis that approximates best the minimal 
cost function obtained by the Karhunen-Loeve method. In comparison to the 
Karhunen-Loeve algorithm, the best basis is much more efficient computationally 
and furnishes in most cases a signal approximation of a lower complexity than 
the Karhunen basis. Since, the best basis furnishes an approximation of the 
Karhunen-Loeve basis, the best basis algorithm is sometimes described as a fast 
Karhunen-Loeve transform (Wickerhauser (1992)). 

Let us describe the best basis in more details. Given a function or an indexed 
datafile f, the entropy of the energy distribution on the basis B={gn},with N basis 
function gn, is according to (2.5) 

N |<f,qm >| l<f,gm >l 
S(f,B) = - 2 ' , „2 ' loge' 72 ' 

m=i |ff |ff 

The entropy function is additive in the sense that for any orthonormal basis 
B0 and B) of two orthogonal spaces, one has 

S(f,B) = S(f,B0uB,) (2.6a) 

with B = B 0 uB, (2.6b) 

The best basis algorithm works as following 

Step 1: 
Choose a mother wavelet \\i and construct a full decomposition tree till level 
J. Compute the different S(f,B(j,k,)) with B(j,k) the basis corresponding to the 
node (j,k) in the full decomposition tree. Set j=J-l. 
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Step 2: 
Prune each tree by iterating the following operations till j=0 

If S(j,k) < S(j+1,2 k)+S(j+l,2k+l)then 
remove node (j+l,2k) and (j+l,2k+l) else 
set S(j,k) equal to Sfl+1,2 k>f SQ+l,2k+l) 

j=j-l 
The best tree is given by the pruned tree with the minimal entropy found by 
the above algorithm. Figure 2.6 illustrates the algorithm with an example. 

S(f,B34UB35)<S(f,B22):Keep 
nodes (3,4) and (3,5) 

a) 

S(f,B34UB35)>=S(f,B22): 
Remove nodes (3,4) and (3,5) 

b) 

Figure 2.6: Example showing the pruning algorithm of the best basis discriminant 
algorithm on the lowest level of decomposition for the two main cases: 

a) S(f,B) > S(f,Bl u B2); b) S(f,B) < S(f,Bl u B2). 
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For non-orthogonal wavelets, the best basis is generally implemented using a 
different cost function: 

£S(|<f,gm>| )/|f| ) (2.7) 
m 

Matching pursuit 
The dimension of a signal can be decreased by determining a good 
decomposition of a signal as a weighted sum of a small number of wavelets. 
While the best basis algorithm uses a dictionary that can be all constructed from a 
single set of filter coefficients, the matching pursuit uses a generally much larger 
wavelet dictionary, that cannot be constructed from a single set of filter 
coefficients. For a general dictionary, the best basis algorithm does not work and 
a different algorithm, for instance the matching pursuit, must be implemented. 
The matching pursuit is a greedy algorithm. At each iteration a function that 
matches well some part of the signal is searched into the dictionary (Fig. 2.7). 
The contribution of the signal projection on this wavelet is removed and the 
process repeated with the residue. The algorithm is stopped when the norm of the 
residue is below a given threshold. More formally, consider a function f to be 
approximated as a sum of functions contained into the dictionary. The first step in 
the algorithm consists of finding, with brute force, a basis function g; such as 

|<f,gi >|>P-supy|<f,gv >| (2.8) 

with 0<P <1 and y indexing the different functions in the dictionary. 
The function f can be rewritten as 

f=<f , g i >-g i + Rf (2.9) 

With Rf the residue. Since the residue is by definition orthogonal to g0, the 
following relation is fulfilled: 

|f||2=|<f,g0>|2+||Rff (2.10) 

It follows that the residue decreases at each iteration step. The convergence 
rate is related to the value p. Roughly, the smaller is p, the slower is the 
convergence rate (For an exact computation of the convergence rate, see Mallat 
(1993)). 
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RESIDUE 

Figure 2.7: Illustration of the matching pursuit. The matching pursuit is a greedy 
algorithm. 

Exploratory knowledge extraction 

Finding the right model may represent a very large investment in effort and time 
towards a good description of a dataset. The search for good indicators and 
indexes in finance is a typical problem. Also, the modeling of sensors may need 
some extensive basic research work. During modeling of a complex unknown 
process from data, it is important to determine first what are the important 
variables and how much nonlinearity is necessary to obtain a satisfactory model. 
We will present two simple methods that we found to be quite useful for data 
exploration at a very early stage. 
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Detecting nonlinear variables interactions with Haar wavelet trees 

The number of vanishing moments of a wavelet is related to the degree of the 
maximal order polynomial such as the projection of the polynomial on the 
wavelet is zero. A wavelet has n vanishing moments if 

t k x F(x)dx=0,(k<n) (2.11) 

By definition, the projection of any n-1 order polynomial on a wavelet with n 
vanishing moments is zero. This property of wavelets can be used in exploratory 
data analysis to detect low-order nonlinear interactions. Let us illustrate the 
method with a simple example using the Haar wavelet. 

xtcr 

0 0 

0 0 

Figure 2.8: The Haar decomposition of a surface with a wavelet tree decomposition 
permits to discover low order interactions between data. 

The Haar wavelet has one vanishing moment. Generally speaking, a wavelet 
transform with n vanishing moments can be put under the form of a differential 
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operator, equivalent to taking the n derivative. Therefore, the Haar transform is 
related to the first order differential operator. The wavelet coefficients obtained 
from a one level decomposition with Haar wavelets are proportional to the 
derivative of the surface along the considered direction. Similarly, the one-level 
wavelet coefficients of the derivative is linearly proportional to the second 
derivative. This property of the Haar wavelet can be used to discover nonlinear 
interactions between variables. Consider the function y3(xj,Xj)=Xj2 Xj with (0< Xj,Xj 
<65, Xj,Xj integer). Figure 2.8 shows part of a decomposition tree. The first 
surface corresponds to the input data. After a wavelet decomposition along the x;-
axis, the surface defined by the wavelet coefficients is proportional to Xj. A 
further wavelet decomposition along the Xj-axis results into a plane. Finally, a 
decomposition along the Xj-axis results into equal and nonzero coefficients. From 
the above decomposition, one deduces that the equation of the original surface 
contains an interaction term in X;2 Xj. Generally speaking, the identification of 
decomposition levels with large and equal coefficients is a good indicator for 
low-order nonlinear interactions between variables. 

If the signal is a sum of terms with different interaction orders, the interaction 
terms at the highest order are identified and removed from the signal through an 
inverse decomposition in which all high order terms are set to zero. The same 
procedure is repeated till the low-order terms are identified. The method is quite 
efficient also when the signal is noisy. In this case, the Haar wavelet 
decomposition smoothes the signal by filtering out some of the high-frequency 
noise. A slightly different approach has been taken by Flehmig et al. (1998) to 
identify trends in process measurements. The method relies also on the fact that 
the number of vanishing moments is related to the degree of the maximal order 
polynomial such as its projection on the wavelet is zero (eq. (2.11)). The data are 
fitted to a m* order polynomial through least-squares and the residue is taken to 
quantify the goodness of fit. The residue corresponds to the energy contained in 
the low resolution wavelet coefficients. A threshold may be set to the residue, 
below which a trend is validated. We would like to point out that Flehmig's 
approach can be greatly simplified by taking mth order splines. As mth order 
cardinal B-splines form a basis for mth order polynomials, a wavelet 
decomposition of the data is sufficient to fit the data to a mth order polynomial. 
Despite the fact that biorthogonal splines wavelets are non-orthogonal, the 
squared values of the low-order coefficients characterizes well enough the 
goodness of fit. This approach is computationally much less demanding than 
Flehmig' s approach as no least-squares computation is necessary. The strength 
of the method is its capability to detect trends locally at many different 
resolutions and to allow for nonlinear polynomial trends search. 

Discovering nonsignificant variables with multiresolution techniques 

Assume a databank containing the output data yk as a function of a number of 
input variables. As an example, y^ may be the output of a sensor in volts and the 
input variables may be temperature, time, humidity, luminosity,.... In many cases, 
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the databank may contain irrelevant data or noisy data. The problem is now to 
identify which variables are relevant before using standard modeling tools for 
learning or knowledge discovery. The multiresolution approach uses the 
following procedure. After having approximated the different data on a fine grid, 
data are preprocessed with a standard multiresolution analysis using one variable 
at a time. For instance, if there are two input variables xj and x2, then the output 
data yk is given by a matrix. A one level wavelet decomposition of the rows is 
carried out, followed by a one level of decomposition of the columns. This 
process is then carried out as many times as necessary to reach a level with a very 
low resolution level. 

Let us define the projection indices Ei(x;) ,E2(Xi) ,...,EL(xi),...Ej(Xi) for a given 
variable Xj. The projection index EL corresponds to the normalized energy 
contained into the wavelet coefficients at level L. 

EL(X;)= X d 2 L ' n ( X ' ) / Z E ' ( X i ) (2'12) 

n=l,...,2L-1 1=1,...,J 

Depending on the values of the projections indices, the variable may be 
assumed to be significant or not. If data are not noisy, then variables having only 
low projection indices should be discarded. The interpretation of the indices is 
more difficult for the case of very noisy data. As a guideline, very similar values 
of the projection at all levels is an indication that the signal may be simply a 
white noise signal along the variable x;. Let show how to interpret the indices 
with two examples. 

As a first example, consider the function yi(i, j)=0.04 i 

with (0<ij<65, i j integer). 

Figure 2.9: a) Surface given by the equation y^i, j)=0.04 i; Projection indices along the 
axis X! and x2 for the curve in fig. 2.9a. 

The output function yi(i, j) is independent of the variable x2 and only depends 
on xL All the wavelet coefficients corresponding to the decomposition along the 
x2 axis are zero, while the wavelet coefficients along the second axis have non-
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zero values (Fig. 2.9). This means that the variable x-z can be discarded and the 
variable Xi can be most likely modeled at low resolution. If a control surface 
given by the above equation has to be modeled with a fuzzy controller, then a low 
granularity is sufficient. 

A somewhat more difficult case is furnished by the second example. This 
example is more difficult in the sense that there is no unique interpretation of the 
projection indices. Consider the function y2(ij) =0.04 i +rand(i,j) with (0<ij<65, 
i,j integer and rand(ij) a uniformly distributed random number between [-1,1]). 

Figure 2.10: a) Same function as in fig. 2.9 except for some additional noise, b) 
Projection indices along the axis Xj and x2. 

The coefficient Ei(xi) corresponding to the lowest resolution level has the 
highest value. This suggests that the signal can be preprocessed so as to keep 
only the low-frequency component along the Xi-axis of the signal. The values of 
the coefficients Ei(x2) are very similar (Fig. 2.10). The signal along the x2-axis is 
characteristic of a white noise signal. In this case, one may try to discard the 
variable x2. Let us point out that the above situation may also occur under 
different circumstances. The signal may be deterministic but simply contains 
many components at various frequencies. In this case, a low-resolution modeling 
of the process will give quite bad results. 

Wavelets in classification 

Multiresolution analysis is obviously an important candidate method to discover 
important features in signals. On the one hand, it permits to compare features at 
different resolutions, a necessary ingredient in many images classification 
problems. On the other hand, multiresolution permits to identify features such as 
transients, edge, spikes that are often a fingerprint of the signal in many problems 
(speech processing, image processing, stock market fluctuations). 
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The contribution to classification problems of multiresolution analysis is two-
folded. In many classification problems, multiresolution has been used to 
decrease the complexity of the data to the extent that a standard classification 
method becomes feasible. A second interesting development has been the 
appearance of classification techniques based on the best basis. 

In a previous section, the best basis algorithm was introduced. The basic idea 
behind the best basis is to find a representation of a function by using an 
orthogonal basis that minimizes the entropy. The algorithm searches for a 
representation in which most of the signal energy is contained in a small number 
of coefficients, a low entropy representation. With slight modifications, the 
algorithm can be applied to classification. Instead of the entropy, the algorithm 
uses a different cost function: the relative entropy. The algorithm permits to 
extract a few important features (wavelet coefficients) that characterize well 
dataset belonging to different classes (Saito, 1994a, 1994b). In classification 
problems, the problem is not to find the best basis to compress a signal but to find 
a parsimonious signal representation which furnishes well-separated classes. In 
classification, the criteria for a good projection is a measure of the class 
separability. 

Classification with local discriminant basis selection algorithms 

The standard linear method in classification is the linear discriminant analysis. 
Linear discriminant analysis consists into bisecting the space with a number of 
hyperplanes. The method finds the bisection that minimizes the scatter of sample 
vectors within each class and maximizes the scatter of mean vectors between 
classes. 

Let Mc be the mean vector of class c and M the total mean vector: 

N 

Mc = l / N ^ X c 1 (2.13) 
l 

with Xc the N points belonging to class c 
The sample covariance matrix of class c is given by 

N 

Zc = 1 / N £ ( X C , -Mc).(XCi -M C ) T (2.14) 
l 

The within-class covariance is 

2 W =2X (2.15) 
c 

The between-class covariance is 

2b = £ ( M C - M) • (Mc - M)T (2.16) 
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The linear discriminant analysis maximizes the class separability index J(s) 
which measures how much the classes are separated. 

J(S) = tr[(ST2bS)-1(STSwS)] (2.17) 

The matrix S after solving is a diagonal matrix containing the eigenvalues. 
The matrix S describes a map ST Xj transforming the input space such as the class 
separability is maximized. 

The linear discriminant basis method does have the disadvantage to be a 
global method. In some cases, a local method is necessary to separate correctly 
the data in different classes. This may be carried out by using different 
approaches involving either neural networks, self-organized maps or alternative 
methods. One of these alternative methods is the local discriminant basis 
selection algorithm (Saito, 1994a, 1994b). The best basis approach can be 
adapted to the problem of finding a good basis to discriminate signals belonging 
to a number of different classes. 

Consider first a set of Nc one-dimensional training signals of same length 
belonging to a given class. The energy map of the class can be defined as 

r c ak , l ) = Z(ZWc? k l ) /2(5xc?) (2.18) 
c 1 c 1 

with j giving the level of decomposition, k the branch in the tree at this level 
and 1 the position. Wc represent the wavelet coefficients in the decomposition 
and Xc the original data. 

The Kullback-Leibler distance Dci>c2 between two classes (Kullback, 1951) 
can be computed from the energy map: The Kullback-Leibler distance is a 
measure of the relative entropy: 

Dcl,c2ak) = s r c l l o g ^ ^ (2.19) 
i rc2(j,k,i) 

The relative entropy is asymmetric. If a symmetric quantity is preferred, one 
can use the expression: 

D = Dcl c2 + Dc2cl = 

i/2(Y rcl logi^M + rc2 log1^1)) <2-20> 
T rc2(j,k,i) c2 s r c l ( j , k , i / 

For several classes, one may take as measure of the relative entropy, the sum 
of all individual two-classes relative entropy. The algorithm to find the best basis, 
also called the local discriminant basis selection algorithm is very similar to the 
best basis algorithm. The relative entropy function D is additive in the sense that 
for any orthonormal bases B0 and B] of two orthogonal spaces, one has 

D(f,B) = D(f,B0uB,) 

with B = B0 u B! 
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It follows that the method of dynamic programming can be applied to search 
for the best basis. The best basis in of the discriminating power is the one that 
minimizes the relative entropy. The algorithm works as follows: 

Stepl: 
Choose a mother wavelet and construct a full decomposition tree till level J 
for the training data in each class. Compute the different relative entropies 
D(j,k) with j the decomposition level and k the position of the node in the 
decomposition tree. Setj=J-l. 

Step 2: 
Prune the tree by iterating the following operations till j=0 

If D(j,k) < D(j+1,2 k)+D0+l,2k+l) then 
remove node (j+l,2k) and (j+l,2k+l) else 
set D(j,k) equal to D(j+1,2 k)+D(j+l,2k+l) 

Step 3: 
Keep the k most discriminant basis functions to construct the classifier. 
Figure 2.11 shows a single step of the algorithm on the lowest level of 
decomposition for an given tree. 

D( f ,B 3 4 UB 3 5 )< D( f ,B 3 4UB 3 5 )>= 
D(f,B22): Keep nodes D(f,B22): Remove 

(3,4) and (3,5) nodes (3,4) and (3,5) 

Figure 2.11: Example showing the pruning algorithm of the best basis discriminant 
algorithm on the lowest level of decomposition for the two main cases: a) D(f,B) > 

D(f,Bl u B2); b) D(f,B) < D(f,Bl u B2). 

Classification and regression trees (CART) with local discriminant basis 

selection algorithm preprocessing 

Local discriminant analysis can be combined with CART (Classification And 
Regression Tree). CART is a statistical model conceived at Stanford (Breiman 
(1984). CART belongs to the class of binary recursive partitioning. Parent nodes 
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are always split into exactly two children nodes. The process is recursive because 
the process can be repeated by treating each child node as a parent. A so-called 
maximal tree is grown using a variable or a linear combination of variables to 
determine splits. The results are presented under the form of a tree structure. 
After the tree is considered as complete, the tree is pruned. Figure 2.12 shows an 
example of a binary regression tree. 

Class 1: 50 
Class 2: 50 

Class 1: 45 
Class 2: 5 

Class 1: 3 
Class 2: 43 

Class 1: 5 
Class 2: 45 

Class 1: 2 
Class 2: 2 

Figure 2.12: Example of a classification with CART. 

Saito (1994b) has shown that the classification of seismic signals with a tree 
gives significantly better results if the local discriminant basis selection algorithm 
is used to preprocess the data. In this approach the tree is grown on the signals 
represented in the local discriminant basis selection algorithm. The classification 
tree is carried out with a classification and regression tree (CART). 

As mentioned earlier, wavelets are not shift-invariant, which is sometimes a 
major drawback in classification problems. In order to solve this problem, shift-
invariant multiresolution representations have been tested (Saito, 1992). This 
shift-invariant multiresolution is based on so-called auto-correlation shells, 
formed by dilations and translations of the auto-correlation functions of 
compactly supported wavelets. The shift-invariance is introduced by using a 
redundant wavelet decomposition. Auto-correlation shells have two properties 
that makes them attractive. First, if an orthogonal wavelet is taken to build the 
auto-correlation, the auto-correlation is an interpolating functions. Second, a fast 
algorithm permits to compute very efficiently the projection coefficients on the 
different functions. 
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Applications of multiresolution techniques for preprocessing in 

soft computing 

This chapter gives a short review of the major achievements of multiresolution 
preprocessing techniques in connection to soft computing. Wavelets have been 
used in a significant number of applications. A review on wavelet transforms for 
pattern recognition can be found in Tang (2000) and in Szu (1999). Wavelet 
methods are implemented in a number of intelligent systems, for instance in 
power engineering (Ashenayi, 1997), for quality inspection of surface mounted 
devices (Brito, 1994), condition monitoring, inspection (Serrano, 1999) process 
monitoring in nuclear power plants (Schoonewelle, 1996) image enhancement 
(Qian, 1994) or registration in medical applications (Unser, 1996). Wavelet 
preprocessing has found a large range of applications in chemistry. In the 
following sections, we have selected a number of significant applications 
connecting wavelet preprocessing to soft computing. 

Neural networks 

A large number of applications combining wavelet techniques and neural 
networks use multiresolution analysis for preprocessing. Wavelet preprocessing 
serves typically the purpose of reducing the complexity of the problem, by 
selecting a number of characteristic features in the signal, features that are then 
fed to the neural network. Applications range from automatic target recognition 
(Park, 1997; Zhang Xun, 1996; Baras, 1994), face recognition (Foltyniewicz, 
1996), Thai character recognition (de Vel, 1995), analysis of underwater acoustic 
signals (Dawn, 1993). The success of these techniques is somewhat paradoxical, 
in the sense that wavelet decomposition is a priori not the best method for pattern 
recognition due to the lack of translation invariance. It may be explained by the 
fact that if the number of examples is large enough, the neural network will be 
trained to recognize the statistical correlations patterns between wavelet 
coefficients at different levels of resolution. A large range of neural networks 
have been implemented: perceptrons, Kohonen (Deschenes, 1995) and self-
organizing networks (Przylucky, 1997), cellular neural networks (Moreira-
Tamayo, 1996). 

Many applications of wavelet preprocessing are in the medical domain. 
Medical images are well suited to wavelet processing as often the information is 
contained in sharp edges or localized contrasts. Also the detection of life-
threatening situations in neurosurgical operations may benefit from 
multiresolution techniques. The patient state may be evaluated from wavelet 
processed data of the intracranial pressure (Swiercz, 1998). Several papers 
address the problem of automatic classification of EEG signals (Hazarika, 1997; 
Halgamuge, 1996) with multiresolution techniques. Denoising of medical 
images, for instance magnetic resonance images (Sarty, 1997), is also a classical 
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application of wavelet preprocessing. A very interesting application of wavelets 
must be particularly mentioned. Linkens (1997, 1998) and Abbod (1998) have 
developed a closed-loop controller for monitoring the depth of anesthesia for 
patients undergoing surgical operation. The system uses neurofuzzy and wavelet 
analysis to monitor and evaluate the depth of anesthesia based on the auditory 
evoked response signals, heart rate, and blood pressure. The system has been 
developed in close collaboration with anesthetists. Depending on the evaluation 
of the depth of anesthesia, a target concentration is decided by a rule based fuzzy 
controller which is fed to a target controller infusion algorithm. This application 
is a good illustration of the power of hybrid approaches combining several signal 
processing methods. 

Texture analysis has also benefited significantly from wavelet preprocessing. 
A number of articles consider the combination of wavelet preprocessing 
techniques together with a neurofuzzy classifier. Wang et al. (1996, 1997a) have 
followed such an approach to classify textures with a fuzzy ART model. Westra 
(2000) describes the application of wavelet and neurofuzzy classification 
techniques to identify defects in printed decorations. Wavelet preprocessing has 
been implemented also in a system classifying automatically clouds. Features 
from clouds' texture are extracted and fed into a neural network in order to 
determine the type of a cloud (Shaikh, 1996). 

A further application domain is signal enhancement, for instance to enhance 
characteristic features in face recognition problems or in quality controls (Ko, 
1995). 

We would like to mention a number of interesting applications in sensors that 
combine wavelet preprocessing to neural networks. Pratt et al. (1995) use wavelet 
methods to preprocess signal from electromagnetic sensors in order to diagnose 
the depth and nature of buried waste. The method is non-invasive and the success 
rate is quite high. Using force, strain or vibration sensors, the condition of tools 
can be estimated (Kamarthi, 1997; Zhou, 1995). Another application is automatic 
sensor recalibration (Padgett, 1998; Kunt, 1998). Gas sensors or electronic noses 
are known to drift over time and to require from time to time a recalibration. As 
field recalibration is generally critical, recalibration should be done only when it 
is absolutely necessary to ensure the correct functioning of the sensors. The 
typical signature of sensors is used as criteria for deciding on whether a 
recalibration is required. 

Other examples are in the field of quality inspection and condition 
monitoring. In condition monitoring, the vibration signature measured from a 
number of strain or force sensors is compared to prototype vibrations. As an 
example, Samual et al. (1997) use piezoelectric strain sensors to identify the 
vibration signature from a planetary geartrain under faults conditions. In quality 
inspection, an image of an object is taken, for instance with a CCD camera and 
wavelet transformed. Defective pieces are found by comparing some wavelet 
extracted features to a template image. 
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Fuzzy logic 
Image processing is an important domain of application for multiresolution 
hybrid techniques. Besides the already mentioned applications in neurofuzzy 
techniques, a number of applications combine fuzzy logic to multiresolution 
analysis. Let us mention here image queries software using a fuzzy similarity 
matching of the wavelet transformed color image (Tolias, 1999). Hybrid methods 
combining fuzzy logic and multiresolution analysis have been also developed for 
contour extraction and segmentation (Wavelet-based contour extraction rely on 
the high-pass filter characteristics of the wavelet decomposition.) In those 
approaches, the wavelet preprocessed images are analyzed subsequently by a 
fuzzy system. Examples of applications in computer tomography of the brain and 
digital mammography can be found in Cheng (1998). 

Multiresolution analysis has been used in conjunction to fuzzy logic in 
automatic target recognition, tracking and image registration. The 
multiresolutional character of a wavelet decomposition is especially useful when 
the distance to an object is not known. Wang et al. (1997b) describe a computer 
vision system for automatic target recognition and tracking. Target recognition is 
carried out using a morphological neural network, while wavelet analysis is used 
for tracking. A fuzzy module integrates the results from different frames. 

Segmentation of an image can be enhanced by including information on the 
image texture. Betti et al. (1997) improve the texture discrimination on synthetic 
aperture radar data by using a fractal representation of the texture derived from 
the wavelet coefficients. 

A recent development has taken place in the domain of denoising. One of the 
most critical issue in wavelet denoising is the choice of the thresholding method 
and parameters. The choice of the thresholding parameters is generally based on 
relatively simple statistical criteria. A bad choice of the parameters leads either to 
overfitting or underfitting the data. Fuzzy systems have been proposed to 
determine adaptively the thresholding method or parameters (Shark, 2000). 

Genetic algorithms 

At time, the combination of multiresolution methods with genetic algorithm is 
still in its infancy. An important reason for that situation is that in many 
problems, the best basis or the matching pursuit algorithms are often superior to 
genetic algorithms (Lankhorst, 1995). Matching pursuit or the best basis 
approach are for instance the favored methods to determine a good wavelet basis 
in a dictionaryy. Nevertheless, there are situations for which genetic algorithms 
may be preferred. For instance, genetic algorithms can be implemented to select 
wavelets among a very large dictionary (Lee, 1999; Tagliarini, 1996). Such an 
approach has been used in texture classification (Naghdy, 1997) and radio 
transients identification systems (Toonstra, 1996). Also, some automatic target 
recognition (Wilson, 1996) and image registration systems have been optimized 
with genetic algorithms. The image is first preprocessed and well discriminating 
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wavelets coefficients are selected with the genetic search. Related approach were 
used by Chalermwat (1999) for image registration and Liao (1998) for texture 
classification. 

Genetic algorithms have also found applications in a number of other 
situations. Genetic algorithms are quite commonly used to optimize neural 
networks or systems of several neural networks in problems where a gradient 
descent is not optimal. It is therefore not surprising that optimization of wavelet 
networks with genetic algorithms have had some success (Yang, 1997). 

Hybrid methods combining genetic algorithms and multiresolution analysis 
have been tested in finance for trend analysis. Let us give here two examples. 
Recently, a fuzzy inference system for predicting stock trends has been designed 
by optimizing membership functions with a genetic algorithm (Kishikawa, 2000). 
The system predicts trends based on the multiresolution analysis of past data. The 
second application is on exchange rate forecasting. The method uses a neural 
network to predict future exchange rates. The efficiency of the network depends 
on the quality of the input data. Data are preprocessed by denoising them with a 
wavelet thresholding method (see 1.7.3). We have mentioned in the previous 
section, that finding a good threshold method for wavelet denoising is a very 
important and difficult problem. In that application, the value of the threshold is 
selected through a genetic algorithm (Taeksoo Shin, 2000). 

Genetic algorithms will find many more applications in connection to 
multiresolution analysis, especially in multi-objective optimization and search 
problems, or situations in which strong constraints are set on the space of 
possible solutions. As a final remark, we believe that part of the essence of 
genetic and evolutionary computing can often be expressed in the language of 
multiresolution. We show in part 8, that multiresolution analysis and genetic 
algorithm can be combined in wavelet-based genetic algorithms and 
multiresolution search methods. We refer to part 8 for more information. 

Application of multiresolution and fuzzy logic to fire detection 

Smoke detectors have suffered over many years of the so-called false alarms 
problem (Thuillard, 1994). A spectacular improvement was reached in the last 
years, due to the combined influence of more reliable components, better alarm 
organization and the appearance of high quality microprocessors in the low price 
segment. Signal processing is playing an increasing role in smoke detectors as 
more sophisticated algorithms are being developed. Fuzzy logic has had a central 
role in fire detection. The acceptance of fuzzy logic has been quite large after the 
first successful implementation of fuzzy logic in fire detectors. At the beginning, 
fuzzy logic has been used mostly in classifiers, while with time fuzzy logic did 
get used to describe the alarm surface in multisensors detectors. 
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Linear beam detector 

We would like to present two commercial products that have significantly 
benefited from fuzzy logic. The first example is a linear beam detector. The basic 
operation principle is documented in fig. 2.13. An energetic pulse is emitted by a 
LED and travel a distance between typically 5m to 150 m. The light is reflected 
back to the detector by a high quality retro-reflector. The detector will go into 
alarm, if a certain smoke level is in the beam path. 

Figure 2.13: A linear beam detector is a smoke detector in which light attenuation is used 
as alarm criteria. 
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Figure 2.14: The signal of the linear beam detector is analyzed on-line by a system 
containing a number of fuzzy rules. 

In order to prevent false alarms, fuzzy algorithms were developed that are 
capable of distinguishing the signature of non-fire (signal intermission due to a 
moving object: a bird or a truck, signal attenuation caused by mixing of cold and 
hot air,...) and fire events. In a first stage, features are extracted from the signal. 
These features are combined with a number of fuzzy rules (fig. 2.14). These rules 
serve two purposes, first to furnish a differentiated diagnosis of potential 
problems to the operator, and second to modify the alarm parameters depending 
on the diagnosis (Thuillard, 1996). 

The algorithms were developed with a neurofuzzy method, using a 
multiresolution Kohonen type of network for signal classification. Data were 
collected in extensive field testing and fire testing. Data were classified using a 
constructive multiresolutional approach. At first, the network was optimized with 
only two membership functions per variable using a Kohonen network to 
determine the best partition and a simulating annealing method to optimize the 
shapes of the membership functions (fig. 2.15). The rules were then validated and 
the data corresponding to the validated rules were removed. The procedure was 
repeated by splitting the membership functions in two new membership functions 
to refine the fuzzy rules. 
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Figure 2.15: a) A Kohonen-based neurofiizzy system was developed and implemented 
during the development of the rule-based fuzzy system, b) A multiresolutional approach 

permits to add new membership functions iteratively. 
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Flame detector 

Wavelet theory can be combined into an efficient spectral analysis method. We 
would like to discuss an example in some details to illustrate the power of the 
method. Flame detectors use pyroelectric sensors to record in the infrared domain 
the radiation emitted by flames. Flame radiation is measured at three different 
wavelengths. 
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Figure 2.16: A flame detector records the radiation of a flame at a number of 
wavelengths. The signal is analyzed with a number of rules in the spectol domain and in 

the frequency domain. 

Flame detectors must be sensitive enough to detect small fires, but must not 
be fooled by deceptive phenomena. Sun radiation and strong lamps are the main 
dangers for flame detectors. The ratio between the sun and a flame radiation is 
much lower in the infrared than in the visible range. For that reason, the radiation 
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is measured in the infrared domain and not in the visible. Even in the infrared, 
sun radiation is typically much larger than the radiation of the smallest fires, one 
wants to detect. By chance an hydrocarbon fire is characterized by two features. 
First the flame pulsates and second the flame emits strongly around 4.3 fim, the 
emission line of C02 (fig. 2.16). The ratio between the signal at the different 
wavelengths and the spectral analysis of the flame fluctuations can be used to 
characterize a true fire (Thuillard, 1999c). The spectral analysis is carried out, on
line, by a method combining fuzzy logic to wavelet analysis (fig. 2.17). 

?sis 

Decision Algorithms 

Fuzzy logic 

Figure 2.17: Spectral analysis, feature extraction and classification are made by 
combining fuzzy logic and wavelet analysis. 

Under laboratory conditions, an hydrocarbon fire pulsates at a Yety regular 
frequency in the range between 0.5 Hz to 13 Hz. The larger the fire, the smaller is 
the pulsation frequency. A very simple law describes the pulsation frequency. 
The pulsation frequency is inversely proportional to the square root of the fire 
diameter. Amazingly, the pulsation frequency is in first approximation almost 
independent of the fuel. This can be explained by the fact, that a purely 
hydrodynamics instability causes the flame to oscillate. This instability is due to 
the density difference between the very hot air and the surrounding air flow, 
giving raise to an unstable gravity wave. We have suggested that the regular 
flame pulsation results from a resonant effect, that takes place, when the 
wavelength of the gravity wave is in a simple ratio to the fire diameter. 

In real world applications, the regular flame pulsation may be easily 
perturbed. For instance, if a window is open, then an air drought may destroy the 
regular flame pulsation. We found out that even under those circumstances, flame 
pulsation still has some typical features. In order to understand why, we did cany 

Detector 

i Y V *' \* 

Signal 

Wavelet ana! 

>1 • • • • 

111 



66 Wavelets in Soft Computing 

out a number of controlled experiments with oscillating membranes. With such 
experiments, we have been capable to show that external perturbations couple 
parametrically to a flame. 

Flame pulsation can be quite well modeled by a self-excited van der Pol 
oscillator with parametric coupling (Thuillard, 1999b): 

X + co0 • X + a • (X2 - K) • X = F(co,t) • X (2.21) 

with F(co, t) describing the perturbation, a and K constants, ra0 the natural 
pulsation and X the average flame radiation. 

Figure 2.18 compares the pulsation of a flame excited with an oscillating 
membrane to the van der Pol model. At low excitation, the flame does couple to 
the membrane oscillating at a frequency of the order of the natural flame 
pulsation frequency. As the amplitude of the excitation is increased, a bifurcation 
to the subharmonic takes place. The flame begins to pulsate at exactly half the 
excitation frequency. The comparison of many experiments with very different 
excitations did furnish a qualitative understanding of real world situations. The 
final outcome of this research was a catalog of the possible flame fingerprints. 
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Figure 2.18: Fundamental research on the physics and dynamics of flames did lead to a 
new model of flame pulsation, a) In an experiment, a flame was excited with an 

oscillating membrane. Depending on the amplitude of the oscillation, the flame does 
synchronize on the excitation frequency or period doubling is measured, b) The 

experiment can be modeled qualitatively very well with a forced van der Pol model. 

The exploitation of these fundamental research results did require an efficient 
spectral analysis method to recognize the different fingerprints. Short time 
Fourier transforms in combination to a classifier was considered. The necessary 
power was too high for the microcontroller at our disposal (The main limitation is 
given by the electric power required for computation, not the computing power of 
the microcontroller. Very low electric power is allowed in fire detection to permit 
battery operation in emergency situations, where the normal power supply may 
be down!). 

An alternative to the Fourier transform was furnished by wavelet theory. 
Recall first, that a wavelet decomposition can be carried out by using a cascade 
of filters. A filter is associated to each level of resolution of the wavelet 
decomposition. For orthogonal wavelets, the energy conservation relation holds. 
It follows that the low-pass and the high-pass filters corresponding to the two 
decomposition filters for the first level of decomposition fulfill the power 
complementarity condition, as illustrated in fig. 2.19. 

ZI T
m ( r o >f + | T lowH 2 = 1 

m=l...p 

(2.22) 
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In a wavelet decomposition, the signal after low-pass filtering and decimation 
is filtered with the very same two filters. This corresponds to splitting the low-
frequency filter band into two new bands. 

S|TmH2
+ |T l o w(a))|2=l 

m=l...p 

Figure 2.19: The filters associated to a one level wavelet decomposition fulfill the power 
complementarity condition. 

At any decomposition level, the corresponding filters do fulfill the power 
complementary condition. The filter transmission functions in fig. 2.20 can be 
interpreted as fuzzy variables, for instance low frequency or very high frequency. 
The degree of membership nT are estimated from the wavelet coefficients by the 

expression (Thuillard, 1997, 2000a): 

uTTm) = £ (d m > n ) 2 / ( ^ ( d m , „ ) 2 +5>iow.n)2) (2.23) 
n m=l n n 

The method possesses a number of advantages. The spectral analysis and the 
classification stage are blended into a set of fuzzy rules of the form: 

if (frequency in spectral band 1 is A AND....) (2.24) 
then... 

With this approach, fuzzy rules in the frequency domain are simple and 
computer efficient. Rules in the frequency domain can be combined to rules 
describing other important criteria in flame detection, such as for instance the 
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degree of correlation between the signals in the different spectral bands. The 
analyzing wavelet function must be taken with great care. It determines the filter 
transmission as well as the number of coefficients. At a fixed sampling rate, the 
filter length determines essentially the time resolution of the method. 

Tm(co) 

4 6 8 10 12 14 16 

Frequency(Hz) 
f* 

Filter 

Figure 2.20: By cascading filters, a series of filters fulfilling the power complementarity 
condition is obtained. The transmission functions can be interpreted linguistically as 

membership functions. 

The spectral analysis can be made very flexible by extending the method to 
wavelet packets. The wavelet coefficients may be further decomposed with the 
two wavelet decomposition filters. The power complementary condition is still 
preserved, but it does introduce two new variables. An example is given in fig. 
2.20 with the lower filter tree. 

Let us mention finally that a related approach was used in a medical 
application by Linkens (1997) to assess the depth of anesthesia. 
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3. Spline-Based Wavelets Approximation and 
Compression Algorithms 

In the first section, a short introduction on cardinal B-spline is given. Cardinal B-
splines are polynomial spline functions with equally spaced knots that have the 
nice property to be defined recursively by integral functions. In the following 
sections, three types of wavelet constructions based on B-splines are presented 
(Biorthogonal, semi-orthogonal and orthogonal). These represent a selection 
among the many spline-based wavelets. Their choice is motivated by the fact that 
these wavelets can be implemented in combination to fuzzy logic. Each of these 
three spline-wavelets permits to cover well an important aspect of so-called 
fuzzy-wavelet methods: 

-Biorthogonal spline-wavelets are typically implemented in fuzzy wavelet 
networks. These wavelets have the great advantage to have compact supports, 
a useful property for on-line learning. 
-Semi-orthogonal spline-wavelets are very useful in off-line learning, since 
they are the spline-wavelets the closest to being orthogonal. 
-Orthogonal spline-based wavelets are good candidates to develop fuzzy rules 
in the frequency domain. 
Spline-based wavelets can be implemented in multidimensional problems. 

Multidimensional wavelets can be constructed by using cartesian products of 
univariate spline wavelets. 

Spline-based wavelets 

Introduction to B-splines 

The theoretical foundations of spline decomposition lies into the work by 
Schoenberg (1946). The first applications of splines methods came quite later. 
Besides the domain of surface fitting, splines have been implemented in 
computer graphics (Bartels, 1987; Diercks, 1995) and quite broadly in 
sophisticated medical applications (Carr, 1998). Splines are used in 3D 
animations and it would lead us beyond our topic to discuss advanced splines 
methods, such as for instance the Non-Uniform Rational B-Spline (NURBS). 
Splines are found in several commercial tools. Despite the fact that the field has 
reached a quite mature state, new important works do still appear in the literature. 

73 
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In particular, the integration of multiresolution into the scope of spline research 
(Sweldens, 1995; Cohen, 1992) has opened up the field quite broadly. In this 
introduction, we limit the discussion to B-splines. A recent review on splines can 
be found in Unser (1999). 

A B-spline function is a piecewise polynomial function defined on a lattice. 
The order of the spline function determines the properties of the spline. The 
simplest spline function is the characteristic function of the unit interval. The 
characteristic function N!(x) or Haar function (Haar, 1910) is defined as 

1 0 < x < l 

N'(x)= (3.1) 

0 otherwise 

The characteristic function is a piecewise zero order polynomial function (fig. 
3.1). 

Figure 3.1: The characteristic function. 

Cardinal B-spline functions of higher orders can be defined iteratively by the 
integral equation: 

I 

Nk(x)= |Nk_1(x-t)-dt (3.2) 
o 

As an example, the second order cardinal B-spline is the triangular function, a 
continuous function summing piecewise polynomials of order 1. More generally, 
a kth order cardinal B-spline is Ck~2 continuous, and are made of piecewise 
polynomials of degree k-1. 

B-splines have a number of important and useful properties: 
-The B-spline functions are the polynomial splines with the shortest support. 
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-All values are positive. 
-Splines have a closed-form formula as their are piecewise polynomials. 
Spline-based wavelets are the only wavelets with such a property (Unser, 
1999). 
-Spline functions can be used to form a partition of unity, by using a 

°° k 

superposition of translated B-splines. £ N (x + j) = l . 
j = - 0 0 

This is illustrated in fig. 3.2 for the case k=2. This property is very useful in 
order to give a fuzzy interpretation to a spline decomposition. 

Figure 3.2: Translated cardinal B-splines partition the unity. 

-Suppose a function can be put under the form y = I>j-Nj with 

N^=N k (x - j ) and k>l. The derivative of y can then be written as: 
, k - l 

dy(x)/dx = S ( k - l ) - ( a j + 1 - a j ) - N p . 
J 

Figure 3.3: Example of a spline decomposition. The black curve can be decomposed into 
a sum of second order splines. 
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Splines are commonly used in function approximation (fig. 3.3). Multivariate 
B-spline basis functions can be formed by multiplying univariate basis functions 
(fig. 3.4). A basis function for a n-variables system is 

Nj(x) = f[Nj>i(xi) (3.3) 
i=l 

The good properties of univariate B-splines, such as bounded support and 
piecewise polynomial description, still hold in the multidimensional case. 

Figure 3.4: Example of a two-variate B-splines based on the triangular function. 

Biorthogonal spline-wavelet 

Biorthogonal spline-wavelets have a number of properties that are quite useful in 
real applications. On one hand, both the wavelet \j/(x) and its dual vj/(x) have a 

compact support, on the other hand, the scaling function $(x) is always positive. 

This permits to interpret the scaling functions as membership functions in a fuzzy 
framework. Biorthogonal spline-wavelets are typically used in wavelet networks 
and also in on-line problems in which a simple method to process the boundaries 
is necessary. 

Cohen et al. (1992) have shown how to construct biorthogonal spline-
wavelets based on compactly supported splines. Their method is quite general 
and offers a great flexibility in the design of wavelets. For instance, the 
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construction permits to choose to a large extent the number of vanishing 
moments. Let us recall that a wavelet has n vanishing moments if: 

t -v|/(x)-dx = 0,(k<n) (3.4) 

The number of vanishing moments, the degree of the scaling function and the 
support length are parameters that are taken into consideration as a wavelet 
family is chosen for an application. Figure 3.5 shows spline biorthogonal 
wavelets indexed as (4,2). The scaling function is the second order cardinal B-
spline and the function y has 4 vanishing moments. 

•00 vj/(x) 

4>(x) \|/(X) 

Figure 3.5: Biorthogonal spline scaling and wavelet functions, together with their duals. 



78 Wavelets in Soft Computing 

Biorthogonal wavelets fulfill the biorthogonality condition 
<HVn>HV„' >=5(m-m' ) -8(n-n ' ) (fig. 3.6). 

3 

0 1 2 3 4 5 6 7 8 

Figure 3.6: The dual wavelet v|/ (solid line) is orthogonal to any wavelet v|/m n . The two 

wavelet functions in that example are orthogonal to the dual wavelet. The filter 
coefficients for the wavelet decomposition and reconstruction algorithms are given 

below: 
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i 
1 

2 

3 

4 

5 

k = 2 

gi 

0.707106781 

0.353553905 

hi 

0.994368911 

-0.419844651 

-0.176776695 

0.066291260 

0.033145630 

An example showing how spline-wavelets can be constructed is given in the 
annex. 

Semi-orthogonal B-wavelets 

Some of the most efficient algorithms in multiresolution analysis work best with 
orthogonal wavelets. The reason is that orthogonal wavelets fulfill the power 
complementarity condition. The squared value of the detail coefficients can be 
used to estimate the energy contained in the different projections. The total 
energy is the sum of the energy contained in the detail and the lower level 
approximation coefficients. This property is used to determine which coefficients 
should be kept in approximation, compression or denoising problems. There are 
no orthogonal wavelet constructions with a spline as a scaling function. Only 
semi-orthogonal wavelet constructions are feasible. For semi-orthogonal 
wavelets, the power complementarity condition does not hold. The squared-value 
of the wavelet coefficients together with the approximation coefficients is not 
equal to the total energy contained in the signal. Nevertheless, the energy 
contained in the signal at the different levels of resolution sums up to the total 
energy. This property is in many cases sufficient for many algorithms to work 
very well. 

Orthogonal wavelets with B-splines as scaling functions do not exist, except 
for the trivial case of the Haar wavelet. Semi-orthogonal B-wavelets are the 
wavelets that are the closest to an orthogonal wavelet. Semi-orthogonal B-
wavelets are wavelets with B-splines as scaling functions. Semi-orthogonality 
means that wavelets of different resolutions are orthogonal to eachother. 

Definition: Semi-orthogonal wavelet 

A wavelet \\i is called a semi-orthogonal wavelet if the basis {v|/mn} satisfies 

<MVn>MV,n'>=0)m*m' (3.5) 
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Contrarily to orthogonal wavelets, translated versions of wavelets of a given 
resolution are not always orthogonal. Orthogonality is only given between 
wavelets of different resolutions (fig. 3.7). Practically, the non-orthogonality has 
as a consequence that the decomposition and reconstruction filters are different. 

The filters associated to the semi-orthogonal B-spline constructions are not 
finite. Great care must be therefore taken with boundaries when a good 
description of the end points is desired. For instance, the data may be folded 
about the end points. Semi-orthogonal wavelets are therefore not well suited to 
on-line learning. The next table gives the first filter coefficients corresponding to 
the semi-orthogonal wavelets of order 2 and 4, associated to the linear B-spline 
and the cubic B-spline (Chui, 1992). 

i 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Order 2 

Pi 

0.683012701 

0.316987298 

-0.116025403 

-0.084936490 

0.031088913 

0.022758664 

-0.008330249 

-0.006098165 

0.002232083 

0.001633998 

-0.000598084 

-0.000437828 

0.000160256 

0.000117315 

Qi+1 

0.866025403 

-0.316987298 

-0.232050807 

0.084936490 

0.062177826 

-0.022758664 

-0.016660498 

0.006098165 

0.004464167 

-0.001633998 

-0.001196169 

0.000437828 

0.000320512 

-0.000117315 

Order 4 

Pi+i 

0.893162856 

0.400680825 

-0.282211870 

-0.232924626 

0.129083571 

0.126457446 

-0.066420837 

-0.067903608 

0.035226101 

0.036373586 

-0.018815686 

-0.019473269 

0.010066747 

0.010424052 

qi+4 

-1.475394519 

0.468422596 

0.742097698 

-0.345770890 

-0.389745580 

0.196794277 

0.207690838 

-0.106775803 

-0.111058440 

0.057330952 

0.059433388 

-0.030709700 

-0.031811811 

0.016440944 



Spline-Based Wavelets Approximation and Compression Algorithms 81 

i 
1 

2 

3 

4 

5 

6 

Order 2 

gi 

1 

0.5 

hi+i 

5/6 

-0.5 

1/12 

Order 4 

9 M 

0.75 

0.5 

1/8 

hj+4 

-24264/8! 

18482/8! 

-7904/8! 

1677/8! 

-124/8! 

1/8! 

Depending on the order of the B-wavelets, the filters associated to the 
wavelet decomposition and reconstruction algorithms have different properties. 
At order zero, the B-wavelet corresponds to the Haar wavelet, while at high 
order, the wavelet almost matches gaussian function. For odd order and for m>3, 
the wavelet ij/̂ b can be approximated by sin(a) t) g(t-b) with g(t-b) the gaussian 
function. For even order vj/'V is almost of the form cos(co t) g(t-b). This means 
that B-wavelet of increasing order approach the limit set by Heisenberg to the 
product of the time and frequency resolution of a function. 

Heisenberg uncertainty principle states that (Aoo At>'/2). The equality holds 

for a function f(t) of the form: f (t) = a • e i a ' • e"b(t_u)2 . It follows that the time-
frequency resolution of B-wavelets tends to the inferior limit of V2 with 
increasing order. 
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Figure 3.7: Semi-orthogonal wavelets fulfill the condition < i|/mn, v|v „•>= 0 for m * m'. 
Illustration with semi-orthogonal second order B-spline wavelets. The two-times dilated 

wavelets (solid line) are orthogonal to the two other wavelets. 
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Battle-Lemarie wavelets 

We have mentioned the impossibility of constructing orthogonal B-wavelets with 
a B-spline as scaling function. Nevertheless, orthogonal wavelets based on B-
splines may be designed with an orthogonalization procedure. The resulting 
orthogonal wavelets are called Battle-Lemarie wavelets. The Battle-Lemarie 
wavelets (Battle, 1987; Lemarie, 1988) are piecewise polynomials, but their 
scaling function is not positive everywhere, a main problem to a linguistic 
interpretation of the results of a decomposition. The properties of the Battle-
Lemarie wavelets depend on the chosen order. The two extremes N=0 and N—»oo 
correspond to two limit cases for filters. The scaling function of the first order 
case corresponds to the characteristic function: a perfect spatial filter. For large 
N, the scaling function tends to the sine function, the perfect low-pass filter (fig. 
3.8). By choosing the order of the Battle-Lemarie wavelet, one chooses 
simultaneously the type of filter. For this reason, Battle-Lemarie wavelets are 
good candidate functions to design a fuzzy controller in the frequency domain 
(see part 2). 

l 

0.5 

0 

0.5 

10 0 10 

Sine function 

Fourier Transform of the 
sine 

Fourier Transform of the 
sine wavelet 

0 it 2n 

Figure 3.8: The sine wavelet is the equivalent of the Haar wavelet for the frequency 
domain. 
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A selection of wavelet-based algorithms for spline approximation 

A function f(x) can be approximated as a weighted sum of wavelets 

f(x) = ]Td m n •ym ,„(x)+£cn > m o -(|)mo>n(x) (3.6) 
n,m n,m0 

or equivalently as a weighted sum of scaling functions 

f ( x ) = £ c m > , -(|>m,„ (3.7) 
n,m 

Depending on the available computing power and memory, different methods 
can be chosen to determine the values of the coefficients. The two next sections 
present thresholding techniques, while the last section describes an adaptation of 
the matching pursuit algorithm to splines. 

In regard to the computing power, the least demanding wavelet-based method 
is thresholding. The approach is essentially identical to thresholding in data 
compression (part 1). It uses a central property of orthogonal wavelets, namely 
that the energy contained in the wavelet coefficients and the last level of 
approximation coefficients sum up to the total signal energy. In the thresholding 
method, the coefficients with a squared value above a given threshold are kept. 
This is equivalent to setting the coefficients below the threshold to zero. The 
energy contained in the reconstructed signal compared to the total signal energy 
is a measure of the quality of the approximation. A slightly different approach 
consists in keeping the K largest coefficients. For semi-orthogonal wavelets, in 
which orthogonality holds only between wavelets of different resolutions, the 
thresholding is still applicable. The thresholding algorithm gives also good 
results with some biorthogonal wavelets, such as biorthogonal splines. 
Biorthogonal spline-wavelets are not orthogonal, nevertheless the orthogonality 
relation holds to a sufficient degree and the thresholding method can also be 
applied. 

The thresholding method can also be implemented to decompose the signal as 
a sum of scaling coefficients. If the wavelet and scaling functions do have a 
compact support, each wavelet can be decomposed with the two-scales relation as 
a finite sum of scaling functions at one higher level of resolution. 

If some more computing power is available, the functions on which to 
decompose the signal can be chosen from a dictionary of functions. The best 
basis and the matching pursuit algorithm are the two standard methods in those 
cases. 

Thresholding 

Thresholding is a simple wavelet-based method to compress information. It can 
be used to find an approximate description of a function f(x) with a limited 
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number of terms. The filters corresponding to a decomposition on an orthogonal 
basis do fulfill the power complementarity condition. The power 
complementarity condition implies energy conservation. For a given level of 
decomposition the energy conservation is expressed by the relation: 

Z C ^ = I {£_!,„• + dm-U- (3.8) 
n n' 

For a complete decomposition, the energy conservation becomes: 

E f 2 ( x n ) = I d ^ n =Id^_1>n + d2
n_2>n + ... + d2,n + c2

>n (3.9) 
n n n 

The thresholding method consists of setting to zero all coefficients below a 
given threshold (fig. 3.9). A variant of the thresholding method can be used if the 
number of coefficients K is predefined. In this case, the function f(x) is 
reconstructed from the K coefficients among dmn, c0,„ containing the most energy. 
The compression factor is given by the difference between the number of bits 
necessary to store the original signal and the memory capacity to store and 

address the K coefficients. The error Er(f) on the reconstruction can be 

quantified by the relative difference between the energy contained in the function 

f(x) and its estimate f(x) given by an expression of the form: 

f(x)= Zd'm;I1-ym,n(x)+ 2 c 'm o , -<|>mo,n (3.10) 
n,m n,m0 

Er(f) = £ ( f 2 ( x n ) - f 2 ( x n ) ) / £ ( f 2 ( x n ) (3.11) 

dm ,n=0 if < „ < T 

dm ,n=0 if d ^ n > T 

^m-1,11 -- " m - 2 , n 

Cm,n + cm-l,n ^ cm-2,n 

Figure 3.9: The thresholding method consists of keeping the largest coefficients among 
the wavelet coefficients and the approximation coefficients at the lowest level of 
resolution (i.e. bold coefficients) to compress the information. Illustration of the 

algorithm for a two levels decomposition tree. The coefficients c' are computed from the 
coefficient d'. The coefficients c\B approximate the function f(x). 
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This algorithm is optimal for orthogonal wavelets. For semi-orthogonal 
constructions, the algorithm can be also generally applied. The energy is only 
partially conserved in a semi-orthogonal decomposition. To see this, let us 
express the norm of the function f as a function of the detail coefficients. For a 
simplification of the formalism, let us assume a full decomposition of a function f 
of zero average. 

<f,f > = < £ d m n -M/m;n, S dmn .\fm>. > (3.12) 
m,n m',n' 

For semi-orthogonal wavelets, (3.12) can be put under the form: 

< f ' f > = E ( Z d - . n + i ; d n . , n - d m X - < V m , n ^ m y >) (3.13) 
m n n*n' 

The energy conservation is in general not fulfilled. There are two special 
cases in which the energy conservation is fulfilled to a good degree. For the 
energy conservation to hold to a good degree, the last term in (3.13) must be very 
small. This is the case if 

a) the function f(x) can be reasonably described as a realization of a white 
noise signal. In this case, the coefficients dmn are uncorrected. 

b) < v|/m>n, vj/m n, > is small for n*n' . 

In summary, for semi-orthogonal splines, the sum of the squared detail 
coefficients is generally not equal to the total energy contained in the signal. 
Nevertheless, the energy contained in the signal at the different levels of 
resolution sum up to the total energy. Keeping the largest coefficients is therefore 
a good strategy, that furnishes good results. 

For some biorthogonal wavelets, the thresholding algorithm can also be 
implemented. This is in particular the case of several biorthogonal spline-
wavelets. In biorthogonal wavelets, the values of the frame bounds gives a good 
indication whether it is reasonable to use the thresholding algorithm. In order to 
see why, let us introduce the notion of a frame. 

Definition: 

An ensemble of functions (or vectors) {0n}with n an index is a frame of an 

Hilbert space H if there exists two constants A>0, B>0 such as for any f e H: 

A|ff < z|<f,e>|2< Bflffl2 

n 

It can be shown that biorthogonal wavelets form a frame. This follows 
directly from the fact that biorthogonal wavelets form a Riesz basis (see part 1). 
The expression (B/A)-l can be used as an measure on how far is a basis from 
being orthogonal. Orthogonal wavelets are tight frames meaning that A = B = 1 . 



86 Wavelets in Soft Computing 

Biorthogonal splines are to a reasonable approximation tight frames. In 
biorthogonal spline wavelets, the energy conservation holds in very first 
approximation. 

Thresholding adapted to the decomposition with scaling functions 

We will address the problem of finding a good representation of a function f(x) as 
a sum of scaling functions of different resolutions. More precisely, one searches 
for an approximation of f(x) in terms of the scaling functions associated to a 
dyadic wavelet decomposition: f(x) = ^ yic'm,n" VnW wn"h 

m=0..J n 

^ ( x ) = 2m/2 • <«2m • x-n) (m,n are integer). 

The motivation behind this problem will become clear in the next chapters, as 
we will use splines as scaling functions and these scaling functions will be 
interpreted as membership functions in a fuzzy framework. The problem of 
decomposing a function f(x) as a sum of scaling functions of same resolution 
may be solved by a least mean-squares method. The least mean-squares method 
is quite computer-intensive and in many problems a neural network approach is 
implemented. The complexity of the problem increases if scaling functions of 
different resolutions are used, so that least mean-square methods become rapidly 
practically intractable. Also the linear dependence existing between scaling 
functions at different resolutions is computationally often problematic. In those 
cases, the problem can be tackled with a variant of the wavelet thresholding 
technique or with a matching pursuit algorithm. 

By definition of a multiresolution, any wavelet can be expressed as a linear 
sum of the scaling function: 

V(x) = J]hn-<j)(2-x-n) (3.14) 
k 

This equation together with a similar relation for the scaling function are 
called the two-scales relations. As an example, the second order B-wavelet in fig. 
3.10 is decomposed as a sum of scaling functions at one higher level of 
resolution. It follows that both the wavelet thresholding method and the matching 
pursuit may be used to search for a good decomposition in terms of scaling 
functions. In a first step, the function f(x) is decomposed as a sum of wavelets: 

f ( x ) = Z £dVn-H>m,n(x) + c0)n-<l>0,n (3 .15) 
m=0..JVIn 

In a second step, each wavelet is expressed as a sum of scaling functions 
using the two-scales relation: 

f(x)= 2 S c W n O O (3.16) 
m=0..M n 
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The necessary computing power to determine the coefficients c'mn is 
generally much smaller than a least mean-squares approach that requires dealing 
with large matrices. 

Figure 3.10: A wavelet can be decomposed into a sum of translated scaling functions. For 
the second order spline, the coefficients are (1/12,-0.5,5/6,-0.5,1/12). 

An alternative and more efficient method is to transform first the detail 
coefficients with the reconstruction algorithm and to keep the largest coefficients 
expressed in terms of the scaling functions. First the detail coefficients are 
expressed in terms of the scaling function using the reconstruction algorithm: 
cm,n =Xg"-2k cm-i,k + h„-2k dm-i,k • Rewriting the equation as the sum of a 

k 

low-frequency c^ n and a high frequency contribution c,^ n 

cm,n = c ml,h +Cmh,n (3-17) 

one obtains 

Cmh.n = X h„-2k • dm-l ; k (3-18) 
k 
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The problem of finding a good description of a function f(x) in terms of the 
scaling functions can be solved by using the largest coefficients among the 
reconstructed coefficients Cj^^ and the lowest level approximation coefficients. 

The coefficients c ^ n correspond to coefficients of the scaling function. This 

procedure is illustrated in fig. 3.11. 

c 'mh,n=0 if c2mh,n < T 

C ' =C if C2mh,n > T 
mh,n mh,n 

c'mM d
 M-1, n / C ' I £ M

 d m-2, n Detail coefficients 

m,n ^_ 

Approximation coefficients 

Figure 3.11: The algorithm to determine the best fuzzy rules consists of keeping the 
largest coefficients among the wavelet coefficients expressed in terms of the scaling 
functions and the approximation coefficients at the lowest level of resolution (bold 

coefficients). 

In the spirit of regularization theory, a level-dependant multiplicative factor 
can be also used. 

Matching pursuit with scaling functions 

Mallat and Zhang (1993) have designed a very powerful matching pursuit 
algorithm that is well adapted to finding a good wavelet decomposition in terms 
of a small number of coefficients. The algorithm does also work with scaling 
functions (Shmilovici, 1996,1997; Thuillard, 1997), though for splines a 
modified matching pursuit algorithm is preferable (Thuillard, 1998a,c, 2000a). 
Figure 3.12 shows the basic idea of the modified matching pursuit algorithm, that 
is described below. 
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Residue 

Figure 3.12: The best membership functions and rules to describe a set of data are 
determined with a matching pursuit algorithm. 

Description of the algorithm 

Define a dictionary D={<t>^ n} of scaling functions with 

<|)̂ n = 2m -<j)k(2m -x -n ) . The index k indexing the order of the scaling 

function, m the dilation and n the translation (The normalization factor is 
contrarely to previous sections 2m). 
For each scaling function in the dictionary, decompose the datafile with the 
fast wavelet decomposition 
algorithm. 

- Keep for each k, the approximation coefficient c^ n with the largest m such 

as | < n | > P suPm.n.|c^.n,| withO<p<l. 

- Choose the coefficient that minimizes the residue (i.e. write f(x) = 
cm,n " 't'm.n (x) + R ( x ) a nd choose the coefficient that minimizes <R(x),R(x)>). 
- Take the residue as new input file. 
Repeat the procedure till the residue is below a given value. 
The algorithm is essentially the same as the wavelets' matching pursuit 

except for the supplementary condition that the coefficient with the smaller 
resolution is kept. The main idea behind this modification is the following. First, 

the condition |ck
 n | > p supm ,n ,c^.J with 0<p<l ensures the convergence of 

the matching pursuit. As shown by Mallat (1993), the convergence rate is related 
to the value p. Roughly, the smaller the P, the slower is the convergence rate. On 
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the other hand, the supplementary step in the algorithm, requiring to keep the 
coefficient with the smaller resolution fulfilling the above condition, permits very 
often to discover the most appropriate resolution to compress the signal. Figure 
3.13 illustrates the algorithm with a simple example: the decomposition of a 
second order spline function with a semi-orthogonal spline construction. Using a 
value of 3=0.7 in c* > P sup 

m ,n m ,n 
restricts the best matching coefficients 

to the bald coefficients. In Mallat' s algorithm, one could have chosen any of 
them. The second condition prescribes to chose among them the coefficient 
corresponding to the scaling function with the lowest resolution. The chosen 
coefficient is underlined. 

As long as the value of p is taken larger than 0.68, the algorithm furnishes the 
best matching function after a single iteration of the algorithm. It permits to catch 
the last level of resolution before the large decrease of the values of the 
approximation coefficient corresponding to the decomposition of the unit 
impulse. A smaller P value would not have permitted to discover the right 
resolution. On the other hand, a large value of p close to one is also not desirable 
as the slightest noise or some small deviation to the spline function may lead to 
choosing a suboptimal solution. For an a priori unknown function, a value about 
0.9 is recommended for the modified matching pursuit with splines of order up to 
3. 

Coefficients: 

0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 

0 0.5 1 0.5 0 

0 1 0 

0.03 -0.11 0.68 -0.11 0.03 

Figure 3.13: Illustration of the search algorithm with a modified matching pursuit 
algorithm. The algorithm is so modified to discover in most cases the best resolution to 

describe locally the dataset. 
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4. Automatic Generation of a Fuzzy System with 
Wavelet-Based Methods 

Fuzzy rule-based systems have found numerous applications in many different 
fields. The two main fuzzy methods are Mamdani's min-max inference 
mechanism and the Takagi-Sugeno approach. Many variations of these two 
models have been proposed and applied with success. For instance the product 
can be used as AND operator. Also the defuzzification process can be carried out 
with many different methods, the center of gravity defuzzification and the fuzzy 
mean are the most popular. 

The modeling of a surface with the singleton Takagi-Sugeno model using 
splines as membership functions is equivalent to a functional decomposition of 
the surface with splines. This permits to relate multiresolution analysis to the 
problem of learning from data in fuzzy logic. Using the algorithms presented in 
the previous chapter, a fuzzy description of the data can be obtained. In the fuzzy 
framework, spline scaling functions are interpreted as membership functions. 
Wavelet-based fuzzy approaches are characterized by a number of features: 

-The support of the membership functions is chosen a priori. In the fuzzy-
wavelet approach, the most appropriate membership functions are selected in a 
dictionary of scaling functions, comprising translated and dilated versions of so-
called mother scaling functions. 

-The multiresolution properties of the scaling functions permit to express any 
rule as a sum of rules using membership functions of higher resolutions. For this 
reason, it is always possible to express the resulting fuzzy system under a 
linguistically interpretable form. 

-The singleton Takagi-Sugeno model can be put under the form of a model in 
which both input and output are fuzzified. It will be shown below that the two 
models are equivalent provided spline functions are taken to fuzzify the output 
space and a center of gravity defuzzification method is applied. 

Fuzzy rule-based systems 

Fuzzy logic has found applications in basically all domains in science, from 
biology to particle physics. The majority of applications are clearly in the domain 
of control. What are the reasons for the success of fuzzy logic? The linguistic 
interpretation of fuzzy rules is certainly one of the main reasons. The possibility 
of translating human expert knowledge formulated by an experienced practitioner 
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without a strong mathematical background into a fuzzy system has often been 
given as the main motivation behind fuzzy logic. Very often, the way around is at 
least as important. Fuzzy logic allows the development of transparent algorithms 
that can be explained to specialists, practitioners or even sometimes to customers. 
Another strong point for fuzzy logic is that it represents a simple method to 
describe nonlinearities. Finally fuzzy logic furnishes a theoretic framework to 
fuse information under different form and quality. The fusion of qualitative or 
even imprecise knowledge together with knowledge under the form of 
experimental data is quite feasible, though in real world often more difficult than 
one wants to admit. If different experts (human or machine) are contradicting, the 
process of reconciling the different experts is very often ad-hoc. New methods 
based on adaptive templates try to introduce some clear methodology into the 
process (see part 7). 

The majority of applications uses fuzzy rule-based systems expressed under 
the form of if-then rules: 

R; : if x is A; then y is B (4.1) 

Here A, B are linguistic terms, x is the input linguistic variable, while y is the 
output linguistic variable. The value of the input linguistic variable may be crisp 
or fuzzy. If the value of the input variable is a crisp number then the variable x is 
called a singleton. As an example, suppose that x is a linguistic variable for the 
temperature. The value of the input linguistic variable may be given by a crisp 
number such as 30 (°C) or by about 25 in which about 25 is itself a fuzzy set. 

The Takagi-Sugeno and the Mamdani models are probably the most popular 
approaches to rule-based fuzzy systems. Alternatives to these models include, 
among others, the linguistic equation approach, a method that has proven to be 
successful in a broad range of real world applications (Juuso, 1996, 1998; 
Leiviska, 1996). 

Max-min method (Mamdani) 

An important definition in fuzzy logic is that of a membership function. The 
membership function u(z) to a fuzzy set z is defined by the mapping 
u(z): Z »[0,1], in which Z represents the domain of definition of the fuzzy set 

z. 
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if xis A., then y is B1 
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Figure 4.1: Illustration of Mamdani inference mechanism. 

In Mamdani approach, the inference is computed with a 3 steps algorithm: 

Step 1: Determine a set of fuzzy rules and membership functions. 
Rj :if x is A; then y is Bj 

jxAi(x):X K0,U 

HBj(y):Y >[0,1] 

Step 2: Compute the degree of fulfillment (3j of the inputs to the rule antecedents. 

The membership function corresponding to the fuzzy input I is defined as 
H!(x):X >[0,1] 

The degree of fulfillment is given by the expression: 
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Pi = maxx[u.,(x)AUA(x)] 

with A the minimum operator (or the product). 
Step 3: Derive the output fuzzy set u0 (y). 

The output fuzzy set u0(y) is obtained by aggregating the different output 
fuzzy sets: 
H0(y) = maxij(Pi AUB.(y)) 

The Mamdani type of fuzzy system is illustrated with two examples. 
Figure 4.1 shows an example with a crisp input, while fig. 4.2 shows the 

algorithm for a fuzzy input. 

i fx is A., then y is B1 

Bi 

i fx is A, then y is B2 

Z\ 

Fuzzy input 

My) 

Figure 4.2: Illustration of Mamdani inference mechanism when the input is a fuzzy set. 
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In multivariate systems, the min operator is used for the conjunction AND. 

Takagi-Sugeno model 

In the Takagi-Sugeno method (Takagi, 1985) the fuzzy rules are expressed 
differently: 

R, : if x is A; then y = f,(x) (4.2) 

Contrarily to Mamdani' s method, the output is a crisp number. The 
algorithm is slightly different (see fig. 4.3 for an example): 

Step 1: Determine a set of fuzzy rules and membership functions. 
Rj : if x is Aj then y = f;(x) 

f i A . ( i ) :X >[0,1] 

Step 2: Compute the degree of fulfillment Pj of the inputs to the rule 

antecedents. 

The membership function corresponding to the fuzzy input I is defined as 
u,(x):X >[0,1] 

The degree of fulfillment is given by the expression: 
Pi =maxxttiI(x)AjiA.(i)] 

with A the minimum or the product operator. 

Step 3: Derive the output. 
y = Z Pi-f(i)/S P. 

i i 
In many applications, a linear function is taken as a function f (x) : 

f(i) = aTi-x + bi (4.3) 

This model is quite attractive as the coefficients a^bj can be computed by a 
least-squares method. 
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Figure 4.3: Illustration of Takagi-Sugeno inference mechanism. From above: membership 
functions, contribution of the first and second membership function with ai=-a2=l, 

output. 

The singleton model 

A constant bj can be chosen to describe the crisp output y 

R; : if x is A ; then y = b ; (4.4) 

Figure 4.4 illustrates with an example the singleton model. 

A 
1 / 
\ I 
\l 
V 

Figure 4.4: Illustration of Takagi-Sugeno inference mechanism for a singleton model. 
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Fuzzification of the output in a Takagi-Sugeno model 

It can be shown that, in the setting of the singleton model, the Takagi-Sugeno 
model is equivalent to an ensemble of rules of the form: 

R: if x is A then y is B (C) (4.5) 

provided a center of gravity defuzzification is applied and 

uBj(x) = NK(x-n) (4.6) 

Let us consider a fuzzy system described by a set of rules of the form: Ry: if 
x is Aj then y is Bj (Qj) where A; and Bj are linguistic variables and Cy represent 
the confidence level. Further let take the product as AND operator and the 
addition to implement the fuzzy union. 

y * 

^A3(x) ^r><\ -*- x 

A1 A2 A3 A4 

*- x 

Figure 4.5: The Takagi-Sugeno fuzzy system can be transformed into a fuzzy system in 
which both input and output are fuzzified . 

A remarkable property of spline functions can be used to compute the 
confidence levels starting from the weight bj in a Takagi-Sugeno model. There 
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exists an invertible relationship between the confidence levels Q,j and the spline 
coefficients bj. Assume a confidence level Cy for the rule Ry given by the 
following expression: 

' . j 
N k (b , - j ) (4.7) 

in which Nk(b; -j) is a k order cardinal spline centered at j . In the fuzzy 
framework, Nk () can be interpreted as a membership function. In the fuzzy 
framework Nk(bj -j) corresponds to the degree of membership |aBj(b;) to Bj. 

Inversely the weight bj can be computed from the different confidence levels 
Qj. It can be shown that the crisp output after defuzzification with a center of 
gravity defuzzification method gives exactly the value bj. 

!£<Vyj (4.8) 

with y/ the center of gravity of Bj or equivalently the position of the center 
knot of the B-spline function N . This relationship holds for all B-splines at any 
order. Figure 4.6 shows a graphical proof for second order B-spline functions. A 
complete proof can be found in Brown and Harris (1996). 

Left green surface: 1 -b 

0 1 

Center of gravity: (O^ I -b^+rbMbi+ l -b^b , 

Figure 4.6: Graphical proof of the invertible relationship between the weight space and 
the confidence level space for the case of a center of gravity defuzzification and second 

order splines. 
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Neurofuzzy spline modeling 

In the framework of the zero-order Takagi-Sugeno model, B-splines and fuzzy 
networks are equivalent. Quoting Brown and Harris (1996), ..the main difference 
between these techniques is the level of abstraction at which there are 
interpreted. B-splines are viewed as numerical processing or computational 
systems, whereas fuzzy networks can be given a linguistic interpretation as a 
fuzzy algorithm using terms such as small or large to label the basis functions. A 
B-spline network estimates a function f(x)as a weighted sum of B-splines 
forming a partition of unity: 

f(x) = Sc j-(Kx-x j) (4.9) 
j 

The weights Cj may be computed by either an instantaneous gradient descent 

rule, iterative conjugate gradient or a least mean-squares method. Kalman 
filtering can be applied for state estimation and control (Gan, 1999). In a batch 
operation, the coefficients can be also directly computed from a singular-valued 
decomposition. B-splines are particularly well suited to constrained problems. B-
splines of order k are piecewise continuous polynomials with (k-2) continuous 
derivatives. A main constraint in moving systems (robots, ship docking, 
automatic guidance) is the requirement that both the velocity and the acceleration 
are continuous. These continuity conditions are fulfilled by B-splines of order k 
>4. Cubic B-splines are therefore the lowest order spline fulfilling the continuity 
condition on the acceleration. 

Extension of the model to first order Takagi-Sugeno types of models have 
been also designed (Harris, 1999a,b). Spline-based neurofuzzy methods have 
been implemented in a large number of research and development projects 
(Harris, 1999a), for instance in ship collision avoidance guidance (Harris, 1999b), 
helicopter guidance (Doyle, 1996), autonomous underwater vehicle (Bossley, 
1997) or an intelligent driver warning system (An, 1996). 

Fuzzy-wavelet 
In this section, the equivalence between B-spline modeling and fuzzy modeling is 
extended to multiresolution fuzzy modeling. Wavelet-based fuzzy modeling is 
generally designed under the name fuzzy-wavelet (Thuillard, 1997). The 
equivalency between fuzzy modeling and wavelet-spline modeling has been 
recognized independently by different authors (Shmilovici, 1995,1996; Yu, 
1996a,b,1999; Thuillard, 1997). 

If x is a singleton, uA.(x) = Nk(2m x-n) with N k (2" m x-n) a k* order 

cardinal B-spline function and the product operator is used for inference, then the 
system of eq.(4.9) is equivalent to 
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y(x) = £ bm>n-Nk(2-m.x-n) (4.10) 
m,n 

In this particular case, the output y is a linear sum of translated cardinal B-
splines. This means that under this last form the Takagi-Sugeno is equivalent to a 
multiresolution spline model. It follows that the wavelet-based techniques used to 
decompose a function as a weighted sum can be applied here. 

The need for adapting the support of membership functions in learning has 
lead to the development of different neurofuzzy methods. The support of 
membership functions can be adaptively chosen, for instance by adding knots in 
spline networks. An important line of research is based on clustering methods 
(Babuska, 1998; Bedzek, 1981, Kosko, 1992 ), using neural networks or different 
variants of the fuzzy c-mean algorithm. 

A main concern with neurofuzzy methods is to find the right balance between 
transparency, complexity and accuracy of the obtained fuzzy systems. Despite the 
fact that complexity has a number of definitions, it is generally possible to agree 
on a clear setting to discuss the complexity-accuracy issue. As soon as the notion 
of linguistic transparency is added, then opinions strongly diverge. A purely 
mathematical solution to that question is certainly not at hand, as linguistic 
transparency is a very human notion. Keeping the man in the loop is a central 
motivation for fuzzy logic and therefore a purely mathematical definition of 
linguistic transparency is not desirable. Linguistic transparency depends centrally 
on the level of education of the experts, as well as on their range of competence. 
A large number of neurofuzzy methods have been described as transparent or 
linguistically interpretable without much justification. It has been now 
understood that the transparency-complexity-accuracy issue is one of the most 
challenging question in fuzzy logic. 

The fuzzy-wavelet approach implements the following strategy. A dictionary 
of membership functions forming a multiresolution is first defined. Each 
membership function defines a term, such as small or very small, that does not 
get modified during learning. The multiresolutional character of the dictionary 
makes rules fusion and splitting quite simple (fig. 4.7). 
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0.7 I 1 1 1 1 1 1 r 

Figure 4.7: Illustration of the relation between scaling functions at different resolutions in 
a dyadic multiresolution analysis. The cubic spline function can be decomposed into the 

sum of translated cubic splines at the next higher level of resolution (coefficients are (1/8; 
'/2;

 3A; Y2; 1/8)). The same holds for the corresponding wavelet. 

General approach 

Wavelet theory can be adapted to generate automatically fuzzy rules and 
confidence levels from a set of examples. This method, fuzzy-wavelet, takes 
advantage of the strong connection existing between a spline wavelet 
decomposition and a fuzzy system. Let us recall first, how to make a fast wavelet 
decomposition. A very efficient recursive algorithm, called the fast wavelet 
transform, carry out the computation of the wavelet transform. At each level of 
the transform, the data are processed through a low-pass and a high-pass filter. 
The high-pass filtered data dm n are known as the detail wavelet coefficients. The 

result of the low-pass transform, the coefficients cm n is used as input data to 

compute the next level of detail wavelet coefficients. Figure 4.8 describes 
symbolically the algorithm. 
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Signal 

Figure 4.8: a) Example of a fast wavelet decomposition using B-wavelets. The low-pass 
filter corresponds to the projection on dilated and translated spline functions; b) Example 

of fuzzy rules using spline membership functions at several resolutions. 

The connection between fuzzy logic and the fast wavelet algorithm is 
established by using B-wavelets. The main feature of B-wavelets is that the 
approximation coefficients c m n represent the projections of the signal on spline 

functions. Spline functions are typical membership functions in fuzzy systems. 
The methods presented in part 3 can be therefore used to determine appropriate 
membership functions and fuzzy rules. Let us recall what these methods are: 

-Thresholding 
-Matching pursuit for splines. 
A modified matching pursuit (explained below) permits to determine 

appropriate membership functions and rules to approximate a function in terms of 
a small number of fuzzy rules. The algorithm is a modified version of the 
matching pursuit algorithm that works specifically well with splines. The 
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resulting decomposition can be linguistically expressed with the zero order 
Takagi-Sugeno model with rules of the form 

Ri : if x is As then y, =b ; 

which can be put, if necessary, under the form (4.6) 

if x is Aj then y is Bj (Cy) 
using the equivalency between the two formulations. 

STEP1; 

Centre of gravity detuzzification, 
spline membership functions, 
algebraic operator. 

FUZZIFICATION FUZZY OUTPUT 
INTERSECTION u u ' r u i 

STEP 2: 
COMPUTATION OF C,, 

WAVELET 

STEP 3: 

FUZZY RULES 
ifxis A; theny is B (Cj •) 

withC .j = u(bj) 

c i,i-
I I I : 

1 
" i 

OUTPUT UNIVERSE 

Figure 4.9: The similarities existing between a fuzzy description and B-wavelets are used 
to determine fuzzy rules and confidence levels describing a set of data. 

Soft computing approach to fuzzy-wavelet transform 

For a large multivariate dataset, the memory and computing requirements of the 
wavelet analysis may be too large. This problem can be solved in most cases by 
introducing a first approximation stage already during the wavelet 
decomposition. A Haar decomposition is used in the first stages: the first 
decomposition stages correspond to a simple averaging procedure. Spline-
wavelets are introduced only at resolution levels containing most of the signal 
energy. The reconstruction algorithm uses spline-wavelets at all levels. This 
corresponds to using for the decomposition a scaling function approximating the 
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desired membership function and the exact scaling function for the 
reconstruction. Figure 4.10 shows an example of an approximated scaling 
function for a triangular membership function. The method is very efficient in 
dealing with multivariable datasets, even if the data are noisy. 

1 n j ~ 

0 Ml ^ _ 
Figure 4.10: Example of a scaling function used for an approximated wavelet 

decomposition. The scaling function with steps is an approximation of the triangular 
membership function. 

Processing boundaries 

There are a number of methods to process boundaries, for instance by folding the 
data around the end points. If a precise linguistic interpretation of the results is 
required close to the boundary, then it is recommended to use second generation 
wavelets to process the end points. Second generation wavelets are wavelets that 
generalize the wavelet formalism to configurations that were not covered by the 
standard wavelet approach. In particular, spline-wavelets adapted to processing 
the end points have been designed with this technique. Depending on the support 
of the wavelet, a number of different functions must be used to process the 
boundary. For second order splines, a single wavelet is necessary. Figure 4.11 
shows the scaling functions and the associated wavelets for the second order 
spline for processing the end points. The other points can be normally processed 
with a biorthogonal spline-wavelet decomposition. 
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Figure 4.11: Boundaries can be processed with second generation wavelet using the 
lifting scheme. Right: wavelet associated to the scaling function on the left side. Left: 

scaling function for processing the last point with a second order spline. 

Second generation wavelets have found a number of applications besides the 
one presented here. Second generation wavelets are used for multiresolution 
analysis on irregularly spaced grid, or to construct multiresolution on a sphere. 
We will encounter second generations wavelets again as extensions of the fuzzy-
wavelet formalism will be discussed. The reader is referred to the annex for 
details on the construction of second generation wavelets. 

Linguistic interpretation of the rules 

The question of the adequacy of the linguistic formulation is especially 
important, as one is dealing with human experts. If only translated of a single 
spline are used, then generally through a simple rescaling, the rules can be put 
under a linguistic form that can be processed by the human expert. For 
membership functions that are chosen adaptively, the problem of interpretability 
becomes central. The lack of clear interpretability of many fuzzy systems 
generated with a neurofuzzy approach is a major drawback. The fuzzy-wavelet 
approach overcomes this problem quite elegantly by using a multiresolution. 
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Indeed, a scaling function at a given level of resolution can be expressed as the 
sum of higher resolution scaling functions by using the two-scales relation which 
is at the heart of the whole wavelet framework (Part 1): 

<|>(x) = £gk-<|>(2-x-k) (4.11) 
k 

This means that the membership functions can be fused together or split into 
membership functions at a higher resolution quite easily. A nontrivial example 
showing two approaches to make the results easily linguistically interpretable 
will now be presented. The first approach is illustrated in fig. 4.12. 

AAAAAA 

Figure 4.12: The above curve can be expressed differently as a sum of scaling functions. 
The left decomposition is more compact for implementation, but the right form is 

linguistically better for a human expert. 

The function in fig. 4.12 corresponds to the superposition of two scaling 
functions. The support of the second scaling function is contained into the 
support of the first scaling function. The function can be decomposed into the 
sum of the scaling function corresponding to medium-small and small. In this 
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example, the function is constructed on purpose such as a linguistic interpretation 
of the decomposition is not straightforward to a human expert. The degree of 
membership to medium-small is smaller than the degree of membership to small, 
in spite of the fact that the function has a peak within the medium-small range. 
For a human expert, such rules are counter-intuitive. In the present case, one may 
have rules such as if x is medium-small then y is small; if x is small then y is 
large. The two rules are apparently contradicting. So how can this problem be 
solved? A simple approach consists of splitting the scaling function 
corresponding to small into the sum of the scaling functions at the higher level of 
resolution. 

After splitting the scaling function, the results of the wavelet decomposition 
can be expressed as linguistically correct fuzzy rules. The degree of membership 
to medium-small is the largest and the result is also understandable linguistically. 
The main disadvantage of this representation is that it may be too precise for the 
human expert. If this is the case, another approach consists of transforming the 
description into a layered structure as shown in fig. 4.13. This second approach is 
quite efficient, if the number of levels of resolution is not too large 

low resolution Correction to 
low resolution 

ifx is small then... (c2) 

if x is medium-
small then 

Correction to 
small is... <d) 

Figure 4.13: The curve above can be decomposed as the sum of a low resolution 
description and a correction to this description. This representation is a good compromise 

between compactness of the representation and linguistic clarity. 
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Fuzzy-wavelet classifier 

We have shown above that wavelet theory and fuzzy logic can be combined into 
a single method. This opens the possibility to develop a fuzzy-wavelet classifier, 
that is a wavelet classifier with a linguistic interpretation of the classification. 
Wavelet-based classifiers have found applications in different fields, going from 
the analysis of cracks to the analysis of seismic data. The basic idea consists of 
analyzing first the signal with a wavelet decomposition. The coefficients of the 
wavelet decomposition are then compared with examples in an identification 
stage. The development of the classifier may use very different techniques going 
from look-up tables to Learning Vector Quantization (LVQ), Kohonen networks, 
decision trees or genetic algorithms. 

We present here an example of a fuzzy-wavelet classifier. The classifier has 
been tested successfully on an industrial project: the development of algorithms, 
integrated into a fire detector, capable of making automatically the distinction 
between a signal caused by deceiving phenomena and real fires. 

The first stage of the algorithm consists of choosing a mesh size h for the 
observation data. The input space is divided into small hyperboxes Hi of volume 
h . The database containing the examples is also divided into two subsets A and 
B. Examples for A and B are deceiving phenomena or fire in the example of a 
classifier implemented into a fire detector. A value is attributed to each hyperbox. 
The value 1/2 is given if no example lies within the hyperbox. The value 1 is 
attributed, if all the examples in the hyperbox belong to the subset A and 0 if they 
belong to the subset B. If elements of both subsets are found in an hyperbox then 
either the mesh size is reduced or new definitions for A and B are chosen (for 
instance A+B=fire). 
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Figure 4.14: The first stage of the classification corresponds to the coding of the 
examples after dividing the input space into a number of hyperboxes. Illustration with 
two input variables. The matrix (right) is used as input to the wavelet decomposition. 
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As an illustration, let us assume that there are only two input variables. 
Figure 4.14 shows an example of the input matrix S after coding of the database 
containing the input data. The classification stage is carried out by making a 
wavelet analysis of the matrix S using spline-wavelets. The matrix rows are 
processed first, and then the columns. To each decomposition level correspond 
three matrices. The first two matrices contain the detail coefficients as elements, 
while the third matrix corresponds to the result of the low-pass filtering. An 
interpretation of the coefficients as a function of their values can be done. Let us 
recall that the fast wavelet decomposition algorithm is carried out with a cascade 
of filters. At a given level, the detail coefficients represent the high-frequency 
component of the signal, while the approximation coefficients give the low-
frequency part of the signal. The detail coefficients, corresponding to the high-
frequency part of the signal, can be used therefore to characterize the boundaries 
between two domains (recall that the wavelet coefficients are good edge 
detectors!). The approximation coefficients cm n give also important information. 

The approximation coefficients cmn correspond to the projection of the signal on 
the scaling function. The scaling functions can be interpreted as membership 
functions, and the coefficients can be used to compute the confidence levels of 
the rules defined implicitly by cmn (Thuillard, 1997b) An approximation 

coefficient cm n = 1, means that the hyperbox Hi, corresponding to the support of 

the bounded multivariate spline-wavelet used for the projection, contains only 
examples corresponding to the subset A. Undefined hyperboxes contribute to 
reducing the degree of membership. 

Off-line learning from irregularly spaced data 

In this section, we will discuss the possibility of using fuzzy-wavelet techniques 
after some nonlinear preprocessing of the input data. First, the datapoints are 
mapped bijectively onto a regular grid. Then the wavelet decomposition is carried 
out on the regular grid. Finally, the resulting approximation in terms of splines is 
mapped back to the original grid. Let us examine how to carry out that program 
with a very simple example (fig. 4.15). The input space is two-dimensional and 
contains 16 points. The 16 datapoints are mapped bijectively onto a regular 4x4 
matrix. The 4 points with the largest values of x2 are associated to the first row. 
After removing these 4 points, the procedure is repeated for the second row. An 
example with a two-dimensional input space was chosen to illustrate that the 
mapping does not preserve near-neighbors relationships. A mapping preserving 
near neighbors relationships is generally computationally very demanding and 
will not be considered here. 
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Figure 4.15: Data points can be mapped objectively on a regular grid. Once mapped on a 
regular grid, the fuzzy-wavelet methods can be applied. 

After the fuzzy-wavelet method is applied on the regular grid, the 
approximating function can be written as a weighted sum of splines: 

f(x) = Icm„-(j)m„(x) (4.12) 

with<Knn(x) = 2m-<j)(2m-x-n). 

Figure 4.16: The effect of nonlinear mapping is illustrated on second-order splines. The 
data points correspond to the lower end of the vertical dashed lines. 
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The inverse mapping does not change the weights, it modifies only the shape 
of the splines. The method is very easy to implement and a fuzzy interpretation of 
the results is possible. At one level of resolution, all membership functions sum 
up to one and form therefore a partition of unity. Also the membership functions 
do not take negative values. This is shown in fig. 4.16 with a one-dimensional 
example. The shape of the membership depends on the position and density of 
the datapoints in the input space. The dependence on the density of points is 
clearly seen in fig. 4.16. In that sense, the method is highly adaptive. In general, 
the transparency of the fuzzy rules is smaller than in fuzzy systems using a 
dictionary of pre-defined fuzzy functions. This is the main drawback of the 
method, besides the fact that complexity reduction is much more difficult. There 
has not been at time enough work along that line to discuss realistically the 
potential of this method. This approach bears nevertheless some promises due to 
its built-in adaptivity. 

Missing data 

In most applications, rules validation is probably the most important single step 
in learning. The validation process is rarely fully automatic, as in most cases 
some human intervention is necessary. One is very often confronted to the 
problem that the input data is sparsely populated. Large regions may be even free 
of any data. The human operator is confronted to a decision on what strategy to 
follow. There are essentially four alternatives: 

-Empty regions are ignored, because they do not correspond to the definition 
range of the input space. This is an acceptable solution, if one can guarantee 
that the empty regions in the input space do never occur in real applications. 
-New data are collected specifically within the empty regions. This is a 
current approach during the development of new sensors. 
-Default rules are added to the system. Adding default rules is quite common 
in sensorics or control. The default rules may have the function to guarantee 
an acceptable response of the system under very difficult conditions. 
-Rules within the empty regions are computed from neighboring regions. 
Generalization requires using interpolation and extrapolation techniques. This 
will be the subject of next section. 

Interpolation and approximation methods 

In the case of missing data, the fuzzy system can be completed by using different 
approximation techniques. We will present below a few methods for that 
purpose. Fuzzy-wavelet methods are suitable to modeling problems with several 
variables. For this reason, we focus on some methods that work well in a multi
dimensional setting. As the complexity of interpolation and approximation 
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techniques increases rapidly with the number of variables, only the simplest 
methods are practicable in real problems. A first possibility consists of using 
interpolation techniques. Let us remind that an interpolation function is a function 
<j) for an ensemble of point (x;,y;) if: 

<Kxj) = y; Vi (4.13) 

Spline interpolants 

According to Lagrange formula, it is possible to fit an interpolating polynomial 
of degree N-l through any curve given by N points. In spline interpolation 
schemes, one is concerned with a slightly different problem. One tries to fit 
piecewise polynomials functions to N points (xj,yj). Each piecewise polynomial is 
of order k and the interpolating function is requested to be in C "', the set of 
functions with continuous (k-l)* derivative. The second order spline 
interpolation corresponds to interpolating between the different points with a 
continuous function consisting of piecewise linear functions. The cubic spline 
interpolation is certainly the most popular spline as it represents a good 
compromise between necessary computing power and smoothness. It is given by 
the following formula for the interpolating function y: 

y = A-yj+B-y j+1+C-y£,+D-y7+1 (4.14) 

with A=(Xj+i-Xj)/(xj+i—Xj), B= 1-A, C=l/6 (A3-A) (xj+1- xs)
2, 

D=l/6(B3-B)(xJ+1-Xj)2 

The terms y" are computed through solving the equation: 

l/6-(Xj - x H ) - y H +i/3-(xj+1 - x H ) - y " + 

l/6-(x J+1-Xj)-y-+I= (4.15) 

(y j+i -yj) /(Xj+i - x j ) - ( y j - y j - i ) / (X j - X H ) 

The above equations show that in order to compute cubic spline coefficients, 
one has to solve essentially a linear problem. This is one of the reason why 
splines are so popular. The method works well in one dimension. The complexity 
of the problem increases rapidly with the dimension, so that the method is only 
recommended at low dimension. 

B-splines interpolants can be also used to describe empty regions (de Boor, 
1978). B-splines are piecewise polynomial functions with a compact support. 
They are very often used to interpolate between data. 

Suppose N points (XJ, yO are known and one looks for an interpolation 
between these points with piecewise polynomial functions <|>k(x) with a compact 
support: y(x) = £ ck <|)k(x) and y(xj)=y; 
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Schoenberg and Whitney (1953) have shown that if a point xf (N>i>l) is 
within the support of each function (|)k(x) then the problem has a unique solution. 
The solution to this problem is obtained through a Gauss elimination method. 
The shape of the splines depends on the position of the knots. The resolution of 
this problem necessitates the knowledge and the storage of the N points. For a 
large number of points, this is a large inconvenience. 

Multivariate approximation methods 

From the Shannon sampling theorem, one knows that a band-limited function is 
recoverable from sample points on regular grid provided the sampling rate is 
large enough. Feichtinger (1990) has shown that the reconstruction is still 
possible if the sampling points are not on a regular grid if the sampling density is 
high enough. Practically, the method is difficult to implement for multivariable 
interpolations as it involves an inverse Fourier transform. From a practical point 
of view, interpolating in a high-dimensional space is difficult and one generally 
prefers using an approximation method. An exception is the Delauney 
interpolating scheme. 

At intermediate dimension, the Delaunay triangulation methods can be used 
to interpolate the data. We will present here the method in a 3-dimensional space. 
Suppose, one wants to interpolate the value of the function at a point Xg located 
on a regular grid. The Delaunay interpolation scheme is shown in fig. 4.17. 

Figure 4.17: Delaunay's triangulation method. 

Data points corresponding to the underlying function y=f(xt, x2,...,x<j) are 
projected on the input space. First the Voronoi cell, around the point on the grid 
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one wants to estimate, is computed. The Voronoi cell corresponds to the 
ensemble of points closer or at the same distance to the chosen point than to any 
other point. Triangulation is carried out and d=3 points are selected (For details 
on the triangulation method see Okabe (1999)). The d points define a plane P (or 
hyperplane at higher dimension ) in 9?d: y=P(x!, x2,...,xd). The value of the point 
on the grid f(Xg) is then computed from the equation of P. 

The Voronoi construction is quite general and works in any d-dimensional 
space. Given a finite set of distinct points in 9?d, the space may be divided into a 
number of Voronoi cell. The Delaunay diagram can be constructed by connecting 
the points whose Voronoi cell share a (d-1) dimensional face. 

A simple approach that works well at high dimension is the neighbor-based 
interpolation. Each value on the grid is computed from its nearest-neighbor with 
an averaging procedure. As an example, one may consider the simple estimation: 

f(Xg) = l/N- Zy(Xi) (4.16) 
i e{N nearest neighbors to Xg} 

If points are now uniformly distributed, the estimation may be improved by a 
weighted averaging method. We will limit the discussion of a single method, a 
multiresolution scheme using cardinal B-splines, that is quite reminiscent of the 
fuzzy-wavelet approach. Consider the problem of estimating a function f(x) as a 
weighted sum of splines forming a multiresolution: 

f(x)=Zcm ,n-*mj l(x) (4.17a) 
m,n 

Assume further that a number of points are known. Finding good values for 
cm n is a delicate problem, as the functions §m n are linearly dependant. The 

problem can be much simplified if the equations are decoupled: 

f(x) = Zfm(x) (4.17b) 
m 

f m ( x ) = ICm > n-< |>m,n(x) (4.17C) 
n 

This permits to approximate the data at a very low resolution and to correct 
iteratively the approximation function at the higher levels of resolution. The 
equations are first solved at a low resolution. This can be done either using a 
neural network, a kernel estimator or singular-valued decomposition. The residue 

R(xk) = f(xk) - f (x k ) is computed and the procedure is iterated on the residue at 
one level of resolution higher. The approximating function is assumed to be a 
linear combination of cardinal splines of order k: 

f ( x ) = X C m , n - N | n ( x - n ) 
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The approximating function f(x) at the lowest level of resolution is 

computed with a simple average scheme. 
The function f(x) is first approximated at the lowest resolution 

fo(x) = Xco,n-NS(x-n) (4.18) 
n 

The residue R(xk) is computed 

R(xk) = f(xk)-f0(xk ) (4-19) 

The procedure is repeated at the next higher level of resolution, using the 

residues R(xk) as input data. The residue is approximated by the function f, (x) 

with 

flW = XCUn-NlC((X-n)) <4-20) 
Q 

After L iterations the input data are estimated by 

f(x)= Zfm(x) (4.21) 
m=0 

The advantage of using splines is that the method can be easily adapted to 
higher dimensions by taking tensor products of splines of same resolution. Other 
functions such as radial basis functions might have been chosen as well 
(gaussian, triangular, poly-harmonic,...). Figure 4.18 shows an example in which 
a feedforward perceptron using an instantaneous gradient descent was taken. Let 
us mention that in order to avoid over fitting, a regularization approach may have 
been used. The above method can be seen as a generalization of the neurofuzzy 
approach to multiresolution analysis. The method works both for on-line and off
line problems and at any dimension. A further advantage is that it does not 
require the input space to be defined on a grid. Large empty regions are 
approximated with low-resolution splines, while small empty regions are 
approximated with high-resolution splines. 
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Figure 4.18: An approximation of a function given by 20 points is made iteratively by 
adding higher resolution cardinal splines that model the residue. 

The above enumerated properties makes the multiresolution neurofuzzy 
method quite attractive for applications. There are two drawbacks of the above 
method that should be mentioned: the first being the danger of over fitting in 
data-rich regions. In order to prevent over fitting a cross-validation method is 
necessary. The second difficulty is the implementation of the method in on-line 
problems if all data points cannot be stored due to a low memory capacity of the 
hardware. In part 5, methods will be discussed that overcome that problems by 
using multiresolution feedforward neural networks with a modified instantaneous 
gradient method. 
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Figure 4.19: The fuzzy-wavelet method applies to data on a regular grid. If a few points 
are missing, the missing points can be obtained by interpolation or extrapolation 

techniques. If data are not on a regular grid, then a neural method can be used or the 
membership functions can be deformed adaptively using the method in part 4. Part 5 will 

present further techniques that can be applied to on-line learning 

In summary, while the fuzzy-wavelet methods presented in the first sections 
of part 4 dealt with regularly spaced datapoints in the input space, the previous 
sections did extend the method to random design, and to the situation in which 
some points are missing. The above methods do not work well in on-line 
learning. For on-line learning wavelet-based neural networks or estimators are 
preferably used. This will be the subject of the next chapters. 
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5. On-Line Learning 

Off-line or batch learning was the main theme in part 4. The two central ideas 
behind fuzzy-wavelet techniques were explained. First a dictionary of pre-defined 
membership functions forming a multiresolution is taken. This makes the fusion 
and splitting of rules simple. As each membership function is a linear 
superposition of higher resolution membership functions, rule splitting is 
straightforward. Rules fusion can be carried out through filtering. The 
approximation coefficients at high resolution are transformed with the low-pass 
filter associated to the considered wavelet. Second, learning from data can be 
made using wavelet-based algorithms. The approximation coefficients in the 
wavelet decomposition correspond to the output value in the singleton Takagi-
Sugeno model and the scaling functions are interpreted as membership functions. 

Transparency and readability were the most important motivations behind the 
development of these methods combining fuzzy logic and multiresolution 
analysis. The interpretation of the rules is greatly facilitated by the fact that most 
semantic and redundancy problems, usual in most neurofuzzy methods, are 
solved per design. We have examined in the previous sections, how to handle 
situations, in which data are missing or data are not on a regular grid. For batch 
learning, the interpolation and approximation methods in part 4 can be used to 
estimate values on a grid. An alternative solution is to map the data on a regular 
grid and to apply fuzzy-wavelet methods to the transformed data. 

Part 4 dealt with off-line problems in a deterministic design. In part 5, the 
fuzzy-wavelet formalism is extended to random designs. Part 5 focuses on on
line learning. It explores the connections between wavelet theory, fuzzy logic, 
neural networks and approximation theory. 

The first section introduces wavelet-based neural networks. In the second 
section, wavelet networks are extended to biorthogonal wavelets. Within the 
framework of biorthogonal wavelet networks, multiresolution neurofuzzy 
methods are proposed. These methods offer a simple solution to the problem of 
validation during on-line learning. New rules are added to the system, using a 
simple wavelet-based validation procedure, as new data become available. 

Part 5 introduces fuzzy wavelet networks within the more general framework 
of wavelet networks. For the readers mostly interested in fuzzy logic, fig. 5.1 
shows the different sections in which the fuzzy learning methods can be found. 
Figure 5.1 summarizes also the different approaches, presented in this book, to 
develop a multiresolution fuzzy system from data: 

-For off-line learning with data on a regular grid, appropriate membership 
functions and rules are determined with fuzzy-wavelet techniques. The most 
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appropriate rules are chosen based on the decomposition coefficients or by using 
a matching pursuit algorithm. If some data are missing, the values on a grid can 
be estimated with standard regression and approximation techniques. 

-For a random design, approximation techniques can also be chosen, though 
an alternative solution consists of mapping the input space onto a regular grid. In 
that later case, the position and shape of the membership functions depend on the 
location and density of points in the input space. 

-For on-line learning, wavelet-based neural methods (fuzzy wavenets) or 
multiresolution estimation (fuzzy-wavelet estimators) are the methods of choice. 

REGULAR GRID IRREGULAR GRID 

<**%€ 

FUZZY-WAVELET 
ON 

REGULAR GRID 
(Part 4) 

FUZZY-WAVENETS 
(Part 5) 

FUZZY WAVELET 
ESTIMATOR 

(Part 6) 

Figure 5.1: Summary of the different methods to develop fuzzy rules from data with 
wavelet-based approaches. 

Wavelet-based neural networks 

Wavelet theory has a profound impact on signal processing as it offers a rigorous 
mathematical approach to the treatment of multiresolution. The combination of 
neural networks and wavelet theory has lead to a number of new techniques: 
wavelet networks, wavenets, fuzzy wavenets. In this section, we want to review 
wavelet-based neural networks. Wavelet analysis and neural networks have been 
combined in numerous manners. We distinguish two categories of methods. In 
the first one, the wavelet part is essentially decoupled from learning. A signal is 
decomposed on some wavelet and the wavelet coefficients are furnished to a 
neural network. In the second category, wavelet theory and neural networks are 
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combined into a single method. We limit the scope of this chapter to the second 
category, which covers wavelet networks, wavenets and fuzzy wavenets. 

The introduction of wavelet theory into neural networks has resulted into the 
development of wavelet networks. Wavelet networks are feedforward neural 
networks using wavelets as activation function. Wavelet networks have been 
used in classification and identification problems with some success. The 
strength of wavelet networks lies in their capabilities of catching essential 
features in frequency-rich signals. In wavelet networks, both the position and the 
dilation of the wavelets are optimized besides the weights. Wavenet is another 
term to describe wavelet networks. Originally, wavenets did refer to neural 
networks using dyadic wavelets. In wavenets, the position and dilation of the 
wavelets are fixed and the weights are optimized by the network. We propose to 
adopt this terminology. The theory of wavenets has been generalized to 
biorthogonal wavelets (Thuillard, 1999a). This extension to biorthogonal 
wavelets did permit the development of fuzzy wavenets (Thuillard, 2000a). 
Fuzzy wavenets extend wavelet-based learning techniques to on-line learning. A 
major advantage of fuzzy wavenets techniques in comparison to most neurofuzzy 
methods is that the rules are validated, on-line, during learning by using a simple 
algorithm based on the fast wavelet decomposition algorithm. 

The similarities existing between the structure of a feedforward neural 
network and a wavelet decomposition have been used in so-called wavelet 
networks. A wavelet network is a 3-layers feedforward neural network in which 
\|/(aj • x + b-) is a wavelet. 

The output of the 3-layers neural network is 

k 
f(x)= Zw.-vKa.-x + b.) (5.1) 

i=l 

with \|/ the activation function and aj, bj, w; the network parameters (weights) 
that are optimized during learning. 

Output 

k 

f(x) = ^w i-v|/(a rx + bi) 
i=l 

Figure 5.2: The structure of a wavelet network is very often the one of a feedforward 
neural network. 

Input Hidden Layer 

^•x+h,) 

Wavelet as 
activation functions 
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The dilation, translation and weights are optimized during learning. If the 
network is properly initialized, then the network can be quite parsimonious. If 
only the weights are optimized in (5.1), and the activation function is of the form 

x - n) ,with m,n integers, the network is referred to as a wavenet. A V n = v ( 2 m 

subset of wavelet networks are the so-called fuzzy wavelet networks or fuzzy 
wavenets. Using the two-scales relation (Mallat, 1998), a wavelet can be 
decomposed into a sum of scaling functions iy(x) = y^hn_2r(|)(2x - r) . The 

wavelet network, given by (5.1), can be put under the form: 

f (x) = £ d m n • h n _ 2 r • <|>m+lin ( x ) + f (5.2) 

Fuzzy wavenets are wavelet networks based on wavelets with some special 
properties: the scaling function associated to these wavelets must be symmetric, 
everywhere positive and with a single maxima. Under these conditions, the 
scaling functions can be interpreted as fuzzy membership functions. Figure 5.3 
summarizes the different wavelet-based neural networks using a feedforward 
type of networks. Fuzzy wavenets are included within the category of wavelet 
networks. 

Feedforward neural 
networks 

Figure 5.3: The most popular wavelet networks are based on the perceptron structure. 
Fuzzy wavelet networks, also called fuzzy wavenets, can be regarded as a neurofuzzy 

model which belongs at the same time to the set of wavelet networks. 
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Wavelet networks 
The origin of wavelet networks can be traced back to the work by Daugman 
(1988) in which Gabor wavelets were used for image classification. Wavelet 
networks have become popular after the work by Pati (1991, 1992), Zhang 
(1992), and Szu (1992). Wavelet networks were introduced as a special 
feedforward neural network. Zhang et al. did apply wavelet networks to the 
problem of controlling a robot arm. As mother wavelet, they use the function 

\|/(x) = (x1 •x-dim(x))-e-1//x x (5.3) 

J-1 Szu et al. take a different function, cos(1.75 t) exp(-t 12), as mother wavelet 
for classification of phonemes and speaker recognition. Simple combinations of 
sigmoids were chosen by Pati (1991). This approach has been generalized by 
Fernando Marar (1996) to polynomial functions of the sigmoid function. 

Wavelet networks using the 3 layers perceptron structure are of the general 
form: 

N 

f(x) = ̂ w1-det(Dl / 2)-V[D i-x-t1] (5.4) 
1=1 

with D the diagonal dilatation matrix and t the translation vector. 
For classification the output signal may be further processed with a sigmoid 

function a . In that case, the output is given by a(f(x)) (Szu, 1992). 
A motivation for using wavelet networks is that there are universal function 

estimators that may represent a function to some precision very compactly. This 
follows from the work by Hornik (1989) and Kreinovich (1994). Hornik has 
shown that an arbitrary continuous function on a compact set can be 
approximated by a 3-layers neural network within a precision s. More precisely, 
assume an arbitrary function f with p continuous derivatives on (0,1) and 

< A , such that the function is equal to zero in some neighborhood of the fP(x) 

end points. The function f: 9? —>di can be approximated by an expression of the 
type: 

H 

f(x) = £(3 h -s (w h -x + bh) (5.5) 
h=l 

with H the number of neuron in the hidden layer, w the weight between the 
input and the hidden layer, and p the weight between the hidden and the output 
layer. The function s(x) is the transfer function, for instance the sigmoid function. 
A wavelet network is a particular case of (5.5). Kreinovich et al. (1994) have 
proven that wavelet neural networks are asymptotically optimal approximators 
for functions of one variable. Wavelet neural networks are optimal in the sense 
that they require the smallest possible number of bits to store, for reconstructing a 
function within a precision 8. 
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From the practical point of view, the determination of the number of wavelets 
and their initialization represent two major problems with wavelet networks. A 
good initialization of wavelet neural networks is extremely important to obtain a 
fast convergence of the algorithm. A number of methods have been implemented. 
Zhang et al. (1992) initialize the coefficients with an orthogonal least-squares 
procedure. As an alternative, the dyadic wavelet decomposition may be used to 
initialize the network. Echauz (1998) applies a clustering method to position the 
wavelets. The distribution of points about a cluster permits to approximate the 
necessary dilation of the wavelet. Echauz (1996) proposes also an elegant method 
using trigonometric wavelets. He uses functions of the form: 

cos trap(x) = cos(37i / 2 • x) • min{max{3 / 2 • (1 - |x|),0},l} (5.6) 

Trigonometric wavelets can be approximated by polynomials. Fitting of the 
polynomial is a linear problem that is solved more easily than fitting 
trigonometric wavelets. The fitting parameters of the polynomials can be used to 
approximate the initializing parameters of the corresponding wavelets. In Boubez 
(1993), the network is initialized by positioning and approximating first low 
resolution wavelets. New higher resolution wavelets are introduced and 
initialized subsequently to minimize the score. Rao et al. (1993) use the principle 
of cascade correlation learning architecture to train the network. New wavelets 
are added one by one and at each step, the network is trained till convergence is 
reached. Yu et al. (1996) opt for the opposite approach, the wavelet network uses 
first a large number of functions. The wavelet network is made subsequently as 
compact as possible using a shrinkage technique to delete not too important 
nodes. 

Backpropagation algorithms, conjugate gradient method (Szu, 1992) 
stochastic gradient algorithm (Zhang, 1992) or genetic algorithms (Prochazka, 
1994) have been used for training the network. 

A number of interesting applications have taken advantage of the 
multiresolution properties of wavelet networks. 

Many manufacturing process monitoring systems have the function of 
detecting abnormal vibrations (Pittner, 1998). For vibration detection and 
classification, wavelet-based methods represent good alternatives to Fourier 
analysis. Engine knock detection systems have been developed by PSA-Peugeot-
Citroen (Thomas, 1996) on the basis of wavelet networks. Another related 
application is the detection of vibrations in defective circuit breakers in electric 
power (Lee, 1999). 

Wavelet networks have been implemented with success to identify and 
classify rapidly varying signals, for instance to identify high risks patients in 
cardiology (Dickhaus, 1996) or for echo cancellation (Li, 1996). 

Major efforts have been undertaken in the field of speech segmentation and 
speaker recognition following the pioneering work by Szu et al. (Szu, 1992, 
1996, 1998). The error rate in continuous speech recognition is of the order of 
5%. Speech recognition systems have difficulties to separate mixed sounds, like a 
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ts into t and s. Reliable acoustic segmentation is regarded as a way to improve 
speech recognition. 

Forecasting and prediction of chaotic signals are two other promising fields 
of applications. Prediction of chaotic time series with wavelet networks were 
obtained from a limited number of datapoints. Excellent results were obtained on 
chaotic times series (Cao, 1995). The multiresolution character of wavelets 
permits to catch long terms and short terms variations. Applications in 
forecasting range from economical predictions (Cao, 1996) to prediction of short 
term load in power station (Chang, 1998) or channel equalization (Chang, 1994). 

Wavelet networks have been tested on a number of classical control 
problems, from the detection of small variations in a plant to the control of 
robotics arms (Katie, 1997). 

Studies on radar applications have dealt with aircraft velocity estimation 
(Sanchez-Redondo, 1998) or rain forecasting (Yeung, 1996). 

Let us mention also two applications in the field of image processing: face 
tracking (Kruger, 1994) and real environments characterization for haptic display 
(Miller, 1998). 

A new generation of chemical sensors based on micro-hotplate gas sensors 
have been developed at NIST. The sensor consists of an array of micro-hotplates 
on a silicon wafer using CMOS technology. The different reaction kinetics of the 
different gases can be used to enhance the sensor' detection capabilities. The 
temperature of the sensor is modulated rapidly. The dynamic response of the 
sensors to different gases are analyzed with a wavelet network using Mexican hat 
wavelets (Kunt, 1998). 

An interesting alternative to wavelet networks consists of using a dictionary 
of dyadic wavelets and to optimize only the weights Wj. This approach is 
generally referred to as wave-net or wavenets. 

Dyadic wavelet networks or wavenets 

Wavenets were first proposed by Bakshi et al. (1994). In its simplest version, a 
wavenet corresponds to a feed-forward neural network using wavelets as 
activation functions. 

f(x) = £ d m n . V m > n ( x ) + f (5.7) 
m,n 

with f the average value of f, d m nthe coefficients of the neural network and v|/ 

the wavelet. 
Wavenets have been generalized to biorthogonal wavelets (Thuillard, 1999a, 

2000a, 2000b). The principal difference to orthogonal wavelets is that the 
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evolution equation depends on the dual wavelet. We have proposed the following 
evolution equation for biorthogonal wavelets. 

dm>11 (k) = dm>n (k -1) - LR • (f (x) - yk (x)) • MVn (x) (5.8) 

with LR the learning rate and yk(x) the kth input point. For datapoints that are 
independent, uniformly distributed copies of a random variable X, the estimated 

wavelet coefficients dm n (k) converge adiabatically to dm,n in the limit of a very 

low learning rate. 
For orthogonal wavelets, (5.8) reduces to 

dmn (k) = dm>n (k -1) - LR • (f (x) - yk (x)) • Vm>n (x) (5.9) 

Fuzzy wavenets 

Let us recall the framework in which we have worked till now and the situation 
we have left in part 4. A major challenge to fuzzy logic is the translation of the 
information contained implicitly in a collection of data points into linguistically 
interpretable fuzzy rules. Neurofuzzy methods have been developed for this 
purpose. A serious difficulty with many neurofuzzy methods is that they do often 
furnish rules without a transparent interpretation; a rule is referred as being 
transparent if it has a clear and intuitively correct linguistic interpretation. A 
solution to this problem is furnished by multiresolution techniques. The basic 
idea is to take a dictionary of membership functions forming a multiresolution 
and to determine which membership functions are the most appropriate to 
describe the data points. In order to associate a linguistic interpretation to each 
membership function, the membership functions are chosen among the family of 
scaling functions that have the property to be symmetric, everywhere positive and 
with a single maximum. This family includes among others splines and some 
radial functions. The main advantage of using a dictionary of membership 
functions is that each term, such as small or large is well defined beforehand and 
is not modified during learning. The multiresolution properties of the 
membership functions in the dictionary function permits to fuse or split 
membership functions quite easily so as to put the control surface under a 
linguistically understandable and intuitive form for the human expert. 

In the singleton model, the fuzzy rules are expressed under the form: 
Rj: if x is Aj then y = bj. Here A; are linguistic terms, x is the input 

linguistic variable, while y is the output variable. The value of the input linguistic 
variable may be crisp or fuzzy. If spline functions Nk are taken, for instance, as 
membership function uA (x) = Nk(2m x -n) then the system is equivalent to 
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y = Z b j - N k ( 2 m x - n ) . In this particular case, the output y is a linear sum of 
J 

translated and dilated splines. This means that under this last form the singleton 
Takagi-Sugeno model is equivalent to a multiresolution spline model. It follows 
that wavelet-based techniques can be applied here. 

For on-line problems, rules validation is the main issue especially if little 
memory is available. A number of multiresolution methods have been presented 
in the previous chapters. None of them can suitably tackle the validation problem. 
Ideally, one would like a system containing a small number of rules as only a few 
points are available. New rules would be added to the systems as more 
information is gathered. We will introduce in the next sections, a number of 
methods, that just do that using a simple and efficient wavelet-based validation 
procedure. Several variants are presented; all have in common to use the fast 
wavelet algorithm to validate the new rules and are therefore referred to as fuzzy 
wavenets. 

These fuzzy wavenets methods combine wavelet theory to fuzzy logic and 
neural networks. They permit to determine and validate adaptively appropriate 
fuzzy rules in on-line problems. The model is refined as more data are furnished 
to the system. With only a few datapoints, the information on the underlying 
surface is small and a low resolution description of the system is appropriate, 
while with an increasing number of datapoints, a higher resolution may be 
justified. New rules are added to the description of the surface as more datapoints 
are processed. The rules are validated by using an automatic procedure based on 
the fast wavelet decomposition and reconstruction algorithm. Learning is fully 
automatic and does not require any external intervention, making these methods 
very useful in practical applications, for instance during field testing of sensors 
and detectors. The detectors are installed in challenging test objects located all 
over the world. The sensor' signals are processed autonomously by a low end 
microprocessor in the detector. The information is processed and stored under a 
compressed form. The compressed information can be at any time transmitted to 
the laboratory, for instance through modern communications means (mobile 
phone, modem,...). This approach permits to carry out large-scale field testing at 
moderate costs. 

Multiresolution identification using spline wavenets have been implemented 
with success to the modeling of chaotic data (Billings; 1999). Billings et al. use a 
multiresolution network to model for instance a Duda oscillator. The 
multiresolution structure of the network permits to catch both long and short-
range correlations quite efficiently. The neural network uses a feedforward neural 
network with an instantaneous gradient descent. The model is constructed by 
using a method inspired by ASMOD. As learning is off-line, their model 
complete the list of multiresolution neurofuzzy models presented in part 4 for off
line learning. The main difference, between Billings' approach and the one 
presented here, lies in a small but important detail in the evolution equation. In 
fuzzy wavenets, the evolution equation uses the dual scaling functions and not 
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the scaling function itself. Using the dual permits to give an interpretation of the 

weights c m n in the expression f(x) = y ^ c m n <t»mn(x). For locally uniformly 
m,n 

distributed data and for small learning rates, the coefficients cm n tend, under 

some mild conditions on f(x), towards the approximation coefficient cm n of the 

wavelet decomposition of f(x). The coefficients in both approaches are not the 

same. This is already seen from a one-level model: f(x) = £ c M n -<|>Mn(x). The 
n 

instantaneous gradient method minimizes the locally weighted mean-squares 
error, while a global method would result in a MSE solution. The wavelet 
coefficients cm n do not have to be MSE solutions. For orthogonal wavelets, this 

would hold, but for biorthogonal wavelets it does not hold in general. 

Learning with fuzzy wavenets 

Figure 5.4 shows the architecture of the learning algorithm. It consists of a series 
of neural networks, using both wavelets \|/mn (x) and scaling functions (|>m n(x) as 

activation functions. Each neural network takes activation functions of a given 
resolution. 

NEURAL NETWORK 1 

Figure 5.4: Structure of a fuzzy-wavenet. The input signal is approximated at several 
resolution as a weighted sum of wavelets \\i^m and scaling functions <j>mn(x) at a given 

resolution. 
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The m* neural network optimizes the coefficients cm n and dra n , with fm(x) 

the output of the mth neural network. 

fm(x) = £ d m n • HVn(x) + £ c m i n -^D(x) (5.10) 
n n 

The evolution equation for the details dmn(k)and the approximation 

coefficients cm n (k) at step k are given by 

dmn (k) = dm>n (k -1) - LR • (fm (x) - yk (x)) • {j/m>B (x) (5.11) 

V „ (k) = cm,n (k -1) - LR - (fm (x) - yk (x)) • <frm>n (x) (5.12) 

with yk(x), the k* input point and LR the learning rate, <j>mn(x), v/mn(x) the 

dual functions to <|>mn(x)and i|/mn(x). The evolution equations (5.11-12) 

describe the evolution of fm(x). Assume datapoints yk = f(xk), with xk uniformly 

distributed copies of a random variable X. At each step the coefficients cm n , dm n 

are updated by a term which expectation are proportional to 

E((fm (x) - yk (x)) • y (x)) =< fm (x) - f (x), y m „ (x) >= 

^m.n ^m,n 

(5.13a) 

E((fm (x) - y k (x)) • ^mB (x)) =< fffi (x) - f (x), <j>mn (x) >= 
(5.13b) 

1̂11,11 *^m,n 

In the adiabatic sense, the expectation of the function fm(x) converges to the 
projection of f(x) on the space Wm+] under some mild conditions for the function 
f(x). Since i|/mn(x)and <|>mn(x) are independent, it follows that cmn ->cm n and 

dm,n -> dm„ . 

Validation methods in fuzzy wavenets 

The validation procedure may be explained starting from wavelet theory. For 
dyadic wavelets, a necessary condition for perfect reconstruction is that the space 

Vm.,+Wm1 spanned by the scaling and wavelet functions at level m-1 is 

equivalent to the space Vm : Vm_., + W,,,.., = Vm, which can be symbolically 

expressed as 
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It follows that the approximation coefficients at level m can be obtained from 
the wavelet and approximation coefficients at level m-1. A simple local 
validation criterion for an approximation coefficient cm n is to request that this 

coefficient can be approximated from the approximation and detail coefficients 

cm_ ln. ,dm„ l n . at one lower level of resolution. At each iteration step, the weights 

from the different networks are cross-validated using a central property of 
wavelets, namely that the approximation coefficients cm n at level m can be 

computed from the approximation and wavelet coefficients at level m-1 using the 
reconstruction algorithm. 

Cm,n = X 8 " - 2 r ' C m - 1 . r + h n - 2 r -dm-l,r (5-14) 
r 

with g n_2r and h n.2r the filter coefficients for reconstruction (Beware the filter 

coefficients g, h are to a normalization factor v2 identical to the ones defined in 

parti. The normalization is given here by the relation: §m n (x) = 2m • <j>(2m • x - n ) . ) 

In order for a coefficient to be validated, the difference between the weight of the 
membership function (model m) and the weight computed from the 
approximation and wavelet coefficients at one level of resolution lower (model 
m-1) must be smaller than a given threshold (fig. 5.5). 

C2,n-2Sn-2r-Cl,r-*n-2r-d],r | ^ A 

C n % n - ^ n - 2 r - C m - l , r - * n - 2 r - ( W | ^ A 

Natal Nawork/Nrray Validation 

Figure 5.5: The validation module compares the approximation coefficients cm n (k) to 

the approximation and wavelet coefficients at one level of resolution lower. 

V ^ P i f l - ^ w ^ £ifl<Mx) 

Input 
f2(x)=Z VV*)*-? hn^n{x) 

fj(x)=£ dmjrlW*)*-! c m p ' < W x 
J n n 

\ 

\ 
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As validation criterion for the coefficient cm n , we require 

I V „ - J]gn-2r • cm_, r + hn_2r • dm_1>r | < A (5.15) 
r 

The most appropriate membership functions and rules are chosen adaptively 
during learning. With only a few points, not much information on the control 
surface is known and the control surface is better described with a small number 
of rules. As the number of points increases, the number of rules is raised if 
necessary. The method furnishes an automatic procedure to determine adaptively 
the best membership functions and rules. The best coefficients are chosen 
adaptively among the set of validated coefficients. The validated coefficients 
corresponding locally to the highest resolution are kept (default coefficient^ 
average value). 

Learning with wavelet-based feedforward neural networks 

The convergence of the fuzzy wavenet method is not too fast, as the method 
requires for stability reasons to use a small learning rate in comparison to a 
perceptron. For this reason, one may consider another approach using only 
scaling functions. The basic structure of the network is similar to the fuzzy 
wavenets except that the m"1 neural network optimizes the coefficients cm n , with 

fm(x) the output of the m"1 neural network (fig. 5.6). 

f m ( x ) = X £ m , „ - < L , „ ( x ) (5.16) 
n 

The evolution equation is given by the following expression 

£m,„(k) = cm ,n(k-l)-LR(fm(x)-yk(x))-$m n(x) (5.17) 

The validation procedure uses the decomposition algorithm to compare the 
results at two levels of resolution. 

Cm,n = ^ _ , P k - 2 n 'Cm+l,k ( 5 . 1 8 ) 
k 

with g the coefficients of the filter associated to the low-pass decomposition 
filter in the fast wavelet decomposition algorithm. The validation criterion for 
£mn is then 

I cm>n - YJ Pk-2n • cm+i,k | < A (5.19) 
k 
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NEURAL NETWORK 1 

Figure 5.6: Structure of a fuzzy-wavenet. The input signal is approximated at several 
resolution as a weighted sum of scaling functions (|>m n (x) at a given resolution. 

What are good candidates scaling and wavelet functions at high 

dimension? 

Many problems require the description of a n-dimensional surface with n larger 
than 2. From the theoretical point of view, there is no limit to the dimension of a 
wavelet (Kovacevic, 1997; Kugarajah, 1995). An obvious approach to build 
wavelets in higher dimensions is through tensor products of one-dimensional 
wavelets (for instance of splines). This approach is versatile enough to describe 
with sufficient precision many n-dimensional surfaces. 

Compactly supported biorthogonal wavelets on any lattice and any dimension 
can also be generated using the lifting scheme. This approach becomes 
unpractical at high dimension due to the increasing size of the filter. Radial 
functions are often very appropriate to deal with high-dimensional spaces. The 
symmetry of radial functions permits an easy computation of their values. Semi-
orthogonal wavelets based on radial functions have been developed by Micchelli 
(1991). Contrarily to other radial functions (Buhmann, 1996), the construction of 
Micchelli can be used at any dimension. The scaling functions on which the 
construction is based are so-called polyharmonic B-splines. Polyharmonic B-
splines take the form: 

f(x)= x 
,2r-d 

log x L d even (5.20a) 
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f(x) = |x |2 r d
? d odd (5.20b) 

with r an integer and d the dimension. The integer must be such that 2r>d 
The Fourier transform of the scaling function is given by 

d 2 ii ii2 r 
<p(o>) = ( S siw (© J2y\\ co/2 ) 

j=l J 
( « 0 ) 

with co = (®J,.. .5(0J) . 

The filter coefficients corresponding to the scaling fimction can be computed 
with an inverse Fourier transform. Figure 5.7 shows the scaling function for r=2 
and d=2? that is a 2-dimensional scaling fimction. The wavelet associated to this 
scaling function is shown below (fig. 5.7b). The wavelet coefficients are similarly 
obtained by the inverse Fourier transform of the function: 

,-d n2r V(cn/2) = 2"a-||»/2|| j f ( -a /2) | / I$( -c»/2 + 2.7t-k)(5.21) 
keZd 

a) 
0 0 
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b) 

Figure 5.7: Radial scaling fiinctions may be used for multidimensional wavenets as an 
alternative to tensor products of univariate functions, a) Scaling function in two 

dimensions, b) associated wavelet. 
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6. Nonparametric Wavelet-Based Estimation and 
Regression Techniques 

Nonparametric regression and estimation techniques 

The main goal of nonparametric regression techniques is to estimate a function 
from the knowledge of a limited number of points y;=y(Xj). In many applications, 
the datapoints are obtained experimentally and may be corrupted with noise. 
Consider the standard nonparametric regression problem: Let (X,Y) be a pair of 
random variables with values in xe*Rd, ye5R . Assume that y(xi) = f(xi) + si 

where Ej are independent N(0, a) normally distributed copies of random 
variables. A function y = f(x) is the regression function of Y on X if 

E(Y|X = x) = f(x) (6.1) 

For the rest of the discussion, it is important to consider the two typical 
sampling designs, namely the random sampling and the deterministic sampling. 

Random design: The input data X; are copies of random variables X; that are 
independent and identically distributed on [0,1] with density g(x). 
Deterministic design: The input variables X; are non random. The simplest 
case of a deterministic design is the regular design in which x; are on a 
regular grid. 
We will limit the discussion to two basic estimation methods: kernel 

estimators for regression function and density estimation. Due to the particular 
role of splines in estimation, a small section deals with smoothing splines 
techniques. 

Smoothing and regression are two important problems in which local 
weighting with kernel functions have found important applications. A smoothing 
or regression kernel is a positive, generally even, function with unit integral. A 
regression kernel is generally well localized. Spline functions are often used as 
kernels. The uniform kernel, the gaussian kernel and the quadratic kernel are also 
very popular (Eubank, 1999). 

Uniform kernel: <|)(x) = 0.5 , |x| < 1, 0 otherwise 

141 



142 Wavelets in Soft Computing 

Gaussian kernel: <)>(x) = (27i)~1/2 -exp(-x2 12) 

Quadratic: <j)(x) = 0 .75( l -x 2 ) , |x| < 1, 0 otherwise 

Nonparametric kernel estimators permit to estimate a function f(x) from a 
number of datapoints (x^yj). The estimate f(x)is expressed as a weighted sum 
of translated and dilated kernels: 

f(x) = | ]S i(x).y1 (6.2) 
i= l 

with Sj centered on x; and N the number of points. 
The Watson-Nadaraya and the Miiller-Gasser estimators are some of the most 

popular estimators. They represent two extreme cases in estimation theory 
(Eubank, 1999). The Watson-Nadaraya estimator is given by 

N , X : - X . 

f(x) = i=L (6.3) 

i = l " 

Watson-Nadaraya estimators have some interesting properties. In the case of 
a random design they can be shown to be bayesian estimators of (x;,Vj), in which 
(Xi,yj) are i.i.d copies of a continuous random variable (X,Y). (In order to 
simplify the formalism and without loss of generality, we have used 1-
dimensional estimators.) The Watson-Nadaraya estimator minimizes also the 
weighted mean squares error: 

MSE = X<K i i V i i ) - (y i - c i )
2 (6.4) 

t i h 

This is seen by equating the derivative 
N N 

SMSE/aCj =2-cf -V fti^-!L)-2.Y ^iZl.).yi to zero. 
i=i h i=i h 

The Miiller-Gasser estimator is a second very popular estimator defined by 
the expression: 

N XJ 

f(x) = h - £ JK^i-^)-dx-Vi (6.5) 

with Xj =(xj+1 -Xj)/2; x_, =x,; x N = x N . 
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Smoothing splines 

Smoothing splines can be regarded as an extension of linear regression 
techniques to accommodate constraints on the smoothness of the fitted function. 
A natural measure of the smoothness of a one-dimensional function f is an 
integral function of the m* derivative f*m) of f. Smoothing splines estimators 
search for a function f(x) minimizing the weighted sum of the smoothness 

1 N 

measure f(f(m)(x))2 • dx and the average squared residual 1 / N • ̂ ( y ; -f(t ; ))
2 : 

o .=i 

N V 
l / N - £ ( Y l -f(t t))2 + *•• j(f(m)(x))2 -dx (6.6) 

1=1 0 

When X is large , smoothness is rewarded and an estimator with large m* 

derivatives is penalized. In the limiting case, A,-»0, the optimized function f(x) is 

a least squares estimator. The estimator is obtained by solving the equation: 

(<pTd>+n-*.J2)b = 0 T y (6.7) 

<D = {(|)j(ti)}1j=1 n a basis for the set of splines of order 2m. 

0 

In order to be really nonparametric, the value of X must be determined. This 
can be done with trial and error or preferably with cross-validation techniques. 

Efficient computing methods have been developed for spline functions. In 
that case, simple solutions can often be given. For instance, the cubic smoothing 
spline minimizes the expression: 

N 1 

1 / N • £ (y; - f(t, ))
2 + X • J(f(2) (x))2 • dx (6.8) 

i=l 0 

The method can be extended to functions of p variables by minimizing the 
expression: 

N 1 1 

l /N-£( y i - f ( t i ) ) 2 +A.- ^m!/(k1!....kp!).(|..{(5mf(t)/(5tf'..aj»)-dt1...dtp 
i=l k,+...+k o 0 

(6.9) 

The method is known as thin plate smoothing spline. Smoothing spline 
surface fitting technique are described very thoroughly by Wahba (1980). 
Smoothing splines estimators have found many applications for fitting a curve or 
a surface to a dataset. A number of computer programs have been developed for 



144 Wavelets in Soft Computing 

fitting a two-dimensional surface to data. The two-dimensional surface is 
represented either in a three dimensional space or as a plot in which the surface is 
given by color coding. Applications to high-dimensional spaces are quite rare, as 
the number of points necessary to approximate the surface increases rapidly with 
the dimension (curse of dimensionality). 

Wavelet estimators 

In the 90's, the statistics community got very interested in wavelet theory. A 
number of wavelet-based methods were created for nonparametric regression and 
density estimation. Linear and nonlinear regression methods were developed. By 
the end of the 90's, the cross-fertilization between the classical wavelet 
specialists and the statisticians was very significant, partly thanks Donoho and 
Johnstone work on denoising. This section examines first linear wavelet methods 
for curve estimation, then describe succinctly some of the methods for density 
estimation. Finally some nonlinear methods are presented. 

Wavelet methods for curve estimation 

Most wavelet estimators are based on extensions of the Watson-Nadaraya and 
Miiller-Gasser estimators. Wavelet estimators express the regression function 
fw(x) as a weighted sum of wavelets and scaling functions: 

f w ( X ) = X C M o . n " < t ) V n ( X ) + X ' W V m . n O O ( 6 - 1 0 ) 

n n,m>M0 

Different estimators can be used to estimate the values of the coefficients. A 
wavelet version of the Gasser-Miiller estimator was proposed by Antoniadis 
(1994, 1997) for the fixed design model. 

N 

fw(x) = £ y r JEm(x,s)-ds (6.11) 
.=1 A, 

where A,=[s ;_i,s,[ are intervals that partition [0,1] with x; e Ai. 

The kernel Em (x, s) is given by 

Em(x,s) = 2m-X<t>(2m-x-n)4(2m-s-n) (6.12) 
n 

A computationally less demanding estimator is the wavelet version of the 
Watson- Nadaraya estimator given in the regular design by the expression: 
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f W W = CMo,„ •4>M0,nOO+ J £ d m , „ • V m . n W ( 6 ' 1 3 a > 
m=M0 n 

with 

C M „ , n = ^ - X y > ' < | ) M o , n ( X > ) ; dm,n = - ' ! > . " MVn (X>> ( 6 ' 1 3 b ) 

N i=l i=l 

and 2Mmax =N. 
The choice of the low resolution level M0 determines very centrally the 

quality of the estimation. A high resolution may lead to a very noisy estimation, 
while some important signal features may get lost or even artifacts may be 
created if a too low resolution is taken. For practical applications, cross-
validation is often the preferred approach. A simple cross-validation consists of 
choosing the value M0 as the minimizer of the error function CV(M) using the 
leave-one out estimator fw,: 

N 

CV(M) = l / N - ^ ( y , - f W j l )
2 (6.14) 

i=l 

More complicated cross-validation methods have been used, as for instance 
Wahba (1980) generalized cross-validation procedure. 

Biorthogonal wavelet estimators 

Wavelet estimators use generally orthogonal wavelets and consequently do not 
belong to the class of kernel estimators. An interpretation of orthogonal wavelet 
estimators within the framework of kernel estimation is therefore not possible. In 
order to create kernel wavelet estimators, wavelet estimators are generalized in 
the next section to biorthogonal wavelets. Biorthogonal wavelet estimators differ 
from the standard kernel estimators in the way that the coefficients cmnare 

obtained. The coefficients cm n are computed using the dual scaling functions. 

For instance, we will show that the coefficients can be computed with a modified 

Watson-Nadaraya estimator using the dual spline scaling functions fym n . For the 

Muller-Gasser wavelet estimator, the kernel becomes: 

Em(x,s) = 2m •^<t>(2m -x-nH(2m -s-n) (6.15) 
n 

with <j>(2m s-n) the dual function of (|)(2m - s -n) . 
The generalization for the wavelet equivalent Nadaraya-Watson estimator is 

given by 
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f w ( X ) = CMo>n-<l>M0>n(X)+ £ £ d m , n " Vm,n 0 0 (6-16a) 
m=M0 n 

with 

1 ^ T , . , 1 N 

CM„,n = ^ - ' X y i ' ^ M o . n ( X i ) ; dm,n = ~ ^ Yi ' Vm,n (*i ) (6 .16b) 
i=l i=l 

For orthogonal wavelets, (6.16) is equivalent to (6.13). 

Density estimators 

Estimation of density functions can be made with the Parzen-Rosenblatt 
estimator defined as 

f(x) = ^ - 2 > ( ^ ) (6.17) 
N-hd j-f h 

with d the dimension. 
The naive density estimator is obtained by using the uniform kernel. At one 

dimensional, this corresponds to forming the curve histogram. The same kernels 
as for regression may be used, for instance splines, gaussian or quadratic kernels. 
Wavelet-based methods for density estimation are quite similar to wavelet-based 
regression methods. The density function fdW is approximated as a weighted sum 
of scaling functions and wavelets: 

fdw( X ) = CMo,n-<t)M0,n(x)+ J ] ^ ^ ^ m , , , ( X ) (6-18) 
m=M0 n 

The coefficients may be approximated by using their empirical values: 

CM0 = ^ - I ; $ M 0 , „ ( * , ) (6.19M) 
i=l 

1 N 

dm,„ = - T v „ ( X i ) (6.19b) 
N r-f 

i=i 

Wavelet denoising methods 

Wavelet denoising methods already to the standard signal processing toolbox and 
have found a large range of applications. Wavelet denoising methods are 
classified into two large categories, thresholding and shrinkage. In thresholding, a 
wavelet coefficient is set to zero if its value is below a given threshold value. 
Nonlinear denoising methods were developed by Donoho (1994). In the hard 
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thresholding method, all coefficients below a certain threshold are set to zero. In 
the soft thresholding method, the wavelet coefficients are reduced by a factor a. 
The coefficients after thresholding are given by the expression: 

wm,n =sign(dmn)-max(0,|dmn|-a) (6.20) 

Practically, shrinkage corresponds to multiplying some wavelet coefficients 
by a level-dependant positive factor smaller than one. From the theoretical point 
of view, an interpretation can be given to linear shrinkage methods. A wavelet 
decomposition use perfect reconstruction filters, consisting of a low-pass filter 
T!ow and a high-pass filter Ty^ fulfilling the power complementarity condition: 

2 | |2 

How I + Thigh = 1 • Linear shrinkage is equivalent to replacing the two filters 
|2 |2 

with two new filters T ^ , Tlow with Tlow = a|Tlow | and 

I , |2 I I 2 

Thigh = a(l - e) • T ^ . The coefficients are such that a<l and £ is generally 
small and positive. Roughly, linear shrinkage results into damping the high-
frequencies more than the low-frequency signal components. A linear shrinkage 
method has been proposed by Antoniadis (1994). The method generalizes 
smoothing splines to wavelet. The minimizer of the expression 

|fw -f||2 +M(2>m,n)2)°-5
 +(2's • ££> m , „ ) 2 ) ) ° ' 5 (6.21) "2+A-u2J(cm,nrr'+uju 

n m=To n 

is searched for on [0,1]. The solution to the variational problem is 

Mmax 

f w 0 0 = CMo • <t>M0,n 0 0 + £ X $™» ' Vn>.« 0 0 (6'22> 
m=M0 n 

The wavelet coefficients are reduced by a factor proportional to the level m. 
This method is generally referred to as the linear shrinkage method. Nonlinear 
shrinkage methods have been developed by a number of authors (Abramovich, 
2000). 
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Fuzzy wavelet estimators 

Fuzzy wavelet estimators within the framework of the singleton model 

Wavelet estimators based on orthogonal wavelets do not have a linguistic 
interpretation. A linguistic interpretation of kernel estimation requires that the 
regression curve is approximated as a weighted sum of functions partitioning the 
unity and having only positive values. A solution to that problem consists of 
using biorthogonal wavelet estimators. Symmetric scaling functions that can be 
interpreted as membership functions are taken as local functions. Except for the 
Haar wavelet, no orthogonal scaling function has positive values everywhere and 
is symmetric. So the solution consists of taking scaling functions associated to 
biorthogonal wavelets. The fuzzy wavelet estimator computes first the values of 

fm(xn) on a regular grid with the dual function §m n as kernel: 

f(x) = J=L (6.24) 

For symmetric functions, the expression simplifies greatly if the function 
f(x)is only estimated at regularly spaced points (fig.6.1). In this case, one 
obtains 

V l / X i - k - h 

f (k - h) = J=Lj (6.25) 

t=i 

with k an integer. 
N ~ N ~ 

For uniformly distributed input data, (^<j>m>n(Xi)-vi)/y]<i>,n,ii(xi) is a good 

approximation of <f(x),c|>mn >. Eq.(6.26) furnishes therefore an estimation of 

cm>n in fmW = ̂ V » -<IVn(x): 

Cm>„ =(XV„(Xi)-yk)/£<tVn(x i) (6.26) 
i=l i=l 

In the limit of infinitely many points, cm n equals cm n , if the function f(x) is 

regular enough. The second step of the algorithm is simple. The Watson-
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Nadaraya estimator is taken to interpolate between the points on the regular grid 
(fig. 6.2). The function tym n is used this time as kernel. 

Figure 6.1: Multiresolution spline estimators use dual spline estimators based on the 
functions <j>m>n(x) to estimate the coefficients cmn in. fjx) = ^jcmn -<j>mn(x). 

In summary, the fuzzy wavelet estimator is given by 

N 

£ ( £ $ ( 2 m
X i -xn).y i)/(]T$(2ra -Xi -xn))-d,m>n(x) 

(6.27) 

n i=l 

with xn on a regular grid . 

i=l 
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k1 

Figure 6.2: After having computed the coefficients cm n , a function f(x) is estimated with 

fm(x) = ^JCmn-<l)mn(x). 

Multiresolution fuzzy wavelet estimators: application to on-line learning 

The above method is easily generalized to a multiresolution (fig. 6.3) by using an 
ensemble of estimators. Also a fuzzy interpretation can be given if, for instance, 
splines are taken as scaling functions. In the multiresolution setting, the choice of 
appropriate rules is carried out by using a method quite similar to the one 
implemented in fuzzy wavenets. The estimation of the surface at one level of 
resolution is compared with the estimation at one lower level of resolution. This 
is done by decomposing the approximation coefficients with the low-pass filter 
associated to the fast wavelet decomposition algorithm. In order to validate the 
coefficient cm n , two validation conditions are necessary: 

Cm,n ~2_iPk"2n ° m+l,k <A (6.28) 

with the filter coefficients p corresponding to the low-pass decomposition 
coefficient for splines. Further, one requires also that 

Ei..W 
i=l 

>T (6.29) 

to prevent divisions by a very small values. 
In many on-line problems, the signal processor is capable of making some 

computations but has too little memory to store many datapoints. Under these 
conditions, most cross-validation methods are not implementable and the above 
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method is very appropriate (For reviews on wavelet-based estimators see 
Abramovich (2000) or Antoniadis (1997)). 

Figure 6.3: Multiresolution fuzzy wavelet estimation is carried out by using an ensemble 
of estimators. 

The strength of the above approach is that the computation of a coefficient 
cm n requires only the storage of two values: the denominator and the nominator 
in (6.27). 

A probabilistic approach to fuzzy-wavelet 

Fuzzy logic is far from presenting a unified picture. Not only do the different 
approaches differ at the technical level, but also several quite different 
conceptions of fuzzy logic coexist and sometimes cross-fertilize! The view has 
been sometimes expressed that fuzzy logic is a reformulation of kernel estimation 
theory. This view is by far too simplistic even if kernel estimators are excellent to 
develop fuzzy systems from data. After this warning, let us see how to develop 
fuzzy systems from data with multiresolution approaches. A linguistic 
interpretation of kernel estimation is given by associating a linguistic term to 
each function <)>(x - n). Watson-Nadaraya estimators are often the method of 
choice. 

In the past chapters, it has always been assumed implicitly, that the data 
points in 9lm are close to an underlying hypersurface. A good description of a 
surface y=f(x) was searched for. After learning with the fuzzy-wavelet technique, 
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the hypersurface f(x) is approximated by a number of linguistic rules of the form: 

Rj : if x is A then y = b, with bf a real number, and x=(xi,...,xm_i). 

The membership functions are chosen among the family of scaling functions 
that have the property to be symmetric, everywhere positive with a single 
maximum. This family includes among others some radial functions, splines, 
tensor products of splines and some radial functions. In this approach, only the 
input space is granulized. Using splines as membership functions for the output 
space, the product as AND operator, and a center of gravity defuzzification, the 
fuzzy rule can be written under the form: if x is A then y is B. The transformation 
of the rule is a kind of pseudo-granularization of the output space. The supports 
of the membership functions are chosen independently of the distribution of 
points. If both the resolution of the input and output space must be adaptively 
determined, then a different approach must be taken to determine the right 
resolution of both input and output membership functions. Consider a set of data 
points in 9?m: x=(xi,...,xm_i, y) and fuzzy rules of the form: 

x is A (C) (6.30) 

If one wants to privilege the variable y, (6.30) can be written equivalently 
under the form 

If x is A then y is B (C) (6.31) 

The confidence levels C can be computed from an estimation of the 
probability density function F(x,y). With this approach, any defuzzification 
method is allowed. The probability density function is estimated with a 
biorthogonal wavelet density estimator. 
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7. Developing Intelligent Products 

The word intelligence applies today not only to human performance, but is used 
in connection to a large number of product features. So-called intelligence can be 
found in a very large variety of products starting from cameras to automatic 
guidance systems in helicopters. What is generally meant here by intelligence is a 
different type of intelligence than the human intelligence, that is often referred as 
computational intelligence. In this section, we will explain how a product can be 
made computationally more intelligent by using soft computing techniques. 

From the industrial point of view, the success of fuzzy logic has much to do 
with the fact that it permits the translation of knowledge into linguistically 
expressed mathematical expressions. The translation of this knowledge into a 
fuzzy system is not as simple, as it had been originally claimed at the beginning 
of the fuzzy wave. Development engineers have learned that the fine tuning of a 
fuzzy system can be quite time-consuming if the number of implemented rules 
describing the system is large. Therefore, probably the most significant 
development in the field has been the appearance of new methods to train fuzzy 
systems automatically. There are essentially three main soft computing methods 
to train fuzzy systems: neural networks, genetic algorithms and multiresolution 
based techniques. Fuzzy logic is well suited to fusing information from data and 
human experts. It is generally easier for a human operator to express his 
knowledge under the form of linguistically rules than under a purely 
mathematical form. Fusing the two sources of information and testing the 
compatibility between the fuzzy rules formulated by a human expert and from a 
databank are two of the main issues in learning. 

Transparency 

The main motivation behind using fuzzy rules is to keep the human factor within 
the loop. For self-learning systems without any human supervision, better 
methods than fuzzy logic can be applied. Fuzzy learning is justified when a 
human expert is part of the modeling or the validation process. Fuzzy learning 
provides methods to fuse human expert knowledge to experimental knowledge 
generally under the form of measurement points. It is generally easier for a 
human operator to express his knowledge under the form of linguistic rules than 
under a purely mathematical form. Fuzzy logic is well suited to fusing 
information from human experts and databanks. Depending on the confidence 
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that the operator has on human expertise, the rules generated by the human 
expert, can be integrated as hard or soft constraints. During automatic learning, 
data in contradiction with hard constrained rules are simply eliminated. Soft 
constrained rules can be included under different forms. For instance, a number 
of data points can be generated from the rules formulated by the expert and added 
to the experimental data (fig. 7.1). Another possibility is to look for a 
compromise solution between the rules obtained from experimental data and the 
rules formulated by human experts. 

Human: 

if x is A then, 

i I 

Databank: 

3£ 
Fuzzy Learning 

if x is A' then.. 

Figure 7.1: The linguistic formulation of fuzzy logic simplifies the fusion of human 
expert rules with information extracted of a databank. The transparency of the resulting 

rules is of crucial importance. Transparency has been a main motivation behind the 
development of learning methods combining multiresolution analysis to fuzzy logic. 

Some of the most successful fuzzy learning methods are formally equivalent 
to a classical modeling technique. For instance, spline modeling can be used to 
develop fuzzy systems within the Takagi-Sugeno formalism. The central 
contribution of the fuzzy approach lies in a series of methods that have as goal to 
ensure either an intuitive interpretation of the rules by human experts or at least 
an easy inclusion of expert knowledge to the experimental knowledge under the 
form of a databank. As mentioned above, fuzzy logic cannot be separated from 
its linguistic context. Therefore, a good compromise must be found between 
accuracy, transparency and complexity. Let us discuss that aspect of fuzzy 
modeling within the context of function approximation. 

The first limitation of fuzzy modeling is that the dictionary of local functions 
for modeling is restricted to functions having a linguistic interpretation. 
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Functions with negative values do not have a simple linguistic interpretation. A 
fuzzy approximation is therefore sub optimal what the accuracy and complexity 
are concerned. 

For a given accuracy, the lowest complexity description of a fuzzy system is 
achieved by optimizing the shape and position of the membership functions. For 
a good interpretability, the constraint that the membership functions form a 
partition of unity is very often necessary. This condition is rarely fulfilled by the 
lowest complexity solution, therefore adding that constraint results into an 
increase of the complexity of the solution. 

Multiresolution-based fuzzy methods furnish a new approach to the problem 
of transparency and linguistic interpretability. Linguistic interpretability is 
included per design by using pre-defined membership functions forming a 
multiresolution. Membership functions are chosen among a dictionary and 
describe terms such as very small or large that do not change during learning. A 
fuzzy system developed with that method consists of a number of rules using 
membership functions with clear linguistic interpretations. Linguistic 
interpretability and transparency are two slightly different concepts. Linguistic 
interpretability refers to the quality of rules to have a natural linguistic 
interpretation, such as // temperature is low then heater is on. Transparency 
describes the quality of a system to be understood by the human operator. A 
preliminary condition to transparency is a natural linguistic interpretability of 
rules. A second condition is that the number of rules and the number of different 
levels in a hierarchical fuzzy system is still manageable by human experts. In 
other words, the results should be put under a form, that is not too complex and 
linguistically transparent to give enough insight into the results. 

We have seen that complexity and accuracy are often contradictory. In many 
systems, transparency is lost if a high accuracy is required. A possible solution 
consists of using two fuzzy modeling results, the first one at a low accuracy that 
preserves transparency for human validation and a second very accurate model 
for computational validation. Using a fuzzy-wavelet approach, the high 
resolution approximation can be obtained from the low resolution description by 
adding a number of rules that represent small corrections to the rules. 

Transparency can be significantly increased by removing unnecessary terms 
through fusion of rules or by using constructive methods. The fusion of rules in 
wavelet-based methods is simple as the membership functions form a 
multiresolution. A low resolution approximation can be computed from the 
approximation coefficients at high resolution using the fast wavelet 
decomposition. The energy contained in the wavelet coefficients characterizes the 
error introduced by lowering the resolution. The resolution can be chosen locally 
based on conditions on the maximal tolerated local error. 
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Man, sensors and computer intelligence 
The multiresolution learning methods presented in the last two parts have been 
implemented during the development of several real world projects. 
Implementations were in the domain of sensorics and more precisely in the 
domain of fire detection. Sensorics is especially interesting, as its represents a 
typical case of distributed intelligence. Learning starts from a databank 
containing knowledge on fires and deceiving phenomena, under the form of 
signal recording, obtained through field testing and laboratory (fig. 7.2). 

No alarms Alarm 

i i 
Deceptive 

phenomena 
response tests 

in-house on-site 

Fire teste 
in-house on-site 

Standard 
fire teste 

Experience and decision reference values 

Figure 7.2: The development of intelligent fire detectors is carried out by extracting 
information from large databanks containing measurements of fire and non-fire 

situations. 

An alarm surface separating the alarm from the non-alarm conditions is 
extracted from data for fire and non-fire situations. The alarm surface is put under 
the form of a number of fuzzy rules. 
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The different rules are then checked against human experts by using a 
computer assisted development tool. The program checks for the consistency 
between experimental data and expert know-how. The program proposes also 
compromise solutions in case of incompatibility. 

Human 
Expert 

Knowledge 

Knowledge 
Extraction 
from Data 

xz xz 
Compatibility Test 

Knowledge Fusion 

Figure 7.3: The different rules are checked for compatibility before knowledge from 
different experts is fused. 

One of the most interesting stage in the development process corresponds to 
the fusion of the knowledge extracted from data to the already existing expert 
knowledge. The compatibility between the different experts must be checked 
prior to knowledge fusion (fig. 7.3). The comparison of expert knowledge is not 
too difficult. It relies indeed on a geometrical interpretation of knowledge, based 
on the fact that a series of linguistic fuzzy rules can always be expressed as 
surfaces (in n-dimensions surfaces for n input variables). In this geometrical 
approach information processing from different sources corresponds to 
comparing surfaces, study how they complete eachother and how they overlap. 
Therefore, the compatibility between fuzzy rules generated by human operators 
and from data can be assessed by comparing the corresponding hypersurfaces. 

Suppose that we have two experts that express linguistically their knowledge 
on a certain process under the form of a number of fuzzy rules. The first 
possibility is that the two experts have knowledge on two different parts of the 
process. In this case their knowledge complete eachother as shown in fig. 7.4a. 
This corresponds mathematically to fusing two different surfaces into a single 



160 Wavelets in Soft Computing 

surface. If the two experts have knowledge on the same part of the process, their 
information might partially contradict In this case, the computer might start 
dialoguing with the experts by making proposals to reconcile the contradicting 
information. This is done by deforming the surfaces coiresponding to the 
different expert knowledge with a minimum of pre-defined operations, such as 
then surfaces become comparable (Thuillard, 1998b). Each deformation results 
into a penalty and the surface minimizing the total penalty is proposed as a 
compromise solution. The deformed surface can then be translated into linguistic 
expressions, that are submitted to the experts. The process can be iterated till an 
agreement between the experts is reached. 

Figure 7.4: a) The knowledge of two experts can be analyzed by a defomiable template 
method using as input the fuzzy-wavelet coefficients describing the control surface, b) 

The partial knowledge of two experts can be easily summarized by using approximation 
methods based on multiresolution analysis. 

Our approach is by some aspects similar to wavelet-based defomiable 
templates techniques. Expert knowledge is expressed as a surface with as few 
spline coefficients as reasonable. The expert knowledge' surfaces are deformed 
using 3 operations on spline functions: 
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Translation by n an integer 
Dilation by 2m m integer 
Change the value of a spline coefficient 
A penalty corresponds to each deformation. Given two deformed surfaces Ti 

and T2, 
the score Sc is defined by: 

Sc = max(]T (T, (x) - T2 (x))2, K) • ir(T) (7.1) 

with 7t(T) the total penalty function and K a constant. The best compromise 
between the penalty function associated to surfaces' transformations of two 
original surfaces Si and S2 and their dissimilarities characterized by 
max( V (T, (x) - T2 (x))2, K) is obtained by minimizing the score function Sc with 

X 

for instance evolutionary-based techniques or Monte-Carlo methods. The result is 
then interpreted with the following scheme: 

1) Ifmax(^] (T^x) -T2(x))2,K)=K then the synthesis between the two 
X 

experts can be expressed by the average value: 

Ta(x) = (T,(x) +T2(x))/2. 

If max(y (Tj(x) -T2(x))2,K)>K then one considers that the two experts 
X 

contradict eachother. The reasons for the contradiction can be searched among 
several possibilities: 

One expert is wrong 
Expert's knowledge is not described with sufficient precision 
Local model failure. 
In summary, the deformable surface approach permits to reconcile somewhat 

different experts' knowledge and to detect problematic regions. 
Learning is dynamic and field testing is a central part in the development 

process. As the experts' knowledge expands, new field testing locations are 
added to collect information on missing parts of the control surface. Field testing 
is also used to validate the rules. 



162 Wavelets in Soft Computing 

Field 
testing 
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Experts' 
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Figure 7.5: Field testing is an essential part in development. Field testing is used to 
collect new information on the sensors and to validate the fuzzy rules describing the 

alarm surface. 

A considerable advantage of such a working process is that it takes advantage 
of the available computing power, while always keeping the human in the loop. 
The human experts are not run over by the computer (fig. 7.5). Since at the end, 
the information is under a linguistic form, human cross-checking of the computer 
results is possible. Such control of the computer results by human experts is 
absolutely necessary, as one should never forget that the results furnished by the 
computer can only be as good as the data supplied to it. 

In conclusion, computer assisted development of intelligent products is today 
a reality. This has been principally possible by recognizing two things. First, 
linguistic expressions are much easier to process by a pool of experts than 
mathematical expression. This is particularly true in today's multi-disciplinary 
working environment. Second, computing power both during the development of 
a product and in the product itself is still today a serious limitation. Soft 
computing is an answer to this problem. Excellent results are obtained in many 
industrial projects by giving up some unnecessary precision. We have been using 
computer assisted development programs to compare and fuse the information 
from the different sources during the development of several products (optical 
beam detector, flame). The experience was very positive and the method is 
applied now routinely to new developments. 

Constructive modeling 

Constructive methods can be also be used to reduce the complexity of the model. 
Adaptive Spline Modeling of Observational Data (ASMOD) has been used with 
success to many modeling problems, such as ship docking, or helicopter guidance 
(Harris, 1999a). The ASMOD scheme (Adaptive Spline Modeling of Observation 
Data) has been proposed by Kavli (1994) as an answer to the curse of 
dimensionality. With ASMOD, the model structure is constructed iteratively 
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through successive model refinements. The resulting model is a linear sum of 
several low-dimensional sub-models. Let us describe first ASMOD within the 
setting of neurofuzzy modeling. There are a number of ways of refining the 
model. A new input variable can be added to the system. Multivariate submodels 
can be formed by tensor products. New basis functions can be formed by adding 
new knots. The performance measure is chosen such as to balance the increase 
complexity associated with the refinement and the reduction of the MSE. The 
Bayesian and Akaike' s information criterion have been proposed to measure the 
compare the performance of the different refinements in order to choose the most 
appropriate one. 

ASMOD does also apply very well to fuzzy-wavelet modeling. The model 
refinement starts with a very simple model, typically a one-dimensional 
submodel. Each refinement step corresponds to choosing among 3 methods, the 
refinement procedure decreasing the most the information measure. Two 
refinement procedures are part of the ASMOD scheme: adding new one-
dimensional sub-models and forming tensor products submodels. The third 
refinement procedure consists of splitting a membership function into 
memberships functions at one higher level of resolution. 
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8. Genetic Algorithms and Multiresolution 

The main purpose of this part is to show some important connections between 
genetic algorithms and multiresolution. In problems using binary coding of 
integers, genetic algorithm may be related to multiresolution analysis. A first 
major step in that direction was made by Bethke (1981) with the introduction of 
Walsh partition functions in the field of genetic algorithms. Important insights 
into the working of genetic algorithms, and in particular on the building block 
hypothesis have been unraveled using Walsh functions. For some genetic 
algorithms, the building block hypothesis is better captured by Haar wavelets 
than Walsh partition functions. As an example, a simple wavelet-based genetic 
algorithm is constructed and discussed within the framework of Haar wavelets. 
The algorithm uses a single operator that shares some of the features of the 
crossover and the mutation operators. The wavelet-based genetic algorithm is 
methodologically interesting. The wavelet-based genetic algorithm is simple 
enough to furnish some analytical results, while preserving some essential 
features of genetic algorithms. 

The standard genetic algorithm 

The standard algorithm is certainly not the algorithm of choice in applications 
nowadays. It is nevertheless consistently referred to as an important prototype 
algorithm for genetic algorithms (Goldberg, 1991). The standard genetic 
algorithm uses strings described by a binary alphabet B={0,l}to encode possible 
solutions to an optimization or search problem. At each generation, a number of 
strings are taken as candidate solutions. The different strings form what is called 
a population. At each generation, strings are selected according to their fitness. 
Some strings are modified with the crossover and mutation operators before they 
are included in the next generation. 

The standard genetic algorithm is often explained on the basis of the 
fundamental theorem of genetic algorithms. This theorem furnishes a bound to 
the probability of a schema H. A schema H is defined on the alphabet S={0,1,*}. 
The alphabet S corresponds to the alphabet B with the addition of the symbol *. 
The symbol * may represent any symbol in B. As an example, consider the 
schema H= (1,0,*,0). This schema contains the two strings (1,0,0,0) and (1,0,1,0). 
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Two operators are used in the standard genetic algorithm: crossover and 
mutation. 

h1 

! 1 

Figure 8.1: The standard genetic algorithm uses the crossover and the mutation operator. 

The crossover operator splits two strings at a given point and exchanges one 
segment with the other string. The two new strings are made of one segment of 
the original string and a new segment. Crossover tends to preserve compact and 
short substrings. 

1 , 0 , 0 , 

8=5 

* ) 

Figure 8.2: A schema consists of a string of symbols belonging to the alphabet S={0,1,*}. 
The useful length of the string 8 is the distance (or number of positions) between the first 

and the last symbol in the schema belonging to the alphabet B={0,1}. The number of 
symbols in the schema belonging to the alphabet B is called the order O of the schema. 

The smaller the useful length is, the smaller is the chance that a crossover 
will disrupt a schema (The useful length 8 is the distance, or number of 
positions, between the first and the last symbol in the schema belonging to the 
alphabet B). In the above example (fig. 8.2), crossover will not disrupt the 
schema only if the splitting point is at one of the two positions given by the line. 
A crossing point at any other location may result into a disruption of the schema. 
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The mutation operator modifies one bit (also called allele by analogy to biology) 
in the string. A schema is disrupted by a mutation only if the symbol is different 
from * . The number of symbols in the schema belonging to the alphabet B is 
called the order O of the schema. Mutations tend to preserve low order schemata. 

In the standard version of the genetic algorithm, the survival probability of a 
string s is chosen proportional to f(s)/f with f(s) the fitness of the string s and f 
the average fitness over all strings. The fundamental theorem of genetic 
algorithms states that the expectation of the number of instances of a given 
schema H, m(H, t), can be written under the form of the following inequality 
(Holland, 1975): 

E(m(H,t + l))> 
m(H,t)f(H)/f-[l-pc •5(H)/(l-l)-pm O(H)] ( 8 - 1 ) 

with pc the crossover probability, pm the mutation probability, f(H) the 
average fitness of the schema and f the average fitness over all strings. 

Short schemata with an above average fitness and a short useful length will 
increase in number very rapidly, while high order schemata with below average 
fitness values will be rapidly destroyed. Genetic algorithms find, in many 
optimization problems, very good solutions by assembling parts of good 
solutions. This hypothesis is often called the building block hypothesis. Short, 
low-order schemata with above-average fitness combine to form better solutions. 
Despite their many successes, genetic algorithms are confronted to a number of 
important challenges. One of them is to find out which problems do fulfill the 
building block hypothesis. An interesting approach to this question has been 
furnished by the use of partition functions (Bethke, 1981; Horn, 1995; Roya, 
1998). Using the Walsh partition functions, functions were constructed that do 
not fulfill the building block hypothesis (Goldberg, 1989). These so-called 
deceptive functions offer an interesting insight into the working of genetic 
algorithms. 

Walsh functions and genetic algorithms 

Walsh functions 

Walsh functions are functions taking only a value of 1 or —1 on a support of 
length L. Figure 8.3 shows the Walsh functions with L=8. 
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Figure 8.3: Walsh functions on a support of length L=8. 

Walsh functions can be put under a matrix form. The Walsh transform W of a 
vector x is given by 

W = M x 

The matrix M is defined by the following expression: 

M y = - 1 
bc(i,j) 

(8.2) 

(8.3) 

with bc(ij) the number of 1 set in the string defined by the expression bit 
AND (ij). 

Walsh partition functions form an orthonormal basis. A vector can therefore 
be decomposed on the Walsh functions and reconstructed losslessly. The 
decomposition is given by 

(0; =(M-X); (8.4) 

The Walsh coefficient OOJ corresponds to the projection on the ith Walsh 
partition function. The original vector can be reconstructed from the Walsh 
coefficients: 
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x = l / ( im a x+l)-(£ avMi) (8.5) 
i 

Example: 
The Walsh basis functions for ij ={0,1,2,3} is: 

( i i i n 

[i -i Q i) 

Let us verify this with (i=2J=3, circle). The expression bit AND(2,3) is 

bit AND[(1,0),(U)] = (10) . It follows that the number of 1 in the bit AND 

expression is bc(i,j)=l and M(2,3)= -1 . 
Consider as an example the decomposition of the vector x=(l,0,l,0) 
The Walsh coefficients (Oj (j=0;...,3) corresponding to the projection on the 

different Walsh functions are given by COJ = (M-x)j. One obtains co0= 2; Qi= 2; 
co2

= 0 ; ©3=0 and it is easily verified that lA(2 M]+ 2 M2)= x with M; the ith 

column of M corresponding to the i* Walsh partition function. 

An alternative description of the Walsh functions using the formalism of 

wavelet packets 

Walsh functions are related to Haar wavelets. Walsh functions can be deduced 
from the multiresolution Haar decomposition independently from (8.3). The next 
paragraph introduces the Walsh functions using the formalism of wavelet 
packets. Recall that the dyadic wavelet decomposition can be represented as a 
tree composed of a cascade of low-pass and high-pass filters. Figure 8.4 shows an 
example giving the tree representation of a 3 levels wavelet decomposition. 

Figure 8.4: Tree representation of a wavelet decomposition. 
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The wavelet decomposition can be generalized to wavelet packets. A wavelet 
packets decomposition may be represented by a subtree of the complete 
decomposition tree. Recall that the complete decomposition tree is given by all 
possible dyadic decompositions of a signal with two filters fulfilling the power 
complementarity condition. Figure 8.5 shows the complete tree for a 3-levels 
decomposition. 

Figure 8.5: Full decomposition tree. 

The Walsh wavelet packets are associated to the complete decomposition tree 
for the Haar function. At the J th level of decomposition, each function, on which 
the signal is projected, corresponds to one basis Walsh function of support L=2J. 

Figure 8.6: Functions corresponding to the end nodes of the complete decomposition tree 
in fig. 8.5 with L=8. 
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Assume a signal of length L and a full decomposition tree using a Haar 
wavelet as mother wavelet. The L functions of support L corresponding to the 
end nodes of the full tree are the Walsh functions. Figure 8.6 shows the functions 
corresponding to the end nodes for J=3. One can verify that the Walsh functions 
are the same as in fig. 8.3. This holds for Walsh functions of any order. From the 
construction of the Walsh functions in terms of a cascade of filters fulfilling the 
power complementarity condition, it follows that a signal can be decomposed 
with Walsh packets without any loss of information. Starting from the 
coefficients at the last level of decomposition, the original signal can be 
reconstructed perfectly. A vector of length L can be projected onto the Walsh 
basis function of support L. The reconstruction proceeds without any error. 

On deceptive functions in genetic algorithms 

Binary coding permits to transform a number into a string. The integer i is coded 
as a L bits string in base 2: <ai,...,aL> with 

L 

i = £ak-2L~k (8.6) 
k=l 

Assume that a fitness function f(a lv..,aL)can be associated to all strings 
(a]5...,aL). The average fitness value over all strings f(*,...,*) is given by the 
expression: 

f(*,...,*) = l /2 L - £ f ( a l v . . , a L ) (8.7) 

all strings 

The above expression can also be given in terms of the first Walsh function: 

f(*,...,*) = l /2 L - ]Tf(a1,...Ja I>H l iL (8.8) 

all strings 

Similarly, the average fitness function of strings of the form (0,*,...,*) is 

f(0,*...,*) = l/2L-1- 2 f(ai»-»aL)-(H1 > L-H2 > L) (8.9) 

all strings 

Figure 8.7 shows an example for the schema (0,*,*). Additional terms are 
included in the Walsh sum as schemata become increasingly specific. Recalling 
that the standard genetic algorithm tends to preserve a low order schema of high 
average fitness, one understands that the standard genetic algorithm is guided in 
its search by low order schemata. A genetic algorithm may be deceived by a 
function having low order schemata of high average fitness, containing no 
optimal solution. Problems that are intrinsically difficult for genetic algorithms 
have been designed using the Walsh functions (Goldberg, 1989, 1991). For such 
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problems, the building block hypothesis does not hold and genetic algorithms are 
generally less better than a random search. 

1_ 

- 1 -

0.5(H18-H28(x)) 

8 
fitness values 

Figure 8.7: The average fitness of a scheme can be computed using the Walsh functions. 
Example for the schema (0,*,*). 

As a final remark, one should mention that the fitness of the different 
schemata could have been discussed as well with other orthogonal basis than the 
Walsh functions. Many subtrees of the full decomposition tree in fig. 8.5 would 
have been as suited for discussing the building block hypothesis. In particular the 
Haar wavelet basis defined by the subtree in fig. 8.4 is more adapted to the 
discussion of some genetic algorithms. Such a genetic algorithm is presented in 
the next section. 

Wavelet-based genetic algorithms 

A very simple genetic algorithm is introduced in this section. The algorithm uses 
an operator that combines in one operator some of the main features of the 
crossover and the mutation operator. This genetic algorithm is conceptually 
interesting as mathematical expressions for the expectation of schemata of the 
type, <ai,...,aj,*,...,*>, can be computed exactly in terms of a Haar wavelet 
decomposition. Contrarily to the standard genetic algorithm, the proposed genetic 
algorithm is simple enough to be explained with multiresolution analysis. Despite 
its simplicity, the algorithm still captures the essence of the standard genetic 
algorithm. 

As in the previous sections, binary coding is assumed. Figure 8.8 shows the 
binary coding of a one dimensional axis on which a function f is defined. The 
function f(Xj) is a function of the integer i and can be interpreted as the fitness of 
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aj. In the example of fig. 8.8 the value i is coded as ai=<ai,...,a4> with 

i = £ak.2<-k . 
k=1 

The multiresolution character of the schema formulation is shown in fig. 8.8. 
The fitness of a L bits schema <ai,...,ak,*,*,*> corresponds to the average value 
of the fitness function on 2Lk adjacent values. The average fitness can be 
computed using a 2Lk dilated Haar function. 

< 0,0,0,1 > < 0,0,1,1 > < 0,1,0,1 > < 0,1,1,1 > < 1,0,0,1 > < 1,0,1,1 > < 1,1,0,1 > < 1,1,1,1 > 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
<00 00> < 0,0,1,0 > <0100> < 0,1,1,0 > < 1,0,0,0 > < 1,0,1,0 > < 1,1,0,0 > < 1,1,1,0 > 

\ / \ / \ / \ / \ / \ / \ / \ / 
< 0,0,0,* > < 0,0,1,* > < 0,1,0,* > < 0,1,1,* > < 1,0,0,* > < 1,0,1,* > < 1,1,0,* > < 1,1,1,* > 

\ / \ / \ / \ / 

Figure 8.8: The multiresolution structure of schemata H=<a1,..,aj,*,...*> is illustrated for 
L=4. Integers in the range [0,2L-1] are expressed in base 2 . 

The wavelet-based genetic algorithm works as following. A string of fitness fj 
is replicated on average y • f, times. Each string in the new generation is modified 
with probability Pm by an operator Om,(m = {0,1,...,L}) . The operator Om replaces 
randomly the last m bits in the strings. If m=0 then all bits are randomly replaced, 
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while the string is kept unchanged for m=L (L is the number of bits in the string). 
The probability of splitting the string at position m is described by the values Pm , 

L 

satisfying V Pm = 1. 
m=0 

String k: 
fitness f 

I a, | a, | a„ | a, I a, | ... [ a | 

I ^ I a„ I a, | 

0 L | a , | a , | a , | a j a j a j 

I a. I a, | a, | ... | a I O . , [ a, | a, | a, | a, | a, | 

L§J 0 3 U|a,|a, 

U y\ 

i J P^Tf* 

*-. k k I - I x, I P-yf 

Copies of original string: . 
expected number: y fk o o U k k k k k I - U I PoTfk 

Figure 8.9: A simple wavelet-based genetic algorithm is designed by replacing the 
crossover and the mutation operators in the standard genetic algorithm by a single 

operator. The operator Om replaces the last m bits randomly. 

The wavelet-based genetic algorithm in the Haar wavelet formalism 

Understanding when and why do genetic algorithms work well is a very difficult 
question. On the one hand, numerous successful applications of genetic 
algorithms tend to prove the efficiency of genetic algorithms in many situations. 
On the other hand, theoretical considerations have lead to a number of no free 
lunch theorems that show quite clearly that the blind application of genetic 
algorithms on a randomly chosen problem has a chance of less than 50% to be 
better than a random search. In order to escape that apparent paradox, much 
research has been done to understand emergent behaviors in genetic algorithms. 
This line has been followed by several researchers, and here one should mention 
in particular the work by Vose (2000). Vose has dedicated a book to a 
mathematical discussion of the so-called simple genetic algorithm. This model is 
very similar to the standard genetic algorithm from Holland. The main difference 
is that only one gene is kept after crossover. This small simplification makes the 
system solvable. The expectation of the number of strings at generation (p+1) can 
be computed from the expectation at step p by applying an operator G. The 
iterative application of the operator G defines the trajectory of the expected 
population. Different behaviors may be expected, depending on the number and 
the type of fixed points of the transform. If the matrix is irreducible and the 
coefficients of the matrix G are everywhere positive, then there exists a unique 
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eigenvector with positive coefficients. In the limit of an infinitely large 
population, the population follows the trajectory defined by G and converges 
towards a fixed population. If the vector G has several eigenvectors, then it can 
be shown, that in the limit of an infinite population, the system will spend most 
of the time in the vicinity of the fixed points. Despite it many successes, the study 
of the simple genetic algorithm did not contribute much to reducing the gap 
between applications and theory. The main reason is that the dynamics of the 
simple genetic algorithm is often so complex that it is difficult to draw general 
conclusions. As soon as the system has several positive eigenvectors, the 
relevance of the results to understanding small population dynamics is 
questionable. This problem leads us to consider a simpler algorithm, the wavelet-
based genetic algorithm described in the previous section. The discussion of the 
wavelet-based algorithm furnish results that may serve as a guidance in the 
choice of the free parameters. 

A lesson of past years is that it is necessary to define very precisely the 
coding method of the solutions as well as the genetic operators. The efficiency of 
the genetic algorithm does generally depend very centrally on the choice of the 
coding method (Reeves, 1999). In the following, the wavelet-based genetic 
algorithm will be explained using binary coding of integers. This multiresolution 
subdivision of the search space defines proximity relationships between the 
strings: Two close strings belong to the domain of definition of a well-localized, 
high-resolution Haar function, while distant strings belong only to the common 
domain of low-resolution Haar functions. Let us point out here, that most results, 
in the subsequent sections, are not specific to Haar wavelets. Many of the results 
apply to a large class of wavelet-based algorithms. These wavelet-based 
algorithms have in common that a proximity relationship based on 
multiresolution subdivision can be defined. A non-trivial example is given in 
annex B, based on a nonlinear wavelet construction. 

In the two following sections, we will relate the wavelet-based genetic 
algorithm to wavelet theory and filtering theory in the framework of the infinite 
population approach. Assuming an infinite population simplifies the analysis. 
Due to the simpler nature of the algorithm in comparison to the simple genetic 
algorithm, the behavior of infinite populations permits to furnish a general 
framework to understand qualitatively the more difficult, and practically only 
relevant, case of finite population sampling. 

The probabilities Pm determine the evolution of the population. The evolution 
equation of a schema of the form H=a!a2...ak*...** can be computed. Without 

limiting the generalization and in order to simplify the notations let us assume 
that ai=a2=...=ak=0. The expected number of strings nH with H=a1a2...a *...** at 

generation p+1 is 
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k- l N-2~ L N-2" 

E(naia2a3...ak,.M) = y [ ( X Z 2 m " k 'f- •";)•?» + S ( E f * •n')-p-] 

(8.10a) 
m=0 i=l m=k i=l 

For k=0, one obtains 

E(n, . „ ) = Y-(^]fi-ni) (8.10b) 
i=l 

in which n̂  is the number of strings at generation p representing the solution 
with integer value i, fj the corresponding fitness value and N=2L. After some 
manipulations, one obtains the first main result, namely an expression relating the 
expectation of schemata to the detail coefficients dkj of the Haar wavelet 
decomposition of f (a ;) • n(a f) at the previous generation: 

E(n
aia2...at=01 . « ) -E(n a i 3 2 at=1*...») = d k J - y - ^ P i r 

m=k 

(8.11a) 

E(n, ,») = Y - ( X f i ' n i ) = y ' c i 
1=1 

(8.11b) 

From (8.11a), one concludes that the expectation of 

n a a a a k =0* **~~^aia-,a3 ak=l* ** ^ 

proportional to the corresponding Haar detail 

coefficient dkjof 61(3;) = f(a,)-n(aj). 
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Figure 8.10: The expectation of a schema <alv..aj,*,...*> at the p+1 generation can be 
inferred from the wavelet coefficients of the function fh(a i) = f (a ;) • n(a ;) at 

generation p. 
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Figure 8.10 illustrates this result with one example. In this example, the 
disruption point is given by an uniform probability distribution: 
(Po=...=Pk+i=l/(k+l)). At generation p, a population with a random distribution of 
the values fii(a1) = f(a i)n(a1) is taken. Using this given population, the 
population at step p+1 was obtained by using the genetic algorithm with a 
uniform distribution of disruptions points. The distribution of the different 
schemata was estimated from the average of a large number of simulations. The 
empirical distribution was subsequently decomposed into its wavelet coefficients 
and compared to the wavelet coefficients of m(ai) = f(a i)n(a j) . Both wavelets 
coefficients are to a factor identical. 

Connection between the wavelet-based genetic algorithm and filter theory 

We have just shown that the expectation of a schema at the p+l* generation can 
be inferred from the wavelet coefficients of the function fh(ai) = f(a i)n(a j)at 
generation p, with a{ the string coding for the number i. The relation to filter 
theory is straightforward, as one recalls that the Haar wavelet decomposition can 
be carried out by filtering the signal. The dyadic wavelet decomposition with 
Haar wavelets can be represented as a filter tree. Figure 8.11 represents this 
procedure graphically. The expectation value of a given string at the p+lth 

generation can be computed by first decomposing the function 
m(aj) = f(aj )-n(af) with Haar wavelets. In a second step, the wavelet coefficients 

L 

are multiplied by a level-dependant factor Wk. This factor equals Wk = T^ Pm . In 

a last step, the signal is reconstructed using the wavelet reconstruction algorithm. 
As the weighting factor increases at lower resolution, 1 = W0 > Wj >... > WL , the 
resulting effect corresponds to filtering the fitness-weighted distribution fn with a 
low-pass filter. This leads us to the second main result: 

Low order schemata with high fitness are on average privileged by wavelet-
based genetic algorithm. The low-frequency part of the population distribution fn 
is weighted more than the high-frequency part in the population of a new 
generation. More precisely, the weighting factor W, increases at lower resolution: 
1 = W0 > W, >...> WL. 

The building block hypothesis can now be formulated for this particular 
genetic algorithm model. The search is guided by low order schemata of high 
average fitness. The wavelet-based genetic algorithm privileges regions with high 
average fitness values. It is therefore expected that the algorithm is a reasonable 
method for functions with maximal fitness values corresponding to regions with a 
high average fitness. The search algorithm may be deceived by functions for 
which an optimum belongs to a region with a low average fitness at low 
resolution (This topic is developed further below). 



180 Wavelets in Soft Computing 

f(a.)n(a) 

k=L 

y-PL 

z 
m=k 

m 

k=1 

»1,1 

T'ZPm 
m=1 

Figure 8.11: The expectation value of a given string at the p+l* generation can be 
computed by first decomposing the function fh(a;) = f(a;)- n(ar) with Haar wavelets, 

then multiplying the wavelet coefficients by a level dependent factor (right) to reconstruct 
finally the signal from the weighted wavelet coefficients. This whole process corresponds 

to a low-pass filtering of the original signal. 

Let us illustrate eq. (8.11) with a second example showing the central 
influence of the disruption probabilities Pm on the search. The following 
disruption probabilities Pm were chosen: P0=Pi=P3=P4=0; P2=l. At generation p, a 
population with a random distribution of the values fh(aj) = f(a i)n(a i) was 
taken. Using this given population, the population at step p+1 was obtained by 
using the genetic algorithm with a fixed disruption point after the second bit. The 
expectation of the different schemata was estimated from the average of a large 
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number of simulations (fig. 8.12). One observes as expected that on average the 
sampling rate is almost constant over each of the four domains. 

pth generation (p+1)th generation 

f(x.)n(x) 

10 20 3C 40 

n(Xi) 

Figure 8.12: Example showing the distribution of the schemata at the (p+l)* generation 
in function of the fitness-weighted number of strings f(x;) n(x;) at the p* generation. The 

operator replaces at each generation the last 3 bits randomly (P2=l). 

The disruption probabilities determine very centrally the order of the 
schemata guiding the search. Low-resolution sampling generally privileges 
exploration over exploitation. The probability P( not a) of a string a not being 
drawn after S samples in a search space of dimension 2N has a low bound given 
by 

P(not a ) < S - P 0 / 2 J (8.12) 

The probability P0 sets therefore a lower limit to exploration. Large values of 
the disruption probability at low resolution tend to flatten the expected 
distribution curve. Figure 8.12 shows this very clearly. The difference in 
sampling rates between the different regions is indeed quite small in spite of the 
large differences in the fitness of individual strings. 

On the opposite, if very low values of the disruption probabilities Pm for large 
m are chosen, then high fitness strings with a small neighborhood of high average 
fitness are sampled predominantly. In that case, exploitation is generally 
privileged over exploration, as the algorithm explores mostly solutions in a small 
neighborhood. 

The efficiency of a wavelet-based genetic algorithm can be discussed starting 
from the evolution equation (8.11). Eq. (8.11) can be put under the following 
form (In order to simplify the notations, we will give here the equation for the 
first string only): 

n1(k + l,f,) = 

2 2 N 

y ( P L - n ^ k K , +PL_! • l / 2 - ^ n J ( k ) - f J +... + P0 -1/2N - ^ n ^ k ) - ^ ) 
i=l i=l 

(8.13) 
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As the trajectory converges for large k, (8.13) can be approximated for large 
kby 

0«a-n,(k + l,f,)/n(k + l)-a-n,(k,f,)/n(k) = 
y • ((PL • f, - a / y) • n, (k, f,) / n(k) + (8.14a) 

2 2 N 

l/n(k)-(PL_, •l/2-^n J(k)-f J +... + P0 -1/2N . ^ n ^ k ) - ^ ) ) 
i=l i=l 

with a = limk_>o:)n(k + l)/n(k) and subsequently 

n ^ f ^ / n X k ^ l / t p - P L - f ) -
2 2 N 

(PL_, •l/2-^n J(k)/n(k)-f J +... + P0 -1/2N - ^ n . ^ / n W - f , ) 
i=l i=l 

(8.14b) 

with p = a / y . 
Eq.(8.14) shows that at equilibrium, the distribution of the population follows 

locally a A(/((3-PL f)law, with A;a constant depending on the disruption 
probabilities. The efficiency of the search is determined by the form of the 
function A,. A constant value of A; over the whole search space makes the 
distribution of a string independent of its neighbors. In that case, it is not possible 
to extract information from past samples and the wavelet-based genetic algorithm 
is worst than a random search. Generally speaking the wavelet-based genetic 
algorithm is only efficient, if the objective string(s) is within a region of high 
average fitness. In that case, meaningful information can be extracted from past 
samples to direct the search to those areas. In other words, for the search to be 
efficient, the objective string(s) must coincide with regions having a value of 
A, well above average. A second condition for an efficient search of the objective 

string is that the values of the denominator ((3 - PL • f) are small in comparison to 
the denominator Af. Figure 8.13 illustrates this with a simple example. In that 
example, sampling is limited to the first and the last two resolution levels. Figure 
8.13b represents the inverse of the sampling probability at equilibrium for the 
fitness distribution in figure 8.13a. For each of the two regions in fig. 8.13a, the 
A; /(P-PL • f) relationship predicted by (8.14) is observed. In the example of fig. 

8.13, the search will be quite inefficient, whatever the objective is, because A; in 
both regions are quite similar and therefore the distribution function is essentially 
given by the denominator. 
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n(f)=B/(l- P f) 

a) b) 

Figure 8.13: The fitness function in a) is sampled with P0=0.3; Pi=0.4; P7=0.3; 
P2=-=P6=0. b) The inverse of the distribution function at equilibrium is plotted as a 

function of the fitness value. The points are aligned on two lines, each line corresponds to 
one of the two segments in a). 

Population evolution and deceptive functions 

The concept of deceptivity is central to genetic algorithms. The minimal 
objective of a genetic algorithm is to perform on average better on a class of 
problems than a random search. If this minimal condition does not hold, we will 
say that the problem is deceptive for the considered algorithm. In order to discuss 
deceptivity, we will first explain how to estimate the expectation of the different 
strings analytically. We have seen that the expectation E(1) (af) of a string &{ after a 
single generation is of the form 

E « ( a i ) = G[f(a,)] (8.15) 

withG[f( a i ) ] = y . ( f 0 + ^ d m i n . ( j ; P J ) . V m n ( i ) ) 
m,n j=m 

w i m MVnCOthe value of the corresponding Haar wavelet at the position of 

the string aj. If the initial population is drawn from a uniform population then 
dm,n corresponds to the wavelet coefficients of the filtered fitness-weighted 

distribution function f(aj)-n(aj). In the limit of a very large population, the 

outcome of the wavelet-based genetic algorithm can be computed. The 

expectation at generation p is given recursively by 

E ( p ' (a i) = G[f-E (p-1)(a i)] (8.16) 
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We will now show that E (p ) (a ;) converges with p towards an equilibrium 

distribution. The convergence of the iteration process can be discussed within the 
framework of heuristic random search (Vose, 1999). First one puts (8.16) under a 
matrix form: 

z[p + l] = GM(z[p]) 

Pop 

(8.17) 

with z[p] = n(x ;) /(S\ n(x j) / Pop), the normalized population distribution 
i=l 

expected at generation p. 
Stable fixed points zs of the transform GM correspond to eigenvectors of GM: 

GM[zs] = X-zs 

The matrix GM can be put under the form: 

'fi 0 ... ( O 

0 f2 0 

... 0 ... 0 

0 0 

(8.18) 

G = ML • F with F = 

0 0 f. 

(8.19) 

2 L ; 

The matrix M may be defined recursively. For a vector of length N=2L , ML is 

given by the set of equations: 

(8.20a) MN > 0=PL 

M N,2k 

M N,2K 0 
M 

N,2K 1 1 
rL-k (8.20b) 

M L = M
N 2 L (8.20c) 

(0 and 1 represent 2 k l x 2 k l matrices with only zeros, respectively 1.) 
The matrix GM has only positive coefficients and is irreducible provided 

P0 •*• 0 and fj > 0, Vi. It follows that the conditions for the Frobenius-Perron 
theorem are fulfilled (Gantmacher, 1977). The Frobenius-Perron theorem states 
that an irreducible matrix with only positive coefficients has a positive 
eigenvalue that corresponds to an eigenvector with only positive values. A 
corollary of the Frobenius-Perron theorem is that there cannot be more than two 
linearly independent eigenvectors with only positive values (For a demonstration, 
see for instance Gantmacher, 1977). 

As there is a unique eigenvector with only positive values, the iterative 
application of the transform GM converges towards a single stable point Zg. Figure 
8.14 provides an example, showing a fitness function, the normalized eigenvector 
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of the transform GM and the distribution obtained from the iterative application of 
(8.17). For comparison, figure 8.14b shows the equilibrium stable fixed 
distribution function obtained by solving the eigenvector problem (8.18). Both 
populations are identical. 

a) 

b) 

c) 
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Figure 8.14: Example showing the stable distribution of the population 
( P0 = ... = P8 = 1 / 9 ): a) Fitness of the different strings, the second line shows the 

expected distribution after one generation; b) Population after 100 iterations using (8.17); 
c) Stable population computed with (8.18). 

Let us introduce here a working definition of deceptiveness. A genetic 
algorithm is deceptive for a given objective if the search of strings, fulfilling the 
objective, is on average less efficient than a random search. Different objectives 
may be thought of. The objective may be to find a string or a number of strings 
with a fitness above a given threshold. A reasonable objective may also be to 
discover regions of high average fitness. This latter objective is relevant to many 
control problems in which stability of the solution is an issue. In summary, 
deceptivity can only be defined in relation to an objective. It is generally easier to 
show that for some objective, the wavelet-based genetic algorithm is deceptive 
than the inverse. If, in the infinite-population limit, the algorithm is less efficient 
than a random search at each generation then simulations show that the finite-
population case is also deceptive if a reasonable number of samples are drawn 



186 Wavelets in Soft Computing 

(Proving or refuting this conjecture may be interesting, though we will not 
embark on this!). In other words, we postulate that the condition below is a very 
strong indication of deceptiveness, also in the finite-population case. 

E ( p )(a1) /(XE ( P )( a i ))<2"N VP (8-21) 
i 

with 2"N the size of the search space. 
Giving criteria for the non-deceptiveness is even more difficult. The reason is 

that having a large expectation for the objective string is not sufficient to 
guarantee that the search is more efficient than a random search. If the 
exploration rate of new solutions is too small, then the probability of discovering 
better solutions is also small. Multi-sampling of a string reduces the efficiency of 
the algorithm. Multi-sampling is not so much a limitation in low-resolution 
sampling (i.e. Pm>0 only for very small m and a large search space). In that 
special case, the algorithm is generally quite efficient if the condition 

E ( p ) (a i ) / (X E ( P ) ( a i ) )> 2 - N (8-22> 
i 

holds at each generation. 
The deceptiveness of a fitness function depends also on the chosen free 

parameters. The disruption probabilities PO,...,PL are the main parameters relevant 
to the wavelet-based genetic algorithms. Their choice determines the 
performance of the algorithm. A fitness function may be deceptive for a given 
objective at a certain resolution and non-deceptive at another resolution. Figure 
8.15 illustrates this. It shows the equilibrium distribution for 4 sets of disruptions 
probabilities using in each case the same fitness function to start with. Low-
resolution sampling leads to the second largest peak being mostly sampled. In 
that case the highest peak is washed out through filtering. Sampling of the highest 
peak is only significant for the disruption probabilities corresponding to the two 
smallest low-resolution disruption probabilities. In that particular case, the fourth 
resolution is the best to find the maximum of the fitness function. From this 
example, one understands that changing the resolution during learning may have 
in some instances a positive effect on the efficiency of the search. In particular, 
changing the disruption probabilities during the search may be recommended in 
multi-modal fitness landscapes for which high-fitness regions correspond to large 
basins. A low-resolution search with the wavelet-based algorithm permits to 
localize, with a limited number of samples, regions of high average fitness 
values. Sampling at higher resolution permits to focus the search on these high-
fitness regions. Needless to say, that an optimization of the disruption parameters 
Pm necessitates some preliminary knowledge on the shape of the fitness 
landscape. 
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Figure 8.15: Equilibrium distribution function of the distribution of strings defined by 
fitness function given by the upper solid line. The disruption probabilities are chosen 
proportional to Pm oc 1 /(2 + (L - m)) a : a) a = 0 (solid line); b) a = 1 (long dash); c) 

a = 2 (short dash); a = 3 (dash-dot). The high-frequencies are less filtered as one goes 
from a) to d). 

Before addressing the question of the relevance of the infinite-population 
description to the finite-population case, let us first summarize the above 
discussion. 

-We have presented a wavelet-based genetic algorithm that makes explicit 
some of the connections between Haar wavelets and genetic algorithms. The 
algorithm uses a single operator that tries to catch some of the main features of 
the crossover and mutation operators. The simplicity of the model allows the 
derivation of analytical results, a somewhat rare case in genetic algorithms. In 
particular, the expected population can be computed in terms of the wavelet 
coefficients of the fitness function. As wavelet theory has an equivalent 
formulation within filter theory (subband coding), the results can be expressed 
also in terms of filtering. 

-The disruption probabilities determine to a very large extent the respective 
importance of exploitation and exploration. Large probabilities for low resolution 
sampling results into exploration being privileged over exploitation, while the 
reverse holds if sampling is performed in the neighborhood of the fittest strings. 
The efficiency of the algorithm depends centrally on the existence of a good 
correlation between the objective strings and the regions of high average fitness. 
Roughly speaking,, the algorithm is efficient if the search is guided towards the 
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objective string through the sampling of regions having high average fitness. The 
performance of the search depends critically on the disruption probabilities. We 
have presented an example (fig. 8.15) in which a fitness function is deceiving for 
a particular setting of the disruption probabilities and a given objective string. In 
that particular case, a slight modification of the disruption probabilities leads to a 
very efficient algorithm. 

Let us discuss now the finite population case. In the infinite-population 
model, the distribution converges towards a stable equilibrium distribution. The 
dynamics of the wavelet-based genetic algorithm is therefore much simpler than 
the one of the simple genetic algorithm by Vose. The dynamics of the simple 
genetic algorithm can be indeed very rich and often the relevance of the infinite-
population distribution to the standard genetic algorithm in real-world 
applications is not clear. The existence of an equilibrium distribution in the 
wavelet-based genetic algorithm represents a basis for discussing the finite 
population model. The equilibrium distribution in the infinite-population model 
can be used as a useful guidance for understanding the algorithm in the only 
practically relevant case of a finite population. A central but very difficult 
question is to know to which extent the equilibrium distribution characterizes the 
population well enough. In the finite, but large, population case, the distribution 
moves in many generations from a random distribution given by the initial 
population to an average distribution described approximately by the equilibrium 
distribution. The larger the population, the better is the average distribution 
approximated by the equilibrium distribution. If the equilibrium distribution is 
qualitatively very different from the transient infinite-population distributions, 
any discussion of the algorithm' performance in the finite population case is 
extremely speculative. The closer is the first generation to the infinite population 
distribution the more representative is the infinite population behavior to the 
small population case. So a legitimate question is to determine to which extent 
the first generation distribution is correlated to the equilibrium distribution. 
Simulations show that the correlation is not perfect, but that a significant trend 
does exist. Let us show this with an example. Let us consider fitness functions 
with values drawn from a uniform distribution. After generally a single 

generation, the maximum value maxj E ^ ( a - ) locks on a given position i (fig 

8.16a). 
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Figure 8.16: Examples of numerical simulations using eq.(8.16). a) The maximum value 
of E(p) (a;) is reported as a function of the generation p . b) Distribution of the generation 

at which the string with the largest probability at equilibrium corresponds to the 
maximum of E(p) (a;) . The statistics was made with 10000 fitness functions with values 

chosen randomly in a uniform distribution between zero and one (P0=...=P7=l/7). 

In above 85% of the cases, the genetic algorithm does promote the string with 
the largest value of the fitness after filtering, that is the string given by (8.15), and 
not the maximum fitness value. Only 20% of the fittest strings at equilibrium 
coincide with the string of maximum fitness. The above results were found to be 
quite representative. It implies that the expected distributions, after one 
generation and at equilibrium, are often well correlated and are generally both 
relevant to a qualitative discussion of the algorithm performance. 
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Multiresolution search 

The wavelet-based genetic algorithm, presented in the last sections, captures 
much of the essence of the standard genetic algorithm, while being analytically 
tractable. Besides being simple, the wavelet-based algorithm is also interesting as 
it can be regarded as a prototype algorithm of a larger class of search algorithms, 
that are presented below. This last section is conceptually important as it extends 
wavelet-based genetic algorithms to a broader class of search algorithms based 
on the application of multiresolution techniques. We propose to describe these 
techniques by the generic term of multiresolution search. We will give below two 
working definitions of multiresolution search. The first one is quite general and 
the second one is a restriction of the definition of multiresolution search to 
wavelet-based multiresolution search. 

Multiresolution search algorithms allow searches in both the continuous and 
the discrete domain. Let us start by explaining how to extend the simple wavelet-
based genetic algorithm presented in the last sections to a continuous search 
space parameter. This example will permit to grasp already some of the main 
ideas behind the concept of multiresolution search. 

The wavelet-based genetic algorithm can be expressed under a more general 
form: Suppose that at the p"1 generation, a finite subset of the search space 
{x!,...,xn} has been tested. Each element in the subset has a fitness f(xj). The 
finite subset of candidate solutions to the search problem at the next generation is 
determined according to the following procedure. 

1) A solution of fitness f; is replicated on average y • f; times. 
2) Each element of the subset created in (1) is modified by an operator 

@m (m=0,...,L). The probability of using the m"1 operator m is Pm ( V P m =1). 
m 

The operator ©m transforms an element Xj into x with a probability density 

function 0m (x; -> x). 

6m (Xi -> x) oc 1 / 2L-m - £ Hm n (Xj) • f (Xi) • Hm n (x) (8.23) 
n 

with Hmn the scaling function associated to the Haar wavelet (The 
normalization of H,^n is chosen here such that Hmn takes values either zero or 
one). It is not difficult to show that, for binary coding, the operator ©m is 
equivalent to the operator Om , the operator that replaces the last m bits in the 
strings. The cumulative effect of the different operators ©m can be described by 
the operator ©that transforms an element Xj into x with a probability density 
function 0(Xj -» x) given by: 

0(x; ^ x ) x £ P m - l / 2 L - m - £ H ^ X i H C x J - H ^ C x ) (8.24) 
m n 
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Based on the above example, we propose a general definition of what is 
meant with multiresolution search. 

Definition: 
A multiresolution search is defined on a search space (continuous or discrete). At 
the pth generation, a finite subset of the search space {xi,...,xn} is tested for 
fitness. A new subset of elements is created by replicating the elements Xj on 
average y • f, times, with f, the fitness of the element x; The value y may be a 
constant or modified from generation to generation. Each element of the new 
subset is subsequently transformed by an operator ®m(m=0,...,L). The 

probability of using the m* operator m is Pm ( V P m = l ) . The operator 
m 

@m transforms an element xf into x with a probability density function of the form 

em(x1^x)cc^Fn i n(x1) .f(x1)-Gn j m(x)with 
n 

Fnm(x) = F(2m-x-n);Gnm(x) = G(2m-x-n) . 

The resulting subset defines the search subspace at the next generation. 

Figure 8.17 summarizes the algorithm. 

Generation p 

H(P) 

-y f(\:) copies of x, 

-y f(x2)copies of ^ 

-y f(x) copies of x 

-7 f(xn) copies of xn 

Generation p+1 

9(Xj - > x ) 

fi(P+i> 

Figure 8.17: General description of a multiresolution search. 

The above formulation of the wavelet-based genetic algorithm in terms of a 
multiresolution search does not only extend the algorithm to a continuous search 
space but permits also to include multiresolution searches based on different 
wavelet constructions than the Haar wavelets. 
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Definition: 
A wavelet-based multiresolution search is a multiresolution search using an 
operator 0 that transforms an element x; into x with a probability density function 
of the form: 

9 (x, ^ x ) o c £ P m . l / 2 L - m - £ ^ ( x . K C x , ) - ^ ^ ) (8.25) 
m n 

The functions <j> and § are respectively the dual scaling functions and the dual 
scaling functions corresponding to the biorthogonal wavelets vj/ and vj/. The 
probabilities Pm must be appropriately chosen such as to ensure non-negative 
values of 0. The reason is that either $ or § have negative values for any scaling 
function except the Haar scaling function. In order to obtain non-negative density 
functions, a modified probability density function must be used, assuming for 
simplicity that min({()m n (x)) > 0 one may write (8.25) under the form: 

e m ( X l ^ x ) o c l / 2 L - m - £ ($mn(x1) + 6)-f(x1)-<t)m>n(x),m>0 (8.26a) 
n 

90(XJ^X) = 0 (8.26b) 

If 5 > — min(<j)m n (x)) then the values of the density functions are always non-
negative. In that formulation, an element x, is transformed into x with a 
probability density function 0(x; -» x) proportional to: 

9(x; -> x) oc £ p ; • 1 / 2L"m • £ ($mn (Xl) + 5) - f (x;) • 4>m>n 00 (8.27) 
m^O n 

Eq. (8.27) is almost equivalent to (8.25). The difference is that the lowest 
resolution sampling is directly included into the higher resolution sampling by 
adding the constant 8 (fig. 8.18). By equating (8.25) to (8.27), the probabilities 
Pm can be computed from P̂ , and 8 : 

P0 =8/(1 + 8); P ; = P m / ( X p m - ( l + 8)) (8.28) 
m#0 

The value of 8 determines the amount of random sampling. A value of 
8 = 0.2 means, for instance, that random sampling is chosen in about 16 % of the 
case. For some orthogonal wavelets, the value of 8 is quite small. 
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Figure 8.18: In order to avoid negative probabilities, an offset is added to the scaling 
functions, that are after normalization interpreted as a probability density. The offset 

determines the proportion of randomly chosen elements at each generation. Left: 
biorthogonal 4.2 spline (Its main advantage: boundary scaling functions can be built 
using lifting), Right: Coifman 8 (the offset corresponds to a small amount of random 

search of the order of 16%). 

The main results of the previous sections can be translated to the continuous 
case (in the limit of an infinitely small quantization step!) and we will limit the 
discussion to stating two main results in the infinite population limit: 

The probability density function N(x,p) of a candidate solution x at 
generation p can be estimated recursively. The probability density 
function converges with p towards an equilibrium distribution. 
The probabilities Pm determine to a very large extent the respective 
importance of exploitation and exploration. Large probabilities for low 
resolution sampling results into exploration being privileged over 
exploitation, while the reverse holds if sampling is performed in the 
neighborhood of the fittest strings. The efficiency of the algorithm 
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depends centrally on the existence of a good correlation between 
acceptable solutions and the regions of high average fitness. Roughly 
speaking, the algorithm is efficient if the search is guided towards good 
solutions through the sampling of regions having high average fitness. 

x1£f 

1000 1200 1400 1600 1800 2000 

Figure 8.19: Example showing a normalized fitness function (solid line) and the sampling 
probability distribution on the search space at equilibrium (dash) for P0=0.3; P6=7/40; 
P5=7/40; P4=7/40; P3=7/40 (Pk corresponds to the projection on the 2L"k dilated scaling 

function; P0to the contribution of random sampling (Search space[0,2 =2048]), 
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Annexes 

Lifting Scheme 

The Fourier approach has been for quite some time the main method to construct 
wavelets. The situation has changed with the discovery of the lifting scheme 
(Sweldens, 1995). In the lifting scheme, wavelets are derived in the spatial space. 
The lifting scheme has lead to the development of wavelets defined on a sphere, 
wavelet constructions to process boundaries and to multiresolution schemes on 
irregular intervals. All these new constructions are regrouped under the concept 
of second generation wavelets. All wavelets constructions obtained in the Fourier 
domain can be derived in the spatial domain by using the lifting scheme 
(Daubechies, 1998). For that reason, the lifting scheme is often considered as a 
generalization of wavelet theory, and therefore the denomination of second 
generation wavelet was introduced. 

In this introduction on second generation wavelets, the goal is to give the 
flavor of the method and to present constructions that have been used in this 
book. The lifting scheme is quite intuitive. Consider a function yn = f(Xn) with 2n 

samples. The purpose of the lifting scheme is to decompose this function into the 
sum of a coarse approximation together with a correction to the coarse 
approximation. Up to this point, the lifting scheme is in essence similar to the fast 
wavelet decomposition algorithm. The particularity of the lifting scheme is that 
the decomposition is carried out by filtering alternatively the function at odd and 
even locations. In its simplest version, a decomposition with the lifting scheme is 
carried out by cascading a prediction and an update stage. The prediction stage 
estimates the value of f (xn) at odd locations (n=2k+l with k an integer) from the 
points at even locations (n= 2k with k an integer). The correction to the predicted 
values furnishes the output of the prediction stage. The update stage modifies the 
values at even location to preserve average. 

Let us take the example of the Haar wavelet decomposition. A function f(x) 
can be estimated at an odd location from its value at the previous even location: 

f(x2k+1) = f(x2k) (Al) 

The correction to this prediction is given by 

Af(x2k+1) = (f(x2k+1)-f(x2k+1)) = f(x2k+1)-f(x2k)) (A2) 

197 
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Introducing the notation Oddk =f(x2k+1)and Evenk =f(x2 k), (A1-A2) can be 
put under the form 

f ( x 2k + i ) = E v e n k 

Af(x2k+1) = Oddk-P(Evenk) 

(A3) 

(A4) 

with P = f (x2k) a lazy function of the points at even location. 
Eq.(A3-A4) can be summarized by the wiring diagram in fig. Al. 

Even 

Odd 

P= Even. 

0 
f ( x 2 k + l ) - f ( x 2 k ) 

Figure Al: The wiring diagram represents schematically the transform given by 
equations(A3-A4). 

The second part of the algorithm consists of updating the points at even 
locations, so that the average value on the points at even locations equals the 
average value of the function f(x): 

> f(x2k) + U(f(x 
2k+l 

)-f(x2k))=l/2 £ f ( x 
2k+l 

) + f(x2k)(A5) 

k=0,l...n k=0,l...n 

This condition is necessary as a wavelet decomposition must preserve the 
average of a function. The average is preserved with the following update 
function U: 

U = l/2(f(x2k+1)-f(x2k)) (A6) 

Setting Evenk =f(x2k),Oddk =f(x2k+1)and Oddpk = Oddk +P(Evenk)the 
wavelet decomposition with the Haar wavelet is given in the lifting scheme 
framework by the wiring diagram in fig. A2. The output points at odd locations 
correspond to the detail coefficients, while the output points at even locations are 
the approximation coefficient. A wavelet decomposition can be carried out by 
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cascading several diagrams, using at each level the output even datapoints as 
input to the next decomposition level. 

Even e Even out 

P= Even. 

Odd 

U=1/2(Oddpk) 

Odd out 

e Oddpk 

Figure A2: Wiring diagram in the lifting scheme corresponding to a one level Haar 
decomposition. The output points at odd locations correspond (to a factor) to the detail 

coefficients, while the output points at even locations are the approximation coefficients. 

In the next example, we will show how to construct biorthogonal spline 
wavelets with the lifting scheme. The wavelet obtained with this construction 
corresponds to a Cohen-Feauveau-Daubechies biorthogonal wavelet (Cohen, 
1992). This example will show the usefulness of the lifting scheme to construct 
wavelets. It will also make clear that the lifting scheme is also an efficient 
algorithm for a multiresolution analysis. The lifting scheme is in many cases even 
more efficient than the fast wavelet algorithm. 

Biorthogonal spline-wavelets constructions with the lifting scheme 
The lifting scheme associated to biorthogonal spline wavelets bears many 
similarities to the lifting scheme for Haar wavelets presented in the introduction. 
In the first stage, the values of f(x) are estimated at odd locations from the points 
at even locations and the difference between the true value and the prediction 
corresponds to the detail coefficient. The value at an odd location is predicted by 
taking the average of the two values of f(x) at the two neighboring location 
points. 

The corresponding wiring diagram is given by 
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Even 

Odd 

P= 1/2(Evenk+Evenk+1) 

0 Oddp k=Odd k-1/2 (Even k+Even k+1) 

Figure A3: Prediction stage for (2.2) biorthogonal spline wavelets. 

The update stage is designed such as to preserve the average value of the 
function after the decomposition stage. An update operator that fulfills this 
condition is 

U = l/4(Oddpk+Oddpk+1) (A7) 

Even e Even out 

P= 1/2 (Even k +Even k+1) 

Odd 

U= 1/4 (Oddp k+Oddp k+1) 

0 Oddpk 

_^ Odd out 

Figure A4: Wiring diagram for (2.2) biorthogonal spline wavelets. 

By substituting the operator P in the above expression, one obtains the 
approximation coefficients in terms of the input signal: 

Evenpk =-l/8-(Evenk_,) + l/40ddk_1 +3/4-Evenk +l/4-Oddk -l/8-Evenk+1. 

(A8) 

Similarly the detail coefficients can be written 

Oddpk =- l /2Even k +Oddk - l /2Evenk + 1 (A9) 
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Eq.(A8-A9) correspond to the filter coefficients of the biorthogonal (2,2) 
spline-wavelets. The reconstruction algorithm is obtained by inverting the wiring 
diagram as shown in fig. A5. 

The ease with which one can invert the wiring diagram from the 
reconstruction to the decomposition algorithm is certainly one of the strong 
points of the lifting scheme. This property is intrinsic to the lifting scheme, as at 
each step, one half of the coefficients are recalculated from the other half of the 
coefficients. This very construction makes each stage of the construction 
invertible. Let us take the example of the prediction stage. The prediction stage 
corresponds to the operation: 

Oddpk =Oddk +P(Evenk) 

This stage is inverted quite simply : 

Oddk = Oddpk -P(Evenk) 

(A10) 

(All) 

As the even coefficients are not changed during the operation, the expression 
P(Even) can be computed and the operator inverted. Similarly all other stages in 
the wiring diagram can be inverted, making the wiring diagram perfectly 
invertible. 

Even 0 
P= 1/2 (Even k +Even k+1) 

Odd 

U=1/4(Oddpk_1 + Oddpk) 

© Oddpk 

Figure A5: The wiring diagram in fig. A4 can be inverted for reconstructing the original 
signal losslessly from the transformed data points. 

The wavelet and scaling functions can be constructed quite easily. The 
wavelet function is constructed by putting all zeros but a one in the 
reconstruction diagram at the odd wire. By cascading several reconstruction 
diagrams, a good approximation of the wavelet function is obtained. 
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Even 
..,-1/4,-1/4,...) (...,-1/4,-1/4,...) 

A 3 ' 

0 
i i 

MERGE: 

(...,-1/8,-1/4,3/4,-1/4,-1/8,...) 

(...,-1/8,-1/4,-1/8,...) © (...,0,1,0,...) 
+ (.-,0 ,1, 0,...) 

Odd 

Figure A6: The (2.2) biorthogonal wavelet can be obtained by cascading the above wiring 
scheme corresponding to the reconstruction diagram. 

After merging, one obtains the coefficients l/8(-1,-2,6,-2,-1) which 
corresponds to the filter coefficients in the reconstruction algorithm with the fast 
wavelet reconstruction algorithm for the biorthogonal (2,2) construction. This 
gives an example of the equivalency between the fast wavelet decomposition and 
the lifting scheme. 

-1 0 1 

Figure A7: The (2.2) biorthogonal wavelet was obtained by cascading the wiring diagram 
in fig. A6. 

The choice of the scaling function does not determine univocally the wavelet 
function. Different wavelets can be obtained by changing the update in the wiring 
diagram. The scaling function can be obtained with a similar procedure, putting a 
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one in the Even wire as shown below. The reconstruction coefficients for the 
scaling functions are obtained: (0.5, 1, 0.5 ). 

Figure A8: Scaling function associated to the (2.2) biorthogonal spline construction. The 
scaling function is obtained by putting all zeros but one 7 in the even wire of fig.A6. 

Nonlinear wavelets 

The decomposition of a function in a sum of wavelets is by nature a linear 
method, as the wavelet coefficients are obtained by using a cascade of linear 
filters. Wavelet theory is by essence a linear method, even if some wavelet-based 
methods, for instance denoising, may use nonlinear aspects. In the linear case, the 
above reconstruction stage can be put under the form: 

x[n] = H({dmin,}) + G({cMin,}) (Bl) 

Nonlinear wavelet decompositions, or critically decimated nonlinear filter 
banks, as there are sometimes called in the filter literature, have been proposed 
by many authors (Egger, 1995; Claypole, 1997; Queiroz, 1998, Heijmans, 1998). 
Nonlinear wavelets are characterized by a reconstruction stage of the form: 

x[n] = R[{dmn,},{cMn.}] (B2) 

We will limit the discussion to giving a number of nonlinear constructions. 

Said and Pearlman wavelets 

We will first examine the nonlinear wavelet construction based only on the so-
called S transform. 
In a first step, the average of two successive values is computed and rounded off 
to the next integer: 
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x(2n) + x(2n + l) l[n] = 

The high-frequency part of the signal is given by 

h[n] = x(2n + l)-x(2n) 

The inverse transformation is given by 

x[2n] = xj[n] + xh[n] 

with 

x,[2n] = l[n] 

(B3) 

(B4) 

(B5) 

x,[2n + l] = l[n] 

xh[2n] = h[n] + l 

h[n] xh[2n + l] = -

The rounding off is obviously a nonlinear operation. It has the great 
advantage to require only integer values. The S stage is therefore well suited to 
an efficient computation in a microprocessor. The compression of an S-
transformed image does not give convincing results, due to aliasing. For that 
reason, Said and Pearlman (1996) did introduce a first transform, the P transform, 
to suppress aliasing. The P transform is also invertible. 

Morphological Haar wavelets 

The morphological Haar wavelet uses the max operator (Heijmans, 1999). The 
wavelet decomposition is carried out by using two operators. The first operator 
corresponds to the approximation stage in the linear wavelet. It is given by 

Xi [n] = max(x[2n], x[2n +1]) (B6) 

The second operator is the equivalent of the high-pass filter for the nonlinear 
case. 

5,[n] = x[2n]-x[2n + l] (B7) 

The decomposition stage is invertible, allowing a lossless signal 
decomposition. Morphological Haar wavelets preserve the edges of objects better 
than Haar wavelets. The Haar wavelet tends to smooth out edges, while 
morphological Haar wavelets preserve the edge, as the maxima are preserved by 
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the max operator. More precisely, global maxima are kept, while local maxima 
may be removed by a higher local maxima at lower resolution. The 
morphological Haar wavelets can be generalized to higher dimensions. Also the 
procedure can be extended to more complex decompositions. The general max-
lifting scheme is such a method, a promising method for segmentation problems 
in combination to thresholding methods. 

Wavelets constructions for genetic algorithms 

The wavelet-based genetic algorithm in part 8 was specifics to binary coding. In 
this annex, we will show that results similar to the ones in part 8 can also be 
obtained without making the assumption of binary coding. A slightly modified 
genetic algorithm is used and explained within the framework of a nonlinear 
wavelet model. Let us start by describing a single stage of the nonlinear wavelet 
decomposition. 
Consider a string (ai,...,a„) with n=3J. The nonlinear wavelet decomposition 
transforms a triplet (ai,a2,a3) according to table I. 

triplet 

(0,0,0) 

(1,0,0) 

(0,1,0) 

(0,0,1) 

(1,1,1) 

(0,1,1) 

(1,0,1) 

(1,1,0) 

Approximation 

coefficient 

0 

0 

0 

0 

1 

1 

1 

1 

Detail 

coefficients 

(0,0) 

(1,0) 

(0,1) 

(1,1) 

(0,0) 

(1,0) 

(0,1) 

(1,1) 

Table I 

The approximation coefficients is related to the number of 0 and / in the 
triplet. If there is a majority of bits set to one, the approximation coefficient is 
one, while if the majority of bits is set to zero, the approximation coefficient is 
zero. The detail coefficient indexes the position of the minority bit if any. The 
wavelet decomposition is invertible as seen from table I. Further if all detail 
coefficients are set to (0,0), then the original signal is given by the string (!,...,!). 
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A nonlinear wavelet decomposition is obtained by cascading the nonlinear 
wavelet decomposition given in table I, as depicted in fig. B1. 

itw4dM.i?idM.i3idM.jr 

do.i d0.2 

Figure Bl: Nonlinear wavelet decomposition defined by table I. 

The wavelet-based genetic algorithm works quite similarly to the wavelet-
based algorithm in part 8. Strings are first reproduced according to their fitness. 
The operator O transforms the strings according to the following scheme: A 
string is kept unchanged with probability PLe with Le corresponding to the 
number of decomposition levels. With probability PLe-M, the low resolution part 
of the string at level P Le.M (Le > M) is kept and the wavelet coefficients at levels 
Le,..Le-M are randomly chosen. The new string is obtained using the wavelet 
reconstruction algorithm defined in table I. 
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0 L e U 1 a, | a, 1 a, U U | ... | a, | PLeY'fk 

I a, | a, |a, | a, | a, 1 ... | a, I O u .,1 x, | x, [ x, | x4 | x j x, | ... | x, | PLB_^\ 

I «• 1 a* I a, I a, | 

String k: . . , _. 
fitness f sign(ai+a2+a3-1.5)= 
I I I I I C ^ O 11, 1 1 1 1 1 1 1 1 1 - , . A I - \ 

k 1 a j a, I a j a j a. U I ... 1 a, I Sign(X1+X2+X3-1.5) 

Copies of original string: ' , ' , 
expected number: y fk oo U U U U U UI . . . U I P0yfk 

Figure B2: Wavelet-based genetic algorithm based on the wavelet decomposition in table 
I. 

Similarly to the approach in part 8, the expectation of a string, after the first 
generation, can be computed from the wavelet and approximation coefficients of 
the wavelet decompositions. One obtains: 

L 

E(1)(a = a1,...,ak) = y (^c m ; n -P m -H m n ( a ) ) (B8) 
m=0 

with cmnthe approximation coefficients and Hmnthe nonlinear low-pass 

projection defined by the left column in table I. 
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This book presents the state of integration of wavelet theory and 

multiresolution analysis into soft computing. It is the first book on hybrid 

methods combining wavelet analysis with fuzzy logic, neural networks 

or genetic algorithms. Much attention is given to new approaches (fuzzy-

wavelet) that permit one to develop, using wavelet techniques, 

linguistically interpretable fuzzy systems from da ta . The book also 

introduces the reader to wavelet-based genet ic algorithms and 

multiresolution search. A special place is given to methods that have 

been implemented in real world applications, particularly the different 

techniques combining fuzzy logic or neural networks with wavelet theory. 
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