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Preface

The purpose of this book is to present the vibration and acoustical behavior of
typical sandwich structures subject to mechanical and/or acoustical loadings, which
actually form a class of structural elements of practical importance in huge amounts
of engineering applications, such as aircraft fuselage, ship and submarine hulls. The
contents of this book has grown out of the research activities of the authors in the
field of sound radiation/transmission of/through lightweight sandwich structures.

The book is organized into six chapters: Chapter 1 deals with the vibro-acoustic
performance of rectangular multiple-panel partitions with enclosed air cavity
theoretically and experimentally, which has accounted for the simply supported and
clamp supported boundary conditions. Chapter 2 concerns with the transmission
of external jet-noise through a uniform skin plate of aircraft cabin fuselage in the
presence of external mean flow. As an extension, Chap. 3 handles with the noise
radiation and transmission from/through aeroelastic skin plates of aircraft fuselage
stiffened by orthogonally distributed rib-stiffeners in the presence of convected
mean flow. Chapter 4 develops a theoretical model for sound transmission through
all-metallic, two-dimensional, periodic sandwich structures having corrugated core.
Chapter 5 focuses on the sound radiation and transmission characteristics of
periodically stiffened structures. Ultimately, Chap. 6 proposes the sound radiation
and transmission behaviors of periodical sandwich structures having cavity-filling
fibrous sound absorptive materials.

This book is involving multidisciplinary subjects especially including combined
knowledge of vibration, aeroelastics and structural acoustics, which pays much
attention on showing results and conclusions, in addition to mere theoretical
modelling. Therefore this book should be of considerable interest to a wide range of
readers in relevant fields. It is hoped that the content of the book will find application
not only as a textbook for a wide audience of engineering students, but also a general
reference for researchers in the field of vibrations and acoustics.

Xi’an, China T.J. Lu
F.X. Xin
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Chapter 1
Transmission of Sound Through Finite
Multiple-Panel Partition

Abstract This chapter is organized as three parts: in the first part, the vibroacoustic
performance of a rectangular double-panel partition with enclosed air cavity and
simply mounted on an infinite acoustic rigid baffle is investigated analytically.
The sound velocity potential method rather than the commonly used cavity modal
function method is employed, which possesses good expandability and has signif-
icant implications for further vibroacoustic investigations. The simply supported
boundary condition is accounted for by using the method of modal function, and
double Fourier series solutions are obtained to characterize the vibroacoustic behav-
iors of the structure. Results for sound transmission loss (STL), panel vibration
level, and sound pressure level are presented to explore the physical mechanisms
of sound energy penetration across the finite double-panel partition. Specifically,
focus is placed upon the influence of several key system parameters on sound
transmission, including the thickness of air cavity, structural dimensions, and the
elevation angle and azimuth angle of the incidence sound. Further extensions of the
sound velocity potential method to typical framed double-panel structures are also
proposed.

In the second part, the air-borne sound insulation performance of a rectangular
double-panel partition clamp mounted on an infinite acoustic rigid baffle is inves-
tigated both analytically and experimentally, and compared with that of a simply
supported one. With the clamped (or simply supported) boundary accounted for
by using the method of modal function, a double series solution for the sound
transmission loss (STL) of the structure is obtained by employing the weighted
residual (Galerkin) method. Experimental measurements with Al double-panel
partitions having air cavity are subsequently carried out to validate the theoretical
model for both types of the boundary condition, and good overall agreement is
achieved. A consistency check of the two different models (based separately on
clamped modal function and simply supported modal function) is performed by

T.J. Lu and F.X. Xin, Vibro-Acoustics of Lightweight Sandwich Structures,
Springer Tracts in Mechanical Engineering, DOI 10.1007/978-3-642-55358-5__1,
© Science Press Beijing and Springer-Verlag Berlin Heidelberg 2014
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2 1 Transmission of Sound Through Finite Multiple-Panel Partition

extending the panel dimensions to infinite where no boundaries exist. The significant
discrepancies between the two different boundary conditions are demonstrated in
terms of the STL versus frequency plots as well as the panel deflection mode
shapes.

In the third part, an analytical model for sound transmission through a clamped
triple-panel partition of finite extent and separated by two impervious air cavities
is formulated. The solution derived from the model takes the form of that for
a clamp-supported rectangular plate. A set of modal functions (or more strictly
speaking, the basic functions) are employed to account for the clamped boundary
conditions, and the application of the virtual work principle leads to a set of
simultaneous algebraic equations for determining the unknown modal coefficients.
The sound transmission loss (STL) of the triple-panel partition as a function
of excitation frequency is calculated and compared with that of a double-panel
partition. The model predictions are then used to explore the physical mechanisms
associated with the various dips on the STL versus frequency curve, including the
equivalent “mass-spring” resonance, the standing-wave resonance, and the panel
modal resonance. The asymptotic variation of the solution from a finite-sized
partition to an infinitely large partition is illustrated in such a way as to demonstrate
the influence of the boundary conditions on the soundproofing capability of the
partition. In general, a triple-panel partition outperforms a double-panel partition in
insulating the incident sound, and the relatively large number of system parameters
pertinent to the triple-panel partition in comparison with that of the double-panel
partition offers more design space for the former to tailor its noise reduction
performance.

1.1 Simply Supported Finite Double-Panel Partitions

1.1.1 Introduction

Double-leaf partition structures have found increasingly wide applications in noise
control engineering due to their superior sound insulation capability over single-leaf
configurations. Typical examples include transportation vehicles, grazing windows
and partition walls in buildings, aircraft fuselage shells, and so on [1–12].

Considerable efforts have been devoted to understanding and predicting the
transmission of sound across single-leaf [13–15] and double-leaf [16–29] partitions.
In fact, research about the former is often a prerequisite for studying the latter.
For instance, Lomas [14] developed Green function solution for the steady-state
vibration of an elastically supported rectangular plate coupled to a semi-infinite
acoustic medium. An important feature of the investigation is the treatment of
the elastic support boundary condition which was taken into account by assuming
the rotational motion along the boundary controlled by distributions of massless
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rotary springs and by introducing the corresponding moments into the governing
equations. The problem of sound radiation by a simply supported unbaffled panel
was investigated by Laulagnet [13]. Both pressure jump and plate displacement in
series of the simply supported plate models were developed.

Early sound transmission studies [16, 28–30] of double-panel structures with air
cavity in between generally simplified the structure as infinite and hence did not
account for the elastic boundary conditions on the periphery. For typical examples,
Antonio et al. [17] gave an analytical evaluation of the acoustic insulation provided
by double infinite walls and also did not take elastic boundary condition into
account. Kropp et al. [19] addressed the optimization of sound insulation of double-
panel constructions by dividing the frequency range into three cases, i.e., where
the double wall resonance frequency is much higher (or closer or much lower)
than the critical frequency of the total construction. Recently, Tadeu et al. [20]
adopted an analytical method to assess the airborne sound and impact insulation
properties of single- and double-leaf panels by neglecting the elastic boundary
conditions. Bao and Pan [31] presented an experimental study on active control
of sound transmission through double walls with different approaches, including
cavity control, panel control, and room control.

For simply supported, finite rectangular double-panel structures, existing studies
[3, 22–27, 32–37] concerned mainly with the loss of sound transmission across the
structure, without detailed analysis about the energy transmission, the vibroacoustic
coupling effects, and the physical mechanisms of sound transmission process across
the structure. In particular, previous studies on double-panel partitions focus on
either infinite extent or finite extent, without exploring the natural relationship
between the two. The present study squarely addresses these deficiencies from
the new perspectives of the integration analysis of STL, panel vibration level,
and sound pressure level, with more details and the physical nature of sound
penetration through double-panel partitions revealed. Since the rigid baffle bounds
the cavity as well as the panel so that the cavity boundaries restrict the field
to sinusoidal distributions parallel to the panel plane, analytical solutions in
double Fourier series are proposed by applying the sinusoidal distributed sound
velocity potential method. This method can be easily expanded to the vibroacoustic
analysis of rib-stiffened double-panel structures, accounting for both the structure-
borne route (i.e., structural connections between the two panels) and the airborne
route (i.e., air cavity between the two panels), and hence can be regarded as an
alternative of the cavity mode method in certain engineering applications. The
model predictions are validated by comparing the analytical results with existing
experimental data. The influences of key system parameters such as air cavity
thickness, panel dimensions, and elevation angle and azimuth angle of incident
sound on the sound insulation capability of the finite double-panel partition are
systematically investigated. The results and conclusions of the present study should
be referentially significant to others due to the similar physical nature of the
vibroacoustic problem.
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Fig. 1.1 Schematic of sound transmission through a baffled, rectangular, simply supported double-
panel partition: (a) global view; (b) side view in the arrow direction in (a) (With permission from
ASME)

1.1.2 Vibroacoustic Theoretical Modeling

The finite double-panel partition with enclosed air cavity is assumed to be rectan-
gular, baffled, and simply supported along its boundaries, as shown in Fig. 1.1. The
two panels are homogenous and isotropic and modeled as classical thin plate. The
following geometrical dimensions are considered: the incident (bottom) panel and
the radiating (top) panel have identical length a and width b, but may have different
thicknesses h1 and h2 (Fig. 1.1b); the thickness of the air cavity is H (Fig. 1.1b). The
whole configuration is mounted on an infinite acoustic rigid baffle which separates
the space into two fields, i.e., sound incidence field (z < 0) and sound radiating field
(z > H). A uniform plane sound wave varying harmonically in time is obliquely
incident on the bottom panel, with incident elevation angle ' and azimuth angle
� (Fig. 1.1b). The vibration of the incident panel induced by the incident sound is
transmitted through the enclosed air cavity to the radiating panel, which radiates
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sound into the acoustic medium. The vibroacoustic behaviors of the double-panel
structure coupling with air cavity as well as sound transmission loss across the
structure are to be solved analytically with the sound velocity potential method.

1.1.3 Mathematic Formulation and Solution

For an obliquely incident uniform plane sound wave varying harmonically in time,
its acoustic velocity potential can be expressed as

� D Ie�j .kxxCkyyCkzz�!t/ (1.1)

where I is the amplitude; j D p�1; ! is the angular frequency; and kx, ky, and kz

are the wavenumber components in the x-, y-, and z-directions, respectively:

kx D k0 sin ' cos �; ky D k0 sin ' sin �; kz D k0 cos ' (1.2)

Here, k0 D !/c0 is the acoustic wavenumber in air, with c0 denoting the sound
speed in air.

Due to the excitation of the incident sound wave, the double-panel configuration
with enclosed air cavity vibrates and radiates sound. The vibroacoustic behaviors of
the structure are governed by

D1r4w1 C m1

@2w1

@t2
� j!�0 .ˆ1 � ˆ2/ D 0 (1.3)

D2r4w2 C m2

@2w2

@t2
� j!�0 .ˆ2 � ˆ3/ D 0 (1.4)

where �0 is the air density and (w1, w2), (m1, m2) and (D1, D2) are the transverse
displacements, surface densities, and flexural rigidities of the incident and radiating
panels, located at z D 0 and z D H, respectively (Fig. 1.1). By introducing the loss
factor of the panel material, the flexural rigidity of the panel Di (i D 1, 2) can be
written in terms of the complex Young’s modulus Ei(1 C j�i) as

Di D Ei h
3
i .1 C j�i /

12
�
1 � v2

i

� (1.5)

The hard-walled cavity modal function �c
mnl D cos(m�x/a)cos(n�y/b)cos(l�z/c) can

only accurately model the sound field in a rigidly bounded cavity volume. It will
therefore deviate somewhat from the precise results when the hard-walled cavity
modal function is employed here to model the cavity bounded by two large flexural
panels. In order to avoid this drawback, the sound velocity potential method is
adopted, which is completely different from previous investigations based on cavity
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modal function. Let ˆi (i D 1, 2, 3) denote the velocity potentials of the three
acoustic fields, i.e., sound incidence field, air cavity field, and structure radiating
field (Fig. 1.1b), respectively. The velocity potential for the incident field can be
defined as

ˆ1 .x; y; zI t/ D Ie�j .kxxCkyyCkzz�!t/ C ˇe�j .kxxCkyy�kzz�!t/ (1.6)

where the first and second terms represent separately the velocity potential of the
incident and the reflected plus radiating sound waves and I and ˇ are the amplitudes
of the incident (i.e., positive-going) and the reflected plus radiating (i.e., negative-
going) waves, respectively. Similarly, the velocity potential in the air cavity can be
written as

ˆ2 .x; y; zI t/ D "e�j .kxxCkyyCkzz�!t/ C �e�j .kxxCkyy�kzz�!t/ (1.7)

where " is the amplitude of positive-going wave and � is the amplitude of negative-
going wave. In the radiating field, there exist no reflected waves; thus, the velocity
potential is only for radiating waves:

ˆ3 .x; y; zI t/ D �e�j .kxxCkyyCkzz�!t/ (1.8)

where � is the amplitude of radiating (i.e., positive-going) wave. The local acoustic
velocities and sound pressure are related to the velocity potentials by

bui D �rˆi ; pi D �0

@ˆi

@t
D j!�0ˆi .i D 1; 2; 3/ (1.9)

For simply supported boundary condition, the transverse displacement and the
transverse force are constrained to be zero at the periphery of the panel. Given
that the double-panel structure is rectangular, the boundary conditions can be
expressed as

x D 0; a W w1 D w2 D 0;
@2w1

@x2
D @2w2

@x2
D 0 (1.10)

y D 0; b W w1 D w2 D 0;
@2w1

@y2
D @2w2

@y2
D 0 (1.11)

At the air-panel interface, the normal velocity should be continuous, yielding the
following velocity compatibility equations:

z D 0 W �@ˆ1

@z
D j!w1; �@ˆ2

@z
D j!w1 (1.12)

z D H W �@ˆ2

@z
D j!w2; �@ˆ3

@z
D j!w2 (1.13)
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For harmonic excitation of the finite double-panel system, the transverse dis-
placements of the two panels can be written as

w1 .x; y; t/ D
1X

mD1

1X

nD1

�mn .x; y/ q1;mn.t/ (1.14)

w2 .x; y; t/ D
1X

mD1

1X

nD1

�mn .x; y/ q2;mn.t/ (1.15)

where the modal functions �mn and modal displacements qi,mn for simply supported
boundary conditions (1.10) and (1.11) are given by

�mn .x; y/ D sin
m�x

a
sin

n�y

b
(1.16)

q1;mn.t/ D ˛1;mnej!t ; q2;mn.t/ D ˛2;mnej!t (1.17)

where ˛1,mn and ˛2,mn are the modal coefficients of the incident panel and the upper
panel, respectively.

Since the rigid baffle bounds the cavity as well as the panel, the cavity boundaries
restrict the field to sinusoidal distributions parallel to the panel plane. Therefore, the
velocity potentials can be expressed in terms of the panel modal functions as

ˆ1 .x; y; zI t/ D
1X

mD1

1X

nD1

Imn�mn .x; y/ e�j .kzz�!t/

C
1X

mD1

1X

nD1

ˇmn�mn .x; y/ e�j .�kzz�!t/ (1.18)

ˆ2 .x; y; zI t/ D
1X

mD1

1X

nD1

"mn�mn .x; y/ e�j .kzz�!t/

C
1X

mD1

1X

nD1

�mn�mn .x; y/ e�j .�kzz�!t/

(1.19)

ˆ3 .x; y; zI t/ D
1X

mD1

1X

nD1

�mn�mn .x; y/ e�j .kzz�!t/ (1.20)

where the unknown coefficients Imn, ˇmn, "mn, �mn, and �mn in (1.18), (1.19), and
(1.20) can be determined by applying the orthogonality condition of the modal
functions as

x	mn D 4

ab

Z b

0

Z a

0
x	e�j .kxxCkyy/ sin

m�x

a
sin

n�y

b
dxdy (1.21)
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Here, the symbol x	 can be referred to any of the coefficients I, ˇ, ", �, and �. Note
that the expressions in terms of either traveling wave or panel modal functions are
completely equivalent in nature when they are both subjected to the same boundary
conditions.

Substitution of Eqs. (1.18), (1.19), and (1.20) into Eqs. (1.12) and (1.13) leads to

ˇmn D Imn � !˛1;mn

kz
(1.22)

"mn D !
�
˛2;mnejkzH � ˛1;mne2jkzH

�

kz
�
1 � e2jkzH

� (1.23)

�mn D !
�
˛2;mnejkzH � ˛1;mn

�

kz
�
1 � e2jkzH

� (1.24)

�mn D !˛2ejkzH

kz
(1.25)

Substituting Eqs. (1.14), (1.15), and (1.22), (1.23), (1.24), and (1.25) into
Eqs. (1.3) and (1.4) and applying the orthogonal properties of modal functions, one
gets

Rq1;kl .t/C!2
1;kl q1;kl .t/�j!�0

m1

h
.Ikl � "kl/ e�j .kzz�!t/C .ˇkl ��kl / e�j .�kzz�!t/

i
D 0

(1.26)

Rq2;kl .t/ C !2
2;kl q2;kl .t/ � j!�0

m2

h
."kl � �kl / e�j .kzz�!t/ C �kle

�j .�kzz�!t/
i

D 0

(1.27)

where !i,kl is defined as

!2
i;kl D

Di

“
r4�i;kl � �i;kldxdy

mi

“
�2

i;kldxdy

.i D 1; 2/ (1.28)

With Eq. (1.17), Eqs. (1.26) and (1.27) can be rewritten in matrix form as

�
Q11 Q12

Q21 Q22

� �
˛1;kl

˛2;kl

�
D
�

F

0

�
(1.29)

where

Q11 D !2
1;kl � !2 � j!�0

m1

2!e2jkzH

kz
�
1 � e2jkzH

� (1.30)
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Q12 D j!�0

m1

2!ejkzH

kz
�
1 � e2jkzH

� (1.31)

Q21 D j!�0

m2

2!ejkzH

kz
�
1 � e2jkzH

� (1.32)

Q22 D !2
2;kl � !2 � j!�0

m2

2!e2jkzH

kz
�
1 � e2jkzH

� (1.33)

F D 2j!�0Ikl

m1

(1.34)

The transmission coefficient of sound power is a function of the elevation angle
' and azimuth angle � of the incidence sound, which can be expressed as


 .'; �/ D

1X

mD1

1X

nD1

j�mnj2

1X

mD1

1X

nD1

jImn C ˇmnj2
(1.35)

For diffuse incident sound, due to the symmetry of the rectangular double-panel
structure, the averaged transmission coefficient can be obtained by integration as


diff D

Z �=4

0

Z 'lim

0


 .'; �/ sin ' cos ' sin � cos �d'd�

Z �=4

0

Z 'lim

0

sin ' cos ' sin � cos �d'd�

(1.36)

where ' lim is the limiting angle defining the diffuseness of the incident field. Here,
a limited incident angle ' lim is introduced to carry out this integration, inasmuch as
it is picked to give a good fit with experiments [23, 37–41].

In order to describe the vibration intensity of the two panels as well as the local
distribution of sound pressure, two parameters are introduced below [42]:

(1) Averaged quadratic velocity V
2
:

V
2 D

8
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂
:

V
2

1 D !2

2A1

Z

A1

jw1j2dA

V
2

2 D !2

2A2

Z

A2

jw2j2dA

(1.37)

where the subscripts 1 and 2 denote the incident panel and upper panel, respectively.

For the present numerical calculations, V
2

will be plotted in decibel scale (dB) using
a reference quadratic velocity of 2:5 � 10�15 m2=s2.
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(2) Averaged quadratic sound pressure P
2
:

P
2 D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

P
2

1 D 1

2A1

Z

A1

jp1j2dA

P
2

2 D 1

2A2

Z

A2

jp2j2dA

(1.38)

Here, only sound pressure in the near acoustic field (incidence field and radiating
field) adjacent to each panel is considered, so the integration of Eq. (1.38) is taken

over the panel area. Again, P
2

will be plotted in dB scale, with reference to 4 �
10�10 Pa2.

1.1.4 Convergence Check for Numerical Results

Numerical studies are performed to investigate the influence of relevant system
parameters on the sound insulation property of simply supported double-panel
partitions of finite extent, including the thickness of air cavity, panel dimensions,
and the elevation and azimuth angles of incident sound. The material properties and
structural dimensions of the panels are taken as follows. The two panels are made of
aluminum, with Young’s modulus E D 70 GPa, density � D 2, 700 kg/m3, Poisson
ratio � D 0.33, and loss factor (damping) � D 0.01. The two rectangular panels have
identical dimensions: a D 1.2 m in the x-direction and b D 0.8 m in the y-direction.
Unless stated otherwise, the panels have thickness h D 2 mm, while the thickness of
the air cavity is fixed at H D 21.5 mm. However, both h and H will be varied later to
explore their influences on sound insulation. Air density is �0 D 1.21 kg/m3, sound
speed in air is c0 D 343 m/s, and the amplitude of the acoustic velocity potential for
the incident sound is I0 D 1 m2/s.

Since the analytical solutions are presented in the form of double series, a suffi-
ciently large number of terms must be adopted to ensure the solution convergence.
It is admissible that once the solution is convergent at a given frequency, it is also
convergent for all frequencies lower than that [43], so that the necessary number
of terms is determined by the highest frequency of interest. Here, without loss
of generality, f D 6, 000 Hz is selected as the highest frequency for convergence
checking. In the case when the incident sound is normal to the double-panel
partition, the results shown in Fig. 1.2 demonstrate that the solution is rendered
convergent if the single model number m (and n) has a value of 50 or larger. This
implies that at least 2,500 terms (with both m and n ranging from 1 to 50) are needed
in all the present calculations.

Moreover, note that the loss factor of the air cavity in between the two panels
is too low (D0.001 approximately for air) to have a significant effect on STL
especially when the depth of the air cavity is small. In other words, the discrepancy
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Fig. 1.2 Convergence of double Fourier series solution for sound transmission loss (STL) of
a double-panel partition under the excitation of a normally incident sound at 6,000 Hz (With
permission from ASME)

between the predicted STL curve with air damping and that without air damping
is invisible, owing to the negligible damping of the air. The real crucial matter
is the vibroacoustic coupling behavior of the air cavity with the two panels, thus
which will be elucidated in the following section in terms of several key system
parameters (i.e., air cavity thickness, panel dimensions, the elevation and azimuth
angles of incident sound).

1.1.5 Model Validation

For validation, the analytical solutions are compared with the existing experiment
results [22], as shown in Fig. 1.3. A diffuse incident sound is assumed for the
calculation of structural STL, with the structural dimensions and panel material
properties same as those used in the experiment [22]. As mentioned above, an
empirical value of the limiting elevation angle ' lim is usually assumed. Although the
empirical limit on the angle of field plane wave incidence may still be controversial,
more and more researchers [23, 37–41] have acknowledged that the limiting angle
falls within the range of 65–80ı and prefer to adopt the angle of 78ı for numerical
analyses. Here, the results calculated with ' lim D 65ı and 78ı, respectively, are
both presented in Fig. 1.3. It is seen from Fig. 1.3 that the theoretical predictions
exhibit the same trend as the experimental measurements. Both the theoretical and
experimental curves show two minima in the frequency range of concern, although
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Fig. 1.3 STL plotted as a function of frequency for a double aluminum panel
(m1 D m2 D 0.239 g/cm2, H; diffuse incident sound): theory versus experiment [23] (With
permission from ASME)

the first minimum on the experiment curve is only faintly observable. The first
minimum at about 230 Hz corresponds to the mass-air-mass resonance related
mainly to the low angles of incidence, while the second minimum appearing at the
critical frequency of 2,546 Hz is mostly caused by the high angles of incidence, as
mentioned by Villot et al. [23].

The experimentally measured STL values are consistently about 5 dB larger
than the theoretically predicted values over the entire range of frequency studied
(Fig. 1.3), which can be explained by the fact that glass fiber absorbent (several
feet thick) was used around the edges of the double-panel partition in actual
measurements. Otherwise, the theoretical predictions of Fig. 1.3 agree reasonably
well with experiments.

To check the accuracy of the present model predictions further, another com-
parison is made with the theoretical and experimental results of Carneal et al.
[26] for the case of normal incident sound (i.e., ' D 0ı), as shown in Fig. 1.4.
The double-panel partition considered consists of two identical aluminum plates
(0.38 m by 0.30 m, 1.6 mm thickness), separated by a 0.048 m air cavity. Again,
a close agreement between the present theoretical predictions and experiment
measurements is observed. Due to the experiments that were carried out by using
two clamped parallel panels, as an approximation, Carneal et al. [26] increased
the stiffness of the simply supported plate by a factor of

p
2 for each boundary

to approximate the clamped boundary condition; the present theoretical results in
Fig. 1.4 adopts the same manner.
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Fig. 1.4 STL plotted as a function of frequency for a double aluminum panel with dimensions
a D 0.38 m, b D 0.30 m, and H D 0.048 m (normal incident sound): theory versus experiment [26]
(With permission from ASME)

1.1.6 Effects of Air Cavity Thickness

Transmission of sound through a double-panel partition without any mechanical
connection is due to the enclosed air between the two panels. Air in the cavity acts as
springs, thus transmits the mechanical vibration of the incident panel to the radiating
panel. The equivalent stiffness of the air between two parallel panels is given by
Carneal and Fuller [26] and Fahy [30]:

Ka D �0c2
0

H
(1.39)

The equivalent stiffness of the air is expected to have a significant effect on the sound
transmission through the double-panel configuration. Therefore, it is necessary
to investigate how the thickness of the air cavity influences the sound insulation
capability of the structure.

With other geometrical dimensions of the structure fixed, the STL of the double-
panel partition as a function of frequency is plotted in Fig. 1.5 for the case of normal
incident sound and three selected values of air cavity thickness (H D 5.275 mm,
21.5 mm, and 86 mm). It is seen from Fig. 1.5 that the first resonance frequency
corresponding to the first minimum on the STL versus frequency curve decreases as
H is increased, which is expected because increase of air cavity thickness leads to
reduced equivalent air stiffness (Eq. 1.39). Overall, the curve is shifted toward the
left with increasing H (Fig. 1.5), indicating that the sound insulation property of the
partition is improved.
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Fig. 1.5 STL plotted as a function of frequency for double-panel partitions with different
thicknesses of enclosed air cavity (normal incident sound) (With permission from ASME)

The vibroacoustic performance of the double-panel structure is also investigated
in terms of the averaged quadratic velocity of the two panels (Fig. 1.6) and the
averaged quadratic sound pressure field in the close proximity of the two panels
(Fig. 1.7). The double-panel partition addressed is identical to that of Fig. 1.5.
The increase of air cavity thickness reduces the vibroacoustic coupling of the
structure due to weakened air pumping effects (equivalent stiffness effects), which
is reflected by the decline of distinctions between the averaged quadratic velocity
levels of the incident panel (Fig. 1.6a) and the radiating panel (Fig. 1.6b) as H is
increased. It is understandable that a stronger vibroacoustic effect of the air cavity
(with relatively small thickness) leads to enhanced transmission of vibration energy
from the incidence panel to the radiating panel, and hence, the vibration energies
of the two panels will be in closer agreement because of the less energy expense
in the transmission process. As the averaged quadratic velocity is directly related
to the vibration energy of the panel, similar vibration energy levels of the two
panels will be reflected by similar averaged quadratic velocity levels (Fig. 1.6). It
should be pointed out that the first maximum in the averaged quadratic velocity
curve of the radiating panel in Fig. 1.6b corresponds to the first minimum on the
STL curve in Fig. 1.5. That is also expected because the intensive vibration of the
radiating panel would radiate sound strongly, sharply decreasing the magnitude of
the STL.

The double-panel partitions with different thicknesses of air cavity are excited by
the same incident sound of unit amplitude, i.e., the input sound energy is identical
for the three cases studied in Figs. 1.5, 1.6, and 1.7. However, the vibration energy
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Fig. 1.6 Averaged quadratic velocity plotted as a function of frequency for double-panel partitions
with different thicknesses of enclosed air cavity (normal incident sound): (a) incidence panel; (b)
radiating panel (With permission from ASME)

of the incident panel (as reflected by the average quadratic velocity, Fig. 1.6a)
increases with the increase of air cavity thickness while that of the radiating panel
decreases (Fig. 1.6b). This also demonstrates that the increase of air cavity thickness
weakens the vibroacoustic coupling effect of the structure, inducing less energy
transmitting through the air cavity. Although subjected to the same sound excitation,
the noticeable differences appearing in the vibration levels of the incident panel
for the three cases (see Fig. 1.6a) are attributed to the different vibroacoustic
performances of the backed air cavities having different depths, while the sound
energy fluxes penetrating through the air cavity to the radiating panel do not deviate
so much because of the larger vibration level of the incident panel with a weaker
cavity coupling (e.g., the 86 mm case) and the smaller vibration level of the incident
panel with a stronger cavity coupling (e.g., the 5.375 mm case). As a result, the
vibration levels of the radiating panel are almost the same at low frequencies; see
Fig. 1.6b. Since the sound pressure level in the transmitted field completely stems
from the vibration of the radiating panel, it should remain nearly unchanged at low
frequencies; see Fig. 1.7. Finally, given the definition of the STL, it should be almost
the same for the considered three cases at low frequencies. Therefore, the noticeable
differences in the vibration level of the incident panel in Fig. 1.6a at low frequencies
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Fig. 1.7 Averaged quadratic sound pressure plotted as a function of frequency for double-
panel partitions with different thicknesses of enclosed air cavity (normal incident sound) (With
permission from ASME)

do not exist in Figs. 1.5, 1.6, and 1.7. Of course, the maxima and minima shown in
these figures represent the modal behaviors of the two panels and the air cavity.

It is interesting to observe from Fig. 1.6 that the frequencies where most of the
maxima and minima appear remain unchanged (or slightly shifted) as H is varied,
although the actual values of the averaged quadratic velocity at these frequencies
may change significantly. The reason is that the incident and radiating panels are
made of the same material, have the identical dimensions, and are both simply
supported on their edges, and hence, the two panels have the same natural resonance
frequencies (which are related to the vibration energy maxima). The slight shifting
of the maxima (or minima) at certain frequencies (Fig. 1.6) should be attributed to
the influence of the vibroacoustic coupling effects of the air cavity.

The influence of air cavity thickness H on the averaged quadratic sound pressure
is shown in Fig. 1.7 for both the incident field and the radiating field. Although the
excitation intensity is the same, the sound pressure level of the radiating acoustic
field varies considerably as H is changed. Note that, for a given H, the averaged
quadratic sound pressure of the radiating acoustic field (Fig. 1.7) is almost the
same as the averaged quadratic velocity of the radiating panel (Fig. 1.6b). This
is expected because the sound energy adjacent to the radiating panel is generated
directly by the panel. For the same reason, the first maximum on the averaged
quadratic sound pressure versus frequency curve (Fig. 1.6b) corresponds to the first
minimum appearing in the STL versus frequency curve of Fig. 1.5. Finally, it should
be pointed out that the incident sound pressure not only varies with time but also
depends upon the incident frequency, as shown by the dash-dot curve in Fig. 1.7.
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Fig. 1.8 STL plotted as a function of frequency for double-panel partitions having different in-
plane dimensions (normal incident sound) (With permission from ASME)

1.1.7 Effects of Panel Dimensions

The influence of panel geometrical dimensions on the vibroacoustic performance of
a finite double-panel partition is studied in terms of three parameters: STL (Fig. 1.8),
averaged quadratic velocity (Fig. 1.9a, b), and averaged quadratic sound pressure
(Fig. 1.10). Three different in-plane panel dimensions (1.2 � 0.8 m2, 4.8 � 3.2 m2,
and infinite extent) are considered.

It can be observed from Fig. 1.8 that the STL curve becomes smooth with few
maxima and minima when the panel dimensions are increased, which implies that
the mode density of structures with smaller dimensions is larger than that with
bigger dimensions due to the effect of the simply supported boundary conditions.
The structural dimensions may have a significant effect on the sound insulation
capability of the double-panel configuration, depending upon the frequency range
of concern. Within the relatively low-frequency range of 10–300 Hz, the STL
is not sensitive to the change of panel dimensions in the considered case here.
As the sound frequency is increased beyond about 300 Hz, the STL values of
structures with bigger dimensions are apparently larger than those with smaller
dimensions. Furthermore, for frequencies larger than about 2,000 Hz, the STL
curves corresponding to the two cases, 4.8 � 3.2 m2 and infinite, fall onto one master
curve, demonstrating that the infinitely large double-panel partition provides an
upper bound STL for finite configurations.

A comparison of Fig. 1.5 with Fig. 1.8 suggests that the “mass-air-mass”
resonance frequency associated with the first evident minimum on the STL versus
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Fig. 1.9 Averaged quadratic velocity plotted as a function of frequency for double-panel partitions
having different in-plane dimensions (normal incident sound): (a) incidence panel; (b) radiating
panel (With permission from ASME)

frequency curve be independent of the in-plane panel dimensions as it is dominated
by the thickness of the air cavity. Finally, a simple but worth noting fact is
that a double-panel partition with enclosed air cavity has better sound insulation
capabilities at relatively high frequencies than at low frequencies (Fig. 1.8).

Figure 1.9a and b presents the effects of in-plane panel dimensions on the aver-
aged quadratic velocity of the incidence panel and the radiating panel, respectively.
It is seen that structures with smaller dimensions possess higher mode density
represented by the dense maxima and minima on the averaged quadratic velocity
versus frequency curve than that having bigger dimensions. The averaged quadratic
velocity is in fact directly related to the total vibration energy of the panel; see
Eq. (1.37). The noticeable maximum at low frequency in Fig. 1.9b is associated with
the “mass-air-mass” resonance of the double-panel system, at which the two panels
vibrate in opposite phase, with the air cavity behaving like springs and the vibration
level of the radiating panel sharply increasing to the maximum value. In comparison,
the vibration level of the incident panel takes on different tendencies in different
cases (see Fig. 1.9a) due to the complex interplay (destructive or constructive
interference) between sound incidence and air cavity coupling.



1.1 Simply Supported Finite Double-Panel Partitions 19

Fig. 1.10 Averaged quadratic sound pressure plotted as a function of frequency for double-panel
partitions having different in-plane dimensions (normal incident sound) (With permission from
ASME)

The averaged quadratic velocity of the infinite incidence panel maintains approx-
imately a constant level (Fig. 1.9a), indicating the non-sensitivity of the structure
with respect to excitation frequency, which is attributed to the small mode density of
the infinite structure (Fig. 1.8). As the frequency is increased beyond the resonance
frequency (�250 Hz), the vibration energy of the incidence panel reaches a higher
level from 152 to 160 dB. As the in-plane dimensions of the panel are decreased, the
vibration energy of the incidence panel is increased and becomes more sensitive to
excitation frequency. Additionally, as aforementioned, the matching of the positions
where the maxima and minima appear in Fig. 1.9a with those in Fig. 1.9b implies
that the vibration energy of the radiating panel is strongly coupled to that of the
incidence panel.

The effects of structural dimensions are also investigated by analyzing the
averaged quadratic sound pressure; see Fig. 1.10. Again, the averaged quadratic
sound pressures adjacent to the radiating panel are almost the same as the averaged
quadratic velocities of the radiating panel. Note in particular that there exists a
maximum (about 250 Hz) in the averaged quadratic sound pressure for the radiating
acoustic field, which has nearly the same value as that for the incidence acoustic
field (Fig. 1.10). The same phenomenon occurs in Fig. 1.7. This implies that the
sound excitation energy transmits through the double-panel partition with little
energy loss, as if the structure is nearly transparent at these particular frequencies
in the considered case here (without considering air cavity damping). For practical
sound insulation applications, these frequencies need to be identified and carefully
avoided.
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Fig. 1.11 STL plotted as a function of frequency for double-panel partitions excited by incident
sound having different elevation angles and fixed azimuth angle (� D 0ı) (With permission from
ASME)

1.1.8 Effects of Incident Elevation Angle and Azimuth Angle

Figure 1.11 plots the predicted STL of the double-panel structure as a function of
frequency for selected values of incident elevation angle, with the azimuth angle
fixed at � D 0ı. By increasing the elevation angle, it is seen that the “mass-air-mass”
frequency increases, and it has been established that the results of Fig. 1.11 are
consistent with the following expression for the “mass-air-mass” frequency of a
double-panel structure with air cavity [8, 9, 12]:

fa D 1

2� cos '

s
Ka .m1 C m2/

m1m2

(1.40)

Apart from changing the resonance frequencies, a smaller elevation incidence angle
of sound also leads to enhanced sound insulation property of the structure over
the considered frequency range (Fig. 1.11). It should be pointed out that although
the above results are obtained by assuming � D 0ı, the conclusions still hold for
arbitrary values of the azimuth angle (from 0 to 2 �).

The influence of incidence elevation angle on the averaged quadratic velocity
of both the incidence and radiating panels is shown in Fig. 1.12. For the incidence
panel, the averaged quadratic velocity varies significantly as the elevation angle is
changed (Fig. 1.12a). The maxima on the averaged quadratic velocity versus fre-
quency curves of Fig. 1.12a are mainly associated with the coincidence frequencies,
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Fig. 1.12 Averaged quadratic velocity plotted as a function of frequency for double-panel
partitions excited by incident sound having different elevation angles and fixed azimuth angle
(� D 0ı): (a) incidence panel; (b) radiating panel (With permission from ASME)

at which the wavelength of the flexural waves in the incidence panel matches with
the trace wavelength of the incidence wave. Because the latter varies with the
elevation angle, changes of the elevation angle affect the coincidence frequencies of
the incidence panel, shifting the positions where these maxima appear (Fig. 1.12a).

It is interesting to see from Fig. 1.12 that sound with a smaller incidence elevation
angle would excite the vibration of both the incidence panel and the radiating panel
more intensely at frequencies below approximately 4,000 Hz, while the opposite is
true for frequencies larger than 4,000 Hz. This may be attributed to the complex
vibroacoustic coupling effects of the double-panel structure.

The sound energies in the radiating field for different elevation angles (for
brevity, not shown here) are approximately the same as the vibration energies of the
radiating panel shown in Fig. 1.12. The energy associated with a bigger elevation
angle is slightly higher than that with a smaller elevation angle, indicating that the
energy of sound is transmitted more easily through the double-panel configuration
in the former case.

By using 3D (three-dimensional) overall view and contour map, Figs. 1.13 and
1.14 show the structural STL as a function of the elevation angle (or azimuth angle)
and frequency of the incident sound. It is seen from Fig. 1.13 (with � D 0ı) that
the incident elevation angle has a significant effect on the STL of the considered
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Fig. 1.13 Dependence of STL on incident sound elevation angel and frequency for fixed azimuth
angle � D 0ı: (a) global view; (b) contour map (With permission from ASME)

Fig. 1.14 Dependence of STL on incident sound elevation angel and frequency for fixed elevation
angle ' D 45ı: (a) global view; (b) contour map (With permission from ASME)

structure. Note also that a sharp valley exists on the STL curve, which is associated
with the “mass-air-mass” resonance frequency and also the reason for the existence
of the first evident minimum in Fig. 1.11 (Fig. 1.11 for three selected elevation
angles is part of Fig. 1.13a). As previously discussed, at this “mass-air-mass”
resonance frequency, the two panels resonate and radiate sound intensively due
to the vibroacoustic coupling effects of the air cavity. When the frequency of the
incidence sound surpasses the mass-air-mass resonance frequency, the value of STL
increases significantly, as demonstrated by the maxima (or plateau) appearing in the
3D view of Fig. 1.13a.

The results of Fig. 1.14 (with the incidence elevation angle fixed at ' D 45ı) sug-
gest that the incident azimuth angle has a negligible influence on the vibroacoustic
property of the double-panel structure, in sharp contrast with that of the elevation
angle. This is attributed to the small aspect ratio of the rectangular panel considered.
For a rectangular panel with small aspect ratio, the numerical calculation of STL for
diffuse incident sound, i.e., Eq. (1.36), can be simplified as
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(1.41)

For the present panel of dimensions 1.2 m � 0.8 m, the results obtained with Eq.
(1.41) are sufficiently accurate relative to Eq. (1.36).

Similar to Fig. 1.13, the sharp valley appearing in the 3D view and its contour
map of Fig. 1.14 is related to the “mass-air-mass” resonance frequency. This valley
is nonetheless parallel to the axis of azimuth angle, implying that the azimuth angle
has negligible influence on the “mass-air-mass” frequency of the structure.

1.1.9 Conclusions

An analytical approach has been developed to investigate the sound transmission
across simply supported rectangular double-panel partitions by introducing the sinu-
soidal distributed sound velocity potentials. The new approach is capable of describ-
ing more accurately the air cavity coupling than the commonly used cavity modal
function method, because the rigid baffle bounds the cavity as well as the panel, so
that the cavity boundaries restrict the field to sinusoidal distributions parallel to the
panel plane. Consequently, the application of the sinusoidal distributed sound veloc-
ity potential for an air cavity is much closer to the physical nature than the cavity
mode method. The precise handling of the air cavity coupling effect is ensured, as
shown by the maxima and minima in the set of STL versus frequency plots.

With the method of modal function used to simulate the simply supported
boundary conditions, analytical solutions are obtained in the form of double Fourier
series. The truncated numbers of the double Fourier series are numerically estimated
by ensuring the convergence of the solution. For model validation, the analytical
predictions of structural STL are compared with existing experiment data, and close
agreement is obtained. Subsequent numerical calculations focus on quantifying the
effects of several key system parameters on the sound insulation capability of the
structure, including the air cavity thickness, panel dimensions, and sound incident
angles.

It is found that the overall vibroacoustic behavior of the double-panel partition
can be significantly changed by altering the enclosed air cavity thickness without
changing other geometrical dimensions of the structure. The elevation angle of
the incident sound affects significantly the sound insulation capability of the
finite double-panel structure, whereas the influence of incident azimuth angle is
negligible. Due to the constraint of the simply supported boundary, the mode density
of a double-panel partition with smaller in-plane dimensions is larger than that with
bigger dimensions. This is consistent with the fact that the incidence panel of a
smaller double-panel partition acquires more sound energy than that having bigger
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dimensions, even if the same sound pressure excitation is imposed. The STL of an
infinitely large double-panel partition provides an upper bound estimate for finite
configurations. It should be emphasized that there exist certain frequencies at which
the sound excitation energy transmits through the double-panel partition with little
energy loss, as if the structure is nearly transparent at these particular frequencies
in the considered case here (without considering air cavity damping). For practical
sound insulation applications, these frequencies need to be identified and carefully
avoided.

As an extension of the vibroacoustic analysis of double-panel structures with
air cavity, the pertinent governing equations for two typical framed structures, i.e.,
double panel with orthogonal parallel connections and that with one-dimensional
parallel connections, of either infinite or finite extent, are presented. This serves to
reveal the superiority and good expansibility of the sound velocity potential method
over the commonly used cavity modal function method, in addition to providing
significant implications for further vibroacoustic investigation of framed double-
panel structures. The velocity potential method can be utilized not only for the
vibroacoustic analysis of double-panel partitions without connections but also those
with structural connections, while the cavity modal method cannot.

1.2 Clamped Finite Double-Panel Partitions

1.2.1 Introduction

With superior sound insulation properties over single-panel configurations, double-
panel partitions have found a wide range of important applications in modern build-
ings, transportation vehicles, aerospace and aeronautical structures, etc. [3, 5–7,
9, 26]. To gain a fundamental understanding of the sound insulation mechanisms
of double-panel partitions, the frequency characteristics of sound transmission
loss (STL) are usually needed. In particular, how these are affected by different
boundary conditions (i.e., clamped and simply supported) is of great theoretical and
practical interest. The present investigation aims to address the significant differ-
ences between the two different boundary conditions for double-panel partitions
containing air cavities, both theoretically and experimentally.

For decades the vibration responses of single- and double-panel constructions
interacting with the surrounding fluid have been an attractive research topic. The
approaches adopted to study the vibroacoustic behavior of both structures are
similar, although there are more difficulties associated with the latter. Traditionally,
the method of statistical energy analysis (SEA) advanced significantly by Maidanik
[44] has been widely used to analyze the vibration response of a complex structure
under force or sound excitation. However, the SEA method is less effective at
relatively low frequencies on account of its pre-assumption that enough structural
modes need to be excited. This is usually difficult to satisfy, causing statistical
uncertainties that prevail in low-frequency force and sound excitations [35]. An



1.2 Clamped Finite Double-Panel Partitions 25

FEM (finite element method) model was developed by Ruzzene [45] to evaluate
the acoustic characteristics of sandwich beams in terms of structural response and
sound transmission reduction index, which is much effective for low frequencies
but requires high computational cost for high frequencies [41]. For relatively
simple structures, analytical solutions suited for a wide frequency range have been
developed by various researchers [43, 46, 47].

As for the sound insulation properties of double-panel structures, the classical
work of London [16] addressed an infinite double-panel structure, and hence,
the influence of boundary conditions was not considered. Similarly, the study of
Kropp et al. [19] and Antonio et al. [17] focused on the airborne sound insulation
capability of infinite double wall constructions. The sound insulation property and
radiation efficiency of an infinite double-plate connected by periodical studs have
been investigated with the Fourier transform technique [48, 49] and with the space-
harmonic expansion method [18, 50], respectively. Brunskog [51] examined the
influence of finite cavities on the sound insulation properties of periodically framed
infinite double-plate structures. To take into account the finite size of a double-
panel structure, Villot et al. [23] developed an approximate technique based on the
spatial windowing of plane waves. More recently, the problem of sound transmission
through double-panel structures of finite extent was solved by considering simple
boundary conditions [24, 35] on the basis of modal superposition theory from
different viewpoints. In addition, to improve the sound isolation properties of
double-panel partitions, various active control strategies have been proposed, both
experimentally [26, 31] and theoretically [26, 52], which are significant from the
viewpoint of practical noise control.

Although a persistent effort has been devoted to the studying of sound transmis-
sion through finite or infinite single- and double-leaf panels, many physical details
remain an indistinct matter, especially for clamped double-panel configurations
under oblique sound excitation. Often, the experimental measurements do not
possess reproducibility, and different STL curves from different laboratories were
obtained even though the same panels were compared [38]. According to Kim
et al. [53], this may be attributed to the so-called tunneling effect, and the
different mounting conditions adopted in different laboratories should be another
key factor. On the other hand, to the authors’ best knowledge, the problem of
sound transmission through a double-panel partition with air cavity fully clamped
(different from being simply supported) on its edges has not been analytically
solved. The existing method [26, 46] for the influence of the clamped boundary
condition is to modify the analytical solution for simply supported boundary
conditions, which is only approximate for predicting the sound insulation properties
of fully clamped finite single- or double-panel constructions. This chapter squarely
addresses this deficiency. A step-by-step analysis for the vibroacoustic performance
of a finite double-panel partition fully clamped on its edges under sound excitation
is presented (note that aspects of the current theoretical formulations have been
presented as a simplified outline in Ref. [6]). To gain full insight into the influence
of the boundary condition on sound transmission across the structure, STL values
obtained with the clamped boundary condition are compared with those obtained
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with the simply supported boundary condition. Experimental measurements for
both types of boundary condition are subsequently carried out to validate the
model predictions. The remarkable difference between the two different boundary
conditions is highlighted. As sound transmission through a double-panel partition
simply supported on its edges has been extensively studied, the present focus is
placed upon exploring how this is different from that of a fully clamped double-
panel partition.

1.2.2 Modeling of the Vibroacoustic Coupled System

Consider a rectangular double-panel partition with air cavity which is baffled and
fully clamped (or simply supported) along its edges, as shown in Fig. 1.15a. The two
panels are taken as homogenous, isotropic, and sufficiently thin. The geometrical
dimensions of the structure are as follows: width of panel a, length of panel b,
thickness of air cavity H, and thicknesses of incidence panel h1 and radiating panel
h2 (Fig. 1.15b). The whole configuration is fully clamped (or simply supported) on
an infinite acoustic rigid baffle which separates the space into two fields: sound
incidence field (z < 0) and sound radiating field (z > H). Cartesian coordinates
(x, y, z) are selected, as shown in Fig. 1.15.

An oblique plane sound wave varying harmonically in time is incident on
the bottom panel with elevation angle ' and azimuth angle � . The vibration
of the bottom panel induced by the incident sound is transmitted through the
hermetical air cavity to the upper panel, which radiates sound pressure waves into
the upper acoustic domain (Fig. 1.15b). The model proposed below describes the
vibroacoustic behavior of the double-panel structure, either fully clamped or simply
supported, and its STL characteristics.

1.2.2.1 Theoretical Formulation and Solution

The acoustic velocity potential for a plane sound wave varying harmonically in time
can be expressed as

� D Ie�j .k�r�!t/ (1.42)

where I is the sound amplitude; ! is the angular frequency; r (D xbex C ybey C zbez)
is the position vector (Fig. 1.15) withbex ,bey , andbez representing separately the unit
vectors along x-, y-, and z-directions; and k (D kxbex C kybey C kzbez) is the wave
vector with components kx, ky, and kz. These wavenumbers are determined by the
elevation angle ' and azimuth angle � of the incidence sound wave as

kx D k0 sin ' cos �; ky D k0 sin ' sin �; kz D k0 cos ' (1.43)

where k0 D !/c0 is the acoustic wavenumber in air and c0 is the acoustic speed in
air.
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Fig. 1.15 Schematic illustration of sound transmission through a baffled double-panel partition
which is clamped (or simply supported) on its edges: (a) global view; (b) side view in the arrow
direction in (a) (With permission from Acoustical Society of America)

The flexural motions of a double-panel partition with air cavity induced by sound
excitation (Fig. 1.15b) are governed by

D1r4w1 C m1

@2w1

@t2
� j!�0 .ˆ1 � ˆ2/ D 0 (1.44)

D2r4w2 C m2

@2w2

@t2
� j!�0 .ˆ2 � ˆ3/ D 0 (1.45)

where r4 D (@2/@x2 C @2/@y2)2, �0 is the air density, j D p�1, w1 and w2 are the
transverse displacements, m1 and m2 are the mass per unit area, and D1 and D2 are
the flexural rigidity of the bottom panel (panel 1) and the upper panel (panel 2),
located at z D 0 and z D H, respectively. Damping of the panel material is taken into
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account by introducing the complex Young’s modulus, Ei(1 C j�i), where � is the
loss factor. The flexural rigidity of the panel Di (i D 1, 2) can thence be written as

Di D Ei h
3
i .1 C j�i /

12
�
1 � v2

i

� (1.46)

Let ˆi (i D 1, 2, 3) denote the velocity potentials for the acoustic fields in the
proximity of the two panels, corresponding to the sound incidence, the air cavity,
and the structure radiating field (fields 1, 2, and 3 in Fig. 1.15b), respectively. The
acoustic velocity potential in the incidence field (field 1, Fig. 1.15b) is defined as

ˆ1 .x; y; zI t/ D Ie�j .kxxCkyyCkzz�!t/ C ˇe�j .kxxCkyy�kzz�!t/ (1.47)

where the first term represents the velocity potential of the incident acoustic wave
and the second term represents that of the reflected acoustic wave and I and ˇ

are the amplitudes of the incident (i.e., positive-going) and reflected (i.e., negative-
going) waves, respectively. Similarly, the velocity potential in the air cavity (field 2,
Fig. 1.15b) can be written as

ˆ2 .x; y; zI t/ D "e�j .kxxCkyyCkzz�!t/ C �e�j .kxxCkyy�kzz�!t/ (1.48)

where " is the amplitude of the positive-going wave and � is the amplitude of the
negative-going wave. In the transmitting field (field 3, Fig. 1.15b) adjacent to the
radiating upper panel, there exist no reflected waves, and therefore, the velocity
potential is only for the transmitting (or radiating) waves, given as

ˆ3 .x; y; zI t/ D �e�j .kxxCkyyCkzz�!t/ (1.49)

where � is the amplitude of the radiating (i.e., positive-going) wave. These velocity
potentials are related to the acoustic particle velocities bybui D �rˆi and to the
sound pressure by

pi D �0

@ˆi

@t
D j!�0ˆi .i D 1; 2; 3/ (1.50)

With the double-panel partition fully clamped onto a rigid baffle, the transverse
deflection and the moment rotation of each panel are constrained to be zero along
the edges. In view of the rectangular geometry of the double-panel structure, the
boundary conditions can be expressed as

x D 0; a w1 D w2 D 0;
@w1

@x
D @w2

@x
D 0 (1.51)

y D 0; b w1 D w2 D 0;
@w1

@y
D @w2

@y
D 0 (1.52)



1.2 Clamped Finite Double-Panel Partitions 29

At the air-panel interface, the normal velocity is continuous, yielding the
corresponding velocity compatibility condition equations:

z D 0 � @ˆ1

@z
D j!w1; �@ˆ2

@z
D j!w1 (1.53)

z D H � @ˆ2

@z
D j!w2; �@ˆ3

@z
D j!w2 (1.54)

Since the two panels are excited by a harmonic sound wave, their transverse
displacements can be written as

w1 .x; y; t/ D
X

m;n

�mn .x; y/ q1;mn.t/ (1.55)

w2 .x; y; t/ D
X

m;n

�mn .x; y/ q2;mn.t/ (1.56)

where the modal functions (or, more strictly speaking, the basic functions) �mn and
the modal displacements qi,mn take the following forms:

�mn .x; y/ D
�

1 � cos
2m�x

a

	�
1 � cos

2n�y

b

	
(1.57)

q1;mn.t/ D ˛1;mnej!t ; q2;mn.t/ D ˛2;mnej!t (1.58)

where ˛1,mn and ˛2,mn are the modal coefficients of the bottom panel and the upper
panel, respectively. Note that the clamped modal function of Eq. (1.57) is different
from the simply supported modal function �s

mn D sin(m�x/a)sin(n�y/b) used by
previous researchers [2, 3, 24, 35, 54–56], because the former satisfies the boundary
condition of zero moment rotation while the latter does not. Moreover, the clamped
double-panel can transmit rotation on its edges, whereas the simply supported one
cannot, which has been confirmed experimentally by Utley et al. [57].

By applying the modal functions for the clamped double-panel structure, the
velocity potentials for the acoustic fields 1, 2, and 3 (Fig. 1.15b) can be expressed as

ˆ1 .x; y; z; t/ D
X

m;n

Imn�mne�j .kzz�!t/ C
X

m;n

ˇmn�mne�j .�kzz�!t/ (1.59)

ˆ2 .x; y; z; t/ D
X

m;n

"mn�mne�j .kzz�!t/ C
X

m;n

�mn�mne�j .�kzz�!t/ (1.60)

ˆ3 .x; y; z; t/ D
X

m;n

�mn�mne�j .kzz�!t/ (1.61)
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where the coefficients Imn, ˇmn, "mn, �mn, and �mn are determined by

x	mn D 4

ab

Z b

0

Z a

0
x	e�j .kxxCkyy/ cos

2m�x

a
cos

2n�y

b
dxdy (1.62)

Here, the symbol x	 can be referred to any of the coefficients I, ˇ, ", �, and �.
Substituting Eqs. (1.59), (1.60), and (1.61) into Eqs. (1.53) and (1.54) for the

continuity of velocity at the air-panel interface and omitting the time factor ej!t, one
obtains

�Ie�j .kxxCkyy/ C
X

m;n

�
ˇmn C !

kz
˛1;mn

�
� �mn .x; y/ D 0 (1.63)

X

m;n

Œkz .�"mn C �mn/ C !˛1;mn� � �mn .x; y/ D 0 (1.64)

X

m;n



kz
��"mne�jkzH C �mnejkzH

�C !˛2;mn

� � �mn .x; y/ D 0 (1.65)

X

m;n


�kz�mne�jkzH C !˛2;mn

� � �mn .x; y/ D 0 (1.66)

According to the weighted residual (Galerkin) method, by setting the integral of a
weighted residual of the modal function to zero, an arbitrarily accurate double series
solution can be obtained. For the current double-leaf partition system, the integral
equations are

Z b

0

Z a

0

�
D1r4w1 C m1

@2w1

@t2
� j!�0 .ˆ1 � ˆ2/

�
�mn .x; y/ dxdy D 0 (1.67)

Z b

0

Z a

0

�
D2r4w2 C m2

@2w2

@t2
� j!�0 .ˆ2 � ˆ3/

�
�mn .x; y/ dxdy D 0 (1.68)

Substituting Eqs. (1.55), (1.56), (1.59), (1.60), and (1.61) into (1.67) and (1.68)
and then performing laborious but straightforward algebraic manipulations, one gets

4D1�
4ab

(
h
3
�

m
a

�4C3
�

n
b

�4C2
�

m
a

�2� n
b

�2i
˛1;mnC

X

k

2
�n

b

4

˛1;knC
X

l

2
�m

a

4

˛1;ml

)

C 9ab
4

Q1;mnC 3ab
2

X

k

Q1;knC 3ab
2

X

l

Q1;ml Cab
X

k;l

Q1;kl D 2j!�0Ifmn

�
kx; ky

�

at z D 0 .k ¤ m; l ¤ n/ (1.69)
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4D2�
4ab
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�4C3
�
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b

�4C2
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m
a
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b

�2i
˛2;mnC

X
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2
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b

4

˛2;knC
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4

˛2;ml
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C 9ab
4
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Q2;kn C 3ab
2

X
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Q2;ml C ab
X

k;l

Q2;kl D 0

at z D H .k ¤ m; l ¤ n/ (1.70)

where

Q1;mn D �m1!
2˛1;mn C j!�0

�
!

kz
˛1;mnejkzz C "mne�jkzz C �mnejkzz

	
(1.71)

Q2;mn D �m2!
2˛2;mn � j!�0



."mn � �mn/ e�jkzz C �mnejkzz

�
(1.72)

In the above expressions, the abbreviated symbols
P

k,l,
P

k, and
P

l denote
separately

P1
k D 1

P1
l D 1,

P1
k D 1, and

P1
l D 1 (the same can be said of

P
m,n), and

fmn(kx, ky) is a constant generated in the process of integration, expressed as

fmn

�
kx; ky

�

D

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

ab for kx D 0 and ky D 0

4jn2�2a
�
1 � e�jkyb

�

ky

�
ky

2b2 � 4n2�2

 for kx D 0 and ky ¤ 0

4jm2�2b
�
1 � e�jkxa

�

kx

�
kx

2a2 � 4m2�2

 for kx ¤ 0 and ky D 0

� 16m2n2�4
�
1 � e�jkxa

� �
1 � e�jkyb

�

kxky

�
kx

2a2 � 4m2�2

 �
ky

2b2 � 4n2�2

 for kx ¤ 0 and ky ¤ 0

(1.73)

Together with Eqs. (1.63), (1.64), (1.65), and (1.66), Eqs. (1.69) and (1.70) form
a set of infinite algebraic simultaneous equations for the unknown coefficients ˛1,mn

and ˛2,mn. For numerical calculation, it is necessary to take truncation at 1 � m � M
and 1 � n � N, leading to 2MN algebraic simultaneous equations. In matrix form,
these can be grouped into

�
T11;kl T12;kl

T21;kl T22;kl

�

2MN �2MN

�
˛1;kl

˛2;kl

�

2MN �1

D
�

Fkl

0

�

2MN �1

(1.74)

where k and l take values from 1 to M and from 1 to N, respectively. Detailed
derivations of Eq. (1.74) can be found in Appendix A. Once the unknowns
˛1,mn and ˛2,mn are determined by solving (1.74), the deflections (w1, w2) of the
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bottom and upper panels and the relevant parameters (ˇmn, "mn, �mn, �mn) are also
determined, enabling thence the analysis of sound transmission across the double-
leaf configuration.

1.2.2.2 Definition of Sound Transmission Loss

The sound power of the relevant acoustic field can be defined as [9, 24, 36]

Y

i
D 1

2
Re
“

A

pi � v�
i dA; .i D 1; 2; 3/ (1.75)

where the local volume velocity is associated with the sound pressure through the
impendence of air as vi D pi/(�0c0). The superscript asterisk denotes the complex
conjugate.

The power transmission coefficient that is a function of the incident angle (' and
�) can be given by the ratio of the transmitted sound power to the incident sound
power:


 .'; �/ D …3

…1

(1.76)

Then the sound transmission loss (STL) is defined as the inverse of the power
transmission coefficient in decibels scale, given by

STL D 10 log10

�
1




	
(1.77)

The STL index is commonly used as a measure of the effectiveness of the double-
panel structure in isolating the incident sound.

1.2.3 Model Validation

The present analytical approach is validated by comparing the predicted sound
transmission loss with the theoretical and experimental results of Carneal et al.
[26], as shown in Fig. 1.16. The double-panel partition considered consists of two
identical clamp-supported aluminum plates (0.38 m by 0.30 m, 1.6 mm thickness),
separated by a 0.048 m air cavity. Other physical parameters used are listed
in Table 1.1. The STL measurements were obtained by Carneal et al. under a
normal incident sound excitation, who also provided theoretical results derived by
modifying a theory developed originally for simply supported boundary condition.
The results of Fig. 1.16 demonstrate clearly that the present analytical predictions
are in closer agreement with the experimental measurements than the theoretical
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Fig. 1.16 STL of clamped aluminum double-panel partition under normal sound excitation:
comparison of the present analytical predictions with the theoretical results and experimental
measurements of Carneal et al. [26] (With permission from Acoustical Society of America)

Table 1.1 Structural
dimensions and material
properties

Panels
Length a D 1 m
Width b D 1 m
Thickness h1 D h2 D 2 (or 5, 10) mm
Young’s modulus E D 70 GPa
Density � D 2, 700 kg/m3

Poisson ratio � D 0.33
Loss factor � D 0.01

Acoustic field
Air cavity depth H D 0.08 (or 0.04, 0.06) m
Density �0 D 1.21 kg/m3

Sound speed c0 D 343 m/s
Initial amplitude I0 D 1 m2/s

predictions of Carneal et al. Notice firstly that the experimental results are not
reliable for frequencies below 50 Hz where the flanking paths of the test facility play
a prominent role in measurements. Secondly, the extra dips in the experiment curve
(compared with the theoretical curves) associated with (1, 2) (�260–280 Hz) and
(4, 1) (�520–560 Hz) modes are attributed to the imperfect normal acoustic plane
wave, unevenly damped plate, and/or the structural flanking path, as emphasized by
Carneal et al. [26].

It should be pointed out that the present method is applicable not only to double-
panel systems of finite extent but also to those of infinite extent. Furthermore, the
method can be applied in both low- and high-frequency ranges, which is hardly
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Fig. 1.17 Sound transmission loss plotted as a function of frequency for clamped double-
panel partition with airproof cavity under normal sound excitation: dash line – infinite system
(H D 0.08 m and h1 D h2 D 0.005 m); solid line – finite system with 1 m (length) � 1 m (width),
H D 0.08 m and h1 D h2 D 0.005 m. ı: mass-air-mass resonance for infinite system; �: panel-
cavity-panel resonance for finite system (With permission from Acoustical Society of America)

achievable by other approaches, e.g., FEM (finite element method), BEM (boundary
element method), and SEA (statistical energy analysis) method.

1.2.4 Finite Versus Infinite Double-Panel Partition

Numerical calculations are performed in this section to quantify the effects of
panel dimensions (length, width, and thickness) on STL of clamped double-panel
structures.

Figure 1.17 compares the predicted structural STL of a double-panel system of
finite extent (dash line) with that of an infinite double-panel system (solid line), both
subjected to normal sound excitation, with H D 0.08 m and h1 D h2 D 0.005 m for
both systems and 1 m (length) � 1 m (width) for the finite system. The two panels
are identical and made of aluminum (Table 1.1).

The results of Fig. 1.17 exhibit analogous trend, with dips caused by the modal
behavior of the double-panel system. For the finite double-panel system, the original
modal behavior of the two panels (the radiating panel in particular) interacts strongly
with the system behavior (including panel-cavity-panel resonance and standing-
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wave resonance) and hence plays a major role in the vibroacoustic performances
of the whole system. For the infinite double-panel system, however, the original
modal behavior of the panels has no influence on the overall system behavior. As
a result, only dips related to system resonances show up in Fig. 1.17, with the first
dip representing the mass-air-mass resonance and the remaining dips caused by the
standing-wave resonance.

The intense peaks and dips in the STL versus frequency curve of the finite
double-panel system occur because the finite system possesses a higher modal
density than the infinite system over a wide range of frequency (approximately
above 100 Hz, Fig. 1.17). Consequently, the infinite system provides an asymptotic
maximum of STL for the finite system in this frequency range. Conversely, in the
low-frequency range (less than about 100 Hz), there is no mode existing for the
finite system. In other words, the infinite system is incapable of providing the right
STL values at low frequencies for practical finite systems.

The dip denoted by a full black circle in Fig. 1.17 is associated with the so-
called panel-cavity-panel resonance [36] for finite double-panel systems, while that
represented by an open circle corresponds to the mass-air-mass resonance of infinite
double-panel systems. The location of the former deviates slightly from the latter
(the deviation increases with panel thickness; see Fig. 1.18 later), due to modal
interactions of the finite system.

1.2.5 Effects of Panel Thickness on STL

To quantify the effects of panel thickness, the STL versus frequency curve is
presented in Fig. 1.18a for an infinite system and in Fig. 1.18b for a finite system;
the geometrical and material parameters are identical to those used to calculate
Fig. 1.17, and normal sound excitation is imposed. Three values of panel thickness
are selected: 2, 5, and 10 mm.

As expected and consistent with the well-known mass law, for both infinite and
finite double-panel systems, it is seen from Fig. 1.18 that the STL values drastically
increase as the panel thickness is increased. The influence of panel thickness
on STL is particularly strong for finite systems at low frequencies (Fig. 1.18b),
the significance of which should not be overlooked when designing clamped
soundproof double-panel partitions of finite extent in practice.

For the infinite system, as the panel thickness is increased, the location of mass-
air-mass resonance shifts to a lower frequency whereas the locations of standing-
wave resonances remain unchanged (Fig. 1.18a) because they are only dependent
on air cavity thickness and wavelength but independent of panel thickness.

Note that the STL predictions for the finite system (Fig. 1.18b) are only exhibited
in the frequency range of 1–1,000 Hz as intense peaks and dips are present in this
regime, much more complicated than those of the infinite system (Fig. 1.18a). This
is attributed to the strong interaction of individual panel behavior with the overall
system performance for the finite system, which is absent for the infinite system.
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Fig. 1.18 Effects of panel thickness on STL of clamped double-panel partition under normal
sound excitation: (a) infinite system (H D 0.08 m), ı: mass-air-mass resonance; : standing-
wave resonance; (b) finite system (1 m � 1 m, H D 0.08 m), �: panel-cavity-panel resonance.
Three different panel thicknesses (i.e., 2, 5, and 10 mm) were considered (With permission from
Acoustical Society of America)
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For the same reason, the positions of panel-cavity-panel resonances in Fig. 1.18b
move to higher frequencies as the panel thickness is increased, in contrast to what
is observed for the infinite system (Fig. 1.18a).

1.2.6 Effects of Air Cavity Thickness on STL

In order to explore the effects of air cavity thickness on STL and identify which
mode (including panel mode and system coupling mode) is primarily responsible
for each dip in the STL versus frequency curve of a clamped double-panel partition,
the STLs are calculated for both infinite and finite systems with selected values of air
cavity thickness (H D 0.04, 0.06, and 0.08 m), as shown in Fig. 1.19. Again, normal
sound excitation is imposed, with 1 m (length) � 1 m (width) and h1 D h2 D 0.01 m
for the finite system and h1 D h2 D 0.002 m for the infinite system. Both panels are
made of aluminum (Table 1.1).

For the infinite system, as previously mentioned, the behavior of individual
panels can be neglected, and only the system coupling effects (mass-air-mass
resonance and standing-wave resonance) are of primary concern; see Fig. 1.19a.
The positions of both mass-air-mass (or panel-cavity-panel) resonance and standing-
wave resonances shift to lower frequencies with increasing air cavity thickness
(Fig. 1.19a). Conversely, for the finite system, as can be seen from Fig. 1.19b, the
position of the first dip is independent of air cavity thickness since it is completely
addressed by the panel mode. However, the position of the second dip alters
drastically as the air gap thickness is increased (in fact, moves to a lower frequency;
Fig. 1.19b), owing to the fact that the system coupling effect (i.e., panel-cavity-panel
resonance) plays a dominant role in this case. For the remaining dips exhibiting in
Fig. 1.19b, their locations remain largely unchanged, implying that the panel mode
and the system coupling effect are active in synchronization. Therefore, by tailoring
the thickness of air cavity, it is possible to design finite double-panel partitions
with better sound insulation properties over a wide frequency range (Fig. 1.19b).
In comparison, the influence of air cavity on infinite systems is relatively small
(Fig. 1.19a).

1.2.7 Effects of Incident Angles on STL

The influence of sound incident angles (elevation angle and azimuth angle) on
the sound insulation property of a clamped double-panel partition of finite extent
(1 m � 1 m, H D 0.08 m, and h1 D h2 D 0.005 m; both panels made of aluminum) is
shown in Fig. 1.20.

The results of Fig. 1.20a demonstrate considerable influence of the incident
elevation angle ' (with azimuth angle fixed at � D 0ı) on the structural STL of the
clamped finite system: the double-panel partition has marked selectivity for incident
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Fig. 1.19 Effects of air cavity thickness (H D 0.04, 0.06, and 0.08 m) on STL of clamped double-
panel partition under normal sound excitation: (a) infinite system (h1 D h2 D 0.002 m), ı: mass-air-
mass resonance; : standing-wave resonance; (b) finite system (1 m � 1 m, h1 D h2 D 0.010 m),
�: panel-cavity-panel resonance (With permission from Acoustical Society of America)
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Fig. 1.20 STL plotted as a function of frequency for clamped double-panel partition of finite
extent (1 m � 1 m, H D 0.08 m, h1 D h2 D 0.005 m) under sound excitation with: (a) varying
elevation angle ' (azimuth angle fixed at � D 0ı); (b) varying azimuth angle � (elevation angle
fixed at ' D 45ı). �: panel-cavity-panel resonance (With permission from Acoustical Society of
America)
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sound waves with different incident elevation angles. Generally speaking, incident
sound waves with large elevation angles are easier to transmit through the double-
panel structure than those with smaller elevation angles. For the case studied, the
STL values decrease with increasing elevation angle for frequencies below about
43 Hz, while for frequencies above this value, the overall trend is similar apart from
the complicated system modal behavior. In addition, it is worthwhile to note that the
panel-cavity-panel resonance frequency increases with the elevation angle, which
can be approximately described by a simple formula [25]:

f˛ D 1

2� cos '

s
�0c2

0

H

.m1 C m2/

m1m2

(1.78)

The sound insulation properties of the clamped finite double-panel partition for
selected incident azimuth angles (� D 0ı, 15ı, 30ı, 45ı) are compared in Fig. 1.20b,
with the elevation angle fixed at ' D 45ı. For frequencies below about 210 Hz,
the STL curves for the four cases studied fall into one master curve. Beyond this
frequency, small variations with varying azimuth angle are observed, caused by
more complex structural modal behavior of the system at relatively high frequencies.
Therefore, it may be concluded that the incident azimuth angle has negligible
influence on the structural STL behavior of clamped finite systems. In other words,
the selectivity of clamped double-panel partitions of finite extent for sound waves
to different incident azimuth angles is limited.

1.2.8 Conclusions

An analytical model has been developed for studying the vibroacoustic behavior of
a finite double-panel partition clamp mounted in an infinite acoustic rigid baffle. The
method of modal function is used to simulate the clamped boundary conditions, and
a double analytical series solution of the dynamic structural response is obtained
using the weighted residual (Galerkin) method. The validity of model predictions
is checked against existing experimental data, with good agreement achieved. The
influence of several key system parameters on the sound insulation capability of
clamped double-panel partitions is then systematically explored, including panel
dimensions, thickness of air cavity, and elevation angle and azimuth angle of
incidence sound.

For relatively high frequencies (above 100 Hz for the cases considered here),
an infinite double-panel system sets an upper bound on the STL of clamped finite
systems. For a finite double-panel system, the original modal behavior of individual
panels (radiating panel in particular) interacts strongly with the system behavior
(including panel-cavity-panel resonance and standing-wave resonance) and hence
plays a major role in dictating the vibroacoustic performance of the whole system.
For an infinite double-panel system, however, the original modal behavior of the
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panels has no influence on the overall system behavior. And in the low-frequency
range, the infinite system is incapable of providing the right STL values for practical
finite systems.

Analogous to the mass law for single-leaf partitions, the increase of panel
thickness (equivalent to increasing surface mass) considerably enhances the sound
insulation property of clamped double-panel partitions. The influence of panel
thickness on STL is particularly strong for finite systems at low frequencies, which
is useful when designing clamped soundproof double-panel partitions.

As the thickness of air cavity is increased, the frequencies corresponding to
the mass-air-mass (or panel-cavity-panel) resonance and standing-wave resonance
change significantly. Moreover, by increasing the air cavity thickness, it is possible
for the finite system to achieve better sound insulation capability in a wide frequency
range. In comparison, air cavity thickness only has minimal influence on the infinite
system.

Incident sound waves with bigger elevation angles are easier to transmit through
a clamped double-panel structure than those with smaller elevation angles. The
incident azimuth angle on the other hand has negligible effect on the structural STL
of the system.

The proposed model is suitable for double-panel systems of finite or infinite
extent and is applicable for both low- and high-frequency ranges. With these merits,
it compares favorably with a number of other approaches, e.g., FEM (finite element
method), BEM (boundary element method), and SEA (statistical energy analysis)
method.

1.2.9 Sound Transmission Measurements

1.2.9.1 Experimental Setup

To validate the proposed theoretical model, STL measurements for fully clamped
and simply supported double-panel partitions are separately carried out. The exper-
imental setup is schematically illustrated in Fig. 1.21, while Fig. 1.22 presents more
details for the clamped case. The transmission loss measurements are performed
by utilizing a pressure method [58, 59]. Two condenser microphones (Knowles:
FG-23742-150, diameter d D 2.59 mm) are located on the incident side and the
radiated side, respectively, with the same distance 20 cm from the corresponding
panel at the centerline of the structure. The microphone located on the radiated
side can give a representative sound pressure level of the whole radiated field only
when the microphone is placed normal to the planar structure [60]. The tested Al
double panels are parallel and clamp (or simply) mounted on a large sandwich
panel composed of two steel panels with thickness 2 mm each and heavy asbestos
blanket in between as the core. As the steel sandwich panel has much superior sound
insulation capability than the tested double-panel partition and is significantly larger
than the Al double-panel in size, it may be regarded as an infinite acoustic rigid
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Fig. 1.21 Schematic of experimental setup for STL measurements of fully simply supported or
fully clamped double-panel partition (With permission from Acoustical Society of America)

Fig. 1.22 Experimental setup for STL measurements of fully clamped double-panel partition: (a)
incident side; (b) transmitted side (With permission from Acoustical Society of America)

baffle. The source room and the receiving room are both semi-anechoic, enabling
as ideal a normal incident sound as possible in the source room and the measuring
of the sound pressure completely radiated from the tested structure in the receiving
room.
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Fig. 1.23 Two typical mounted cases: simply supported case and clamped case, (a) front view of
the simply supported fixture; (b) side view of (a); (c) front view of the clamped fixture; (d) side
view of (c) (With permission from Acoustical Society of America)

The practical implementation of the two different boundary conditions is demon-
strated in Fig. 1.23. Both the simply supported and the clamped fixtures for
mounting the test panels are plexiglass made and are firmly fastened onto the
rigid sandwich panel with bolts around the perimeters; rubber gaskets are used as
intermediates to minimize sound leaking during the measurements (see Fig. 1.22).
Figure 1.23a and b give the front view and the side view of the simply supported
fixture, while Fig. 1.23c and d present the front view and the side view of the
clamped fixture, respectively.

To implement the simply supported boundary condition, the Al panel is mounted
around its perimeter on both sides by a set of steel spheres backed by elastic springs,
and the two plexiglass frames holding the panel in between are directly bolted,
as shown in Fig. 1.23a, b. Since the steel spheres can freely rotate without any
restraint, the edges of the panel can also freely rotate but are restrained in the radial
direction of the spheres, which represents the simply supported boundary condition.
For the clamped boundary condition, each Al panel is directly held in between the
two plexiglass frames, with each frame firmly fastened by bolts. All the cracks (if
any) around the perimeter are sealed using adhesive glass cement (which for narrow
cracks provides a seal equivalent to caulking), as shown in Fig. 1.22.

Sound transmission loss of the double-panel partition system is measured for two
different cases, i.e., fully clamped and simply supported. The two identical Al panels
with length a D 0.3 m, width b D 0.3 m, and thickness h D 1 mm are separated
by an air cavity of depth H D 8 cm, as shown in Fig. 1.21. With a loudspeaker
(diameter 20 cm) generating a white noise normally incident on the incident
panel, the sound pressures on both sides of the partition system are measured by
condenser microphones and analyzed by a dual-channel dynamical signal analyzer
(HP: 35670A).
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Fig. 1.24 STL plotted as a function of frequency for fully clamped and fully simply supported Al
double-panel partitions in the case of normal sound incidence. The (3, 3) mode resonance dips for
the simply supported double panel and the clamped double panel are particularly denoted by arrows

at f (3,3)
s D 489 Hz and f (3,3)

c D 619 Hz, respectively (With permission from Acoustical Society of
America)

1.2.9.2 Experimental Results and Model Validation

Figure 1.24 presents the measured STL value as a function of incident frequency (0–
800 Hz) for both fully clamped and fully simply supported boundary conditions; for
comparison, theoretical predictions obtained with the present model for each type
of boundary condition are also included.

It is seen from Fig. 1.24 that, as far as the STL tendency with varying frequency
is concerned, the agreement between the theoretical predictions and experimental
measurements is good. The discernible discrepancies between the theory and
experiment can be attributed to a number of factors, such as the imperfect normal
plane sound wave, the uneven panel thickness, and the inevitable structural flanking
transmission paths [26]. Note also that the experimental results at frequencies below
50 Hz are not reliable because the flanking transmission paths of the test facility play
a prominent role in this frequency range [5, 6, 26].

The results of Fig. 1.24 clearly demonstrate the significant influence of boundary
conditions on the transmission loss of a double-panel partition. The intense peaks
and dips in the STL versus frequency curve reflect the inherent modal behaviors
of the double-panel system. The STL dips in the simply supported case are shifted
to lower frequencies in comparison with those of the clamped case, implying the
fact that the natural frequencies of the simply supported system are lower than their
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counterparts of the clamped system. It should be pointed out that the STL dips (apart
from the second dips in the two theoretical curves) are dominated by the modal
behavior of the radiating panel. It has been established that the second dips are
associated with the “plate-cavity-plate” resonance [9, 36], which is insensitive to
the imposed boundary conditions.

The research by Carneal and Fuller [26] on transmission loss across double-panel
partitions should be mentioned here. The proposed theoretical model by Carneal
and Fuller was established on simply supported boundary condition, whereas their
experimental measurements were performed on two clamped plates. In order to
experimentally verify the model, the stiffness of the simply supported plate was
increased artificially by a factor of

p
2 for each boundary to approximate the

clamped boundary condition. This assumption was also used to predict the natural
frequencies of the clamed double-panel system.

Although the simply supported mode shapes may be a reasonable approximation
of the clamped mode shapes [61], the natural frequencies associated with the simply
supported boundary condition are lower, as the clamped condition provides a more
rigorous constraint on panel vibration. To account for this increased constraint,
simply increasing the panel stiffness by a factor of

p
2 as suggested by Carneal

and Fuller may not be widely feasible, because the increased panel stiffness is
determined by many parameters, such as panel dimensions, material properties, and
incident sound frequency. In order to give a straightforward understanding of the
distinctions between the different boundary conditions (i.e., clamped, simply sup-
ported, and modified simply supported by increasing panel stiffness), a comparison
of the STL versus frequency curves obtained theoretically using the three different
boundary conditions is presented in Fig. 1.25. The STL values predicted by the
modified simply supported model are closer to the clamped model predictions when
f > 250 Hz, while they agree better with the simply supported model predictions
when f < 250 Hz. This suggests that by increasing the panel stiffness based on
simply supported boundary conditions to emulate the clamped boundary condition
may be feasible only when the frequency is sufficiently high.

Therefore, in subsequent studies of sound transmission through double-panel
partitions, the modal functions of Eq. (1.57) that directly satisfy the clamped
boundary condition (i.e., w D 0 and @w/@n D 0, which is different from the simply
supported condition w D 0 and @2w/@n2 D 0, where n denotes the outward vector
on the edges) are applied. In a closely related study on sound transmission
across double-panel partitions of finite extent [9], we have demonstrated that
the correct implementation of the clamped boundary condition has noticeable
superiority than the approximate approach adopted by Carneal and Fuller in view
of the accurate prediction of the STL versus frequency curves and the natural
frequencies.

To explore the boundary effects further, the typical (3, 3) mode behavior of a
fully clamped double-panel partition is compared in Fig. 1.26 with that of a simply
supported one. The (3, 3) mode natural frequency of the fully simply supported
double-panel system occurs at f (3,3)

s D 489 Hz, while it shifts to f (3,3)
c D 619 Hz
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Fig. 1.25 Comparison of STL values obtained theoretically for three theoretical boundary condi-
tions (i.e., clamped, simply supported, and modified simply supported) in the case of normal sound
incidence (With permission from Acoustical Society of America)

when fully clamped. The corresponding (3, 3) mode shapes of the incident and
radiating panels are presented in Fig. 1.26a1 and a2 for the fully simply supported
case, while those for the fully clamped case are shown in Fig. 1.26b1 and b2.
First, it is observed that the incident panel and the radiating panel vibrate in
a symmetrical way (out-of-phase) for both cases; see Fig. 1.26a1 and b1, or
Fig. 1.26b1 and b2. Symmetric motion (with respect to the symmetry plane running
through the center of the partition) means that the panels move in breathing motion,
both in or both out at a given position and a given time. Secondly, although the
panel mode shapes at different boundary conditions exhibit similar forms (see
Fig. 1.26a1 and b1, or Fig. 1.26a2 and b2), discernible discrepancies can be
observed at panel edges, especially for the counterparts of Fig. 1.26a2 and b2. These
differences at the panel edges reflect the boundary effects, i.e., the requirement that
@w/@n D 0 for the clamped condition and that @2w/@n2 D 0 for the simply supported
condition.

To better differentiate the clamped case from the simply supported one, the
predicted fundamental frequency coefficient �00 D p

�h=D!00a2 of a single-
leaf panel either fully clamped or simply supported around its edges in vacuum
is compared in Table 1.2. The significant alteration of the fundamental frequency
coefficient from one case to another confirms once more the remarkable differences
of the two types of boundary condition.
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Fig. 1.26 Panel deflection mode shapes under normal sound excitation at frequency

f (3,3)
s D 489 Hz for fully simply supported case and f (3,3)

c D 619 Hz for fully clamped case, where
the responses are controlled by the (3, 3) natural mode: (a1) simply supported incident panel; (a2)
simply supported radiating panel; (b1) clamped incident panel; (b2) clamped radiating panel (With
permission from Acoustical Society of America)

Table 1.2 Comparison of the fundamental frequency coefficient �00 D p
�h=D!00a2 for a fully

clamped single-leaf panel with that of fully simply supported

Boundary condition 	 D a/b Leissa [62] Laura et al. [63] Present study

S-S-S-Sa 1.0 19.73 19.74 19.74
C-C-C-Ca 1.0 35.99 35.99 35.99
a“S-S-S-S” and “C-C-C-C” represent fully simply supported and fully clamped on four edges of
the panel, respectively

1.2.10 Relationships Between Clamped and Simply Supported
Boundary Conditions

Numerical studies are performed in this section to explore further the relationships
between the two different boundary conditions and the significant influence of the
boundary condition on the sound insulation properties of double-panel structures
in terms of frequency characteristic curves (i.e., STL versus frequency curves) and
panel vibration behaviors.
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Fig. 1.27 STL of infinitely large double-panel partition theoretically obtained separately with
clamped boundary and simply supported boundary. �: mass-air-mass resonance; �: standing-wave
resonance (With permission from Acoustical Society of America)

1.2.10.1 Consistency of Clamped Model and Simply Supported Model

To check the consistency of the clamped model and the simply supported model, the
panel dimensions are extended to infinite so that the constraint effect of the boundary
conditions vanishes. The two models based on the clamped modal function and
the simply supported modal function, respectively, are also applicable for infinitely
large structures if sufficiently large values of panel length a and panel width b are
taken in numerical calculations. The corresponding STL results for the two models
with a D 108 m and b D 108 m assumed are shown in Fig. 1.27. As anticipated,
an excellent agreement is achieved between the two models, as the effect of
boundary condition becomes negligible (in other words, no boundaries exist) when
the structure is extended to infinite.

The mass-air-mass resonance dip in Fig. 1.27 is marked by the symbol �,
which is a unique phenomenon owned by the double-panel system and can be
approximately predicted by the formula [9]

f˛ D 1

2� cos '

s
�0c2

0

H

.m1 C m2/

m1m2

(1.79)

The standing-wave resonance dips labeled by the symbol � occur when the
depths of the air gap in between the two panels are integer numbers of half
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Fig. 1.28 Predicted STL of finite (0.5 m � 0.5 m) double-panel partition plotted as a function
of frequency for incident sound with elevation angle ' D 0ı and azimuth angle � D 45ı (With
permission from Acoustical Society of America)

wavelength of the incident sound. The corresponding resonance frequencies can
be obtained by Wang et al. [18]:

fs;n D nc0

2H
.n D 1; 2; 3 : : : / (1.80)

The theoretical predictions given in Fig. 1.27 agree excellently well with Eqs.
(1.79) and (1.80).

1.2.10.2 Effects of Different Boundary Conditions on STL

In this section, the STL behaviors of the rectangular double-panel partition predicted
by the two models based separately on the clamped boundary condition and the
simply supported boundary condition are compared for different cases, e.g., sound
incident with different elevation angles (' D 0ı, 30ı, 60ı) and fixed azimuth angle of
� D 45ı. The results are presented in Figs. 1.28, 1.30, and 1.32. Here, the incident
azimuth angle is fixed at 45ı for the purpose of fully exciting the relevant panel
vibration modes.

The typical (3, 3) modal shapes of panel deflection associated with the cases of
Figs. 1.28, 1.30, and 1.32 are presented in Figs. 1.29, 1.31, and 1.33, respectively.
Note that although the mode shapes in Fig. 1.29 look similar to those shown in
Fig. 1.26, different natural frequencies (f (3,3)

s D 352 Hz for the simply supported
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Fig. 1.29 Panel deflection mode shapes under normal sound excitation (' D 0ı, � D 45ı) at

frequency f (3,3)
s D 352 Hz for fully simply supported case and f (3,3)

c D 446 Hz for fully clamped
case, where the responses are controlled by the (3, 3) natural mode: (a1) simply supported incident
panel; (a2) simply supported radiating panel; (b1) clamped incident panel; (b2) clamped radiating
panel (With permission from Acoustical Society of America)

case and f (3,3)
c D 446 Hz for the clamped case) are obtained due to the different

panel dimensions considered here (i.e., 0.5 m � 0.5 m � 2 mm).
As mentioned above, except for the second dip (i.e., the “plate-cavity-plate”

resonance) which is insensitive to boundary conditions as seen in Figs. 1.28,
1.30, and 1.32, other dips determined mainly by the natural vibration of the
radiating panel are significantly shifted when the boundary conditions are changed.
Additionally, for the three considered cases, it can be seen that the STL values of
the clamped system are distinctly higher than those of the simply supported system
in the lower frequency range. For the higher frequency range, however, all the three
cases show different trends. For example, for the case of elevation angle ' D 0ı,
the STL values obtained with the two different boundary conditions have overall the
same order of magnitude, although the resonance dips are not in accord with each
other. By comparing the three plots in succession, it can be seen that as the elevation
angle is increased, the discrepancies between the STL values obtained with different
boundary conditions increase.

Taking a whole view of the results shown in Figs. 1.29, 1.31, and 1.33, one
can see that the mode shapes of the simply supported panels can be approximated
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Fig. 1.30 Predicted STL of finite (0.5 m � 0.5 m) double-panel partition plotted as a function
of frequency for incident sound with elevation angle ' D 30ı and azimuth angle � D 45ı (With
permission from Acoustical Society of America)

as the corresponding clamped panel mode shapes only for the case of normal
sound incidence (see Fig. 1.29). For oblique sound incidence, the mode shapes of
the simply supported panels are dramatically different from those of the clamped
panels (see Figs. 1.31 and 1.33). The asymmetric sound incidence (i.e., oblique
sound incidence, 0ı < ' < 90ı) induces asymmetric mode shapes of the simply
supported panels (symmetric only about the incident plane), while the mode shapes
of the clamped panels remain highly symmetric, which confirms the more rigorous
restraint of the fully clamped condition on the movement of panel edges than that
of the simply supported condition.

1.2.11 Conclusions

An analytical approach has been developed to investigate the influence of boundary
constraints (fully clamped versus fully simply supported) on the sound insulation
performance of a finite double-panel structure containing an air cavity. The theory
is built upon the vibration responses of the two panels coupled by the air cavity.
Experimental measurements are subsequently performed to validate the theoretical
predictions, with good overall agreement achieved for both types of the boundary
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Fig. 1.31 Panel deflection mode shapes under oblique sound excitation (' D 30ı, � D 45ı) at

frequency f (3,3)
s D 352 Hz for fully simply supported case and f (3,3)

c D 446 Hz for fully clamped
case, where the responses are controlled by the (3, 3) natural mode: (a1) simply supported incident
panel; (a2) simply supported radiating panel; (b1) clamped incident panel; (b2) clamped radiating
panel (With permission from Acoustical Society of America)

condition. The inherent consistency of the two models based separately on the
clamped boundary condition and the simply supported boundary condition is
confirmed when the panel dimensions become infinitely large. The model is then
used to systematically explore the effects of different boundary conditions on the
sound isolation capability of double-panel partitions, in terms of both the STL versus
frequency plots and the (3, 3) mode shapes of panel vibration.

The comparison of the STL versus frequency plots obtained with the two different
boundary conditions suggests that the natural frequencies of a fully clamped double-
panel partition are higher than those of a fully simply supported one (except for the
“plate-cavity-plate” resonance frequency). This is attributed to the more rigorous
constraint provided by the clamped condition than that by the simply supported
condition, which is equivalent to increasing the panel stiffness. However, to account
for this increased panel stiffness by an artificial factor (e.g.,

p
2) is not widely

feasible, as the increased panel stiffness is determined by many parameters such
as panel dimensions, material properties, and incident sound frequency.

Obtained results at oblique sound incidence for the two different boundary
condition cases suggest that, at the lower frequency range, the STL values show
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Fig. 1.32 Predicted STL of finite (0.5 m � 0.5 m) double-panel partition plotted as a function
of frequency for incident sound with elevation angle ' D 60ı and azimuth angle � D 45ı (With
permission from Acoustical Society of America)

noticeable discrepancies for the two cases, while at the higher frequency range,
the discrepancies depend on the incident elevation angle. While the vibration mode
shapes of a simply supported panel can be approximated as those of its clamped
counterpart only in the case of normal sound incidence, dramatic distinctions exist
between them in the case of oblique sound incidence.

1.3 Clamped Finite Triple-Panel Partitions

1.3.1 Introduction

Recent developments in building, transportation, environmental, and other engi-
neering applications have prompted research on finding innovative ways for noise
reduction. The transmission loss characteristics of a customarily used single panel
follow in general the mass law. The traditional methods for low-frequency noise
reduction require therefore the use of heavy damping materials, leading to weight
penalty and hence offsetting the performance gains of the panel. As a result, double-
panel partitions are extensively used in modern buildings, transportation vehicles,
aerospace/aeronautical fuselages, etc., which have superior sound insulation prop-
erties than single-panel partitions [3–7, 11, 64–67]. Since the introduction of an
additional panel can significantly enhance the transmission loss performance of a



54 1 Transmission of Sound Through Finite Multiple-Panel Partition

Fig. 1.33 Panel deflection mode shapes under oblique sound excitation (' D 60ı, � D 45ı) at

frequency f (3,3)
s D 352 Hz for fully simply supported case and f (3,3)

c D 446 Hz for fully clamped
case, where the responses are controlled by the (3, 3) natural mode: (a1) simply supported incident
panel; (a2) simply supported radiating panel; (b1) clamped incident panel; (b2) clamped radiating
panel (With permission from Acoustical Society of America)

single panel, one would expect that a triple-panel partition constructed by adding
another panel to the double-panel partition may lead to further gains in noise
reduction. As a matter of fact, triple-panel partitions with separated air cavities have
already been introduced as the standard configuration for glazing windows in some
high-class buildings. We aim therefore in this research to develop an analytical
model to investigate the sound transmission loss (STL) performance of a finite-
sized triple-panel partition, which is clamp mounted on a rigid baffle and separated
by two enclosed air cavities, and compare it with that of a clamped double-panel
partition.

A significant amount of research has been devoted to developing accurate
theoretical models of STL characteristics for single-panel [14, 15, 30, 39, 43, 46, 56,
68] and double-panel structures [3, 8, 16, 18, 28, 48, 69, 70]. Extensive experimental
study [5, 6, 26, 34] has also been carried out and active control strategies [71–74]
for noise reduction proposed.

Early research on interior noise reduction concentrated primarily on infinite
structures, because the precise characterization of sound transmission across a finite-
sized structure requires complex physical-mathematical treatment of the boundary
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conditions as well as the fluid-structure coupling effects, and the evaluation of the
finite system response is more difficult due to the presence of violent peaks and dips
on STL versus frequency curves.

As far as infinite structures are concerned, Beranek and Work [28] developed an
early model of sound transmission through multiple structures containing flexible
blankets based on the progressive impedance method. London [16] proposed a
theory to deal with the transmission of reverberant sound through a double wall,
also using the impedance method. The extension of Beranek’s model to a random
incidence field was carried out by Mulholland et al. [75]. The abovementioned
research established on the progressive impedance method failed to fully account
for the coincidence effect, which was later overcame by the analytical model of
Antonio et al. [17]. An analysis method was developed by Lee and Kim [43] to
study the sound transmission characteristics of a thin plate stiffened by equally
spaced line stiffeners in terms of the space-harmonic approach. Wang et al. [18]
further applied the space-harmonic approach to periodically connected double-leaf
partitions. The transmission of structure-borne sound through a double-leaf structure
with a porous absorptive layer inserted in the cavity was studied theoretically as well
as experimentally by Yairi et al. [76], with the porous absorptive layer described
using an electroacoustical equivalent model.

As for the sound transmission across finite-sized structures, several approaches
have been employed to account for the edge conditions, such as FEM (finite element
method) [36, 45, 77], BEM (boundary element method) [36, 78], SEA (statistical
energy analysis) [44, 68, 79–81], modal expansion method [3, 35, 56], spatial
windowing technique [23], and patch-mobility method [24]. In general, FEM is
applied together with BEM to deal with the boundary and interface conditions.
For example, for sound transmission through finite multilayer systems containing
poroelastic materials, Panneton and Atalla [36] used the classical elastic and fluid
elements to model the elastic and fluid media, but a BEM approach to account for
the fluid-structure coupling effects. Sgard et al. [78] also employed a variational
BEM approach to cope with the fluid loading effects. Based on two-dimensional
FEM models, Del Coz Diaz et al. [77] established a methodology to predict
the airborne sound insulation of building elements, which agreed well with their
experimental measurements. Although FEM and BEM are well suited for low-
frequency transmission loss calculations, they require high computation efforts
when calculations over a wide frequency range (high frequencies in particular)
are needed [41] and provide few physical insights. While SEA can be used as an
alternative of FEM and BEM, for it is substantially more effective in providing
sound transmission estimates for complex systems at high frequencies, it is seldom
reliable at low frequencies because of the statistical uncertainties that prevail when
there are only a few resonant modes present in the subsystems [9, 35]. Furthermore,
analogous to FEM and BEM, SEA cannot provide detailed physical understanding
of singular phenomena such as resonance. The modal expansion method based on
simply supported edge constraints has been conventionally adopted to solve the
vibroacoustic problem of finite systems on account of its excellent capability to
deal with resonant modes. However, for clamped boundary conditions, this method
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Fig. 1.34 Schematic of sound transmission through a clamp-mounted triple-panel partition: (a)
overall view; (b) side view in the arrow direction in (a) (With permission from Elsevier)

is only approximate and needs special treatment for numerical convergence. The
spatial windowing technique also suffers from the disadvantage of indeterminate
boundary condition disposal and few physical insight gains. The patch-mobility
method adopted by Chazot et al. [24] is essentially built upon the modal expansion
method.

Although extensive theoretical research on sound transmission through finite
and infinite multilayer systems has been carried out, there exists no analytical
modeling of sound transmission across a finite-sized triple-panel construction with
boundary constraints. A thorough literature search revealed that a few experimental
studies [6, 82, 83] have concerned the transmission of sound through triple glazing
windows. To squarely address this deficiency, the present research aims to develop
an analytical model to investigate the detailed process of sound transmission across
a clamped triple-panel partition of finite extent and separated by two impervious
air cavities. The model is then used to validate one’s expectation that a triple-
panel partition would possess superior sound insulation properties than the widely
used double-panel partition. Specifically, the “mass-spring” resonance, the standing-
wave resonance, the modal behavior of the panel, and other interesting vibroacoustic
phenomena are identified and interpreted on physical grounds, the asymptotic
variation of the transmission loss from finite to infinite extent is illustrated, and a
systematic parametrical study regarding the effects of panel thickness and air cavity
depth is carried out.

1.3.2 Dynamic Structural Acoustic Formulation

We model theoretically the reflection, transmission, and radiation of a sound
pressure wave propagating through a clamp-mounted rectangular triple-panel con-
figuration (Fig. 1.34), with fluid-structure interaction and coupling effects duly
accounted for. The structure is composed of three homogenous and isotropic panels



1.3 Clamped Finite Triple-Panel Partitions 57

and separated by two enclosed air cavities. A right-handed Cartesian coordinate
system (x, y, z) is applied, with the x- and y-axes horizontally located on the
surface of the incidence panel (bottom panel) and the z-axis pointing vertically
upward, as shown in Fig. 1.34. In the defined coordinate system, the three panels
are indexed as bottom, middle, and upper panels having thickness h1, h2, and h3

and located at z D 0, H1, and H2, respectively (Fig. 1.34). The rectangular panels
have identical dimensions a � b in the x � y plane. The rigid baffle mounting the
triple-panel partition is assumed to be infinitely large so as to exclude possible
diffraction of sound around the baffle from the sound source side (z < 0) to the sound
radiation/transmission side (z > H2).

Under typical fluid-structure interface conditions, the uniform plane sound
pressure varying harmonically in time constitutes a basic sound wave incidence on
the bottom panel, characterized by the incident elevation angle ' and the incident
azimuth angle � , as shown in Fig. 1.34. Part of this disturbance is reflected back by
the bottom panel, and the rest propagates consecutively through the bottom panel,
the bottom cavity, the middle panel, and the top cavity to the upper panel and
then is emitted by the vibrating upper panel. The model proposed for the above
physical process is based upon the classical vibration theorem for thin flexural
plates, which enables the three panels to possess different physical (e.g., Young’s
modulus, Poisson ratio, and loss factor) and geometrical (e.g., length and width)
parameters, but requires the panels to be sufficiently thin relative to their length
and width so that the shear displacement of a panel is much smaller than its lateral
displacement.

The acoustic velocity potential for an obliquely incident uniform plane sound
wave varying harmonically in time can be expressed as

' D Ie�j .kxxCkyyCkzz�!t/ (1.81)

where I is the amplitude, j D p�1, and ! is the angular frequency, and
wavenumber components of the incident sound in x-, y-, and z-directions can be
separately calculated as

kx D k0 sin ' cos �; ky D k0 sin ' sin �; kz D k0 cos ' (1.82)

where k0 D !/c0 is the wavenumber in air and c0 is the sound speed in air.
As noted above, the three panels are modeled as classical thin plates so that, in

terms of the thin plate vibration theorem, their motions under sound excitation are
governed by

D1r4w1 C m1

@2w1

@t2
� j!�0 .ˆ1 � ˆ2/ D 0 (1.83)

D2r4w2 C m2

@2w2

@t2
� j!�0 .ˆ2 � ˆ3/ D 0 (1.84)
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D3r4w3 C m3

@2w3

@t2
� j!�0 .ˆ3 � ˆ4/ D 0 (1.85)

where Di, mi, and wi denote separately the panel flexural rigidity, surface density,
and deflection, with i D 1, 2, 3 representing separately the bottom, middle, and top
panels, �0 is the air density, and ˆ˛ (˛ D 1, 2, 3, 4) are the velocity potentials in
the incident field, in the bottom and top air cavities, and in the transmitted field
(Fig. 1.34), respectively.

In the context of harmonic sound excitation, the transverse displacements of the
structure should also be time harmonic, which can be written as

wi .x; yI t/ D
X

m;n

˛i;mn'mn .x; y/ ej!t .i D 1; 2; 3/ (1.86)

where the modal functions (or, more strictly speaking, the basic functions) 'mn take
the following forms [12, 61, 84]:

'mn .x; y/ D
�

1 � cos
2m�x

a

	�
1 � cos

2n�y

b

	
(1.87)

The velocity potentials of the acoustic field are associated with the local velocity
bybu˛ D �rˆ˛ and related to the acoustic pressure by p˛ D �0ˆ˛,t D j!�0ˆ˛ . The
velocity potentials can be described in terms of the modal function 'mn as

ˆ1 .rI t/ D
X

m;n

Imn'mn .x; y/e�j .kzz�!t/ C
X

m;n

ˇmn'mn .x; y/ e�j .�kzz�!t/

(1.88)

ˆ2 .rI t/ D
X

m;n
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where Imn stands for the amplitudes of the incident sound wave; ˇmn represents
the amplitude of the reflected sound waves; "mn (�mn) and �mn (�mn) denote the
amplitudes of the positive- and negative-going waves in the bottom and top cavities,
respectively; and �mn is the amplitudes of transmitted waves (i.e., the positive-going
waves) in the transmitted domain (see Fig. 1.34).
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On the premise that the considered vibroacoustic problem involves fluid-structure
interaction and mutual coupling, the velocity continuity condition (equivalent to
the displacement continuity condition when the surrounding fluid is stationary with
respect to the structure [85]) should be satisfied at the fluid-structure interface, so
that
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D j!w1 (1.92)

z D H1I �@ˆ2

@z
D j!w2; �@ˆ3

@z
D j!w2 (1.93)
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D j!w3 (1.94)

Substitution of Eqs. (1.86) and Eqs. (1.88), (1.89), (1.90), and (1.91) into the
above velocity continuity conditions leads to a set of simultaneous equations for the
unknown coefficients ˇmn, "mn, �mn, �mn, �mn, and �mn as
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Since the above simultaneous equations are valid at all values of x and y, they
can be further simplified (except Eq. (1.95)) as
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1.3.3 The Principle of Virtual Work

To determine the unknown modal coefficients ˛1,mn, ˛2,mn, and ˛3,mn, the principle
of virtual work is employed. The work exerted by the force on each particle that acts
through an arbitrary virtual displacement (i.e., an arbitrary infinitesimal change in
the position of the particle consistent with the constraints imposed on the motion of
the particle) is given by

ıwi D ı˛i;mn'mn .x; y/ .i D 1; 2; 3/ (1.106)

Summing the above for the system gives the virtual work that must equal zero.
For the present problem, the principle of virtual work in the weak form can be
specified as
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Upon substitution of Eqs. (1.86), (1.87), (1.88), (1.89), (1.90), (1.91), and (1.106)
into Eqs. (1.107), (1.108), and (1.109) and with the help of Eqs. (1.95) and
(1.101), (1.102), (1.103), (1.104), and (1.105), three infinite systems of equations are
obtained, which can be solved simultaneously by truncation, as demonstrated below.

1.3.4 Determination of Modal Coefficients

Finally, following the procedures outlined in the preceding section and after some
laborious but straightforward algebraic manipulations, three infinite systems of
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simultaneous algebraic equations for the unknown coefficients ˛1,mn, ˛2,mn, and
˛3,mn can be obtained as

4D1�
4ab

( �
3
�m

a

4 C 3
�n

b

4 C 2
�m

a

2�n

b

2
�

˛1;mn

C
X

k¤m

2
�n

b

4

˛1;kn C
X

l¤n

2
�m

a

4

˛1;ml

)

C 9ab

4

�
�m1!

2˛1;mn C j!�0

�
!

kz
˛1;mn C "mn C �mn

	�

C 3ab

2

X

k¤m

�
�m1!

2˛1;kn C j!�0

�
!

kz
˛1;kn C "kn C �kn

	�

C 3ab

2

X

l¤n

�
�m1!

2˛1;ml C j!�0

�
!

kz
˛1;ml C "ml C �ml

	�

C ab
X

k¤m;l¤n

�
�m1!

2˛1;kl C j!�0

�
!

kz
˛1;kl C "kl C �kl

	�

D 2j!�0Iqmn

�
kx; ky

�
(1.110)

4D2�
4ab

8
<

:

�
3
�m

a

4 C 3
�n

b

4 C 2
�m

a

2�n

b

2
�

˛2;mn

C
X

k¤m

2
�n

b

4

˛2;kn C
X

l¤n

2
�m

a

4

˛2;ml

9
=

;

C 9ab

4

˚�m2!
2˛2;mn � j!�0



."mn � �mn/ e�jkzH1 C .�mn � �mn/ ejkzH1

��

C 3ab

2

X

k¤m

˚�m2!
2˛2;kn � j!�0



."kn � �kn/ e�jkzH1 C .�kn � �kn/ ejkzH1

��

C 3ab

2

X

l¤n

˚�m2!
2˛2;ml � j!�0



."ml � �ml / e�jkzH1 C .�ml � �ml / ejkzH1

��

Cab
X

k¤m;l¤n

˚�m2!
2˛2;kl � j!�0



."kl � �kl / e�jkzH1 C .�kl � �kl / ejkzH1

��

D 0 (1.111)



62 1 Transmission of Sound Through Finite Multiple-Panel Partition

4D3�
4ab

8
<

:

�
3
�m

a

4 C 3
�n

b

4 C 2
�m

a

2�n

b

2
�

˛3;mn

C
X

k¤m

2
�n

b

4

˛3;kn C
X

l¤n

2
�m

a

4

˛3;ml

9
=

;

C 9ab

4

˚�m3!
2˛3;mn � j!�0



.�mn � �mn/ e�jkzH2 C �mnejkzH2

��

C 3ab

2

X

k¤m

˚�m3!
2˛3;kn � j!�0



.�kn � �kn/ e�jkzH2 C �knejkzH2

��

C 3ab

2

X

l¤n

˚�m3!
2˛3;ml � j!�0



.�ml � �ml / e�jkzH2 C �mle

jkzH2
��

C ab
X

k¤m;l¤n

˚�m3!
2˛3;kl � j!�0



.�kl � �kl / e�jkzH2 C �kle

jkzH2
��

D 0 (1.112)

where the abbreviation
P

k¤m (or
P

l¤n) has the conventional meaning that
summation is intended with the index k (or l) taking integer values from 1 to C 1
except for the specified value m (or n). Similarly, the notation

P
k¤m;l¤n denotes

double summation about indices k and l from 1 to C 1 apart from the prescribed
values m and n. Additionally, a parameter associated with the generalized force F
(see Appendix B for details) appears during the process of integration as
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In terms of matrix formulation, Eqs. (1.110), (1.111), and (1.112) can be
rewritten as a linear system of equations consisting of 3MN equilibrium equations
by taking truncation of m from 1 to M and n from 1 to N as
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where T11 and T12 are the vectors derived from Eq. (1.110) that correspond to the
unknown modal coefficient vector ’1; T21, T22, and T23 are the vectors arising from
Eq. (1.111) that relate to the unknown modal coefficient vector ’2; and the vectors
T32 and T33 are derived from Eq. (1.112) with respect to ’3. More details can be
found in Appendix B.

1.3.5 Sound Transmission Loss

The sound power of the relevant acoustic fields (˛ D 1, 2, 3, 4; see Fig. 1.34) can be
defined as [24, 36]

Y

˛
D 1

2
Re
“

A

p˛ � v�̨dA (1.115)

where the local volume velocity is related to the sound pressure through the
impendence of air as v˛ D p˛/(�0c0) and the superscript asterisk denotes complex
conjugate.

The transmission coefficient is defined as the ratio of the transmitted sound power
to the incident sound power:
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which is dependent upon the incident angles ' and � . The sound transmission loss
(STL) is then customarily defined as the inverse of the power transmission coefficient
in decibels scale as

STL D 10 log10

�
1




	
(1.117)

Throughout the present study, STL is used as a measure of the effectiveness of
a clamped triple-panel (or, for comparison, double-panel) configuration of finite
extent in isolating the incident sound.

1.3.6 Model Validation

The validity and feasibility of the proposed theoretical model for sound transmission
across triple-panel partitions is checked by comparing model predictions with
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Fig. 1.35 Diffuse sound
transmission loss (STL)
plotted as a function of
incident frequency:
comparison between present
model predictions with
experimental measurements
[83] (With permission from
Elsevier)

existing experiment results [83], as shown in Fig. 1.35. In the present simulation,
sound transmission loss (STL) is calculated in 1/3 octave bands with a diffuse
field integration. Overall, as illustrated in Fig. 1.35, the present theoretical results
agree excellently with those measured. The small discrepancies may be attributed
to the fact that the mineral wool filled around the edges of the partition in factual
measurement is not accounted for in the model.

1.3.7 Physical Interpretation of STL Dips

To exclude the panel modal behavior due to edge constraints, Fig. 1.36 shows
separately the characteristics of normal incident transmission loss through a single-,
double-, and triple-panel partition of infinite extent. As anticipated, the STL versus
frequency curve of the single panel obeys the mass law, while a set of dips appear on
the STL versus frequency curves of double- and triple-panel partitions at frequencies
related to the system resonance mode. Note that similar plots for double-panel
partitions have been presented in our previous work. With special focus placed upon
the STL versus frequency curve of the triple-panel partition, it is observed that within
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Fig. 1.36 Comparison of STL versus frequency curves among infinite single-, double-, and triple-
panel partitions (hs D 0.002 m for single panel; QH D 0:1 m, hd

1 D hd
2 D 0.002 m for double

panel; QH1 D QH2 D 0:1 m, ht
1 D ht

2 D ht
3 D 0.002 m for triple panel). Symbols: � mass-air-mass

resonance; � mass-air-mass-air-mass resonance; � standing-wave resonance (With permission
from Elsevier)

the frequency range considered, two different kinds of resonance exist, i.e., those
associated with the first and second dips labeled by the symbol � and subsequent
dips at higher frequencies labeled by the symbol �.

Analogous to the “mass-air-mass” resonance of a double-panel system, the triple-
panel partition can also be simplified as a system of three lumped masses (m1, m2,
and m3) connected together by two springs with stiffness k1 and k2, respectively. In
the case of sound incident normally to the partition, the eigenvalue equation of this
simplified mass-spring system can be written as
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from which the resonance frequencies of the equivalent mass-spring system can be
obtained as
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Table 1.3 Comparison between theory and closed-form formulae for resonance frequencies of
infinite triple-panel partition

Mass-spring resonance fi (Hz) Standing-wave resonance fs,n (Hz)

Order Theory Eqs. (1.119) and (1.120) Theory Eq. (1.121)

1 81.20 81.72 1,719 1,715
2 140.89 141.54 3,436 3,430
3 \ \ 5,146 5,145
4 \ \ 6,863 6,860
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Here, x	1 D k1m3 .m1 C m2/ and x	2 D k2m1 .m2 C m3/, with ki D �0c
2
0= QHi

(i D 1, 2), are the equivalent stiffness of the lower air cavity and the upper air cavity,
respectively. The introduction of the additional panel and air cavity induces more
complicated fluid-structural coupling in the triple-panel system. As a result, one
dip corresponding to the “mass-air-mass” resonance of the double-panel system is
divided into two dips for the triple-panel system. The two formulae (1.119) and
(1.120) can be used to estimate the resonance frequencies associated with the two
dips, which have been specially labeled by symbol � in Fig. 1.36.

At larger frequencies, the resonance dips denoted by symbol � in Fig. 1.36 are
associated with the standing-wave resonance phenomenon due to the interaction
effect of successively reflected waves inside the air cavity. For such phenomenon to
occur, the depth of the air cavity should be integer numbers of the half wavelength
of the incident sound. The nth standing-wave resonances occur therefore at the
frequency [18]

fs;n D nc0

2 QH
.n D 1; 2; 3 : : : / (1.121)

where QH is the depth of the air cavity having a value of 0.1 m for both the double-
and triple-panel systems considered. In accordance with the prediction of (1.121),
the standing-wave resonance frequencies should be the same for the two systems,
which is confirmed by the excellent agreement shown in Fig. 1.36 for frequencies
above 1 kHz.

The predictions of the present theory for the resonance frequencies of an infinite
triple-panel partition are compared in Table 1.3 with those of the closed formulae,
i.e., Eqs. (1.119), (1.120), and (1.121). Excellent agreement is achieved, suggesting
that the theoretical modeling is consistent with the above stated physical nature of
the STL dips.
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Fig. 1.37 Comparison of STL versus frequency curves among clamp-supported rectangular
single-, double-, and triple-panel partitions (hs D 0.002 m for single panel; QH D 0:010 m; hd

1 D
hd

2 D 0:002 m for double panel; QH1 D QH2 D 0:010 m; ht
1 D ht

2 D ht
3 D 0:002 m for

triple panel). Symbols: � mass-air-mass resonance; � mass-air-mass-air-mass resonance (With
permission from Elsevier)

For a clamp-supported triple-panel partition of finite extent, the modal behavior
of the panel plays a dominant role in the appearance of numerous resonance dips
on the STL versus frequency curve, as shown in Fig. 1.37. To clearly identify
the resonance dips induced by the panel natural vibratory modes, the STL versus
frequency curves of the single and double panels are plotted together with that
of the triple panel. It is seen from Fig. 1.37 that the first dips associated with
the three partitions agree well with each other, while other dips associated with
the panel vibratory modes achieve good agreement only between the double- and
triple-panel partitions, which deviate away from those of the single-panel partition.
This is caused by the air cavity coupling effect that is absent in the single-panel
system. Moreover, several additional dips appear on the STL frequency curves of
double- and triple-panel partitions due to the mass-spring resonance and standing-
wave resonance.

Built upon the results for simply supported boundary conditions, the frequencies
corresponding to the STL dips arising from panel vibratory modes in clamp-
supported double- and triple-panel partitions can be approximately estimated by

fmn D �
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�
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	s p
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12� .1 � �2/
(1.122)
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Fig. 1.38 Comparison of STL versus frequency curves among clamp-supported rectangular
single-, double-, and triple-panel partitions (hs D 0.006 m for single panel; QH D 0:020 m,
hd

1 D hd
2 D 0.003 m for double panel; QH1 D QH2 D 0:010 m, ht

1 D ht
2 D ht

3 D 0.002 m for
triple panel). Symbols: � mass-air-mass resonance; � mass-air-mass-air-mass resonance (With
permission from Elsevier)

1.3.8 Comparison Among Single-, Double-, and Triple-Panel
Partitions with Equivalent Total Mass

As illustrated in Fig. 1.37, for relatively high frequencies exceeding the mass-spring
resonance frequency, improved sound insulation is demonstrated for triple-panel
partitions over single- and double-panel partitions. However, an increase of STL
would be expected simply from the mass increase resulting from the addition
of a third panel. To provide a fair comparison, theoretical results for the three
configurations (i.e., single-, double-, and triple-panel partitions) with equivalent
total mass are plotted in Fig. 1.38.

In comparison, the STL dips induced by the mass-spring resonance deviate much
among different structures, due mainly to the different panel masses and air cavity
coupling effects. In the frequency range above the mass-spring resonance frequency,
on the whole, a triple-panel partition provides larger STL than a double-panel
partition and remarkably larger STL than a single-panel partition. This suggests
that cavity coupling effects play a dominant role in this frequency range for
double- and triple-panel partitions. In contrast, in the frequency range below the
mass-spring resonance frequency, the triple-panel partition exhibits poorer sound
insulation than both single- and double-panel partitions. In other words, multi-panel
partitions do not provide improved soundproofing capability than single panels
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Fig. 1.39 Variation of sound transmission loss with panel dimensions for triple-panel partitions
( QH1 D QH2 D 0:010 m, ht

1 D ht
2 D ht

3 D 0.002 m) (With permission from Elsevier)

with equivalent mass in frequencies below the mass-spring resonance frequency,
implying that cavity coupling of multi-panel partitions has little effect on STL in
the low-frequency range.

For frequencies below the cutoff frequency for the cavities, the present theoretical
results as discussed above are completely in accordance with the experimental
results of Brekke [83] for double- and triple-panel partitions.

1.3.9 Asymptotic Variation of STL Versus Frequency Curve
from Finite to Infinite System

To examine the variation of the transmission loss characteristics of a triple-panel
partition with varying geometrical dimensions, two selected finite cases (i.e.,
0.25 m � 0.25 m and 0.5 m � 0.5 m) are compared in Fig. 1.39 with the infinite case,
with the air cavity depth fixed at 0.010 m. It is seen from Fig. 1.39 that, as the panel
dimensions increase, the panel mode-dominated STL dips are shifted toward the
lower frequencies, which are consistent with the predictions of Eq. (1.122). Beyond
the mass-spring resonance dip, the STL versus frequency curve of the infinite triple-
panel structure sets upper bound for the finite-sized partitions, because the panel
mode-dominated STL dips vanish in the infinite case. At frequencies below the
mass-spring dip, however, the soundproofing performance of the infinite structure
is significantly inferior to that of finite-sized structures due to boundary constraint
effects. Actually, this trend is mainly affected by the (1, 1) panel mode resonance
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Fig. 1.40 Effects of panel thickness on STL for infinite triple-panel partition ( QH1 D QH2 D 0:1 m)
under normal sound excitation: � mass-air-mass-air-mass resonance; � standing-wave resonance
(With permission from Elsevier)

dips for different panel geometrical dimensions. As can be seen in Eq. (1.122), the
(1, 1) panel mode resonance frequency decreases with increasing panel dimensions,
which are separately associated with the first dip for the two finite cases and the dip
at 0 Hz for the infinite case. Also, for the same reason, the sound proofing capability
of the triple-panel partition increases with decreasing panel dimensions. Since for
many applications, noise reduction at the low-frequency range (<500 Hz) is of vital
importance, this finding has significant implications on the practical design of triple-
panel partitions such as the soundproofing windows installed in high-class buildings
and aircraft fuselages.

1.3.10 Effects of Panel Thickness

To demonstrate how the sound transmission performance of a triple-panel partition
varies with panel thickness, the STL versus frequency curves for the infinite case
is plotted in Figs. 1.40 and 1.41, while those for the finite case are presented in
Figs. 1.42 and 1.43. As shown in Fig. 1.40, the STL value is increased significantly
as the panel thickness is increased, which is consistent with the mass law for a single
panel but more noticeable due to cavity coupling effects. The mass-spring resonance
dips shift downward as the panel thickness is increased, due to the increased surface
density of the panel. The standing-wave resonance dips reside in their original
locations, however, implying that these are independent of the panel thickness.
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Fig. 1.41 Variation of STL for infinite triple-panel partition ( QH1 D QH2 D 0:1 m) under normal
sound excitation with the thickness of: (a) incident panel; (b) middle panel; (c) radiation panel
(With permission from Elsevier)

To highlight the different roles played by the three panels in the sound
transmission process, the thicknesses of arbitrarily selected two panels are fixed
while that of the remaining one is systematically varied. The results for a triple-
panel partition of infinite extent are firstly presented in Fig. 1.41, and it is seen that
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Fig. 1.42 Effects of panel thickness on STL for finite triple-panel partition (0.5 m � 0.5 m, QH1 DQH2 D 0:01 m) under normal sound excitation (With permission from Elsevier)

the increased thickness of any panel among the three leads to the increase in STL.
The good agreement between Fig. 1.41a and c suggests the same role played by
the incident panel and the radiation panel, which completely follows the acoustical
reciprocal theorem. The mass-spring resonance dips shift in a distinct way as the
thickness of the middle panel is increased (Fig. 1.41b), which is in accordance with
the predictions of Eqs. (1.119) and (1.120).

For triple-panel partitions of finite extent, as the panel thickness is increased, two
prominent features can be observed from Fig. 1.42: (1) remarkable increase of the
STL value and (2) shifting of the resonance dips toward higher frequencies, which
is attributed to the increased panel stiffness and surface density. The individual
role of each panel in sound transmission is illustrated in Fig. 1.43a, b, and c for
the incident panel, the middle panel, and the radiation panel, respectively. The
most noticeable feature of the results shown in Fig. 1.43 is that increasing the
incident panel thickness causes the STL value to increase more dramatically than
increasing the thickness of the middle or radiation panel, especially at relatively
low frequencies. This is because the middle or radiation panel does not significantly
affect the coupling between the panels through air stiffness for frequencies below
the cutoff frequency of the cavities [83]. This feature is also consistent with the
experimental results of [82]. The pronounced deviation between the resonant dips
for different cases shown in Fig. 1.43a implies the predominant role of the incident
panel vibratory modes. In contrast, the good agreement between the resonant dips in
the high-frequency range for different panel thicknesses in Fig. 1.43b and c suggests
that the vibratory modes of the middle or radiation panel have negligible effects.
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Fig. 1.43 Variation of STL for finite triple-panel partition (0.5 m � 0.5 m, QH1 D QH2 D 0:01 m)
under normal sound excitation with the thickness of: (a) incident panel; (b) middle panel; (c)
radiation panel (With permission from Elsevier)
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Fig. 1.44 Effects of air cavity thickness on STL for infinite triple-panel partition
(ht

1 D ht
2 D ht

3 D 0.002 m) under normal sound excitation: � mass-air-mass-air-mass resonance;
� standing-wave resonance (With permission from Elsevier)

At relatively low frequencies, however, the shifting of the resonant dips with varying
panel thickness demonstrates the significant effects of each panel (see Fig. 1.43a, b,
c). Note that the steeper dips for the case of (ht

1 D ht
2 D ht

3 D 0.005 m) than other
cases are attributed to the noticeable enhancement of the same vibratory modes of
the three identical panels.

1.3.11 Effects of Air Cavity Depth

For an infinitely large triple-panel partition under normal sound excitation, Fig. 1.44
plots the STL versus frequency curves for selected air cavity depths, with the
thickness of each panel fixed at 0.002 m. As the air cavity depth is increased,
the tendency of the STL versus frequency curve varies significantly. Within the
frequency range between the mass-spring resonance and the first-order standing-
wave resonance, increasing the air cavity depth leads to remarkable increase of
the STL value. The mass-spring resonance dips shift downward with increasing
air cavity depth, which is attributed to the decreased equivalent stiffness of the
air cavities. According to Eq. (1.121), the natural frequency of each standing-wave
resonance decreases as the air cavity depth is increased, which is consistent with the
results of Fig. 1.44.

The effects of air cavity depth on sound transmission across a finite-sized triple-
panel partition are shown in Figs. 1.45 and 1.46, again with the panel thickness fixed
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Fig. 1.45 Effects of air cavity thickness on STL for finite triple-panel partition (0.25 m � 0.25 m,
ht

1 D ht
2 D ht

3 D 0.002 m) under normal sound excitation: � mass-air-mass-air-mass resonance
(With permission from Elsevier)

at 0.002 m. It is seen that while the increase of air cavity depth leads to enhanced
soundproofing capability of the structure, the effects are particularly noticeable
if the depth of the two cavities is increased simultaneously (see Fig. 1.45). The
mass-spring resonance dips alter significantly, consistent with the predictions of
Eqs. (1.119) and (1.120). The dips dominated by panel vibratory modes change
little because the boundary condition plays a stronger effect than cavity coupling
effects at these dips. In addition, the good agreement between Fig. 1.46a and b
demonstrates the identical role of the two air cavities in the process of sound
transmission through the finite triple-panel structure, which can be explained with
the acoustical reciprocal theorem.

1.3.12 Concluding Remarks

A theory has been established that can be used to predict the sound transmission
characteristics of a clamp-mounted triple-panel partition separated by two enclosed
air cavities. A set of modal functions (basic functions) are employed to account for
the clamped boundary conditions, and the application of the virtual work principle
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Fig. 1.46 Effects of air cavity thickness on STL for finite triple-panel partition (0.25 m � 0.25 m,
ht

1 D ht
2 D ht

3 D 0.002 m) partition under normal sound excitation: (a) only varying the depth of
the air cavity adjacent to the incident panel; (b) only varying the depth of the air cavity adjacent to
the radiating panel (With permission from Elsevier)

leads to a set of simultaneous algebraic equations for determining the unknown
modal coefficients. The present theory has the advantage of clearly showing the
major vibroacoustic phenomena associated with the edge constraints and fluid-
structure coupling, such as the equivalent mass-spring resonance, the standing-wave
resonance, and the modal resonance of the system. Extensive numerical calculations
are carried out to obtain the frequency characteristic curves of the transmission loss
performance of the triple-panel structure, with detailed physical explanations given
for the abovementioned resonance dips. Comparison of the triple-panel partition
with the double-panel partition suggests that, for the purpose of maximizing the
transmission loss, the former is a preferred alternative of the latter although the
superiority is not remarkable when the total masses of the two are equivalent. More-
over, the relatively large number of system parameters owned by the triple-panel
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partition allows more design space for tailoring its noise reduction capability. Since
for many applications, noise reduction at the low-frequency range (<500 Hz) is
of vital importance, the finding that the sound proofing capability of a triple-panel
partition increases with decreasing panel dimensions has significant implications on
the design of soundproofing windows installed in high-class buildings and aircraft
fuselages.

As a future work, an active control strategy to minimize the sound transmission
across a clamp-mounted triple-panel structure will be analytically and experimen-
tally developed based upon the proposed theory from the viewpoint of practical
noise reduction.

Appendices

Appendix A

The deflection coefficients of the two panels are
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The left-hand side of Eq. (1.74) represents the generalized force, where
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Using the definition of the sub-matrices presented above, one obtains
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Appendix B

The modal coefficients of the three panels are
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The generalized forces can be written in vector form as
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In the context of the above sub-matrices, the elemental matrices can be derived as
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Chapter 2
Vibroacoustics of Uniform Structures
in Mean Flow

Abstract This chapter is organized as three parts: in the first part, an analytic
approach is formulated to account for the effects of mean flow on sound transmis-
sion across a simply supported rectangular aeroelastic panel. The application of the
convected wave equation and the displacement continuity condition at the fluid-
panel interfaces ensures the exact handling of the complex aeroelastic coupling
between panel vibration and fluid disturbances. To explore the mean flow effects
on sound transmission, three different cases (i.e., mean flow on incident side only,
on radiating side only, and on both sides) are separately considered in terms of
refraction angular relations and sound transmission loss (STL) plots. Obtained
results show that the influence of the incident side mean flow upon sound penetration
is significantly different from that of the transmitted side mean flow. The contour
plot of refraction angle versus incident angle for the case when the mean flow
is on the transmitted side is just a reverse of that when the mean flow is on the
incident side. The aerodynamic damping effects on the transmission of sound are
well captured by plotting the STL as a function of frequency for varying Mach
numbers. However, as the Mach number is increased, the coincidence dip frequency
increases when the flow is on the incident side but remains unchanged when in the
flow is on the radiating side. In the most general case when the fluids on both sides of
the panel are convecting, the refraction angular relations are significantly different
from those when the fluid on one side of the panel is moving and that on the other
side is at rest.

In the second part, the transmission of external jet noise through a double-
leaf skin plate of aircraft cabin fuselage in the presence of external mean flow is
analytically studied. An aero-acoustic-elastic theoretical model is developed and
applied to calculate the sound transmission loss (STL) versus frequency curves.
Four different types of acoustic phenomenon (i.e., the mass-air-mass resonance,
the standing-wave attenuation, the standing-wave resonance, and the coincidence
resonance) for a flat double-leaf plate as well as the ring frequency resonance for
a curved double-leaf plate are identified. Independent of the proposed theoretical

T.J. Lu and F.X. Xin, Vibro-Acoustics of Lightweight Sandwich Structures,
Springer Tracts in Mechanical Engineering, DOI 10.1007/978-3-642-55358-5__2,
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model, simple closed-form formulae for the natural frequencies associated with
the above acoustic phenomena are derived using physical principles. Excellent
agreement between the model predictions and the closed-form formulae is achieved.
Systematic parametric investigation with the model demonstrates that the presence
of the mean flow as well as the sound incidence angles affects substantially
the sound transmission behavior of the double-leaf structure. The influences of
panel curvature together with cabin internal pressure on jet-noise transmission are
also significant and should be taken into account when designing aircraft cabin
fuselages.

In the third part, a theoretical model is developed to investigate the influence
of external mean flow on the transmission of sound through an infinite double-leaf
panel filled with porous sound absorptive materials. The sound transmission process
in the porous material is modeled using the method of equivalent fluid-structure
coupling conditions that are accounted for to ensure displacement continuity at
fluid-structure interfaces. Analytic solutions for the sound transmission loss of the
whole structure are obtained. For validation, the model predictions are compared
with existing experimental results. Numerical investigations with the model are
subsequently performed to quantify how a set of systematic parameters affect the
sound transmission loss. It is demonstrated that the porous material affects the STL
curve in terms of both the absorption effect and the damping effect. Besides, the
material loss factor and the thickness of the faceplates also have an influence on the
coincidence dip of the STL curve. At frequencies below the coincidence frequency,
the external mean flow increases the STL values due to the added damping effect
of the mean flow while shifting the coincidence frequency upward because of the
refraction effect of the mean flow. In addition, the coincidence frequency decreases
with increasing azimuth angle between the sound incident direction and mean flow
direction.

2.1 Finite Single-Leaf Aeroelastic Plate

2.1.1 Introduction

The vibroacoustic behavior of a flexible panel immersed in convected fluid flow
is of practical importance for high-speed transportation vehicles (e.g., aircrafts,
trains, and automobiles), and its prediction requires the combined knowledge of
aeroelastics and structural acoustics [1–21]. For example, the interior noise of an
aircraft stems mainly from the noise induced by external turbulent boundary layer
(TBL) and the engine exhaust noise [6, 17, 22–25]. Therefore, the reduction of noise
transmission into aircraft cabin interior has been a long-lasting issue for the airplane
industry.

Earlier theoretical studies [26, 27] on the somewhat idealized but significant
problem of reflection, transmission, and amplification of sound propagation into
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a moving medium from a static fluid in the absence of a panel have helped to
understand the physical mechanisms associated with the transmission of sound
through panels immersed in convected fluids. For instance, by studying the total
reflection arising from the refraction effect of mean flow and the sound amplification
due to self-excited disturbance feeding, it has been found that there exist two critical
angles for the occurrence of total reflection when the flow speed is more than twice
that of sound [27].

Subsequently, with the focus placed upon the transmission of noise into aircraft
cabin interior, Koval [1] studied theoretically the effects of airflow, panel curvature,
and internal pressurization on the transmission loss of field incidence through an
infinite single panel. It is found that both the mean flow and the panel curvature
can enhance the sound transmission loss (STL), whereas the internal pressurization
can lead to a slight decrease of the STL. Built upon Koval’s work, Xin et al. [23]
proposed recently a theoretical model to quantify the influence of external mean flow
upon noise transmission through double-leaf aircraft fuselage into cabin interior. A
series of closed-form analytic formulae were also derived from physical principles
governing mass-air-mass resonance, standing-wave attenuation and resonance, and
coincidence resonance, which compare favorably with model predictions.

Sgard et al. [15] developed a coupled FEM-BEM (finite element method-
boundary element method) approach to study the vibroacoustic behavior of planar
structures in the presence of mean flow, with formulations explicitly accounting
for the effects of mean flow on the STL in terms of added mass, panel stiffness, and
radiating damping. With due considerations of the effects of structural nonlinearities
induced by in-plane forces and shearing forces due to plate bending, Wu and
Maestrello [16] studied theoretically the vibroacoustic response of a finite plate
supported on a rigid baffle and subjected to TBL excitations. By assuming that
the aircraft fuselage is locally flat, Howe and Shah [22] solved analytically the
problem of noise generation by subsonic, high-speed turbulent flow, and the reverse
flow reciprocal theorem was employed to determine Green’s functions for treating
the scattering of boundary layer wall pressures at panel edges. Graham [24, 25,
28] proposed a theoretical model as a compromise between the requirement of
simplicity and retaining the physical features of the aircraft interior noise problem
and used asymptotic expressions to study the effects of mean flow on the radiation
efficiency of a rectangular plate.

Recently, Frampton and Clark [2, 4, 6–8, 10, 11, 17, 19] studied systematically
the influence of convected fluid loading coupling on the vibroacoustic behavior
of finite-sized panels. A theoretical model combining the aerodynamic loading of
panels and linearized potential flow aerodynamics was firstly developed in Ref. [4]
by adopting singular value decomposition [2], and detailed analyses with the TBL-
induced noise disturbance taken into account were further proposed in Refs. [6–8,
10, 17]. In particular, the effect of in-plane forces on sound radiation of convected
fluid-loaded plates was theoretically analyzed [19], and it is found that the state of
stress in the plate exerts a significant effect on the radiation efficiency of the plate.
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There also exist typical investigations regarding that active control of vibration
and noise transmission. For instance, Clark and Frampton [11] designed a static,
constant-gain, output-feedback control compensators to increase the STL across a
panel subjected to mean flow, and Maury et al. [12, 14, 29] investigated the active
control of flow-induced noise transmission across single and double panels.

Although there exist numerous studies on the coupling of panel vibration with
fluid flow, such as aeroelastic panel flutter and sound radiation due to flow-induced
panel vibration, a few issues regarding its underlying physical mechanisms remain
unclear, such as the mechanism underlying sound power flux penetration and the
effect of aeroelastic coupling feedback. Furthermore, while a few studies [1, 7, 17,
23] addressed specifically the practically significant problem of sound transmission
across a finite aeroelastic panel immersed in convected fluid on one side (either the
incident side or the transmitted side), the more general case when the aeroelastic
panel is loaded by convected fluids on both sides has not been solved. The solution
of this general case not only is complementary to the existing research so that an
overlook of this issue can be acquired but also has practical implications particularly
in soundproofing machines that require effective cooling by convected flow. For
typical instance, the nozzle of the jet engine of an aircraft works in high-temperature
environment. It is well known that increasing the temperature of the jet can increase
the efficiency and speed of aircraft, but few materials are able to work in such
high-temperature environment particularly in hypersonic vehicles. In such cases,
active cooling with convective fluid flow in between the sandwich structure (with
open-celled cellular core) of the jet nozzle has emerged as a promising approach.
Consequently, how the convected flow on both sides of the panel affects the sound
transmission should be of concern. This chapter is mainly aimed to remedy this
deficiency and to provide more details in our understanding of the interdisciplinary
topic of acoustics and aeroelastics/dynamics. After presenting the modeling part
in Sect. 2.1.2, in Sects. 2.1.3–2.1.5 of numerical result discussion, the refraction
angular relations between the incident and transmitted sound waves are presented
in terms of contour plots for three different cases (i.e., panel immersed in convected
fluid on the incident side only, on the transmitted side only, and on both sides).
Detailed analyses of sound power flux penetration through the convected fluid-
loaded panel are also performed in terms of STL versus frequency characteristic
curves for the three cases.

2.1.2 Modeling of Aeroelastic Coupled System

Consider a finite, rectangular aeroelastic panel simply supported in an infinite
acoustic rigid baffle (as shown in Fig. 2.1a, b). The panel has length a along x-
direction, width b along y-direction, and thickness h along z-direction, with h � a
and h � b assumed. The panel divides the spatial region into two regimes, i.e.,
the incident field (z < 0) and the transmitted field (z > 0) which, for convenience,
are numbered below by 1 and 2, respectively (Fig. 2.1b). An oblique plane sound
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Fig. 2.1 Schematic of sound transmission through a simply supported aeroelastic panel immersed
in convected fluid flow on both sides: (a) overall view; (b) view from the direction of arrow in (a)
(With permission from Acoustical Society of America)

wave varying harmonically in time is incident on the bottom side of the panel, with
elevation angle '1 and azimuth angle � (Fig. 2.1a).

The panel is immersed in convected fluid flow on both sides which are parallel
to the panel but may flow along different directions (Fig. 2.1) and have different
physical properties (including density and sound speed). Without loss of generality,
let the flow on the incident side (z < 0) have azimuth angle ˇ1 and speed U1 and that
on the transmitted side (z > 0) have azimuth angle ˇ2 and speed U2; see Fig. 2.1b.

The panel vibration induced by the incident sound and fluid flow together also
creates a pressure disturbance in the surrounding fluid media, including the reflected
pressure wave pi

reflected and the radiating pressure wave pi
radiating in the incident

field and the radiating pressure wave pt
radiating in the transmitted field. The pressure

changes caused by this disturbance will in turn significantly influence the panel
vibration, resulting in the so-called aeroelastic coupling [4, 6, 10, 11, 17]. In the
present study, it is assumed that the panel deforms out of plane (in the z-direction),
positive upward.
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Fig. 2.2 Block diagram of sound transmission across a finite aeroelastic panel immersed in
convected fluids on both sides. The dashed frame on the left indicates the incident field, including
the incident sound pressure wave as well as the reflected and radiated pressure waves. The dashed
frame on the right stands for the transmitted field, containing the resultant radiating pressure wave
(With permission from Acoustical Society of America)

As an illustration of the sound transmission process, a block diagram (Fig. 2.2)
is drawn to highlight the interaction of panel motion and fluid dynamics. Notice
first that the left dashed frame represents the incident field, including the incident
sound pressure wave as well as the reflected and radiating pressure waves stemming
from panel vibration, and this field is characterized by the perturbation acoustic
velocity potential ˆ1. The right dashed frame for the transmitted field contains the
resultant transmitted pressure wave and is characterized by the perturbation acoustic
velocity potential ˆ2. The connections between the two central solid frames in
Fig. 2.2 signify essentially the aeroelastic coupling between the panel vibration and
the surrounding convected fluids. Subsequent theoretical modeling will consider this
aeroelastic coupling by employing the convected wave equation, fluid momentum
equation, and displacement continuity condition between the proximal fluid particle
and the panel particle.

The dynamic displacement of an aeroelastic panel immersed in convected fluids
on both sides and subjected to a uniform, plane sound wave varying harmonically
can be described by [3, 5]

Dr4w .x; yI t/ C m
@2w .x; yI t/

@t2
� j! Œ�1ˆ1 .x; y; 0I t/ � �2ˆ2 .x; y; 0I t/� D 0

(2.1)

where D and m are the flexural rigidity and surface density of the panel and !

is the angular frequency of the incident sound. With ct denoting the speed of the
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trace wave in the aeroelastic panel, the wavenumber of the trace wave is kt D !/ct.
Hence, the displacement of the aeroelastic panel induced by the incident sound and
the convected fluid flow can be expressed as:

w .x; yI t/ D w0e
�j Œ.kt cos �/xC.kt sin �/y�!t� (2.2)

With the assumption of idealized fluid (i.e., inviscid, irrotational, and incompress-
ible), the convected fluid field can be regarded as full potential flow. Let ˚ i

(i D 1,2) denote the velocity potentials for the acoustic fields in the proximity of
the aeroelastic panel, corresponding to the sound incidence and the transmitted field
(fields 1 and 2 in Fig. 2.1b), respectively:

ˆ1 .x; y; zI t/ D Ie�j .k1xxCk1yyCk1zz�!t/ C ˇe�j .k1xxCk1yy�k1zz�!t/ (2.3)

ˆ2 .x; y; zI t/ D "e�j .k2xxCk2yyCk2zz�!t/ (2.4)

where I and ˇ are separately the amplitude of the positive-going wave (incident
sound) and the negative-going wave (including the reflected wave and the radiating
wave) in the incident acoustic field and " is the amplitude of the positive-going wave
in the transmitted field. The sound wavenumber components in (3) and (4) depend
upon the incident sound elevation angle '1, the azimuth angle � and the refraction
angle '2 according to

k1x D k1 sin '1 cos �; k1y D k1 sin '1 sin �; k1z D k1 cos '1 (2.5)

k2x D k2 sin '2 cos �; k2y D k2 sin '2 sin �; k2z D k2 cos '2 (2.6)

For the convenience of describing the modal response of the aeroelastic panel,
its dynamic displacement can be rewritten by using the in vacuo orthogonal panel
eigenfunctions and the generalized coordinates as

w .x; yI t/ D
1X

mD1

1X

nD1

'mn .x; y/ qmn.t/ (2.7)

where the modal functions of a simply supported rectangular panel and the
generalized coordinates are taken as

'mn .x; y/ D sin
m�x

a
sin

n�y

b
(2.8)

qmn.t/ D ˛mnej!t (2.9)
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Similarly, the acoustic velocity potentials of Eqs. (2.3) and (2.4) are expressed as

ˆ1 .x; y; zI t/ D
1X

mD1

1X

nD1

Imn'mne�j .k1zz�!t/ C
1X

mD1

1X

nD1

ˇmn'mne�j .�k1zz�!t/

(2.10)

ˆ2 .x; y; zI t/ D
1X

mD1

1X

nD1

"mn'mne�j .k2zz�!t/ (2.11)

The conversion relation between the general forms of Eqs. (2.2), (2.3), and (2.4)
and the generalized forms (with modal functions) of Eqs. (2.7), (2.10), and (2.11)
can be obtained by utilizing the sine Fourier transform as

x	mn D 4

ab

bZ

0

aZ

0

x	e�j .kixxCkiyy/ sin
m�x

a
sin

n�y

b
dxdy .i D 1; 2/ (2.12)

where x	 refers to any of the symbols I, ˇ, ", and a (with w0). Note that
the expressions in terms of either traveling wave or panel modal functions are
completely equivalent in physical nature when they are both subjected to the same
boundary conditions.

The acoustic velocity potentials of (2.3) and (2.4) for an inviscid, irrotational,
and incompressible fluid moving in a plane parallel to the aeroelastic panel should
satisfy the convected wave equation [1, 30–33], given by

D2ˆ1

Dt2
D
�

@

@t
C U1 � r

	2

ˆ1 D c2
1r2ˆ1 (2.13)

D2ˆ2

Dt2
D
�

@

@t
C U2 � r

	2

ˆ2 D c2
2r2ˆ2 (2.14)

which, with fluid velocities expressed as U i D Uixbex C Uiybey (i D 1,2), can be
expanded as follows:

h
@2

@t2 C U 2
1x

@2

@x2 C U 2
1y

@2

@y2 C 2U1x
@2

@x@t
C 2U1y

@2

@y@t
C 2U1xU1y

@2

@x@y

i
ˆ1

D c2
1r2ˆ1

(2.15)

h
@2

@t2 C U 2
2x

@2

@x2 C U 2
2y

@2

@y2 C 2U2x
@2

@x@t
C 2U2y

@2

@y@t
C 2U2xU2y

@2

@x@y

i
ˆ2

D c2
2r2ˆ2

(2.16)

Substitution of (2.3) and (2.4) into (2.15) and (2.16) leads to
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k1 D k�
1

1 C M1x sin '1 cos � C M1y sin '1 sin �
(2.17)

k2 D k�
2

1 C M2x sin '2 cos � C M2y sin '2 sin �
(2.18)

where k*
1 D !/c1 and k*

2 D !/c2 are the wavenumbers in the absence of airflow, while
M1 D U1/c1 and M2 D U2/c2 are the Mach number of mean flow in the incident field
and that in the transmitted field, respectively.

The sound waves traveling in fluid media proximal to the panel and the bending
wave propagating in the flexural aeroelastic panel should be in coherence with each
other in their wavelengths [1], that is,

k1x D kt cos � D k2x; k1y D kt sin � D k2y (2.19)

so that

'2 D arcsin

 
c2 sin '1

c1 C 

.c1M1x � c2M2x/ cos � C �

c1M1y � c2M2y

�
sin �

�
sin '1

!

(2.20)

Note that the corresponding transmitted waves become evanescent waves, when

ˇ
ˇ̌
ˇ
ˇ

c2 sin '1

c1 C 

.c1M1x � c2M2x/ cos � C �

c1M1y � c2M2y

�
sin �

�
sin '1

ˇ
ˇ̌
ˇ
ˇ

> 1: (2.21)

In such cases, total reflection of the incident sound appears, and the value of '2

should be taken as a complex one with real and imaginary parts (either both positive
or both negative), such that the value of k2z takes the form of � j� (where � is a
positive real number).

2.1.2.1 Displacement Continuity Condition at Fluid-Panel Interfaces

Let �1 and �2 represent the acoustic particle displacement in the incident and trans-
mitted fluid medium, respectively. The fluid particle displacement and the acoustic
pressure are related by the fluid momentum equation for inviscid, irrotational, and
incompressible fluid as [22]

D2�1

Dt2
D
�

@

@t
C U 1 � r

	2

�1 D � 1

�1

@p1

@z

ˇ
ˇ̌
ˇ
zD0

(2.22)

D2�2

Dt2
D
�

@

@t
C U 2 � r

	2

�2 D � 1

�2

@p2

@z

ˇ̌
ˇ
ˇ
zD0

(2.23)
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where the acoustic pressure can be expressed by the acoustic velocity potentials
through Bernoulli’s equation as [10, 30]

pi D �i

�
@ˆi

@t
C Uix

@ˆi

@x
C Uiy

@ˆi

@y

�
.i D 1; 2/ (2.24)

The displacements of the fluid particle adjacent to the panel can be expressed as

�1 D �10e�j .k1xxCk1yy�!t/ (2.25)

�2 D �20e�j .k2xxCk2yy�!t/ (2.26)

Substituting (2.24), (2.25), and (2.26) into (2.22) and (2.23) and applying the
acoustic velocity potentials of (2.10) and (2.11), one can obtain

�10 D
1X

mD1

1X

nD1

.Imn'mn � ˇmn'mn/
!k1z

�
! � U1xk1x � U1yk1y

�2 ej .k1xxCk1yy/ (2.27)

�20 D
1X

mD1

1X

nD1

"mn'mn

!k2z
�
! � U2xk2x � U2yk2y

�2 ej .k2xxCk2yy/ (2.28)

The factual case that the aeroelastic panel immersed in a convected fluid medium
requires that the displacements of the fluid particles adjacent to the panel should
be the same as those of the attached panel particles. Accordingly, the displacement
continuity condition can be written as [1, 31]

�10 D w0; �20 D w0 (2.29)

Together with (2.2) and (2.27) and (2.28), meanwhile utilizing the following
relation between coefficients ˛mn and w0,

˛mn D
4mn�2w0

h
1 � .�1/me�jkxa � .�1/ne�jkyb C .�1/mCne�j .kxaCkyb/

i

�
k2

xa2 � m2�2
� �

k2
yb2 � n2�2



(2.30)

One can express the coefficients in the acoustic velocity potentials by the panel
displacement coefficients as

ˇmn D Imn � .! � U1xk1x � U2xk2x/2

!k1z
˛mn (2.31)

"mn D
�
! � U2xk2x � U2yk2y

�2

!k2z
˛mn (2.32)
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Substituting (2.7) into (2.1) and applying the orthogonality of the modal func-
tions, one gets

Rqmn.t/ C !2
mnqmn.t/

� j!

m

h
�1Imne�j .k1zz�!t/ C �1ˇmne�j .�k1zz�!t/ � �2"mne�j .k2zz�!t/

i
D 0

(2.33)

where the natural frequencies of the aeroelastic panel are determined by the panel
properties as

!2
mn D

D

“

A

r4'mn � 'mndA

m

“

A

'mn � 'mndA

(2.34)

Equation (2.33) can be readily converted to the following form:

˛mn D 2j!�1Imn

m
�

"

!2
mn � !2 C j!�1

m

�
! � U1xk1x � U1yk1y

�2

!k1z
C j!�2

m

�
! � U2xk2x � U2yk2y

�2

!k2z

#�1

(2.35)

Once the panel displacement coefficients ˛mn are known, the acoustic velocity
potentials will be known, given by

ˆ1 .x; y; 0/ D 2Ie�j .k1xxCk1yy/ �
1X

mD1

1X

nD1

�
! � U1xk1x � U1yk1y

�2

!k1z
˛mn'mn .x; y/

(2.36)

ˆ2 .x; y; 0/ D
�
! � U2xk2x � U2yk2y

�2

!k2z

1X

mD1

1X

nD1

˛mn'mn .x; y/ (2.37)

2.1.2.2 Definition of Sound Transmission Loss

Different from previous researches [3, 5, 34, 35] that consider only the incident
and reflected sound pressures, the proposed theoretical formulations are capable
of accurately modeling all the pressure components in the incident field, and
hence all the pressure components are taken into account in the present STL
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calculations. Actually, this is closer to the physical nature of the factual experimental
measurements [36]; thus, the power of incident sound is defined as

Y

1
D 1

2
Re
“

A

p1 � v�
1 dA (2.38)

where the asterisk symbol denotes complex conjugate, v1 D p1/(�1c1) is the local
acoustic velocity, and

p1 D j�1

�
! � U1xk1x � U1yk1y

�
ˆ1 .x; y; 0/

D j�1

�
! � U1xk1x � U1yk1y

�

�
"

2I e�j .k1xxCk1yy/ �
1X

mD1

1X

nD1

�
! � U1xk1x � U1yk1y

�2

!k1z
˛mn'mn .x; y/

#

(2.39)

is the sound pressure in the incident field. Substituting p1 and v1 into (2.38) yields

…1 D �1.!�U1xk1x�U1y k1y/
2

2c1

“

A

jˆ1 .x; y; 0/j2dA

D �1.!�U1xk1x�U1y k1y/
2

2c1

�
“

A

ˇ
ˇ
ˇ̌
ˇ
2Ie�j .k1xxCk1yy/ �

1X

mD1

1X

nD1

�
! � U1xk1x � U1yk1y

�2

!k1z
˛mn'mn .x; y/

ˇ
ˇ
ˇ̌
ˇ

2

dA

D �1.!�U1xk1x�U1y k1y/
2

2c1

�

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

4I 2
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A
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!k1z

�
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mD1
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nD1
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C .!�U1x k1x�U1y k1y/
4

!2k2
1z

1X

mD1

1X

nD1

1X

kD1

1X

lD1

˛mn˛kl

“

A

'mn .x; y/ 'kl .x; y/ dA

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
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(2.40)

In a similar manner, the radiated sound power can be defined as

Y

2
D 1

2
Re
“

A

p2 � v�
2 dA (2.41)

where v2 D p2/(�2c2) is the local acoustic velocity and

p2 D j�2

�
! � U2xk2x � U2yk2y

�
ˆ2 .x; y; 0/

D j�2

�
! � U2xk2x � U2yk2y

�3

!k2z

1X

mD1

1X

nD1

˛mn'mn .x; y/ (2.42)
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is the sound pressure in the transmitted field. Combination of Eqs. (2.41) and (2.42)
and the expression of v2 results in

…2 D �2!
2

2c2

“

A

jˆ2 .x; y; 0/j2dA D �2

�
! � U2xk2x � U2yk2y

�2

2c2

�
“

A

ˇ
ˇ
ˇ̌
ˇ

�
! � U2xk2x � U2yk2y

�2

!k2z

1X
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1X

nD1

˛mn'mn .x; y/
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ˇ
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dA

D �2
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! � U2xk2x � U2yk2y

�2

2c2

�
ˇ
ˇ̌
ˇ
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A
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ˇ
ˇ̌
ˇ
ˇ

(2.43)

The power transmission coefficient can be obtained as


 .'1; �;U 1;U 2/ D …2

…1

(2.44)

which is dependent upon the sound incident angles ('1 and �) and the mean flow
velocities U1 and U2. Finally, the sound transmission loss across the panel, defined
as the inverse of the power transmission coefficient in decibel scale, is given by

STL D 10 log10

�
1




	
(2.45)

2.1.3 Effects of Mean Flow in Incident Field

To gain fundamental insight into the effects of mean flow on the incident side,
the fluid medium on the transmitted side is taken to be at rest. The corresponding
contour plot of refraction angle '2 versus incident angle '1 as well as the STL
versus frequency plots for a series of different Mach numbers (M1, incident side) is
presented below.

The refraction angle '2 is plotted in Fig. 2.3 as a function of incident angle '1 for
selected Mach numbers. When M1 D 0, the refraction angle is equal to the incident
angle '1 (in other words, no refraction occurs), which is attributed to the fact that the
fluid media considered in the present study are identical (i.e., air) on both sides of the
panel. Apart from the case of M1 D 0, the refraction angle is related to the incident
angle in a nonlinear fashion due to the refraction effect of the convected flow
stream [1, 37]. Another noteworthy point is that when M1 > 2, the '2–'1 curves are
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Fig. 2.3 Refraction angle '2 plotted as a function of incident angle '1 for selected values of Mach
number M1 associated with fluid medium on incident side moving parallel to panel; fluid medium
on transmitted side is at rest (i.e., M2 D 0) (With permission from Acoustical Society of America)

divided into two branches: the positive refraction branch and the negative refraction
branch, the gap between them along the '1-axis corresponding to the total reflection.
In the bigger branch (positive refraction), the refraction angle has the same sign
as the incident angle, whereas the reverse holds in the smaller branch (negative
refraction).

It is seen from Fig. 2.3 that total reflection occurs only when the sound is
incident along the upstream direction of the (incident side) mean flow. As previously
mentioned by Ribner [26] and Xin et al. [23], when total reflection occurs, while a
disturbance on the incident side does penetrate through the panel into the transmitted
side, its amplitude attenuates exponentially over a distance on the order of �.
Furthermore, the transmitted sound carries no energy due to the fact that the pressure
and the particle velocity are fully out of phase (i.e., 90ı).

To demonstrate the effects of mean flow, the STL of an infinite aeroelastic panel is
plotted in Fig. 2.4 as a function of incident frequency with incident angle '1 D 60ı
and � D 0ı for different Mach numbers (M1 D 0, 0.4, and 0.8). Similarly, Fig. 2.5
presents the STL versus frequency plots of a finite aeroelastic panel for M1 D 0 and
0.8, with their infinite counterparts included as reference. It can be observed from
these results that the dip related to coincidence resonance shifts noticeably to higher
frequencies as the Mach number (i.e., M1) is increased. This shift is caused mainly
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Fig. 2.4 STL plotted as a function of frequency of an infinite panel immersed in convected fluid for
selected Mach numbers (solid line M1 D 0, dash-dot line M1 D 0.4, and short dash line M1 D 0.8),
when sound is incident with elevation angle '1 D 60 ı and azimuth angle � D 0 ı. The mean flow
on the incident side is completely aligned with the x-direction (Fig. 2.1), while the fluid on the
transmitted side is at rest (i.e., M2 D 0) (With permission from Acoustical Society of America)

by the refraction effect of the mean flow [1, 26, 37], i.e., the factual incident angle
Q'2 in the proximal field of the panel has been significantly altered from its original
angle of '1 by the moving stream on the incident side.

Note also that the factual incident angle Q'2 in the proximal field of the panel
actually is equal to the refraction angle '2 when the fluid medium (i.e., air) on the
incident side is the same as that on the transmitted side. This effect can be explained
by considering the physical origin of the coincidence resonance phenomenon, i.e.,
the resonance effect between the incident sound wave and the bending wave in the
panel when their phases are matched. The coincidence resonance frequency can be
predicted as [23]

fc D c2
1

2�h sin Q'2

r
12� .1 � �2/

E
(2.46)

In the case when the original incident angle '1 D 60ı, one sees from Fig. 2.3 that
the factual incident angle Q'2 (D '2) decreases as M1 is increased; as a result, the
coincidence resonance frequency should also increase, as predicted by Eq. (2.46).

Another observation from Fig. 2.4 is that the coincidence resonance dip divides
the STL plot into two regimes within which the mean flow has opposite effects on
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Fig. 2.5 STL plotted as a function of frequency of a finite panel immersed in convected fluid
for selected Mach numbers (M1 D 0 and M1 D 0.8), when sound is incident with elevation angle
'1 D 60 ı and azimuth angle � D 0 ı. The mean flow on the incident side is completely aligned
with the x-direction (Fig. 2.1), while the fluid on the transmitted side is at rest (i.e., M2 D 0). The
corresponding STL versus frequency plots of an infinite panel are included as reference (With
permission from Acoustical Society of America)

the STL. At frequencies below the coincidence dip, a higher velocity of the mean
flow enhances more significantly the STL value of the aeroelastic panel; in contrast,
at frequencies beyond the coincidence dip, the STL value decreases with increasing
mean low velocity.

In comparison with an infinite panel, the STL versus frequency plot of a finite
panel immersed in convected fluid medium should reflect its modal behavior due
to the boundary condition, which is affirmed by the appearance of dense peaks and
dips in Fig. 2.5. With reference to the counterpart of the infinite panel, the STL plot
of the finite panel exhibits similar tendencies beyond the (1, 1) modal frequency at
approximately 40Hz, with the former setting an asymptotic maximum of the latter.
However, at frequencies below the (1, 1) modal frequency, the tendency is remark-
ably different between the two panels as a result of the boundary effects [3, 5].

The dip associated with the coincidence resonance can also be distinguished from
the STL plot of the finite panel, which agrees well with the dip in the STL plot of
the infinite panel (Fig. 2.5). Moreover, similar to the infinite panel, the presence
of mean flow on the incident side leads to enhanced STL below the coincidence
resonance frequency and diminished STL beyond it. The present result that the STL
increases significantly with increasing Mach number over a broad frequency range
(approximately 40–10,000 Hz) is consistent with previously published results [6, 7,
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Fig. 2.6 Refraction angle '2 plotted as a function of incident angle '1 for selected Mach numbers
(M2) of moving fluid (aligned with x-direction) on transmitted side; fluid medium on incident side
is at rest (i.e., M1 D 0) (With permission from Acoustical Society of America)

17, 18]. The influence of mean flow on the transmission of sound across a panel
can be attributed to the so-called aerodynamic damping effect [38]. Here, the role
played by aerodynamic damping is twofold: as the Mach number is increased, it not
only increases the sound power radiated to the convected fluid but also modifies the
panel stiffness (via convected fluid loading), leading to an overall alteration of the
panel impedance [7, 17].

2.1.4 Effects of Mean Flow in Transmitted Field

To evaluate the effects of mean flow on the transmitted side of the aeroelastic panel,
the fluid on the incident side is set at rest (i.e., M1 D 0), while that on the transmitted
side travels along the x-direction with Mach number M2 (Fig. 2.1). In such cases, the
predicted dependence of the refraction angle '2 upon M2 and the incident angle '1

is presented in Fig. 2.6 in the form of contour plots. The presence of mean flow on
the transmitted side has an influence completely opposite to that shown in Fig. 2.3
when M1 ¤ 0 but M2 D 0, as if the two angles '1 and '2 are reversed. Similar to
Fig. 2.3, the contour plots of Fig. 2.6 are decomposed into two branches (i.e., the
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Fig. 2.7 STL versus frequency plots of an infinite panel for sound incident with elevation angle
'1 D 60 ı and azimuth angle � D 0 ı. The mean flow on the transmitted side is completely aligned
with the x-direction (three cases: solid line M2 D 0, dash-dot line M2 D 0.4, and short dash line
M2 D 0.8), while the fluid on the incident side is at rest (M1 D 0) (With permission from Acoustical
Society of America)

positive refraction branch and the negative refraction branch) with respect to the
critical Mach number value of M2 D 2. Again, the gap along the '1-axis is the region
of total reflection, where the wavenumber has an imaginary component in the z-
direction [27]. As schematically demonstrated in the inset of Fig. 2.6, the moving
stream on the transmitted side exerts a significant refraction effect on the penetration
of sound, just as the incident side moving stream does, which is attributable to the
transfer effect of adjacent fluid particles in the moving stream. Note also that a
normal incident sound penetrates straight through the panel into the other side. In
other words, the refraction angle becomes zero when the incident angle is zero,
whether the fluid on the transmitted (or incident) side is stationary or moving.

For a given incident angle, the refraction angle '2 increases with increasing Mach
number M2 until total reflection occurs. When total reflection occurs (corresponding
to the gap along the '1-axis between the two branches in Fig. 2.6), there is no
energy flux along with the penetrated disturbance as stated previously. Interestingly,
a sufficiently large incident angle together with a large Mach number generates
a negative refraction angle disturbance, causing the negative refraction effect
(corresponding to the smaller branch in Fig. 2.6).

Figure 2.7 plots the STL as a function of frequency for an infinite aeroelastic
panel immersed in static fluid on the incident side and moving fluid on the
transmitted side, with elevation angle '1 D 60ı and azimuth angle � D 0ı selected
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Fig. 2.8 STL versus frequency plots of a simply supported finite panel for sound incident with
elevation angle '1 D 60 ı and azimuth angle � D 0 ı. The mean flow on the transmitted side is
completely aligned with the x-direction (two cases: M2 D 0 and M2 D 0.8), while the fluid on the
incident side is at rest (M1 D 0). For comparison, the corresponding plots for an infinite panel are
included (With permission from Acoustical Society of America)

for the incident sound and three different Mach numbers (M2 D 0, 0.4, and 0.8). The
corresponding STL versus frequency plots of a finite aeroelastic panel are presented
in Fig. 2.8.

Completely different from the tendencies shown in Fig. 2.4, there is nearly no
change of the coincidence dip as Mach number M2 is varied, while the STL increases
dramatically in value over the whole frequency regime considered with increasing
M2. The remarkable discrepancy between Figs. 2.4 and 2.7 suggests that the effects
of incident side fluid flow on sound transmission are significantly different from
those of fluid flow on the transmitted side.

As aforementioned, the dense peaks and dips appearing in the STL versus
frequency plots of Fig. 2.8 reflect the modal behavior of a simply supported finite
panel; for comparison, the corresponding STL plots of an infinite panel are included
in Fig. 2.8. Analogous to Fig. 2.5, the STL curves for the two cases (i.e., infinite
panel and finite panel) are in a global agreement above the (1,1) panel resonance
frequency, with the infinite panel setting upper bounds for the finite bounded panel.
The boundary constraint effect of the finite panel causes the discrepancy between
the two cases below the (1,1) panel resonance frequency. Note also that, despite
the presence of dense peaks and dips, the coincidence dip associated with the finite
panel coincides with its counterpart of the infinite one. The pronounced increase of
STL with increasing M2 in the finite case is in accordance with the conclusion drawn
previously for the infinite case.
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Fig. 2.9 Refraction angle '2 plotted as a function of incident angle '1 for the case when the
moving fluid medium on the incident side is aligned with ˇ1 D 45 ı from the x-direction and that on
the transmitted side has ˇ2 D 45 ı. The two streams have the same Mach numbers, i.e., M1 D M2,
but move in opposite directions. The labeled numbers denote the values of M1 and absolute values
of M2: for example, the curve labeled by 1.6 represents the case of M1 D 1.6 and M2 D �1.6 (With
permission from Acoustical Society of America)

2.1.5 Effects of Incident Elevation Angle in the Presence
of Mean Flow on Both Incident Side and Transmitted
Side

In terms of angular contour plots as well as STL versus frequency plots, the above
two sections have addressed the influence of mean flow residing in either the
incident or transmitted side on the process of sound tunneling through an aeroelastic
panel. To explore the physical nature of mean flow effects in more general cases,
we consider next the case when the fluid media on both sides of an infinite panel
are moving. The moving stream on the incident side is aligned with the direction
of ˇ1 D 45ı from the x-direction, while that on the transmitted side has ˇ2 D 45ı
(Fig. 2.1a). The predicted contour plots of refraction angle are shown in Fig. 2.9,
where the labeled numbers denote the absolute Mach number values of the two
flows; for simplicity, it is assumed that the two streams have the same Mach number
but flow in opposite directions.



2.1 Finite Single-Leaf Aeroelastic Plate 107

Fig. 2.10 STL plotted as a function of frequency for infinite and finite panels immersed in
convected fluids, when the sound is incident with different elevation angles ('1 D 30ı and 60ı)
at the same azimuth angle � D 0ı. The mean flow on the incident side is specified by M1 D 0.4 and
ˇ1 D 45ı, while that on the transmitted side by M2 D �0.4 and ˇ2 D 45ı (With permission from
Acoustical Society of America)

It can be observed that the general trend exhibited by the curves of Fig. 2.9 is
similar to that shown in Fig. 2.3 for the case when the fluid on the incident side
is moving (M1 ¤ 0) and that on the transmitted side is at rest (M2 D 0). However,
the critical Mach number for the occurrence of negative refraction (beyond which
the contour curves break into two branches) changes from 2 in Fig. 2.3 to

p
2 in

Fig. 2.9. This is attributed to the presence of fluid flow on both sides of the infinite
panel, which also leads to the significant alterations of the contour plots in Figs. 2.3
and 2.9. Moreover, when the directions of the two flows are reversed with respect
to the case shown in Fig. 2.9, it has been established that the resulting contour plots
are analogous to those of Fig. 2.6.

With M1 D 0.4 and ˇ1 D 45ı for flow on the incident side and M2 D � 0.4 and
ˇ2 D 45ı for flow on the transmitted side, Fig. 2.10 plots the STL as a function of
frequency for both the infinite and finite bounded panels when the sound is incident
in the downstream direction ('1 D 30ı and 60ı). The corresponding plots when the
sound is incident in the upstream direction ('1 D �30ı and �60ı) are presented in
Fig. 2.11.

The overall trends of the curves in Fig. 2.11 are similar to those of Fig. 2.10,
implying that the intrinsic physical nature is not changed when sound is incident
upstream. For example, the coincidence dip is shifted to a significantly lower
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Fig. 2.11 STL plotted as a function of frequency for infinite and finite panels immersed in
convected fluids, when the sound is incident with different elevation angles ('1 D �30ı and �60ı)
at the same azimuth angle � D 0 ı. The mean flow on the incident side is specified by M1 D 0.4
and ˇ1 D 45 ı, while that on the transmitted side by M2 D �0.4 and ˇ2 D 45 ı (With permission
from Acoustical Society of America)

frequency when the incident angle is increased from '1 D 30ı to 60ı in Fig. 2.10,
and the same thing occurs in Fig. 2.11 upon changing '1 from �30ı to �60ı.
However, the coincidence frequencies in Fig. 2.11 are considerably lower than their
counterparts in Fig. 2.10, reflecting the difference between the upstream incident
sound and the downstream incident sound. Moreover, the difference in STL values
between the two cases of '1 D 30ı and 60ı in the lower frequency range below the
coincidence dip is enlarged when the incident sound is changed from downstream
in Fig. 2.10 to upstream in Fig. 2.11.

2.1.6 Conclusions

A theoretical model is proposed for the vibroacoustic behavior of a finite aeroelastic
rectangular panel, which is immersed in convected fluids on both sides and simply
embedded in an infinite acoustic baffle. The model accounts for the aeroelastic
coupling of the convected fluid disturbance induced by panel motion by employing
the convected wave equation for inviscid irrotational fluid flow and the displacement
continuity condition at fluid-panel interfaces. Different from previous studies,
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the general case of sound transmission across a finite panel enveloped by two-
dimensional fluid flows (aligned along an arbitrary direction parallel to the panel
surface) on both sides is theoretically formulated.

The influence of the incident side mean flow upon sound penetration is sig-
nificantly different from that of the radiating (transmitted) side mean flow. Two
branches are found in the contour plots of the refraction angle versus incident
angle, corresponding to positive refraction and negative refraction, respectively.
The contour plot for the case when the mean flow is on the transmitted side is
just a reverse of that when the mean flow is on the incident side. The aerodynamic
damping effects on the transmission of sound for both cases are well captured by
plotting the STL as a function of frequency for varying Mach numbers. However,
the frequency of coincidence dip differs significantly between the two cases: as the
Mach number is increased, the coincidence dip frequency increases when the flow
is on the incident side but remains unchanged when in the flow is on the radiating
side.

In the most general case when the fluids on both sides of the panel are moving
with mean flow, the predicted contour plots of the refraction angle versus incident
angle are significantly different from those when the fluid on one side of the panel is
moving and that on the other side is at rest. Furthermore, pronounced discrepancies
in panel vibroacoustic behavior are found when the incident sound is changed from
upstream to downstream.

2.2 Infinite Double-Leaf Aeroelastic Plates

2.2.1 Introduction

The reduction of sound transmission into aircraft interiors is a classical structural
acoustic topic of paramount importance for the successful development of super-
sonic (or high subsonic) civil and military aircrafts [1–7, 12, 18, 39–47]. In general,
the construction of such aircrafts is made by thin-walled structural elements. For
example, double-leaf aeroelastic plates with a dissipative layer placed in between are
commonly used for constructing the aircraft cabin fuselage [12, 24, 25, 39, 41–43,
46, 48, 49]. From the vibroacoustic point of view, the use of double-leaf partitions
provides much more effective noise insulation over a wide frequency range than
single-leaf plates do. The air cavity formed in between the outer panel (i.e., the
source panel) and the trim panel (i.e., the radiating panel) is usually filled with
high-density fiberglass blankets to improve thermal insulation and noise attenuation.
However, the use of fiberglass blankets leads to increase of weight and thus offsets
the above benefits to some extent.

Turbulent boundary layer (TBL)-induced noise and engine exhaust noise have
been recognized as the primary sources of the interior noise of aircraft cabins
[6, 7, 12, 14, 22, 25, 39, 41, 42, 45, 50–52]. A great deal of work is available



110 2 Vibroacoustics of Uniform Structures in Mean Flow

concerning the influences of convected fluid loaded on aircraft skin plates. For
example, the acoustic power radiated by thin flexible panels subjected to TBL wall-
pressure fluctuations was estimated by Davies [53] using a modal analysis method,
in which the light fluid loading effects were considered. Also utilizing the method
of modal expansion, Dowell [40] theoretically analyzed the transmission of TBL-
induced noise through a flexible plate into a closed cavity by accounting for the
effects of nonlinear plate stiffness and interaction between the plate and the external
airflow. On the basis of the variational method for the vibration of a plate, a set
of formulae for sound radiation from rectangular baffled plates having arbitrary
boundary conditions were developed by Berry et al. [54]. This was later extended
by Atalla and Nicolas [18] to study inviscid uniform subsonic flow, where the
effects of the fluid flow were explicitly shown in terms of added mass and radiation
resistance to avoid integration in the complex domain. Subsequently, by employing
a suitable polynomial function to describe the displacement of a fluid-loaded plate
having elastic boundary conditions, Berry [55] developed a new formulation for
the vibration and sound radiation of the plate. Based upon the radiation of sound
from a single, flat, elastic plate under TBL excitation, Graham [24] proposed a
model to address the design problems associated with aircraft cabins, although the
effect of mean flow was not taken in account. Graham [25] then developed an
extended model consisting of a boundary layer-excited flat plate with its interior
covered by two dissipative layers to simulate a factual aircraft cabin plate and found
that the presence of the dissipative layers greatly reduces the radiation efficiency
compared to a bare plate. A coupled FEM-BEM (finite element method-boundary
element method) approach was adopted by Sgard et al. [15] to investigate the
effects of the mean flow upon the vibroacoustic behavior of a flat plate subjected
to a point force, where it was assumed that the mean flow remains undisturbed
by the vibrating plate. The formulation [15] can explicitly show the effects of
the mean flow in terms of added mass, damping, and stiffness, as done by Atalla
and Nicolas [18]. The dynamic and acoustic responses of a finite baffled plate
excited by TBL were investigated by Wu and Maestrello [56], in which the effect of
structural nonlinearities induced by in-plane forces was considered. Recently, Clark
and Frampton performed systematic studies on the aeroelastic structural response
of a single-leaf panel excited by TBL noise and coupled with full potential flow
aerodynamics [2, 4, 6–8, 10, 11]. The model accounting for the aerodynamic loading
of panels and linearized potential flow aerodynamics was firstly developed in Ref.
[4], and further analyses with the TBL-induced noise disturbance taken into account
were presented in Refs. [6, 8, 10, 17]. In addition, numerous numerical, theoretical,
and experimental investigations have been devoted to studying the transmission of
airborne sound across double-panel partitions immersed in static fluid [5, 13, 21, 34,
35, 41, 48, 49, 57–68].

Most of the aforementioned investigations, however, focus either on the TBL-
induced noise transmission or the transmission of sound from static fluid (irrespec-
tive of mean flow) or on the effects of the mean flow on structural stability (i.e.,
panel flutter, self-excited vibrations; see, e.g., Crighton [69] for a list of references).
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Only a few studies [1, 7] have specifically considered the influence of the mean
flow on external noise transmission, although this is of particular importance for
studying jet-noise transmission into an aircraft. To squarely address this issue, we
develop in the present study an aero-acoustic-elastic theoretical model to quantify
the influence of external mean flow on sound transmission through a double-leaf
aeroelastic plate. This chapter is organized as follows. First, an aero-acoustic-elastic
theoretical model to emulate the transmission of jet-power or propeller-induced
noise into cabin interior is presented for the sound transmission loss (STL), in
which the plate dynamics and fluid-structure coupling are accounted for. Second, the
physical mechanisms associated with the sound transmission process are discussed,
and a set of simple closed-form formulae for the associated natural frequencies
are derived from physical principles independent of the theoretical model. These
formulae are then used to validate the model predictions, as no suitable experimental
or numerical or theoretical results exist in the open literature that can be used to
check the validity of the present model. The effects of a few relevant parameters
(e.g., Mach number, direction of mean flow, sound incidence angle, panel curvature,
and cabin internal pressure) on the STL are systematically explored. This chapter is
finished with concluding remarks drawn from the obtained results.

2.2.2 Statement of the Problem

To mimic the transmission of engine exhaust noise into the interior of an airplane
cabin under typical cruise conditions, a uniform plane sound wave varying har-
monically in time is assumed to transmit through a double-leaf aeroelastic plate
from the external mean flow side to the interior static fluid side. As shown in
Fig. 2.12, the considered system consists of two infinite parallel flexural plates made
of homogenous and isotropic materials and is immersed in inviscid, irrotational
fluid media. The upper, middle, and bottom fluid media separated by the two plates
occupy the spaces of z < 0, h1 < z < H C h1, and z > H C h1 C h2, respectively, and
are characterized by (�1, c1), (�2, c2), and (�3, c3) in terms of mass density and
sound speed, respectively. Here, H is the depth of the air gap, and h1 and h2 are
the thicknesses of the two panels. The mean fluid flow with uniform speed v is
assumed to move along the x-axis direction. The incident sound wave transmitting
from the external mean flow side is characterized by elevation angle '1 and azimuth
angle ˇ with respect to the defined coordinate system (see Fig. 2.12). The incident
sound is partially reflected and partially transmitted through the structure via the
upper plate, middle fluid medium, and bottom plate into the static fluid medium
side. The double-layer plate is modeled initially as a flat double-leaf aeroelastic
partition, with both the external mean flow and the aeroelastic coupling accounted
for. Subsequently, to better emulate the curved skin of an aircraft fuselage and the
real process of jet-noise penetration into aircraft interior, the effects of the panel
curvature and cabin internal pressurization on sound transmission are quantified.
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Fig. 2.12 Schematic illustration of sound transmission through a double-leaf aeroelastic plate in
the presence of external mean flow: (a) side view and (b) global view

Several simplifying assumptions are adopted in the present analysis of the system
shown in Fig. 2.12: (1) The two plates are modeled by the classical Kirchhoff thin
plate theory. (2) The fluid media are inviscid and irrotational [2, 4, 6–8, 10, 11, 15,
18, 56]. (3) The plate surface adjacent to the mean flow is sufficiently smooth so
that it is appropriate to represent the fluid-plate interface by the streamline of the
fluid flow, i.e., the total flow is tangential to the acoustically deformed boundary
[1, 31]. Note that several previous studies [26, 32, 70] also considered the problem
of sound reflection and transmission associated with a moving fluid medium but
without accounting for the interaction with a thin plate.

2.2.3 Formulation of Plate Dynamics

As shown in Fig. 2.12, the acoustic field is divided into three regimes by the two
parallel flat plates which, without loss of generality, are assumed below to have the
same thickness. The corresponding sound pressures for the incident field, the middle
field, and the transmission field (denoted by indices 1, 2, and 3, respectively) can be
expressed as

p1 D Pi e
i!t�i.k1xxCk1yyCk1zz/ C

X

n

ˇnei!t�i.k1xxCk1yy�k1zz/ (2.47)

p2 D
X

n

"nei!t�i.k2xxCk2yyCk2zz/ C
X

n

�nei!t�i.k2xxCk2yy�k2zz/ (2.48)

p3 D
X

n

�nei!t�i.k3xxCk3yyCk3zz/ (2.49)

The summation index n is introduced in Eqs. (2.47), (2.48), and (2.49) as a
consequence of the modal decomposition of the pressure p2 onto the standing-wave
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modes of the cavity, which justifies through the continuity equations [see Eqs. (2.63)
and (2.64)] the present modal formulation for the reflected and the transmitted
pressure amplitudes. Note however that this index does not appear explicitly through
the wavenumber components in the argument of the exponential factors. The
wavenumber components in Eqs. (2.47)–(2.49) can be written as

k1x D k1 cos '1 cos ˇ; k1y D k1 cos '1 sin ˇ; k1z D k1 sin '1 (2.50)

k2x D k2 cos '2 cos ˇ; k2y D k2 cos '2 sin ˇ; k2z D k2 sin '2 (2.51)

k3x D k3 cos '3 cos ˇ; k3y D k3 cos '3 sin ˇ; k3z D k3 sin '3 (2.52)

Let ct be the trace wave speed in the plate and the trace wavenumber be given by
kt D !/ct D 2�/	t, where 	t is the wavelength of the panel trace wave. Accordingly,
the transverse deflections of the two plates induced by the incident sound can be
expressed as

w1 .x; yI t/ D w10ei!t�i .kt cos ˇ/x�i .kt sin ˇ/y (2.53)

w2 .x; yI t/ D w20ei!t�i .kt cos ˇ/x�i .kt sin ˇ/y (2.54)

In the incident acoustic field, there exists a uniform flow of velocity V tangential
to the acoustically deformed boundary (i.e., the fluid-plate interface). The convected
wave equation for the pressure in the fluid is thence given by [1]

D2p1

Dt2
D
�

@

@t
C V � r

	2

p1 D c2
1r2p1 (2.55)

As stated above, for simplicity, the mean flow is aligned along the x-axis on the
fluid-plate interface. Consequently, Eq. (2.55) can be simplified as

�
@

@t
C v � @

@x

	2

p D c2
1r2p1 (2.56)

Substituting Eq. (2.47) into Eq. (2.56), one obtains the wavenumber in the
flowing fluid as

k1 D k�
1

.1 C M cos '1 cos ˇ/
(2.57)

where k*
1 D !/c1 is the acoustic wavenumber in the fluid at rest and M D v/c1 is the

Mach number of the mean flow.
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Different from the incident field coupled with a mean flow, the fluid medium
in between the two plates and that in the transmitted field are both static. In such
cases, the propagation of sound obeys the classical wave equation, so that the
wavenumbers in the two fluid media are given by

k2 D !

c2

; k3 D !

c3

(2.58)

In order for the sound waves to “fit” at the boundary (i.e., the plate), the trace
wavelengths must match [1], namely,

k1x D kt cos ˇ D k2x D kt cos ˇ D k3x (2.59)

k1y D kt sin ˇ D k2y D kt sin ˇ D k3y (2.60)

Incorporating Eqs. (2.50)–(2.52) into Eqs. (2.59) and (2.60), one obtains the
directions of sound propagation in the middle and the transmitted fluid media as

'2 D arccos

�
c2

c1

cos '1

1 C M cos '1 cos ˇ

	
(2.61)

'3 D arccos

�
c3

c1

cos '1

1 C M cos '1 cos ˇ

	
(2.62)

which also describe the refraction laws for sound transmission from one medium to
another. Note that '1 D '2 D '3 and c1 D c2 D c3 in the absence of the mean flow
(M D 0). Thus, to refract the wave at the plate is one noticeable effect of the mean
flow [1]. In fact, in the presence of the mean flow, the wave would be refracted (and
partially reflected) even if the plates were not present.

2.2.4 Consideration of Fluid-Structure Coupling

To determine the unknown parameters appearing in the above equations, supple-
mentary boundary conditions are needed, i.e., the displacement continuity condition
between the plate particle and the adjacent fluid particle and the driving relation
between the incident sound and the plate dynamic response. In general, the continu-
ity condition for the fluid-structure coupling is described through the velocity of the
particles pertaining separately to the fluid medium and the solid medium when the
fluid is at rest. In the case of a moving flow, however, the transfer effect of the fluid
motion needs to be considered [31], and hence the primary particle displacement
continuity should be applied, as described below.
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2.2.4.1 Displacement Continuity Condition

Let x	1 and x	2 denote separately the displacements of the fluid particles in the
incident field and the middle field, both adjacent to the upper panel, and let x	3 and
x	4 denote separately the displacements of the fluid particles in the middle field and
the transmitted field, both adjacent to the bottom panel. These displacements should
satisfy the Navier-Stokes equation for an inviscid and irrotational fluid, namely,

D2x	1

Dt2
D � 1

�1

@p1

@z

ˇ̌
ˇ
ˇ
zD0

;
D2x	2

Dt2
D � 1

�2

@p2

@z

ˇ̌
ˇ
ˇ
zDh1

(2.63)

D2x	3

Dt2
D � 1

�2

@p2

@z

ˇ
ˇ
ˇ
ˇ
zDHCh1

;
D2x	4

Dt2
D � 1

�3

@p3

@z

ˇ
ˇ
ˇ
ˇ
zDHCh1Ch2

(2.64)

For harmonic sound wave excitation, the fluid particle displacements take the
form of

x	j D x	j 0e
i!t�i.k1xxCk1yy/ .j D 1; 2; 3; 4/ (2.65)

Substitution of Eqs. (2.47)–(2.49) and (2.65) into Eqs. (2.63) and (2.64) gives the
amplitudes of the fluid particle displacements as

x	10 D � ik1z

�1

 

Pi �
X

n

ˇn

!

.! � vk1x/2
(2.66)

x	20 D �
ik2z

 
X

n

"n �
X

n

�n

!

�2!2
(2.67)

x	30 D � ik2z

�2!2

 
X

n

"ne�ik2zH �
X

n

�neik2zH

!

(2.68)

x	40 D � ik3z

�3!2

X

n

�ne�ik3zH (2.69)

In view of the wavenumber relationships, Eqs. (2.59) and (2.60), and the dynamic
deflections of the two plates, Eqs. (2.53) and (2.54), the continuity condition of the
particle displacements is given by

x	10 D w10 D x	20; and x	30 D w20 D x	40 (2.70)
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Substitution of Eqs. (2.53) and (2.54) and (2.66)–(2.69) into (2.70) leads to

Pi �
X

n

ˇn D �1c1 sin '2

�2c2 sin '1

1

1 C M cos '1 cos ˇ

 
X

n

"n �
X

n

�n

!

(2.71)

X

n

"n �
X

n

�n D �2c2

sin '2

Pw10 (2.72)

X

n

"ne�ik2zH �
X

n

�neik2zH D �2c2 sin '3

�3c3 sin '2

X

n

�ne�ik3zH (2.73)

X

n

�ne�ik3zH D �3c3

sin '3

Pw20 (2.74)

where Pw10 D i!w10 and Pw20 D i!w20.

2.2.4.2 Driving Relations

The driving relations for the pressure difference across the panel and the panel
vibration response can be described as

Pi C
X

n

ˇn �
X

n

"n �
X

n

�n D Zp1 Pw10 (2.75)

X

n

"n C
X

n

�n �
X

n

�n D Zp2 Pw20 (2.76)

Detailed derivations of Eqs. (2.75)–(2.76) are given in Sect. 2.2.6 for both the flat
and curved aeroelastic plates.

For simplicity, the equivalent characteristic impedances for the three separate
fluid media associated with the transmission of sound across the double-leaf plate
of Fig. 2.12 are defined as

Z1 D �1c1

sin '1 .1 C M cos '1 cos ˇ/
(2.77)

Z2 D �2c2

sin '2

(2.78)

Z3 D �3c3

sin '3

(2.79)

It is readily seen that in addition to being strongly dependent on the intrinsic
property of the fluid (i.e., density and sound speed), the equivalent characteristic
impedances of the fluid media are also determined by the sound incident angle and
flow velocity. Actually, these characteristic impedances reflect the close relationship
between the sound pressure and the fluid particle velocity.
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2.2.5 Definition of Sound Transmission Loss

The transmissivity 
('1, ˇ) is defined to quantify the sound transmission through
the double-leaf plate [1] as


 .'1; ˇ/ D �1c1

�2c2

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

X

n

�n

Pi

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

2

(2.80)

where

PiX

n

�n

D 1

4Z2Z3 cos .k2zH/

2

4

�
Z1Zp2 C Zp1Zp2

� �
e�i .�k2zCk3z/H � e�i .k2zCk3z/H

�

CZ2Zp2

�
e�i .�k2zCk3z/H C e�i .k2zCk3z/H

�C 2Z2Z3 cos .k2zH/

C2iZ3Zp1 sin .k2zH/ C 2iZ1Z3 sin .k2zH/ C 2Z1Z2e�ik3zH

3

5 (2.81)

Accordingly, the sound transmission loss is defined as a decibel scale of the
transmissivity:

STL D �10 log10 
 .'1; ˇ/ (2.82)

2.2.6 Characteristic Impedance of an Infinite Plate

2.2.6.1 Infinite Flat Plate

Consider an infinite plate immersed in a fluid medium and subjected to a harmonic
incident sound excitation on one side. The governing equation for the deflection of
the plate is given by

Dr4w C m
@2w

@t2
D pei!t�i.k2xxCk2yy/ (2.83)

Note that, in the present study, the structural loss factor � is accounted for by
introducing the complex bending stiffness D [3, 5] as

D D Eh3 .1 C j�/

12 .1 � v2/
(2.84)
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Fig. 2.13 Shallow
cylindrical panel under
biaxial membrane stresses

Since the incident sound is harmonic, the deflection of the plate is assumed to
take the form of

w D w0ei!t�i Œ.kt cos ˇ/xC.kt sin ˇ/y� (2.85)

where w0 is determined by substituting (2.85) into (2.83) as

w0 D p

D
�
k2

2x C k2
2y

2 � m!2

(2.86)

Accordingly, the panel impedance that determines the relation between the sound
pressure and the particle velocity is given by

Zp D p

Pw D p

i!w0

D im!

�
1 � D!2

mc4
2

cos4'2

	
(2.87)

2.2.6.2 Infinite Curved Plate with Biaxial Membrane Stresses

In reality, the aircraft fuselage skin is a typical shallow cylindrical panel structure
with internal pressurization during cruise condition. To better emulate the actual
fuselage skin and the real process of jet-noise penetration into the aircraft interior,
the Donnell-Mushtari-Vlasov shallow cylindrical shell theory [1, 71] is adopted.
The geometry and coordinates of a shallow cylindrical panel of thickness h under
biaxial membrane stresses (i.e., Nx in the x-direction and Ny in the y-direction)
are schematically illustrated in Fig. 2.13. The governing equation for its lateral
deformation w can be expressed as
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(2.88)

After a few algebraic manipulations similar to those leading to Eq. (2.86), one
obtains

w0 D p �
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(2.89)

which, together with the definition of the panel impedance, leads to
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2.2.7 Physical Interpretation for the Appearance of STL Peaks
and Dips

Figure 2.14 plots the predicted STL as a function of incident sound frequency for
Mach number M D 0.05, with the sound incidence elevation angle fixed at '1 D
30ı and the azimuth angle at ˇ D 0ı (i.e., completely aligned with the downstream
direction). In Fig. 2.14, four physical phenomena (i.e., mass-air-mass resonance,
standing-wave attenuation, standing-wave resonance, and coincidence resonance)
associated with the transmission of sound from the external mean flow side across
the double-leaf partition can be clearly identified, which are marked with symbols
in the frequency range considered (from 0 to 10,000 Hz). To predict the inherent
frequencies associated with these phenomena in the presence of mean flow, a set
of simple closed-form formulae are derived based purely on physical principles
(see Appendix). Since the derivation of these formulae is independent of the aero-
acoustic-elastic theoretical model presented in Sects. 2.2.3–2.2.6, they may be used
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Fig. 2.14 Predicted STL as a function of frequency for mean flow speed M D 0.05, sound incident
elevation angle '1 D 30 ı, and azimuth angle ˇ D 0 ı; � mass-air-mass resonance, � standing-
wave attenuation, � standing-wave resonance, � coincidence resonance

to check the validity of the model predictions as no other suitable experimental
or theoretical work exists. In Fig. 2.14, the Mach number is selected as M D 0.05
only because, at this small Mach number, all the four physical phenomena can be
clearly identified in the considered frequency range of 0–10,000 Hz. Of course, the
present model is suitable for handling higher Mach number cases (e.g., M D 0.4,
0.8, and 1.2 as shown in Figs. 2.16, 2.17, 2.19, and 2.20), although the coincidence
resonance occurs beyond 10,000 Hz at large Mach numbers when the sound is
incident downstream. Furthermore, when the sound is incident upstream, the three
phenomena (i.e., mass-air-mass resonance, standing-wave attenuation, standing-
wave resonance) all disappear, leaving only the coincidence dip in the STL curve
(see Fig. 2.18).

As shown in Fig. 2.14, the first dip is associated with the mass-air-mass resonance
that is particularly marked by the filled circle. The mass-air-mass resonance in the
absence of the mean flow usually occurs when the two panels move in opposite
phases [3, 5, 34, 59, 65], with the air gap behaving like an elastic spring. With
the influence of the mean flow accounted for, the frequency of the mass-air-mass
resonance is (see Appendix for detailed derivations)

f˛ D 1

2� sin '2

s
�2c2

2

H

.m1 C m2/

m1m2

(2.91)
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In view of the expression for '2 in Eq. (2.61), the above relation indicates that
f˛ is dependent of the Mach number M as well as sound incidence angles '1 and ˇ,
which is different from that of a double-leaf plate immersed in static fluid.

The second phenomenon relates to the three peaks on the STL versus frequency
curve (marked by the inverted and filled triangle � in Fig. 2.14), corresponding sep-
arately to the first-order, second-order, and third-order standing-wave attenuations.
Wave attenuation occurs when the distance difference between the routes that the
two intervening waves pass through is the odd number of the one-quarter wavelength
of the incident sound. Thus, the frequencies for these standing-wave attenuations are
given by (Appendix)

fp;n D .2n � 1/ c2

4H sin '2

; .n D 1; 2; 3 : : : / (2.92)

which are again dependent upon the Mach number and the sound incidence angles.
When standing-wave attenuation occurs, the destructive interference between the
positive- and negative-going waves causes the wave amplitude to significantly
decrease before the sound is transmitted across the partition, resulting in maximum
sound reduction.

In contrast to the standing-wave attenuation, the third phenomenon (i.e., the
standing-wave resonance) occurs when the distance difference between the routes
that the two intervening waves pass through is the multiple of the half wavelength
of the incidence sound (denoted by the filled triangle � in Fig. 2.14). In such
circumstances, the constructive interference of the positive- and negative-going
waves leads to an enhanced sound transmission through the partition. The standing-
wave resonance as a result of the enhanced effect occurs at the following frequencies
(Appendix):

fd;n D nc2

2H sin '2

; .n D 1; 2; 3 : : : / (2.93)

The fourth phenomenon (i.e., the coincidence resonance) occurs when the
wavelength of the flexural bending wave in the panel matches the trace wavelength
of the incidence sound. The corresponding dip is marked in Fig. 2.14 by the filled
diamond �. Due to the influence of the mean flow, the resonance frequency differs
from that in the static fluid case, given by (Appendix)

fc D c2
2

2�hcos2'2

r
12� .1 � v2/

E
(2.94)

In the absence of mean flow (M D 0), according to Eq. (2.61), the angle '2 is
equal to the incident angle '1 for the case considered here (i.e., c1 D c2, both panels
immersed in air). Consequently, in this limiting case (static fluid), the frequencies
for the above four phenomena are simply obtained by replacing '2 with '1 in Eqs.
(2.91), (2.92), (2.93), and (2.94).
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Table 2.1 Comparison between theoretical model predictions and simple closed-form formulae
for STL peaks and dips (M D 0.05, '1 D 30 ı, ˇ D 0 ı)

Mass-air-mass
resonance f˛ (Hz)

Standing-wave
attenuation fp,n (Hz)

Standing-wave
resonance fd,n (Hz)

Coincidence
resonance fc (Hz)

Theory Eq. (2.91) Theory Eq. (2.92) Theory Eq. (2.93) Theory Eq. (2.94)
227.73 231.69 1922.2 1922.2 3844.3 3844.3 8714.9 8726.2

5766.5 5766.5 7720.5 7688.6
9610.8 9610.8 11533 11533

The existence of the four distinct acoustic phenomena influences significantly
the shape of the STL versus frequency curves, as evidenced by the intense peaks
and dips appearing in Fig. 2.14. The frequencies of the four phenomena predicted
from the theoretical model, i.e., Eqs. (2.47), (2.48), (2.49), (2.50), (2.51), (2.52),
(2.53), (2.54), (2.55), (2.56), (2.57), (2.58), (2.59), (2.60), (2.61), (2.62), (2.63),
(2.64), (2.65), (2.66), (2.67), (2.68), (2.69), (2.70), (2.71), (2.72), (2.73), (2.74),
(2.75), (2.76), (2.77), (2.78), (2.79), (2.80), (2.81), (2.82), (2.83), (2.84), (2.85),
(2.86), and (2.87), are compared in Table 2.1 with the closed-form formulae, i.e.,
Eqs. (2.91), (2.92), (2.93), and (2.94). Excellent agreement is achieved, which in
a way validates the theoretical model since the closed-form formulae are derived
completely independent of the model. Of course, it would be more desirable
to validate the present model predictions with other theories or experimental
measurements, but, unfortunately, none exists in the open literature.

2.2.8 Effects of Mach Number

As discussed in the previous section, all the four acoustic phenomena associated
with the STL peaks and dips depend on the Mach number of the mean fluid flow. It
is thus expected that the Mach number plays an important role in the transmission
process of sound through a double-leaf partition. Two typical cases for sound
incidence in the downstream direction and in the upstream direction, respectively,
are studied below to explore further the Mach number influence.

2.2.8.1 Sound Incidence Along the Downstream Direction

Consider first the case of sound incidence having an elevation angle of '1 D 30ı and
an azimuth angle of ˇ D 45ı, with its wave vector component in the downstream
direction being positive. Figure 2.15 presents the predicted STL versus frequency
curves for selected Mach numbers, M D 0, 0.4, 0.8, and 1.2. It is seen from Fig. 2.15
that changes in the Mach number lead to noticeable shifts of the STL curves: as
the Mach number is increased, the STL peaks and dips are all shifted to lower
frequencies, resulting in an increase of the STL value over a relatively broad
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Fig. 2.15 Predicted STL plotted as a function of frequency for selected Mach numbers with sound
incidence elevation angle '1 D 30 ı and azimuth angle ˇ D 45 ı

frequency range. While the noticeable decrease of the STL peaks and dips can be
attributed to the added-mass effect of the convected fluid loading, the increase of
the STL value in the frequency range considered agrees well with existing results
[6, 7]. One may expect that the STL value corresponding to the peaks and dips
should also increase as the Mach number is increased, because the aerodynamic
damping effect increases when the convected flow becomes more turbulent [7].
However, the increase of the STL value related to the peaks and dips is not as
remarkable as anticipated (Fig. 2.15). This may be attributed to the fact that the
present study assumes irrotational, inviscid potential flow, which is much different
from the turbulent boundary layer considered by Frampton and Clark [7]. Another
possible reason may be that as the Mach number is increased, the complex fluid-
structure coupling effects overwhelm the aerodynamic damping effect when the STL
peaks and dips move considerably away from their original locations.

By extracting the frequencies associated with the STL peaks and dips for different
Mach numbers, the dependence of these frequencies on the Mach number is
obtained, as shown in Fig. 2.16a–d using different symbols (e.g., hollow circles,
hollow diamonds, and hollow squares). For comparison, predictions from the
closed-form formulae are also included in Fig. 2.16b, c, denoted by different lines
(e.g., solid line, dash line, and dash-dot line). Note that the first three orders of
the frequencies are plotted for the standing-wave attenuation and standing-wave
resonance in Fig. 2.16. Similar to the results of Table 2.1, it is seen from Fig. 2.16
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Fig. 2.16 Effects of Mach number on the frequencies of STL peaks and dips for sound incidence
with elevation angle '1 D 30 ı and azimuth angle ˇ D 45 ı: (a) mass-air-mass resonance, (b)
standing-wave attenuation, (c) standing-wave resonance, and (d) coincidence resonance. Symbols
(e.g., hollow circles, hollow diamonds, and hollow squares) refer to theoretical predictions. Lines
(e.g., solid line, dash line, and dash-dot line) denote the calculated results from Eqs. (2.91), (2.92),
(2.93), and (2.94)

that the model predictions agree very well with Eqs. (2.91), (2.92), (2.93), and
(2.94), and the same can be said regarding the other cases shown in Figs. 2.17,
2.19, and 2.20. The results of Fig. 2.16 demonstrate that, except for the coincidence
resonance frequencies, the frequencies for the mass-air-mass resonance, standing-
wave attenuation, and standing-wave resonance decrease as the Mach number
increases, due mainly to the added-mass effects of the convected fluid loading. The
exception of the coincidence resonance is attributed to the fact that the significant
refraction effect of the mean flow has overwhelmed the added-mass effect on the
coincidence resonance.

2.2.8.2 Sound Incidence Along the Upstream Direction

Consider next the case of sound incidence in the upstream direction, with elevation
angle '1 D 30ı and azimuth angle ˇ D 135ı. The effects of the Mach number
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Fig. 2.17 Effects of Mach number on the frequencies of STL peaks and dips for sound incidence
with elevation angle '1 D 30 ı and azimuth angle ˇ D 135 ı: (a) mass-air-mass resonance, (b)
standing-wave attenuation, (c) standing-wave resonance, and (d) coincidence resonance

on the mass-air-mass resonance, the standing-wave attenuation, the standing-wave
resonance, and the coincidence resonance frequencies are displayed in Fig. 2.17a–d.
The frequencies for the first three acoustic phenomena increase with increasing
Mach number until a critical value of M D 0.2188 is reached, beyond which
these phenomena all disappear. The existence of the critical Mach number can
be explained as follows. Note from Eqs. (2.91), (2.92), and (2.93) that sin '2 is
present in each of the denominators and '2 depends on the Mach number through
Eq. (2.61). It is seen from (2.61) that for sound incidence with '1 D 30ı and
ˇ D 135ı, sin '2 approaches zero as the Mach number approaches 0.2188, thus
giving rise to infinitely large values of the frequencies. Consequently, the mass-air-
mass resonance, the standing-wave attenuation, and the standing-wave resonance
do not exist for M > 0.2188. On the other hand, the transmitted evanescent wave
for coincidence resonance is enhanced by the coincidence effect of the bottom
panel. Accordingly, the corresponding frequency in the present upstream case (see
Fig. 2.17d) decreases as the Mach number is increased, a feature that is opposite to
that in the downstream case shown in Fig. 2.11d.
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Fig. 2.18 Variations of STL with incident frequency for selected Mach numbers, with elevation
angle '1 D 30 ı and azimuth angle ˇ D 135 ı; � mass-air-mass resonance, � standing-wave
attenuation, � standing-wave resonance, � coincidence resonance

To illustrate further the shift of the STL peaks and dips with varying flow
velocity, Fig. 2.18 plots the predicted STL versus frequency curves for selected
Mach numbers, with elevation angle '1 D 30ı and azimuth angle ˇ D 135ı. It is
seen that all the four acoustic phenomena appear in the case of static fluid (M D 0),
which are marked by different symbols in Fig. 2.18. As the Mach number increases,
the mass-air-mass resonance, the standing-wave attenuation, and the standing-wave
resonance gradually disappear, consistent with the results of Fig. 2.17a–c. This also
backs the selection of a small Mach number (M D 0.05) for plotting the results in
Fig. 2.14, so that all the four different acoustic phenomena can be clearly identified
within the considered frequency range. In addition to the disappearing of STL peaks
and dips with increasing Mach number, a dramatic increase of the STL value over
a broad frequency range is observed in Fig. 2.18. It should be clarified that the
significant increase of the STL value (up to 600 dB) is caused not only by the
structural damping but also by the total reflection phenomenon occurring in the
specific case associated with Fig. 2.18. When total reflection occurs, a disturbance
penetrates through the double-leaf panel into the transmitted side fluid medium,
while the wavenumber component kz in the z-direction takes the form of � j�
(� being a positive real number), resulting in a rapid exponential delay of the
wave amplitude in the form of exp(��). Although the physical nature of the total
reflection has been addressed in detail by Ribner [26], we believe that its influence
on STL may have been quantified for the first time in Fig. 2.18.
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Fig. 2.19 Effects of incident elevation angle on the frequencies of STL peaks and dips for sound
incidence with azimuth angle ˇ D 45 ı and Mach number M D 0.05: (a) mass-air-mass resonance,
(b) standing-wave attenuation, (c) standing-wave resonance, and (d) coincidence resonance

2.2.9 Effects of Elevation Angle

It has been reported that the sound incidence elevation angle has a noticeable effect
on the transmission of sound through a partition immersed in static fluid [65]. For
the problem considered here, its influence in the presence of mean flow is quantified.
Obtained results for a fixed azimuth angle of ˇ D 45ı and a fixed Mach number of
M D 0.05 are presented in Fig. 2.19, where it is seen that the four distinct acoustic
phenomena all exhibit significant dependence on the elevation angle. It is interesting
to find that for the first three phenomena (i.e., the mass-air-mass resonance, the
standing-wave attenuation, and the standing-wave resonance), critical values of the
elevation angle exist, beyond which all three phenomena instantaneously vanish. For
example, for the specific case of ˇ D 45ı and M D 0.05, the critical value is found
to be '1 D 165ı, whereas for the case of ˇ D 135ı and M D 0.05 (results not shown
here for brevity), the three phenomena are suppressed when the elevation angle lies
within the range between 0 and 15ı. Moreover, the coincidence resonance frequency
becomes infinitely large when the elevation angle approaches �/2, and the system is
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Fig. 2.20 Effects of incident azimuth angle on the frequencies of STL peaks and dips for
sound incidence with elevation angle '1 D 30 ı and Mach number M D 0.05: (a) mass-air-mass
resonance, (b) standing-wave attenuation, (c) standing-wave resonance, and (d) coincidence
resonance

symmetrical with respect to the sound incidence angle and the flow direction (e.g.,
the dependence of the four critical frequencies upon the elevation angle for the case
of ˇ D 135ı is simply obtained by inverting Fig. 2.19 for the case of ˇ D 45ı).

2.2.10 Effects of Azimuth Angle

For sound transmission through sandwich panels with corrugated cores immersed
in static fluid, it has been found that the sound incidence azimuth angle ˇ plays a
negligible role due to the symmetrical property of the considered system [5, 65].
This, however, is no longer valid if the system is immersed in a flowing fluid. For
the present double-leaf plate, Fig. 2.20 plots the predicted critical frequencies as
functions of the azimuth angle ˇ in the specific case of M D 0.05 and '1 D 30ı. The
azimuth angle is seen to have a significant effect on all the four acoustic phenomena.
Note that varying the azimuth angle from 0 to 2� corresponds to four processes in
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sequence, i.e., first downstream phase from 0 to �/2, first upstream phase from �/2
to � , second upstream phase from � to 3�/2, and second downstream phase from
3�/2 to 2� . The symmetry of the results shown in Fig. 2.20 with respect to ˇ D �

is therefore readily understandable. Actually, alteration of these frequencies with
respect to the incident azimuth angle confirms the refraction effect of the mean flow.

2.2.11 Effects of Panel Curvature and Cabin Internal
Pressurization

As for the investigation of external jet-noise penetration through fuselage skin
into aircraft interior, it would be of great interest to estimate the effects of panel
curvature and cabin internal pressurization on the noise transmission. To this end,
we extend Koval’s work [1] regarding the effects of panel curvature and cabin
internal pressurization on sound transmission through a single-leaf aeroelastic plate,
and for computational simplicity (assuming that the apparent contradiction of an
unlimited curved panel can be overlooked), an infinite slightly curved double-
leaf panel is considered. However, we believe that the results obtained with this
somewhat idealized model are reasonable because all the physical phenomena
have been well captured (as shown below), including the mass-air-mass resonance,
the ring frequency resonance, the standing-wave attenuation and resonance, and
the coincidence resonance. Particularly, the predicted ring frequency resonance is
consistent with existing results [1, 72] concerning single-leaf curved panels.

Again, to clearly demonstrate all the significant acoustic phenomena associated
with a curved double-leaf panel for frequencies below 10,000 Hz, a small Mach
number of M D 0.05 is selected, with the incident elevation angle arbitrarily fixed
at '1 D 30ı. Under such conditions, the effects of panel curvature and internal
pressurization are shown in Fig. 2.21 using a set of combinations, i.e., a flat panel
R D 1 with and without internal pressure P D 0.1 MPa and a curved panel R D 6 m
with and without internal pressure P D 0.1 MPa. It is seen from Fig. 2.21 that,
irrespective of the panel curvature or internal pressurization, all the four acoustic
phenomena can be distinctively identified. In the two cases concerning curved
double-leaf panels, i.e., (P D 0 Pa, R D 6 m) and (P D 0.1 MPa, R D 6 m), a newly
added ring frequency resonance dip (i.e., the first dip) occurs, which is absent in
flat double-leaf panels. In the absence of internal pressure, the ring frequency of the
curved panel can be predicted by [1, 72]

fR D 1

2�R

r
Eh

m
(2.95)

In addition to generating the ring frequency resonance, the panel curvature also
shifts the mass-air-mass resonance dip to a higher frequency, which can be seen
by comparing the second dip in the curve of (P D 0 Pa, R D 6 m) with the first dip
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Fig. 2.21 Effects of panel curvature and cabin internal pressurization on STL for sound incidence
with elevation angle '1 D 30 ı in the presence of external mean flow (M D 0.05)

in the curve of (P D 0 Pa, R D 1). Otherwise, the general trend of the STL versus
frequency curve of the flat panel agrees well with that of the curved panel (Fig. 2.21).

By comparing the two cases of (P D 0 Pa, R D 1) and (P D 0.1 MPa, R D 1),
it is seen that the internal pressurization shifts the mass-air-mass resonance dip to a
higher frequency but only has a small influence on the second-order standing-wave
resonance and coincidence dips. In comparison, the panel curvature has a noticeable
influence on all of these phenomena. Therefore, when designing a practical aircraft
fuselage, the noticeable combination effects of the panel curvature and internal
pressurization on noise transmission need to be carefully considered, especially in
the relatively low-frequency range where the ring frequency resonance occurs.

2.2.12 Conclusions

The effects of external mean flow on sound transmission through double-leaf
aeroelastic plates have been quantified analytically, with the intention to simulate the
transmission of engine exhaust noise through typical aircraft fuselage skin panels
into cabin interiors. Theoretical formulations have been developed for the analysis
of the fluid-plate coupling problem, and the STL versus frequency curves for various
specific cases (Mach number, direction of mean flow, sound incidence angle, panel
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curvature, and internal pressurization) are obtained, with the added-mass effects
of the convected fluid loading well captured. Four distinct acoustic phenomena
(i.e., the mass-air-mass resonance, the standing-wave attenuation, the standing-wave
resonance, and the coincidence resonance) for flat double-leaf plates as well as the
ring frequency resonance for curved double-leaf plates are clearly identified. Simple
closed-form formulae for predicting the natural frequencies associated with these
acoustic phenomena in the presence of mean flow are subsequently derived from
physical principles, which are completely independent upon the theoretical model.
In the absence of other relevant theoretical or experimental work, the excellent
agreement between these formulae and the model predictions serve to validate the
two theories against each other.

Systematic parametric studies are subsequently conducted to quantify the effects
of Mach number, the direction of mean flow, the sound incidence elevation and
azimuth angles, the panel curvature, as well as the internal pressurization on the
STL. As the Mach number is increased, in the case of sound incidence along
the downstream direction, the STL values increase over a broad frequency range,
and the natural frequencies for the associated acoustic phenomena (except for the
coincidence resonance) are shifted considerably to the lower frequency range due to
the added-mass effects of the mean flow. The exception of the coincidence resonance
is attributed to its strong dependence on the refraction angle '2 but not on the
convected fluid loading.

For sound incidence along the upstream direction, the corresponding frequencies
increase until the Mach number is increased up to a critical value, except again for
the coincidence resonance. Further increase of the Mach number beyond the critical
value results in the disappearance of the mass-air-mass resonance, the standing-
wave attenuation, and the standing-wave resonance, but the coincidence resonance
is always existent. The increase of the Mach number induces a noticeable increment
of the STL value over a relatively wide range of frequency due to the total reflection
effects.

In the presence of external mean flow, the transmission of sound is significantly
influenced by the sound incidence elevation angle and azimuth angle, and the
noticeable combination effects of the panel curvature and internal pressurization
should be taken into account in the practical design of aircraft fuselages.

2.3 Double-Leaf Panel Filled with Porous Materials

2.3.1 Introduction

Improving the sound transmission insulation performance of aircraft cabin fuselage
panels is helpful for reducing aircraft interior noise. As different kinds of sandwich
panels have been applied to construct cabin fuselages to provide more effective noise
isolation, such as double-leaf thin panels filled with porous absorbent materials
[39, 42, 43], it is important to evaluate the sound transmission characteristics of
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such sandwich constructions. Further, since there exists high-speed airflow outside
the cabin in typical cruise condition, it is even more significant to investigate the
influence of external airflow upon sound transmission.

For double-leaf panels filled with porous absorbent materials, before exploring
the sound insulation capability of the whole structure, it is necessary to accu-
rately model the propagation process of sound in the porous material. Two main
approaches have been developed to address the issue. One is the well-known Biot
theory [73, 74], which assumes that stress wave propagation in a fluid-saturated
porous material can be described by four nondimensional parameters and a charac-
teristic frequency, and there exist two dilatational waves and one rotational wave in
the material. In addition, the theory provides a set of functions of characteristic
parameters to govern the acoustic medium. However, when the pore diameter
is equal to the quarter wavelength of the acoustic wave, the Biot theory breaks
down as stated by Lighthill [75]. The Biot model has been extensively applied to
investigate the acoustic properties of different materials including saturated sand
[76], rectangular and triangular pores [77], and catalytic converters [78]. The other
approach is the semiempirical model [25, 79–81]. Delany and Bazley [79] showed
empirically that the characteristic impedance and the propagation coefficient are
functions of frequency f divided by static flow resistance R, i.e., f /R, and provided
a method to estimate R of a material from its bulk density. Bies and Hansen
[82] presented static flow resistance information for typical porous materials and
suggested the most common applications of the flow resistance. Graham [25] used
this approach to examine the characteristic impedance of dissipative materials
for cabin inside treatment. Allard and Champoux [80] proposed a set of new
semiempirical equations for sound propagation in rigid frame fibrous materials
by modeling the porous material as an equivalent fluid with dynamic density and
dynamic bulk modulus. They also suggested that the equations could be used when
f/R is smaller than 1 kg/m3 for most cases.

The transmission loss of sound across double-leaf panels separated by porous
materials has been extensively investigated. For typical example, Lauriks et al. [83]
developed a transfer matrix model to study the transmission loss through panels with
solid porous layers, with the Biot model employed to describe sound propagation
through the porous material, while Brouard et al. [84] proposed a general method to
model sound propagation in layered systems such as fluid-saturated porous layers.
Panneton et al. [34] presented a three-dimensional (3D) finite element model to
calculate the loss of sound transmission through multilayer structures containing
porous absorbent materials. The structures considered vary according to whether
the filling porous material is bonded or not to the faceplates. Making use of two-
dimensional (2D) elasticity theory, Chonan and Kugo [85] presented a model to
examine the sound transmission characteristics of a three-layered panel excited by
plane waves. Kang et al. [86] employed the method of Gauss distribution function
for incident energy to predict the sound transmission loss (STL) of multilayered
panels such as double-plate structures embedded with porous materials. Bolton et al.
[87] calculated random incidence transmission loss through double-leaf panels lined
with elastic porous materials.
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As for the influence of external flow interaction on acoustic characteristics of
structures, numerous works exist in the open domain. For example, Clark and
Frampton [2, 4, 7] systematically investigated the structural response of panels
excited by turbulent boundary layer (TBL)-induced noise, and Graham [24, 25]
developed an extended theoretical model to investigate aircraft structure response
excited by TBL-induced noise. Davies [53] theoretically estimated acoustic power
radiation of TBL excited panels, while Koval et al. [1] examined the mean flow
effect on STL of a single plate and found that the mean flow increased the
transmission loss in the whole frequency range. Xin and Lu [23, 88] studied
theoretically the effect of external mean flow on the transmission loss of double-
leaf panels and identified four different kinds of acoustic phenomena in the sound
transmission process through a double-leaf structure. Accounting for the mean flow
effect, Sgard et al. [15] developed a coupled FEM-BEM (finite element method-
boundary element method) model to investigate the vibroacoustic behavior of planar
plates. However, in the presence of external mean flow, the structures studied in the
aforementioned investigations are relatively simple and do not consider the presence
of additional porous sound absorptive materials.

To more accurately examine the effects of mean flow on jet-engine noise
transmission through aircraft fuselages, we propose a theoretical model for the
aero-acoustic problem of jet-engine noise transmission through infinite double-leaf
panels filled with fibrous sound absorptive materials in the presence of uniform
external mean flow. Although a uniform flow across the panel might be an ideal
case that would be not happening in reality, the assumption of a uniform mean
flow can be warranted as has been done by many researchers [1, 22]. To describe
sound propagation in the fibrous material, the equivalent fluid model is employed,
and the fluid momentum equations are applied to ensure displacement continuity
at fluid-structure interfaces. Upon validating the model predictions against existing
experimental results, systematic parameter investigations are carried out using the
proposed model, with guidance conclusions for practical aircraft fuselage designs
obtained.

2.3.2 Problem Description

Consider the double-leaf panel structure shown schematically in Fig. 2.21, which
contains two parallel thin elastic plates filled with fibrous sound absorptive materials
in between. The two plates are made of homogenous and isotropic material. For
simplicity, the double-leaf panel is taken as infinitely large in plane. A harmonic
plane sound wave penetrates through the sandwich panel, accompanied by a uniform
external mean flow that moves along the x-axis with uniform speed V on one side
of the panel (Fig. 2.22). The fluid on the other side is motionless. The sound wave
is incident upon the panel with elevation angle '1 and azimuth angle ˇ relative to
the coordinate axes of Fig. 2.22. The thicknesses of the two thin plates are h1 and
h2, respectively, while H is the thickness of the filled porous material. In general,



134 2 Vibroacoustics of Uniform Structures in Mean Flow

Fig. 2.22 Schematic of sound transmission through a double-leaf panel filled with porous material
in the presence of uniform external mean flow: (a) global view; (b) side view

the acoustic field may be divided into three parts: incident field z < 0, middle field
(i.e., sound absorbent field) h1 < z < h1 C H, and transmitted field z > h1 C H C h2.
The acoustic media in the three fields are defined by mass densities (�1, �2, �3) and
sound wavenumbers (k1, k2, k3), respectively.

Two further assumptions are introduced to develop the theoretical model: (1)
The porous sound absorptive material is bonded to both faceplates, with no gap
between the porous material and either of the faceplates. The equivalent fluid model
is employed to describe the acoustic behaviors of the porous material. According to
Rebillard et al. [89], when a porous material is bonded to a screen, the equivalent
fluid model is applicable only when the skeleton of the porous material is very limp.
Consequently, the porous material considered here is assumed to be limp enough to
apply the equivalent fluid model, which is usually true for commonly used porous
sound absorptive materials. (2) The fluid media are inviscid and irrotational.

2.3.3 Theoretical Model

2.3.3.1 Acoustic Field

The acoustic field is divided into three parts as previously described. Accordingly,
sound pressures in the three acoustic fields can be expressed as

Incident field:

p1 D P1i e
j!t�j .k1xxCk1yyCk1zz/ C P1r ej!t�j .k1xxCk1yy�k1zz/ (2.96)

Middle field:

p2 D P2i e
j!t�j .k2xxCk2yyCk2zz/ C P2r ej!t�j .k2xxCk2yy�k2zz/ (2.97)
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Transmitted field:

p3 D P3t e
j!t�j .k3xxCk3yyCk3zz/ (2.98)

where P1i is the amplitude of the incident wave, P1r is the amplitude of the
reflected wave, P2i and P2r are separately the amplitude of the positive and negative
waves, P3t is the amplitude of the transmitted wave, (k1, k2, k3) are the wavenumbers
of the three acoustic fields, while (kix, kiy, kiz, i D 1, 2, 3) are the components of the
corresponding wavenumbers along (x-, y-, z-)directions, respectively. Thus, (kix, kiy,
kiz) can be written as

kix D ki cos 'i cos ˇ; kiy D ki cos 'i sin ˇ; kiz D ki sin 'i (2.99)

Due to the refraction effect of external mean flow [1], the wavenumber in the
incident field is

k1 D !=c1

.1 C M cos '1 cos ˇ/
(2.100)

The equivalent fluid model [80, 90, 91] is employed to calculate the sound
wavenumber in the middle field. According to this model, sound propagation in
fibrous materials can be described by equivalent dynamic density and dynamic bulk
modulus. The dynamic density �(!) is given by

� .!/ D �0

�
1 C 1

j2�

�
R

�0f

	
G1

�
�0f

R

	�
(2.101)

and the dynamic bulk modulus is given by

K .!/ D �sP0

�
�s � �s � 1

1 C .1=j8�NPr/ .�0f =R/�1G2 .�0f =R/

��1

(2.102)

where

G1 .�0f =R/ D p
1 C j� .�0f =R/ (2.103)

G2 .�0f =R/ D G1 Œ.�0f =R/ 4NPr� (2.104)

Here, R is the static flow resistivity, � s is the specific heat ratio of air, �0 is the air
density, P0 is the standard atmospheric pressure, NPr is the Prandtl number, and f is
the frequency of the sound wave. The dynamic density considers inertial and viscous
forces per unit volume of air in the material and is related to the averaged molecular
displacement of air and the averaged variation of pressure. With kcav denoting the
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complex wavenumber of the porous material, it can be expressed by the dynamic
density and dynamic bulk modulus as

kcav D 2�f

s
� .!/

K .!/
(2.105)

According to Morse and Ingard [92], the complex density of the porous material
may be written as

�2 D �cav D k2
2�0

k2
0�s�

(2.106)

where � is the porosity of the porous material.
In the transmitted field, the wavenumber is

k3 D !

c3

(2.107)

where c3 D c0.
Let the transverse deflection wavenumber in the plate be denoted as kp. For the

sound waves to fit at the boundary, the trace wavelengths must match [1, 23, 88],
namely,

k1x D kp cos ˇ D k2x D kp cos ˇ D k3x

k1y D kp sin ˇ D k2y D kp sin ˇ D k3y (2.108)

Substitution of Eqs. (2.100) and (2.105) into Eq. (2.108) yields

cos '2 D k1 cos '1

k2

D cos '1

c1 .1 C M cos '1 cos ˇ/

s
K .!/

� .!/
(2.109)

cos '3 D k2 cos '2

k3

D c3 cos '1

c1 .1 C M cos '1 cos ˇ/
(2.110)

2.3.3.2 Fluid-Structure Coupling

To determine the unknown parameters associated with the three acoustic fields,
two fluid-structure coupling conditions must be supplemented: (a) displacement
continuity between plate particle and adjacent fluid particle and (b) driving relation
between incident sound and plate dynamic response.

Let (ı1, ı4) represent the fluid particle displacements adjacent to the outer side of
the two faceplates and (ı2, ı3) represent the porous material particle displacements
adjacent to the inner side of the plates, respectively. With the transfer effect of the
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mean flow accounted for, the fluid-structure coupling is described using the particle
displacement continuity condition [31]. These particle displacements satisfy the
Navier-Stokes equation for inviscid and irrotational fluid as

D2ı1

Dt2
D � 1

�I

@p1

@z

ˇ
ˇ
ˇ̌
zD01

(2.111)

D2ı2

Dt2
D � 1

�2

@p2
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ˇ̌
ˇ
ˇ
zDh1

(2.112)
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D � 1
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ˇ
ˇ
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zDh1CHCh2

(2.114)

For an infinite uniform flat plate, the vibration displacement excited by a
harmonic wave is given by [1]

wj D wj 0e
j!t�j Œ.kp cos ˇ/xC.kp sin ˇ/y� (2.115)

where kp D !/cp denotes the transverse deflection wavenumber in the plate and cp is
the trace velocity of the transverse wave in the plate.

Since the porous material and the adjacent fluid are in good contact with the two
faceplates, the displacements of the fluid particle and the porous material particle
adjacent the two plates take the same form as that of the plates:

ıi D ıi0e
j!t�j .kixxCkiyy/ (2.116)

Combining Eqs. (2.111), (2.112), (2.113), (2.114), (2.115), and (2.116) yields

ı10 D �jk1z .P1i � P1r/

�1.! � vk1x/2
(2.117)

ı20 D �jk2z .P2i � P2r /

�2!2
(2.118)

ı30 D � jk2z

�2!2

�
P2i e

�jk2zH � P2r ejk2zH
�

(2.119)

ı40 D � jk3z

�3!2
P3t e

�jk3zH (2.120)

Continuity of particle displacements dictates

ı10 D w10 D ı20; ı30 D w20 D ı40 (2.121)
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Substitution of (2.115), (2.116), (2.117), (2.118), (2.119), and (2.120) into
(2.121) leads to

P1r D P1i � j�0.! � vk1x/2w10

k1z
(2.122)

P2i D �2!
2

2k2z sin .k2zH/

�
w10e

jk2zH � w20

�
(2.123)

P2r D �2!2

2k2z sin .k2zH/

�
w10e

�jk2zH � w20

�
(2.124)

P3t D j�3!2w20

k3z
eik3zH (2.125)

The driving relation between the pressure difference across the plate and the plate
response is

P1i C P1r � P2i � P2r D Zp1 Pw10

P2i C P2r � P3t D Zp2 Pw20 (2.126)

where Zp1 and Zp2 represent separately the plate impedances for the upper and lower
faceplates (Fig. 2.22) and Pwj 0 D i!wj 0 (j D 1,2). For infinite plates as considered
in the present study, the plate impedance can be calculated as follows.

The governing equation of an infinite plate immersed in a fluid medium excited
by a harmonic wave is given by

Upper faceplate:

�
D1r4 � m1!

2
�

w1 .x; y/ D p1 .x; y; 0/ � p2 .x; y; h1/ (2.127)

Lower faceplate:

�
D2r4 � m2!

2
�

w2 .x; y/ D �p3 .x; y; H C h1 C h2/ C p2 .x; y; H C h1/

(2.128)

The complex Young’s modulus of the plate material is modified by the structure
loss factor � as

E 0
n D En .1 C j�n/ ; n D 1; 2 (2.129)

Accordingly, the complex bending stiffness is given by

D0
n D Dn .1 C j�/ D Enh3 .1 C j�n/

12 .1 � �2/
; n D 1; 2 (2.130)
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Substitution of (2.115) into (2.127) and (2.128) yields

w10 D p1 .x; y; 0/ � p2 .x; y; h1/

D1k4
p � m1!2

1

ej!t�j .k1xxCk1y/
(2.131)

w20 D p2 .x; y; H C h1/ � p3 .x; y; H C h1 C h2/

D2k4
p � m2!2

1

ej!t�j .k2xxCk2y/
(2.132)

Finally, the impedances of the upper and lower faceplates are obtained as

Zp1 D p1 .x; y; 0/ � p2 .x; y; h1/

i!w10

D jm1!

 

1 � D1!
2cos4'2

m1

s
� .!/

K .!/

!

(2.133)

Zp2 D �p3 .x; y; H C h1 C h2/ C p2 .x; y; H C h1/

j!w20

D jm2!

 

1 � D2!2cos4'2

m2

s
� .!/

K .!/

!

(2.134)

2.3.3.3 Sound Transmission Loss

The transmission loss of sound across a double-leaf panel filled with porous material
is defined as

STL D �10log10
 .f; '1; ˇ/ (2.135)

where 
(!, '1, ˇ) is the acoustic transmissivity given by


 .f; '1; ˇ/ D �1c1

�2c2

ˇ
ˇ
ˇ̌P3t

P1i

ˇ
ˇ
ˇ̌
2

(2.136)

with

P1i

P3t

D �j�3k2z tan .k2zH/

2�2

�
�3 C k3z

�
Zp2=!

�
e�jk3zH

�
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�2 cos .k2zH/ C �2
Zp1

Zp2

� j
�
Zp2=!

�
k2z sin .k2zH/

C �2�3

�3 C k3z
�
Zp2=!

�
e�jk3zH

1

C
C
A
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(2.137)
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Fig. 2.23 Sound transmission loss of double-leaf panel separated by foam material in the absence
of mean flow (M D 0): comparison between the present model predictions and experimental results
by Pellicier et al. [93]

2.3.4 Validation of Theoretical Model

To validate the theoretical model presented in the previous section, the model
predictions are compared with existing experimental results [93] in Fig. 2.23 for
the case of no external mean flow. For experimental measurement, the sandwich
structure is composed of two plywood plates with thickness of 8.5 mm and separated
by an open-celled foam with thickness of 50 mm. The plywood has Young’s
modulus of 4.25 GPa, Poisson ratio 0.5, density 650 kg/m3, and loss factor 0.03. The
foam material has a porosity of 93 % and a static flow resistivity of 55,000 Ns/m4.
The comparison is conducted by applying these parameters into our theoretical
model and setting the Mach number to 0. Since the experimental results were
obtained in a diffuse sound field, the model should be adjusted to calculate the STL
in a diffuse sound field. The azimuth angle makes no sense to the STL in the absence
of mean flow; in such case, Eq. (2.136) becomes


 .f; '1/ D �1c1

�2c2

ˇ
ˇ
ˇ̌P3t

P1i

ˇ
ˇ
ˇ̌
2

(2.138)
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The diffuse transmissivity is then calculated by


diff .f / D

Z 'lim

0


 .f; '/ sin ' cos 'd'

Z 'lim

0

sin ' cos 'd'

(2.139)

Accordingly, the sound transmission loss becomes

STL D �10 log10 
diff.f / (2.140)

The results of Fig. 2.23 show that the theoretical model predictions for diffuse
incidence (� lim D 78ı) exhibit the same trend as that of the experimental measure-
ments and, overall, the agreement is reasonable. However, there does exist some
discrepancy between theory and experiment (e.g., the shift of the coincidence dip
location in Fig. 2.23), which is attributed to the fact that finite-sized boundary
conditions hold in the experiment measurements [93], while infinite size is assumed
in the present model. Moreover, the imperfect connection between the plywood
plates and foam material may increase the damping effect of the whole structure,
causing the higher measured STL values than those predicted over the frequency
range considered. Notice also that as the value of STL at the coincidence dip is
also greatly affected by the damping of the whole structure, the measured value
that includes the effect of structure material damping and boundary constraints
damping is expected to be larger than the prediction which only considers the effect
of structure material damping.

2.3.5 Influence of Porous Material and the Faceplates

Figure 2.24 compares the predicted transmission loss of a double-leaf panel filled
with porous material with that of a double-leaf panel with air cavity having the
same thickness as that of the porous material, for Mach number M D 0.05 and sound
incident elevation angle '1 D 30ı, middle layer thickness H D 0.08 m, and azimuth
angle ˇ1 D 0ı (Fig. 2.22). As previously mentioned in the Introduction, the neces-
sary condition for using the equivalent fluid theory is f /R < 1 kg/m3 [80]. Therefore,
the highest frequency of the present analysis is limited to 24,000 Hz. In the follow-
ing, the model predictions are presented within the frequency range of 0–10,000 Hz,
for all the acoustic phenomena of interest can be shown within this range.

The results of Fig. 2.24 show that the presence of the filling porous material
significantly weakens the plate-air-plate resonance dip of the system, due to the
damping effect (or the absorption effect) of the porous material. Further, in the
frequency range of 1,000–8,000 Hz, two kinds of acoustic phenomena exist for
double-leaf panel with air cavity: antiresonance and standing-wave resonance. As
illustrated schematically in Fig. 2.25, the plane sound wave propagates from point
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Fig. 2.24 Sound transmission loss of double-leaf panel for Mach number M D 0.05, loss factor
� D 0.01, incident elevation angle '1 D 30ı , middle layer thickness H D 0.08 m, and azimuth
angle ˇ1 D 0ı: � antiresonance, � “plate-air-plate” resonance, � standing-wave resonance, �
coincidence dip

Fig. 2.25 Schematic of
standing-wave resonance and
antiresonance
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A on the upper plate to point B on the lower plate; it then reflects to point C on the
upper plate where it meets another incident sound wave. If the distance between the
incident wave and the reflected wave is the odd number of the one-fourth wavelength
of the sound wave, the interference between the two waves causes antiresonance.
Alternatively, if the distance is the multiple of half the wavelength, the interference
becomes standing-wave resonance. In comparison, for a double-leaf panel filled
with porous material, since the energy intensity of the reflected wave has been sig-
nificantly weakened due to the absorption of the porous material, both the standing-
wave resonance and antiresonance almost disappear. Accordingly, the curve is
relatively smooth in the frequency range of 1,000–8,000 Hz, as shown in Fig. 2.24.
The absorption effect of the porous material exists in both the presence and absence
of mean flow, which will be discussed in detail in Sect. 2.3.7 of this section.

It can also be observed from Fig. 2.24 that coincidence dip, at which the
wavelength of the incident sound wave matches with the wavelength of the flexural
bending wave in the plate, exists on both STL and frequency curves at the same
frequency. This agrees well with Xin et al. [23, 94] and Wang et al. [59], both
pointing out that the coincidence frequency is given by

fc D c2
2

2�hcos2'2

r
12� .1 � v2/

E
(2.141)

Combining Eqs. (2.99) and (2.108) with Eq. (2.141) yields

fc D c2
2

2�hcos2'2

r
12� .1 � v2/

E
D !2

2�hk2
1cos2'1

r
12� .1 � v2/

E
(2.142)

which means that the frequency of the coincidence dip for the whole structure is
independent of the presence of the porous material. However, the value of the STL
at the coincidence dip is dependent on the panel damping, as shown in Fig. 2.26,
which increases when the loss factor of the faceplate increases. Since the effective
value of the loss factor is related with the damping of the attached porous material
[25], it deduced that the extent of coincidence dip is significantly affected by the
damping of the porous material.

The influence of faceplate thickness on structure transmission loss is shown
in Fig. 2.27. As the thickness of the faceplates is increased, the frequency at
which coincidence dip occurs decreases significantly, consistent with Eq. (2.141).
However, the extent of the coincidence dip does not change significantly with
increasing faceplate thickness.

2.3.6 Influence of Porous Material Layer Thickness

Since the presence of a porous material layer affects considerably the transmission
of sound across a double-leaf panel, the effect of its thickness is further explored
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Fig. 2.26 Sound transmission loss of double-leaf panel filled with porous material for selected
loss factors, with '1 D 30ı, ˇ1 D 0ı, M D 0.05, and H D 0.08 m

below. Figure 2.28 plots the predicted transmission loss as a function of frequency
for selected porous layer thicknesses, with Mach number fixed at M D 0.05, sound
incident elevation angle at '1 D 30ı, and azimuth angle at ˇ1 D 0ı. It is seen
from Fig. 2.28 that at frequencies between the coincidence resonance and the
plate-air-plate resonance, both the standing-wave resonance and antiresonance
are increasingly weakened and the value of STL decreases as the porous layer
thickness increases. This should remarkably be affected by the increase of the
gap between the panels, which is also affected by the damping loss effect of the
porous material within this frequency range [95]. In contrast, at frequencies near
or above the coincidence resonance, since the porous material has a strong sound
absorption capability at high frequencies, the STL may have reached its utmost value
with a certain thickness of the porous material. Consequently, at relatively high
frequencies, increasing the porous layer thickness further has negligible influence
upon the transmission loss, as shown in Fig. 2.28.

2.3.7 Influence of External Mean Flow

Figure 2.29 presents the influence of external mean flow on STL across double-leaf
panels with filling porous materials for '1 D 30ı, H D 0.08 m, and ˇ1 D 0ı. The
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Fig. 2.27 Sound transmission loss of double-leaf panel filled with porous material for selected
faceplate thicknesses, with '1 D 30ı, ˇ1 D 0ı, M D 0.05, and H D 0.08 m

results demonstrate that increasing the Mach number leads to noticeable changes of
the STL: as the Mach number increases, the STL increases over a wide frequency
range below the coincidence dip frequency. This is mainly caused by the added
damping effect of the mean flow as suggested by Sgard et al. [15]. Therefore, the
radiated acoustic power decreases with increasing Mach number of the mean flow,
resulting in the increase of the STL value.

It is interesting to see from Fig. 2.29 that the amplitudes of the standing-wave
resonance and antiresonance for the case of M D 0.05 do not change significantly in
comparison with those when there is no mean flow. This implies that the absorption
effect of the porous material is almost independent of the mean flow.

The effect of Mach number on the coincidence frequency of double-leaf struc-
tures is quantified in Fig. 2.30, for '1 D 30ı, H D 0.08 m, loss factor � D 0.01, and
ˇ1 D 0ı. With increasing Mach number, the coincidence dip frequency increases
almost proportionally. This is attributed to the fact that the refraction effect of
external mean flow is noticeably enhanced as the Mach number is increased, which
is confirmed by

fc D !2

2�hk2
1cos2'1

r
12� .1 � v2/

E
D c2

1.1 C M cos '1/
2

2�hcos2'1

r
12� .1 � v2/

E

(2.143)
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Fig. 2.28 Sound transmission loss of double-leaf panel plotted as a function of frequency for
selected porous layer thicknesses, with Mach number M D 0.05, loss factor � D 0.01, incident
elevation angle '1 D 30ı , and azimuth angle ˇ1 D 0ı

Fig. 2.29 Sound transmission loss of double-leaf panel filled with porous material for selected
Mach numbers, with '1 D 30 ı, loss factor � D 0.01, ˇ1 D 0 ı, and H D 0.08 m
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Fig. 2.30 Effect of Mach number on coincidence frequency of double-leaf panel filled with porous
material, with '1 D 30 ı, loss factor � D 0.01, ˇ1 D 0 ı, and H D 0.08 m

Since the value of M considered is small, Eq. (2.143) may be transformed into
the form below:

fc D c2
1.1 C M cos '1/

2

2�hcos2'1

r
12� .1 � v2/

E
� c2

1 .1 C 2M cos '1/

2�hcos2'1

r
12� .1 � v2/

E
(2.144)

Equation (2.144) exhibits the same trend as that of the present model predictions.

2.3.8 Influence of Incident Sound Elevation Angle

Figure 2.31 plots the STL of a double-leaf panel with filling porous material as
a function of frequency for selected incident elevation angles, with M D 0.05,
ˇ1 D 0ı, and H D 0.08 m. The incident angle is seen to have an obvious effect on
the transmission loss and the position of coincidence frequency. Between the plate-
porous material-plate resonance and the coincidence dip frequency, the STL value
increases when the angle from the axis normal to the plane of the panel decreases
(i.e., the elevation angle increases). However, since the coincidence frequency
increases with increasing elevation angle, the STL decreases in the frequency range
above the coincidence frequency. Besides, when the incident angle is relatively
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Fig. 2.31 Sound transmission loss of double-leaf panel filled with porous material for selected
elevation angles, with M D 0.05, ˇ1 D 0 ı, loss factor � D 0.01, and H D 0.08 m

small, the effect of plate-porous material-plate resonance can be ignored since it
does not cause an apparent dip in the STL versus frequency curve. In sharp contrast,
the influence of plate-porous material-plate resonance on transmission loss will be
reinforced as the incident angle is increased.

The predicted effect of sound incidence angle on the coincidence frequency is
illustrated further in Fig. 2.32. The coincidence frequency increases remarkably
with increasing incident elevation angle, agreeing well with the coincidence fre-
quency formula of Eq. (2.142). Also, it can be seen from Fig. 2.32 and Eq. (2.142)
that the coincidence dip tends to infinity when the incident angle approaches �/2,
implying that the structure considered here has the best sound insulation ability for
normal incident sound.

2.3.9 Influence of Sound Incident Azimuth Angle

It can be seen from Fig. 2.33 that the sound transmission loss of the panel is affected
by the azimuth angle of the incident sound, particularly in the high-frequency
regime. The coincidence frequency increases as the azimuth angle is increased.
The influence of azimuth angle on sound transmission loss is mainly caused by
the refraction effect of the mean flow. The results presented in Table 2.2 illustrate
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Fig. 2.32 Effect of sound incident angle on coincidence frequency of double-leaf panel filled with
porous material, with M D 0.05, loss factor � D 0.01, ˇ1 D 0 ı, and H D 0.08 m

Fig. 2.33 Sound transmission loss of double-leaf panel filled with porous material for selected
azimuth angles, with M D 0.05, '1 D 30 ı, loss factor � D 0.01, and H D 0.08 m



150 2 Vibroacoustics of Uniform Structures in Mean Flow

Table 2.2 Comparison of coincidence frequency for different azimuth angles and Mach numbers

M D 0 M D 0.05 M D 0.10 M D 0.15

fc (Hz) for ˇ D 0ı 8,020 8,730 9,641 10,230
fc (Hz) for ˇ D45ı 8,020 8,517 9,026 9,553
Difference 0 213 615 677

that when the Mach number is increased, the coincidence frequency difference
between different azimuth angles is enlarged, which also proves that the refraction
effect is enhanced by the increase of Mach number as mentioned in Sect. 2.3.7.
As anticipated, since the double-leaf panel is isotropic and homogenous, the sound
transmission loss should not change with the azimuth angle when the fluid media
are static, as warranted by the results of Table 2.2.

2.3.10 Conclusion

A theoretical model has been developed for sound transmission across infinite
double-leaf panels filled with porous absorptive materials in the presence of external
mean flow. Based on the model predictions, the following conclusions are drawn:

1. The presence of external mean flow has negligible influence upon the sound
absorption ability of the filling porous material. Besides, the damping effect of
the porous material affects significantly the magnitude of STL at coincidence dip,
and the same can be said for the material loss factor of the faceplate material.

2. The added damping effect of the external mean flow prevails at frequencies below
the coincidence dip frequency, enhancing the transmission loss as the Mach
number is increased. Also, since the radiated acoustic power decreases with
increasing Mach number, the peak value of the STL increases with increasing
Mach number. In addition, the refraction effect of the external mean flow
causes an upward shift of the coincidence frequency when the Mach number
is increased.

3. The transmission loss of double-leaf panels filled with porous materials is
considerably affected by sound incident elevation angle. Increasing the incident
elevation angle (i.e., decreasing the angle from the axis normal to the plane of the
panel) leads to enhanced transmission loss at frequencies below the coincidence
dip as well as reduced transmission loss above the coincidence dip. The azimuth
angle of the incident sound also has an influence on the sound transmission loss
of the panel. The coincidence frequency decreases with increasing azimuth angle
due to the refraction effect of the mean flow.
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Appendix

As stated in Sect. 2.2.7, the simple closed-form formulae, i.e., Eqs. (2.91), (2.92),
(2.93), and (2.94), are applied to validate the proposed aero-acoustic-elastic theo-
retical model in Sect. 2.2, because these formulae are developed independent of the
theoretical model. The physical nature of the four acoustic phenomena based on
which the closed-form formulae are derived is presented below (Fig. 2.34).

Mass-Air-Mass Resonance

In the absence of the external mean flow, the formula for predicting the mass-air-
mass resonance frequency of a double-leaf aeroelastic panel has been presented in
Refs. [3, 5, 47, 73]. The radially outspreading bending wave in the panel caused
by the incident sound leads to the highly directional sound radiation. As a result,
the mass-air-mass resonance strongly depends on the incident angle. When the
mass-air-mass resonance occurs, the two panels with the air cavity in between
behave like a mass-spring-mass system, with the stiffness of the air cavity given by
�2c2

2/(H sin2'1). However, due to the refraction effect of the mean flow as shown in
Fig. 2.34, the incident angle '1 in the presence of the mean flow will be changed to
'2 before the sound penetrates through the incident panel. In other words, the mean
flow case is equivalent to the case when the sound is incident on the panel with
angle '2 in the absence of the mean flow (denoted by the dash lines in Fig. 2.34).
Accordingly, the stiffness of the air cavity is changed to �2c2

2/(H sin2'2), and the
eigenvalue equation of the equivalent mass-spring-mass vibration system becomes

ˇ
ˇ
ˇ
ˇ̌
ˇ

�2c2
2

H sin2'2
� !2m1

��2c2
2

H sin2'2��2c2
2

H sin2'2

�2c2
2

H sin2'2
� !2m2

ˇ
ˇ
ˇ
ˇ̌
ˇ

D 0 (2.145)

Solving Eq. (2.145) leads to the mass-air-mass resonance given in Eq. (2.91).

Fig. 2.34 Sketch of sound
transmission through
double-leaf aeroelastic panel
in the presence of external
mean flow
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Standing-Wave Attenuation

In the presence of external mean flow, the phenomenon of standing-wave attenuation
in a double-panel system is caused by the destructive interference between two
meeting waves, which occurs only when the distance difference between the routes
that the two intervening waves pass through is the odd number of one quarter of
the incident sound wavelength. Under such conditions, the interference between the
positive-gong wave and the negative-going wave tends to be destructive when the
sound is transmitting through the partition, resulting in maximum sound reduction.
As shown in Fig. 2.34, the plane sound ray comprised of a set of harmonic sound
waves with the same vibration phase obliquely impinges on the incident panel.
There indeed exists a case when one sound ray is incident on the upper panel at
point A and transmits through the air cavity onto the bottom panel at point B and its
reflected portion back to the upper panel at point C meets another sound ray from
the external incident side, i.e., the interference between the two sound waves has
occurred.

As is well known, the destructive effect between two harmonic waves occurs only
when their vibration phases differ by odd numbers of �/2. In the case considered
here (Fig. 2.34), the distance difference between the routes that the two intervening
waves pass through is the only cause of the phase difference. For convenience, the
equivalent case of sound incident with angle '2 in the absence of mean flow (dash
lines in Fig. 2.34) is used to represent the case of sound incident with angle '1 in
the presence of mean flow (solid lines in Fig. 2.34). The distance difference between
the routes that the two sound waves pass through is such that

AB C BC � CD D 2H

sin '2

� 2H cot '2 cos '2 D 2H sin '2 (2.146)

The occurrence of the destructive effect requires that

H sin '2 D .2n � 1/ 	

4
.n D 1; 2; 3 : : : / (2.147)

where 	 D c/f is the wavelength in air. Equation (2.92) for the standing-wave
attenuation frequency follows from Eq. (2.147).

Standing-Wave Resonance

As the counterpart of the standing-wave attenuation, the standing-wave resonance
is also caused by the interference effect between two meeting waves, which is
however constructive rather than destructive. It appears when the distance difference
between the routes that the two intervening waves pass through is the multiple of
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the half wavelength of the incidence sound wave. In such cases, the constructive
interference between the positive-going and negative-going waves leads to an
enhanced transmission through the double-panel partition. The condition for the
appearance of the standing-wave resonance is given by

H sin '2 D n	

2
.n D 1; 2; 3 : : : / (2.148)

With the relation 	 D c/f, Eq. (2.148) can be readily converted to Eq. (2.93).

Coincidence Resonance

Similar to the standing-wave attenuation and resonance, the coincidence resonance
is also an interference effect between two intervening waves by physical nature.
The difference between the two different types of acoustic phenomenon is that the
coincidence resonance is caused by wave interference between the sound wave and
the panel flexural bending wave. As shown in Fig. 2.34, there exists a situation
when the panel flexural bending wave at point A (excited by the incident sound ray
at this point) rapidly outspreads to point C, where it matches another sound ray
from the external incident side. The premise for this matching is that the flexural
bending wave in the aeroelastic panel propagates faster than sound propagation in
air, requiring that the former transmits a larger distance than the latter during the
same time period (i.e., AC > DC in Fig. 2.34), and hence

AC

ct

D DC

c
(2.149)

This premise is in general satisfied in practice. Consequently, the constructive
interference between the two waves results in the coincidence resonance. From the
governing equation of panel vibration, we have

ct D 4

r
D!2

m
(2.150)

Substitution of Eq. (55) and the relation DC D AC � cos '2 into Eq. (2.149)
leads to Eq. (2.94) for the coincidence resonance frequency.

Note that the coincidence resonance will occur in the bottom panel as well
when the upper panel generates coincidence resonance. In other words, the incident
sound will be enhanced twice, initially by the upper panel and followed by the
bottom panel, when the condition for the occurrence of the coincidence resonance
is satisfied.
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Chapter 3
Vibroacoustics of Stiffened Structures
in Mean Flow

Abstract This chapter is organized as two parts: in the first part, a theoretical
modeling approach is proposed for noise radiated from aeroelastic skin plates of
aircraft fuselage stiffened by orthogonally distributed rib-stiffeners and subjected
to external jet noise in the presence of convected mean flow. The focus is placed
upon quantifying the effects of external mean flow on the aeroelastic-acoustic
characteristics of the rib-stiffened plate. The Euler-Bernoulli beam equation and
the torsional wave equation governing separately the flexural and torsional motions
of the rib-stiffeners are employed to accurately describe the force-moment coupling
between the stiffeners and the plate. The external mean flow fluid is modeled using
the convected wave equation. Given the periodicity of the considered structure, the
resulting governing equations of the system are solved by applying the Poisson
summation formula and the Fourier transformation technique. The radiated sound
pressure is closely related to the plate displacement by means of the Helmholtz
equation and the fluid-structure boundary conditions. To highlight the radiation
characteristics of the periodically stiffened structure as well as the mean flow effects,
the final radiated sound pressure is presented in the form of decibels with reference
to that of a bare plate immersed in mean flow. Systematic parametric studies are
conducted to evaluate the effects of external mean flow speed, noise incident angle,
and periodic spacings on the aeroelastic-acoustic performance of the rib-stiffened
plate.

In the second part, this chapter investigates the sound transmission loss of
aeroelastic plates reinforced by two sets of orthogonal rib-stiffeners in the presence
of external mean flow. Built upon the periodicity of the structure, a comprehensive
theoretical model is developed by considering the convection effect of mean flow.
The rib-stiffeners are modeled by employing the Euler-Bernoulli beam theory and
the torsional wave equation. While the solution for the transmission loss of the
structure based on plate displacement and acoustic pressures is given in the form of
space-harmonic series, the corresponding coefficients are obtained from the solution
of a system of linear equations derived from the plate-beam coupling vibration
governing equation and Helmholtz equation. The model predictions are validated
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by comparing with existing theoretical and experimental results in the absence of
mean flow. A parametric study is subsequently performed to quantify the effects of
mean flow as well as structure geometrical parameters upon the transmission loss.
It is demonstrated that the transmission loss of periodically rib-stiffened structure
is increased significantly with increasing Mach number of mean flow over a wide
frequency range. The STL value for the case of sound wave incident downstream is
pronouncedly larger than that associated with sound wave incident upstream.

3.1 Noise Radiation from Orthogonally Rib-Stiffened Plates

3.1.1 Introduction

Recent research and development in aircraft design have reconcentrated on the
long-lasting concerns about external flow interaction with structure responses and
noise radiation into the aircraft interior, which is of paramount importance for
designing supersonic (or high subsonic) civil and military aircrafts with lower
interior noise level [1–19]. It has been widely regarded that the interior cabin noise is
usually attributed to the direct incidence of engine exhaust noise and the high-speed
turbulent boundary layer (TBL) flow over the exterior fuselage [11–17, 20–25],
which generate high-level noise, thereby affecting the comforts of passengers.
In particular, the ultrahigh-bypass turbofans have remarkably increased tip Mach
numbers, resulting in enhanced low-frequency noise impinging on the exterior of
aircraft fuselages [3, 26]. To reduce the cabin interior noise level, considerable
efforts have been dedicated to address the increasingly pressing issue of external
fluid flow coupling with structure dynamic response.

While early research on acoustic problems involving fluid flow concentrated
on sound reflection and transmission at the idealized interface between a steady
fluid medium and a moving fluid medium [27–29], numerous researches in the past
decades focused on the aeroelastic-acoustic interaction problem of an aeroelastic
plate coupled with fluid flow. Concerning sound transmission through aircraft
fuselage in the presence of external mean flow, Koval [2] derived a theoretical model
for the field-incidence transmission loss of a single-walled plate and calculated
the effects of airflow, panel curvature, and internal fuselage pressurization. As an
extension of Koval’s model, Xin et al. [30] theoretically investigated the external
mean flow effects on noise transmission through double-leaf plate structures. In this
research, four different types of acoustic phenomenon (namely, mass-air-mass
resonance, standing-wave resonance, standing-wave attenuation, and coincidence
resonance) for a planar double-leaf plate as well as the ring frequency resonance
for a curved double-leaf plate were identified, with closed-form formulas for the
natural frequencies of these phenomena derived based upon physical principles.
To evaluate the influence of mean flow on boundary layer-generated interior noise,
Howe and Shah [20] presented an analytic model to solve the acoustic radiation
in terms of prescribed turbulent boundary layer pressure fluctuation, which may
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be used to validate more general numerical schemes for fluid-structure interaction.
With mean flow effects on forced vibroacoustic response of a baffled plate accounted
for, Sgard et al. [31] proposed a coupled finite element method-boundary element
method (FEM-BEM) approach to investigate the mean flow effects as well as
the acoustic radiation pattern for a baffled plate with different kinds of boundary
conditions; the mean flow effects were explicitly shown in terms of added mass,
stiffness, and radiation damping. Considering the nonlinearities induced by in-
plane forces and shearing forces due to the stretching of plate-bending motion, Wu
and Maestrello [32] developed theoretical formulations to estimate the dynamic
and acoustic responses of a finite baffled plate subject to turbulent boundary
layer excitations. It was found that, in the presence of mean flow, the temporal
instability can be induced by the added stiffness due to acoustic radiation and
the effect of added stiffness increased quadratically with mean flow speed. More
recently, the effects of mean flow on sound transmission across a simply supported
rectangular aeroelastic panel were analytically solved [33]. Focusing upon aircraft
sidewall structures, Legault and Atalla [34–36] investigated theoretically the sound
transmission problems of such periodically stiffened structures, and their theoretical
predictions agreed well with experimental results.

In addition to the aforementioned investigations, Frampton and Clark [4, 15,
16, 37–41] carried out comprehensive studies on aeroelastic plates interacting
with aerodynamic loading, including theoretical modeling for sound radiation and
transmission as well as acoustic control scheme. Besides, to effectively reduce
the interior noise level of aircraft cabin fuselages over a wide frequency range,
various active strategies [11–13, 21, 26, 42] were proposed to suppress the
vibration and noise radiation of skin plates, providing alternative noise reduction
solutions.

Although numerous experimental and theoretical studies concerning aeroelastic-
acoustic problems of fuselage-like structures exist, at present there is a lack of a
thorough and fundamental understanding of the physical mechanism associated with
the interaction between fluid flow and a vibrating structure. Specifically, although
the factual construction of aircraft fuselage is commonly made of thin-walled
structural elements with periodic rib-stiffeners, the issue of aeroelastic-acoustic
interaction for such structures has not been well addressed by existing studies.
The focus of the present work is therefore placed upon the aeroelastic-acoustic
problem of orthogonally rib-stiffened skin plates in the presence of external mean
flow. A theoretical model is developed by combining the Kirchhoff thin plate
theory with the convected wave equation, with the fluid momentum equation
applied to satisfy the fluid-structure boundary condition. The Euler-Bernoulli beam
equation and the torsional wave equation are employed to describe the force-
moment coupling between the rib-stiffeners and the faceplate. The system of
governing equations is solved by applying the Poisson summation formula and
Fourier transformation technique. Based on the theoretical formulations, systematic
parametric studies are carried out to quantify how the external mean flow affects
sound radiation from periodically stiffened aeroelastic plates and to explore the
physical mechanisms underlying aeroelastic-acoustic interaction.
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Fig. 3.1 Schematic of
orthogonally rib-stiffened
plate excited by convected
harmonic pressure

3.1.2 Theoretical Formulation

3.1.2.1 Dynamic Responses to Convected Harmonic Pressure

Typical aircraft fuselages are made of periodically rib-stiffened plates and are often
excited by external airflow and engine exhaust noise in cruise condition. To explore
the dynamic response and sound radiation behavior of such rib-stiffened plates
immersed in external airflow, a uniform plane sound wave varying harmonically
in time is assumed to impinge on the plate from the external mean flow side, and
the resulting sound radiation level within the interior static fluid side is examined.
As shown in Fig. 3.1, the aeroelastic structure considered consists of a flat facesheet
and two sets of orthogonally distributed rib-stiffeners. Both the facesheet and the
stiffeners are made of homogenous and isotropic materials, and the whole structure
is immersed in inviscid, irrotational fluid media. The upper and bottom fluid media
separated by the faceplate occupy the spaces of z < 0 and z > h and, in terms of mass
density and sound speed, are characterized by (�1, c1) and (�2, and c2), respectively.
Let h denote the faceplate thickness, H denote the height of the stiffeners, lx and ly
denote the periodic spacings of the stiffeners in the x- and y-directions, and tx and ty
denote the thicknesses of the stiffeners in the x- and y-directions, respectively. The
mean fluid flow with uniform speed v is assumed to move along the x-direction. The
incident sound wave transmitting from the external mean flow side is characterized
by elevation angle '1 and azimuth angle � with respect to the coordinate system
defined in Fig. 3.1. The impinged noise excitation is partially reflected and partially
transmitted through the structure via the faceplate into the interior stationary fluid
medium, which is strongly affected by the external mean flow and the rib-stiffeners.

To analyze theoretically the system of Fig. 3.1, a number of simplifying
assumptions are made: (1) the faceplate is sufficiently thin so that it can be modeled
using the classical Kirchhoff thin plate theory; (2) the fluid media are taken as
inviscid, irrotational, and incompressible [4–6, 15, 16, 31, 38–40, 43]; and (3) the
surface of the faceplate adjacent to the mean flow is sufficiently smooth so that it is
appropriate to consider the fluid-plate interface as one of the streamlines of the fluid
flow, i.e., the mean flow is tangential to the acoustically deformed boundary [2, 44].
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With the forces and moments exerted by the rib-stiffeners on the faceplate
accounted for, the normal displacement w of the plate is governed by
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where mp is the surface mass; D is the flexural rigidity of the plate; qs and �s are
the forces and moments of y-wise stiffeners; qt and � t are the forces and moments
of x-wise stiffeners; Pi, Pr, and Pt are the incident, reflected, and radiated sound
pressure; and m and n are the number of the x- and y-wise stiffeners, respectively.

The Euler-Bernoulli beam equation and torsional wave equation governing
the flexural and torsional motions of the rib-stiffeners are shown below (note
that the bending moments have been implicitly included in the Euler-Bernoulli
equation, because the first-order partial derivative of the bending moments about
the coordinate is equivalent to transverse force [45]):

1. x-wise stiffeners:
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2. y-wise stiffeners:
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where ExIx, GxJx, Ipx, �x, and mx are the flexural stiffness, torsional stiffness, polar
moment of inertia, density, and surface mass for the x-wise stiffeners, respectively;
EyIy, GyJy, Ipy, �y, and my are the flexural stiffness, torsional stiffness, polar moment
of inertia, density, and surface mass for the y-wise stiffeners, respectively; � x

(D @w/@y) and � y (D @w/@x) are the torsion angles of the x- and y-wise stiffeners,
respectively.

The incident sound pressure is taken as a traveling pressure wave excitation:

Pi .x; y; z/ D pee
i.!t�kxx�kyy�kzz/ (3.4)

where the sound wavenumber components depend upon the incident sound elevation
angle ' and azimuth angle � as
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kx D k cos ' cos �; ky D k cos ' sin �; kz D k sin ' (3.5)

With kx and ky replaced by ˛0 and ˇ0 as the initial wavenumber components, the
incident sound pressure at the interface between air and plate can be written as

Pi .x; y; 0/ D pee
i.!t�˛0x�ˇ0y/ (3.6)

The incident sound pressure in an inviscid and irrotational fluid moving in a plane
parallel to the plate surface satisfies the convected wave equation [2, 46] as
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In the case when the uniform flow of velocity V moves along the x-direction
(Fig. 3.1), the wave equation in mean flow is simplified as
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Upon substituting Eq. (3.4) into Eq. (3.8), the wavenumber in mean flow is
obtained as

k D !

c0 .1 C M cos ' cos �/
(3.9)

where M D v/c0 is the Mach number of the mean flow and c0 being the sound speed
in fluid. When the fluid is stationary (i.e., M D 0), k D !/c0.

Taking advantage of the periodicity of the rib-stiffened plates examined in the
present study and employing the Poisson summation formula, we can express the
wave components in the form of space-harmonic series [47–52] as
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The Fourier transform pairs of a function with respect to (x, y) and (˛, ˇ) are here
defined as
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Applying the Poisson summation formula and taking the Fourier transform of
Eq. (3.1) lead to
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where ˛m D ˛ C 2m�/lx, ˇn D ˇ C 2m�/ly, Qqs .˛m; ˇ/, Q�s .˛m; ˇ/, Qqt .˛; ˇn/, and
Q�t .˛; ˇn/ can be obtained by taking the Fourier transform of (3.2) and (3.3) as
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The sound pressure in the incident side Pi C Pr (including both the incident and
reflected sound pressure) and the radiated sound pressure Pt satisfy the convected
wave equation and the Helmholtz equation, respectively:
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which together with the boundary condition
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ensures the equality of fluid velocity at the fluid-solid interface and plate velocity,
�0 being the fluid density. Transforming Eqs. (3.18), (3.19), and (3.20) yields

QPr .˛; ˇ; z/ D peı .˛ C ˛0/ ı .ˇ C ˇ0/ e�1z C !2�0 Qw .˛; ˇ/ e�1z=�1 .˛; ˇ/ (3.21)
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QPt .˛; ˇ; z/ D �!2�0 Qw .˛; ˇ/ e��2zC�2h

�2 .˛; ˇ/
(3.22)

where
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Incorporating Eqs. (3.14), (3.15), (3.16), (3.17) and Eqs. (3.21), (3.22) into
Eq. (3.13) results in
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To solve Eq. (3.25), (˛, ˇ) are replaced by (˛
0

m, ˇ
0

n), leading to a set of
simultaneous algebraic equations as
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To facilitate subsequent numerical calculations, this equation is rewritten as
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The amplitudes of the plate in wavenumber space should satisfy an infinite set
of simultaneous equations, which contain a doubly infinite number of unknowns
Qw �˛0

m; ˇ0
n

�
for m0 D � 1, 1 and n0 D � 1, 1. To perform numerical calculations,

the equations can be truncated to retain a finite number of unknowns with m0 D
� Om; Om and n0 D �On; On (insofar as the solutions converge). To be concise, the
resulting simultaneous equations containing a finite number (i.e., M N , where
M D 2 Om C 1, N D 2 On C 1) of unknowns can be expressed in the matrix form as

TM N �M N UM N �1 D QM N �1 (3.28)

where TM N �M N denotes the generalized stiffness matrix, UM N �1 represents the
displacement matrix, and QM N �1 signifies the generalized force matrix. Detailed
expressions for these matrices can be found in Appendix A. The resulting set of
simultaneous equations for a total of M N unknowns is then numerically solved to
obtain the solution for Qw .˛; ˇ/.

3.1.2.2 The Radiated Sound Pressure

As aforementioned, the displacement of the orthogonally rib-stiffened plate can be
obtained by solving the governing equations as
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where Wm0n0 is associated with the inverse form of the generalized stiffness matrix
TM N �M N . In fact, this expression gives the series form solution of Eq. (3.28).

Once the plate displacements are determined, the radiated sound pressure
induced by plate vibration can be obtained by employing Eq. (3.22) as

QPts .˛; ˇ; h/ D �!2�0 Qw .˛; ˇ/

�2 .˛; ˇ/
(3.30)

The radiated sound pressure in real physical space is calculated by applying the
Fourier transform as
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The truncation manipulation of Eq. (3.27) into a finite range actually implies that
the infinite extent structure is replaced by a finite extent structure with geometrical
dimensions of Mlx � N ly . It has been established that sufficiently large values
chosen for M and N can ensure the solution convergence in subsequent numerical
calculations. Correspondingly, the total radiated sound power can be evaluated by
[10, 40, 53, 54]
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where the symbol * denotes complex conjugate and vts(x, y) D Pts(x, y)/(�0c0) is the
local acoustic velocity on the condition of plane waves assumption.

To highlight the radiation characteristics of periodically rib-stiffened structures
as well as the mean flow effects, the solution for a bare faceplate without any
rib-stiffeners in steady fluid is given below, which is also used as reference. The
displacement of a bare plate can be easily obtained from Eq. (3.25) by disregarding
the terms related to the rib-stiffeners as

Qw .˛; ˇ/ D 2peı .˛ C ˛0/ ı .ˇ C ˇ0/

D.˛2 C ˇ2/
2 � m!2 � 2!2�0=�2 .˛; ˇ/

(3.33)

The radiated sound pressure is

QPtu .˛; ˇ; h/ D �!2�0 Qw .˛; ˇ/ =�2 .˛; ˇ/ (3.34)
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Incorporating Eq. (3.33) and taking the Fourier transform of Eq. (3.34) yield
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The total radiated sound power by a bare plate having the same geometrical
dimensions as the rib-stiffened plate is [10, 40, 53, 54]
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where the symbol * denotes complex conjugate and vtu(x, y) D Ptu(x, y)/(�0c0) is the
local acoustic velocity on the condition of plane waves assumption.

Finally, with the bare plate taken as reference, the radiated sound power level
(PWL) LW of the orthogonally rib-stiffened plate is expressed in decibel scale as

LW D 10 log10

�Q
sQ
u

	
(3.38)

The sound power level LW thus defined is applied below to quantify how
the external mean flow affects the process of noise transmission and reveal the
underlying physical mechanisms.
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Fig. 3.2 Radiated sound power of the rib-stiffened plate (re that of the bare plate) plotted as a
function of frequency for selected Mach numbers of mean flow (' D 60 ı, � D 0 ı, lx D ly D 0.2 m)

3.1.3 Effect of Mach Number

Given that the primary objective of this investigation is to examine how external
mean flow affects noise transmission trough a rib-stiffened aeroelastic plate into
aircraft interior, the Mach number as a key parameter for external mean flow falls
into the focal point category. To highlight the periodicity of the stiffened plate as
well as the external mean flow effects, the radiated sound power of the structure
immersed in mean flow is normalized by that of the bare faceplate in stationary fluid,
i.e., Eq. (3.38). Figure 3.2 plots the predicted structure-radiated sound pressure as
a function of frequency for selected Mach numbers (i.e., M D 0, 0.4, 0.8, and 1.2),
with ' D 60 ı, � D 0 ı, and lx D ly D 0.2 m.

It is seen from Fig. 3.2 that the presence of external mean flow affects signif-
icantly sound radiated from the rib-stiffened plate, as evidenced by the dramatic
difference between the overall tendency of sound power level (PWL) LW versus
frequency curve for the case M D 0 and that for other cases M D 0.4, 0.8, and 1.2.
The curves associated with mean flow exhibit similar tendency, although the specific
PWL values and peak (or dip) locations differ for different Mach numbers. The
results of Fig. 3.2 show that the presence of mean flow reduces visually the PWL
at low frequencies (<80 Hz) and enhances the modal behavior of the periodically
rib-stiffened plate. Further, as the Mach number is increased, whereas the PWL
decreases at low frequencies (<80 Hz), the location of the corresponding resonance
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Fig. 3.3 Radiated sound power of the bare plate and the rib-stiffened plate (re 10�12 W)
plotted as a function of frequency for selected Mach numbers of mean flow (' D 60 ı, � D 0 ı,
lx D ly D 0.2 m)

peak remains approximately unchanged, while the antiresonance dips move to
higher frequencies. These results imply the substantial influence of structural
periodicity and external mean flow on sound radiation from rib-stiffened plates
immersed in mean flow, because the choice of dimensionless PWL (with reference
to that of a bare plate) eliminates other system factors.

To explore more details associated with the sound radiation properties of rib-
stiffened plates in the presence of external mean flow, Fig. 3.3 presents the sound
power level (PWL) in dB re 10�12 W of the rib-stiffened plate and the reference
sound power level in dB re 10�12 W radiated from a bare plate under harmonic plane
sound wave excitation of 1 Pa pressure. It is seen from Fig. 3.3 that the presence of
mean flow leads to a modest decrease in the radiated sound power of the structure,
increasing thereby the sound transmission loss. This feature is consistent with the
existing results of Koval [2]. Moreover, as the Mach number is increased, the overall
radiated sound power of the structure decreases, especially in the low-frequency
range. Also, with the increase of the Mach number, the modal dips appearing in
the PWL curve shift to higher frequencies, which implies that the presence of mean
flow increases the modal frequency of the structure. If one notes that the location
of the first dip in the PWL versus frequency curve of the stiffened plate at M D 0
is coincident with that of the first dip in the PWL curve of the bare plate at M D 0,
it is understandable that no peak will appear at this location in the PWL curve of
the stiffened plate at M D 0 due to the counteraction between the two. In contrast,
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Fig. 3.4 Radiated sound power of the rib-stiffened plate (re that of the bare plate) plotted as a
function of frequency for various incident angles (� D 0 ı, M D 0.8, lx D ly D 0.2 m)

while the first dips in the PWL curve of the stiffened plate at M ¤ 0 move to higher
frequencies, a peak will appear at this location in the PWL curve of the stiffened
plate at M ¤ 0.

3.1.4 Effect of Incidence Angle

For an aircraft in cruise condition, the noise induced by the jet engine or screw
propeller may impact the fuselage skin structure at different incidence angles,
depending upon the cruise speed and the skin structure location with respect to
the source of noise. The effect of the noise incidence angle on sound radiation has,
therefore, actual significance in the evaluation of aircraft interior noise at different
cruise speeds as well as the design of specific skin structures. Figure 3.4 plots the
radiated sound power level as a function of frequency for varying incidence angles,
with � D 0 ı, M D 0.8 (selected for typical aircraft cruise speed; same below), and
lx D ly D 0.2 m. A notable feature of Fig. 3.4 is that the peaks and dips in the
PWL versus frequency curves shift to higher frequencies as the incidence angle
is increased. Correspondingly, this induces changes in sound power level (PWL) at
specific frequencies and the resultant alteration of the whole curve tendency. The
sound wave with a more oblique sound incidence angle (i.e., a smaller incidence
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Fig. 3.5 Radiated sound power of the bare plate and the rib-stiffened plate (re 10�12 W) plotted
as a function of frequency for various incident angles (� D 0 ı, M D 0.8, lx D ly D 0.2 m)

angle ' in the present coordinate of Fig. 3.1) is capable of exciting flexural bending
waves with more frequency components in the plate, which is thus more likely
to induce modal resonance and antiresonance over a wider frequency range. As
a result, the peaks and dips move to lower frequencies as the incidence angle is
decreased, as shown in Fig. 3.4.

In the presence of mean flow with Mach number M D 0.8, Fig. 3.5 presents both
the PWL of the rib-stiffened plate and the reference PWL of the bare plate, in dB re
10�12 W. As the sound incidence angle is increased, the dips in the PWL curves of
both the bare plate and the rib-stiffened plate are seen to shift to higher frequencies.
Moreover, the PWL values decrease with increasing sound incidence angle in a wide
frequency range, which is particularly significant in the mid-frequency range. This
happens because the sound impedance of the structure is dependent of the sound
incidence angle: larger sound impedance associated with a higher incidence angle
will reduce noticeably the sound radiation of the structure.

3.1.5 Effect of Periodic Spacings

As a key parameter of the rib-stiffened structures considered here, the spacing
between two adjacent stiffeners in the x- or y-direction characterizes the periodicity
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Fig. 3.6 Radiated sound power of the rib-stiffened plate (re that of the bare plate) plotted as a
function of frequency for various periodic spacings (' D 45 ı, � D 0 ı, M D 0.8)

of the structure. To explore the effect of structure periodicity on sound radiation,
the radiated sound power is plotted in Fig. 3.6 as a function of frequency for several
choices of periodic spacings, with ' D 45 ı, � D 0 ı, and M D 0.8. For simplicity,
the stiffeners are taken as equally spaced along x- and y-directions, lx D ly. As the
periodic spacing is increased while the whole tendency of the PWL versus frequency
remains unchanged, the peaks and dips are noticeably shifted to lower frequencies
(Fig. 3.6). This means that for periodically rib-stiffened plates immersed in external
mean flow, the natural frequencies of the plate decrease with increasing periodic
spacings, and relatively small alterations of the periodic spacings will not change
broadly the periodicity nature of the structure. As the factual aircraft structures are
often not perfectly periodic, the sound radiation behavior of locally nonperiodic
structures is an interesting issue for aeroelastic-acoustic design of aircraft fuselages.
This issue will be addressed in a separate study.

In the presence of mean flow, to gain more insights into the effect of periodic
spacings on sound radiation, Fig. 3.7 plots the PWL of the rib-stiffened plate and
the reference PWL of the bare plate for selected periodic spacings, with M D 0.8.
As reference, the sound power of the bare plate is calculated by a truncation
manipulation [Eq. (3.37)] so that it has the same dimensions (Mlx � N ly) as
the rib-stiffened plate, which is therefore also related with periodic spacings,
as shown in Fig. 3.7. It is seen that the peaks and dips in the PWL versus
frequency curves all move to lower frequencies as the periodic spacing is increased.
Moreover, with increasing periodic spacing, the radiation sound power decreases
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Fig. 3.7 Radiated sound power of the bare plate and the rib-stiffened plate (re 10�12 W) plotted
as a function of frequency for various periodic spacings (' D 45 ı, � D 0 ı, M D 0.8)

in the low-frequency range (<100 Hz) and increases in the high-frequency range
(>100 Hz) as far as the overall tendency is of concern. As a matter of fact, increasing
the periodic spacing reduces the stiffness of the structure, which in turn causes the
radiated sound power to decrease below 100 Hz and increase above 100 Hz.

3.1.6 Concluding Remarks

A theoretical model has been developed for sound radiation from aeroelastic plates
stiffened by two sets of orthogonally distributed rib-stiffeners and subjected to
external jet noise, with particular focus placed upon the influence of the presence
of convected mean flow. The model is built upon the Kirchhoff thin plate theory
and the convected wave equation, with the Euler-Bernoulli bean equation and the
torsional wave equation applied to describe the flexural and torsional motions of
the rib-stiffeners, respectively. In view of the periodic nature of the structure, the
Poisson summation formula and the Fourier transformation technique are adopted
to solve the aeroelastic-acoustic governing equations of the system. To highlight the
effects of external mean flow and structural periodicity, the sound pressure radiated
by the structure is given in the form of decibel scale with respect to that radiated by
a bare plate immersed in stationary fluid.
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To gain fundamental insights into the aeroelastic-acoustic behavior of
rib-stiffened plates immersed in external mean flow, systematic numerical studies
are carried out with the developed model to quantify the effects of mean flow speed,
jet-noise incident angle, and stiffener spacings. It is established that the presence
of mean flow affects significantly the sound radiation performance of the structure,
reducing dramatically its PWL level at relatively low frequencies. As the mean flow
Mach number is increased while the location of the resonance peak on the PWL
versus frequency curve remains nearly unchanged, the antiresonance dips move to
higher frequencies. As the sound incidence angle is increased, the peaks and dips
on the PWL curves are remarkably shifted to higher frequencies, leading to changes
in PWL value at specific frequencies and the resultant alteration of the whole curve
tendency. As the periodic spacings are increased, the PWL peaks and dips all move
to lower frequencies, while the whole tendency of the curve remains unchanged.

The theoretical model presented in this study is capable of giving reasonable
predictions for sound radiation of rib-stiffened aircraft fuselage structures, which is
helpful for the evaluation of aircraft interior noise level at different cruise speeds
and the design of aircraft skin structures at different locations with respect to the jet
engine.

3.2 Transmission Loss of Orthogonally Rib-Stiffened Plates

3.2.1 Introduction

As periodically rib-stiffened plates have been widely used in engineering structures
such as aircraft fuselages and ship/submarine hulls [47–51, 55, 56], the sound
transmission performance of such structures have attracted increasing attention.
Particularly for high-speed transportation vehicles, the interior cabin noise mainly
stems from the external turbulent boundary layer (TBL) and engine exhaust
noise [16, 22, 30, 33, 37, 57–60]. The development of theoretical models that
can provide fundamental insight and applicative guidance of noise reduction at
the design stage of rib-stiffened fuselage structures is therefore of considerable
practical significance. Regarding the dynamic and acoustic response of fluid-loaded
periodically rib-stiffened structures, however, no such theory exists in the open
literature that can be readily applied to predict the effects of external mean flow
and structure geometrical parameters. This deficiency is addressed in this chapter.

The dynamic and acoustic response of fluid-loaded plates has been extensively
investigated. For typical instance, concerning sound transmission through aircraft
fuselage plates, Koval [2] formulated theoretical expressions for the field-incidence
transmission loss of a single-walled plate by considering external airflow, panel
curvature, and internal fuselage pressurization. Built upon Koval’s work and with
engine exhaust noise penetration through double-walled fuselage structures in mind,
Xin and Lu [30] theoretically investigated the sound transmission characteristics of
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double-leaf plates in the presence of external mean flow. To simulate noise reduction
of jet nozzle structures in conjunction with active cooling by convective fluid flow,
they subsequently extended the work to study the acoustic behavior of finite simply
supported aeroelastic plates immersed in convected fluids [33].

With emphasis placed upon boundary layer-induced aircraft noise, Graham [57]
proposed a theoretical model to investigate the radiation of sound from a single, flat,
elastic plate under turbulent boundary layer excitation, with insightful conclusions
for this kind of problem obtained. Graham [22] extended this model to trimmed
aircraft plates by studying a flat plate with its internal surface covered by two
dissipative layers. It was found that the dissipative layers modify significantly the
behavior of the system via two related effects: insulation damping and attenuation.
With mean flow effects accounted for, Sgard et al. [31] developed a formulation
using the coupled FEM-BEM approach for forced vibroacoustic response of baffled
plates. The formulation showed explicitly the effects of mean flow in terms of
added mass, stiffness, and radiation damping. Taking into account the structural
nonlinearities induced by in-plane forces as well as shearing forces due to the
stretching of plate-bending motion, Wu and Maestrello [32] derived theoretical
formulations for the acoustic response of finite baffled plates subject to turbulent
flow excitation. For arbitrary boundary conditions, Atalla and Nicolas [6] proposed
a theoretical formulation for mean flow effects on sound radiation from rectangular
baffled plates in inviscid, uniform subsonic flow. The effects of the mean flow
in terms of added mass and radiation resistance were shown explicitly. Using
the reverse flow reciprocal theorem to determine a Green’s function, Howe and
Shah [20] theoretically investigated the influence of mean flow on boundary layer-
generated interior noise, with both simply supported edges and clamped edges
considered. Particularly, it should be mentioned that the research group of Frampton
and Clark [4, 15, 16, 37–41, 61] carried out comprehensive studies on sound
radiation/transmission of aeroelastic plates excited by convected fluid flow. By
adopting singular value decomposition, a method for the state-space modeling of
aeroelastic plates subject to linearized potential flow aerodynamic loading was
developed [4]. Subsequently, detailed analyses were performed to account for the
TBL-induced noise coupling with aeroelastic plates [15, 38–41].

There also exist a number of active control studies associated with fluid-induced
noise transmission through plates. For instance, Maury et al. [21] theoretically
investigated the active control of sound transmitted through a TBL-excited elastic
panel. Further, they presented a theoretical study concerned with the active control
of airflow noise transmission through finite double-leaf fuselage structures [12].

Apparently, the vibroacoustic responses of fluid-loaded structures have been
extensively studied, and a wide range of efficient theoretical techniques are available
for dealing with aircraft fuselage interior noise problem. However, concerning
external fluid loading on orthogonally rib-stiffened plates, effective and general
guidelines helpful for decision-making at the early design stage of cabin structures
appear to be lacking. This chapter attempts to address this deficiency. A theoretical
model capable of providing fundamental insight into this issue is developed, with
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Fig. 3.8 Schematic of an
orthogonally rib-stiffened
plate excited by convected
harmonic pressure (With
permission from Acoustical
Society of America)

particular focus placed upon the effects of mean flow and structure geometrical
parameters on sound transmission loss across orthogonally rib-stiffened plates.

The description of the problem and the derivation of the theoretical model
for sound transmission through orthogonally rib-stiffened plate are presented in
Sect. 3.2.2. Numerical results and relevant discussions are described in Sects. 3.2.3–
3.2.7, where the theoretical model validation is performed by comparing with
available theoretical and experimental results in Sect. 3.2.3, together with systematic
parameter investigations including effects of the Mach number, rib-stiffener
spacings, thickness and height, the elevation, and azimuth angles of incident sound,
respectively, in Sects. 3.2.4–3.2.7.

3.2.2 Theoretical Formulation

3.2.2.1 Structure Geometry and Model Definition

With reference to Fig. 3.8, consider an orthogonally rib-stiffened structure made
of an infinite Kirchhoff thin plate lying in the plane of z D 0 and reinforced by
periodically distributed rib-stiffeners along two orthogonal directions x D mlx and
y D nly, with m and n being both positive or negative integers, and (lx and ly)
representing rib-stiffener spacing in the x- and y-directions, respectively. Idealized
line stiffeners are assumed, which are modeled using the Euler-Bernoulli beam
theory and torsional wave equation. Let d represent the height of the rib-stiffeners in
the two orthogonal directions; (tx and ty) signify the thickness of the x- and y-wise
rib-stiffeners, respectively; and h denote the thickness of the thin surface plate. For
simplicity, sound radiation from the rib-stiffeners will not be taken into account.

The surface plate divides the spatial region into two regimes: the incident field
(z < 0) and the transmitted field (z > h). For convenience, the parameters associated
with the two regimes are numbered by subscripts 1 and 2, respectively. A uniform
mean flow is assumed to move parallel to the xy plane, along the x-axis in the
incident field. An oblique plane acoustic wave varying harmonically in time is
incident on the surface plate in the moving fluid, with elevation angle ' (angle
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about the xy plane) and azimuth angle � (angle made by the projection of the wave
vector in the xy plane about the x-axis) (see Fig. 3.8). The incident pressure wave
induces the vibration of the structure, which creates a pressure disturbance in the
surrounding fluid, resulting in a reflected sound pressure in the incident field and a
transmitted sound pressure in the transmitted field. The pressure alteration caused
by this disturbance in turn affects the structure vibration, generating the so-called
aeroelastic coupling effect [4, 16, 33, 38].

3.2.2.2 Derivation of Aeroelastic Coupled Model

The oblique plane acoustic wave incident on the surface plate as shown in Fig. 3.8
may be expressed as

p .x; y; z; t/ D I e�i.k1xxCk1yyCk1zz�!t/ (3.39)

In terms of aeroelastic coupling effect, the vibration of the plate induced by
the incident sound pressure creates a pressure disturbance in the surrounding fluid,
i.e., the incident field and the transmitted field. Therefore, a negative-going sound
wave exists in the incident field, and a positive-going sound wave is present in the
transmitted field. Correspondingly, with the structure-coupling effect between the
rib-stiffeners and the surface plate [18, 30, 47, 49, 51] duly accounted for, the sound
pressure may be written as

P1 .x; y; z; t/ D Ie�i.k1xxCk1yyCk1zz�!t/

C
X

mn

ˇmne�iŒ.k1xC2m�=lx/xC.k1y C2n�=ly/y�k1z;mnz�!t� (3.40)

P2 .x; y; z; t/ D
X

mn

"mne�iŒ.k2xC2m�=lx/xC.k2xy C2n�=ly/yCk2z;mnz�!t� (3.41)

The summation indices m and n represent modal decomposition, as a result of
the periodic rib-stiffener enclosed cavities, which justifies (through the Helmholtz
equation given below) the present modal expressions of the reflected and transmitted
sound waves. Note that while the time-dependence term exp(i!t) appearing in Eqs.
(3.40) and (3.41) is omitted in subsequent formulations, it is considered implicitly.
The wavenumber components in the two fields are associated with wavenumber k1

(or k2) and incident angles ('1, ˇ) [or transmitted angles ('2, ˇ)] as

k1x D k1 cos '1 cos ˇ; k1y D k1 cos '1 sin ˇ; k1z D k1 sin '1 (3.42)

k2x D k2 cos '2 cos ˇ; k2y D k2 cos '2 sin ˇ; k2z D k2 sin '2 (3.43)
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In the incident field, there exists a uniform mean flow of velocity V moving
parallel to the acoustically deformed boundary, i.e., the fluid-plate interface. The
sound pressure in the moving flow should satisfy the convected equation [2, 27,
33, 41] given by

D2P1

Dt2
D
�

@

@t
C V � r

	2

P1 D c2
1r2P1 (3.44)

As aforementioned, for convenience, the mean flow is assumed to move along
the x-direction. As a consequence, Eq. (3.44) can be simplified as

�
@

@t
C v � @

@x

	2

P1 D c2
1r2P1 (3.45)

Substitution of P1 from Eq. (3.40) into Eq. (3.45) leads to

k1 D !

c1 .1 C M cos '1 cos ˇ/
(3.46)

k1z;mn D
s�

!

c1

� v

c1

2m�

lx

	2

�
�

k1x C 2m�

lx
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k1y C 2n�
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(3.47)

where M D v/c1 denotes the Mach number of the mean flow. The above expression
of wavenumber components in the z-direction manifests the cavity modal character-
istics, resulting from the cavities enclosed by periodically distributed rib-stiffeners.

There is no flow in the transmitted field. In such a case the pressure P2 obeys the
classic wave equation, and the wavenumber in this field is given by

k2 D !

c2

(3.48)

Similar to the expression of Eq. (3.47), in view of the present structure periodicity
and cavity modal characteristics, the wavenumber components in the z-direction for
the sound wave in a static fluid can be simplified as

k2z;mn D
s�

!

c2

	2

�
�

k2x C 2m�

lx

	2

�
�

k2y C 2n�

ly

	2

(3.49)

Let ct denote the trace wave speed in the surface plate. The trace wavenumber is
then expressed as kt D !/ct D 2�/	t, 	t being the wavelength of the plate trace wave.
The fluid-plate interface condition dictates that the sound wave needs to fit with the
plate, namely, the wavelength between the two must match with each other as

k1x D kt cos ˇ D k2x; k1y D kt sin ˇ D k2y (3.50)
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Meanwhile, given the periodicity of the structure, the displacement of the surface
plate can be written in the following form [49]:

w .x; y/ D
X

mn

amne�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y� (3.51)

The mnth modal amplitude for the plate displacement is related to the displace-
ment as

amn D 1

lxly

Z lx

0

Z ly

0

w .x; y/ eiŒ.kxC2m�=lx/xC.kyC2n�=ly/y�dxdy (3.52)

where, according to the coherence condition between the bending wavelength in
plate and acoustic wavelength in fluid, kx D k1x D k2x and ky D k1y D k2y.

On the basis of Eq. (3.50), solving for '2, one gets

'2 D arccos

�
c2 cos '1

c1 .1 C M cos '1 cos ˇ/

	
(3.53)

Equation (3.53) gives the propagating angle of the transmitted wave, which
actually represents the refraction law for wave transmission from one medium to
another because one effect of the mean flow is to refract the wave at the surface
plate. Note that the corresponding transmitted waves become evanescent wave, if

ˇ
ˇ̌
ˇ

c2 cos '1

c1 .1 C M cos '1 cos ˇ/

ˇ
ˇ̌
ˇ > 1 (3.54)

In such a case, the total reflection of the incident sound wave occurs. Therefore,
the vibration of the structure does not contribute to sound radiation in the transmitted
field. In other words, the evanescent wave in the transmitted field will soon vanish
in the decline exponential form with the distance in the z-direction.

Regarding aeroelastic coupling, the displacement continuity condition should
be taken into account at the fluid-plate interfaces. To this end, let x	1 and x	2 be
the displacements of fluid particles in the incident field and the transmitted field,
respectively, both adjacent to the surface plate. These fluid particle displacements
should be in coherence with the Navier-Stokes equation for inviscid and irrotational
fluid, i.e.,
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(3.55)
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(3.56)
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For harmonic sound wave excitation, the fluid particle displacements can be
written as

x	j D
X

mn

x	j;mne�iŒ.kjxC2m�=lx/xC.kjyC2n�=ly/y�; .j D 1; 2/ (3.57)

Substitution of Eqs. (3.40), (3.41), and (3.57) into Eqs. (3.55) and (3.56) yields
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X

mn

h
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i
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(3.58)

X
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�ik2z;mn"mne�ik2z;mnh � �2.! � vk2x;m/2x	2;mn

i
e�iŒk2x;mxCk2y;ny� D 0 (3.59)

where

kjx;m D kjx C 2m�

lx
; kjy;n D kjy C 2n�

ly
; .j D 1; 2/ (3.60)

Because Eqs. (3.58) and (3.59) are valid for all values of x and y, one can derive
the following relationships between the pressure modal amplitudes and fluid particle
displacements:

ˇ00 D I C �1.! � vk1x/2x	1;00

ik1z
(3.61)

ˇmn D �1.! � vk1x;m/2x	1;mn

ik1z;mn

at m ¤ 0 kn ¤ 0 (3.62)

"mn D ��2.! � vk2x;m/2x	2;mn

ik2z;mn

eik2z;mnh (3.63)

Fully considering the plate displacement expression of Eq. (3.51) and the fluid
particle displacement expression of Eq. (3.57), one can write the displacement
continuity condition at fluid-plate interfaces in the modal amplitude form as

x	1;mn D amn D x	2;mn (3.64)

Given the abovementioned assumptions for the coupled aeroelastic-acoustic
problem, the surface plate vibration is modeled by applying the Kirchhoff thin plate
theory. Consequently, by taking into account the equivalent forces and moments
from the periodically distributed rib-stiffeners exerting on the plate, the governing
equation for surface plate vibration may be obtained as
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Dr4w C m @2w
@t2 D �

X

m

qs .x; y/ ı .x � mlx/ � @
@x

"
X

m

�s .x; y/ ı .x � mlx/

#

�
X

n

qt .x; y/ ı
�
y � nly

� � @
@y

"
X

n

�t .x; y/ ı
�
y � nly

�
#

CP1 .x; y; 0/ � P2 .x; y; h/ (3.65)

where r4 D (@2/@2x C @2/@2y)2, w, D, and m are the displacement, bending stiffness,
and area density of the surface plate, respectively, and ı(�) signifies the Dirac delta
function. Note in particular that the material loss � is introduced via the complex
Young’s modulus given by

D D Eh3 .1 C i�/

12 .1 � �2/
(3.66)

where E is the Young’s modulus and v is the Poisson ratio of the plate material.
The periodically distributed rib-stiffeners exert equivalent forces and moments

on the connected surface plate in terms of their tensional motion and rotational
motion and have the same displacements as the attached plate. The displacement
of individual rib-stiffener aligned with either x- or y-direction is modeled using the
Euler-Bernoulli beam theory as

ExIx

@4w

@x4
C mx

@2w

@t2
D qt .x; y/ ; EyIy

@4w

@y4
C my

@2w

@t2
D qs .x; y/ (3.67)

where (ExIx, EyIy), (mx, my) and (qt, qs) are the flexural stiffness, area density, and
equivalent line forces for x-wise and y-wise rib-stiffeners, respectively.

The rotation of individual rib-stiffeners is modeled with the torsional wave
equation as

GxJx
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� �xIpx
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@t2
D �t .x; y/ ; GyJy

@2�y

@y2
� �yIpy

@2�y

@t2
D �s .x; y/

(3.68)

where (GxJx, GyJy), (�xIpx, �yIpy) and (� t, �s) are the torsional stiffness, torsional
inertial, and equivalent line moments for x-wise and y-wise rib-stiffeners, respec-
tively, and (� x, � y) stands for the clockwise angle of rotation for x-wise and y-wise
rib-stiffeners about their centroid, calculated by

�x .x; y/ D @w .x; y/

@y
; �y .x; y/ D @w .x; y/

@x
(3.69)

Due to the periodic nature of the considered structure, the displacement of
the surface plate includes a series of trace waves having different wave vectors:
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kmn D .kx C 2m�=lx/ Oex C �
ky C 2n�=ly

� Oey , Oex and Oey being the unit vector in
the x- and y-directions, respectively. The displacement of the surface plate and the
corresponding mnth modal amplitude have been given in Eqs. (3.51) and (3.52).

For simplicity, the new variations kx,m and ky,n are introduced as

kx;m D kx C 2m�

lx
; ky;n D ky C 2n�

ly
(3.70)

which represents wavenumber components in the x- and y-directions associated with
the mnth trace wave in the plate.

Substitution of (3.51) into (3.67) and (3.68) yields
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Since the considered structure is spatially periodic in both x- and y-directions,
the modal amplitudes amn can be solved by utilizing the principle of virtual work for
each element of the periodic structure. As close relationships between plate modal
amplitudes amn and sound pressure amplitudes ˇmn and "mn have been given in
Eqs. (3.61), (3.62), (3.63), and (3.64), the sound pressures can be straightforwardly
obtained once the former is determined. The principle of virtual work states that
the virtual work of the whole system stemming from the virtual displacements must
equal to zero, while the imposed virtual displacement may be written as

ıw� D ıamne�iŒ.kxC2m�=lx/xC.ky C2n�=ly/y� (3.75)

In view of the periodic nature of the structure, only one periodic element needs
to be considered. The equation governing the surface plate vibration is expressed as

Dr4w C m
@2w

@t2
� P1 .x; y; 0/ C P2 .x; y; h/ D 0 (3.76)

Therefore, for a given virtual displacement, the virtual work contributed by the
surface plate element is given by
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The virtual works done by the equivalent forces and moments of x-wise and
y-wise rib-stiffeners are
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Accordingly, the principle of virtual work dictates that
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To arrive at a simple combination of governing equation, one needs to firstly
derive the final expressions of Eqs. (3.77), (3.78), and (3.79), which are established
as detailed below:
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Substituting Eqs. (3.81), (3.82), and (3.83) into Eq. (3.80) and noting that the
virtual displacement is arbitrary, one gets
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To separate the different sum indices, upon taking necessary algebraic manipu-
lations, the resultant governing equation for the system can be rewritten as
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To solve the above infinite set of coupled algebraic simultaneous equations, one
needs to truncate the equation into a finite system consisting of series of assumed
modes, insofar as the solution converges. That is, the sum indices (m, n) take values
in a finite range, i.e., m D � Om to Om and n D �On to On. After going through
straightforward algebraic manipulations (Appendix B), the finite governing equation
with dimensions M N (M D 2 OmC1 and N D 2 OnC1) can be expressed in a matrix
form as

TM N �M N UM N �1 D QM N �1 (3.86)
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where TM N �M N represents the generalized stiffness matrix, UM N �1 is the plate
displacement matrix, and QM N �1 is the generalized force matrix. The resulting set
of simultaneous equations for a total of M N unknowns can be numerically solved
to obtain the solution for plate modal amplitude amn, which is then used to calculate
the sound pressure amplitudes ˇmn and "mn.

To evaluate the sound energy penetrating through the periodic structure in the
presence of mean flow, the transmission coefficient is defined here as the ratio of the
transmitted sound power to the incident sound power [49, 51, 62] as


 .'1; ˇ/ D

C1X

mD1

C1X

nD1

j"mnj2Re .k2z;mn/

jI j2k1z

(3.87)

The diffuse sound transmission coefficient is then calculated in an averaged form
over all possible incident angles [49, 51] as


diff D

Z �

0

Z 'lim

0


 .'; �/ sin ' cos 'd'd�

Z �

0

Z 'lim

0

sin ' cos 'd'd�

(3.88)

Finally, the sound transmission loss (STL) expressed in decibel scale [9, 10] is
obtained as

STL D 10 log10

�
1




	
(3.89)

3.2.3 Model Validation

Since the resultant solution is expressed in the form of space-harmonic series,
a sufficient number of terms should be adopted to ensure a satisfactory level of
convergence and accuracy of the solution. A convergence check study is firstly
carried out following the convergence check scheme proposed in our earlier works
[18, 47, 49, 51]. It is established that the space-harmonic series solution requires
at least 441 terms (i.e., the indices m and n both range from �10 to 10) to ensure
convergence at 10 kHz. The same number (441 terms) is also applied to predict STL
values below 10 kHz, and it is found that this can ensure accuracy within the error
bound of 0.1 dB.

No experimental measurements or theoretical predictions exist for the effects of
external mean flow on sound transmission loss of orthogonally rib-stiffened plates.
Since the present theoretical model can be favorably degraded to the case of no
mean flow by setting the Mach number M D 0, for validation, the model predictions
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Fig. 3.9 Diffuse STL plotted as a function of incident frequency: comparison between present
model predictions with experimental and theoretical results of Mejdi and Atalla [36, 63] (With
permission from Acoustical Society of America)

are compared with experimental measurements and theoretical results of Mejdi
and Atalla [36, 63] for orthogonally rib-stiffened plates in the absence of mean
flow, as shown in Fig. 3.2. In Mejdi and Atalla’s paper, the spatially windowed
periodic model only accounts for finiteness on sound radiation, while the Rayleigh-
Ritz model accounts for the reflected wave field generated at the boundaries. The
structural dimensions and material properties applied are identical to those taken
by Mejdi and Atalla. The diffuse field excitation with field incidence (' lim D 78 ı)
is employed in the calculation. Further, the transmissibility is computed in 1/24
octave bands and is averaged in 1/3 octave bands over the frequency range of
100–5,000 Hz.

As can be observed in Fig. 3.9, an overall agreement has been achieved between
the present model predictions and the theoretical/experimental results of Mejdi and
Atalla [36, 63], especially at mid and high frequencies. Particularly, the excellent
agreement achieved for frequencies exceeding 300 Hz is attributed to the fact
that the wavelength becomes comparable to the stiffener spacing, implying that
the theoretical model is capable of accurately capturing the features arising from
structure periodicity. However, noticeable discrepancy does exist at low frequencies,
which may be due to two possible reasons: (a) boundary conditions in experimental
measurements while none considered in the present model and (b) the size of
reverberation room limits the low-frequency range below 200 Hz and thus the
corresponding experimental results may be questionable [36].
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Fig. 3.10 STL variation with incident frequency for orthogonally rib-stiffened aeroelastic plate
in the case of ('1 D 60 ı, � D 0 ı): effects of Mach number (With permission from Acoustical
Society of America)

3.2.4 Effects of Mach Number of Mean Flow

Since the focus of this research is placed upon external mean flow effects on
sound transmission loss of orthogonally rib-stiffened plates, it is of great interest
to numerically explore the STL curve tendency at different Mach numbers of mean
flow. Figure 3.10 plots the STL variation of the structure with incident frequency
for selected Mach numbers (i.e., M D 0, 0.5, 1) for '1 D 60 ı and � D 0 ı. The STL
value is seen to increase with increasing Mach number over a wide frequency range,
particularly at relatively low frequencies. The existing results for flat plates with no
stiffeners have demonstrated the similar tendency, namely, the STL value for flat
plates is also increased with increasing Mach number in a wide frequency range
[15, 16, 30, 33]. In comparison, the peaks and dips in the STL curves arising from
the constraint of the attached rib-stiffeners (liking simple boundary conditions) only
slightly change their frequency locations. This actually implies that external mean
flow has a weak influence on the modal frequency of the constrained surface plate,
although its vibration amplitudes are noticeably changed by mean flow. In other
words, it may be deduced from the present results that while the rib-stiffeners play a
significant role in the STL curve tendency in terms of the modal behavior of the sub-
plates, the added-mass effect of light fluid loading (i.e., airflow considered here) can
be ignored, as it has been overwhelmed by the influence of periodic rib-stiffeners.
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Fig. 3.11 Diffuse STL variation with incident frequency for orthogonally rib-stiffened aeroelastic
plate for ' lim D 78 ı: effects of Mach number (With permission from Acoustical Society of
America)

To clarify the dense peaks and dips of the plate modal behavior, Fig. 3.11 presents
the predicted STL variation with incident frequency under a 3D (three-dimensional)
diffuse field incidence for ' lim D 78 ı and different Mach numbers. As the Mach
number is increased while the overall tendency of the STL versus frequency curves
remains approximately unaffected, the magnitude of STL increases considerably
in the frequency range below 500 Hz. In sharp contrast, within the high-frequency
range (approximately 1,000–7,000 Hz), the STL value decreases with increasing
Mach number. The theoretical predictions capture the main feature of the STL
versus frequency curve in terms of two transition dips [36] at mid frequencies and
one coincidence dip at high frequency. The appearance of these dips significantly
alter the tendency of the STL curve and thus should be the cause of increased STL
below 500 Hz and decreased STL in the frequency range of 1,000–7,000 Hz as the
Mach number is increased.

3.2.5 Effects of Rib-Stiffener Spacings

The periodically rib-stiffeners introduce extra reinforced stiffness of the surface
plate, inducing significant changes of its vibroacoustic performance especially in the
presence of external mean flow. The spacings of the rib-stiffeners are chosen here a
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Fig. 3.12 STL variation with incident frequency for orthogonally rib-stiffened aeroelastic plate:
effects of rib-stiffener spacings, with M D 0.5, '1 D 60 ı, and � D 0 ı (With permission from
Acoustical Society of America)

key parameter to evaluate the influence of the rib-stiffeners on sound transmission
loss in the presence of external mean flow. Figure 3.12 plots the STL variation
against incident frequency for selected rib-stiffener spacings (i.e., lx/h D ly/h D
100, 150, and 200), with M D 0.5, '1D60 ı, and � D 0 ı.

The dense dips appearing in the STL curves of Fig. 3.12 correspond to the
frequencies at which the incident wave undergoes a kind of resonance with the
bending wave propagating in the plate. This effect is analogous to the familiar
“coincidence resonance,” but the spatial harmonics created by wave reflection
at the rib-stiffeners introduce multiple possibilities for wavelength matching and
coincidence [62]. While the appearance of STL peaks should be arising from the
case that the excitation at a structural resonance frequency is without significant
wavenumber coincidence between the excitation and the structural wave, and vice
versa. In another viewpoint, the constraints exerted on the surface plate by the rib-
stiffeners may be regarded as simple boundary condition to some extent. Thereby,
the dense dips in the STL curve may be taken as the modal behavior of the subplates.
As illustrated in Fig. 3.12, the modal resonance dips of the subplates shift to lower
frequencies as the rib-stiffener spacings are increased (particularly so for the first
modal resonance dip), implying that the natural frequencies of these subplates
decrease when their sizes are increased.

To explore further the influence of rib-stiffener spacings on structure sound
transmission loss, Fig. 3.13 plots the diffuse STL variation (averaged in 1/3 octave
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Fig. 3.13 Diffuse STL variation with incident frequency for orthogonally rib-stiffened aeroelastic
plate: effects of rib-stiffener spacings, with M D 0.5 and ' lim D 78 ı (With permission from
Acoustical Society of America)

bands) as a function of incident frequency for M D 0.5 and ' lim D 78 ı. Consistent
with Fig. 3.12, the modal resonance dips of the subplates shift downward as the
rib-stiffener spacings are increased, although this is not clearly displayed in the 1/3
octave bands plot of Fig. 3.13. As a matter of fact, this trend can be well captured in
a higher resolution plot, such as the 1/24 octave band. Since Fig. 3.12 has provided
enough details, the 1/3 octave band plot of Fig. 3.13 is employed here to show the
overall trend of the rib-stiffener effects. As can be seen from Fig. 3.13, changes
in rib-stiffener spacings do not alter significantly the tendency of the STL curves,
indicated by the consistence of the corresponding transition dips and coincidence
dips. It should be pointed out that discrepancies among shifts of modal resonance
dips do exist as shown in Fig. 3.12, but this is not captured by the relatively low-
resolution plot (i.e., 1/3 octave band) of Fig. 3.13.

Figures 3.12 and 3.13 present the alteration of STL curve with changes in bidi-
rectional spacings (in both x- and y-directions) of the rib-stiffeners. When only one
directional spacing (e.g., x-direction) is varied, the corresponding STL variation is
presented in Fig. 3.14 for plane sound wave incident case with (M D 0.5, '1 D 60 ı,
� D 0 ı) and in Fig. 3.15 for diffuse field incident case with (M D 0.5, ' lim D 78 ı).

Upon comparing Fig. 3.14 with Fig. 3.12, it is found that the overall trend of the
STL versus frequency curves is similar. However, one noticeable difference is that
the shifts of modal resonance dips appearing in Fig. 3.14 are not as significant as
those in Fig. 3.12. This is readily understandable, as the sizes of the subplates are
varied in both directions in Fig. 3.12, while these are altered in only one direction
in Fig. 3.14.
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Fig. 3.14 STL variation with incident frequency for orthogonally rib-stiffened aeroelastic plate:
effects of rib-stiffener spacings, with M D 0.5, '1 D 60 ı and � D 0 ı (With permission from
Acoustical Society of America)

The STL variations against frequency for diffuse field incident case shown
in Fig. 3.15 present an overall tendency of the STL curve in 1/3 octave band.
Analogous to Fig. 3.13, the main feature of the STL curve has been well cap-
tured, including the coincidence dip and the transition dips appearing between
global modes at relatively low frequencies and periodic modes in mid and high
frequencies.

3.2.6 Effects of Rib-Stiffener Thickness and Height

The rib-stiffeners affect the vibroacoustic performance of the plate to which they
are attached by introducing added mass and reinforced stiffness. In addition to the
periodic spacings discussed in the previous section, the thickness and height of the
rib-stiffeners are varied below to explore their influence on the STL characteristics
of the structure.

Figures 3.16 and 3.17 plot the STL as a function of incident frequency for plane
wave incident ('1 D 60 ı, � D 0 ı) and diffuse field incident (' lim D 78 ı) at M D 0.5,
respectively, for selected stiffener thicknesses (tx/h D ty/h D 0.25, 0.50, and 0.75). It
is seen that the STL peaks and dips become more remarkable as the thickness is
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Fig. 3.15 Diffuse STL variation with incident frequency for orthogonally rib-stiffened aeroelastic
plate: effects of rib-stiffeners spacings, with M D 0.5 and ' lim D 78 ı (With permission from
Acoustical Society of America)

increased, resulting from the added inertial effect of the rib-stiffeners. However, the
overall trend of the STL curve does not change significantly.

As another key parameter of rib-stiffener, the effects of rib-stiffener height are
examined in Figs. 3.18 and 3.19 for plane wave incident ('1 D 60 ı, � D 0 ı) and
diffuse field incident (' lim D 78 ı) at M D 0.5. Similar to the effects of thickness,
increasing the rib-stiffener height also causes more remarkable STL peaks and dips.
Moreover, increase in rib-stiffener height causes another phenomenon: the peaks
and dips shift to higher frequencies, which is not observed in Fig. 3.18 for the case
of increasing thickness. This is attributable to the significant change of flexural and
torsional stiffness of the rib-stiffeners when their height is altered.

3.2.7 Effects of Elevation and Azimuth Angles
of Incident Sound

Previous studies have shown that sound incident angle affects significantly the sound
transmission performance of a structure for plane sound wave incident. This also
holds in the present case of fluid-loaded orthogonal rib-stiffened plates, and there
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Fig. 3.16 STL variation with incident frequency for orthogonally rib-stiffened aeroelastic plate:
effects of rib-stiffener thickness, with M D 0.5, '1 D 60 ı, and � D 0 ı (With permission from
Acoustical Society of America)

exist a number of differences with respect to the case of no mean flow. As can
be observed in Fig. 3.20, the STL value slightly increases with increasing incident
elevation angle (see Fig. 3.8 for definition), especially in the low-frequency range.
The varying incident elevation angle also exerts a noticeable influence on the modal
behavior of the subplates in the high-frequency range. While the overall variation
tendency in the presence of external mean flow is the same as the case of no mean
flow, the increase in STL value is not as significant as the latter. This is caused by
the refraction effect of the mean flow, as the presence of which has considerably
affected the plane wave incident.

Figure 3.21 plots the STL variation against incident frequency for selected
incident azimuth angles (� D 0ı, 45ı, 135ı, and 180ı) in the presence of mean
flow (M D 0.5). Given that the flow is directed along the x-direction, the cases
of � D 0ı and 45ı belong to the downstream category, while � D 135ı and 180ı
belong to the upstream category. This induces the trend exhibited in Fig. 3.21 that
the two STL curves of � D 0ı and 45ı are relatively far away from the two others
of � D 135ı and 180ı. In other words, the STL value for the case of sound wave
incident downstream is pronouncedly larger than that associated with sound wave
incident upstream.
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Fig. 3.17 Diffuse STL variation with incident frequency for orthogonally rib-stiffened aeroelastic
plate: effects of rib-stiffener thickness, with M D 0.5 and ' lim D 78 ı (With permission from
Acoustical Society of America)

Fig. 3.18 STL variation with incident frequency for orthogonally rib-stiffened aeroelastic plate:
effects of rib-stiffener height, with M D 0.5, '1 D 60 ı, and � D 0 ı (With permission from
Acoustical Society of America)
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Fig. 3.19 Diffuse STL variation with incident frequency for orthogonally rib-stiffened aeroelastic
plate: effects of rib-stiffener height, with M D 0.5 and ' lim D 78 ı (With permission from
Acoustical Society of America)

3.2.8 Conclusions

An analytic model has been developed for the effects of external mean flow
and structure geometrical parameters on sound transmission across orthogonally
rib-stiffened aeroelastic plates, from which the transmission loss of the periodic
structure under both plane sound wave incident and diffuse field incident can be
predicted. The proposed model is verified by comparing with existing theoretical
and experimental results for the case of no mean flow. The model predictions
agree well with experimental results, especially at high frequencies where the
trace wavelength in the plate is smaller than the rib-stiffener spacings. In the
presence of mean flow, comprehensive parametric studies subsequently carried out
with the model demonstrate the remarkable influence of structure geometries on
transmission loss. It is demonstrated that the transmission loss of periodically rib-
stiffened structure is increased significantly with increasing Mach number of mean
flow over a wide frequency range. The resonance dips shift to lower frequencies as
the rib-stiffener spacings are increased. While, increasing the sir-stiffener thickness
and height causes more remarkable peaks and dips. The STL value for the case
of sound wave incident downstream is pronouncedly larger than that associated
with sound wave incident upstream. These main results indicate that a carefully
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Fig. 3.20 STL variation with incident frequency for orthogonally rib-stiffened aeroelastic plate:
effects of incident elevation angle, with M D 0.5 (With permission from Acoustical Society of
America)

chosen combination of rib-stiffener geometrical parameters (e.g., periodic spacings,
thickness, and height) is capable of improving the sound insulation behavior of such
structures.

Appendices

Appendix A

The displacement components of the faceplate in wavenumber space are

fUm0n0g D 

U11 U21 � � � UM1 U12 U22 � � � UM2 � � � UM N

�T
M N �1

(3.A.1)

where
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�
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m; ˇ0
n

�
(3.A.2)

The right-hand side of Eq. (3.28) represents the generalized force

fQm0n0g D 

Q11 Q21 � � � QM1 Q12 Q22 � � � QM2 � � � QM N

�T
M N �1

(3.A.3)
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Fig. 3.21 STL variation with incident frequency for orthogonally rib-stiffened aeroelastic plate:
effects of incident azimuth angle, with M D 0.5 (With permission from Acoustical Society of
America)
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Employing the definition of the sub-matrices presented above, one obtains

T D T1 C T2 C T3 C T4 C T5 (3.A.15)

Appendix B

The modal amplitudes of the surface plate displacement are
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The right-hand side of Eq. (3.86) represents the generalized force
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T5 D diag
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Employing the definition of the sub-matrices presented above, one obtains

T D T1 C T2 C T3 C T4 C T5 (3.B.14)
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Chapter 4
Sound Transmission Across Sandwich
Structures with Corrugated Cores

Abstract An analytic study of sound transmission through all-metallic, two-
dimensional, periodic sandwich structures having corrugated core is presented. The
space-harmonic method is employed, and an equivalent structure containing one
translational spring and one rotational spring per unit cell is proposed to simplify
the analysis of the vibroacoustic problem. It is demonstrated that the core geometry
exerts a significant effect on the sound insulation performance of the sandwich, so
that one may tailor the core topology for specified acoustic applications. Subsequent
analysis of the STL (sound transmission loss) and dispersion curves of the structure
leads to fundamental insight into the physical mechanisms behind the appearance of
various peaks and dips on the STL versus frequency curves. As the weight, stiffness,
and acoustic property of the sandwich structures all change with the alteration
of core configuration and geometry, it is further demonstrated that it is possible
to explore the multifunctionality of the structure by optimally designing the core
topology.

4.1 Introduction

Lightweight sandwich structures comprising two facesheets and an (fluid through)
open core have attractive structural load-bearing and heat dissipation attributes [1, 2]
and hence have found increasingly wide applications in high-speed transportation,
aerospace and aeronautical aircrafts, ships, and other transportation vehicles where
weight saving is of major concern [3–16]. Among these applications, an important
issue is noise transmission from exterior of cabin into the interior, inasmuch as that
has a particular significance for the safety and comfort of civil or military vehicles.
However, to date, only a few investigations have focused on the fluid-structure
coupling and dynamic responses of the sandwich structure as well as the physical
mechanisms of sound transmission across the structure (see, e.g., Refs. [3, 4]).

T.J. Lu and F.X. Xin, Vibro-Acoustics of Lightweight Sandwich Structures,
Springer Tracts in Mechanical Engineering, DOI 10.1007/978-3-642-55358-5__4,
© Science Press Beijing and Springer-Verlag Berlin Heidelberg 2014
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Fig. 4.1 Illustration of a
typical sandwich panel with
corrugated core [13, 19]
(With permission from Taylor
& Francis Ltd.)

A typical lightweight all-metallic sandwich panel, which is shown in Fig. 4.1, has
found successful applications in modern express locomotive and ship constructions.
The main attractiveness of this type of sandwich is its simple two-dimensional
(2D) corrugated core, which can be either connected to the facesheets via laser
welding or formed together with the facesheets as one integral structure using
the method of extrusion. In addition to carry structural loads, the openness of the
corrugated core also allows the sandwich to be used as an effective heat dissipation
medium, either separately or simultaneously [17, 18]. For practical applications
such as express locomotives and ships, however, it is also necessary to investigate
the sound insulation capability of the sandwich structure, especially the influence
of core geometry on sound transmission across the structure. This task is performed
in the current study. Together with load-bearing and/or heat dissipation properties,
the knowledge thus acquired on sound insulation capability would be useful for the
design and manufacture of sandwich structures having corrugated cores.

Extensive investigations over the past decades have been dedicated to studying
the sound insulation performances of periodic beams [20, 21], single plates [22–24],
and double panels with air cavity [25–34] or structural connections [27, 35–52]. For
example, the sound transmission loss (STL) of a structure containing two impervious
layers, an airspace, and two acoustic blankets was studied by Beranek et al. [27]
for normal incident sound. London [28] studied the transmission of sound across
a double wall consisting of two identical single walls coupled by an airspace by
considering the impedance of a single wall and achieved good agreement between
model predictions and experimental measurements. The problem of the transmission
of a plane wave through two infinite parallel plates connected by periodically spaced
frames was solved by Lin and Garrelick [36] while that for an infinite sandwich
panel with a constrained viscoelastic damping layer was analyzed by Narayanan
and Shanbhag [46]. Takahashi [37] studied the problem of sound radiation from
periodically connected (e.g., point connected, point connected with rib-stiffening,
and rib-connected) infinite double-plate structures excited by a harmonic point
force. Using the multiple-reflection theory, Cummings et al. [25] investigated
random incidence transmission loss of a thin double aluminum panel with glass
fiber absorbent around the edge of the cavity. Mathur et al. [53] investigated the
STL through periodically stiffened panels and double-leaf strictures and proposed
a theoretical model using the space-harmonic method. Lee and Kim [35] solved
the vibroacoustic problem of a single stiffened plate subjected to a plane sound
wave using the space-harmonic approach proposed by Mead and Pujara [21].
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Wang et al. [38] extended the space-harmonic approach to double-leaf partitions
stiffened by periodic parallel studs and provided detailed physical interpretations for
the mechanisms of sound transmission through the structure. However, few studies
have addressed the issue of sound transmission across 2D sandwich structures with
corrugated core.

The purpose of this chapter is to analytically study the sound insulation perfor-
mance of all-metallic sandwich structure with corrugated core as shown in Fig. 4.1,
with focus placed upon the influence of core geometry as well as the physical
insight of the associated vibroacoustic phenomena. In Sect. 4.2, the theoretical
development of the acoustic model is presented. Based on model predictions, the
effects of core geometry on the vibroacoustic performance of the sandwich are
quantified in Sect. 4.3. Physical interpretations of the appearances of various peaks
and dips on STL versus frequency curves are presented in Sect. 4.4. Finally, this
chapter concludes with a summary of current findings and a suggestion of future
investigations required for multifunctional design of the sandwich.

4.2 Development of Theoretical Model

The transmission of sound through an infinite (in x- and z-directions) 2D sandwich
panel with corrugated core is schematically illustrated in Fig. 4.2. A harmonic sound
wave (with angular frequency !) impinges on the left-side facesheet with incidence
angle � . While part of the sound is reflected back, the remaining portion transmits
into the right side of the sandwich panel via two paths: corrugated core as structural
route and air cavity as airborne route. The sandwich panel with corrugated core
is modeled as two parallel plates (facesheets) structurally connected by uniformly
distributed (equivalent) translational springs and rotational springs, and the mass
of the core is considered as lumped mass attached to the two facesheets, as shown
in Fig. 4.2. Due to periodicity, a unit cell of the sandwich structure is shown in
Fig. 4.3a, whereas its equivalent structure is presented in Fig. 4.3b. For simplicity,
the facesheets and the core are both made of aluminum and have geometrical and
material properties as follows: core thickness t0 and depth l, panel thickness h1 and
h2 (subscripts “1” and “2” denote left- and right-side facesheets, respectively), unit
cell length L, inclination angle between panel and core sheet ˙ ˛, Young’s modulus
E, and Poisson ratio �.

With the assumption of small deflections, the stiffness of the translational spring
KF and the stiffness of the rotational spring KM per unit length can be obtained
analytically (details can be found in Xin et al. [13]). Let the surface density of the
left- and right-side facesheets be denoted by m1 and m2, respectively. The mass
of the core for one unit cell is 2M, which is equivalent to two lumped mass M
separately attached to the inner surfaces of the two facesheets (Fig. 4.3b). Under
these conditions, the governing equations for the vibration of the sandwich structure
may be written as [13, 19]
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Fig. 4.2 (a) Side view of sandwich panel with corrugated core and (b) schematic of equivalent
structure for space-harmonic modeling [13, 19] (With permission from Taylor & Francis Ltd.)

Fig. 4.3 (a) Unit cell of
sandwich panel with
corrugated core and (b)
equivalent unit cell [13, 19]
(With permission from Taylor
& Francis Ltd.)
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where �0 is air density, wi (i D 1, 2) is the transverse deflection of the two facesheets,
j D p�1, and ˆi (i D 1, 2, 3) is the velocity potential of the acoustic field (see
Fig. 4.2b) which is related to the corresponding velocity bybui D �rˆi . With the
loss factor of facesheet material denoted by �i, the flexural rigidity of the facesheet
Di (i D 1, 2) can be written using complex Young’s modulus Ei(1 C j�i) as

Di D Ei h
3
i .1 C j�i /

12
�
1 � v2

i

� (4.3)

The velocity potentials of acoustic fields, i.e., the incident field, the air cavity field
in between the two facesheets, and the transmitted field (Fig. 4.2b), are separately
defined as follows [13, 19, 38]:

ˆ1 .x; y; t/ D Ie�j ŒkxxCkyy�!t� C
1X

�1
ˇne�j Œ.kxC2n�=L/x�kyny�!t� (4.4)

ˆ2 .x; y; t/ D
1X

�1
"ne�j Œ.kxC2n�=L/xCkyny�!t� C

1X

�1
�ne�j Œ.kxC2n�=L/x�kyny�!t�

(4.5)

ˆ3 .x; y; t/ D
1X

�1
�ne�j Œ.kxC2n�=L/xCkyny�!t� (4.6)

where I and ˇn are the amplitudes of the incident (i.e., positive-going) sound wave
and the reflected (i.e., negative-going) sound wave, respectively. Similarly, symbols
"n and �n represent separately the amplitude of the positive-going wave and the
negative-going wave in the air cavity field. In the transmitted field, there is no
negative-going waves; thus, the velocity potential is only for transmitted wave with
amplitude �n.

The wavenumbers kx and ky that appear in Eqs. (4.4), (4.5), and (4.6) are
determined by sound incidence angle � as

kx D k sin �; ky D k cos � (4.7)

where k D !/c0, and c0 is sound speed in air and kyn is the wavenumber in the
y-direction, defined as [13]

kyn D
s
�!

c

2 �
�

kx C 2n�

L

	2

(4.8)

When !/c < jkx C 2n�/Lj, the pressure waves become evanescent waves, and
correspondingly, kyn is given by
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kyn D j

s�
kx C 2n�
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�
�!

c

2

(4.9)

For harmonic sound excitations of the infinitely large and periodic sandwich
structure, the deflections of the two facesheets can be expressed as [13, 38]

w1 .x; t/ D
1X

nD�1
˛1;ne�j ŒkxC2n�=L�xej!t (4.10)

w2 .x; t/ D
1X

nD�1
˛2;ne�j ŒkxC2n�=L�xej!t (4.11)

At the interface of the air and the facesheet, the continuity of velocity should be
satisfied, i.e., the normal velocity of the facesheet matches with that of its adjacent
air particle:
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D j!w1I at y D 0 (4.12)
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Substitution of Eqs. (4.4), (4.5), and (4.6) and Eqs. (4.10) and (4.11) into Eqs.
(4.12) and (4.13) leads to

ˇ0 D I � !˛1;0

ky

(4.14)
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Substituting Eqs. (4.4), (4.5), and (4.6) and Eqs. (4.10) and (4.11) into the
governing equations and incorporating Eqs. (4.14), (4.15), (4.16), (4.17), and (4.18),
one obtains [13]
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where the unknown coefficients ˛1,n and ˛2,n can be obtained by simultaneously
solving the above algebraic equations. Once these coefficients are known, other
parameters, ˇn, "n, �n, and �n, can be obtained by applying Eqs. (4.14), (4.15),
(4.16), (4.17), and (4.18).

Finally, the power transmission coefficient is defined as the ratio of incident
sound power to transmitted sound power [13, 19] as


 .�/ D

1X

nD�1
j�nj2Re

�
kyn

�

jI j2ky

(4.21)

Correspondingly, the sound transmission loss (STL) is defined in decibel scale as

STL D �10 log10
 (4.22)

Numerical simulations are performed in this section to investigate the effects
of core topology (determined by inclination angle ˛ between facesheet and core
sheet) on the sound insulation performance of an all-metallic sandwich panel with
corrugated core. In the subsequent analysis of the core topology effects on STL
(i.e., Sect. 4.4) and optimal design (i.e., Sect. 4.5), the two sound transmission
routes (i.e., airborne route and structure-borne route) are both considered, just as
the theoretical model previously derived. However, to avoid the singularity problem
in mathematics, the physical interpretations for the existence of peaks and dips in
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STL curves in Sect. 4.4 neglect the airborne route of sound transmission and only
consider the predominant structural route so that a clear understanding of the peaks
and dips can be obtained.

4.3 Effects of Core Topology on Sound Transmission Across
the Sandwich Structure

To highlight the effects of core topology on sound transmission across the sandwich
structure, the inclination angle ˛ is systematically varied, while all other parameters
are held constant. The STL values numerically calculated with the space-harmonic
method are plotted as functions of frequency in Fig. 4.4 for selected values of ˛: 20ı,
30ı, 45ı, and 60ı. Due to the similar qualitative aspect of the STL versus frequency
curves for different incidence angles [35] and for the purpose of sufficiently exciting
the structure vibration modes, the sound incident angle is fixed at � D 45ı.

At frequencies corresponding separately to the “mass-air-mass” resonance, the
standing-wave resonance, the “coincidence” resonance, and the structure natural
resonance, the sandwich structure vibrates intensely. This significantly decreases
the sound insulation capability of the structure, resulting in the existence of
various dips in Fig. 4.4. The “mass-air-mass” resonance appears in the process of

Fig. 4.4 STL of sandwich panels with different inclination angles (as shown in Fig. 4.2) in the
case of incidence angle � D 45ı (With permission from Taylor & Francis Ltd.)
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sound transmission through a “panel-air-panel”-type structure, at which the two
panels move in opposite phase, with the air in between bouncing like springs.
This resonance is active only when the frequency of the incident sound matches
the natural frequency of the “mass-air-mass” resonance. Similarly, the acoustic
standing-wave resonance is also a feature of the “panel-air-panel”-type structure,
which occurs when the air cavity depth is integer numbers of the half wavelengths
of incident sound. The “coincidence” frequency is relevant to the condition that
the trace wavelength of the incidence sound matches the wavelength of bending
wave in the facesheet. For the sandwich panel considered here, when sound is
normally incident, the mass-air-mass resonance occurs at around 280 Hz, the
first-order standing-wave resonance occurs at about 8,000 Hz, while the critical
frequency beyond which the coincident resonance will occur is around 6,000 Hz
(in comparison, the coincidence frequency is about 12,000 Hz for a typical sound
incidence with angle � D 45ı). In addition, due to the complexity and periodicity
of the sandwich structure as well as fluid-structure coupling, the “mass-air-mass”
resonance, the standing-wave resonance, the “coincidence” resonance, and the
structure natural resonance are mutually coupled, creating a series of peaks and
dips on the STL curves as shown in Fig. 4.4. A more detailed physical interpretation
for the existence of those peaks and dips in structure-borne STL curves which are
associated with the structure natural resonance only is presented in the next section.

It can be seen from Fig. 4.4 that the geometry of the corrugated core plays
a significant role in the process of sound transmission through the sandwich. As
the inclination angle is increased, not only the peaks and dips of the STL versus
frequency curve are all shifted to higher frequencies, but also the smooth range of
the curve at lower frequencies is stretched toward higher frequencies. The primary
reason is that the change of inclination angle alters the equivalent stiffness of the
translational and rotational springs as well as the unit cell length (see Xin et al. [13]),
and hence the vibroacoustic behavior of the whole sandwich structure is changed.
In other words, the sandwich structure with corrugated core can be regarded as a
structure with inherent vibroacoustic properties that can be favorably altered by
tuning its core geometry in terms of factual application requirements.

4.4 Physical Interpretation for the Existence of Peaks
and Dips on STL Curves

The corrugated core in between the two facesheets stiffens the sandwich structure
for enhanced load-bearing capability. However, its existence adds one structural
route for sound propagation, resulting in the decrease of STL and the intense peaks
and dips on STL versus frequency curves relative to double-leaf panel structures with
air cavity. These peaks and dips caused by the core geometry as well as periodicity of
the sandwich structure have a significant effect on its sound insulation performance,
so it is necessary to explore their physical origins.
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As mentioned above, the appearance of dips on STL curves is attributed to the
effects of vibroacoustic resonances, the most likely being the familiar “coincidence”
resonance discussed in the previous section. While the bending waves induced by
the incident sound transmit in the facesheet, the reflected waves from the core
sheets also act on the facesheet, which thence generate multiple possibilities for
the wavenumbers of the two waves matching and coinciding with each other. To
emphasize the main effects and investigate how the “fake coincidence resonances”
affect STL curves, material damping is ignored here, and only the panel-core-panel
route for wave transmission is considered. Furthermore, for simplicity, the coupling
effects of air cavity between the two facesheets are ignored, and the mass and the
equivalent rotational stiffness of the corrugated core are not taken into account.
These assumptions are generally reasonable inasmuch as the structural coupling
of the corrugated core is much stronger than the acoustic coupling of air cavity
and the rotational stiffness of the core has a negligible effect with respect to its
translational stiffness. The governing equations for facesheet vibration can therefore
be simplified as

D1

@4w1 .x; t/

@x4
C m1

@2w1 .x; t/

@t2
C KF .w1 .x; t/ � w2 .x; t// D 0 (4.23)
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@4w2 .x; t/

@x4
C m2

@2w2 .x; t/

@t2
C KF .w2 .x; t/ � w1 .x; t// D 0 (4.24)

As shown in Fig. 4.2b, the equivalent of the sandwich structure with corrugated
core is a symmetrical construction. The transmission of bending wave in the
structure can be divided into two parts. One is the symmetrical vibration of the
construction, in which the two facesheets move in opposite phase, both in or both
out at the same time, analogous to the “breathing” motion of animals. Here, the
corrugated core has a strong constraint influence on the two facesheets. The other
is antisymmetric motion, in which the structure vibrates in step (the two facesheets
move in the same phase) with the core carried by the facesheets. In this case, the
core exerts no constraint on the movement of the facesheets. In other words, the
sandwich structure vibrating in antisymmetric motion can be considered as a single
panel in movement.

As for the antisymmetric motion, it can be observed that its dispersion curve
(dash-dot line shown in Fig. 4.5a) is a continuous parabola, so sinusoidal vibration
waves with any frequency can transmit along the length direction in the sandwich
panel, while the periodic corrugated core in between the facesheets has a significant
effect on the dispersion relation of the construction for symmetrical motion, whose
dispersion curves (calculated with the transfer matrix method proposed by Mead
[54]) consist of a series of periodic distributions of “passband” and “stop-band.”
At the frequency range corresponding to the “passband,” for a given frequency,
there exist infinite wavenumbers that are relevant to this frequency: the traveling
wave identified by the correlative frequency and wavenumber can transmit along
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Fig. 4.5 Normalized wavenumber versus frequency. (a) Solid line, “passband” of symmetrical
motion; dash-dot line, dispersion curve of antisymmetric motion; dash line, dispersion curve
corresponding to incident sound at � D ˙ 90ı , with the wedge bounded in between the two lines
called sound radiation area; short dash line, dispersion curve corresponding to incident sound at
� D 45ı. (b) Real part of normalized wavenumber versus frequency curve (i.e., “folding” version
of Fig. 4.5a). Solid line, dispersion curve of symmetrical motion; dash-dot line, dispersion curve
of antisymmetric motion; dash line, dispersion curve corresponding to incident sound at � D 90ı;
short dash line, dispersion curve corresponding to incident sound at � D 45ı. (c) Relevant STL
curve. Shading area, “stop-band”; blank area, “passband” (With permission from Taylor & Francis
Ltd.)

the length direction in the structure without any attenuation. Whereas in the areas of
the “stop-band,” there is no wavenumber relevant to a given frequency: the bending
waves transmitting in the structure with these frequencies are quickly evanescent in
exponent form along the length direction in the structure. These “passbands” and
“stop-bands” are primarily responsible for the appearances of peaks and dips on the
STL versus frequency curves shown in Fig. 4.4.

Note that the short dash line in Fig. 4.5a represents the dispersion relation for
incident sound with angle � D 45ı and two dash lines represent the dispersion curve
for incidence sound with angle � D ˙ 90ı, respectively. Thus, the wedge bounded
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in between the two lines is the frequency/wavenumber area in which a wave in the
sandwich structure can radiate sound.

It can be observed from Fig. 4.5a that there is no intersection between the
dispersion curve of antisymmetric motion and the sound radiation area, implying
that the antisymmetric motion caused by the incident sound cannot reach enough
intensity to radiate sound waves except at the coincidence frequency. For the
symmetrical motion of the sandwich, however, there are intersections of the
dispersion curve for sound wave with a certain incidence angle, one per passband. At
the frequencies corresponding to these intersections, the incident sound can excite
structure vibration strong enough to radiate sound, causing the appearance of STL
dips, as shown in Fig. 4.5b, c. Actually, Fig. 4.5b is the “folding” version of Fig. 4.5a
in the range from 0 to 1. As a compact diagram, this fold manipulation is often
employed in theoretical studies of sound propagation across periodic structures [19].
The STL versus frequency curve of the simplified problem (in which the mass and
rotational stiffness of the core as well as air cavity coupling effects are all ignored)
is presented in Fig. 4.5c using the same frequency scale as Fig. 4.5a, b. It can be
readily seen that the intersections labeled by A, B, and C in Fig. 4.5b correspond
with the STL dips labeled by the same symbols in Fig. 4.5c.

The intersections labeled by A0 and B0 in Fig. 4.5b are closely related to the two
steep peaks in Fig. 4.5c. With reference to Fig. 4.5a, the intersections A0 and B0 do
not really exist, whose appearances are owing to the “folding” manipulation from
Fig. 4.5a to b. However, at the frequencies corresponding to these intersections, the
transverse deflection of the vibratory facesheet only takes two terms in Eq. (4.10):
one for the driven term n D 0 and the other in accord with the resonance condition
(obtained from Eq. (4.23)) of the driven facesheet [38]:

D1

�
kx C 2N�

L

	4

� m1!
2 D 0 (4.25)

The transverse deflection of the facesheet is a summation of these two terms,
namely,

W1 D Ij!�0e�j .kxx�!t/

�
1 � e�j 2N�x=L

D1k4
x � m1!2

�
(4.26)

It can be obtained from Eq. (4.26) that the joints which connect the equivalent
springs and the driven facesheet are just the nodal points of standing wave in the
facesheet. Consequently, the joints have no displacement, and the springs do not
transfer any force to the other facesheet. As a result, there is no sound radiation
because the radiating facesheet is stationary without any movement. Naturally, at
these frequencies relevant to the “fake” interactions in Fig. 4.5b, the sharp peaks on
the STL curve will occur.
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4.5 Optimal Design for Combined Sound Insulation
and Structural Load Capacity

It has thus far been demonstrated that core topology plays a significant role in the
sound insulation performance of the sandwich structure. Similarly, the structural
load capacity of the sandwich is also strongly dependent upon the core geometry
[1, 55]. It is therefore of interest to investigate the role of core geometry when
the acoustic and structural properties of the sandwich structure are considered
simultaneously. To this end, several dimensionless parameters are introduced.

The first dimensionless parameter introduced is the normalized mass of the
sandwich (i.e., ratio of the mass of one unit cell to that of the solid filling the whole
volume of the unit cell):

m D .h1 C h2/ L C 2lt0= sin ˛

L .l C h1 C h2/
(4.27)

As the core for a load-bearing sandwich panel, the in-plane shear modulus is the
most important, due to the fact that upon loading the panel deflects as a result of
combined bending and shear deformation [1]. The in-plane shear modulus G of the
corrugated core can be calculated following Eq. (35) in Ref. [55] and normalized as

QG D G

E
(4.28)

Together with the above-defined dimensionless parameters and the sound insu-
lation index STL, an integrated index for optimal design toward a lightweight sand-
wich with superior load-bearing and sound isolation properties may be defined as

�SGM D STL � QG
Qm (4.29)

Note that STL, QG, and Qm are all functions of inclination angle ˛ of the corrugated
core.

Figure 4.6 plots �SGM as a function of frequency for selected core inclination
angles (20ı, 30ı, 45ı, 60ı, and 70ı), with the sound incidence angle fixed at � D 45ı.
It is seen from Fig. 4.6 that when the inclination angle ˛ is smaller than 45ı, the
index �SGM increases with the increase of ˛, whereas in the range of 45ı < ˛ < 60ı,
the index �SGM maintains the same value over a wide frequency range, except
for discrepancies at frequencies higher than 3 � 103 Hz. As the inclination angle
is increased beyond 60ı, the magnitude of �SGM decreases. Note that the higher
the index �SGM is, the more superior of the combined acoustic and structural
performance of the sandwich will be. Therefore, it can be concluded from Fig. 4.6
that a core inclination angle in the range of 45ı to 60ı is the preferred selection for
the sandwich structure.



220 4 Sound Transmission Across Sandwich Structures with Corrugated Cores

Fig. 4.6 Tendency plot of �SGM versus frequency for selected core inclination angles (as shown in
Fig. 4.2) for fixed sound incidence angle of � D 45ı (With permission from Taylor & Francis Ltd.)

4.6 Conclusion

The influence of the core topology on the sound insulation capability of a two-
dimensional periodic sandwich configuration with corrugated core is theoretically
analyzed by the space-harmonic method. In the theoretical model, an equivalent
structure containing one translational spring and one rotational spring per unit cell
is proposed to simplify the analysis of the vibroacoustic problem. Obtained results
demonstrate that the core topology significantly influences the sound insulation
performance of the structure, so that one may tailor the core topology for specified
acoustic applications. Subsequent analysis of the STL and dispersion curves of
the sandwich structure leads to fundamental insight into the physical mechanisms
behind the appearances of various peaks and dips on the STL curves.

As the inclination angle between the facesheet and the core sheet is increased,
the peaks and dips on STL curves are shifted toward higher frequencies, and the
STL values increase on the whole while the smooth portion of the STL curve in low
frequencies is stretched longer.

For a given incident sound angle, the STL dips occur at frequencies corresponding
to the interactions between the dispersion curve and the symmetrical motion of
the structure. The peaks on STL occur because the junctions which connect the
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equivalent springs and the driven facesheet are just the nodal points of the standing
or bending wave traveling in the incident facesheet.

As the weight, stiffness, and acoustic property of the sandwich structures all
change with the alteration of core configuration and geometry, it is possible to
explore the multifunctionality of the structure by optimally designing the core
topology.
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Chapter 5
Sound Radiation, Transmission of Orthogonally
Rib-Stiffened Sandwich Structures

Abstract This chapter is organized as two parts: in the first part, wave propagation
in an infinite sandwich structure with two periodic sets of orthogonal rib-stiffener
core is theoretically formulated when subjected to a harmonic point force excitation.
The motions of the equally spaced rib-stiffeners are exactly handled by considering
their tensional, bending, and torsional vibration together. As a consequence, the
governing equations of the panel vibration contain the terms of the tensional forces,
bending moments, and torsional moments from the corresponding motion of the
rib-stiffeners. Furthermore, the inertial effects arising from the mass of the rib-
stiffeners are also taken account of by introducing the inertial terms of the tensional
forces, bending moments, and torsional moments. The response of the structure in
wavenumber space is then determined by employing the approach of the Fourier
transform and the periodic nature of the structure, which is numerically solved
by truncating two infinite sets of simultaneous equations insofar as the solution
converges. In terms of the response of the panel, far-field radiated sound pressure is
examined with reference to that of unstiffened panel in decibel scale (dB). A number
of physical interpretations of significant features are proposed, specifically including
the influences of the inertial effects, the excitation position, and the periodicity
spacings of the rib-stiffeners.

In the second part, an analytic model is developed to investigate the wave
propagation and sound transmission characteristics of an infinite sandwich structure
reinforced by two sets of orthogonal rib-stiffeners when subjected to convective
fluid-loaded pressure. The rib-stiffeners are assumed to be identical and uniformly
spaced, which can exert not only tensional forces and bending moments but also
torsional moments on the facesheets. Inertial terms of the tensional forces, bending
moments, and torsional moments are introduced to account for inertial effects
arising from the mass of the rib-stiffeners. With the surrounding acoustic fluids
restricted by the acoustic wave equation, fluid-structure coupling is considered by
imposing velocity continuity condition at fluid-panel interfaces. By applying the
Bloch theorem for periodic structures, the structural and acoustic responses are
expressed in a superposition form of space harmonics for a given wavenumber.

T.J. Lu and F.X. Xin, Vibro-Acoustics of Lightweight Sandwich Structures,
Springer Tracts in Mechanical Engineering, DOI 10.1007/978-3-642-55358-5__5,
© Science Press Beijing and Springer-Verlag Berlin Heidelberg 2014
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The application of the virtual work principle for one periodic element yields two
infinite sets of simultaneous algebraic coupled equations, which are numerically
solved by truncating them in a finite range insofar as the solution converges. The
validity and feasibility of the analytic model is qualified by comparing model
predictions with existing results, in which the necessity and advantage of the exact
modeling of rib-stiffener motions are also demonstrated. Specifically, the influences
of inertial effects arising from the rib-stiffener mass, the periodicity spacing of rib-
stiffeners, and the airborne as well as structure-borne paths on the transmission of
sound across the sandwich structure are quantified, and conclusions of significant
practical implications are drawn.

5.1 Sound Radiation of Sandwich Structures

5.1.1 Introduction

Wave propagation and sound radiation behaviors of periodically rib-stiffened
structures are of significant interest due to their increasing applications in civil and
transport engineering, e.g., as the cabin skin of aircrafts, marine ships, and express
trains [1–20]. At low frequencies, a rib-stiffened structure can be approximated as
an orthotropic panel when the panel flexural wave has a wavelength much greater
than stiffener spacing [3, 7]. However, at high frequencies when the wavelength is
comparable with stiffener spacing, the spatial periodicity of the structure should be
carefully taken into account in any theoretical modeling.

There exist a multitude of analytic studies on the vibroacoustic behavior of
periodically rib-stiffened structures, including beams and plates. For example, the
response of a periodically supported beam subjected to spatially and temporally
harmonic pressure was solved by Mead and Pujara [21] using a particular series of
space harmonics. The space-harmonic method evolving from the considerations of
progressive wave propagation is superior to the classical normal mode approach,
since only as few as seven terms can ensure accurate convergence of the solution.
Subsequently, with the emphasis placed on wave propagation characteristics, Mead
and Yaman [22] developed an exact model for the harmonic response of a uniform
finite beam on multiple supports. From the viewpoint of free wave propagation,
Mead [23] investigated theoretically an infinite beam on regularly spaced identical
supports in terms of superposed sinusoidal waves. For more details regarding wave
propagation in continuous periodic structures, one may consult the review [24].

As for periodically rib-stiffened plates, a few typical works can be referred to.
For instance, multimode wave propagation in a one-dimensionally (1D) stiffened
plate was theoretically and experimentally investigated by Ichchou et al. [1, 2],
who also examined its energy propagation features in k-space and the corresponding
dispersion relations. Using the principle of superposition, Rumerman [25] proposed
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a general solution for the forced vibration of an infinite thin plate, periodically
stiffened by identical, uniform rib-stiffeners. An approximate method was employed
by Mead and Mallik [26] to estimate the sound power radiated by an infinite
plate, supported elastically along parallel, equi-spaced lines, and subjected to a
simple pressure field convecting uniformly over the plate. While Mead and Parthan
[27] studied the propagation of flexural waves in a plate resting on an orthogonal
array of equi-spaced simple line supports, Mace [28] presented a solution for
the radiation of sound from a point-excited infinite fluid-loaded plate reinforced
by two sets of parallel stiffeners. Several aspects related to the vibration of and
sound radiation from periodically line-stiffened and fluid-loaded plates were further
examined by Mace [3, 4]. The far- and near-field acoustic radiation of an infinite
periodically rib-stiffened plate was obtained theoretically by Cray [29], although
only the tensional forces of the rib-stiffeners were accounted for. Wang et al. [30]
proposed a theoretical model of sound transmission across double-leaf partitions
having periodic parallel rib-stiffeners using the space-harmonic approach: except
for the torsional moments, both the tensional forces and bending moments of the
rib-stiffeners were accounted for.

A few investigations also focused on the pass-/stop-band characteristics of wave
propagation in periodically rib-stiffened plates. For instance, the transmission of
energy in 1D periodically ribbed membrane was theoretically studied by Crighton
[31] when the structure was immersed in static compressible fluid and excited by a
time-harmonic line force. Later, addressing essentially the same problem, Spivack
[32] gave an exact solution for general finite configurations and found that the
passband response becomes increasingly sensitive to frequency as the length of rib
array increases. A further investigation on the band structure of energy transmission
in periodically ribbed elastic structures under fluid loading was carried out by
Cooper and Crighton [33, 34] using Green’s function method, from the viewpoint
of spatial periodicity in the passbands and that of algebraic decay in the stop-bands,
respectively.

Although the vibroacoustic behaviors of periodically rib-stiffened structures have
been studied by many researchers, commonly only with the tensional forces of
the rib-stiffeners considered, the influence of their bending and torsional moments
as well as inertial effects remains unclear. Moreover, previous researches focused
mainly on relatively simple structures, e.g., infinite periodically supported beams
and 1D rib-stiffened plates. Only a noticeably few [5, 6] considered the more general
two-dimensional (2D) rib-stiffened structures that are of practical importance in
aeronautical and marine applications. For example, Mace examined the radiation
of sound from an infinite fluid-loaded plate reinforced with two sets of orthogonal
line stiffeners [5] and the vibration of a thin plate lying on point supports that form
an orthogonal 2D periodic array [6]. However, in the analysis [5], it was assumed
that the stiffeners only exert forces on the plate.

To address the aforementioned deficiencies, we aim to study analytically the
vibration and acoustic radiation of a generic 2D periodic structure that is consisted
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of two infinitely large parallel plates reinforced by orthogonally extended rib-
stiffeners (i.e., a sandwich panel with orthogonal rib-stiffener arrays as its core).
To accurately model the motion of each rib-stiffener, its tensional, bending, and
torsional vibrations are all considered. The inertial effects arising from the mass
of the rib-stiffeners are also taken into account by introducing the inertial terms of
their tensional forces, bending moments, and torsional moments into the governing
equations of panel vibration. Fourier transform is employed to solve the resulting
governing equations, leading to two sets of infinite algebraic equations, which are
truncated to solve insofar as the solution converges. In terms of obtained panel
responses, the radiated sound pressure at far field is numerically calculated to
gain physical insight on wave propagation and sound radiation of the sandwich
structure. Good agreements between model predictions with previous published
results [5] validate the present analytic model and confirm the necessity of including
the inertial effects and torsional moments of the rib-stiffeners in any theoretical
modeling especially at high frequencies. The influences of inertial effects, excitation
position, and spatial periodicity of rib-stiffeners on the vibroacoustic behavior of the
sandwich are quantified with the underlying physical mechanisms explored.

Although this chapter focuses to solve and discuss a relatively specific problem,
the theoretical model proposed can be readily employed to solve the similar
problems of periodic structures. In particular, the theoretical model based on Fourier
transform technique could be referential to mend finite element method so as to
solve more generalized problems efficiently. For this point, H. Kohno et al. [35]
have done an excellent job by combining the advantages of finite element method
and spectral method to solve problems of wave propagation. This work should be
very useful for enlightening us to extend our theoretical work for more generalized
problems, for example, by combining the advantages of our theoretical model and
finite element method.

5.1.2 Theoretical Modeling of Structural Dynamic Responses

Consider an infinitely large 2D sandwich structure shown schematically in Fig. 5.1,
which has a lattice core in the form of orthogonal stiffeners having periodic uniform
spacings in the x- and y-directions, lx and ly, respectively. Its geometrical dimensions
are depth of orthogonal rib-stiffener core d, thickness of upper and bottom panels
h1 and h2, and thickness of x- and y-wise stiffeners tx and ty. The mass densities of
the x- and y-wise stiffeners are mx and my, respectively. A right-handed Cartesian
coordinate system (x, y, z) is established, with its x- and y-axes located on the
surface of the upper panel and the positive direction of the z-axis pointing downward
(Fig. 5.1).

Let a harmonic point force with amplitude q0 be applied on the surface of the
upper panel at an arbitrary location (x0. y0). As a result, a radially outspreading
bending wave propagates from the source (x0, y0). The propagation of this bending
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Fig. 5.1 Sandwich panel with orthogonally rib-stiffened core (With permission from Elsevier)

wave in the upper panel is affected by the attached lattice core (rib-stiffeners),
which transmits the motion to the bottom panel. Both panels are modeled as a
classical thin plate, following the Kirchhoff thin plate theory. As the focus is placed
on the intrinsic characteristics of bending wave propagation in the structure, air-
structure coupling is ignored. The theoretical formulation presented below proposes
a comprehensive analytic model for bending wave propagation in the sandwich
structure, accounting for not only the tensional forces, bending moments, and
torsional moments of the orthogonal rib-stiffeners but also their inertial effects.

Upon point force excitation, the vibration of the upper and bottom panels can be
described using two dynamic governing equations, where the influence of the rib-
stiffeners exists in the form of tensional forces (general force plus inertial force),
bending moments (general bending moment plus inertial bending moment), and
torsional moments (general torsional moment plus inertial torsional moment). With
the inertial effects of the rib-stiffeners accounted for, the resultant tensional forces,
bending moments, and torsional moments acting on the upper and bottom panels
per rib-stiffener are not equal, denoted here by (QC, MC, MC

T ) and (Q�, M�, M�
T ),

respectively. Figure 5.2 shows the convention employed for denoting the tensional
forces as well as the bending and torsional moments between the upper panel and
the x- and y-wise stiffeners. The same applies at the interface between the bottom
panel and the x- and y-wise stiffeners.

Since the excitation is harmonic, the dynamic responses of the two panels should
also be harmonic. For simplicity, the harmonic time term e� i!t is suppressed from
the formulation below. The dynamic governing equations are thence given by
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Fig. 5.2 Convention for tensional forces, bending moments, and torsional moments between
upper panel and (a) x-wise and (b) y-wise stiffeners (With permission from Elsevier)
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where r4 	 (@2/@x2 C @2/@y2)2; ı(�) is the Dirac delta function; and (w1, w2), (m1,
m2), and (D1, D2) are the displacement, surface mass density, and flexural rigidity
of the upper and bottom panels, respectively. The material loss factor �j (j D 1, 2
for upper and bottom panels, respectively) is introduced with complex Young’s
modulus as
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j

�
1 C i�j
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12
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j

 .j D 1; 2/ (5.3)

As the factual forces and moments exerting on the upper and bottom panels are
not the same due to the consideration of inertial forces and moments, the terms
associated with the two panels are denoted separately by superscripts C (upper) and
� (bottom). Subscripts x and y are introduced to represent those terms arising from
the x- and y-wise stiffeners, respectively.

Taking into account the inertial effects (due to stiffener mass) and applying both
Hooke’s law and Newton’s second law, one obtains the tensional forces arising from
the rib-stiffeners as
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where ! is the circle frequency and (Kx, Ky) are the tensional stiffness of half the
rib-stiffeners per unit length.

Similarly, the bending moments of the rib-stiffeners can be expressed as
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where (ExI*
x , EyI*

y) are the bending stiffness of half the rib-stiffeners and (�x, �y) and
(Ix, Iy) are the mass density and polar moment of inertia for the rib-stiffeners, with
subscripts x and y indicating the direction of the stiffener.
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Following similar procedures for deriving the tensional forces and bending
moments, one obtains the torsional moments of the rib-stiffeners as
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where (GxJ*
x , GyJ*

y) are the torsional stiffness of half the rib-stiffeners and (Jx, Jy)
are the torsional moment of inertia for the rib-stiffeners.

In the above expressions for the tensional forces, bending moments, and torsional
moments of a rib-stiffener, the geometrical properties of its cross section are
given by
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where Ex and Ey are separately Young’s modulus of the x- and y-wise stiffener
materials.
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To simplify Eqs. (5.4), (5.5), (5.6), (5.7), (5.8), (5.9), (5.10), (5.11), (5.12), (5.13),
(5.14), and (5.15), the following set of specified characteristics is introduced to
replace the coefficients of general displacements:

1. Replacement of tensional force coefficients:
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2. Replacement of bending moment coefficients:
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3. Replacement of torsional moment coefficients:
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Using Eqs. (5.22), (5.23), (5.24), (5.25), (5.26), and (5.27), one can simplify the
expressions of the tensional forces, bending moments, and torsional moments as:

1. Tensional forces:
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2. Bending moments:
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3. Torsional moments:
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5.1.3 Solutions

Fully considering the periodic nature of the present sandwich structure and applying
the Poisson summation formula (Mace [5]; Rumerman [25]), one can write the wave
components in the periodic structure using space-harmonic series as
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The displacement of each panel is a function of coordinates (x, y) as well as the
Fourier transform of its wavenumber frequency, the latter being also a function of
the wavenumbers (kx, ky). The Fourier transform pair relating these two quantities
with respect to (x, y) and (kx, ky) can be written as
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Employing Eqs. (5.34) and (5.35) and then taking the Fourier transform and
replacing the wavenumbers (kx, ky) by (˛, ˇ), respectively, one can rewrite
governing Eqs. (5.1) and (5.2) as
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where the dependence of a term on wavenumbers (˛, ˇ) is indicated using the hat
sign �, meaning the corresponding Fourier transform of this term. For instance,
( Qw1, Qw2) are the Fourier transforms of (w1, w2). The Fourier transforms of the
tensional forces, bending moments, and torsional moments are presented below:

1. Fourier transforms of tensional forces:

QQC
x .a; ˇn/ D �RQ1 Qw1 .a; ˇn/ C RQ2 Qw2 .a; ˇn/ (5.40)

QQ�
x .a; ˇn/ D �RQ2 Qw1 .a; ˇn/ C RQ1 Qw2 .a; ˇn/ (5.41)

QQC
y .am; ˇ/ D �RQ3 Qw1 .am; ˇ/ C RQ4 Qw2 .am; ˇ/ (5.42)

QQ�
y .am; ˇ/ D �RQ4 Qw1 .am; ˇ/ C RQ3 Qw2 .am; ˇ/ (5.43)

2. Fourier transforms of bending moments:
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3. Fourier transforms of torsional moments:
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Substitution of (5.40), (5.41), (5.42), (5.43), (5.44), (5.45), (5.46), (5.47), (5.48),
(5.49), (5.50), and (5.51) into (5.38) and (5.39) yields
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To solve Eqs. (5.52) and (5.53), one needs to replace (˛, ˇ) by (˛
0

m, ˇ
0

n), resulting
in two sets of simultaneous algebraic equations:
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which contain two sets of infinite unknowns, Qw1

�
˛0

m; ˇ0
n

�
and Qw2

�
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m; ˇ0
n

�
, with m D

�1 to C1 and n D �1 to C1. Insofar as the solution converges, these equations
can be solved simultaneously by truncation. That is, (m, n) only take values in a
finite range of m D �bm to bm and n D �bn tobn (where bm andbn both being positive
integer). For brevity, the resulting simultaneous equations containing a finite number
[i.e., 2MN, where M D 2bm C 1, N D 2bn C 1] of unknowns can be expressed in
matrix form as
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Equation (5.58) can be solved numerically to obtain the panel displacements
Qw1 .˛; ˇ/ and Qw2 .˛; ˇ/ in their respective wavenumber space. Details of the
derivation are presented in Appendix A.
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5.1.4 Far-Field Radiated Sound Pressure

The radiated sound pressure is related directly to the dynamic response of the
radiating panel (bottom panel in the present case). Once the dynamic response of
the bottom panel Qw2 .˛; ˇ/ is solved, the radiated sound pressure at far field can be
obtained.

Due to the periodic nature of the sandwich, upon excitation by a harmonic
point force on its upper panel, a series of space-harmonic waves are transmitting
in the structure. For a given point force with wavenumbers (˛0, ˇ0), a flexural
wave having the same wavenumbers (˛0, ˇ0) is excited and propagates in the face
panel. It will generate the (m, n)th harmonic wavenumber components (a0 C 2m�/lx,
ˇ0 C 2n�/ly), owing to the vibration interaction of the face panel with the mth x-wise
and nth y-wise stiffeners. Therefore, the face panel vibration and the radiated sound
pressure both contain a series of space-harmonic wave components with wavenum-
bers (a0 C 2m�/lx, ˇ0 C 2n�/ly), where � 1 < m < C 1 and � 1 < n < C 1.

With the origin of the spherical coordinates (r, � , ') located at the excitation point
(x0, y0), the far-field sound pressure p(r, � , ') radiated from a vibrating surface with
displacement w(x, y) is given by Takahashi [15] and Morse and Ingard [64]:

p .r; �; '/ D ��0!
2eik0r

2�r
ei.˛x0Cˇy0/

Z C1

�1

Z C1

�1
w .x; y/ e�i .˛xCˇy/dxdy (5.59)

where k0 D !/c0, c0 and �0 being the sound speed and air density, respectively, and
the wavenumbers ˛ and ˇ are

˛ D k0 cos ' sin �; ˇ D k0 sin ' sin � (5.60)

Finally, with the Fourier transform of (5.37), Eq. (5.59) becomes

p .r; �; '/ D �2��0!2
�
eik0r=r

�
ei.˛x0Cˇy0/ Qw .˛; ˇ/ (5.61)

With the modeling presented above describing accurately the dynamic response
of an infinite orthogonally rib-stiffened sandwich structure excited by a point force
and the formulation for the far-field radiated sound pressure, the on-axis (i.e., on the
axis � D ' D 0) far-field pressure is calculated below to explore the sound radiation
characteristics of the structure. Note that on the selected axis (i.e., � D ' D 0), the
stationary phase wavenumbers ˛ and ˇ are both zero.

The simultaneous algebraic equations are truncated at the ˙bm and ˙bn harmonic
wave components in the x- and y-directions, with the frequency-dependent bm and
bn selected as 3 and 10 at 100 Hz and 10 kHz, respectively. Numerical convergence
tests have ensured that these bm and bn values are sufficiently large for obtaining
accurate results.
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Table 5.1 Material and geometrical properties of orthogonally rib-stiffened single plate
(Mace [5])

Plate Fluid media

D m � �0 c0

2,326 N�m 39.1 kg/m 0.02 1,000 kg/m3 1,500 m/s
Rib-stiffeners
E � lx D ly tx D ty d
195 GPa 7,700 kg/m3 0.2 m 0.00508 m 0.0508 m

For reference, the high-frequency asymptote of the far-field sound pressure
radiated by an unstiffened plate (Mace [5]) is

pa D �0q0

2�m

eik0r

r
(5.62)

The far-field sound pressure radiated by the present orthogonally rib-stiffened
sandwich structure is then given in the form of sound pressure level (SPL) in decibel
scales (dB) relative to pa as

SPL D 20 � log10

�
p

pa

	
(5.63)

5.1.5 Validation of Theoretical Modeling

To verify the accuracy and applicability of the present theoretical modeling on
wave propagation and sound radiation behavior of an orthogonally rib-stiffened
sandwich structure, results obtained using the model are compared with those of
Mace [5] for sound radiation from an orthogonally rib-stiffened single plate. To
facilitate the comparison, the key parameters (i.e., Young’s modulus E, density �,
and thickness h) of the bottom panel are set to negligibly small in comparison with
those of the upper panel and rib-stiffeners, so that the orthogonally rib-stiffened
sandwich behaves exactly like an orthogonally rib-stiffened single plate.

For the purpose of validation, the material and geometrical properties (Table 5.1)
used by Mace [5] are adopted in the numerical calculations. Figures 5.3 and 5.4
present the results for two different excitation locations, (lx/3, ly/3) and (lx/2, ly/2).
Overall, good agreement is achieved between the present results and Mace’s model
prediction for both excitation locations. The discrepancies at high frequencies
between the two different models, however, are attributed to the fact that the inertial
effects and torsional moments of the rib-stiffeners were not accounted for by Mace
[5]. The reason that at high-frequency range the deviation is small in Fig. 5.3 but
significant in Fig. 5.4 is because the excitation exerted at (lx/2, ly/2) leads to stronger
torsional moments of the rib-stiffeners than that exerted at (lx/3, ly/3).
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Fig. 5.3 Comparison between present model predictions and Mace [5]’s results for sound pressure
level radiated by orthogonally rib-stiffened single plate excited at (lx/3, ly/3) (With permission from
Elsevier)

Fig. 5.4 Comparison between present model predictions and Mace [5]’s results for sound pressure
level radiated by orthogonally rib-stiffened single plate excited at (lx/2, ly/2) (With permission from
Elsevier)

5.1.6 Influences of Inertial Effects Arising
from Rib-Stiffener Mass

The inertial effects of the tensional forces, bending moments, and torsional moments
arising from the rib-stiffeners have been accounted for by the present analytic
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Fig. 5.5 Variation of on-axis far-field radiated sound pressure with excitation frequency: influence
of inertial effects. Geometry of rib-stiffeners, tx D ty D 1 mm, lx D ly D 0.2 m; excitation location,
(x0, y0) D (lx/2, ly/2) (With permission from Elsevier)

model. The influence of the inertial effects is explored below by comparing the
predictions obtained for orthogonally rib-stiffened sandwich structures with and
without considering the inertial effects.

With the point force acting at (lx/2, ly/2), Figs. 5.5 and 5.6 plot the on-
axis far-field radiated sound pressure level as a function of excitation frequency
for rib-stiffeners having square cross sections, with width tx D ty D 1 mm and
tx D ty D 3 mm, respectively. It can be seen from Fig. 5.5 that the SPL curve with
the inertial effects considered has a tendency similar to that without considering
inertial effects, the main discrepancy being the existence of several additional peaks
and dips in the former. The superposition peaks (or dips) between the inertial case
and the non-inertial one are dominated by face panel vibration, which are closely
related to the maximum (or minimal) sound radiation wave shapes and vibration
patterns. The appearance of the additional peaks and dips controlled predominantly
by the rib-stiffeners is, on the other hand, attributed to the inertial effects arising
from the mass of the rib-stiffeners. By comparing Fig. 5.5 with Fig. 5.6, it is seen
that the discrepancy between the inertial and non-inertial cases is enlarged when the
thickness (or, equivalently, the mass) of the rib-stiffeners is increased.
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Fig. 5.6 Variation of on-axis far-field radiated sound pressure with excitation frequency: influence
of inertial effects. Geometry of rib-stiffeners, tx D ty D 3 mm, lx D ly D 0.2 m; excitation location,
(x0, y0) D (lx/2, ly/2) (With permission from Elsevier)

5.1.7 Influence of Excitation Position

While the amplitude of any point in wave mode shape depends strongly on its
position, the radiating modes excited by a point force vary with the excitation
position. It is therefore expected that the on-axis far-field radiated sound pressure
is significantly affected by the excitation position, which is confirmed by plotting
in Fig. 5.7 the sound pressure level as a function of excitation frequency for three
different excitation positions, i.e., (x0/lx, y0/ly) at (0, 0), (1/4, 1/4), and (1/2, 1/2).

It is seen from Fig. 5.7 that the SPL curves of the (1/4, 1/4) and (1/2, 1/2)
cases have peaks appearing at the same frequencies (e.g., 445, 1,659, 2,769, and
3,919 Hz), although there exist large discrepancies at other frequencies (e.g.,
3,919 Hz in particular). In comparison, there are no evident peaks appearing in
the SPL curve of the (0, 0) case at these frequencies. As these radiated sound
pressure peaks are mainly controlled by the wave mode shapes and vibration
patterns of the face panel, it appears that the point force excitation at (1/4, 1/4) and
(1/2, 1/2) can excite the appropriate radiating mode of the face panel. In contrast,
the excitation at (0, 0) is located at the joint connecting the face panel with the x-
and y-wise rib-stiffeners, which excites mainly the tensional and bending motions
of the x- and y-wise rib-stiffeners. Therefore, no SPL peaks appear for the (0, 0)
case at radiating frequencies controlled by panel vibration.
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Fig. 5.7 On-axis far-field radiated sound pressure plotted as a function of excitation frequency
for selected excitation positions: (x0/lx, y0/ly) at (0, 0), (1/4, 1/4), and (1/2, 1/2). Geometry of rib-
stiffeners: tx D ty D 1 mm, lx D ly D 0.2 m (With permission from Elsevier)

The radiating sound pressure peaks dominated by the rib-stiffeners are well
captured by the three SPL curves of Fig. 5.7 at the same frequencies (e.g., 936,
1,888, 2,329, 3,722 Hz), although some peaks may not be so evident due to
complicated wave interaction at the junctions of panel, x-wise, and y-wise stiffeners.

5.1.8 Influence of Rib-Stiffener Spacings

As the periodicity spacings lx and ly between rib-stiffeners are key parameters
describing the periodic nature of the sandwich structure (Fig. 5.1), they should
influence significantly the wave propagation and sound radiation characteristics
of the structure. Figure 5.8 illustrates the influence of the periodicity spacings on
radiated sound pressure by plotting the SPL curve tendencies, with (lx, ly) selected
as (0.2, 0.2)m, (0.225, 0.225)m, and (0.25, 0.25)m, respectively, and the point force
excitation fixed at (lx/2, ly/2).

The most attractive point about the results of Fig. 5.8 is that the magnitudes of
the SPL peaks and dips (not only the panel vibration dominated but also the rib-
stiffener vibration controlled) decrease as the periodicity spacings are increased.
However, overall, the three SPL curves exhibit almost the same tendency although
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Fig. 5.8 Variation of on-axis far-field radiated sound pressure with excitation frequency: influ-
ence of periodicity spacings between rib-stiffeners. Geometry of rib-stiffeners, tx D ty D 1 mm;
excitation position, (x0, y0) D (lx/2, ly/2) (With permission from Elsevier)

their peaks and dips shift, which is attributed to the highly similar periodic nature of
the sandwich structures.

5.1.9 Conclusions

An analytic model has been formulated to investigate the wave propagation and
sound radiation behavior of a point force-excited sandwich structure having two sets
of orthogonal rib-stiffeners as its core. Unlike previous researches on rib-stiffened
panel without considering the inertial effects of rib-stiffeners, the vibration motion
of the rib-stiffeners is accurately described by introducing their tensional forces,
bending moments, and torsional moments as well as the corresponding inertial terms
into the governing equations of the two face panels. The Fourier transform technique
and Poisson summation formula are employed to solve the governing equations.
The resulting two sets of infinite simultaneous algebraic equations are numerically
solved by truncation insofar as the solution converges.

The far-field sound radiation is examined to gain physical insights of the
vibroacoustic response of the sandwich structure. First, comparisons between model
predictions with previous published results for orthogonally stiffened single plates
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validate the accuracy and feasibility of the present analytic model, which also
confirm the necessity of accounting for the inertial effects and torsional moments
of the rib-stiffeners in any theoretical modeling. Subsequently, the influences of
the excitation position, periodicity spacings of rib-stiffeners, and inertial effects
rooted in the rib-stiffener mass upon the far-field sound pressure radiated from the
orthogonal sandwich structure are explored.

Since the inertial effects of the rib-stiffeners are considered in the present
analytic model, a couple of additional peaks and dips on the SPL versus excitation
frequency curve related to the inertial effects are well captured, which are especially
evident when the mass of the rib-stiffeners is significant. Besides these rib-stiffener-
controlled SPL peaks and dips, it is also found that there exist panel-controlled peaks
and dips, which are related to certain wave shapes and vibration patterns possessing
maximal or minimal sound radiation.

The excitation position of the point force plays a significant role in the wave
propagation and sound radiation behavior of the sandwich, as different positions can
excite different wave mode shapes and vibration patterns of the face panel, resulting
in either panel- or rib-stiffener-controlled vibration. Therefore, different peaks and
dips associated with the panel- or rib-stiffener-controlled vibration will emerge and
noticeably affect the tendency of the SPL curve.

As a key parameter describing the periodic nature of the sandwich structure, rib-
stiffener spacing also has a dominant role. All the SPL peaks and dips dominantly
controlled by either panel vibration or rib-stiffener vibration are shifted to lower
frequencies as the periodicity spacings are increased. The overall tendency of the
SPL curves remains nonetheless unchanged, owing to the similar periodic nature of
the sandwich structures.

5.2 Sound Transmission Through Sandwich Structures

5.2.1 Introduction

Lightweight sandwich structures consisting of two parallel plates (as the facesheets)
reinforced by sets of spatially periodic rib-stiffeners (as the core) form a class
of structural elements of practical importance in a wide range of engineering
applications, such as aircraft fuselages and ship/submarine hulls [5–7, 16, 36–39].
Typically, these periodic rib-stiffeners construct identical and uniformly spaced sets
having a repetitive structural geometry in either one or two dimensions. Since
aerospace and marine vehicles are usually subjected to sound excitation and/or
dynamic impact [14, 40–43], the wave propagation and acoustic characteristics of
these periodic structures become increasingly important for predicting the internal
and external sound pressure levels. When the wavelength of flexural wave in the
periodically rib-stiffened structure is much greater than stiffener separation, the
structure can be approximately regarded as an orthotropic plate. At relatively high
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frequencies, the wavelength is on the same order as the stiffener separation, and
hence the spatially periodic rib-stiffeners should be modeled exactly to comprehend
the dynamic and acoustic characteristics of the structure as a whole [3, 4, 6, 7, 39].
The aim is to formulate a physically based analytic model of desirable accuracy
for the vibroacoustic response of the sandwich structure, which can in due course
be employed in conjunction with optimization techniques to design more effective
lightweight soundproofing structures.

A rich literature [7, 8, 16, 21, 23, 24, 38, 44–47] exists on the theoretical mod-
eling and analysis of wave propagation and dynamic performance of periodically
rib-stiffened beams and plates. Focusing on free wave propagation in periodically
supported, infinite beams, Mead [23] found that a freely propagating flexural
wave in such a beam must be regarded as a wave group, having components of
different wavelengths, phase velocities, and directions. A mechanism of whereby
slow, subsonic convected pressure fields can generate supersonic, radiating flexural
waves was also elucidated. A detailed literature review was reported by Mead
[24] on wave propagation in continuous periodic structures contributed by the
Southampton University from 1964 to 1995. More recently, using the transfer matrix
approach, Liu and Bhattacharya [48] obtained dispersion relations for elastic waves
propagating in sandwich structures. Ichchou et al. [1, 2] addressed the issue of
energy propagation in a ribbed plate by analyzing its response in the wavenumber
space and derived dispersion relationships between the wavenumber and frequency.
Wang et al. [49], Li et al. [50, 51] performed comprehensive studies on localization
of elastic waves in disordered periodic structures, with the underlying mechanism
of wave decay phenomenon in such structures revealed. It should be pointed out
that the aforementioned contributions on wave propagation and dynamic response
of structures are not meant to be exhaustive, while a few other specialized topics
such as the localized waves in disorder structures, turbulent boundary layer-excited
vibrations, and fluttering of aircraft wings are beyond the scope of the present
research.

Existing studies on the vibroacoustic response of periodic structures may be
grouped into two main categories: sound radiation under point loading [52, 53] and
sound transmission due to convective fluid-loaded pressure excitation [31, 33, 34,
54–56]. Particularly, for periodically rib-stiffened structures, two approaches have
been used to deal with the relevant issues. Firstly, the technique of Fourier transform
was often employed [3–6, 8, 11, 15, 25, 28, 57]. For example, Rumerman [25]
presented a general solution for the forced vibration of an infinite thin plate, period-
ically stiffened by identical, uniform ribs, with the forces and bending moments
of the ribs considered via the impedances of the ribs and plate. However, the
torsional moments and inertial effects of the ribs were not included in the analysis,
and no numerical results were given. Mace [28] analyzed sound radiation from a
point-excited infinite fluid-loaded plate reinforced by two sets of parallel stiffeners;
however, the moments of the rib-stiffeners were again ignored. Considering only
the forces of rib-stiffeners, Mace [5] also studied the radiation of sound from a
two-dimensional (2D) plate reinforced with two sets of orthogonal line stiffeners
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under fluid-loaded harmonic incident pressure. Recently, from the viewpoint of
vibroacoustic response in wavenumber space, Maxit [11] proposed an efficient
method based on the Fourier transform technique to estimate the vibration and sound
radiation from a stiffened fluid-loaded plate excited by a mechanical point force.

Secondly, it has been established that the space-harmonic approach evolving
from the consideration of progressive wave propagation is also well suited for
studying the vibroacoustic response of periodically rib-stiffened structures [7, 10,
21, 23, 24, 30, 58, 59]. For instance, the response of periodically supported beams
to convected random loading was evaluated by Mead and Pujara [21] in terms
of space-harmonic series: only as few as three terms were required to obtain
a solution of acceptable accuracy in comparison with the exact solution. The
same approach was adopted by Lee and Kim [7] to study the sound transmission
characteristics of a thin plate reinforced by equally spaced line stiffeners, with
parametric studies conducted to provide guidelines for the practical design of the
system. Extending this approach to parallelly rib-stiffened sandwich structure, Wang
et al. [30] developed a deterministic analytic model by coupling the acoustic and
structure vibrations and then employing the virtual work principle. However, the
model does not provide a complete description of the motions of the rib-stiffeners
and their interaction with the face panels, as only tensional forces and bending
moments are considered. A refined theoretical model of Wang et al. [30] was
proposed by Legault and Atalla [58] to investigate the transmission of sound through
a typical aircraft sidewall panel, i.e., sandwich structure reinforced by parallel rib-
stiffeners, with fiberglass filled in the cavity: again, only the tensional forces and
bending moments of the rib-stiffeners are included.

While previous researches focused mainly on relatively simple sandwich con-
structions and approximated the rib-stiffeners as an Euler beam or a combination
of translational spring and rotational spring, an exact theoretical model concerning
the vibroacoustic response of more complex structures (e.g., two-dimensional
sandwich structures orthogonally reinforced by periodic rib-stiffeners) is desirable.
In addition to helping exploring the underlying physical subtleties, the model should
also serve as benchmark checking for approximate analytic approaches, with a
small computational expense afforded compared to numerical methods such as
the finite element method (FEM) and the boundary element method (BEM). With
the focus placed on 2D sandwich structures reinforced orthogonally with periodic
rib-stiffeners under point force excitations, Xin and Lu [39] developed such an
exact model for their sound radiation characteristics using the Fourier transform
technique.

Built upon the work of Ref. [39], the physical process of sound transmission
through an infinite orthogonally rib-stiffened sandwich structure subjected to
convective harmonic fluid-loaded pressure is analytically formulated and solved by
employing the space-harmonic approach. All possible motions of the rib-stiffeners
are included by introducing the tensional forces, bending moments, and torsional
moments as well as the corresponding inertial terms into the governing equations
of the two face panels. Furthermore, the surrounding acoustic fluids are restricted
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Fig. 5.9 Schematic illustration of an orthogonally rib-stiffened sandwich subjected to incident
sound pressure wave: (a) global view; (b) side view of (a) (With permission from Elsevier)

by the acoustic wave equation, and fluid-structure coupling is incorporated by
enforcing velocity continuity conditions at fluid-panel interfaces. For one periodic
element, applying the principle of virtual work yields two infinite sets of simultane-
ous algebraic coupled equations, which are numerically solved by truncating them
in a finite range insofar as the solution converges. For validation, the predictions
of the present analytic model are compared with previous published results,
with good overall agreement achieved. Moreover, the necessity and advantage of
modeling exactly the motions of the orthogonal rib-stiffeners are also affirmed by
comparing the complete model with its simplified version as well as the model of
Wang et al. [30]. In the perspective of both physical understanding and practical
structural design, the dependence of sound transmission of the structure upon the
inertial effects arising from the rib-stiffener mass, the airborne and structure-borne
paths, and the periodicity spacings of rib-stiffeners is systematically studied and
conclusions of referential significance are deduced.

5.2.2 Analytic Formulation of Panel Vibration
and Sound Transmission

Consider two infinite parallel face panels reinforced by two periodic sets of
orthogonal rib-stiffeners having periodic uniform spacings lx and ly in the x- and y-
directions, respectively (see Fig. 5.9). A right-handed Cartesian coordinate system
(x, y, z) is established, with its x-axis and y-axis positioned separately along one
pair of the orthogonal rib-stiffeners and the positive direction of the z-axis pointing
downward (Fig. 5.9). The upper panel located at z D 0 and the bottom panel located
at z D h1 C d separate the acoustic fluid in the spatial field into three parts: the upper
field occupying the half-space z < 0, the middle field filling the space h1 < z < h1 C d
(i.e., in between the two panels and divided periodically by the rib-stiffeners), and
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the lower field occupying the other half-space z > h1 C h2 C d. Both the upper panel
(thickness h1) and the bottom panel (thickness h2) are modeled as Kirchhoff thin
plates. Let tx and ty denote separately the thickness of the x- and y-wise rib-stiffeners.

An oblique plane sound wave p(r, t) varying harmonically in time is incident
upon the upper panel of the sandwich structure with elevation angle ' and azimuth
angle � . Consequently, a distributed load induced by the incident sound pressure
wave is exerting on the panel, which in turn induces a bending wave that propagates
along the panel. The bending wave in the upper panel is transmitted to the bottom
panel via two paths, namely, the structure-borne path (i.e., the orthogonal rib-
stiffeners) and the airborne path (i.e., the air constrained in between the two panels).
The transmitted bending wave in the bottom panel radiates sound pressure wave into
the semi-infinite acoustic fluid in contact with the bottom panel (see Fig. 5.9). The
analytic model to be developed below not only tackles exactly with the physical
process of sound transmission through the sandwich structure but also accounts
for the air-structure coupling. Both the acoustic fluid constrained in between the
two panels (h1 < z < h1 C d) and the semi-infinite fluids in contact with the upper
panel (z < 0) and the bottom panel (z > h1 C h2 C d) satisfy the wave equation.
Furthermore, the tensional, bending, and torsional motions of the rib-stiffeners and
their corresponding inertial effects are all taken into account in the proposed model.

Given the periodic nature of the orthogonal rib-stiffened sandwich structure,
the Bloch or Floquet theorem [60] is utilized here to express the panel vibration,
which is well suitable to address wave propagation and vibration issues of periodic
structures [61–63]. The displacements w(x, y) of such a system at corresponding
points in different periodic elements are related by a spatial periodic function (i.e.,
a bay-to-bay multiplicative factor, linking the motion of corresponding points in
adjacent bays) as

w
�
x C mlx; y C nly

� D w .x; y/ e�ikxmlx e�ikynly (5.64)

Therefore, it is convenient to express the motion of each panel as a summation
of one set of space-harmonic series. For a 2D sandwich structure stiffened by
identical ribs which repeat in the x- and y-directions and excited by a harmonic
plane sound wave (i.e., the convective fluid-loaded pressure) p .x; y; zI t/ D
Ie�i.kxxCkyyCkzz�!t/, the panel responses wj(x, y; t) (j D 1, 2 for the upper and
bottom panels, respectively) can be expressed using space-harmonic expansion [5,
18, 21] as

w1 .x; yI t/ D
C1X

mD�1

C1X

nD�1
˛1;mne�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y�!t� (5.65)

w2 .x; yI t/ D
C1X

mD�1

C1X

nD�1
˛2;mne�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y�!t� (5.66)
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where the (m, n)th harmonic wave components in the two panels have the same
wavenumbers (kx C 2m�/lx, ky C 2n�/ly) but different amplitudes, i.e.,

˛1;mn D 1

lxly

Z lx

0

Z ly

0

w1 .x; yI t/ eiŒ.kxC2m�=lx/xC.kyC2n�=ly/y�!t�dxdy (5.67)

˛2;mn D 1

lxly

Z lx

0

Z ly

0

w2 .x; yI t/ eiŒ.kxC2m�=lx/xC.kyC2n�=ly/y�!t�dxdy (5.68)

In Eqs. (5.65) and (5.66), the terms with kx C 2m�/lx > 0 (or ky C 2n�/ly > 0)
stand for positive-going harmonic waves in the x-direction (or the y-direction) and
those with kx C 2m�/lx < 0 (or ky C 2n�/ly < 0) denote negative-going harmonic
waves in the x-direction (or the y-direction).

When sound pressure p(r, t) D Ie� i(k � r � !t) is incident on the upper panel, the
incident sound partly reflected at the air-panel interface and the radiated sound by
the vibrating panel constitute the negative-going waves in the upper semi-infinite
acoustic fluid domain. The positive-going wave (i.e., the incident sound wave) and
the negative-going wave (i.e., the reflected plus radiated sound waves) compose the
resultant sound pressure imposed on the upper panel, which are transmitted through
the sandwich structure into the semi-infinite space adjacent to the bottom panel,
creating thence the transmitted sound pressure. Therefore, sound pressure in the
upper semi-infinite field can be expressed as [18]

P1 .x; y; zI t/ D Ie�i.kxxCkyyCkzz�!t/

C
C1X

mD�1

C1X

nD�1
ˇmne�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y�kz;mnz�!t�

(5.69)

Similarly, sound pressure in the middle field in between the two panels is
expressed by space-harmonic series as

P2 .x; y; zI t/ D
C1X

mD�1

C1X

nD�1
"mne�iŒ.kxC2m�=lx/xC.kyC2n�=ly/yCkz;mnz�!t�

C
C1X

mD�1

C1X

nD�1
�mne�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y�kz;mnz�!t�

(5.70)

The transmitted sound pressure in the bottom semi-infinite field only consists of
positive-going wave:
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P3 .x; y; zI t/ D
C1X

mD�1

C1X

nD�1
�mne�iŒ.kxC2m�=lx/xC.ky C2n�=ly/yCkz;mnz�!t� (5.71)

In the above expressions, I is the amplitude of incident sound pressure; ˇmn

and �mn are the (m, n)th space-harmonic amplitude of negative-going wave in the
incident field and in the middle field, respectively; and "mn and �mn are the (m, n)th
space-harmonic amplitude of positive-going wave in the middle field and in the
transmitted field, respectively. The wavenumber components in the x-, y-, and z-
directions are determined by the elevation angle and azimuth angle of the incident
sound wave as

kx D k0 sin ' cos �; ky D k0 sin ' sin �; kz D k0 cos ' (5.72)

where kz,mn is the (m, n)th space-harmonic wavenumber in the z-direction which,
upon applying the Helmholtz equation, is given by

kz;mn D
s�

!

c0

	2

�
�

kx C 2m�

lx

	2

�
�

ky C 2n�

ly

	2

(5.73)

Note that when (!/c0)2 < (kx C 2m�/lx)2 C (ky C 2n�/ly)2, the pressure waves
become evanescent waves [10, 30, 59] so that kz,mn should be taken as

kz;mn D i

s�
kx C 2m�

lx

	2

C
�

ky C 2n�

ly

	2

�
�

!

c0

	2

(5.74)

The two orthogonal sets of rib-stiffeners uniformly distributed in between the
two face panels impose a strong constraint on the motions of the panels, which
constitute the structure-borne path for sound transmission and wave propagation. To
model accurately the vibroacoustic behavior of the sandwich, the dynamic motions
of the rib-stiffeners should be carefully taken into account, which include tensional,
bending, and torsional vibrations pertinent to tensional forces, bending moments,
and torsional moments imposed on the connected panels. To account for the inertial
effects of these motions arising from the mass of the rib-stiffeners, the resultant
tensional forces, bending moments, and torsional moments acting on the upper
and bottom panels are not identical, which are marked here by (QC, MC, MC

T )
and (Q�, M�, M�

T ). Figure 5.10 illustrates the conventions used for the tensional
forces, bending moments, and torsional moments at the interface between the upper
panel and the x/y-wise rib-stiffeners. The same applies at the interface between
the bottom panel and the x/y-wise rib-stiffeners, with (QC, MC, MC

T ) replaced by
(Q�, M�, M�

T ).
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Fig. 5.10 Conventions for tensional forces, bending moments, and torsional moments between
the upper panel and (a) x-wise rib-stiffeners and (b) y-wise rib-stiffeners. Similar conventions hold
at the interface between the bottom panel and the x/y-wise rib-stiffeners by replacing (QC, MC,
MC

T ) with (Q�, M�, M�
T ), which is not shown here for brevity (With permission from Elsevier)

Given that the incident sound pressure wave varies harmonically in time, the
dynamic responses of the two face panels are also harmonically dependent upon
time. For simplicity, the harmonic time dependence e� i!t will be suppressed
throughout this chapter henceforth.

The resultant pressure exerted on the upper panel is contributed by the incident
sound wave, the negative-going wave on the incident side P1(x, y, 0), and the
middle field pressure P2(x, y, h1) on the other side. For the bottom panel, the net
pressure is a combination of the transmitted sound pressure P3(x, y, h1 C h2 C d)
on the transmitted side and the middle field pressure P2(x, y, h1 C d) on the other
side. Under the prescribed Cartesian coordinate system, with the tensional forces,
bending moments, and torsional moments of the rib-stiffeners accounted for, the
governing equations for panel vibrations are given by

D1r4w1 C m1

@2w1

@t2
D

C1X

mD�1

�
QC

y ı .x � mlx/ C @

@y

n
M C

y ı .x � mlx/
o

C @

@x

n
M C

Tyı .x � mlx/
o�

C
C1X

nD�1

�
QC

x ı
�
y � nly

�C @

@x

˚
M C

x ı
�
y � nly

��

C @

@y

˚
M C

T xı
�
y � nly

���

C P1 .x; y; 0/ � P2 .x; y; h1/ (5.75)
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D2r4w2 C m2

@2w2

@t2
D �

C1X

mD�1

�
Q�

y ı .x � mlx/ C @

@y

n
M �

y ı .x � mlx/
o

C @

@x

n
M �

Tyı .x � mlx/
o�

�
C1X

nD�1

�
Q�

x ı
�
y � nly

�C @

@x

˚
M �

x ı
�
y � nly

��

C @

@y

˚
M �

T xı
�
y � nly

���

C P2 .x; y; h1 C d/ � P3 .x; y; h1 C h2 C d/

(5.76)

where r4 D (@2/@x2 C @2/@y2)2; (w1, w2), (m1, m2), and (D1, D2) are the displace-
ments, mass density per unit area, and flexural rigidity of the upper and bottom
panels, respectively; and ı(�) is the Dirac delta function.

Since the inertial effects (i.e., inertial tensional forces, inertial bending moments,
and inertial torsional moments) of the rib-stiffeners have been taken into account, the
factual tensional forces Q, bending moments M, and torsional moments MT imposed
on the two face panels are unequal. Therefore, as shown in Fig. 5.10, superscripts
C and � associated separately with the upper and bottom panels are introduced to
differentiate this discrepancy, with subscripts x and y introduced to signify the terms
arising from the x-wise and y-wise rib-stiffeners, respectively.

Taking the inertial effects of the rib-stiffeners into consideration and applying
Hooke’s law and Newton’s second law, one can express the tensional forces of the
rib-stiffeners as [39]

QC
x D �Kx

�
Kx � mx!2

�

2Kx � mx!2
w1 C K2

x

2Kx � mx!2
w2 (5.77)

Q�
x D � K2

x

2Kx � mx!2
w1 C Kx

�
Kx � mx!2

�

2Kx � mx!2
w2 (5.78)

QC
y D �Ky

�
Ky � my!2

�

2Ky � my!2
w1 C K2

y

2Ky � my!2
w2 (5.79)

Q�
y D � K2

y

2Ky � my!2
w1 C Ky

�
Ky � my!2

�

2Ky � my!2
w2 (5.80)

where ! is the circular frequency, (Kx, Ky) are the tensional stiffness of half the rib-
stiffeners per unit length, and (mx, my) are the line mass density of the x-wise and
y-wise rib-stiffeners, respectively.
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Similarly, the bending moments of the rib-stiffeners can be expressed as [39]

M C
x D ExI �

x

�
ExI �

x � �xIx!2
�

2ExI �
x � �xIx!2

@2w1

@x2
� E2

xI �
x

2

2ExI �
x � �xIx!2

@2w2

@x2
(5.81)

M �
x D E2

xI �
x

2

2ExI �
x � �xIx!2

@2w1

@x2
� ExI �

x

�
ExI �

x � �xIx!2
�

2ExI �
x � �xIx!2

@2w2

@x2
(5.82)

M C
y D

EyI �
y

�
EyI �

y � �yIy!2


2EyI �
y � �yIy!2

@2w1

@y2
� E2

yI �
y

2

2EyI �
y � �yIy!2

@2w2

@y2
(5.83)

M �
y D E2

yI �
y

2

2EyI �
y � �yIy!2

@2w1

@y2
�

EyI �
y

�
EyI �

y � �yIy!2


2EyI �
y � �yIy!2

@2w2

@y2
(5.84)

where (ExI*
x , EyI*

y) are the bending stiffness of half the rib-stiffeners per unit length
and (�x, �y) and (Ix, Iy) are the mass density and polar moment of inertia for the
rib-stiffeners, with subscripts x and y indicating the corresponding orientations of
the rib-stiffeners.

Following the same procedures, the torsional moments of the rib-stiffeners are
given by [39]

M C
T x D GxJ �

x

�
GxJ �

x � �xJx!2
�

2GxJ �
x � �xJx!2

@2w1

@x@y
� G2

xJ �
x

2

2GxJ �
x � �xJx!2

@2w2

@x@y
(5.85)

M �
T x D G2

xJ �
x

2

2GxJ �
x � �xJx!2

@2w1

@x@y
� GxJ �

x

�
GxJ �

x � �xJx!2
�

2GxJ �
x � �xJx!2

@2w2

@x@y
(5.86)

M C
Ty D

GyJ �
y

�
GyJ �

y � �yJy!2


2GyJ �
y � �yJy!2

@2w1

@y@x
� G2

yJ �
y

2

2GyJ �
y � �yJy!2

@2w2

@y@x
(5.87)

M �
Ty D G2

yJ �
y

2

2GyJ �
y � �yJy!2

@2w1

@y@x
�

GyJ �
y

�
GyJ �

y � �yJy!2


2GyJ �
y � �yJy!2

@2w2

@y@x
(5.88)

where (GxJ*
x , GyJ*

y) are the torsional stiffness of half the rib-stiffeners per unit length
and (Jx, Jy) are the torsional moments of inertia of the rib-stiffeners.

In the above expressions for the tensional forces, bending moments, and torsional
moments, the geometrical properties of rib-stiffener cross sections are given by

Kx D Extx

d=2
; Ky D Eyty

d=2
(5.89)

I �
x D tx.d=2/3

12
; I �

y D ty.d=2/3

12
; Ix D txd 3

12
; Iy D tyd 3

12
(5.90)
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J �
x D t3

xd

2

"
1

3
� 64

�5

2tx

d

1X

nD1;3;5;:::

tanh .n�d=4tx/

n5

#

(5.91)

J �
y D t3
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2

"
1

3
� 64

�5

2ty

d

1X

nD1;3;5;:::

tanh
�
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Jx D t3
x d

"
1

3
� 64

�5
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d

1X
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(5.93)

Jy D t3
yd

"
1

3
� 64

�5
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d

1X

nD1;3;5;:::

tanh
�
n�d=2ty

�

n5

#

(5.94)

To simplify Eqs. (5.4), (5.5), (5.6), (5.7), (5.8), (5.9), (5.10), (5.11), (5.12), (5.13),
(5.14), and (5.15), the following sets of specified characteristics are utilized to
replace the coefficients of the general displacements:

1. Replacement of tensional force coefficients:

RQ1 D Kx

�
Kx � mx!2

�

2Kx � mx!2
; RQ2 D K2

x

2Kx � mx!2
(5.95)

RQ3 D Ky

�
Ky � my!2

�

2Ky � my!2
; RQ4 D K2

y

2Ky � my!2
(5.96)

2. Replacement of bending moment coefficients:

RM1 D ExI �
x

�
ExI �

x � �xIx!2
�

2ExI �
x � �xIx!2

; RM2 D E2
xI �

x
2

2ExI �
x � �xIx!2

(5.97)

RM3 D
EyI �

y

�
EyI �

y � �yIy!2


2EyI �
y � �yIy!2

; RM4 D E2
yI �

y
2

2EyI �
y � �yIy!2

(5.98)

3. Replacement of torsional moment coefficients:

RT1 D GxJ �
x

�
GxJ �

x � �xJx!2
�

2GxJ �
x � �xJx!2

; RT 2 D G2
xJ �

x
2

2GxJ �
x � �xJx!2

(5.99)

RT 3 D
GyJ �

y

�
GyJ �

y � �yJy!2


2GyJ �
y � �yJy!2

; RT 4 D G2
yJ �

y
2

2GyJ �
y � �yJy!2

(5.100)

Adopting Eqs. (5.22), (5.23), (5.24), (5.25), (5.26), and (5.27) and substituting
Eqs. (5.65) and (5.66) into Eqs. (5.4), (5.5), (5.6), (5.7), (5.8), (5.9), (5.10), (5.11),
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(5.12), (5.13), (5.14), and (5.15), we can simplify the expressions of the tensional
forces, bending moments, and torsional moments as follows:

1. Tensional forces:

QC
x D

C1X

mD�1

C1X

nD�1

��RQ1˛1;mn C RQ2˛2;mn

�
e�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y�

(5.101)

Q�
x D

C1X

mD�1

C1X

nD�1

��RQ2˛1;mn C RQ1˛2;mn

�
e�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y�

(5.102)
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y D

C1X

mD�1

C1X

nD�1

��RQ3˛1;mn C RQ4˛2;mn

�
e�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y�

(5.103)
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mD�1

C1X

nD�1

��RQ4˛1;mn C RQ3˛2;mn

�
e�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y�

(5.104)

2. Bending moments:

M C
x D

C1X

mD�1

C1X

nD�1
.�RM1˛1;mnCRM2˛2;mn/ ˛2
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(5.105)
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(5.106)
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M �
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nD�1
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(5.108)

3. Torsional moments:

M C
T x D

C1X

mD�1

C1X

nD�1
.�RT1˛1;mn CRT 2˛2;mn/ ˛mˇne�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y�

(5.109)
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M �
T x D

C1X

mD�1

C1X
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(5.110)
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M �
Ty D

C1X
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C1X

nD�1
.�RT 4˛1;mnCRT 3˛2;mn/ ˛mˇne�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y�

(5.112)

5.2.3 The Acoustic Pressure and Continuity Condition

The acoustic pressures P1(x, y, z) in the incident field, P2(x, y, z) in the field between
the two face panels, and P3(x, y, z) in the transmitted field all satisfy the wave
equation [9, 12, 45]:

�
@2

@x2
C @2

@y2
C @2

@z2
C k2

0

�
Pi D 0 .i D 1; 2; 3/ (5.113)

where k0 is the wavenumber of the incident sound. The momentum equation is
applied to ensure the equality of panel velocity and fluid velocity on the panel
surface, i.e., the continuity condition of fluid-structure coupling [14, 57]:
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ˇ
zDh1Ch2Cd

D !2�0w2 (5.115)

where �0 is the ambient acoustic fluid density. Substitution of Eqs. (5.65) and (5.66)
as well as Eqs. (5.69), (5.70), and (5.71) into Eqs. (5.114) and (5.115) gives rise to

� ikzIe�i.kxxCkyy/ C
C1X

mD�1

C1X

nD�1

�
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i

� e�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y� D 0 (5.119)

Because Eqs. (5.116), (5.117), (5.118), and (5.119) hold for all possible values
of x and y, the relevant coefficients have the following relationships:

ˇ00 D I C !2�0˛1;00

ikz
(5.120)

ˇmn D !2�0˛1;mn

ikz;mn

; at m ¤ 0 jj n ¤ 0 (5.121)
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�
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˛1;mne�ikz;mn.h1Cd/ � ˛2;mne�ikz;mnh1

�

2kz;mn sin .kz;mnd/
(5.123)

�mn D �!2�0˛2;mn

ikz;mn

eikz;mn.h1Ch2Cd/ (5.124)

5.2.4 Solution of the Formulations with the Virtual
Work Principle

As can be seen from Eqs. (5.120), (5.121), (5.122), (5.123), and (5.124), once
coefficients ˛1,mn and ˛2,mn (i.e., modal amplitudes of the (m, n)th space-harmonic
flexural waves in the upper and bottom panels, respectively) are determined,
coefficients ˇmn, "mn, �mn, and �mn are also determined. Coefficients ˛1,mn and ˛2,mn

can be obtained by solving the system equations derived by applying the principle
of virtual work [7, 21, 30]. In view of the spatial periodicity of the structure, it is
necessary to consider only the virtual work contribution from one period of element
(including the attached rib-stiffeners). As the statement of the virtual work principle,
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the sum of the work done by all the elements in one period of the system must be
zero when the system has any one of the virtual displacements:

ıwj D ı˛j;mne�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y� .j D 1; 2/ (5.125)

5.2.5 Virtual Work of Panel Elements

The equations governing the vibration responses of the two panel elements in one
period of the structure are

D1r4w1 C m1

@2w1

@t2
� P1 .x; y; 0/ C P2 .x; y; h1/ D 0 (5.126)

D2r4w2 C m2

@2w2

@t2
� P2 .x; y; h1 C d/ C P3 .x; y; h1 C h2 C d/ D 0 (5.127)

The virtual work contributed solely by the panel elements can then be
represented as
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where ıw*
1 and ıw*

2 denote the complex conjugate of the virtual displacement in
Eq. (5.125). Together with Eqs. (5.65) and (5.66); Eqs. (5.69), (5.70), and (5.71);
and Eqs. (5.120), (5.121), (5.122), (5.123), and (5.124), Eqs. (5.128) and (5.129)
can be rewritten in terms of modal amplitudes ˛1,kl and ˛2,kl as
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5.2.6 Virtual Work of x-Wise Rib-Stiffeners

The virtual work contributions from the tensional forces, bending moments, and
torsional moments at the interfaces between the x-wise rib-stiffeners (aligned with
y D 0) with the upper and bottom panels are given by
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where @
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5.2.7 Virtual Work of y-Wise Rib-Stiffeners

Likewise, the virtual work contributions from the tensional forces, bending
moments, and torsional moments at the interfaces between the y-wise rib-stiffeners
(aligned with x D 0) with the upper and bottom panels are
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5.2.8 Combination of Equations

Finally, the virtual work principle requires that

ı…p1 C ı…x1 C ı…y1 D 0 (5.136)

ı…p2 C ı…x2 C ı…y2 D 0 (5.137)
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Substituting Eqs. (5.130), (5.132), and (5.134) into (5.136) and Eqs. (5.131),
(5.133), and (5.135) into (5.137) and noting that the virtual displacement is arbitrary,
we obtain
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where

˛m D kx C 2m�

lx
; ˇn D ky C 2n�

ly
(5.140)

Note that consideration of the virtual work in any other period of the structural
element would have yielded an identical set of equations.

In order to separate the variants ˛1,kl and ˛2,kl, Eqs. (5.138) and (5.139) are
rewritten as
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where the coupling relations between the modal amplitudes of sound waves in air
and those of flexural waves in panels defined in Eqs. (5.120), (5.121), (5.122),
(5.123), and (5.124) have been included. Equations (5.141) and (5.142) form
an infinite set of coupled algebraic simultaneous equations. The solution of a
suitably restricted set of these equations allows the modal amplitudes ˛1,kl and
˛2,kl to be determined. Insofar as the solution converges, these equations are solved
simultaneously by truncation, namely, restricting the sum index (m, n) in the finite

ranges of m D �
_
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_

k and n D �
_
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_

l . With laborious but straightforward
algebraic manipulations, the resulting simultaneous equations containing a finite
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Detailed derivations of Eq. (5.143) can be found in Appendix B. Once the
unknowns ˛1,kl and ˛2,kl are determined by solving Eq. (5.143), the displacements
(w1, w2) of the panels and the sound pressure (P1, P2, P3) in the ambient acoustic
fluids adjacent to the two panels are also determined, enabling the sound transmis-
sion analysis of the fluid-loaded orthogonally rib-stiffened sandwich structure.
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5.2.9 Definition of Sound Transmission Loss

As can be seen from Eqs. (5.65), (5.66), (5.67), (5.68), (5.69), (5.70), and (5.71),
a component of the convective fluid-loaded pressure in the form of harmonic
plane sound wave with wavenumbers (kx, ky) would induce sets of space-harmonic
wave components in the response (including sound pressure) with wavenum-
bers (kx C 2m�/lx, ky C 2n�/ly), where (m, n) take values (� 1 < m < C 1,
� 1 < n < C 1). This implies that the groups of harmonic waves may travel
in opposite directions. The appearance of the series of space-harmonic waves in
the response stems from the periodic rib-stiffeners attached to the panels. For
a given convective fluid-loaded pressure with wavenumbers (kx, ky), a bending
wave having the same wavenumbers is induced which then travels in the structure.
The outspreading bending wave would be polarized as a group of harmonic wave
components identified by wavenumbers (a0 C 2m�/lx, ˇ0 C 2n�/ly), owing to the
complex interaction between the bending waves in panels and the motion of the mth
x-wise and nth y-wise rib-stiffeners.

Given that (kx, ky) are real, the wavenumber kz,mn of the (m, n)th harmonic wave
in the z-direction may be either real or pure imaginary (see Eqs. (5.73) and (5.74)).
In the case of kz,mn being imaginary, the (m, n)th component of the wave decays
exponentially with increasing distance in the z-direction and radiates no energy.
This corresponds to a subsonic wave, i.e., non-radiating wave [40], satisfying that
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Therefore, this (m, n)th component contributes only to the near field. Only when
kz,mn is real, the (m, n)th component could contribute to the far-field sound pressure
[5, 14], which pertains to a supersonic wave, i.e., radiating wave [40], satisfying that
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(5.145)

To facilitate the physical understanding of sound transmission, the transmission
coefficient is defined here as the ratio of the transmitted sound power to the incident
sound power:


 .'; �/ D

C1X

mD�1

C1X

nD�1
j�mnj2Re .kz;mn/

jI j2kz

(5.146)

which is dependent upon the incident angles ' and � . Sound transmission loss (STL)
is then customarily defined as the inverse of the power transmission coefficient in
decibel scale [9, 12]:
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Fig. 5.11 Convergence check of double space-harmonic series solution for an infinite orthog-
onally rib-stiffened sandwich structure excited by a normal incident sound at 10 kHz (With
permission from Elsevier)

STL D 10 log10

�
1


 .'; �/

	
(5.147)

Physically, STL is a measure of the effectiveness of the considered sandwich
structure in isolating the transmission of convective fluid-loaded pressure.

5.2.10 Convergence Check for Space-Harmonic Series
Solution

Since the analytic model is hinged on the assumed double-series solution given
in Eqs. (5.65), (5.66), (5.67), (5.68), (5.69), (5.70), and (5.71), a sufficiently large
number of terms have to be used to ensure the convergence and accuracy of the
solution. There exists an admissible criterion (Lee and Kim [7]; Xin et al. [18])
that once the solution converges at a given frequency, it is also convergent for
all frequencies lower than that. Therefore, the needed number of series terms
is determined by the highest frequency of interest (i.e., 10 kHz, the frequency
range below which is of concern here). Convergence check is thus performed
by calculating STL value at 10 kHz, with progressively more terms used in the
double-series expansion (as shown in Fig. 5.11). Once the difference between two
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successive STL calculations falls within a preset error band (5.01 dB selected in this
work), the solution is deemed to have converged, and then the corresponding number
of terms is adopted to calculate STL values at all other frequencies below 10 kHz.

In view of the symmetry of the present periodic structures in x- and y-direction,
the equations are truncated as a finite set of equations with m D �bk to bk and
n D �bl to bl (bk Dbl assumed) and then solved simultaneously. Figure 5.11 shows
the convergence tendency of STL solution as the single-mode number bk (Dbl) is
increased, when the sandwich structure is excited by a normal incident sound at
10 kHz. The results of Fig. 5.11 demonstrate that the solution converges when bk 

19. In other words, it needs at least 1,521 terms (m and n both ranging from �19
to 19) to ensure solution convergence at 10 kHz. The same number (1,521 terms)
is employed in subsequent STL calculations below 10 kHz, sufficient for obtaining
accurate results within the error band of 5.01 dB.

5.2.11 Validation of the Analytic Model

The validity and feasibility of the proposed analytic model for sound transmission
across an infinite orthogonally rib-stiffened sandwich structure subjected to convec-
tive fluid-loaded pressure is checked by comparing the model predictions and those
obtained by Wang et al. [30] for sound transmission through an infinite sandwich
structure with parallel rib-stiffeners as the core. While Wang et al. [30] model a
single rib-stiffener as a combination of translational spring and rotational spring,
the tensional, bending, and torsional vibrations of the rib-stiffener are modeled as
an ensemble in the present analytic model. To make the comparison possible, the
sets of orthogonal rib-stiffeners are simplified as one set of parallel rib-stiffeners.
To this end, without loss of generality, the key parameters (i.e., Young’s modulus
Ex, density �x, and thickness tx) of the x-wise rib-stiffeners are set to zero, so that
the orthogonally rib-stiffened sandwich construction is equivalent to a parallelly rib-
stiffened sandwich structure. Of course, the material and geometrical properties of
the structure adopted by Wang et al. [30] are fully followed in the comparison.

To highlight the necessity and advantage of the exact consideration of rib-
stiffener motions in sound transmission prediction for the whole structure, results
obtained using both the complete model and the simplified model are compared
with the predictions of Wang et al. [30], as shown in Fig. 5.12. Here, the complete
model proposed in Sects. 5.2.2–5.2.9 not only treats the motions of the rib-stiffeners
as an ensemble of tensional, bending, and torsional vibrations but also considers
their inertial effects. The simplified model only retains the tensional forces, inertial
tensional forces, and bending moments of the y-wise rib-stiffeners in Eqs. (5.1) and
(5.2), corresponding to the translational forces, inertial forces of lumped masses,
and rotational forces in Wang et al.’s model, respectively.

Overall, as illustrated in Fig. 5.12, the predictions of the simplified model agree
well with those obtained by Wang et al. [30]. The visible discrepancies (at relatively
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Fig. 5.12 Sound transmission loss plotted as a function of frequency for infinite sandwich struc-
ture with parallel rib-stiffeners as core subjected to oblique (' D 45ı) incident sound: comparison
between predictions by the present analytic model (both complete model and simplified model)
and those by Wang et al. [30] (With permission from Elsevier)

high frequencies in particular) between the two models are attributable to the fact
that, for simplicity, Wang et al. approximated the lumped mass per rib-stiffener as
distributed mass which was then added to the panel mass. While the STL versus
frequency curves predicted by Wang et al. and the simplified model have an overall
tendency of that predicted by the complete model, noticeable discrepancies are also
observed in Fig. 5.12. This confirms the necessity and advantage of the present
analytic formulations for modeling the structural and acoustic behaviors of rib-
stiffened sandwich structures subjected to convective fluid-loaded pressure.

5.2.12 Influence of Sound Incident Angles

Since the incident azimuth angle � plays a negligible role here, the influence of
sound incident angle is mainly examined by comparing STL values calculated for
three different incident elevation angles (i.e., ' D 0ı, 30ı, 60ı) with the azimuth
angle fixed at � D 45ı, as shown in Fig. 5.13.

The results of Fig. 5.13 demonstrate that the incident elevation angle has a
significant effect on the STL of the present sandwich structure. It is observed that
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Fig. 5.13 Sound transmission loss plotted as a function of frequency for orthogonally rib-stiffened
sandwich structure under sound excitation having selected incident angles (With permission from
Elsevier)

the first resonance dip is shifted to a lower frequency as the elevation angle is
increased, and denser resonance dips appear on the STL versus frequency curves
in the oblique incident case than those in the normal incident case. Accordingly,
apart from several individual peaks, the averaged STL values are smaller than that
in the normal incident case, particularly so in the low-frequency range (below
400 Hz). In other words, the oblique incident sound power transmits through the
structure more easily than that of the normal incident sound, due to the possibility
of constructive interference between incident sound wave and structural bending
waves in the former (Xin et al. [14]).

Indeed, when the trace wavelength of incident sound matches the bending wave
in the face panel of the sandwich, coincidence resonance occurs in the oblique
incident case but not in the normal incident case (Fahy [65]). Following Xin et al.
[14], the coincidence resonance frequency may be analytically calculated as

fc D c2
0

2�h sin '

r
12� .1 � �2/

E
(5.148)

The coincident resonance appearing in the oblique case is often located at high
frequencies that are beyond the frequency range considered in the present study.
In view of the dense resonances of the sandwich structure itself and the complex
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Fig. 5.14 Sound transmission loss plotted as a function of frequency for orthogonally rib-stiffened
sandwich structure under normal incident sound: influence of inertial effects arising from rib-
stiffener mass (With permission from Elsevier)

interaction of bending waves in the face panel and rib-stiffeners at high frequencies,
the coincidence resonance dip would shift its original location, and thus it is actually
impossible to identify it especially in the present complex sandwich structures.

5.2.13 Influence of Inertial Effects Arising from Rib-Stiffener
Mass

The inertial effects of rib-stiffener mass should not be ignored when the rib-
stiffeners are heavy. To quantify the influence of inertial effects on sound transmis-
sion characteristics, Fig. 5.14 compares the predictions obtained for an orthogonally
rib-stiffened sandwich structure with and without considering the inertial effects.
The inertial effects of the rib-stiffeners on sound radiation from an orthogonally
rib-stiffened sandwich subjected to harmonic point force excitation have been
evaluated in a companion paper [39]. As such, the influence of inertial effects on
sound transmission characteristics provides additional insight into the vibroacoustic
dynamics of 2D periodic sandwich structures.

It is seen from Fig. 5.14 that the STL versus frequency curve predicted with
the inertial effects considered has a tendency similar to that without considering
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Fig. 5.15 Sound transmission loss plotted as a function of frequency for orthogonally rib-stiffened
sandwich structure under normal incident sound: influence of periodicity spacings between rib-
stiffeners (With permission from Elsevier)

the inertial effects, the main discrepancy being the existence of several additional
peaks and dips in the former. On the one hand, the superposition peaks (or dips)
between the inertial case and the non-inertial one are dominated by face panel
vibration, which are closely related to the maximum (or minimal) vibration patterns.
On the other hand, the appearance of the additional peaks and dips controlled
predominantly by the rib-stiffeners is attributed to the inertial effects arising from
the mass of the rib-stiffeners.

5.2.14 Influence of Rib-Stiffener Spacings

It is anticipated that the rib-stiffener spacings lx and ly (Fig. 5.9) characterizing the
periodic nature of the 2D orthogonal sandwich play an important role in dictating
the wave propagation and sound transmission performance of the structure. Their
influence on the sound radiation behavior of the structure has been explored [39],
which is further examined below in terms of sound transmission.

Figure 5.15 plots the STL as a function of frequency for two different orthog-
onally rib-stiffened sandwich structures, with (lx, ly) selected as (0.20, 0.20)m
and (0.25, 0.25)m, respectively. Within the low-frequency range, it is seen from
Fig. 5.15 that the characteristic curves of sound transmission corresponding to two
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Fig. 5.16 Sound transmission loss plotted as a function of frequency for orthogonally rib-stiffened
sandwich structure under normal incident sound: comparison between airborne and structure-borne
transmission paths (With permission from Elsevier)

different periodicity spacings follow a similar trend, which is attributed to the fact
that altering the periodicity spacings does not change the periodic nature of the
sandwich markedly. However, at relatively high frequencies, visible discrepancies
exist between the two cases. In addition, the STL peaks and dips are shifted to lower
frequencies as the periodicity spacings increase, implying that the increment of
periodicity spacings leads to noticeably reduced natural frequencies of the sandwich
structure.

5.2.15 Influence of Airborne and Structure-Borne Paths

The incident sound can be transmitted via two routes from the upper panel to the
bottom panel, namely, the structure-borne path (i.e., orthogonal rib-stiffeners) and
the airborne path (i.e., air constrained in between the two panels). To illustrate the
different roles played by the two different transmission paths, Fig. 5.16 compares the
results obtained for three different cases: airborne path only (i.e., no rib-stiffeners),
structure-borne path only (i.e., vacuum in cavity), and full sandwich structure.

The results of Fig. 5.16 demonstrate that, insofar as sound transmission is
of concern, the case of vacuum in cavity (structure-borne path only) is nearly
identical to a full sandwich structure, both significantly different from the case
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of no rib-stiffeners. This is understandable, as the physical process of sound
transmission across the sandwich is dominated by the structure-borne path, owing
to the strong constraint of structural connections (rib-stiffeners) and weak fluid-
structure coupling. However, it should be pointed out that, since the transmission
of sound is of concern here, the fluid-structure coupling at the incident interface
(i.e., between the incident side fluid and the upper panel) and the transmitting
interface (i.e., between the transmitting side fluid and the bottom panel) needs to
be considered. Although the fluid-structure coupling between the air cavity and the
internal interfaces of the two panels is negligibly weak compared to the constraint
imposed by the rib-stiffeners, for preciseness in physics and mathematics, this
coupling is included in the present analysis (which does not need much additional
efforts).

In the absence of the rib-stiffeners, the first dip of the STL curve in Fig. 5.16 cor-

responds to the “mass-air-mass” resonance fa D
q

�0c
2
0 .m1 C m2/ = .m1m2d/=2� ,

while the following four dips (and those not shown in Fig. 5.16) are related to the
standing-wave resonance fs,n D nc0/2d, where n D 1, 2, 3, 4 : : : [9, 12–14, 57]. In
the case of full sandwich structure, the complex interaction of flexural wave in the
panel and the rib-stiffeners creates multiple possibilities for wavenumber matching
and “coincidence” [30], causing a series of resonance dips appearing in the STL
curve that differ significantly from the no rib-stiffener case.

5.2.16 Conclusions

Rigorous analytic formulations are obtained with the space-harmonic approach for
the structural and acoustic characteristics of an infinite orthogonally rib-stiffened
sandwich structure subjected to convective fluid-loaded pressure. Unlike previous
studies that focus on relatively simple structures such as rib-stiffened plates and
model approximately the rib-stiffeners as Euler beams, two-dimensionally periodic
sandwiches stiffened by two sets of orthogonal rib-stiffeners are considered. All
possible motions of the rib-stiffeners are accurately accounted for by introducing
their tensional forces, bending moments, and torsional moments as well as the
corresponding inertial terms into the governing equations of the two face panels.
The surrounding acoustic fluids are restricted by the acoustic wave equation, and
fluid-structure coupling is included by imposing velocity continuity conditions at
fluid-panel interfaces. Built upon the Bloch/Floquet theorem for periodic structures,
the resulting panel motions and acoustic pressures are expressed in a superposition
form of space harmonics for a given wavenumber. The application of the virtual
work principle for one periodic element yields two infinite sets of simultaneous
algebraic coupled equations, which are numerically solved by truncation.

To explore the physical mechanisms underlying the dynamic and acoustic per-
formance of two-dimensionally periodic sandwich structures, the analysis is carried
out from the viewpoint of sound transmission. Firstly, the validity and feasibility
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of the proposed analytic model is qualified by comparing the model predictions
with previous published results for one-dimensionally periodic sandwich structures.
The necessity and advantage of the exact modeling of rib-stiffener vibrations are
also demonstrated by comparing the complete model with its simplified version and
the model of Wang et al. [30]. The complete model is then used to quantify the
influences of inertial effects arising from the rib-stiffener mass, the airborne and
structure-borne paths, and the periodicity spacings of the rib-stiffeners on sound
transmission across the sandwich structure.

Although the analytic model without considering the inertial effects of the rib-
stiffeners is able to provide an overall trend of the STL versus frequency curve, the
inclusion of the inertial effects in the model enables the capturing of more detailed
physical features associated with the process of sound transmission, as reflected by
the additional peaks and dips appearing on the STL curve.

The periodicity spacings of the rib-stiffeners play an important role in transmit-
ting the sound across the sandwich. Two noticeable conclusions can be drawn. First,
as slight alterations of the periodicity spacings do not change the periodic nature of
the structure, the STL curves of different spacings exhibit similar trends. Second,
increasing the periodicity spacings reduces the natural frequencies of the structure,
reflected by the shifting of STL peaks and dips to lower frequencies.

For sandwich structure reinforced with rib-stiffeners, the transmission of sound
via the airborne route is negligible in comparison with that transmitted via the
structure-borne path, as the weak fluid-structure coupling is overwhelmed by
the strong structural connections (rib-stiffeners). However, for preciseness in the
viewpoints of physics and mathematics, the fluid-structure coupling present between
the incident side fluid and the upper panel as well as that between the transmitting
side fluid and the bottom panel needs to be considered in the analysis of sound
transmission.
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Appendix A

The displacement components of the two face panels in wavenumber space are
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The left-hand side of Eq. (5.58) represents the generalized force:
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Employing the definition of the sub-matrices presented above, one obtains

T11 D T11;1CT11;2CT11;3CT11;4CT11;5; T22 D T22;1CT22;2CT22;3CT22;4CT22;5

(5.A.31)

T12 D T12;1 C T12;2 C T12;3 C T12;4; T21 D T21;1 C T21;2 C T21;3 C T21;4 (5.A.32)

Appendix B

The deflection coefficients of the two face panels are
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The right-hand side of Eq. (5.143) represents the generalized force, that is,
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Using the definition of the sub-matrices presented above, one obtains

T11 D T11;1CT11;2CT11;3CT11;4CT11;5; T22 D T22;1CT22;2CT22;3CT22;4CT22;5

(5.B.45)

T12 D T12;1CT12;2CT12;3CT12;4CT12;5; T21 D T21;1CT21;2CT21;3CT21;4CT21;5

(5.B.46)
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Chapter 6
Sound Propagation in Rib-Stiffened Sandwich
Structures with Cavity Absorption

Abstract This chapter is organized as two parts: in the first part, a comprehensive
theoretical model is developed for the radiation of sound from an infinite orthogo-
nally rib-stiffened sandwich structure filled with fibrous sound absorptive material in
the partitioned cavity, when excited by a time-harmonic point force. The vibrations
of the rib-stiffeners are accounted for by considering all possible motions. Built
upon the concepts of dynamic density and bulk modulus, both frequency dependent,
an equivalent fluid model is employed to characterize the absorption of sound in the
fibrous material. Given the periodicity of the sandwich structure, Fourier transform
technique is employed to solve the series of panel vibration equations and acoustic
equations. In the absence of fibrous sound absorptive material, the model can be
favorably degraded to the case of an infinite rib-stiffened structure with air or vac-
uum cavity. Validation of the model is performed by comparing the present model
predictions with previously published data, with excellent agreements achieved. The
influences of air-structure coupling effect and cavity-filling fibrous material on the
sound radiation are systematically examined. The physical features associated with
sound penetration across these sandwich structures are interpreted by considering
the combined effects of fiberglass stiffness and damping, the balance of which
is significantly affected by stiffener separation. The proposed model provides a
convenient and efficient tool for the factual engineering design of this kind of
sandwich structures.

In the second part, the transmission loss of sound through infinite orthogonally
rib-stiffened double-panel structures having cavity-filling fibrous sound absorptive
materials is theoretically investigated. The propagation of sound across the fibrous
material is characterized using an equivalent fluid model, and the motions of
the rib-stiffeners are described by including all possible vibrations, i.e., tensional
displacements, bending, and torsional rotations. The effects of fluid-structure
coupling are accounted for by enforcing velocity continuity conditions at fluid-
panel interfaces. By fully taking advantage of the periodic nature of the double
panel, the space-harmonic approach and virtual work principle are applied to solve

T.J. Lu and F.X. Xin, Vibro-Acoustics of Lightweight Sandwich Structures,
Springer Tracts in Mechanical Engineering, DOI 10.1007/978-3-642-55358-5__6,
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the sets of resultant governing equations, which are eventually truncated as a
finite system of simultaneous algebraic equations and numerically solved insofar
as the solution converges. To validate the proposed model, a comparison between
the present model predictions and existing numerical and experimental results
for a simplified version of the double-panel structure is carried out, with overall
agreement achieved. The model is subsequently employed to explore the influence
of the fluid-structure coupling between fluid in the cavity and the two panels on
sound transmission across the orthogonally rib-stiffened double-panel structure.
Obtained results demonstrate that this fluid-structure coupling affects significantly
sound transmission loss (STL) at low frequencies and cannot be ignored when the
rib-stiffeners are sparsely distributed. As a highlight of this research, an integrated
optimal algorithm toward lightweight, high-stiffness, and superior sound insulation
capability is proposed, based on which a preliminary optimal design of the double-
panel structure is performed.

6.1 Sound Radiation of Absorptive Sandwich Structures

6.1.1 Introduction

With the increasing use of periodically rib-stiffened composite sandwich structures
as the cabin skin of aircrafts, marine ships, express trains, etc. [1–5], great efforts
have been made in the pursuit of efficient theoretical methods for predicting the
vibration and acoustic behaviors of these lightweight structures, so as to design
optimized configurations competent for practical low-noise requirements.

Active control algorithms with sensors and actuators have been developed to
reduce structure vibration and sound radiation [6], which however inevitably brings
the penalty of increasing system complexity and financial costs. Alternatively,
passive measures such as inserting fibrous sound absorptive materials in the
partitioned cavity of sandwich structures may be a preferable choice to achieve a
compromise between noise reduction efficiency and financial cost. For instance, the
fuselages of commercial aircrafts are commonly made of periodically rib-stiffened
composite structures filled with fiberglass to enhance thermal and sound insulation
[6–9]. This provides strong impetus for the development of effective theoretical
models to predict the sound radiation characteristics of periodically rib-stiffened
sandwich structures filled with sound absorptive materials.

There exist numerous theoretical models for the vibroacoustic behaviors of
periodic rib-stiffened structures, which may be grouped into two main categories:
one is based on the Fourier transform method [2–4, 10–13], which is able to
handle both sound radiation and sound transmission problems, and the other is
built upon the space-harmonic approach [14–18], which is suited particularly for
sound transmission problems. Mace [2] employed the Fourier transform method to
solve the problem of sound radiation from a fluid-loaded infinite plate reinforced
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by two sets of parallel stiffeners when excited by a point force; for simplification,
only the tensional force of the rib-stiffeners was considered. Subsequently, Mace
[3] proposed a theoretical model for the radiation of sound from an infinite fluid-
loaded plate when the plate is reinforced with two sets of orthogonal line stiffeners;
again, only the tensional force of the rib-stiffeners was accounted for. Similarly, by
only taking account of the normal force interaction between panel and rib-stiffeners,
Yin et al. [4] presented a simplified theoretical model for acoustic radiation from a
point-driven, fluid-loaded infinite laminated composite plate reinforced by periodic
parallel rib-stiffeners.

As an essentially equivalent method, the space-harmonic approach evolved from
progressive wave propagation was initiated by Mead and Pujara [14] when they
studied the acoustic response of periodic stiffened beams subjected to a spatial and
temporal harmonic pressure. It was demonstrated that as few as three terms of space
harmonics could lead to solutions of acceptable accuracy. By combining the space-
harmonic approach and virtual energy method, Lee and Kim [15] analyzed the
sound transmission characteristics of a thin plate stiffened by equally spaced line
stiffeners. By modeling the rib-stiffeners as a combination of translational springs
and rotational springs, Wang et al. [16] proposed an analytic model for sound trans-
mission loss across double-leaf partitions stiffened with periodically placed studs.
Recently, Xin and Lu [18] developed a comprehensive analytic model for sound
transmission through orthogonally rib-stiffened sandwich structures: all possible
motions of the rib-stiffeners were accounted for by introducing the tensional forces,
bending moments, and torsional moments as well as the corresponding inertial terms
into the governing equations of the two face panels.

None of the abovementioned investigations dealt with sound radiation and/or
sound transmission issues of composite sandwich structures filled with porous
sound absorptive materials. As far as the sound radiation/transmission problems
of double partitions with cavity absorption are of concern, a number of theoretical
[12, 13], numerical [19, 20], and experimental [21] studies do exist. However, all
of these studies did not consider the effects of structural rib-connections between
two face panels, which may be far away from the factual engineering structures.
To address this deficiency, a comprehensive theoretical model is developed here
for the radiation of sound from an infinite orthogonally rib-stiffened sandwich
structure filled with fibrous sound absorptive material in the partitioned cavity
when excited by a time-harmonic point force. The equivalent forces and moments
(both bending and torsional) imposed on the two face panels by the rib-stiffeners
are accounted for by considering all possible motions of the rib-stiffeners. By
employing the well-known equivalent fluid model [12, 22], wave propagation in
the fibrous sound absorptive material can be accurately described. Both viscous
drag forces and thermal exchanges between air and solid fibers are accounted for
by introducing frequency-dependent dynamic density and bulk modulus. Taking
advantage of the periodic property of the composite sandwich structure, the Fourier
transform technique is adopted to solve both the structural and acoustic governing
equations. In limiting cases, the developed model can be favorably degraded to deal
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Fig. 6.1 Schematic illustration of orthogonally rib-stiffened sandwich structure (three different
kinds: vacuum cavity, air cavity, and fiberglass-filled cavity) excited by time-harmonic point force
at (x0, y0) (With permission from Elsevier)

with sound radiation issues of sandwich structures with vacuum or air cavities.
Therefore, model validation is carried out by comparing the present predictions
for simplified sandwich structures with those available in the open literature. To
explore the influence of fibrous sound absorptive materials on sound radiation of
orthogonally rib-stiffened composite structures, numerical results are presented,
with relevant physical features interpreted in detail. Conclusions drawn from the
present theoretical study may provide fundamental principles for factual engineering
design of rib-stiffened composite structures filled with fibrous sound absorptive
materials.

6.1.2 Structural Dynamic Responses to Time-Harmonic
Point Force

Consider an infinite sandwich structure as shown schematically in Fig. 6.1, which is
reinforced by two periodic sets of orthogonal rib-stiffeners having periodic uniform
separations lx and ly in the x- and y-directions, respectively. A right-handed Cartesian
coordinate system (x, y, z) is established, with its x-axis and y-axis positioned
separately along one pair of the orthogonal rib-stiffeners, the positive direction
of the z-axis pointing downward (Fig. 6.1). Three different kinds of sandwich
structures will be considered in the proceeding sections, namely, the gap between
the two parallel face panels and portioned by the orthogonal lattice cores is in
vacuum, air filled, or filled with fibrous sound absorptive material (e.g., fiberglass),
respectively. A theoretical model will be formulated for the complex structure (i.e.,
orthogonally rib-stiffened sandwich structure filled with fibrous sound absorptive
material), which can be degraded to deal with the other two sandwiches.
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Assume that a time-harmonic point force q0ei!t acts on the surface of the upper
panel at location (x0, y0); see Fig. 6.1. Consequently, a radially outspreading bending
wave propagates in the upper panel from the source (x0, y0). The vibration of the
upper panel is transmitted to the bottom panel via the orthogonal rib-stiffeners and
sound absorbing material (or air cavity). Subsequently, the bottom panel vibrates
and radiates sound pressure waves.

The dynamic responses of the sandwich structure are time harmonic as the
excitation is in the form of q0ei!t. For simplicity, the harmonic time term ei!t is
suppressed henceforth. With the equivalent forces and moments of the lattice core
and the pressure in the fibrous sound absorptive material (or air cavity) accounted
for, the equations governing panel vibrations are given by
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where r4 	 (@2/@x2 C @2/@y2)2; ı(�) is the Dirac delta function; and (w1, w2),
(m1, m2), and (D1, D2) are the displacement, surface mass density, and flexural
rigidity of the upper panel and bottom panel, respectively. The material loss factor
�j (j D 1, 2 for upper panel and bottom panel, respectively) is introduced with the
complex Young’s modulus Dj D Ejh3

j (1 C i�j)/12(1 � �2
j ) (where j D 1, 2).

In the above equations, (QC, MC, MC
T ) and (Q�, M�, M�

T ) denote separately the
tensional forces, bending moments, and torsional moments of the lattice core acting
on the upper panel and bottom panel, as shown in Fig. 6.2 (more details given in
Appendix A). As the corresponding inertial terms are also considered, the forces
and moments exerting on the upper and bottom panels are not quite the same and
are thus differentiated using superscripts C (upper) and � (bottom).
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Fig. 6.2 Conventions for tensional forces, bending moments, and torsional moments between
upper panel and (a) x-wise and (b) y-wise stiffeners, which also hold at the interface between
bottom panel and x- and y-wise stiffeners (With permission from Elsevier)

Given the 2D (two-dimensional) periodic nature of the sandwich structure as
shown in Fig. 6.1, applying the Poisson summation formula [3, 23], the wave
components in the structure can be expressed by using space-harmonic series as
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The Fourier transform pair of a function with respect to (x, y) and (˛, ˇ) can be
defined as
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Applying the Poisson summation formula and then taking the Fourier transform
of Eqs. (6.4) and (6.5), one gets
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where ˛m D ˛ C 2m�/lx, ˇn D ˇ C 2n�/ly, and the dependence of a term on the
wavenumbers (˛, ˇ) is indicated using the hat sign , meaning the corresponding
Fourier transform of this term. Expressions for the Fourier transform of the tensional
forces, bending moments, and torsional moments are listed in Appendix A.

6.1.3 The Acoustic Pressure and Fluid-Structure Coupling

The absorption of sound absorption by porous materials mainly arises from viscous
drag forces and thermal exchange loss when sound penetrates through the material
[19, 24–26]. There exist numerous theoretical models to address these issues, while
different models may be specialized to deal with different types of porous materials.
For instance, Lu et al. proposed a model for high-porosity cellular metallic foams
with open cells [24, 25, 27, 28] and another model for semi-open metal foams [26].
As for fibrous materials considered here, there are two main classes of models [19].
The first one models the fibrous material as an equivalent fluid with effective density
and bulk modulus [22, 29, 30]: under the assumption of the solid fibers being a rigid
skeleton, only one compression wave propagates in the air-saturated medium, which
thereby is governed by the Helmholtz equation. The other one employs the more
rigorous theory of Biot [31, 32] with the elasticity of the skeleton taken into account,
the solution of which often seeks help from the finite element method (FEM) and
suffers from huge computational expenses.

In view of the complexity of the proposed structure vibration model and the
primary focus of the present study on sound radiation of the sandwich structure as
a whole, the well-developed empirical expressions (i.e., equivalent fluid model) of
Allard and Champoux [22] are adopted to model the acoustic pressure in fibrous
absorption materials such as glass/rock wools widely used in noise absorption
engineering. In terms of scholar description, these may be defined as Newtonian
fluid-saturated rigid frame fibrous materials, with the frame fibers randomly dis-
tributed. Although Allard and Champoux [22] called their empirical equations as
the equivalent fluid model, this model is in fact based on Johnson et al.’s two-phase
theory [33]. It accurately accounted for the viscous forces between fluid and solid
and the physical transposition in the process of sound propagation, by adopting
two variables – the dynamic density �(!) and the dynamic bulk modulus K(!) –
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assuming that the fibrous material is isotropic. The equivalent fluid model has
been demonstrated to be capable of providing accurate predictions of sound wave
propagation across fibrous sound absorptive materials, over a wide frequency range,
and hence has been widely acknowledged by the acoustic community [19, 24–26].
To be more precise, the equivalent fluid model is valid for most glass/rock wools for
f /R smaller than 1.0 kg�1 m3, where f is the frequency and R is the flow resistivity
of the fibrous material [22]. Generally, the flow resistivity R of typical glass/rock
wools is approximately 20,000 Nm/s4, and hence the equivalent fluid model works
well for frequencies below 20 kHz.

According to the equivalent fluid model, wave propagation in fibrous sound
absorptive material (e.g., fiberglass or mineral wool) is governed by [12, 13, 22]

�
@2=@x2 C @2=@y2 C @2=@z2

�
pcav C k2

cavpcav D 0 (6.8)

where pcav is the sound pressure in the fibrous material and kcav is the corresponding
complex wavenumber, which is related to the dynamic density �(!) and dynamic
bulk modulus K(!) of the fibrous material by

kcav D 2�f
p

� .!/ =K .!/ (6.9)

In accordance with the complex physical phenomena taking place in the fibrous
material, such as thermal exchanges between air and fibers showing a significant
transition with increasing frequency (i.e., isothermal process at low frequency
turning to adiabatic process at high frequency) [22], the equivalent density and bulk
modulus are both dynamic. In other words, the dynamic density and dynamic bulk
modulus are frequency dependent, given by [22]
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where G1 .�0f =R/ D p
1 C i� .�0f =R/, G2(�0f /R) D G1[(�0f /R)4Npr], R is the

static flow resistivity of the fibrous material, � s and �0 are separately the specific
heat ratio (i.e., � s D cp/cv, cp and cv being the specific heat per unit mass of the air at
constant pressure and constant volume) and density of air, P0 is the air equilibrium
pressure, and Npr is the Prandtl number. As a further understanding of physical
meanings, the dynamic density �(!) contains the inertial and viscous forces per unit
volume of air in fibrous material, while the dynamic bulk modulus K(!) gives the
relationship between the averaged molecular displacement of air and the averaged
variation of pressure. As a conclusion of Lu et al.’s model, it is found that the viscous
drag forces operating at the fiber surface govern the complex density �(!) and the
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thermal forces control the complex bulk modulus K(!). As seen in Eqs. (6.10) and
(6.11), these two quantities are strongly dependent on the term �0f /R, reflecting the
inherent dynamic property of sound absorbing process and flow resistance being the
fundamental origin of sound absorption.

Generally, in contrast with the facesheet to stiffener interaction and the facesheet
to fibrous-material (or air) interaction, the stiffener to fibrous-material (or air)
interaction is negligible. It is easy to understand that the direct structural connection
between the facesheets and the rib-stiffeners is far stronger than the stiffener
to fibrous-material (or air) interaction. As for the facesheet to fibrous-material
interaction, note that the stiffener separations lx and ly are generally much larger than
the stiffener height d, implying that the contact surface area between the facesheet
and fibrous material is much larger than that between the stiffener and fibrous
material. Therefore, while the vibration of the facesheet is affected significantly by
the fibrous material in contact, it has negligible influence on the motion of the short
stiffeners. As a result, the fluid-structure coupling here only needs to consider the
facesheet to fibrous-material interaction. To ensure the equality of panel velocity
and fluid velocity on the panel surface, the momentum equation (i.e., continuity
condition of fluid-structure coupling [7, 10, 34]) is applied:
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where the complex density �cav of the fibrous material is related to the complex
wavenumber kcav and porosity � as [12]
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Applying the Fourier transform to Eqs. (6.8) and (6.12), one obtains
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where �2 D ˛2 C ˇ2 � k2
cav. More specifically, the pressures acting on the upper and

bottom panels are given by
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Substituting Eqs. (6.15) and (6.16) into Eqs. (6.6) and (6.7), respectively, one can
rewrite the governing equations as
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To simplify the derivation procedures, the following definitions are introduced:
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As seen in Eqs. (6.17) and (6.18), the panel displacements Qw1 .˛; ˇ/ and
Qw2 .˛; ˇ/ to be solved are not independent but have coupling terms Qw1 .˛m; ˇ/,
Qw1 .˛; ˇn/, Qw2 .˛m; ˇ/, and Qw2 .˛; ˇn/ in the corresponding sum formula. To solve
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these unknowns, one needs to replace (˛, ˇ) by (˛
0

m, ˇ
0

n), leading to two sets of
simultaneous algebraic equations:
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which contain two sets of infinite unknowns: Qw1

�
˛0

m; ˇ0
n

�
and Qw2

�
˛0

m; ˇ0
n

�
, with

m D � 1 to C 1 and n D � 1 to C 1. Insofar as the solution converges, these
equations can be truncated to retain one set of finite unknowns Qw1

�
˛0

m; ˇ0
n

�
and

Qw2

�
˛0

m; ˇ0
n

�
, with m D � Om to Om and n D �On to On (both Om and On are positive

integers), and hence can be numerically solved.
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6.1.4 Far-Field Sound-Radiated Pressure

Owing to the fluid-structure interaction of the vibrating panel (bottom panel in the
present case) and its surrounding fluid, sound pressure will be radiated from the
fluid-structure interface into the far field. Therefore, once the response of the bottom
panel Qw2 .˛; ˇ/ is numerically solved, the radiated sound pressure at the far field can
be obtained by employing the established sound radiation theory.

With the origin of the spherical coordinates (r, � , ®) located at the excitation point
(x0, y0), the far-field sound pressure p(r, � , ®) radiated from a vibrating surface with
displacement w(x, y) is given by [30]

p .r; �; '/ D ��0!
2 eik0r

2�r
ei.˛x0Cˇy0/

Z C1

�1

Z C1

�1
w .x; y/ e�i .˛xCˇy/dxdy (6.23)

where k0 D !/c0, c0 and �0 are separately the sound speed and air density, and the
wavenumbers ˛ and ˇ are

˛ D k0 cos ' sin �; ˇ D k0 sin ' sin � (6.24)

By adopting the Fourier transform of Eq. (6.5), Eq. (6.23) becomes

p .r; �; '/ D �2��0!2

�
eik0r

r

	
ei.˛x0Cˇy0/ Qw .˛; ˇ/ (6.25)

For reference, the high-frequency asymptote of far-field sound pressure radiated
by an unstiffened plate [3] is introduced as

pasy D �0q0e
ik0r

2�mr
(6.26)

The far-field sound pressure radiated by the present orthogonally rib-stiffened
sandwich structure with cavity absorption is then given in the form of sound pressure
level (SPL) in decibel scales (dB) with respect to pasy as

SPL D 10 � log10

�
p=pasy

�2
(6.27)

6.1.5 Convergence Check for Numerical Solution

As previously mentioned, the infinite simultaneous algebraic equations are truncated
so that one only needs to solve a finite system of equations containing a finite
number of unknowns. More specifically, only M D 2 Om C 1 and N D 2 On C 1

unknowns are retained, associated separately with subscripts m and n, leading to
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Fig. 6.3 Convergence check of numerical solution for sound radiation of an infinite orthogonally
rib-stiffened sandwich structure with stiffener separations (lx, ly) D (0.20 m, 0.20 m) when excited
by a harmonic point force at 10 kHz (With permission from Elsevier)

the same number of harmonic wave components in the x- and y-directions. Insofar
as a sufficiently large number of terms are retained, the finite system is capable
of ensuring the convergence and accuracy of the solution. The well-acknowledged
criterion [1, 15] is employed, which assumes that once the solution converges at
a given frequency, it converges for all lower frequencies. Therefore, the required
number of unknowns is determined by the highest frequency of interest (10 kHz
in the present study). To check the convergence of the solution, a numerical test
is carried out by calculating the SPL at 10 kHz, with increasingly more terms
used in Eqs. (6.21) and (6.22), as shown in Fig. 6.3. It can be seen from Fig. 6.3
that when Om and On both have a value of 10, solution convergence is ensured at
10 kHz. Consequently, following the abovementioned criterion, the values of Om
and On are both taken as 10 (i.e., retaining 441 unknowns in the finite system) for
all frequencies below 10 kHz, which is sufficient to ensure the convergence and
accuracy of the solution.

6.1.6 Validation of Theoretical Modeling

To check the validity of the proposed model, the model (simplified version) is used
to calculate the sound pressure level radiated from an orthogonally rib-stiffened
single panel, and the predictions are compared in Fig. 6.4 with those obtained
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Fig. 6.4 Comparison between present model predictions and those by Mace [3] for orthogonally
rib-stiffened single panel excited by time-harmonic point force at location (0, 0) (With permission
from Elsevier)

by Mace [3]. To degrade the present model for sandwich structures to cover rib-
stiffened single panels, negligibly small values are assigned to the prime parameters
(i.e., Young’s modulus E, density �, and thickness h) of one face panel of the
sandwich, while the remaining system parameters are identical to those used by
Mace [3].

It can be seen from Fig. 6.4 that overall the present predictions agree excellently
well with those of Mace: only slight deviations exist beyond 5,000 Hz. These
discrepancies in the high-frequency range are expected, which can be attributed
to the difference in vibration modeling of the rib-stiffeners between the present
model and Mace’s theory. The rib-stiffeners were modeled as Euler beams in Mace’s
theory [3], meaning that only the bending moments and the inertial effect of the
tensional forces of the rib-stiffeners are considered. In contrast, the present model
accounts for all possible motions of the rib-stiffeners, including tensional forces,
bending moments, and torsional moments as well as their inertial effects. Therefore,
insofar as the dynamic responses and sound radiation of rib-stiffened plates are
of concern, the present model provides a more precise theoretical tool than the
beam-based theory of Mace. The discrepancies between the two theories in the high-
frequency range of Fig. 6.4 just demonstrate the necessity of accurately modeling
the motion of the rib-stiffeners.

To further check the accuracy of the present model for the double-panel case, the
model is degraded to reproduce Takahashi’s results [11] for rib-stiffened double-
panel structures, as shown in Fig. 6.5. The relevant geometrical dimensions and
material property parameters are identical as those of Takahashi. Again, the model
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Fig. 6.5 Comparison between model predictions and theoretical results of Takahashi [11] for rib-
stiffened double-panel structure excited by time-harmonic point force at location (lx/2, ly/2) (With
permission from Elsevier)

predictions fit well with Takahashi’s theoretical results, with only slight divergences
appearing at relatively high frequencies. These divergences are attributed to the
additional consideration of inertial effects corresponding to the bending moments
and torsional moments in the present model, which Takahashi did not take into
account.

To a large extent, the comparisons made above may be regarded as acceptable
validations for the proposed theoretical model, because all the theoretical formula-
tions have been involved in the numerical calculation. In particular, if a theoretical
model can be degraded to obtain the same results for simplified cases, its accuracy
and feasibility would be better than the case when it can only give results similar to
those obtained with its counterpart models.

6.1.7 Influence of Air-Structure Coupling Effect

Together with the equivalent fluid model for fibrous sound absorptive materials,
the present model is able to characterize the sound radiation characteristics of
lightweight lattice-cored sandwich structures filled with fibrous materials, such
as fiberglass considered here. Note also that the model can be degraded to
describe sandwich structures with either air cavity (i.e., air-structure coupling
effect included) or vacuum cavity (i.e., fluid-structure coupling effect ignored).
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Fig. 6.6 Sound pressure levels radiated by different orthogonally rib-stiffened sandwich structures
plotted as functions of frequency for stiffener separations (lx, ly) D (0.20 m, 0.20 m) (With
permission from Elsevier)

Therefore, comparisons among the three different kinds of sandwiches under time-
harmonic point force excitation can be performed to assess the influences of
air-structure coupling effect and fibrous filling material on sound radiation.

To better evaluate the influences of air-structure coupling effect and fibrous
material, the location of point force acting on the face panel is selected at the center
of one lattice cell, i.e., (lx/2, ly/2), away from the conjunction between the face panel
and rib-stiffeners. The predicted sound pressure level (SPL) radiated by the three
different sandwich structures is plotted in Figs. 6.6, 6.7, and 6.8 as a function of
frequency for (lx, ly) D (0.20 m, 0.20 m), (0.35 m, 0.35 m), and (0.50 m, 0.50 m),
respectively. For each pair of stiffener spacing selected, three kinds of sandwich
configurations are compared: (1) vacuum cavity, (2) air cavity, and (3) cavity filled
with fiberglass.

At first glance, it can be seen from Figs. 6.6, 6.7, and 6.8 that the air cavity
case shows several additional peaks and dips on the SPL versus frequency curve.
This is caused by air cavity interacting with the face panels through air-structure
coupling. Besides these additional peaks and dips, it is also observed that the air-
structure coupling effect plays an increasingly significant role in structure sound
radiation with increasing rib-stiffener separation. This is reflected by the enlarged
deviations between the two curves associated separately with the vacuum case and
the air cavity case as the rib-stiffener separation is increased. In particular, when
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Fig. 6.7 Sound pressure levels radiated by different orthogonally rib-stiffened sandwich structures
plotted as functions of frequency for stiffener separations (lx D0.35 m, ly D0.35 m) (With
permission from Elsevier)

the separation is relatively large, air-structure coupling exerts a visible effect on the
location of maximum sound radiation especially in low-frequency range. The air-
structure coupling is in effect by means of pumping effect, that is, the air cavity
partitioned by the face panels and rib-stiffeners has timely changing pressure as
its volume alters with the dynamic displacements of these two face panels, often
imposing a converse force on the panels. In the case of rib-stiffener separation being
relatively large, a considerable area of the panels is exposed to the impinging of air
cavity pressure. It is thence understandable that the air-structure coupling effect may
not be ignored when the rib-stiffeners are sparsely distributed.

6.1.8 Influence of Fibrous Sound Absorptive Filling Material

In contrast to the air cavity case, the fiberglass case exhibits almost the same trends
as the vacuum one, especially when the stiffener separation is relatively small,
although the discrepancies between the two cases increase as the stiffener separation
is increased. Note that the air-structure coupling effect is not present in the vacuum
case, while it is eliminated in the fiberglass case (the presence of fiberglass in the
cavity significantly changes the behavior of the cavity). This is also the reason
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Fig. 6.8 Sound pressure levels radiated by different orthogonally rib-stiffened sandwich structures
plotted as functions of frequency for stiffener separations (lx D 0.50 m, ly D 0.50 m) (With
permission from Elsevier)

why the fiberglass case exhibits almost the same trend as the vacuum one: the
discrepancies between the two cases enlarging with increasing stiffener separation
actually reflect the combined effect of fiberglass stiffness and damping on structure
responses.

It is understandable that the stiffness of the cavity-filling fiberglass reinforces
the structural connection between the two face panels, enabling more vibration
energies transmitted from the upper panel to the bottom one and thus causing
larger sound radiation pressure levels. Conversely, fiberglass can dissipate acoustic
energy via viscous drag forces and thermal exchange between the air and fibers and
hence decreases sound radiation. In addition, both the stiffness and damping of the
fiberglass material are frequency dependent [17, 19, 22]. Consequently, the fact that
the discrepancies between the vacuum and fiberglass cases increase with increasing
stiffener separation can be well explained.

The periodically distributed rib-stiffeners with relatively narrow separations
restrict the deformation of fiberglass in between, offering therefore the fiberglass a
larger stiffness than that inserted between those stiffeners having wider separations.
That the fiberglass case exhibits the same trend as the vacuum one when the
separation is small (e.g., lx D 0.20 m and ly D 0.20 m, as shown in Fig. 6.6) may
be attributed to the balance of the converse effects of fiberglass stiffness and
damping on sound radiation. More specifically, while damping is dominant at low
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frequencies, causing decreased sound radiation in the first peak, stiffness dominates
at high frequencies, resulting in increased sound radiation in the following peaks
(Figs. 6.7 and 6.8). As mentioned above, the stiffness of fiberglass decreases
with increasing stiffener separation. Therefore, as the separation is increased, the
frequency range dominated by stiffness (i.e., stiffness-controlled region) is shifted to
higher frequencies and that dominated by damping (i.e., damping-controlled region)
is widened. Correspondingly, in Fig. 6.7, the first three sound radiation peaks of the
fiberglass case are lower than those of the vacuum one, and all the sound radiation
peaks of the fiberglass case are significantly lower than those of the vacuum one in
Fig. 6.8.

It may thence be deduced that the fiberglass-filled cavity affects structural
radiation through the combined effects of fiberglass stiffness and damping (both
being frequency dependent), the balance of which is significantly influenced by
stiffener separation. It is therefore possible to optimize the stiffener separation and
fiberglass porosity (both indirectly related to the stiffness and damping of fiberglass)
to reduce structure sound radiation to an acceptable level required in specific cases.

6.1.9 Conclusions

The sound radiation characteristics of an infinite orthogonally rib-stiffened sand-
wich structure having cavity-filling fibrous sound absorptive material have been
formulated by a comprehensive theoretical model when the structure is excited
by a time-harmonic point force. The novelty of this work is to provide a general
theoretical framework to address sound radiation issues of sandwich structures
filled with fibrous sound absorptive materials, which can be degraded to deal with
relatively simple structures. In the theoretical model, the vibration behaviors of
the rib-stiffeners are accounted for by including all possible forces and moments
exerted on the face panels by the rib-stiffeners in the governing equations. The
propagation of sound in the fibrous material is modeled by adopting an equivalent
fluid model with frequency-dependent dynamic density and bulk modulus, with
viscous drag force and thermal exchanges between air and fibers taken into account.
The technique of Fourier transform is applied to solve the governing equations,
resulting in an infinite set of simultaneous algebraic equations, which can be
truncated and numerically solved.

Numerical calculations are subsequently carried out to explore the influences
of air-structure coupling effect and fibrous sound absorptive materials on structure
sound radiation. The model is validated by comparing the present model predictions
with previously published data, with excellent agreement achieved especially at low
frequencies. Nevertheless, slight deviations emerge at high frequencies, which just
demonstrate the superiority of the present model.

Special attention is then focused on the effects of air-structure coupling and
fibrous sound absorptive materials on sound penetration. This is explored by
comparing three different sandwich structures: partitioned cavity in vacuum, filled
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with air, and filled with fiberglass. Interesting physical features emerging from the
comparison are well interpreted by considering the combined effects of fiberglass
stiffness and damping as well as the influence of rib-stiffener separation. It is found
that the air-structure coupling effect induces additional peaks and dips in the SPL
versus frequency curves, which plays an increasingly significant effect on structure
sound radiation as the stiffener separation is increased. In particular, it is concluded
that the fiberglass-filled cavity exerts its impact on wave penetration (finally
on structural radiation) through the combined effects of fiberglass stiffness and
damping (both frequency dependent), the balance of which is significantly affected
by stiffener separation. This may provide a convenient and efficient tool to optimize
the porosity, cell size, and other topological parameters of fiberglass (indirectly
altering its stiffness and damping) in conjunction with stiffener separation to reduce
the structure vibration and sound radiation to an acceptable level required in specific
situations.

As a future research forecast, the theoretical model for sandwich composite
structures considered here (i.e., square lattice-cored sandwich structures filled with
fibrous materials) can be further extended to study the acoustic performance of
sandwich composite structures having laminated composites as skins, since these
structures have been increasingly applied in aerospace and astronautic fields.

6.2 Sound Transmission Through Absorptive
Sandwich Structure

6.2.1 Introduction

Applications of lightweight, periodically rib-stiffened structures are increasingly
found in mechanical, aeronautics, aerospace, and marine industries [2, 3, 8–10,
14, 15, 35]. When these structures are applied as hulls or fuselages, external
dynamic loadings (e.g., dynamic impact, sound wave impingement, and turbulent
boundary layer excitation) are often encountered. The dynamic responses, sound
radiation/transmission, and other relevant issues of structures have therefore been
put forward and attracted much attention.

Numerous researchers have studied the sound radiation and transmission prob-
lems of periodic rib-stiffened structures [2–4, 14–18, 35, 36]. It has been established
that the rib-stiffeners play a significant role in the vibroacoustic behavior of the
whole structure, especially when the bending wavelength is comparable with the
periodic spacing of the stiffeners [15, 35]. Consequently, the equivalent forces and
moments of the stiffeners should be carefully taken into account in theoretical
modeling. Two different theoretical approaches have been used to address the issue.

The first one is the Fourier transform technique. Lin and Garrelick [10] employed
this technique to study the transmission of sound through two infinite parallel plates
connected by identical periodically spaced frames. Subsequently, a range of sound
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radiation problems associated with different structures, such as infinite single plates
attached with identical rib-stiffeners [35], with two different kinds of stiffeners (e.g.,
bulkheads and intermediate frames) [2], or with orthogonally distributed stiffeners
[3], were considered using the same method, although only the equivalent forces
of the stiffeners were accounted for. As an extension of Mace’s work [35], Yin et
al.[4] theoretically analyzed the acoustic radiation from a point-driven laminated
composite plate reinforced by doubly periodic parallel stiffeners, wherein the plate
was modeled using the classical composite plate theory.

The other is the space-harmonic method, which is essentially equivalent to the
Fourier transform technique. This approach was introduced by Mead and Pujara
[14, 37] to describe structural responses and acoustic pressures in terms of space-
harmonic series. Based upon Mead and Pujara’s works, Lee and Kim [15] developed
an analytic method to study the sound transmission characteristics of a thin plate
stiffened by equally spaced line stiffeners, with the resulting governing equations
solved by utilizing the virtual work principle. Wang et al. [16] extended this
approach to lightweight double-leaf partitions stiffened with periodically distributed
studs and explored the underlying sound transmission mechanisms by incorporating
the dispersion relation of the structure. Following the schemes of Wang et al.,
Legault and Atalla [17, 36] analyzed the effect of structural links on sound
transmission across periodically rib-stiffened double-panel structures.

Existing studies on the vibroacoustic behavior of periodically rib-stiffened
structures are often limited to one-dimensional (1D) systems. Two-dimensional
(2D) orthogonally rib-stiffened double-panel structures received much less attention
[3, 18, 38] and have not been adequately addressed, not to mention the even more
complicated scenario when the cavity of the double panel is filled with fibrous
sound absorptive materials. With focus placed upon aircraft sidewalls made of
rib-stiffened structures having cavity-filling fiberglass, this research proposes a
relatively comprehensive theoretical model for sound transmission through orthog-
onally rib-stiffened double-panel structures with cavity absorption. The effect of
fibrous sound absorptive filling materials on sound transmission is accounted for
with an equivalent fluid model. As a highlight, an integrated optimal algorithm
toward lightweight, high-stiffness, and superior sound insulation capability is pre-
sented. A relatively rough optimal design regarding key structural geometry ratios
is performed, and general optimal principles are presented. The optimal scheme
suggests that the integrated optimization of double-panel structures involving
various physical attributes is feasible.

6.2.2 Analytic Formulation of Panel Vibration
and Sound Transmission

With reference to Fig. 6.9 where (x, y, z) denote the Cartesian coordinates, consider
two parallel infinite Kirchhoff thin plates lying separately in the planes of z D 0
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Fig. 6.9 Schematic illustration of sound pressure wave incident on an orthogonally rib-stiffened
sandwich structure filled with, but not necessarily limited to, fibrous sound absorptive materials:
(a) global view; (b) side view of (a) (With permission from Acoustical Society of America)

and z D h1 C d and connected with periodically distributed rib-stiffeners along two
orthogonal lines x D mlx and y D nly (m and n both being positive or negative
integer). Let d denote the thickness of the rib-stiffeners (or cavity height), h1 denote
the thickness of the upper plate, and h2 denote that of the bottom plate; see Fig. 6.9.
The cavities in between the two faceplates and partitioned by the rib-stiffeners are
filled with fibrous sound absorptive materials (see Fig. 6.9b). The upper plate located
at z D 0 is loaded by a time-harmonic acoustic fluid p(r, t) with elevation angle ® and
azimuth angle � :

p .r; t/ D Ie�i.kxxCkyyCkzz�!t/ (6.28)
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The wavenumber components in the x-, y-, and z-directions are determined by
the elevation angle and azimuth angle of the incident acoustic loading as

kx D k0 sin ' cos �; ky D k0 sin ' sin �; kz D k0 cos ' (6.29)

where k0 D !/c0 is the acoustic wavenumber in air, ! being the angular frequency
and c0 the sound speed in air.

As a result of the acoustic loading, a distributed load impinges on the upper plate,
inducing vibration of the upper plate which is then transmitted to the bottom plate
via both structure- and fluid-borne paths. The fluid-structure interaction between the
bottom plate and the nearby acoustic medium causes the radiation of sound.

As shown in Fig. 6.9, the acoustic field is divided into three main parts by
the sandwich structure: upper field occupying the half-space z < 0, middle field
filling the space h1 < z < h1 C d (i.e., in between the two face panels and partitioned
periodically by the rib-stiffeners), and bottom field occupying the other half-space
z > h1 C h2 C d. The corresponding acoustic pressure in the incident field pi(r, t)
should satisfy the scalar Helmholtz equation

�
@2=@x2 C @2=@y2 C @2=@z2

�
pi C k2

0pi D 0; z < 0 (6.30)

It is assumed that the cavities of the sandwich structure are filled with fibrous
sound absorptive materials. As is well known, the absorption of sound by a porous
absorptive material mainly arises from viscous drag forces and thermal exchange
loss when sound penetrates through it [19, 24–26]. With the help of a well-developed
equivalent fluid model [22, 39] for such materials, the absorbent effect induced by
viscous drag force and thermal exchange between air and solid fibers is accounted
for by introducing a complex wavenumber kcav and a complex density �cav. Both kcav

and �cav are frequency dependent in accordance with thermal exchange transition
with increasing frequency [22] (i.e., isothermal process at low frequency turning to
adiabatic process at high frequency). The complex wavenumber may be expressed
as ikcav D � D ˛ C iˇ, wherein � is the wave propagation constant, ˛ is the
attenuation, and ˇ is the phase constant. The corresponding acoustic pressure
pcav(r, t) in the fibrous sound absorptive material (i.e., in between the two faceplates)
obeys the equation [12, 13, 17]

�
@2=@x2 C @2=@y2 C @2=@z2

�
pcav C k2

cavpcav D 0; h1 < z < h1 C d (6.31)

where kcav is closely related to the dynamic density �(!) and dynamic bulk modulus
K(!) of the fibrous sound absorptive materials:

kcav D 2�f
p

� .!/ =K .!/ (6.32)
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The dynamic density and the dynamic bulk modulus are given by [22]
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where G1 .�0f =R/ D p
1 C i� .�0f =R/, G2(�0f /R) D G1[(�0f /R)4Npr], R is the

flow resistivity, � s is the specific heat ratio, P0 is the air equilibrium pressure, and
Npr is the Prandtl number.

Finally, in the transmitted field, the acoustic pressure pt(r, t) is also a solution of
the scalar Helmholtz equation
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@2=@x2 C @2=@y2 C @2=@z2

�
pt C k2

0pt D 0; z > h1 C h2 C d (6.35)

Assuming that the fibrous material is in perfect contact with the two plates, one
can use the momentum equation to ensure the equality of plate velocity and fluid
velocity at the fluid-plate interface, i.e., the continuity condition of fluid-structure
coupling [7, 10]:
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The complex density �cav of the fibrous material appearing in Eqs. (6.36) and
(6.37) is related to the complex wavenumber kcav by [12]

k2
cav

k2
0

D �s��cav

�0

(6.38)

where � s is the ratio of specific heats, � is the porosity of the fibrous material, and
�0 is the air density.

The sandwich structure is driven by the difference of acoustic pressure between
the two sides of each faceplate. The resultant pressure imposed on the upper panel
is the pressure difference between pi(x, y, 0; t) in the incident side and pcav(x, y, h1; t)
in the fibrous material. Similarly, the bottom panel bears the net pressure that is a
subtraction of pcav(x, y, h1 C d; t) in the fibrous material and pt(x, y, h1 C h2 C d; t)
in the transmitted side. Meanwhile, with the structural constraints of the orthogonal
rib-stiffeners on the faceplates duly accounted for, the vibration of the plates is
governed by
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where r4 D (@2/@x2 C @2/@y2)2; (w1, w2), (m1, m2), and (D1, D2) are the displace-
ments, surface mass density, and bending stiffness of the upper and bottom panel,
respectively; and ı(�) stands for the Dirac delta function.

Due to the consideration of inertial effects, the resultant tensional forces, bending
moments, and torsional moments exerted on the upper and bottom plates are not
identical, denoted here separately as (QC, MC, MC

T ) and (Q�, M�, M�
T ). Super-

scripts C and � denote separately the upper and bottom plates, while subscripts x
and y signify the terms arising from the x- and y-wise rib-stiffeners, respectively. An
illustration of the present conventions for tensional forces, bending moments, and
torsional moments is given in Fig. 6.10. Detailed derivations of these quantities can
be found in Appendix B.

6.2.3 Application of the Periodicity of Structures

Taking advantage of the periodic property of the orthogonally rib-stiffened sandwich
structures considered here, one can simplify the theoretical formulations presented
above to obtain analytic solutions of the problem. As mentioned in an earlier work
[18], following the key conclusion of Bloch or Floquet’s theorem [40] for wave
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Fig. 6.10 Conventions for tensional forces, bending moments, and torsional moments at the
interface between upper plate and (a) x-wise stiffeners and (b) y-wise stiffeners. The same applies
at the interface between bottom plate and x-/y-wise stiffeners (With permission from Acoustical
Society of America)

propagation in periodic structures, the displacements w(x, y) of such a system at the
corresponding points in different periodic elements are related by the periodicity
condition as

w
�
x C mlx; y C nly

� D w .x; y/ e�ikxmlx e�ikynly ; .m; n being integers/
(6.41)

The space-harmonic expansion series can thence be favorably applied to express
the panel displacement wj(x, y; t) as [1, 3, 14, 18]

wj .x; yI t/ D
C1X

mD�1

C1X

nD�1
˛1;mne�iŒ.kxC2m�=lx/xC.ky C2n�=ly/y�!t� .j D 1; 2/

(6.42)

where j D 1 for the upper panel, j D 2 for the bottom panel, and the (m, n)th har-
monic wave has wavenumber components (kx C 2m�/lx, ky C 2n�/ly), illustrating
its propagation direction in the structure, and

˛j;mn D 1

lxly

Z lx

0

Z ly

0

w1 .x; yI t/ eiŒ.kxC2m�=lx/xC.ky C2n�=ly/y�!t�dxdy .j D 1; 2/

(6.43)

Due to sound pressure p(r, t) D Ie� i(k � r � !t) incident on the sandwich, the set of
sound pressures can be expressed as [1, 18]

pi .x; y; zI t/ D I e�i.kxxCkyyCkzz�!t/

C
C1X

mD�1

C1X

nD�1
ˇmne�iŒ.kxC2m�=lx/xC.kyC2n�=ly/y�kz;mnz�!t�

(6.44)
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pcav .x; y; zI t/ D
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(6.45)

pt .x; y; zI t/ D
C1X

mD�1

C1X

nD�1
�mne�iŒ.kxC2m�=lx/xC.kyC2n�=ly/yCkz;mnz�!t� (6.46)

In the above expressions, I is the amplitude of incident sound pressure; ˇmn

and �mn are the (m, n)th space-harmonic amplitude of negative-going wave in the
incident field and in the middle field, respectively; and "mn and �mn are the (m, n)th
space-harmonic amplitude of positive-going wave in the middle filed and in the
transmitted field, respectively. Furthermore, kz,mn and kz,cav,mn are the (m, n)th space-
harmonic wavenumbers in the z-direction (related separately to wave propagation in
air and fibrous absorptive material) which, upon applying the Helmholtz equation,
are given by [16, 17, 36]

kz;mn D
q

k2
0 � ˛2

m � ˇ2
n; kz;cav;mn D

q
k2

cav � ˛2
m � ˇ2

n (6.47)

where the (m, n)th harmonic wavenumber components in the x- and y-directions are
expressed as

˛m D kx C 2m�=lx; ˇn D ky C 2n�=ly (6.48)

Given that the z-direction wavenumber component is determined by Eq. (6.48),
two different modes of sound propagation in the transmitting field can be distin-
guished [18, 41]: (1) non-radiating wave (i.e., subsonic wave) when ˛2

m C ˇ2
n > k2

0
and (2) radiating wave (i.e., supersonic wave) when ˛2

m C ˇ2
n < k2

0. While the (m,
n)th sound wave component contributes only to the near field in the first case, it is
able to contribute to the far field in the second case.

Substitution of Eqs. (6.42) and Eqs. (6.44), (6.45), and (6.46) into Eqs. (6.36)
and (6.37) yields

�ikzIe�i.kxxCkyy/ C
C1X

mD�1

C1X

nD�1

�
ikz;mnˇmn � �0!2˛1;mn

�
e�i .˛mxCˇny/ D 0

(6.49)
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��"mne�ikz;cav;mnh1 C �mneikz;cav;mnh1
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�
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(6.50)
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�ikz;mn�mne�ikz;mn.h1Ch2Cd/ � �0!

2˛2;mn

i
e�i .˛mxCˇny/ D 0

(6.52)

Because Eqs. (6.49), (6.50), (6.51), and (6.52) hold for all possible values of x
and y, it can be shown that the relevant coefficients have the following relationships:

ˇ00 D I C !2�0˛1;00

ikz
(6.53)

ˇmn D !2�0˛1;mn

ikz;mn

; at m ¤ 0 kn ¤ 0 (6.54)

"mn D !2�cav


˛1;mneikz;cav;mn.h1Cd/ � ˛2;mneikz;cav;mnh1

�

2kz;cav;mn sin .kz;cav;mnd/
(6.55)

�mn D !2�cav
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2kz;cav;mn sin .kz;cav;mnd/
(6.56)

�mn D �!2�0˛2;mn

ikz;mn

eikz;mn.h1Ch2Cd/ (6.57)

6.2.4 Solution by Employing the Virtual Work Principle

Since the sandwich structure considered here is spatially periodic, the principle of
virtual work [14–16] can be utilized to solve the theoretical formulations presented
above and thence obtain the values of coefficients ˛1,mn and ˛2,mn. As close
relationships exist between the coefficients of panel displacements (i.e., ˛1,mn and
˛2,mn) and those of sound pressure (i.e., ˇmn, "mn, �mn, and �mn), the sound pressures
can be straightforwardly obtained once the former is determined. To calculate the
virtual work done by imposing the virtual displacements

ıw�
j D ı˛j;kle�i .˛kxCˇl y/ .j D 1; 2/ (6.58)

on the sandwich, only one periodic element needs to be considered. The principle
of virtual work states that the virtual work of the system stemming from the virtual
displacements should be zero, from which the equilibrium equation of system can
be established as detailed below.
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6.2.4.1 Virtual Work of Panel Elements

The virtual work contributed solely by one periodic element of each plate can be
represented as
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6.2.4.2 Virtual Work of x-Wise Stiffeners

The virtual work contribution from the tensional force, bending moment, and
torsional moment at the interface between the x-wise stiffeners (aligned with y D 0)
and upper or bottom panel is given by [18]
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where @M
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6.2.4.3 Virtual Work of y-Wise Stiffeners

Likewise, the virtual work done by the tensional force, bending moment, and
torsional moment at the interface between the y-wise stiffeners (aligned with x D 0)
and upper or bottom panel is [18]
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6.2.4.4 Resultant Equations for Structure Motions

It follows from the virtual work principle that

ı…p1 C ı…x1 C ı…y1 D 0; ı…p2 C ı…x2 C ı…y2 D 0 (6.65)

Substituting Eqs. (6.59), (6.60), (6.61), (6.62), (6.63), and (6.64) into Eq. (6.65)
and noticing that the virtual displacement is arbitrary, one obtains
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It should be mentioned that the consideration of virtual work in any other periodic
element of the sandwich structure would have yielded an identical set of equations.

In order to separate the variables ˛1,kl and ˛2,kl, Eqs. (6.66) and (6.67) are
rewritten as
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The infinite set of coupled algebraic simultaneous equation system of Eq. (6.68)
and (6.69) can be simplified as a finite set of equations by applying a truncated
series of the assumed modes, insofar as the solution converges. In the present study,
the sum indices (m, n) are restricted to have finite values, i.e., m D � Ok to Ok and
n D �Ol to Ol . Upon necessary algebraic manipulations (Appendix C), the resultant
equation system that contains a finite number [i.e., 2KL, where K D 2 Ok C 1, L D
2 Ol C 1] of unknowns can be expressed in matrix notation as

�
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T21;kl T22;kl
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0

�

2KL�1

(6.70)

Solving Eq. (6.70), one can obtain the vibration displacements of the two
faceplates, with which the acoustic pressures in different fields are readily deter-
mined. As an assessment of sound energy penetrating through the structure, the
transmission coefficient is defined here as the ratio of the transmitted sound power
to the incident sound power [16–18]:
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(6.71)

which is a function of sound incident angles ® and � . The diffuse sound transmission
coefficient is taken in an averaged form over all possible incident angles [1] as
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Fig. 6.11 Diffuse sound transmission loss (STL) plotted as a function of incident frequency:
comparison between present model predictions with experimental measurements and theoretical
results of Legault and Atalla [17] (With permission from Acoustical Society of America)

Finally, sound transmission loss (STL) is customarily defined in decibel scale [8,
9] as

STL D 10 log10

�
1


 .'; �/

	
(6.73)

which, intuitively, may be taken as a measure of the effectiveness of the sandwich
structure in insulating the convective sound energy penetration.

6.2.5 Model Validation

For validation, the present model predictions are compared with the theoretical
results and experimental measurements of Legault and Atalla [17] for 1D period-
ically rib-stiffened sandwich structures, as shown in Fig. 6.11. Since our model is
developed for orthogonally rib-stiffened sandwich structures, it can be favorably
degraded to the 1D case.

As can be seen from Fig. 6.11, overall agreement is achieved. Especially, the
experimentally observed two significant resonance dips have been well captured
by the present model, i.e., the first dip at approximately 400 Hz arising from the
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passband characteristics of periodic structures and the other due to coincidence
resonance [17] at the critical frequency of approximately 6,200 Hz.

Since the diffuse sound transmission characteristics of periodically rib-stiffened
sandwich structure have been well studied by Legault and Atalla [17], the focus
of the present study thus turns to the normal sound incident case so as to explore
more physical details. Moreover, in view of the fact that the sound transmission
behavior of the sandwich structure at high frequency is complex with dense peaks
and dips, the frequency range of 10–2,000 Hz is considered in subsequent analysis.
As a result, the coincidence resonance dip is far beyond the considered frequency
range which, even if calculated, would merge with the dense dips at high frequencies
and impossible to distinguish.

6.2.6 Effects of Fluid-Structure Coupling
on Sound Transmission

Since the absorption of sound by fibrous materials (i.e., fiberglass) is characterized
using the frequency-dependent dynamic density and bulk modulus, the fluid-
structure coupling effects are exploited below. For comparison, the air cavity case
and the vacuum case are also considered to highlight the influence of the cavity-
filling fiberglass.

Figures 6.12, 6.13, and 6.14 plot the STL as a function of frequency for the three
different cases, with the periodic spacings selected as lx D ly D 0.3 m, 0.4 m, and
0.5 m, respectively. Previous theoretical studies often ignore the effects of fluid-
structure coupling, assuming that sound transmission is dominated by the structure-
borne path and that via the fluid-borne path is negligible. However, the results of
Figs. 6.12, 6.13, and 6.14 demonstrate that fluid-structure coupling can alter the
STL peaks and dips in the low-frequency range and thus affect sound transmission,
especially when the rib-stiffeners are sparsely distributed (e.g., lx D ly D 0.5 m). In
such cases, the response of the face panels is significantly affected by the fluid media
confined in the cavities, since most of the panel surfaces are in contact with the fluid
and the rib-stiffeners may only exert a local effect near the conjunctions. In other
words, when the rib-stiffener separation is sufficiently large, fluid-structure coupling
plays a role comparable to that of the rib-stiffeners. Under such conditions, the fluid-
structure coupling effect can no longer be assumed negligible particularly in the
stiffness-controlled low-frequency range.

As can be observed from the results of Figs. 6.12, 6.13, and 6.14, the three
cases considered differ mainly in the low-frequency range where the fluid media
confined in the partitioned cavities act on the face panels through fluid-structure
coupling effect and work like pumping. That is, similar to elastic springs, the fluid
media have equivalent stiffness, which affects significantly sound transmission in
the stiffness-controlled low-frequency range while has almost no influence in the
mass-controlled high-frequency range. As the stiffener separation is increased, the
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Fig. 6.12 Sound transmission loss (STL) plotted as a function of incident frequency for stiffener
separations lx D ly D 0.3 m: comparison among three different kinds of orthogonally rib-stiffened
sandwiches with cavities filled separately with vacuum, air, and fiberglass (With permission from
Acoustical Society of America)

Fig. 6.13 Sound transmission loss (STL) plotted as a function of incident frequency for stiffener
separations lx D ly D 0.4 m: comparison among three different kinds of orthogonally rib-stiffened
sandwiches with cavities filled separately with vacuum, air, and fiberglass (With permission from
Acoustical Society of America)
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Fig. 6.14 Sound transmission loss (STL) plotted as a function of incident frequency for stiffener
separations lx D ly D 0.5 m: comparison among three different kinds of orthogonally rib-stiffened
sandwiches with cavities filled separately with vacuum, air, and fiberglass (With permission from
Acoustical Society of America)

equivalent stiffness of the fluid media plays an increasingly important role in the
transmission of sound, as the surface area of the face panels dominated by fluid
media increases, while that controlled by the rib-stiffeners decreases. With this duly
considered, it is then understandable that the divergences only exist in the low-
frequency range, enlarging with increasing stiffener separation, as demonstrated in
Figs. 6.12, 6.13, and 6.14.

6.2.7 Sound Transmission Loss Combined with Bending
Stiffness and Structure Mass: Optimal Design
of Sandwich

Due to high stiffness-to-weight ratio, sandwich structures have been widely applied
in aeronautics and aerospace engineering, often providing acceptable sound insu-
lation capability. To draw general guidelines for the practical engineering design
of these weight-sensitive structures, an optimal design scheme for multifunctional
sandwiches is presented and implemented below, combining low structure mass
with high-stiffness and superior sound insulation requirements.
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Since both the face panels and rib-stiffeners considered in the present study have
thin thickness compared with other geometrical dimensions, such as core depth d
and periodic spacing lx (or ly), the most important structural geometry ratio only
leaves the nondimensional variable lx/d (or ly/d). For simplicity, assuming that
lx D ly, one then only needs to consider one variable (l/d) to seek for the optimal
design of the sandwich for combined high STL, large bending stiffness, and low
structure mass. Although diffuse sound transmission loss may be of more interest
for practical engineering, the normal sound incident case is considered here to
save computational efforts. To this end, several dimensionless parameters should
be defined.

The first dimensionless parameter introduced is the normalized mass of the
sandwich (i.e., ratio of the mass for one unit cell to that of the panel material filling
the whole volume of the unit cell):

M D �


.h1 C h2/ lxly C �

lxtx C lyty
�

d
�C �cavlxlyd

�lxly .d C h1 C h2/
(6.74)

The above expression has accounted for the cavity-filling fiberglass. For the air
cavity case, one only needs to eliminate the fiberglass term.

For external load bearing, the bending stiffness of the orthogonally rib-stiffened
sandwich structure is important, given by [42, 43]

Dx D 2Eh3

12
C Eh.d C h/2

2
C Ed 3

12

tx

ly
; Dy D 2Eh3

12
C Eh.d C h/2

2
C Ed 3

12

ty

lx
(6.75)

which can be normalized as

Dx D Dx

Ed 3
; Dy D Dy

Ed 3
(6.76)

For tx D ty and lx D ly as in the present study, Dx D Dy , and hence, one can
use only one symbol D to represent both Dx and Dy . It should be pointed out
that the fiberglass is loosely filled into the partitioned cavity and not bonded to the
panels/rib-stiffeners and hence has no contribution to the structural rigidity D.

Incorporating the above-defined dimensionless parameters M , D, and the sound
insulation index STL, one may define an integrated index for optimal design toward
high stiffness-to-mass ratio and superior sound isolation capability as [44]

�SDM D STL � D

M
(6.77)

The larger the integrated index �SDM is, the more superior the combined acoustic
and structural performance of the sandwich will be.
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Fig. 6.15 Tendency plot of �SDM versus frequency for orthogonally rib-stiffened sandwich
structures filled by air with selected structural geometry ratios: normal sound incident case (With
permission from Acoustical Society of America)

Figures 6.15 and 6.16 show the tendency plots of �SDM versus frequency for
orthogonally rib-stiffened sandwich structures having cavities filled separately with
air and fiberglass. The influence of the key geometry ratio l/d on the integrated index
�SDM is explored by comparing three typical cases, i.e., l/d D 1.0, 1.5, and 2.0. It is
observed from Figs. 6.15 and 6.16 that while l/d has negligible influence on �SDM at
low frequencies (<300 Hz), it causes significant changes of �SDM at relatively high
frequencies. This implies that the integrated performance of the sandwich including
mass, stiffness, and STL can be designed and optimized by varying the key structural
geometry ratio l/d. Generally speaking, a larger l/d will help the structure to achieve
a higher integrated index �SDM.

Relative to Fig. 6.15, the corresponding curves in Fig. 6.16 have slight alterations,
resulting from the inclusion of fiberglass that induces changes in the parameters M

and STL. In terms of the present optimal algorithm of Eq. (6.77), the inclusion
of fiberglass does not appear to present additional benefits for the integrated
performance. However, in accordance with different engineering requirements, the
weight of the three parameters STL, D, and M can be alternatively selected, and
thus, different optimal designs may be achieved.
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Fig. 6.16 Tendency plot of �SDM versus frequency for orthogonally rib-stiffened sandwich
structures filled with fiberglass for selected structural geometry ratios: normal sound incident case
(With permission from Acoustical Society of America)

6.2.8 Conclusions

Focusing on lightweight composite sandwich structures commonly used as aircraft
fuselages, we propose a theoretical model to tackle with the sound transmission
problem of infinite orthogonally rib-stiffened sandwich structures with fiberglass
filled within the partitioned cavities. The process of sound penetration across the
fiberglass is characterized by adopting the equivalent fluid model. The effects of
fluid-structure coupling are also fully included by enforcing velocity continuity
conditions at fluid-panel interfaces. The space-harmonic approach and the virtual
work principle are applied to solve the resultant governing equations of the whole
system. For validity check, the model predictions are compared with existing
theoretical and experimental results for a simplified version of the sandwich
structure, with good agreements achieved.

The model is subsequently applied to examine the influence of the cavity-filling
fiberglass on sound transmission across the whole structure. It is demonstrated that
the fluid-structure coupling effects should be taken into account in any theoretical
attempt, especially when they play a role comparable with that of the rib-stiffeners
when the rib-stiffener separations are sufficiently large. The inclusion of the
fiberglass leads to remarkable changes of the STL versus frequency curves at low
frequencies.
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As a highlight of this research, an integrated optimal algorithm toward
lightweight, high-stiffness, and superior sound insulation capability is proposed.
With one key structural geometry ratio selected as the variable, a preliminary
optimal design of the sandwich structure is carried out. It is found that the structural
geometry ratio plays a significant role in the integrated mechanical and acoustic
performance of the structure, providing therefore fundamental insight into the
multifunctional design of the structure.

Appendices

Appendix A

Taking into account the inertial effects (due to stiffener mass) and applying both
Hooke’s law and Newton’s second law, one can express the tensional forces arising
from the rib-stiffeners as [18]

QC
x D �RQ1w1 C RQ2w2; Q�

x D �RQ2w1 C RQ1w2 (6.A.1)

QC
y D �RQ3w1 C RQ4w2; Q�

y D �RQ4w1 C RQ3w2 (6.A.2)

RQ1 D Kx

�
Kx � mx!2

�

.2Kx � mx!2/
; RQ2 D K2

x

.2Kx � mx!2/
(6.A.3)

RQ3 D Ky

�
Ky � my!2

�

�
2Ky � my!2

� ; RQ4 D K2
y�

2Ky � my!2
� (6.A.4)

where ! is the circle frequency and (Kx, Ky) are the tensional stiffness of half the
rib-stiffeners per unit length.

Likewise, the bending moments of the rib-stiffeners can be expressed as [18]

M C
x D RM1

@2w1

@x2
� RM2

@2w2

@x2
; M �

x D RM2

@2w1

@x2
� RM1

@2w2

@x2
(6.A.5)

M C
y D RM3

@2w1

@y2
� RM4

@2w2

@y2
; M �

y D RM4

@2w1

@y2
� RM3

@2w2

@y2
(6.A.6)

RM1 D ExI �
x

�
ExI �

x � �xIx!2
�

�
2ExI �

x � �xIx!2
� ; RM2 D E2

xI �
x

2

�
2ExI �

x � �xIx!2
� (6.A.7)
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RM3 D
EyI �

y

�
EyI �

y � �yIy!2


�
2EyI �

y � �yIy!2

 ; RM4 D E2
yI �

y
2

�
2EyI �

y � �yIy!2

 (6.A.8)

where (ExI*
x , EyI*

y) are the bending stiffness of half the rib-stiffeners and (�x, �y)
and (Ix, Iy) are mass density and polar moment of inertia for the rib-stiffeners, with
subscripts x and y indicating the direction of the stiffeners.

In a similar manner, the torsional moments of the rib-stiffeners are obtained as
[18]

M C
T x D RT1

@2w1

@x@y
� RT 2

@2w2

@x@y
; M �

T x D RT 2

@2w1

@x@y
� RT1

@2w2

@x@y
(6.A.9)

M C
Ty D RT 3

@2w1

@y@x
� RT 4

@2w2

@y@x
; M �

Ty D RT 4

@2w1

@y@x
� RT 3

@2w2

@y@x
(6.A.10)
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� ; RT 2 D G2

xJ �
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2
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� (6.A.11)

RT 3 D
GyJ �

y

�
GyJ �

y � �yJy!2


�
2GyJ �

y � �yJy!2

 ; RT 4 D G2
yJ �

y
2

�
2GyJ �

y � �yJy!2

 (6.A.12)

where (GxJ*
x , GyJ*

y) are the torsional stiffness of half the rib-stiffeners and (Jx, Jy)
are the torsional moment of inertia for the rib-stiffeners.

The Fourier transforms of the tensional forces, bending moments, and torsional
moments are listed below:

1. Fourier transforms of tensional forces

QQC
x D RQ2 Qw2 .a; ˇn/ � RQ1 Qw1 .a; ˇn/ ; QQ�

x D RQ1 Qw2 .a; ˇn/ � RQ2 Qw1 .a; ˇn/

(6.A.13)

QQC
y DRQ4 Qw2 .am; ˇ/ �RQ3 Qw1 .am; ˇ/ ; QQ�

y D RQ3 Qw2 .am; ˇ/ �RQ4 Qw1 .am; ˇ/

(6.A.14)

2. Fourier transforms of bending moments

QM C
x D ˛2 ŒRM2 Qw2 .a; ˇn/ � RM1 Qw1 .a; ˇn/� ;

QM �
x D ˛2 ŒRM1 Qw2 .a; ˇn/ � RM2 Qw1 .a; ˇn/� (6.A.15)

QM C
y D ˇ2 ŒRM4 Qw2 .am; ˇ/ � RM3 Qw1 .am; ˇ/� ;

QM �
y D ˇ2 ŒRM3 Qw2 .am; ˇ/ � RM4 Qw1 .am; ˇ/� (6.A.16)
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3. Fourier transforms of torsional moments

QM C
T x D ˛ˇn ŒRT 2 Qw2 .a; ˇn/ � RT1 Qw1 .a; ˇn/� ;

QM �
T x D ˛ˇn ŒRT1 Qw2 .a; ˇn/ � RT 2 Qw1 .a; ˇn/� (6.A.17)

QM C
Ty D ˛mˇ ŒRT 4 Qw2 .am; ˇ/ � RT 3 Qw1 .am; ˇ/� ;

QM �
Ty D ˛mˇ ŒRT 3 Qw2 .am; ˇ/ � RT 4 Qw1 .am; ˇ/� (6.A.18)

Appendix B

Adopting the similar procedure of Takahashi’s beam model [11] for rib-stiffeners,
taking the inertial effects of the rib-stiffeners into consideration, and applying
Hooke’s law and the Newton’s second law, one can obtain the tensional forces of
the rib-stiffeners as [18]

QC
x D �Kx

�
Kx � mx!2

�

2Kx � mx!2
w1 C K2

x
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w2 (6.B.1)
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where ! is the circular frequency, (Kx, Ky) are the tensional stiffness of half rib-
stiffeners per unit length, and (mx, my) are the line mass density of the x- and y-wise
stiffeners, respectively.

Likewise, the bending moments of the rib-stiffeners can be expressed as [18]
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where (ExI*
x , EyI*

y) are the bending stiffness of half rib-stiffeners per unit length and
(�x, �y), (Ix, Iy) are the mass density and polar moment of inertia of the stiffeners,
respectively, with subscripts x and y indicating the corresponding orientations of the
stiffeners.

In a similar scheme, the torsional moments of the rib-stiffeners are given by [18]
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where (GxJ*
x , GyJ*

y) are the torsional stiffness of half rib-stiffeners per unit length
and (Jx, Jy) are the torsional moments of inertia of the stiffeners.

To simplify Eqs. (6.B.1), (6.B.2), (6.B.3), (6.B.4), (6.B.5), (6.B.6), (6.B.7),
(6.B.8), (6.B.9), (6.B.10), (6.B.11), and (6.B.12), the following sets of specified
characteristics are utilized to replace the coefficients of the general displacements:

1. Replacement of tensional force coefficients
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2. Replacement of bending moment coefficients
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3. Replacement of torsional moment coefficients
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In terms of space-harmonic series, the expressions of the tensional forces,
bending moments, and torsional moments can be simplified as follows:

1. Tensional forces
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2. Bending moments
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3. Torsional moments
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Appendix C

The deflection coefficients of the two face panels are

f˛1;kl g D 
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The right-hand side of Eq. (6.70) represents the generalized force, that is,
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Using the definition of the sub-matrices presented above, one obtains

T11 D T11;1CT11;2CT11;3CT11;4CT11;5; T22 D T22;1CT22;2CT22;3CT22;4CT22;5

(6.C.45)

T12 D T12;1CT12;2CT12;3CT12;4CT12;5; T21 D T21;1CT21;2CT21;3CT21;4CT21;5

(6.C.46)
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