


Interaction of Mechanics and Mathematics

For further volumes:
www.springer.com/series/5395



Victor L. Berdichevsky

Variational Principles
of Continuum Mechanics
I. Fundamentals

With 79 Figures

123



IMM Advisory Board

D. Colton (USA) . R. Knops (UK) . G. DelPiero (Italy) . Z. Mroz (Poland) .
M. Slemrod (USA) . S. Seelecke (USA) . L. Truskinovsky (France)

IMM is promoted under the auspices of ISIMM (International Society for the
Interaction of Mechanics and Mathematics).

Author

V.L. Berdichevsky
Professor of Mechanics
Department of Mechanical Engineering
Wayne State University
Detroit, MI 48202
USA
vberd@eng.wayne.edu

ISSN 1860-6245 e-ISSN 1860-6253
ISBN 978-3-540-88466-8 e-ISBN 978-3-540-88467-5
DOI 10.1007/978-3-540-88467-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2008942378

c© Springer-Verlag Berlin Heidelberg 2009
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Our mind is frail as our senses are; it would
lose itself in the complexity of the world if
that complexity were not harmonious; like
the short-sighted, it would only see details,
and would be obliged to forget each of these
details before examining the next because it
would be incapable of taking in the whole.
The only facts worthy of our attention are
those which introduce order into this
complexity and so make it accessible to us.

H. Poincaré, Science and Method



Preface

There are about 500 books on variational principles. They are concerned mostly with
the mathematical aspects of the topic. The major goal of this book is to discuss the
physical origin of the variational principles and the intrinsic interrelations between
them. For example, the Gibbs principles appear not as the first principles of the
theory of thermodynamic equilibrium but as a consequence of the Einstein formula
for thermodynamic fluctuations. The mathematical issues are considered as long as
they shed light on the physical outcomes and/or provide a useful technique for direct
study of variational problems.

The book is a completely rewritten version of the author’s monograph Variational
Principles of Continuum Mechanics which appeared in Russian in 1983. I have been
postponing the English translation because I wished to include the variational prin-
ciples of irreversible processes in the new edition. Reaching an understanding of this
subject took longer than I expected. In its final form, this book covers all aspects of
the story. The part concerned with irreversible processes is tiny, but it determines the
accents put on all the results presented. The other new issues included in the book
are: entropy of microstructure, variational principles of vortex line dynamics, vari-
ational principles and integration in functional spaces, some stochastic variational
problems, variational principle for probability densities of local fields in composites
with random structure, variational theory of turbulence; these topics have not been
covered previously in monographic literature. Other than that, the scope of the book
is the same though the text differs considerably due to many detailed explanations
added to make the level of the book suitable for graduate students.

Grass Lake, Michigan V.L. Berdichevsky
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Introduction

A variational principle is an assertion stating that some quantity defined for all pos-
sible processes reaches its minimum (or maximum, or stationary) value for the real
process. Variational principles yield the equations governing the real processes. The
equations following from a variational principle possess a very special structure.
The major feature of this structure is the reciprocity of physical interactions: action
of one field on another creates an opposite and, in some sense, symmetric reaction.
All equations of microphysics possess such a structure. Perhaps this is the most
fundamental law of Nature revealed up to now.

Macrophysics operates with the averaged characteristics of microfields. The
variational structure of microequations affects the structure of macroequations. In
particular, for equilibrium processes, the variational structure of microequations
brings up the classical equilibrium thermodynamics. In the case of non-equilibrium
reversible processes the variational structure of microequations yields a variational
structure of macroequations. The governing equations of irreversible processes also
possess a special structure. This structure, however, is not purely variational.

The above-mentioned explains the fundamental role of the variational princi-
ples in modeling physical phenomena. If the interactions between various fields
are absent or simple enough, then one does not need the variational approach to
construct the governing equations. However, if the interactions in the system are
not trivial (e.g. nonlinear and/or involving high derivatives, kinematical constraints,
etc.) the variational approach becomes the only method to obtain physically sensible
governing equations.

Another important use of the variational principles is the direct qualitative and
quantitative analysis of real processes which is based solely on the variational
formulation and does not employ the governing equations. Such analysis is very
advanced for solids while for fluids the major developments are still ahead.

The book aims to review the two above-mentioned sides of the variational
approach: the variational approach both as a universal tool to describe physical
phenomena and as a source for qualitative and quantitative methods of studying
particular problems. In addition, a thorough account of the variational principles
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discovered in various branches of continuum mechanics is given, and some gaps are
filled in.1

The book consists of three parts. Part I presents basic knowledge in the area,
including variational principles for systems with a finite number of degrees of
freedom, “the derivation of thermodynamics from mechanics,” a review of basic
concepts of continuum mechanics and general setting of variational principles of
continuum mechanics. Part I also contains an exposition of the direct methods of
calculus of variations. The major goal here is to prepare the reader to understand
and to speak the “energy language,” i.e. to be able to withdraw the necessary infor-
mation directly from energy without using the corresponding differential equations.
An important component of the energy language is the ability to work with energy
depending on a small parameter. A way to do that (variational-asymptotic method)
is discussed in detail. Another important component, duality theory, is also covered
in detail. The variational-asymptotic method and duality theory are widely used
throughout the book. Part II gives an account of variational principles for solids and
fluids. Part III is concerned with applications of variational methods to shell and
plate theory, beam theory, homogenization of periodic and random structures, shal-
low water theory, granular media theory and turbulence theory. The consideration
of random structures is preceded by a review of stochastic variational problems.
Some interesting variational principles that are beyond the main scope of the book
are placed in Appendices. The details of some derivations that can be skipped with-
out detriment for understanding of further material are also put in the appendices.
By publisher’s suggestion, the book is published in two volumes with volume 1
containing the first two parts of the book.

It is assumed that the reader knows the basics of calculus and tensor analysis.
The latter, though, is not absolutely necessary as all tensor notations used are briefly
outlined. Part I was used by the author as notes for the course Fundamentals of
Mechanics, some chapters of Parts II and III were used in courses on elasticity
theory and advanced fluid mechanics. Every effort was made to unify the notation
for the broad range of the subjects considered. The notation is summarized at the
end of each volume.

1 Following the tradition, variational principles are named after their author; the references are
given in Bibliographical Comments at the end of the book. Most of the variational principles with
no name attached appeared first in the previous edition of this book.
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Chapter 1
Variational Principles

1.1 Prehistory

Mechanics is a branch of physics studying motion. The history of mechanics, as
well as the history of other branches of science, is a history of attempts to explain
the world by means of the smallest possible number of universal laws and gen-
eral principles. The most successful and fruitful attempts stem from the idea that
the observable events are extreme in their character and that the general principles
sought are variational, i.e. they assert that certain parameters obtain their maximum
or minimum values in realizable physical processes.

This idea seems to endow Nature with some goal and appeared a long time ago.
Aristotle (384–322 B.C.) claimed in his Physics, which served as the major source
for natural philosophers for over 2000 years, that in all its manifestations, Nature
follows the easiest path that requires the least amount of effort. However, this idea
is, perhaps, even older. As Euler mentioned [99], “. . .It seems, Aristotle borrowed
this dogma from his predecessors rather than invented it independently.” It was
a long way from Aristotle’s vague assertion to a precise quantitative formulation.
The major breakthrough occurred in the seventeenth century along with other key
advances in mathematics and physics.1

The figures whose contributions are most closely related to our considera-
tion have been Galileo (1564–1642), Descartes (1596–1650), Fermat (1601–1665),
Newton (1643–1727), Leibnitz (1646–1716), R. Hooke (1635–1703) and
J. Bernoulli (1667–1748).

Galileo discovered the universal features of motion which formed the experi-
mental basis of Newtonian mechanics: acceleration of a falling body does not de-
pend on its mass; pendulum vibration frequency does not depend on the mass of
the pendulum; a falling body passes distances proportional to the second power
of time. Galileo also introduced the two principles which later became the cor-
nerstones of Newtonian mechanics: the invariance of the laws of mechanics with
respect to change of inertial frames, and the inertia principle – motion of a body

1 As B. Russell put it, we would live in a quite different world if in the seventeenth century 100
scientists were killed in their childhood.

V.L. Berdichevsky, Variational Principles of Continuum Mechanics,
Interaction of Mechanics and Mathematics, DOI 10.1007/978-3-540-88467-5 1,
C© Springer-Verlag Berlin Heidelberg 2009
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4 1 Variational Principles

which does not interact with other bodies will remain uniform indefinitely in an
unbounded space. Note that both principles, being in complete accord with the
spirit of Euclidian geometry, were purely a mind game: they cannot be checked
experimentally because there are neither isolated bodies nor inertial frames, not to
mention that one can hardly justify the unboundedness of our space. Galileo was
also known for his experiments with telescopes and astronomical observations. Here
is Lagrange’s appreciation [168] of Galileo’s achievements:

. . .To discover the satellites of Jupiter, the phases of Venus, the spots on the Sun, etc., one
needs only a telescope and a power of observation, but an exceptional genius is needed
to establish the laws of Nature for phenomena which were in everyone’s plain sight, but,
nevertheless, escaped the attention of philosophers.

Another giant of the seventeenth century, Descartes, introduced the analytical
approach to geometry and emphasized the method of orthogonal coordinates which
allows one to study geometrical objects in terms of equations. Thus, for example, an
ellipse, considered before Descartes as a cross-section of a cone, becomes a solution
of an algebraic equation of second order.

Newton formulated the basic laws of dynamics and created the theory of grav-
itation. In particular, he introduced the concept of mass, a characteristic of bod-
ies which is different from weight; discovered the key dynamic law: mass ×
acceleration = force; gave the general formulation of the principle of the par-
allelogram of forces, and formulated the law of action and reaction.2

Discovery of the laws of mechanics is inseparable from development of the dif-
ferential calculus by Leibnitz and Newton.

And, finally, it was Fermat who set up the beginning of the story which is the
subject of this book.

One of the topics widely discussed at the time was reflection and refraction of
light. It was known for centuries that the beam of light hitting a mirror at some angle
α reflects from the mirror at the same angle (Fig. 1.1).

Fig. 1.1 The law of light
reflection

2 Interestingly, all the laws of statics were known to Archimedes (287–212 B.C.). It took about 19
centuries before the next step was made.
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Fig. 1.2 The law of light
refraction

It was also established experimentally that if a beam of light falls on the interface
of two transparent media at some incidence angle α1 from the side of medium 1, it
penetrates into medium 2 at a different angle, α2 (Fig. 1.2).

It is remarkable that, for any two media 1 and 2, the ratio
sin α1

sin α2
remains the

same for all incidence angles α1:

sin α1

sin α2
= n = constant. (1.1)

This ratio, n, depends only on the materials (for example water and air, or glass
and air). Moreover, the ratio remains the same if the direction of light is reversed:
the beam of light falling on the interface from the side of the medium 2 at angle α2

penetrates the medium 1 at the angle α1 determined by the formula (1.1). This law
was established by working up the experimental data by Snell in 1621.

The challenge for theoreticians was to find some underlying reasons for the pecu-
liar behavior of light. The first attempt was made by Descartes. Descartes envisioned
light as a set of small elastic balls and attempted to derive the diffraction law from
the laws of elastic collisions. He obtained the correct answer. Descartes’ derivation
assumed, however, that light propagates in a denser medium, say, water, faster than
in a less dense one, like air. Experimental verification of such features was beyond
the technical possibilities at the time: methods for determining the speed of light
appeared much later.

The proposition about faster light propagation in a denser medium seemed quite
questionable for Fermat, and he attempted to consider diffraction from another per-
spective. As the basis for his derivation, he used the following postulate: Nature
takes the easiest and most accessible paths. However, what is the measure of “easi-
ness of path”? The simplest candidate is the length of the path. Consider whether it
works in the reflection phenomenon.

Let light go from point A to point B reflecting from the mirror at some point
(Fig. 1.3). Let C be the point for which the incidence angle is equal to the reflection
angle. Consider two light trajectories, one reflects from the mirror at the point C,

another at some point C ′. The length of the path AC ′B is greater than the length
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Fig. 1.3 The principle of
minimum distance

of the path ACB. To see that, we3 introduce the mirror image of point B, point B ′.
Obviously, the lengths of lines ACB′ and AC ′B ′ are equal to the lengths of lines
ACB and AC ′B, respectively. Since the line AC B ′ is straight, the length of AC ′B ′ is
greater than the length of ACB′, and, correspondingly, the length of AC ′B is greater
than that of ACB. We arrived at the simplest example of a variational principle: light
moving from point A to a mirror and then to point B chooses a trajectory such as to
minimize the distance traveled.

This example contains the two major “entries” of any variational principle: the set
of admissible trajectories, in this case all lines connecting the starting point A with
the reflection point C and the destination point B, and the quantity to be minimized,
in this case the length of the trajectory. Note that the minimizing trajectory is highly
sensitive to the choice of admissible paths. If, for example, we choose as admissible
all the paths connecting the point A and the point B, then the minimizing trajectory
is the straight line connecting A and B which is not the correct answer for the initial
physical problem.

The principle of minimum distance works for reflection, but does not work for
refraction: if point B is on the other side of the interface plane, then the minimum
distance corresponds to the straight line, i.e. α1 = α2, in contradiction to the exper-
imental observations.

Fermat suggested that the experimentally observed refraction law corresponds to
the principle of minimum time: light moving from point A to point B chooses the
trajectory for which the travel time is minimum.

Let us derive the Snell law (1.1) from the Fermat principle. To proceed, we have
to introduce the speeds of light in both media, c1 and c2, and distances from points
A and B to the interface, h1 and h2 (Fig. 1.2).

We are looking for point C such that the travel time from A to B is minimum.
In each medium, 1 and 2, the trajectory of light is straight, because, for constant
velocity, minimum travel time between two points, A and C or C and B, corresponds
to the paths with minimum lengths, i.e. to the straight segments AC and C B. Let A0

and B0 be the orthogonal projections of points A and B onto the interface. Denote

3 Here and in what follows “we” means “the reader and the author.”
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the distances A0C and A0 B0 by x and a, respectively. The distance x is unknown
while the distance a is given. The travel time from A to B is a function of x :

f (x) =
√

h2
1 + x2

c1
+
√

h2
2 + (a − x)2

c2
.

We consider this function on the segment [0, a] and seek the value of x which
delivers the minimum value to this function. Note that the second derivative of f (x),

d2 f (x)

dx2
= h2

1

c1
(
h2

1 + x2
) 3

2

+ h2
2

c2
(
h2

1 + (a − x)2
) 3

2

,

is positive. Therefore, f (x) is a convex function4 and has the form shown in Fig. 1.4.

Fig. 1.4 Qualitative
dependence of the travel time
on the position of point C

It is seen that f (x) has only one minimum. This minimum is achieved at the

point x where
d f (x)

dx
= 0, i.e.

x

c1

√
h2

1 + x2
− a − x

c2

√
h2

2 + (a − x)2
= 0. (1.2)

The ratio
x√

h2
1 + x2

is equal to sin α1. Similarly,
a − x

c2

√
h2

2 + (a − x)2
= sin α2.

Equation (1.2) becomes

sin α1

c1
= sin α2

c2
. (1.3)

4 Here we rely on the reader’s knowledge of calculus. The notion of a convex function and its
relations to variational problems will be discussed in detail later in Chap. 5.
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Equation (1.3) yields the Snell law (1.1) because, as expected, c1 and c2 depend
only on the material properties. Equation (1.3) also contains additional information:
the material constant n can be expressed in terms of the speeds of light in both
media:

n = c1

c2
. (1.4)

It was established experimentally that n ≈ 0.75 if the first medium is water and
the second medium is air. This is why we see stones at the bottom of the river closer
than they are in reality (Fig. 1.5).

Fig. 1.5 Refraction in water
and air

According to (1.4), the speed of light in water is about 3/4 of that in air. This
contradicts the Descartes claim that the speed of light is greater in denser media.

Descartes’ conclusion was supported by Leibnitz. Like Fermat, he based his
consideration on a variational principle. But he suggested that Nature chooses the
easiest path defined as a path of least resistance. The resistance to light propagation
is different in different media. Leibnitz introduced the notion of “difficulty” which
is equal to the product of time and resistance, and postulated that light chooses the
trajectory for which the sum of all difficulties is minimum. Eventually, he arrived
at the Snell law. According to Leibnitz, the denser the medium, the greater its re-
sistance. This fact, he argued, yields a greater velocity of light in denser media: the
dispersion of light is smaller, hence the beam of light is more compressed along
its way, and, similar to water in a narrow river-bed, moves faster. Apparently, he
envisioned the light flux as a flow of some medium.

It became clear much later that in this controversy Fermat was right.
Successful applications of the variational ideas to optics encouraged the search

for analogies in mechanics. In 1696, in Leipzig journal Acta Eruditorum, Johann
Bernoulli published the following note:

Two points, A and B, are given in a vertical plane (see Fig. 1.6). Find the trough AMB,
which minimizes the travel time of a body moving from point A to point B by the force
of its own weight. To arouse the interest of amateurs in such matters and to encourage
their enthusiasm in attempting to obtain the solution, I will say that solving this problem
is not a pure intellectual speculation deprived of any practical application whatsoever, as it
may seem. Actually, this problem is of great practical interest and not just in the subject
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Fig. 1.6 Bernoulli’s problem

of mechanics, but also in other disciplines, which may seem unbelievable. By the way
(I am mentioning the following fact in order to avert a possible misjudgment), although
the segment AB is the shortest distance between points A and B, the time it takes for the
body to travel this distance is not the shortest possible, and there exists the (minimum time)
curve AMB well known to geometers. I will disclose what this curve is if, during the course
of the year, nobody else announces the answer.

Bernoulli sent his solution to Leibniz, in order for Leibniz to publish it in a year.
This, as Leibnitz put it, “such wonderful and hitherto unheard problem” which “en-
tices by its beauty just as the apple enticed Eve,” attracted the attention of many
scholars. In particular, it is believed that some anonymous solutions were given by
Jacob Bernoulli and Isaac Newton. The notorious curve turned out to be a cycloid,
a curve “well known to geometers.”

Bernoulli’s problem is much more difficult than Fermat’s problem since the func-
tion to be minimized depends on the curve connecting the points A and B, i.e. on
an infinite number of variables. Such functions are now called functionals.

If y = y (x) is the equation of the curve connecting points A and B, then the time
of motion along this curve, I , depends only on the function y (x). One writes

I = I (y (x))

and says that I is a functional of y (x). In Bernoulli’s problem,

I (y (x)) =
l∫

0

√√√√1+
(

dy
dx

)2

2gy (x)
dx . (1.5)

where g is the acceleration of gravity.
To see that, we note that motion of the body is frictionless; therefore, the total

energy of the particle is conserved. Energy is the sum of kinetic energy K and
potential energy U . Kinetic energy is the mass m times half of the squared velocity,(

dx

dt

)2

+
(

dy

dt

)2

. Since the point moves along the curve y = y (x),
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K = m

2

((
dx

dt

)2

+
(

dy

dx

)2 (dx

dt

)2
)
= m

2

(
1+

(
dy

dx

)2
)(

dx

dt

)2

.

The potential energy is (remember that the positive direction of the y-axis is
down, therefore the smaller y the bigger U )

U = −mgy.

Initial value of energy, K +U, is zero; therefore at all times

m

2

(
1+

(
dy

dx

)2
)(

dx

dt

)2

− mgy = 0.

Hence,

dx

dt
=
√√√√ 2gy

1+
(

dy
dx

)2 . (1.6)

The travel time is

I =
l∫

0

dx
dx
dt

. (1.7)

Formula (1.5) follows from (1.7) and (1.6).
The functional (1.5) must be minimized on the set of curves y (x) which satisfy

the following conditions:

y (0) = 0, y (l) = yB . (1.8)

The first condition fixes the choice of the origin, the second prescribes the
y-coordinate of the given point, B.

The solutions obtained at the time did not provide a general method of inves-
tigating this type of problem. It was found 50 years later by a student of Johann
Bernoulli, Leonard Euler, who laid down the cornerstones of modern calculus of
variations.

In addition to the constraints (1.8) the admissible functions y(x) should obey
some other restrictions which we have not mentioned explicitly yet. For example,
the integrand in (1.5) contains the derivative dy/dx , and therefore the admissible
function must be differentiable at least.

If we accept for consideration all non-negative functions y(x) with piecewise
continuous derivatives, then the integral (1.5) makes sense. Note that for some func-
tions, e.g., quadratic functions, y(x) = const x2, the integral is equal to +∞. Such
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functions are automatically sorted out because we seek the minimum value of the
functional (1.5).

The insights of Fermat and Bernoulli imparted a new importance to the ques-
tion of whether some goal parameter obtains its minimum in realizable motion of
bodies or, in the language of the time, whether the body, moving from one point to
another chooses such a way that the payment, if the body is to pay for its motion, is
minimized.

1.2 Mopertuis Variational Principle

The first formulation of the variational principle in mechanics was made by Pierre
Mopertuis in 1744. According to Mopertuis’ principle, in real motion, the product
of the mass of the body, its speed and the distance it has traveled, is minimum. This
quantity,

I = mvs, (1.9)

Mopertuis, following Leibniz, called action.
An important testing ground for Mopertuis was the law of collision of elastic

balls. Let us first show that Mopertuis’ principle yields the correct law of reflection
of a rigid ball from the wall when the ball moves along the normal line to the wall.
To emphasize an analogy with the Fermat principle, we consider a trajectory of the
ball in the two-dimensional space-time plane (see Fig. 1.7).

If at the instants t = 0 and t = θ the ball was at the points A and B, and
correspondingly, h1, h2 are the distances from these points to the wall, and tc is the
time of the collision, then the action is

I = m
h1

tc
h1 + m

h2

θ − tc
h2. (1.10)

Fig. 1.7 Reflection of the ball
from the wall
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Note that the initial and final positions of the ball and the total time of motion
θ are assumed to be given, so action I is a function of one variable, tc, I = I (tc).
Function I (tc) is defined on the segment [0, θ ]. The second derivative of this func-
tion,

d2 I

dt2
c

= 2m
h2

1

t3
c

+ 2m
h2

2

(θ − tc)3 ,

is positive. Thus, the function, I (tc) , is convex and has only one minimum. The
minimum is achieved at the point where the first derivative of I (tc) vanishes, i.e.

−m
h2

1

t2
c

+ m
h2

2

(θ − tc)2 = 0.

This equation means that the velocity of the ball after the collision,
h2

θ − tc
, is

equal to the velocity of the ball before the collision,
h1

tc
, in full compliance with the

experimentally established law of elastic collisions. The reader may check that the
correct law of elastic collisions follows from Mopertuis’ principle for an inclined
collision with a flat wall (Fig. 1.8a) or a collision with a curved wall (Fig. 1.8b).

Fig. 1.8 Elastic collision of
the ball with a flat and a
curved wall

Collision with a curved wall is actually a more delicate problem. It turns out that
multiple collision points are possible, and some collision points could correspond
to the maximum value of action.

To clarify this issue, consider the following model problem. Let points A and B
be inside a circular billiard table of radius R (see Fig. 1.9). The coordinates of points
A and B are (−a, b) and (a, b), respectively. The point of possible reflection from
the wall is denoted by C , as before. Point C has coordinates (R cos ϕ, R sin ϕ). The
action is a function of two variables: collision time tc and angle ϕ:

I (tc, ϕ) = m
(R cos ϕ + a)2 + (R sin ϕ − b)2

tc
+m

(R cos ϕ − a)2 + (R sin ϕ − b)2

θ − tc
.
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Fig. 1.9 Circular billiard
table

All other parameters of the action, m, R, a, b and the motion time θ, are assumed
to be given. Function I (tc, ϕ) is defined for 0 < tc < θ and 0 ≤ ϕ ≤ 2π . For each
given ϕ, the function I (tc, ϕ) has a unique minimum with respect to tc (check). For
each given tc, I (tc, ϕ) is periodic and smooth with respect to ϕ. Therefore, if it has a
minimum with respect to ϕ, it must have a maximum with respect to ϕ as well. The
graphs of the function of ϕ mintc I (tc, ϕ), are shown in Fig. 1.10 for two choices of
(a, b): a/R = 0.3, b/R = 0.3 (upper curve) and a/R = 0.8, b/R = 0.3 (bottom curve).
It is seen that the point ϕ = π/2, which apparently fits the law of elastic collisions,
can be a point of minimum (left graph) and a point of maximum (right graph).

Mopertuis proclaimed the variational principle the general law of Nature and the
most fundamental proof of the existence of God.

The mathematical context to the Mopertuis principle was imparted by Euler. In
particular, Euler realized that the Mopertuis principle is applicable only to infinitely
small segments of the path, ds, and in order to obtain the action for the whole
path, one needs to sum the actions of all segments. Therefore, the action should
be written as

I =
∫

mvds

or, since v = ds

dt
, as

I =
t1∫

t0

mv2dt.

The quantity being integrated is equal to the kinetic energy up to factor 2 (Leibniz
called the kinetic energy the living force, as the opposite of pressure – the dead
force).
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Fig. 1.10 Function
mintc I (tc, ϕ) of ϕ for two
values of (a, b) : a/R = 0.3,
b/R = 0.3 (upper curve),
a/R = 0.8, b/R = 0.3
(bottom curve). The point
ϕ = π/2 can be a point of
minium (left) and a point of
maximum (right)

In the 1750s the letters claimed to have been written by the late Leibniz were
published, from which one may conclude that Leibniz knew about the extreme prop-
erties of action. Besides, it was asserted that the action can achieve in a real process
not only some minimum, but also maximum value. This publication provoked great
controversy which, in turn, raised some philosophical, moral and priority issues. It
was a rare event when a purely scientific issue became a matter of public interest.
Philosophers, writers, kings and their courts, took part in heated debates. One of the
echoes of these debates reached us in the form of Voltaire’s pamphlet “Histoire du
docteur Akakia et du natif de Saint-Malo” (1752).

Finally, the following point of view crystallized: for some motions, the action
reaches its minimum value, while for the others it may have the maximum value; or,
in the language of the time, “Nature is a thrifty mother, who manages with the least
possible, if she can do so; but, if not, she pays honestly and as much as possible, so
as not to be reputed a miser”.5

Although it was understood from the very beginning that action may have either
minimum, maximum or stationary value, historically the term “principle of least

5 From a letter by Kraft to Euler (1753).
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action” gained a foothold. We will follow the tradition and use this term, though
one should bear in mind that in some cases the term “principle of stationary action”
might be more appropriate.

1.3 Euler’s Calculus of Variations

The discovery of the least action principle made obvious the necessity of a technique
to deal with the so-called integral functionals,

I (x (t)) =
t1∫

t0

L

(
x (t) ,

dx

dt
, t

)
dt. (1.11)

This technique was developed by L. Euler. The first question to answer was: if x̌ (t)
is the minimizing function of the functional (1.11), which equation must it obey?
The key role in establishing such an equation is played by the variation, δ I, of the
functional I. To define δ I, consider infinitesimally small variations, δx (t) , of some
function, x (t), and the difference,

I (x (t)+ δx (t))− I (x (t)) . (1.12)

The difference (1.12) in which one keeps only terms of the first order with respect
to δx (t) and neglects all terms of higher orders is called the variation δ I of the
functional I (x (t)). The variation δ I is a functional of two arguments, x (t) and
δx (t). To underline that δ I is a functional of two functions, x (t) and δx (t), one
also uses the notation

δ I = I ′ (x (t) , δx) . (1.13)

Here the prime emphasizes the similarity with usual derivative.
Since all the terms of higher orders are omitted in the difference (1.12), δ I de-

pends on δx linearly, i.e. for any two functions δx1 and δx2,

I ′ (x (t) , δx1 + δx2) = I ′ (x (t) , δx1)+ I ′ (x (t) , δx2) , (1.14)

and for any number λ,

I ′ (x (t) , λδx) = λI ′ (x (t) , δx) . (1.15)

Functions, x (t) , may be subject to some constraints. Then δx (t) are not arbitrary
because x̌ (t) + δx must obey the constraints. Functions x (t) and δx obeying the
constraints are called admissible.
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If x̌ (t) is the minimizing element of the functional, I (x (t)), then the variation
of the functional, I (x (t)) , computed at the function, x̌ (t) , must vanish for any
admissible variations, δx (t),

δ I = I ′ (x̌ (t) , δx) = 0. (1.16)

Indeed, assume the opposite: δ I �= 0 for some δx0 �= 0. Then, there is δx1, for
which δ I < 0: if I ′ (x̌ (t) , δx0) < 0, we put δx1 = δx0; if I ′ (x̌ (t) , δx0) > 0, we
put δx1 = −δx0 and, due to linearity of δ I with respect to δx, I ′ (x̌ (t) , δx1) =
I ′ (x̌ (t) ,−δx0) = −I ′ (x̌ (t) , δx0) < 0. For sufficiently small δx1, I (x̌ (t)+ δx1)−
I (x̌ (t)) ≈ δ I , and δ I being negative means that the value of the functional I (x (t))
on the function x̌ (t) + δx1 is smaller than that on the function x̌ (t). We arrive at a
contradiction. Hence, (1.16) holds true. This equation is sometimes called the Euler
equation for the functional I .

Let us find the variation of the functional (1.11). Since

I (x (t)+ δx (t))− I (x (t)) =

=
t1∫

t0

L

(
x (t)+ δx,

d

dt
(x (t)+ δx) , t

)
dt −

t1∫

t0

L

(
x (t) ,

dx

dt
, t

)
dt

=
t1∫

t0

(
L

(
x (t)+ δx,

d

dt
(x (t)+ δx) , t

)
− L

(
x (t) ,

dx

dt
, t

))
dt,

computing of δ I is reduced to keeping the linear terms with respect to δx in the
integrand. We have

δ I =
t1∫

t0

(
�L

�x
δx + �L

�ẋ

dδx

dt

)
dt. (1.17)

Here and in what follows dot denotes the time derivative.
Now we have to draw the consequences from (1.11),

δ I =
t1∫

t0

(
�L

�x
δx + �L

�ẋ

dδx

dt

)
dt = 0. (1.18)

Consider first a simpler issue: let for some function A (t) and for any continuous
function δx (t)

t1∫

t0

A (t) δx (t) dt = 0. (1.19)
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What can one say about the function A (t)? If the function A (t) is continuous
then

A (t) = 0. (1.20)

This is obvious: if at some point t∗, A (t∗) �= 0, then A (t) is not zero and does
not change its sign in some small vicinity, V, of the point t∗. Choosing δx (t) zero
outside V and positive inside V we obtain

t1∫

t0

A (t) δx (t) dt =
∫

V

A (t) δx (t) dt.

This integral is not equal to zero because A (t) δx (t) does not change the sign
inside V, and we arrive at a contradiction with (1.19).

The statement made is called the main lemma of calculus of variation.
We may strengthen the main lemma: Equation (1.20) remains valid if we narrow

the admissible functions δx (t) in (1.19) by the functions δx vanishing at any finite
number of points of the segment [t0, t1] including the end points. Indeed, from the
previous reasoning A (t) = 0 at all points excluding the points where δx (t) = 0. By
continuity, A (t) = 0 on the entire segment [t0, t1].

This extension of the main lemma yields an important consequence: if

t1∫

t0

A (t) δx (t) dt + B0δx (t0)+ B1δx (t1) = 0, (1.21)

for any function δx (t) , then

A (t) = 0, B0 = 0, B1 = 0. (1.22)

Indeed, considering (1.21) for δx (t0) = δx (t1) = 0, we obtain from the exten-
sion of the main lemma, that A (t) = 0. Then, from (1.21) for arbitrary δx (t0) and
δx (t1),

B0δx (t0)+ B1δx (t1) = 0. (1.23)

Setting first δx (t1) = 0 and δx (t0) arbitrary, we find from (1.23) that B0 = 0. This
equation along with (1.23) yield, for arbitrary δx (t1) , B1 = 0.

If we have a number of functions, A1 (t) , . . . , An (t) and a number of variations,
δx1 (t) , . . . , δxn (t), and

t1∫

t0

(A1 (t) δx1 (t)+ . . .+ An (t) δxn (t)) dt = 0, (1.24)
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for any choice of functions δx1 (t) , . . . , δxn (t) , then

A1 (t) = 0, . . . , An (t) = 0. (1.25)

This statement can be derived from the main lemma: first we set δx2 = . . . =
δxn = 0. Then (1.24) transforms to (1.19), and we obtain A1 = 0. Putting
δx3 = . . . = δxn = 0 we transform (1.24) to the equation

t1∫

t0

A2 (t) δx2 (t) dt = 0.

Hence, A2 (t) = 0. Continuing this procedure, we obtain (1.25).
Formally, (1.18) has the form (1.24) with

A1 = �L

�x
, δx1 = δx, A2 = �L

�ẋ
, δx2 = dδx

dt
.

We cannot conclude, however, that �L/�x and �L/�ẋ are zero, because the varia-
tions δx and dδx/dt are not independent: for the prescribed δx1 = δx, the variation
δx2 = dδx/dt is determined completely.

To put (1.18) into the form suitable for the application of the main lemma we
integrate the second term by parts

t1∫

t0

(
�L

�x
δx + �L

�ẋ

dδx

dt

)
dt =

=
t1∫

t0

(
�L

�x
δx + d

dt

(
�L

�ẋ
δx

)
− δx

d

dt

�L

�ẋ

)
dt = (1.26)

=
t1∫

t0

(
�L

�x
− d

dt

�L

�ẋ

)
δxdt + �L

�ẋ
δx

∣∣∣∣
t=t1

− �L

�ẋ
δx

∣∣∣∣
t=t0

= 0.

Since the function δx (t) is arbitrary, from (1.26) we obtain for the minimizing
function the ordinary differential equation

�L

�x
− d

dt

�L

�ẋ
= 0, (1.27)

and the boundary conditions

�L

�ẋ

∣∣∣∣
t=t1

= 0,
�L

�ẋ

∣∣∣∣
t=t0

= 0. (1.28)
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If �L/�ẋ does depend on ẋ, (1.27) is an equation of second order. Supplementing
this equation with the two boundary conditions (1.28), we obtain a sensible bound-
ary value problem.

Equations (1.27) and (1.28) are called Euler equations of the minimization prob-
lem. Their equivalent form is the equation I ′ (x̌ (t) , δx) = 0.

The admissible functions in variational principles may obey some kinematic con-
straints. For example, the values of the admissible functions at the ends, t0 and t1,
can be given:

x (t0) = x0, x (t1) = x1. (1.29)

Then, since the varied functions, x (t)+ δx (t), must obey the same conditions,

x (t0)+ δx (t0) = x0, x (t1)+ δx (t1) = x1,

the variations must vanish at the ends:

δx (t0) = 0, δx (t1) = 0.

The last two terms in (1.26) become zero, and the only consequence of (1.26) is
(1.27). It must be accomplished with the two boundary conditions (1.29). We have
again a sensible boundary value problem. We observe here a general feature of the
variational approach: in a generic case, the number of equations it provides is as
many as necessary to solve the problem.

The integral functional of many functions, x1 (t) , . . . , xn (t),

I (x1 (t) , . . . , xn (t)) =
t1∫

t0

L (x1, . . . , xn, ẋ1, . . . , ẋn, t) dt,

is considered similarly. We have

δ I =
n∑

i=1

t1∫

t0

(
�L

�xi
δxi + �L

�ẋi

dδxi

dt

)
dt =

=
n∑

i=1

⎛
⎝

t1∫

t0

(
�L

�xi
− d

dt

�L

�ẋi

)
δxi dt +

[
�L

�ẋi
δxi

]t1

t0

⎞
⎠ .

If xi (t) are the minimizing functions, then they satisfy the equation

�L

�xi
− d

dt

�L

�ẋi
= 0. (1.30)
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A few words about terminology. When dealing with functions of a finite number
of variables, f (x1, . . . , xn) , it is convenient to use a geometrical language consid-
ering x1, . . . , xn as coordinates of a point x in some n-dimensional space. Accord-
ingly, every time when it cannot cause confusion, we suppress indices and write
f (x) instead of f (x1, . . . , xn) or f (xi ). We keep the notation f (x1, . . . , xn) or
f (xi ) only if it is worth emphasizing that f is a function of many variables. The
major feature of the x-space used is the linearity of the space: for any number λ

and the point x , the space contains the point λx (its coordinates are λx1, . . . , λxn),
and for any two points x ′ and x ′′ the space contains their sum x ′ + x ′′ (if x ′1, . . . , x ′n
and x ′′1 , . . . , x ′′n are the coordinates of the points x ′ and x ′′, respectively, then, by
definition, the coordinates of the point x ′ + x ′′ are x ′1 + x ′′1 , . . . , x ′n + x ′′n ).

Similarly, considering a functional I (x (t)) , it is convenient to think of its
argument as a point in some space of functions. The space of functions (or func-
tional space) is linear because for each number λ and each function x (t) the func-
tion, λx (t) , is defined, and for each two functions, x1 (t) and x2 (t), the functions
x1 (t)+ x2 (t) is defined. In accordance with such a view, the point of the functional
space at which δ I = 0 is called the stationary point of the functional, and the value
of the functional at this point the stationary value. We will also use the following
notation: the point of maximum of the functional I (x (t)) is marked by “hat”, x̂ (t) ,

the point of minimum by the “check” sign, x̌ (t) , and the stationary point by the

cross sign,
×
x (t). Of course, the points of minimum and maximum are also the sta-

tionary points, and the notation
×
x is used if we seek a stationary point or if we are

not certain about the type of the stationary point.

1.4 Lagrange Variational Principle

The development of the least action principle was completed by Lagrange. To
present his final version of the principle in modern terms we first consider the notion
of generalized coordinates.

The construction of any mathematical model of a mechanical system begins with
a description of its kinematics, i.e. a description of all possible configurations. To do
this, one has to specify a set of numbers, q1, . . . , qn , which determine the configu-
ration of the system. Then motion of the system is described by functions of time t ,
q1(t), . . . , qn(t). “To know motion” means “to know the functions q1(t), . . . , qn(t).”
The n-dimensional space Q of points q with coordinates q1, . . . , qn is called the
configuration space , or Q-space. The coordinates, q1, . . . , qn, are called the gen-
eralized coordinates if they are independent in the sense that any curve in Q-space
represents some motion. The number n is called the number of degrees of freedom.

Example 16 The position of a particle on a line is given by one number q – the
coordinate of the point on the line. The motion of a particle is described by the

6 Examples are numbered separately within each section.
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function q(t). The coordinate space is the line. If the particle moves between two
walls with coordinates 0 and a, the admissible values of q are the numbers between
0 and a (Fig. 1.11).

Fig. 1.11 Particle moving
along the line between the
two walls

Example 2. The position of a pendulum (Fig. 1.12a) in a plane is given by one
number, q, the angle between the rod and the vertical axis. So, the pendulum is
a system with one degree of freedom. The angle q can take any value between 0 and
2π . Two values of q, 0 and 2π , correspond to the same position of the pendulum.
Combining these two points of the segment, one gets a circle, so one can say that the
Q-space is a circle. The Cartesian coordinates of the position of the pendulum x, y
are not generalized coordinates because they are dependent: they obey the equation
x2 + y2 = �2, where � is the length of the rod.

Fig. 1.12 Generalized
coordinate and Q-space for a
pendulum

Example 3. Each position of a double pendulum (Fig. 1.13) in a plane is specified by
two angles, q1 and q2. This is an example of a system with two degrees of freedom.
Each angle can have any value between 0 and 2π , and the Q-space is a square
(Fig. 1.14a).

The points on the segments O A (by O we denote the origin) and BC with the
same q2 coordinate correspond to the same position of the pendulum. Combining
these two segments, one gets a cylinder (Fig. 1.14b); the position of the pendu-
lum corresponds to the points on the lateral surface of the cylinder. The points
on the top and the bottom circles of the cylinder in Fig. 1.14b also correspond to
the same q2 positions of the pendulum. Combining these circles one gets a torus
(Fig. 1.14c). There is a one-to-one correspondence between points of the torus and
positions of the pendulum. One can say that the Q-space of the double pendulum
is the torus. Any motion of the double pendulum is displayed by a curve on the
torus.
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Fig. 1.13 Generalized
coordinates for a double
pendulum

Example 4. A particle in three-dimensional space is, obviously, a mechanical system
with three degrees of freedom. The generalized coordinates q1, q2, q3 coincide with
the Cartesian coordinates of the particle in space. N particles in three-dimensional
space form a system with 3N degrees of freedom.

Consider a mechanical system which is described by a finite number of general-
ized coordinates q1, . . . , qn . The set of coordinates qi (i = 1, . . . , n) will be denoted
by q. Each motion of the system corresponds to a trajectory q = q (t) in the config-
urational space Q.

Inertial properties of the system are characterized by a function of q and q̇ ,
K (q, q̇), which is called kinetic energy. By definition, in an inertial observer’s
frame, the kinetic energy is one-half of the sum of the products of the masses and
squared velocities of all parts of the mechanical system. Usually, velocities depend
on q̇i linearly, and kinetic energy is quadratic with respect to q̇i :

K = 1

2

∑
i, j

mi j q̇i q̇ j . (1.31)

Fig. 1.14 Q-space of a double pendulum; small circles and squares mark the points in Q-space
which correspond to the same position of the pendulum and should be identified
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Kinetic energy may be considered as a primary characteristic of mechanical sys-
tems. Then masses can be defined, as was suggested by H. Poincaré, as coefficients
of this quadratic form. Formula (1.31) is valid only in inertial frames. In all further
considerations, the observer’s frame is assumed to be inertial. The corresponding
results in non-inertial frames are obtained by change of coordinates.

In the Lagrange variational principle, it is not essential that K is a quadratic form;
kinetic energy can be any positive-valued function K (q, q̇) homogeneous of second
order with respect to q̇ . Homogeneity means that for any λ,

K (q, λq̇) = λ2 K (q, q̇) . (1.32)

Homogeneous functions of the second order obey the identity

∑
i

q̇i
�K

�q̇ i
= 2K (q, q̇) . (1.33)

This identity follows from (1.32) by differentiation of (1.32) with respect to λ and
setting λ = 1. Obviously, quadratic forms obey both (1.32) and (1.33).

Formulas (1.31) and (1.33) can be written shorter if we employ notation from
tensor analysis: repeated indices in a formula implies summation over these indices.
This convention allows us to drop the summation sign in (1.31) and (1.33) to write

K = 1

2
mi j q̇i q̇ j , q̇i

�K

�q̇ i
= 2K (q, q̇) . (1.34)

Summation over repeated indices is always assumed throughout the book.
Another notation from tensor analysis which we will employ is the use of low

and upper indices. The reader who is not familiar with tensor analysis may assume
that quantities with upper and lower indices coincide, for example, q1 = q1. This
is always true in Cartesian coordinates. The differences appear only in curvilinear
coordinates. The summation rule in invariant7 form requires the summation to be
taken over repeated one upper and one low indices. For example, an invariant form
of the first Equation (1.34) is

K = 1

2
mi j q̇

i q̇ j . (1.35)

The reader may ignore these nuances and identify the quantities with upper and
low indices until Chap. 3, where an adequate treatment of continuum mechanics
requires the invariant tensor language. We also prefer to write all the equations for
mechanical systems with a finite number of degrees of freedom in an invariant form.

Internal interactions in a mechanical system are characterized by its internal en-
ergy, a function U (q). For any isolated system the law of conservation of energy
holds:

7 I.e. independent of the choice of the coordinate system.
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K (q, q̇)+U (q) = E = const. (1.36)

Consider two points, q0 and q1, in the configurational space Q and the trajecto-
ries, q = q (t), which begin at a point q0 at time t0 and end at a point q1 at time t1
(see Fig. 1.15):

q (t0) = q0, q (t1) = q1. (1.37)

We denote the set of such trajectories by M.

The law of conservation of energy (1.36) does not put constraints on the possible
trajectories: for any trajectory, q (t), connecting the points q0 and q1, one can require
that (1.37) holds. This equation will determine the rate of passing the trajectory, and,
thus, the time, t1, of arrival at the point q1.

Indeed, according to (1.32), we can write

K (q, q̇) = K (q, dq)

dt2
.

Therefore, for a given constant E ,

dt =
√

K (q, dq)√
E −U (q)

, (1.38)

and the time of arrival at the point q is determined by the integral over the trajectory
going from q0 to q:

t = t0 +
q∫

q0

√
K (q, dq)

E −U (q)
.

Accordingly, the arrival time at the point q1 is

Fig. 1.15 Admissible
trajectories in the
configurational space Q
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t1 = t0 +
q1∫

q0

√
K (q, dq)

E −U (q)
.

The arrival time depends on the trajectory.
Let us introduce action as the time integral of kinetic energy:

I =
t1∫

t0

K (q, q̇) dt. (1.39)

Lagrange variational principle. The true motion is a stationary point of the action
functional (1.39) on the set M narrowed by an additional constraint: energy is
conserved along each path.

Note that in the Lagrange variational principle the time at which the system ar-
rives at the point q1 is not fixed. This time is determined by the trajectory. The arrival
time is varied when one varies the trajectory.

We will see that the equations, determining the true trajectory, are

�L

�qi
− d

dt

�L

�q̇ i
= 0, (1.40)

where L is the difference of kinetic and potential energies,

L = K −U. (1.41)

The left hand side of (1.40) is usually denoted by the symbol,

δL

δqi
≡ �L

�qi
− d

dt

�L

�q̇ i
,

which is called the variational derivative of the function L (q, q̇, t) , while L (q, q̇, t)
is called Lagrange function or Lagrangian.

The equations of the type (1.40) are the basic equations of classical mechanics.
They are called Lagrange equations.

The derivation of (1.40) from Lagrange variational principle is given in
Appendix D. Equation (1.40) will be obtained further from the Hamilton variational
principle which requires fewer technicalities.

The principle of least action was not explained very clearly in Lagrange’s An-
alytical Mechanics. As Jacobi pointed out in his Lectures on Dynamics [140],
“This principle is presented in almost all textbooks, even in the best ones, like
Poisson’s, Lagrange’s and Laplace’s, in such a way that, in my opinion, it is be-
yond comprehension.” The derivation given in Appendix D was published 3 years
after Lagrange’s death by Rodrigues [257]. The obscurities instigated Hamilton,
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Ostrogradsky, Jacobi, and Poincaré to examine the subject further. This brought up
a number of modifications of the principle of least action.

1.5 Jacobi Variational Principle

Jacobi proposed to eliminate time from the variational principle by means of the
energy equation. Indeed, using relation (1.38), one can write the action functional
in the form

I =
t1∫

t0

K dt =
q1∫

q0

√
E −U (q)

√
K (q, dq). (1.42)

Here integration is taken over a path connecting the points q0 and q1. We arrive at
Jacobi variational principle. The true motion is the stationary point of functional
(1.42) on the set of all trajectories which begin at point q0 and end at point q1 and
which satisfy the law of conservation of energy (1.36).

The action functional taken in the form (1.42) does not depend on the rate with
which the path is passed. The rate is controlled by the energy equation.

The Jacobi principle takes an especially beautiful form in the case when internal
energy does not depend on q. Then, up to a constant factor,

I =
q1∫

q0

√
2K (q, dq),

(the factor 2 is put in for convenience). For a quadratic function, 2K (q, q̇) =
gi j (q) q̇ i q̇ j , and

I =
q1∫

q0

√
gi j (q) dqi dq j .

If one measures distances in Q-space by means of kinetic energy form, i.e. the
squared distance between the points q and q+dq is set equal to gi j (q) dqi dq j , then
the principle of least action states that true motion corresponds to geodesic lines in
Q-space, i.e. the shortest paths connecting the points q0 and q1.

1.6 Hamilton Variational Principle

Hamilton put the principle of least action in the form which is used nowadays most
widely. He noticed that it is not necessary to take into account the law of conserva-
tion of energy if the action functional is taken in the form
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I =
t1∫

t0

L (q, q̇, t) dt. (1.43)

L (q, q̇, t) = K (q, q̇, t)−U (q, t) .

It turns out that energy will be conserved automatically due to Euler equations
for the functional (1.43) if K and U do not explicitly depend on time. An advantage
of this modification of the least action principle is the possibility to consider time t1
fixed and to avoid the energy constraint (1.36) on the trajectories.
Hamilton variational principle. The true motion is the stationary point of the
functional (1.43) on the set of all paths beginning at point q0 and instant t0 and
ending at point q1 at instant t1.

Somewhat later, and independently of Hamilton, Ostrogradsky arrived at the
same statement.

Hamilton variation principle yields the dynamical equations of mechanics (1.40):
this follows from (1.30). Consider these equations for the above-mentioned examples.

Example 1 of Sect. 1.58 (continued) Denote the mass of the particle by m. Then

K = 1

2
mq̇2.

Potential energy contains only the particle-wall interaction energy; denote it by
�ε(q). So,

L = 1

2
mq̇2 −�ε(q). (1.44)

Substituting (1.44) into (1.40) we get the equation of particle motion:

mq̈ + d�ε (q)

dq
= 0. (1.45)

If the function �ε(q) is of the form shown in Fig. 1.16a, i.e. it is equal to zero
on the segment [ε, a − ε] and grows to infinity in the vicinities of the points q = 0
and q = a, then (1.45) describes elastic collisions of the particle and the walls.
That means, by definition, that the particle, moving toward a wall with velocity v,
has the velocity −v after collision. Indeed, (1.45) admits the reduction of the order:
multiplying it by q̇ we have

d

dt

(
1

2
mq̇2 +�ε(q)

)
= 0

or

1

2
mq̇2 +�ε(q) = E (1.46)

8 The section number is mentioned only when we refer to the examples from a different section.
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Fig. 1.16 Particle-wall interaction energy

where E is a constant, depending on the initial conditions. Consider a particle, mov-
ing toward the wall q = a (q̇ > 0). When q is outside the particle-wall interaction
region, �ε(q) = 0, and, as follows from (1.46), the velocity of the particle is con-
stant. As soon as the particle comes into the interaction zone [a − ε ≤ q ≤ a], the
particle velocity begins to change. As the particle penetrates the interaction zone,
the interaction energy grows and, as follows from (1.46), the velocity decreases. At
point B on Fig. 1.16b, where the interaction energy �ε is equal to the initial energy
of the particle E , the velocity q̇ is equal to zero in accordance with (1.46). However,
this point is not an equilibrium point because, as follows from (1.45), the accelera-

tion q̈ is not equal to zero at B. Since
d�ε (q)

dq
< 0 at B, the particle starts moving

in the opposite direction. The particle’s velocity grows because �ε(q) decreases;
and, when the particle escapes the interaction zone, the velocity becomes equal to
the initial velocity with the opposite sign. So, the function �ε(q) really describes an
elastic collision. In the limit ε→ 0, function �ε (q) becomes the function

�(q) =
{

0 if 0 ≤ q ≤ a

+∞ if q < 0 or q > a
(1.47)

Every time we use this function we should bear in mind a smoothed function
�ε(q) with a parameter ε, which is much smaller than any characteristic length of
the problem. Note that the functions �ε(q) and �(q) depend on the position of the
wall a. If one of the walls moves, a depends on time. Then, the potential energy
and, thus, the Lagrange function explicitly depend on time.

If the particle is attached to a spring, and the spring is stress-free when q = q0,

then

U (q) = 1

2
k(q − q0)2,
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k being the spring rigidity. The Lagrange function of the particle on a spring is

L = 1

2
mq̇2 − 1

2
k(q − q0)2,

and the Lagrange equations of motion (1.40) transform to the usual dynamical equa-
tion of an oscillator:

mq̈ + k(q − q0) = 0.

Now we proceed to a less elementary case.

Example 2 of Sect. 1.5 (continued) Let us find the Lagrange function of a pendulum.
We refer the motion of the pendulum to Cartesian coordinates (x, y), shown in
Fig. 1.17. Assume that the rod is massless and the mass m is concentrated at the
end of the rod. If x(t), y(t) are the coordinates of the mass point, then the kinetic
energy is

K = 1

2
m
(
ẋ2 + ẏ2

)
. (1.48)

From Fig. 1.17 we have

x = � sin q, y = � cos q. (1.49)

Let us suppose that the length � can also change with time; this corresponds, for
instance, to the case of a mass on a rope, which could be pulled up through a hole
(Fig. 1.18). The dependence of � on time is supposed to be given. Differentiating
(1.49), we get

ẋ = �̇ sin q + � cos q q̇, ẏ = �̇ cos q − � sin q q̇. (1.50)

Substituting (1.50) into (1.48), we find the kinetic energy:

K = 1

2
m
(
�̇2 + �2q̇2

)
. (1.51)

Fig. 1.17 To calculation of
the kinetic energy of a
pendulum
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Fig. 1.18 The case when l
depends on time

l

Suppose that gravity is the only force acting on the pendulum. The gravitational
potential energy is equal to the product of the mass m, the gravity acceleration con-
stant g, and the height of the mass above some fixed level. One can choose the
bottom position of the pendulum as the level of zero potential energy. Then, it is
seen from Fig. 1.17 that

U = mg(�− � cos q).

So,

L = 1

2
m�̇2 + 1

2
m�2q̇2 − mg�(1− cos q). (1.52)

The Lagrange equation of motion takes the form

d

dt

(
m�2q̇

)+ mg� sin q = 0. (1.53)

The variation of the first term in (1.52) is zero because �(t) is given.
If � is constant, then (1.53) is reduced to the equation of a “mathematical pendu-

lum”:

q̈ + g

�
sin q = 0. (1.54)

Note that (1.54) does not contain the mass of the pendulum. This yields the
remarkable feature of pendulum vibrations: the frequency of vibration does not
depend on the pendulum mass. This property was first experimentally observed by
Galileo and was a cornerstone of Newtonian mechanics.

If � is not constant, then an additional “force” enters the governing equation:

q̈ + g

�
sin q = −2q̇

�̇

�
.

It is quite cumbersome to obtain these equations from the “force concept.”
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Example 3 of Sect. 1.5 (continued). The reader can check that the double pendulum
has the following Lagrange function:

L = m1 + m2

2
�2

1q̇2
1 +

m2

2
�2

2q̇2
2 + m2�1�2q̇1q̇2 cos(q1 − q2)

+(m1 + m2)g�1 cos q1 + m2g�2 cos q2.

The notation is shown in Fig. 1.19; �1, �2 are assumed constant.

Fig. 1.19 Notation for the
double pendulum

Example 4 of Sect. 1.5 continued. The Lagrange function of a particle in a box is

L = 1

2
m
(
ẋ2 + ẏ2 + ż2)−�(x)−�(y)−�(z),

where � is the function (1.47). The set of N particles with masses m1, . . . , m N has
the Lagrange function

L = 1

2
m1

(
ẋ2

1 + ẏ2
1 + ż2

1

)+ · · · + 1

2
m N

(
ẋ2

N + ẏ2
N + ż2

N

)− (1.55)

−�(x1)−�(y1)−�(z1)− · · · −�(xN )−�(yN )−�(zN ).

Note that the particles interact in this case only with the walls, and two or more
particles are allowed to be at the same space point. The model of spherical particles
with some finite radius a, experiencing elastic collisions, is more realistic. In this
case one has to include in (1.55) the particle-particle interaction energy:

∑
α<β

�(|rα − rβ |).

Here, Greek indices run through the values 1, 2, . . . , N ; rα is the position vector of
the center of the αth sphere, |rα| is the length of the vector, rα , and the function �
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is shown in Fig. 1.20a. As before, in dealing with function �, one should bear in
mind a smoothed function �ε (Fig. 1.20b) and consider the limit ε → 0. In some
physical models an attraction of particles at long distances is added (Fig. 1.20c).

Fig. 1.20 Particle-particle interaction energy

For Hamilton, the formulation of the variational principle was a by-product of the
study on integration of dynamical equations. He considered the action functional as
a function of initial and final points of the trajectory, I = I (q1, q2), and derived
the partial differential equation for I (q1, q2) which is equivalent to dynamical equa-
tions. This construction was used later by Schrödinger in motivations for the basic
equation of quantum mechanics.

1.7 Hamiltonian Equations

The equations of mechanics (1.40) form a system of n ordinary differential equa-
tions of second order. Usually, it is more convenient to deal with a system of 2n
ordinary differential equations of first order. Let us put the equations of motion
(1.40) into this special form.

First, consider the systems with one degree of freedom and the Lagrange function

L = 1

2
mq̇2 −U (q).

The equation of motion (1.40) is the second-order equation

d

dt
(mq̇)+ �U (q)

�q
= 0. (1.56)
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To rewrite it as a system of two equations of first order, one has to introduce a new
required function, the momentum p = mq̇. Then (1.56) can be written as a system
of two ordinary differential equations of the first order,

q̇ = 1

m
p, ṗ = −�U

�q
.

To make a similar transformation in the general case we introduce the new un-
known functions, the momenta, by the relations

pi =
�L

(
qk, q̇k, t

)

�q̇ i
. (1.57)

Suppose that we can solve (1.57) with respect to q̇k :

q̇k = Ak(qi , pi , t). (1.58)

If L is a quadratic function of q̇ , then (1.57) is a system of linear equations with
respect to q̇ , and velocities, q̇, depend on momenta p linearly. This is the usual case.
There are, however, mechanical systems for which L is not a quadratic function of
velocities (see Sects. 9.6 and 9.7). Therefore, we proceed without the assumption
that (1.57) is a linear system of equations.

Using (1.58) one can rewrite Lagrange equations (1.40) as a system of the first-
order equations,

q̇k = Ak(q, p, t), ṗk = �L (q, q̇, t)

�qk

∣∣∣∣
q̇=A(q,p,t)

. (1.59)

It is implied that the expression of q̇ in terms of p and q is substituted in the second
equation (1.59).

It turns out that equations (1.59) take an especially elegant form if they are written
in terms of a function of the variables p and q, defined by the relation

H (p, q, t) = pi q̇
i − L(qi , q̇ i , t). (1.60)

To calculate H one has to substitute in the right-hand side of (1.60) the expressions
of q̇ in terms of p and q (1.58), found from (1.57). The function H obtained in
this way is the Legendre transformation of the Lagrange function with respect to
the generalized velocities q̇i ; the Legendre transformation is considered in detail in
Chap. 5.
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The functions Ak can be written in terms of function H in a simple form:

q̇k = Ak = �H (p, q, t)

�pk
. (1.61)

Indeed, differentiating (1.60) with respect to pk and taking into account that q̇i

in the right-hand side of (1.60) are functions of p and q found from (1.57), we have

�H

�pk
= q̇k + pi

�q̇ i

�pk
− �L

�q̇ i

�q̇ i

�pk
. (1.62)

The two last terms in (1.62) are equal, due to (1.57), and we see that (1.61) holds
true. Similarly, differentiating (1.60) with respect to qk we obtain

�L

�qk
= − �H

�qk
.

So, the equation of motion can be rewritten in the form

q̇k = �H (p, q, t)

�pk
, ṗk = −�H (p, q, t)

�qk
. (1.63)

These equations and function H were introduced by Hamilton [123]. They are
called the Hamiltonian equations and Hamilton function (or Hamiltonian).

If the Lagrange function is the difference between the kinetic energy K and the
potential energy U , and K is quadratic with respect to q̇i , then H can be interpreted
as the total energy:

H = K + U. (1.64)

The reader is invited to check (1.64).
The derivative of the Hamiltonian function with respect to time along a trajectory

of the system can be found by using (1.63) and is equal to

d H

d t
≡ �H

�qk q̇k + �H

�pk
ṗk + �H

�t
= �H (p, q, t)

�t
. (1.65)

As follows from (1.60), the partial derivatives of H and L are linked as

�H (p, q, t)

�t
= −�L(q, q̇, t)

�t
.

The explicit dependence of H and L on time appears if some external objects act
on the system (such as in Example 2 where this dependence is due to the change of
� with time). If the system is isolated and does not interact with its surroundings,
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H and L do not depend on time explicitly. Then (1.65) transforms into the law of
conservation of energy:

d H (p(t), q(t))

dt
= 0 or H (p(t), q(t)) = E = const. (1.66)

Example 5 of Sect. 1.5 (continued). The Lagrange function of the pendulum is

L = 1

2
ml2q̇2 − mgl(1− cos q).

Therefore, the generalized momentum, p, is given by

p = �L

�q̇
= ml2q̇. (1.67)

From (1.60) we find the Hamilton function

H (p, q) = pq̇ − L = p2

2ml2
+ mgl(1− cos q). (1.68)

The Hamilton function is the total energy (the sum of the kinetic and potential ener-
gies). The equations of motion in Hamiltonian form are

ṗ = −�H

�q
= −mgl sin q, q̇ = �H

�p
= p

ml2
.

If l changes with time due to external action, the Hamilton function depends on
time explicitly through l.

Poincaré constructed a different version of the least action principle, in which the
action functional is defined on the trajectories in the phase space – the space of gen-
eralized coordinates q1, . . . , qn and momenta p1, . . . , pn . To obtain the expression
for the action functional one can plug in (1.43) function L determined from (1.60):

I =
t1∫

t0

(
pi q̇

i−H (p, q)
)
dt. (1.69)

It is easy to check that the stationary points of functional (1.43) are also the
stationary points of functional (1.69) on the set of all functions q (t) , p (t) which
satisfy the conditions q (t0) = q0, q (t1) = q1. Requiring the variation of functional
(1.69) to vanish yields the Hamiltonian equations.
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The functional

A =
t1∫

t0

pi q̇
i dt,

is sometimes called the shortened action.
In physics, the methods of derivation of equations using functional (1.43) and

functional (1.69) are called the Lagrangian and Hamiltonian formalisms, respec-
tively.

Both versions of the least action principle enjoyed the most popularity, and in
current literature, the versions of Lagrange and Jacobi are rarely encountered.

1.8 Physical Meaning of the Least Action Principle

Forces vs energy. Usually, the laws of mechanics are formulated in an alternative
way using the notion of force. To discuss the differences, consider motion of a par-
ticle of mass m. In Cartesian coordinates xi , i = 1, 2, 3, motion of the particle is
described by the dependence of its coordinates on time: xi = xi (t). According to
Newton’s second law, mass times acceleration of the particle is equal to the force,
Fi , acting on the particle:

m
d2xi (t)

dt2
= Fi . (1.70)

The right-hand-side of this equation, force, represents the external action on the
particle. If there are no external actions, the right-hand-side of (1.70) is zero. This
fact has important consequences. First, (1.70) incorporates Galileo’s principle: an
isolated particle moves with constant velocity. Second, the frame of reference used
in writing (1.70) is inertial; an inertial frame is a frame of reference in which motion
of a free mass is uniform.

From an experimentalist’s point of view, (1.70) is nothing but a definition of
force. To find the force one has to measure the mass of the particle and its accelera-
tion, then the force is their product. Remarkably, in many cases, the force determined
in this way turns out to be a universal function of the position of the particle, xi , and

its velocity,
dxi

dt
. Then (1.70) becomes an ordinary differential equation of second

order. It allows one to find motion if the initial position and initial velocity of the
particle are given. The possibility to prescribe arbitrarily initial position and initial
velocity is another remarkable feature of our world (consider, for example, throwing
a stone: one can choose any starting point and any velocity, then the further path
of the stone is determined uniquely). The force is not necessarily a function of xi

and ẋ i : it may depend on the entire prehistory of motion (e.g. a body sinking in
water; see Sect. 13.3).
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Compare (1.70) with the Lagrange equation,

�L

�xi
− d

dt

�L

�ẋ i
= 0. (1.71)

We set Lagrange function to be the difference between kinetic and potential energy:

L = 1

2
m

dxi

dt

dxi

dt
−U (x, t) . (1.72)

By x, as usual, we denote the set of three coordinates, x1, x2 and x3. The governing
dynamic equation (1.71) takes the form

m
d2xi (t)

dt2
= −�U (x, t)

�xi
.

We see that the force corresponding to the Lagrange equation is always potential:

Fi = −�U (x, t)

�xi
. (1.73)

Such a property may seem to be too strong a constraint on possible forces encoun-
tered in Nature. The striking feature of our world is that all physical laws do follow
the potentiality rule at the microlevel. At least until now no experimental evidence
has been found to contradict (1.73) (see also further comments in Sect. 2.6). Per-
haps the principle of least action brings an adequate theory of micromotion. At
the macrolevel some additional (dissipative) terms may appear in (1.73). Further
discussion of this issue is given in Chap. 2.

Admitting that (1.73) holds we state that energy always exists. Then one can
eliminate forces from consideration and discuss the physical properties of the sys-
tem directly in terms of energy. This is a way which is accepted in modern physics.

Reciprocity of interactions. Existence of energy puts very strong constraints on
possible interactions in the system. We discuss these constraints for two examples.

Consider a two-dimensional motion of a mass particle attached to a set of springs
(Fig. 1.21). We choose the origin of the Cartesian coordinate system (x, y) at the
equilibrium position of the particle. Let the deviations of the particle from the equi-
librium position, x and y, be small. Then the potential energy of the system, U , may
be expanded over x and y in the vicinity of the point x = y = 0. Let us ignore terms
of the third and higher degrees in x and y:

U = U0 + ax x + ay y + 1

2
kx x2 + kxy xy + 1

2
ky y2. (1.74)
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Fig. 1.21 Sketch for the first
example

Then the forces acting on the particle in the axis directions, Fx and Fy , are

Fx = −
(
ax + kx x + kxy y

)
, (1.75)

Fy = −
(
ay + kxy y + ky y

)
.

Note right away the feature which will be used further without mention: linear rela-
tions between forces and displacements correspond to the quadratic dependence of
energy on displacements.

Since the particle position x = y = 0 is equilibrium, force must be zero at
x = y = 0. Thus, ax = ay = 0, i.e. the linear terms in energy are zero. The additive
constant U0 does not affect the equations of motion. Due to this, one usually says
that energy is defined up to a constant. This is true for the case under consideration.
Later on we will encounter the situation where an additive constant may play an
important role (see Sect. 7.4). So, forces are linked to displacements by the relations

Fx = −kx x − kxy y, (1.76)

Fy = −kxy y − ky y.

Such types of relations are usually called constitutive equations. The coefficients in
(1.76) are called rigidities of the system.

The term −kx x in (1.76) describes the force making the particle move to the
equilibrium position: if x > 0, the force −kx x is negative; if x < 0, the force −kx x
is positive; this, of course, assumes that the coefficient kx is positive. The force−ky y
has a similar meaning. The most important for our discussion are the interaction
forces −kxy y and −kxy x . The force −kxy y is the force in the x-direction caused by
the vertical deflection of y. The force −kxy x is the force in the y-direction caused
by the horizontal deflection of x . In general, these two forces may be expected to
have different rigidities, say,−k1 y and−k2x . The existence of energy implies that k1
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Fig. 1.22 Sketch for the
second example

must be equal to k2. Remarkably, this is a well-supported experimental fact provided
that all springs can be considered as purely elastic.

The existence of energy brings more sophisticated constraints on the admissible
constitutive equations in a nonlinear situation. Consider, for simplicity, the case of
the system which is symmetric with respect to the reflection x → −x , like the
system shown in Fig. 1.22. Due to the symmetry, energy U must be an even function
of x : the system gains the same energy as the particle is deflected in the x-direction
for x or −x . The rigidity kxy must be zero for all such systems. Let us write down
energy keeping the terms of the third order. There are four terms of the third order:
x3, x2 y, xy2 and y3. The terms x3 and xy2 cannot appear due to the evenness of
energy with respect to x . The term y3 brings a small correction to the quadratic term
y2. Thus, the only interesting effect may be expected from the interaction term x2 y.
So,

U = 1

2
kx x2 + 1

2
ky y2 + Ax2 y. (1.77)

For forces, we have

Fx = − (kx x + 2Axy) , (1.78)

Fy = −
(

Ax2 + ky y
)
.

We see that the deflection in the x-direction causes a vertical force proportional
to the squared deflection, while the deflection in the y-direction causes a horizontal
force proportional to the product of the deflections in both directions. Moreover,
the rigidity in the horizontal force is twice that in the vertical force. It would be
hard to anticipate such a peculiar behavior of the system staying entirely within the
force concept; it is caused only by the existence of energy. Remarkably, constitutive
equations of the form (1.78) are supported experimentally in a similar phenomenon
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of the torsion-extension interaction in isotropic elastic beams, the so-called Poynting
effect.

Inertial reciprocities. Accepting Lagrange equations as the basic governing equa-
tions of mechanics assumes more than just the existence of energy. We, in fact,
claim the existence of the Lagrange function. The Lagrange function contains the
complete information on the physical properties of the system. The special form
of Lagrange equations (1.71) indicates that another kind of reciprocity appears if
mass depends on generalized coordinates. Such a situation is encountered, for ex-
ample, for rigid bodies moving in ideal fluids (see Sect. 13.3). In this case, Lagrange
function coincides with the total kinetic energy of the system, which is the sum of
kinetic energy of the rigid body and kinetic energy of fluid. The latter is proportional
to squared velocity of the body; the coefficient, called the attached (or apparent)
mass of the body, depends on the geometry of the flow region and, thus, on the
position of the body. Consider, for example, a body moving toward (or away from)
the wall (Fig. 1.23). Kinetic energy of the body is 1

2 m0(dy/dt)2. Kinetic energy
of the fluid motion caused by the motion of the body is proportional to (dy/dt)2.

The coefficient, 1
2 ma, depends on the distance between the body and the wall, y:

ma = ma(y), ma(y) being the attached mass.

Fig. 1.23 Sketch for the third
example

The Lagrange function of the system is

L = 1

2
(m0 + ma (y))

(
dy

dt

)2

,

The dynamical equation (1.71) takes the form

d

dt
(m0 + ma (y))

dy

dt
− 1

2

dma (y)

dy

(
dy

dt

)2

= 0.

We see that the force acting on the body is quite peculiar:
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F = − d

dt

(
ma (y)

dy

dt

)
+ 1

2

dma (y)

dy

(
dy

dt

)2

=

= −ma
d2 y

dt2
− 1

2

dma (y)

dy

(
dy

dt

)2

It requires quite an effort to obtain this relation without the variational approach.

Action and reaction. Consider two bodies, A and B, with masses m A and m B . The
bodies move in unbounded space. We model the bodies by point masses and denote
their coordinates by xi and yi , respectively. The bodies interact, and therefore the
potential energy of the system is a function of xi and yi : U = U (xi , yi ), while the
Lagrange function is

L = 1

2
m A

dxi

dt

dxi

dt
+ 1

2
m B

dyi

dt

dyi

dt
−U (xi , yi )

To determine the interaction forces between the bodies, we write down the dy-
namical equations of the system:

m A
d2xi

dt2
= Fi

AB = −
�U (xi , yi )

�xi
, m B

d2 yi

dt2
= Fi

B A = −
�U (xi , yi )

�yi

Here Fi
AB is the force acting on the body A from the body B, and Fi

B A the force
acting on B from A. In general, these two forces are different.

Assume that the translation of both bodies for an arbitrary vector, ci , does not
change the potential energy:

U (xi + ci , yi + ci ) = U (xi , yi ) (1.79)

Then the potential energy is a function of only the difference, xi−yi (it is enough
to set ci = −yi in (1.79), then U (xi , yi ) = U (xi − yi , 0)). Denote this function by
�(zi ) :

U (xi , yi ) = �(xi − yi )

Plugging this relation into the formulas for the forces we obtain

Fi
B A = −Fi

AB,

i.e. the force acting on the body B from the body A is equal in magnitude and
opposite in direction to the force acting from the body B on the body A. This is the
interaction law suggested by Newton. We see that this law has a simple underlying
cause in the energy terms.
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Meaning of the term “Hamiltonian structure”. Hamiltonian form of the gov-
erning equations implies quite essential features of physical interaction. We need,
however, make one important addition to the definition of the terms “Hamiltonian
form” and “Hamiltonian structure.” If these terms are understood “naively” as a
way to write a system of ordinary differential equations in the form of Hamiltonian
equations,9 then a system possessing a Hamiltonian structure is not a special one
because any system of ordinary differential equations can be written in Hamiltonian
form. Indeed, consider a system of ordinary differential equations:

dqi

dt
= Qi (q) , i = 1, . . . , n. (1.80)

Let us introduce the additional required functions, pi (t), and determine pi (t)
from the equations,

dpi

dt
= −pk

�Qk (q)

�qi
. (1.81)

Equations (1.80) and (1.81) form a Hamiltonian system of equations with the Hamil-
tonian,

H (p, q) = pk Qk (q) .

This emphasizes that the term “Hamiltonian structure” must also include fixing
the phase space of the system. By Hamiltonian structure of a mechanical system
we mean that the mechanical system is characterized by certain generalized coor-
dinates, q, and certain generalized momenta, p, and their dynamics is governed by
Hamiltonian equations. Stating that, we imply that the characteristics chosen, p and
q, are linked by the “Hamiltonian reciprocities.”

Lagrange function vs energy. Lagrange function is the difference of kinetic energy
and potential energy,

L = K −U.

Such a difference appears only in the least action principle and is not encountered
in other relations of classical mechanics. This causes some perplexity: what meaning
could one associate with minimization of the time integral of L? Here is an excerpt
from Principles of Mechanics by H. Hertz [130]:

9 Hamiltonian form of the equations is also often understood as a formal structure based on Pois-
son’s brackets. Such a structure captures the features of differential equations related to integra-
bility. We do not dwell on these issues here because they are not used further in the book. The
corresponding theory can be found in [5, 328].
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. . . The Hamilton principle . . . does not only make the present events dependent on the
future outcome, supposing the existence of intentions in Nature, but, which is worse, it
supposes the existence of meaningless intentions. The integral, the minimum of which the
Hamilton principle requires, does not have any simple physical meaning; what is more,
Nature’s purpose in achieving the minimum in a mathematical expression or making the
variation of this expression equal to zero seems unintelligible. . ..

An answer to the question on “Nature’s intention” was found after the creation of
the relativity theory. If a particle with the rest mass m0 is considered in a force field
creating the potential energy U (q), then the total energy of the particle is m0c2 +
U (q), c being the speed of light. Let t be the observer’s time. Then the proper
particle time t∗ is linked to the observer’s time by the relation

dt∗ =
√

1− v2

c2
dt.

Consider the integral of total energy over the proper time,

I =
∫

(m0c2 +U (q))dt∗ =
t1∫

t0

(
m0c2 +U (q)

)√
1− v2

c2
dt.

If we take into account that

v

c
<< 1,

U (q)

m0c2
<< 1,

and keep only the leading terms in the integrand,

(
m0c2 +U (q)

)√
1− v2

c2
≈ m0c2

(
1+ U (q)

m0c2

)(
1− v2

2c2

)
≈

≈ m0c2 +U (q)− m0v
2

2
,

then, after neglecting the additive constant m0c2, we get the Lagrange function (with
an opposite sign).

The quantity m0c2 + U (q) is the rest energy of the particle. Therefore, the ac-
tion has a clear physical meaning: it is a sum over the particle’s proper time of the
quantity which is the total rest energy of the particle. The “strange” expression for
the Lagrange function as the difference of the kinetic and the potential energies is
the Newtonian limit in the observer’s frame.

Nonlocal nature of the least action principle. Another perplexity is caused by the
nonlocal character of the least action principle: the particle trajectory is selected by
prescribing the initial and final positions of the particle instead of initial position
and initial velocity, as is done in the usual form of Newtonian mechanics. Here is an
excerpt from H. Poincaré [242]:
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. . .There is something unacceptable to the intellect in the way the least action principle is
phrased. To reach one point from another, a molecule not acted upon by any forces but con-
strained to a surface will move along the geodesic line, i.e. along the shortest possible path.
This molecule is moving as though it knows the point where it is supposed to go, foresees
the time it will take to reach that point taking one or another path, and then chooses the
most appropriate one. The way the principle is stated presents the molecule as an animated
being exercising free will. It is clear that it would be better to rephrase the formulation of
the least action principle by less striking on, in which, as philosophers say, the final goals
do not seem to be replacing the actual causes.

Perhaps, nonlocality of the least action principle has its roots in quantum me-
chanics. In quantum mechanics all particle trajectories are possible. The key char-
acteristics of the particle motion is the probability of transition from one point to
another. A link between this probability and Lagrange function was found by R.
Feynman. He considered the quantity

� (t1, q1; t0, q0) =
∑

all trajectories

e
i
h

t1∫
t0

L
(

q(t), dq(t)
dt

)
dt

(1.82)

where h is Plank’s constant,10 the sum is taken over all possible trajectories connect-
ing the initial position of the system q0 and the final position q1. Of course, some
technical difficulties must be overcome in order to provide a mathematical meaning
of such a sum. It turns out that �, as a function of t1 and q1, obeys the Schrödinger
equation , while |�|2 is the probability of transition of the system from the state q0 at
instant t0 to state q1 at instant t1. If the magnitude of the action is much larger than h,
then the major contribution to the sum (1.82) is provided by the trajectory on which
action is stationary (one can apply the method of stationary phase to the sum). Such
a case corresponds to classical (non-quantum) motion of the system. Quantum laws
become essential if the action is of the order of h. Plank’s constant is very small;
therefore, motion of all systems with a large mass (in particular macroscopic bodies)
is governed by the least action principle.

Minimum action vs stationary action. The most important outcome of the least
action principle is that the governing equations possess a very special form which we
will call the Hamiltonian structure. From this perspective, it is not essential whether
the action functional has a minimum value or a stationary value; only the structure
of the governing equations matters. In the formulation of the variational principle,
one can always choose the final time, t1, close to the initial time, t0. Then, as will
be seen in Sect. 8.1, in typical cases the action functional is minimum on the true
trajectory for systems with a finite number of degrees of freedom. Therefore, the
term “least action principle” is precise for sufficiently small t1 − t0.

10 Note that Plank’s constant has the dimension of action = dimension of energy × time; thus, the
expression in the exponent is dimensionless.



Chapter 2
Thermodynamics

2.1 Thermodynamic Description

In some cases, mechanical systems with many degrees of freedom admit a simpler
description using a small number of parameters. Consider, for example, modeling of
a gas in a vessel. The vessel is closed with a piston to which some force P is applied.
The force compresses the gas (Fig. 2.1). The gas is envisioned as a system of a large
number of rigid balls representing its molecules. The balls move inside the vessel
colliding elastically with the walls and the other balls. Usually one is not interested
in knowing the molecule motion. It is of interest to determine how the volume oc-
cupied by the gas depends on the applied force. This is a typical “thermodynamic”
question: one is concerned with some integral characteristics of the system and the
relations between them. The characteristics used for the reduced description of the
system are called thermodynamic parameters. Traditionally, thermodynamics is pre-
sented as a field which is logically and conceptually independent of mechanics. In
such treatments, the central notion of thermodynamics, entropy, remains vague; and
achieving an understanding of thermodynamics is a similar process to that in quan-
tum mechanics, where, by Feynman’s words, “to understand” means “to get used to
and learn how to apply.” In fact, thermodynamics may be derived from mechanics.
Such a derivation makes clear the notions used and provides the conditions which
are necessary for the basic thermodynamical laws to be true. “The mechanical view”
on thermodynamics is outlined in this chapter. We focus only on the basic ideas and
skip a derivation if it is lengthy. For more details the reader is referred to [46, 50].

The reason why some universal thermodynamic relations may exist was uncov-
ered by Boltzmann and Helmholtz: the rate of change of the thermodynamic pa-
rameters is much smaller than the rate of change of the generalized coordinates
and momenta of the system. In the system of enclosed gas forced by the piston, a
thermodynamic description is possible if the piston velocity is much smaller than
the average molecule velocity. If the velocity of the piston is on the order of the
average molecule velocity, thermodynamic description fails: the relation between
the force and the gas volume becomes dependent on the details of the molecule
motion.

The gas-piston system may be viewed as a mechanical system consisting of the
balls and the piston. Mass of the piston is much greater than the molecule masses:

V.L. Berdichevsky, Variational Principles of Continuum Mechanics,
Interaction of Mechanics and Mathematics, DOI 10.1007/978-3-540-88467-5 2,
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Fig. 2.1 Gas under piston

this is the reason why the coordinate of the piston, y, changes slowly.1 In case of
elastic collisions, the system is Hamiltonian. One may say that the thermodynamic
description of the system “gas under piston” corresponds to elimination of the fast
degrees of freedom from the governing Hamiltonian equations. In fact, this situation
is generic: classical thermodynamics is a theory of slow variables for a Hamiltonian
system which governs micromotion.

Thermodynamics is concerned with systems possessing at least two well sep-
arated time scales and, thus, characterized by fast and slow variables. Thermody-
namic theory is a theory of slow variables for such systems – this was a major
Boltzmann’s insight. One can say that thermodynamic equations are the equations
that are obtained by elimination of fast variables from the governing equations.

Why should macromotion obey the first and second laws of thermodynamics?
Clearly, this must be caused by some special features of microdynamics. It turns
out that these features are ergodicity, mixing and the Hamiltonian structure of the
underlying microdynamics. The meaning of the terms ergodicity and mixing is dis-
cussed in the next section. The absence of ergodicity or Hamiltonian structure would
prevent the existence at macrolevel temperature and entropy. The absence of mixing
would yield the violation of the second law.2

We call the laws of thermodynamics obtained by elimination of fast degrees of
freedom from Hamiltonian equations primary thermodynamics. The characteristic
features of primary thermodynamics are the appearance of two new slow variables,
temperature and entropy, and the dissipation of energy of slow variables (the total
energy of fast and slow variables is conserved in isolated systems).

The first and the second laws of thermodynamics are the constraints which must
be obeyed by any macroscopic theory. There are additional independent constraints,

1 In fact, the slow change of y is accompanied by fast oscillations of small magnitude due to the
collisions of the piston with the molecules. In thermodynamic description, these oscillations can
be neglected. They are studied in the theory of thermodynamic fluctuations (Sect. 2.4).
2 These statements will be rectified further in one respect: in fact, to have the laws of thermody-
namics on macrolevel, the microequations might possess slightly more general structure than the
Hamiltonian one.
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which are sometimes called the third law of thermodynamics, Onsager’s reciprocal
relations (they are considered further in Sect. 2.6). Are there other constraints of a
similar level of universality? Yes, there are. It turns out that, if dissipation is negli-
gible, the governing equations of some slow variables must possess a Hamiltonian
structure. That indicates the existence of quite peculiar “Hamiltonian reciprocities”
in macrophysical interactions.

The dissipative equations of primary thermodynamics can also possess two well
separated time scales. Elimination of fast degrees of freedom in primary thermo-
dynamics yields the equations of secondary thermodynamics. If the fast variables
in primary thermodynamics perform some chaotic motion then, after elimination of
fast degrees of freedom and transition to the secondary thermodynamics, two new
slow variables appear, “secondary entropy” and “secondary temperature.” It is quite
plausible that the secondary entropy possesses the features which are similar to the
features of the usual thermodynamic entropy.

We touch upon all these issues in this chapter and further in Chap. 17.

2.2 Temperature

If a mechanical system is governed by Hamiltonian equations, and its motion is
sufficiently chaotic, one can introduce the notion of temperature. First, the term
“sufficiently chaotic” must be explained.

Consider a Hamiltonian system with Hamiltonian H (p, q). Function H (p, q)
does not change in the course of motion; its value is called the energy of the system.
Let energy have the value E . Any trajectory of the system lies on a surface in phase
space defined by the equation

H (p, q) = E .

This surface is called an energy surface. It is assumed that energy surfaces bound
finite regions in phase space.

The system is called ergodic if (almost) any trajectory covers the entire energy
surface. That means the following. Let a trajectory start at some point A. Consider
a point B with some vicinity of this point �B. For ergodic systems, sooner or later,
the trajectory will pass through the vicinity, �B, of the point B for any choice of
B and �B (Fig. 2.2). Since �B can be chosen as small as we wish, the trajectory
will be passing closer and closer to B. The time of the next passage can, however,
be very large. Such a behavior is observed for almost any trajectory in the sense
that the set of points A for which trajectories behave differently has zero area on
the energy surface. For example, there might be periodic trajectories on the energy
surface of an ergodic Hamiltonian system, but the area covered by such trajectories
is zero.

Intuitively, ergodicity is a feature of chaotic motion. There is another feature of
chaotic motion, mixing. To define mixing one has to view the trajectories of the
Hamiltonian system on an energy surface as the trajectories of particles of some
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Fig. 2.2 A sketch for the
definition of ergodicity;
shadowed region is �B

media. One can put an ink spot on the energy surface and observe its evolution in
the course of motion (Fig. 2.3). If the spot tends to cover densely the entire energy
surface, the system is called mixing. It turns out that every mixing system is ergodic.
Ergodic systems are not necessarily mixing. Equilibrium thermodynamics discussed
in Sects. 2.2–2.5 holds true for ergodic systems. In order the laws of nonequilibrium
thermodynamics to be true the underlying Hamiltonian system must be also mixing.
The notion of temperature and entropy is based on ergodicity only.

Consider the time average of some function, ϕ(p, q), of generalized coordinates
and momenta along a trajectory p(t), q(t):

〈ϕ〉 = lim
θ→∞

1

θ

θ∫

0

ϕ (p(t), q(t)) dt.

Fig. 2.3 A sketch for the definition of mixing: an initial small spot �B is being spread by the
phase flow to cover densely the entire energy surface

As was discovered by Boltzmann, for ergodic systems this time average is the
same for (almost) all trajectories on the same energy surface. Moreover, this time
average can be computed without knowing the particular trajectory by the formula
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〈ϕ〉 =
�

�E

∫
H (p,q)≤E

ϕ(p, q)dpdq

�
�E

∫
H (p,q)≤E

dpdq
. (2.1)

Here dp = dp1 . . . dpn, dq = dq1 . . . dqn .

This formula was proven with mathematical rigor by Birkhoff and Khinchine,
and is called usually the Birkhoff-Khinchine theorem.

Plugging in (2.1) various functions ϕ(p, q) and computing the integrals on the
right hand side, one can find their time averages. Functions p1

�H
�p1

, . . . , pN
�H
�pN

are
of special interest: for systems with the Hamiltonian

H (p, q) = p2
1

2m1
+ . . .+ p2

N

2m N
+U (q) (2.2)

they are (doubled) kinetic energies of each degree of freedom. Evaluation of the in-
tegrals from (2.1) for these functions is simple and yields the so-called equipartition
law :

〈
p1

�H

�p1

〉
= . . . =

〈
pN

�H

�pN

〉
. (2.3)

Indeed, let us find
〈
p1

�H
�p1

〉
. Consider the integral,

∫

H (p,q)≤E

p1
�H

�p1
dpdq.

Using the step function

θ (x) =
{

1 x ≥ 0

0 x < 0
(2.4)

we can write this integral as an integral over the entire phase space,

∫
p1

�H

�p1
θ (E − H (p, q))dpdq.

Therefore,

�

�E

∫

H (p,q)≤E

p1
�H

�p1
dpdq =

∫
p1

�H

�p1
θ ′(E − H (p, q))dpdq,

where θ ′(x) is the derivative of the step-function (the derivative, θ ′(x), is equal to the
δ-function, but this is not essential at the moment). The integrand can be written as



50 2 Thermodynamics

p1
�H

�p1
θ ′(E − H (p, q)) = −p1

�

�p1
θ (E − H (p, q))

= − �

�p1
(p1θ (E − H (p, q)))+ θ (E − H (p, q)) . (2.5)

The integral of the first term in the right hand side over the entire phase space is
equal to zero due to the divergence theorem and vanishing of θ (E − H (p, q)) at
infinity (H (p, q) > E at infinity). Therefore,

�

�E

∫

H (p,q)≤E

p1
�H

�p1
dpdq =

∫
θ (E − H (p, q))dpdq. (2.6)

The result (2.6) does not depend on the choice of a particular component of mo-
menta, p1, . . . , pn, and the same answer we get for integrals of p2

�H
�p2

, . . . , pn
�H
�pn

.

Then the equipartition law follows from (2.1) and (2.6)
For the systems with Hamiltonians (2.2) equipartition law means that the aver-

aged values of kinetic energies of all degrees of freedom are the same. The common
value (2.3) is denoted by T and called absolute temperature. We drop the adjective
and call it temperature because no other temperatures will appear in our considera-
tion.

The integral in the right hand side of (2.6) is called the phase volume,

�(E) =
∫

θ (E − H (p, q))dpdq =
∫

H (p,q)≤E

dpdq.

The denominator in (2.1) is the derivative of the phase volume, d�(E)/d E,

which will also be denoted for brevity �E (E).
Finally, temperature can be expressed explicitly in terms of the phase volume

�(E):

T = �(E)

d�(E)/d E
. (2.7)

As follows from (2.7), temperature has the dimension of energy. Traditionally,
temperature is measured in degrees. The two numbers are linked by Boltzmann’s
constant k: if T ◦ is the value of temperature in degrees Kelvin, then

T = kT ◦.

The constant k is very small:

k = 1.38× 10−16 erg/ deg .
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Fig. 2.4 A sketch of energy
surface for a two-temperature
system

i.e. one degree Kelvin corresponds to energy of about 10−16 g cm2/ s2. Temper-
ature becomes on the order of unity if measured in electron-volts. (1 eV is the
energy which an electron gains accelerating between the points with the differ-
ence of electric potential equal to 1 V; this energy is very small due to the small
mass of an electron). Room temperature corresponds to about 1/40 eV. Energy
units for temperature are convenient in all theoretical treatments and will be used
here; Boltzmann’s constant appears only at the stage of comparing theory and
experiments.

Ergodicity is necessary to introduce temperature. If the system is not ergodic,
temperature may not exist. For example, consider the system for which the energy
surface contains two parts such that trajectory started in one part always remains
in that part (see Fig. 2.4). For such systems, formula (2.1) does not hold, and the
equipartition law is not true. Under some additional conditions, one may say that
the system has two temperatures corresponding to each part of the energy surface,
but such a situation is beyond the scope of classical thermodynamics.

Ergodicity yields immediately irreversibility of macromotion. This is seen from
the equipartition law. Consider, for example, the gas-piston system. Let the piston
be given some initial velocity. After some time, the equipartition of energy sets up
in the system. This means that the average kinetic energy of the piston is equal to
the average kinetic energy of a molecule. Since the mass of the piston is much larger
than the mass of molecules, the velocity of the piston becomes very small, i.e. the
piston comes to rest. This clearly demonstrates the irreversible character of piston’s
motion in spite of reversibility of the underlying microdynamics.

2.3 Entropy

Entropy is a characteristic of slow processes in ergodic Hamiltonian systems.3

3 The term “entropy” is widely explored now in many different senses. What we mean here by
entropy is, precisely, the thermodynamic entropy introduced by Clausius. The meaning of Clausius’
entropy for ergodic Hamiltonian systems was determined by J.W. Gibbs and P. Hertz.
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To explain what entropy is, consider first the gas-piston system. Let the position
of the piston, y, be changed slowly by some “hard device.” This means that we
prescribe the function, y(t). Changing y we do some work. Therefore energy of the
system changes. To find the dependence of energy on time we note that Hamiltonian
of the system,

H (p, q, y) = p2
1

2m
+ . . .+ p2

n

2m
+U (q1, . . . , qn, y), (2.8)

depends explicitly on time through the dependence of potential energy on y. The
energy rate is

d E

dt
= d H (p, q, y)

dt
= �H

�pi

dpi

dt
+ �H

�qi

dqi

dt
+ �H

�y

dy

dt
= �H (p, q, y)

�y

dy

dt
. (2.9)

The two terms in (2.9) are canceled due to Hamiltonian equations (1.63). The
derivative �H/�y has the meaning of force which one has to apply in order to make
the piston move along the path y(t).4

If we know the trajectory of the systems, p(t), q(t), we could find the energy at
time t by integrating (2.9):

E(t)− E(t0) =
t∫

t0

�H (p(τ ), q(τ ), y(τ ))

�y(τ )

dy(τ )

dτ
dτ. (2.10)

In principle, one obtains different values of energy at time t for different trajecto-
ries p(τ ), q(τ ) and different piston paths y(τ ). Remarkably, for ergodic Hamiltonian
systems and a slow change of the parameter y, the final value of energy depends only
on the final value of the parameter y, the initial values of energy, E0 = E(t0) and the
initial value of the parameter y, y0 = y(t0), and depends neither on the trajectories,
p (τ ) , q (τ ) , nor on the path, y (τ ):

E(t) = function(y(t), y0, E0). (2.11)

Moreover, the dependence of the final value of energy, E (t) , on y0 and E0

is “degenerated”: the parameters y0 and E0 enter (2.11) only through a combina-
tion S(E0, y0), where S(E, y) is some function which is determined uniquely by
Hamilton function H (p, q, y) :

E (t) = E(y (t) , S0 (E0, y0)). (2.12)

4 For the gas-piston system the factor �H (p, q, y)/�y does not depend on p due to (2.8), but this
is not essential in our reasoning and we proceed in a more general setting.
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Derivation of (2.12) is quite simple. First, we note that on the right hand side of
(2.10) dy/dτ changes slowly. Therefore, �H/�y may be substituted by its average
over the energy surface H (p, q, y(τ )) = E(τ ),

E(t)− E(t0) =
t∫

t0

〈
�H

�y

〉
dy

dτ
dτ,

or, after differentiation with respect to t,

d E

dt
=
〈

�H

�y

〉
dy

dt
. (2.13)

The average value 〈�H/�y〉 can be computed using the Birkhoff-Khinchine
theorem (2.1) as

〈
�H

�y

〉
=

�

�E

∫
H (p,q,y)≤E

�H

�y
dpdq

�

�E

∫
H (p,q,y)≤E

dpdq
. (2.14)

Introducing the phase volume bounded by the energy surface H (p, q, y) = E,

�(E, y) =
∫

H (p,q,y)≤E

dpdq =
∫

θ (E − H (p, q, y))dpdq, (2.15)

and differentiating (2.15) with respect to y we find

��(E, y)

�y
= −

∫
θ ′(E − H (p, q, y))

�H (p, q, y)

�y
dpdq

= − �

�E

∫
θ (E − H (p, q, y))

�H (p, q, y)

�y
dpdq (2.16)

= − �

�E

∫

H (p,q,y)≤E

�H (p, q, y)

�y
dpdq.

From (2.14) and (2.16)

〈
�H

�y

〉
= − ��(E, y)/�y

��(E, y)/�E
. (2.17)

Plugging (2.17) into (2.13) we obtain

��(E, y)

�E

d E

dt
+ ��(E, y)

�y

dy

dt
= 0. (2.18)
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Hence, the phase volume does not change in time, which is also true of any
function of the phase volume, S(�).

Let us specify function S(�) by the condition that

�S(� (E, y))

�E
= 1

T
. (2.19)

Since

�S(�(E, y))

�E
= d S

d�

��

�E
,

and according to (2.7), T = � (��/�E)−1 , we obtain for S(�) the differential
equation

d S

d�
= 1

�
,

the only solution of which is

S(E, y) = ln �(E, y)+ const. (2.20)

This function is called thermodynamic entropy.
Entropy does not change in the process under consideration. Hence,

S(E, y) = S0, S0 = S(E0, y0). (2.21)

If T > 0, then �S/�E > 0 and we can solve (2.21) with respect to E . We see
that energy is determined by the current value of y, while the initial values of energy
and y enter in this dependence only through the combination S0 = S0(E0, y0), i.e.
we arrive at (2.12).

In terms of entropy, equation (2.17) for the force, 〈�H/�y〉 , takes the form

〈
�H

�y

〉
= −T

�S(E, y)

�y
. (2.22)

Obviously, our derivation remains valid if the system has a number of slow
parameters, y1, . . . , ym . In this case, y in all previous equations denotes the set
y = (y1, . . . , ym) while (2.22) is replaced by the equation

〈
�H

�yμ

〉
= −T

�S(E, y)

�yμ
, (2.23)

where μ runs through values 1, . . . , m.

Equations (2.19) and (2.23) link temperature, T, and generalized forces,
〈�H/�yμ〉 , with the slow characteristics of the system, E and yμ. They are called
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constitutive equations. The constitutive equations are specified as soon as entropy
is known as a function of E and yμ. For a given Hamiltonian of the system,
H (p, q, y) , one can determine the phase volume computing the integral (2.15),
and then find entropy S (E, y) from (2.20).

Constitutive equations (2.19) and (2.23) take a simpler form in the terms of
function E(y, S) :

T = �E(y, S)

�S
,

〈
�H

�yμ

〉
= �E(y, S)

�yμ
. (2.24)

Indeed, the equation

S (E (S, y) , y) = S (2.25)

must be an identity for all values of parameters S and y. Differentiating (2.25) with
respect to S and yμ, we obtain

�S

�E

�E(S, y)

�S
= 1,

�S

�E

�E(S, y)

�yμ
+ �S

�yμ
= 0. (2.26)

Equations (2.24) follow from (2.19), (2.23) and (2.26).
It is worthing emphasize that, if the system were not ergodic or the parameters y

were not slow, then the energy at time t computed from differential equation (2.9)
depends on the initial values of the generalized coordinates and momenta p0, q0,

and the entire trajectory y(τ ), τ < t . Therefore, the constitutive equations obtained
do not make sense.

Formulas (2.12), (2.19), (2.21), (2.23) and (2.24) are valid for any ergodic Hamil-
tonian system no matter how many degrees of freedom it has. For example, one
can speak of entropy and temperature of a pendulum, which has just one degree
of freedom. In this case the energy surfaces are closed curves in the phase space
(for sufficiently small E). Each trajectory covers the entire energy surface, thus the
system is ergodic. Assuming for definiteness that the length of the pendulum is a
slow parameter, one can find entropy of the pendulum from (1.68): in the limit of
small energies, S = ln(E

√
l/g)+ const.

Example. Let us find entropy of a gas occupying volume V . We model the gas by
a Hamiltonian system of N rigid spheres of radii a and of equal masses m. Each
ball has three translational degrees of freedom, so the total number of degrees of
freedom, n, is 3N . Hamilton function is a sum of kinetic energy K and particle-
particle and particle-wall interaction energy U :

H = K +U,

K = p2
1

2m
+ . . .+ p2

n

2m
, U = U (q1, . . . , qn). (2.27)
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Interaction energy is zero if particles do not overlap with each other and the wall,
otherwise it is equal to infinity. The question of ergodicity of such a system is not
elementary. We proceed assuming that the system is ergodic. We have to find

� =
∫

H (p,q,y)≤E

dpdq.

Since H = +∞ if any two particles overlap or a particle overlaps with the wall
and, otherwise, H = K and does not depend on q, the phase volume is the product
of two integrals:

� = �p�q , �p =
∫

H (p)≤E

dp, �q =
∫

admissible q

dq. (2.28)

The integral, �p, is the volume of the sphere of the radius
√

2m E in
n-dimensional space. If R is the radius of a sphere in n-dimensional space, its
volume is

Vn(R) = cn Rn, cn = πn/2

n
2 �( n

2 )
,

�(s) being the �-function. For an integer s, �(s) = (s − 1)! So,

�p = cn(2m E)n/2. (2.29)

The integral, �q , can easily be found in the limit when the ball radius tends to
zero. In this limit one may neglect overlapping of the balls and take into account
only the positions of the balls inside the volume V . Then

�q = V N . (2.30)

Dropping additive constants we obtain for entropy from (2.20), (2.28), (2.29) and
(2.30):

S = ln(E3N/2V N ) = N

(
3

2
ln E + ln V

)
. (2.31)

One can find temperature from (2.19) and (2.31) as

1

T
= �S

�E
= 3

2

N

E
. (2.32)

Determining energy in terms of temperature from (2.32), we arrive at the familiar
constitutive equation of the perfect gas:
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E = 3

2
N T . (2.33)

An important consequence of formula (2.31) is an unbounded growth of entropy
when the gas volume increases. Such a behavior of entropy changes if a force, P,

acts on the piston. Then the Hamiltonian of the system acquires an additional term:5

H = K +U + Py. (2.34)

Calculation of entropy of the system (2.34) is reduced to the previous one for the
system (2.27) by changing E to E − Py :

S = N

(
3

2
ln(E − Py)+ ln V

)
.

Taking into account that V is a linear function of y: V = y�, � being the area
of the piston, and dropping unessential constants, we obtain

S(E, y) = N ln

[
3

2
ln(E − Py)+ ln(y�)

]

= N ln

[
Py

E

(
1− Py

E

)3/2
]
+ const.

A graph of the entropy per particle, S/N , as a function of the dimensionless
distance y∗ = Py/E is shown in Fig. 2.5.

The remarkable feature of this graph is that entropy reaches its maximum value.
The point where entropy is maximum corresponds to the equilibrium state of the
system the reader is invited to check this fact. It turns out that this property of en-
tropy, reaching its maximum value at equilibrium, is generic. The physical origin of
this property is explained in Sect. 2.5.

So far we have considered the case when all external forces act only on slow
variables as is seen from the energy equation (2.9). Such processes are called adia-
batic. If there are some external forces, Fi , acting on the fast coordinates, qi , then
the energy equation gets the additional term

5 Formula (2.34) becomes obvious if one writes first the energy of the entire system “gas+piston”
endowing the piston with some mass M :

H = K +U + Py + Y 2

2M
,

where Y is the momentum of the piston. In (2.34) we dropped the kinetic energy of the piston
which is negligible because, due to the equipartition of energy over all degrees of freedom, near
equilibrium it is on the order of kinetic energy of one molecule, K/N . The sign + at Py corresponds
to the negative direction of the force acting on the piston for P ≥ 0 (indeed, the Lagrange function
of the piston corresponding to the Hamilton function chosen is L = 1

2 M ẏ2−Py, thus M ÿ = −P).
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Fig. 2.5 S/N , as a function of the dimensionless distance between the piston and the bottom,
y∗ = Py/E

d E

dt
= �H

�yμ

dyμ

dt
+ �H

�qi
Fi .

Averaging over time and taking into account that E and y change slowly, we have

d E

dt
=
〈

�H

�yμ

〉
dyμ

dt
+ d Q

dt
,

d Q

dt
=
〈

�H

�qi
Fi

〉
. (2.35)

The additional work of external forces denoted by d Q is called heat supply. Heat
supply causes entropy to change. The process is called quasi-equilibrium, if the
constitutive equations (2.28) remain valid for d Q �= 0. Then, we have from energy
equation (2.35)

�E(y, S)

�yμ

dyμ

dt
+ �E(y, S)

�S

d S

dt
=
〈

�H

�yμ

〉
dyμ

dt
+ d Q

dt
. (2.36)

The first terms on both sides of (2.36) cancel out due to (2.24), and (2.36)
becomes a link between entropy, temperature and heat supply:

d Q

dt
= T

d S

dt
. (2.37)

If d Q �= 0, entropy may either increase or decrease depending on whether energy
is pumped to the system (d Q > 0) or taken from the system (d Q < 0).

Comparing the two characteristics of the system, energy and entropy, one may
say that energy is a more fundamental one: energy makes sense for any system while
entropy can be introduced only for slow processes in ergodic systems.

We have seen that the Hamiltonian structure of the equations of micromechanics
yields the laws of equilibrium thermodynamics. One may wonder how important
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it is that the equations of micromechanics are Hamiltonian. In other words: could
non-Hamiltonian equations of microdynamics yield the equations of classical equi-
librium thermodynamics? It turns out that the class of such equations is indeed
slightly wider than the class of Hamiltonian equations (see Appendix E).

2.4 Entropy and Probability

Slow parameters y fluctuate near the equilibrium values. For example, in the system
“gas under piston” the distance between the piston and the bottom, y, varies slightly
due to the collisions of the piston with the molecules. One may wonder what is the
probability density of y, f (y)? The answer was found by Einstein: the probability
density of slow variables fluctuating near the equilibrium values is determined only
by the equilibrium properties of the system, namely, by the function S(E, y), and is
given by the formula

f (y) = const eS(E,y). (2.38)

Formula (2.38) has an asymptotic nature and holds for systems with a very large
number of fast degrees of freedom, n. There is a generalization of this formula for
systems with any finite n [43, 46].

According to (2.38), the most probable values of y are the values for which
entropy takes its maximum value. Since entropy is usually proportional to the
number of fast degrees of freedom (for a gas this is seen from (2.31)) which is
large, maximum is very sharp and, in fact, the slow variables just fluctuate slightly
around the equilibrium values.

2.5 Gibbs Principles

Gibbs suggested use of the maximum property of entropy as the first principle in
any modeling of thermodynamic equilibrium.
The first Gibbs principle. In a state of thermodynamic equilibrium, the entropy S
of an isolated system attains its maximum on all possible states of the system with a
given energyE.

The Gibbs principle differs considerably from the variational principles of ana-
lytical mechanics. In mechanics, only the particle positions are subject to change,
but in the Gibbs principles virtually all characteristics of equilibrium are varied.
In the consideration of phase equilibrium, for example, the interphase surface and
the masses of both phases are subject to change. An example of the application of
the Gibbs principles to the equilibrium of elastic media will be given in Sect. 7.4.
Consider here another example.

Let us show that temperatures of two contacting systems are equal if the systems
are in thermodynamical equilibrium and isolated from the environment. Denote
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entropies and energies of the systems by E1, S1, and E2, S2. Thermodynamical
properties of the systems are determined by the functions S1(E1) and S2(E2). The
total entropy of the two systems, by our assumption, is

S(E1, E2) = S1(E1)+ S2(E2). (2.39)

Systems are in contact and may exchange energies: heat may flow from one sys-
tem to another. The total energy must not change in such a process because the
systems are isolated from the environment:

E1 + E2 = E . (2.40)

The total energy E is supposed to be given. In equilibrium, the entropy (2.39)
must be maximum on the set of all possible values E1, E2 obeying the con-
straint (2.40). The condition of thermodynamical equilibrium may be obtained, for
example, by eliminating the variable E2,

S = S1(E1)+ S2(E − E1),

and differentiating entropy with respect to E1. We get

d S1(E1)

d E1
− d S2(E2)

d E2

∣∣∣∣
E2=E−E1

= 0

or

1

T1
= 1

T2

as claimed. Similar result holds for many systems in contact. The first Gibbs princi-
ple can be put in another form which is often used:
The second Gibbs principle. In the state of thermodynamic equilibrium, the energy
E(y, S) of an isolated system attains its minimum on all states of the system with a
given value of entropy S.

The two Gibbs principles are equivalent except in some degenerate cases.

2.6 Nonequilibrium Processes

Consider an isolated system characterized by a number of slow variables, y1, . . . , yn .
There are some equilibrium values of y; the system remains in the state with such
values of y indefinitely. If the initial values of y differ from the equilibrium val-
ues, the slow variables evolve approaching the equilibrium values. The theory of
nonequilibrium processes aims to establish equations describing this evolution. In
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this section we discuss the situation when the governing equations of the evolution
to equilibrium are ordinary differential equations.

Clausius found from phenomenological reasoning that entropy of an isolated sys-
tem may not decrease in the path to equilibrium. This is the so-called second law of
thermodynamics. For Hamiltonian systems this feature of entropy was established
by Kubo [163]. Hamiltonian systems possess such a feature if the phase flow is mix-
ing. In summary, the first and the second laws of thermodynamics are observed only
for one reason: the equations governing micromotion are Hamiltonian and mixing.6

If micromotion is not Hamiltonian or mixing, one can construct examples showing
that the first and/or the second laws are violated.

The governing equations of nonequilibrium thermodynamics are purely phe-
nomenological. They must obey the constraint of the second law: if the system is
isolated, its entropy may not decrease. To construct the evolution equations one
usually chooses as the main idea that entropy has a maximum value at equilibrium.
Then the simplest system of equations warranting the approach to equilibrium is

dyμ

dt
= Dμν(y)

�S(E, y)

�yν
, (2.41)

where Dμν(y) is some positive semi-definite matrix. Indeed, entropy of the system
grows along each trajectory y(t) of the system (2.41):

d S (E, y (t))

dt
= �S(E, y)

�yμ
Dμν(y)

�S(E, y)

�yν
� 0. (2.42)

We assumed here that the system is isolated, so the energy remains constant.
According to (2.42), Dμν(y) have the meaning of dissipation coefficients, i.e. the
coefficients controlling the entropy growth.

If y(t) are close to the equilibrium values, one can use a linearized version of
(2.41). To write down the linearized equations (2.41) we accept that the equilib-
rium corresponds to the zero values of y. Then, expanding S in a Taylor series with
respect to y in vicinity of equilibrium, we have

S = const− 1

2
aμν yμyν,

where aμν is a non-negative symmetric matrix. In linear approximation the coeffi-
cients Dμν are some constants, Dμν = Dμν(0). The governing equations take the
form a system of linear differential equations,

dyμ

dt
= −Dμν(0)aλν yλ. (2.43)

6 Up to some refinements of this statement like that made at the end of Sect. 2.3, which, most
probably, are of little physical significance.
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Equations (2.41) are more a concept than a “Law of Nature”: in modeling the
evolution to equilibrium, one may try equations of the form (2.41), but, in fact, the
physically adequate dynamical equations may have a different form: all one must
not violate is the evolution of entropy to its maximum value.

Are there other constraints to the governing equations, which are additional to the
first and the second laws of thermodynamics? Yes, there are. They are caused by the
Hamiltonian structure of microdynamics. The first such constraint was discovered
by Onsager [236]: the dissipative coefficients, Dμν(0), are not arbitrary. They must
obey the reciprocal relations

Dμν(0) = Dνμ(0). (2.44)

Onsager’s reciprocal relations follow from reversibility of micromotion. The lat-
ter takes place if Hamilton function is an even function of momenta, p. There are
systems for which Hamilton function is not an even function, like, for example,
the systems under action of external constant magnetic field, B: Hamilton function
contains the terms of the form, pB, which change the sign if time is reversed . For
systems in a magnetic field, the coefficients Dμν may also depend on the magnetic
field, and Onsager’s reciprocal relations are replaced by

Dμν(0, B) = Dνμ(0,−B).

Note that the coefficients of the linear differential equations (2.43), the product
of two symmetric matrices, are not necessarily symmetric.

Onsager’s reciprocal relations are independent of the first and the second laws of
thermodynamics. They are sometimes called the third law of thermodynamics.

There are also other constraints [44, 50]: if the slow variables are the coordinates
and momenta of the underlying Hamiltonian microdynamics, and the dissipation
is negligibly small, the equations of slow evolution must possess a Hamiltonian
structure with some effective Hamilton function, Heff (y, S) ,

dyμ

dt
= ωμν �Heff(y, S)

�yν
. (2.45)

Here ωμν is the constant tensor defining the Hamiltonian structure

ωμν =
⎧
⎨
⎩

1 μ ≥ n + 1, ν = μ

−1 μ ≤ n, ν = n + μ

0 otherwise
.

The effective Hamilton function, Heff(y, S), can be calculated explicitly in terms of
the phase volume of the Hamiltonian system. This calculation shows that it has the
meaning of the total energy of the system. Entropy in (2.45) is a given constant. In
many models of continuum mechanics, the kinematic variables can be viewed as the
slow variables of the underlying Hamiltonian system. Therefore, if the dissipation is
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neglected, the governing dynamics is Hamiltonian, and the corresponding principle
of least action must exist.7 This implies that only quite special interactions with spe-
cific “variational reciprocal relations” are possible in continuum mechanics. Most
considerations in this book are based on that point.

In general, if the dissipative terms are taken into account, then the slow evolution
is governed by the equations

dyμ

dt
= ωμν �Heff(y, S)

�yν
− 1

T
Dμν(y, S)

�Heff(y, S)

�yν

d S

dt
= 1

T 2
Dμν(y, S)

�Heff(y, S)

�yμ

�Heff(y, S)

�yν
, T = �Heff(y, S)

�S
. (2.46)

In these equations, the dissipative processes are characterized by the dissipative
coefficients, Dμν (y, S). The dissipative coefficients must be symmetric:

Dμν(y, S) = Dνμ(y, S). (2.47)

Equation (2.47) may be viewed as an extension of Onsager’s relations to the
non-linear case.

Equations (2.46) form a system of ordinary differential equations for unknown
functions yμ(t) and S(t). The model is specified by the effective Hamiltonian,
Heff(y, S), and the dissipative coefficients, Dμν(y, S). The effective Hamiltonian
is determined by the equilibrium properties of the system since it can be expressed
in terms of its phase volume. In contrast, the dissipative coefficients are the char-
acteristics of the nonequilibrium behavior; they describe the mixing properties of
the underlying Hamiltonian system. The dissipative coefficients are independent of
equilibrium properties: one may envision the systems with the same equilibrium
properties but different laws of evolution to equilibrium.

Energy of the system, Heff(y, S), is conserved in the course of evolution to
equilibrium:

Heff(y, S) = E = const, (2.48)

as it must be for an isolated system. Indeed,

d Heff(y, S)

dt
= d Heff(y, S)

�yμ

dyμ

dt
+ d Heff(y, S)

�S

d S

dt
, (2.49)

and the right hand side of (2.49) vanishes due to (2.46).
The energy conservation allows us to reduce the order of the system. The re-

sulting equations take a simple form if expressed in terms of the function, S(E, y),

7 The fact that (2.45) holds for isolated systems is not a constraint in consideration of continuum
media: the isolation requirement just specifies the boundary conditions and does not affect the
differential equations.
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which is the solution of (2.48) with respect to S for a given E . For this function,
similarly to (2.26),

1

T
= �S(E, y)

�E
,

�S(E, y)

�yμ
= − 1

T

�Heff(y, S)

�yμ
.

Therefore, the governing differential equations become a system of m differential
equations of the first order:

dyμ

dt
= −ωμν 1

�S(E, y)/�E

�S(E, y)

�yν

+ Dμν(y, S(E, y))
1

�S(E, y)/�E

�S(E, y)

�yν
. (2.50)

This system is determined by the functions, S(E, y) and Dμν(y, S), while E is
considered as a given parameter.

An important process which is not covered by (2.46) or (2.50) is heat conduction.
In this case, the slow variables, yμ, are the energies of small parts of the body;
they are not the coordinates or momenta of the underlying Hamiltonian system. The
equations of heat conduction also possess a special structure; the reader is referred
to [50] for consideration of this case and for further details regarding the derivation
of (2.46) and (2.50).

2.7 Secondary Thermodynamics and Higher Order
Thermodynamics

The special structure of thermodynamic equations, comprised of the existence of
energy and entropy, the equations of state and the constitutive equations and the
special form of equations of nonequilibrium thermodynamics, pertains only to the
equations governing the evolution of slow variables of a Hamiltonian system. Such
a theory may be called primary thermodynamics. It might happen that the equations
of primary thermodynamics also admit two well-separated time scales. One may
wonder what are the governing equations for the slow variables of the primary
thermodynamics or, in other words, which equations do we get after the elimi-
nation of the fast variables in the equations of primary thermodynamics. We call
the corresponding theory of slow variables of primary thermodynamics secondary
thermodynamics. There are two important examples of secondary thermodynamics:
plasticity theory and turbulence theory. Plasticity of crystalline bodies is caused by
motion of defects of crystal lattice, such as dislocations. The crystal lattice may
be viewed as a Hamiltonian system. The defects are the slow variables of this
Hamiltonian system. Therefore the governing dynamical equations for defects are
the subject of primary thermodynamics. Accordingly, macroscopic plastic behavior
of crystals and polycrystals is the subject of secondary thermodynamics. Another
example: turbulence theory. Equations describing fluid motion are the equations
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of primary thermodynamics. In the case of a chaotic fluid motion, turbulence, the
motion is characterized by fast and slow variables. Elimination of fast variables and
construction of the equations governing the slow variables is the major goal of tur-
bulence theory. For both examples of secondary thermodynamics, the development
of a theory of slow variables has not been completed yet. In particular, it is not
known whether the equations of secondary thermodynamics must possess a special
structure, as do the equations of primary thermodynamics. Most probably, there are
no statements of the same level of generality as for primary thermodynamics. In par-
ticular, in turbulence theory different flow geometries may yield quite different sys-
tems of equations for slow variables. One feature of secondary thermodynamics can
be quite general though. If the equations of primary thermodynamics exhibit chaotic
behavior, then a new entropy can enter the theory. As in primary thermodynamics, its
meaning is two fold: the new entropy characterizes fluctuations of the slow variables
and the information on the system lost in the elimination of fast degrees of freedom.
In the case of materials with random microstructures, this new characteristic called
entropy of microstructure is introduced and studied in Sect. 18.5−18.8. In contrast
to thermodynamic entropy, entropy of microstructure should decrease in an isolated
system.8 This feature is caused by the appearance of attractors in the phase space:
the phase volume shrinks when the system approaches the equilibrium state.

One may envision the situations when a secondary thermodynamics model pos-
sesses two well-separated time scales. Then the elimination of the fast variables
yields the equations of tertiary thermodynamics, etc. What will be common for all
levels of thermodynamics is the existence of energy and entropy equations as long
as energy and entropy remain slow variables. Besides, thermodynamic entropy, once
appeared, will remain an increasing function for closed systems.

The existence of entropy is intimately related to the Hamiltonian structure of
microdynamics. Such a structure is guaranteed by the classical approximation in
quantum mechanics. However, if the quantum mechanics problem has two well-
separated time scales, the elimination of the fast variables may yield the dissipa-
tive equations already at the level of the quantum mechanics description. On the
next level, the classical mechanics description, one would have a system that is
not Hamiltonian but instead a system with dissipation. Presumably, entropy can
still be introduced, but such a consideration seems not have been pursued yet. The
continuum mechanics level of description will then correspond at least to secondary
thermodynamics.

8 An exception is the case of unstable systems. For such systems entropy of microstructure can be
generated without external actions.



Chapter 3
Continuum Mechanics

3.1 Continuum Kinematics

Continuum kinematics. A continuum is a system consisting of an infinite number
of particles. More precisely, a continuum is defined as a set of particles which is
in a one-to-one correspondence with a set of points of some region V̊ in three-
dimensional space R3. Each particle can be assigned its “name”: the coordinates
of its counterpart in region V̊ . We denote these coordinates by capital Latin let-
ters X1, X2, X3, in contrast to the coordinates of the observer’s frame, which are
denoted by x1, x2, x3. The latter are called Eulerian coordinates, while the coor-
dinates X1, X2, X3 are usually referred to as Lagrangian coordinates or material
coordinates.

Positions of the particles at any instant t are described by the functions

xi = xi
(
X1, X2, X3, t

)
.

We use the small Latin indices i, j, k, l for numbering Eulerian coordinates,
while for Lagrangian coordinates another group of indices, a, b, c, d is employed.
We will call these indices observer’s indices and Lagrangian or material indices,
respectively. The reason for such a distinctive notation will be explained later. So,
for the particle trajectories we write

xi = xi
(
Xa, t

)
(3.1)

or, if the indices are suppressed,1

x = x (X, t) .

Distinguishing the points of the continuum and assigning each one a “name,” Xa ,
is a key point in the definition of continuum. For, if we do not identify particles, we

1 We do not strictly maintain this order of the arguments throughout the book and, in cases when
the dynamic effects are of primary concern, we write x = x(t, X ).
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Fig. 3.1 Lagrangian and Eulerian coordinates

are not able to introduce such notions, as, say, velocity (defining velocity, one has
to say velocity of which object is considered).

Region V̊ is usually identified with the initial position of the continuum. The cur-
rent position of the continuum is denoted by V (Fig. 3.1). If we wish to emphasize
that the region V changes in time, we write V (t) instead of V .

For a given observer’s space point x and a given instant t , one can consider (3.1)
as a system of three (non-linear) equations with respect to Lagrangian coordinates.
In principle, this system of equations can be solved, and one can write

Xa = Xa(xi , t) or X = X (x, t) . (3.2)

Equations (3.2) show which particle arrives at the space point x at the time t .
We will call the functions x(X, t) the particle trajectories, and, in case of statics,

when these functions do not depend on time, the particle positions. The inverse
functions, X (x, t) will be called the Lagrangian coordinate flow.

In addition to functions x (X, t), behavior of continuum may need to be charac-
terized by other functions u (X, t), some “internal degrees of freedom,” like temper-
ature, plastic deformations, concentration of chemical species, etc. Selection of the
proper set of characteristics is the first step in continuum modeling.

Tensor character of continuum mechanics equations. We have introduced two
coordinate frames, the observer frame with the Eulerian coordinates xi , and the ma-
terial frame with the Lagrangian coordinates Xa . Even if Eulerian coordinates are
Cartesian, Lagrangian coordinates are, in general, curvilinear (Fig. 3.2). Therefore,
the technique of curvilinear coordinates appears naturally. Besides, all the relations
we consider must not depend on the choice of Eulerian and Lagrangian coordinates.
Thus, tensor analysis must be employed. In order to make the text approachable
for the reader who is not familiar with tensor analysis and the theory of curvilinear
coordinates, the following simplifications are made. First, the text is written in such
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Fig. 3.2 Curvilinear nature of
Lagrangian coordinates:
material frame in the initial
and the current states

a way that all remarks concerning tensor character of the relations derived can be
omitted without detriment to understanding the key part of the material. Second,
though all equations in the book are written in a proper tensor form distinguishing
upper and lower indices, the reader may decline making a difference between upper
and lower Eulerian indices i, j, k, l, accepting that the observer frame is Cartesian.
Therefore, for example, one can identify x1 (Xa, t) and x1 (Xa, t). Such identifica-
tion, however, cannot be made for quantities with Lagrangian indices; for example,
Xa and Xa must be treated as different quantities. If a quantity with Lagrangian
indices is used with upper and lower indices we always provide the link between
the two. Third, we use the Cartesian coordinates for the observer’s frame; therefore
the covariant derivatives do not appear, and the space derivatives with respect to
Eulerian coordinates are just �/�xi . The subsections concerned with the issues on
tensor features of continuum mechanics are furnished with the sign ∗ which indi-
cates that the subsection can be omitted by an uninterested reader. The only tensor
notation which the reader is supposed to know is the summation convention over
repeated indices introduced in Sect. 1.4. One simple statement from tensor analysis,
the sum ai j bi j is zero if ai j is symmetric and bi j is anti-symmetric, is also used.
Perhaps, the only part of the book where the knowledge of tensor analysis cannot
be avoided is the shell theory (Chap. 14) where the coordinate system on the shell
middle surface is inevitably curvilinear.

Distortion. Derivatives

xi
a =

�xi (X, t)

�Xa

are called distortions (the term deformation gradient is often used as well). Deriva-
tives

Xa
i =

�Xa (x, t)

�xi

are called inverse distortions.
They obey the equations

xi
a Xa

j = δi
j , xi

a Xb
i = δb

a , (3.3)

where δi
j is Kronecker’s delta: δi

j = 1 if i = j and δi
j = 0 if i �= j .
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The first equation (3.3) can be obtained from the identity

xi (X (x, t) , t) = xi , (3.4)

which expresses the fact that functions X (x, t) are solutions of (3.1). Differentiating
(3.4) with respect to x j and using the chain rule, we obtain

�xi (X (x, t) , t)

�x j
= �xi (X (x, t) , t)

�Xa

�Xa (x, t)

�x j
= xi

a Xa
j =

�xi

�x j
= δi

j ,

i.e. the first equation (3.3) holds. The second equation (3.3) is derived similarly from
the identity

Xa (x (X, t) , t) = Xa .

Matrices will be denoted by double bars:
∥∥xi

a

∥∥means the matrix with the compo-
nents xi

a . Equations (3.3) mean that the matrix
∥∥Xa

i

∥∥ is inverse to the matrix
∥∥xi

a

∥∥.
Indeed, let the upper indices number the columns, while the lower indices number
the rows. Then (3.3) can be written as

∥∥xi
a

∥∥ · ∥∥Xa
j

∥∥ = ∥∥δi
j

∥∥ ,
∥∥Xa

i

∥∥ · ∥∥xi
b

∥∥ = ∥∥δa
b

∥∥ ,

i.e. Xa
i are the components of the inverse matrix. This explains the term “inverse

distortion” for Xa
i .

Velocity. Time derivative when Lagrangian coordinates are kept constant is denoted
by d/dt and called material time derivative. By definition, the particle velocity is

vi = dxi (X, t)

dt
.

As has been mentioned, velocity cannot be defined if Lagrangian coordinates are
not introduced explicitly: vi (X, t) is the velocity of the particle with the Lagrangian
coordinate X.

Velocity and distortion obey the compatibility relation

�vi

�Xa
= dxi

a

dt
. (3.5)

Inverse matrix. Let the determinant of matrix
∥∥∥ai

j

∥∥∥ ,

a = det
∥∥ai

j

∥∥ ,

be not equal to zero and a(−1)i
j be the components of the matrix which is inverse to

the matrix
∥∥∥ai

j

∥∥∥ :
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∥∥ai
j

∥∥ ·
∥∥∥a(−1) j

k

∥∥∥ =
∥∥δi

k

∥∥ .

To write this equation in the index form we accept a convention that the upper and
the lower indices are the numbers of the row and the column, respectively. Then
a(−1)i

j obey to the system of equations

ai
j a

(−1) j
k = δi

k, (3.6)

Equations (3.6) may be considered as a system of n linear equations with respect to
a(−1) j

k assuming that ai
j are given. It follows from (3.6) that a(−1)i

j obeys also to a
system of equations,

ai
j a

(−1)k
i = δk

j . (3.7)

In equation (3.6) the lower index of ai
j is involved in summation; in equation (3.7)

the upper index does. Equations (3.7) is an index form of the matrix equation,

∥∥∥a(−1)k
i

∥∥∥ ·
∥∥ai

j

∥∥ = ∥∥δk
j

∥∥ .

To prove (3.7) one can first check that, due to (3.6),

(ai
j a

(−1)k
i − δk

j )a
m
k = 0. (3.8)

(opening brackets in (3.8) we arrive at an identity, am
k − am

k = 0). Since det
∥∥∥ai

j

∥∥∥ �=
0, equation (3.7) follows from (3.8).
Metric tensor. The distance ds between the points with coordinates xi and xi +dxi

is, by definition,

ds2 = gi j dxi dx j , (3.9)

where gi j = g ji are called the covariant components of metric tensor. Determinant
of the matrix

∥∥gi j

∥∥ is denoted by g :

g = det
∥∥gi j

∥∥ . (3.10)

In Cartesian coordinates gi j are constant and equal to Kronecker’s delta δi j while
g = 1.

Contravariant components of metric tensor, gi j , are, by definition, the compo-
nents of the matrix inverse to the matrix

∥∥gi j

∥∥:

gi j gk j = δi
k .

In Cartesian coordinates, gi j = gi j = δi j .
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Similarly, the distance between the two material points Xa and Xa + d Xa is

ds2 = gabd Xad Xb, (3.11)

where gab are the Lagrangian components of the metric tensor.
Comparing (3.9) and (3.11) and using the equality

dxi = xi
ad Xa,

we obtain the expression of the metric tensor in Lagrangian coordinates in terms of
distortion:

gab = gi j x
i
a x j

b . (3.12)

Contravariant components of metric tensor in Lagrangian coordinates, gab, are
the components of the inverse matrix to the matrix ‖gab‖. The reader is invited to
check that

gab = gi j Xa
i Xb

j , Xa
i = gi j g

abx j
b . (3.13)

The Levi-Civita symbol. A system of numbers ei jk = ek
i j = ei jk where

e123 = e312 = e231 = 1, e213 = e321 = e132 = −1,

and all other ei jk are equal to zero is called the three-dimensional Levi-Civita sym-
bol. The Levi-Civita symbol is used for explicitly writing determinants and vector

products. For any tensor ai
j , the determinant of the matrix

∥∥∥ai
j

∥∥∥ is

det
∥∥ai

j

∥∥ = ei jkai
1a j

2 ak
3 . (3.14)

Note also the following relations:

ei jkai
l a j

mak
n = det

∥∥ai
j

∥∥ elmn, (3.15)

det
∥∥ai

j

∥∥ = 1

3!
ei jkai

l a j
mak

nelmn . (3.16)

In Cartesian coordinates the vector with the components ei jkai b j is called the
vector product of the vectors with components ai and b j . An important role in
operations with vector products is played by the identities

ei jkelmk = δl
i δ

m
j − δm

i δl
j , ei jkel jk = 2δl

i . (3.17)

In Cartesian coordinates the Levi-Civita symbol coincides with the Levi-Civita
tensor, εi jk, defined in the next subsection.
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The Levi-Civita tensor*. It is easy to derive from (3.15) that the quantities εi jk

which are equal to
√

gei jk in coordinate systems of one orientation and to −√gei jk

in coordinate systems of the opposite orientation form the components of a covariant
tensor of the third order. This tensor is called the Levi-Civita tensor.

One can introduce two Levi-Civita tensors setting ε123 = 1 or ε123 = −1 in a
dextral Cartesian coordinate system (i.e. at right handed orientation). Accordingly,
there are two ways to introduce a vector product. The two vector products differ by
a sign. In what follows, we assume ε123 = √g in a dextral coordinate system.

Appearance of the Levi-Civita symbol in a theory indicates that left handed and
right handed coordinate systems are not equivalent.2

Note the relation for contravariant components of the Levi-Civita tensor:

εi jk = gii ′g j j ′gkk ′εi ′ j ′k ′ = 1√
g

ei jk . (3.18)

The identities (3.17) yield the corresponding identities for the Levi-Civita tensor:

εi jkε
lmk = δl

i δ
m
j − δm

i δl
j , εi jkε

l jk = 2δl
i . (3.19)

In a Cartesian coordinate system, εi jk = εi jk = ei jk .

Formula for inverse matrix. We will employ a useful explicit formula for the com-
ponents of the inverse matrix in terms of the determinant a.

The determinant a is a certain function of the matrix components: a = a
(

ai
j

)
.

The components of the inverse matrix a(−1) i
j are the derivatives of ln a:

a(−1) j
i =

1

a

�a

�ai
j

= � ln a

�ai
j

. (3.20)

The reader can easily check the validity of (3.20) for two-dimensional matrices
by direct inspection. Since this formula will be used further on many occasions, we
give here its proof for 3 × 3 matrices; the proof in general case is similar. From
(3.14),

�a

�ai
1

= ei jka j
2 ak

3 .

Hence,

1

a

�a

�ai
1

ai
1 = 1,

1

a

�a

�ai
1

ai
2 = ei jkai

2a j
2 ak

3 = 0.

2 The exceptions are the cases when εi jk are contained in products such as εi jkε
lmn which are

invariant with respect to the sign change of εi jk .
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Here we used that summation of object, ei jk , which is anti-symmetric over i j , and
the tensor ai

2a j
2 , which is symmetric over i j, is zero. Similarly,

1

a

�a

�ai
1

ai
3 = 0.

Therefore, the term 1/a �a/�ai
1 obeys (3.7) with

a(−1)1
i = 1

a

�a

�ai
1

.

Other relations (3.7) are verified in the same way.

Jacobian of transformation from Lagrangian to Eulerian variables and related
formulas. Denote by � the Jacobian of transformation from Lagrangian to Eulerian
variables:

� = det
∥∥xi

a

∥∥ .

The following useful consequences of (3.15) hold:

ei jk xi
a x j

b xk
c = �eabc, eabc Xa

i Xb
j Xc

k =
1

�
ei jk, (3.21)

eabcxi
a x j

b xk
c = �ei jk, ei jk Xa

i Xb
j Xc

k =
1

�
eabc.

Contracting the second equation (3.21) with xi
a x j

b we obtain:

eabc Xc
k =

1

�
ei jk xi

a x j
b . (3.22)

Further contraction of (3.22) with eabc and use of the second formula (3.17)
yields

Xc
k =

1

2�
ei jk xi

a x j
b eabc. (3.23)

The same result can be obtained from relation (3.20) by differentiation of
Jacobian,

Xa
i =

1

�

��

�xi
a

. (3.24)

An equivalent form of (3.23) is obtained by contraction of (3.23) with Levi-Civita
symbol, ei ′ j ′k, and use of (3.17):

Xc
kei jk = 1

�
xi

a x j
b eabc.
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Similarly to (3.23), distortion can be expressed in terms of inverse distortion:

xk
c =

1

2 det
∥∥Xa

i

∥∥ei jk Xa
i Xb

j eabc. (3.25)

Lagrangian components of metric tensor and Levi-Civita tensor. The determi-
nant of the matrix det‖gab‖ will be denoted by ĝ. According to (3.20), the con-
travariant Lagrangian components of metric tensor are related to ĝ by the formula

gab = 1

ĝ

�ĝ

�gab
. (3.26)

For Lagrangian components of the Levi-Civita tensor we have

εabc =
√

ĝeabc, εabc = 1√
ĝ

eabc.

Note that

ĝ = g�2. (3.27)

Therefore formulas for Lagrangian components of the Levi-Civita tensor can be
written also as

εabc = √g�eabc, εabc = 1√
g�

eabc. (3.28)

The initial position/initial state. Consider the position of continuum at some initial
instant t0:

xi = xi
(
Xa, t0

) = x̊ i
(
Xa
)
. (3.29)

Lagrangian coordinates can be always chosen to coincide with the Eulerian co-
ordinates at the initial instant. Then the functions (3.29) become

x̊1
(
Xa
) = X1, x̊2

(
Xa
) = X2, x̊3

(
Xa
) = X3. (3.30)

Transformations of Lagrangian coordinates change functions (3.30). Therefore,
in order to maintain the ability to keep the invariance of all the relations with respect
to the transformations of the Lagrangian coordinates, we will describe the initial
position of the system by functions (3.29) of general form.

The components of the metric tensor in the initial state are

g̊ab = gab (X, t0) = gi j x̊
i
a x̊ j

b, g̊ab = gi j X̊ a
i X̊ b

j .

Here,

x̊ i
a =

�x̊ i

�Xa
, X̊ a

i =
1

�̊

��̊

�x̊ i
a

, �̊ = det
∥∥x̊ i

a

∥∥ .

All the initial values are furnished with the symbol ◦.
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Transformation from Eulerian to Lagrangian coordinates. Let f (x, t) be a
scalar function of Eulerian coordinates and time. From this function, two different
functions of Lagrangian coordinates, f (x̊ (X ) , t) and f (x (X, t) , t), can be con-
structed. In what follows, if not noted otherwise, we use the second way, i.e. the
transformation from Eulerian to Lagrangian coordinates and back is done by means
of the particle trajectories x (X, t) and the Lagrangian coordinate flow X (x, t).

Two groups of transformations∗. Continuum mechanics equations have a tensor
character with respect to the two groups of transformation: the group of Eulerian
coordinate transformations,

x ′i = x ′i (x j ), (3.31)

and the group of Lagrangian coordinate transformations,

X ′a = X ′a(Xb). (3.32)

Now we can give a precise distinction between Eulerian indices which we
denoted by the group of letters i, j, k, l and Lagrangian indices for which the let-
ters a, b, c, d were reserved. The group (3.31) causes the transformation of Eu-
lerian indices while the objects with Lagrangian indices are not affected by this
group and behave as scalars. Similarly, the group (3.32) yields the transformations
of the objects with Lagrangian indices leaving the objects with Eulerian indices
unchanged.

The examples are: velocity, vi , a vector with respect to the group (3.31) and a
set of three scalars with respect to the group (3.32); the metric tensor gab, a set of
six scalars with respect to the group (3.31) and a tensor of the second order with
respect to the group (3.32); distortion xi

a , a set of three vectors with respect to the
group (3.31) and a set of three vectors with respect to the group (3.32).

Using the first letters of the Latin alphabet a, b, c, d for Lagrangian coordinates
is a tribute to the tradition of the nineteenth century to denote the three Lagrangian
coordinates by the first letters of the Latin alphabet a, b, c.

Juggling with indices. Indices are moved up and down by the following rule: For
an object with upper index, T i , by definition,

Ti = gi j T
j .

Accordingly,

T i = gi j Tj .

Since we agreed to deal with Cartesian observer’s frame, gi j = gi j = δi j , we
have T i = Ti . Nevertheless, in order to have all the relations in tensor form, we
keep the metric tensor when necessary.
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For the objects with the Lagrangian indices, keeping the metric tensor while jug-
gling with the indices is always necessary because in Lagrangian coordinates we
have two different metric tensors, gab and g̊ab, and, to avoid ambiguities, we have
to specify which one is used for juggling.

Strain measures. Distortion xi
a (X, t) describes an affine deformation of an in-

finitesimally small element of the continuum in the neighborhood of a point X .
There are two ways of extracting strain from the distortion. Strain is a part of affine
deformation not affected by the rotation of the element. The first way uses the metric
tensor in the Lagrangian coordinate system. It is apparent that the tensor gab mea-
suring the distances does not depend on the rotation of the material element. The
tensor

εab = 1

2

(
gab − g̊ab

) = 1

2

(
gi j x

i
a x j

b−g̊ab

)
(3.33)

can be used as a measure of strain.
The second way of defining strain is based on splitting the matrix

∥∥xi
a

∥∥ into the
product of a symmetric positive matrix3 with the components |x |ab and an orthogo-
nal matrix with the components λib,

xi
a = |x |ab λib. (3.34)

The orthogonality of the matrix
∥∥λib

∥∥ means that

gi jλ
ibλ jc = g̊bc, g̊bcλ

ibλ jc = gi j . (3.35)

Formula (3.34) corresponds to presenting the affine deformation as a superpo-
sition of extensions in three directions and orthogonal rotation. Indeed, by rotating
coordinates one can put a symmetric matrix, |x |ab , into diagonal form. The fibers
directed along the axes of the new coordinate system (along the principal directions
of the tensor |x |ab) elongate or contract depending on whether the corresponding
eigenvalue of the tensor |x |ab is greater or smaller than unity. The final distortion
is obtained by rotation of the deformed fibers. Presentation of matrices in the form
(3.34) is called the polar decomposition.

Tensors |x |ab and gab are related as

gab = gi j x
i
a x j

b = g̊cd |x |ac |x |bd . (3.36)

According to (3.36), gab and |x |ab can be made diagonal by the same orthogonal
(with respect to the metric g̊ab) transformation.

Formula (3.36) provides a one-to-one correspondence between gab and |x |ab . In-
deed, if |x |ab is known then gab is determined by (3.36). The principal coordinates of
tensors |x |ab and gab (the coordinates in which |x |ab and gab are diagonal) coincide

3 Positiveness of a symmetric matrix means that its eigenvalues are positive.
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according to (3.36). If gab is known, then, to find |x |ab, one makes an orthogonal
transformation which diagonalizes gab. Since |x |ab are diagonal in the same coordi-
nate system and the principal values are positive, we have (for g̊ab = δab)

|x |11 =
√

g11, |x |22 =
√

g22, |x |33 =
√

g33.

Since the tensor |x |ab is a “square root” of the metric tensor, it is called the
distortion modulus.

The tensor |x |ab depends on the distortion semilinearly, i.e. if the distortion is
multiplied by a positive constant, |x |ab acquires the same factor.

The tensor λib can be expressed in terms of xi
a as

λib = |x |(−1)ba xi
a,

where |x |(−1)ba is the inverse of the tensor |x |ab:

|x |ab |x |(−1)bc = δc
a .

In the system of coordinates in which the tensor |x |ab is diagonal,

|x |(−1)11 = 1

|x |11
, |x |(−1)22 = 1

|x |22
, |x |(−1)33 = 1

|x |33
.

Therefore, |x |ab and λib are uniquely determined in terms of the distortion xi
a .

Using the tensor |x |ab, we can construct a second strain measure:

γab = |x |ab − g̊ab. (3.37)

Note that

|x̊ |ab ≡ |x |ab|t=t0 = g̊ab.

This equality can be checked by transforming tensor |x̊ |ab into its principal axes.
According to (3.36) and (3.37), the strain tensors εab and γab are related as

εab = γab + 1

2
g̊cdγacγbd . (3.38)

Strain measures εab and γab are useful if the deviations of gab from their initial
values, g̊ab, are small. Otherwise, it is more convenient to use gab as the primary
characteristics of deformations.

A representation of three-dimensional orthogonal matrices. The matrix with the
components λia , orthogonal in sense of (3.35), can be orthogonal in the usual sense
if it is multiplied by matrix

∥∥x̊ i
a

∥∥, αi j = x̊ i
aλ

ja . Indeed from (3.35) we find that the
matrix

∥∥αi j

∥∥ is inverse to itself:

αi jαk j = δi
k αi jαik = δ

j
k . (3.39)
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A characteristic feature of the orthogonal transformation in three-dimensional
space is that an orthogonal transformation keeps one line, the axis of rotation, im-
mobile. Denote the axis of rotation by C and the unit vector directed along it by ci .
Since the transformation does not change ci ,

αi j c j = ci .

Due to the orthogonality of αi j we can also write

αi j ci = c j .

The orthogonal transformation can be given by vector ci and the angle θ of
counterclockwise (if observed from the end of ci ) rotation around the line C . The
couples (ci , θ ) and (−ci ,−θ ) define the same transformation. The components of
the orthogonal matrix, αi j , are expressed in terms of ci and θ as

αi j = cos θgi j + (1− cos θ ) ci c j − sin θεi jkck . (3.40)

This can be checked by writing down (3.40) in an orthogonal coordinate system one
of the axes of which coincides with C .

Inversely, if the components of matrix αi j are known, the angle θ is found by
means of the formula

cos θ = 1

2

(
αi

i − 1
)
, (3.41)

It follows from (3.40) by contraction over indices i, j. Then the vector ci is com-
puted by contracting (3.40) with εi jk and using (3.19)2 :

ck = − 1

2 sin θ
εi jkα

i j .

The analogous expression for the orthogonal matrix with the determinant equal
to −1 is

αi j = cos θgi j − (1+ cos θ ) ci c j − sin θεi jkck . (3.42)

Space and time derivatives. The derivatives with respect to time with Eulerian co-
ordinates held constant will be denoted in several ways depending on convenience:

�t ≡ (·),t ≡ (·)t ≡
�

�t
.

Similarly, for spatial derivatives with respect to Eulerian coordinates we use the
notation

�

�xi
≡ �i ≡ (·),i
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while spatial derivatives with respect to Lagrangian coordinates are denoted as

�

�Xa
≡ �a ≡ (·),a .

Obviously, for any function of Eulerian coordinates and time, u(x, t),

du

dt
= du(x(X, t), t)

dt
= �u

�t
+ �u

�xi

dxi

dt
= �u

�t
+ vi �u

�xi
.

The order of differentiation with respect to time and space coordinates, �t and
�i , can be changed:

�

�xi

�

�t
= �

�t

�

�xi
.

Similarly,

�

�Xa

d

dt
= d

dt

�

�Xa
.

However,

�

�xi

d

dt
�= d

dt

�

�xi
,

�

�Xa

�

�t
�= �

�t

�

�Xa
.

The operator �t applied to the components of a tensor with Eulerian indices re-
sults in tensor components with a similar index structure. The same is true for the
operator d/dt applied to tensor components with Lagrangian indices.

The material time derivative of tensor components with Eulerian indices does not
yield a tensor. For example,

dxi
a

dt
= �

�Xa

dxi

dt
= �vi

�Xa
= xk

a

�vi

�xk
. (3.43)

Quantities dxi
a/dt do not transform by tensor rules since they are expressed in terms

of partial (not covariant) derivatives of velocity.

The strain rate tensor. The components of the strain rate tensor in the Lagrangian
coordinate system are defined as

eab = dεab

dt
.

Differentiating (3.33) with respect to time, we get

2eab =
(

gi j
�vi

�Xa
x j

b

)
+ (a ↔ b) . (3.44)
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By (a ↔ b) we denote the previous term in brackets with index a changed to b
and index b changed by a.

Equation (3.44) can be rewritten as4

2eab = xi
a x j

b

(
�vi

�x j +
�v j

�xi

)
. (3.45)

Contracting (3.45) with inverse distortions Xa
i Xb

j , we obtain the following ex-
pression for the strain rate tensor in the Eulerian coordinate system, ei j = Xa

i Xb
j eab:

ei j = �(iv j) ≡ 1

2

(
�vi

�x j +
�v j

�xi

)
. (3.46)

The parentheses in indices stand for symmetrization:

a(i j) ≡ 1

2

(
ai j + a ji

)
.

Let us emphasize that the time derivatives of Eulerian components of the strain
tensor, εi j = Xa

i Xb
j εab, are not equal to ei j :

ei j �= dεi j

dt
.

Rigid motion. Consider the motion of the system when the distortion xi
a does not

depend on the Lagrangian coordinates. In this case, the particle trajectories are

xi = r i (t)+ αi
a (t) Xa . (3.47)

Functions xi = r i (t) define the trajectory of the particle with the zero Lagrangian
coordinates.

The motion (3.47) is called homogeneous deformation. It is called rigid if the
distortion, xi

a = αi
a, is an orthogonal matrix, i.e.

gi jα
i
aα

j
b = g̊ab, g̊abαi

aα
j
b = gi j . (3.48)

4 In curvilinear Euler’s coordinates one has to differentiate in (3.44) the metric tensor as well. That
yields an additional term dgi j

dt x i
a x j

b in (3.45). Since

dgi j
(
xk (Xa, t)

)

dt
= dgi j

dxk
vk ,

�gi j

�xk
= gmj �

m
ik + gmi �

m
jk ,

where �m
ik are Kristoffel’s symbols, (3.45) gets a tensor form

2eab = xi
a xi

b

(∇iv j + ∇ j vi
)
.

where ∇i is the covariant space derivative in Eulerian coordinates.
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For gi j = δi j , g̊ab = δab, the matrix αi
a is orthogonal in the usual sense.

Note that the second equation (3.48) follows from the first one, and vice versa.
Indeed, denote g̊abαi

aα
j
b by g̃i j . Contracting the first equation (3.48) with g̊acαk

c , we
get the relation gi j g̃ikα

j
b = αk

b which, due to the non-degeneracy of the matrix
∥∥αi

a

∥∥,
implies that gi j g̃ik = δk

j . Therefore g̃ik = g(−1)ik = gik , as claimed; similarly, one
can prove that the first equation (3.48) follows from the second one.

In rigid motion, according to the first equation (3.48), the strain tensor is equal
to zero. The inverse statement is also true, i.e. if the strain tensor is equal to zero at
every point of the continuum, the particle trajectories are given by formulas (3.47)
where αi

a is an orthogonal matrix. Hence, the rigid motion can be defined as a motion
for which the distance between any two points of the continuum does not change
over time.

The continuum which performs only rigid motions is called a rigid body. The
velocities of the particles of the rigid body can be found by differentiating (3.47):

vi
(
Xa, t

) = ui (t)+ dαi
a (t)

dt
Xa, ui ≡ dr i

dt
. (3.49)

Here ui is the velocity of the point with the zero Lagrangian coordinates.
Let us find the velocity field vi as a function of Eulerian coordinates. In order

to do this, we first need to express the Lagrangian coordinates in terms of Eulerian
coordinates from (3.47):

Xa
(
xi , t

) = α ja (t)
(
x j − r j (t)

)
. (3.50)

It does not matter which metric tensor, g̊ab or gab, is used to lift the index in αi
a

because g̊ab=gab for a rigid motion. Substituting (3.50) into (3.49), we get

vi
(
xk, t

) = ui (t)+ ω j i (t)
(
x j − r j (t)

)
. (3.51)

where we introduced the notation

ω j i = α ja (t)
dαi

a

dt
. (3.52)

Tensor ω j i is antisymmetric with respect to i, j . Indeed, differentiating the sec-
ond equation (3.48) with respect to t and using the definition (3.52), we obtain

d

dt

(
αi

aα
j
b g̊ab

)
= ωi j + ω j i = 0.

Antisymmetric tensors of the second order, ωi j , in a three-dimensional space are
in one-to-one correspondence with vectors, ωk , such that

ωi j = εi jkωk, ωk = 1

2
εki jω

i j . (3.53)



3.1 Continuum Kinematics 83

Relations (3.53) follow from (3.19). The vector

ωk = 1

2
εki jα

ia dα
j
a

dt
, (3.54)

is called the angular velocity vector of a rigid body, ωi j the tensor of angular veloc-
ity, ωi j dt the tensor of infinitesimally small rotation, and dϕi = ωi dt the angle of
infinitesimally small rotation. The kinematic relation (3.51) in terms of the vector
of angular velocity takes the form

vi
(
xk, t

) = ui (t)+ εik jωk
(
x j − r j (t)

)
. (3.55)

Time derivative of Lagrangian coordinates. By the definition of the material time
derivative,

d Xa

dt
= 0. (3.56)

If one plugs into (3.56) the dependence of Xa on Eulerian coordinates, one gets

d Xa(t, x)

dt
= d Xa(t, x(t, X ))

dt
= �Xa(t, x)

�t
+ �Xa

�xi

dxi

dt
= 0

or

�Xa

�t
+ vi �Xa

�xi
= 0. (3.57)

Equations (3.57) may be considered as a system of three linear equations with
respect to velocity. Contracting (3.57) with x j

a and using the first equation (3.3) we
obtain

vi = −xi
a

�Xa

�t
(3.58)

Equation (3.58) presents velocity in terms of time and space derivatives of the
Lagrangian coordinate flow Xa(t, x) because xi

a may be viewed as some functions
of the derivatives of Xa(t, x), Xa

i .

Time derivative of the inverse distortion. Let us show that

d Xa
j

dt
= −Xa

i

�vi

�x j
. (3.59)

Indeed, differentiating (3.57) with respect to x j , we have

�

�t

�Xa

�x j
+ vi �

�xi

�Xa

�x j
+ �vi

�x j

�Xa

�xi
= 0. (3.60)

Since the sum of the first two terms in (3.60) is d Xa
j /dt, we arrive at (3.59).



84 3 Continuum Mechanics

Invariant integration. In an Eulerian coordinate system, the volume element dV is

dV = √gdx1dx2dx3 (3.61)

where g is the determinant (3.10). After the coordinate transformation, x → X,

dV = √g |�| d X1d X2d X3,

where � is the Jacobian of transformation. Since, due to (3.27),

√
ĝ = √g |�| , (3.62)

the volume element in Lagrangian coordinates in the current state is

dV =
√

ĝd X1d X2d X3. (3.63)

Similarly, in the initial state,

dV̊ =
√

g̊d X1d X2d X3, g̊ = det ‖g̊ab‖ . (3.64)

It can be proved that dV and dV̊ are scalars with respect to transformations
of Lagrangian coordinates which do not change the orientation of the coordinate
system.

Integrals

∫

V

�dV,

∫

V̊

�dV̊

have the same form in all Lagrangian coordinate systems, Xa, if � is a scalar with
respect to transformations of Lagrangian coordinates.

The following equality holds:

∫

V

�
√

ĝd X1d X2d X3 =
∫

V

�
√

gdx1dx2dx3, (3.65)

where V is the region occupied by the system in the current state. Equation (3.65)
allows one to convert the integrals over Eulerian variables to the integrals over
Lagrangian variables and vice versa.

The continuity equation. Denote by ρ the mass density. Then the mass of the
material occupying the volume element dV is ρdV . We assume that the mass of
each volume element does not change in the course of motion, i.e.

ρdV = ρ0dV̊ , (3.66)
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where ρ0 is the mass density in the initial state. Then, from (3.63), (3.64), and (3.66),
it follows the so-called continuity equation in Lagrangian variables:

ρ
√

ĝ = ρ0

√
g̊. (3.67)

In the initial state, the mass density ρ0 and the metric tensor are some given func-
tions of Xa . For given particle trajectories, one can find ĝ; therefore, the continuity
equation can be considered as an equation allowing one to find the mass density, ρ,

if the continuum motion is known:

ρ = ρ0

√
g̊√

ĝ
. (3.68)

In terms of the determinant of distortion, �, according to (3.62),

ρ = ρ0

√
g̊√

g

1

|�| . (3.69)

Hence, the mass density is a function of distortion, xi
a . Further we assume that

� > 0, and the sign of the absolute value in (3.69) can be dropped: at the initial
state � > 0, and, in order to change the sign, � must become zero at some space
point; vanishing of � would mean a collapse of a material volume to a point or a
surface – we exclude such cases from consideration.

In many cases it is convenient to consider mass density as a function of Eulerian
coordinates. As such, mass density obeys the equation

dρ

dt
+ ρ

�vi

�xi
= 0. (3.70)

To derive (3.70) we differentiate (3.69) with respect to time while keeping the
Lagrangian coordinates constant and use (3.24) and (3.43):

dρ

dt
= − ρ0

√
g̊√

g�2

��

�xi
a

dxi
a

dt
= −ρXa

i

dxi
a

dt
= −ρXa

i

�vi

�Xa
= −ρ

�vi

�xi .

The formula for mass density (3.68) may be considered as the solution of the
differential equation (3.70) for mass density.

Note the relation for the time derivative of the distortion determinant, �, which
follows from (3.69) and (3.70):

d�

dt
= �

�vi

�xi
. (3.71)

Equation (3.66) allows one to convert easily the integrals of densities per unit
mass over the Eulerian variables into the integrals over the Lagrangian variables;
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for example, in the case of the internal energy density per unit mass, U , one can
write

∫

V

ρUdV =
∫

V̊

ρ0UdV̊ . (3.72)

Derivative of the Jacobian with respect to parameters. Formula (3.71) is a special
case of a more general relation. Consider a coordinate transformation, X → x,

which depends of parameters yμ, μ = 1, ..., m :

xi = xi
(
Xa, yμ

)
.

Let � be the Jacobian of this transformation:

� = det

∥∥∥∥
�xi

�Xa

∥∥∥∥ .

Then

��

�yμ

∣∣∣∣
X=const

= �
�

�xi

�xi (X, y)

�yμ
. (3.73)

Indeed,

��

�yμ

∣∣∣∣
X=const

= ��

�xi
a

�xi
a

�yμ
= �Xa

i

�

�Xa

�xi (X, y)

�yμ
= �

�

�xi

�xi (X, y)

�yμ
.

Some identities. Consider an arbitrary coordinate transformation, x = x(X ). For
the Jacobian of this transformation an identity holds

�

�x j

1

�
x j

a = 0. (3.74)

It can be checked by direct inspection:

x j
a

�

�x j

1

�
= −x j

a

1

�2

��

�xi
b

�

�x j
xi

b

= −x j
a

1

�
Xb

i

�xi
b

�x j
= − 1

�
Xb

i

�xi
b

�Xa

= − 1

�
Xb

i

�xi
a

�Xb
= − 1

�

�xi
a

�xi
.



3.1 Continuum Kinematics 87

The identity (3.74) yields another form of (3.71), which employs the Lagrangian
components of velocity, va = Xa

i vi ,

d�

dt
= ��va

�Xa
. (3.75)

Replacing in the identity (3.75) x by X and X by x and taking into account that
det ‖�X/�x‖ = 1/�, we obtain another identity,

�

�Xa

(
�Xa

�xi
�

)
= 0. (3.76)

Divergence form of (3.73). Note another form of equation (3.73):

��

�yμ

∣∣∣∣
X=const

= − �

�Xa

(
�Xa

�yμ
�

)
. (3.77)

It is obtained from (3.73) using the relation,

− �xi (X, y)

�yμ
= xi

a

�Xa(x, y)

�yμ
, (3.78)

which follows from differentiation of the identity

xi
(
Xa

(
xk, y

)
, y
) = xi

with respect to yμ. Plugging (3.78) in (3.73) we have

��

�yμ

∣∣∣∣
X=const

= −�
�

�xi
xi

a

�Xa

�yμ
.

Employing (3.74) we obtain

��

�yμ

∣∣∣∣
X=const

= −�
�

�xi

1

�
xi

a

�Xa

�yμ
� = −xi

a

�

�xi

�Xa

�yμ
� = − �

�Xa

�Xa

�yμ
�

as claimed.

An identity. In transformations of equations of continuum mechanics the following
identity proves to be useful:

�(ρx j
a)

�x j
= ρ

ρ0

√
g̊

�(ρ0

√
g̊)

�Xa
. (3.79)
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For homogeneous continuum, when ρ0 = const, and for Cartesian Lagrangian co-
ordinates in the initial state (with g̊ = 1), the identity (3.79) simplifies to

�(ρx j
a)

�x j
= 0. (3.80)

Formulas (3.79) and (3.80) are written in Cartesian coordinates x . In curvilinear
coordinates partial derivatives with respect to xi must be replaced by covariant
derivatives.

Formula (3.79) follows from (3.68) and (3.74):

�ρx j
a

�x j
= �

�x j

ρ0

√
g̊

�
x j

a =
1

�
x j

a

�

�x j
ρ0

√
g̊

= 1

�

�ρ0

√
g̊

�Xa
= ρ

ρ0

√
g̊

�(ρ0

√
g̊)

�Xa
.

An identity similar to (3.79) holds for the inverse distortion,

�

�Xa

1

ρ
Xa

i = −
1

ρρ0

√
g̊

�(ρ0

√
g̊)

�xi
. (3.81)

To prove (3.81) we note that

�

�Xa

1

ρ
Xa

i = x j
a

�

�x j

1

ρ
Xa

i =
1

ρ

(
�

�x j
ρx j

a

1

ρ
Xa

i −
1

ρ
Xa

i

�

�x j
ρx j

a

)
= − 1

ρ2
Xa

i

�

�x j
ρx j

a .

Plugging here (3.79) we arrive at (3.81). In homogeneous media referred to Carte-
sian Lagrangian coordinates,

�

�Xa

1

ρ
Xa

i = 0. (3.82)

The divergence theorem. In this subsection, several versions of the divergence the-
orem that will be used later are introduced.

The divergence theorem is a multi-dimensional generalization of Newton’s for-
mula: for any function of one variable, f (x),

∫ b

a

d f (x)

dx
dx = f (b)− f (a).

This formula means that the integral of d f/dx does not depend on the value of
f inside the integration region, it is determined only by the end values of f. The
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explanation of such a “paradoxical” feature is simple: the integral is the limit value
of a sum,

∫ b

a

d f (x)

dx
dx =

n∑
k=0

f (a + (k + 1)ε)− f (a + kε)

ε
ε, b = a + (n + 1)ε.

Writing down this sum in full,

n∑
k=0

f (a + (k + 1)ε)− f (a + kε)

ε
ε = f (a + ε)− f (a)+ f (a + 2ε)− f (a + ε)

+ . . .+ f (a + (n + 1)ε)− f (a + nε)

we see that all the values of function f inside the integration region cancel out. It
turns out that a similar fact holds for multi-dimensional integrals. We formulate it
first for a bounded region V in three-dimensional space R3. Let ζ α(α = 1, 2) be
some parameters on the surface �V bounding the region V . The parametric equa-
tions of �V are

xi = r i (ζ α) .

The functions r i (ζ α) are assumed to be piecewise differentiable. The coordinates
ζ 1, ζ 2 are introduced in such a way that adding a third space coordinate, ζ 3, increas-
ing away from �V in the outward direction yields a coordinate system, ζ 1, ζ 2, ζ 3,

which has the same orientation as the coordinate system xi , i.e. det‖�x/�ζ‖ > 0.
Consider the object

Ni = ei jkr j
1 rk

2 , r j
α ≡

�r j

�ζ α
. (3.83)

which is defined on �V . This object is “orthogonal” to �V in the sense that the
contraction of Ni with the tangent vectors r i

α is zero:

Nir
i
α = 0.

It is directed outside of V .

Let some continuous differentiable functions �i (i = 1, 2, 3) be defined on the
closed region V . Then, the following equation holds:

∫

V

��i

�xi
dx1dx2dx3 =

∫

�V

�i Ni dζ 1dζ 2. (3.84)

Equation (3.84) is called the divergence theorem.
We will also need the divergence theorem in the four-dimensional space-time. Let

V4 be a region in space-time R4, which is swept by the motion of a three-dimensional
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Fig. 3.3 Motion of a
three-dimensional region V3

in four-dimensional
space-time

region V3 in R3 (Fig. 3.3). Denote as before the parameters on the boundary, �V3,

of the region V3 by ζ 1, ζ 2. Then the “time” part of the boundary �V4 of the region
V4 is described by the parametric equations

xi = r i
(
ζ 1, ζ 2, t

)
, x4 = t, (3.85)

where small Latin indices correspond to the projections on the space coordinate axes
and the index 4 marks the projection on the time axis. Denote the quantities defined
by (3.83) by Ni , where r i

α are derivatives of the function (3.85) with respect to ζ α .
For any continuous differentiable functions, �, �i , in the closed region V4, the

following equality holds:

∫

V4

(
��

�t
+ ��i

�xi

)
dx1dx2dx3dt =

=
t∫

t0

∫

�V3

(
�i −�r i

t

)
Ni dζ 1dζ 2dt +

⎡
⎣
∫

V3

�dx1dx2dx3

⎤
⎦

t1

t0

. (3.86)

where r i
t ≡ �r i/�t

∣∣
ζ α=const .

Invariant form of the divergence theorem*. Equation (3.84) can be written in the
“invariant” form if we put in (3.84) �i = √gωi , where ωi are the components of
some vector field. In order to do that, we use the relation for the covariant5 diver-
gence of the vector ωi ,

∇iω
i = 1√

g

�
√

gωi

�xi
, (3.87)

5 The reader who is not familiar with the notion of covariant derivatives can find the necessary
definitions in Sect. 4.6.
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and the relation between Ni and the unit normal vector ni ,

Ni = ni

√
a√
g
.

where a is the determinant of the surface metric tensor (see Sect. 14.1, and, in par-
ticular, (14.7)). Introducing the invariant volume elements as dV = √gdx1dx2dx3

and the invariant surface elements as d A = √adζ 1dζ 2, we can write (3.84) as

∫

V

∇iω
i dV =

∫

�V

ωi ni d A. (3.88)

Emphasize that, despite its “tensor” appearance, (3.88) has a purely analytical
nature and is not related to notions of the covariant differentiation and/or metrics
that were used in (3.88).

Choosing ω1 = ϕ, and ω2 = ω3 = 0, we obtain from (3.88) in Cartesian
coordinates,

∫

V

�ϕ

�x1
dV =

∫

�V

ϕn1d A.

Similar relations hold for �ϕ/�x2 and �ϕ/�x3. Thus,

∫

V

�ϕ

�xi
dV =

∫

�V

ϕni d A. (3.89)

If in (3.88) xi are interpreted as the Lagrangian coordinates Xa , gi j as the com-
ponents of the metric tensor in the initial state, g̊ab, and ωi as the components of the
vector in the Lagrangian coordinate system, ωa , then (3.88) becomes

∫

V̊

∇̊aω
adV̊ =

∫

�V̊

ωan̊ad Å. (3.90)

Similarly, if gi j are interpreted as the components of the metric tensor in not the
initial but the current state, gab, then instead of (3.90) we get

∫

V

∇aω
adV =

∫

�V

ωanad A. (3.91)

Let us introduce in planes t = const in V4 a spatial metric tensor, gi j
(
xk, t

)
,

and substitute into (3.86):

� = √gω, �i = √gωi ,
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dV = √gdx1dx2dx3, d A = √adζ 1dζ 2,

where ωi are the components of a spatial vector field. Then (3.86) takes the form

∫

V4

(
1√
g

�ω
√

g

�t
+∇iω

i

)
dV dt =

=
t1∫

t0

∫

�V3

(
ωi − ωr i

t

)
ni d Adt +

⎡
⎣
∫

V3

ωdV

⎤
⎦

t1

t0

. (3.92)

The quantity r i
t ni means the surface velocity component in the direction of the

normal to the surface.
Identifying in (3.92) the coordinates, x, with the Lagrangian coordinates, and the

metric tensor, gi j ,with the initial metric tensor, g̊ab, we get

∫

V̊3×[t0,t1]

(
dω

dt
+ ∇̊aω

a

)
dV̊ dt =

=
t1∫

t0

∫

�V̊3

(
ωa − ωra

t

)
n̊ad Ådt +

⎡
⎢⎣
∫

V̊3

ωdV̊

⎤
⎥⎦

t1

t0

. (3.93)

The quantity ra
t n̊a can be interpreted as the velocity of the boundary, �V̊3, of the

region V3 over the particles.
If in (3.92) the coordinates, x, are identified with the Lagrangian coordinates, X,

while gi j are set to be the current Lagrangian metric tensor, gab, then (3.92) becomes

∫

V4

(
1√
ĝ

d

dt
ω
√

ĝ + ∇aω
a

)
dV dt =

=
t1∫

t0

∫

�V3

(
ωa − ωra

t

)
nad Adt +

⎡
⎣
∫

V3

ωdV

⎤
⎦

t1

t0

. (3.94)

Another useful form of the divergence theorem is obtained if one substitutes ω

in (3.94) by ρω. Then, using the continuity equation (3.67), one can write (3.94) as

∫

V4

(
ρ

dω

dt
+∇aω

a

)
dV dt =

=
t1∫

t0

∫

�V3

(
ωa − ρωra

t

)
nad Adt +

⎡
⎣
∫

V3

ρωdV

⎤
⎦

t1

t0

. (3.95)
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In particular, when ωa = 0, (3.95) takes the form

∫

V4

ρ
dω

dt
dV dt = −

t∫

t0

∫

�V3

ρωra
t nad Adt +

⎡
⎣
∫

V3

ρωdV

⎤
⎦

t1

t0

. (3.96)

3.2 Basic Laws of Continuum Mechanics

Momentum equation. The second Newton law for one particle reads: the rate of
momentum, mvi , is equal to the external force acting on the particle

d

dt
mvi = Fi .

What is an analogy of this law for a continuum? The answer is not self-evident and
for the classical continuum models is as follows.

Consider a piece of continuum, some region V̊ in the space of Lagrangian coor-
dinates. For an observer, this piece occupies some moving region V (t). It consists of
the same material particles. Momentum of an infinitesimally small piece of material,
dV , is, by definition, the product of the mass of the particle, ρdV, and the particle
velocity, vi . We postulate that the momentum of the entire piece of continuum is the
sum of momenta of all its infinitesimally small parts:

momentum =
∫

V (t)

ρvi dV .

Denote by Fi the total force acting on the material in region V . Then we accept
the following continuum version of the second Newton law:

d

dt

∫

V (t)

ρvi dV = Fi . (3.97)

The total force, Fi , can be split into the sum of the surface force and the body
force:

Fi = Fi
sur f ace + Fi

body . (3.98)

Both forces are assumed to possess a force density:

Fi
sur f ace =

∫

�V

f i d A, Fi
body =

∫

V

ρgi dV . (3.99)
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The body force per unit mass, gi , is a function of x and t ; in most applications,
the only body force is gravity; the vector gi , the gravity acceleration, is constant.
The surface force per unit area, f i , can depend not only on the space point of the
boundary and time, but also on the geometrical characteristics of the surface �V .
The crucial assumption of classical continuum mechanics is that the surface force
density depends linearly on the normal vector to �V :

f i = σ i j n j, (3.100)

and “the coefficients” σ i j are some functions of x and t only. These coefficients are
called the stress tensor. The unit normal vector n j is directed, by our convention,
outside of the region V . Surface force density may depend on the geometry of the
surface in a more complex way as we will see later in Sect. 4.5, but for all classical
models formula (3.100) holds true.

In principle, the stress tensor may be non-symmetric, but it is assumed symmetric
in all classical models:

σ i j = σ j i . (3.101)

Equations (3.97), (3.98), (3.99) and (3.100) constitutes the integral form of momen-
tum equation for classical models of continuum media.

Differential form of momentum equation. Let us show that (3.97), (3.98), (3.99)
and (3.100) are equivalent to the following equation:

ρ
dvi

dt
= �σ i j

�x j
+ ρgi . (3.102)

Consider the momentum equation (3.97). We would like to move the time deriva-
tive under the integral, but then some additional terms must appear because the
limits of integration depend on time. To get around this complication, we write the
integral in terms of Lagrangian coordinates by means of (3.66):

∫

V (t)

ρvi dV =
∫

V̊

ρ0v
i d V̊ . (3.103)

The limits of integration in the right hand side of (3.103) do not depend on time;
thus we can move the time derivative under the integral:

d

dt

∫

V (t)

ρvi dV =
∫

V̊

ρ0
dv

dt

i

dV̊ .

Returning back to Eulerian coordinates by means of (3.66) we obtain
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d

dt

∫

V (t)

ρvi dV =
∫

V (t)

ρ
dv

dt

i

dV . (3.104)

The total force (3.98) can also be written as a volume integral due to (3.100):

Fi =
∫

V

(
�σ i j

�x j
+ ρgi

)
dV . (3.105)

Here we used the divergence theorem. Equating (3.104) and (3.105) we have

∫

V

(
ρ

dvi

dt
− �σ i j

�x j
− ρgi

)
dV = 0. (3.106)

Since the region V is arbitrary and all functions involved are assumed to be con-
tinuous, the integrand must be identically equal to zero, otherwise one can find a
region V for which the left hand side of (3.106) is not zero. We thus arrive at the
momentum equation (3.102).

Piola-Kirchhoff stress tensor. Stress tensor σ i j is also called Cauchy’s stress ten-
sor. The projection of this tensor over the second index to Lagrangian coordinates
with a factor, ρ0/ρ,

pia = ρ0

ρ
σ i j Xa

j ,

is usually called Piola-Kirchhoff stress tensor. The Piola-Kirchhoff stress tensor has
one observer’s and one Lagrangian index, i.e. it behaves as a triad of vectors under
transformation of observer’s frames and a triad of vectors under transformation of
Lagrangian frames. There is convention in tensor analysis to keep the same core
letter for the components of the tensor in different coordinate systems. Therefore,
one can write for Piola-Kirchhoff stress tensor

pia = ρ0

ρ
σ ia

or

σ ia = ρ

ρ0
pia .

Note also here the relation between the Lagrangian and Eulerian components of
the stress tensor:

σ ab = σ i j Xa
i Xb

j .
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Momentum equation in Lagrangian coordinates. Momentum equation in La-
grangian coordinates takes a simple form if we use the Piola-Kirchhoff stress tensor6

ρ0
dvi

dt
= �pia

�Xa
+ ρ0gi . (3.108)

Another form of this equation,

ρ0
�2xi (t, X )

�t2
= �pia

�Xa
+ ρ0gi , (3.109)

emphasizes that the independent variables in this equation are Lagrangian coordi-
nates and time.

To derive (3.108) from (3.102) one can plug into (3.102) the expression of
Cauchy’s stress tensor in terms of Piola-Kirchhoff’s stress tensor,

σ i j = ρ

ρ0
pia x j

a ,

and use the identity (3.73).

Energy equation. Consider the total energy of material contained in some region
V (t). As we discussed in Chap. 2, energy is a primary characteristic of a mechanical
system which always exists. Continuum is an approximate description for mechan-
ical systems consisting of a large number of material particles. Energy is defined
as the total energy of these particles. Total energy can be presented as a sum of the
kinetic energy of the macroscopic motion,

∫

V (t)

ρ
v2

2
dV

and the remainder, which is called internal energy. The latter is assumed to have
some energy density. The internal energy density per unit mass is denoted by U . So,

6 Here we assume that the Lagrangian coordinates are Cartesian in the initial state, and g̊ = 1.

Otherwise, the momentum equation is

ρ0
dvi

dt
= 1√

g̊

�

�Xa

(√
g̊ pia

)
+ ρ0gi , (3.107)

or, in terms of the covariant derivative in the initial state,

ρ0
dvi

dt
= ∇̊a pia + ρ0gi .

Note that the covariant derivative ∇̊a “acts” only on the Lagrangian index of Piola-Kirchhoff tensor.
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total energy =
∫

V (t)

ρ
v2

2
dV +

∫

V (t)

ρUdV .

The energy rate is caused by the work of external forces

d

dt

∫

V (t)

ρ

(
v2

2
+U

)
dV = P + d Q

dt
. (3.110)

Here P is the power of external forces (the work of external forces per unit time)

P =
∫

�V (t)

σ i j n jvi d A +
∫

V (t)

ρgivi dV, (3.111)

and heat supply d Q is the work additional to the work of external forces. Heat sup-
ply is the work done on “microscopic degrees of freedom” as discussed in Chap. 2.

It is assumed in classical continuum models that the heat supply is due only to
some energy flux through the surface, and there is a heat supply surface density, q,
such that

d Q

dt
=
∫

�V

q d A. (3.112)

Moreover, the dependence of the heat supply surface density, q, on the geometry of
the surface is similar to (3.100):

q = −qi ni , (3.113)

where qi are some functions of the space points and time. The vector qi is called the
heat flux vector. The minus sign in (3.113) is caused by the convention that energy
should decrease if the vector qi is directed outside of the region V and increase
otherwise.

Combining (3.110), (3.111), (3.112) and (3.113) and repeating the reasoning that
yields the momentum equation in differential form (3.102) we obtain the energy
equation in differential form:

ρ
d

dt

(
v2

2
+U

)
= �(σ i jvi )

�x j
+ ρgivi − �qi

�xi
. (3.114)

This equation may be simplified. Note that the momentum equation (3.102)
yields an equation for the kinetic energy rate: contracting (3.102) with vi we have

ρ
d

dt

v2

2
= �σ i j

�x j
vi + ρgivi . (3.115)
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Deducting (3.115) from (3.114) we obtain the equation for the internal energy rate:

ρ
dU

dt
= σ i j �vi

�x j
− �qi

�xi
. (3.116)

Entropy equation. If the processes in the system are sufficiently slow, one can
introduce S, the entropy of the system. We assume that entropy of the system is the
sum of entropies of all subsystems, i.e. the entropy density per unit mass, S, exists:

S =
∫

V

ρSdV .

Entropy density has the dimension (mass)−1 if the total entropy is taken as dimen-
sionless.

The second law of thermodynamics claims that for an isolated system the total
entropy does not decrease:

dS
dt
=
∫

V

ρ
d S

dt
dV ≥ 0. (3.117)

Every continuum model must obey this constraint.

3.3 Classical Continuum Models

All continuum models can be roughly split into two categories. The first is com-
prised of the models that have as the primary characteristics only the particle posi-
tions x(t, X ) and the entropy S(t, X ). Functions x(t, X ) and S(t, X ) are analogous
to the generalized coordinates of classical mechanics. Note that the “generalized
coordinates” of continuum mechanics include, in addition to the functions x(t, X ),
which are a direct analogy of the particle coordinates in classical mechanics, an
additional “coordinate” S(t, X ). The second type of model is formed by the mod-
els which have some additional primary characteristics like plastic deformations,
concentrations of chemical species, etc. We call these additional characteristics the
internal degrees of freedom. We consider first the models which do not have internal
degrees of freedom.

All classical continuum models are based on the assumption that internal energy
density, U , is a function of distortion and entropy density only:

U = U (xi
a, S). (3.118)

Function U (xi
a, S) specifies the physical properties of the media. To close the

system of three momentum equations (3.102) and energy equation (3.115), one
has to prescribe the constitutive equations which link the remaining unknowns in
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(3.102) and (3.115), σ i j and qi , with four functions xi (t, X ) and S(t, X ). Note
that mass density in (3.102) and (3.115) can be considered as a function of dis-
tortion according to the conservation of mass equation (3.69). The constitutive
equations for σ i j and qi cannot be taken arbitrarily: the second law of thermo-
dynamics (3.117) must be satisfied. If σ i j and qi were known, then, for models
with the internal energy (3.118), the rate of entropy can be found from the energy
equation (3.116):

ρ
�U

�xi
a

dxi
a

dt
+ ρ

�U

�S

d S

dt
= σ i j �vi

�x j
− �qi

�xi
. (3.119)

The derivative �U/�S is absolute temperature

�U (xi
a, S)

�S
= T . (3.120)

Equation (3.120) is just the definition of temperature. One may consider (3.120)
as an equation linking entropy and temperature and use temperature as the primary
unknown function instead of entropy. Then (3.120) will serve as an equation to find
entropy.

Note that the first term in the right hand side of (3.119) can be written in different
forms:

σ i j �vi

�x j
= ρ

ρ0
pa

i

�vi

�Xa
, (3.121)

or

σ i j �vi

�x j
= σ i j ei j = σ ab dεab

dt
. (3.122)

Let us use (3.121). Then from (3.119) the entropy rate is

ρ
d S

dt
= 1

T

ρ

ρ0

(
pa

i − ρ0
�U

�xi
a

)
�vi

�Xa
− 1

T

�qi

�xi
.

The closing equations for pa
i and qi must be such that for an isolated system the

total entropy does not decrease at any instant:

∫

V

ρ
d S

dt
=
∫

V

[
1

T

ρ

ρ0

(
pa

i − ρ0
�U

�xi
a

)
�vi

�Xa
− 1

T

�qi

�xi

]
dV ≥ 0. (3.123)

Isolation of the system requires some special conditions at the boundary. In par-
ticular, the heat supply through the boundary must be zero:
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qi ni = 0 at �V .

Integrating the last term of the integral in (3.123) by parts, we put the second law
of thermodynamics in the form

∫

V

(
1

T

ρ

ρ0

(
pa

i − ρ0
�U

�xi
a

)
�vi

�Xa
+ qi �

�xi

1

T

)
dV ≥ 0. (3.124)

The consequences of the inequality (3.124) depend on the further assumptions for
the stresses and the heat flux.

Heat conductivity. Consider first the case when the continuum does not move. Then
the only process remaining is the heat conduction. It is described by the equation

ρ
dU

dt
= −�qi

�xi
. (3.125)

To close this equation, we need the constitutive equation for the heat flux. It must
satisfy the second law of thermodynamics (3.124). Now (3.125) takes the form

∫

V

qi �

�xi

1

T
dV ≥ 0. (3.126)

The simplest relation to obey this inequality is the Fourier heat conduction law:

qi = κ

�

�xi

1

T
, (3.127)

with some positive parameter, κ, the coefficient of heat conductivity.
Let us choose the function U (Xa, t) as the independent thermodynamic variable,

and describe the thermodynamic properties of the material by the function S =
S0 (U ) . Then the temperature is linked to U by the formula

1

T
= d S0 (U )

dU
. (3.128)

Equations (3.125), (3.128) and (3.127) form a closed system of equations for heat
conductivity.

Fourier law is often written in a slightly different form,

qi = −γ
�T

�xi
,

It has an advantage that the coefficient γ = κ/T 2 only slightly depends on temper-
ature for many materials.

To demonstrate the importance of the inequality (3.126) consider an improve-
ment of heat conductivity theory suggested by Cattaneo. One can derive from the
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equations obtained that the heat propagates with an infinite velocity. To get rid of
this paradox, Cattaneo proposed to replace (3.127) by the equation

qi + α
dqi

dt
= κ

�

�xi

1

T
, (3.129)

The energy equation (3.125) along with equations (3.128) and (3.129) form a
closed system of equations. However, these equations contradict the inequality of
the second law of thermodynamics (3.126). Indeed, in Cattaneo’s theory, qi and
U can be given independently for the initial instant since the energy equation and
the equation for qi (3.129) contain the first derivatives of qi and U with respect to
time. By a specific choice of the initial values, the integrand in (3.126) and, hence,
the integral (3.126) can be made negative. Therefore, all the formulas of Cattaneo’s
theory cannot be left unchanged. The question arises whether it is possible to choose
such equations of state for entropy that entropy increases in an isolated system. The
negative answer to this question would mean that (3.129) is not consistent with the
laws of thermodynamics. It turns out that a modification of the equation of state
does exist. One has to change only the constitutive equation for entropy:

S = S0 (U )− α

2κ

qi q
i ,

1

T
=d S0 (U )

dU
.

The reader can check that the total entropy of the system does increase. The negative
sign in the equation for the entropy has a clear meaning: the heat flux induces some
order, and the entropy density decreases.

Elastic body. Theory of elasticity is based on the assumption that pa
i and qi may

depend only on distortion, entropy (or temperature) and temperature gradient.
Besides, these relationships are universal, i.e. they are valid for any values of xi

a ,
T and �T/�xi . Let us take first T = const . Then inequality (3.124) simplifies to

∫

V

1

T

ρ

ρ0

(
pa

i − ρ0
�U

�xi
a

)
�vi

�Xa
dV ≥ 0. (3.130)

The momentum equation contains the time derivative of the velocity field. There-
fore, the initial data for velocity must be provided. The initial velocity field can be
chosen arbitrarily. Applying inequality (3.130) to the initial instant and using the
fact that pa

i and �U/�xi
a do not depend on velocity field, we see that the expression

in parenthesis must vanish and thus

pa
i = ρ0

�U

�xi
a

. (3.131)

Otherwise, one can choose the velocity field in such a way that entropy rate is
negative (the reasoning is similar to that of the main lemma of calculus of variation
in Chap. 1). Since at the initial instant any distributions of distortion and entropy
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can be taken, and the dependence pa
i (x j

b , S) is universal, (3.131) gives the required
constitutive equations for the stress tensor.

Consider now an arbitrary temperature field. Because of (3.131), inequality
(3.124) is now a constraint for the heat flux vector (3.126). Any dependence of
qi on the temperature gradient satisfying to (3.126) is possible, in principle. The
simplest is the Fourier law, which we write for the general anisotropic case as

qi = Di j �

�x j

1

T
. (3.132)

The heat conductivities, Di j , must be positive definite:

Di jξiξ j ≥ 0 for any ξi .

The heat conductivities may depend on temperature and distortion. It can be
shown that Onsager’s relations for heat conduction imply the symmetry of tensor
Di j ,

Di j = D ji .

The momentum (3.108), energy (3.116), continuity (3.68) and constitutive equa-
tions (3.120), (3.131) and (3.132) form the closed system of equations for elastic
heat conducting body. The model is specified by prescribing the internal energy
U (xi

a, S) and the heat conductivities Di j .

Stress-strain relations for elastic body. The constitutive equations (3.131) can be
further specified if we note that internal energy must be invariant with respect to
rigid rotations of an elastic body. If a body with the particle positions xi (t, X ) is
rotated, the new particle positions, x ′i (t, X ), are

x ′i (t, X ) = αi
j x j (t, X )

where αi
j are the components of an orthogonal matrix. Therefore, the distortion in

the new position is

x ′ia = αi
j x

j
a .

Internal energy must be the same in both states for any orthogonal matrix αi
j and

any initial distortion xi
a :

U
(
αi

j x
j

a , S
) = U

(
x j

a , S
)
. (3.133)

One can show that to satisfy (3.133), function U may depend on distortion only
through the metric tensor gab = gi j x i

a x j
a , or, equivalently, through the strain tensor

εab = 1
2 (gab − g̊ab). Since
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�gbc

�xi
a

= gi jδ
a
b x j

c + gk j x
k
bδa

c δ
j
i = xicδ

a
b + xibδ

a
c (3.134)

we can write the stress-strain relations for elastic body (3.131) as

pia = 2ρ0
�U

�gab
xi

b = ρ0
�U

�εab
xi

b, (3.135)

In a Eulerian frame, these relations take the form

σ i j = ρ

ρ0
pia x j

a = ρxi
a x j

b

�U (εab, S)

�εab
. (3.136)

The stress components σ i j and pia change if the body is rotated. This does not
occur for Lagrangian components of the stress tensor,

σ ab = ρ
�U (εab, S)

�εab
. (3.137)

One comment on the meaning of the derivatives, �U (εab, S)/�εab is now in or-
der. Internal energy is a function of a symmetric tensor, εab = εba . Let, say, in a
two-dimensional space and for a Cartesian initial metrics, g̊ab = δab, the internal
energy is

U = μg̊abg̊cdεacεbd = μ(ε2
11 + 2ε2

12 + ε2
22).

Derivatives of this function over ε11, ε12 and ε22 are

�U

�ε11
= 2με11,

�U

�ε12
= 4με12,

�U

�ε22
= 2με22.

We see that these derivatives do not form a tensor: there is an extra factor 2 in the
12-compontent. Therefore, we must define the derivatives in a different way. This
definition must be such that the equations for the differential of U .

dU = �U

�εab
dεab,

remains true. To have the tensor relations, we will differentiate U (εab) as if the
tensor εab is not symmetric. We set εab = εba only in the final formulas. The reader
is invited to check that such a rule yields the relations indeed.

Entropic elasticity. The stress-strain relations contain the internal energy as a func-
tion of strains and entropy. If the internal energy were known as a function of strains
and temperature then the form of the stress-strain relations would change. To dis-
cuss the corresponding changes, it is convenient first to write down the stress-strain
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relations in terms of entropy as the primary thermodynamic potential. Entropy is a
function of internal energy and strains,

S = S(U, εab). (3.138)

For a given dependence of internal energy on strain and entropy, U = U (εab, S),
function (3.138) may be viewed as a solution of the equation

U (εab, S) = U.

Therefore, the derivatives of U (εab, S) and S(U, εab) are linked. To find the corre-
sponding relationships, we differentiate the identity

U (εab, S(U, εab)) = U, (3.139)

with respect to εab and U :

�U (εab, S)

�εab
+ �U

�S

�S(U, εab)

�εab
= 0,

�U (εab, S)

�S

�S(U, εab)

�U
= 1.

Hence,

�U (εab, S)

�εab
= −T

�S(U, εab)

�εab
,

�S(U, εab)

�U
=
(

�U (εab, S)

�S

)−1

= 1

T
. (3.140)

In terms of the thermodynamics function S(U, εab), the stress-strain relations take
the form

σ ab = −ρT
�S(U, εab)

�εab
. (3.141)

Experiments show that some materials, such as rubbers or polymers, exhibit the
following feature: their internal energy is a function of temperature only and, prac-
tically, does not depend on strain:

U = U0(T ).

Equivalently, temperature is some function of internal energy:

T = T0(U ).

According to the second equation (3.140), in this case

�S(U, εab)

�U
= 1

T0(U )
. (3.142)

The general solution of (3.142) is
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S(U, εab) = S0(U )+ S1(εab). (3.143)

where S0(U ) is the solution of the ordinary differential equation

d S0(U )

dU
= 1

T0(U )
.

Finally, for the stress-strain relations we have from (3.141) and (3.143)

σ ab = −ρT
�S1(εab)

�εab
. (3.144)

To see some qualitative peculiarities of such stress-strain relations, consider the
one-dimensional case when the stress and strain tensors have just one component,
σ and ε. According to (3.144),

σ = −ρT
�S1(ε)

�ε
.

Let the dependence of stresses on strains be linear, i.e.

S1 = −1

2
λε2. (3.145)

Here λ is the material rigidity, λ > 0; the negative sign in (3.145) roots in Gibbs’
variational principle: in equilibrium, i.e. at ε = 0, entropy must be maximum. So,

σ = ρT λε.

We see that the rigidity of material increases if temperature is raised. This is opposite
to typical behavior of metals for which the rigidity decreases when temperature
rises.

Another outcome of our consideration is that the material properties are uniquely
defined only if the internal energy is given in terms of their “native arguments”, εab

and S. If one uses as an argument temperature instead of entropy, then an uncertainty
appears in the costitutive equations. The uncertainty can be fixed by providing an
additional information about entropy, like (3.140).

The class of elasticity models (3.143) is sometimes called entropic elasticity.

Ideal compressible fluid. The special case of an elastic body when the internal
energy depends on distortion through the mass density only,

U = U (ρ, S), (3.146)

is called an ideal fluid. To derive the constitutive equations in this case we need the
relation
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�ρ

�xi
a

= −ρXa
i . (3.147)

It follows from (3.24) and (3.69):

�ρ

�xi
a

= �

�xi
a

ρ0

√
g̊√

g�
= − ρ0

√
g̊√

g�2

��

�xi
a

= −ρXa
i .

Then, from (3.131) and (3.147) we find the components of Piola-Kirchhoff’s tensor,

pa
i = −ρρ0

�U (ρ, S)

�ρ
Xa

i ,

and the components of the stress tensor in observer’s frame:

σ i j = −pgi j , p ≡ ρ2 �U (ρ, S)

�ρ
. (3.148)

The scalar p is called pressure.
The closed system of equations for an ideal, compressible, heat-conducting fluid

takes the form

�ρ

�t
+ �ρvi

�xi
= 0,

ρ
dvi

dt
= − �p

�xi
+ ρgi ,

ρ
dU (ρ, S)

dt
= −p

�vi

�xi
− �qi

�xi
, (3.149)

qi = κ

�

�xi

1

T
,

p = ρ2 �U (ρ, S)

�ρ
, T = �U (ρ, S)

�S
.

Function U (ρ, S) in (3.149) is assumed to be given. The special case,

U (ρ, S) = aργ−1eS/cv , (3.150)

where a, γ and cv are some positive constants, and γ > 1, is called a perfect gas.
The reader is invited to check that, for a perfect gas,

U = cvT and p = ρRT

where R ≡ (γ − 1)cv , is the so-called gas constant, and cv the heat capacity for
constant volume.
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The constant a in (3.150) is nonessential: by changing a one only shifts entropy
by a constant. The model for an ideal gas contains two physical characteristics, cv

and γ.

Incompressible ideal fluid. If “the fluid rigidity” with respect to the volume change
tends to infinity, then the variations of the density become negligibly small. One can
accept that in the first approximation the density is constant. Then the system of
(3.149) splits into two subsystems: the first serves to find velocities and pressure
(density ρ is a given constant),

�vi

�xi
= 0, (3.151)

ρ
�vi

�t
= − �p

�xi
+ ρgi ,

and the second allows one to determine temperature distribution when fluid motion
is known from (3.151):

ρ
dU (S)

dt
= −�qi

�xi
, qi = κ

�

�xi

1

T
, T = dU (S)

d S
. (3.152)

Equations (3.151) are called Euler equations.

Viscous compressible fluid. For a compressible fluid internal energy is, as before,
a function of density and entropy. What changes is the assumption made regarding
the stress tensor: for viscous fluid the stress tensor depends on the velocity field.
Consider again the inequality of the second law of thermodynamics (3.124). We put
it in the form

∫

V

(
1

T

(
σ i j + ρ2 �U (ρ, S)

�ρ
gi j

)
�vi

�x j
+ qi �

�xi

1

T

)
dV ≥ 0. (3.153)

Let us define tensor τ i j by the equation

σ i j = −ρ2 �U (ρ, S)

�ρ
gi j + τ i j . (3.154)

Tensor τ i j is symmetric since σ i j and gi j are symmetric. Due to the symmetry of
τ i j , the sum τ i j �vi/�x j can also be be written as

τ i j �vi

�x j
= τ i j ei j (3.155)

where ei j is the strain rate tensor (3.46). So,

∫

V

(
1

T
τ i j ei j + qi �

�x j

1

T

)
dV ≥ 0. (3.156)
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In principle, any dependence of τ i j and qi on ei j and the temperature gradient
which does not violate the inequality (3.156) is acceptable. The simplest one is a
linear dependence of τ i j on ei j :

τ i j = μi jklekl (3.157)

with a positive tensor μi jkl (μi jklei j ekl ≥ 0 for any ei j ), and Fourier’s law for qi

(3.132). This case is called a Newtonian fluid.
For an isotropic Newtonian fluid,

τ i j = λek
k gi j + 2μei j . (3.158)

In general, one usually assumes that the dissipation, D, defined as

D = τ i j ei j + T qi �i T
−1, (3.159)

is a function7 of ei j and T−1
,i :

D = D
(
ei j , �i T

−1) ,

and the closing relations are

τ i j = λ
�D

�ei j
, T qi = λ

�D

�
(
�i T−1

) . (3.160)

Here λ is the parameter determined from (3.159) and (3.160)

λ

(
�D

�ei j
ei j + �D

�
(
�i T−1

)�i T
−1

)
= D. (3.161)

Newtonian fluids correspond to a quadratic function D. In this case, the parameter
λ is equal to 1/2.

Incompressible viscous fluid. If the fluid is incompressible then, as for incompress-
ible ideal fluids, the determination of the temperature field separates from the deter-
mination of fluid motion. The closed system of equations for fluid motion consists
of four equations for four unknowns, velocity vi and pressure p:

�vi

�xi
= 0 (3.162)

7 Dissipation may also depend on temperature and mass density, but this is not emphasized in the
notation.
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ρ
dvi

dt
= − �p

�xi
+ μ�vi .

Here � is Laplace’s operator:

� = �2

�x2
1

+ �2

�x2
2

+ �2

�x2
3

.

Equations (3.162) are called Navier-Stokes equations.
Temperature is determined from the energy equation after velocity field has been

found from Navier-Stokes equations:

ρ
dU (S)

dt
= 2μei j e

i j − �

�xi
κ

�

�xi

1

T
. (3.163)

The first term in the right hand side of (3.163) describes heating of fluid caused by
viscosity.

Plastic bodies. Among a wide class of continuum models with internal degrees of
freedom we consider the models of classical plasticity theory. They endow the mate-
rial with additional degrees of freedom – the tensor field of plastic deformation ε

(p)
ab .

Internal energy of a plastic body depends on elastic deformation ε
(e)
ab = εab − ε

(p)
ab ,

plastic deformation ε
(p)
ab and entropy:

U = U
(
ε

(e)
ab , ε

(p)
ab , S

)
. (3.164)

Following the same line of reasoning as for elastic bodies, we first determine the
entropy rate from the energy equation (3.116):

ρT
d S

dt
=
(

σ ab − ρ
�U

�ε
(e)
ab

)
dεab

dt
+
(

ρ
�U

�ε
(e)
ab

− ρ
�U

�ε
(p)
ab

)
dε

(p)
ab

dt
− �qi

�xi
,

and then write the inequality of the second law of thermodynamics as

∫ [
1

T

(
σ ab − ρ

�U

�ε
(e)
ab

)
dεab

dt
+ 1

T

(
ρ

�U

�ε
(e)
ab

− ρ
�U

�ε
(p)
ab

)
dε

(p)
ab

dt
+ qi �

�xi

1

T

]
dV ≥ 0.

(3.165)

Consider, for simplicity, the cases when heat flux, qi , can be neglected. If the
tensor σ ab does not depend on strain rates then it necessarily follows from (3.165)
that

σ ab = ρ
�U

(
ε

(e)
ab , ε

(p)
ab , S

)

�ε
(e)
ab

. (3.166)
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The closing equations for plastic deformation are chosen in such a way that

(
ρ

�U

�ε
(e)
ab

− ρ
�U

�ε
(p)
ab

)
dε

(p)
ab

dt
≥ 0. (3.167)

If the internal energy does not depend explicitly on plastic deformations then
inequality (3.167) simplifies to

σ ab dε
(p)
ab

dt
≥ 0.

Denote the expression from (3.167) in parenthesis by τ ab, so that

τ ab = ρ
�U

�ε
(e)
ab

− ρ
�U

�ε
(p)
ab

= σ ab − ρ
�U

�ε
(ρ)
ab

. (3.168)

The dissipation in plastic flow is

ρT
d S

dt
= D = τ abε̇

(p)
ab , ε̇

(p)
ab ≡

dε
(p)
ab

dt
. (3.169)

If one assumes that the dissipation is a function of the plastic strain rate,8

D = D
(
ε̇

(p)
ab

)
,

then, similarly to (3.160), one postulates that

τ ab = λ
�D

�ε̇
(p)
ab

. (3.170)

The parameter λ is determined from (3.169) and (3.170):

λ = D

/
�D

�ε̇
(p)
ab

ε̇
(p)
ab .

If τ i j and e(p)
i j are the components of the tensors τ and the plastic strain rate in an

Eulerian frame,

τ i j = xi
a x j

b τ ab, e(p)
i j = Xa

i Xb
j ε̇

(p)
ab ,

then, obviously,

8 Dissipation may depend on distortion as well.
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τ i j = λ
�D

�e(p)
i j

. (3.171)

For metals, plastic deformation is usually incompressible and

gi j e(p)
i j = 0.

Therefore, dissipation depends only on the deviator part of the plastic strain rate

e′(p)
i j = e(p)

i j −
1

3
e(p)k

k gi j .

One can then obtain from (3.171) that the trace of the tensor τ i j is zero:

τ i
i = 0,

while the deviator part of the tensor τ, τ ′i j = τ i j − 1/3τ k
k gi j , is

τ ′i j = λ
�D

�e′(p)
i j

.

The behavior of many metals is well described by the model

D = k
(

e′(p)
i j e′(p)i j

) 1
2 (1+ 1

m )
. (3.172)

It contains two material characteristics, k and m. The dimensionless parameter,
m, is usually very large. In the limit m → ∞, this model transforms into the von
Mises model, where

D = k
√

e′(p)
i j e′(p)

i j . (3.173)

For the von Mises model, λ = 1, and

τ ′i j = k
e′(p)

i j√
e′(p)

mn e′(p)mn

. (3.174)

If e′(p)
i j �= 0, i.e. the material is deforming plastically, then, from (3.174),

τ ′i jτ ′i j = k2. (3.175)

This equation defines a surface in the six-dimensional space of variables τi j . The
plastic flow occurs only if the stresses lie on this surface.
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If there is no plastic deformation, e′(p)
i j = 0, then (3.174) contain an indetermi-

nacy of the type 0/0. The analysis of the non-degenerated model (3.172) shows that
for e′(p)

i j = 0 the tensor τ ′i j lies inside the surface (3.175).
Usually, elastic deformation is much smaller than plastic deformation, and one

can equate the total and plastic strains. Accordingly, one can identify the total strain
rate ei j with the plastic strain rate, e(p)

i j . Then we obtain for von Mises dissipation:

D = k
√

e′i j e
′i j . (3.176)

If, additionally, the internal energy depends only on elastic deformations, then

σ ′i j = τ ′i j = k
e′i j

√
e′mne′mn

. (3.177)

Equations (3.176) and (3.177) characterize the material called an ideal plastic body.
A remarkable feature of the von Mises dissipation is the independence of the

total dissipation on the rate of the process. Namely, for the deformation path, εi j (t) ,

starting at the strain state, ε1
i j , and ending at the strain state, ε2

i j , the integral

ε2
i j∫

ε1
i j

Di j
(
e′i j

)
dt

depends only on the path, εi j (t) , and does not depend on the rate with which this
path is passed. Such a feature is characteristic for many materials.

3.4 Thermodynamic Formalism

In this section we briefly describe what is called the thermodynamic formalism in
derivation of governing equations. For simplicity, we assume that continuum does
not move, and there is no heat conductivity. To incorporate continuum motion and
heat conduction one needs to complicate the treatment in accordance with what was
said in the previous section.

So, let the state of the continuum be characterized by some fields, uκ (X, t),
κ = 1, . . . , m. For example, these could be plastic deformation (or plastic distor-
tion), concentrations of chemical species, etc. We assume that internal energy den-
sity is some function of uκ , their spatial derivatives and entropy:

U = U
(
uκ, uκ

,a, S
)
. (3.178)

This is a crucial assumption. In fact, when we have chosen some set of param-
eters to model the state of a material, we can never be sure a priori that energy is
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completely determined by these parameters, and there are no additional “hidden”
parameters which affect the value of energy. The validity of (3.178) can be checked
only experimentally either by direct measurements of energy, entropy and other
parameters involved or by inspecting the validity of the consequences of (3.175). To
make further relations simpler, we include the factor, ρ0, in U, so, in this section U
means the internal energy per unit volume of the initial state.

Let V̊ be some piece of the material. The energy of the material confined in
region V̊ is

E =
∫

V̊

U
(
uκ, uκ

,a, S
)

dV̊ . (3.179)

Let the material be adiabatically isolated. Then the first law of thermodynamics
states that the energy rate is equal to the power of external forces (recall that, as we
have just assumed, heat fluxes are neglected)

d

dt

∫

V̊ 0

U
(
uκ, uκ

,a, S
)

dV̊ = P. (3.180)

The structure of the power is controlled by the form of energy. We have seen
in Sections 3.2 and 3.3 that formula for the power (3.108) is consistent with the
assumption that energy density depends on the first derivatives of displacements.
Similarly, we set in the general case

P =
∫

�V̊

σ a
κ

duκ

dt
n̊ad Å +

∫

V̊

gκ

duκ

dt
dV̊ . (3.181)

Here σ a
κ

and gκ are some “generalized stresses” and “generalized body force”.
Transforming the surface integral (3.181) into a volume integral by means of di-
vergence theorem, we write the first law of thermodynamics as

∫

V̊

[
�U

�S
Ṡ +

(
�U

�uκ

− �aσ
a
κ
− gκ

)
u̇κ +

(
�U

�uκ

,a

− σ a
κ

)
u̇κ

,a

]
dV̊ = 0.

Since the region V̊ is arbitrary, this equation may be satisfied only if the integrand
is zero identically. Employing the notation, T, for the derivative, �U/�S, we have

ρ0T Ṡ +
(

�U

�uκ

− �aσ
a
κ
− gκ

)
u̇κ +

(
�U

�uκ

,a

− σ a
κ

)
u̇κ

,a = 0. (3.182)

Let us rewrite (3.182) in the form,
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ρ0T Ṡ = τκ u̇κ + τ a
κ

u̇κ

,a, (3.183)

where we introduced the notation

τκ ≡ �aσ
a
κ
− ρ0

�U

�uκ

+ gκ, τ a
κ
≡ σ a

κ
− ρ0

�U

�uκ

,a

. (3.184)

The generalized forces,τκ and τ a
κ
, control the entropy rate and, thus, describe the

non-equilibrium features of the model. If τκ = 0 and τ a
κ
= 0 and U

(
uκ, uκ

,a, S
)

is given, then (3.184) form a closed system of equations for uκ . Remarkably, this
system of equations has a variational form:

�a
�U

�uκ

,a

− �U

�uκ

+ gκ = 0,

Using the variational derivative,

δU

δuκ

= �U

�uκ

− �a
�U

�uκ

,a

,

we can write this system of equations as

δU

δuκ

= gκ .

To obtain a closed system equations for uκ in general case, one can, in addition
to specifying function U

(
uκ, uκ

,a, S
)
, prescribe the dependence of τκ, τ a

κ
, and gκ

on uκ and their derivatives. Then, eliminating σ a
κ

from (3.184), we arrive at the
following system of equations for uκ :

τκ = �a

(
ρ0

�U

�uκ

,a

+ τ a
κ

)
− ρ0

�U

�uκ

+ gκ. (3.185)

As to gκ, usually, there are no “body forces” working on the change of the internal
parameters, uκ, i.e. gκ = 0. We accept this in what follows.

The only constraint for the admissible dependencies of τ a
κ

and τκ on uκ and their
derivatives is the condition that entropy does not decay (or dissipation, D, the right
hand side of (3.183) is non-negative):

D ≡ τκ u̇κ + τ a
κ

u̇κ

,a ≥ 0. (3.186)

It is often supposed that there exists a function of uκ, u̇κ, and uκ

,a, D, such that

τκ = �D
�u̇κ

, τ a
κ
= �D

�u̇κ

,a

. (3.187)
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Function D is called the dissipation potential. The potential law is not a “law of
Nature”, but rather a way to obtain a model with simply controlled mathematical
features.

In case of the potential law (3.187) the governing equations (3.185) take espe-
cially simple “variational” form:

δU

δuκ

= − δD
δu̇κ

. (3.188)

Here δD/δu̇κ is the variational derivative:

δD
δu̇κ

= �D
�u̇κ

− �a
�D
�u̇κ

,a

.

The dissipative potential, D, is simply related to dissipation if D is a homoge-
neous function, i.e. for any λ and some number, m,

D
(
λu̇κ, λu̇κ

,a

) = λmD
(
u̇κ, u̇κ

,a

)
. (3.189)

According to Euler’s identity for homogeneous functions,

u̇κ
�D
�u̇κ

+ u̇κ

,a

�D
�u̇κ

,a

= mD
(
u̇κ, u̇κ

,a

)
,

the dissipative potential differs from the dissipation by the factor, m :

D = mD. (3.190)

In linear theory, D and D are quadratic functions and m = 2. For ideal-plasticity-type
models, m = 1.



Chapter 4
Principle of Least Action in Continuum
Mechanics

As we discussed in Sect. 2.6, for reversible processes the governing equations of
mechanics must have a Hamiltonian structure, and accordingly a principle of least
action must exist. In another extreme case, when the inertial effects and the internal
interactions described by the internal energy can be ignored, variational principles
also exist, but they are due to the special structure of the models rather than to the
laws of Nature. In this chapter we consider the principle of least action in continuum
mechanics of reversible processes and some related issues. The variational princi-
ples for dissipative processes are presented in the second part of the book along with
the other variational features of the classical continuum models.

4.1 Variation of Integral Functionals

Let a continuum be characterized by some functions uκ(xi , t), κ = 1, . . . , m, i =
1, 2, 3. In what follows the number of the variables xi is not essential; besides, time
does not play a special role. Therefore, we include time in the set of independent
variables and write uκ = uκ(x) assuming that x = {

x1, . . . , xn
}

is a point of
n-dimensional space. We write, for brevity, u(x) for the set

{
u1 (x) , . . . , um (x)

}
,

when this cannot cause confusion.
Let a functional, I (u), be given, i.e. there is a rule which allows one to compute

the number, I (u), for each u(x). The major example of such a functional for us is an
integral functional

I (u) =
∫

V

L(xi , uκ, uκ

,i
)dn x, uκ

,i
≡ �uκ

�xi
, (4.1)

where V is some region in n-dimensional space of x-variables. For such function-
als, function L is called Lagrangian. The case when Lagrangian depends on higher
derivatives will be considered further in Sect. 4.4.

We assume that region V is compact to avoid the technicalities caused by the
unboundedness of V ; some peculiarities of the variational problems for an un-
bounded domain are considered in Sect. 11.7. All functions involved are assumed

V.L. Berdichevsky, Variational Principles of Continuum Mechanics,
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C© Springer-Verlag Berlin Heidelberg 2009
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to be sufficiently smooth to make the derivation of the final equations meaningful.
In particular, the boundary �V of region V is piecewise smooth, and Lagrangian is
a smooth function of its arguments.

Physical reasoning to be considered later sets some constraints on the admissible
function u(x). A typical constraint is prescribing the values of u(x) at a piece of the
boundary, �Vu , of the boundary �V :

u (x) = ub (x) at �Vu . (4.2)

Here ub(x) are the given boundary values of functions u(x).
The constraints specify the set of admissible functions u(x). We denote this set

by M. A description of the set M also includes the characterization of smoothness
of the admissible functions. In order for the integral (4.1) to be sensible, it is suf-
ficient to include in the set M the functions u(x) which are continuous along with
their derivatives in the closed region V . The physically important case of piecewise
differentiable functions will be treated in Sect. 7.4.

A variational principle usually states that the true process (or, in statics, the equi-
librium state) of a continuum is a stationary point of the functional I (u) on the set
M, i.e. variation of this functional, δ I, vanishes for all admissible variations δu.

Let u(x) be a stationary point of the functional I (u) and u(x) = u(x)+ δu(x) be
a small disturbance of the function u(x). Keeping only the leading small terms in
the difference I (u + δu)− I (u), we find the variation of the functional, I (u) ,

δ I =
∫

V

(
�L

�uκ

δuκ + �L

�uκ

,i

(δuκ),i

)
dn x . (4.3)

Functions δuκ and (δuκ),i are not independent because (δuκ),i are completely
determined by δuκ . To put (4.3) in the form which contains only independent terms,
we integrate the second term in the integrand by parts:

δ I =
∫

V

((
�L

�uκ

− �

�xi

�L

�uκ

,i

)
δuκ + �

�xi

(
�L

�uκ

,i

δuκ

))
dV

=
∫

V

δL

δuκ

δuκdn x +
∫

�V

�L

�uκ

,i

δuκni d A. (4.4)

Here d A is the area element at �V, ni the unit normal vector at �V and a notation
for the variational derivative of L is introduced,

δL

δuκ

= �L

�uκ

− �

�xi

�L

�uκ

,i

. (4.5)

Note that

δu = 0 at �Vu
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due to the boundary conditions (4.2). Therefore, the surface integral in (4.4) is, in
fact, an integral over �V − �Vu .

The terms in (4.4) are independent because the value of δuκ inside the region V
and at its boundary can be changed independently of each other.

Formula (4.4) is the sought expression for the variations of functional I (u) . We
will often encounter this expression in that or in a similar form. Further, the deriva-
tions will be given only in cases when they do not repeat the above one; otherwise,
only the result will be stated.

The main lemma of calculus of variations. For the case under consideration the
main lemma of calculus of variations takes the form: if

∫

V

Fκ ūκdn x = 0, (4.6)

where Fκ are some continuous functions of coordinates which are independent of
ūκ, and ūκ are arbitrary smooth functions which are zero on the boundary �V of
region V , then

Fκ = 0 in V .

This lemma can be proved in the same way as in Sect. 1.3.
Note the following consequence: if

∫

V

Fκ ūκdn x +
∫

�V

fκ ūκdn−1x = 0, (4.7)

where F and f are continuous functions of coordinates which are independent of
ūκ, and ūκ are arbitrary smooth functions, then

Fκ = 0 in V, fκ = 0 on �V . (4.8)

To obtain the first equation (4.8) one should consider functions ūκ which are
equal to zero at �V ; then the first equation (4.8) follows from the main lemma of
calculus of variations. Thus, the first term in (4.7) is zero. Then the second term in
(4.7) is also zero and, applying again the main lemma of calculus of variations, one
gets the second equation (4.8).

At the stationary point,

δ I = 0. (4.9)

From (4.9), (4.4) and the main lemma of variational calculus it follows that the
stationary points of the functional (4.1) satisfy the equations

δL

δuκ

≡ �L

�uκ

− �

�x

�L

�uκ

,i

= 0 in V, (4.10)
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and the boundary conditions

�L

�uκ

,i

ni = 0 on �V − �Vu . (4.11)

Equations (4.10), (4.11) and (4.2) form a closed system of equations and bound-
ary conditions to find the stationary point. As has been already mentioned on a
similar occasion in Sect. 1.3, the remarkable feature of the variational approach is
that one always1 gets a proper number of boundary conditions to solve the partial
differential equations (4.10).

Note that the inhomogeneous boundary conditions,

�L

�uκ

,i

ni = fκ at �V − �Vu,

where fκ are some prescribed functions at �V − �Vu, are obtained if the surface
integral

∫

�V−�Vu

fκuκd A

is added to the functional (4.1).
In our consideration, variations δu(x) are the infinitesimally small disturbances

of the stationary point u. In calculus of variations one sometimes uses a slightly dif-
ferent language which proves to be useful for non-smooth variational problems. One
considers a curve in the functional space, u = u(ε), i.e. a set of functions, u (x, ε),
smoothly depending on parameter ε. The curve passes through the stationary point at
ε = 0. Along this curve the functional becomes a function of one variable, I (u(ε)).
The derivative of this function must vanish at the stationary point

d

dε
I (u(ε)) = 0 for ε = 0.

One can easily check that

d

dε
I (u(ε)) = I ′

(
u(ε),

du

dε

)
.

The notation I ′
(
u, du

dε

)
is similar to that in (1.13); in the case under consideration

I ′ (u, δu) = δ I. For infinitesimally small dε, then one can set

1 With the exception of some degenerated cases; further discussion of this issue the reader will find
in Sect. 5.5 in connection with the notion of “feeling the constraints.”
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δu = du

dε

∣∣∣∣
ε=0

dε. (4.12)

Various variations, δu, correspond to different curves passing through the sta-
tionary point. The idea of considering the functional on some curves (or on some
surfaces) in the functional space is quite fruitful; in fact, the entire finite element
ideology is based on this concept. For the purpose of the derivation of equations for
the stationary point, the “variation language” is enough, and we will abide with it.

Energy-momentum tensor. For any function, L
(
xi , uκ, uκ

,i

)
, the following iden-

tity holds:

�

�x j

(
�L

�xκ

, j

uκ

,i − Lδ
j
i

)
= − δL

δuκ

uκ

,i − �i L . (4.13)

Here �i L are the partial derivatives of the function, L
(
xi , uκ, uκ

,i

)
, with respect

to xi , while �/�x j in the left hand side of (4.13) mean the “full derivative,” i.e. the
derivative taking into account the dependence of all functions involved, including
uκ and uκ

,i , on xi .
The identity (4.13) can be checked by direct inspection.
If the Lagrangian does not depend explicitly on the coordinates, i.e. L =

L
(
uκ, uκ

,i

)
, then any solution of Euler equations (4.10) also satisfies the equations

�

�x j

(
�L

�uκ

, j

uκ

,i − Lδ
j
i

)
= 0. (4.14)

If index i runs through four values, three marking the spatial coordinates and one
the time, the corresponding equations are the momentum equations and the energy
equation, as the inspection shows for various models. The tensor

P j
i =

�L

�uκ

, j

uκ

,i − Lδ
j
i (4.15)

is called the energy-momentum tensor. For some field variables,−P j
i has the mean-

ing of the energy-momentum tensor.
The facts mentioned have a deep origin in the invariance of the action functional

with respect to translations, but we do not dwell on these issues here.
Now we turn to discussion of the principle of least action in continuum mechanics.

4.2 Variations of Kinematic Parameters

In this section the relations for the variations of key kinematic characteristics of the
continuum motion are summarized.
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Variation of velocity. If uκ are some functions of Lagrangian coordinates and time,
uκ = uκ (Xa, t) , then the variations, δuκ, were defined as derivatives with respect
to an auxiliary parameter ε,

δuκ = �uκ (Xa, t, ε)

�ε

∣∣∣∣
ε=0

dε. (4.16)

Therefore, the operator δ commutes with the operators d/dt and �/�Xa . The
interchangeability of the operators δ and d/dt implies that

δvi = dδxi

dt
.

If δxi are considered as functions of the Eulerian coordinates and time, then

δvi = �δxi

�t
+ vk �δxi

�xk
. (4.17)

Variation of the Jacobian �. Using the equation for the components of the inverse
matrix (3.24) and the interchangeability of the operators δ and �/�Xa , we have

δ� = ��

�xi
a

δxi
a =

��

�xi
a

�δxi

�Xa
= �Xa

i

�δxi

�Xa
. (4.18)

Consider now the variations of the particle trajectories, δxi (Xa, t), as functions
of the Eulerian coordinates. Then, the right hand side of (4.18) may be viewed as
the chain rule for differentiation of δxi with respect to xi :

�Xa
i

�δxi

�Xa
= �

�Xa

�xi

�δxi

�Xa
= �

�δxi

�xi
.

Finally, for the variation of the determinant of the distortion we obtain

δ� = �
�δxi

�xi
. (4.19)

Variation of mass density. Taking the variation of (3.69), we find

δρ = −ρ

�
δ�.

Using equation (4.19), we get

δρ = −ρ
�δxi

�xi
. (4.20)
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Variation of the strain tensor. From (3.33), we have

δεab = 1

2
δgab = 1

2
δ
(

gi j x
i
a x j

b

)
= 1

2
gi j

(
xi

a

�δx j

�Xb
+ �δxi

�Xa
x j

b

)
. (4.21)

Consider δxi in (4.21) as functions of Eulerian coordinates, and substitute
�δxi/�Xa by xk

a �δxi/�xk . Equation (4.21) take the form

δεab = 1

2
gi j

(
xk

a x j
b + xk

b x j
a

) �δxi

�xk
= 1

2
xi

a x j
b

(
�iδx j + � jδxi

) = xi
a x j

b �(i δx j).

(4.22)

Variation of inverse distortion. The variations Xa
i are most easily found from the

definition of Xa
i as the components of the inverse of matrix xi

a . Taking the variation
of the equation x j

b Xb
i = δ

j
i , we get

x j
b δXb

i + Xb
i δx j

b = 0. (4.23)

Let us contract (4.23) with Xa
j with respect to index j . Since x j

b Xa
j = δa

b , the
equality (4.23) becomes

δXa
i = −Xa

j Xb
i δx j

b . (4.24)

If we use the interchangeability of the operators δ and �b and consider δx j as
functions of the Eulerian coordinates, we obtain

δXa
i = −Xa

j

�δx j

�xi
. (4.25)

Variation of contravariant components of Lagrangian metrics. The contravari-
ant components of the metric tensor are the components of the inverse matrix to
the matrix ‖gab‖ . Therefore, as in computation of inverse distortion, we vary the
equation gabgbc = δa

c . Similarly to (4.24),

δgab = −gacgbdδgcd = −2gacgbdδεcd . (4.26)

From the relations (4.26) and (4.22) we get

δgab = Xa
i Xb

j

(
�iδx j + � jδxi

)
. (4.27)

Variations of particle trajectories of a rigid body. The motion of the rigid body
is described by functions r i (t) and αi

a (t) (see (3.47)). If there are no additional con-
straints on the motion, the functions r i (t) can change independently while functions
αi

a (t) change in such a way as to satisfy the orthogonality condition (3.48). Taking
the variation of the second relation (3.48), we get
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δ
(

g̊abαi
aα

j
b

)
= αiaδα j

a + α jaδαi
a = 0. (4.28)

Equation (4.28) means that infinitesimally small tensor δϕi j = αiaδα
j
a is anti-

symmetric with respect to indices i, j , but otherwise is arbitrary. The variation of
the particle trajectories is

δxi = δr i (t)+ (x j − r j (t)
)
δϕ j i . (4.29)

If the vector δϕk corresponding to the antisymmetric tensor δϕ j i is defined as

δϕk = 1

2
εi jkδϕ

i j , δϕi j = εi jkδϕk,

then (4.29) can be written as

δxi = δr i + εi jkδϕ j (xk − rk (t)) . (4.30)

Note that δϕi j and δϕ j are some infinitesimally small quantities which are not
variations of any characteristics of motion. The tensor δϕi j is analogous to the tensor
of an infinitesimally small rotation, and δϕ j is analogous to an infinitesimally small
angle of rotation.

If variation δ coincides with the time increment, d, along the real trajectory,
(4.29) and (4.30) transform to (3.51) and (3.55).

Variation of a function of Eulerian coordinates. Functions uκ can be considered
as functions of the Eulerian coordinates. Then the corresponding set of the trial
functions is uκ (x, t, ε). The quantity

�uκ = �uκ (x, t, ε)

�ε

∣∣∣∣
ε=0, x=const

dε

is the variation with the Eulerian coordinates held constant; it is denoted by the
symbol �. The variation δ (for constant Xa) and the variation � (for constant x) are
related as

δuκ = �

�ε
uκ

(
xi
(
Xa, t, ε

)
, t, ε

)∣∣∣∣
ε=0,Xa=const

dε = �uκ + δxi �uκ

�xi
. (4.31)

The operator � commutes with the operators �/�xi and �/�t and does not com-
mute with the operators �/�Xa and d/dt .

The formulas establishing the relations between �d/dt , ��/�Xa and d�/dt ,
��/�Xa are easily obtained by the means of (4.31). For an arbitrary function F ,
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�
d

dt
F = δ

d

dt
F − δxi �

�xi

d

dt
F = dδF

dt
− δxi �

�xi

d F

dt
=

= d

dt
�F + d

dt

(
δxi �F

�xi

)
− δxi �

�xi

d F

dt
,

�
�

�Xa
F = δ

�

�Xa
F − δxi �

�xi

�

�Xa
F =

= �

�Xa
�F + �

�Xa
δxi �

�xi
F − δxi �

�xi

�

�Xa
F.

Here are some formulas for the variations when the Eulerian coordinates are held
constant.

Eulerian variation of velocity. Applying (4.31) we get

�vi = δvi − δxk �vi

�xk
= dδxi

dt
− δxk �vi

�xk
. (4.32)

Eulerian variation of mass density. Using (4.20) and (4.31), we get

�ρ = δρ − δxi �ρ

�xi
= −ρ�iδxi − δxi �ρ

�xi
= −�i

(
ρδxi

)
. (4.33)

Variation of Lagrangian coordinates. Writing the condition for the variation δ

being equal to zero in the Lagrangian coordinates,

δXa = �Xa + δxi �Xa

�xi
= 0,

we obtain, for the variation of the Lagrangian coordinates at constant x

�Xa = −Xa
i δxi . (4.34)

4.3 Principle of Least Action

Continuum mechanics aims to model the behavior of a large number of particles.
Dynamics of particles is governed by the principle of least action with the action
functional of the form

t1∫

t0

(Lagrange function) dt

In the continuum description, Lagrange function possesses a density, the Lagrangian, L ,
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Lagrange function =
∫

V̊

L dV̊ (4.35)

where V̊ is the region occupied by the continuum in the initial state. The summation
over particles is made in two steps: first, LdV̊ is the total Lagrange function of
particles which are in the volume dV̊ ; second, summation over particles from dif-
ferent parts of the region V̊ is replaced by integration over V̊ . The latter procedure
assumes that the interaction between particles from different parts of the region V̊
is negligible, and the total Lagrange function is approximately equal to the sum of
Lagrange functions of small parts of the region V̊ .

As in classical mechanics, L is the difference of kinetic and potential energies.
Denoting the kinetic and potential energies per unit mass by K and U , we have

L = ρ0 (K −U ) . (4.36)

The classical continuum models correspond to the assumption that the key kine-
matic characteristics of motion are the particle trajectories, xi (Xa, t) , and en-
tropy, S,

K = 1

2
viv

i , U = U
(
xi

a, S
)
. (4.37)

Internal energy for inhomogeneous media may depend on Lagrangian coordi-
nates, but we do not mention this explicitly.

Finally, the action functional is

I (x (X, t) , S (t, X )) =
t1∫

t0

∫

V̊

ρ0

(
1

2
viv

i −U
(
xi

a, S
))

dV̊ dt. (4.38)

The action functional can also be written as an integral over the current state, the
moving region, V (t) . According to (3.72),

I =
t1∫

t0

∫

V (t)

ρ

(
1

2
viv

i −U
(
xi

a, S
))

dV dt. (4.39)

Let the dissipation be negligible. Then in each particle, entropy, S, does not
change and becomes a certain function of Lagrangian coordinates, S = S (X ) ,

known from the initial conditions. Thus, entropy drops out of the set of unknown
functions.

Suppose that, as in Hamilton variational principle, the initial and the final posi-
tions of the particles are prescribed:
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x (t0, X ) = 0
x (X ) , x (t1, X ) = 1

x (X ) . (4.40)

Let us show that then the following variational principle holds.
Principle of least action. The true motion of continuum is a stationary point of the
action functional (4.38) on the set of all particle trajectories obeying the constraint
(4.40).

The action functional (4.38) has the form (4.1) with x and u replaced by (X, t)
and x (X, t) , respectively. Thus, we may apply the formulas of Sect. 4.1. If function
L is an arbitrary function of vi and xi

a , vi and xi
a being derivatives of xi (X, t) with

respect to t and Xa , then from (4.10),

d

dt

�L

�vi
+ �

�Xa

�L

�xi
a

= 0. (4.41)

For the function

L = ρ0

(
1

2
viv

i −U
(
xi

a, S
))

these equations take the form

ρ0
d

dt
vi = �

�Xa
ρ0

�U

�xi
a

(4.42)

or, recalling the definition of the Piola-Kirchhoff tensor (3.131),

ρ0
d

dt
vi = �

�Xa
pa

i . (4.43)

For Cauchy’s stress tensor, σ i j = ρ

ρ0
x j

a pia, (4.43), as shown in Sect. 3.2, takes
the usual form of the momentum equations

ρ
dvi

dt
= �σ i j

�x j
. (4.44)

Constraints (4.40) vanish the variations of x (X, t) at the initial and finite times.
The variations of x (X, t) at the boundary of the body are arbitrary. Therefore, the
boundary conditions of Sect. 4.1, (4.11), read

pa
i n̊a = 0 (4.45)

where n̊a are the Lagrangian components of the unit normal vector of the surface
�V̊ .

These formulas can be derived directly from the principle of least action using
the relationships for variations from Sect. 4.2.
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To include boundary tractions, one has to add into the action functional the sur-
face integral

t1∫

t0

∫

�V̊

fi (X, t) xi (X, t) d Ådt. (4.46)

To take into account the body forces, the volume integral must be added:

t1∫

t0

∫

V̊

ρ0gi (X, t) xi (X, t) dV̊ dt. (4.47)

Accordingly, (4.42) and (4.45) change to

ρ0
d

dt
vi = �

�Xa
ρ0

�U

�xi
a

+ ρ0gi , pa
i n̊a = fi at �V̊ . (4.48)

The origin of the additional terms (4.46) and (4.47) is apparent: on the microlevel,
the external forces act on the particles and cause the terms in Hamiltonian functions
like fi qi ; (4.46) and (4.47) are the homogenized form of these contributions.

4.4 Variational Equations

In general, the equations of continuum mechanics cannot be obtained from a varia-
tional principle. But they can always be derived from a variational equation, i.e. the
statement that the variation of the action functional is equal not to zero but to some
functional, δA, which is a linear functional of variations:

δ I = δA. (4.49)

Variational equations lose the major feature of the variational principle, the spe-
cial structure of the governing equations, because any equation can be obtained
from the variational equation, unless the possible functionals δA are somehow con-
strained. Indeed, let I be functional of a required function u, while δA has the form

δA =
∫

V

Fδudn x .

Then it follows from the variational equation that

δL

δu
= F. (4.50)
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Any equation for function u, G = 0, can be written in the form (4.50): it is enough
to set F = G + δL/δu. Therefore, the information on the admissible forms of the
functional δA is what actually defines the variational equation. Here is a brief review
of the suggestions made.

The principle of virtual displacements. Historically, the first variational equa-
tion was the “golden rule” of mechanics – the principle of virtual displacement.
Its formulation for a lever was given in Aristotle’s “Physics” (fourth century BC).
Further significant development of the principle was made by Stevin and Galileo.
The modern form of the principle was essentially obtained by Johann Bernoulli. The
formulation of the principle of virtual displacement for a system of material points
that is subject to some kinematical constraints is as follows. Let x(s) be the position
vector of particle s, F(s) the force acting on particle s, and δx(s) the infinitesimally
small displacements compatible with the constraints.2 The constraints are assumed
to be “ideal”; this term will explained later. The system is in equilibrium if and only
if the total work of all forces on possible displacements is zero:

∑
s

F(s) · δx(s) = 0. (4.51)

If there are no kinematic constraints, the assertion (4.51) is “trivial,” since it is
equivalent to equalities F(s) = 0. “Nontrivial” conditions arise as a result of con-
straints.

In the papers of the nineteenth century, the principle of virtual displacements was
also called the principle of virtual work or principle of virtual velocities or princi-
ple of virtual powers (the latter two terms are related to the possibility to replace
δx(s) by kinematically admissible velocities; up to an infinitesimally small factor,
the velocities take the same values as δx(s)).

The d’Alambert principle and the energy equation for virtual displacements.
In dynamics, the variational equation (4.51) remains true if the inertial forces are
added to F(s):

∑
s

(
F(s) − m(s)a(s)

) · δx(s) = 0, (4.52)

where m(s) is the mass and a(s) is the acceleration of the particle s. Equation (4.52)
is called the d’Alambert principle.

If there are no interactions between particles, (4.52) yields the second Newton’s
Law. In the presence of the interaction forces, (4.52) becomes “nontrivial.”

In the d’Alambert principle the inertial forces are in some sense as important
as the other forces: for the derivation of the basic equations one has to include
in the static equation one more force, the force related to the particle acceleration

2 The indices of non-tensor nature are put in parentheses.
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with respect to the inertial frame of reference. Note that in the co-moving frame of
reference, i.e. a non-inertial deforming frame where all the particles are at rest, the
Newton’s equations can be considered as equilibrium equations for the system of
forces including the inertial forces.

The d’Alambert variational equation (principle) can be taken as the primary pos-
tulate of the mechanics of systems with a finite number of degrees of freedom.

L.I. Sedov suggested the idea that the variational equation of mechanics is, in
fact, the energy equation written for virtual displacements. Let us show how to
transform the d’Alambert principle into the energy equation for virtual motions.

The quantity
∑

s
F(s)δx(s) apparently represents the work done by the external

forces through the virtual displacements, δx(s); we denote this quantity by δA(e):

δA(e) =
∑

s

F(s) · δx(s).

Consider the expression

ma·δx = m
dv
dt
·δx.

Let us add and subtract the term mvδv in the right-hand side of this expression. Then

ma·δx = δ

(
1

2
mv2

)
+ m

dv
dt
·δx− mv·δ dx

dt
, v2 ≡ v·v

Define the kinetic energy as

K =
∑

s

1

2
m(s)v2

(s),

and functional δ� as

δ� = −
∑

s

(
m(s)

dv(s)

dt
·δx(s) − m(s)v(s) · δ dx(s)

dt

)
. (4.53)

Then the d’Alambert principle takes the form

δK = δA(e) + δ�. (4.54)

It is seen from (4.53) that the functional δ� has the following property: for real
motion it is equal to zero, i.e. replacing the admissible variation δ by the increment
in the real process, d, causes δ� to vanish, i.e.

δ�|δ=d = 0.
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For real motion the variational equation (4.54) becomes the energy equation,

dK = dA(e).

Variational equation (4.54) can be considered as the first law of thermodynamics
for the virtual displacements in the case of a system with a finite number of degrees
of freedom. For the virtual displacements, the energy equation has an additional
contribution δ� which is not present in the equation for the real displacements.

Now we can explain the meaning of the term “ideal constraints” used in the
formulation of the principle of virtual displacements. As is apparent in (4.54), the
variational equation does not include the energy contribution from dissipation. In
this case the constraints are called ideal. For non-ideal constraints the variational
equation would contain the additional dissipation term.

A variational version of the first law of thermodynamics. Let us move on to the
consideration of the variational equation in the context of continuum mechanics. In
a real process, the equation of the first law of thermodynamics is

d E = dA(e) + dQ (4.55)

where E is the energy of the system, dA(e) is the work done by the external macro-
scopic forces, and dQ is the energy supply caused by heat and, possibly, by other
forms of energy.

If the increment d of the real process in (4.55) is replaced by an increment δ of
the arbitrary admissible process,3 (4.55) will, generally speaking, not hold. Denoting
the arising “discrepancy” by δ�, we can write

δE = δA(e) + δQ+ δ�. (4.56)

Functional δ� is equal to zero for real variations,

δ�|δ=d = 0. (4.57)

If the functionals E , δA(e), δQ and δ� are defined, then (4.56) becomes the vari-
ational equation equivalent to the first law of thermodynamics for the admissible
virtual variations. Functional δE is by definition the variation of functional E .
Functional δA(e) is also easy to define: usually, dA(e) is the linear functional
of increments duκ , and therefore δA(e) means the value of functional dA(e) on
δuκ .

3 Here and in what follows we will assume that the increments of the parameters in real processes
belong to the set of all admissible variations.
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Let dQ be the heat supply. In order to define functional δQ, we need to consider
the definition of δQ based on the second law of thermodynamics:

dQ =
∫

V

ρT d SdV − dQ′, (4.58)

where dQ′ is the so-called uncompensated heat. In classical models dQ′ is the linear
functional of increments duκ . Therefore, the heat supply as defined by (4.58) is also
a linear functional of duκ . Consequently, the heat supply for any admissible process
can be defined as the value of this functional at δuκ, and

δQ =
∫

V

ρT δSdV − δQ′. (4.59)

Variational equation of the first law of thermodynamics becomes

δE = δA(e) +
∫

V

ρT δSdV − δQ′ + δ�. (4.60)

Note that in the variational statement of the first law of thermodynamics (4.60)
the second law of thermodynamics in the form (4.59) was used.

Sedov’s variational equation. In the variational equation (4.60) not all function-
als are independent: only some terms can be given, while others are determined
from (4.60). To distinguish the two kinds of terms, let us first set for definiteness
that

E =
∫

V

ρ

(
1

2
v2 +U

)
dV,

δ� =
∫

V

ρ

(
vi

dδxi

dt
− dvi

dt
δxi

)
dV,

and express the work done by external forces by the sum of surface and body forces:

δA(e) = δA(e)
body + δA(e)

sur f .

Then the variational equation can be written as

δ

∫

V

ρ

(
1

2
viv

i −U

)
dV − d

dt

∫

V

ρviδxi dV + δA(e)
body + δA(e)

sur f+

+
∫

V

ρT δSdV − δQ′ = 0.
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Let us integrate this equation over an arbitrary interval [t0, t1] . Using the notation

L = ρ

(
1

2
viv

i −U

)
,

δW = −
⎡
⎣
∫

V

ρviδxi dV

⎤
⎦

t1

t0

+
t1∫

t0

δA(e)
sur f dt,

δW ∗ =
t1∫

t0

⎛
⎝
∫

V

ρT δSdV − δQ′ + δA(e)
body

⎞
⎠dt,

we get

δ

t1∫

t0

∫

V

LdV dt + δW ∗ + δW = 0. (4.61)

Variational equation (4.61) holds for an arbitrary volume V and an arbitrary time
interval [t0, t1], and, therefore, is equivalent to the variational energy equation in the
“local” (for any time instant) form.

The functional δW is an integral over the boundary of a four-dimensional region
V × [t0, t1] of the linear combination of variations of the parameters involved.

The function L and the functional δW ∗ are prescribed, while the functional δW
can be found from the variational equation (4.61).

The relation between functional δW ∗ and the uncompensated heat δQ′ and the
postulates of thermodynamics of irreversible processes can be used to prescribe
δW ∗.

It is clear that the variational equation (4.61) can be also interpreted as the second
law of thermodynamics for the virtual processes. Then, U should be considered
as an independent thermodynamic variable and S a known function of U and the
thermodynamical parameters. The energy equation completes the closed system of
equations.

The variational equation (4.61) has two distinctive features. First, it is writ-
ten not for the entire region occupied by the continuum, but for any arbitrary
part of this region; this makes the variational equation very close to the energy
equation. Arbitrariness of the region leads to the appearance of the functional
δW in the variational equation. This functional describes the interactions of the
piece of the material with its surroundings and is also determined by this equa-
tion. The calculation of δW corresponds to establishing the equations of state.
Second, the variational equation contains the contributions of irreversible pro-
cesses.

In essence, the variational equation (4.61) expresses in a compact form the laws
of thermodynamics if these laws are taken into account in construction of the func-
tional δW ∗.
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4.5 Models with High Derivatives

In classical continuum models, energy density depends on distortion, the first space
derivatives of x (X, t) . If energy density depends on higher derivatives, the con-
tinuum acquires some new interesting features which we discuss in this section.
These features are common in statics and dynamics, therefore we focus here on
the static case. We consider a general setting when the state of continuum is
described by some field variables, uκ (x) , κ = 1, . . . , m. We accept for sim-
plicity that the process is adiabatic, and entropy drops out from the set of re-
quired functions. The internal energy is assumed to be a function of uκ, uκ

,i and
uκ

,i j :

U = U
(
uκ, uκ

,i , uκ

,i j

)
.

By U in this section we mean the energy per unit volume, therefore the total
energy is

E =
∫

V

U
(
uκ, uκ

,i , uκ

,i j

)
dV . (4.62)

Let is find the variation of energy. We have

δE =
∫

V

[
�U

�uκ

δuκ + �U

�uκ

,i

�δuκ

�xi
+ �U

�uκ

,i j

�2δuκ

�xi �x j

]
dV . (4.63)

To extract the independent variations in the integrand we do, as before, integra-
tion by parts. Integrating by parts the last term in (4.63) we have

δE =
∫

V

[
�U

�uκ

δuκ + δU

δuκ

,i

�δuκ

�xi

]
dV +

∫

�V

�U

�uκ

,i j

�δuκ

�xi
n j d A. (4.64)

Here δU/δuκ

,i is the variational derivative:

δU

δuκ

,i

≡ �U

�uκ

,i

− �

�x j

�U

�uκ

,i j

.

Integrating by parts the last term in the volume integral we obtain

δE =
∫

V

δU

δuκ

δuκdV +
∫

�V

(
δU

δuκ

,i

δuκni + �U

�uκ

,i j

�δuκ

�xi
n j

)
d A. (4.65)

Here
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δU

δuκ

= �U

�uκ

− �

�xi

δU

δuκ

,i

= �U

�uκ

− �

�xi

�U

�uκ

,i

+ �2

�xi �x j

�U

�uκ

,i j

.

Now we see the most distinctive feature of the models with high derivatives: in
addition to the usual work of surface forces on variations δuκ, some new surface
forces appear, which work on the gradient of variations. The variations in the surface
integral are still dependent, and we need to make an additional transformation to
define the surface forces uniquely. To put the surface integral to a suitable form we
split the gradient, �/�xi into the sum of normal derivative and tangent derivatives.
Let xi = r i (ξα) be the parametric equations of the surface, �V, ξα being the param-
eters on the surface; Greek indices run through the values 1, 2. Then r i

α ≡ �r i/�ξα

are the components of the two tangent vectors. We introduce two other vectors, rα
i ,

by the relation

r i
αrα

j = δi
j − ni n j .

The explicit formulas for rα
i are given further (see (14.5) and (14.15)). Then the

following decomposition of the gradient holds true:

�

�xi
= rα

i

�

�ξα
+ ni

�

�n
,

�

�n
≡ ni

�

�xi
. (4.66)

Its derivation is given in Sect. 14.1 (see (14.17)).
Note that for a smooth surface and smooth two-dimensional vector, vα, the di-

vergence theorem has the form

∫

�

vα
;αd A =

∫

��

vαναds (4.67)

where a semi-colon in indices denotes covariant surface derivative (its definition is
given in Sect. 14.1), να is the normal unit vector to the curve, ��, which is tangent
to �, and s is the arc length along ��.

If the surface � is a closed smooth surface, and vα a smooth vector field on �,

then , as follows from (4.67),

∫

�

vα
;αd A = 0. (4.68)

Using (4.66) and (4.68) we can rewrite (4.65) as

δE =
∫

V

δU

δuκ

δuκdV +
∫

�V

(
Pκδuκ + Qκ

�δuκ

�n

)
d A (4.69)
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where

Pκ = δU

δuκ

,i

ni −
(

�U

�uκ

,i j

rα
i n j

)

;α

, Qκ = �U

�uκ

,i j

ni n j . (4.70)

Obviously, δuκ and �δuκ/�n are independent of �V .

For adiabatic processes variation of energy must be balanced with the work of
external forces, δA :

δE = δA. (4.71)

Equation (4.69) suggests that the work of external forces should have the form

δA =
∫

V

FκδuκdV +
∫

�V

(
fκδuκ + gκ

�δuκ

�n

)
d A. (4.72)

The work contains additional “higher order” surface forces, gκ . If the external
“body forces,” Fκ, and “surface forces,” fκ and gκ, are given we obtain from (4.71)
a closed system of equations and boundary conditions for uκ :

δU

δuκ

= Fκ in V, (4.73)

δU

δuκ

,i

ni −
(

�U

�uκ

,i j

rα
i n j

)

;α

= fκ,
�U

�uκ

,i j

ni n j = gκ on �V

There are three major differences from the equations of classical continuum mod-
els. First, the equations are of higher order, and, therefore, require more boundary
conditions. Second, in classical continuum models the surface forces work only on
infinitesimally small displacements. In models with the second derivatives an ad-
ditional surface force appears which works on normal derivatives of infinitesimally
small “displacements,” �δuκ/�n. Third, as we see from (4.73), the “usual surface
force,” fκ, depends on the surface derivatives of the normal and tangent vectors,
and, thus, on the geometry of the surface. In classical continuum models, the sur-
face force is linear with respect to the normal vector of the surface (see (3.100)).
In models with high derivatives it is not linear and depends on curvatures of the
surface. An example of models with high derivatives, theory of elastic plates and
shells, will be considered in Chap. 14.

4.6 Tensor Variations

In derivation of the governing equations from the least action principle we did
not use the tensorial nature of the characteristics involved. Remarkably, if the
Lagrangian is a scalar and its arguments are tensors, the resulting governing
equations automatically have the tensor form. This section explains that point, and,
additionally discusses an alternative way of deriving the governing equations based
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on the notion of tensor variations. We begin with a reminder of the basic facts of
tensor analysis.

Basic vectors. Consider in a Euclidian three-dimensional space a coordinate sys-
tem with coordinates, xi . This system is, in general, curvilinear. Let r (x) be the
position vector of the point x . Then the basic vectors of the coordinates system, ei ,

are defined as

ei = �r
�xi

. (4.74)

The scalar products of the basic vectors are the covariant components of the
metric tensor,

gi j = ei · e j . (4.75)

while the components of the matrix inverse to
∥∥gi j

∥∥ are the contravariant compo-
nents of the metric tensor, gi j . The basic vectors with upper indices are introduced
by the formula

ei = gi j e j . (4.76)

An alternate definition of ei follows from (4.76) and (4.75):

ei · e j = δ
j
i . (4.77)

If the point x is shifted to x + dx , the basic vectors get the increments dei . The
increments are proportional to the shift, dx . Expanding the increments over the basic
vectors, one can write

dei = �k
i j dx j ek . (4.78)

The coefficients �k
i j are called Christoffel’s symbols of the coordinate frame. It

follows from (4.74) and (4.78) that Christoffel’s symbols are symmetric over low
indices:

�k
i j = �k

ji .

The expression for Christoffel’s symbols in terms of metric tensor can be found
by differentiating (4.75) and solving the resulting system of equations with respect
to Christoffel’s symbols. One gets:

�k
i j =

1

2
gkm

(
�gmi

�x j
+ �gmj

�xi
− �gi j

�xm

)
. (4.79)
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Contracting (4.79) over j, k and using the equality

gi j = 1

g

�g

�gi j
, g = det

∥∥gi j

∥∥ ,

which follows from (3.20), we obtain an important identity:

�
j
i j =

1

2g

�g

�xi
= 1√

g

�
√

g

�xi
. (4.80)

Differentiating (4.77), one obtains for the differentials of ei :

dei = −�i
k j dx j ek (4.81)

Tensors. Consider a new coordinate system, x ′i = x ′i
(
x j
)
. It is convenient to mark

a new coordinate system by putting the prime sign not at the root letter, but at the
index: xi

′ = xi
′ (

x j
)
. The basic vectors of new coordinate system, ei ′ , differ from

ei . From (4.74),

ei ′ =
�r

�xi ′
= �r

�x j

�x j

�xi ′
. (4.82)

Accordingly,

gi ′ j ′ = ei ′ · e j ′ = gi j
�xi

�xi ′
�x j

�x j ′
.

One can check by direct inspection that, for the inverse matrix,

gi
′
j
′ = gi j �xi

′

�xi

�x j
′

�x j

and

ei
′ = gi

′
j
′
e j ′ =

�xi
′

�xi
ei .

The set of functions T i1...ik
j1... jm

form the components of a tensors, if in any coordinate

system, xi
′
, the new components T

i ′1...i
′
k

j ′1... j ′m
obey the equality

T = T
i ′1...i

′
k

j ′1... j ′m
ei ′1 . . . ei ′k e j ′1 . . . e j ′m = T i1...ik

j1... jm
ei1 . . . eik e j1 . . . e jm .

Covariant derivatives. Consider the tensor T = T i1...ik
j1... jm

ei1 . . . eik e j1 . . . e jm . By def-
inition, the result of an infinitesimal parallel transport of T from point x + dx to
point x is the tensor T̃ = T (x + dx) in which the basic vectors ei (x + dx) and
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e j (x + dx) are replaced by ei (x)+�k
i j dx j ek (x) , e j (x)−�

j
ikdxi ek (x) , respectively

and only the infinitesimally small terms of the first order are retained. Covariant
derivatives ∇i T

i1...ik
j1... jm

are defined by the equation

T̃− T (x) = ∇i T
i1...ik
j1... jm

ei1 . . . eik e j1 . . . e jm dxi .

Hence, for example, for vector T i ei , we have

∇ j T
i = �T i

�x j
+ �i

jk T k .

Lagrangian covariant derivatives. Let ea, ea and e̊a, e̊a be the basic vectors of the
Lagrangian coordinate system in the initial and current states:

ea = xi
aei , ea = Xa

i ei , e̊a = x̊ i
aei , e̊a = X̊ a

i ei ,

and �c
ab and �̊c

ab be the respective Christoffel’s symbols:

dea = �c
abd Xbec, dea = −�a

cbd Xbec,

d e̊a = �̊c
abd Xbe̊c, d e̊a = −�̊a

cbd Xbe̊c.

Christoffel’s symbols �c
ab and �̊c

ab can be expressed in terms of gab and g̊ab by
means of formulas analogous to (4.79). Also note that �c

ab can be written in terms
of the particle trajectories as

�c
ab = �k

i j x
i
a x j

b Xc
k +

�2xi

�Xa�Xb
Xc

i . (4.83)

It is seen from (4.83) that �c
ab are not zeros even if Christoffel’s symbols of

observer’s frame, �k
i j , are zeros.

Consider quantities with the Lagrangian indices, T b. Using T b, we can construct
two vectors:

T = T beb and T̊ = T be̊b.

Accordingly, we may introduce two operators of covariant differentiation,∇a and
∇̊a :

�T
�Xa
= ∇aT beb,

�T̊
�Xa
= ∇̊aT be̊b.

In the case of tensors of higher orders, the number of possibilities to define co-
variant differential growth drastically. We will use the covariant derivatives ∇a and
∇̊a corresponding to the differentiation of the tensor
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T a1...ak
b1...bm

ea1 . . . eak eb1 . . . ebm and T a1...ak
b1...bm

e̊a1 . . . e̊ak e̊b1 . . . e̊bm .

For the operator ∇a , the parallel transport occurs by means of Christoffel’s sym-
bol �c

ab, while for ∇̊a by means of �̊c
ab. In particular,

∇aT b = �Tb

�Xa
+ �b

acT c, ∇̊aT b = �Tb

�Xa
+ �̊b

acT c.

Covariant derivatives of metric tensors with respect to the corresponding parallel
transport, as one can check by direct inspection, are zero:

∇agbc = 0, ∇̊a g̊bc = 0, ∇k gi j = 0. (4.84)

Differentiating the tensors with both Eulerian and Lagrangian indices, we will
include the parallel transport over each index. For example,

∇bxi
a =

�xi
a

�xb
+ �i

jk x j
a xk

b − �c
abxi

c.

Using (4.83), one can check by inspection that

∇bxi
a = 0.

Time derivatives. The tensor time derivative for the constant Lagrangian coordi-
nates, d̃/dt, is defined as follows. Let uκi1...in

j1... jm
be the components of a tensor where

κ stands for some set of the Lagrangian indices. Define V κ as

V κ = uκi1...in
j1... jm

ei1 . . . eik e j1 . . . e jm .

Derivatives dV κ/dt transform as a tensor with Lagrangian indices κ. To calcu-
late dV κ/dt we note that

dei

dt
= �ei

�xk vk = �l
ikelv

k,
dei

dt
= −�i

lkelvκ .

Hence,

dV κ

dt
=

=
(

duκi1...in
j1... jm

dt
+ uκli1...in

j1... jm
�i

lkv
k + . . .− uκi1...in

j1... jm−1l�
l
jm kv

k

)
ei1 . . . eik e j1 . . . e jm =

= d̃uκi1...in
j1... jm

dt
ei1 . . . eik e j1 . . . e jm .
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It follows from the last equality that d̃uκi1...in
j1... jm

/dt are the components of a tensor.
For example, the tensor time derivative of the distortion is

d̃x i
a

dt
= dxi

a

dt
+ �i

lk xl
av

k = xk
a

�vi

�xk
+ �i

kl x
k
avl = xk

a∇kv
i .

The usual rules for differentiation of sums and products hold for d̃/dt . In differ-
entiation of the contractions, like ai bi , the derivatives d/dt and d̃/dt coincide:

d

dt

(
ai b

i
) = dai

dt
bi + ai dbi

dt
= d̃ai

dt
bi + ai d̃bi

dt
= d̃

dt

(
ai b

i
)
. (4.85)

Tensor �c
ab. Christoffel’s symbols �c

ab and �̊c
ab are not tensors. The difference �c

ab =
�c

ab − �̊c
ab is a tensor. It follows from the formula

�c
ab =

1

2
gcd

(
∇̊bgad + ∇̊agbd − ∇̊d gab

)
. (4.86)

The covariant derivative ∇a can be expressed in terms of the covariant deriva-
tive ∇̊a and tensor �c

ab. For example, for the covariant derivatives of a vector the
corresponding relation is

∇aT b = ∇̊aT b + �b
acT c.

The tensor �c
ab can be expressed in terms of gradients of the strain tensor εab :

from (4.86) and (4.84)

�c
ab = gcd

(
∇̊bεad + ∇̊aεbd − ∇̊dεab

)
. (4.87)

Here tensor gcd can be considered as a function of g̊ab and εab.

Direct tensor notation. This is a widely used notation when, for example, for a
vector, one writes v, implying that v =vi ei . Unfortunately, the attractive simplicity
of the direct notation is accompanied by some shortcomings. Dealing with the com-
ponents of a vector we do not know the vector. This is emphasized by the formula
v =vi ei : to prescribe a vector one needs to specify both the components, vi , and the
frame, ei . For the same components of, say, the strain tensor (4.2), one can define
three different tensors,

ε1 = εabeaeb, ε2 = εabe̊a e̊b, ε3 = εabea e̊b.

We are interested in the dependence of energy on the components of the strain
tensor, not on the entire tensor itself: it does not matter whether the strain tensor
is the tensor ε1, ε2 or ε3. If we, nevertheless, write U = U (ε1), we introduce into
energy the extra arguments, the basic vectors, on which energy, in fact, does not
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depend. Mathematically, nothing is wrong: function may be independent on some of
the arguments, but physically, this complication does not seem reasonable. Another
shortcoming of the formula U = U (ε1) is that one has to list all other arguments of
energy, and the form of the arguments not mentioned by writing U = U (ε1) may
affect the actual value of energy. For example, in the case of an isotropic media
the additional argument is just a tensor of the second order formed from the metric
tensor. We have, however, a number of possibilities:

g1 = gabeaeb, g2 = g̊abeaeb, g3 = gabe̊a e̊b,

not to mention a few more. The models with energies, say, U = U (ε1, g1) and
U = U (ε1, g2) are different. For example, in the case of the linear dependence of
energy on the strains,

U (ε1, g1) = const gabεab, U (ε1, g2) = const g̊abεab.

These are two different functions. Without specifying the additional arguments
in energy, the model remains undetermined. Of course, after all necessary special-
izations, the direct tensor notation makes sense; however, such specializations are
needed only because we introduced the artificial argument into energy, the basic
vectors. This is why the index notation is employed in the book: it avoids any ambi-
guities.

The tensor variations. The rules of transformation of required functions and their
variations under coordinate transformations are, generally speaking, different. Con-
sider, for example, the particle trajectories, xi (Xa, t). Functions xi (Xa, t) do not
transform by the tensor rules. In a different coordinate frame, x ′i = f i

(
x j
)
, the

particle trajectories are given by the function

x ′i
(
Xa, t

) = f i
(
x j
(
Xa, t

))
.

However, the variations of particle trajectories form the vector components. Indeed,

δx ′i
(
Xa, t

) = δ f i
(
x j
(
Xa, t

)) = �x ′i

�x j
δx j .

The Christoffel’s symbol of the Lagrangian coordinate system, �c
ab, is not a ten-

sor, while its variation, δ�c
ab, is a tensor of the third order: from (4.86) and (4.26)

δ�c
ab = δ�c

ab = −gce�d
abδged + 1

2
gcd

(
∇̊bδgad + ∇̊aδgbd − ∇̊dδgab

)

= 1

2
gcd (∇bδgad +∇aδgbd − ∇dδgab) (4.88)

Equation (4.25) shows that the opposite is also true: the variations of the com-
ponents of a tensor are not necessarily a tensor. In general, this does not cause any
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complications, because, as will be explained further, the final equations automati-
cally possess a tensor nature. Nevertheless, it is worth knowing how to modify the
definition of variations in order to deal with tensors at each step of the derivation of
the governing equations.

Let uκ be the components of a tensor, where the multi-index κ corresponds to a
set of the Lagrangian indices. The variations δuκ are the components of the tensor
with the index structure similar to that of the tensor uκ because the transformation
matrix �X

′a/�Xb can be taken outside the variation operator.
Consider a tensor with the components uκi

j where the multi-index κ still cor-
responds to a set of Lagrangian indices, and i, j are the observer’s indices. The
variation δuκi

j defined in the same way as before is no longer a tensor since the
transformation matrix �x ′ j/�xi depends on xi and cannot be taken outside the vari-
ation operator.

Define V κ as

V κ = uκi
j ei e j . (4.89)

V κ have only the Lagrangian indices, so δV κ transform in the same way as the
components of the tensor V κ . Let us find the relation between δV κ and δuκi

j . Since

δei = �ei

�xk
δxk = �

j
ike jδxk, δe j = −�

j
ikeiδxk,

taking the variation of (4.89) we obtain

δV κ = (
δuκi

j + �i
lkuκl

j δxk − �l
jkuκi

l δxk
)

ei e j . (4.90)

Formula (4.90) shows that quantities

δ̃uκi
j = δuκi

j + �i
lkuκl

j δxk − �l
jkuκi

l δxk (4.91)

are the components of a tensor with respect to both the transformations of the
Lagrangian coordinate system and the Eulerian coordinate system. Equation (4.91)
can be generalized for the tensors with an arbitrary structure of the Eulerian indices.
The variation δ̃ (4.91) is called the tensor variation.

The tensor variation δ̃ can also be defined in terms of derivatives with respect
to an auxiliary parameter ε like in (4.12). In order to do this, the trial functions
uκi

j (Xa, t, ε) should be replaced by ũκi
j (Xa, t, ε) where the tilde stands for a paral-

lel transport of the tensor uκi
j with the Eulerian indices from the point xi (Xa, t, ε)

to the point xi (Xa, t):

δ̃uκi
j =

�ũκi
j

�ε

∣∣∣∣∣
ε=0

dε. (4.92)
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It is easy to check that definitions (4.91) and (4.92) are equivalent.
The expressions for the tensor variations of velocity, distortion and inverse dis-

tortion are

δ̃vi = �δxi

�t
+ vk∇kδxi = d̃δxi

dt
,

δ̃xi
a = δxi

a + �i
lk xl

aδxk = xk
a∇kδxi ,

δ̃Xa
i = δXa

i − �l
ik Xa

l δxk = −Xa
j∇iδx j . (4.93)

Equation (4.93) differ from the (4.17) and (4.25) by having the covariant instead
of the partial derivative with respect to xi . The difference between (4.19) and the
equation for the tensor variation of �,

δ̃� = ��

�xi
a

δ̃xi
a = �Xa

i δ̃xi
a = �∇iδxi , (4.94)

is analogous.
Note the relations

δgab = ∇aδxb +∇bδxa, δεab = ∇(aδxb) (4.95)

where δxa are the Lagrangian coordinates of vectors δxi , δxa = xi
aδxi .

Substituting this in (4.88) we obtain the variations of Christoffel’s symbols:

δ�c
ab = ∇a∇bδxc. (4.96)

When taking the variations of the covariant derivative of the tensor uκ , the oper-
ator δ is apparently interchangeable with the operator ∇̊a :

δ∇̊auκ = ∇̊aδuκ .

However,

δ∇auκ �= ∇aδuκ,

since δ�c
ab �= 0. The commutator δ∇a −∇aδ of the operators δ and ∇a can easily be

found using (4.96).
Consider a tensor with components uκ

(
xi , t

)
where the multi-index κ corre-

sponds to the set of the Eulerian indices. The variation �uκ with xi held constant is
the tensor with the same index structure as uκ since �x ′i/�xi can be taken outside
the operator �. For the tensor variation δ with Xa held constant, from the definitions
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of the operators δ̃ and � we have

δ̃uκ = �uκ + δxi∇i u
κ . (4.97)

In particular, equation. (4.97) implies that the tensor variation of the metric tensor
δ̃gi j is equal to zero, since �gi j = 0 and ∇k gi j = 0. Recall that the variation

δgi j = �gi j

�xk
δxk

in a curvilinear system of coordinates is not zero.
The variation � commutes with the covariant derivative ∇i ,

�∇i u
κ = ∇i �uκ, (4.98)

since ��k
i j = 0.

The variation δ̃ does not commute with ∇i :

δ̃∇i u
κ = �∇i u

κ + δxk∇k∇i u
κ = ∇i �uκ + δxk∇k∇i u

κ =
= ∇i

(
δ̃uκ − δxk∇kuκ

)+ δxk∇k∇i u
κ =

= ∇i δ̃uκ − ∇kuκ∇iδxk + δxk (∇k∇i u
κ −∇i∇kuκ) . (4.99)

In a space where the curvature tensor is equal to zero, ∇k∇i uκ = ∇i∇kuκ , and
(4.99) becomes

δ̃∇i u
κ = ∇i δ̃uκ − ∇kuκ∇iδxk . (4.100)

The variation of a scalar function. Let the scalar L be a function of a set of tensors
with components uκ , L = L (uκ), where κ corresponds to a set of the observer’s
indices and the Lagrangian indices. The following equality holds:

δL = δ̃L (4.101)

or, more explicitly,

�L

�uκ

δuκ = �L

�uκ

δ̃uκ . (4.102)

Indeed, since L does not change in a parallel transport of uκ from the point
xi (Xa, t, ε) to the point xi (Xa, t), we can write

L (uκ (x (X, t, ε) , ε)) = L (ũκ (x (X, t, ε) , ε)) , (4.103)

where the tilde above uκ stands for the parallel transport with respect to the Eulerian
indices. Differentiating (4.103) with respect to ε and setting ε = 0, we get (4.102).
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Here is an example illustrating (4.102). Let the internal energy density, U, be
a function of the distortion component xi

a . Since one cannot form a scalar only
from xi

a , U must depend also on other tensors with the Eulerian and Lagrangian
indices. They characterize the properties of the material and the observer’s frame.
Assume that the properties of the material are characterized by some tensor with the
Lagrangian indices, K κ, and K κ are given function of the Lagrangian coordinates.
Then, δK κ = δ̃K κ = 0. Also assume that the metric tensor gi j is the only tensor
with the Eulerian indices in U . Then

δU = �U

�gi j
δgi j + �U

�xi
a

δxi
a . (4.104)

where δgi j = gi j,kδxk . On the other hand, since δ̃gi j = δxk∇k gi j = 0,

δU = �U

�xi
a

δ̃xi
a . (4.105)

According to (4.102), variations (4.104) and (4.105) must coincide. Let us derive
the equality (4.105) directly from (4.104). The derivation is based on the identity

�U

�xi
a

xk
a = 2

�U

�gmk
gmi , (4.106)

which follows from the scalar nature of U. To obtain it we consider the transforma-
tion of the Eulerian coordinates xi → x ′i , xk = bk

i x ′i , x ′i = b(−1)i
k xk . Function U,

as a scalar, does not change:

U
(
g′i j , x ′ia , K κ

) = U
(
gi j , xi

a, K κ

)
, (4.107)

where g′i j = gmnbm
i bn

j , x ′ia = b(−1)i
j x j

a . Differentiating (4.107) with respect to bi
j

and setting bi
j = δi

j , we arrive at (4.106).
As follows from (4.106),

�U

�gmk
=1

2

�U

�xi
a

xk
a gim . (4.108)

Note an important consequence of this relation: its left hand side is symmetric
while the right hand side can be written in terms of the stress tensor:

�U

�gmk
= 1

2ρ
σ mk

Therefore, the stress tensor in such models is necessarily symmetric

σ mk = σ km .
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Consider (4.104). We have

δU = �U

�gmk
gmk,sδxs + �U

�xi
a

δxi
a .

We may replace gmk,s by gmk,s + gsm,k − gsk,m because the addition, gsm,k −
gsk,m, is anti-symmetric over mk and, thus, its contraction with a symmetric tensor,
�U/�gmk, is zero. Substituting �U/�gmk by the right hand side of (4.108),

δU = 1

2

�U

�xi
a

xk
a gim(gmk,s + gsm,k − gsk,m)δxs + �U

�xi
a

δxi
a,

we recognize in the first term Christoffel’s symbols (see (4.79)). Thus,

δU = �U

�xi
a

xk
a �i

ksδxs + �U

�xi
a

δxi
a =

�U

�xi
a

δ̃xi
a,

as claimed.
So, depending on convenience, one can use either the usual variation operator δ

or the tensor variation operator δ̃.



Chapter 5
Direct Methods of Calculus of Variations

The variational principles allow one to investigate the properties of the minimizing/
stationary elements without the use of differential equations. Such methods of
studying the solutions are called direct. The direct methods are especially effec-
tive in cases when the functional of the variational problem has only one station-
ary point, and this stationary point is either the maximum or the minimum of the
functional.

There are many direct methods of constructing the approximate solutions, and
there are also some direct methods of qualitative analysis, like the analysis of the
existence and uniqueness of the solution or the derivation of a priori estimates. This
chapter will cover some ideas that form the basis of the direct qualitative methods.
As all other reasonings based on the notion of energy, they are simple and almost
obvious. However, their application to particular problems often calls for inventive-
ness, certain skills, and some subtle mathematical techniques.

We begin with the consideration of the existence and uniqueness theory. From
the perspective of an engineer or a physicist, it may seem an infringement in extra-
neous territory as this subject is a classical topic of mathematics. In fact, however,
one can hardly understand in depth such issues of mechanics as loss of stability
or the proper choice of boundary conditions without being exposed to the simple
ideas underlying the existence and uniqueness theory. Such understanding is cer-
tainly necessary for everyone involved in construction of new models of continuum
media.

The next topic is the deep and powerful theory of dual variational problems. It
is based on the notions of convexity and Young-Fenchel transformation, which are
discussed in detail.

Another important tool of the direct methods is the asymptotic analysis of the
functionals depending on small parameters. We discuss the general scheme and
consider a number of examples while most of the applications are spread over the
rest of the book.

In this chapter we establish also a link between minimization problems and
integration in functional spaces. This relationship is used in Part III for studying
some stochastic variational problems. The chapter is concluded with a discussion of
several useful tricks, which help to work with variational problems.

V.L. Berdichevsky, Variational Principles of Continuum Mechanics,
Interaction of Mechanics and Mathematics, DOI 10.1007/978-3-540-88467-5 5,
C© Springer-Verlag Berlin Heidelberg 2009
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5.1 Introductory Remarks

Setting of variational problems. Consider a functional I (u) defined on a set M
of elements u. In continuum mechanics, u are some functions of space variables
and, in dynamical problems, time. Since, the sum of two functions, u1 and u2, and
the multiplication of a function, u, by a real number, are defined, one says that the
u-space is a linear space; denote it by R. The space R is also called a functional
space as it is a set of functions. The set M in which the functional I (u) is defined
is a subset of the space R. In continuum mechanics, the set M is usually specified
by the characterization of smoothness of u and the choice of boundary conditions.
There is an important special case when the set M is also linear, i.e. for any two
elements of M, u1 and u2, the sum u1 + u2 belongs to M and the product of any
element u of M by a number λ is also an element of M. An example of such a set
M is a set of continuous functions u(x), defined in a bounded region V, which have
zero values on the boundary �V of region V :

u(x) = 0 at �V . (5.1)

Obviously, if u1(x) and u2(x) obey (5.1), then u1(x) + u2(x) and λu1(x) do too. If
the boundary conditions are inhomogeneous,

u(x) = u(b)(x) at �V, (5.2)

then the set has the following structure: any element u of M can be presented in a
form

u = u0 + u′

where u0 is some function satisfying the boundary condition (5.2), and u′ a function
with zero boundary values, i.e. an element of a linear set M′.

Another example of M is a cone: the set M is called a cone if, for any element u
of M, it also contains the element λu for all positive λ. Cones appear in variational
problems with unilateral constraints such as

u(x) � 0.

We consider the variational problems of the following type: find the minimum
value of the functional I (u) on a given set M. For such a problem we write

I (u)→ min
uεM

or min
uεM

I (u) or min
M

I (u).

The minimum and maximum values of I (u) on M are denoted by Ǐ and Î ,
respectively:

Ǐ = min
uεM

I (u) , Î = max
uεM

I (u).
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If the set M is selected by an equation like, for example, vanishing of admissible
functions at the boundary �V of region V ,

u = 0 on �V, (5.3)

we also use the notation

Ǐ = min
u∈(5.3)

I (u),

or, if the constraint is a short equation,

Ǐ = min
u∈ u|�V=0

I (u) .

A search for the maximum value of I (u) is equivalent to a search for the mini-
mum value of the functional −I (u); therefore we focus mostly on the minimization
problem. In minimization problems we may admit that the functional I (u) takes at
some elements of the set M the positive infinite value: I = +∞ (if it would take
also negative infinite values, the solution of the minimization problem is obvious:
Ǐ = −∞). That is equivalent to the elimination of such elements from the set M.
This way of operating with the inadmissible elements is quite convenient. For ex-
ample, we may write the original variational problem as a minimization problem for
a functional Ĩ (u) defined on the entire linear space

Ĩ (u) =
{

I (u) uεM
+∞ uε̄M

Then

Ǐ = min
uεR

Ĩ (u).

Usually we are interested to find not only the minimum value of the functional
I (u) but also the element, ǔ, on which this value is achieved, i.e. such ǔ that

I (ǔ) = Ǐ . (5.4)

Such an element is called the minimizing element or the minimizer. There might
be many minimizing elements (example: min−∞<u<+∞ sin u = −1, ǔ = −π

2 + 2πn,

n = 0,±1,±2, . . .). On the other hand, the element ǔ may not exist (example:
min

0<u<+∞
1
u = 0, while 1/u > 0 at any point). Mathematicians like to emphasize in

notation the possibility of non-existence of the minimizing elements. For example,
they write inf I (u) if it is not known whether the existence of the minimizing element
is guaranteed and min

M
I (u) only in the case when the minimum value is achieved on
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M (and, accordingly, sup I (u) instead of max I (u)). We choose rather to use only
the symbols min and max; in the usual mathematical notation they correspond to inf
and sup.

In variational problems of continuum mechanics the existence of the minimizing
element is usually guaranteed by the physics of the problem. Therefore, the varia-
tional problem will be called correctly posed (or, briefly, correct) if a minimizing
element does exist. For the variational problems of non-physical nature, like the
problems of optimal control theory, such terminology is not appropriate because in
a typical situation, the minimizing element does not exist. We will not encounter
such problems in this book.

On the geometry and dimension of functional spaces. Functional spaces are
infinite-dimensional. This means the following. Consider a smooth function of one
variable, u(x). It can be approximated by a piece-wise linear function which has at
some nodes, xk , the same values as u(x) (Fig. 5.1). The approximation is determined
uniquely by the values of the function at the nodes, u(xk). To describe the function
u(x) completely one has to tend the number of nodes, N , to infinity. In the limit
function u(x) is said to have an infinite number of degrees of freedom.

Another way to introduce the “degrees of freedom” of a function is to expand it
into a series. For example, a continuous function of one variable u(x), defined on a
segment −a ≤ x ≤ a, can be presented as the Fourier series

u(x) =
∞∑

k=0

ak cos
πkx

a
+
∞∑

k=1

bk sin
πkx

a
. (5.5)

Hence, each function u(x) is specified by an infinite sequence of numbers
{a0, a1, a2, . . . , b1, b2, . . .}. To select a function, u(x), one has to prescribe these
numbers. There is a one-to-one correspondence between all continuous functions

Fig. 5.1 A finite-dimensional
truncation in the functional
space
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u(x) and all sequences1 {a0, a1, a2, . . . , b1, b2, . . .} . In the spirit of vector analysis,
one can consider u(x) as a vector in an infinite-dimensional space, with the coordi-
nates {a0, a1, a2, . . . , b1, b2, . . .}. The vector u(x) has these coordinates in the basis
formed by the vectors (functions)

1, cos
πx

a
, cos

2πx

a
, . . . , sin

πx

a
, . . . .

The same function, u(x), may also be presented in terms of the Taylor series:

u(x) =
∞∑

k=0

ck xk . (5.6)

The coefficients {c0, c1, . . .} may be viewed as the coordinates of function
u(x) in the basis

{
1, x, x2, . . .

}
. The coordinates {a0, a1, a2, . . . , b1, b2, . . .} and

{c0, c1, c2, . . .} are linked by a linear transformation which can be derived from
(5.5) and (5.6).

A functional, I (u), is a function of an infinite number of arguments,
a0, a1, a2, . . . , b1, b2, . . . , or c0, c1, c2, . . . . In some cases this functional can be
computed explicitly. For example,

I (u) ≡
a∫

−a

u2(x)dx = a

π

π∫

−π

( ∞∑
0

ak cos kt +
∞∑
1

bk sin kt

)2

dt =

= a
[
2a2

0 + a2
1 + a2

2 + . . .+ b2
1 + b2

2 + . . .
]
. (5.7)

Here we used the following property of the harmonic functions:

π∫

−π

cos kt cos mt dt =
π∫

−π

sin kt sin mt dt = πδkm,

π∫

−π

cos kt sin mt dt = 0.

One important point is now in order. The infinite dimensionality of the func-
tional space in static problems of continuum mechanics is, in fact, an unnecessary
complication. In each application of models of continuum mechanics there is always
some characteristic length, l∗, such that the model does not make sense for functions
changing on distances less than l∗. For example, if a crystal lattice is modeled by
a continuum elastic body, then one can disregard the change of displacements on
distances less than the interatomic distance. In terms of the Fourier coefficients,
ignoring the changes of the function u(x) on distances less than l∗ means drop-
ping in the Fourier series (5.5) all terms with the wavelengths, a/k, smaller than
l∗, i.e. keeping only a finite number of coordinates a0, a1, . . . , aN , b1, . . . , bN with

1 Which decay fast enough; we do not go into mathematical details.



154 5 Direct Methods of Calculus of Variations

N � a/ l∗. Such a dimensional truncation is possible in all problems of continuum
mechanics. However, it is also always interesting to see if the results obtained do not
depend on the truncation and admit the limit transition N →∞. The results derived
for infinite-dimensional functional spaces may be perceived from this perspective:
these results do not depend on the value of the characteristic length l∗ and may be
viewed as the result corresponding to the limit l∗ → 0 (or N →∞). The idea that
the space R can be considered as finite-dimensional is quite fruitful: then, without
loss of any physical feature of the problem, the functional I (u) becomes a function
of a finite number of variables.

Linear and quadratic functionals. Two classes of functionals play a very special
role in continuum mechanics: linear functionals and quadratic functionals.

Functional l(u) is called linear if, for any u, v and a number λ,

l(λu) = λl(u), l(u + v) = l(u)+ l(v).

This is an example of a linear functional:

l(u) =
∫

V

a(x)u(x) dV .

Here a(x) is a given smooth function, and u(x) is any integrable function.
Functional E(u, v) is called bilinear if it is linear with respect to each argument,

u and v.
Functional E(u) is called quadratic if there is a bilinear symmetric functional,

E(u, v) = E(v, u), such that

E(u) = E(u, u). (5.8)

Boundedness from below. A functional I (u) is called bounded from below on M
if there exists a constant, c, such that for all elements u of M,

I (u) ≥ c.

The fact that functional I (u) has a finite value at a minimizer, ǔ, implies that
functional I (u) is bounded from below on M in a correct variational problem. There
are two reasons why a variational problem may not be correct: either the functional
is not bounded from below on M, or it is bounded from below but its minimum
is not reached at M, i.e. there is no element ǔ for which I (ǔ) = Ǐ . To determine
whether the problem is correct, it is natural to start from the investigation of the
boundedness from below of the functional on M. Here are some examples.

Example 1. Linear functional, l(u), is always unbounded on a linear set M unless it
is equal to zero identically. Indeed, if l(u) �= 0 for some u, then l(λu) = λl(u) could
be made as large or as small as we wish by the appropriate choice of λ.
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Example 2. Let M be a set of differentiable functions of one variable, defined on
the segment [0, a]. Consider the functional on M,

E (u) = 1

2

a∫

0

A (x)

(
du

dx

)2

dx, (5.9)

where A(x) is a positive function. Functional E(u) is obviously quadratic since it
can be obtained from a bilinear symmetric functional,

E(u, v) = 1

2

a∫

0

A(x)
du

dx

dv

dx
dx .

Functional E(u) is non-negative, and thus, bounded from below by zero.

The functional (5.9) is defined, if u(x) is a differentiable function such that the
integral of A (x) (du/dx)2 exists. In what follows we skip such details and use a
vague term “smooth function”, which assumes that all operations on this function,
which are involved in our consideration, are meaningful.

Example 3. Consider the functional

I (u) = E(u)− l(u), (5.10)

where E(u) is the functional (5.9), and

l (u) =
a∫

0

g (x) u (x) dx + fau (a)− f0u (0) . (5.11)

We assume that functions A (x) and g (x) are smooth, and function A (x) is positive
and separated from zero, i.e.

A (x) ≥ A0 = const > 0. (5.12)

Functional E (u) is bounded from below by zero. Functional l (u) is linear, and,
thus, unbounded. The sum E (u) − l (u) can be bounded from below because the
linear growth of l (u) is accompanied by the quadratic growth of E (u) and the latter
can suppress the negative contribution of l(u). Such “suppression” may not occur if
there are functions ū for which l(ū) �= 0 while E(ū) = 0. Then I (λū) = −λI (ū)
and, choosing λ, one can tend I (λū) to −∞. Functional E (u) is equal to zero for
functions ū = const. This suggests that the necessary condition for the boundedness
from below of functional I (u) is

l (ū) = 0 (5.13)
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for all ū ≡ const. The equality (5.13) is equivalent to the following constraint on
the entries, g, fa, f0, of the functional l(u) :

a∫

0

g (x)dx + fa − f0 = 0. (5.14)

To understand the meaning of the constraint (5.14), let us write down the Euler
equations for the functional (5.10) assuming that minimizer, u (x), is twice continu-
ously differentiable on [0, a]:

d

dx
A (x)

du

dx
+ g (x) = 0, 0 ≤ x ≤ a, (5.15)

A
du

dx

∣∣∣∣
x=0

= f0, A
du

dx

∣∣∣∣
x=a

= fa . (5.16)

The boundary value problem (5.15) and (5.16) is not always solvable. To obtain
a necessary condition of its solvability, let us integrate (5.15) on [0, a]. Using the
boundary condition (5.16), we arrive at (5.14). So, the necessary condition of the
boundedness from below of the functional I (u) coincides with the necessary condi-
tion of the solvability for the boundary value problem (5.15) and (5.16).

The physical meaning of the constraint (5.14) is simple: if the variational problem
is interpreted as the equilibrium problem for extension of an elastic beam, and thus,
g(x) is the body force while fa, f0 are the end forces, the condition (5.14) means
that at equilibrium the sum of all forces acting on the body must be zero.

Let us show that the condition (5.14) is also the sufficient condition for bound-
edness from below, i.e. if the linear functional l(u) satisfies (5.14), then I (u) is
bounded from below.

First, let us note that, if (5.14) holds, functional I (u) is invariant with respect to
shifts of u by a constant, ū, since E(u + ū) = E(u) and l(u + ū) = l(u). Therefore,
the minimizing element of the functional I (u) cannot be determined uniquely: if ǔ
is a minimizing element then ǔ + ū is also a minimizing element. We may add a
constraint eliminating the shifts for a constant. As such we take, for definiteness,

a∫

0

u (x)dx = 0. (5.17)

Now we need the following inequality: for smooth functions u(x) satisfying the
constraint (5.17),

λ2u2 (x) ≤ a

a∫

0

(
du

dx

)2

dx, (5.18)
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where λ is some constant. The factor, a, is included in the right hand side of (5.18)
to make the constant λ dimensionless.

The proof is simple. Consider the identity

u (x)− u (y) =
x∫

y

du (z)

dz
dz.

Let us integrate it with respect to y from 0 to a. Using (5.17), we get

au (x) =
a∫

0

dy

x∫

y

du (z)

dz
dz. (5.19)

We square (5.19)

a2u2 (x) =
⎡
⎣

a∫

0

⎛
⎝1 ·

x∫

y

du (z)

dz
dz

⎞
⎠ dy

⎤
⎦

2

and apply the Cauchy inequality: for any two functions, f (x) and g(x),

(∫
f (x)g(x)dx

)2

≤
∫

f 2(x)dx
∫

g2(x)dx (5.20)

For further references, note that inequality (5.20) holds true for integrals over
multi-dimensional regions as well.2 We get, using twice the Cauchy inequality,

a2u2(x) ≤
a∫

0

12dy

a∫

0

⎡
⎣

x∫

y

1 · du

dz
dz

⎤
⎦

2

dy ≤ a

a∫

0

⎡
⎣

x∫

y

12dz

x∫

y

(
du

dz

)2

dz

⎤
⎦dy.

(5.21)
Substituting the integration limits, x and y, in (5.21) by 0 and a, respectively, and
consequently increasing the value of the right-hand side, we obtain

a2u2 (x) ≤ a3

a∫

0

(
du

dz

)2

dz. (5.22)

2 The Cauchy inequality follows from the positiveness for any α, β of the quadratic form,

α2
∫

f 2dx + 2αβ

∫
f gdx + β2

∫
g2dx =

∫
(α f + βg)2dx ≥ 0.

Clearly, the equality is achieved only when f and g are proportional.
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Hence, the inequality (5.18) holds with the constant λ equal to at least unity (the
“best” value for λ, i.e. the largest value of λ for which the inequality (5.18) remains
true, is greater than unity).

The following inequalities are the obvious consequences of (5.18):

λ2u2 (0) ≤ a

a∫

0

(
du

dx

)2

dx, λ2u2 (a) ≤ a

a∫

0

(
du

dx

)2

dx, (5.23)

μ2

a∫

0

u2dx ≤ a2

a∫

0

(
du

dx

)2

dx . (5.24)

with a constant μ which is not less than unity. Inequality (5.24) is also called the
Wirtinger inequality.

The elimination of shifts in u(x) by a constant is essential for the inequalities
(5.23) and (5.24) to be true: if one ignores the constraint (5.17), then, putting u(x) =
const, we get zero in the right hand sides and non-zero in the left hand sides. The
shift can be excluded by different constraints. The values of the best constants, λ

and μ, in (5.23) and (5.24) depend on the choice of the constraint.
The best constant in the Wirtinger inequality is a solution of the following varia-

tional problem:

μ2 = min
u(x)∈(5.17)

a2
a∫

0

(
du
dx

)2
dx

a∫
0

u2dx
.

One can find (for example, by expanding u(x) in Fourier series) that the best
value for μ is 2π . Similarly, the best constant λ can be defined by the corre-
sponding variational problem. We will see in Sect. 8.3 that the best constants in
the Wirtinger-type inequalities relate to the minimum eigen-frequencies of some
mechanical systems.

The best constants depend on the constraints imposed to eliminate the shift. If
the constraint (5.17) is replaced by the constraint

u (0) = 0 or u (0) = u (a) = 0, (5.25)

then the best value for μ becomes π/2 and π , respectively.
Let us return to proving the sufficiency of conditions (5.14) for the boundedness

from below of the functional (5.10). Using the inequality

|u + v| ≤ |u| + |v|
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and the Cauchy inequality (5.20), we get the following estimate of the linear
functional l(u)

|l(u)| =
∣∣∣∣∣∣

a∫

0

g(x) u (x)dx + fau (a)− f0u (0)

∣∣∣∣∣∣
≤

≤
∣∣∣∣∣∣

a∫

0

g(x) u (x)dx

∣∣∣∣∣∣
+ | fau (a)| + | f0u (0)| ≤

≤
∣∣∣∣∣∣

a∫

0

a√
A0

g (x)

√
A0

a
u (x)dx

∣∣∣∣∣∣
+ | fau (a)| + | f0u (0)| ≤

≤

√√√√√
a∫

0

a2

A0
g2dx

√√√√√
a∫

0

A0

a2
u2dx +

√
a | fa|√

A0

√
A0u2 (a)

a
+

+
√

a | f0|√
A0

√
A0u2 (0)

a
. (5.26)

Let us increase the right-hand side of (5.26) by means of (5.23), (5.24), and
(5.12). We see that the linear functional does not exceed

√
E(u):

|l(u)| ≤ c
√

E (u), (5.27)

with a constant c equal to

c =
√

2

⎛
⎜⎝ 1

μ

√√√√√
a∫

0

a2

A0
g2dx +

√
a (| f0| + | fa|)

λ
√

A0

⎞
⎟⎠ . (5.28)

The inequality (5.27) allows us to complete the estimate of I (u) :

I (u) = E (u)− l (u) ≥ E (u)− |l(u)| ≥ E (u)− c
√

E (u)

=
(√

E (u)− c

2

)2.

− c2

4
≥ −c2

4

This justifies the boundedness of the functional I (u) from below.
Equation (5.28) shows that the integrability of g2 (x) is sufficient for boundedness

from below.
In the example considered, there is a group of transformations, G, acting on

M, such that application of the transformation g from G to each element of M
gives again the set M, gM = M, g ∈ G (in the example G is the group of
shifts of u by a constant). This group leaves the functional E unchanged, E (gu) =
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E (u) , g ∈ G, u ∈M. If the group G contains more elements than just the identity
transformation, the functional E is said to have a kernel. In statics, E is usually the
energy, and G is the transformation group corresponding to the rigid motions of the
body.

In the same way, as in Example 3, the following statement can be proven: Let
the invariance group of E(u), G, be a group of translations with respect to u, gu =
u + ūg , and the set K of elements ūg is a cone, i.e. for every element ū ε K and
any positive constant λ, λū ε K. Let the functional I (u) of the form (5.10) also
be bounded from below. Then for all ū ∈ K the linear functional must satisfy the
inequality

l (ū) ≤ 0, (5.29)

If the cone K contains with every element ū the element −ū, then, as follows
from (5.29), the necessary condition for the boundedness from below of the
functional E (u)− l (u) is

l (ū) = 0 (5.30)

for all ū ∈ K.
The property of E (u) of having a kernel depends on the set on which it is

considered. This is illustrated by the following example.

Example 4. Consider the set M of smooth functions u (x) which consists of all dif-
ferentiable functions on [0, a] , satisfying the condition

u (0) = 0. (5.31)

In this case, the functional E (u) (5.9) does not have a kernel: shifts for a constant
are forbidden by the condition (5.31). The functional I (u) is bounded from below
for any g (x) and fa , since on the set of functions satisfying (5.31), the inequality
(5.18) and, consequently, the inequality (5.27) hold true.

The physical interpretation of this fact for an elastic beam is as follows: if one
end of the beam is clamped, the equilibrium exists for any forces, not only for forces
with the zero resultant.

In the next example, the functional does not have a kernel.

Example 5. Let us change the functional E (u) (5.9) by adding the integral of u2:

E (u) = 1

2

a∫

0

(
A (x)

(
du

dx

)2

+ B (x) u2

)
dx, B (x) ≥ B0 > 0. (5.32)

The functional E (u) (5.32) is not invariant with respect to shifts. Functional
E (u) − l (u) is bounded from below. The proof of the boundedness from below is
the same as in Example 3, except that instead of inequalities (5.23), the inequalities
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λ2u2 (0) ≤ a

a∫

0

(
du

dx

)2

dx + 1

a

a∫

0

u2dx,

λ2u2 (a) ≤ a

a∫

0

(
du

dx

)2

dx + 1

a

a∫

0

u2dx . (5.33)

should be used; they are derived similarly to (5.23). It may be checked that, for
B → 0, the minimum value of the functional E (u) − l (u) stays bounded if the
condition (5.14) is satisfied. Otherwise, E (u)−l(u)→−∞ when B → 0.

Example 6. Consider the functional I (u) = E (u) − l (u), defined on the functions
u (x) of several variables x = {x1, . . . , xn} , x ∈ Rn , with E (u) and l (u) given by
the formulas

E (u) = 1

2

∫

V

Ai j (x) u,i u, j dV,

l (u) =
∫

V

g (x) u dV +
∫

�V

f (x) u d A. (5.34)

The quadratic form Ai j ui u j is assumed to be positive: Ai j ui u j ≥ A0ui u j , A0 =
const > 0.

The functional E (u) is invariant with respect to shifts by constant functions
u (x) = ū = const. The necessary condition of the boundedness from below of
the functional I (u) (5.34) is equivalent to the following relation for given functions
g (x) and f (x)

∫

V

g (x) dV +
∫

�V

f (x) d A = 0. (5.35)

Let us write the Euler equations of the functional E (u)− l (u):

�

�xi
Ai j (x)

�u

�x j
+ g = 0 in V, (5.36)

Ai j �u

�xi
n j = f on �V . (5.37)

Integrating (5.36) over V and using the boundary conditions (5.37) on �V , we
get (5.35). Hence, this equation is the necessary condition of solvability for the
boundary value problem (5.36) and (5.37). In the case of the Laplace equation
(Ai j = δi j , f = 0) it transforms into the well-known condition of solvability of
the von Neuman problem.
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The proof of the sufficiency of the condition (5.35) for the boundedness from
below of the functional I (u) is based on the Poincaré-Steklov-Fridrichs-Erlich
inequalities

λ2
∫

�V

u2d A ≤
∫

V

u,i u
,i dV, μ2

∫

V

u2dV ≤
∫

V

u,i u
,i dV . (5.38)

It is obtained in the same way as in Example 3. The equation

∫

V

udV = 0 (5.39)

Minimizing sequences. Let the functional I (u) be bounded from below on M.
Then there exist sequences {un} in M such that I (un) → Ǐ when n → ∞. They
are called the minimizing sequences.

Example 7. Let M be a set of smooth functions u (x) of one variable defined on
[0, a] which take the unity value at x = 0: u (0) = 1. Consider the functional

I (u) =
a∫

0

u2dx .

on M. The functional is bounded from below by zero. Let us show that min I (u) =
0. Consider a sequence of functions un (x) which are linear on the segment [0,a/n] ,

take the values unity and zero at the points x = 0 and x = a/n, respectively, and
equal to zero outside the segment (Fig. 5.2). It is also obvious that I (un)→ 0 when
n → ∞. Hence, the constructed sequence is minimizing. It is obvious that there
is no minimizing element on the set of continuous functions because there is no
continuous function which is equal to unity at the point x = 0 and for which the
integral of u2 is equal to zero.

Fig. 5.2 Minimizing sequence in Example 7
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As was already mentioned, the incorrectness of the variational problems caused
by the absence of the minimizing element is encountered in applications. To solve
such a problem means to find Ǐ and to construct a minimizing sequence. In the
variational problems of physics and mechanics the minimizing element usually does
exist.3

5.2 Quadratic Functionals

Quadratic functionals, E(u), were defined as functionals which can be presented in
the form

E(u) = E(u, u),

where E(u, v) = E(v, u) is a bilinear symmetric functional. An immediate conse-
quence of this definition is a “quadratic expansion”:

E(u + v) = E(u)+ 2E(u, v)+ E(v). (5.40)

Besides, the quadratic functionals grow quadratically along the lines,4 u = λu0 :

E(λu0) = λ2 E(u0).

An identity. The quadratic functionals, as follows from (5.40), obey a useful
identity:

E

(
u + v

2

)
+ E

(
u − v

2

)
= 1

2
(E(u)+ E(v)) . (5.41)

Alternative notation. As we have already discussed, in physical problems without
loss of generality, the functional space can be replaced by a finite-dimensional space,
Rm, of a large dimension, m. Then u becomes a vector in Rm , E(u) a quadratic
function in Rm , and l(u) a linear function. Any linear function in Rm can be viewed
as a scalar product of some vector, l, and vector u : l(u) = (l, u). By (l, u) we
denote the scalar product in Rm : if li and ui are the components of the vectors, l
and u,

(l, u) = li u
i .

3 There are some exceptions such as the problem of thermodynamic equilibrium of two-phase
materials when one neglects the interface energy. However, the absense of the minimizer is caused
by an oversimplification of the energy functional. To some extent, the situation is similar to the
appearance of paradoxes in fluid mechanics when viscosity is neglected.
4 For a given element u0, the equation u = λu0 may be interpreted as the parametric equation of
the line in R passing through the origin and the point u0.
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A quadratic function, E(u), may be presented as a scalar product of two vectors,
Au and u, where Au is the product of a m × m matrix, A, and the vector, u :

E(u) = (Au, u).

The bilinear form, E(u, v), is, obviously, (Au, v). If m → ∞, Au transforms
into an operator acting on u. In what follows we will use for quadratic and linear
functionals both notations introduced: E(u) = (Au, u) and l(u) = (l, u).

Example. Let E(u) be a functional,

E(u) =
∫

V

�u

�xi

�u

�xi
dV,

where V is a region in an n−dimensional space, and u is a smooth function vanish-
ing on �V . Integrating by parts we can write

E(u) =
∫

V
(−� u) udV,

where � is Laplace operator. Setting the scalar product of two functions, u and
v, as

(u, v) ≡
∫

V
uvdV,

we see that in this example A = −� . Note that the operator, −�, is positive in the
sense that (Au, u) ≥ 0 for any u.

Linear problems. Many linear problems of continuum mechanics can be formu-
lated as the minimization problems for a functional which is a sum of quadratic and
linear functionals:

I (u) = E(u)− l(u)→ min
M

(5.42)

Variations of such functionals can easily be found:

δE(u) = E(u + δu)− E(u) = E(u + δu, u + δu)− E(u)

= 2E(u, δu)

δl(u) = l(u + δu)− l(u) = l(δu)

δ I (u) = 2E(u, δu)− l(δu) (5.43)

The minimizing element, ǔ, must obey the equation:

δE(ǔ) = δl(ǔ)
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for any admissible δu. Thus, for any admissible δu,

2E(ǔ, δu) = l(δu). (5.44)

Another form of this equation is obtained if we assume that l(u) is a scalar prod-
uct of some element, l, and u : l(u) = (l, u), while E(u) = 1

2 (Au, u). Then the
Euler equation is

Aǔ = l.

If the solution of this equation is unique, it can be written as

ǔ = A−1l,

where A−1 is the inverse operator. The inverse operator can be considered as the
infinite-dimensional limit of the inverse symmetric matrix, A−1

m , where Am is an
m×m-matrix corresponding to an m−dimensional truncation of the quadratic func-
tional, (Au, u).

Clapeyron theorem. If the set M is linear, then δu = u′ − ǔ belongs to M. We can
choose, in particular, δu = ǔε, ε being an infinitesimally small number. Plugging it
in (5.44) we arrive at the so-called Clapeyron’s theorem:

2E(ǔ) = l(ǔ). (5.45)

An important consequence of Clapeyron’s theorem is the link between the
minimum value of the functional and the value of the quadratic functional at the
minimizing element,

I (ǔ) = −E(ǔ), (5.46)

which follows from (5.42) and (5.45). Another useful form of this equation is

I (ǔ) = −1

2
l(ǔ). (5.47)

Various forms of the minimization problem for quadratic functionals. The
minimization problem for the functional I = E (u) − l (u) may be presented in
a number of equivalent forms that are sometimes useful.

Let the kernel of the quadratic functional E (u) be eliminated. One can assign to
each element, u, its “length,”

√
E (u). Then the unit sphere in the functional space

is defined by the equation E (u) = 1.

Let us assign to every element of the functional space, u, an element on the unit
sphere, v:
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v = u√
E (u)

, E (v) = 1.

The functional space can be split into rays, u = λv, 0 ≤ λ < +∞. The func-
tional I (u) can be considered as a function of two arguments, v and λ. The minimum
of the functional I (u) can be searched successively, by first finding the minimum
along each ray u = λv, and then finding the minimum on the sphere E (v) = 1.
The search for the minimum along each ray is reduced to minimizing the function
λ2 − λl (v) of one variable, λ (v is fixed). The minimum is equal to − 1

4 (l(v))2.
Minimizing this expression with respect to v is equivalent to maximizing the linear
functional l (v) on the unit sphere, and we arrive at the variational problem

Ǐ = −1

4
l̂
2

, l̂ = max
E(v)=1

l (v) . (5.48)

The variational problem (5.48) can be written in two other equivalent ways: as a
maximization problem of the linear functional on a ball:

l̂ = max
v: E(v)≤1

l (v) , (5.49)

or as a maximization problem over the entire space of a functional of the zeroth
order of homogeneity:

l̂ = max
u

l(u)√
E (u)

. (5.50)

The equivalence of (5.48) and (5.49) can be justified by the following reasoning.
Let us expand the set of the admissible elements in the variational problem for l̂,
(5.48), allowing all elements inside the unit ball, E(v) ≤ 1. The maximum can only
increase:

max
v: E(v)≤1

l (v) ≥ max
v: E(v)=1

l (v) . (5.51)

Suppose that (5.51) is a strict inequality:

max
v: E(v)≤1

l (v) > max
v: E(v)=1

l (v) ≡ l̂.

Then there exists a sequence {vn} such that l (vn) > l̂ and E (vn) ≤ 1. Define the
numbers λn by the equations: E (λnvn) = 1. Since E(λnvn) = λ2

n E(vn) = 1
and E(vn) ≤ 1, the numbers λn are not less than unity. Therefore, l (λnvn) =
λnl(vn) > λnl̂ ≥ l̂, i.e. l (λnvn) > l̂. This contradicts the definition of l̂ (5.48),
because the sequence {λnvn} lies on the sphere E (v) = 1. Thus, only the equality
sign is possible in (5.51).
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Equation (5.50) follows from the fact that the functional l(u)�
√

E(u) does not
change along the rays u = λv.

5.3 Existence of the Minimizing Element

In calculus of variations the theorems warranting the existence of the minimizing
element are usually the generalizations to the infinite-dimensional case of the the-
orem which states that a continuous function in a finite-dimensional space reaches
both its maximum and minimum values on any closed set M. The analysis of this
theorem shows that it is based on three elements: the notion of the convergence of
the elements on M, the notion of the continuity of the function (functional) on M
and the structure of the set M: any infinite sequence of elements from M has to
contain a subsequence that converges to an element of M.

The notion of the continuity of the functional (the functional is continuous at
point u0 if for any sequence {un} converging to u0, I (un) converges to I (u0)), and
the above-mentioned property of the set M, which is called compactness, are both
based on the way in which the convergence of elements of M is introduced.

For given functional I (u) and a set M the convergence of elements of M can
be defined differently. With respect to some convergences functional I (u) can be
continuous and the set M – compact; with respect to the other ones, this may not be
true. If it is possible to introduce such convergence of the elements that the set M
is compact and the functional I (u) is continuous with respect to that convergence,
then I (u) has a minimizing element on M. This statement is proven similarly to the
corresponding theorem for a function of one variable in calculus.

One can check that the assumption of the functional continuity can be relaxed
to a weaker assumption of its semi-continuity below. The functional is called semi-
continuous below at point u0 if for any sequence {un} converging to u0, for which
the sequence {I (un)} converges,

I (u0) ≤ lim
n→∞ I (un) .

The key types of the convergence of elements in M are as follows. Usually, the
set M can be considered as a subset of a Banach space. A Banach space is a linear
space B, for which a norm, a non-negative functional, ‖u‖ , is defined, where ‖u‖
is homogeneous (‖λu‖ = |λ| ‖u‖), non-degenerate (‖u‖ = 0 if and only if u = 0),
convex (‖u + v‖ ≤ ‖u‖+‖v‖) functional, and the space B is complete with respect
to the norm. The latter means that any fundamental sequence {un} (i.e. the sequence
with ‖un − um‖ → 0 as n, m →∞) converges to an element of B.

For a Banach space, the notion of convergence with respect to the norm arises
naturally; it is also called strong convergence. One says that the sequence {un}
strongly converges to u0 if ‖un − u0‖ → 0 as n → ∞. Strong convergence is not
very useful for theorems of the existence of the minimizing element since bounded
closed sets in functional spaces (i.e. closed sets contained in a ball ‖u‖ ≤ R of a
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finite radius R) turn out to be non-compact. However, the bounded closed sets in
a Banach space can be compact with respect to the so-called weak convergence:
the sequence {un} weakly converges to u0 if for any linear continuous functional5

l (u), l (un) → l (u0) as n → ∞. Such Banach spaces are often encountered in
applications; they include Hilbert spaces (linear spaces for which the scalar product
(u, v) is defined, and the norm is introduced as ‖u‖ = (u, u)1/2).

So the existence of the minimizing element is warranted for functionals I (u)
which are semi-continuous below with respect to weak convergence on a bounded
closed set in the Banach space. The case of the unbounded set M (for example,
when M is a cone) reduces to the case of the bounded set if the functional I (u)
satisfies an additional condition of I (u)→+∞ when ‖u‖ → ∞.

One can prove that the functional ‖u‖ is semi-continuous below with respect
to the weak convergence. This property warrants the existence of the minimizing
element for the functionals I (u) of the form

I (u) = E (u)− l (u)

if for some α, 0 < α < 1, the functional [E (u)]α has the properties of the norm6

and l (u) is a linear functional. For quadratic functionals, α = 1/2.

The functional space with the norm ‖u‖ = √E(u) plays a special role in varia-
tional problems with quadratic functionals. It is called energy space because E(u)
usually has the meaning of energy. To make the energy space a Banach space, one
has to include in this space the limits of all fundamental sequences {un} , i.e. such
sequences that ‖un − um‖ =

√
E(un − um) → 0 for n, m → ∞. The minimizing

element is an element of the energy space.
In the examples considered above E (u) does not have the properties of the norm

since it has a kernel (i.e. it is equal to zero for u �= 0). However, by eliminating
the kernel by means of the constraints like (5.17) or (5.25),

√
E (u) acquires the

properties of the norm, and the minimizing element does exist.
The elements of the energy space do not have the smoothness expected of the

solution of physical problems. Hence, an independent problem of studying the
smoothness properties of the minimizing element arises. It is not as simple as the
problem of the existence of the minimizing element in the energy space.

5.4 Uniqueness of the Minimizing Element

The fundamental criterion for the uniqueness of the minimizing element is based on
the notion of convexity. We begin its consideration with the definition of convex sets.

5 Continuity of linear functionals with respect to strong convergence is implied.
6 This condition can be weakened by replacing it by the conditions that the functional E (u) be
convex (see below), continuous with respect to some norm ‖u‖, and coercive, i.e. E (u) / ‖u‖ → ∞
when ‖u‖ → ∞.
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Fig. 5.3 The segment
connecting the points u and v

For any two points of a finite-dimensional space, u and v, the sum 1
2 (u + v) is

the center of the segment connecting the points u and v, while any point of this
segment can be presented in the form αu + (1− α) v, 0 ≤ α ≤ 1. The ends of the
segment, u and v, correspond to α = 1 and α = 0, respectively (Fig. 5.3). We apply
this terminology to the functional spaces calling the one-parametric set of elements,
αu + (1− α) v, 0 ≤ α ≤ 1, the segment connecting the elements u and v.

The set M is called convex, if, for any two elements u and v, it contains the
segment αu + (1− α) v, 0 ≤ α ≤ 1 connecting those two elements.

The functional I (u) defined on the convex set M is called convex if, for any two
elements u and v in M and any 0 ≤ α ≤ 1,

I (αu + (1− α) v) ≤ α I (u)+ (1− α) I (v) . (5.52)

The functional is strictly convex, if for u �= v,

I (αu + (1− α) v) < α I (u)+ (1− α) I (v) , 0 ≤ α ≤ 1.

Sometimes, in the definition of convex functionals one uses the inequality

I

(
u + v

2

)
≤ 1

2
(I (u)+ I (v)) . (5.53)

It follows from (5.52) for α = 1
2 . One can show that the conditions (5.52) and (5.53)

are equivalent for functionals which are semi-continuous below. The geometrical
meaning of the conditions (5.52) and (5.53) can be seen from Fig. 5.4.

Example 1. Consider the integral functional

I (u) =
∫

V

L

(
xi , uκ,

�uκ

�xi

)
dV .

We are going to show that this functional is convex (strictly convex) if L is a
convex (strictly convex) function of uκ and �uκ/�xi . Indeed,
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Fig. 5.4 Definition of the
convex functional

I (αu + (1− α) v) =

=
∫

V

L

(
xi , αuκ + (1− α) vκ, α

�uκ

�xi
+ (1− α)

�vκ

�xi

)
dV ≤

≤
∫

V

[
αL

(
xi , uκ,

�uκ

�xi

)
+ (1− α)L

(
xi , vκ,

�vκ

�xi

)]
dV =

= α I (u)+ (1− α) I (v) ,

as claimed.

A strictly convex functional cannot have more than one minimizing element on
a convex set. Indeed, suppose that a strictly convex functional has two minimizing
elements, u and v, on M. Then I (u) = I (v) = Ǐ . The element 1

2 (u + v) belongs to
M due to the convexity of the set. According to the strict convexity of the functional
I (u), its value at the point 1

2 (u + v) is less than the minimum value on M,

I

(
u + v

2

)
<

1

2
(I (u)+ I (v)) = Ǐ ,

which contradicts the definition of the minimum value.
Any linear functional obeys (5.52):

l(αu + (1− α)v) = αl(u)+ (1− α)l(v),

and, thus, is convex. The sum of a convex functional and a linear functional is
obviously convex. Moreover, the sum of any two convex functionals is convex.
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Positive quadratic functionals with zero kernel are strictly convex. Indeed,
consider the identity (5.41):

E

(
u + v

2

)
+ E

(
u − v

2

)
= 1

2
(E (u)+ E (v)) . (5.54)

By our assumption, functional E(u) has zero kernel, i.e. E(u) = 0 only for u = 0.

Therefore, for u �= v, E
(

u−v
2

)
> 0. Dropping E

(
u−v

2

)
in (5.54), we decrease the

left hand side and arrive at the inequality

E

(
u + v

2

)
<

1

2
(E (u)+ E (v))

which indicates the strict convexity of E(u).

Examples 2–5 of Sect. 5.1 (continued). The quadratic functionals E (u) in Exam-
ples 2–5 are positive. Thus, if the kernels are excluded, these functionals are strictly
convex, and the functional I (u) = E (u) − l (u) is strictly convex as well. The set
M in Examples 1–4 is convex. Hence, there is only one minimizing element in the
corresponding variational problems.

A convex, but not necessarily strictly convex, functional can have several mini-
mizing elements (the corresponding example is illustrated in Fig. 5.5: the set of the
minimizing points of the function is the straight segment).

The set of minimizing elements of a convex functional is convex. Indeed, if u
and v are two minimizing elements, I (u) = Ǐ and I (v) = Ǐ , then

I (αu + (1− α) v) = Ǐ

because

Ǐ ≤ I (αu + (1− α) v) ≤ α I (u)+ (1− α) I (v) = Ǐ .

Consequently, all the points on the segment αu + (1− α) v, 0 ≤ α ≤ 1, are the
minimizing elements of I (u).

Fig. 5.5 Convex functional
with many minimizing
elements
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5.5 Upper and Lower Estimates

In many problems, the information about the minimum value of the functional I (u)
is very important. Sometimes it is of the primary interest (many examples are given
further). In particular, the minimum value may be related to the energy of the system.

The estimates of the minimum value are usually based on some auxiliary varia-
tional problems which are easier to investigate than the initial variational problem.
In constructing the auxiliary problem, either the set M or the functional I (u) are
changed.

Changing the set of the admissible functions. Consider two sets, M1 and M2,
such that M2 ⊂M ⊂M1. Suppose that the functional I (u) can be defined on the
set M1. Denote by Ǐ1 and Ǐ2 the minimum values of the functional I (u) on M1 and
M2, respectively. It is obvious that

Ǐ1 ≤ Ǐ ≤ Ǐ2. (5.55)

If one takes as the set M2 an element, u, of M, one gets an estimate

Ǐ ≤ I (u) (5.56)

In the case of the quadratic functionals of the form E(u) − l(u), minimized on
a linear set, an upper estimate of the minimum value, according to the Clapeyron
theorem (5.46), corresponds to an estimate of energy from below, while a lower
estimate of the minimum value gives an upper energy estimate.

The Rayleigh-Ritz method. The most common method of obtaining an approxi-
mate solution of a variational problem is the Rayleigh-Ritz method. The method is
as follows. One selects a k-dimensional subset, Mk, of the set M. It is comprised
of the elements of the form a1u1+ . . .+ akuk , where u1, . . . , uk are some fixed ele-
ments of M, while a1, . . . , ak are numerical parameters. The functional I becomes
a function of k variables, a1, . . . , ak . Denote by ǎ1, . . . , ǎk the minimizer of this
function, and by ǔk the element ǎ1u1 + . . .+ ǎkuk . This element can be considered
as an approximation of the minimizing element of the functional I on M; moreover,
Ǐ ≤ I (ǔk), and if ǔk is the minimizing element of I on Mk , this estimate is the best
among all elements of the set Mk .

Increasing the dimensionality of the subset Mk , M1 ⊂ M2 ⊂ M3 ⊂ . . ., we
obtain better and better approximations of the minimizing elements and the mini-
mum value. The convergence of this process is proved for a large class of variational
problems.

The method of constraint unlocking. Let the set M be defined by some system of
equations or inequalities. By dismissing some of those equations, we obtain a larger
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set M1, and Ǐ1 ≤ Ǐ . This way of making the lower estimates is called the method
of constraint unlocking.

Changing the functional. Another way of making estimates employs a change of
the functional. One constructs the functionals I1 and I2 in such a way that I1 < I <

I2 on M. Then

Ǐ1 ≤ Ǐ ≤ Ǐ2. (5.57)

This method is effective if the minimum values Ǐ1 and Ǐ2 of the functionals I1 and
I2 can be found on M.

Let, for example, the functional I be a sum of two functionals:

I = I ′ + I ′′

where I ′ and I ′′ are both bounded from below on M and their minimum values can
be found. Then one can take as a functional I1 the functional

I1 = I ′ +min
M

I ′′

The low estimate (5.57) takes the form

min
M

I ′ +min
M

I ′′ ≤ min
M

I. (5.58)

Example. Consider the minimization problem for the functional

I (u) = E (u)− l (u) , E (u) =
∫

V

L

(
xi , uκ,

�uκ

�xi

)
dV,

l (u) =
∫

V

gκ (x) uκdV +
∫

�V f

fκ (x) uκd A,

where �V f is a part of the boundary �V where the “external surface forces,” fκ, are
given. The minimum is sought over all functions uκ , taking the assigned values, on
the surface �Vu = �V − �V f :

uκ = uκ

(b). (5.59)

Let us divide the region V into two subregions V ′ and V ′′ by the surface �. The
surface � divides each of the surfaces �Vu and �V f into two parts, �V ′u and �V ′′u ,
and �V ′f and �V ′′f ; see Fig. 5.6. In this figure the part of the boundary with “hard”
boundary conditions, i.e. the conditions that yield zero variations of the required
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Fig. 5.6 Notation to
inequality (5.62)

functions, is shadowed. The boundary of the surface V ′ comprises surfaces �V ′f ,
�V ′u and �, and the boundary of the surface V ′′ comprises �V ′′u , �V ′′f , and �. Let us
define on � some functions pκ (x) and define the functionals

I ′ (u) = E ′ (u)− l ′ (u) , I ′′ (u) = E ′′ (u)− l ′′ (u) ; (5.60)

E ′ (u) =
∫

V ′

LdV, E ′′ (u) =
∫

V ′′

LdV,

l ′ (u) =
∫

V ′

gκuκdV +
∫

�V ′f

fκuκd A +
∫

�

pκuκd A,

l ′′ (u) =
∫

V ′′

gκuκdV +
∫

�V ′′f

fκuκd A −
∫

�

pκuκd A, (5.61)

Obviously,

I ′ + I ′′ = I.

According to (5.58), for I we get the estimate

Ǐ ′ + Ǐ ′′ ≤ Ǐ . (5.62)

If the minimum value of the functional I (u) is related to the energy of the system,
the inequality (5.62) provides an estimate of energy in terms of energies of its parts.

Essential and inessential constraints. The estimates of the minimum value are
closely related to the important notion of essential and inessential constraints. The
constraints removing of which does not change the minimum value of the functional
are called inessential. Otherwise, the constraint is essential. We discuss this notion
for the following example.

Consider the minimization problem for the functional
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I (u) =
a∫

0

(
du

dx

)2

dx → min . (5.63)

Minimum is sought on the set of all smooth functions defined on the segment [0, a] ,

which satisfy the conditions

u (0) = 1, u (a) = 0. (5.64)

The minimum value is positive. Indeed, any function u (x) satisfying the con-
straints (5.64) can be written as

u (x) = a − x

a
+v (x) , (5.65)

where the function v (x) obeys the homogeneous constraints,

v (0) = v (a) = 0 (5.66)

Changing the argument of the functional I, u → v, we obtain

I (v) = 1

a
+

a∫

0

(
dv

dx

)2

dx . (5.67)

Hence, the minimum value of the functional I (u) is bounded from below by 1/a,
and the constraints (5.64) are essential to I (u).

Note that Ǐ = 1/a. It follows from the inequalities

1

a
≤ Ǐ ≤ I (v)|v=0 =

1

a
.

The minimum of the functional I (u) is equal to zero if the first constraint (5.64)
is removed. It is achieved on the function u(x) ≡ 0. Therefore, the first constraint
is essential. The second constraint (5.64) is also essential: if one removes this con-
straint , then the minimum value of the functional is zero again; it is reached on the
functions u(x) ≡ 1.

Consider now a variational problem where, in addition to (5.64), one sets a
constraint for the boundary value of the derivative,

du

dx
= c0 at x = 0. (5.68)

Let us show that this constraint is inessential. After the change of functions, u → v,

(5.65), the constraints takes the form
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v(0) = 0, v(a) = 0,
dv

dx

∣∣∣∣
x=0

= c ≡ c0 + a−1. (5.69)

We assume, for definiteness, that c > 0. Consider a sequence of functions {vn (x)} ,

vn (x) =

⎧
⎪⎨
⎪⎩

cx, 0 ≤ x ≤ an
c

−cx + 2an,
an
c ≤ x ≤ 2an

c

0, 2an
c ≤ x ≤ a

where {an} is a sequence of positive numbers converging to zero (see Fig. 5.7).
Functions vn (x) satisfy the constraints (5.69), and I (vn) = 1/a + 2can → 1/a

as n → ∞. Therefore, the minimum value of the functional I (u) does not change
if one prescribes the value of the derivative of u(x) at the boundary: it is still equal
to 1/a.

One may say that the functional itself chooses the constraints which it cannot
violate (essential constraints) and which it ignores (inessential constraints). The
functional “feels” the essential constraints and does not feel the inessential con-
straints.

It is also instructive to consider in the above example the case a = +∞. Then,
the second constraint (5.64) is replaced by the condition u (x)→ 0 for x →∞.

If a = ∞, the constraints (5.64) become inessential. To make sure that it is the case,
consider the sequence un (x) (Fig. 5.8):

un (x) =
{

1− an x, 0 ≤ x ≤ 1
an

0, 1
an
≤ x

{an} → 0 for n→∞.

For this sequence, I (un) = an → 0 as n → ∞. Hence, the minimum value is the
same as if there are no constraints at all.

Estimates of the closeness of the minimizing element and its approximations.
Let a sufficiently narrow fork,

a ≤ Ǐ ≤ b,

Fig. 5.7 Minimizing
sequence in the variational
problem with constraints
(5.69)
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Fig. 5.8 Minimizing
sequence for a = ∞

be constructed for the minimum value Ǐ of a strictly convex functional I (u), and let
an element u be found such that the value of the functional for this element is also
within the same fork:

a ≤ I (u) ≤ b.

What can be said of the closeness of the element u to the minimizing element
ǔ? The difference between u and ǔ can be estimated in the case of strongly convex
functionals. Functional I (u) is called strongly convex if there exists such a positive
functional B (u) that for any two elements, u and v,

I

(
u + v

2

)
+ B

(
u − v

2

)
≤ 1

2
(I (u)+ I (v)) . (5.70)

Quadratic positive functionals are strongly convex due to the identity (5.41). It
follows from this identity that B (u) = E(u).

In the case of strongly convex functionals, the closeness of the elements u and
ǔ can be characterized in terms of the functional B (u). Indeed, putting in (5.70),
v = ǔ, we have

I

(
u + ǔ

2

)
+ B

(
u − ǔ

2

)
≤ 1

2
(I (u)+ I (ǔ)) . (5.71)

We can reduce the left-hand side of (5.71) substituting I
(

u+ǔ
2

)
by the smaller

number, I (ǔ). We obtain

B

(
u − ǔ

2

)
≤ 1

2
(I (u)− I (ǔ)) . (5.72)

Hence, if the values of the functional for an approximate solution, u, and for
the minimizer are within the same fork, and the fork is narrow, then measure of the
difference between the approximate and the exact solution, B

(
u−ǔ

2

)
, is small:

B

(
u − ǔ

2

)
≤ b − a

2
. (5.73)
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For a quadratic functional, B
(

u−ǔ
2

) = E
(

u−ǔ
2

)
, and (5.73) provides the energy

estimate for the error of the approximate solution:

E

(
u − ǔ

2

)
≤ b − a

2
.

5.6 Dual Variational Principles

The general scheme. It has long been known that the same system of differen-
tial equations can be the system of Euler equations for different functionals. For
example, the equations of analytical mechanics for the systems with a finite num-
ber of degrees of freedom can be obtained by means of two different variational
principles, the Hamilton principle in the phase space and the Lagrange principle.
In other areas of mechanics, different principles were also proposed for the same
system of equations: the Dirichlet and the Thompson principles in the mechanics
of ideal incompressible fluid and in electrostatics, the Lagrange, Castigliano and
Reissner principles in the elasticity theory, the Pontrjagin maximum principle in the
variational problems with constraints, etc. It turns out that one simple common idea,
the idea of duality, lies in the basis of all such principles. This section is concerned
with the discussion of this idea.

Consider the minimization problem for the functional I (u) on a set M,

Ǐ = min
u∈M

I (u) . (5.74)

Suppose that it is possible to construct a functional, � (u, v) , of two variables, u
and v, u being an element of M, and v an element of some other set N , such that

I (u) = max
v∈N

� (u, v) . (5.75)

Then the initial variational problem can be stated as a minimax problem:

Ǐ = min
u∈M

max
v∈N

� (u, v) . (5.76)

Assume that the order of computing of the maximum and minimum values in
(5.76) can be changed,7

7 If we search the minimum of a function of two variables, �(u, v), we can first minimize the
function over u for each fixed v, and then search the minimum of the result over v; or we can
search minimum over v for each fixed u and then minimize the result over u. The answer is,
obviously, the same:

min
u

min
v

�(u, v) = min
v

min
u

�(u, v).
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Ǐ = max
v∈N

min
u∈M

� (u, v) . (5.77)

Suppose also that the functional � (u, v) is chosen in such a way that min
u∈M

� (u, v)

can be easily found. Denote it by J (v):

J (v) = min
u∈M

� (u, v) . (5.78)

Then the initial minimization problem is equivalent to the maximization problem
for the functional J (v) on the set N :

Ǐ = max
v∈N

J (v) . (5.79)

The variational problem (5.79) is called dual to the initial variational problem
(5.74).

It is possible to construct various dual variational problems, choosing various
functionals � (u, v) and sets N . This choice is limited by the two conditions. First,
the possibility to change the order of minimization and maximization:

min
u∈M

max
v∈N

� (u, v) = max
v∈N

min
u∈M

� (u, v) . (5.80)

Second, it must be possible to find the functional J (v) (5.78) explicitly. In the vari-
ational principles mentioned in the beginning of this section, the latter condition is
satisfied by choosing the functional � (u, v) linear with respect to v.

For the validity of (5.80), various conditions of different degrees of generality
were suggested. However, it is sometimes easier to check directly whether the or-
der of maximization and the minimization can be changed. Usually, (5.80) can be
checked in the following way.

First, let us show that for any functional � (u, v) and for any non-empty sets, M
and N ,

max
v∈N

min
u∈M

� (u, v) ≤ min
u∈M

max
v∈N

� (u, v) . (5.81)

Indeed,

min
u∈M

� (u, v) ≤ � (u, v) . (5.82)

In minimax problems the change of the order of minimization and maximization cannot be always
done. This is seen, for example, for a function, �(u, v) = −u2 + uv, |u| ≤ 1, |v| ≤ 1 :

min
|u|≤1

max
|v|≤1

[−u2 + uv] = min
|u|≤1

[−u2 + |u|] = 0,

max
|v|≤1

min
|u|≤1

[−u2 + uv] = max
|v|≤1

min{−1+ v,−1− v} = −1.
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If an element u on the right-hand side of (5.82) is fixed, then the inequality (5.82)
means that the functional of v, min

u∈M
� (u, v) , is not greater than the functional of v,

� (u, v). Therefore,

max
v∈N

min
u∈M

� (u, v) ≤ max
v∈N

� (u, v) . (5.83)

According to (5.83), the functional of u, max
v∈N

� (u, v) is bounded from below by

a constant, max
v∈N

min
u∈M

� (u, v). Consequently, its minimum value, min
u∈M

max
v∈N

� (u, v),

is also bounded from below by this constant, and the inequality (5.81) holds true.
The inequality (5.81) can also be written as

max
v∈N

J (v) ≤ min
u∈M

I (u) . (5.84)

Denote the minimizing element of the initial variational problem (5.74) by ǔ, and
the element v for which

max
v∈N

� (ǔ, v)

is achieved by v̂. Using (5.84), we get an estimate:

J (v̂) ≤ max
v∈N

J (v) ≤ min
u∈M

I (u) = I (ǔ) . (5.85)

In many cases it is possible to compare J (v̌) and I (ǔ), and, if it turns out that
J (v̂) = I (ǔ), then max

v∈N
J (v) = Ǐ .

It is essential that the dual variational principle (5.79) allows one easily to obtain
the lower estimates of Ǐ . Remember that getting the upper estimates of Ǐ is trivial;
it is sufficient to calculate the value of functional I (u) at any element of the set M:

Ǐ ≤ I (u) .

If a dual variational problem is constructed, then obtaining the lower estimates
of Ǐ is just as trivial. It is sufficient to calculate the value of the functional J (v) at
any element of the set N :

J (v) ≤ Ǐ .

So, we get a fork

J (v) ≤ Ǐ ≤ I (u) .

If one can find the elements u and v such that the numbers I (u) and J (v)
are close, one gets an approximation for the minimum value without solving any
equations.
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In some cases, it is hard to find a functional � (u, v) that would satisfy (5.75),
but one can construct a functional � (u, v) that obeys the inequality

max
v∈N

� (u, v) ≤ I (u) .

Then,

max
v∈N

J (v) ≤ Ǐ .

So, because, as follows from (5.81),

max
v∈N

J (v) = max
v∈N

min
u∈M

�(u, v) ≤ min
u∈M

max
v∈N

�(u, v) ≤ min
u∈M

I (u) = Ǐ ,

the ability to obtain the lower estimates of Ǐ is retained.
An essential role in construction of the functional � (u, v) is played by the

Young-Fenchel transformation and other notions of convex analysis to discussion
of which we proceed.

5.7 Legendre and Young-Fenchel Transformations

Convex functions. Consider a function f
(
x1, . . . , xn

)
which takes on either a finite

value or the value +∞ at the points of n-dimensional space Rn . The set of points
in the (n + 1)-dimensional space Rn+1 with coordinates x1, . . . , xn, y defined by
the condition y ≥ f

(
x1, . . . , xn

)
, is called the epigraph of the function f (x) and

is denoted by epi f (Fig. 5.9). The set of the point in Rn for which f (x) < +∞ is
called the effective domain of the function f (x) and is denoted by dom f . We will
assume that the set dom f is a non-empty subset of Rn , that for all points in dom f
the function f (x) is continuous and that f (x) is bounded from below on dom f .

Fig. 5.9 Definition of the
epigraph of function f (x)
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The conditions that epi f is convex and that f (x) is a convex function are equiv-
alent. The continuity of f (x) implies that epi f is a closed set. If f (x) is a convex
function, then dom f is a convex set.

If a convex function is defined on some convex set V ⊂ Rn , then it can be ex-
tended on the whole set Rn preserving its convexity, setting f (x) = +∞ outside V .

Example 1. The functions |x | , x2, eαx , linear function ai xi , positive definite
quadratic form ai j x i x j , homogeneous function of the first order

√
ai j x i x j , functions

f (x) =
{

log 1
x , 0 < x,

+∞, x ≤ 0

f (x) =
{

x p, 0 ≤ x, 1 ≤ p ≤ +∞
+∞, x < 0

are all convex.

There are operations on convex functions, which preserve the convexity of those
functions:

• The linear combination a1 f1 (x)+. . .+am fm (x) of convex functions f1 (x) , . . . ,

fm (x) with positive coefficients is a convex function.
• The superposition, ϕ ( f (x)), of a non-decreasing convex function of one variable,

ϕ (y) , and a convex function, f (x) , is a convex function.
• The function

f (x) = min
x=x1+...+xm

( f1 (x1)+ . . .+ fm (xm))

where f1 (x) , . . . , fm (x) are convex functions and x ∈ Rn , is also convex. It is
called the convolution of f1, . . . , fm .

• The point-wise maximum of several convex functions,

f (x) = max { f1 (x) , . . . , fm (x)} ,

is a convex function. Note that point-wise minimum of several convex functions

g(x) = min { f1(x), f2(x), . . . , fm(x)}

is not necessarily convex (see Fig. 5.10).
A convenient criterion for convexity is the following statement: a differentiable

function f (x), x ∈ Rn , is convex if and only if for any two points, x1 and x2, the
inequality holds:

0 ≤
(

� f

�xi

∣∣∣∣
x1

− � f

�xi

∣∣∣∣
x2

)
(
xi

1 − xi
2

)
. (5.86)
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Fig. 5.10 Point-wise maximum of two convex functions, f (x), is always convex; point-wise min-
imum, g(x), may be not convex

In the proof of this statement, we will assume that the function f is twice contin-
uously differentiable. Consider first a convex, twice differentiable function of one
variable, ϕ (τ ),

ϕ

(
τ1 + τ2

2

)
≤ 1

2
(ϕ (τ1)+ ϕ (τ2)) . (5.87)

Denote τ ≡ 1
2 (τ1 + τ2) , �τ ≡ 1

2 (τ2 − τ1). Assuming that �τ is infinitesimally
small, we expand the right hand side with respect to �τ , retaining the terms of the
order �τ and �τ 2 :

ϕ (τ ) ≤ 1

2

(
ϕ (τ )− dϕ

dτ
�τ + 1

2

d2ϕ

dτ 2
(�τ )2+

+ϕ (τ )+ dϕ

dτ
�τ + 1

2

d2ϕ

dτ 2
(�τ )2

)
= ϕ (τ )+1

2

d2ϕ

dτ 2
(�τ )2

.

Hence, 0 ≤ d2ϕ/dτ 2. Therefore, the derivative of a convex function, ϕ (τ ) , is
monotonously increasing.

Consider now the function ϕ (τ ) = f
(
xi + τ yi

)
of one variable τ . The function

ϕ (τ ) is convex. Since

dϕ

dτ

∣∣∣∣
τ=0

≤ dϕ

dτ

∣∣∣∣
τ=1

,

we have

� f

�xi

∣∣∣∣
x

yi ≤ � f

�xi

∣∣∣∣
x+y

yi . (5.88)
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Setting in (5.88), x = x1, y = x2 − x1 we arrive at (5.86). Now we assume that
(5.86) is true and prove that function f (x) is convex. For some 0 < α < 1, consider
the expression

� = α f (x)+ (1− α) f (y)− f (αx + (1− α) y) .

The argument, αx + (1− α) y, can be put in various forms:

αx + (1− α) y = y + α (x − y) = x + (1− α) (y − x) .

Subtracting from � the function α f (x + (1− α) (y − x)) and adding the same
function written as α f (y + α (x − y)) , we rewrite � as

� = α ( f (x)− f (x + (1− α) (y − x)))+ (1− α) ( f (y)− f (y + α (x − y))) .

Applying the Lagrange formula for finite increments, we get

� = −α
� f

�xi

∣∣∣∣
x+τ1(1−α)(y−x)

(1− α)
(
yi − xi

)−

− (1− α)
� f

�xi

∣∣∣∣
x+τ2α(x−y)

α
(
xi − yi

)

where 0 ≤ τ1 ≤ 1, 0 ≤ τ2 ≤ 1. We set x1 = x + τ1 (1− α) (y − x) and x2 =
y + τ2α (x − y). Since x1 − x2 = (x − y) [(1− τ1) (1− α)+ (1− τ 2) α] and the
expression in the square brackets is positive,

� [(1− τ1) (1− α)+ (1− τ2) α] = α (1− α)

(
� f

�xi

∣∣∣∣
x1

− � f

�xi

∣∣∣∣
x2

)
(
xi

1 − xi
2

)
,

and � ≥ 0 due to (5.86). This proves the convexity of f (x).
The condition of the strict convexity of the differentiable function f (x) is equiv-

alent to the validity of the strict inequality

0 <

(
� f

�xi

∣∣∣∣
x1

− � f

�xi

∣∣∣∣
x2

)
(
xi

1 − xi
2

)
for |x1 − x2| �= 0. (5.89)

For applications, another criterion of convexity is also useful: a function, f (x),
possessing continuous second derivatives is convex in some convex region, if and
only if the quadratic form of the variables x̄ i ,

�2 f (x)

�xi �x j
x̄ i x̄ j ≥ 0, (5.90)

is nonnegative at every point x in this region.
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This statement follows from (5.86). Setting xi
2 = xi

1 + εx̄ i in (5.86) and tending
ε to zero, we get that (5.90) is a necessary condition for convexity. Conversely, let
(5.90) be valid. Then

1∫

0

�2 f
(
xk + t x̄ k

)

�xi �x j
x̄ i x̄ j dt ≥ 0.

This integral can be written as

0 ≤
1∫

0

d

dt

(
� f

(
xk + t x̄ k

)

�xi
x̄ i

)
dt =

(
� f

(
xk + x̄ k

)

�xi −� f
(
xk
)

�xi

)
x̄ i . (5.91)

Putting in (5.91), x̄ i = xi
2 − xi

1, xi = xi
1, we obtain (5.86), and, thus, convexity of

f (x).

The Legendre transformation. We have already considered the Legendre trans-
formation in Sect. 1.7 when we derived the Hamiltonian equations. Now we discuss
it in more detail in the general case.

Let f (x) be a twice continuously differentiable function. Consider a system of
non-linear equations with respect to xi :

� f (x)

�xi
= x∗i (5.92)

where x∗i are given. If for some values of x∗i the solution of the system of (5.92)

is xi and at the point xi the Hessian
∣∣∣ �2 f

�xi �x j

∣∣∣ is not zero, then, according to the

implicit function theorem, there exists a neighborhood O of this point, for which
there is a one-to-one continuously differentiable correspondence between xi and
x∗i :

xi = xi
(
x∗k
)
. (5.93)

Define the quantity

f × = x∗k xk − f (x) . (5.94)

Let xi in (5.94) be expressed in terms of x∗k by means of (5.93). Then f × becomes
a function of x∗k . It is called the Legendre transformation of the function f (x).
The arguments of the Legendre transformation, x∗k , are called dual variables to
xk .

Example 2. Let us find the Legendre transformation of a quadratic function, f (x) =
1
2 ai j x i x j . The system of (5.92) takes the form
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� f

�xi
= ai j x

j = x∗i . (5.95)

For a given x∗i , this is a system of linear equations with respect to xi . Assuming that
det
∥∥ai j

∥∥ �= 0, we can write the solution of (5.95) as

xi = a(−1)i j x∗j ,

a(−1)i j being the components of the inverse matrix to the matrix
∥∥ai j

∥∥. For f × (x∗),
we obtain

f ×
(
x∗
) = x∗i x i − 1

2
ai j x

i x j = 1

2
x∗i x i = 1

2
a(−1)i j x∗i x∗j .

We see that the Legendre transformation of the quadratic function is also a
quadratic function. One can show that the quadratic function is the only function
which possesses such a property.

Example 3. Let x be a number, and

f (x) = 1

r
|x |r , r > 1.

It is easy to check that

f ×
(
x∗
) = 1

s

∣∣x∗∣∣s

where

1

r
+ 1

s
= 1.

The case r = 2 corresponds to quadratic functions. In this case the Legendre trans-
formation is also a quadratic function: s = 2. If 1 < r < 2, then s > 2. If r > 2,

then 1 < s < 2. For a similar function with a coefficient, a,

f = a

r
|x |r , a > 0,

its Legendre transformation is

f ×(x∗) = 1

sas−1

∣∣x∗∣∣s = a

s

∣∣∣∣
x∗

a

∣∣∣∣
s

.

A function in n-dimensional space,

f (x) = a

r

(
xi x

i
) r

2 ,
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has the Legendre transformation,

f ×(x∗) = 1

sas−1

(
x∗i x∗i

) s
2 .

For a function,

f (x) = 1

r

(
ai j x

i x
j
) r

2
,

the Legendre transformation is

f ∗(x∗) = 1

s

(
a−1i j x∗i x∗j

) s
2
.

The Legendre transformation is defined only in a small neighborhood of the point
x . However, if the function is strictly convex on Rn , then the Legendre transforma-
tion can be found for all points in Rn . Indeed, in this case there is a one-to-one
correspondence between � f/�xi and xi (otherwise, if there are two different points
x1 and x2, for which � f/�xi are equal, then

((
� f

�xi

)∣∣∣∣
x1

−
(

� f

�xi

)∣∣∣∣
x2

)
(
xi

1 − xi
2

) = 0,

which contradicts to (5.89)).

Example 2 shows that the function f (x) can be non-convex, but the Legendre
transformation

′
is defined on the entire space Rn : such is a quadratic function with

the coefficients ai j which have both positive and negative eigenvalues. There are
functions for which the Legendre transformation is meaningless.

Example 4. Consider the function f (x) = |x |. Equation (5.92) becomes

±1 = x∗

and does not have a solution for all x∗, except x∗ = ±1. The Legendre transformation
′

is meaningless for the function |x |.
A generalization of this example is as follows.

Example 5. The Legendre transformation
′

is not defined for an arbitrary function
of the first order of homogeneity (i.e. function possessing the property f (λx) =
|λ| f (x)) since for this function identically,

det

∥∥∥∥
�2 f

�xi �x j

∥∥∥∥ = 0.
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Indeed, for the homogeneous functions of the first order Euler identity holds:

� f

�xi
xi = f.

Differentiating the Euler identity with respect to xi , we get

�2 f

�xi �x j
x j = 0. (5.96)

Equation (5.96) means that the rows of the matrix
∥∥∥ �2 f

�xi �x j

∥∥∥ are linearly dependent

and thus det
∥∥∥ �2 f

�xi �x j

∥∥∥ = 0.

For the homogeneous function of first order,

f =
√

xi xi ,

the absence of solvability of (5.92) can be seen directly from that equations. Indeed,
for this function,

� f

�xi
= xi

√
xk xk

= x∗i . (5.97)

Equation (5.97) implies that x∗i lies on the surface of the sphere of unit radius
x∗i x∗i = 1, and therefore xi and x∗i cannot be uniquely related.

The difficulty demonstrated by Examples 4 and 5 is resolved by the Young-
Fenchel transformation.

The Young-Fenchel transformation. Consider a function f (x) on Rn and define
the function f ∗ (x∗) as

f ∗
(
x∗
) = max

x

(
x∗i x i − f (x)

)
. (5.98)

The function f ∗ (x∗) is called the Young-Fenchel transformation of the function
f (x). Since for any function ϕ,

max ϕ = −min (−ϕ) ,

the definition (5.98) can also be written as

− f ∗
(
x∗
) = min

x

(
f (x)− x∗i x i

)
. (5.99)

Equation (5.99) has a simple geometric interpretation. Consider in Rn+1 the
graph of the function f (x), y = f (x) , and the graph of the linear function
y = x∗i x i (Fig. 5.11). The quantity, − f ∗ (x∗) , is the minimum vertical distance
between these two functions.
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Fig. 5.11 Geometrical
interpretation of the
Young-Fenchel transform,
f ∗, of function f

Let the function f (x) be strictly convex and differentiable. Then, due to convex-
ity, the minimum in (5.99) is reached at only one point, and at this point

f ∗ = x∗i x i − f (x) ,
� f

�xi
= x∗i .

Hence, for strictly convex differentiable functions the Young-Fenchel transfor-
mation coincides with the Legendre transformation. However, the Young-Fenchel
transformation is also valid for functions for which the Legendre transformation is
meaningless.

Example 6. Consider the Young-Fenchel transformation for the function f (x) =
|x |. Let us find

min
x

(|x | − x∗x
)
.

It is seen from Fig. 5.12 that min
x

(|x | − x∗x) = 0 for −1 < x∗ < 1; it is reached

at x = 0. For x∗ = ±1, min
x

(|x | − x∗x) = 0; it is reached on the positive semi-axis

for x∗ = 1 and on the negative semi-axes for x∗ = −1. For x∗ < −1 and x∗ > 1,
the function |x | − x∗x is not bounded from below; it tends to −∞ for x → −∞
and x →+∞. So,

f ∗
(
x∗
) =

{
0, |x∗| ≤ 1

+∞, 1 > |x∗| .

A symbolic graph of this function is shown in Fig. 5.13.
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Fig. 5.12 Computation of the
Young-Fenchel transform of
function |x |

Fig. 5.13 A symbolic graph
of the Young-Fenchel
transform of the function |x |

Example 7. The Young-Fenchel transformation for the homogeneous function of the
first order of the form f =

√
xi xi is calculated similarly:

f ∗
(
x∗
) =

{
0, x∗i x∗i ≤ 1

+∞, 1 > x∗i x∗i

The Young-Fenchel transformation has a number of remarkable properties.
For any function f (x), its Young-Fenchel transformation is convex. To justify

this statement, consider the function f ∗
(
αx∗ + (1− α) y∗

)
, where 0 ≤ α ≤ 1.

According to the definition (5.98),

f ∗
(
αx∗ + (1− α) y∗

) = max
x

[(
αx∗i + (1− α) y∗i

)
xi − f (x)

] =
= max

x

[
α
(
x∗i x i − f (x)

)+ (1− α)
(
y∗i x i − f (x)

)]
.

Using the inequality

max ( f + g) ≤ max f +max g,
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we get

f ∗
(
αx∗ + (1− α) y∗

) ≤ α max
x

(
x∗i x i − f (x)

)+ (1− α) max
x

(
y∗i x i − f (x)

) =
= α f ∗

(
x∗
)+ (1− α) f ∗

(
y∗
)
,

i.e. f ∗(x∗), is convex.

Example 8. In this example we illustrate the notion of the Young-Fenchel transfor-
mation by applying it to thermodynamic functions. Consider the thermodynamic
potentials of the ideal compressible gas. The model of the ideal compressible non-
heat-conducting gas is specified by its internal energy density, U (ρ, S). Assume
that the Cauchy problem for the system of equations of the ideal compressible gas
is correct, i.e. small disturbances of initial conditions yield small variations of the
solution. It is known that the system of equations possesses such a property if it
is hyperbolic. It is not difficult to check that hyperbolicity holds when pressure,
p = ρ2 �U (ρ, S) /�ρ, increases if the density increases. Hence, the internal energy
density has to satisfy the condition,

�

�ρ
ρ2 �U (ρ, S)

�ρ
> 0. (5.100)

There are two possible interpretations of the inequality (5.100). Define the spe-
cific volume as ϑ = 1/ρ. Multiplying (5.100) by ρ2, we can write (5.100) in terms
of the derivative with respect to ϑ as

�2U (ϑ, S)

�ϑ2
> 0. (5.101)

The inequality (5.101) means that the function U (ϑ, S) is a convex function of
the specific volume ϑ for every fixed value of S. The inequality (5.100) can also be
written as

�2

�ρ2
ρU (ρ, S) > 0. (5.102)

Here we used an identity which holds for any function f (ρ):

1

ρ

d

dρ
ρ2 d f (ρ)

dρ
= d2

dρ2
ρ f (ρ) .

According to the inequality (5.102), the function ρU (ρ, S) is convex with respect
to ρ for every fixed value of entropy S.

As an example, let us take the internal energy density of the ideal gas,

U = aργ−1eS/cv , (5.103)

where a, γ, cv are positive constants and γ > 1. Entropy in gas dynamics is deter-
mined up to an additive constant. Therefore, the factor a can be eliminated. We keep
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it, however, for dimension reasoning. Function (5.103) is not convex with respect to
ρ for γ < 2, because

�2U

�ρ2
= a(γ − 1)(γ − 2)ργ−3eS/cv < 0 for γ < 2.

However, the function ρU (ρ, S) is a convex function of ρ for all γ > 1.

In terms of variables ϑ, S the internal energy density of a ideal gas is

U = a
1

ϑγ−1
eS/cv

It is a convex function of ϑ , as any function of the form b/xr , for r > 0, b >

0, x > 0.
It is natural to require that energy increases monotonously with increase of S (that

is equivalent to positiveness of absolute temperature T = �U/�S), and temperature
increases monotonously with increase of S (�T/�S = �2U/�S2 > 0). Then, for
every fixed ϑ , U will be a convex function of S. Without loss of generality one
can assume that entropy is non-negative. The region on which ϑ and S change is a
convex set, ϑ ≥ 0, S ≥ 0. One can extend U to all ϑ , S preserving the convexity
property and prohibiting the negative values of ϑ and S by setting

Ū (ϑ, S) =
{

U (ϑ, S) , ϑ ≥ 0, S ≥ 0,

+∞ otherwise

Let us define the free energy F (ϑ, T ) as

F (ϑ, T ) = min
S≥0

(U (ϑ, S)− T S) .

This definition can also be written in terms of minimum of the function Ū over
all values of S:

F (ϑ, T ) = min
S

(
Ū (ϑ, S)− T S

)
.

Denote the Young-Fenchel transformation of the function Ū (ϑ, S) with re-
spect to S by Ū ∗ (ϑ, S∗), the Young-Fenchel transformation with respect to ϑ by
Ū ∗ (ϑ∗, S), and the Young-Fenchel transformation with respect to ϑ and S by
Ū ∗ (ϑ∗, S∗). The thermodynamic potentials are expressed in terms of these func-
tions as follows. The free energy differs from the Young-Fenchel transformation of
internal energy with respect to entropy by the sign:

F (ϑ, T ) = −U ∗
(
ϑ, S∗

)∣∣
S∗=T

.
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Therefore F (ϑ, T ) is a concave8 function of temperature. An important conse-
quence of this fact is that in the increment of free energy, �F, resulting from an
incremental growth of temperature, �T , the coefficient at (�T )2 must be negative
due to the concavity of F . In the case of the ideal gas, the free energy is

F (ϑ, T ) = cvT
(

1− ln
(cv

a
ϑγ−1T

))
.

This function is convex with respect to specific volume ϑ and concave with respect
to temperature, hence its graph in the neighborhood of every point is a saddle.

The enthalpy is defined by the formula

i (p, S) = min
ϑ

(
Ū (ϑ, S)+ pϑ

)
.

This is “almost” the Young-Fenchel transformation: pressure differs from the
dual variable to specific volume by the sign, while enthalpy is negative Young-
Fenchel transformation of internal energy:

i (ρ, S) = −U ∗
(
ϑ∗, S

)∣∣
ϑ∗=−p .

Since U is usually a decreasing function of ϑ and ϑ∗ = �U/�ϑ < 0, pressure
p = −�U/�ϑ is positive. According to its definition, enthalpy is a concave function
of pressure. For the ideal gas,

i (ρ, S) = γ

(
γ ′

γ

) 1
γ ′ (

ae
S

cv

) 1
γ

p
1
γ ′ ,

1

γ
+ 1

γ ′
= 1.

and enthalpy is convex with respect to S. So, in the vicinity of each point the graph
of enthalpy is a saddle.

The Gibbs thermodynamic potential (chemical potential) is defined as

μ (p, T ) = min
ϑ,S

(
Ū (ϑ, S)+ pϑ − T S

)
. (5.104)

Chemical potential also differs by the sign from the Young-Fenchel transformation
of internal energy:

μ (p, T ) = −U ∗
(
ϑ∗, S∗

)∣∣
S∗=T
ϑ∗=−p

.

Chemical potential is a concave function with respect to both p and T . In the case
of the ideal gas,

8 The function f (x) is concave if the negative of this function, − f (x), is convex.
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μ (p, T ) = cvT

{
ln

[
a

cvT

(
p

cvT

)γ−1
]
+ γ − (γ − 1) ln (γ − 1)

}
.

If function F (ϑ, T ) is strictly convex with respect to ϑ , pressure p = −�F/�ϑ

is in one-to-one correspondence with the specific volume, ϑ, for every value of the
temperature T . There is an important class of models in which non-convex functions
F (ϑ, T ) appear. These are the models which describe the phase transitions. In such
models, one value of p can correspond to several values of ϑ . A typical example:
the van der Waals gas, for which

F (ϑ, T ) = f (T )− c

ϑ
− RT ln

(
ϑ

b
− 1

)
,

where c, R, b are positive constants, and f (T ) is some function of temperature. A
sketch of the free energy of the van der Waals gas is shown in Fig. 5.14. For large
values of T , the free energy is convex with respect to ϑ and �2 F/�ϑ2 > 0 (the
top curve). If temperature is decreased, then, for some value of temperature Tcr ,

these appears an inflection point A, at which the derivative Fϑϑ is equal to zero
(the middle curve). For T < Tcr the free energy is non-convex, and, depending
upon the value of pressure p, there are one or three corresponding values of ϑ.

The left part of the curve (to the left of point C) on Fig. 5.15 corresponds to the
liquid phase, and the right part of the curve (to the right of point D) to the fluid
phase. The state corresponding to the segment C D of the curve is in some sense not
realized.

We continue the consideration of the properties of the Young-Fenchel transfor-
mation.
For any function f (x) and any x and x∗, the following inequality holds:

Fig. 5.14 A sketch of free
energy of the van der Waals
gas
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Fig. 5.15 Dependence of
pressure on specific volume
for van der Walls gas

x∗i x i ≤ f (x)+ f ∗
(
x∗
)

(5.105)

This inequality follows directly from the definition (5.98). It is called the Young-
Fenchel inequality.

The Young-Fenchel transformation of f ∗ (x∗) is a function of the dual variable
to x∗, i.e. x . Denote this function by f ∗∗ (x).
For any function f (x) the following inequality holds:

f ∗∗ (x) ≤ f (x) . (5.106)

The proof is simple: the definition of f ∗∗ (x) in terms of f (x) can be written as

f ∗∗ (x) = max
x∗

(
xi x∗i − f ∗

(
x∗
)) = max

x

[
xi x∗i +min

z

(
f (z)− x∗i zi

)]

If we increase min
z

by substituting it by the value of the function f (z)− x∗i zi at the

point zi = xi , we get

f ∗∗ (x) ≤ max
x∗

f (x) = f (x)

as claimed.
The equality

f ∗∗ (x) = f (x) (5.107)

holds if and only if the function f (x) is convex and semi-continuous below.
We will prove this statement for the case of continuous functions f (x). If

f ∗∗ (x) = f (x), then f (x) is a convex function as the Young-Fenchel transfor-
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Fig. 5.16 To the proof of the
inequality (5.107)

mation of some function. Conversely, let f (x) be convex. According to (5.106),
f ∗∗ (x) ≤ f (x). Suppose that there exists a point x0 for which

f ∗∗ (x0) < f (x0) . (5.108)

Define a linear function l (x) in such a way that l (x0) > f ∗∗ (x) and f (x) > l (x)
(see Fig. 5.16)9 Let us write l (x) as

l (x) = l (x0)+ z∗i
(
xi − xi

0

)
.

Since

f (x) > l (x) = l (x0)+ z∗i
(
xi − xi

0

)
> f ∗∗ (x0)+ z∗i

(
xi − xi

0

)
,

we have

z∗i x i − f (x) < z∗i x i
0 − f ∗∗ (x0) .

Consequently,

f ∗
(
z∗
) = max

x

(
z∗i x i − f (x)

)
< z∗i x i

0 − f ∗∗ (x0) . (5.109)

9 The existence of such a linear function is guaranteed by the separability theorem: for any closed
convex set M in a finite-dimentional space and any point A not belonging to M there exists a
plane separating them or, equivalently, there exists a linear function l (x) taking on positive values
on M and taking on a negative value at the point A. This theorem should be applied in Rn+1 to the
convex set epi f and the point (x0, f ∗∗ (x)).
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Fig. 5.17 Double
Young-Fenchel
transformation, f ∗∗(x), of a
non-convex function f (x)

The inequality (5.109) contradicts the Young-Fenchel inequality for the functions
f ∗ and f ∗∗:

x∗i x i ≤ f ∗
(
x∗
)+ f ∗∗ (x) .

Therefore, the initial assumption (5.108) is false and f ∗∗ (x) = f (x) for all x .
For an arbitrary (not necessarily convex) function f (x), the function f ∗∗ (x) is the
maximum convex function which is not greater than f (x).

The maximum convex function can be found as follows: consider the epigraph,
epi f, of the function f (Fig. 5.17, the epigraph is shaded), and construct the smallest
possible convex set in the (y, Rn)-space containing epi f ; it will be the epigraph of
the maximum convex function not greater than f . This set is obtained by “filling
out” of all the concave regions of the epigraph of the function f (x). This set is the
epigraph of the function f ∗∗ (x) .

The proof will be given again only for a continuous function, f (x). Denote the
maximum convex function not greater than f by f̃ (x). Let us show that f̃ ∗ = f ∗.
Let us fix an arbitrary point x∗. Since f̃ (x) ≤ f (x), we have f̃ ∗ (x∗) ≥ f ∗ (x∗).
Consequently, if f ∗ (x∗) = +∞, then f̃ ∗ (x∗) = +∞ and f̃ ∗ (x∗) = f ∗ (x∗) . Now
let the value of the function f ∗ at a point x∗ be finite. By definition,

− f ∗
(
x∗
) = min

x

(
f (x)− x∗i x i

)
.

Denote the point at which the minimum is reached10 by x0. Then

− f ∗
(
x∗
) = f (x0)− x∗i x i

0. (5.110)

10 There can be many such points.
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It follows from the Young-Fenchel inequality, x∗i x i − f ∗ (x∗) ≤ f (x) , and
(5.110) that

x∗i
(
xi − xi

0

)+ f (x0) ≤ f (x) . (5.111)

We wish to show that f̃ (x0) = f (x0). Suppose the contrary,

f̃ (x0) < f (x0) (5.112)

According to (5.112), the value of the function f̃ (x) at x0 is less than the value
of the function x∗i

(
xi − xi

0

) + f (x0) at this point. Therefore, there exists a region
D in which f̃ (x) < x∗i

(
xi − xi

0

) + f (x0) , and outside of this region f̃ (x) ≥
x∗i
(
xi − xi

0

)+ f (x0). Define a convex function

˜̃f (x) =
{

x∗i (xi − xi
0)+ f (x0), xεD

f̃ (x), x ε̄D

Inequality (5.111) and the inequality f̃ (x) ≤ f (x) imply that ˜̃f (x) ≤ f (x).
Moreover, f̃ (x) < ˜̃f (x) on D. This contradicts the fact that f̃ is the maximum
convex function not greater than f . The proof that the graph of the function f̃ (x)
cannot be below the line y = x∗i

(
xi − xi

0

)+ f (x0) is analogous.
Since

− f̃ ∗ = min
x

(
f̃ (x)− x∗i x i

) ≥ min
x

(
x∗i
(
xi − xi

0

)+ f (x0)− x∗i x i
)

= f (x0)− x∗i x i = − f ∗
(
x∗
)
,

and

− f̃ ∗ = min
x

(
f̃ (x)− x∗i x i

) ≤ min
x

(
f (x)− x∗i x i

) = − f ∗
(
x∗
)

we have

f̃ ∗
(
x∗
) = f ∗

(
x∗
)

Applying the Young-Fenchel transformation to this equality, we get f̃ ∗∗ = f̃ =
f ∗∗, which completes the proof.

Example 9. Consider a mixture of liquid and its vapor bubbles. The liquid and the
vapor are two states of the same matter. This matter is characterized by the free
energy F (ϑ, T ), which is non-convex with respect to ϑ , or by the corresponding
function p (ϑ, T ), which is shown in Fig. 5.18a for a fixed value of T . The mixture
can also be modeled by a continuum. Thus the macro-continuum could be in three
states, pure liquid, pure vapor or a mixture of liquid with vapor bubbles. For such
macro-continuum, Maxwell proposed the following rule for determining the depen-
dence of the pressure on the specific volume: on the graph of the “true” dependence
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Fig. 5.18 The Maxwell rule

of p on ϑ , Fig. 5.18a, a straight line AB should be drawn in such a way, that the
shaded areas ACO and ODB are equal; then, the graph p (ϑ, T ) for the mixture
consists of three branches EA, AB and B F (Fig. 5.18b). They correspond to pure
liquid, mixture of liquid with vapor bubbles and vapor bubbles, respectively.

Let us show that the Maxwell rule is equivalent to the following statement: the
free energy of the mixture is equal to F∗∗ (ϑ, T ).

The function F (ϑ, T ) is shown qualitatively in Fig. 5.19. The function F∗∗ (ϑ, T )
coincides with F (ϑ, T ) for ϑ < a and ϑ > b; for a ≤ ϑ ≤ b, it is linear. Due to the
smoothness of F (ϑ, T ), the line AB is tangent to the graph of the function F (ϑ, T ).
Therefore,

�F

�ϑ

∣∣∣∣
ϑ=a

= �F

�ϑ

∣∣∣∣
ϑ=b

.

Fig. 5.19 The Maxwell rule
in terms of the
Young-Fenchel
transformation
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The figure shows that

F (b, T )− F (a, T ) = �F

�ϑ

∣∣∣∣
ϑ=a

(b − a) .

Besides,

F (b, T )− F (a, T ) =
b∫

a

�F

�ϑ
dϑ.

Since p = −�F/�ϑ , we have

b∫

a

pdϑ = p|ϑ=a (b − a) . (5.113)

The integral in (5.113) represents the area under the curve p (ϑ, T ) on the seg-
ment [a, b] and p|ϑ=a (b − a) represents the area of the rectangle with its top side
being AB. Therefore, (5.113) is equivalent to the Maxwell rule.

The Young-Fenchel transformation allows one to present the convex function
f (x) as

f (x) = max
x∗

(
x∗i x i − f ∗

(
x∗
))

. (5.114)

If f (x) is non-convex, then the Young-Fenchel transformation provides the best low
estimate of f (x) in terms of a convex function

f (x) ≥ f ∗∗ (x) = max
x∗

(
xi x∗i − f ∗

(
x∗
))

. (5.115)

Let the variables y = (y1, . . . , ym) be the parameters of function f , f = f (x, y).
Then its Young-Fenchel transformation with respect to x will also depend on param-
eters, y: f ∗ = f ∗ (x∗, y). What can be said about the dependence of f ∗ on y?
If the function f = f (x, y) is linear with respect to y, then the Young-Fenchel
transformation of this function with respect to x is a convex function of y.

This statement follows from a chain of inequalities:

f ∗
(
x∗, αy1 + (1− α) y2

) = max
xi

[
x∗i x i − f (x, αy1 + (1− α) y2)

] =
= max

xi

[
x∗i x i − α f (x, y1)− (1− α) f (x, y2)

] =
= max

xi

[
α
(
x∗i x i − f (x, y1)

)+ (1− α)
(
x∗i x i − f (x, y2)

)] ≤
≤ α f ∗

(
x∗, y1

)+ (1− α) f ∗
(
x∗, y2

)
,

as claimed.
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This almost obvious property of the Young-Fenchel transformation implies some
non-trivial consequences.

Example 10. Let us show that for positive matrices, the diagonal components of the
inverse matrix are convex functions of the original matrix components. Consider a
positive quadratic form f = 1

2 ai j x i x j . Then f ∗ (x∗) = 1
2 a(−1)i j x∗i x∗j where a(−1)i j

are the components of the inverse matrix. Function f depends linearly on the pa-
rameters ai j . As it has been established, f ∗ is a convex function of ai j . Let us set
x∗1 = 1, x∗2 = 0, . . . , x∗n = 0. Then, 2 f ∗ = a(−1)11 is a convex function of ai j .
Similarly, a(−1)22, . . . , a(−1)nn , as well as all linear combinations of a(−1)i j which
are obtained by choosing various x∗i , are convex functions of ai j .

Our next topic is the construction of the dual variational problems by means of
Young-Fenchel transformations.

5.8 Examples of Dual Variational Principles

The Dirichlet and von Neuman problems. Consider the minimization problem
for the so-called Dirichlet functional,

E (u) =
∫

�

1

2

[(
�u

�x

)2

+
(

�u

�y

)2
]

dxdy, (5.116)

on the set of all functions of two variables u (x, y) defined on some two-dimensional
region � with piece-wise smooth boundary �� and taking on the assigned values at
the boundary:

u (x, y)|�� = g (s) . (5.117)

Here g (s) is a continuous function of the arc length, s, along ��. The minimizing
element of the variational problem (5.116), (5.117) is the solution of the Dirichlet
problem

�2ǔ

�x2
+ �2ǔ

�y2
= 0 in �, ǔ|�� = g (s) . (5.118)

We are going to construct a dual variational problem. Let us write the integrand
in the Dirichlet functional in the form

1

2

[(
�u

�x

)2

+
(

�u

�y

)2
]
= max

px ,py

[
px

�u

�x
+ py

�u

�y
− 1

2

(
p2

x + p2
y

)]
.

Using this relation we can rewrite the initial variational problem as a minimax
problem:
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min E (u) = min
u∈(5.117)

∫

�

max
px ,py

[
px

�u

�x
+ py

�u

�y
− 1

2

(
p2

x + p2
y

)]
dxdy.

Recall that the notation u ∈(5.117) means that u satisfies the constraint (5.117).
In the integral, maximum over px and py is taken at each point (x, y). The max-

imum can be moved outside the integral, if we perform maximization over arbitrary
functions of two variables, px (x, y) and py(x, y) :

min E (u) = min
u∈(5.117)

max
px (x,y),py (x,y)

∫

�

[
px

�u

�x
+ py

�u

�y
− 1

2

(
p2

x + p2
y

)]
dxdy.

(5.119)

Further, for brevity, we use for this maximum the notation max
px ,py

,implying that this is

maximization over the functions px (x, y) and py(x, y).
Let us change the order of maximization and minimization in (5.119). According

to the inequality (5.81),

max
px ,py

min
u∈(5.117)

∫

�

[
px

�u

�x
+ py

�u

�y
− 1

2

(
p2

x + p2
y

)]
dxdy ≤ min

u∈(5.117)
E (u) . (5.120)

The minimum value in the left hand side of (5.120) can be found explicitly. Sup-
pose that the functions px , py are continuously differentiable and continuous on the
closed region �. Integrating by parts (5.120), we obtain

∫

�

[
px

�u

�x
+ py

�u

�y
− 1

2

(
p2

x + p2
y

)]
dxdy (5.121)

=
∫

��

(px nx+pyny)uds−
∫

�

(
�px

�x
+ �py

�y

)
udxdy−

∫

�

1

2

(
p2

x + p2
y

)
dxdy.

Here, nx , ny are the components of the outward unit normal vector on �� (Fig. 5.20).
Note that function u in the first integral in the right hand side of (5.121) can be
replaced by g(s) according to the boundary condition (5.117).

For the integrals in the right hand side of (5.121), we will use the notations

E∗ (p) =
∫

�

1

2

(
p2

x + p2
y

)
dxdy

and

� (u, p) = −
∫

�

(
�px

�x
+ �py

�y

)
udxdy+ l (p) ,
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Fig. 5.20 Notation in the
Dirichlet problem

where p ≡ {
px , py

}
, and l (p) is a linear functional of p:

l (p) =
∫

��

(
px nx + pyny

)
g (s)ds.

So the minimization in (5.120) with respect to u is reduced to the minimization
of the functional � (u, p) , which is linear with respect to u.

Let us show that

min
u∈(5.117)

� (u, p) = l (p)+
{
−∞, if �px

�x +
�py

�y �= 0

0, if �px

�x +
�py

�y = 0
(5.122)

The second case in (5.122) is obvious. To prove (5.122) for the first case, sup-
pose that for some internal point x0 of the region �, the function �px

�x +
�py

�y is not
zero, and, for definiteness, is greater than zero. Due the continuity of this function,
there exists a neighborhood � of the point x0 not intersecting �� for which this
function is greater than zero. Consider a continuous function ũ (x) which is posi-
tive in �, zero on the boundary of �, and satisfies the boundary conditions on ��.
Also consider a sequence of functions un (x) coinciding with ũ (x) outside � and
equal to nũ (x) inside �. For this sequence, � (un, p) → −∞ as n → ∞, which
completes the proof. For the case �px

�x +
�py

�y < 0 at some point x0, the proof is
analogous.
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From (5.121) and (5.122), we get

min
u∈(5.117)

∫

�

[
px

�u

�x
+ py

�u

�y
− 1

2

(
p2

x + p2
y

)]
dxdy =

=
⎧
⎨
⎩

l (p)− E∗ (p) , if �px

�x +
�py

�y = 0

−∞, if �px

�x +
�py

�y �= 0

After finding the minimum in (5.120), the maximum is to be found. Therefore,
all values of px , py for which the minimum is equal to−∞ should be excluded. So,

max
p

(
l(p)− E∗ (p)

) ≤ Ě, (5.123)

where the maximum is calculated over all functions px , py satisfying the conditions

�px

�x
+ �py

�y
= 0 in �. (5.124)

Let us show that, actually, there is the equality sign in (5.123):

max
p

(
l(p)− E∗ (p)

) = Ě .

To this end, consider the functions

p̌x = �ǔ

�x
, p̌y = �ǔ

�y
, (5.125)

where ǔ is the solution of the boundary value problem (5.118).11 Due to the first
equation (5.118), the functions (5.125) satisfy the constraint (5.124) and, hence, are
the admissible functions. Therefore,

l ( p̌)− E∗ ( p̌) ≤ max
p

(
l(p)− E∗ (p)

)

and, according to (5.123),

l ( p̌)− E∗ ( p̌) ≤ max
p

(
l(p)− E∗ (p)

) ≤ Ě = E (ǔ) . (5.126)

The numbers l ( p̌)− E∗ ( p̌) and E (ǔ) are equal:

11 We are assuming that ǔ is a smooth function and, in particular, the derivatives (5.125) are de-
fined. This assumption makes the proof of the coincidence of the maximum value of l (p)− E∗ (p)
and the minimum value of E (u) almost trivial; a complete proof requires a more sophisticated
technique.
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l ( p̌)− E∗ ( p̌) =
∫

��

(
p̌x nx+ p̌yny

)
ǔds − 1

2

∫

�

(
p̌2

x+ p̌2
y

)
dxdy

=
∫

�

[
� ( p̌x ǔ)

�x
+�( p̌y ǔ)

�y

]
dxdy − 1

2

∫

�

(
p̌2

x+ p̌2
y

)
dxdy

= 1

2

∫

�

[(
�ǔ

�x

)2

+
(

�ǔ

�y

)2
]

dxdy = E (ǔ) .

Here we transformed the integral over �� into an integral over � by means of the
divergence theorem and used (5.124).

Since l ( p̌)− E∗ ( p̌) = E (ǔ), (5.126) implies that

l ( p̌)− E∗ ( p̌) = max
p

(
l(p)− E∗ (p)

) = E (ǔ) .

Hence, the order of maximization and minimization in (5.119) can indeed be
changed, and we obtain the dual variational problem:

Ě = max
pε(5.124)

(l(p)− E∗(p)).

The dual variational problem can be presented in a different form if we note that
the general solution of (5.124) can be easily written:

px = �ψ

�y
, py = −�ψ

�x
. (5.127)

Here ψ (x, y) is an arbitrary function. In a simply connected region, ψ (x, y) must
be single-valued; in a multiply connected region it might be multi-valued. For now,
we will only consider simply connected regions �.

To write down the linear functional l(p) in terms of function ψ , we note that the
tangent vector to ��, →τ , has the components

τx = −ny, τy = nx . (5.128)

We choose the arc length increasing counter-clockwise; therefore

τx = dx (s)

ds
, τy = dy (s)

ds
(5.129)

where x = x (s) , y = y (s) are the parametric equations of ��. Hence, we have

px nx + pyny = �ψ

�y
τy + �ψ

�x
τx = �ψ

�x

dx

ds
+ �ψ

�y

dy

ds
= dψ

ds
. (5.130)
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The linear functional, l (p) , becomes a functional of ψ :

l (ψ) =
∫

dψ

ds
g(s)ds.

Finally, the dual variational problem is the maximization problem for the func-
tional

J (ψ) = l (ψ)− E∗ (ψ) =
∫

��

dψ

ds
gds−

∫

�

1

2

((
�ψ

�x

)2

+
(

�ψ

�y

)2
)

dxdy (5.131)

on the set of all functions ψ .
The duality means that

max
ψ

J (ψ) = min
u∈(5.117)

E (u) .

The functional J (ψ) can be put in a slightly different form by integrating by parts
in the first integral in (5.131):

J (ψ) = −
∫

��

ψ
dg

ds
ds −

∫

�

1

2

((
�ψ

�x

)2

+
(

�ψ

�y

)2
)

dxdy.

The maximizing element of the dual variational problem is the solution of the
von Neuman problem

�ψ = 0,
dψ

dn
= −dg

ds
.

The functional J (ψ) is invariant with respect to shifts of the function ψ for a
constant because function g (s) is continuous. For the same reason the necessary
condition for the solvability of this problem,

∫

��

�ψ

�n
ds = 0,

is satisfied.
One can say that the von Neuman problem is dual to the Dirichlet problem.
Discontinuity conditions. Solutions of the Dirichlet problem (5.118) are smooth,

if �� and g(s) are smooth. Therefore, in the dual variational problem the trial fields,
px and py, can be assumed smooth. However, for more complex energy functionals,
like, for example, the functional of a heterogeneous medium,
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E(u) =
∫

�

1

2
a(x, y)

[(
�u

�x

)2

+
(

�u

�y

)2
]

dxdy,

with the material characteristics, a(x, y), that is discontinuous on some line, �, the
minimizer may be non-smooth. If the functional is minimized on the set of func-
tions, u(x, y), which are continuous on � but may have discontinuous derivatives on
�, then the variation of the functional gets a contribution,

∫

�

([
a

�u

�x

]
nx +

[
a

�u

�y

]
ny

)
δu ds,

where [ϕ] denotes the jump of a function, ϕ, on �,

[ϕ] = ϕ+ − ϕ−,

and indices ± mark the limit values of ϕ on two sides of �; nx , ny are the compo-
nents of the unit normal vector on � directed from the side − to the side +. Hence,
the minimizer should obey the additional condition,

[
a

�ǔ

�x

]
nx +

[
a

�ǔ

�y

]
ny = 0 on �.

In the dual variational principle, one should admit the discontinuous trial func-
tions, px and py . Therefore, integrating by parts in (5.121), one obtains the addi-
tional term

∫

�

(
[px ] nx +

[
py
]

ny
)

ud s.

Accordingly, the trial discontinuous functions in the dual variational principle,
px and py, must obey the condition

[px ] nx +
[

py
]

ny = 0 on �. (5.132)

The Dirichlet and Thompson principles

Let V be a region in three-dimensional space which is an exterior of some bounded
region with the boundary � (Fig. 5.21). For a smooth function, u(x), the Dirichlet
functional, E (u) , is defined as

E (u) = 1

2

∫

V

u,i u
,i dV .

For the Dirichlet functional, consider a minimization problem on the set of func-
tions, u

(
xi
)
, selected by the conditions
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Fig. 5.21 Notation for the
Dirichlet and Thompson
principles

u = 1 on �,

u ∼ c1

r
+ c2

r2
+ . . . as r →∞, r2 = xi x

i . (5.133)

The quantity

1

2π
min

u∈(5.133)
E (u) ,

has the physical meaning of the electric capacity of the surface �. The formulated
variational principle for the electric capacity is called the Dirichlet principle. The
minimizing function ǔ (x) satisfies the Laplace equation in the region V ,

�ǔ = 0 in V, (5.134)

and the boundary conditions (5.133).
Note that the condition at infinity, u → 0 as r → ∞, is essential: without

this condition the minimizing function would be just ǔ ≡ 1, and E(ǔ) = 0. The
functional E(u) feels the condition at infinity, as can be seen from the following
reasoning. Denote the spherical coordinates in region V by r, ϕ, θ ; r ≥ R(ϕ, θ ),
r = R(ϕ, θ ) being the parametric equation of the surface �. Suppose u(r, ϕ, θ )
tends to some limit value, u∞, as r →∞.

Then, for each ray ϕ = const, θ = const,

u∞ − u|r=R(ϕ,θ) = u∞ − 1 =
∞∫

R

u,r dr =
∞∫

R

ru,r
1

r
dr.

Applying the Cauchy inequality (5.20) to the latter integral, we get

(u∞ − 1)2 ≤
∞∫

R

r2u2
r dr

∞∫

R

dr

r2
= 1

R

∞∫

R

r2u2
,r dr.
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Since in spherical coordinates

(∇u)2 = u2
,r +

1

r2
u2

,θ +
1

r2 sin2 θ
u2

,ϕ,

we have

u2
,r ≤ (∇u)2.

Therefore,

(u∞ − 1)2 ≤ 1

Rmin

∞∫

R

r2∇u2dr (5.135)

where Rmin is the minimum distance from � to the origin. Integrating (5.135) over
ϕ and θ with the weight of the spherical coordinates, sin θ, we obtain

4π (u∞ − 1)2 ≤ 1

Rmin
2E(u).

Hence, the change of u∞ affects the minimum value of the functional.
In the case when u(r, ϕ, θ ) tends to different values, u∞(ϕ, θ ), along different

rays, the inequality (5.135) is replaced by the inequality

2π∫

0

π∫

0

(u∞(ϕ, θ )− 1)2 sin θ dϕdθ ≤ 1

Rmin
2E(u).

We see that energy feels the limit values of u at infinity for each ray.
The electric capacity of surface � corresponds to u∞ = 0.

Let us find the variational principle dual to the Dirichlet principle. Writing the
integrand in the Dirichlet functional in the form

1

2
u,i u

,i = max
p

(
pi u,i − 1

2
pi pi

)
,

we present the initial variational problem as a minimax problem:

Ě = min
u∈((5.133))

1

2

∫

V

u,i u
,i dV = min

u∈((5.133))
max

p

∫

V

(
pi u,i − 1

2
pi pi

)
dV . (5.136)

Following the general scheme, we change the order of calculating the maximum and
minimum values and calculate the minimum with respect to u.
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Suppose the functions pi are continuously differentiable and continuous on the
closed region V and tend to zero as r →∞. Suppose also that pi can be expanded
in Taylor series with respect to 1/r as

p ∼ a2

r2
+ a3

r3
+ . . . for r →∞. (5.137)

For a slower decay, the integral of pi pi in (5.136) would diverge.
Integrating by parts, and using (5.133) and (5.137), for the integral in (5.136) we

obtain

∫

V

(
pi u,i − 1

2
pi pi

)
dV = � (u, p)− E∗ (p) , (5.138)

E∗ (p) = 1

2

∫

V

pi pi dV, � (u, p) = l (p)− 1

2

∫

V

pi
,i udV, l (p) =

∫

�

pi ni d A.

Minimization of the functional (5.138) with respect to u is reduced to minimizing
the linear functional � (u, p) . As in the previous example,

min
u∈(5.133)

� (u, p) = l (p)+
{
−∞, if pi

,i �= 0

0, if pi
,i = 0

. (5.139)

Combining (5.139) and (5.138), we have

min
u∈(5.133)

∫

V

(
pi u,i − 1

2
pi pi

)
dV =

{
l (p)− E∗ (p) , if pi

,i = 0

−∞, if pi
,i �= 0

.

Since we need to calculate the maximum value after calculating the minimum
value with respect to u, all functions p for which min

u
is equal to −∞ should be

dropped and only functions pi satisfying the equation

pi
,i = 0 in V, (5.140)

should be retained.
As in the previous example, one can check that the order of maximization and

minimization in the minimax problem (5.136) can be changed and we arrive at the
following dual variational problem:

Ě = max
pε(5.140)
(5.137)

(
l(p)− E∗ (p)

)
. (5.141)
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So the dual variational problem is the maximization problem for the functional
l (p) − E∗ (p) over all vector field satisfying the “incompressibility” condition
(5.140).

At first glance, the formulation of the dual variational problem is surprising: we
have seen that the quadratic functional of the form

b∫

a

u2dx

does not feel the values of the function u(x) at the boundary (and, in fact, at any
fixed point of the segment [ab]). Similarly, the functional

∫

V

pi pi dV

should not feel the values of pi at �V and, thus, the values of the linear functional,
l(p) = ∫

�

pi ni d A. The resolution of this “paradox” is in the constraints (5.140) and

(5.137): the admissible functions pi (x) are not arbitrary. Due to these constraints,
the linear functional l(p) can be presented as

l(p) =
∫

V

pi g,i dV

with some smooth function g, which is equal to unity at �� and decays at infinity
as 1/r.

Therefore,

|l(p)|2 ≤
∫

V

pi pi dV
∫

V

g,i g,i dV ≤ const E(p),

i.e. energy does feel the values of the functional l(p).
According to (5.141) and (5.50), the dual variational problem can also be stated

as the maximization problem of the functional

[l(p)]2

4E∗ (p)
.

The variational principle

max
p∈(5.140)

(5.137)

[l(p)]2

4E∗ (p)
= Ě

is called the Thompson principle.
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The case of general integral functional. Consider the functional I (u) of the form
I (u) = E (u)− l (u)

E (u) =
∫

V

L
(
xi , uκ, uκ

,i

)
dV, uκ

,i ≡
�uκ

�xi

l (u) =
∫

V

gκuκdV +
∫

�V f

fκuκd A, (5.142)

where uκ are smooth functions of the variables x1, . . . , xn , in a closed bounded
region V in Rn , �V f is a part of the boundary �V of the region V , and gκ and
fκ are given functions in V and on �V f . The energy density L is a strictly convex
function of the variables uκ and uκ

,i .
The original minimization problem is to find the minimum of the functional I (u)

on the set of all functions uκ which take on the assigned values on the surface
�Vu = �V − �V f :

uκ = uκ

(b) on �Vu . (5.143)

To construct the dual variational problem, we present L
(
xi , uκ, uκ

i

)
using the

Young-Fenchel transformation as

L
(
xi , uκ, uκ

,i

) = max
p

(
pκuκ+pi

κ
uκ

,i−L∗
(
xi , pκ, pi

κ

))
. (5.144)

Here maximization is done over all p = {
pκ, pi

κ

}
, and L∗

(
xi , pκ, pi

κ

)
is the

Young-Fenchel transformation of the function L
(
xi , uκ, uκ

,i

)
with respect to the

variables uκ and uκ

,i :

L∗
(
xi , pκ, pi

κ

) = max
uκ ,uκ

,i

(
pκuκ+pi

κ
uκ

,i−L
(
xi , uκ, uκ

,i

))
.

Rewriting the initial variational problem as a minimax problem by means of
(5.144), we have

Ǐ = min
u∈(5.143)

max
p

⎡
⎣
∫

V

(
pκuκ+pi

κ
uκ

,i − L∗
(
xi , pκ, pi

κ

))
dV − l (u)

⎤
⎦ . (5.145)

Reversing the order of maximization and minimization in (5.145) yields the relation,

max
p

min
u∈(5.143)

(
� (u, p)− E∗ (p)

) ≤ Ǐ . (5.146)
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Here,

� (u, p) =
∫

V

(
pκuκ + pi

κ
uκ

,i − gκuκ

)
dV −

∫

�V f

fκuκd A,

E∗ (p) =
∫

V

L∗
(
xi , pκ, pi

κ

)
dV . (5.147)

Let us present uκ as a sum of some fixed smooth function hκ , taking on the
values uκ

(b) on �Vu , and the function u′κ , which is equal to zero on �Vu :

uκ = hκ + u′κ, u′κ = 0 on �Vu . (5.148)

Then, � (u, p) can be written as

� (u, p) = l (p)+�
(
u′, p

)
,

where l (p) is a linear functional on the set of functions p defined by the equation

l (p) = � (h, p) .

Calculation of min
u

in (5.146) is reduced to calculation of min
u′

�
(
u′, p

)
:

min
u∈(5.143)

� (u, p) = min
u′∈(5.148)

(
l (p)+�

(
u′, p

)) =
= l (p)+ min

u′∈(5.148)
�
(
u′, p

)
.

Since � (u, p) is linear with respect to u,

min
u′∈(5.148)

�
(
u′, p

) = 0,

if for any u′

�
(
u′, p

) = 0, (5.149)

and

min
u′∈(5.148)

�
(
u′, p

) = −∞ (5.150)

if �
(
u′, p

) �= 0 for at least one element u′. This can be proved in the same way
as (5.122). Since we need to find the maximum over p, we have to exclude from
consideration all functions p for which min

u
is equal to −∞. As a result, we arrive
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at the maximization problem for the functional l (p)− E∗ (p) on the set of all func-
tions p which satisfy the constraint (5.149). Due to (5.149), the values of the linear
functional l (p) do not depend on the specific choice of functions hκ .

If pκ and pi
κ

are differentiable and continuous functions in the region V , then
the constraint (5.149) is reduced to

pκ = �pi
κ

�xi
+ gκ in V, pi

κ
ni = fκ on �V f , (5.151)

and the functional l (p) is

l (p) =
∫

�Vu

pi
κ

ni u
κ

(b)d A. (5.152)

Equation (5.146) takes the form,

max
p∈(5.151)

(
l(p)− E∗ (p)

) ≤ Ǐ . (5.153)

Suppose that the functions ǔκ

(
xi
)

which minimize the functional I (u) are twice
continuously differentiable. Then, we are going to show that

max
p∈(5.151)

(
l(p)− E∗ (p)

) = Ǐ . (5.154)

Define

p̌κ = �L

�uκ

∣∣∣∣
uκ=ǔκ

, p̌i
κ
= �L

�uκ

i

∣∣∣∣
uκ=ǔκ

.

The Euler equations of the initial variational problem,

�L

�uκ

= �

�xi

�L

�uκ

i

+ Fκ in V,
�L

�uκ

ni = fκ in �V,

imply that the functions p̌κ and p̌i
κ

satisfy the constraints (5.151) and, consequently,
are the admissible functions. Therefore,

l ( p̌)− E∗ ( p̌) ≤ max
p∈(5.151)

(L(p)− E (p)) . (5.155)

On the other hand,

l ( p̌)− E∗ ( p̌) = Ǐ .

Indeed,
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l ( p̌)− E∗ ( p̌) =
∫

�Vu

p̌i
κ

ni u
κ

(b)d A −
∫

V

L∗
(
xi , p̌κ, p̌i

κ

)
dV =

=
∫

V

[
�
(

p̌i
κ

ǔκ

)

�xi
− L∗

(
xi , p̌κ, p̌i

κ

)
]

dV −
∫

�V f

p̌i
κ

ni ǔ
κd A =

=
∫

V

[
� p̌i

κ

�xi
ǔκ+ p̌i

κ
ǔκ

,i−
(

p̌κ ǔκ+ p̌i
κ

ǔκ

,i−L
(
xi ,ǔκ,ǔκ

,i

))]
dV−

−
∫

�V f

fκ ǔκd A =
∫

V

L
(
xi ,ǔκ,ǔκ

,i

)
dV −

∫

V

gκ ǔκdV −
∫

�V f

fκ ǔκd A = Ǐ . (5.156)

Therefore (5.154) holds true.
So, the maximization problem for the functional l (p) − E∗(p) on the set of

functions (5.151) is dual to the initial variational problem.
Consider the specific case, when L does not depend on uκ . Denote by L∗

(
xi , pi

κ

)
the Young-Fenchel transformation of the function L

(
xi , uκ

,i

)
with respect to uκ

,i :

L∗
(
xi , pi

κ

) = max
u

(
pi

κ
uκ

,i − L
(
xi , uκ

,i

))
.

Function L∗
(
xi , pκ, pi

κ

)
introduced in the beginning of this section is linked to

L∗
(
xi , pi

κ

)
as

L∗
(
xi , pκ, pi

κ

) = max
u

(
pκuκ + pi

κ
uκ

,i − L
(
xi , uκ

i

)) =

=
{

L∗
(
xi , pi

κ

)
for pκ = 0

+∞ for pκ �= 0

If L∗
(
xi , pκ, pi

κ

) = +∞, then l (p) − E∗ (p) is equal to −∞. So in the dual
variational problem all non-zero functions pκ should be excluded from the set of
admissible functions. For pκ = 0, (5.151) becomes

�pi
κ

�xi
+ gκ = 0 in V, pi

κ
ni = fκ on �V f . (5.157)

The dual variational principle (5.154) will be considered further for a number of
continuum models.

The Legendre and Young-Fenchel transformation can be used for constructing
the “dual” variational problems even in the cases when the functional is not convex.
An example is the Hamilton variational principle in the phase space (Sect. 1.6).
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Lower estimates of non-convex functionals by means of the dual problem. Con-
sider the minimization problem for the integral functional of the form (5.142) on the
set of functions (5.143). Let L

(
xi , uκ, uκ

,i

)
be a non-convex function of uκ and uκ

,i .
Let us calculate L∗∗

(
xi , uκ, uκ

,i

)
– the second Young-Fenchel transformation of the

function L
(
xi , uκ, uκ

,i

)
with respect to uκ, uκ

,i . We know that

L∗∗
(
xi , uκ, uκ

,i

) ≤ L
(
xi , uκ, uκ

,i

)
. (5.158)

Therefore, for all fields uκ ,

I ∗∗ (u) =
∫

V

L∗∗dV − l (u) ≤
∫

V

LdV − l (u) = I (u) .

Consequently,

Ǐ ∗∗ ≤ Ǐ . (5.159)

Since the functional I ∗∗ (u) is convex,

max
p

⎛
⎝l (p)−

∫

V

L∗
(
xi , pκ, pi

κ

)
dV

⎞
⎠ = Ǐ ∗∗. (5.160)

Computing the functional in (5.160) on the admissible elements p, one obtains
the lower estimates of Ǐ ∗∗ and, therefore, Ǐ . For some problems with non-convex
functionals Ǐ ∗∗ coincides with Ǐ (see [95]).

5.9 Hashin-Strikman Variational Principle

Linear case. As we have seen in Sect. 5.8, the trial fields of the dual variational
problems must obey some differential constraints and, possibly, the discontinuity
conditions. While the differential constraints can be easily resolved, the disconti-
nuity conditions are not so easy to deal with if the geometry of discontinuities is
complex. Hashin and Strikman suggested a trick, which allows one to overcome
this difficulty. They obtained a dual variational principle with the admissible fields
that must not obey the differential constraints. We explain the trick first for a simple
case of the variational problem

E(u) =
∫

V

1

2
ai j (x)

�u

�xi

�u

�x j
dV → min

u
, (5.161)
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where ai j (x) may have discontinuities on surfaces with a complex geometry, and the
minimum is sought over all functions, u(x), with the prescribed boundary values,

u = u(b) on �V . (5.162)

Further we consider more general cases.
Let us rewrite E(u) by adding and deducting the quadratic functional

∫

V

1

2
a0

�u

�xi

�u

�xi
dV,

where ao is a constant. We have

E(u) =
∫

V

1

2
a0(x)

�u

�xi

�u

�xi
dV +

∫

V

1

2

(
ai j − a0δ

i j
) �u

�xi

�u

�x j
dV .

Let us choose ao in such a way that the quadratic form

1

2

(
ai j − a0δ

i j
)

u,i u, j ,

(
u,i ≡ �u

�xi

)

be positive definite. Then it can be presented as the Young-Fenchel transformation
of the dual quadratic form

1

2

(
ai j − a0δ

i j
)

u,i u, j = max
pi

[
pi u,i − 1

2
bi j pi p j

]
, (5.163)

where bi j is the inverse tensor to ai j − a0δ
i j ,

(
ai j − a0δ

i j
)

b jk = δi
k, (5.164)

and the quadratic form, bi j pi p j , is positive definite. Hence, E(u) is the maximum
value in the variational problem

E(u) = max
pi (x)

∫

V

[
1

2
a0u,i u

,i + pi (x)u,i − 1

2
bi j (x)pi (x)p j (x)

]
dV . (5.165)

The original variational problem takes the form

min
u=u(b) at �V

max
pi (x)

∫

V

[
1

2
a0u,i u

,i + pi (x)u,i − 1

2
bi j (x)pi (x)p j (x)

]
dV .
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The order of minimization and maximization can be changed (we do not pause
to prove that; it can be done in the same way as for Dirichlet and Neuman problems
in Sect. 5.8). We arrive at the relation

min
u=u(b) at �V

E(u) = max
pi (x)

[
J̃ (p)−

∫

V

1

2
bi j (x)pi (x)p j (x)dV

]
, (5.166)

where

J̃ (p) = min
u=u(b) at �V

∫

V

(
1

2
a0u,i u

,i + pi (x)u,i

)
dV . (5.167)

So, we get a dual variational principle with the dual variables, pi (x), which are
not constrained. The cost is that the functional J̃ (p) appears which is to be com-
puted. Formula for J̃ (p) can be simplified a bit. Denote by ů(x) be the minimizer in
the variational problem,

min
u=u(b) at �V

∫

V

1

2
a0u,i u

,i dV . (5.168)

Let E0 be the minimum value in (5.168):

E0 = 1

2

∫

V
a0ů,i ů

,i dV .

We set in (5.167)

u = ů + u′,
u′ = 0 on �V . (5.169)

Then

J̃ (p) = E0 +
∫

V
pi (x)ů,i (x)dV + J (p),

J (p) ≡ min
u′=0 at �V

∫

V

(
1

2
a0u′,i u

′,i + pi (x)u′,i

)
dV (5.170)

The variational problem (5.170) is well-posed: the functional is obviously
bounded from below:

∫

V

(
1

2
a0u,i u

,i + pi u,i

)
dV =

∫

V

1

2
a0
(
u,i + pi

) (
u,i + pi

)
dV−

−
∫

V

1

2
a0 pi pi dV � −1

2
a0

∫

V
pi pi dV . (5.171)
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As we see from (5.171), it is enough for the boundedness from below that pi (x)
be square integrable functions. In particular, they can be piece-wise continuous func-
tions. We will further obtain the explicit dependence of J on pi (x). Irrespectively
on the explicit form of J (p), we get.

Hashin-Strikman variational principle. The minimum value, Ě, of E(u) can be
found by solving the variational problem

Ě = E0 +max
pi (x)

[∫

V

(
pi (x)ů,i (x)− 1

2
bi j (x)pi (x)p j (x)

)
dV +J (p)] . (5.172)

Here pi (x) do not obey any constraints.

Explicit form of J (p) for smooth p. Let us now find the dependence of J on pi (x).
First, we assume that pi (x) are some smooth functions. Then the minimizer in u′

(5.170) obeys the boundary value problem,

a0�u′ = −�pi

�xi
, u′ |�V = 0 (5.173)

Its solution can be written in terms of Green’s function, G(x, y), defined as the
solution of the boundary value problem

�x G(x, y) = −δ(x − y), G(x, y)|
y∈�V
= 0. (5.174)

Here δ(x) is the three-dimensional delta-function and �x Laplace’s operator acting
on x-variables. We take for granted that the solution of this problem is symmetric
with respect to x, y,

G(x, y) = G(y, x), (5.175)

non-negative,

G(x, y) � 0,

and smooth everywhere except at the point x = y where it has the singularity of the
form

G(x, y) = 1

4π |x − y| + bounded function as y → x .

Multiplying (5.174) by �pi/�yi and integrating over y, we obtain

�x

∫

V
G(x, y)

�pi (y)

�yi
dVy = −

∫

V
δ(x − y)

�pi (y)

�yi
dV = −�pi (x)

�xi
. (5.176)

Comparing (5.173) and (5.176) we see that
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u′(x) = 1

a0

∫

V
G(x, y)

�pi (y)

�yi
dVy . (5.177)

The singularity in (5.177) is integrable. To deal further with discontinuous func-
tions, pi , we move the derivative from pi (y) to G(x, y) by integrating by parts.
The singularity becomes stronger because �G(x, y)/�yi � 1/ |x − y|2 but is still
integrable. To weaken the singularity of the integrand, before integrating by parts
in (5.177), we replace pi (y) by pi (y) − pi (x). That, obviously, does not change
(5.177). After integration by parts, we obtain

u′(x) = − 1

a0

∫

V

�G(x, y)

�yi

(
pi (y)− pi (x)

)
dVy . (5.178)

The differentiation of (5.178) with respect to xi yields an integral with absolutely
integrable singularity; therefore the differentiation is possible and we obtain the
derivatives of the minimizer 12:

�u′(x)

�xi
= − 1

a0

∫

V

�2G(x, y)

�xi �y j

(
p j (y)− p j (x)

)
dVy. (5.179)

Finally, from Clapeyron’s theorem (5.47),

J (p) = 1

2

∫

V
pi (x)u′,i dV =

= − 1

2a0

∫

V

∫

V
pi (x)

�2G(x, y)

�xi �y j

(
p j (y)− p j (x)

)
dVx dVy . (5.180)

Formula (5.180) can also be written in a more symmetric form:

J (p) = 1

4a0

∫

V

∫

V

�2G(x, y)

�xi �y j

(
pi (x)p j (x)+ pi (y)p j (y)− 2pi (x)p j (y)

)
dVx dVy .

(5.181)
Indeed, from (5.175):

�2G(x, y)

�xi �y j
= �2G(y, x)

�y j �xi
. (5.182)

12 The contribution to the derivative that is due to differentiation of pi (x),

1

a0

∫

V

�G(x, y)

�y j

�p j (x)

�xi
dVy,

is equal to
1

a0

∫

�V
G(x, y)n j d Ay

�p j (x)

�xi
,

and is zero because G(x, y) = 0 when y ∈ �V .
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Fig. 5.22 Notation for the
variational problem

Therefore, changing in (5.180) x by y, y by x, i by j and j by i, and taking into
account (5.182), we get

J (p) = − 1

2a0

�
p j (y)

�2G(y, x)

�yi �x j

(
pi (x)− pi (y)

)
dVx dVy . (5.183)

Due to (5.182) the kernels in (5.180) and (5.183) coincide. Summing up (5.180) and
(5.183) we obtain (5.181).

Explicit form of J (p) for discontinuous p. Let us show that (5.181) also holds for
piece-wise smooth functions that may have discontinuities on some surfaces. To this
end we need an auxiliary statement. Let S be a surface bounding some subregion,
B, of V (Fig. 5.22). Consider a variational problem,

∫

V

1

2
u,i u

,i dV −
∫

S
σudA→ min

u:u=0 at �V
(5.184)

where σ is some function on S. The admissible functions, u, are supposed to be
continuous on S : [u] = 0. It is shown further in Example 11 of Sect.5.11 that the
minimizer of this problem is

ǔ(x) =
∫

S
G(x, y)σd A. (5.185)

Consider now the variational problem (5.170) for functions pi (x) that have a
discontinuity on S. The functional can be rewritten as

∫

V

1

2
a0u,i u

,i dV −
∫

V

�pi

�xi
udV−

∫

S

[
pi
]

ni udA.

The minimizer, ǔ, is the solution of the boundary value problem

a0�ǔ = −�pi

�xi
in V, ǔ = 0 on �V, a0 [ǔ,i ] ni = − [pi

]
ni on S.

Here �pi/�xi is a piece-wise smooth function. The solution is a sum of two func-
tions, u1 and u2, which are the solutions of the following boundary value problems:
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a0�u1 = −�pi

�xi
in V, u1 = 0 on �V,

[
�u1

�xi

]
ni = 0 on S,

a0�u2 = 0 in V, u2 = 0 on �V,

[
�u2

�xi
ni

]
= − [pi

]
ni on S.

The function of x ,

1

2
a0

∫

V
G(x, y)

�pi (y)

�yi
dVy,

has continuous first derivatives at S if �pi/�yi is piece-wise continuous.13 Thus,

u1(x) = 1

a0

∫

V
G(x, y)

�pi (y)

�yi
dVy .

Function u2 is equal to the function (5.185) with the factor, 1/a0 and σ =[
pi
]

ni . So

ǔ(x) = 1

a0

∫

V
G(x, y)

�pi (y)

�yi
dVy + 1

a0

∫

S
G(x, y)

[
pi
]

ni d A. (5.186)

Integrating by parts in the volume integral, we see that the surface terms cancel
out:

ǔ(x) = − 1

a0

∫

V

�G(x, y)

�yi
pi (y)dVy .

This formula can also be written as

ǔ(x) = − 1

a0

∫

V

�G(x, y)

�yi

(
pi (y)− pi (x)

)
dVy,

because
∫

V

�G(x, y)

�yi
dVy = 0,

due to the boundary condition, G(x, y) = 0 at �V .

The derivatives of the minimizer can be found by differentiating (5.186): for a
point, x, which is strictly inside B or V − B,

�ǔ

�xi
= 1

a0

∫

V

�G(x, y)

�xi

�p j (y)

�y j
dVy + 1

a0

∫

S

�G(x, y)

�xi

[
p j
]

n j d A.

13 See, e.g., [81], vol. 2, p. 245.
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Putting �
(

pi (y)− p j (x)
)
/�y j instead of �p j (y)/�y j and integrating by parts we

arrive at (5.179) for discontinuous pi . Hence, (5.181) also holds for discontinu-
ous pi .

Minimum principle. One remark is now in order. If the parameter, a0, is so big
that the quadratic form,

(
ai j − a0δ

i j
)

u,i u, j is negative definite, then we introduce
tensor bi j as the inverse tensor to a0δ

i j −ai j , and formula (5.163) is replaced by the
relation

1

2

(
ai j − a0δ

i j
)

u,i u, j = min
pi

[
1

2
bi j pi p j − pi u,i

]
.

Therefore,

E(u) = min
pi (x)

∫

V

[
1

2
a0u,i u

, j − pi u,i + 1

2
bi j pi p j

]
dV,

and the Hashin-Strikman principle takes the following form.
Hashin-Strikman variational principle. The minimum value, Ě, of E(u) can be
found by solving the variational problem

Ě = E0 +min
pi (x)

[∫

V

(
−pi (x)ů,i + 1

2
bi j (x)pi (x)p j (x)

)
dV + J (p)

]
.

Emphasize that the Hashin-Strikman variational principle holds for any value of
the parameter, a0. If one makes estimates by plugging trial fields, then the estimates
involve a0, and an additional optimization of the estimates over a0 can be done.

Nonlinear case. This construction is easily extended to arbitrary convex functionals,

E(u) =
∫

V
L(x, u,i )dV,

in the cases when the function

	(x, u,i ) = L(x, u,i )− 1

2
a0u,i u

,i

is convex for some a0. Then 	(x, ui ) can be presented in terms of its Young-Fenchel
transformation, 	∗(x, pi ),

	(x, u,i ) = max
pi

[
pi u,i − 	∗(x, pi )

]
,

and

E(u) = max
pi

∫

V

(
1

2
a0u,i u

,i + pi u,i − 	∗(x, pi )

)
dV .

From the same line of reasoning we obtain the following
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Hashin-Strikman variational principle. If function, 	(x, u,i ), is strictly convex,
then the variational problem

Ě = min
u∈(5.162)

∫

V
L(x, u,i )dV (5.187)

is equivalent to the variational problem

Ě = E0 +max
pi (x)

[∫

V

(
pi ů,i − 	∗(x, pi )

)
dV + J (p)

]

where E̊ and ů are the minimum value and the minimizer in the variational problem
(5.168), and J(p) is the functional (5.181).

If 	(x, u,i ) is not convex, but the function

	1(x, ui ) = 1

2
a0u,i u

,i − L(x, ui )

is strictly convex, then

1

2
a0u,i u

,i − L(x, ui ) = max
pi

[
pi u,i − 	∗(x, pi )

] = −min
pi

[
	∗(x, pi )− pi u,i

]
,

and the original variational problem is equivalent to the variational problem

Ě = E0 +minpi

∫

V

(
	∗(x, pi (x))− pi (x)ů,i

)
dV + J (p).

Similar reasoning holds for functionals depending on many required functions.
We will discuss this in the case of elastic bodies in Sect. 6.7.

For some functions, like, e.g., L = (
aui ui

) 1
2 , neither L− 1

2 a0ui ui nor 1
2 a0ui ui−

L are convex. Therefore, the transformation of the variational problems to the
Hashin-Strikman form is not possible. For functions which vanish at some subregion
of V like L = 1

2 a(x)ui ui with a(x) = 0 somewhere inside V , L− 1
2 a0ui ui is not con-

vex for all x , while 1
2 a0ui ui − L can be convex. In such cases, the Hashin-Strikman

transformation yields only the minimization problem.

5.10 Variational Problems with Constraints

Lagrange multipliers. Usually, the set of admissible functions is defined by the
constraints written in the form of equations or inequalities. Some of those con-
straints, like the boundary conditions, are easy to satisfy, and they do not cause
any difficulties in solving the variational problem. For non-local constraints or con-
straints containing derivatives it is sometimes difficult to find a sufficiently large set
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of admissible functions. “Getting rid” of such constraints is possible by means of
so-called Lagrange multipliers. We explain the idea of Lagrange multiplier method
by the following example. Consider the minimization problem for the functional

I (u) =
∫

V

L

(
xi , uκ,

�uκ

�xi

)
dV

with the constraint

F (u) =
∫

V

F

(
xi , uκ,

�uκ

�xi

)
dV = 0. (5.188)

It is assumed that there exists at least one element u which satisfies the constraint
(5.188), besides the value of the functional I (u) is finite on this element.

Consider the following minimax problem:

min
u

max
λ

[I (u)+ λF(u)] . (5.189)

Here, the minimum is sought over all functions u, while the maximum is sought
over all real numbers λ.

Let us show that the problem (5.189) is equivalent to the initial one. Indeed,
consider the element u for which F (u) �= 0. For definiteness, let F (u) > 0. Then,
tending λ to +∞, we get

max
λ

[I (u)+ λF(u)] = +∞. (5.190)

If F (u) < 0, then tending λ→−∞, we also arrive at (5.190). Therefore, for all
u for which F (u) is not equal to zero, (5.190) holds. After calculating the maximum
value over λ, the minimum value must be found. The elements u for which the
function I (u) is finite and F (u) = 0 exist by our assumption. Hence, when the
maximum value is sought, all u for which (5.190) holds should be excluded and

min
u∈(5.188)

I (u) = min
u

max
λ

[I (u)+ λF(u)] . (5.191)

The auxiliary variable in the minimax problem, λ, is called the Lagrange multiplier
for the constraint (5.188).

Suppose that the order of calculation of the maximum and minimum values in
(5.191) can be changed:

min
u∈(5.188)

I (u) = max
λ

min
u

[I (u)+ λF(u)] . (5.192)

The problem

min
u

[I (u)+ λF(u)] (5.193)
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does not have any constraints for u. However, instead of one variational problem
with a constraint, a one-parametric set of variational problems depending on the
parameter λ needs to be solved. The minimum value in (5.193) is a function of λ.
Denote it by J (λ). The problem of finding the maximum value of J (λ) with respect
to λ is the dual one to the initial variational problem:

min
u∈(5.188)

I (u) = max
λ

J (λ) .

Suppose that the variational problem (5.193) has a unique minimizing element
ǔ (λ), and the function J (λ) has a unique maximizing element λ̂, and that the deriva-
tives of I (u) and F(u) with respect to u and the derivatives of J (λ) and ǔ (λ) with
respect to λ exist. Let us show that the solution of the initial variational problem is
ǔ
(
λ̂
)
. By definition,

J (λ) = I (ǔ (λ))+ λF (ǔ (λ)) . (5.194)

The function J (λ) is defined in a line, −∞ < λ < +∞. According to our assump-
tion, it is differentiable and reaches its maximum at the point λ̂. Consequently,

d J (λ)

dλ

∣∣∣∣
λ=λ̂

= I ′
(

ǔ (λ) ,
dǔ

dλ

)∣∣∣∣
λ=λ̂

+ λ̂F ′
(

ǔ (λ) ,
dǔ

dλ

)∣∣∣∣
λ=λ̂

+ F
(
ǔ
(
λ̂
)) = 0.

(5.195)
Due to the Euler equations of the variational problem (5.193),

I ′ (ǔ (λ) , ū)+ λF ′ (ǔ (λ) , ū) = 0 (5.196)

for any λ and any function ū. In particular, putting λ = λ̂ and ū = dǔ/dλ in (5.196),
we get

I ′
(

ǔ (λ) ,
dǔ

dλ

)
+ λ̂F ′

(
ǔ (λ) ,

dǔ

dλ

)∣∣∣∣
λ=λ̂

= 0. (5.197)

It follows from (5.195) and (5.197) that the function ǔ
(
λ̂
)

satisfies the constraint
(5.188):

F
(
ǔ
(
λ̂
)) = 0.

Choosing λ̂ and ǔ
(
λ̂
)

as the trial elements of the dual and the initial variational
problems, we get the estimate

J
(
λ̂
) ≤ max

λ
J (λ) = min

u∈(5.188)
I (u) ≤ I

(
ǔ
(
λ̂
))

.

According to (5.194), J
(
λ̂
) = I

(
ǔ
(
λ̂
))

. Hence the upper and the lower esti-
mates coincide, and we obtain,
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I
(
ǔ
(
λ̂
)) = min

u∈(5.188)
I (u) ,

i.e. ǔ
(
λ̂
)

is indeed the minimizing element of the variational problem.
The procedure described reduces the solution of the problem with constraints to

solution of a set of the variational problems without constraints.
Consider the changes which need to be made if instead of a constraint of the

equality type (5.188) the variational problem involves a constraint of the inequality
type:

F (u) =
∫

V

F

(
xi , uκ,

�uκ

�xi

)
dV ≤ 0. (5.198)

In this case, we construct a minimax problem:

min
u

max
λ≥0

[I (u)+ λF(u)] , (5.199)

where the minimum is sought over all functions u, while the maximum is sought
over all nonnegative number λ. The minimax problem (5.199) is equivalent to the
original minimization problem with the constraint (5.198): Indeed, if, for some u,

the functional F (u) is positive, then

max
λ≥0

[I (u)+ λF(u)] = +∞,

and in the subsequent calculation of the minimum with respect to u all such u must
be disregarded.

If the order of calculation of maximum and minimum in (5.199) can be reversed,

min
u∈(5.198)

I (u) = max
λ≥0

min
u

[I (u)+ λF(u)] ,

then the initial variational problem with the constraint is replaced by a family of
variational problems without constraints which depend on the parameter λ,

J (λ) = min
u

[I (u)+ λF(u)] ,

with the subsequent maximization of the function J (λ) on the positive semi-axis,
λ ≥ 0.

Let F (ǔ(λ)) < 0 at the minimizer, ǔ(λ), of I (u)+ λF(u) . For F (ǔ(λ)) < 0,

functional I (ǔ)+ λF (ǔ) reaches maximum over λ for λ = 0. If F (ǔ(λ)) = 0, then,
in general, the Lagrange multiplier is not zero. Hence, the equality holds,

λF (ǔ) = 0.

It is called the condition of complementary softness.
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In the case of the point-wise constraints, the minimax problem is constructed by
an analogous scheme. Suppose, functions uκ obey to s equations,

fα

(
xi , uκ,

�uκ

�xi

)
= 0, α = 1, . . . , s, (5.200)

and m inequalities

gβ

(
xi , uκ,

�uκ

�xi

)
≤ 0, β = 1, . . . , m. (5.201)

Then the Lagrange multipliers, λα and μβ, are functions of x , and

min
u∈(5.200),(5.201)

I (u) =

= min
u

max
λα (x),
μβ (x)≥0

⎧
⎨
⎩I (u)+

∫

V

[
λα (x) fα

(
xi , uκ,

�uκ

�xi

)
+ μβ gβ

(
xi , uκ,

�uκ

�xi

)]
dV

⎫
⎬
⎭ .

One proceeds further in the same way as in the previous case by changing the order
of minimum and maximum and obtaining an unconstrained variational problem.

In cases when one searches not the minimum but the stationary points of the
functional I (u) with some constraints, the general rule of the Lagrange multipliers is
as follows: the functional � (u, λ) is constructed, the varying of which with respect
to λ provides the given constraints, while � (u, λ) = I (u) if those constraints are
satisfied. Hence, the search of the stationary points of the functional I (u) is reduced
to the search of the stationary points of the functional � (u, λ). For example, for the
constraints of the type (5.200), the functional � (u, λ) is

� (u, λ) = I (u)+
∫

V

λα (x) fα

(
xi , uκ,

�uκ

�xi

)
dV .

Consider how the Lagrange multiplier method works in the following example.
Example: The minimum drag body in a hypersonic flow. Consider a body in

a hypersonic gas flow in a Cartesian coordinate system, x, y, z (Fig. 5.23). The gas
is moving along the z axis in the negative z-direction. The boundary of the body in
the half-space z ≥ 0 (the head part of the body) is given by the equation

z = u (x, y) .

The force exerted by the flow on the body is given by the Newton formula14

14 Here is a brief derivation of this formula. In the case of hypersonic flow, the shock wave is very
close to the body. If the body has a smooth shape, then the shock wave practically repeats the form
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Fig. 5.23 Notation to the
hypersonic flow problem

F (u) =
∫

�

2

1+ u2
x + u2

y

dxdy, (5.202)

� being the cross-section of the body by the plane z = 0, and ux , uy denote partial
the derivatives ux = �u/�x, uy = �u/�y. The region � is assumed to be simply
connected. We will also assume that the function u (x, y) is continuous and almost
everywhere differentiable, and that

u (x, y) = 0 on �. (5.203)

The problem is to find a function u (x, y) for which the drag force F (u) takes its
minimum value.

of the body (at least near the head part of the body). According to the conservation of momentum
on the shock wave in the ideal gas,

[
p + ρv2

n

] = 0, where [ϕ] denotes the difference of the values
of the function ϕ on the two sides of the shock wave, vn is the normal velocity on the shock wave.
Due to the impermeability condition at the body, vn ≈ 0 after the shock wave. Therefore, from the
momentum conservation the pressure at the body surface is p = p1 + ρ1v

2
n1 (index 1 marks the

values before the shock wave). We assume that ρ1 = const, vn1 = vnz , where v, the gas speed
far away from the body, is a constant, and nz is the projection of the normal on the z-axis. The
projection of the force on the z-axis is

∫
pnzd A =

∫
p1nzd A + ρ1

∫
v2

n1nzd A.

The first term (under some conditions) is balanced by the pressure in the tail part of the body. The
second term, divided by the constant ρ1v

2/2 coincides with (5.202) if we take into account the
relations linking nz and the area element d A with the shape of the body:

nz =
(
1+ u2

x + u2
y

)− 1
2 , d A = (

1+ u2
x + u2

y

)− 1
2 dxdy.

This derivation contains an assumption on the closeness of the shock wave and the body surface.
This assumption is acceptable not for all body shapes, and, thus, imposes some implicit constraints
on the shape of the body. These constraints are hard to formalize. In what follows we ignore these
constraints and consider the minimization problem for the functional (5.202) as a pure mathemati-
cal problem.
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If the functional F (u) reaches its minimum value F̌ for a smooth function
u (x, y), then, according to (5.202), F is greater than zero. Therefore, it makes sense
to call the minimization problem for the functional F (u) correctly posed, if there
exits such a positive constant c, that

F (u) ≥ c. (5.204)

The minimization problem for the functional F (u) as stated is not correctly
posed. Indeed, consider a conic surface of the height h,

u = h

(
1− r

ρ (θ )

)
, (5.205)

where r, θ are polar coordinates in the x-y plane, and r = ρ (θ ) is the parametric
equation of the contour �. The functional F (u) for the functions (5.205) becomes

F (u) = 1

h2

2π∫

0

ρ4

1+ ρ2

h2+ ρ2
θ

ρ2

dθ ≤ 1

h2

2π∫

0

ρ4

1+ ρ2
θ

ρ2

dθ, (5.206)

where ρθ ≡ dρ/dθ . It follows from (5.206) that, along with the increase of the
height h of the cone, the force on the cone decreases to zero.

To exclude the loss of correctness caused by the possible increase of the size of
the body, it is natural to bound above one of the parameters: the surface area of the
body

∫

�

√
1+ u2

x + u2
ydxdy ≤ S, (5.207)

the height of the body

max
�

u (x, y) ≤ h, (5.208)

or the volume of the body

∫

�

u (x, y)dxdy ≤ V . (5.209)

Consider first the minimization problem on the set of all bodies with the bounded
surface area. This problem can be presented as a minimax problem:
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F̌ = min
u∈(5.207),(5.203)

F (u) =

= min
u∈(5.203)

max
λ≥0

⎡
⎣
∫

�

2

1+ u2
x + u2

y

dxdy+ λ

⎛
⎝
∫

�

√
1+ u2

x + u2
ydxdy− S

⎞
⎠
⎤
⎦ .

Let us reverse the order of minimization and maximization. According to (5.81),
this cannot increase the result:

max
λ≥0

min
u∈(5.203)

⎡
⎣
∫

�

2

1+ u2
x + u2

y

dxdy+ λ

⎛
⎝
∫

�

√
1+ u2

x + u2
y dxdy− S

⎞
⎠
⎤
⎦ ≤ F̌ .

(5.210)
Let us define the function σ (x, y) by the equation,

σ (x, y) =
√

1+ u2
x + u2

y, u|� = 0, (5.211)

and rewrite (5.210) as

max
λ≥0

min
σ∈(5.211)

⎡
⎣
∫

�

2

σ 2
dxdy+ λ

⎛
⎝
∫

�

σdxdy− S

⎞
⎠
⎤
⎦ ≤ F̌ . (5.212)

The notation σ ∈(5.211) means that for any admissible function σ (x, y) there exists
a function u (x, y) satisfying (5.211). Let us expand the set of admissible functions
σ (x, y), replacing the constraint (5.211) by σ ≥ 0. The minimum in (5.212) can
only decrease:

max
λ≥0

min
σ≥0

⎡
⎣
∫

�

2

σ 2
dxdy+ λ

⎛
⎝
∫

�

σdxdy− S

⎞
⎠
⎤
⎦ ≤ F̌ . (5.213)

The minimum in (5.213) can easily be found. Its determination is reduced to miniza-
tion of the function

ϕ (σ ) = 2

σ 2
+ λσ for σ ≥ 0.

The function ϕ (σ ) for σ ≥ 0 is strictly convex and has only one minimum. Solving
the equation dϕ/dσ = 0, we get σ = (4/λ)

1
3 ; ϕ (σ̌ ) = min ϕ (σ ) = 3

2 (2λ)
2
3 . Hence,

J (λ) = min
σ

⎡
⎣
∫

�

(
2

σ 2
+ λσ

)
dxdy− λS

⎤
⎦ = 3

2
(2λ)

2
3 |�| − λS.
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The function J (λ) is strictly concave, and its maximum is reached at the unique
point λ̂; from the equation

(
d J
dλ

)∣∣
λ=λ̂
= 0, we find λ̂: λ̂ = 4 |�|3 /S3, J

(
λ̂
) =

2 |�|3 /S2. So we obtain a lower estimate for the minimum drag force,

2
|�|3
S2
≤ F̌ . (5.214)

This estimate demonstrates that the minimization problem for F (u) on the set of all
bodies with bounded surface area is correctly posed.

Let us find an upper estimate of the drag force. For the extremum value of

the parameter λ, λ̂ = 4 |�|3 /S
3
, the function σ̌ (x, y) is constant and is equal

to
(
4/λ̂

) 1
3 = S/ |�|. Consider the function u (x, y), which is the solution of the

boundary value problem

u2
x + u2

y =
S2

|�|2 − 1, u|� = 0. (5.215)

It is obtained by substituting σ̌ = S/ |�| into (5.211). The boundary value problem
is meaningful because S > |�|.

For the solution u (x, y) of the boundary value problem (5.215), we have

∫

�

√
1+ u2

x + u2
ydxdy = S,

and therefore, u (x, y) belongs to the set of admissible functions and

F̌ ≤ F (u) .

The value of the functional F for the function u is easily calculated and we arrive at
the estimate

F̌ ≤ 2
|�|3
S2

. (5.216)

It follows from (5.214) and (5.216) that

F̌ = 2
|�|3
S2

. (5.217)

The minimum drag shape of the body is defined by the solution of the boundary
value problem (5.215).

The solutions of (5.215) have the following structure: the lines, u = const, are
parallel to the contour �, and the derivative �u/�n along the normal to the con-

tour line of the function u (x, y) takes on the values ±
√

S2

|�|2 − 1. It is possible
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to construct many solutions of (5.215), choosing between various contour lines
�u
�n = +

√
S2

|�|2 − 1 or �u
�n = −

√
S2

|�|2 − 1. The solutions for which �u/�n changes

its sign are not meaningful, since the Newton equation for the force (5.202) is not
applicable to such bodies. Therefore, we can single out the unique solution of the
boundary problem (5.216) by means of an additional condition �u/�n ≥ 0.

If � is a circle then, among all shapes having � as a base and having a surface
area not greater than S, the least drag shape is the cone with the surface area S. The
minimum drag shape in the case of � being an ellipse is shown in Fig. 5.24; it looks
like a screwdriver head.

The minimum drag force F̌ is determined only by the area of the base |�| and
the surface area S, and does not depend on the shape of the base (the minimum
drag shape does, of course, depend on the shape of the base). Hence, we also solved
another problem: we found the minimum drag shape with the condition that the
cross-section area of the body is |�|, and the head surface area is not greater than S.
The above-mentioned implies that this problem has many solutions (at least one for
every region �), and the least possible drag force is given by (5.217).

Consider two cones of the same height and the same base area (and therefore,
of the same volume), where the shape of the base of one cone is a circle, and of
the other a star (Fig. 5.25). Then the star-shaped cone provides less drag than the
circular one.

Indeed, the surfaces of both cones are the solutions of (5.215), and (5.217) holds.
It only remains to note that the surface area of the star-shaped cone is greater than
that of the circular one. It follows, for example from the solution of the following
variational problem: among all contours r = ρ (θ ), bounding the regions with a
given area |�|,

2π∫

0

1

2
ρ2 (θ )dθ = |�| ,

Fig. 5.24 The minimum drag
body when the base is an
ellipse
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Fig. 5.25 Star-shaped cone
provides less drag than a
circular cone

find the contour for which the cone of the height h having this region as a base, has
the minimum surface area

1

2

2π∫

0

√
h2 + ρ2 (θ )ρ (θ )dθ → min .

Here is the solution to this problem. Introducing the Lagrange multiplier λ, we ob-
tain the functional

1

2

2π∫

0

[
ρ (θ )

√
h2 + ρ2 (θ )− λ

(
ρ2 (θ )− |�|

π

)]
dθ.

Its Euler equation for the function ρ (θ ) is α + α−1 = 2λ, α ≡ ρ̌/
√

h2 + ρ̌2.
Consequently, ρ̌ ≡ const, and the stationary value is reached for the cone with
the circular base of area |�| and height h. The stationary point is unique since the
circular cone is uniquely defined by h and |�|. It only remains to show that this
is the minimum point. Adding an increment ερ̄ (θ ) to ρ̌, let us calculate the area
change up to the terms of order ε2,

1

2

(
h2+ρ̌2

) (
α2 + 1

) 2π∫

0

ερ̄dθ + 1

2

(
h2+ρ̌2

) [1

2
α (1− α)+ α

] 2π∫

0

ε2ρ̄2dθ.

The first integral is equal to zero due the constraint for the area of the base, while
the second integral is positive since α < 1. Therefore, the circular cone has the
minimum surface area among the cones with the same height and the same base
area.

The above results can easily be generalized to the case of the region � bounded
by two closed parallel contours � and �′. Let the function u (x, y) be equal to zero
on � and
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Fig. 5.26 Minimum drag body with the base bounded by contours � and �′

u (x, y) = u0 = const on �′.

As in the case of the simply connected region, it can be proven that the sought
surface obeys (5.215). The drag force is given by (5.217).

In the case of the circular base, the solution is constructed from conic surfaces
and is shown in Fig. 5.26 for different ratios of u0 and S.

Let us move on the minimization problem for the functional F (u) with con-
straints on the height (5.208) and volume (5.209) of the body. First, let us show that
this problem is incorrectly posed in the absence of additional conditions. Consider
an axis-symmetric body, the cross-section of which in the plane θ = const. is shown
in Fig. 5.27. We will assume that the width of each tooth is ρ/n, where n is an
integer, and the height of the prong is equal to ε. Then, |�u/�r | = 2εn/ρ, and the
functional has the value

F (u) =
ρ∫

0

2π∫

0

2r

1+ u2
r

dθdr = 2πρ2

1+ 4 ε2n2

ρ2

. (5.218)

Therefore, F (u)→ 0 as n→∞.

Fig. 5.27 A minimizing
sequence for F (u)
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By appropriately choosing the constants, a and ε, we can make the height and
the volume of the body satisfy the constraints. If the parameter ε is considered to
be dependent on n and tends to zero, then the sequence of surfaces will converge
to a cylinder closed by a flat cover z = a. If we apply an additional constraint of
εn→∞ as n→∞, then, according to (5.218), the corresponding drag force tends
to zero.

The existence of a sequence of surfaces for which F → 0 shows that the mini-
mization problem for the functional F (u) on the set of bodies with limited height
and volume is incorrectly posed.

On the other hand, bounding the surface area of the body makes the problem
correctly posed, as we have obtained. Therefore, it makes sense to narrow down the
set of admissible functions u (x, y) in such a way that for this set the boundedness
of the height or the volume of the body would imply the boundedness of the head
surface area. That means that on the set of admissible functions, the inequality

∫

�

√
1+ u2

x + u2
ydxdy−� ≤ l max

�
u (x, y) (5.219)

holds in the case of the bounded height or the inequality

∫

�

√
1+ u2

x + u2
ydxdy−� ≤ k

∫

�

udxdy (5.220)

holds in the case of the bounded volume.
The inequalities (5.219) and (5.220) are true, for example, for concave functions

u (x, y) (the head part of the body is convex). Indeed, for a concave function u (x, y),
the surface area of its graph, z = u (x, y) , can be estimated above by the surface
area of a cylinder with the cross-section � and the height max

�
u (x, y). The constant

l in (5.220) can be interpreted as the length of contour �.
The inequality (5.220) for concave functions can be proved as follows. Consider

the cone K , obtained by connecting the farthest point of the body from the plane
z = 0 with the points on the contour �. Due to the convexity of the body, the cone
K is completely inside the body. The volume of the cone K , 1

3 � max
�

u (x, y), is the

lower estimate of the body’s volume,

1

3
� max

�
u (x, y) ≤

∫

�

udxdy (5.221)

The inequality (5.220) where k is equal to 3l/� follows from the inequalities (5.221)
and (5.219).

Due to (5.219) and (5.220), the problem of finding the shape of a convex body
having a minimum drag in hypersonic flow is correctly posed on the set of all bodies
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with bounded height or bounded volume. The solutions of these problems can be
obtained only numerically.

Pontrjagin’s maximum principle. Consider the variational problem

I (x, u) =
t1∫

t0

L
(
t, xi (t) , uκ (t)

)
dt → min (5.222)

with the constraints

dxi

dt
= f i

(
t, xi (t) , uκ (t)

)
, i = 1, . . . , n, κ = 1, . . . , m, (5.223)

xi (t0) = xi
0, (5.224)

uκ (t) ∈ U, (5.225)

where U is a set in Rm . The variational problem (5.222), (5.223), (5.224) and (5.225)
has differential constraints (5.223). If the functions uκ (t) satisfying the condition
(5.225) are given, then the system of differential equations (5.223) with the initial
values (5.224) will determine the functions xi (t). Having xi (t) and uκ (t), we can
calculate the value of the functional I (x, u). The minimization of the functional
I (x, u) means its minimization with respect to all admissible functions uκ (t).

The variational problem with the constraints (5.223), (5.224) and (5.225) is an
example of the problems in optimal control theory. Let us find the dual variational
problem in that case.

First, we rewrite the variational problem by introducing the Lagrange multipliers,
pi (t), as

Ǐ = min
x∈(5.224)
u∈(5.225)

max
p

t1∫

t0

[
L
(
t, xi , uκ

)+ pi (t)

(
dxi

dt
− f i

(
t, x j , uκ

))]
dt.

Suppose that the order of the minimization and maximization can be reversed:

Ǐ = max
p

min
x∈(5.228)
u∈(5.229)

t1∫

t0

[
L
(
t, xi , uκ

)+ pi (t)

(
dxi

dt
− f i

(
t, x j , uκ

))]
dt. (5.226)

Now the minimization problem in (5.226) does not contain differential constraints.
Consider the function

H (t, p, x, u) = pi f i
(
t, x j , uκ

)− L
(
t, xi , uκ

)

which is called the Pontrjagin function. In terms of this function (5.226) takes the
form
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Ǐ = max
p

min
x∈(5.224)
u∈(5.225)

t1∫

t0

[
pi (t)

dxi

dt
−H (t, p, x, u)

]
dt. (5.227)

The minimization with respect to u in (5.227) is reduced to an algebraic problem
of maximizing the Pontrjagin function H with respect to u. Denote its maximum
value with respect to u by H (t, p, x):

H (t, p, x) = max
u∈U

H (t, p, x, u) .

Hence, after the calculation of the maximum value with respect to u, the varia-
tional problem (5.227) transforms into the Hamilton principle:

Ǐ = max
p

min
x∈(5.224)

t1∫

t0

[
pi (t)

dxi

dt
− H (t, p, x)

]
dt.

This exposition represents the algorithmic part of Pontrjagin’s maximum prin-
ciple. The proof of the principle and its complete formulation can be found in the
papers cited in the Bibliographic Comments. It is interesting that changing of the
order of minimum and maximum in (5.226) is possible even if functions L and f i

are non-convex.

Integral constraints for derivatives. Consider the minimization problem for the
functional

I (u) =
∫

V

L
(
x, u,i

)
dV

on the set of functions u (x), x ∈ Rn , with assigned values, u(b), on �V . Functional
is invariant with respect to the shifts of u for a constant. Therefore, the minimum
value does not change if we replace u(b) by u(b)+ const. Let us try to transform this
problem into the minimization problem for the functional

∫

V

L(x, ui )dV

on the set of n functions ui (x), where ui (x) are subject to the constraints warranting
that ui (x) are the derivatives with respect to xi , of some function u (x), which are
equal to u(b) on �V . Surely, to be the derivatives of some function, ui are to satisfy
the differential constraints in the region V :

ui, j = u j,i .
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However, we are interested in constraints of another type - the integral constraints.
Namely, we are going to show that ui (x) are the derivatives of some function u (x)
equal to u(b) + const on the boundary �V of some simply connected region V , if
and only if the following equality holds:

∫

V

pi ui dV =
∫

�V

pi ni u(b)d A, (5.228)

where pi (x) is any smooth field satisfying the equation

pi
,i = 0. (5.229)

In other words, the following variational principle holds:
Variational principle. Minimization of the functional

∫

V

L
(
x, u,i

)
dV

on the set of functions u(x) taking the boundary values u(b) + const is equivalent
to the minimization problem for the functional

∫

V

L(x, ui )dV

on the set of functions ui (x) satisfying the constraint (5.228).
Clearly, this is a version of the dual variational principle.
First we show that (5.229) holds if and only if there exist twice continuously

differentiable functions ψ i j (x) such that

pi = � jψ
i j , ψ i j = −ψ j i . (5.230)

We prove this fact for the case of V = Rn . It is obvious that (5.229) follows
from (5.230). Now, let us show that (5.230) follows from (5.229). For any functions
pi (x) satisfying (5.229), there exists the solution ψ i (x) of equations

�ψ i (x)− �i � jψ j (x) = pi (x) . (5.231)

Indeed, applying the Fourier transformation to (5.231), we get

− k2ψ i (k)+ ki k jψ j (k) = pi (k) , k2 ≡ ki k
i (5.232)
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where pi (k) , ψ i (k) are the Fourier transformations15 of the functions pi (x) and
ψ i (x), respectively, and ki are the wave numbers (the Fourier transformation param-
eters). Equations (5.232) form a system of linear equations for ψ i (k). The rank of
the matrix of this system

∥∥−k2δi j + ki k j
∥∥ is equal to n−1. The necessary condition

of the solvability of (5.232) is pi (k) ki = 0 and it is satisfied due to (5.229). From
(5.232), we find that ψ i (k) = −k−2 pi (k) + ψ (k) ki , where ψ (k) is an arbitrary
function. Hence, for any functions pi (k) there exists a function ψ i (k) satisfying
(5.231). Equations (5.231) transform to (5.230) for ψ i j = � jψ i − �iψ j .

To prove (5.228) we note that, if ui = u,i , and u = u(b) + const on �V , then
(5.228) is satisfied. Now, let (5.228) holds for any solutions of (5.229). According
to (5.230), the equality (5.228) can be written as

∫

V

ui � jψ
i j dV =

∫

�V

u(b)ni � jψ
i j d A.

Integrating by parts, we get

∫

V

ψ i j u[i, j]dV =
∫

�V

(
u(b)ni � jψ

i j − uiψ
i j n j

)
d A. (5.233)

The square brackets in the indices denote the alteration a[i, j] ≡ 1
2

(
ai j − a ji

)
.

Let xi = r i (ξα) , α = 1, . . . , n − 1, be the equations of the surface �V . Using
the notation introduced for the surfaces in R3 (see Sect. 14.1) and the decomposition
of the gradient (14.17), the contraction ni � jψ

i j is

ni � jψ
i j = nir

α
j ψ

i j
,α. (5.234)

Hence, the contraction (5.234) contains only the derivatives ψ i j along the sur-
face �V . Assume that ψ i j = 0 on �V . Then the integral on the right-hand side of
(5.233) is zero. Due to the arbitrariness of ψ i j , applying the main lemma of calculus
of variations to (5.233), we find that ui, j = u j,i in V . Consequently, there exists
function u (x) such that ui = u,i . Due to continuity, this also holds at �V .

For any functions u (x) and ψ i j (x) = −ψ j i (x), the identity

∫

�V

(
u,iψ

i j − uψ
j i
,i

)
n j d A = 0. (5.235)

holds. It can be checked by transforming this integral to the volume integral by
means of the divergence theorem. Thus, from (5.233) and (5.235),

15 The basic features of Fourier transformation are considered further in Sect. 6.7.
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∫

�V

(
u(b)−u

)
ni � jψ

i j d A = 0 (5.236)

for any functions ψ i j on �V . The contraction nirα
j ψ

i j
,α is

nir
α
j ψ

i j
,α =

(
nir

α
i ψ i j

)
|α (5.237)

where the vertical bar in indices denote the surface covariant derivative along �V .
This follows from the equalities

(
nir

α
j

)
|α =

(
n jr

α
i

)
|α (5.238)

which can be established by means of (14.33) and (14.31). Therefore, u(b) =
u + const.

Unlocking the integral constraints. Let us retain a finite number of constraints cor-
responding to some set of particular solutions pi

(1), . . . , pi
(m) of (5.229), discarding

the rest. Then the set of admissible functions will expand, and the minimum of the
functional will decrease. The minimum can be found by introducing the Lagrange
multipliers λ1, . . . , λm ; we get the following variational problem:

min
ui

max
λ1,...λm

∫

V

(
L(x, ui )−

(
λ1 pi

(1) + . . .+ λm pi
(m)

)
ui
)
dV+

+
∫

�V

(λ1 pi
(1) + . . .+ λm pi

(m))ni u(b)d A ≤ Ǐ .

after reversing the order of calculating of maximum and minimum, finding the min-
imum with respect to ui is reduced to calculating the Young-Fenchel transformation
of the function L with respect to ui . Therefore,

max
λ1,...λm

⎛
⎝

∫

�V

pi ni u
(b)d A−

∫

V

L∗ (x, pi )dV

⎞
⎠ ≤ Ǐ ,

where pi denotes the sum λ1 pi
(1) + . . .+ λm pi

(m).
We see that relaxing of integral constraints is equivalent to the Rayleigh-Ritz

method for the dual problem, and the integral constraint method is based on the
same ideas as the duality theory methods.

The above consideration is easily generalized to the integral functional of the
form
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∫

V

L
(
xi , u

κ

, uκ

i

)
dV . (5.239)

using the following statement:
For the functions uκ (x) and uκ

i (x) to satisfy the relations uκ

i = uκ

,i and uκ =
uκ

(b) on �Vu , it is necessary and sufficient that the relation

∫

V

(
pκuκ + pi

κ
u

κ
)
dV =

∫

�Vu

pi
κ

ni u
κ

(b)d A (5.240)

holds for all the solution of the equations

pκ − pi
κ,i = 0 in V, pi

κ
ni = 0 on �V f = �V − �Vu . (5.241)

This statement becomes obvious if using (5.241) we write the equality (5.240) as

∫

V

(
pi

κ,i u
κ + pi

κ
u

κ
)
dV =

∫

�Vu

pi
κ

ni u
κ

(b)d A (5.242)

and take into account that pi
κ

(x) are arbitrary vector fields with zero normal com-
ponents on �V f .

So, the minimization problem for the functional (5.239) can be written also as
the minimization problem for the functional

∫

V

L
(
xi , uκ, u

κ

i

)
dV

on the set of all functions uκ (x) and uκ

i (x) satisfying the relations (5.240).

The cross-section principle. In the problems without constraints, it is sometimes
useful to introduce constraints by means of the following construction.

Let us present the set M of elements u as a union of non-intersecting subsets
Mv , M = ∪Mv , where v are elements of some set N . The subsets Mv will be
called the cross-sections of the set M.

The minimization problem for functional I (u) on M can be solved in two steps.
First, the minimum of the functional I (u) is sought on the set Mv . The minimum
value J of the function I (u) on Mv depends on v:

J (v) = min
u∈Mv

I (u) .

Then the minimum of the functional J (v) on N is sought. One may expect that

Ǐ = min
v∈N

J (v) . (5.243)
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Let us prove (5.243). Denote minJ (v) by J̌ . Obviously, for any v, Ǐ ≤ J (v).
Suppose that Ǐ < J̌ . By the definition of the minimum value, there exists a sequence
un , for which I (un)→ Ǐ . Denote by vn the element v, for which un ∈Mv . Since
Ǐ ≤ J (vn) ≤ I (un), J (vn)→ Ǐ . This refutes the supposition.

The statement (5.243) is called the cross-section principle.

5.11 Variational-Asymptotic Method

In many problems of mechanics and physics there are small and large parameters.
These can be geometric parameters like the thickness of a plate or a shell, the
diameter of a beam cross-section, the average crystallite size in a polycrystal, the
magnitude of deformation or displacements of a continuum, the wave length, the
number of gas molecules in a container, or they can be physical parameters: the
viscosity or heat conductivity of a fluid, the oscillation frequency of a rigid body,
etc. To investigate properly such problems various asymptotic approaches were de-
veloped. It is clear that for the problems which allow a variational formulation and,
consequently, possessing a special structure, there should exist a direct variational
approach based on direct asymptotic analysis of the corresponding functionals. It
should automatically take into account the variational structure of the equations and
those properties of the solutions, which are dictated by this structure.

A method of asymptotic analysis of functionals will be considered in this sec-
tion. This method is of heuristic character. It does not have a strict mathematical
foundation. However, for problems admitting exact solutions or studied by different
methods, there is a complete accordance of the results.

The method of asymptotic analysis of functionals, which will be called the
variational-asymptotic method, allows one to consider the minimization problems
for functions of a finite number of variables and the problems for differential equa-
tions possessing the variational structure from a common point of view.

When applied to differential equations, the variational-asymptotic method has a
number of advantages compared to the widely used asymptotic approaches mainly
due to the simplicity of analysis, which is more noticeable as the complexity of
the system of differential equations increases. The reason for this is that in the
variational-asymptotic method only one function, the Lagrangian – instead of a
system of differential equations, is the subject of the investigation.

Another advantage of the variational-asymptotic method is that the approximate
equations always possess a variational structure while the direct asymptotic analysis
of differential equations may yield the approximate equations that do not have such
a structure. This can be seen from the analysis of a system of two linear algebraic
equations, involving a small parameter, ε:

x + ε (x − y) = 1, y + ε (y − x) = 0.

This system can be interpreted as the equilibrium equations of two interacting
springs: x and y are the displacements of the springs from the equilibrium position,



244 5 Direct Methods of Calculus of Variations

and the first spring is subject to the external force of unit magnitude. The interaction
is characterized by parameter ε. Let us pose the following problem: for ε → 0,

construct an approximate system of equations the solution of which coincides with
the solution of the original system in terms of the order of 1 and ε. Since x ≈ 1 and
y ≈ ε, the only possible “simplification” is disregarding the term εy, which is of
the order of ε2. We have

x + εx = 1, y − εx = 0.

The initial system of equations is a system of equations of variational type: the
left-hand sides of the equations are derivatives of the function

f (x, y, ε) = 1

2

(
x2 + ε (x − y)2 + y2

)
,

and the equilibrium equations are the equations for the minimizing point of the
function f (x, y, ε) − x . For the approximate system of equations, this is not true,
there is no function g (x, y, ε) , such that

�g (x, y, ε)

�x
= x + εx,

�g (x, y, ε)

�y
= y − εx

because

�

�y
(x + εx) �= �

�x
(y − εx) .

This situation is typical in asymptotic analysis of differential equations with
small parameters. The violation of the variational structure of the approximate equa-
tions may result in even qualitatively wrong results. For example, the exact self-
conjugated equations possess only real eigenvalues, while the approximate equa-
tions acquire complex eigenvalues, i.e., physically, the system in an approximate
description may become unstable while it is stable in the exact description.

The variational approach in asymptotic analysis of partial differential equations
is important also due to the necessity of short-wave extrapolation. This issue will be
discussed further in Sect. 14.5.

The variational-asymptotic method is based on the idea of neglecting the small
terms in energy. This idea is often used in physics. However, to apply it in a system-
atic way one has to learn how to recognize small terms, how to treat the situations
when neglecting small terms results in the loss of the uniqueness or the existence of
the solution, and, moreover, understand how the small terms affect the next approx-
imations and how the iteration procedure could be settled.

The variational-asymptotic method will be formulated as a set of rules, the ap-
plication of which will be illustrated for a number of examples. Other applications
will be encountered in later chapters.
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Let the functional I (u, ε) be defined on some set of elements M and depend
on small parameter ε. We will assume that the functional I (u, ε) has a finite or a
countable number of stationary points. The stationary points will be denoted by ǔ,
and, in order to avoid cumbersome notation, will not be numbered. The stationary
points ǔ are functions of ε. This will be emphasized by placing ε in the index, ǔε.

Let ǔε tend to ǔ0 for ε→ 0. The following questions arise: how can we construct
a functional which has ǔ0 as stationary points? How can we construct an approx-
imate functional, the stationary points of which are the approximations of ǔε of a
given accuracy?

It is clear that the answers to these questions are related to the simplification of
the functional by disregarding small insignificant terms. It is natural to start with in-
vestigation of the functional from which all small terms dropped, i.e. the functional
I0 (u) = I (u, 0). The following situations may be encountered:

1. I0 (u) has the isolated stationary points
2. I0 (u) has the non-isolated stationary points
3. I0 (u) does not have the stationary points or it is meaningless, i.e. the functional

I (u, ε) is not defined for ε = 0

Let us begin with the first case.

Case 1: I0 (u) has the isolated stationary points
It could be expected that the stationary points of the functional I0 (u) are the first
approximations of the stationary points of the initial functional.

Example 1. Consider the behavior of the stationary points of the function of one
variable,

f (u, ε) = u2 + u3 + 2εu + εu2 + ε2u, (5.244)

for ε → 0. The function f0 (u) = u2 + u3 has two stationary points, u = 0 and
u = − 2

3 . It is not difficult to check that they are indeed the limits for ε→ 0 for the
stationary points of the function f (u, ε).

The second asymptotic term will be sought in the following way. Let us present
u as u = ǔ0 + u′, where ǔ0 is a stationary point of the functional I0 (u), and u′ → 0
for ε → 0. We will also keep the leading terms containing u′ in the functional
I
(
u0 + u′, ε

)
. Thus we obtain the functional I1

(
u′, ε

)
. We expect that the stationary

point with respect to u′ of this functional is the next asymptotic term.

Example 1 (continued). Consider the stationary point of the function (5.244) in a
neighborhood of zero. Thus u is to be small. Let us keep only the leading terms with
respect to u in f (u, ε). Since εu2 and u3 are small compared to u2, and ε2u is small
compared to 2uε, we have

f1 (u, ε) = u2 + 2εu.

Terms u2 and 2uε need to be kept since there are no terms in comparison with
which they could be neglected. The function f1(u, ε) has the stationary point u =
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−ε. Hence, the asymptotic approximation of the stationary point of the function
f (u, ε) in the neighborhood of zero is

ǔε = −ε + o (ε) .

At this point the function f (u, ε) is the same as f1 (u, ε), i.e. it has a minimum.
Consider the stationary point of the function f (u, ε) in the neighborhood of the

point u = −2/3. Setting u = − 2
3 + u′ and keeping the leading terms with respect

to u′ in the function f
(− 2

3 + u′, ε
)
, we arrive at the function16

f1 (u, ε) = −u′2 + 2

3
εu′.

Its stationary point is u′ = 1
3ε and the asymptotic approximation of the second

stationary point is

ǔε = −2

3
+ 1

3
ε + o (ε) ;

the function f (u, ε) has a local maximum at this point.
The next asymptotic terms are constructed analogously. For example, for the

stationary point of f (u, ε) in the neighborhood of zero, we seek u in the form
u = −ε + u′′, u′′ = o (ε). Keeping only the leading terms with respect to u′′ in the
function

f (u, ε) = (−ε + u′′
)2+(−ε + u′′

)3+2ε
(−ε + u′′

)+ε
(−ε + u′′

)2+ε2
(−ε + u′′

)
,

we get the function

f2 (u, ε) = u′′2 + 2ε2u′′.

Therefore, u′′ = −ε2 and

ǔε = −ε − ε2 + o
(
ε2
)
.

Note that the order of the “smallness” of u′ is not supposed a priori, but is deter-
mined.

Also note that the terms that were insignificant in constructing the leading term
of the asymptotic expansion may become important in determining the next terms
of the asymptotic expansion.

The example considered demonstrates that the main issue in asymptotic analysis
of functionals is to recognize the leading terms and the negligible ones. Usually,

16 From now on, additive constants will be disregarded without mentioning.
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this is the most important and the most difficult point of the analysis. However,
there are cases when the recognition of the negligible terms does not cause difficul-
ties. Here are two conditions upon satisfying which the terms may be considered
negligible.

Let the functional I (u, ε) includes a sum of two terms, A (u, ε) and B (u, ε), and

lim
ε→0

max
u∈M

∣∣∣∣
B (u, ε)

A (u, ε)

∣∣∣∣ = 0. (5.245)

Then B (u, ε) is negligible in comparison with A (u, ε) for all stationary points. We
will call such terms globally secondary terms.

Let ǔε → 0 for ε→ 0, and for any sequence {un} converging to u = 0:

lim
n→∞
ε→0

∣∣∣∣
B (un, ε)

A (un, ε)

∣∣∣∣ = 0. (5.246)

Then the term B (u, ε) is negligible compared to A (u, ε) for the stationary point ǔε.
The convergence un → 0 is understood in the same sense as the convergence of
ǔε → 0. The term B (u, ε) will be called locally secondary compared to A (u, ε).
The case of ǔε → ǔ0, ǔ0 �= 0 is reduced to the case of ǔε → 0 by the substitution
u → u′: u = ǔ0 + u′.

In the definitions (5.245) and (5.246), the additive constants in A (u, ε) are to be
excluded. This can be done, for example, by setting the condition

A (0, ε) = 0.

In Example 1, the term εu2 is globally secondary with respect to u2, ε2u is glob-
ally secondary with respect to 2εu while u3 is locally secondary with respect to u2

in the neighborhood of the point u = 0.

Example 2. Consider the function

f (u, ε) = ln (1+ 2u)− 1+ 2u

1+ 2u2
+ εu, 1+ 2u > 0. (5.247)

The function

f0 (u) = ln (1+ 2u)− 1+ 2u

1+ 2u2

has a stationary point at u = 0. The first terms of expansion f0 (u) with respect to u
are −1+ 20

3 u3. The other terms are locally secondary with respect to u3. Therefore,
the investigation of the function f (u, ε) can be replaced by the investigation of the
function 20

3 u3 + εu in the first approximation. It has two stationary points ±√− ε
20

for ε ≤ 0 and does not have any stationary points for ε > 0. Consequently, the
function f (u, ε) has the same behavior in the neighborhood of zero.
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For any secondary term, B (u, ε), of the type (5.245) or (5.246), there exists a
term of the functional, A (u, ε) , compared to which B (u, ε) is small. Along with
such terms, the functional may have terms which cannot be easily pinpointed as
small because the corresponding “large” terms are not present in the functional.
Consider, for example, the function

f (u, ε) = u3 + εu2 + ε3u. (5.248)

The function f0(u) = f (u, 0) = u3, and one may expect that all stationary points
of the function f (u, ε) are in the vicinity of u = 0. Could we neglect the term ε3u?
This is not clear because we do not know the order of ǔε. If, for example, ǔε ∼ ε,
then the first two terms are of the same order, ε3, while the third, of the order ε4,

may be neglected. If ǔε is, say, of the order ε2, then the last two terms must be kept
(they are both of the order ε5) while the second one, which is of the order ε6, may be
dropped. If we cannot say about a term whether it is the leading one or negligible,
we call such a term doubtful. All the terms of function (5.248) are doubtful.

A recipe for studying a functional with doubtful terms is simple: let the sta-
tionary points of the functional be hard to find, but the corresponding problem for
the functional Ĩ with the dropped doubtful terms admits investigation. Then we
study the stationary points of the functional Ĩ and evaluate the doubtful terms at
these stationary points. If the doubtful terms are smaller (in the asymptotic sense)
than the kept ones, then Ĩ provides the leading asymptotics of the stationary points.
Otherwise, the doubtful terms should be kept.

Example 3. Consider the stationary points of the function (5.248) in the neighbor-
hood of zero. There are no clear indications that any one of the terms is small
compared to another.

Let us first drop the last term. We obtain the function u3 + εu2, the stationary
points of which are u = 0 and u = − 2

3ε. At u = 0 it is not clear whether or not the
last term can be disregarded. At u = − 2

3ε it can be done, since the first two terms
are of order ε3, while the last one is of order ε4.

Let us now discard the second term. We obtain the function u3+ε3u, which does
not have any stationary points for ε > 0, while for ε ≤ 0, the stationary points are

±
√
− 1

3ε3. The first and third terms are of the order of ε
9
2 , while the second is much

larger, of the order of ε4. Therefore, the second term cannot be discarded.
Let us drop the first term. The function εu2 + ε3u has one stationary point at

− 1
2ε2. The first term is of the order of ε6 and is much smaller than the two retained,

which are of the order of ε5. Therefore, discarding the first term makes sense.
So in the neighborhood of zero we found two stationary points, ǔε = − 2

3ε+o (ε)
and ǔε = − 1

2ε2 + o
(
ε2
)
. Since the function (5.248) has only two real stationary

points, all the stationary points have been found.

Example 4. Newton’s polygon rule. To find the leading asymptotic term for the
stationary points of the function of the form
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f (u, ε) =
N∑

m,n

amnε
mun,

which tend to zero for ε → 0, one can use the method proposed by Newton17. We
describe this method for the case of the function

g (u, ε) = u3 + εu2 + εu3 + ε2u4 + ε3u + ε5u5.

For each term, define a point on a two-dimensional integer lattice with the x-
coordinate equal to the order of ε and the y-coordinate equal to the order of u. We
get a set of points. For the function g (u, ε) this set is shown in Fig. 5.28. Then we
draw a maximum convex polygon with the vertices from this set, which includes all
points of the set. According to Newton’s polygon rule, in constructing the leading
asymptotic term of the stationary points, it is necessary to keep only those terms the
corresponding points of which lie on the sides of the polygon. For ε→ 0, it is only
necessary to keep the terms corresponding to the points in the part of the polygon
beginning at point A (see Fig. 5.28) and continuing to the right and down and ending
at the point C, where the line turns upward. This part of the polygon is shown by a
solid line in Fig. 5.28.

Let us derive Newton’s polygon rule for the function g (u, ε) using the general
propositions made above. Consider the terms with the power of ε ≥ 0 and the power
of u ≥ 3. Since the asymptotic u → 0 is being considered, all the terms except u3

can be discarded: they correspond to the terms which are locally secondary com-
pared to u3. For the same reason, among all the terms with the power of ε ≥ 1 and
the power of u ≥ 2 only εu2 should be kept – the corresponding terms are locally
secondary with respect to εu2. Thus, points A, B, and C remain. They correspond
to the function (5.248) considered in Example 3. It has two stationary points, and
for the construction of the asymptotics of these points the terms corresponding to
the points on the edges AB and BC of Newton’s polygon should be used.

The derivation of Newton’s polygon rule for the general polygon is analogous to
the above one.

Case 2: I0 (u) has the non-isolated stationary points
Let us move on to a more interesting for physical applications case when discarding
the secondary terms results in appearance of non-isolated stationary points.

A typical finite-dimensional situation can be shown for the function of two vari-
ables (u = {x, y}) of the form

f (x, y, ε) = f0 (x)+ εg (x, y) , −∞ < x < +∞,−∞ < y < +∞, (5.249)

17 Newton’s polygon rule concerns the asymptotic behavior of the roots of polynomials; here it is
considered in terms of the problem of finding the stationary points of function f (u, ε), which is
an integral of a polynomial function.
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Fig. 5.28 Newton’s rule

where the function f0 (x) has some stationary points x̌0.
If the presumably small term εg (x, y) is dropped, we get the function f0 (x)

which has in the (x, y)-plane continuum of stationary points (x̌0, y), −∞ < y
< +∞.

Before formulating the general rules for dealing with such cases, let us first con-
sider some examples.

Example 5. Let us find the asymptotic for ε → 0 of the stationary points of the
function

f (x, y, ε) = cos (x − y)+ ε

(
1

x
+ y

)
, −∞ < x < +∞, −∞ < y < +∞.

If 1
x̌ε
+ y̌ε is bounded for ε→ 0, then the second term is secondary, and f0 (x, y) =

cos (x − y). Denote the set of stationary points of the function f0, y = x +
πk, −∞ < x < +∞, k = 0,±1,±2, . . ., by M0. Consider the function
f (x, y, ε) on M0. The function f (x, y, ε) on M0 becomes the function of one
variable x (and a number, k): f = cos πk + ε

(
1
x+x + πk

)
. The stationary points

of f on M0 with respect to x are x = ±1. It should be expected that the stationary
points of function f (x, y, ε) converge to (±1,±1+ πk) for ε → 0. The validity
of this proposition can be checked directly: it is sufficient to perform the change of
variable, y → z: y = x + z, and the function f will become a sum of functions
which depend only on x and z,
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f = cos z + εz + ε

(
1

x
+ x

)
,

for which the proposition made is obviously true.

The described procedure of constructing the stationary points made without
some precautions can provide wrong results. This is demonstrated in the following
example.

Example 6. Let us find the stationary point of the quadratic form

f (x, y, ε) = x2 − 2x + 4ε (x − 1) y + ε2 y2 + 2ε2 y.

The set M0 of the stationary points of the function f0 (x, y) = x2−2x is the line,
(1, y). The function f (x, y, ε) is a function of y on M0 : f = 1+ε2

(
y2 + 2y

)
. This

function has a stationary point at y = −1. By analogy with the previous example
we could assume that the stationary point of the function f (x, y, ε) tends to the
point (1,−1) for ε → 0. This, however, is not true. Indeed, writing the stationary
condition for the function f (x, y, ε)

x − 1+ 2εy = 0, 2 (x − 1)+ εy + ε = 0,

we find the stationary points: x̌ε = 1 − 2
3ε, y̌ε = 1

3 . Why did we get the wrong
answer?

Let us fix some point of the set M0 (defined by assigning a value to y). The
search for the stationary point will be carried out by first finding the stationary point
with respect to x for a fixed y (the corresponding stationary value of f becomes
a function of y only), and then finding the stationary point over all y. Since we
suspect that the stationary point is in the neighborhood of set M0, it is sufficient
to consider not all values of x but only those x = 1 + x ′ for which x ′ are small.
Keeping only the terms important with respect to x ′ in the function f

(
1+ x ′, y, ε

)
,

we obtain the function x ′2 + 4εx ′y. Consequently, x ′ = −2εy. So, we have to
consider the function f (1− 2εy, y, ε) = −1− 3ε2 y2 + 2ε2 y but not f (1, y, ε) on
M0. This yields y̌0 = 1

3 , in compliance with the correct result. It follows from the
above consideration that the stationary point is a saddle point – the function f is
maximum with respect to y and minimum with respect to x .

The difference between Examples 5 and 6 is the following. In Example 5, let
us fix y and denote the stationary point of the function f0 (x, y) for fixed y by
x0 (x0 = y + πk). Let x ′ be the first correction to x0. It is easy to check that the
functions f

(
x0 + x ′, y, ε

)
and f (x0, y, ε) will differ in terms of the order of ε2,

while to calculate y we need to keep the terms of the order ε. In Example 6, functions
f
(
x0 + x ′, y, ε

)
and f (x0, y, ε) also differ for terms of the order ε2. However, to

calculate y we need to keep the terms of the order ε2.
Now we are ready to formulate the general rules for searching the stationary

points.
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Let M0 be the set of stationary points of the functional I0 (u) and any element
u ∈M can be uniquely presented as u = u0 + u′, u0 ∈M0, u′ ∈M′. Fixing u0

and considering u′ to be small, we keep the leading terms with u′ in the functional
I
(
u0 + u′, ε

)
. We obtain a functional I1

(
u0, u′, ε

)
. Let us find the stationary points

of I1 with respect to u′. They will depend on u0.
Suppose that u′ is uniquely determined by u0, u′ = u′ (u0, ε). Representing u as

u = u0 + u′ (u0, ε) + u′′, where u0 ∈M0, u′′ ∈M′′ and u′′ is smaller than u′ in
the asymptotic sense, and keeping the leading terms with respect to u′′, we find u′′,
and so on.

Consider the functionals I (u0, ε) and I
(
u0 + u′ (u0, ε) , ε

)
on M0. If their sta-

tionary points do not differ significantly, then we can expect that the leading approxi-
mation of the stationary points of the initial functional are the stationary points of the
functional I (u0, ε) on M0. If the stationary points of the functionals I (u0, ε) and
I
(
u0 + u′ (u0, ε) , ε

)
differ significantly, but the stationary points of the functionals

I
(
u0 + u′ (u0, ε) , ε

)
and I

(
u0 + u′ (u0, ε)+ u′′ (u0, ε) , ε

)
do not, then the leading

approximation are the stationary points of the functional I
(
u0 + u′ (u0, ε) , ε

)
. If the

stationary points of the functionals I
(
u0 + u′ (u0, ε) , ε

)
and I

(
u0 + u′ (u0, ε)+ u′′

(u0, ε) , ε) differ greatly, then the next approximations should be considered.
After the leading term of the asymptotic expansion is found, the next terms are

constructed as described above.
The application of this scheme is sometimes hindered by the following obstacle:

u′ may be not uniquely determined by u0, and for fixed u0, runs through some
set M1.

Let M1 be such that any element u ∈ M and be uniquely presented as
u = u0+u′+u′′, where u0 ∈M0, u′ ∈M′, u′′ ∈M′′. We fix u0 and u′ and, assum-
ing u′′ � u′, we apply the previous scheme to find u′′. Usually, after a finite number
of steps, no additional variables appear and the expansion u = u0 + u′ + u′′ + . . .

can be written as u = v+w (v, ε)+w′ (v, ε), where v is an element of some set N ,
and the subsequent terms of w,w′, . . . are uniquely determined by v. If the station-
ary points of the functional I (v + w (v, ε) , ε) and the functional I (v, ε) on N are
close, then the stationary points of I (v, ε) are the leading terms of the asymptotic
expansion of the stationary points of the initial functional. If the stationary points
of the functional I (v + w (v, ε) , ε) significantly differ from the stationary points of
the functional I (v, ε) but not significantly differ from the stationary points of the
functional I

(
v + w (v, ε)+ w′ (v, ε) , ε

)
, the leading term is given by the station-

ary points of the functional I (v + w (v, ε) , ε). Otherwise, the next approximations
should be considered.

Usually, in order to estimate the order of the difference of the two stationary
points, it is sufficient to compare the values of the functionals at those points: if
the values of the functionals do not differ significantly, their stationary points are in
close proximity to each other; corresponding estimates for strictly convex function-
als were given in Sect. 5.5.
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Before considering more examples we need to introduce the notion of character-
istic length.

Notion of characteristic length. To evaluate various terms in the functionals we
often need to determine the magnitude of derivatives of required functions. This is
closely related to the notion of the characteristic length. The term “characteristic
length” may have many different meanings. We will use it in the following sense.

Consider the function f (x) which is defined on the segment [a, b] and can be
differentiated a sufficient number of times. Denote the amplitude of the function’s
oscillation on [a, b] by f̄ :

f̄ = max
x ′,x ′′∈[a,b]

∣∣ f
(
x ′
)− f

(
x ′′
)∣∣ .

For sufficiently small l, the following inequality holds:
∣∣∣∣
d f

dx

∣∣∣∣ ≤
f̄

l
. (5.250)

The “best” constant in the inequality (5.250) – the greatest l for which the in-
equality (5.250) holds – will be called the characteristic length of this function. This
definition is convenient because the statements about the characteristic length imply
the upper estimates of the function’s derivatives. Obviously, the characteristic length
does not exceed the size of the region:

l ≤ b − a.

Indeed,

∣∣ f
(
x ′
)− f

(
x ′′
)∣∣ =

∣∣∣∣∣
∫ x ′′

x ′

d f

dx
dx

∣∣∣∣∣ ≤
∫ x ′′

x ′

∣∣∣∣
d f

dx

∣∣∣∣ dx ≤
∫ b

a

∣∣∣∣
d f

dx

∣∣∣∣ dx .

Therefore,

f̄ ≤
∫ b

a

∣∣∣∣
d f

dx

∣∣∣∣ dx ≤ f̄

l
(b − a),

which yields the statement made.
If we need to estimate higher derivatives, then the corresponding terms are in-

cluded in the definition of l, and the characteristic length is the best constant in the
system of inequalities

∣∣∣∣
d f

dx

∣∣∣∣ ≤
f̄

l
,

∣∣∣∣
d2 f

dx2

∣∣∣∣ ≤
f̄

l2
, . . . ,

∣∣∣∣
dk f

dxk

∣∣∣∣ ≤
f̄

lk
. (5.251)

If the derivative of the function changes significantly on [a,b], the number l might
be a two rough characteristic, and a more appropriate one is the local characteristic
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length, l (x) , the best constant in the inequalities (5.251) written for the point x , but
not for all points of the segment [a, b].

The definition of the characteristic length of a function of many variables is
similar.

Example 7. Derivation of the Bernoulli-Euler beam theory from Timoshenko’s
beam theory. In classical theory of beam bending developed by Bernoulli and Eu-
ler, the energy is a functional of the lateral displacement of the beam, u (x),

EB−E (u) = 1

2

l∫

0

Eh4

(
d2u

dx2

)2

dx (5.252)

where E is a coefficient depending on the elastic moduli of the material and on
the geometry of the cross-section, h is the diameter of the cross-section, and l is
the length of the beam. If, for definiteness, the kinematic boundary conditions are
given:

u = du

dx
= 0 at x = 0; u = ul ,

du

dx
= −ψl at x = l, (5.253)

the true displacement provide minimum to the functional (5.252) on the set of func-
tions u (x) selected by the conditions (5.253).

Timoshenko proposed a more precise beam theory, in which the kinematics of
the beam is described by two functions – the displacement, u (x) , and the rotation
of the cross-section, ψ (x). Function ψ (x) has the meaning of the angle between
the beam cross-sections in the deformed and undeformed states. In Timoshenko’s
theory, the energy is

ET (u) = 1

2

l∫

0

[
Eh4

(
dψ

dx

)2

+ Gh2

(
ψ + du

dx

)2
]

dx, (5.254)

where G > 0 is a coefficient determined by the shear modulus of the material and
the geometry of the cross-section.

The kinematic conditions corresponding to (5.253) in Timoshenko’s theory are

u = 0, ψ = 0 at x = 0, u = ul , ψ = ψl at x = l. (5.255)

The true displacements u (x) and rotations of the cross-section ψ (x) provides
minimum to the functional (5.254) on the set of functions u (x) , ψ (x) selected by
the constraints (5.255).

Let us show that Bernoulli-Euler theory can be considered as the first approxima-
tion of Timoshenko’s theory for h → 0. We assume that the boundary values ul and
ψl and the moduli E and G do not depend on h. We also assume that the minimizing
functions have the characteristic length which is much larger than h. This means, in
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particular, that h2
(

dψ

dx

)2
<< ψ2. Since Eh4

(
dψ

dx

)2
<< Gh2ψ2, the leading term

of Timoshenko’s functional is

E0 (u, ψ) = 1

2

l∫

0

Gh2

(
ψ + du

dx

)2

dx .

Minimizing the functional E0 (u, ψ) and taking into account the conditions
(5.255), we obtain that the minimum is equal to zero, and it is reached on the
functions u and ψ linked by the relation

ψ = −du

dx
. (5.256)

Consequently, the set M0 is a set of pairs (u, ψ), where u (x) are arbitrary
functions taking on the boundary values (5.253) (due to (5.255) and (5.256)). The
functions ψ (x) are calculated from u (x) by means of (5.256).

The relation (5.256) has a simple geometric interpretation. It means that, the
cross-section of the beam remains perpendicular to the deformed center line of the
beam after the deformation.

If the conditions of the general scheme (u′ is uniquely defined by u0 and
I (u0, ε) − I

(
u0 + u′ (u0, ε) , ε

)
is small) are satisfied, then the functional E (u, ψ)

can be minimized on M0 in the first approximation. Timoshenko’s energy func-
tional and Bernoulli-Euler energy functional coincide on M0:

ET = EB−E .

Therefore, in the first approximation, the calculation of u in Timoshenko’s theory is
reduced to the calculation of u by Bernoulli-Euler theory.

Let us check whether or not these conditions are satisfied. For the following
calculations it is convenient to make a change of variables and, instead of ψ , use the
function ϕ = ψ + du/dx . The function ϕ is the shear angle, the angle between the
deformed cross-section and the cross-section normal to the deformed center line. In
terms of u and ϕ, Timoshenko’s energy functional can be written as

ET (u) = 1

2

l∫

0

[
Eh4

(
d2u

dx2

)2

− 2Eh4 d2u

dx2

dϕ

dx
+ Eh4

(
dϕ

dx

)2

+ Gh2ϕ2

]
dx .

(5.257)

Fixing the function u (x) (element of the set M0), we can find the dependence of
ϕ on u. To do this, we keep the leading term in the functional containing ϕ

(
Gh2ϕ2

)
,

and the term containing both u and ϕ, −2Eh4 d2u

dx2

dϕ

dx
. The term Eh4

(
dϕ

dx

)2

can

be dropped because h2

(
dϕ

dx

)2

<< ϕ2. For determining function ϕ we get the

functional
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1

2

l∫

0

(
−2Eh4 d2u

dx2

dϕ

dx
+ Gh2ϕ2

)
dx . (5.258)

After integrating the first term by parts and applying the boundary conditions
to ϕ,

ϕ = du

dx
for x = 0, ϕ = ψl + du

dx
for x = l, (5.259)

the functional (5.258) becomes

1

2

l∫

0

(
2Eh4 d3u

dx3
ϕ + Gh2ϕ2

)
dx−

−2Eh4 d2u

dx2

(
ψl + du

dx

)∣∣∣∣
x=l

+ 2Eh4 d2u

dx2

du

dx

∣∣∣∣
x=0

. (5.260)

The non-integral terms are known (since u is given). Therefore, the minimization of
the functional (5.260) is reduced to the minimization of the integrand over ϕ,

ϕ = − Eh2

G

d3u

dx3
. (5.261)

Consequently, ϕ is uniquely defined by u. Moreover, ϕ is of the order h2, and
the terms related to ϕ make only a small contribution to the energy compared to
Bernoulli-Euler energy (ET − EB−E is small). Hence, Bernoulli-Euler theory is in-
deed the first approximation of the Timoshenko’s theory18.

The example considered makes the physical meaning of the iteration scheme
absolutely transparent. In the first step, the “leading” term of energy is being min-
imized. If ψ �= −du/dx , the total energy would be of the order of h2. This is not
energetically advantageous since upon satisfying (5.256) the energy is on the order
of h4.

18 Note also how (5.59) is made consistent with the boundary condition (5.259). Denote the so-
lution of the problem in Bernoulli-Euler’s theory by u0. Similarly to the way the function ϕ was
found, the first correction u′ to u0 can be found, u = u0 + u′ + . . .. It turns out that u′ ≈ h2u0.
Then, in the first approximation,

ϕ = − Eh2

G

d3u0

dx3
,

and the boundary conditions will be satisfied due to the fact that the function u′ (x) is subject to
constraints

ϕ = − Eh2

G

d3u0

dx3
= du′

dx
for x = 0, l

at the ends of the beam.



5.11 Variational-Asymptotic Method 257

It is easy to construct the exact solution of the considered problem according
to Timoshenko’s theory and to check that the results obtained by the asymptotic
analysis of energy correspond to the expansion of the solution of the differential
equations in h2.

Example 8. Dynamics of systems with non-holonomic constraints. For some dy-
namical systems not every trajectory in the phase is admissible. Consider, for ex-
ample, an ice-skate on a plane. The position of the ice-skate can be described by
three numbers, the two coordinates of the point of contact, x and y, and the angle
between the ice-skate and x-axis, θ. For given x, y and θ , the velocity components,
ẋ and ẏ, cannot be arbitrary because the velocity of the point of contact is directed
along the ice-skate. Therefore,

ẋ sin θ − ẏ cos θ = 0. (5.262)

If this condition had the form

d

dt
ϕ(x, y, θ ) = 0 or ϕ(x, y, θ ) = const, (5.263)

we would be able to eliminate one of the coordinates using the equation ϕ(x, y, θ ) =
const to obtain a system with two degrees of freedom. Such a constraint is called
holonomic. However, (5.262) is not holonomic: it cannot be presented in the form
(5.263).

Consider a mechanical system with a non-holonomic constraint:

ai (q)q̇ i = 0. (5.264)

Let the system have the kinetic energy K (q, q̇) and potential energy U (q). At first
glance, to derive the governing dynamical equations of a non-holonomic mechanical
system, one has to seek the stationary points of the action functional,

I (q) =
∫ t2

t1

L(q, q̇)dt, L(q, q̇) = K (q, q̇)−U (q),

on the set of trajectories selected by the constraint (5.264). In mechanics, however,
another recipe was developed: at the real trajectory, δ I = 0 for all variations satis-
fying the equation

ai (q)δqi = 0. (5.265)

The resulting equations are different: in the first case, one obtains the equations

�L

�qi
− d

dt

�L

�q̇ i
= λ

�ak(q)

�qi
q̇k − d

dt
(λai ), (5.266)
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λ being the Lagrange multiplier for the constraint (5.264), while in the second case
the governing equations are

�L

�qi
− d

dt

�L

�q̇ i
= λ′ai , (5.267)

where λ′ is the Lagrange multiplier for the constraint (5.265). Which equations are
correct? It turns out that they are both correct but correspond to different physical
situations. Equations (5.266) appear if, in a more detailed description, Lagrange
function of the system is

L(q, q̇) = K (q, q̇)−U (q)+ α(ai (q)q̇ i )2,

where α is a large parameter. According to the general scheme of the variational-
asymptotic method, one has to minimize first the leading term. We arrive at the
constraint (5.264), and then consider the stationary points of the action functional
on the constrained set.

Equations (5.267) appear in another limit: if a system has a dissipative poten-
tial, D,

D = 1

2
μ(ai (q)q̇ i )2,

and the governing equations are

�L

�qi
− d

dt

�L

�q̇ i
= μ(ak(q)q̇k)ai ,

then (5.267) correspond to the limit of infinite dissipation, μ → ∞. Justification
of this statement is beyond the scope of this book (see further details in [149–152,
252]).

Example 9. Pendulum with vibrating suspension point. Consider a pendulum the
suspension point of which is vibrating in a vertical direction. Lagrange function of
such a pendulum can be found in the same way as in Example 2 of Sect. 1.6. Instead
of (1.49) one has to use the equations

x (t) = l sin q (t) , y (t) = l cos q (t)+ a (t) ,

where a (t) is the given y-coordinate of the suspension point. We have

L = 1

2
ml2q̇2 − ml sin qq̇ȧ + mgl cos q. (5.268)

Here we keep only the terms depending on q (t) .

The “interaction term” between q̇ and ȧ can also be written as
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−ml sin qq̇ȧ = ml
d cos q

dt
ȧ = −ml cos qä + d

dt
ml cos qȧ.

The last term, as a full derivative, does not affect the governing equations, and can
be dropped. Thus,

L = 1

2
ml2q̇2 + ml (g − ä) cos q.

So, the vibration of the suspension point results in the change of gravity acceleration,
g, by the relative acceleration, g − ä. For our purposes, it will be more convenient
to work with the Lagrange function (5.268).

Let the suspension point oscillate very fast. That means that the function a (t)
can be written as a periodic function of an auxiliary variable, τ,

a = a (τ ) , τ = ωt

with a large parameter, ω. In physical terms, “large ω” means that ω is much greater
than the characteristic frequency of pendulum,

√
g/ l. By an appropriate scaling,

function a (τ ) may be viewed as a 2π -periodic function. Since the Lagrange func-
tion depends only on derivatives of a, one can set

〈a〉 ≡ 1

2π

2π∫

0

a (τ ) dτ = 0. (5.269)

The variable τ is called fast time.
We assume that the amplitude of oscillations is small and put

a = 1

ω
A (τ )

where A (τ ) is a smooth function of order unity. Then the velocity of the suspension
point is of order unity as well:

ȧ = Aτ (τ ) , Aτ (τ ) ≡ d A (τ )

dτ
, (5.270)

while acceleration is large:

ä = ωAττ (τ ) , Aττ (τ ) ≡ d2 A (τ )

dτ 2
.

If we plug (5.270) in the action functional, we obtain a problem with a large pa-
rameter, ω, and we are going to investigate it by the variational-asymptotic method.
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Our starting point is the assumption that the large parameter, ω, enters in function
q (t) through fast time, τ, i.e.,

q = q (t, τ )

and, the dependence of q (t, τ ) on τ is periodic. Function q (t, τ ) may also depend
on a small parameter, 1/ω, but we do not emphasize this in our notation.

So,

q̇ = qt + ωqτ , qt ≡ �q (t, τ )

�t
, qτ ≡ �q (t, τ )

�τ
. (5.271)

Plugging (5.271) in (5.268) we obtain

1

ml
L = 1

2
l (qt + ωqτ )2 − sin q (qt + ωqτ ) Aτ + g cos q. (5.272)

To compute the action functional, we have to integrate over time the function of
two variables, t and τ = ωt :

I =
t1∫

t0

L dt.

For any function of two variables, ϕ (t, ωt) , for large ω,

t1∫

t0

ϕ (t, ωt) dt ≈
t1∫

t0

〈ϕ〉 dt

where 〈·〉 is the average over τ (5.269). Therefore,

I =
t1∫

t0

〈L〉 dt. (5.273)

For ω→∞, the leading term of the Lagrange function (5.272) is

1

ml
L = 1

2
lω2q2

τ .

Hence, in the first approximation we have to minimize

ml2ω2

2

〈
q2

τ

〉
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over all periodic functions. The minimum is reached on the functions not depending
on τ, q̄ (t) . We fix a function, q̄ (t) , and seek the next approximation,

q = q̄ (t)+ q ′ (t, τ ) ,

where q ′ is much smaller that q̄ . Emphasize that we do not yet know the order of q ′

and are going to find it. In the first approximation,

qt = q̄t , qτ = q ′τ ≡
�q ′ (t, τ )

�τ
, (5.274)

because �q ′ (t, τ ) /�t is small compared to q̄t . Plugging (5.274) in (5.272) we have

1

ml
L = 1

2
l
(
q̄t + ωq ′τ

)2 − sin
(
q̄ + q ′

) (
q̄t + ωq ′τ

)
Aτ + g cos

(
q̄ + q ′

)
.

Since sin
(
q̄ + q ′

) ≈ sin q̄ + q ′ cos q̄, cos
(
q̄ + q ′

) = cos q̄ − q ′ sin q̄, the leading
terms of the Lagrange function are

1

ml
L = 1

2
lq̄2

t + lq̄tωq ′τ +
1

2
lω2q ′2τ

− sin q̄q̄t Aτ + g cos q̄ − ω sin q̄ Aτ q ′τ . (5.275)

We dropped the interaction terms between q̄ and q ′, cos q̄q̄t q ′Aτ , cos q̄q̄τ q ′Aτ ,

and g sin q̄q ′, which are small in comparison with the leading interaction term
ω sin q̄ Aτ q ′τ , and the term cos q̄q ′q ′τ Aτ , which is small compared with the third
term. The average over τ of the second and the fourth term in (5.275) is equal to
zero due to periodicity of A and q ′. So, to find q ′ we have to minimize the functional

〈
1

2
lω2q ′2τ − ω sin q̄ Aτ q ′τ

〉

over all periodic functions q ′. This functional can be written as

〈
1

2
lω2

(
q ′τ −

1

lω
sin q̄ Aτ

)2
〉
− 1

2l
sin2 q̄

〈
A2

τ

〉
.

Hence,

q ′τ =
1

lω
sin q̄ Aτ ,

and the minimum value of the functional is

−g∗ sin2 q̄, g∗ ≡ 1

2l

〈
A2

τ

〉
.
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Fig. 5.29 Graphs of function
1− cos q̄ + k sin2 q̄ for
k = π/2 and k = π/10

Finally,

1

ml
〈L〉 = 1

2
lq̄2

t + g cos q̄ − g∗ sin2 q̄. (5.276)

This is the “effective” Lagrange function of the pendulum. The fast vibration
of the suspension point results in the change of the gravitation potential energy
g (1− cos q̄) by an effective potential energy, g

(
1− cos q̄ + k sin2 q̄

)
, k = g∗/g.

The graph of this potential energy is shown in Fig. 5.29. For small k, the vibrations
are qualitatively similar to vibrations of the usual pendulum, for large k the behavior
changes: the potential energy gets an additional local minimum at q̄ = π, i.e. the
upper equilibrium position of the pendulum becomes stable19.

Example 10. Whitham’s method. Consider a linear homogeneous differential equa-
tion with partial derivatives:

P

(
�

�t
,

�

�x

)
u = 0, (5.277)

where P (r, s) is a polynomial of r, s. This equation always has a solution of the
form

u = aei(kx−ωt), (5.278)

where a, k, ω are some possibly complex constants. For the function aei(kx−ωt) to
be the solution of (5.277), it is necessary and sufficient for k and ω to satisfy the
polynomial equation

P (−iω, ik) = 0. (5.279)

19 Mathematical justifications and a review can be found in papers by V.I. Yudovich [325] and
V. Vladimirov [302].
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Solutions of the type (5.278) are called harmonic waves, a the amplitude, k the
wave number, ω the frequency, θ = kx − ωt the phase (for Im a = 0), and (5.279)
the dispersion equation. Harmonic waves are fundamental to the theory of linear
equations (5.277), particularly due to the fact that any solution of (5.277) can be
presented as a superposition of harmonic waves. The dispersion equation contains
all the information about the differential equation and can be used to reconstruct
uniquely the differential operator.

The following question arises: what is the analogy of the harmonic waves and
the dispersion equation for the non-linear case?

It turns out that the non-linear generalization of the harmonic wave type solu-
tions is

u = ψ (a, θ ) , (5.280)

where a, θ are some functions of x, t ,

a = a(x, t), θ = θ (x, t),

and ψ (a, θ ) is a periodic (with a period of 2π ) function of θ . Besides, the character-
istic lengths of functions a(x, t), θ,x (x, t), θ,t (x, t) are much greater20 than that of
θ (x, t). The functions a(x, t) corresponds to the amplitude, θ,x to the wave number,
and θ,t to the frequency.

Now we construct the equations to determine the functions ψ , a, and θ , if the
governing equation (5.277) is Euler equation of some functional. More specifically,
we take (5.277) as the Euler equation of the functional

∫

�

L(u, ux , ut )dxdt (5.281)

and look for the solutions of this equation of the form

u = ψ (θ, x, t) , (5.282)

where θ is some function of x and t , ψ is a periodic (with a period of 2π ) function
of θ and the characteristic lengths L and T for change of the functions θ,x , θ,t and
ψ (θ, x, t)|θ=const over x and t are much greater than the characteristic lengths, l and
τ, of the phase θ .

The lengths l and τ can be thought of as the largest constants in the inequalities

∣∣θ,x

∣∣ ≤ 2π

l
,

∣∣θ,t

∣∣ ≤ 2π

τ
. (5.283)

20 For harmonic waves, the quantities a, θ,x , θ,t are constant. Therefore, their corresponding char-
acteristic lengths are infinite.
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The definition of l and τ implies the meaning of the function θ as of oscillation
phase: the phase increases on 2π on the lengths of the order of l and the time of the
order of the oscillation period, τ .

The lengths l̄ and τ̄ and the amplitude ψ̄ are defined as the largest constants in
the inequalities

∣∣θ,xx

∣∣ ≤ 2π

ll̄
,

∣∣θ,xt

∣∣ ≤ 2π

l τ̄
,

∣∣θ,xt

∣∣ ≤ 2π

τ l̄
,

∣∣θ,t t

∣∣ ≤ 2π

τ τ̄
,

|�xψ | ≤ ψ̄

l̄
, |�tψ | ≤ ψ̄

τ̄
,

∣∣ψ,θ

∣∣ ≤ ψ̄, (5.284)

where �xψ and �tψ are the partial derivatives, �ψ/�x and �ψ/�t, when θ is kept
constant.

So, the problem contains two small parameters, l/ l̄ and τ/τ̄ .
Let us find the derivatives u,x , and u,t ,

u,x = �xψ + ψ,θ θ,x , u,t = �tψ + ψ,θ θ,t .

Due to the estimates (5.283) and (5.284), in the first approximation

u,x = ψ,θ θ,x , u,t = ψ,θ θ,t .

Keeping only the leading terms in the functional, we obtain

∫ ∫

�

L
(
ψ,ψ,θ θx , ψ,θ θt

)
dxdt. (5.285)

Let us cover the region � by the strips, 2πk ≤ θ ≤ 2π (k + 1) , k = 0, 1, 2, . . . .
The integral over � can be replaced by the sum of integrals over the strips,

∫ ∫

�

Ldxdt =
∑
strips

∫ ∫
L(ψ,ψθθx , ψθθt )κdθdζ, (5.286)

where ζ is the coordinate along the lines θ = const, κ is the Jacobian of the trans-
formation from the variables x, t to the variables θ, ζ . In the first approximation,
since θ,x and θ,t change slowly, we may assume that on every strip θ,x , θ,t do not
depend on θ . Therefore, in the first step of the variational-asymptotic method we
obtain the same problem for every strip: find the stationary points of the functional

2π∫

0

L
(
ψ,ψθθ,x , ψθθ,t

)
dθ (5.287)
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on the set of periodic functions ψ (θ ). Here θ,x and θ,t should be considered as
constant parameters. The Euler equation of the functional (5.287) is an ordinary
differential equation of the second order. Its solution has two arbitrary constants.
One is defined by the periodicity condition21 ψ (0) = ψ (2π ). The other can be
linked to the amplitude a, for example, by the equation max |ψ | = a. Hence, the
set M0 in the general scheme of the variational-asymptotic method is the set of
functions a (x, t) and θ (x, t).

Denote the value of the functional (5.287) at its stationary point by 2π L̄ . The
quantity L̄ is a function of parameters a, θx , θt . For small values l/ l̄ and τ/τ̄ , the
sum (5.286) is an integral sum. In the limit l/l̄, τ/τ̄ → 0, it can be approximated
by the integral

∫ ∫

�

L̄
(
a, θ,x , θ,t

)
dxdt. (5.288)

Then the equations to determine a and θ are obviously the Euler equations of the
functional (5.288):

�L̄

�a
= 0,

�

�x

�L̄

�θx
+ �

�t

�L̄

�θt
= 0.

A more detailed analysis shows that the first of these equations can be interpreted
as a non-linear generalization of the dispersion equation. It becomes the dispersion
equation of the linear theory in the limit of a → 0. An interesting property of the
non-linear dispersion equation is its dependence on the amplitude, which is absent
in the linear case.

The generalizations to the case of a large number of required functions and inde-
pendent arguments are straightforward.

The theory described was suggested by Whitham [316] from some heuristic rea-
soning.

Example 11. Thin region approximations. Such type of approximations appears
in many areas of continuum mechanics. It will be discussed in detail further in Chap-
ters 14 and 15 for elastic plates, shells and beams. Here we consider an example.

Let V be a bounded region in three-dimensional space, and S a closed smooth
surface inside V . At each point of S a normal segment is erected of a small length h
with the center on S. The segments cover a thin layer �B (Fig. 5.30).

Consider the variational problem

I (u) =
∫

V

1

2
u,i u

,i dV −
∫

�B
ρudV → min

u:u=o on �V
.

21 It is assumed that the periodic solutions exist.
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Fig. 5.30 Notation for
example 11.

We assume that function ρ is constant along the normal to S and, thus, determines
by its values on S. We are going to find the limit solution as h → 0, if ρ tends to
infinity as

ρ = σ

h

where σ is a function on S.

Denote by u+ and u− the values of u on the two sides of �B. Let us seek min-
imum of the functional I (u) in two steps, first minimizing I (u) over all u with the
prescribed values of u+ and u−, and then minimizing over u+,u−. We split I (u) into
the sum of two functionals,

I (u) = I1(u)+ I2(u),

I1(u) =
∫

V−�B

1

2
u,i u

,i dV,

I2(u) =
∫

�B

(
1

2
u,i u

,i − ρu

)
dV .

For given u+ and u− these functionals can be minimized separately. We consider
first the minimization of the functional I2.

We make an assumption that it is enough to consider only smooth functions
u+,u− with the characteristic length l that is much bigger than h. Moreover,
the minimizer of I2 has the same characteristic length along S as u+ and u−.
Then in the first term of the integrand, 1/2u,i u,i , the derivatives along S can be
neglected in comparison with the derivative along the normal, which is of the
order 1/h.

Denote the coordinate along the normal by z,−h/2 � z � h/2. Then in the
leading approximation the variational problem for I2 is
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∫

S

∫ h/2

−h/2

[
1

2

(
�u

�z

)2

− σ

h
u

]
dz→ min

u=u− at z=−h/2
u=u+ at z=h/2

.

The minimizer obeys the boundary value problem

�2u

�z2
= −σ

h
, u = u− at z = −h/2, u = u+ at z = h/2.

Thus,

u = u+ + u−
2

+ u+ − u−
h

z − σ

2h

(
z2 − h2

4

)
,

and the minimum value of the functional is

Ǐ2 =
∫

S

[
(u+ − u−)2

2h
− σ

u+ + u−
2

− σ 2

24
h

]
d A. (5.289)

The last term in (5.289), being an additive constant, can be dropped.
The minimum value of the functional I1 with the prescribed boundary values of

u, u+ and u−, is finite when h → 0. So, in minimization over u+, u−, the leading
term of the functional as h→ 0 is the first term in (5.289),

1

2h

∫

S
(u+ − u−)2 d A.

The minimum is zero and achieved when u+ = u−.
Finally, the original variational problem reduces in the leading approximation to

the minimization problem for the functional,

∫

S

1

2
u,i u

,i dV −
∫

S
σud A, (5.290)

where minimum is sought over all functions u that are continuous on S and vanish
on �V .

An important consequence follows from this statement. The minimizer of the
original problem can be written in terms of Greens’s function (see Sect. 5.9),

u(x) =
∫

�B
G(x, y)ρ(y)dVy .

As h → 0, this integral converges to

u(x) =
∫

S
G(x, y)σ (y)d A.
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This must be the minimizer of the variational problem (5.290). On the other hand,
the minimizer of the (5.290) obeys the equation on S

[
u,i
]

ni = −σ.

We arrive at a well-known property of Green’s function:

[∫

S

�G(x, y)

�xi
σ (y)d A

]
ni = −σ (x).

Now let us move on to the construction of the next approximations. In physical
applications, they are usually referred to as the refined theories. Refined theories
are needed in cases when the first approximation is too crude; this can happen if
the actual values of the small parameter ε are not sufficiently small. The method of
constructing the refined theories consists of two steps: First, a functional is derived
which allows one to obtain the corrections to the solution of the next order of mag-
nitude. Second, this refined functional is extrapolated to all, even not small, values
of ε.

Usually, to construct a refined theory which takes into account the corrections on
the order of α (ε), one should keep in the functional all the terms on the order of
α (ε) compared to unity. We illustrate this statement by the minimization problem
for quadratic functional

I (u, ε) = E (u, ε)− l (u, ε) ,

where E(u, ε) is obtained from a positive symmetric bilinear form E(u, v, ε)

E(u, ε) = E(u, u, ε)

and

E (u, v, ε) = E0 (u, v)+ α (ε) E1 (u, v)+ α′ (ε) E2 (u, v)+ . . .

l (u, v) = l0 (u)+ α (ε) l1 (u)+ α′ (ε) l2 (u)+ . . . , α′ = o (α) , α (ε)→ 0 as ε→ 0.

The functional is minimized on a linear space M. The limit bilinear form E0 (u, v)
is obviously positive. The first approximation u0 is the minimum point of the
functional I0 = E0 (u, u)− l0 (u). The element u0 satisfies the Euler equation

2E0 (u0, ū)− l (ū) = 0. (5.291)

Equation (5.291) is valid for any element ū ∈M.
Let us present u as u = u0+u′. Keeping the leading terms containing u′ in I (u, ε)

and using the equality 2E0
(
u0, u′

) − l
(
u′
) = 0, which follows from (5.291), we

obtain for determining u′ the minimization problem
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I1
(
u0, u′, ε

) = E0
(
u′, u′

)+ α (ε) E1
(
u0, u′

)− α (ε) l1
(
u′
)→ minu′ .

After the substitution u′ → w: u′ = α (ε) w, it becomes the minimization problem
for the functional

α′−2 I1 = E0 (w,w)− 2E1 (u0, w)− l1 (w) ,

which does not depend on small parameter ε. Therefore, u′ ∼ α (ε), and, to incor-
porate the corrections of the order α (ε), all terms of the functional of the functional
of the order α (ε) should be kept.

The construction of refined theories will be considered in detail in Chap. 14
where the problem of the refinement of the classical shell theory is discussed.

So far, in all cases the functional I0 (u) had the stationary points. It remains to
discuss the cases when the functional I0 (u) does not have stationary points or it is
meaningless.

Case 3: I0 (u) does not have the stationary points or I0 (u) meaningless
Such a case is not unusual. For example, the function of one variable

f (u, ε) = u + εu2 + sin εu, (5.292)

is such a case, because f0 (u) does not have stationary points.
Another example is the minimization problem for the functional

∞∫

ε

1

r

(
u2 + u2

,r

)
dr (5.293)

on the set of functions u (r ) which are equal to 1 for r = ε. This variational problem
arises in the modeling of incompressible flow along an axis-symmetric thin body.
The integral (5.293) diverges for ε = 0.

The boundary layer problems also usually belong to this case.
In general, there are no recipes for these cases, except, probably, for the following

one: an attempt should be made to reduce these problems to the problems of the type
considered earlier by means of a change of the required functions or some other
transformations. For example, for the function (5.292), the substitution: u → v :
εu = v, f → g : ε f = g, yields the function

g(v, ε) = v + v2 + ε sin v

which may be studied by the method which has been discussed.
As for the boundary layer problems, the applications of the variational methods

are not sufficiently elementary to be presented in an introductory treatment of the
subject (the interested reader is referred to [30]).
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5.12 Variational Problems and Functional Integrals

In some variational problems, minimization can be replaced by integration. This is
a useful trick in studying the stochastic variational problems as will be discussed in
Chap. 16. Here we explain the relation between minimization and integration.

First, we need a number of auxiliary facts. Consider in some finite-dimensional
space, Rm, a quadratic form,

(Au, u) = Ai j u
i u j . (5.294)

The form is assumed to be positive:

(Au, u) > 0 if u �= 0.

Then the Gauss formula holds true:

∫

Rm

e−
1
2 (Au,u)du = 1√

det A
. (5.295)

Here

det A ≡ det
∥∥Ai j

∥∥ , du = du1√
2π

. . .
dum√

2π
.

The Gauss formula can be proved by changing the variables, u → ů,

ui = λi
j ů

j , det
∥∥λi

j

∥∥ = 1,

ů j being the coordinates in which the tensor Ai j is diagonal,

(Au, u) = Ai jλ
i
i ′λ

j
j ′ ů
′i ů′ j = A1

(
ů1
)2 + . . .+ Am

(
ům
)2

. (5.296)

In the new variables,

∫

Rm

e−
1
2 (Au,u)du =

∫

Rm

e
− 1

2

(
A1(ů1)2+...+Am (ům )2

)
dů

= 1√
A1 . . . Am

= 1√
det A

.
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Here we used that22

+∞∫

−∞
e−

1
2 x2

dx =
√

2π. (5.297)

The Gauss formula admits the following generalization: for any linear function
of u, (l, u) = li ui ,

√
det A

∫

Rm

e−
1
2 (Au,u)+(l,u)du = e

1
2 (A−1l,l) (5.298)

where A−1 is the inverse matrix to the matrix A. Formula (5.298) follows from
(5.295) and the identity

1

2
(Au, u)− (l, u) = 1

2

(
A
(
u − A−1l

)
,
(
u − A−1l

))− 1

2

(
A−1l, l

)
. (5.299)

Plugging (5.299) in (5.298), changing the variables of integration, u → u+A−1l,
and using (5.295), we obtain the right hand side of (5.298).

Consider a quadratic function of a finite number of variables:

I (u) = 1

2
(Au, u)− (l, u) , (5.300)

(Au, u) = Ai j u
i u j , (l, u) = li u

i . (5.301)

The minimum value of this function is

Ǐ = −1

2

(
A−1l, l

)
(5.302)

and therefore, formula (5.298) can also be written as

e
−min

u
I (u) =

√
det A

∫
e−I (u)du. (5.303)

22 Note a witty trick suggested by Poisson to find the value of the integral (5.297):
⎛
⎝
+∞∫

−∞
e−

1
2 x2

dx

⎞
⎠

2

=
+∞∫

−∞
e−

1
2 x2

dx

+∞∫

−∞
e−

1
2 y2

dy =
+∞∫

−∞

+∞∫

−∞
e−

1
2 x2

e−
1
2 y2

dxdy

=
+∞∫

−∞

+∞∫

−∞
e−

1
2 (x2+y2)dxdy =

+∞∫

0

2π∫

0

e−
1
2 r2

rdrdθ = 2π

+∞∫

0

e−
1
2 r2

d
1

2
r2 = 2π.
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We see that the computation of the minimum value is reduced to integration.
Since any quadratic functional in variational problems of continuum mechanics
admits a finite-dimensional truncation, one can write formula (5.303) for a finite-
dimensional truncation, and then consider the limit when the dimension of the trun-
cation tends to infinity. In the limit, in the right hand side of (5.303) we obtain what
is called the functional integral. We include

√
det A in the definition of the “volume

element” in the functional space,

DAu =
√

det Adu (5.304)

and write (5.303) as

e
min

u
I (u) =

∫
e−I (u)DAu. (5.305)

The notation, DAu, emphasizes that the volume element depends on the operator A.

We will need various generalizations of (5.305) involving non-positive quadratic
functionals and complex-valued functionals. We consider them first in the one-
dimensional case.

Formula (5.298) in one-dimensional case,

√
A

+∞∫

−∞
e−

1
2 Ax2+lx dx√

2π
= e

1
2

l2

A , (5.306)

remains valid if the number l is complex. Indeed, the integral (5.306) may be con-
sidered as an integral in the complex z-plane, z = x + iy, along the real axis,

√
A

+∞∫

−∞
e−

1
2 Az2+lz dz√

2π
.

The change of variable, z → z1, z = z1 + A−1l, transforms this integral into the
integral over the line in z1-plane, −∞ < x <∞, y = y∗ ≡ − Im

(
A−1l

)
:

√
A

+∞∫

−∞
e−

1
2 Az2+lz dz√

2π
=
√

A

+∞+iy∗∫

−∞+iy∗

e−
1
2 Az2

1
dz1√

2π
e

l2

2A . (5.307)

The integral of exp
[− 1

2 Az2
]

over the line [−∞+ iy∗,+∞+ iy∗] is equal
to the integral over the real axis [−∞,+∞] . Indeed, compare the integrals of
exp

[− 1
2 Az2

]
over the segments BC and AD (Fig. 5.31). Since the integral of an

analytic function, exp
[− 1

2 Az2
]

over a closed contour ABCD is zero, the difference
of these integrals is equal to the sum of integrals of exp

[− 1
2 Az2

]
of the segments
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Fig. 5.31 To the proof of
(5.306) for complex l

AB and C D. The latter tend to zero as these segments are moved to infinity because∣∣∣e− 1
2 Az2

∣∣∣ on these segments tends to zero. Hence, the right hand side of (5.307) is

equal to exp
[

1
2A l2

]
, and (5.306) holds true.

Two forms of (5.306) will be needed further: one is obtained by replacing l by il
(with real l):

√
A

+∞∫

−∞
e−

1
2 Ax2+ilx dx√

2π
= e−

1
2A l2

(5.308)

and another by replacing l by i
√

zl with real l and any complex number z:

√
A

+∞∫

−∞
e−

1
2 Ax2+i

√
zlx dx√

2π
= e−z 1

2A l2
, (5.309)

In this and all further formulas the argument of a complex number, z = |z| eiθ , is
constrained by the condition−π ≤ θ ≤ π, and the square root of a complex number
is understood as

√
z = |z|1/2 eiθ/2. In particular, if z lies in the right half-plane,

Re z ≥ 0, then Re
√

z ≥ 0.

A useful form of (5.304) is obtained if we change the variable of integration,
x → v : v = i x and integrate over the imaginary axes, [−i∞,+i∞]:

√
A

+i∞∫

−i∞
e

1
2 Av2+√zlv dv√

2π i
= e−z 1

2A l2
. (5.310)

Changing l by −l, one can also write (5.310) in the form

√
A

+i∞∫

−i∞
e

1
2 Av2−√zlv dv√

2π i
= e−z 1

2A l2
. (5.311)

For Re z > 0, one can put (5.311) in the form
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√
Az

+i∞∫

−i∞
ez( 1

2 Av2−lv) dv√
2π i
= e−z 1

2A l2
. (5.312)

To prove (5.312) we get rid of the linear term in the exponent by making the
change, v → v + l

A . The line of integration can be moved back to imaginary axes
similarly to the move of the line of integration in proving (5.306). It remains to show
that

√
Az

+i∞∫

−i∞
e

1
2 z Av2 dv√

2π i
= 1 (5.313)

for complex z, Re z > 0. Denote Argz by θ ; |θ | < π/2 since Re z > 0. Let us
make the change of variables, v→ w = ξ + iη : w = v

√
z. The line of integration

in w-plane is the line passing through the points A, B shown in Fig. 5.32; denote it
by L . We have

√
Az

+i∞∫

−i∞
e

1
2 z Av2 dv√

2π i
=
√

A
∫

L

e
1
2 Aw2 dw√

2π i
. (5.314)

The integral over the segment C B is estimated as

Fig. 5.32 To the proof
(5.313)
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∣∣∣∣∣∣

∫

C B

e
1
2 A(ξ 2−η2+2iξη)dξ

∣∣∣∣∣∣
≤ e−

1
2 Aη2

η tan(θ/2)∫

0

e
1
2 Aξ 2

dη ≤

≤ ηe−
1
2 A(η2−η2 tan2(θ/2)). (5.315)

Since |tan (θ/2)| < 1, the right hand side of (5.315) tends to zero as the segment
C B moves to infinity. Similarly, the integral over AD tends to zero as well. Thus,
integral over L in (5.314) can be replaced by integral over the imaginary axis, and
we arrive at (5.313).

It is essential for what follows that z in (5.312) can also be taken as pure imagi-
nary: Re z = 0, z �= 0. For pure imaginary z the integral (5.312) does not converge
absolutely and needs to be defined. We define it as the following limit:

√
Az

+i∞∫

−i∞
ez( 1

2 Av2−lv) dv√
2π i
= lim

ε→+0

√
A(z + ε)

+i∞∫

−i∞
e(z+ε)( 1

2 Av2−lv) dv√
2π i

.

Since

lim
ε→+0

√
A(z + ε)

+i∞∫

−i∞
e(z+ε)( 1

2 Av2−lv) dv√
2π i
= lim

ε→+0
e−(z+ε) 1

2A l2 = e−z 1
2A l2

,

we see that (5.312) holds for pure imaginary z as well.23

If Re z < 0, then (5.312) can be replaced by the equation

√−Az

+∞∫

−∞
ez( 1

2 Au2−lu) du√
2π
= e−z 1

2A l2
,

where integration is conducted over real u. This equation follows from (5.312) by
changing the integration variable v→ u : v = iu, and replacing l → il, z→−z.

23 Putting in (5.312) A = 1, l = 0, z = i, v = i x we obtain

√
i

+∞∫

−∞
e−i 1

2 x2 dx√
2π
= 1,

which yields the well-known relations

+∞∫

−∞
cos

1

2
x2dx = √π,

+∞∫

−∞
sin

1

2
x2dx = √π.
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Another useful form of (5.312) is obtained if we replace z by 1/z (Re z−1 ≥ 0 if
Re z ≥ 0, so such a replacement is legitimate) and l by lz :

√
1

z
A

+i∞∫

−i∞
e

1
2z Av2−lv dv√

2π i
= e−z 1

2A l2
. (5.316)

The finite-dimensional forms of (5.308), (5.309), (5.310), (5.311), (5.312) and
(5.316) are:

√
det A

∫

Rm

e−
1
2 (Au,u)+i(l,u)du = e−

1
2 (A−1l,l), (5.317)

√
det A

∫

Rm

e−
1
2 (Au,u)+i

√
z(l,u)du = e−

1
2 z(A−1l,l), (5.318)

√
det A

+i∞∫

−i∞
e

1
2 (Av,v)+√z(l,v)dv = e−

1
2 z(A−1l,l), (5.319)

√
det A

+i∞∫

−i∞
e

1
2 (Av,v)−√z(l,v)dv = e−

1
2 z(A−1l,l), (5.320)

√
zm det A

+i∞∫

−i∞
ez( 1

2 (Av,v)−(l,v))dv = e−
1
2 z(A−1l,l), (5.321)

√
1

zm
det A

+i∞∫

−i∞
e

1
2z (Av,v)−(l,v)dv = e−

1
2 z(A−1l,l). (5.322)

For brevity, the imaginary unity is included in the “volume element”:

dv = dv1√
2π i

dv2√
2π i

. . .
dvm√
2π i

.

These relations are proved by transforming the coordinates to the principal coor-
dinates of the tensor Ai j .

For Re z < 0, the similar relation is

√
(−z)m det A

∞∫

∞
ez( 1

2 (Av,v)−(l,v))dv = e−
1
2 z(A−1l,l). (5.323)
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Tending the dimension to infinity, we find the following formulas linking the
minimum values of quadratic functionals with integration in functional spaces: for
arbitrary z,

e
min

u
I (u) =

∫
e−

1
2 (Au,u)+i(l,u)DAu, (5.324)

e
z min

u
I (u) =

∫
e−

1
2 (Au,u)+i

√
z(l,u)DAu, (5.325)

e
z min

u
I (u) =

+i∞∫

−i∞
e

1
2 (Av,v)+√z(l,v)DAv, (5.326)

for Re z > 0,

e
z min

u
I (u) =

+i∞∫

−i∞
ez[ 1

2 (Av,v)−(l,v)]Dz Av =
+i∞∫

−i∞
ezI (v)Dz Av, (5.327)

e
z min

u
I (u) =

+i∞∫

−i∞
e

1
2z (Av,v)−(l,v)D 1

z Av, (5.328)

for Re z < 0,

e
z min

u
I (u) =

∞∫

−∞
ez[ 1

2 (Au,u)−(l,v)]D−z Au =
∞∫

−∞
ezI (u)D−z Au. (5.329)

In (5.327), (5.328) and (5.329) the parameter, z, is also included in the volume
element: for m−dimensional truncation,

Dz Av = √zm det Adv,D 1
z Av = √z−m det Adv,D−z Au =

√
(−z)m det Adu.

In the right hand sides of (5.324)-(5.328) l can be replaced by −l because the left
hand sides remain the same for such change.

Let now the functional (Au, u) be non-convex, i.e. it can take negative values for
some u. Formula (5.327) still holds if we assume that (Au, u) is a non-degenerated
functional ( i.e. (Au, u) �= 0 for any u �= 0), and, thus, the functional I (u) =
1
2 (Au, u) − (l, u) has a unique stationary point. Then, denoting by S.V.I (u)24 the

24 S.V. stands for stationary value.
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value of I (u) at the stationary point and admitting in (5.327) only pure imaginary z
we get

ezS.V.I (u) =
+i∞∫

−i∞
ezI (v)Dz Av. (5.330)

The usefulness of such relations will be illustrated in Vol. 2.

5.13 Miscellaneous

In this section we collect some simple facts which help in working with variational
problems.

Euler equations in curvilinear coordinates. In physical problems, the action func-
tional is invariant with respect to the choice of coordinate system. This allows one
to write easily the equations for the minimizer in curvilinear coordinates. We illus-
trate that by the following example. Let x, y be Cartesian coordinates. Consider the
functional of functions of two variables, u(x, y),

I (u) = 1

2

∫

V

((
�u

�x

)2

+
(

�u

�y

)2
)

dxdy. (5.331)

The Euler equation of this functional is Laplace’s equation,

� u = 0.

We wish to write this equation in polar coordinates, r, θ. To this end, we rewrite
the functional in polar coordinates. Since

(
�u

�x

)2

+
(

�u

�y

)2

=
(

�u

�r

)2

+
(

1

r

�u

�θ

)2

, dxdy = rdrdθ,

we have

I (u) = 1

2

∫

V

(
r

(
�u

�r

)2

+ 1

r

(
�u

�θ

)2
)

drdθ.

This functional must be stationary with respect to u(r, θ ) at the minimizer. Thus,

�

�r
r

�u

�r
+ �

�θ

1

r

�u

�θ
= 0.
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This is the equation required. Derivation in other cases is similar.

Evenness and oddness of the minimizer. Let the admissible functions of a varia-
tional problem be defined in a symmetric domain V , i.e. the domain, which contains
with each point x the point −x . Then one can introduce the notion of evenness and
oddness: function u(x) is even if

u(−x) = u(x),

and odd if

u(−x) = −u(x).

Each function may be uniquely presented as a sum of an even and an odd func-
tions:

u(x) = u′(x)+ u′′(x), u′(−x) = −u′(x), u′′(−x) = u′′(x). (5.332)

Indeed, u′(x) and u′′(x) can be found uniquely in terms of u(x) from (5.332):

u′(x) = 1

2
(u(x)− u(−x)), u′′(x) = 1

2
(u(x)+ u(x)).

If the functional I (u) splits in the sum of functionals I (u′) + I (u′′) and the con-
straints on admissible functions can be formulated as constraints to their odd and
even parts, then the entire variational problem splits into two independent simpler
problems for u′(x) and u′′(x). For example, if the region, V , in (5.331) is symmetric,
then

I (u) = I (u′)+ I (u′′),

because ∇u′ and ∇u′′ are even and odd vector fields, respectively,25 therefore∫ ∇u′∇u′′dxdy = 0. If the boundary values of u are prescribed, and they are even,
then the boundary values of u′ are zero, and minimization over u′ yields u′ = 0. So,
it is enough to perform minimization only over even functions. Similar arguments
hold if the region is symmetric only with respect to one variable.

Divergence terms. If Lagrangian contains a divergence term, e.g.,

L

(
u,

�u

�xi

)
= L0

(
u,

�u

�xi

)
+ �

�xi
Pi

(
u,

�u

�xi

)
,

then this term does not contribute to Euler equation. That follows from the diver-
gence theorem,

25 I.e. ∇u′
∣∣
−x
= ∇u′

∣∣
x

and ∇u′′
∣∣
−x
= − ∇u′′

∣∣
x
.
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∫

V
L

(
u,

�u

�xi

)
dV =

∫

V
L0

(
u,

�u

�xi

)
dV +

∫

�V
Pi

(
u,

�u

�xi

)
ni d A.

We see that the divergence term contributes only to the boundary conditions.

Derivative of minimum value with respect to parameter. Consider a variational
problem, the functional of which depends on a parameter, r :

Ǐ = min
u

I (u, r ).

The minimizer, ǔ, depends on the parameter, ǔ = ǔ(r ), and so does the minimum
value: Ǐ = I (ǔ(r ), r ). The following formula holds true:

d Ǐ

dr
= �I (u, r )

�r

∣∣∣∣
u=ǔ(r )

. (5.333)

The proof is simple:

d I (ǔ(r ), r )

dr
=
(

δ I

δu

∣∣∣∣
u=ǔ(r )

,
dǔ(r )

dr

)
+ �I (u, r )

�r

∣∣∣∣
u=ǔ(r )

.

The first term in the right hand side is zero, because ǔ(r ) is the minimizer.

A modification of variational problems. Let the functional I (u, v) have a station-
ary point, u∗, v∗, and v∗ can be explicitly computed in terms of u∗ : v∗ = �(u∗),
where �(u∗) is a function or an operator. Then u∗ is a stationary point of the func-
tional

Ĩ (u) = I (u, �(u)). (5.334)

Indeed,

δ Ĩ (u) =
(

δ I (u, v)

δu

∣∣∣∣
v=�(u)

, δu

)
+
(

δ I (u, v)

δv

∣∣∣∣
v=�(u)

,
δ�(u)

δu
· δu

)
.

After substitution u = u∗ in the left hand side both terms vanish, thus δ Ĩ (u) = 0 as
claimed. Note that the substitution may result in appearance of additional stationary
points, for which δ I (u, v)/δv|v=�(u) �= 0. We will use this point in transformations
of variational principles of fluid mechanics.

Stationary points of complex-valued functionals and Cauchy-Riemann equa-
tions. Let S(v) be a complex-valued functional of complex-valued functions, v. We
denote their real and imaginary parts by S1, S2 and v1, v2 :

S = S1(v1, v2)+ i S2(v1, v2), v = v1 + iv2.
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Suppose that the functional S(v) is smooth, i.e. its variation, δS, is a linear functional
of δv, which we denote by

(
δS

δv
, δv

)
.

The scalar product (A, δv) is supposed to obey the two conditions: first, it is linear
with respect to both arguments on the set of complex numbers, i.e. for any complex
numbers, c1 and c2,

(c1 A1 + c2 A2, δv) = c1(A1, δv)+ c2(A2, δv),

(A, c1δv1 + c2δv2) = c1(A, δv1)+ c2(A, δv2);

second, if (A, δv) = 0 for any δv, then A = 0. Therefore, if the equation

(
δS

δv
, δv

)
= (A, δv)

holds for any δv, then

δS

δv
= A.

Under these assumptions the following generalized Cauchy-Riemann equations
hold:

δS1

δv1
= δS2

δv2
,

δS2

δv1
= −δS1

δv2
. (5.335)

Indeed, let us vary v1. Then variation of the functional S(v) is

(
δS1(v1, v2)

δv1
, δv1

)
+
(

i
δS2(v1, v2)

δv1
, δv1

)
.

On the other hand, since S is a functional of v, the same variation is

(
δS

δv
, δv

)
= (ξ + iη, δv1) ,

δS

δv
≡ ξ + iη,

where ξ and η are some real-valued operators. Equating both expressions and using
arbitrariness of variations, we obtain the relations,

δS1

δv1
= ξ,

δS2

δv1
= η.

Similarly, if we vary v2, we have for the variation of S(v)
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(
δS1(v1, v2)

δv2
, δv2

)
+
(

i
δS2(v1, v2)

δv2
, δv2

)
.

This must be equal to

(
δS

δv
, δv

)
= (ξ + iη, iδv2) .

Hence,

δS1

δv2
= −η,

δS2

δv2
= ξ.

So we arrived at (5.335).
If S = S1+i S2 is a complex-valued functional of complex-valued functions, v =

v1 + iv2, then, varying v1 and v2, we obtain the system of Euler equations for the
stationary points:

δS1(v1, v2)

δv1
= 0,

δS2(v1, v2)

δv1
= 0,

δS1(v1, v2)

δv2
= 0,

δS2(v1, v2)

δv2
= 0.

At first glance we have four equations for two functions, v1 and v2. In fact,
however, due to (5.335), only two of these equations are independent. As such,
we can take the equations, obtained by varying only the real part of the functional,
S1(v1, v2) :

δS1(v1, v2)

δv1
= 0,

δS1(v1, v2)

δv2
= 0. (5.336)



Part II
Variational Features of Classical

Continuum Models

In continuum mechanics, many seemingly unrelated variational principles have been
invented. What follows is an attempt to present these variational principles system-
atically, point out their interrelations, and fill in some gaps. Usually, the variational
principles have several equivalent forms; the form depends on the choice of argu-
ments of the action functional. The initial formulation of the variational principles,
which directly follows from the principle of least action, employs the particle trajec-
tories x (X, t) as arguments of the action functional. Such a formulation is usually
convenient in mechanics of solids. As a rule, the problems of fluid mechanics are
better suited for being stated and investigated when the arguments of the action
functional are the functions of Eulerian coordinates. Such variational principles
are derived from initial “Lagrangian coordinate” formulations by the corresponding
change of sought functions. Further transformations are based on the idea of duality.
The chapters related to the mechanics of solids and to fluid mechanics can be read
independently.
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Chapter 6
Statics of a Geometrically Linear Elastic Body

6.1 Gibbs Principle

Gibbs principle. Equilibrium of elastic bodies is governed by Gibbs variational
principles. We will use as a starting point the second Gibbs principle. We assume
that the positions of the boundary particles are given at some part of the boundary,
�V̊u,

x (X ) = x(b) (X ) for X ∈ �V̊u, (6.1)

while on the remaining part of the boundary, �V̊ f , the surface forces, fi , are known.
Gibbs variational principle. Equilibrium states of elastic body correspond to the
minimum of the functional

I (x (X ) , S (X )) =
∫

V̊

ρ0U
(
xi

a, S
)

dV̊ −
∫

�V̊ f

fi x
i (X ) d Å (6.2)

on the set of all functions xi (Xa) obeying the boundary conditions (6.1) and func-
tions S (Xa) subject to the constraint

∫

V̊

ρ0SdV̊ = S0. (6.3)

Strictly speaking, Gibbs variational principle selects the stable equilibrium states.
There might be unstable equilibrium states which correspond to the stationary points
of the functional (6.2). Functional (6.2) is called energy functional.

Minimization with respect to entropy can be carried out explicitly by introducing
the Lagrange multiplier, T, for the constraint (6.3). One has to minimize over S the
functional

∫

V̊

ρ0U
(
xi

a, S
)

dV̊ − T

⎛
⎜⎝
∫

V̊

ρ0SdV̊ − S0

⎞
⎟⎠−

∫

�V̊ f

fi x
i (X ) d Å.

V.L. Berdichevsky, Variational Principles of Continuum Mechanics,
Interaction of Mechanics and Mathematics, DOI 10.1007/978-3-540-88467-5 6,
C© Springer-Verlag Berlin Heidelberg 2009
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Introducing free energy,

F
(
xi

a, T
) = min

S

[
U
(
xi

a, S
)− T S

]
, (6.4)

we have

min
S

I (x (X ) , S (X )) =
∫

V̊

ρ0 F
(
xi

a, T
)

dV̊ −
∫

�V̊ f

fi x
i (X ) d Å + T S0. (6.5)

The parameter T has the meaning of absolute temperature at which the equilib-
rium is achieved.

The functional (6.5) in which the additive constant T S0 is dropped will be de-
noted by I (x (X )). We arrived at the following version of Gibbs principle.
Gibbs variational principle. Equilibrium states of an elastic body correspond to
the minimum of the energy functional

I (x (X )) =
∫

V̊

ρ0 F
(
xi

a, T
)

dV̊ −
∫

�V̊ f

fi x
i (X ) d Å (6.6)

on the set of all functions xi (Xa) satisfying the boundary conditions (6.1).
Note that for inhomogeneous elastic bodies, internal energy and, correspond-

ingly, free energy depend explicitly on Lagrangian coordinates but, for brevity, they
are not mentioned explicitly among the arguments.

Free energy density F
(
xi

a, T
)

is invariant with respect to rigid rotation. There-

fore, the distortion enters into F only in combinations, εab = 1
2

(
gijx i

a x j
b − g̊ab

)
:

F = F (εab, T ) .

If the elastic material is also subject to the body forces with the force per unit
mass gi , then an additional term must be included in the energy functional

I (x (X )) =
∫

V̊

ρ0 F (εab, T ) dV̊ −
∫

V̊

ρ0gi x
i (X ) dV̊ −

∫

�V̊ f

fi x
i (X ) d Å. (6.7)

Geometrically linear deformation. By geometrically linear deformation one means
the case when the displacements

ui = xi
(
Xa
)− x̊ i

(
Xa
)

and their gradients are small. The gradients of displacements are dimensionless,
denote their order by ε. In geometrically linear theory one neglects the terms on the
order of ε in comparison with unity. This yields several simplifications. First, the
strain tensor becomes a linear function of the displacement gradients:



6.1 Gibbs Principle 287

εab = 1

2
(gab − g̊ab) = 1

2

(
gij

(
�x̊ i

�Xa
+ �ui

�Xa

)(
�x̊ j

�Xb
+ �u j

�Xb

)
− g̊ab

)
=

= 1

2
gij

(
x̊ i

a

�u j

�Xb
+ x̊ j

b

�ui

�Xa

)
. (6.8)

For Cartesian Eulerian coordinates coinciding with the Lagrangian coordinates in
the initial state, gij = δij, x̊ i

a = δi
a, and (6.8) becomes

εab = 1

2

(
�ua

�Xb
+ �ub

�Xa

)
. (6.9)

Second, the derivatives with respect to Eulerian coordinates and Lagrangian co-
ordinates coincide:

�

�Xa
= xi

a

�

�xi
=
(

x̊ i
a +

�ui

�Xa

)
�

�xi
= x̊ i

a

�

�xi
= �

�xa
.

Third, the components of tensors in Eulerian coordinates and the Lagrangian
coordinates coincide within the accuracy accepted because

xi
a = x̊ i

a +
�ui

�Xa
≈ x̊ i

a = δi
a .

Hence, only Eulerian indices can be used. In particularly, (6.9) will be written as

εij = 1

2

(
�ui

�x j
+ �u j

�xi

)
= u(i, j). (6.10)

Fourth, due to smallness of displacements, one does not need to distinguish the
initial region occupied by the body, V̊ , and the final region, V . Accordingly, the
regions of integration in the energy functional (6.7) can be taken coinciding with
the corresponding regions in the deformed state. Therefore, one can drop the index
0 in the region notation in (6.7). Fifth, the densities in the deformed and undeformed
states differ by terms of the order ε. Densities enter in all relations as factors at
small terms. Thus, distinguishing the initial and final densities would yield only
small corrections. Therefore, in linear theory densities in the initial and the deformed
states can be identified. Further we drop index 0 in ρ0 in (6.7) and assume that ρ is
the given initial density. We will include the factor ρ in free energy density, so in
what follows F means the free energy per unit volume. Besides, we will not mention
explicitly temperature as an argument of F. Finally, replacing in (6.7) the particle
positions, xi (Xa) , by the displacement vector, ui (x) , and dropping the additive
constants we obtain for the energy functional of elastic body in case of geometrically
linear deformation the following formula:
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I (u) =
∫

V

F
(
εij
)

dV − l (u) , (6.11)

l (u) =
∫

V

ρgi u
i dV +

∫

�V f

fi u
i d A.

Minimum of the energy functional is sought on the set of displacements which
have the prescribed values on �Vu :

ui (x) = u(b)
i on �Vu . (6.12)

Obviously, the minimum is achieved at the stress field,

σ i j = �F(εi j )

�εi j
,

satisfying the equations,

�σ i j

�x j
+ ρgi = 0 in V, σ i j n j = f i on �V f .

Without loss of generality, the energy density F may be assumed to possess the
properties:

F |εi j=0 = 0,
�F

�εi j

∣∣∣∣
εi j=0

= 0. (6.13)

If (6.13) were not held, one can replace F by F̃ = F − F0 − σ
i j
0 εi j , where F0 =

F |εi j=0 , σ
i j
0 = �F/�εi j

∣∣
εi j=0, and replace also gi and fi by gi = gi + σ

i j
0, j , f̃i =

fi − σ
i j
0 n j . However, such a replacement would change the physical meaning of

gi and fi as densities of the external body and surface forces. In what follows, we
prefer to keep this original meaning. A continuum model with the energy func-
tional (6.11) is called physically nonlinear and geometrically linear elastic body.
Physically and geometrically linear elastic body corresponds to quadratic function
F(εi j ).

Physical meaning of energy functional. If an elastic body is deformed by the pre-
scribed boundary displasments, then the energy functional coincides with the free
energy of the body, and its minimum value is the free energy at equilibrium. If
the prescribed boundary displacements are zero, and the body is deformed by an
external force, then, in linear theory, according to the Clapeyron theorem (5.46),
the minimum value of the functional is equal to negative energy. If the body is
deformed by both the prescribed non-zero displacements and external forces, then
such simple interpretations of the minimum value of the energy functional are lost.
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The question arises: What is the physical meaning of the energy functional to be
minimized to determine the equilibrium states? The answer can be sought by study-
ing a microscopical system that is described at the macro-level by the model of an
elastic body. One can expect that the energy functional is the average of the Hamil-
tonian of the microsystem. The first term of the energy functional, energy, is the
result of averaging of the energy of the microsystem. To interpret the second term,
a linear functional, we recall that the action of an external force, f, on a particle
with a generalized coordinate, q, is described by the term in Hamiltonian, − f q.

Therefore, the linear functional l (u) may be thought of as the average value of all
terms in the micro-Hamiltonian of the form f q.

The issue on the physical meaning of the energy functional becomes especially
important, when one complicates the elasticity model by taking into account addi-
tional phenomena, like cracks, dislocations or an interaction with electro-magnetic
field. The guiding principle in a proper construction of the energy functional is that
the energy functional has the meaning of the averaged micro-Hamiltonian of the
system.

Consider now the conditions under which the minimization problem for the en-
ergy functional (6.11) is well posed.

6.2 Boundedness from Below

Uniqueness. First let no kinematic constraints be imposed (i.e. the surface tractions
are prescribed everywhere on �V , and �V = �V f ). Then the elastic energy has a
kernel: it becomes zero on the infinitesimally small rigid motions:

ui = ci + eijkϕ
j xk . (6.14)

According to the necessary condition for the boundedness from below (5.30), the
linear part of the functional I (u) must vanish on the fields (6.14):

∫

V

ρgi dV +
∫

�V

fi d A = 0, eijk

⎛
⎝
∫

V

ρg j xkdV +
∫

�V

f i xkd A

⎞
⎠ = 0. (6.15)

Equations (6.15) mean that the resultant and the total moment of the external forces
acting on the body are equal to zero.

Let us assume that the conditions (6.15) are satisfied. Then the energy functional
is invariant with respect to rigid motions (6.14), and the minimizing element is not
uniquely determined. To single out a unique solution, one has to impose additional
constraints which exclude rigid motions. As such one can take the condition of zero
average displacement,
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∫

V

ui dV = 0 (6.16)

and zero average rotation

eijk
∫

V

ui x j dV = 0. (6.17)

Let the elastic properties be non-degenerated in the sense that, for some positive
constant μ and for any εij,

μεijε
i j ≤ F

(
εij
)
. (6.18)

Then the conditions (6.15) are also sufficient conditions for the boundedness from
below of the energy functional. In order to see that, we need the inequality

l (u) ≤ c

√√√√
∫

V

F
(
u(i, j)

)
dV . (6.19)

If the inequality (6.19) holds, the boundedness from below is obtained in the same
way as in Example 3 in Sect. 5.1.

The proof of the inequality (6.19) is based on one of the key inequalities of the
elasticity theory, the Korn inequality:

∫

V

ui, j u
i, j dV ≤ K

∫

V

εijε
i j dV . (6.20)

For the Korn inequality to be valid the additional conditions, excluding the rota-
tions of the body, must be imposed; otherwise, for the rotations, the left hand side
of (6.19) is positive while the right hand side is equal to zero. Usually, either the
condition (6.17) or the condition

∫

V

(
ui, j − u j,i

)
dV = 0

is used.
The Korn inequality can be written in a more impressive form by splitting the

displacement gradient into the sum of the deformation and the rotation parts:

ui, j = εij + eijkϕ
k, ϕk = 1

2
eijkui, j .

In terms of εij and ϕi the Korn inequality takes the form
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∫

V

ϕiϕ
i dV ≤ K − 1

2

∫

V

εijε
i j dV .

This means that for any deformation of the body, the average value of the squared
angle of rotation never exceeds the average value of the squared strains times a
universal coefficient, K−1

2 , which depends only on the geometry of the region. The
proof of the Korn inequality can be found in the works cited in the bibliographic
comments.

To prove (6.19) we also need the inequalities

λ2
∫

�V

ui u
i d A ≤

∫

V

ui, j u
i, j dV, μ2

∫

V

ui u
i dV ≤

∫

V

ui, j u
i, j dV . (6.21)

These inequalities are obtained by summing the inequalities (5.38) written for each
component of the displacement vector. Inequalities (6.21) are valid if the transla-
tional motions are excluded by, for example, conditions (6.16).

Let us derive (6.19). From (6.18), (6.20), (6.21), and the Cauchy inequality, we
have

|l (u)| ≤
√√√√
∫

V

ρgi gi dV

√√√√
∫

V

ui ui dV +
√√√√
∫

�V

fi f i d A
∫

�V

ui ui d A ≤

≤ c

√√√√
∫

V

ui, j ui, j dV ≤ c

√√√√K
∫

V

εijεi j dV ≤ c

√
K

μ

√√√√
∫

V

F
(
εij
)

dV .

Here,

c = 1

μ

√√√√
∫

V

ρgi gi dV + 1

λ

√√√√
∫

�V

fi f i d A. (6.22)

So, the energy functional is bounded from below if the squared surface forces are
integrable on the surface while the body forces are integrable in the volume.

In the case when the displacements are given on a part of the boundary, the energy
functional is bounded from below for any functions, gi and fi , including those which
have non-zero total force and non-zero total moment. Let us outline the proof when
the displacements are given on the entire boundary �V .

Consider the integral

2
∫

V

εijε
i j dV =

∫

V

(
ui, j u

i, j + ui, j u
j,i
)
dV .

Integrating the second term by parts twice, we get
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2
∫

V

εijε
i j dV =

=
∫

V

(
ui, j u

i, j + (ui
,i

)2
)

dV +
∫

�V

(
ui u

j,i n j − ui ni u
k
,k

)
d A. (6.23)

The surface integral depends only on the displacements at the boundary. Indeed,
expanding the derivative along the normal and tangent directions (see Sect. 14.1),
we have

ui u
j,i n j − ui ni u

k
,k = uir

iαu j
,αn j − ui ni u

k
,αrα

k

Hence, the surface integral is known due to the boundary conditions; we will de-
noted it by B. Dropping in the identity (6.23) the integral of

(
ui

,i

)2
which is non-

negative, we obtain the inequality

∫

V

ui, j u
i, j dV ≤ 2

∫

V

εijε
i j dV − B,

which is a version of the Korn inequality. Analogous changes appear in the inequal-
ities (6.21). Further steps are the same as in the case of given surface forces.

The boundedness from below of the energy functional shows that Gibbs principle
is well-posed for the energy functional. The existence of the minimizing element in
the energy space is established following the general scheme of Sect. 5.3.

Let the free energy density be a strictly convex function of the components of the
strain tensor. The physical interpretation of this assumption can be seen from the
inequality (5.89). Writing this inequality for function F , we have

0 < �σ i j �εij. (6.24)

Here,

σ i j = �F

�εij

are the components of the stress tensor, �εij is the difference between any two values
of the strain tensor, and �σ i j is the difference between the corresponding values of
the stress tensor. Inequality (6.24) means that there is a one-to-one correspondence
between the values of the stress tensor and the strain tensor. Besides, the stresses
monotonously increase with increasing strains in the following sense. In the princi-
pal coordinate system of the tensor �εij the inequality (6.24) becomes

0 < �σ 11�ε11 + �σ 22�ε22 + �σ 33�ε33.
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Consequently, the stress increment �σ 11 (for ε22 = ε33 = 0) has the same sign as
the strain increase ε11 for any (not necessarily small) �ε11.

For strictly convex function, F
(
εij
)
, the energy functional is a strictly convex

functional on the set of displacements with excluded rigid motions. As shown in
Sect. 5.4, it has the only minimizing element.

6.3 Complementary Energy

Consider the Young-Fenchel transformation of function F
(
εij
)

with respect to εij:

F∗
(
σ i j

) = max
εij

[
σ i jεij − F

(
εij
)]

. (6.25)

Here, σ i j are the components of a symmetric tensor. The function F∗
(
σ i j

)
is called

the complementary energy. This term was motivated by the following geometrical
interpretation of F∗. Consider the constitutive equation of a one-dimensional elastic
body, σ = σ (ε). The dependence σ = σ (ε) is shown in Fig. 6.1. Since σ = �F/�ε,

F (ε) =
ε∫

0

σ (ε̃) d ε̃.

Hence, the energy F (ε) is equal to the area beneath the curve σ = σ (ε) in
Fig. 6.1; this area is vertically shaded. The number F∗ (σ ) = σε − F (ε) is equal
to the area of the figure horizontally shaded. This area “complements” F (ε) to
the area of the rectangle, σε. In a multi-dimensional case, this simple geometric
interpretation is lost.

Fig. 6.1 For one-dimensional
deformation, energy is equal
to the area covered by the
vertical shade, while the
complementary energy is
equal to the area shadowed
by the horizontal lines
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6.4 Reissner Variational Principle

Let us represent the free energy density by means of its Young-Fenchel transforma-
tion:

F
(
εij
) = max

σ i j

[
σ i jεij − F∗

(
σ i j

)]
. (6.26)

Reissner variational principle. The true state of an elastic body is a stationary
point of the functional

I (σ, u) =
∫

V

(
σ i j ui, j − F∗

(
σ i j

))
dV −

∫

V

ρgi u
i dV −

∫

�V f

fi u
i d A (6.27)

on the set of all symmetric tensor fields, σ i j (x), and the fields,ui (x), obeying the
constraints

ui (x) = u(b)
i on �Vu .

This statement follows from the general duality theory because

min
u∈(6.12)

I (u) = min
u∈(6.12)

max
σ

I (σ, u) . (6.28)

The solution of the minimax problem for the functional (6.27) is a saddle point,
i.e. at this point I (σ , u) has maximum with respect to functions σ i j and the mini-
mum with respect to functions ui . Sometimes this variational principle is also called
the mixed variational principle.

6.5 Physically Linear Elastic Body

Assume that there is a stress-free state of the body. We choose the initial state of the
body coinciding with the stress-free state. Then,

σ i j = �F(εij)

�εij
= 0 at εij = 0.

Expanding F(εij) over εij near the point εij = 0 and keeping only the leading
terms, we have

F(εij) = F(0)+ 1

2
Cijklεijεkl . (6.29)

Elastic material with energy (6.29) is called physically linear. For physically lin-
ear elastic material, the stresses σ i j depend linearly on strains:

σ i j = Cijklεkl . (6.30)
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Since εij is a symmetric tensor, the antisymmetric parts of Cijkl with respect to
indices i j , kl and with respect to the transposition of the index couples (i, j) and
(k, l) do not contribute to energy. Therefore, without loss of generality, one can
accept the symmetry properties for the elastic moduli:

Cijkl = Cjikl, Cijkl = Ci jlk, Cijkl = Cklij. (6.31)

The inverse tensor, i.e. the tensor defined by the equations

C (−1)
ijkl Cklmn = δ

(m
i δ

n)
j , (6.32)

is called the tensor of elastic compliances. This tensor, by definition, possesses the
same symmetry properties as Cijkl :

C (−1)
ijkl = Cjikl, C (−1)

ijkl = C (−1)
i jlk , C (−1)

ijkl = C (−1)
klij . (6.33)

Contracting (6.30) with the tensor of elastic compliances, one find strains in
terms of stresses:

εij = C (−1)
ijkl σ kl . (6.34)

For physically linear material the complementary energy coincides with energy
expressed in terms of stresses:

F∗
(
σij
) = 1

2
C (−1)

ijkl σ i jσ kl .

In the one-dimensional case, this has a simple geometric interpretation: for phys-
ically linear material the stress-strain curve is the straight line dividing the rectangle
in Fig. 6.1 into two parts with equal areas.

In general, the tensor of elastic moduli depends on the tensors characterizing
material symmetry.1 In the particular case of isotropic material, the only tensor
which is invariant with respect to all rotations is the metric tensor gi j . Thus, Cijkl

are functions of gi j . The only independent tensors of fourth order which can be
constructed from gi j are gi j gkl, gik g jl, gil gk j (the index i in gi j may appear only
in combination with either with j or k or l). Therefore, the general form of elastic
moduli in the isotropic case is

Cijkl = λgi j gkl + μ1gik g jl + μ2gil gk j (6.35)

where λ, μ1 and μ2 are some scalars. Tensor (6.35) must satisfy the symmetry
requirements (6.31). This yields μ1 = μ2 ≡ μ. Finally,

1 The corresponding theory can be found in [269].
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Cijkl = λgi j gkl + μ
(
gik g jl + gil g jk

)
. (6.36)

Accordingly,

F = 1

2
λ
(
εi

i

)2 + μεijε
i j , (6.37)

and

σij = λεk
k gij + 2μεij. (6.38)

The constants, λ and μ, are called Lame’s constants. Resolving (6.38) with
respect to εij, we have

σ k
k = (3λ+ 2μ) εk

k , 2μεij = σij − λ

3λ+ 2μ
σ k

k gij. (6.39)

The constant that appeared here, 3λ + 2μ, with the factor 1
3 is called bulk mod-

ulus, K :

K = 1

3
(3λ+ 2μ) .

Using (6.39), we find the complementary energy

F∗
(
σ i j

) = 1

2
λ

(
σ k

k

)2

(3λ+ 2μ)2 +
1

4μ

(
σij − λ

3λ+ 2μ
gijσ

k
k

)(
σ i j − λ

3λ+ 2μ
gi jσ k

k

)
=

= 1

4μ
σijσ

i j − λ

4μ (3λ+ 2μ)

(
σ k

k

)2
(6.40)

or, in terms of the stress deviator, σ ′ij = σij − 1
3 gijσ

k
k , and the constants K and μ,

F∗
(
gi j
) = 1

4μ
σ ′ijσ

′i j + 1

2K

(
1

3
σ k

k

)2

. (6.41)

As a check, one can differentiate F∗ with respect to σij to obtain the second
equation (6.39):

εij =
�F∗

(
σ i j

)

�σ i j
.

The condition of positiveness of energy is conveniently expressed in terms of
bulk modulus and shear modulus:

K > 0, μ > 0. (6.42)
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To derive (6.42) we note that the components of strain deviator

ε′ij = εij − 1

3
gijε

k
k ,

(
ε′kk = 0

)

and the strain trace, εk
k , can be changed independently. Replacing εij in (6.37) by the

sum, ε′ij + 1
3εk

k gij, we have

F = 1

2
K
(
εi

i

)2 + με′ijε
′i j .

Obviously, F > 0 for εij �= 0 if and only if (6.42) holds.
Instead of K , λ and μ, one often uses other two characteristics of isotropic elastic

bodies, Young’ modulus, E, and Poisson’s coefficient, ν:

E ≡ μ (3λ+ 2μ)

λ+ μ
= 2 (1+ ν) μ, ν ≡ λ

2 (λ+ μ)
.

In terms of these characteristics the complementary energy is

F∗ = 1+ ν

2E

[
σijσ

i j − ν

1+ ν

(
σ k

k

)2
]

.

Accordingly,

εij =
�F∗

(
σ i j

)

�σ i j
= 1+ ν

E

(
σij − ν

1+ ν
σ k

k gij

)
.

The constant λ+ μ is always positive:

λ+ μ = 3λ+ 3μ

3
= 1

3
K + μ > 0.

Therefore, E > 0. Poisson’s coefficient, ν, may be negative, but since E =
2 (1+ ν) μ > 0, it is bounded from below:

ν > −1.

As follows from its definition, Poisson’s coefficient does not exceed 1
2 and ap-

proaches 1
2 when λ� μ.
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6.6 Castigliano Variational Principle

Castigliano principle. In this section, we construct a variational principle dual to
Gibbs principle. The dual variational principle can be derived directly from the
general formulation given for the integral functionals (5.142), however we first re-
peat the general scheme for constructing the dual principles taking into account
the distinctive feature of the energy functional, its invariance with respect to rigid
motions. This feature has already been incorporated implicitly in the Young-Fenchel
transformation (6.26) which used only symmetric tensors σ i j .

As in the general case, commuting the order of calculation of maximum and
minimum in (6.28), we obtain

min
u∈(6.12)

I (u) = max
σ

[
J (σ )+ min

u∈(6.12)
� (σ, u)

]
,

J (σ ) =
∫

�Vu

σ
j

i n j u
i
(b)dσ −

∫

V

F∗
(
σ i j

)
dV,

� (σ , u) = −
∫

V

(
σ

j
i, j+ρgi

)
ui dV −

∫

�V f

(
fi − σ

j
i n j

)
ui d A. (6.43)

If the tensor field σ i j satisfies the equations

σ
j

i, j + ρgi = 0 in V, (6.44)

σ
j

i n j = fi on �V f , (6.45)

then � (σ, u) = 0. If σ i j does not satisfy these equations, min
u

� (σ, u) = −∞.

Therefore,

min
u∈(6.12)

I (u) = max
σ∈(6.44),(6.45)

J (σ ) .

In the general case, one can show that the maximizing field σ i j coincides with
the stresses computed for the minimizing displacements. We arrive at the following
Castigliano variational principle. The true stresses maximize the functional J (σ )
on the set of all stress fields σ i j obeying the constraints (6.44) and (6.45).

Now, let us show how to derive the Castigliano principle from the dual variational
principle for the general integral functional (5.142). It follows from the general
theory that the dual functional J (σ ) has the form (6.43); however F∗ in (6.43)
represents not the function (6.25) but the Young-Fenchel transformation of F with
respect to displacements gradients ui, j :

F∗1 = max
ui, j

(
σ i j ui, j − F

(
εij
))

. (6.46)
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Accordingly, in (6.46), and also in (6.44) and (6.45), the tensor σ i j is not necessarily
symmetric.

Let us rewrite (6.46), separating symmetric and antisymmetric components of
the stresses and displacement gradients:

F∗1 = max
ui, j

[
σ (i j)εij + σ [i j]u[i, j] − F

(
εij
)]

.

Since F
(
εij
)

does not depend on the antisymmetric components of the displacement
gradients u[i, j], then F∗1 = +∞ for σ [i j] �= 0, and, consequently, if for some subre-
gion of region V, σ [i j] �= 0, then the dual functional becomes equal to −∞. There-
fore, all non-symmetric stress tensors should be excluded. For σ [i j] = 0 the function
F∗1 coincides with the function (6.25), and the variational principle is equivalent to
the general dual variational principle constructed for the functional (5.142).

Castigliano principle for stress functions. The general solution of the equilibrium
(6.44) can easily be found. For simplicity, we consider only the case of zero exter-
nal volume forces and simply-connected region V . We will show that the general
solution of the equilibrium equations is

σ i j = eiklejmnψkm,ln , (6.47)

where ψkm is an arbitrary symmetric tensor field.
Indeed, the general solution of the equation

Ai
,i = 0 (6.48)

is

Ai = eijk B j,k,

where Bk are arbitrary functions of xi . Functions Bk are not uniquely determined by
Ai : adding to Bk an arbitrary potential vector field ψ,k does not change Ai .

Equilibrium equations for an elastic body have the divergence form (6.48), and,
therefore their solution is

σ i j = e jkl Bi
k,l . (6.49)

Functions ψ i
,k can be added to Bi

k without changing the components of the stress
tensor. In particular, one can choose ψ i to make the trace of tensor Bi

k equal to zero:

Bi
i = 0. (6.50)

In order for the function (6.49) to be the solution to the equilibrium equations,
the symmetry conditions for stresses has to be satisfied as well. Contracting (6.49)
with ei js and using (3.19), we get
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σ i j ei js = Bi
s,i = 0. (6.51)

Since (6.51) again has the form (6.48), the tensor Bi
s can be written as

Bi
s = eimnψsm,n .

The gradient of an arbitrary vector ϕs can be added to the tensor ψsm . Let us
choose ϕs in such a way that ψsm be symmetric, i.e. if ψsm were not symmetric we
add the gradient of the vector field ψs to obtain

eism
(
ψsm + ψs,m

) = 0. (6.52)

Denote by ψ and f the vector fields with the components ψs and eismψsm . Then,
in direct vector notation, (6.52) reads

curl ψ = −f (6.53)

The vector field f has zero divergence: from (6.52) and (6.50)

div f = (eismψsm
)
,i = eismψsm,i = Bs

s = 0

As known from calculus, for any vector field f with zero divergence, (6.53) is
solvable. Hence, one can always choose the tensor ψmn to be symmetric.

Components of the symmetric tensor ψij are called the stress functions.
It is clear that (6.47) has some extra degrees of freedom: on the left hand side of

(6.47) there are six functions connected by the three equilibrium equations, i.e. there
are three functional degrees of freedom; on the right hand side of (6.47) there are six
functional degrees of freedom. Thus, three more constraints can be imposed on ψkm .
Of course, these additional constraints should not prevent the functions (6.47) from
covering all possible solutions of the equilibrium equations. It is most convenient to
select the additional restrictions on the stress functions for each particular problem,
using the simplifications related to the specifics of the problem.
Castigliano variational principle for stress functions. The true stress functions
deliver the maximum value to the functional

J (ψ) =
∫

�Vu

eiklejmnψkm,lnu(b)
i n j d A −

−
∫

V

F∗
(
eiklejmnψkm,ln

)
dV (6.54)

on the set of all stress functions obeying the boundary conditions

e jklψkm,lsejmsn j = f i on �V f . (6.55)
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This variational principle does not determine the stress functions uniquely, but
this does not affect the uniqueness of the stress state.

One may wonder how to simplify the energy expression, and, thus, the governing
equations by imposing the constraints on the stress functions. Consider an isotropic
physically linear homogeneous elastic body with the complementary energy (6.40).
According to (3.19),

σ i jσij = eiklejmnψkm,lneik ′l ′e jm ′n′ψ
k ′m ′,l ′n′ =

= (
δk

k ′δ
l
l ′ − δk

l ′δ
l
k ′
) (

δm
m ′δ

n
n′ − δm

n′δ
n
m ′
)
ψkm,lnψ

k ′m ′,l ′n′ = (6.56)

= ψkm,lnψ
km,ln − 2ψkm,lnψ

lm,kn + ψkm,lnψ
ln,km,

σ k
k =

(
gkm gln − glm gkn

)
ψkm,ln = �ψk

k − ψkm
,km .

It is seen from (6.56) that by setting the three conditions

ψ
i j
, j = 0, (6.57)

we make vanish the last term in the second equation (6.56) and put the last two
terms in the first equation (6.56) into divergence form:

−2ψkm,lnψ
lm,kn + ψkm,lnψ

ln,km =
= −2

�

�xl

(
ψkm,nψ

lm,kn
)+ �

�xn

(
ψkm,lψ

ln,km
)

Thus, they do not affect the equations for ψ i j .

Up to the divergence terms, the free energy becomes

∫

V

F∗dV =
∫

V

1

4μ

(
ψkm,lnψ

km,ln − ν

1+ ν

(
�ψk

k

)2
)

dV,

with � being Laplace’s operator. Hence, Euler equations for the stress functions are

�2ψ i j − ν

1+ ν
�2ψk

k gi j = 0.

Note that the divergence terms may contribute to the boundary conditions.

Castigliano variational principle and compatibility of strains. Euler equations
for the functional (6.54) read: in region V,

eiklejmn�l�n
�F∗

�σ i j
= 0. (6.58)

Since the derivatives of F∗ are the components of strain tensor
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�F∗

�σ i j
= εij,

(6.58) can be also written as

eiklejmn�l�nεij = 0. (6.59)

It is proved in differential geometry that these equations are the necessary and
sufficient conditions for the existence of a vector field, ui (x), such that

εij = 1

2
(ui, j + u j,i ). (6.60)

In other words, (6.59) gives the conditions of the existence of a displacement
vector field such that the strain in the deformed state is generated by displacement
from some undeformed state. One says that such strain is compatible.

On the other hand, stresses can be viewed as reactions to the compatibility con-
straints (6.60). Indeed, one can consider the strain in Gibbs variational principle
as an arbitrary field such that (6.60) holds. Then the governing equations can be
obtained by introducing Lagrange multipliers for the constraints (6.60), σ i j , i.e. by
adding to the energy functional the integral

∫

V
σ i j

(
1

2
(ui, j + u j,i )− εij

)
dV .

The reader can check that the Lagrange multipliers σ i j have the meaning of
stress components. If, instead of (6.60), the compatibility conditions are taken in
the form (6.59), then the corresponding Lagrange multipliers have the meaning of
stress functions.

Two-dimensional plane problems. Castigliano principle for stress functions takes
a considerably simpler form in two-dimensional plane problems because in this case
only one stress function is needed.

Let � be a bounded simply connected region in a two-dimensional plane, and
x, y be some Cartesian coordinates in the plane. The boundary �� of the region �
consists of two parts, ��u and �� f ; the displacement components, ux and uy, are
prescribed on ��u :

ux = u(b)
x (s), uy = u(b)

y (s) on ��u,

s being the arc length along ��, while at �� f the external force
{

fx (s) , fy (s)
}

is
known.

Then Castigliano principle states:
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Castigliano variational principle. The true stresses give the maximum value to the
functional,

J (σ ) =
∫

�� f

[
u(b)

x (s)
(
σxx nx + σxyny

)+ u(b)
y (s)

(
σxynx + σyyny

)]
ds −

−
∫

�

F∗
(
σxx , σxy, σyy

)
dxdy, (6.61)

on the set of all functions σxx , σxy = σyx , and σyy , which satisfy the constraints

�σxx

�x
+ �σxy

�y
= 0,

�σyx

�x
+ �σyy

�y
= 0 in �, (6.62)

σxx nx + σxyny = fx , σyx nx + σyyny = fy on �� f . (6.63)

Equations (6.62) mean that there exist functions �1 and �2 such that

σxx = ��1

�x
, σxy = −��1

�x
, σyx = ��2

�y
, σyy = −��2

�x
.

Since σxy = σyx ,

��1

�x
+ ��2

�y
= 0.

Therefore, there exists a function ψ such that

�1 = �ψ

�y
, �2 = −�ψ

�x
.

Thus, the general solution of the equilibrium equations is

σxx = �2ψ

�y2
, σxy = − �2ψ

�x�y
, σyy = �2ψ

�x2
. (6.64)

The function ψ is called the Airy function. If the components of the stress tensor
are known, function ψ can be determined up to a linear function of x and y. The
arbitrariness can be removed by setting

ψ = �ψ

�x
= �ψ

�y
= 0 (6.65)

at some point C on �� f . It is convenient to measure the arc length on �� starting
from the point C . The arc length is assumed to increase in a counter-clockwise
direction.
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The boundary conditions (6.63) take a simple form in terms of the Airy function.
They are obtained by substitution (6.64) in (6.63) and taking into account (5.128)
and (5.129):

σxx nx + σxyny = τy
�2ψ

�y2
+ τx

�2ψ

�x�y
= d

ds

�ψ

�y
= fx (s) ,

σyx nx + σyyny = −τy
�2ψ

�x�y
− τx

�2ψ

�x2
= − d

ds

�ψ

�x
= fy (s) . (6.66)

Consequently, the boundary conditions define the value of derivatives of the stress
functions on the contour �� f :

�ψ

�y
=

s∫

0

fx (s)ds,
�ψ

�x
= −

s∫

0

fy (s)ds. (6.67)

The boundary conditions (6.67) are equivalent to prescribing at �� the function
ψ and its normal derivative:

�ψ

�n
≡ nx

�ψ

�x
+ ny

�ψ

�y
.

If the surface forces are prescribed on the entire boundary, then the boundary
conditions (6.67) are also reduced to prescribing at the boundary function ψ and
its normal derivative. To justify this statement we have to check that the boundary
conditions (6.67) written for the entire boundary define a single-valued function ψ .
Indeed, the necessary condition for the correctness of the variational problem in this
case is vanishing of the total force and the total moment:

l∫

0

fx (s)ds = 0,

l∫

0

fy (s)ds = 0,

l∫

0

(
x fy (s)− y fx (s)

)
ds = 0. (6.68)

Here, l is the length of the contour ��. The first two equations (6.68) mean that
formulas (6.67) define on the contour �� two single-valued functions �ψ/�x and
�ψ/�y. Consequently, �ψ/�n and �ψ/�s ≡ τx �ψ/�x + τy�ψ/�y are also uniquely
defined. Let us find the boundary value of the Airy function, ψ (s). We have

ψ (s) =
s∫

0

dψ

ds
ds =

s∫

0

(
�ψ

�x

dx

ds
+ �ψ

�y

dy

ds

)
ds =

s∫

0

(
�ψ

�x
dx + �ψ

�y
dy

)
=

=
(

x
�ψ

�x
+ y

�ψ

�y

)∣∣∣∣
s

0

−
s∫

0

(
x

d

ds

�ψ

�x
+ y

d

ds

�ψ

�y

)
ds.
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Using (6.66), we obtain

ψ (s) =
(

x
�ψ

�x
+ y

�ψ

�y

)∣∣∣∣
s

+
s∫

0

(
x fy − y fx

)
ds. (6.69)

Here, we take into account that ψ and derivatives of ψ are zero at s = 0. Due to
(6.68), formula (6.69) defines a single-valued function ψ (s) on ��.

Substituting (6.64) into the functional (6.61), we get the following
Castigliano variational principle for stress functions. The maximum of the func-
tional
∫

��u

(
u(b)

x (s)
d

ds

�ψ

�y
− u(b)

y (s)
d

ds

�ψ

�x

)
ds −

∫

�

F∗
(

�2ψ

�y2
,− �2ψ

�x�y
,

�2ψ

�x2

)
dxdy

on the set of all functions ψ , satisfying the boundary conditions

ψ = f1 (s) ,
dψ

dn
= f2 (s) on �� f

is achieved at the true stress function.
Functions f1 (s) and f2 (s) are calculated from fx (s) and fy (s) by means of

(6.67) and (6.69).

Anti-plane problems. The problems in which the component of displacements in
a Cartesian coordinates, u3, is a function of x1 = x and x2 = y, while two other
components are zero, are called anti-plane problems. In this case, the body is a
cylinder with a cross-section �, {x, y} ∈ �. In anti-plane deformation, only two
components of strain are non-zero:

2ε13 = �u

�x
, 2ε23 = �u

�y
, u3 ≡ u(x, y).

Gibbs variational principle. The true displacement field provides minimum to the
functional

I (u) =
∫

�

F

(
�u

�x
,

�u

�y

)
dxdy−

∫

�� f

f u ds

on the set of all u(x, y) obeying the condition

u = u(b)(s) at ��u .

Following the general scheme, one obtains the dual variational principle.
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Dual variational principle. The true stresses provide minimum to the functional∫

�

F∗(σx , σy)dxdy−
∫

��u

(σx nx + σyny)u(b)(s)ds

on the set of all fields, σx , σy, obeying the constraints

�σx

�x
+ �σy

�y
= 0 in �, σx nx + σyny = f (s) on �� f .

In anti-plane problems, the stress function, ψ, is introduced by the relations

σx = �ψ

�y
, σy = −�ψ

�x
.

The dual variational principle in terms of the stress function takes the form:

Dual variational principle. The true stress function provides minimum to the func-
tional

∫

�

F∗
(

�ψ

�y
,−�ψ

�x

)
dxdy−

∫

��u

dψ

ds
u(b)(s)ds

on the set of all functions, ψ(x, y), obeying the boundary condition

dψ

ds
= f (s) on �� f .

In the case when the displacements are given at all points of the boundary, mini-
mum is taken over all functions, ψ(x, y).

In elasticity theory, there are other boundary value problems of interest besides
those already considered. For example, on a part � of the boundary, only one
component of displacement, u1 can be prescribed and the “complementary” com-
ponents of external forces, f2 and f3, are also given. Then the energy functional of
Gibbs principle will include the integral over � of f2u2 + f3u3. The corresponding
changes in the Castigliano and the Reissner principles are straightforward.

6.7 Hashin-Strikman Variational Principle

In this section we formulate Hashin-Strikman variational principle for a linear inho-
mogeneous body. The free energy density of the body is

F
(
εij
) = 1

2
Cijkl(x)εijεkl .

If the displacements are prescribed on the boundary
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ui = ui
(b) on �V, (6.70)

then the true displacement field minimizes the functional

I (u) =
∫

V

1

2
CijklεijεkldV (6.71)

on the set of displacements with the prescribed boundary values (6.70). We select a
homogeneous elastic body with the free energy

F0 = 1

2
Cijkl

0 εijεkl . (6.72)

It is convenient to choose this body isotropic, i.e.

Cijkl
0 = λ0gi j gkl + μ0

(
gik g jl + gil g jk

)
. (6.73)

Suppose that the quadratic form, F − F0, is positive definite:

F − F0 = 1

2

(
Cijkl − 1

2
Cijkl

0

)
εijεkl > 0 for εij �= 0.

Then F − F0 can be presented by means of Young-Fenchel transformation:

F − F0 = max
pi j

[
pi jεij − 1

2
Hijkl pi j pkl

]
, (6.74)

where Hijkl is the inverse tensor:

Hijkl
(
Cklmn − Cklmn

0

) = δ
(m
i δ

n)
j . (6.75)

Repeating the line of reasoning of Sect. 5.9, we have:

I (u) =
∫

V

[
1

2
Cijkl

0 εijεkl + 1

2

(
Cijkl − Cijkl

0

)
εijεkl

]
dV =

= max
pi j

∫

V

[
1

2
Cijkl

0 εijεkl + pi jεij − 1

2
Hijkl pi j pkl

]
dV .

Therefore,

Ǐ = min
uε(6.70)

I (u) = min
uε(6.70)

max
pi j (x)

∫

V

[
1

2
Cijkl

0 εijεkl + pi jεij−

− 1

2
Hijkl(x)pi j pkl

]
dV .
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Changing the order of minimum and maximum, we have

Ǐ = max
pi j (x)

[
J̃ (p)−

∫

V

1

2
Hijkl(x)pi j pkldV

]
(6.76)

where

J̃ (p) = min
uε(6.70)

∫

V

(
1

2
Cijkl

0 εijεkl + pi j (x)εij

)
dV . (6.77)

Let ůi be the minimizer in the following variational problem for the homoge-
neous body:

E0 = min
uε(6.70)

∫

V

1

2
Cijkl

0 εijεkldV .

We present displacements in (6.77) as the sum

ui = ůi + u′i , u′i |�V = 0. (6.78)

Then

J̃ (p) = E0 +
∫

V
pi j ε̊ijdV + J (p), (6.79)

J (p) = min
u′ε(6.78)

∫

V

(
1

2
Cijkl

0 ε′ijε
′
kl + pi jε′ij

)
dV, ε′ij ≡ u′(i, j). (6.80)

The term ∫
Cijkl

0 ε̊ijε
′
ijdV,

vanished due to the Euler equations for the minimizer, ůi , and the zero boundary
conditions for u′i . Plugging (6.79) in (6.76), we obtain the following
Hashin-Strikman variational principle. The true energy of the body, Ǐ , can be
computed from the variational problem

Ǐ − E0 = max
pi j (x)

[∫

V

(
pi j (x)ε̊ij − 1

2
Hijkl(x)pi j (x)pkl(x)

)
dV + J (p)

]
. (6.81)

The rest of this section is concerned with determining an explicit form of J (p).
To find an explicit dependence of J (p) on pi j (x) one has to solve the boundary
value problem2

2 Writing (6.82) we used the symmetry of Cmnrs
0 with respect to indices r, s, and therefore

Cmnrs
0 εrs = Cmnrs

0 �r us .
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�n
(
Cmnrs

0 �r us
) = −�n pmn(x), us |�V = 0. (6.82)

Here pmn(x) are assumed to be some smooth functions. If pmn(x) are piece-wise
smooth and have a jump on some surface, S, while us(x) remain continuous on S,
then additionally,

[
Cmkrs

0 ur,s + pmk
]

nk = 0 on S. (6.83)

As usual, [ϕ] denotes the jump of ϕ on S. To get the solution of the boundary
value problem (6.82) and (6.83) in an explicit form, we have to employ, as in the
scalar case considered in Sect. 5.9, Green’s function, which, for elasticity problems,
is a tensor.

Green’s tensor. Consider the variational problem

∫

V

(
1

2
Cmnrs

0 �mun�r us − us f s(x)

)
dV → min

us :us=0 at �V
. (6.84)

Its minimizer obeys the boundary value problem

�nCmnrs
0 �r ǔs = − f m(x), ǔs |�V = 0. (6.85)

Let f m(x) be sufficiently smooth, e.g., piece-wise continuous. If we discretize
(6.85), they become a system of linear algebraic equations. Solving this system, we
find the value of ǔs at each point, x , as a linear function of the values of f m at all
points of the discretization grid. In continuum limit, ǔs becomes a linear functional
of f m of the form

ǔs(x) =
∫

V
Gsm(x, x ′) f m(x ′)dV ′. (6.86)

The kernel, Gsm(x, x ′), is called Green’s tensor. The operator of the linear
problem (6.85) is symmetric, therefore its inversion, the operator (6.86), is also
symmetric, i.e.

Gsm(x, x ′) = Gms(x ′, x). (6.87)

As follows from (6.85) and (6.86), Green’s tensor is a solution of the boundary
value problem,

�nCmnrs
0 �r Gst (x, x ′) = −δm

t δ(x − x ′), (6.88)

Gst (x, x ′) = 0 if x ∈ �V . (6.89)

By δ(x − x ′) we mean the delta-function in three-dimensional space:

δ(x − x ′) = δ1(x1 − x ′1)δ1(x2 − x ′2)δ1(x3 − x ′3),
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where δ1(ξ ) is the usual “one-dimensional” delta-function of one variable, and xi ,

x ′i the components of the vectors, x and x ′, respectively.
The δ-function in the right hand side of (6.88) causes Green’s tensor to have a

singularity at x = x ′. To find the character of this singularity we solve (6.88) in the
case of unbounded region.

Green’s tensor for unbounded region. We are going to show that Green’s tensor
for unbounded region is

Gst (x, x ′) = 1

16πμ0(1− ν0) |x − x ′| ((3− 4ν0) gst + nsnt ) (6.90)

where μ0 and ν0 are the shear modulus and Poisson’s coefficient of the homoge-
neous elastic body, and ns the unit vector:

ns = xs − x ′s
|x − x ′| . (6.91)

For a bounded region, Green’s tensor is a sum of the tensor (6.90) and a tensor
that is bounded as x → x ′.

Green’s tensor for unbounded region can be found by applying to (6.88) Fourier
transformation. First, we recall the basic features of Fourier transformations.

Fourier transformations. By Fourier transformations of a function, u(x), one
means the function of a “dual variable,” k, defined by the relation

u(k) =
∫

u(x)e−ik·x d3x . (6.92)

Here k · x means the scalar product of two three-dimensional vectors, k and x, and
the integration is conducted over the entire three-dimensional space. As is often
done in physical literature, we keep for Fourier transformation of function, u(x),
the same notation, u, but with the other argument, k. This emphasizes that u(x) and
u(k) are different presentations of the same function. Both u(x) and u(k) can be
complex-valued. Integral (6.92) is converging if u(x) decays at infinity fast enough.
In this case, it can be shown that formula (6.92) can be inverted and yields

u(x) = 1

(2π )3

∫
u(k)eik·x d3k. (6.93)

Besides, for any two functionals, u(x) and v(x), which decay fast enough at
infinity, an important Parseval’s equation holds:

∫
u(x)v∗(x)d3x = 1

(2π )3

∫
u(k)v∗(k)d3k. (6.94)

We are going to apply Fourier transformation not only to fast decaying func-
tions but also to the generalized functions, like δ(x − x ′), in (6.88). This is not
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an elementary step, and we just mention here that Fourier transformation can be
extended to the generalized functions. In particular, for the delta-function one has to
use the following formal rules:

δ(k) =
∫

δ(x)e−ik·x d3x = 1, (6.95)

δ (x) = 1

(2π )3

∫
eik·x d3k. (6.96)

Parseval’s equality (6.94) holds not only for fast decaying functions, but also
for functions u and v, one of which is generalized, and another one is “usual” (fast
decaying). Note that (6.93) and (6.94) can easily be obtained using (6.95) and (6.96).
For example, multiplying (6.92) by eik·x and integrating over k we have

∫
u(k)eik·x d3k =

∫
u(x ′)e−ik·x ′d3x ′eik·x d3k =

∫
u(x ′)

∫
eik·(x−x ′)d3kd3x ′

=
∫

u(x ′)(2π )3δ(x − x ′)d3x ′ = (2π )3u(x).

For a fast decaying function, u(x), Fourier transformation of its derivatives

us(k) =
∫

�u(x)

�xs
e−ik·x d3x

is computed in terms of u(k) by integration by parts:

us(k) = −
∫

u(x)
�

�xs
e−ik·x d3x = iks

∫
u(x)e−ik·x d3x = iksu(k).

The same formula remains true for generalized functions.

Derivation of (6.90). Denote by Gst (k, k ′) the Fourier transformation of Green’s
tensor:

Gst (k, k ′) =
∫

Gst (x, x ′)e−i(k·x−k ′ ·x ′)d3xd3x ′. (6.97)

The sign at k ′ is chosen for convenience. Due to the symmetry of Green’s tensor
(6.87), its Fourier transformation possesses a symmetry:

Gst (k, k ′) =
∫

Gst (x, x ′)e−i(k·x ′−k ′ ·x)d3xd3x ′

=
∫

Gts(x, x ′)e−i(k ′ ·x−k·x ′)d3xd3x ′ = Gts(−k ′,−k). (6.98)
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Multiplying (6.97) by ei(k·x−k ′ ·x ′), integrating over k and k ′ and using (6.96) we
obtain the inversion of (6.97):

∫
Gst (k, k ′)ei(k·x−k ′ ·x ′)d3kd3k ′ =

=
∫

Gst (x̃, x̃ ′)e−i(k·x̃−k ′·x̃ ′)d3 x̃d3 x̃ ′ei(k·x−k ′ ·x ′)d3kd3k ′ =

=
∫

Gst (x̃, x̃ ′)eik·(x−x̃)+ik ′ ·(x̃ ′−x ′)d3kd3k ′d3 x̃d3 x̃ ′ =

(2π )6
∫

Gst (x̃, x̃ ′)δ(x − x̃)δ(x ′ − x̃ ′)′d3 x̃d3 x̃ ′ = (2π )6 Gst (x, x ′) (6.99)

To find Gst (k, k ′) we multiply both sides of (6.88) by ei(k·x−k ′ ·x ′) and integrate
over x and x ′. Since

∫
δ(x ′ − x̃ ′)ei(k·x−k ′ ·x ′)d3xd3x ′ =

∫
e−i(k−k ′)·x d3x = (2π )3 δ(k − k ′)

and

∫
�n�r Gst

(
x, x ′

)
e−i(k·x−k ′ ·x ′)d3xd3x ′ =

=
∫

Gst
(
x, x ′

)
�n�r e−i(k·x−k ′ ·x ′)d3xd3x ′ = −knkr Gst

(
k, k ′

)
,

we obtain for Gst
(
k, k ′

)
a system of linear equations:

Cmnrs
0 kr knGst

(
k, k ′

) = (2π )3 δm
t δ

(
k − k ′

)
. (6.100)

In the case of an isotropic body, when Cmnrs
0 are given by (6.73), these equations

take the form

(λ0 + μ0) kmks Gst
(
k, k ′

)+ μ0 |k|2 Gm
t (k, k ′) = (2π )3 δm

t δ
(
k − k ′

)
. (6.101)

Here

|k|2 ≡ ksks.

Contracting (6.101) with km , we get

(λ0 + 2μ0) ks Gst
(
k, k ′

) = (2π )3 kt

|k|2 δ
(
k − k ′

)
.

Plugging this result back in (6.100) we finally obtain
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Gm
t (k, k ′) = (2π )3

μ0 |k|2
(

δs
t −

λ0 + μ0

λ0 + 2μ0

kskt

|k|2
)

δ
(
k − k ′

)
. (6.102)

Obviously this tensor obeys the symmetry condition (6.98). Green’s tensor in
x-coordinates is obtained from (6.99):

Gst
(
x, x ′

) = 1

(2π )3

∫
1

μ0 |k|2
(

gst − λ0 + μ0

λ0 + 2μ0

kskt

|k|2
)

eik·(x−x ′)d3k. (6.103)

The integral here can be computed explicitly. We have

∫
1

|k|2 eik·τ d3k =
∫ ∞

0

∫

S
ei(ν·n)ρ|τ |dρd2ν, ρ ≡ |k| .

By ν and n we denote the unit vectors: ν = k/ |k|, n = τ/ |τ | , and by d2ν the
area element on the unit sphere, S. Changing ρ by ρ/ |τ | we obtain

∫
1

|k|2 eik·r d3k = c

|τ |

where c is a constant,

c =
∫ ∞

0

∫

S
ei(ν·n)ρdρd2ν.

Choosing n to be the north pole of the unit sphere, S, and θ, ϕ to be the spherical
coordinates, we can write

∫
ei(ν·n)ρd2ν =

∫ π

0

∫ 2π

0
eiρ cos θdθdϕ = −2π

∫ π

0
eiρ cos θd cos θ = 4π

sin ρ

ρ
.

Since3

∫ ∞
0

sin ρt

ρ
dρ = π

2
sgn t , (6.104)

we obtain

c =
∫ ∞

0

∫

S
ei(ν·n)ρdρd2ν = 2π2. (6.105)

So,

3 sgn t = 1 for t > 0, sgn t = 0 for t = 0, sgn t = −1, for t < 0.



314 6 Statics of a Geometrically Linear Elastic Body

∫
1

|k|2 eik·τ d3k = 2π2

|τ | . (6.106)

Comparing (6.106) with (6.93), we conclude that the Fourier transformation of
1/4π |x | is 1/ |k|2 .

To find the integral

∫
1

|k|4 kskt e
ik·τ d3k =

∫ ∞
0

∫

S
νsνt e

i(ν·n)ρ|τ |dρd2ν,

we change the variable, ρ → ρ/ |τ | , to obtain

∫
1

|k|4 kskt e
ik·τ d3k = 1

|τ |Nst (6.107)

where the notation is introduced

Nst =
∫ ∞

0

∫

S
νsνt e

i(ν·n)ρdρd2ν.

The tensor, Nst , is a function of the unit vector, ns . A general form of such
dependence is

Nst = αgst + βnsnt . (6.108)

To determine the values of the constants α and β we contract (6.108) with gst

and nsnt to obtain a system of two linear equations with respect to α and β:

3α + β = N s
s =

∫ ∞
0

∫

S
ei(ν·n)ρdρd2ν (6.109)

α + β = Nst n
snt =

∫ ∞
0

∫

S
(ν · n)2ei(ν·n)ρdρd2ν. (6.110)

According to (6.105), the right hand side in (6.109) is 2π2. The right hand side
in (6.110) is zero. Indeed,

∫ ∞
0

∫

S
(ν · n)2ei(ν·n)ρdρd2ν = 2π

∫ ∞
0

∫ π

0
cos2 θeiρ cos θ sin θdθdρ. (6.111)

Changing the variable of integration, θ → t, t = cos θ, we have for the integral
over θ,
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∫ π

0
cos2 θeiρ cos θ sin θdθ =

∫ 1

−1
t2eiρt dt =

∫ 1

−1
t2 cos ρtdt = 1

ρ

∫ 1

−1
t2d sin ρt = 2

sin ρ

ρ
− 2

∫ 1

−1

sin ρt

ρ
tdt. (6.112)

Integrals over ρ of both terms in the right hand side of (6.112) are equal due to
(6.104). Therefore, the integral (6.111) is zero. Then, the solution of (6.109) and
(6.110) is α = −β = π2, and

Nst = π2 (gst − nsnt ) . (6.113)

Collecting the results, (6.106), (6.107) and (6.113), and using the relation

λ0 + μ0

λ0 + 2μ0
= 1

2(1− ν0)
, (6.114)

we arrive at (6.90).

Explicit form of J (p). We are going to show that the functional J (p) (6.80) can be
written in terms of Green’s tensor, as

J (p) = 1

4

∫

V

∫

V

�2Gij(x, x ′)
�xk�x ′m

(
pim(x)p jk(x)+ pim(x ′)p jk(x ′)−

− 2pim(x)p jk(x ′)
)

dV dV ′. (6.115)

The derivation of (6.115) is similar to that of the scalar case given in Sect. 5.9.
First, we consider smooth functions, pi j (x). Then, from Clapeyron’s theorem (5.47),

J (p) = 1

2

∫

V
ui, j pi j dV, (6.116)

where ui is the solution of the boundary value problem (6.82). According to (6.85),
this solution can be written as

ui (x) =
∫

V
Gij(x, x ′)

�p jk(x ′)
�x ′k

dV ′. (6.117)

Green’s tensor has an integrable singularity, 1/
∣∣x − x ′

∣∣ . Replacing �p jk(x ′)
/

�x ′k

by �(p jk(x ′)− p jk(x))
/

�x ′k and integrating by part, we have

ui (x) = −
∫

V

�Gij(x, x ′)
�x ′k

(
p jk(x ′)− p jk(x)

)
dV ′. (6.118)

If we differentiate (6.118) over xm ; then the singularity is still absolutely inte-
grable; therefore, the differentiation is possible. We get
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�ui (x)

�xm
= −

∫

V

�2Gij(x, x ′)
�xm�x ′k

(
p jk(x ′)− p jk(x)

)
dV ′. (6.119)

Derivative with respect to xm of the last term in (6.118),

∫

V

�Gij(x, x ′)
�x ′ j

dV ′
�p jk(x)

�xm
=
∫

�V
Gij(x, x ′)n j (x

′)d A
�p jk(x)

�xm
,

is equal to zero because Gij(x, x ′) = 0 for x ′ε�V .

From (6.116) and (6.119),

J (p) = −1

2

∫ ∫
�2Gij(x, x ′)

�xm�x ′k
pim(x)

(
p jk(x ′)− p jk(x)

)
dV dV ′. (6.120)

The symmetry of Green’s tensor yields a symmetry of its derivatives:

�2Gij(x, x ′)
�xm�x ′k

= �2G ji (x, x ′)
�x ′k�xm

. (6.121)

Let us change in (6.120) i ↔ j, m ↔ k, x ↔ x ′. We obtain

J (p) = −1

2

∫ ∫
�2G ji (x ′, x)

�x ′k�xm
p jk(x ′)

(
pim(x)− pim(x ′)

)
dV dV ′. (6.122)

Summing up (6.120) and (6.122) and using (6.121) we arrive at (6.115).
Now let pi j (x) have a discontinuity on some surface, S. As in the scalar case of

Sect. 5.9, one can show that the minimizer of the variational problem,

∫

V

1

2
Cijkl

0 � j ui �kuldV −
∫

S
σi u

i d A→ min
u:u=0 at �V

, (6.123)

where minimum is sought over all functions ui (x) vanishing on �V , is given by the
formula

ui (x) =
∫

S
Gij(x, x ′)σ j (x ′)d A′.

Therefore, the solution of the boundary value problem (6.82) and (6.83) is

ui (x) =
∫

V
Gij(x, x ′)

�p jk(x ′)
�x ′k

dV ′ +
∫

S
Gij(x, x ′)

[
p jk

]
nkd A′.
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That yields, after integration by parts, (6.118). For any point, x , which does not
belong to S, we may differentiate (6.118) to obtain (6.119). After that the derivation
of (6.115) proceeds in the same way as for smooth pi j (x).

The case of negative F–F0. If the constants, λ0 and μ0, are so large that

F0 − F = 1

2

(
Cijkl

0 − Cijkl
)

εijεkl > 0 for εij �= 0,

then, denoting by Hijkl the inverse tensor for Cijkl
0 − Cijkl,

Hijkl

(
Cijkl

0 − Cijkl
)
= δ

(m
i δ

n)
j ,

we can write

F0 − F = max
pi j

[
pi jεij − 1

2
Hijkl pi j pkl

]

or

F − F0 = min
pi j

(
1

2
Hijkl pi j pkl − pi jεij

)
.

Then

I (u) = min
pi j

∫

V

[
1

2
Cijkl

0 εijεkl + 1

2
Hijkl pi j pkl − pi jεij

]
dV

and

Ǐ = min
uε(6.70)

I (u) = min
pi j

[∫

V

1

2
Hijkl pi j pkl + J̃ (p)

]

where

J̃ (p) = min
uε(6.70)

∫

V

(
1

2
Cijkl

0 εijεkl − pi jεij

)
dV =

= E0 −
∫

V
pi j ε̊ijdV + J (p),

J (p) = min
uε(6.78)

∫

V

(
1

2
Cijkl

0 ε′ijε
′
kl − pi jε′ij

)
dV .

Formula for J (p) (6.115) remains unchanged, since it is invariant with respect to
the substitution, pi j →−pi j . We arrive at the following
Hashin-Strikman variational principle. The true energy of the body, Ǐ , can be
computed from the variational problem
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Ǐ − E0 = min
pi j (x)

[∫

V

(
1

2
Hijkl pi j pkl − pi j ε̊ij

)
dV + J (p)

]
.

The variational principles formulated hold for any choice of the parameters, Cijkl
0 .

6.8 Internal Stresses

Elasticity theory considered in the previous sections was based on the assumption
that there exists a global stress-free state of the body. The displacements in that the-
ory are the displacements from the stress-free state to the deformed state. There are
situations for which such an assumption is not physically adequate, though “elastic-
ity,” the way in which energy depends on strains, still holds. Consider, for example,
a polycrystal. In general, even for zero tractions at the boundary of the polycrystal,
the stresses are not zero: if we cut off a grain and set it free, it deforms into a
free-stress state. Moreover, if we cut the polycrystal over all grain boundaries and
let each grain to deform to a stress-free state, then, in general, the unstressed grains
cannot be put together to form a continuous body without gaps and overlapping.
This motivates a modification of the previous theory, which we consider first within
a general nonlinear framework and then make simplifications specific to geometrical
linearity. We begin with an example.

Consider a stress-free material (matrix) with a cavity (Fig. 6.2a) and a piece of
other material (inclusion). The inclusion is shown in its stress-free state in Fig. 6.2b.
After some deformation of the inclusion it fits the cavity. We put the inclusion into
the cavity and glue it to the cavity surface (Fig. 6.2d). We obtain a material with
nonzero stresses: the matrix is unstressed, while the inclusion, being deformed,
has nonzero stresses. To keep such a system in equilibrium, some forces must be
applied at the interface surface. If the external forces are removed, then the system
comes to a new equilibrium state (Fig. 6.2e). The stresses in this state are nonzero.
They are usually referred to as internal stresses. The example considered provides a
physically adequate model for various defects in solids: precipitates and inclusions
of various nature, voids, vacancies and interstitials in crystal lattices.

Fig. 6.2 Internal stresses
caused by inclusion
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Fitting this example to the general continuum mechanics scheme, we can identify
the current state with the state in Fig. 6.2e and the initial state with the state in
Fig. 6.2d. There is a displacement field which transforms the initial state into the
current state. The initial state is not, however, stress-free. To have a stress-free state,
we have to cut off the inclusion. That yields the stress-free states of the two pieces
(Fig. 6.2a and b). These two pieces cannot be put together without overlapping. To
characterize the transition from the initial state to a stress-free state quantitatively,
first we introduce a Lagrangian smooth coordinate system, Xa, in the initial state. It
can always be chosen Cartesian. The metric tensor in the initial state we denote as
before by g̊ab. Cutting off a small piece of material in the vicinity of point X and its
unloading lead to deformation to a stress-free state. The metric tensor in the stress-
free state differs from g̊ab, and we denote it by g∗ab. In our example, g∗ab coincides
with g̊ab inside the matrix, and differs from g̊ab in the inclusion. The deformation
occurring in the transition from the initial to the stress-free state is characterized by
the tensor

ε∗ab =
1

2

(
g∗ab − g̊ab

)
.

It is called eigen-strain tensor, or just eigen-strain. In general, the eigen-strain,
ε∗ab, cannot be obtained by a smooth displacement field from the initial state. One
says that the eigen-strain is incompatible.

Since g∗ab corresponds to a stress-free state, the elastic strain tensor is

ε
(e)
ab =

1

2

(
gab − g∗ab

)
.

Here, gab is the metric tensor in the current state,

gab = gijx
i
a x j

b , xi
a =

�xi (X )

�Xa
,

xi (X ) being the position of the particle X in the current state. As before, the total
strain, εab, is, by definition, the strain associated with the transition from the initial
to the current state:

εab = 1

2
(gab − g̊ab) .

Obviously,

εab = ε
(e)
ab + ε∗ab.

The total strain is compatible, the elastic strain and the eigen-strain are not.
A typical problem of the internal stress theory is to find the stress field if the

eigen-strain field is known. The internal stresses can be found from the following
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Gibbs variational principle. The true internal stress field provides minimum to the
functional

I =
∫

V
F(ε(e)

ab )dV,

over all particle positions in the current state.
In geometrically linear theory,

ε
(e)
ij =

1

2

(
�i u j + � j ui − g∗ij

)
.

Therefore the functional simplifies to

I =
∫

V
F

(
1

2

(
�i u j + � j ui − g∗ij

))
dV .

The tensor g∗ij is compatible if there exists a vector field, u∗i (x), such that

g∗ij = �i u
∗
j + � j u

∗
i . (6.124)

The vector field, u∗i , can be interpreted as a displacement field from the initial to
the stress-free state. If F(ε(e)

ab ) has the only minimum for zero ε
(e)
ab , and stresses

σ i j = �F(ε(e)
ij )

�ε
(e)
ij

,

are zero for ε
(e)
ij = 0, then the minimum is achieved for ui = u∗i , i.e. in the stress-free

state. Internal stresses appear only for incompatible g∗ij.
In physically and geometrically linear theory,

F(ε(e)
ij ) = 1

2
Cijklε

(e)
ij ε

(e)
kl .

To obtain the dual variational principle in this case, we present F(ε(e)
ij ) as

F(ε(e)
ij ) = max

σ i j

(
σ i j 1

2

(
�i u j + � j ui − g∗ij

)− 1

2
C (−1)

ijkl σ i jσ kl

)
.

Following the general scheme we arrive at

Dual variational principle. The true stress state of the body provides minimum to
the functional

J =
∫

V

1

2
C (−1)

ijkl σ i jσ kldV + l(σ ), l(σ ) = 1

2

∫

V
σ i j g∗ijdV, (6.125)
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on the set of all stress fields obeying the constraints

�σ i j

�x j
= 0 in V, σ i j n j = 0 on �V . (6.126)

If g∗ij are compatible, i.e. (6.124) holds, then l(σ ) = 0 due to (6.126), and the
minimizing stress is zero.

As we discussed in Sect. 6.6, in order to be compatible, g∗ij must satisfy (6.59):

eiklejmn�l�ng∗ij = 0.

Therefore, the tensor

ηi j = 1

2
eiklejmn�l�ng∗ij

is a measure of the incompatibility of the eigen-strain.
The linear functional, l(σ ), can be expressed in terms of ηi j , if we eliminate

stresses by introducing the stress functions, ψij. Plugging in l(σ ) (6.125) the expres-
sion of stresses in terms of stress functions (6.47), integrating by parts and assuming,
for simplicity, that g∗ij and their derivatives vanish at the boundary, we have

l(ψ) = 1

2

∫

V
σ i j g∗ijdV = 1

2

∫

V
eiklejmsψkm,ls g∗ijdV =

∫

V
ψkmηkmdV .

Denote by F(ψkm,ls) the function which is obtained from 1
2 C (−1)

ijkl σ i jσ kl when
one replaces the stress tensor σ i j by its expression in terms of stress functions,
eiklejmsψkm,ls . We obtain
Dual variational principle for stress functions. The true stress functions provide
minimum to the functional

J (ψ) =
∫

V
F(ψkm,ls)dV +

∫

V
ψkmηkmdV

on the set of all stress functions obeying the boundary condition

eiklejmsψkm,lsn j = 0 on �V .

Here the incompatibility measure, ηkm, is assumed to be known.

6.9 Thermoelasticity

In the previous consideration temperature was assumed to be the same in the de-
formed and undeformed state. If the temperature changes from the initial value, T0,
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in the stress-free state to a value, T, in the deformed state, then some additional
stresses develop caused by the temperature difference, T − T0. Accordingly, an
interaction term between the strains and the temperature difference appears in the
free energy. In linear theory, expanding F

(
εi j , T

)
in Taylor series with respect to

small εi j and T − T0, we get

F
(
εi j , T

) = F0(T )− β i jεi j (T − T0)+ 1

2
Ci jklεi jεkl

where F0(T ) is the free energy of the undeformed material. Then the stresses are

σ i j = �F

�εi j
= Ci jklεkl − β i j (T − T0) . (6.127)

The meaning of the coefficients β i j is simple: −β i j (T − T0) are the stresses de-
veloped in a homogeneous deformation of the material clamped at the boundary.
For isotropic materials, −β i j = βgi j . Usually, β > 0, i.e. the material is under
compression, when temperature raises, and under tension when temperature dropes.

One can introduce the temperature expansion coefficients, αi j , by the relation:

εi j = αi j (T − T0) when σi j = 0.

From (6.127)

αi j = C−1
i jklβ

kl .

In case of isotropic body,

σ i j = λεk
k gi j + 2μεi j − βgi j (T − T0) .

Therefore,

αi j = αgi j , α = β

3λ+ 2μ
,

and the free energy of isotropic thermoelastic body has the form

F
(
εi j , T

) = F0(T )+ 1

2
λ
(
εi

i

)2 + μεi jε
i j − (3λ+ 2μ) α (T − T0) εk

k .

In general case of anisotropic body, the free energy of the thermoelastic body can
be written as

F
(
εi j , T

) = 1

2
Ci jkl

(
εi j − αi j (T − T0)

)
(εkl − αkl (T − T0))+ F1(T ), (6.128)

where



6.10 Dislocations 323

F1(T ) = F0(T )− 1

2
Ci jklαi jαkl (T − T0)2 .

Comparing the free energy of thermoelastic bodies (6.128) with the free energy of
elastic bodies with internal stresses (Sect. 6.8), we see that the thermoelastic body is
a special case of elastic bodies with internal stresses when the eigenstrains are equal
to αi j (T − T0) .

6.10 Dislocations

Elasticity theory gives an adequate description of internal stresses caused by defects
of perfect crystal lattices. In such modeling of a discrete system, the displacement
field of a continuum is viewed as a smooth extrapolation of the displacements of the
nodes of the crystal lattice. In this section we consider variational principles for the
internal stresses caused by one type of the crystal defects, dislocations.

The mechanism of plastic deformation in crystals (at not very high temperatures)
is as follows. Let a shear force is applied to a crystal (Fig. 6.3a).

If the force is small, the crystal lattice is just slightly deformed. If the force is
large enough, it can cause an irreversible deformation of the crystal which remains
after unloading (Fig. 6.3b). To move a crystal to state b from state a would require
a very large force. However, such transformation can be achieved by a smaller force
if a defect is introduced in the crystal, a dislocation, shown in Fig. 6.3c. When this
defect passes the crystal, the crystal is transformed from state a to state b. The crys-
tal lattice is deformed in a vicinity of dislocation. Thus, there are internal stresses
in the body. We are going to formulate a mathematical problem describing these
stresses.

As the initial stress-free state we take the perfect lattice. It is assumed to be mod-
eled by some elastic continuum. It is shown in Fig. 6.4a. There is another stress-free
state obtained as a result of plastic deformation (Fig. 6.4b). The total displacement,
ui , of material particles from state a to state b has a discontinuity on a slip plane �.

The jump of displacements, bi = [ui ] is constant on �. It is called Burgers vector.
The Burgers vector is tangential to the slip plane �. The magnitude of the Burgers

Fig. 6.3 A mechanism of plastic deformation in crystals. The grid nodes corresponds to positions
of atoms
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Fig. 6.4 Continuum model of a dislocation

vector is equal to the interatomic distance. In the intermediate state from a to b, the
state with a dislocation, the displacements have a jump on the slip plane � shown
in Fig. 6.4b.

The transition from state a to state b results in some plastic deformation. This
plastic deformation is compatible: there is a displacement vector, u(p)

i , from state a
to state b. Assuming the geometric linearity, we can write

ε
(p)
ij =

1

2

(
�u(p)

i

�x j
+ �u(p)

j

�xi

)
. (6.129)

The plastic displacement vector, u(p)
i , is discontinuous. For example, for the case

shown in Fig. 6.4b,

u(p)
1 = bθ (x2 − h) , u(p)

2 = 0

where θ (x2) is the step function. Thus

ε
(p)
12 =

1

2
bδ (x2 − h) , (6.130)

while all other components of the plastic strain tensor are zero. As we will see,
for a state with dislocations one can introduce plastic strains, but they will not be
compatible, i.e. there are no plastic displacement fields satisfying (6.129). The total
displacements, i.e. the displacements from the state a to the state c do exist and have
a jump on �.

Generalizing this picture, we consider an elastic body which contains a surface
�, on which displacements have a given jump,

bi = u+i − u−i . (6.131)
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The signs, ±, mark the values at the two sides of �. The Burgers vector, bi , is
tangential to � and its magnitude is equal to the interatomic distance.4 The crystal
lattice remains perfect inside �; however at the boundary of �, �, the positions of
the atoms are far from the position of the perfect lattice. The distorted region can
be viewed as a thin rod with the central line �. The material inside the rod is in a
state similar to the state of a melted crystal. � is called the dislocation line, or just
dislocation.

Modeling the slip plane by a mathematical surface, �, and the dislocation by a
curve, �, make sense, because we are going to consider the stresses far away from
the dislocation. The numerical simulations of crystal lattices have shown that such
an approximation fails to predict the correct stress field only in a small vicinity of
the dislocation line of the size of a few interatomic distances.

So, the only difference from the usual elasticity theory is to allow the displace-
ments to have a given jump, bi , at some surface, �, with the vector, bi , tangent
to that surface. To accord this kinematic picture with the theory of the previous
sections, we note that the initial state is identified here with the stress-free state.
Usually, � is a plane or piece-wise plane surface, and the vector, bi , is constant on
�. However, in further consideration this is not essential, and the surface � can be
viewed as an arbitrary smooth surface. The constancy of bi would cause a stress state
with singularities at �. In order to avoid singularities, the jump of displacements
could be smoothed from a constant value, bi , inside � to zero at �. Smoothing
should be made only in a small vicinity of � on the order of the interatomic distance.
This region can be viewed as corresponding to the dislocation core.

Note that the “true” difference of the displacements on the two sides of the slip
surface “in a crystal” is equal to the Burgers vector plus a small vector on the order
of elastic strain. Such correction is negligibly small and will be ignored.

In physically and geometrically linear theory the internal stresses caused by a
dislocation is determined from
Gibbs variational principle. The true displacement field of an unloaded crystal
provides the minimum value to the functional

I (u) =
∫

V

1

2
CijklεijεkldV, εij ≡ 1

2

(
�i u j + � j ui

)
,

on the set of all displacement fields with a prescribed jump on � (6.131).
Since, according to (6.131), the variations of displacements are continuous on �,

[δui ] = 0,

(remember that [ϕ] denotes the difference of the boundary values of function, ϕ, at
the two sides of discontinuity surface, [ϕ] = ϕ+ − ϕ−) the minimum is achieved at
the continuous surface forces at � :

4 There are crystal defects, of which the magnitude of Burger’s vector is not equal to the inter-
atomic distance. They are called partial dislocations and not considered here. Partial dislocations
possess an additional energy distributed over the slip surface.
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[σ i j ]n j = 0.

For definiteness, the normal vector on � is chosen directed from the side “−” to
the side “+”; in addition, the positive direction on the contour � is taken in such
a way that moving along � in positive direction one sees the surface � on the left
(Fig. 6.5).

If some external surface forces, fi , act at the boundary of the crystal, the func-
tional to be minimized changes to

I (u) =
∫

V

1

2
CijklεijεkldV −

∫

�V
fi u

i d A. (6.132)

Let us construct the dual variational principle. Following the general scheme,

min
u∈(6.131)

I (u) =

= min
u∈(6.131)

max
σ i j

[∫

V

(
σ i j ui, j − 1

2
C (−1)

ijkl σ i jσ kl

)
dV −

∫

�V
fi u

i d A

]

= max
σ i j

min
u∈(6.131)

[∫

�V
(σ i j n j − f i )ui d A +

∫

�

(σ i j
− n j u

−
i − σ

i j
+ n j u

+
i )d A

−
∫

V
(� jσ

i j )ui dV −
∫

V

1

2
C (−1)

ijkl σ i jσ kldV

]
. (6.133)

Changing the order of minimum and maximum in (6.133), replacing u+i by u−i + bi

and using the arbitrariness of ui in V and on �V and u−i on �, we obtain
Dual variational principle. The true stress state of the body with a dislocation
provides minimum to the functional

Fig. 6.5 Notations for a
single dislocation
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J (σ ) =
∫

V

1

2
C (−1)

ijkl σ i jσ kldV + l(σ ), (6.134)

l(σ ) =
∫

�

σ i j n j bi d A (6.135)

on the set of all stress fields obeying the constraints

�σ i j

�x j
= 0 in V, [σ i j ]n j = 0 on �, σ i j n j = f i on �V . (6.136)

The boundary values of σ i j are, in principle, different on the two sides of �,

but it does not matter which boundary values are used in (6.135) because σ i j n j are
continuous.

As we discussed in Section 6.1, the energy functional I (u) has the meaning of
averaged micro-Hamiltonian. Its minimum value, denote it by H, depends on the
position of dislocation. Derivative of H with respect to that position is called the
force acting on dislocation. If H takes the minimum value for some dislocation
position, the force is zero, and the system is in equilibrium. Let us find the force.
According to (6.133),

H = − min
σ∈(6.136)

J (σ ). (6.137)

To find the variation of H caused by an infinitesimally small variation of the disloca-
tion line, we note that, though the stresses depend on the position of the dislocation,
and the stress variations are not zero, these variations do not contribute in δH be-
cause the variation of J (σ ) with respect to stresses is zero. This is quite similar to
the differentiation of the minimum value of a functional with respect to parameters
(Section 5.13). Thus, to find the variation of H , one has to find the variation of the
linear functional, l(σ ), caused by the variation of �. We consider infinitely small
displacements of � which lie in the tangent plane to � : for such displacements
no change of volume occurs during plastic deformation. In general, dislocations
can move in the direction normal to the slip plane as well, such motion is called
climbing. However, for such motion the atomic half plane, bounded by the dislo-
cation line, shrinks or grows and, accordingly, consumes or emits vacancies and/or
interstitials. The proper energy balance for such case should include the contribution
from additional fields describing vacancies and interstitial, and we do not dwell on
this issue here.

Let νi be the unit vector orthogonal to � and to the normal vector of the slip
plane, ni . Vector νi looks outside �. Denoting by δν the displacement of � in the
direction νi , we have from (6.135) and (6.137),

δH = −
∫

�

σ i j n j biδνds. (6.138)

The expression
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f = −σ i j n j bi

may be interpreted as the component of the force acting on the dislocation in the
direction of νi .

An additional analysis shows that out of slip plane displacements at some point s
do not involve the volume change (or, in physical terms, the flux of vacancies and/or
interstitials), if the Burgers vector of the dislocation is tangent to � at this point. In
this case, n j in (6.138) is the normal vector to the increment of the slip surface.
Thus, if δxi is the virtual displacement of the dislocation line with the magnitude
δν, then ni = eijkδx jτk/δν, τk being the tangent vector to �. Hence, the force is

fm = −σ ikbi ekmsτ
s .

This formula makes sense only if bi = bτi . Therefore, in particular, the spherical
part of the stress tensor, pressure does not contribute to the force.

The relations obtained hold for a set of dislocations as well: this case corresponds
to the slip surface, �, consisting of several disjoined pieces.

6.11 Continuously Distributed Dislocations

Crystals contain a huge number of dislocations. A typical total length of disloca-
tion lines is on a cosmic scale: about 1014 m in 1 m3. Therefore, it makes sense to
consider a continuum theory which mimics some features of dislocation networks.
Remarkably, it can be done in such a way that the continuum theory transforms in
the theory of single dislocations presented in the previous section by concentrating
the continuum characteristics of dislocation networks on dislocation lines. In this
section we describe this continuum theory and the corresponding variational princi-
ples.

Plastic strains. Let us introduce the δ-functions associated with the slip surface,
�. We will need the usual three-dimensional δ-function, which we denote here by
δ3(x):

δ3(x) = δ(x1)δ(x2)δ(x3),

the δ-function of �

δ(�) =
∫

�

δ3(x − x�)d A,

and δ-function of �
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δ(�) =
∫

�

δ3(x − x�)ds.

Here x� and x� denote the points on � and �, respectively.
These δ – functions are linked by Kunin’s identity:5

e jkl�k(nlδ(�)) = τ jδ(�). (6.139)

Each dislocation causes some plastic deformation of the crystal. We are going to
motivate the following formula: a plastic strain, associated with a dislocation, is6

ε
(p)
ij = b(i n j)δ(�). (6.140)

Indeed, by plastic deformation one usually means the residual deformation,
which remains in material after unloading. The residual deformation is measured
using the values of displacements at the boundary of the material. Let loading of
the material from a stress-free state create a dislocation inside the material. After
unloading the displacements at the boundary are not zero due to the presence of the
dislocation. By displacements we mean here the displacements from the state that
corresponds to the perfect lattice. We define the plastic strain of a specimen in terms
of the boundary values of displacements as

ε
(p)
ij =

1

|V |
∫

�V
u(i n j)d A. (6.141)

For example, if there is just shear of the two sides of the boundary, S+ and S−,
like the one shown in Fig. 6.6, then the only non-zero component of the displace-
ment vector at the boundary is u1, and (6.141) yields a meaningful result: all the
components of plastic strain are zero except ε

(p)
12 :

ε
(p)
12 =

1

2

1

|V |
(
u+1 S − u−1 S

) = 1

2

u+1 − u−1
h

.

5 Indeed, for any smooth function, ϕ(x),
∫

ϕ(x)e jkl �k (nlδ(�))d3x = −
∫ ∫

�

�kϕ(x)e jkl nlδ(x − x�)d3xd A

= −
∫

�

�kϕ(x�)e jkl nl d A = −
∫

�

�kϕ(x�)εαβr j
αrk

βd A

= −
∫

�

�ϕ

�ζ β
εαβr j

αd A = −
∫

�

∇β (ϕεαβr j
α )d A = −

∫

�

ϕεαβνβr j
αds =

∫

�

ϕτ j ds.

Here we used (14.10), (14.13), (14.37), (14.28) and (14.21).
6 This formula transforms into (6.130) for the special case of Fig. 6.3b.
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Fig. 6.6 Notation to the
motivation of formula (6.141)

Another point in favor of the definition (6.141) is that, for a homogeneous defor-
mation inside the specimen, ui = aijx j , the integral in the right hand side of (6.141)
is equal to a(i j) (due to the divergence theorem (3.89)), as it should be.

Let the specimen contain a dislocation with a slip surface, �. The strains in-
side the specimen, by assumption, can be computed within the framework of linear
elasticity. The elastic moduli are assumed to be constant over the specimen. We are
going to show that the plastic strain of the specimen (6.141) is equal to

ε
(p)
ij =

1

|V |
∫

�

b(i n j)d A. (6.142)

We have from (6.141):

ε
(p)
ij =

1

|V |
(∫

�V
u(i n j)d A −

∫

�

b(i n j)d A

)
+ 1

|V |
∫

�

b(i n j)d A

= 1

|V |
∫

V
u(i, j)dV + 1

|V |
∫

�

b(i n j)d A. (6.143)

The first integral in (6.143) is equal to

1

|V |
∫

V
u(i, j)dV = 1

|V |C
(−1)
ijkl

∫

V
σ kldV . (6.144)

On the other hand,

∫

V
σ kldV =

∫

�V
σ ksns xld A,

because, due to momentum equations,

∫

�V
σ ksns xld A =

∫

V

�(σ ks xl )

�xs
dV =

∫

V

(
�σ ks

�xs
xl + σ ks �xl

�xs

)
dV =

∫

V
σ kldV .
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The presence of a surface of discontinuity, �, does not change the result because
σ ksns are continuous on �. Since at the boundary the surface force is zero, so does
the volume average of the stress. Thus, the integral (6.144) is zero, and (6.142) holds
true.

So the plastic strain of a body with a dislocation is given by (6.142). This formula
can be written as the volume average of functions (6.140):

ε
(p)
ij =

1

|V |
∫

V
b(i n j)δ(�)dV . (6.145)

This relation holds true when � consists of several disjointed pieces, i.e. for a set
of dislocations. So, if we associate with each dislocation the plastic strain (6.140),
then the total plastic deformation of the specimen is the volume average of “local”
plastic deformations (6.140). That shows a feasibility of (6.140).

Plastic distortion and dislocation density tensor. The volume average of the char-
acteristics of dislocation networks (6.140) is the macroscopic plastic strain. If we
construct a theory of internal stresses in which ε

(p)
ij can be smooth functions, ad-

mitting a limit transition to the δ-function (6.140), we embed the case of discrete
dislocation in a continuum theory. At first glance, we can take the smooth func-
tions, ε

(p)
ij , as the primary characteristics of dislocation networks. Here, however,

we face a difficulty. Plastic strain (6.140) depends on the slip surface, �. The
slip surface is determined by the history of dislocation motion. Thus, the plas-
tic strain depends on the history of motion. The physical state of the material
is affected only by the current positions of the dislocations (if dislocations move
slow). Therefore, there should be no dependence of thermodynamic functionals on
plastic strains. The first gradients of plastic strains do not help: they are history-
dependent as well. The resolution of this difficulty is the following: instead of plastic
strain, one introduces the plastic distortion as the primary characteristics of plastic
deformation

βij = bi n jδ(�). (6.146)

Plastic strain is the symmetric part of the plastic distortion,

ε
(p)
ij = β(i j).

Plastic distortion contains three additional degrees of freedom, the plastic rota-
tion, β[i j]. Now one can form the characteristics which are history-independent and
associated only with the current position of the dislocation line:

α
j
i = e jkl�kβil . (6.147)
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Indeed, due to the identity (6.139),

α
j
i = biτ

jδ(�). (6.148)

Tensor αi
j is called the dislocation density tensor.7

The plastic distortion and the dislocation density tensor can now be taken as con-
tinuous. In the special case (6.146), we return to the kinematic relation for discrete
dislocations (6.148).

The dislocation density tensor obeys the identity

� jα
j
i = 0.

It follows from (6.147).
The dislocation density tensor can be interpreted as a measure of incompatibility

of plastic deformation: according to (6.147), α
j
i = 0 if and only if there exists a

smooth field of plastic displacements, u(p)
i , such that the plastic distortion is the

gradient of plastic displacements:

βij = � j u
(p)
i .

In case of dislocations, α
j
i �= 0, and the plastic displacements, u(p)

i , do not exist.
The dislocation density tensor being determined by only the current positions of

dislocations is a proper argument of thermodynamic functions.

Elastic distortion and lattice rotation. Along with the plastic distortion, βij, one
can introduce the elastic distortion, β

(e)
ij , by the relation

βij + β
(e)
ij =

�ui

�x j

where ui is the displacement from the state corresponding to the perfect lattice. As
follows from this definition,

e jkl�kβil + e jkl�kβ
(e)
il = 0.

Therefore, the dislocation density tensor can be also written as

α
j
i = −e jkl�kβ

(e)
il . (6.149)

The symmetric part of the elastic distortion, β
(e)
ij , is the elastic strain, ε

(e)
ij ; the

anti-symmetric part, ωij, describes the rotation of the crystal lattice. Typically, for

7 Historically, the dislocation density tensor was introduced from other reasoning. It was first used
as a measure of the lattice curvature by Nye [234]. Later Bilby and Krőner constructed its contin-
uous version that involves all nine degrees of freedom of plastic distortions.
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metals ε
(e)
ij ∼ 10−4 and ωij ∼ 10−2; therefore ε

(e)
ij can be dropped in (6.149), and α

j
i

is determined by the lattice rotation only:

α
j
i = −e jkl�kωil . (6.150)

The lattice rotations can be measured experimentally, and formula (6.150) is used
to estimate the values of the dislocation density tensor.

Functional l(σ ). To specify a dislocation network, one can prescribe the tensor
βij. In terms of this tensor, the linear functional (6.135) can be written as

l(σ ) =
∫

V
σ i jβijdV .

The symmetry of the stress tensor allows us to write l(σ ) in terms of plastic defor-
mation only:

l(σ ) =
∫

V
σ i jε

(p)
ij dV . (6.151)

Formula (6.151) is exact in the sense that it remains true if the smooth functions ε
(p)
ij

are replaced by the singular ones, (6.140).
In fact, l(σ ) depends only on the derivatives of ε

(p)
ij (or βij), because in (6.151)

σ i j is not an arbitrary tensor but a tensor satisfying the equilibrium equations. This
can be seen explicitely if we replace the stress tensor by the stress functions from
(6.47):

l(σ ) =
∫

V
eiklejmsψkm,lsβijdV .

Here ψkm is a symmetric tensor field. Assume, for simplicity, that βij are zero in
some vicinity of the boundary. Integrating by parts we obtain the linear functional
in terms of dislocation density tensor:

l(σ ) =
∫

V
eiklψkm,lα

m
i dV . (6.152)

Formula (6.152) shows that the functional l(σ ), in fact, does not depend on the
history of dislocation motion. Accordingly, energy of the body does not depend on
the history of dislocation motion as well.

Further integration by parts in (6.152) yields the equation

l(σ ) =
∫

V
ψkmηkmdV,
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where ηkm is the incompatibility measure

ηkm = 1

2

(
eilkejsm + eilmejsk

)
βi j,ls = 1

2

(
ekilαm

i,l + emilαk
i,l

)
. (6.153)

The incompatibility ηkm is taken symmetric over k, m because ψkm is symmet-
ric. Interestingly, the incompatibility depends only on the symmetric part of plastic
distortion, the plastic strain:8

ηkm = eilkejsmε
(p)
i j,ls . (6.154)

On the other hand, according to (6.152) the incompatibility can be expressed in
terms of the dislocation density tensor and, therefore, is history-independent. Hence,
the combinations of second derivatives of plastic strain (6.154) are also history-
independent and can serve as the characteristics of the current physical state of the
crystal.

Dislocation networks. In crystals, dislocations form a random network.9 It can be
characterized by random fields βi j (x, ω), ε

(p)
i j (x, ω), αi j (x, ω) or ηi j (x, ω). Denote

by bar the mathematical expectations of these fields, e. g.,

ε̄
(p)
i j (x) = Mε

(p)
i j , β̄i j (x) = Mβi j , ᾱi j (x) = Mαi j ,

and by prime the fluctuations:

ε
′(p)
i j = ε

(p)
i j − ε

−(p)
i j , β ′i j = βi j − β̄i j , α′i j (x) = αi j − ᾱi j .

We assume that β̄i j and ᾱi j are some smooth fields, while β ′i j and α′i j may be singu-
lar. Since the operations of mathematical expectation and differentiation commute,

ᾱ
j
i = e jkl�k β̄il , α

′ j
i = e jkl�kβ

′
il .

We are going to split the variational problem for the energy functional into two
variational problems, one is for the averaged characteristics, and another one for
fluctuations.

Let σ̄ i j be the minimizer of the functional (6.134) in which l(σ ) is computed on
the averaged plastic strains,

8 Indeed, changing the dummy indices, i ↔ j, l ↔ s, we can write

eilmejskβ[i j],ls = ejsmeilkβ[ j i],sl = −eilkejsmβ[i j],ls .

Thus, the antisymmetric part of the plastic distortion disappears in (6.153).
9 This part of the Section uses the notion of random fields introduced further in Chapter 16. The
readers, who are not familiar with this notion, are advised to look at the definitions and the corre-
sponding notations in Section 16.1.
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l(σ ) =
∫

V
σ i j ε̄

(p)
i j dV .

Our goal is to prove the following
Variational principle. Let Ī (u) be the energy functional of an elastic body with the
eigen-strains ε̄

(p)
i j ,

Ī (u) =
∫

V

1

2
Ci jkl

(
u(i, j) − ε̄

(p)
i j

) (
u(k,l) − ε̄

(p)
kl

)
dV −

∫

�V
fi u

i d A,

and σ̄ i j the stress field of the minimizer of Ī (u). Then

min
u

I (u) = min
u

Ī (u)+ E
(
α′
)−

∫

V
σ̄ i jε

′(p)
i j dV, (6.155)

where E
(
α′
)

is the elastic energy of the dislocation network with the dislocation
density tensor α′i j and zero tractions at the boundary.

The proof proceeds as follows. We present the plastic strains in (6.151) as the
sum of averaged plastic strains and fluctuations,

l(σ ) =
∫

V
σ i j ε̄

(p)
i j dV +

∫

V
σ i jε

′(p)
i j dV .

Then the functional (6.134) takes the form

J (σ ) =
∫

V

1

2
C−1

i jklσ
i jσ kldV +

∫

V
σ i j ε̄

(p)
i j dV +

∫

V
σ i jε

′(p)
i j dV . (6.156)

If we drop the last term and minimize over admissible σ i j , we get

J (σ̄ ) = min
σ i j∈(6.136)

[∫

V

1

2
C (−1)

i jkl σ i jσ kldV +
∫

V
σ i j ε̄

(p)
i j dV

]
. (6.157)

The constraints (6.136) can be written in a weak form: for smooth functions, ui ,

∫

V
σ i j ui, j dV =

∫

�V
fi u

i d A. (6.158)

Interpreting ui as the Lagrange multipliers, we can write (6.157) as

J (σ̄ ) = min
σ i j

max
ui

[∫

V

(
1

2
C−1

i jklσ
i jσ kl + σ i j ε̄

(p)
i j − σ i j u(i, j)

)
dV +

∫

�V
fi u

i d A

]
.

Changing the order of maximization and minimization and computing minimum
over symmetric tensors σ i j , we get



336 6 Statics of a Geometrically Linear Elastic Body

J (σ̄ ) = max
ui

[∫

�V
fi u

i d A − 1

2
Ci jkl

(
u(i. j) − ε̄

(p)
i j

) (
u(k,l) − ε̄

(p)
kl

)
dV

]

= −min
ui

[∫

V

1

2
Ci jkl

(
u(i. j) − ε̄

(p)
i j

) (
u(k,l) − ε̄

(p)
kl

)
dV −

∫

�V
fi u

i d A

]
. (6.159)

Let us present any admissible stress field in the minimization problem for the
functional J (σ ) (6.156) as a sum

σ i j = σ̄ i j + σ ′i j . (6.160)

The field σ ′i j must obey the constraints that follow from (6.136):

�σ ′i j

�x j
= 0 in V,

[
σ ′i j

]
n j = 0 on �, σ ′i j n j = 0 on �V . (6.161)

Recall that � denotes the set of slip planes of all dislocations in the body. Plugging
(6.160) in (6.155) we obtain

J (σ ) =
∫

V

1

2
C (−1)

i jkl σ̄ i j σ̄ kldV +
∫

V

1

2
C (−1)

i jkl σ ′i jσ ′kldV +
∫

V

1

2
C (−1)

i jkl σ̄ i jσ ′kldV

+
∫

V
σ̄ i j ε̄

(p)
i j dV +

∫

V
σ ′i j ε̄

(p)
i j dV +

∫

V
σ̄ i jε

′(p)
i j dV +

∫

V
σ ′i jε

′(p)
i j dV . (6.162)

Note that for any tensor field σ ′i j , obeying the constraints (6.161),

∫

V

(
C (−1)

i jkl σ̄ i j + ε̄
(p)
kl

)
σ ′kldV = 0.

This is Euler’s equation for the variational problem (6.157). Therefore, the sum of
the third and the fifth terms in (6.162) vanishes. The sum of the first and the fourth
terms in (6.162) is J (σ̄ ). Thus,

J (σ ) = J (σ̄ )+
∫

V

1

2
C (−1)

i jkl σ ′i jσ ′kldV +
∫

V
σ ′i jε

′(p)
i j dV +

∫

V
σ̄ i jε

′(p)
i j dV . (6.163)

Let ψkm be the stress functions for the stress tensor σ ′i j ,

σ ′i j = eikle jmnψkm,ln.

According to (6.161), ψkm obey the conditions,

[
eikle jmnψkm,ln

]
n j = 0 on �, eikle jmnψkm,lnn j = 0 on �V . (6.164)
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Denote by U (ψ) the elastic energy,

∫

V

1

2
C (−1)

i jkl σ ′i jσ ′kldV,

computed as a functional of ψkm . Then, using (6.152), we have

min J (σ ) = J (σ̄ )+ min
ψkm∈(6.164)

[
U (ψ)+

∫

V
eiklψkm,lα

′m
i dV

]
+
∫

V
σ̄ i jε

′(p)
i j dV .

(6.165)

The second term in (6.165) is negative energy of the dislocation network with the
dislocation density tensor α

′ j
i and zero surface forces, −E(α′). Recalling that

min I (u) = −min J (σ ),

we obtain from (6.165) formula (6.155).

The case of prescribed displacements at the boundary. If the displacements are
given at some part �Vu of the boundary of the solid,

ui = ui
(b) on �Vu, (6.166)

then the previous formulas change in the following way: the functional l(σ ) gets an
additional term,

l(σ ) =
∫

V
σ i jε

(p)
i j dV −

∫

�Vu

σ
j

i n j u
i
(b)d A;

tensor σ̄ i j becomes the minimizer of the variational problem

J (σ̄ ) = min
σ i j∈(6.136)

[∫

V

1

2
C−1

i jklσ
i jσ kldV +

∫

V
σ i j ε̄

(p)
i j dV −

∫

�Vu

σ
j

i n j u
i
(b)d A

]
;

the weak form of the constraints for σ i j becomes
∫

V
σ i j ui, j dV =

∫

�V f

fi u
i d A +

∫

�Vu

σ
j

i n j u
i
(b)d A,

where ui are smooth functions taking at �Vu the boundary values ui
(b), equation

(6.159) is replaced by the equation

J (σ̄ ) = − min
u∈(6.166)

[∫

V

1

2
Ci jkl

(
u(i, j) − ε̄

(p)
i j

) (
u(k,l) − ε̄

(p)
kl

)
dV −

∫

�V f

fi u
i d A

]
;

the last of the constraints (6.161) is replaced by
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σ ′i j n j = 0 on �V f ;

the constraints (6.164) are replaced by

[
eikle jmnψkm,ln

]
n j = 0 on �V, (6.167)

eikle jmnψkm,lnn j = 0 on �V f .

Variational principle. The minimum value of the energy functional can be pre-
sented in terms of solutions of two variational problems:

min
u∈(6.166)

I (u) = min
u∈(6.166)

Ī (u)+ E(α′)−
∫

V
σ̄ i jε

′(p)
i j dV, (6.168)

−E(α′) = min
ψ∈(6.167)

[
U (ψ)+

∫

V
eiklψkm,lα

′m
i dV

]
.

The functional E(α′) has the meaning of elastic energy of the dislocation network
with zero tractions at �V f and zero displacements at �Vu .

Formula for energy of a crystal with dislocations. The variational principle for-
mulated yields important consequence, a formula for energy of a crystal with dislo-
cations. For simplicity, we consider the case of zero tractions at �V f . Then min I (u)
has the meaning of total energy of the crystal. Functional I (u) is the elastic energy
of the crystal, a quadratic functional of elastic strains, ε

(e)
i j = u(i, j) − ε̄

(p)
i j ,

∫

V

1

2
Ci jklε

(e)
i j ε

(e)
kl dV .

Let us assume that the random fields ε
′(p)
i j and α′i j have a correlation radius, a,

which is much smaller than the characteristic size of region V . Assume also that the
field ε

′(p)
i j is ergodic, i.e. its volume integral coincides with mathematical expectation

and, thus, equal to zero (the size of the volume must be much bigger than a). Then

∫

V
σ̄ i jε

′(p)
i j dV � 0.

Let us divide V in a large number of boxes, B1, ..., BN , the size of which is much
bigger than a. Then α′mi can be considered statistically independent in different
boxes. The linear functional,

∫

V
eiklψkm,lα

′m
i dV,
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becomes a sum of statistically independent linear functionals with zero mean value,

∫

V
eiklψkm,lα

′m
i dV =

N∑
a=1

∫

Ba

eiklψkm,lα
′m
i dV .

Then the mathematical expectation of energy is equal to the sum of mathematical
expectations of energies of each box (see footnote in Section 16.6). Hence,

ME =
∫

V
UmdV

where Um�V is the energy of the box. To find Um, one has to remove all dislocations
outside the box and find energy of the system assuming that the displacements at �Vu

are zero. Since E is a sum of a large number of energies of boxes, it coincides with
ME as N → ∞, and we arrive at the following formula for the total energy of the
crystal, E ,

E = min
u∈(6.166)

∫
1

2
Ci jkl

(
u(i, j) − ε̄

(p)
i j

) (
u(k,l) − ε̄

(p)
kl

)
dV +

∫

V
UmdV . (6.169)

Here an addition to elastic energy appears, the energy of microstructure, Um, the
energy of crystal defects. It is essential that for calculation Um one has to use not the
true dislocation density, α

j
i , but its fluctuations, α

′ j
i . Note that our derivation holds

true, if the tensor of elastic moduli depends on coordinates. Therefore, (6.169) holds
for polycrystals as well.



Chapter 7
Statics of a Geometrically Nonlinear
Elastic Body

In the geometrically nonlinear case, displacements and their gradients are not small.
The major new feature which that brings into the theory is non-convexity of the
energy functional.

7.1 Energy Functional

Free energy. In elasticity theory, the free energy density F is a known function of
distortion xi

a and temperature. Due to invariance of energy with respect to rotations,
distortion can enter in F in combinations like gab, |x |ab , γab, or εab (see (3.33),
(3.34), (3.35), (3.36) and (3.37)). The function F also depends on the physical con-
stants – the components of some fixed tensors with Lagrangian indices, which do
not change in the process of deformation and characterize the elastic properties.
Physical constants of inhomogeneous bodies are some functions of material points,
and through such functions the free energy explicitly depends on Lagrangian coor-
dinates. This is not emphasized in notation, and only significant (i.e. depending on
motion) variables are written as the arguments of F . In the first three sections of this
chapter we mean by F

(
xi

a

)
the free energy per unit volume of the undeformed state,

so the total free energy of the body is

∫

V̊

FdV̊ .

We take zero as the “reference point” of free energy and assume that there are no
stresses in the initial state. Then F satisfies the conditions

F = 0,
�F

�εab
= 0 for εab = 0. (7.1)

There are two significantly different cases in modeling of elastic bodies: the case
of small deformations and the case of finite deformations. Deformations are called
small if they are negligible in comparison with unity. Otherwise, the deformations
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are called finite. In the theory of small deformations, either the tensor εab or the
tensor γab can be used as the measure of deformation, depending on convenience.
According to formula (3.37), for small deformations these two tensors coincide.

In the theory of small deformations, the function F can be taken as a quadratic
form with respect to the strain tensor:

F = 1

2
Cabcdεabεcd . (7.2)

We consider here only isothermal equilibrium processes, and therefore the terms
depending on temperature are dropped.

Since any elastic deformation of the body involves an accumulation of energy,
the quadratic form (7.2) must be positive:

1

2
μεabε

ab ≤ F, μ = const > 0. (7.3)

Remember that the juggling of indices is done by means of the metric of the unde-
formed state g̊ab.

Formula (7.2) defines a physically linear material. The only difference from the
physically linear material considered in the previous section is that distortion xi

a
may differ considerably from x̊ i

a .

In the case of an isotropic material (i.e. a material for which F (εab)= F
(
εcdα

c
aα

d
b

)
for any orthogonal matrix with the components αc

a), there are two material charac-
teristics, λ and μ, and

F = 1

2
λ
(
εa

a

)2 + μεabε
ab. (7.4)

The quadratic form (7.2) can be considered as the first term of Taylor’s expansion
of the free energy with respect to εab. The next terms are cubic in strains:

F = 1

2
Cabcdεabεcd + 1

3!
Caba′b′cdεabεa′b′εcd .

If the components of tensors Cabcd and Caba′b′cd are of the same order of magnitude
and the deformations are small, then in statics the cubic form can be ignored. There
are, however, the materials for which the components of the tensor Caba′b′cd are
much greater than the components of the tensor of elastic moduli. For such materi-
als, the cubic terms may be of the same order as the quadratic ones and must be taken
into account. In dynamics, the cubic terms, even being small, bring qualitatively new
effects.

In what follows, by the theory of small elastic deformations we mean the theory
in which F is given by the formula (7.2) or by an equivalent formula
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F = 1

2
Cabcdγabγcd . (7.5)

In the range of finite deformations, expressions (7.2) and (7.5) are not equiva-
lent. The model with the energy density (7.5) is called the semi-linear elastic body.
The name is due to the fact that the tensor |x |ab used to construct the deformation
measure γab depends semi-linearly on distortion (see Sect. 3.1).

Formulas (7.2) and (7.5) can be used in the case of finite but not very large
deformations. Indeed, consider, for example, a homogeneous collapse of a body
into a point. In this case, the stress tensors εab and γab change from zero to − 1

2 g̊ab

and from zero to −g̊ab, respectively. If the energy is defined by formulas (7.2) or
(7.5) for any finite deformations, then the energy change for the collapse is finite.
Consequently, to collapse a body into a point one has to perform finite work. Be-
sides, the external forces are finite because the stresses are on the order of μ at the
collapse. Experiments show that solids cannot be compressed to a point by finite
forces.

For finite strains, it is natural to use the components of tensor gab or tensor |x |ab

as the strain measures, since their deviations from initial values are not small and
the role of εab and γab as the measures of deviation from the initial values is lost.

In the construction of the elastic energy in the case of finite deformations, the
fact that the energy has to tend to infinity when the continuum is being compressed
to a point or infinitely expanded has to be taken into account. When an element of
the continuum is compressed to a point, the contravariant components of the metric
tensor, gab, tend to infinity; for an infinite expansion, the covariant components of
the metric tensor, gab, tend to infinity. For an isotropic material the simplest expres-
sion satisfying the condition of infinite energy in the cases of infinite compression
or infinite expansion can be constructed from the contractions g̊abgab and g̊abgab:

F = c1g̊abgab + c2g̊abgab. (7.6)

The function (7.6) is to be corrected to satisfy the conditions (7.1), and to coin-
cide with the function (7.4) for small deformations. After addition of the necessary
additive constant and inclusion of another possible term, ĝ/g̊, one obtains

F = μ

4

[
(1+ c)

(
g̊abgab − 3

)+ (1− c)
(
g̊abgab − 3

)]− μc

2

(
ĝ

g̊
− 1

)
. (7.7)

where μ is the shear modulus for small deformations, and c is the second material
constant.

In the theory of finite deformations of incompressible materials, the last term in
(7.7) is zero and the free energy density becomes

F = μ

4

[
(1+ c)

(
g̊abgab − 3

)+ (1− c)
(
g̊abgab − 3

)]
. (7.8)
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Expression (7.8) was suggested by Moony. The Moony material has one constant
c experimentally determined for large deformations (the coefficient μ is the shear
modulus for small deformations).

For c = 1, the Moony formula reduces to the formula derived by Treloar for
rubbers from statistical reasoning,

F = 1

2
μ
(
g̊abgab − 3

)
. (7.9)

Instead of contractions g̊abgab and g̊abgab, the contractions g̊ab |x |ab and g̊ab

|x |(−1)ab can be used in constructing the free energy (|x |(−1)ab is the inverse tensor of
tensor |x |ab). Then the Moony and Treloar formulas are replaced by the expressions

F = μ

4

[
(1+ c)

(
g̊ab|x |ab − 3

)+ (1− c)
(
g̊ab |x |(−1)ab − 3

)]
,

F = 1

2
μ
(
g̊ab |x |ab − 3

)
.

There exists a number of other suggestions on the dependence of the free energy
on the deformation measures; we restrict the exposition by the examples given.

External forces. In principle, the body and the surface external forces may depend
on the displacements and their gradients, and the work of external forces

δA = δAbody + δAsurf,

δAbody =
∫

V̊

ρ0giδxi dV̊ , δAsurf =
∫

�V̊ f

fiδxi d Å, (7.10)

may be non-holonomic, i.e. not-admitting the functional, l (x (X )) , such that δA is
equal to variation of l (x (X )) . In this case, the variational equation of the first law
of thermodynamics,

δF = δA,

is not reduced to a variational principle. The conditions on the external forces for
which a functional l (x (X )) exists can be obtained by the approach outlined in
Appendix C (vol. 2). Here we summarize the results. The work of the body forces
is holonomic if and only if, a function � of particle positions exists, such that

gi = −�� (x (X ))

�xi
.
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Fig. 7.1 A “dead” surface
force

Then δAbody is a variation of the following functional:

δAbody = −δ

∫

V̊

ρ0�dV̊ = −δ

∫

V

ρ�dV . (7.11)

An important example is the gravity force:

� = −gi x
i
(
Xa
)
,

where gi ≡ const is the gravity acceleration.
A surface load is called “dead” if the surface force per unit area in the unde-

formed state depends only on Lagrangian coordinates, i.e. in (7.10) fi = fi (Xa).
In the process of deformation, the “dead” loads conserve their magnitude and the
direction in space at every fixed point of the body’s boundary (Fig. 7.1). As a rule,
the loads caused by gravity are “dead.”

In the case of “dead” loads, the work of the surface forces has the potential
∫

�V̊ f

f i (X ) xi (X ) d Å.

Another case of holonomic work of surface forces is the hydrostatic load. It ap-
pears when elastic bodies interact with ideal fluid. Then the surface forces per unit
area in the deformed state, fi , are directed along the normal vector to the deformed
surface,

fi = pni , (7.12)

p being fluid pressure. Pressure may be considered as a known function of Eulerian
coordinates, and, therefore, of x (X ),

p = p (x (X )) .

Then the work of surface forces has the following potential:

δAsurf = δ

⎡
⎣
∫

V

p (x)dV .

⎤
⎦ (7.13)
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Fig. 7.2 Hydrostatic load
acting on an elastic shell

In particular, for a body under constant external hydrostatic pressure,

δAsurf = pδ (|V |) .

Inhomogeneous hydrostatic load appears, for example, in the problems on the
deformation of elastic shells containing fluid (see Fig. 7.2).

If at every boundary point of the body the direction of the vector fi is linked to
the direction of the normal vector of the surface, the load is called following. The
simplest example of the following load is a surface force which, at every boundary
point, is normal to the surface, i.e. which is defined by the formula (7.12). The
difference from the hydrostatic load is that p is not a universal function of Eule-
rian coordinates, but can also depend on the Lagrangian coordinates of the surface
points. Such cases are encountered in some problems on deformation of shells and
beams. For example, for the load shown in Fig. 7.3, p = const �= 0 at the end of the
beam and p = 0 on the lateral surface of the beam. The work of following loads is
usually non-holonomic.

Fig. 7.3 An example of
following load
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The issue of the holonomicity of the work of external forces is of importance
in the problems of vibrations of elastic bodies. For holonomic external loads, their
total work per one cycle of vibrations is equal to zero, and it can be expected that
the amplitude of vibrations will not increase. If the work of external forces is not
holonomic, then the total work during one cycle depends on the path. There might
exist such cycles on which the total work is positive, and the amplitude of vibrations
grows.

Non-convexity of free energy. The geometrically nonlinear theory of elasticity
could be studied by means of general methods of variational calculus set forth in
Chap. 5 if the free energy density F were a convex function of the distortion xi

a .
However, the invariance of F with respect to rigid motion practically excludes such
a possibility. Let us discuss this issue in more detail.

Consider the quadratic form

�F = 1

2

�2 F

�xi
a�x j

b

x̄ i
a x̄ j

b .

In order for F to be convex, it is necessary and sufficient for the quadratic form
�F to be positively definite (see (5.90)). Let us take gab = xi

a xib as the arguments
of F . Since

�gdc

�xi
a

= xicδ
a
d + xidδ

a
c ,

we have

�F

�xi
a

= 2
�F

�gac
xic,

�2 F

�xi
a�x j

b

= 4
�2 F

�gac�gbd
xicx jd + �F

�gab
gi j . (7.14)

Denote x̄ i
a xib by x̄ab. The quadratic form �F becomes

�F = 2
�2 F

�gac�gbd
x̄ac x̄bd + 1

2

�F

�gab
gcd x̄ac x̄bd . (7.15)

The tensor x̄ac can be presented as the sum of its symmetric and antisymmetric
parts

x̄ac = ε̄ac + eachω̄
h . (7.16)

Here,

ω̄h = 1

2
eachx̄ac, ε̄ab = x̄(ab).
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Substituting (7.16) into the expression for �F and using the notation for the
Lagrangian components of stress tensor,1

σ ab = ρ

ρ0

�F

�εab
= 2

ρ

ρ0

�F

�gab
,

we obtain

�F = 1

2
C
′abcdε̄abε̄cd + ρ0

ρ
σ abgcd ε̄acebdhω̄

h

+ ρ0

2ρ
σ abgcdeach′ebdhω̄

hω̄h′ . (7.17)

Here,

Cabcd = 4
�2 F

�gab�gcd

is the tensor of the instantaneous elastic moduli (for a physically linear material they
coincide with the similarly denoted quantities in (7.2)), and

C
′abcd = Cabcd + ρ0

2ρ
σ acgbd + ρ0

2ρ
σ ad gbc. (7.18)

If we set ω̄h = 0, then the convexity condition becomes

�F = 1

2
C
′abcdε̄abε̄cd ≥ 0. (7.19)

For small deformations, Cabcdμ, σ abμε, ε being the magnitude of strain, the
last two terms in (7.18) are much smaller than the first one and can be neglected.
Then (7.19) is warranted by the validity of (7.3).

Let us now set ε̄ab = 0. It follows from the formula (7.17) that for the convexity
of F it is necessary that

σ abgcdeachebdh′ ω̄
hω̄h′ ≥ 0 for any ω̄h . (7.20)

Since, according to (3.19),

gcdeachebdh′ =
1

ĝ
gcdεachεbdh′ =

1

ĝ
(gabghh′ − gah′gbh) ,

the inequality (7.20) can be written as

1 Recall that by F we denoted in this section free energy per unit initial volume.
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(
σ c

c gab − σab
)
ω̄aω̄b ≥ 0. (7.21)

Here, the indices are juggled by means of the metric gab.
Consider the Lagrangian coordinate system for which the metric tensor, gab, co-

incides with δab, while the stress tensor is diagonal. The inequality (7.21) means
that in this coordinate system, the sum of any two diagonal elements of the stress
tensor must be non-negative:

σ 1
1 + σ 2

2 ≥ 0, σ 1
1 + σ 3

3 ≥ 0, σ 2
2 + σ 3

3 ≥ 0. (7.22)

The inequalities (7.22) are necessary for convexity of energy. It is clear that the stress
state for which the inequalities (7.22) are not satisfied can always be realized (for
example, hydrostatic pressure). Hence, the elastic energy is not a convex function
of distortion.

The non-convexity of F can also be made obvious by a concrete example of a
physically linear material: we set x1 = x (X ) , X= X1, x2 = X2, x3= X3, g̊11= 1,

and take

F = 1

2
Cε2, ε = 1

2

((
dx

d X

)2

− 1

)
.

The graph of the function F (dx/d X ) is shown in Fig. 7.4. The non-convexity of F
is obvious.

In this example, F is convex in a neighborhood of the undeformed state, and
becomes non-convex for finite deformations. It turns out that for three-dimensional
deformations the situation is more complex: the function F is non-convex in any
small vicinity of the undeformed state. Indeed, consider the nine-dimensional space
of variables xi

a . The undeformed state corresponds to the point xi
a = x̊ i

a . Since in
the undeformed state σ ab = 0, the quadratic form �F (7.17) computed at the point
x̊ i

a is

1

2
C̊abcdε̄abε̄cd ≥ 0, C̊abcd = Cabcd

∣∣
εab=0 .

Fig. 7.4 Free energy as a
function of distortion for
one-dimensional deformation
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Therefore, the convexity condition at the point x̊ i
a coincides with the condition (7.3):

energy is accumulated for any small deformations. The condition of the strict con-
vexity of F is not satisfied: �F = 0 for any ω̄h . If at the point x̊ i

a the condition of
strict convexity were held, then there would be a neighborhood of the point x̊ i

a for
which the condition of strict convexity would be satisfied, and the convexity of F
could be guaranteed in this neighborhood. However, for any infinitesimally small
shift from the point x̊ i

a the quadratic form �F ceases to be positive. In order to see
that, consider the expression (7.17) for small deformations. The components of the
tensor C

′abcd differ by quantities on the order of ε from the components of the tensor
C̊abcd. Since the quadratic form C̊abcdε̄abε̄cd is positive definite, the replacement of

the first term in (7.17) by 1
2 C̊

abcd
ε̄abε̄cd cannot result in the change of the sign of

�F . Similarly, gcd can be replaced by g̊cd , and ρ0/ρ by 1 in the second and the
third terms of (7.17). The expression for �F becomes

�F = 1

2
C̊abcdε̄abε̄cd + σ abε̄d

a ebdhω̄
h + 1

2

(
σ c

c g̊ab − σab
)
ω̄aω̄b. (7.23)

The quadratic form �F has the following structure:

�F = ai j xi x j + 2biαxi yα + cαβ yα yβ,

where the variables xi and yα represent ε̄ab and ω̄a , respectively, the coefficients
ai j are on the order of μ, and the coefficients biα and cαβ are small quantities on
the order of με. In such a quadratic form the interaction term, 2biαxi yα, in the first
approximation, does not affect the positiveness of the form. Indeed, the form can be
written as

�F = ai j
(

xi + a(−1)
ik bkα yα

)
(i → j)+ cαβ yα yβ − a(−1)

i j biαb jβ yα yβ.

The last term is small compared to the previous one, and in the first approximation
can be ignored. Therefore the quadratic form �F is positive definite if and only
if ai j xi x j ≥ 0 and cαβ yα yβ ≥ 0. The first of these inequalities is the condition of
energy accumulation, while the second is the inequality (7.21). In any infinitesimally
small neighborhood of the undeformed state there are points for which the inequality
(7.21) is not satisfied. So, energy of the elastic body is not convex.

7.2 Gibbs Principle

In what follows, we assume the external forces to be “dead” and given on a part
of the boundary, �V̊ f , while the position of the other part of the boundary, �Vu, is
given:

xi (X ) = xi
(b)(X ) on �Vu . (7.24)
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Gibbs principle. Equilibrium states are the stationary points of the functional,

I (x (X )) =
∫

V̊

F
(
xi

a

)
dV̊ − l,

l =
∫

V̊

ρ0gi (X ) xi (X )dV̊ +
∫

�V̊ f

fi (X ) xi (X )d Å, (7.25)

on the set of functions x (X ) satisfying the conditions (7.24).
The stationary points of the functional I (x (X )) are the solutions of the equilib-

rium equations

∇̊a pa
i + ρ0gi = 0, pa

i ≡
�F

�xi
a

,

with the boundary conditions on �V f ,

pa
i n̊a = fi ,

and the boundary conditions (7.24) on �V̊u .

The constitutive equations. The form of constitutive equations depends on the
choice of the arguments of F . If F is a function εab or gab, then the Piola-Kirchhoff
tensor is linked to the strain by the equations

pa
i = 2

�F

�gab
xib = �F

�εab
xib.

Here we used (7.14). We see that Piola-Kirchhoff tensor depends not only on strain
but also on rotation of material elements. To derive the constitutive equations for the
case when F is a function of γab or |x |ab, we need to find the derivatives � |x |bc /�xi

a .
By definition, |x |bc are determined by the conditions that the distortion, xi

a, can be
presented as the product of a symmetric non-negative matrix |x |bc and an orthogonal
matrix λic : xi

b = |x |bc λic. Recall that the orthogonality conditions are

gi jλ
iaλ jb = g̊ab, g̊abλ

iaλ jb = gi j . (7.26)

Juggling of Eulerian and Lagrangian indices is done by means of the metrics gi j and
g̊ab, respectively. Therefore, the orthogonality conditions can also be written as

λiaλib = δa
b , λiaλ ja = δi

j .

Let δxi
b be an infinitesimally small increment of distortion. Varying the equality

xi
b = |x |bc λic, we have
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λicδ |x |bc + |x |bc δλic = δxi
b. (7.27)

Contracting (7.27) with a non-degenerated matrix, λid , we obtain an equivalent
system of equations:

δ |x |bd + |x |cb λidδλ
i
c = λidδxi

b. (7.28)

The tensor λidδλ
i
c is antisymmetric with respect to d, c. This can be seen from vary-

ing the orthogonality condition (7.26): λidδλ
i
c + λicδλ

i
d = 0. Therefore, the tensor

λidδλ
i
c is in one-to-one correspondence with a three-dimensional vector δλb,

λidδλ
i
c = edchδλ

h, δλh ≡ 1

2
edchλidδλ

i
c. (7.29)

Equation (7.28) contains nine equalities. First we write down the three of them
which are obtained by contracting (7.28) with ebda. Since, according to (3.19),

|x |cb λidδλ
i
cebda = |x |cb edchδλ

hebda = |x |cb
(
δa

c δb
h − δb

c δ
a
h

)
δλh,

such contraction yields a system of three equations with respect to vector δλh :

(|x |bb δa
h − |x |ah

)
δλh = λidδxi

bedba. (7.30)

In the principal coordinate system of the tensor |x |ab, the tensor |x |bb δa
h − |x |ah is

diagonal and its diagonal components are equal to |x |22+|x |33 , |x |33+|x |11 , |x |11+|x |22.
The numbers, |x |11 , |x |22 , and |x |33 are positive. Thus, the inverse tensor yh

c can be
introduced by the equation

yh
c

(|x |bb δa
h − |x |ah

) = δa
c .

In the principal coordinate system of the tensor |x |ab, the components of the
tensor yh

c are

y1
1 =

(|x |22 + |x |33
)−1

, y2
2 =

(|x |33 + |x |11
)−1

, y3
3 =

(|x |11 + |x |22
)−1

.

The solution to (7.30) is given by the formula

δλh = yh
c edbcλidδxi

b. (7.31)

From the first equality (7.29) and (7.31) we have,2

λidδλ
i
c = edch yh

c′e
d ′bc′λid ′δxi

b. (7.32)

2 In substituting (7.31) into (7.29), one has to re-denote the dummy summation indices d and
c. Since, by our convention, only the first few letters of the Latin alphabet are reserved for the
Lagrangian indices, we increase the number of “admissible letters” by using the letters with a
prime.
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Substitution of (7.32) into (7.28) yields an expression for δ |x |bd in terms of δxi
a :

δ |x |bd = λidδxi
b − |x |cb edch yh

c′e
d ′b′c′λid ′δxi

b′ . (7.33)

Each of the two terms on the right hand side of (7.33) is non-symmetric with respect
to b, d; however, it is easy to verify that their difference is symmetric. From (7.33)
we find that

� |x |bd

�xi
a

= λidδ
a
b − |x |cb edch yh

c′e
d ′ac′λid ′ . (7.34)

Therefore, if F is considered as a function of |x |bd or γbd , the expression for the
Piola-Kirchhoff tensor is

pa
i =

�F

� |x |ad
λid − �F

� |x |bd
|x |cb edch yh

c′e
d ′ac′λid ′ =

= �F

�γad
λid − �F

�γbd
|x |cb edch yh

c′e
d ′ac′λid ′ . (7.35)

The condition of local minimum. The functional I (x (X )) is not convex because F
is a non-convex function of xi

a . Physically, this is natural: if the functional I (x (X ))
were convex, then, according to the uniqueness theorem (Sect. 5.4) it would have
only one stationary point, an apparent contradiction to the experimentally observed
instability of elastic bodies, i.e. to the existence of several equilibrium states for a
given load.

An important characteristic of the stationary point x (X ) is the second variation
of I (x (X )):

�I = lim
σ→0

I (x (X )+ σ x̄ (X ))−I (x (X ))

σ 2
.

Recall that the first variation,

lim
σ→0

I (x (X )+ σ x̄ (X ))−I (x (X ))

σ
,

computed at a stationary point is equal to zero for all admissible x̄ (X ).
The functional �I is a quadratic functional with respect to x̄ (X ). If the functional

�I is positive, then small disturbances of external forces will result in small changes
of the minimizer.

Let us obtain the formula for the second variation. It is obvious that

�I =
∫

V

�FdV .

where �F is given by (7.17), with x̄ac = xic�x̄ i/�Xa .
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The expression for �F admits significant simplifications if the deformations are
small enough to omit not only the terms on the order of deformations, ε, but also
the terms on the order of

√
ε. Indeed, consider the second term in (7.23). According

to the inequality
∣∣xi yi

∣∣ ≤ 1
2

(
λ−1xi xi + λyi yi

)
, which holds for any xi , yi , (i =

1, . . . , r ), and λ > 0, we have

∣∣2σ abebdhω̄
h ε̄d

a

∣∣ ≤ 1

λ
σ abebdhω̄

hσ b′
a ed

b′hω̄
h + λε̄abε̄

ab.

Stresses are on the order με. If we choose λ = μ
√

ε, then the above expression
is on the order μ

√
ε
(
ε̄abε̄

ab + ω̄hω̄
h
)
. So, neglecting the terms on the order of

√
ε

compared to unity, we obtain

�I = 1

2

∫

V̊

(
C̊abcdε̄abε̄cd +

(
σ c

c g̊ab − σab
)
ω̄aω̄b

)
dV̊ .

Consider the condition of local convexity, �I ≥ 0. Choose the Lagrangian co-
ordinate system in such a way that xi

a = δi
a . Then, denoting x̄a = xia x̄ i (X ), we

get

ε̄ab = 1

2

(
�x̄a

�Xb
+ �x̄b

�Xa

)
, ω̄a = 1

2
eabc

(
�x̄b

�Xc
− �x̄c

�Xb

)
. (7.36)

The functions x̄a are equal to zero on �V̊u . Thus, the equilibrium state is the point
of local minimum of the functional I (x (X )), if for any functions x̄a equal to zero
on �V̊u , the inequality holds:

1

2

∫

V̊

C̊abcdε̄abε̄cddV̊ ≥ −1

2

∫

V̊

(
σ c

c δab − σab
)
ω̄aω̄bdV̊ , (7.37)

where ε̄ab and ω̄a are expressed through x̄a by means of (7.36). Note that for an
isotropic body, the tensor C̊abcd does not “feel” the transition to the coordinate sys-
tem chosen above within the accepted accuracy. For an isotropic body, the local
convexity condition has the form

1

2

∫

V̊

(
λ
(
ε̄a

a

)2 + 2με̄abε̄
ab
)

dV̊ ≥ −1

2

∫

V̊

(
σ c

c δab − σab
)
ω̄aω̄bdV̊ . (7.38)

If the tensor σ c
cδab−σ ab is positive at every point of the body (i.e. the quadratic

form
(
σ c

c δab − σab
)
ω̄aω̄b is positive for ω̄a �= 0), then the inequality (7.37) holds

true, and the equilibrium state is the point of local minimum of the functional
I (x (X )). If the tensor σ c

c δab − σab is negative, or if in some parts of the body the
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tensor σ c
c δab − σab is positive while in others it is negative, then the investigation of

the inequality (7.37) is a difficult problem.
The inequality (7.37) is similar in structure to the Korn inequality, and simple

sufficient conditions can be given in terms of the Korn constant K for satisfying the
inequality (7.37).

For generic boundary conditions non-convexity yields non-uniqueness of the sta-
tionary points. There is a special case, so-called “hard device” boundary conditions,
when the particle positions are prescribed everywhere at the boundary. In this case,
the minimum value may be unique even for non-convex energy. There is a vast
literature on this subject, some papers are cited in bibliographic comments.

7.3 Dual Variational Principle

In this section a generalization of the Castigliano principle for the geometrically
nonlinear case is given.

In constructing the Castigliano principle in geometrically linear theory, we pre-
sented F in terms of its Young-Fenchel transformation

F
(
εi j
) = max

pi j

(
pi jεi j − F∗

(
εi j
))

. (7.39)

In the geometrically nonlinear theory the formula analogous to (7.39) would be

F
(
xi

a

) = max
pa

i

[
pa

i xi
a − F∗

(
pa

i

)]
. (7.40)

Equation (7.40), however, does not hold since the function F is not convex, and
it can only be asserted that

F
(
xi

a

) ≥ max
pa

i

[
pa

i xi
a − F∗

(
pa

i

)]
(7.41)

where F∗
(

pa
i

)
is the Young-Fenchel transformation of the function F

(
xi

a

)
:

F∗
(

pa
i

) = max
xi

a

[
pa

i xi
a − F

(
xi

a

)]
.

Therefore, we will try to construct the Legendre transformation of the function
F
(
xi

a

)
, the function F×

(
pa

i

)
, which is not necessarily single-valued everywhere,

but is such that the function pa
i xi

a−F×
(

pa
i

)
at its stationary points over pa

i coincides
with the function F

(
xi

a

)
. We assume that free energy F is a convex function of |x |ab.

Its Young-Fenchel transformation will be denoted by G
(
nab

)
:

G
(
nab

) = max
|x |ab

(
nab |x |ab − F (|x |ab)

)
.



356 7 Geometrically Nonlinear Elasticity

Here, the maximum is computed over all symmetric positive tensors |x |ab, and
achieved at such |x |ab that nab = �F/�|x |ab . Note that for small deformations
nab = 2σ ab. For finite deformations this is not true; the corresponding relation can
be obtained using (3.38) or from further relations of this section.

Let us show that for an isotropic material:
1. The function F× is given by the equation

F×
(

pa
i

) = G
(|p|ab sc

b

)
, (7.42)

where |p|ab is the “modulus” of the Piola-Kirchhoff tensor defined by the polar
expansion: pa

i = |p|ab μib (μib are the components of an orthogonal matrix). The
function F× has several branches, each of which is defined by the choice of the
matrix sc

b . In the principal coordinate system of the tensor |p|ab, the matrix sc
b has

eight possible values:

∥∥∥∥∥∥
1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥
,

∥∥∥∥∥∥
1 0 0
0 −1 0
0 0 −1

∥∥∥∥∥∥
,

∥∥∥∥∥∥
−1 0 0
0 1 0
0 0 −1

∥∥∥∥∥∥
,

∥∥∥∥∥∥
−1 0 0
0 −1 0
0 0 1

∥∥∥∥∥∥
, (7.43)

∥∥∥∥∥∥
−1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥
,

∥∥∥∥∥∥
1 0 0
0 −1 0
0 0 1

∥∥∥∥∥∥
,

∥∥∥∥∥∥
1 0 0
0 1 0
0 0 −1

∥∥∥∥∥∥
,

∥∥∥∥∥∥
−1 0 0
0 −1 0
0 0 −1

∥∥∥∥∥∥
. (7.44)

Matrix
∥∥sc

b

∥∥ is one of the matrices (7.43) if det
∥∥pa

i

∥∥ > 0, and one of the matrices
(7.44) if det

∥∥pa
i

∥∥ < 0.
2. For given xi

a , the point at which the function �
(

pa
i , xi

a

) = pa
i xi

a − F×
(

pa
i

)
is stationary with respect to pa

i is uniquely defined; moreover, the branch of the
function F×, for which �

(
pa

i , xi
a

)
has a stationary point, is determined by the values

of xi
a . At the stationary point, the following equality holds:

pa
i xi

a − F×
(

pa
i

) = F
(
xi

a

)
. (7.45)

To prove the first assertion, we need to calculate F× = pa
i xi

a − F
(
xi

a

)
, where xi

a
must be found by given pa

i from the equation

pa
i =

�F
(
xi

a

)

�xi
a

. (7.46)

Denote by X the set in the space of variables xi
a defined by the condition det

∥∥xi
a

∥∥ >

0, and by P the set run by pa
i = �F/�xi

a when xi
a take on the values in the set X .

Note that, in general, pa
i cannot take on any prescribed values. This can be seen,

for example, from Fig. 7.4 for dx/d X > 0: the stress,

p = 1

2
C

dx

d X

((
dx

d X

)2

− 1

)
,
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can take on any positive values, while its possible negative values are bounded from
below. In the one-dimensional case, the minimum value of stresses has a simple
interpretation for semi-linear material. In this case, p1

1 = C (|x |11 − 1), and, since
|x |11 ≥ 0, p1

1 ≥ −C . At the value p1
1 = −C the material element collapses into a

point.
Considering pa

i , a known element of the set P , we seek the solutions of the
system of equations (7.46) from the set X . According to (7.35), these equations can
be written as

pa
i =

�F

� |x |ad
λid − �F

� |x |bd
|x |cb edch yh

c′e
d ′ac′λid ′ . (7.47)

For an isotropic material, the tensors |x |ab and �F/� |x |ab are coaxial, and there-
fore the tensor |x |cb �F/� |x |bd is symmetric with respect to c, d. In the last term of
(7.47) this tensor is contracted with an antisymmetric object edch. Therefore, this
term vanishes, and the system of equations (7.47) becomes

pa
i = nabλib, nab = �F

� |x |ab
. (7.48)

Let us introduce the polar decomposition of the tensors pa
i and nab:

pa
i = |p|ab μib, nab = |n|ab′ sb

b′ .

In the principle coordinate system of the tensor nab, the non-diagonal elements of
the matrix sa

b are equal to zero, while the diagonal elements are equal to either+1 or
−1, depending on whether the eigenvalue of the tensor nab is positive or negative.3

Hence, in the principal coordinate system of the tensor |n|ab,
∥∥sa

b

∥∥ is one of the
matrices (7.43) and (7.44).

In terms of the polar decomposition, the system of equations (7.48) can be written
as

|p|ab μib = |n|ab sd
b λid .

Due to the uniqueness of the polar decomposition,

|p|ab = |n|ab , μib = λib′s
b′
b . (7.49)

The relations (7.49) determine how the solution of (7.46) should be obtained. First,
the polar decomposition of the tensor pa

i is constructed. That gives us the tensors
|p|ab and μib. Since the tensors |p|ab and |n|ab are equal, the matrix

∥∥sa
b

∥∥ has the

3 The case being considered is the generic one with det
∥∥|n|ab

∥∥ �= 0. The case when some of the
eigenvalues of |n|ab are equal to zero is obtained by the limit transition.



358 7 Geometrically Nonlinear Elasticity

form (7.43) or (7.44) in the principal coordinate system of the tensor |p|ab. If we fix
the matrix

∥∥sa
b

∥∥, then nab = |p|ab′ sb
b′ are specified. For known nab, we find |x |ab

from the equation

nab = �F

� |x |ab
.

Finally, the “orthogonal part” of distortion is found from (7.49): λib = μib′sb′
b . So,

each solution corresponds to some choice of the matrix
∥∥sa

b

∥∥ .

It follows from (7.49) and the condition det
∥∥λi

d

∥∥ = +1 that det
∥∥μi

a

∥∥ =
det

∥∥sc
b

∥∥. Therefore, for det
∥∥μi

a

∥∥ = +1, sc
b are the components of one of the matri-

ces (7.43) and for det
∥∥μi

a

∥∥ = −1, and sc
b are the components of one of the matrices

(7.44).
Since

|x |ab =
�G

�nab
, xi

a = |x |ab λib, (7.50)

the distortion is reconstructed using the components of the Piola-Kirchhoff tensor
by the formula

xi
a =

�G

�nab

∣∣∣∣
nab=|p|ab′ sb

b′

μib′sb
b′ . (7.51)

For every Piola-Kirchhoff tensor pa
i , we have eight solutions corresponding to eight

different choices of the matrices
∥∥sa

b

∥∥.

Note that the formula for the second variation F (7.23) shows that det
∥∥∥ �2 F

�xi
a �x j

b

∥∥∥
is zero in a small vicinity of the planes p1

1 + p2
2 = 0, p2

2 + p3
3 = 0, p3

3 + p1
1 = 0,

and for other values of xi
a , this determinant is nonzero. Therefore, the bifurcations

of the solutions of (7.46) are possible only in a small vicinity of these planes.
The branch corresponding to the first matrix (7.43) can be obtained by the

following invariant condition:

x̊ i
aλ

a
i > 1. (7.52)

The other branches do not satisfy the condition (7.52). Indeed, let λa
b be the pro-

jection of λa
i on the initial basis. The matrix, λa

b = x̊ i
bλ

a
i = x̊ i

bμ
c
i sa

c , is orthogonal:

g̊abλ
a
a′λ

b
b′ = g̊ab x̊ i

a′λ
a
i x̊ j

b′λ
b
j = gi j x̊

i
a′ x̊

j
b′ = g̊a′b′ .

Denote by λa
1b the rotational part of distortion corresponding to the first matrix∥∥sa

b

∥∥ (7.43), and by λa
2b the rotational part of distortion corresponding to any other

choice of the matrices (7.43) . Since λa
b = x̊ i

bμ
c
i sa

c , and x̊ i
bμ

c
i is fixed by the choice

of the Piola-Kirchhoff tensor, the sum λa
1a + λa

2a , according to the construction of
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sa
c is equal to double the value of one of the diagonal elements of the matrix λa

1b
in the principal coordinate system of the tensor |p|ab. Since the components of the
orthogonal matrix are less than or equal to 1,

λa
1a + λa

2a ≤ 2.

Consequently, if λa
1a satisfies the condition (7.52), then λa

1a does not.
It can be proved analogously that the branch corresponding to the fourth matrix

(7.44) is selected by the invariant condition

x̊ i
aλ

a
i < −1.

The condition (7.52) has a simple geometric interpretation. Let us use the repre-
sentation of orthogonal matrices (3.40). It follows from (3.41) that λa

a = 1+2 cos θ ,
where θ is the angle of rotation around the rotation axis. According to (7.52),
cos θ > 0, and the inequality (7.52) means that the unique solution of (7.46) can be
selected by the condition that the material filaments do not rotate for angles greater
than π/2.

Let us calculate the function pa
i xi

a − F
(
xi

a

)
at its stationary points. From (7.51)

we have

F×
(

pa
i

) = pa
i xi

a − F
(
xi

a

) = pa
i

�G

�nab

∣∣∣∣
nab=|p|ab′ sb

b′

μib′sb
b′ − F =

= |p|ab′ sb
b′

�G

�nab

∣∣∣∣
nab=|p|ab′ sb

b′

− F =
(

nab �G

�nab

)∣∣∣∣
nab=|p|ab′ sb

b′

− F = G
(
|p|ab′ sb

b′

)
.

(7.53)

The function F× has several possible values at every point pa
i , depending on the

choice of the matrix
∥∥sa

b

∥∥.
Let us prove the second assertion. Consider the expression

�
(

pa
i , xi

a

) = pa
i xi

a − F×
(

pa
i

) = pa
i xi

a − G
(|p|ab sd

b

)

as a function of pa
i ; we seek its stationary points with respect to pa

i when xi
a are

fixed. The function � has several branches, each of which is determined by the
choice of the matrix

∥∥sa
b

∥∥. Having chosen some matrix
∥∥sa

b

∥∥, let us calculate the
derivatives of �

(
pa

i , xi
a

)
with respect to pa

i . Using the formula (7.34), written for
the derivatives of |p|ab with respect to pa

i , as the stationarity condition we get the
system of equations for pa

i :

xi
a −

�F×

�pa
i

= xi
a −

�G

�nab

∣∣∣∣
nab=|p|ab′ sb

b′

sb
b′μ

ib′ = 0. (7.54)
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It is taken into account here that, due to material isotropy, the tensor sb
b′�G/�nab

is coaxial with the tensor nab; therefore, its contractions with the terms in the ex-
pression � |p|bd /�pa

i , analogous to the second term in (7.34), are zero. Introducing
the polar decomposition for xi

a into (7.54), we get

|x |ad λid = �G

�nab

∣∣∣∣
nab=|p|ab′ sb

b′

sb
b′μ

ib′ .

The tensor �G/�nab is symmetric. Besides, it is positive for every nab as follows
from (7.50). Consequently, due to the uniqueness of the polar decomposition,

|x |ab =
�G

�nab

∣∣∣∣
nab=|p|ab′ sb

b′

, λid = μibsd
b .

Hence,

|p|ab′ sb
b′ = nab, μib = λid sb

d , (7.55)

where nab is calculated by |x |ab from the formula nab = �F/� |x |ab.
Consider the first equation (7.55) in the principal coordinate system of the tensor

|x |ab (and nab). This equation suggests that the tensor |p|ab is diagonal and

|p|1 s1 = n1, |p|2 s2 = n2, |p|3 s3 = n3. (7.56)

Here and further, |p|1 , |p|2 , |p|3 , s1, s2, s3, and n1, n2, n3 are the diagonal com-
ponents of the tensors |p|ab , sd

b and nab in the principal coordinate system. Since
|p|1 , |p|2 and |p|3 are positive, (7.56) with known n1, n2 and n3 uniquely define
|p|1 = |n1|, |n|2 = |n2|, |p|3 = |n3|, and

s1 = sgn n1, s2 = sgn n2, s3 = sgn n3. (7.57)

Subsequently, μia are calculated from the second equation (7.55).
Equation (7.57) uniquely define the matrix

∥∥sa
b

∥∥ by matrix
∥∥xi

a

∥∥ (in the principal
coordinate system of the tensor |x |ab, s1, s2, s3 are given by the formulas (7.57)).
Hence, (7.54) have solutions with respect to pa

i only in the case when the choice
of xi

a and sd
b is coordinated in such a way as to satisfy the equalities (7.57). Conse-

quently, despite the function �
(

pa
i , xi

a

)
being non-single-valued, its branch which

has a stationary point with respect to pa
i is picked out uniquely. At this stationary

point, the function �
(

pa
i , xi

a

)
has the value

pa
i xi

a − F×
(

pa
i

) = �F

� |x |ab
|x |ab − G (n)|n=�F/�|x | = F (|x |ab) .
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Based on the equality (7.45), Gibbs principle can be rewritten as

δxδp J = 0,

J =
∫

V̊

(
pa

i xi
a − F×

(
pa

i

))
dV̊ −

∫

V̊

ρ0gi x
i dV̊ −

∫

�V̊ f

fi x
i d Å. (7.58)

The symbols δx and δp mean variations with respect to xi (Xa) and pa
i , respectively.

Let us find first the conditions for the functional to be stationary with respect to
xi (Xa). It is easy to see that these are the equilibrium equations and the boundary
conditions on �V̊ f :

∇̊a pa
i + ρ0gi = 0 in V̊ , pa

i n̊a = fi on �V̊ f . (7.59)

Now, instead of taking the variation with respect to all pa
i , let us take the variation

only with respect to those functions pa
i which satisfy (7.59). For such functions pa

i ,
the functional J will take the form

J (p) =
∫

�V̊u

pa
i n̊a xi

(b)d Å −
∫

V̊

F×
(

pa
i

)
dV̊ .

We obtain
Principle of complementary work. The true stress state of the isotropic elastic
body is the stationary point of the functional J (p) on the set of all functions pa

i
which are the solutions of the equilibrium equations (7.59).

Small deformations of anisotropic bodies. Constructing the principle of comple-
mentary work in geometrically nonlinear theory, we used isotropy of the body only
once–in replacing (7.46) by (7.48). Such a replacement was possible because the
second term of the formula (7.35) for the Piola-Kirchhoff tensor is zero for isotropic
bodies. For anisotropic bodies, this term is not equal to zero; however, in the case of
small deformations it is on the order of ε compared to the first term:

�F

� |x |bd
|x |cb edch yh

c ed ′ac′λid ′ = �F

� |x |bd
γ c

b edch yh
c ed ′ac′λid ′ ∼ με2.

Therefore, in the theory of small deformations, the considered construction remains
valid for anisotropic bodies as well, and the principle of complementary work for-
mulated above is still applicable.

The extended dual variational principle. It is possible to avoid the difficulties
associated with using a multi-valued functional if, along with the variation of the
Piola-Kirchhoff tensor, we retain the variation of the orthogonal part of distortion,
λi

a . The corresponding expanded principle of complementary work is constructed in
the following way.
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Gibbs principle can be reformulated as a statement on stationarity of the
functional

∫

V̊

F (|x |ab)dV̊ −
∫

V̊

ρ0gi x
i
(
Xa
)
dV̊ −

∫

�V̊ f

fi x
i
(
Xa
)
d Å, (7.60)

over all positive symmetric tensors |x |ab and the functions xi (Xa) satisfying the
boundary conditions xi = xi

(b) on �V̊u and compatibility conditions: for each |x |ab

and xi (Xa) there exists an orthogonal matrix, λib, such that the constraints hold:

�xi

�Xa
− |x |ab λib = 0. (7.61)

The energy density is considered to be strictly convex function of |x |ab; the elastic
body can be anisotropic.

Let us introduce the Lagrange multipliers, pa
i , for the constraints (7.61) and

rewrite the functional (7.60) as

∫

V̊

(
pa

i

(
�xi

�Xa
− |x |ab λib

)
+ F (|x |ab)

)
dV̊−

∫

V̊

ρ0gi x
i
(
Xa
)
dV̊−

∫

�V̊ f

fi x
i
(
Xa
)
d Å.

(7.62)
Functions pa

i , |x |ab, xi (Xa), and λib are varied independently in the functional
(7.62). Varying xi (Xa), we get (7.59) for pa

i . The functional (7.62) is strictly convex
with respect to |x |ab. Therefore, varying |x |ab can be replaced by minimization over
|x |ab. As a result, taking into account (7.59), for the functional (7.62) we get

J (p, λ) =
∫

�V̊u

pa
i n̊a xi

(b)d Å −
∫

V̊

G
(

pa
i λib

)
dV̊ .

Here, as before, G
(
nab

)
is the Young-Fenchel transformation of F (|x |ab) with re-

spect to |x |ab.
The true stress states are the stationary points of the functional J (p, λ) on the

set of all pa
i satisfying the equilibrium equations and the boundary conditions (7.59)

and on the set of all orthogonal matrices λia .
The stationarity condition for J (p, λ) over λi

a have the form

�G

�nab

∣∣∣∣
nab=pa

i λib

pa
i λb

j =
�G

�nab

∣∣∣∣
nab=pa

i λib

pa
j λ

b
i . (7.63)

Equation (7.63) has a simple meanings. Since �G/�nab = |x |ab , while |x |ab pa
i

λb
j = pi j are the components of the Cauchy stress tensor, (7.63) are the symme-

try conditions for the Cauchy stress tensor and, thus, are the angular momentum
equations.
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The minimization problem. Since F is bounded from below, it is natural to pose
the minimization problem for the functional I (x (X )) . If the positions of the par-
ticles are given at the entire boundary, and the body forces are absent, then the
functional I (x (X )) is bounded from below by zero, and posing the minimization
problem is possible. Let us consider the other extreme case when the kinematic
constraints are absent while, the functional I (x (X )) has the form (7.25). The energy
has a kernel as it is invariant with respect to the rigid motions:

F
(
x ′ (X )

) = F (x (X )) , x ′i
(
Xa
) = ci + αi

j x
j
(
Xa
)
. (7.64)

Here, x ′ (X ) is the position of the particles after translation of the deformed state
x (X ) for a constant vector, ci , and rotation with an orthogonal matrix, αi

j . The
translations form a cone in the functional space, and according to (5.30) for the
boundedness from below of I (x (X )) it is necessary that the work of external forces
be equal to zero at any translation. This condition is equivalent to vanishing the
resultant of external forces:

∫

V̊

ρ0gi dV̊ +
∫

�V̊

fi d Å = 0. (7.65)

The work of external forces on rotations is

αi j

⎛
⎜⎝
∫

V̊

ρ0gi x
j dV̊ +

∫

�V̊

f i x
j d Å

⎞
⎟⎠ . (7.66)

Unlike the geometrically linear case, this work is not necessarily equal to zero
because the orthogonal transformations do not form a cone. Hence, the total mo-
mentum of the prescribed external forces does not need to be equal to zero for
the existence of a minimizer. The mechanical interpretation of this fact is simple.
Consider an example shown in Fig. 7.5. For an arbitrary chosen position of a solid
the “dead” forces applied are not in equilibrium (Fig. 7.5a). Nevertheless, the body
does have the equilibrium states; they are shown in Fig. 7.5b,c.

Fig. 7.5 “Dead” load can be
given in such a way that the
total moment is not zero (a);
nevertheless, the equilibrium
positions exist (b)
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The functional (7.66) is bounded from below due to boundedness of the com-
ponents of orthogonal matrices. If xi (Xa) is a stationary point, then variation of
(7.66) with respect to rotations yields vanishing of the total moment computed at
the stationary point:

ei jk

⎛
⎜⎝
∫

V̊

ρ0g j xk
(
Xa
)

dV̊ +
∫

�V̊

f j xk
(
Xa
)

d Å

⎞
⎟⎠ = 0. (7.67)

Suppose that external forces acting on the body are such that there exists a solu-
tion f a

i of the equilibrium equations,

∇̊a f a
i + ρ0gi = 0 in V̊ , f a

i n̊a = fi on �V̊ , (7.68)

with a finite integral,

‖ f ‖2
L2
≡
∫

V̊

f a
i f i

a dV̊ < +∞.

Assume also that free energy is bounded from below by a quadratic form

1

2
μγabγ

ab ≤ F.

Then, the functional I (x (X )) is also bounded from below. Indeed,

l =
∫

V̊

f a
i x i

adV̊ =
∫

V̊

f a
i λib |x |abdV̊ =

∫

V̊

f a
i λi

adV̊ +
∫

V̊

f a
i λibγabdV̊ .

Using the Cauchy inequality, we get

|l| ≤ ‖ f ‖L2

√
3
∣∣∣V̊
∣∣∣+ ‖ f ‖L2

√∫

V̊
γabγ abdV̊ .

The remaining part of the proof is similar to that considered in Sect. 5.1.
Analogously investigated is the case of mixed boundary conditions. So, the func-

tional I (x (X )) is bounded from below and posing the minimization problem for the
energy functional is meaningful.

Let us construct the corresponding dual variational problem. Due to the non-
convexity of I (x (X )) it is difficult to presuppose the existence of a functional I ∗,
such that max I ∗ = min I . However, it is possible to construct the functional I ∗ for
which
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max I ∗ ≤ min I. (7.69)

The construction of the functional I ∗ is based on the calculation of the Young-
Fenchel transformation of F .

The Young-Fenchel transformation of free energy. Let us denote by F̄
(
xi

a

)
the

function

F̄
(
xi

a

) =
{

F
(
xi

a

)
, det

∥∥xi
a

∥∥ > 0

+∞, det
∥∥xi

a

∥∥ ≤ 0

and by F∗
(

pa
i

)
– its Young-Fenchel transformation,

F∗
(

pa
i

) = max
[

pa
i xi

a − F̄
(
xi

a

)] = max
xi

a ,det‖xi
a‖>0

[
pa

i xi
a − F

(
xi

a

)]
.

In order to calculate F∗
(

pa
i

)
we will need the following two assertions.

1. Let qab be an arbitrary tensor and let μab be the components of an orthogonal
matrix with positive determinant:

g̊abμacμbd = g̊cd , det ‖μab‖ = +1.

Then

max
μab

qabμab = |q|1 + |q|2 + |q|3 sgn det
∥∥qab

∥∥ . (7.70)

Here, |q|1 , |q|2 , |q|3 are the eigenvalues of the tensor |q|ab arranged in decreasing
order.

To prove (7.70) consider first the case when det
∥∥qab

∥∥ > 0. Let us present qab

in terms of its polar decomposition: qab = |q|ac λb
c , λb

c being the components of an
orthogonal matrix. Since det ‖q‖ab > 0, we have det

∥∥λb
c

∥∥ = +1. The matrix with
the components λb

cμab belongs to the set of the orthogonal matrices with positive
determinant; therefore,

max
μab

qabμab = max
μab

|q|ab μab.

Taking as a trial matrix ‖μab‖ the unit matrix, we get the low bound

|q|1 + |q|2 + |q|3 ≤ max
μab

qabμab. (7.71)

In the principal coordinate system of the tensor |q|ab, the contraction |q|ab μab has
the form |q|1 μ11 + |q|2 μ22 + |q|3 μ33. Since the components of the orthogonal
matrix do not exceed unity,
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max
μab

|q|ab μab ≤ |q|1 + |q|2 + |q|3 . (7.72)

Low and upper bounds coincide and yield (7.70).
Consider now the case det

∥∥qab
∥∥ < 0. In the polar decomposition of the tensor

qab, the matrix
∥∥λb

c

∥∥ has a determinant equal to −1; therefore,

max
μab

det‖μab‖=+1

qabμab = max
μab

det‖μab‖=−1

|q|ab μab, (7.73)

and we have to prove that this maximum (7.70) is equal to |q|1 + |q|2 − |q|3.
Let us use the representation of the orthogonal matrices (3.42). In the principal

coordinate system of the tensor |q|ab, we have

|q|ab μab = cos θ
[|q|1

(
1− c2

1

)+ |q|2
(
1− c2

2

)+ |q|3
(
1− c2

3

)]

− |q|1 c2
1 − |q|2 c2

2 − |q|3 c2
3.

The expression in square brackets is non-negative because c2
1 + c2

2 + c2
3 = 1.

Therefore, the maximum is reached at θ = 0. After substituting c2
3 by 1 − c2

1 − c2
2,

we need to seek the maximum over c1, c2 (c2
1 + c2

2 ≤ 1) of the expression

|q|1 + |q|2 − |q|3 − 2
(|q|1 − |q|3

)
c2

1 − 2
(|q|2 − |q|3

)
c2

2.

It is equal to |q|1 + |q|2 − |q|3 which is what was claimed. If det
∥∥qab

∥∥ = 0, then
|q|3 = 0, and, as easy to see, (7.70) still holds.

Formula (7.70) can be presented in a form which does not employ the ordering
of the eigenvalues:

max
μab

qabμab = max
sab

{|q|ab sab
}
,

where the maximum is calculated over the tensors sab, which have the form (7.43)
in the principal coordinate system of the tensor |q|ab if det

∥∥qab
∥∥ > 0 and the form

(7.44) if det
∥∥qab

∥∥ < 0.
2. For an isotropic material, the point at which the function pa

i xi
a−F

(
xi

a

)
reaches

its maximum value over xi
a is the point at which the tensor |x |ab is coaxial with the

tensor |p|ab.
Indeed, if the maximizing element of the function pa

i xi
a − F

(
xi

a

)
is an internal

point of the set X , then this statement follows from the formula (7.49). If the max-
imizing element is on the boundary of the set X , i.e. det

∥∥xi
a

∥∥ = 0, then, xi
a is the

solution of the system of equations

pa
i =

�F

�xi
a

+ κ

�

�xi
a

det
∥∥xi

a

∥∥ = �F

� |x |ab
λib + κea′b′c′λ

a′
i |x |b

′
b |x |c

′
c eabc,

where κ is the Lagrange multiplier for the constraint det
∥∥xi

a

∥∥ = 0. Hence,
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|p|ac μicλ
id = �F

� |x |ad
+ κed

·b′c′ |x |b
′

b |x |c
′

c eabc. (7.74)

The two terms on the right side of (7.74) are coaxial to the tensor |x |ab and are
symmetric with respect to a, d. Therefore, they are coaxial with the tensor |p|ac,
and the tensors |p|ab and |x |ab are coaxial.

Now everything is prepared to derive the following formula: for an isotropic
elastic material, in the framework of the theory of finite deformations:

F∗
(

pa
i

) = max
xi

a

(
pa

i xi
a − F

(
xi

a

)) =
⎧
⎨
⎩

G
(|p|ab

)
, det

∥∥pa
i

∥∥ > 0

max
sc

b

{
G
(|p|ab sc

b

)}
, det

∥∥pa
i

∥∥ < 0

(7.75)
where the maximum is calculated over the matrices sc

b , which have the form (7.44)
in the principal coordinate system of the tensor |p|ab.

Indeed, in searching for the maximum, max
(

pa
i xi

a − F
(
xi

a

))
, one can con-

sider only such xi
a for which the tensor |x |ab is coaxial to the tensor |p|ab. Then,

pa
i xi

a = |p|ab μib |x |ac λic = qabνab, where the tensor qab = |p|ac |x |bc is symmetric
because the tensors |p|ac and |x |bc are coaxial, while νab are the components of the
orthogonal matrix with det ‖νbc‖ = +1 for det

∥∥pa
i

∥∥ = +1, and det ‖νbc‖ = −1 for
det

∥∥pa
i

∥∥ = −1. One can seek for maximum over xi
a successively, first finding the

maximum over λi
a and then over |x |ab. Finding the maximum over λi

a is equivalent
to maximization of qabνab. According to (7.70), we have:

for det
∥∥pa

i

∥∥ > 0,

F∗
(

pa
i

) = max
νab,|x |ab

det‖νab‖=+1

[|p|ab |x |cb νbc − F (|x |ab)
] =

= max
|x |ab

[|p|ab |x |ab − F (|x |ab)
] = G

(|p|ab
)
,

for det
∥∥pa

i

∥∥ < 0,

F∗
(

pa
i

) = max
νab,|x |ab

det‖νab‖=+1

[|p|ab |x |cb νbc − F (|x |ab)
] =

= max
|x |ab

[
max

{|p|ab |x |cb sac
}− F (|x |ab)

]
,

where the inner maximum is taken over the matrices sbc, which have the form (7.44)
in the principal coordinate system of the tensor |p|ab. Changing the order of the
maximization over sac and |x |ab, we obtain (7.75).

Note that in the case when the maximizing element of the function pa
i xi

a−F
(
xi

a

)
is an internal point of the set X , the assertion of the (7.75) follows directly from the
formula for the value of the function F× = pa

i xi
a−F

(
xi

a

)
at the points stationary

with respect to xi
a (7.53).
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Semi-linear material. Let us find the Young-Fenchel transformation of the function
F for the semi-linear isotropic material with λ = 04, in the principal coordinate
system of the tensor nab,

G (n) = max
|x |i

[
n1 |x |1 + n2 |x |2 + n3 |x |3

−μ
[
(|x |1 − 1)2 + (|x |2 − 1)2 + (|x |3 − 1)2] ]

= f (n1)+ f (n2)+ f (n3) ,

where

f (n) = max
x≥0

[
nx − μ (x − 1)2

] =
{

n+ n2

4μ
, n ≥ −2μ

−μ n ≤ −2μ

According to the formula (7.46), for det
∥∥pa

i

∥∥ > 0,

F∗
(

pa
i

) = f
(|p|1

)+ f
(|p|2

)+ f
(|p|3

)
,

and for det
∥∥pa

i

∥∥ < 0,

F∗
(

pa
i

) = max
s1,s2,s3=±1
s1s2s3=−1

[
f
(|p|1 s1

)+ f
(|p|2 s2

)+ f
(|p|3 s3

)]
.

Let us number the eigenvalues of the tensor |p|ab in decreasing order. Since f (p)
is a non-decreasing function, we have for det

∥∥pa
i

∥∥ < 0,

F∗
(

pa
i

) = f
(|p|1

)+ f
(|p|2

)+ f
(− |p|3

)
.

Dual variational principle. The maximum value of the functional

I ∗ (p) =
∫

�V̊u

pa
i n̊a xi

(b)d Å −
∫

V̊

F∗
(

pa
i

)
dV̊

on the set of all functions pa
i satisfying the equilibrium equations (7.59) does not

exceed the minimum value of energy functional.
If the minimizing element of the energy functional is in the convexity region,

then maximum value of I ∗ coincides with the minimum value of I .
The dual variational problem is convex. To evaluate the errors which the

convexification may cause, it is worth finding the convex function F∗∗
(
xi

a

)
, the

Young-Fenchel transformation of the function F∗
(

pa
i

)
. Due to the properties of the

4 The expression for F∗ for λ �= 0 is more complex and can be found in [66].
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Young-Fenchel transformation, F∗∗ ≤ F , and, if F∗∗ does not differ considerably
from F , it can be expected that the solutions of the dual convex problem and the
initial non-convex problem are close, at least in energy norm. The calculations for
the two-dimensional case, not reproduced here, result in

F∗∗ =
{

μ
(
γ 2

1 + γ 2
2

)
for γ1 + γ2 ≥ 0

1
2μ (γ1 − γ2)2 for γ1 + γ2 ≤ 0

where γ1, γ2 are the eigenvalues of the tensor γab. Consequently, if the true strains
γ1 = |x |1 − 1, and γ2 = |x |2 − 1 along the axes X1, X2 are such that γ1 + γ2 ≥ 0,
then F = F∗∗, and the solutions of the initial and the dual problems coincide. If
the true strain happens to be in the region γ1 + γ2 < 0, then, generally speaking,
the solutions of the initial and the dual problems differ. The energy measure of the
errors is controlled by the difference

F
(
xi

a

)− F∗∗
(
xi

a

) =
{

0 for γ1 + γ2 ≥ 0
1
2μ (γ1 − γ2)2 for γ1 + γ2 ≤ 0

7.4 Phase Equilibrium of Elastic Bodies

The variational approach considered so far dealt with only mechanic deformations
of an elastic body. Gibbs variational principles are deeper; in particular, they also
control the thermodynamic equilibrium of two-phase elastic bodies in which the
phases can transform one into another (for example, the equilibrium of a metal with
its melt). In this section we derive the conditions of the phase equilibrium from the
second Gibbs principle.

Let two phases of a solid occupy some region V . Subregions of V occupied by
each phase are denoted by V1 and V2 and their common boundary by � (Fig. 7.6).
Let U1

(
xi

a, S
)

and U2
(
xi

a, S
)

be the internal energy densities of two phases per unit
mass. The quantities corresponding to the two phases are supplied by the indices 1
and 2.

The motion of the surface � over the particles corresponds to transformation of
one phase into another. For definiteness, on the boundary of region V , the particle
positions are assumed to be given while the system is adiabatically isolated.

Fig. 7.6 Notation in
consideration of phase
equilibrium
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According to the second Gibbs principle, in thermodynamical equilibrium the
functional

U =
∫

V1

ρU1
(
xi

a, S
)
dV +

∫

V2

ρU2
(
xi

a, S
)
dV (7.76)

takes the minimum value on the set of all functions xi (Xa) , S (Xa) and surfaces �
that satisfy the conditions

∫

V1

ρSdV +
∫

V2

ρSdV = S0 = const (7.77)

xi
(
Xa
) = xi

(b)

(
Xa
)

on �V, (7.78)

and an additional condition on continuity of particle positions on �

[
xi
(
Xa
)] = 0 on �. (7.79)

As before, [ϕ] denotes the difference of the limit values of function ϕ on the
two sides of the surface �: [ϕ] = ϕ1 − ϕ2. Equation (7.79) excludes appearance of
voids and slipping of the two sides of �. The derivatives of the functions xi (Xa)
and the entropy S (Xa) can be discontinuous on �. To include into consideration
the inhomogeneous solids, we have to take into account that energy density may
depend on Lagrangian coordinates, Xa, through the dependence on Xa the physical
characteristics, some tensors K B with a set of Lagrangian indices denoted by B.

Denote by pa
i and μa

b the tensors

pa
i = ρ0

�U

�xi
a

, μa
b = −ρ0

�U

�xi
a

xi
b + ρ0 (U − T S) δa

b .

We are going to show that the conditions of thermodynamical equilibrium are

∇̊a pa
i = 0,

�U

�S
= T = const in V, (7.80)

[
pa

i

]
n̊a = 0 on �, (7.81)

[
μa

b

]
n̊a = 0 on �. (7.82)

where ∇̊a is the covariant derivative in the undeformed state with respect to La-
grangian coordinates; without loss of generality, it may be considered coinciding
with the partial derivatives, �/�Xa . The first two equations are the conditions of the
mechanical equilibrium. The third equation is the condition of the phase (chemical)
equilibrium.

Indeed, let us find the variation of the functional U . Let xi (Xa) be a stationary
point of U , and let xi (Xa, ε) be close particle positions. The space derivatives of
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the particle positions, xi (Xa, ε) , may be discontinuous on some surface �ε which
is close to �. As in the derivation of the Lagrange equations (see Appendix A), it
is convenient to introduce the mapping V → V : X ′a = X ′a

(
Xb, ε

)
for which the

surface � transforms into the surface �ε. Due to the proximity of � and �ε, we can
write X ′a = Xa + δXa , where δXa are some smooth functions in V . The functions
δXa are zero on �V .

Let us denote by δ
xi and δ
S the full variations of xi and S, i.e.

δ
xi = xi
(
X ′a, ε

)− xi
(
Xa
)
, δ
S = S

(
X ′a, ε

)− S
(
Xa
)
.

The full variations δ
xi , according to (7.78) and (7.79), satisfy the constraints

δ
xi = 0 on �V,
[
δ
xi

] = 0 on �. (7.83)

Let us show that the constraint on the variations δ
S which follow from (7.77)
have the form

∫

V̊

[
ρ0δ
S + S∇̊a

(
ρ0δXa

)]
dV̊ = 0. (7.84)

Indeed, keeping the small terms of the first order with respect to dε, we have for
the volume element5

ρ0
(
X ′
)√

g̊ (X ′)d3 X ′ =
[
ρ0 (X )

√
g̊ (X )+ �ρ0

√
g̊

�Xa
δXa

] ∣∣∣∣
�X ′

�X

∣∣∣∣ d3 X =

= ρ0

√
g̊

[
1+ 1

ρ0

√
g̊

�ρ0

√
g̊

�Xa
δXa

][
1+ �δXa

�Xa

]
d3 X =

= ρ0

√
g̊

[
1+ 1

ρ0

√
g̊

�ρ0

√
g̊δXa

�Xa

]
d3 X

= ρ0

[
1+ 1

ρ0
∇̊a
(
ρ0δXa

)]
dV̊ . (7.85)

Therefore,

5 In (7.85), the formulas were used,

∇̊c Ac = 1√
g̊

�
√

g̊ Ac

�Xc
, ρdV = ρ0dV̊ .
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δ

∫

V1

ρSdV =
∫

V ′1

ρ0
(
X ′
)

S
(
X ′
)√

g̊ (X ′)d3 X ′−

−
∫

V1

ρ0 (X ) S (X )
√

g̊ (X )d3 X =
∫

V1

[
ρ0δ
S + S∇̊a

(
ρ0δXa

)]
dV̊ .

Formula (7.84) follows from the last equation and a similar equation written for the
region V2.

Analogously to (7.84), we get the relation

δU =
∫

V1

[
ρ0δ
U1 +U1∇̊a

(
ρ0δXa

)]
dV̊ +

∫

V2

[
ρ0δ
U2 +U2∇̊a

(
ρ0δXa

)]
dV̊ .

Consider the quantity δ
U . In calculating δ
U , the operator δ
 should be applied
to the tensor with the Lagrangian indices – the distortion xi

a and the characteristics of
the medium, K B . We will assume that the operator δ
 includes the parallel transport
over the Lagrangian indices in the initial state. Then, δ
 K B = δXa∇̊a K B . For δ
xi

a ,
we have

δ
xi
a =

�x ′i
(
X ′b, ε

)

�X ′a
− �̊b

acδXcxi
b −

�xi
(
Xb
)

�X ′a
= �δ
xi

�Xa
− xi

b∇̊aδXb.

After integration by parts, the equation δU = 0 becomes

∫

V

[
−δ
xi ∇̊ pa

i + ρ0δ
S

(
�U

�S
− T

)
+

+ δXa

(
−∇̊bμ

b
a + (U − T S) ∇̊aρ0 + ρ0

�U

�K B
∇̊a K B

)]
dV̊ +

+
∫

�

([
pa

i

]
n̊

a
δ
xi + [μa

b

]
n̊aδXb

)
dσ = 0. (7.86)

Here, T is the Lagrange multiplier for the constraint (7.84). The equilibrium condi-
tions (7.80), (7.81) and (7.82) follow from (7.86).

There is an additional equation, which must be satisfied in equilibrium:

− ∇̊bμ
b
a + (U − T S) ∇̊aρ0 + ρ0

�U

�K B
∇̊a K B = 0 in V, (7.87)

However, one can check that (7.87) is a consequence of (7.80).
Equations (7.80) are the conditions of thermodynamic equilibrium obtained in

Sect. 7.2.
Equations (7.81) shows that the necessary condition of thermodynamic equilib-

rium is the equality of forces acting on the two sides of the surface �.
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Of the three equations (7.82), only one is independent. This follows from (7.81)
and the compatibility condition on the surface of the discontinuity6

[
xi

a

] = λi n̊a . (7.89)

Indeed,

[
μa

b

]
n̊a =

[
−ρ0

�U

�xi
a

xi
b + ρ0 (U − T S) δa

b

]
n̊a =

= −pa
i n̊a

[
xi

b

]+ [ρ0 (U − T S)] n̊b =
(−pa

i n̊aλ
i + [ρ0 (U − T S)]

)
n̊b.

In these relations, by pa
i n̊a one can mean the value of pa

i n̊a on either side of the
discontinuity surface since

[
pa

i

]
n̊a = 0.

The independent equation in (7.82) can be singled out by contracting (7.82) with
the normal vector n̊b:

[
μa

b

]
n̊a n̊b = 0. (7.90)

Unlike the “force” conditions which are not difficult to write from other reason-
ing, (7.90) is not trivial. It appears by taking the variations of the surface � over the
particles, i.e. by allowing the phase transformations in the system to occur.

The condition of phase equilibrium (7.90) has one distinguishing characteristic:
unlike the other relations of mechanics, it contains the internal energy itself, not its
derivatives. Adding of constants to the energies of the phases, U1 and U2, changes
the phase equilibrium conditions. Due to that, it becomes important how the initial
state is chosen and how U and S are measured. In the theory of phase transitions it is
assumed that for all phases which can transform to each other, the same initial state
may be chosen from which energy and entropy of different phases are measured.

6 Let ϕ (Xa) be a continuous function on the surface �, but its derivatives may be discontinu-
ous on �. Then the discontinuities of the derivatives of ϕ on � are not arbitrary and satisfy the
compatibility conditions [

�ϕ

�Xa

]
= λn̊a . (7.88)

To prove (7.88) we introduce the parametric equations of surface �, Xa = r̊ a (ζ α) , α = 1, 2
and use the decomposition of the derivative of the type (14.17)

�

�Xa
= (

r̊α
a r̊ b

α+n̊a n̊b
) �

�Xb
=

= r̊α
a

�

�ζ α
+ n̊a n̊b �

�Xb
.

Hence, [
�ϕ

�Xa

]
= r̊α

a

� [ϕ]

�ζ α
+ n̊a n̊b

[
�ϕ

�Xb

]
.

For functions ϕ that are continuous on �([ϕ] = 0), this equation reduces to (7.88), where
λ = η̊b

[
�ϕ/�Xb

]
. Relations (7.89) follow from (7.88).
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Due to this assumption, the initial values of energy, entropy, density and other phase
characteristics turn out to be continuous on the phase boundary.

In order to clarify the meaning of the condition (7.90), let us consider a special
case of elastic bodies, a liquid, when the internal energy depends on distortion only
through the density ρ = ρ0

√
g̊/
√

g�, � = det
∥∥xi

a

∥∥. Since �ρ/�xi
a = −ρXa

i , the
tensor μa

b is spherical:

μa
b = ρ0μδa

b , μ = U − T S + p

ρ
.

Here, p = ρ2�U/�ρ is the pressure. Since [ρ0] = 0, it follows from (7.90) that
[μ] = 0. The quantity μ is the chemical potential (see (5.104)), and the condition
[μ] = 0 is the necessary condition for the thermodynamic equilibrium of two liquid
phases, established by Gibbs. Accordingly, the tensor μa

b can be called the chemical
potential tensor of an elastic medium.



Chapter 8
Dynamics of Elastic Bodies

8.1 Least Action vs Stationary Action

The extrapolation to dynamics of the minimization principles formulated above en-
counters difficulties, the essence of which can be observed for systems with one
degree of freedom.

Consider the harmonic oscillator – a material point on a spring. The deviation
of the point from the equilibrium position is denoted by x (t); the kinetic energy is
equal to 1

2 mẋ2, and the energy of the spring is 1
2 kx2. According to the Hamilton

principle, the true trajectory is the stationary point of the functional

I = 1

2

�t∫

0

(
mẋ2 − kx2)dt

on the set of functions, x (t), which take at the initial and final moments the given
values

x (0) = x0, x (�t) = x1.

The question is: does the true trajectory provide the minimum for the functional
I ? In order to investigate this question, it is convenient to use instead of functions
x (t) the functions u (t) which are equal to zero in the initial and final moments:

x → u : x (t) = vt + x0 + u (t) , v = (x2 − x1) /�t = const, u (0) = u (�t) = 0.

The constant, v, has the meaning of the average velocity. The functional I (u)
takes the form (additive constant is omitted)

I (u) = J (u)+ l (u) ,

J (u) = 1

2

�t∫

0

(
mu̇2 − ku2

)
dt, l (u) = −k

�t∫

0

(vt + xo) udt.
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Posing the minimization problem is possible if the functional I (u) is bounded
from below. For this to be true, it is necessary that the functional J (u) be bounded
from below.1 For every function u (x), the set of admissible functions contains the
function λu (x) (with any λ); therefore, for the quadratic functional to be bounded
from below it is necessary and sufficient that it is non-negative. Let us write down
this condition. It is convenient to use a new argument τ = 2π

�t t . From the inequality
J (u) ≥ 0, it follows that, for any functions u (τ ) such that u (0) = u (2π ) = 0, the
inequality

2π∫

0

(
du

dτ

)2

dτ ≥ c

2π∫

0

u2dτ, c = k (�t)2

4π2m
(8.1)

should hold. We arrive at the Wirtinger inequality (5.24). The inequality (8.1) holds
for all c ≤ 1/4. Moreover, for c < 1/4 the functional J (u) will be strictly convex,
as a quadratic positive functional. For c > 1/4, the functional J (u) is not bounded
from below. Indeed, 1/4 is the best constant in the Wirtinger inequality for zero
values of the function at the ends; therefore, for c > 1/4 there exists at least one
function u0 for which J (u0) < 0, while l (u0) has a finite value. Thus, for the
sequence {λu0}, λ→∞, J (λu0)→−∞.

So, posing the minimization problem is possible only for sufficiently small �t ,
�t < π

√
m/k.

For continuous media, the problem is more complicated. Let us consider, for
example, the action functional of the wave equation

I (u) = 1

2

�t∫

0

π∫

−π

(
u2

,t − u2
,x

)
dxdt

and set the kinematic boundary conditions u (0, x) = u0 (x), u (�t, x) = u1 (x),
u (t,−π ) = u (t, π ) = 0. Let the functions u0 (x) and u1 (x) be odd, so that we will
only need odd admissible functions u (x).2 Functions u (x) can be presented in the
form of the Fourier series:

u (t, x) =
∞∑

k=1

uk (t) sin kx . (8.2)

Substituting (8.2) into I (u), we get

I (u) =
∞∑

k=1

Ik, Ik = π

2

�t∫

0

(
u̇2

k − k2u2
k

)
dt.

1 Indeed, if there exists a sequence {un} for which J (un) → −∞, while l (un) ≤ const, then
I (un)→−∞. If l (un)→+∞, then for the sequence {−un}, we have I (un)→−∞.
2 See Sect. 5.13.
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Since the functions uk (t) are independent, the boundedness from below of each
functional Ik is necessary for the boundedness from below of the functional I (u).
For this, as shown above, it is necessary that for each k

k2�t2 ≤ π2.

It is impossible to satisfy these inequalities for all k. Therefore the functional
I (u) is not bounded from below, however small is �t . Apparently, posing the min-
imization problem is possible for a quasi-continuum [164], for which short waves
(with large k) are excluded.

The noted difficulty is related to the fact that the Hamilton principle in essence
yields a Dirichlet-type problem, but this problem is ill-posed for hyperbolic
equations.

The noted difficulty is closely related to ill-posedness of hyperbolic equations for
the Dirichlet-type problems.

A well-posed dynamical problem is the Cauchy problem, when one prescribes
the initial values of the required function and its time derivative. The Hamil-
ton principle can be rendered in the form which corresponds to a problem with
the prescribed initial value of the required function and the average value of its
time derivative over some interval �t. Indeed, instead of fixing u (�t, x) , one can
prescribe

u (�t, x)− u (0, x)

�t
= 1

�t

t+�t∫

t

u,t dt.

This assertion, however, has the same peculiarity as the Hamilton principle: the
minimization problem is ill-posed unless the short waves are excluded.

8.2 Nonlinear Eigenvibrations

The above pertains to general dynamic problems for continua. However, there is
an important class of dynamic problems for which the setting of the variational
problems is very close to that for static problems. These are the so-called natural
vibrations. By natural one means periodic vibrations which occur without action of
external forces. On the boundary of the continuum, homogeneous boundary condi-
tions are assumed (clamped boundaries, zero external surface forces, etc.). Natural
vibrations may occur only at some special values of frequencies called eigenfre-
quencies. Let us construct the variational principle for determining the eigenfre-
quencies and the modes of vibration.
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Let the true motion of a continuum be a stationary point of the functional

t1∫

t0

∫

V

L
(
x, uκ, uκ

,t , uκ

,i

)
dV dt.

For definiteness, we will assume the clamped boundaries conditions

uκ = 0 on �V . (8.3)

Natural vibration with a frequency ω is a stationary point of the functional

π
ω∫

− π
ω

∫

V

L
(
x, uκ, uκ

,t , uκ

,i

)
dV dt

on the set of functions uκ satisfying the condition (8.3) and the periodicity condition

uκ

(
x,−π

ω

)
= uκ

(
x,

π

ω

)
.

In the variational problem, it is convenient to make a change of the independent
variable t → θ : ωt = θ,−π ≤ θ ≤ π . Then, the eigenvibrations are the stationary
points of the functional

π∫

−π

∫

V

L
(
x, uκ, ωuκ

,θ , uκ

,i

)
dV dθ (8.4)

on the set of functions uκ satisfying the condition (8.3) and the periodicity condition

uκ (x,−π ) = uκ (x, π ) . (8.5)

One can assume that 2π is the smallest period of the functions uκ (x, θ ) .

The variational problem (8.3), (8.4) and (8.5) admits an interesting interpretation
if the Lagrangian L is the difference of the kinetic energy and the free energy,

L = K
(
x, uκ, uκ

,t

)− F
(
x, uκ, uκ

,i

)
,

where K and F are nonnegative, and K is a homogeneous function of the second
order with respect to uκ

,t , i.e. for any ω > 0,

K
(
x, uκ, ωuκ

,t

) = ω2 K
(
x, uκ, uκ

,t

)
.
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In order to simplify further consideration, we will also assume that K and F are
strictly convex and equal to zero for uκ ≡ 0.

Let us show that in this case the variational problem (8.3), (8.4) and (8.5) is
equivalent to the following one: find stationary points of free energy functional

π∫

−π

∫

V

F
(
x, uκ, uκ

,i

)
dV dθ (8.6)

on the set of function uκ , satisfying the constraints (8.3) and (8.5) and the condition

π∫

−π

∫

V

K
(
x, uκ, uκ

,θ

)
dV dθ = A2, (8.7)

where A is some given constant.
Indeed, introducing the Lagrange multiplier for the constraint (8.7), the func-

tional of the problem can be written as

π∫

−π

∫

V

FdV dθ − λ

⎛
⎝

π∫

−π

∫

V

K dV dθ − A2

⎞
⎠ . (8.8)

The Lagrange multiplier λ is nonnegative: for λ < 0, the functional (8.8) is
strictly convex and has the only stationary point, uκ = 0. Therefore, each stationary
point of the variational problem (8.3), (8.5), (8.6) and (8.7) is the stationary point of
the initial problem with ω2 = λ.

Conversely, each stationary point of the initial problem is the stationary point of
the variational problem (8.3), (8.5), (8.6) and (8.7) for some A; it is sufficient to
calculate the value of A, corresponding to the stationary point being considered, by
means of formula (8.7).

In the variational problem (8.3), (8.5), (8.6) and (8.7), the Lagrange multiplier
for the constraint (8.7) has the meaning of the squared frequency, and the constant
A is a measure of the amplitude of the vibrations.

As a rule, for any value of A there exists a countable number of stationary points
and the corresponding values of eigenfrequencies. They continuously change as the
value of A is changed.

8.3 Linear Vibrations: The Rayleigh Principle

For A → 0, the amplitude of vibrations tends to zero. If F and K are smooth
functions and K becomes zero for uκ

,t = 0, then for infinitesimally small amplitudes,
F can be replaced by a quadratic form with respect to uκ, uκ

,i , and K can be replaced
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by a quadratic form with respect to uκ, uκ

,i , and K can be replaced by a quadratic
form with respect to uκ

θ : 2K = ρκκ
′uκ

θ uκ
′

θ . It is easy to check that the stationary
points have the form uκ = vκ (x) cos θ or uκ = vκ (x) sin θ . After integrating over
θ , the variational principle (8.3), (8.5)–(8.7), becomes
Rayleigh principle.The modes of eigenvibrations are the stationary points of the
free energy functional 3

F =
∫

V

F
(
x, vκ, vκ

,i

)
dV, (8.9)

on the set of functions vκ vanishing on �V and having a given value of kinetic
energy

K =
∫

V

1

2
ρκκ

′vκvκ
′
dv = A2. (8.10)

The change of the constant A corresponds to multiplying vκ by a constant; there-
fore, without loss of generality we can set A = 1 in (8.10).

The Rayleigh variational principle is equivalent to the assertion of the stationarity
of the so-called Rayleigh quotient,

R = F
K =

∫
V

F
(
x, vκ, vκ

,i

)
dV

∫
V

1
2ρκκ

′vκvκ
′dV

.

Indeed, the Rayleigh quotient does not change if the function vκ is multiplied
by a constant; in particular, this constant can be chosen in such a way as to make
K = 1 and thus R = F .

The non-convexity, which is characteristic for the variational problems of dy-
namics, is preserved for eigenvibrations as well: the constraint K = const extracts a
non-convex set in the functional space – a sphere (in an appropriate norm).4

If the function F is not smooth at zero, then the variational principle (8.3),
(8.5), (8.6) and (8.7), generally speaking, does not transform to the Rayleigh
principle even in the case of infinitesimally small amplitudes. As an example,
note the problem of eigenvibrations when continuum has different moduli for
u,κ > 0 and u,κ < 0; e.g., in the one-dimensional case, 2F = αu2

,x + βu,x

∣∣u,x

∣∣ ,

3 It is easy to check that the stationary points of the functional (8.6) do not change if the same
factor, k , is included in the left-hand sides of (8.6) and (8.7), and the constant A2 is replaced
by k A2. In transition from (8.6), (8.7) to (8.9), (8.10) the coefficient k = 1/π is introduced; the
constant A2 in (8.10) differs from the constant A2 in (8.7) by the same factor.
4 If the condition K = A2 could be changed by the condition K ≤ A2, then the problem would be
convex. In the variational principle formulated, it is possible only to replace the condition K = A2

by the inequality K ≥ A2 which selects a non-convex set.
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α + β > 0, α − β > 0. For such elastic body, due to non-linearity, of the problem,
the eigenfunctions cannot be presented as the product of a function depending on θ

and a function depending on x .

8.4 The Principle of Least Action in Eulerian Coordinates

The principle of least action for an elastic body in Lagrangian coordinates was for-
mulated in Sect. 4.3. Sometimes it is of interest to formulate it also in Eulerian
coordinates. Although it involves only rewriting the action functional in different
terms, there are a number of technical details deserving consideration.

In Eulerian coordinates, it is convenient to define the action functional on dis-
placements, ui (x, t):

ui (x, t) = xi (X, t)−x̊ i (X )
∣∣

X=X (x,t) = xi − x̊ i (X (x, t)) .

The displacements are uniquely related to the particle trajectories. The domain
of displacements, ui (x, t), is the region, V (t) , occupied by the continuum at the
time t .

Assigning the particle positions in the initial and the final times corresponds to
assigning the displacements,

ui (x, t0) = 0, ui (x, t1) = ui
1 (x) . (8.11)

The functions ui
1 (x) are defined in the region

1
V = V (t1). The points with the

coordinates xi − ui
1 (x) for x ∈

1
V are in the region V̊ = V (t0). The corresponding

mapping of
1
V onto V̊ is one-to-one.

Let us express the arguments of the Lagrangian in terms of the displacements
and their derivatives. We begin with the Lagrangian coordinates Xa . The relation
between the Lagrangian and the Eulerian coordinates at the initial instant is

Xa = X̊ a (x̊)

where x̊ i are the Eulerian coordinates of the points in V̊ . Since x̊ i = xi − ui
(
xk, t

)
,

the dependence of the Lagrangian coordinates on the Eulerian coordinates at any
instant has the form

Xa = X̊ a
(
xi − ui (x, t)

)
. (8.12)

Here, X̊ a
(
xi
)

are the known functions, the inverse of the functions x̊ i (Xa) . In
particular, if the Lagrangian and the Eulerian coordinates coincide at the initial time,
then Xi = x̊ i and Xi

(
xi , t

) = xi−ui (x, t). However, as has been noted, a particular
choice of Lagrangian coordinates at the stage of deriving the equations excludes the
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possibility to check the invariance of all relations with respect to transformations of
the Lagrangian coordinates; therefore, we use the general formula (8.12).

Assigning the particle positions at the boundary of the body corresponds to as-
signing a part of the boundary � (t) of the region V (t) and the values of the dis-
placement vector at this part:

ui = ui
(b) (x, t) on � (t) . (8.13)

These values are not arbitrary. They satisfy the condition

X̊ a
(
xi − ui

(b) (x, t)
) ∈ �̊ for x ∈ �.

(�̊ is the part of the boundary of the body in the space of Lagrangian coordinates
for the points of which the displacements are given).

Let us find the relation between the distortion and the displacement gradient.
Differentiating (8.12) with respect to xi we have5

�Xa

�xi
= �X̊ a

�xk

(
δk

i − uk
i

)
, uk

i =
�uk

�xi
.

Hence,

det

∥∥∥∥
�Xa

�xi

∥∥∥∥ = det

∥∥∥∥∥
�X̊ a

�xi

∥∥∥∥∥ · det
∥∥δk

i − uk
i

∥∥ . (8.14)

Equation (8.14) shows that the matrix
∥∥δk

i − uk
i

∥∥ is non-singular. Therefore, it is
possible to introduce the tensor si

j , which is the inverse of the tensor δk
i − uk

i :

si
j

(
δ

j
k − ui

k

)
= δi

k . (8.15)

The distortion xi
a is given by the equation

xi
a = x̊ k

a si
k . (8.16)

This can be checked by direct inspection:

xi
a Xa

j = x̊ k
a si

k X̊ a
m

(
δm

j − um
j

) = δi
j .

Here, the formulas (8.15) and (8.16) are used.
In terms of the displacement gradient, the density ρ, according to (8.14) is

5 Remember that the observer’s coordinate system is Cartesian.
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ρ = ρo

√
g̊√

ĝ
= ρo det

∥∥ �x̊
�X

∥∥
det

∥∥ �x
�X

∥∥ =
ρo det

∥∥ �X
�x

∥∥
det

∥∥∥ �X̊
�x

∥∥∥
= ρo det

∥∥δi
j − ui

j

∥∥ . (8.17)

Let us express the velocity in terms of the derivatives of the displacements. Tak-
ing the time derivative of the equation

ui = xi (X, t)− x̊ i (X )

for constant Lagrangian coordinates, we get

�ui

�t
+ vk �ui

�xk
= vi . (8.18)

The relations (8.18) can be considered as a system of three linear algebraic equa-
tions with respect to the particle velocity, vi . According to (8.15), the solution of
this system of equation is

vi = si
kuk

t . (8.19)

Here, uk
t ≡ �uk/�t .

For simplicity, let us assume that the external forces on �Vt – �t are equal to
zero. Then the action functional can be written as

I (u) =
t1∫

t0

∫

V (t)

L
(
xi , ui , ui

k, ui
t

)
dV dt, (8.20)

L = ρ

(
1

2
v2 − F

(
xi

a

)−�
(
xi
))

, v2 ≡ viv
i , (8.21)

�
(
xi
)

being the potential of body forces. In calculating L , one should express xi
a,

v and ρ in terms of the displacement gradient by (8.16), (8.19) and (8.17).
Note that for inhomogeneous media characteristics of which depend on the

Lagrangian coordinates, the function, L , depends explicitly on the space coordi-
nates, xi , and on the displacements, ui , through the difference, xi − ui . Besides, L
depends explicitly on the Eulerian coordinates due to the presence of the external
body forces.

Least action principle. The true displacements are the stationary points of the
functional (8.20) on the set of displacements satisfying the conditions (8.11) and
(8.13).

Let us show that the formulated variational principle indeed yields the equations
of elasticity theory. Let us first calculate the variation of the functional I (u) (8.20),
fixing the region V (t)× [t0, t1]. Then
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δ I (u) =
t1∫

t0

∫

V (t)

�LdV dt =

=
t1∫

t0

∫

V (t)

(
�L

�ui
�ui + �L

�ui
k

��ui

�xk
+ �L

�ui
t

��ui

�t

)
dV dt = 0. (8.22)

As before, the symbol � denotes the variation at constant Eulerian coordinates.
First, let �ui = 0 on V (t). Integrating by parts, we get

δ I (u) =
t1∫

t0

∫

V (t)

�ui δL

δui
dV dt = 0,

δL

δui
= �L

�ui
− �

�xk

�L

�ui
k

− �

�t

�L

�ui
t

. (8.23)

From (8.23) the equations follow

δL

δui
= 0. (8.24)

These equations are equivalent to the momentum equations of the elasticity the-
ory. Indeed, due to the non-singularity of the matrix

∥∥δk
i − uk

i

∥∥, the system of equa-
tions (8.24) is equivalent to the system of equations

δL

δuk

(
δk

i − uk
i

) = 0. (8.25)

Note the identity

− uk
i

δL

δuk
= �i L − �L

�xi
+ �

�xm

(
�L

�uk
m

uk
i

)
+ �

�t

(
�L

�uk
t

uk
i

)
(8.26)

which can be checked by direct inspection. Here, the partial derivative of the func-
tion L

(
xi , ui , ui

k, ui
t

)
with respect to xi is denoted by �i L , in contrast to �L/�xi

which means “full” derivative with respect to xi , i.e. the derivative taking into ac-
count the dependence of all the arguments of L on xi .

From (8.25) and (8.26) we find that
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δL

δuk

(
δk

i − uk
i

) = δL

δui
− uk

i

δL

δuk
= �L

�ui
− �

�xm

�L

�ui
m

−

− �

�t

�L

�ui
t

+ �i L − �L

�xi
+ �

�xm

(
�L

�uk
m

uk
i

)
+ �

�t

(
�L

�uk
t

uk
i

)
=

= �i L + �L

�ui
− �

�xm

[
�L

�uk
m

(
δk

i − uk
i

)+ Lδm
i

]
− �

�t

[
�L

�uk
t

(
δk

i − uk
i

)]
. (8.27)

Since the free energy depends on the Eulerian coordinates only through the dif-
ference xi − ui ,

�i L + �L

�ui
= −ρ

��

�xi
. (8.28)

In order to calculate the other terms in (8.27), we need the formulas

(
δk

i − uk
i

) �ρ

�uk
m

= −ρδm
i ,

�si
j

�uk
m

= si
ksm

j . (8.29)

The first follows from the equalities (3.20) and (8.17), the second is derived in
the same way as (4.24). Due to (8.29), we have

(
δk

i − uk
i

) �

�uk
t

(
1

2
ρv2

)
= ρvi ,

(
δk

i − uk
i

) �

�uk
m

v2

2
= viv

m . (8.30)

Therefore,

�L

�uk
m

(
δk

i − uk
i

)+ Lδm
i = ρvmvi − σ m

i . (8.31)

Here, we introduced the notation

σ
j

i = ρ
(
δk

i − uk
i

) �F

�uk
j

= ρ
�F

�ui
j

− ρ
�F

�uk
j

uk
i . (8.32)

Using (8.29) and (8.16), it is easy to see that

σ
j

i = ρ
�F

�xi
a

x j
a .

Therefore, σ
j

i has the meaning of the components of the Cauchy stress tensor.
From the relations (8.29), (8.30), (8.31) and (8.32) follow the known momentum

equations

�ρvi

�t
+ �

�xm

(
ρviv

m − σ m
i

)+ ρ
��

�xi
= 0. (8.33)
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The constitutive equations (8.32) are sometimes written in the form which takes
into account the fact that the free energy depends on the components of the strain

tensor with the observer’s indices εi j = εab Xa
i Xb

j . Since εab = 1
2 gi j

(
xi

a x j
b − x̊ i

a x̊ j
b

)
,

the quantities εi j are expressed through the displacement gradient as

εi j = 1

2

(
gi j−x̊m

a x̊m
b Xa

i Xb
j

) = 1

2

(
gi j −

(
δk

i − uk
i

) (
gk j − uk j

)) = u(i j) − 1

2
uk

kuk j .

Consequently, for F = F
(
εi j
)
, from (8.32) we have

σ i j = ρ
�F

�εi j
− 2ρ

�F

�εik
ε

j
k .

This relation is called Murnagan’s equation. Note that this formula, unlike for-
mula (8.32), is valid only for isotropic media because the free energy of anisotropic
body depends not only on the components of the strain tensor εi j but also on the
displacement gradient. This can be checked by considering the example of a physi-
cally linear material with 2F = Cabcdεabεcd . Switching to the components with the
observer’s indices, we have 2F = Cabcdxi

a x j
b xk

c xl
dεi jεkl . Hence, F depends not only

on εi j , but also – through xi
a – on ui

j .
Now let the displacement variations and the variations of the part of the boundary

S (t) = �V (t)− � (t) be non-zero. The calculation of δ I results in

δ I =
t1∫

t0

∫

S(t)

[
�ui

(
�L

�ui
k

nk − �L

�ui
t

cx

)
+ Lδn

]
dσdt. (8.34)

Here, (3.92) is used, and it is taken into account that due to the momentum equa-
tions (8.24) the volume integral is equal to zero; cx is the velocity of the surface S (t)
along its normal in the observer’s coordinate system, δn is the virtual displacement
of the surface S (t) in the direction of the normal.

Let us rewrite the integrand in (8.34) using the relations (8.30) and (8.31):

�ui

(
�L

�ui
s

ns − �L

�ui
t

cx

)
+ Lδn = �u j sk

j

(
δi

k − ui
k

) ( �L

�ui
s

ns − �L

�ui
t

cx

)
+ Lδn =

= �u j sk
j

[(
ρvsvk − σ s

k − Lδs
k

)
ns − ρvkcx

]+ Lδn =
= �u j sk

j ρvk
(
vsns − cx

)+ L
(
δn − �u j sk

j nk
)− �u j sk

j σ
s
k ns . (8.35)

The first term in the right hand side of (8.35) is equal to zero: the difference
vsns − cx has the meaning of the surface velocity over the particles, and it is equal
to zero since S (t) does not move over the particles. The second term is also equal
to zero. Indeed, the equality is valid:

δxk = δuk = sk
j �u j . (8.36)
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It follows from the relation (4.31), written for the displacements:

δu j = �u j + u j
kδuk . (8.37)

The solution of (8.37), considered as a system of linear equations with respect
to δuk , is given by the formulas (8.36). In terms of the variations with constant
Lagrangian coordinates, the condition that the boundary particles remain on the
boundary yields

δn = δxknk . (8.38)

From (8.38) and (8.36),

δn − �u j sk
j nk = 0,

thus the second term in the right hand side of (8.35) vanishes. We obtain for the
variation of the action functional,

δ I = −
t1∫

t0

∫

S(t)

�ui sk
j σ

s
k nsdσdt = 0.

Due to the arbitrariness of �ui and the non-singularity of the matrix sk
j , the natural

condition on S (t) are σ s
k ns = 0.



Chapter 9
Ideal Incompressible Fluid

9.1 Least Action Principle

Consider a continuum in some vessel, V̊ . Continuum occupies the entire vessel at
the initial instant, t0. Let us prescribe the initial and the final positions of each point
of the continuum,

x (t0, X ) = x̊ (X ) , x (t1, X ) = 1
x (X ) , (9.1)

and find the trajectories which minimize the action functional,

I (x (t, X )) =
t1∫

t0

∫

V̊

1

2
ρ

dxi (t, X )

dt

dxi (t, X )

dt
dV̊ dt, (9.2)

with ρ being a constant. Such a variational problem corresponds to motion of non-
interacting particle. The particles are driven only by inertia. Obviously, the trajec-
tory of each particle is a straight line in four-dimensional time-space connecting the
initial and final positions (Fig. 9.1). Such motion of continuum is compressible. Be-
sides, the mapping, x (t, X ) , is not a one-to-one mapping because trajectories may
intersect. Let us complicate this inertial motion by imposing the incompressibility
condition

det

∥∥∥∥
�x (t, X )

�X

∥∥∥∥ = det

∥∥∥∥
�x̊ (X )

�X

∥∥∥∥ . (9.3)

Then mapping, x (t, X ) , becomes a one-to-one mapping, at least locally.
Continuum model which incorporates two features, inertia of particles and in-

compressibility of motion, is called ideal incompressible fluid. Motion of ideal in-
compressible fluid is a stationary point in the following variational principle.
Least action principle. The true motions of ideal incompressible fluid are the sta-
tionary points of the action functional (9.2) on the set of all motions extracted by
the constraints (9.1) and (9.3).

V.L. Berdichevsky, Variational Principles of Continuum Mechanics,
Interaction of Mechanics and Mathematics, DOI 10.1007/978-3-540-88467-5 9,
C© Springer-Verlag Berlin Heidelberg 2009

389
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Fig. 9.1 Minimizer of the
variational problem (9.1) and
(9.2)

In this formulation particles are allowed to detach from the wall. One can also
impose an additional condition that the boundary particles remain on the wall all the
time:

x (t, X ) ∈ �V (t) if X ∈ �V̊ , (9.4)

where the current position of the vessel, V (t) , is prescribed and may not coincide
with the initial position, V̊ .

To derive the equations governing the motion of ideal incompressible fluid from
the least action principle, we get rid of the constraint (9.3) by introducing a Lagrange
multiplier, p. The expanded functional is

t1∫

t0

∫

V̊

[
1

2
ρ

dxi

dt

dxi

dt
+ p

(
det

∥∥ �x
�X

∥∥
det

∥∥ �x̊
�X

∥∥ − 1

)]
dV̊ dt,

and for its variation we obtain

t1∫

t0

∫

V̊

[
ρvi

dδxi

dt
+ p

�δxi

�xi

]
dV̊ dt =

=

⎡
⎢⎣
∫

V̊

ρviδxi dV̊

⎤
⎥⎦

t1

t0

+
t1∫

t0

∫

V̊

pδxi ni d Adt −
t1∫

t0

∫

V̊

δxi

(
ρ

dvi

dt
+ �p

�xi

)
dV̊ dt. (9.5)

Here we used (4.19). The first term in (9.5) vanishes due to (9.1): δxi = 0 at
t = t0, t1. If particles do not detach from the wall, δxi ni = 0 at �V̊ , and the second
term vanishes as well. Therefore, equating (9.5) to zero we obtain the equations

ρ
dvi

dt
= − �p

�xi
, (9.6)
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which are the momentum equations of ideal incompressible fluid. Pressure in the
fluid is the Lagrange multiplier for the incompressibility condition. This was the way
which was used by Lagrange to derive these equations [168]. Momentum equations
must be complimented by the incompressibility condition which is usually taken in
the differential form:

�vi

�xi
= 0. (9.7)

If fluid is allowed to detach from the wall in the course of motion, and some free
surface forms, then, due to arbitrariness of δxi ni ,

p = 0 (9.8)

on the free surface.
To model the fluid evaporation or other physical mechanisms by which a non-

zero pressure develops inside the cavity, formed by the detached fluid, one has to
take into account the work of pressure on the free surface displacements. Then the
action functional gains an additional term,1

∫

Vc

p0dVdt,

where p0 is the pressure in the cavity, Vc. Accordingly the boundary condition (9.8)
is replaced by the condition

p = p0 (9.9)

at the free surface.
All the equations obtained remain valid if the fluid is inhomogeneous, i.e. its

density depends on Lagrangian coordinates: ρ = ρ (X ). Another modification of the
action functional appears if there are body forces with the potential � (x) , acting
on the fluid. The action functional becomes

t1∫

t0

∫

V̊

[
1

2
ρ

dxi

dt

dxi

dt
− ρ� (x (t, X ))

]
dV̊ dt. (9.10)

If the fluid is homogeneous and does not detach from the wall, then the second
term in (9.10) is not essential because it does not depend on fluid motion:

t1∫

t0

∫

V̊

ρ� (x (t, X )) dV̊ dt =
t1∫

t0

∫

V (t)

ρ� (x) dV dt

1 See (7.13).
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If the fluid is inhomogeneous and/or has free surfaces this term is essential. We will
encounter its contributions later in Sect. 13.2.

9.2 General Features of Solutions of Momentum Equations

Momentum equations of ideal incompressible homogenous fluid (9.6) can be “in-
tegrated” in the following sense. Let us project these equations on the Lagrangian
frame:

ρxi
a

dvi

dt
= −xi

a

�p

�xi
= − �p

�Xa
. (9.11)

Denoting by va the Lagrangian components of velocity,

va = xi
avi ,

and using the fact that

xi
a

dvi

dt
= dva

dt
− vi

dxi
a

dt
= dva

dt
− vi

�vi

�Xa
=

= dva

dt
− 1

2

�

�Xa
v2, v2 ≡ viv

i , (9.12)

we have

dva

dt
= �

�Xa

(
− p

ρ
+ v2

2

)
.

Let us introduce a function, ϕ, by the equation

dϕ

dt
= − p

ρ
+ v2

2
. (9.13)

Then the momentum equations can be written as

d

dt

(
va − �ϕ

�Xa

)
= 0.

Hence, the Lagrangian covariant components of velocity, va differ from �ϕ/�Xa

only by some field, v̊a, which does not depend on time:

va = �ϕ

�Xa
+ v̊a (X ) , (9.14)

or, in Eulerian coordinates,
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vi = �ϕ

�xi
+ Xa

i v̊a (X ) . (9.15)

Function ϕ can be chosen arbitrarily at the initial instant. If ϕ is set to be equal
to zero initially, then v̊a (X ) have the meaning of the initial Lagrangian velocity
components.

Equation (9.14) determines the general structure of solutions of Euler equations:
the Lagrangian components of velocity, va, may depend on time only through the
potential part, �ϕ/�Xa .

There are other forms of this statement. As follows from (9.14) the antisymmetric
part of the gradient of velocity does not depend on time:

�[avb] = �[a v̊b] (X ). (9.16)

The antisymmetric tensor �[avb] is in one-to-one correspondence with the vector:

ωc ≡ εabc�[avb] = 1√
ĝ

eabc�[avb], �[avb] = 1

2

√
ĝeabcω

c.

Due to the incompressibility condition, the determinant of the metric tensor, ĝ, can
be set equal to unity.

The vector with the contravariant Lagrangian components, ωa, is called the vor-
ticity vector. In Eulerian coordinates, the vorticity vector has the components

ωi = eijk �vk

�x j
, (9.17)

and, due to the law of transformation of vector components,

ωi = xi
aω

a . (9.18)

Conversely,

ωa = Xa
i ωi .

According to (9.16), the contravariant Lagrangian components of vorticity, ωc,

do not change in time at each fluid particle:

dωa

dt
= 0. (9.19)

Note that the covariant components of vorticity, ωb = gbaω
a, may change in time.

Another form of (9.14) is obtained by differentiation of (9.18) with respect to
time at constant Lagrangian coordinates. Using the independence of ωa on time and
formula the time defivative of distortion (3.43), we obtain the evolution equations
for Eulerian components of vorticity,
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dωi

dt
= �vi

�xk
ωk . (9.20)

This equation can also be written in a different form where summation over k is
conducted with another index of the velocity gradient,

dωi

dt
= �vk

�xi
ωk . (9.21)

This follows from the identity

(
�vk

�xi
− �vi

�xk

)
ωk = 0. (9.22)

The identity follows from the inversion of (9.17) (similarly to (3.53)):

�vk

�xi
− �vi

�xk
= eikmωm,

and vanishing of the sum, eikmωkωm = 0.

Conservation of vorticity is often stated in the integral form: for any closed con-
tour, �, the circulation of velocity over this contour,

∮
vi dxi , does not change in

time. This statement is equivalent to the conservation of the Lagrangian contravari-
ant components of vorticity, ωa . Indeed, a moving fluid contour � is the image of
a contour, �̊, which is stationary in Lagrangian coordinates. Therefore, the circula-
tion of velocity can be presented as the circulation of velocity over this stationary
contour:

C ≡
∫

�

vi dxi =
∫

�̊

vi x
i
ad Xa =

∫

�̊

vad Xa .

Transferring the integral over �̊ to the integral over a surface S̊ which has the bound-
ary �̊, we have

C =
∫

�̊

vad Xa =
∫

S̊

�[avb]d Xa ∧ d Xb.

Since �[avb] do not depend on time, C also does not depend on time. The arbi-
trariness of the contour �̊ yields the equivalence of the conservation of velocity
circulations and the conservation of ωa .

Let us return to (9.14). In this equation, one can set ϕ = 0 at the initial instant
and consider v̊a (X ) as the functions known from the initial conditions. Then the
particle trajectories can be sought from a system of equations of the first order,
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�xi (t, X )

�Xa

�xi (t, X )

�t
= v̊a (X )+ �ϕ (t, X )

�Xa
. (9.23)

The incompressibility condition,

det

∥∥∥∥
�x

�X

∥∥∥∥ = det

∥∥∥∥
�x̊

�X

∥∥∥∥ , (9.24)

closes this system of equations for xi (t, X ) and ϕ (t, X ) . Pressure can be computed
from (9.13) after the potential ϕ and velocity are found.

Equation (9.23) can be resolved with respect to time derivative, �xi (t, X ) /�t :
using (3.23) we have

�xi (t, X )

�t
= Xa

i

(
v̊a (X )+ �ϕ (t, X )

�Xa

)
= 1

2
eijkx j

a xk
b eabc

(
v̊c (X )+ �ϕ (t, X )

�Xc

)
.

It is an attractive idea to eliminate ϕ and obtain a system of equations of the first
order with respect to only the particle positions, xi (t, X ) . This is done further in a
formulation of ideal fluid dynamics as the dynamics of vortex lines.

Note some other versions of (9.14). The three-dimensional vector, v̊a, can be
presented2 (at least, locally) in terms of three potentials, α (X ) , β (X ) and ϕ0 (X ) as

v̊a = �ϕ0

�Xa
+ α

�β

�Xa
.

It is convenient to redefine ϕ, denoting by ϕ the sum ϕ + ϕ0. Equation (9.14)
takes the form

va = �ϕ

�Xa
+ α

�β

�Xa
. (9.25)

The scalars, ϕ, α and β are called Clebsch’s potentials. In Eulerian coordinates,
(9.25) is

vi = �ϕ

�xi
+ α

�β

�xi
. (9.26)

Note that Clebsch’s potentials are not defined uniquely for a given velocity field.
For example, for any constant k the change α → kα, β → β/k does not alter the
velocity field.

2 This follows from the theorem on the canonical presentation of differential forms, d A =
A1dx1 + . . . + Andxn : for an even n, n = 2s, there are independent functions,
p1 (x) , . . . , ps (x) , q1 (x) , . . . , qs (x) such that d A = p1dq1 + . . . + psdqs , while for an odd
n, n = 2s + 1, there are independent functions, H (x) , p1 (x) , . . . , ps (x) , q1 (x) , . . . , qs (x) ,

such that d A = p1dq1 + . . .+ psdqs − d H.
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Equation (9.26) must be complemented by the conditions that the potentials α

and β do not change along the particle trajectories:

dα

dt
= �α

�t
+ vi �α

�xi
= 0,

dβ

dt
= �β

�t
+ vi �β

�xi
= 0. (9.27)

Equation (9.13) for the potential ϕ in Eulerian coordinates is

�ϕ

�t
+ vi �ϕ

�xi
− v2

2
+ p

ρ
= 0. (9.28)

Using (9.26) and (9.27) we can also put it in the form

�ϕ

�t
+ α

�β

�t
+ v2

2
+ p

ρ
= 0. (9.29)

For potential flows, either α or β is zero. Then (9.29) transforms into the Cauchy-
Lagrange integral

�ϕ

�t
+ v2

2
+ p

ρ
= 0.

9.3 Variational Principles in Eulerian Coordinates

Instead of the particle trajectories x (X, t), the action functional may be considered
as a functional of functions of Eulerian coordinates: the Lagrangian coordinates
X (x, t), displacements, density and velocity, Clebsch potentials, etc. Doing so, a
one-to-one correspondence of the new characteristics with the particle trajectories
should be maintained; otherwise, some “degrees of freedom” may appear or disap-
pear.

Consider the changes in the variational formulations caused by various choices
of the action functional arguments.

Variation of the Lagrangian coordinates. Let X (x, t) be the arguments of the
action functional. The functions X (x, t) are defined in the region V (t) occupied by
the fluid at the instant t .

Let us find Lagrangian L in terms of the functions X (x, t). According to (3.58),
velocity is function of time and space derivatives of X (t, x) :

vk = −xk
a

�Xa

�t
. (9.30)

Here xk
a are viewed as the components of the matrix which is inverse to the matrix∥∥�Xa/�xi
∥∥. Using (3.25), we can write that explicitly:



9.3 Variational Principles in Eulerian Coordinates 397

vk = − 1

2 det
∥∥Xa

i

∥∥eijk Xb
i Xc

j eabc
�Xa

�t
. (9.31)

So,

L = 1

2
ρ (X ) gi j x

i
a x j

b

�Xa

�t

�Xb

�t
. (9.32)

Here we allow density to be a function of X . This function, ρ (X ) , is assumed to
be known.

The incompressibility condition is a constraint on the space derivatives of X (x, t) :

det

∥∥∥∥
�Xa

�xi

∥∥∥∥ = 1 (9.33)

(for simplicity, we set
∥∥∥X̊ a

i

∥∥∥ = 1). The values of the functions Xa
(
xi , t

)
at the

initial instant are known:

Xa
(
xi , t0

) = X̊ a
(
xi
)
. (9.34)

Besides, the values of the function Xa
(
xi , t

)
at the finial instant are also given:

Xa
(
xi , t1

) = 1
Xa

(
xi
)
. (9.35)

The functions X̊ a
(
xi
)

are defined in the region V̊ = V (t0), and
1
Xa

(
xi
)

in the

region
1
V = V (t1). It is assumed that there exists a mapping V̊ →

1
V , for which the

functions X̊ a
(
xi
)

and
1
Xa

(
xi
)

coincide.
If the equation of the boundary of the region V̊ at the initial moment is

f (X ) = 0,

then the non-detachment of the fluid particles from the boundary means that the
equation,

f (X (x, t)) = 0, (9.36)

is the equation of the boundary of the given region V (t).
Consider the functional

I =
t1∫

t0

∫

V (t)

LdVdt (9.37)

where L is the function (9.32).
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Least action principle. The true motion of the ideal incompressible fluid is a sta-
tionary point of the functional (9.37) with Lagrangian (9.32) on the set of all func-
tions X (x, t), satisfying the constraints (9.33), (9.34), (9.35) and (9.36).

Let us show the validity of this principle by direct calculation. Indeed, denoting
further by L the function (9.32) with the added Lagrange multiplier term,

−p

(
det

∥∥∥∥
�Xa

�xi

∥∥∥∥− 1

)
,

we have

δ I =
t1∫

t0

∫

V (t)

δL

δXa
�XadV dt +

t1∫

t0

∫

�V (t)

�Xa

(
�L

�Xa
i

ni − �L

�Xa
t

cx

)
d Adt = 0. (9.38)

Here Xa
t ≡ �Xa/�t. For �Xa = 0 on �V (t) it follows from (9.38) that

δL

δXa
= �L

�Xa
− �

�xk

�L

�Xa
k

− �

�t

�L

�Xa
t
= 0. (9.39)

Equation (9.39) can be transformed into the usual form of the momentum equa-
tions for ideal incompressible fluid. To do that we contract (9.39) with the compo-
nents of the non-singular matrix Xa

i :

Xa
i

δL

δXa
= Xa

i

�L

�Xa
− �

�xk

(
Xa

i

�L

�Xa
k

)
− �

�t

(
Xa

i

�L

�Xa
t

)
+ �L

�Xa
k

�Xa
k

�xi
+ �L

�Xa
t

�Xa
t

�xi
=

= −�i L − �

�xk

(
Xa

i

�L

�Xa
k

− Lδk
i

)
− �

�t

(
Xa

i

�L

�Xa
t

)
= 0. (9.40)

As before, �i L is the derivative of the function L
(
xi , Xa, Xa

i , Xa
t , p

)
with re-

spect to xi with Xa, Xa
i , Xa

t , p held constant. Note that �L/�p = 0. Then,

�i L = 0, Xa
i

�L

�Xa
k

− Lδk
i = −ρviv

k − pXa
i

�

�Xa
k

det
∥∥Xa

k

∥∥− Lδk
i =

= −ρviv
k − pδk

i ,
�L

�Xa
t

Xa
i = −ρvi . (9.41)

Substituting (9.41) into (9.40) yields momentum equations of ideal incompressible
fluid (9.6).

The surface integral in (9.38) is equal to zero due to the non-detachment condi-
tion (cx − vi ni = 0) and the constraint on the variations

� f

�Xa
�Xa = � f

�xi
xi

a�Xa = 0 (or ni x
i
a�Xa = 0),

which is obtained by varying (9.36).
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Variations of velocity. In hydrodynamics of ideal incompressible fluid, one usually
uses a closed system of equations in terms of velocity. Therefore, the variational
features of the velocity field are especially interesting. Is it possible to vary velocity
independently? At first glance the answer is positive: the velocity is the first deriva-
tive of the particle trajectories xi (Xa, t), and there is a one-to-one correspondence
between the functions xi (Xa, t) and vi = dxi (Xa, t) /dt (with an additional initial
condition, e.g., xi (Xa, t0) = x̊ i (Xa)). However, in such reasoning, one point is
missed, which we explain by the following example.

Consider the minimization problem for the functional

t1∫

t0

(
dx

dt

)2

dt → min (9.42)

with the constraints

x (t0) = x0, x (t1) = x1. (9.43)

The function providing the minimum is obviously a linear function of t :

x (t) = x0 + x1 − x0

t1 − t0
(t − t0) .

Let us try to reformulate the variational problem (9.42) and (9.43) in terms of veloc-
ity v (t) = dx (t) /dt . Due to the end conditions (9.43), the function v (t) satisfies
the constraint

t1∫

t0

v (t)dt = x1 − x0. (9.44)

It is easy to check that the minimization problem for the functional

t1∫

t0

v2dt (9.45)

over all functions v (t) satisfying the condition (9.44 ) is equivalent to the original
one, and yields the same solution:

v (t) = x1 − x0

t1 − t0
= const.
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If in the minimization problem the value of x (t) is given only at one end, then in the
transformed problem the function v (t), apparently, must not satisfy the constraint
(9.44), and the functional (9.45) should be minimized over all functions v (t). The
minimum value of the functional is zero and achieved at v (t) ≡ 0, We obtain the
same solution by minimizing the functional (9.42) with the one end constraint.

This example shows that velocity can be varied independently only in the absence
of the constraint for the particle trajectories at the final instant, t1. If the positions
of the particles at t = t1 are given, then the velocity must satisfy an additional
constraint similar to (9.44).

The formulation of constraints for velocity in integral form, like (9.44), in case
of continuum is difficult. However, such constraints can be given in the differential
form.

Assigning the particle positions at the initial and final instants means that for any
admissible velocity field there exist functions Xa

(
xi , t

)
(Lagrangian coordinates),

which are the solution of the system of equations

�Xa

�t
+ vk �Xa

�xk
= 0 (9.46)

with the initial conditions and final conditions (9.34) and (9.35), and for all t and x
the incompressibility condition (9.33) holds. The non-detachment of the flow at the
boundary means that

vi ni = cx on �V (t) . (9.47)

Lin variational principle. The stationary points of the functional

t1∫

t0

∫

V (t)

1

2
ρviv

i dVdt (9.48)

on the set of functions vi
(
xi , t

)
and Xa

(
xi , t

)
, satisfying the conditions (9.33),

(9.34), (9.35), (9.46) and (9.47) are the solutions of the momentum equations of
ideal incompressible homogeneous fluid.

Here, the incompressibility constraint (9.33) can also be used in its differential
form, vi

,i = 0.
The differential constraints make this variational problem similar to some prob-

lems of the optimal control theory.
The Lin variational principle is in essence a reformulation of the least action

principle for function Xa
(
xi , t

)
, since velocity can be expressed only through the

functions Xa
(
xi , t

)
from (9.46).

The expansion of the set of admissible functions. In the least action principle, it
is necessary that the admissible functions xi (Xa, t) take on the assigned values at
the initial and the final instants. Otherwise, varying the action functional, we obtain
an additional term:
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⎡
⎢⎣
∫

V (t)

ρviδxi dV

⎤
⎥⎦

t1

t0

.

For arbitrary δxi at t = t0, t1, the least action principle yields a quite special flow
with vi = 0 for t = t0 and t = t1. However, we may weaken the conditions δxi = 0
at t = t1, t2 in such a way that the least action principle yields some sensible classes
of flows.

Suppose that for the initial and final instants, some system of hypersurfaces is

fixed in regions V̊ and
1
V . The hypersurfaces are the level surfaces of some function

0
β (x) in V̊ and function

1
β (x) in

1
V . Now assume that for any admissible motion of

the continuum, the hypersurfaces
0
β (x) = c become the hypersurfaces

1
β (x) = c

(see Fig. 9.2). This means that there exists a function, β (x, t), such that

dβ

dt
= �β

�t
+ vk �β

�xk
= 0,

β (x, t0) = 0
β (x) , β (x, t1) = 1

β (x) . (9.49)

The motion of the fluid is incompressible:

�vi

�xi
= 0, (9.50)

and, since V (t) is a given region, the normal component of velocity is a known
function on �V (t):

vi ni = cx . (9.51)

Fig. 9.2 Weakened
constraints at the initial and
final instants
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Variational principle. On the set of velocity fields, vi (x, t), which is selected by the
constraints (9.49), (9.50) and (9.51), the minimizing element of the kinetic energy
functional

t1∫

t0

∫

V (t)

1

2
ρvivi dVdt

satisfies the momentum equations of the ideal incompressible homogeneous fluid.
Indeed, introducing the Lagrange multipliers ρα and ρϕ for the constrains (9.49)

and (9.50), respectively, we obtain the functional

ρ

t1∫

t0

∫

V (t)

[
v2

2
+ ϕvi

,i − α

(
�β

�t
+ vi �β

�xi

)]
dVdt.

Variation of the functional with respect to α gives (9.49); variation with respect to ϕ

results in (9.50); variation with respect to vi yields the velocity expression in terms
of the Clebsch potentials,

vi = �ϕ

�xi
+ α

�β

�xi
; (9.52)

finally, varying β we obtain the constancy of α for every particle:

dα

dt
= 0. (9.53)

The integral that appeared in the integration by parts is equal to zero due to the
velocity constraint (9.51) and the constraints for β for (9.49).

Fluid motion with a free surface. Now, let the fluid have a free unknown surface
� (t), while the other part of the boundary, S (t), is given and fluid does not detach
from S (t). Let the external body forces with the potential � (x) also be acting on
the fluid. In this case, the following variational principle holds:
Variational principle. The true motion of the ideal incompressible homogeneous
fluid with a free surface is the stationary point of the functional

t1∫

t0

∫

V (t)

ρ

(
v2

2
−� (x)

)
dV dt (9.54)

on the set of all velocity fields which satisfy the constraints (9.49) , (9.50) , the
conditions (9.51) at the wall, and on the set of regions V (t) with the boundary
S (t)+ � (t) , which satisfy the conditions,
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volume of V (t) = volume of V̊ , V (t0) = V̊ , V (t1) =
1
V . (9.55)

Let us introduce the Lagrange multipliers ρα and ρϕ for the constraints (9.49) and
(9.50), respectively, and replace the functional (9.54) by the functional

ρ

t1∫

t0

∫

V (t)

[
v2

2
−� (x)+ ϕvi

,i − α

(
�β

�t
+ vi �β

�xi

)]
dVdt. (9.56)

The variation of the functional (9.56) with respect to ϕ and α results in (9.49)
and (9.50). The variation of vi , β and the boundary yields the equation

ρ

t1∫

t0

∫

V (t)

[
�vi

(
vi − ϕ,i − αβ,i

)+ �β
(
α,i + �i

(
αvi

))]
dVdt+

+ρ

t1∫

t0

∫

�V (t)

(
α�β

(
cx − vi ni

)+ ϕ�vi ni
)
dAdt+ ρ

t1∫

t0

∫

�(t)

(
v2

2
−�

)
δndAdt = 0.

(9.57)

Here, δn is the distance by which the surface � (t) is displaced in the normal direc-
tion, when its position is varied.

First, let the variations �vi , �β and δn be equal to zero on �V (t). Then (9.52) and
(9.53) follow from (9.57). For nonzero values of �vi , �β and δn on �V (t), (9.57) is
reduced to the relation

ρ

t1∫

t0

∫

�(t)

[
α�β

(
cx − vi ni

)+ ϕ�vi ni +
(

v2

2
−�

)
δn

]
dAdt = 0. (9.58)

Here, we used the fact that cx = vi ni and �vi ni = 0 on �V (t)− � (t).
Let us first set �vi and δn equal to zero on � (t). There are two possible cases:

β̊ = a = const on �V̊ and β̊ �= const on �V̊ . In the first case, due to the condi-
tion (9.49), the boundary equation of the region V (t) is of the form β (x, t) = a.
Consequently, the variation �β on �V (t) is equal to zero, and the equality (9.58) is
satisfied identically for �vi = δn = 0. In the second case,3 the variations �β are
arbitrary on �V (t) and (9.58) yields (9.51) on the free surface.

To derive the boundary conditions following from (9.58) for nonzero variations
�vi and δn, we need the following relation:

3 For simplicity, we will assume that the surfaces β (x, t) = const transversely cross the surface
�V (t).
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t1∫

t0

∫

�(t)

ϕ�vi ni dAdt = −
t1∫

t0

∫

�(t)

dϕ

dt
δndAdt+

⎡
⎢⎣
∫

�(t)

ϕδnd A

⎤
⎥⎦

t1

t0

. (9.59)

The proof of (9.59) proceeds as follows. Let xi = r i
(
ζ 1, ζ 2, t

)
be the parametric

equations of the surface � (t), and let ζ 1, ζ 2 be the Lagrangian coordinates of the
points on the surface � (t) such that vi = r i

,t on � (t). Then, denoting the variation
with ζ α held constant by δ, we can write

δvi = �vi + δrkvi
,k = δr i

,t .

Hence,

�vi ni = niδr i
,t − δrkniv

i
,k . (9.60)

Note the formulas

dni

dt
= −r iαnkv

k
,α,

1√
a

d
√

a

dt
= rα

i vi
,α, (9.61)

where a is the determinant of the metric tensor aαβ on the surface � (t), r iα =
aαβr i

β , r i
β ≡ r i

,β . The first one is obtained from the formula for the variation of the
normal vector (14.47), in which δni and δxi should be replaced by dni and vi dt ,
respectively. The second relation (9.61) follows from (3.20) and the definition of
the surface metric tensor (14.3):

1√
a

d
√

a

dt
= 1

2a

�a

�aαβ

daαβ

dt
= 1

2
aαβ d

dt
r i
αriβ = rα

i vi
,α.

By means of (9.60) and (9.61), we get

ϕ�vi ni d A = ϕni
dδr i

dt
d A − ϕδrkniv

i
,kd A =

= d

dt

(
ϕniδr i√a

)
dζ 1dζ 2 − dϕ

dt
niδr i d A + ϕδrir

iαnkv
k
,αd A−

−ϕniδr irα
k vk

,αd A − ϕδrkniv
i
,kd A. (9.62)

Since niδr i = δn, and according to the decomposition of Kronecker’s delta
(14.15), δ

j
i = ni n j + rα

i r j
α , we have

δrk · niv
i
,k = δrk · niv

i
, jδ

j
k = δrk · niv

i
, j

(
n j nk + rα

k r j
α

)

= (
δrk · nk

)
ni n

jvi
, j + δrk · rα

k niv
i
,α.

The last three terms in (9.62) sum up to zero (it should be taken into account that

vi
,i = vi

, jδ
j
i = vi

, j

(
n j ni + r j

αrα
i

)
= ni n jvi

, j + r j
αrα

i vi
, j = 0). So, the equality holds,
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ϕ�vi ni d A = d

dt

(
ϕniδr i · √a

)
dζ 1dζ 2 − dϕ

dt
δndA,

from which the formula (9.59) follows.
Based on (9.59), (9.58) can be rewritten as

ρ

t1∫

t0

∫

�(t)

(
v2

2
c −�− dϕ

dt

)
δndAdt+ ρ

⎡
⎢⎣
∫

�(t)

ϕδnd A

⎤
⎥⎦

t1

t0

= 0. (9.63)

The regions occupied by the fluid in the initial and the final instants are given,
therefore δn = 0 for t = t0, t1, and, due to the constraint (9.55) and the condition
δn = 0 on �V (t)− � (t) , also

∫

�(t)

δnd A = 0. (9.64)

Thus (9.63) yields the only condition

v2

2
−�− dϕ

dt
= p0

ρ
. (9.65)

Here, the constant p0 is the Lagrange multiplier for the constraint (9.64).
One can also write (9.65) in a different way by adding the zero term αdβ/dt :

v2

2
−�− dϕ

dt
− α

dβ

dt
= v2

2
−�− �ϕ

�t
− vk

(
ϕ,k + αβ,k

)− α
�β

�t
= p0

ρ
.

Thus,
�ϕ

�t
+ α

�β

�t
+ v2

2
+� = − p0

ρ
. (9.66)

Therefore, the constant p0 has the meaning of pressure, and the equality (9.66)
shows that pressure is constant on the free surface. This assertion concludes the
justification of the variational principle for the functional (9.54).

9.4 Potential Flows

After dropping the constraints on β (9.49), we get the following
Variational principle. The stationary points of the functional (9.54) on the set of
velocity fields satisfying the incompressibility condition (9.50) and the impenetra-
bility of the walls condition (9.51), and on the set of regions V (t) satisfying (9.55),
are the potential flows of the ideal incompressible fluid.
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Let us construct the corresponding dual variational principle. Introducing the La-
grange multiplier for the constraint (9.50) and using the equality (9.51), we rewrite
the functional (9.54) as

ρ

t1∫

t0

∫

V (t)

(
v2

2
−� (x)+ ϕ

�vi

�xi

)
dVdt =

ρ

t1∫

t0

∫

V (t)

(
v2

2
− viϕ,i −� (x)

)
dVdt+ ρ

t1∫

t0

∫

�V (t)

ϕcx dAdt. (9.67)

Finding the extremum of the functional (9.67) over vi is equivalent to minimiza-
tion of the integrand with respect to vi . After calculating the minimum, we get the
following
Dual variational principle. The stationary points of the functional

− ρ

t1∫

t0

∫

V (t)

(
1

2
ϕ,iϕ

,i +� (x)

)
dVdt+ ρ

t1∫

t0

∫

�V (t)

ϕcx dAdt (9.68)

on all functions ϕ and all regions V (t) satisfying the condition (9.55) are the poten-
tial flows of the ideal incompressible fluid.

The functional (9.68) can be written in a different way using the identity

d

dt

∫

V (t)

ϕdV =
∫

V (t)

�ϕ

�t
dV +

∫

�V (t)

ϕcx d A.

We have (up to a factor −1)

t1∫

t0

∫

V (t)

(
ϕ,t + 1

2
ϕ,iϕ

,i +� (x)

)
dVdt−

⎡
⎢⎣
∫

V (t)

ϕdV

⎤
⎥⎦

t1

t0

. (9.69)

The integrand of the first integral in the formula (9.69) is (negative) pressure.
One can get rid of the last term in (9.69) by setting an additional constraint

⎡
⎢⎣
∫

V (t)

ϕdV

⎤
⎥⎦

t1

t0

= 0 (9.70)

on the admissible values of the potential ϕ. It is clear that this constraint does not
affect the equations and the boundary conditions for ϕ. We get the following.
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Variational principle. The stationary points of the functional

ρ

t1∫

t0

∫

V (t)

(
ϕ,t + 1

2
ϕ,iϕ

,i +� (x)

)
d3xdt (9.71)

on all functions ϕ and in all regions V (t) satisfying the constraints (9.70) and
(9.55), respectively, are the potential flows of ideal fluid.

Consider a particular case of motion of the ideal incompressible fluid over the
plane �. Denote the hight of the fluid by h (xα, t). The variational principle for the
functional (9.71) becomes
Luke variational principle. The potential flows of the ideal incompressible homo-
geneous fluid over a plane are the stationary points of the functional

ρ

t1∫

t0

∫

�

h(xα,t)∫

0

(
ϕ,t + 1

2
ϕ,iϕ

,i +� (x)

)
dx1dx2dx3dt (9.72)

on the set of all functions ϕ and h, satisfying the constraints

∫

�

[
h (xα, t)− h0 (xα)

]
dx1dx2 = 0,

⎡
⎣
∫

�

h∫

0

ϕdx1dx2dx3

⎤
⎦

t1

t0

= 0,

h (xα, t0) = h0 (xα) , h (xα, t1) = h1 (xα) . (9.73)

The first constraint (9.73) can be disregarded if we include the Lagrange multiplier
for this constraint in the potential of the external body forces (or, after some redefi-
nition of ϕ, in the potential, ϕ).

Consider now the flows without free surfaces.
Kelvin variational principle. On the set M of velocity fields, selected by the con-
straints (9.50) and (9.51), the minimizing element of the kinetic energy functional

I (v) =
t1∫

t0

∫

V (t)

1

2
ρvivi dV dt

corresponds to the potential flow of ideal incompressible fluid.
The set M is convex. The kinetic energy, as a positive quadratic functional, is

strictly convex. Therefore, the minimizing element of the kinetic energy functional
is unique.

Constructing the dual variational principle, we get
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Dirichlet principle. On all functions ϕ, the maximizing element of the functional

J =
t1∫

t0

ρ

⎡
⎢⎣
∫

V (t)

cxϕd A − 1

2

∫

V (t)

�ϕ

�xi

�ϕ

�xi
dV

⎤
⎥⎦dt

the velocity potential of the flow of the ideal incompressible fluid which satisfies the
boundary condition (9.51) and

max
ϕ

J = min
v

I. (9.74)

Time is just a parameter in the Kelvin and Dirichlet principles. Therefore, the
minimization problem for the functional I can be replaced by the minimization
problem for the functional

K =
∫

V (t)

1

2
ρv2dV (9.75)

with the constraints (9.50) and (9.51), at each instant while the maximization prob-
lem for the functional J corresponds to maximization of the functional

K∗ = ρ

∫

�V (t)

cxϕd A − 1

2
ρ

∫

�V (t)

�ϕ

�xi

�ϕ

�xi
dV (9.76)

on all functions ϕ.

9.5 Variational Features of Kinetic Energy in Vortex Flows

There is a one-to-one correspondence between velocity and vorticity. Therefore
kinetic energy can be considered as a functional of vorticity. It turns out that this
functional is the minimum value in a variational problem to which we proceed.

First we have to show that velocity and vorticity are in one-to-one correspon-
dence indeed. Consider a velocity field, vi , in a closed bounded region V . The
velocity field is incompressible:

�iv
i = 0 (9.77)

and satisfies the impermeability condition:

vi ni = 0 on �V . (9.78)

For a known velocity field, one can find the corresponding vorticity field:
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ωi = eijk� jvk . (9.79)

The vorticity field is divergence-free:

�iω
i = 0. (9.80)

Let now a divergence-free vorticity field be given. Then (9.77), (9.78) and (9.79)
define a unique velocity field. Indeed, assume the opposite, that there are two solu-
tions of (9.77), (9.78) and (9.79), vi

1 and vi
2. Then the difference vi = vi

1− vi
2 obeys

(9.77) and (9.78) and the equation

eijk� jvk = 0.

The latter means that the velocity field is potential, vi = �iϕ. According to (9.77)
and (9.78) the potential is subject to the boundary value problem,

�ϕ = 0,
�ϕ

�n

∣∣∣∣
�V

= 0,

which has the solution, ϕ = const, and, hence, vi = 0, vi
1 = vi

2. The one-to-
one correspondence, ωi ⇐⇒ vi , holds true also if vi ni at �V is given and not
necessarily equal to zero.

If we do not impose on the velocity fields the constraints (9.77) and (9.78) then
the one-to-one correspondence is lost: there are many velocity fields which satisfy
(9.79) for a given ωi . It turns out that (9.77) and (9.78) are Euler equations in the
following
Variational principle. The true dependence of kinetic energy of vorticity provides
the minimum value to the functional

∫

V

1

2
ρvivi dV

on the set of all velocity fields selected by the constraints (9.79).
To derive Euler equations, we introduce Lagrange multipliers for the constraints

(9.79), ρψi . The functional to be minimized becomes

ρ

∫

V

[
1

2
vivi − ψi

(
eijk� jvk − ωi

)]
dV (9.81)
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or, after integration by parts,

ρ

∫

V

[
1

2
vivi + � jψi e

ijkvk + ψiω
i

]
dV − ρ

∫

�V

ψ i e
ijkn jvkd A. (9.82)

Euler equations are

vi = eijk� jψk in V, (9.83)

ψ i e
ijkn j = 0 on �V. (9.84)

Equation (9.77) follows from (9.83). Let us show that boundary condition (9.84)
yields (9.78). Indeed, using Greek indices for vector projections on the tangent
planes, we can write (9.84) as

ψα = 0. (9.85)

On the other hand, denoting by r i (ξα) the position vector of �V, ξα being coor-
dinates on �V, and using (14.7), we have

niv
i = 1√

a
eimnrm

1 rn
2 eijk� jψk = 1√

a

(
δ j

mδk
n − δk

mδ j
n

)
rm

1 rn
2 eijk� jψk

= 1√
a

(
rm

1 rn
2 �mψn − rn

1 rm
2 �mψn

) = 1√
a

(
rn

2 �1ψn − rn
1 �2ψn

)
(9.86)

= 1√
a

(�1ψ2 − �2ψ1) = εαβψβ|α, ψα ≡ rm
α ψm .

Here rm
α ≡ �rm/�ξα , the vertical bar in indices denotes the covariant surface deriva-

tive (see Sect. 14.1 for the definition). The boundary condition (9.78) follows from
(9.86) and (9.85).

After minimization with respect to velocity fields the functional (9.81) is equal to

− ρ

∫

V

[
1

2

(
curl
−→
ψ
)2
− −→ψ · −→ω

]
dV. (9.87)

According to the general scheme of construction the dual variational principles,
to obtain kinetic energy of the flow one has to maximize the functional (9.87)
with respect to all fields,

−→
ψ , which satisfy the constraint (9.84). We arrive at the

following
Dual variational principle. The dependence of kinetic energy on vorticity can be
found from the variational problem

−K = min−→
ψ ε(9.84)

ρ

∫

V

[
1

2

(
curl
−→
ψ
)2
− −→ψ · −→ω

]
dV . (9.88)
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The vector field,
−→
ψ , is called stream vector field; in case of two-dimensional flows

(v1, v2 �= 0, v3 = 0) , it has the only non-zero component, ψ3, which is called
stream function.

Note that the functional in (9.88) is invariant with respect to shifts
−→
ψ →−→ψ +∇ϕ

where the potential, ϕ, is constant at the boundary.4 Therefore, its minimum value
is achieved at many fields. To select a unique minimizing element, one can set an
additional constraint

�iψ
i = 0 (9.89)

which obviously, eliminates gradient invariance.
Euler equations in the variational problem (9.88) are

�ψi − �i � jψ
j = −ωi . (9.90)

If the constraint (9.89) is set, Euler equations simplify to

�ψi = −ωi . (9.91)

The three equations (9.91) are not independent: the divergence of (9.91) is iden-
tically zero.

The variational principles formulated can be extended to the case of non-zero
normal velocity at the boundary. To do that, consider the function, vn = vi ni ,

at �V . We introduce a two-dimensional vector, χα, on �V such that its “surface
divergence” is equal to vn:

vn = −χα
|α. (9.92)

Since the velocity field is divergence-free,

∫

�V

vndA = 0,

4 For such a shift the functional gets an increment

−ρ

∫

V

ωi �i ϕdV

which is equal, due to (9.80) to

−ρ

∫

�V

ωi ni ϕdA.

Since ϕ is a constant, c, on �V,

−ρ

∫

�V

ωi niϕdA = −ρc
∫

�V

ωi ni dA = −ρc
∫

V

�i ω
i dV = 0.
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the necessary condition for solvability of (9.92) is satisfied. For a given vn , one can
obtain a solution of (9.92) assuming that the field χα is potential,χα = χ |α. So we
assume that the vector field, χα, is known on �V .
Variational principle. For a given vorticity, the true velocity field provides mini-
mum to the functional

∫

V

1

2
vivi dV−

∫

�V

vαχαd A. (9.93)

Here vα are the tangent components of velocity on �V .

To obtain Euler equations for the functional (9.93) we introduce Lagrange mul-
tipliers for the constraint (9.79):

∫

V

[
1

2
vivi − ψi

(
eijk� jvk − ωi

)]
dV−

∫

�V

vαχαd A. (9.94)

The only difference from (9.81) is that after integration by parts we have to vanish
for all vi the surface integral

∫

�V

(−ψi e
ijkn jvk − vαχα

)
d A.

Since, due to (14.10),

ψi e
ijkn jvk = −ψivkε

αβr i
αrk

β = −εαβψαvβ ,

this surface integral is zero for

εαβψα = χβ

or

ψα = εαβχβ. (9.95)

Hence, inside the region V we find as before (9.83), while at the boundary we
obtain using (9.86), (14.6) and (9.83),

vi ni = εαβψβ|α = εαβ
(
εβγ χγ

)
|α = −χ

γ

|γ ,

i.e. the prescribed boundary value of normal velocity.
Computation of the functional (9.94) on the minimizing velocity field yields the

following
Dual variational principle. The true stream vector field is the maximizer of the
functional
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−
∫

V

[
1

2

(
curl
−→
ψ
)2
− ψiω

i

]
dV (9.96)

on the set of all stream vector fields satisfying the boundary condition (9.95).
For χα = 0, the maximum value of the functional (9.96) is kinetic energy of the

flow. The maximizer is a linear functional of ωi :

ψ̂i =
∫

V
Ri j (x, x ′)ω j (x ′)d3x ′.

Accordingly, kinetic energy is a quadratic functional of vorticity:

K = 1

2
ρ

∫

V

∫

V
Ri j (x, x ′)ωi (x)ω j (x ′)d3xd3x ′.

If vorticity depends on time, then the variational principles hold at each instant.
The variational principles formulated have pure mathematical origin as can be

seen from the following reasoning.
Consider a divergence-free vector field →

v in a closed region V . Then, for a
given →

v,

min
→
ψ

1

2

∫

V

∣∣∣→v − curl
→
ψ

∣∣∣
2

dV = 0, (9.97)

because there exists a vector field →
χ such that →v = curl

→
χ, and minimum is achieved

on
→
ψ = →

χ +∇ϕ, ϕ is an arbitrary function.
Let additionally the normal component of →

v vanishes at the boundary. If
xi = r i (ξα), α = 1, 2, are the parametric equations of the boundary, then

vi ni = ni e
i jk� jχk = r j

1 rk
2 (� jχk − �kχ j ) = �χ2

�ξ 1
− �χ1

�ξ 2
= 0, (9.98)

where χα = r i
αχi are the tangent components of vector →χ on the boundary. Accord-

ing to (9.98), the surface vector, χα, is a potential vector: there is a function on the
boundary, �(ξα), such that χα = ��(ξα)/�ξα. Taking any function, ϕ, which has
the boundary value �(ξα), and replacing →

χ by →
χ −∇ϕ, we obtain the stream vector

field with the zero tangent components at the boundary. Therefore, if we narrow the

admissible vector fields
→
ψ in (9.97) by the vector fields with the vanishing tangent

components at the boundary,

→
ψ × →

n = 0 on �V, (9.99)

minimum in (9.97) remains equal to zero:
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min−→
ψ ∈(9.99)

[
1

2

∫

V
viv

i dV −
∫

V
vi e

ijk� jψkdV + 1

2

∫

V

∣∣∣curl
−→
ψ

∣∣∣
2

dV

]
= 0. (9.100)

The second term in (9.100) can be written as

−
∫

V
vi e

ijk� jψkdV = −
∫

�V
vi e

ijkn jψkdV +
∫

V
ψkeijk� jvi dV . (9.101)

The boundary integral vanishes because of (9.99), while the volume integral is
equal to

∫

V
ψkeijk� jvi dV = −

∫

V
ψkω

kdV . (9.102)

Since, for a given velocity field, vorticity is known, minimum over
−→
ψ in (9.100)

yields the variational principle for the energy functional (9.88). According to
(9.100), the minimum value of the energy functional is equal to negative kinetic
energy of the flow.

Our derivation shows that variational principle for energy functional (9.88) also
holds true for vorticity fields with non-zero normal component at the boundary.

Energy functional (9.88) is invariant with respect to transformations,
−→
ψ →−→ψ +

∇ϕ, where ϕ is constant at the boundary (see footnote in this section).
Therefore, an additional constraint can be set on

−→
ψ without changing the minimum

value of the functional.

9.6 Dynamics of Vortex Lines

Setting the problem. The governing equations of ideal incompressible fluid possess
an infinite number of integrals of motion, which are additional to energy, the
circulations of velocity over closed fluid contours. As we have seen in Sect. 2.2,
in statistical mechanics one usually deals with a Hamiltonian system which has the
only integral, energy. Therefore to develop statistical mechanics of ideal fluid one
needs to eliminate all degrees of freedom which are “driven” due to the integrals of
motion and keep only the independent degrees of freedom. Conservation of veloc-
ity circulations reduces the number of independent degrees of freedom drastically.
For example, ideal fluid in a container with an embedded rigid body is, in general,
an infinite-dimensional system. However, if the circulations of velocity over any
fluid contour is zero, i.e. the fluid flow is potential, then the number of independent
degrees of freedom is only six: they are the degrees of freedom of the rigid body
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(see Sect. 13.2 for details). It turns out that the dynamics of only “essential degrees
of freedom” is dynamics of vortex lines. It is the subject of this section.

Governing equations of vortex line dynamics. Consider a flow of ideal fluid in a
bounded vessel, V, which is at rest in some inertial frame. The fluid neither pene-
trates through nor detaches from the wall, �V .

Conservation of velocity circulations over fluid contours is equivalent to conser-
vation of the Lagrangian components of vorticity:

ωa = ω̊a
(
Xb
)
. (9.103)

The material lines tangent to ω̊a, i.e. the lines determined by the parametric
equations,

d Xa(σ )

dσ
= λωa(Xb),

are called vortex lines. Any vortex line consists of the same fluid particles because
of the independence of ωa on time. Two cases should be distinguished: ωan̊a = 0
at �V and ωan̊a �= 0 at �V (recall that n̊a are the Lagrangian components of the
unit normal vector at the boundary in the initial state). In the first case, vortex lines
do not end at the boundary, in the second they do (an example of the second case
is tornado). We consider in this section the first case. The necessary modifications
for non-zero normal vorticity are made in the next section for quasi-two-dimensional
flows. In three-dimensional space a vortex line that does not end at the boundary can
be either closed or fill out some subregion of V . Strictly speaking, the term “dynam-
ics of vortex lines” is meaningful for the case of closed vortex lines; for dense vortex
lines it is more appropriate to deal with dynamics of “vortex particles”. The latter
is beyond the scope of our consideration. We focus on the case when a Lagrangian
coordinate system can be attached to vortex lines. One of the coordinates, say, X3,

is directed along the vortex lines. We use for this coordinate the notation η ≡ X3.

The couple of other coordinates, Xμ, μ = 1, 2, marks different vortex lines; the
couple

{
X1, X2

}
is denoted in this section by X. In the coordinate system chosen

only one component of vorticity, ω̊3, is not zero.
In Lagrangian coordinates, the condition that the vorticity field is divergence-free

at the initial instant takes the form

�

�Xa

√
g̊ω̊a = 0,

√
g̊ ≡ det

∥∥∥∥
�xi (0, Xa)

�Xa

∥∥∥∥ . (9.104)

Hence, in the vortex line coordinate system,

�

�η

√
g̊ω̊3 = 0,
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and
√

g̊ω̊3 is constant along each vortex line but may change from one vortex line
to another. We denote this function by ω̊. It measures the intensity of vortex lines.
Function ω̊ (Xμ) is assumed to be known from the initial conditions.

Due to incompressibility,

� ≡ det

∥∥∥∥
�xi (t, Xa)

�Xa

∥∥∥∥ =
√

g̊, (9.105)

and one can also put ω̊ = ω̊3�.

The position vector of the points of vortex lines will be denoted further by
r i (t, η, X ) . Vorticity field is determined by r i (t, η, X ) and ω̊ (X ): according to
(9.12) and (9.103)

ωi = �r i (t, η, X )

�η
ω̊3 = �r i (t, η, X )

�η

ω̊ (X )√
g̊

. (9.106)

The independence of the Lagrangian component of vorticity, ω̊3, on time deter-
mines the dynamics of vortex lines. Indeed, let ω̊3 and the positions of vortex lines,
r i (t, η, X ), be known at some instant, t . Then we know at this instant the vorticity
field from (9.106) and can find velocity, vi (t, x), solving the kinematic problem of
the previous section:

�iv
i = 0, eijk� jvk = ωi (t, x), vi n

i
∣∣
�V = 0. (9.107)

This problem determines velocity as a functional of the positions of vortex lines;
denote it by V i ( t, x | r (t, η, X )). Then, we can find the positions of the vortex lines
at the instant t + �t by putting

r i (t + �t, η, X ) = r i (t, η, X )+ V i ( t, x | r (t, η, X ))
∣∣
x=r (t,η,X ) �t. (9.108)

Knowing the new positions of the vortex lines, we repeat the procedure, thus deter-
mining the dynamics of vortex lines.

Equation (9.108) means that r i (t, η, X ) are sought from the system of equations

�r i (t, η, X )

�t
= V i ( t, x | r (t, η, X ))

∣∣
x=r (t,η,X ) . (9.109)

We have to show that fluid dynamics so defined obeys momentum equations of
ideal fluid. To this end we have to check the equality

curl

(
d
→
v

dt

)
= 0,
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where velocity is the solution of (9.107). We have5

eijk� j
dvk

dt
= eijk� j

(
�vk

�t
+ vm�mvk

)
=

= d

dt
ωi + eijk� jv

m�mvk .

Note that

eijk� jv
m�mvk = eijk

(
� jvm − �mv j

)
�mvk (9.110)

because eijk�mv j �
mvk ≡ 0 due to symmetry of �mv j �

mvk over indices j, k. Besides,
� jvm−�mv j = e jmsω

s , and, using (3.19) and (9.22) and incompressibility condition,
�iv

i = 0, we have

eijk� jv
m�mvk = −ωk�kv

i .

Therefore,

eijk� j
dvk

dt
= dωi

dt
− ωk�kv

i . (9.111)

From (9.106) dωi/dt = ωk�kv
i . Thus, the right hand side of (9.111) vanishes,

and the particle trajectories, r i (t, η, X ) , obey the momentum equations of ideal
incompressible fluid.

Setting (9.106), (9.107) and (9.109), we automatically obtain an incompressible
motion of particles. Remarkably, we can reformulate the equations of vortex line
dynamics as dynamics of geometrical lines when motion of particles over the vortex
lines is ignored. This is done in the following way. Let us admit to consideration
any motions, r i (t, η, Xμ), including the compressible ones. Equation (9.106) is no
longer true. For compressible motion, i.e. for � �= √

g̊, we replace (9.106) with the
equation

ωi = 1

�

�r i (t, η, X )

�η
ω̊ (X ) . (9.112)

5 For any function, ϕ, we define dϕ/dt as

dϕ

dt
= �

�t
ϕ(t, r (t, η, X ))|η,X=const .

Thus,
dϕ

dt
= �ϕ

�t
+ V i ( t, x | r (t, η, X ))�i ϕ.
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That means that ω̊ (X ) is expressed in terms of the only non-zero Lagrangian
component of vorticity, ω̂3, as

ω̊ (X ) = ω̂3�.

The vortex intensity does not depend on η, and therefore the vector field (9.112)
is divergence-free:

�iω
i = 1

�

�

�Xa

(
�

�Xa

�xi
ωi

)
= 1

�

�

�η

(
ω̂3�

) = 1

�

�

�η
(ω̊) = 0. (9.113)

Besides, ω̊ does not depend on time. For compressible motion, the only non-zero
Lagrangian component of vorticity, ω̂3 = ω̊/�, may depend on time.

Instead of (9.109), we set for r i (t, η, X ) the differential equations

�r i (t, η, X )

�t
= V i ( t, x | r (t, η, X ))+ λωi

∣∣
x=r (t,η,X ) , (9.114)

where V i is determined by the vorticity field from (9.107) and (9.112), and λ is an
arbitrarily prescribed function of coordinates and time. The parameter λ controls the
particle velocity over vortex lines.

Equation (9.114) can also be written in the form

eijk

(
�r i (t, η, X )

�t
− V i ( t, x | r (t, η, X ))

∣∣
x=r (t,η,X )

)
ωk = 0 (9.115)

which emphasizes that in (9.114) only the velocity normal to the vortex line is es-
sential.

Both (9.109) and (9.115) give the same velocity normal to vortex lines. There-
fore, (9.115) describe the dynamics of vortex lines correctly. We are going to show
that (9.115) forms a Hamiltonian system of equations.

Variational principles. All possible motions can be split into “equivortical sheets”;
each sheet is the set of motions r (t, η, X ) with the same vortex intensity ω̊. Each
sheet contains the true motions, i.e. motions obeying (9.115), and the motions that
are not realized. For a given vortex intensity, the total kinetic energy of the flow be-
comes a functional of r i (t, η, X ), because, as we have seen in the previous section,
there is one-to-one correspondence between velocity and vorticity, and vorticity is
expressed in terms of r i (t, η, X ) by (9.112):

K = K
(
r i (t, η, X )

) = 1

2
ρ

∫

V

Vi ( t, x | r (t, η, X ))V i ( t, x | r (t, η, X ))d3x . (9.116)

The dynamics of vortex lines is governed by the following
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Variational principle. The true motion of the vortex lines, ř (t, η, X ), is a stationary
point of the functional

J =
t1∫

t0

[A−K] dt, (9.117)

A = 1

3
ρ

∫

V̊

eijkr
j (t, η, X )

�r i (t, η, X )

�t

�rk (t, η, X )

�η
ω̊ (X ) d2 Xdη, (9.118)

on the set of all motions with the prescribed vortex intensity, which have the same
initial and final positions:

r (t0, η, X ) = ř (t0, η, X ), r (t1, η, X ) = ř (t1, η, X ). (9.119)

Here d2 X ≡ d X1d X2, and V̊ is the region run by Lagrangian variables.
If vortex lines occupy some subregion, V ′, of V then the integrand in (9.118)

must be integrated over this region, V ′ (ω̊ = 0 outside of V ′). If V ′ = V, then

niδr i = 0 at �V, (9.120)

δr i being the variation of r i (t, η, X ). If V ′ is strictly inside V , niδr i are arbitrary
at �V ′.

The functional does not depend on the choice of parameter along the vortex
lines. This yields the above-mentioned peculiarity of the vortex line dynamics: this
is dynamics of geometrical lines. That means that a vortex line has not three but
two functional degrees of freedom. For example, if the vortex line crosses each
plane x3 = const at one point, then its dynamics is completely determined by two
functions xα = rα

(
t, x3

)
, α = 1, 2.

Another feature of the variational principle is that, in contrast to Lagrange vari-
ational principle, the motion, r i (t, η, X ) , is compressible, while the motion of the
ideal fluid under consideration is not.

The functional A is an analogue of the shortened action in classical mechanics.
We will derive the variational principle formulated from another one which is

easier to justify.
First, we set up a one-to-one correspondence between vi and ψk, imposing the

following constraints on ψk :

�kψ
k = 0 in V, (9.121)

−→
ψ ×−→n = 0 on �V . (9.122)

As we discussed in the previous section, the condition (9.122) means the imperme-
ability of the boundary.
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Consider a functional

I (ψ) = 1

2
(Aψ,ψ)− (l, ψ) (9.123)

(Aψ,ψ) ≡ ρ

∫

V

(
curl
−→
ψ
)2

dV, (l, ψ) = ρ

∫

V

−→ω · −→ψ dV .

For a given divergence-free vorticity field, we seek the minimum value of the
functional I (ψ) with respect to all vector fields

−→
ψ subject to the constraints (9.121)

and (9.122).

Functional I
(−→

ψ
)

is a quadratic functional being minimized on a linear set.

According to the dual variational principle of the previous section, its minimum
value coincides with the negative kinetic energy of the flow:

min−→
ψ ∈(9.121),(9.122)

I
(−→

ψ
)
= −1

2
ρ0

∫

V

−→v ·−→v dV = −1

2
ρ0

∫

V

−→ω ·−→ψ dV, −→v = curl
−→
ψ .

(9.124)

The minimization problem for the functional I
(−→

ψ
)

determines the kinetic en-

ergy as a functional of vorticity, and in accordance with (9.112) as a functional of
the vortex line positions. Substituting (9.124) into (9.117) we arrive at the following
Variational principle. The true trajectory of vortex line dynamics, ř i (t, η, X ) , is a
stationary point of the functional

I (r (t, η, X ) , ψ (t, x)) =
t1∫

t0

dtρ

⎡
⎢⎣1

3

∫

V̊

ei jkr j �r i

�t

�rk

�η
ω̊d2 Xdη + 1

2

∫

V

(
curl

→
ψ
)2

dV

−
∫

V̊

ψk (t, r )
�rk

�η
ω̊d2 Xdη

⎤
⎥⎦ (9.125)

on the set of all motions, r i (t, η, X ) , of vortex lines, having the same vortex
intensity the same initial and final positions (9.119), and the set of all vector fields,
ψ i

(
t, rk

)
, with vanishing tangent components on the boundary.

Motion of vortex lines, r i (t, η, X ) , in (9.125) is allowed to be compressible. The
Jacobian � enters explicitly in the second integral (9.125) if we write the second
integral as an integral over Lagrangian variables6:

∫

V̊

(
curl
−→
ψ
)2

�d2 Xdη.

6 Recall that volume element, dV, is equal to �d2 Xdη in Lagrangian coordinates.
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The third integral can also be written, according to (9.112), as

∫

V̊

ψk (t, r )
�rk

�η
ω̊d2 Xdη =

∫

V

ψkω
kdV .

Then minimization over ψk is equivalent to the variational problem for the func-
tional (9.123). One obtains the same equations for ψk when all integrals are written
in Lagrangian variables.

When varying r i (t, η, X ), the variation of the second integral is zero, because
for fixed ψ i

(
t, rk

)
the second integral does not depend on r i (t, η, X ) . So, varying

the functional I with respect to r i (t, η, X ) , it is enough to vary only the first and
the third integral. For the variation of the first integral we have

δ

∫

V

1

3
eijkr

j �r i

�t

�rk

�η
ω̊ (X ) d2 Xdη

=
∫

V

(
1

3
eijkδr j �r i

�t

�rk

�η
+ 1

3
eijkr

j �δr i

�t

�rk

�η
+ 1

3
eijkr

j �r i

�t

�δrk

�η

)
ω̊ (X ) d2 Xdη

=
∫

V

(
1

3
eijkδr j �r i

�t

�rk

�η
− 1

3
eijkδr i �

�t

(
r j �rk

�η

)
− 1

3
eijkδrk �

�η

(
r j �r i

�t

))
ω̊ (X ) d2 Xdη

+ �

�t

∫

V

1

3
eijkr

jδr ir k
η ω̊ (X ) d2 Xdη =

∫

V

eijkδr j �r i

�t

�rk

�η
ω̊ (X ) d2 Xdη

+ �

�t

∫

V

1

3
eijkr

jδr ir k
η ω̊ (X ) d2 Xdη. (9.126)

The divergence terms over η vanish due to closedness of the vortex lines. The
variation of the third integral is

δ

∫

V

ψk (t, r )
�rk

�η
ω̊ (X ) d2 Xdη =

∫

V

(
�iψkδr i �rk

�η
+ ψk

�δrk

�η

)
ω̊ (X ) d2 Xdη

=
∫

V

(
� jψk − �kψ j

)
δr j �rk

�η
ω̊ (X ) d2 Xdη (9.127)

or

δK =ρ

∫

V

ei jkδr j
(

curl
→
ψ
)i �rk

�η
ω̊ (X ) d2 Xdη = ρ

∫

V

ei jkδr j
(

curl
→
ψ
)i

ωkdV .

(9.128)
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So, for the variation of the action functional we obtain

1

ρ
δI =

∫

V

ei jkδr j

(
�r i

�t
−
(

curl
→
ψ
)i
)

�rk

�η
ω̊ (X ) d2 Xdη+

+ �

�t

∫

V

1

3
ei jkr jδr ir k

η ω̊ (X ) d2 Xdη. (9.129)

The divergence term over time vanishes due to (9.119). Finally, one obtains the
equations of vortex line dynamics:

eijk

(
�r i

�t
−
(

curl
−→
ψ
)i
)

ωk = 0. (9.130)

Here curl
−→
ψ is assumed to be presented in terms of vorticity, and vorticity is ex-

pressed in terms of vortex line positions, r i (t, η, X ) , according to (9.112). We arrive
at (9.115).

Derivation from the least action principle. In Hamiltonian mechanics, elimination
of the integrals of motion occurs by means of the following procedure: one makes
a change of variables (p, q) → (p′, q ′, I, ϕ), where I1(p, q), . . . , Is(p, q) is the
set of integrals, ϕ1, . . . , ϕs the dual variables, p′, q ′ the remaining variables, in
order to put the Lagrange function in the form: p′q̇ ′ + I ϕ̇ − H (p′, q ′, I ).7 Then
conservation of I1, . . . , Is follows from the independence of Hamilton function on
ϕ. It is not clear how to perform such a procedure for ideal fluid flow. Originally,
the above-formulated variational principle with the eliminated integrals of motion
was found as a remarkable feature of dynamics of vortex lines without reference to
a general algorithm. The existence of such algorithm for fluid flow is still an open
issue. It became clear, however, how to derive the variational principle of vortex
line dynamics from the least action principle of Sect. 9.1. It is especially interesting,
because one has to explain the appearance in the action functional “strange” com-
pressibility of the originally incompressible flow and a “strange” factor 1/3. We
conclude this section with that derivation.

Consider the action functional (9.2), which we write in the form

I (x (t, X )) = ρ

t1∫

t0

∫

V̊

1

2
xi

t xit � d3 X dt, xi
t ≡

dxi (t, X )

dt
.

Here, for simplicity, we set g0 = 1 and assume that fluid is homogeneous,
ρ0 = const. Besides, to reduce technicalities, we accept that the vessel is at rest

7 This procedure is discussed in [4].
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and fluid does not detach from the wall of the vessel. To enforce the incompress-
ibility condition, we introduce in the action functional the corresponding Lagrange
multiplier:

I (x (t, X ) , ϕ(t, X )) = ρ

t1∫

t0

∫

V̊

(
1

2
xi

t xit �− ϕ̇�

)
d3 X dt, ϕ̇ ≡ dϕ(t, X )

dt
.

(9.131)
Here and in what follows we are concerned only with Lagrangian and ignore the
boundary terms; otherwise we should add in (9.131) the integral

⎡
⎢⎣ρ

∫

V̊

ϕd3 X

⎤
⎥⎦

t1

t0

.

One can check by direct inspection that the stationary points of the functional
(9.131) are the solutions of equations of ideal incompressible fluid: variation over ϕ

yields incompressibility condition:

d�

dt
= 0,

while variation over xi (t, X ) and use of (4.19) results in the equation

d

dt
ρ�xit + �

�xi
ρ�

(
1

2
xk

t xkt − ϕ̇

)
= 0.

This is the momentum equation, in which pressure is

p = ρ�

(
1

2
xk

t xkt − ϕ̇

)
. (9.132)

The stationary points of the functional (9.131) are also the stationary points of
the functional J (x (t, X ) , ϕ(t, X ), v(t, X )):

J (x (t, X ) , ϕ(t, X ), v(t, X )) = (9.133)

ρ

t1∫

t0

∫

V̊

(
vi (t, X )xi

t �− 1

2
vi (t, X )vi (t, X )�− ϕ̇�

)
d3 X dt.

At the stationary point, vi (t, X ) coincides with velocity:

vi (t, X ) = xi
t . (9.134)



424 9 Ideal Incompressible Fluid

Comparison of (9.132) and (9.134) with (9.13) and (9.15) shows that at the
stationary point,

vi (t, X ) = �ϕ

�xi
+ Xa

i v̊a(X ). (9.135)

Here v̊a(X ) can be considered as functions known from the initial conditions. Now
we employ a note on the functional modification (5.334) and plug (9.135) into the
functional (9.133). We obtain the functional that depends on x (t, X ) and ϕ(t, X )
only:

t1∫

t0

∫

V̊

(
Xa

i v̊a(X )xi
t −

1

2
gi j (�iϕ + Xa

i v̊a(X ))(� jϕ + Xa
j v̊a(X ))− �ϕ(t, x)

�t

)
� d3 X dt.

(9.136)
Here we used the fact that ϕ̇ = �ϕ/�t + ϕ,i x i

t .

We are going to show that the functional (9.136) is identical to the functional of
vortex line dynamics. The substitution (9.135) increased the set of stationary points,
and this is how the incompressible fluid motions become compressible motions of
vortex dynamics.

To transform the functional (9.136), we first note that the last term can be pre-
sented as a boundary integral:

ρ

t1∫

t0

∫

V̊

�ϕ(t, x)

�t
� d3 X dt = ρ

t1∫

t0

∫

V

�ϕ(t, x)

�t
d3x dt =

⎡
⎣ρ

∫

V

ϕ d3x

⎤
⎦

t1

t0

,

and, thus, does not affect the differential equations. Therefore, the search of the
stationary point with respect to ϕ is reduced to minimization of the functional,

K (ϕ, x(t, X )) = ρ

∫

V̊

1

2
gi j (�iϕ + Xa

i v̊a(X )) (� jϕ + Xa
j v̊a(X ))� d3 X , (9.137)

over ϕ at each instant. In this functional, Xa
j v̊a(X ) are considered as known; denote

them by ui . Transforming (9.137) to Eulerian variables, we obtain the variational
problem

K(x(t, X )) = min
ϕ

∫

V

1

2
ρ(�iϕ + ui )(�

iϕ + ui ) d3x . (9.138)

Any vector field, ui , can be presented as a sum of a divergence-free vector field,
u′i , obeying the boundary condition u′i n

i = 0, and potential vector field, �iχ . Hence,
the minimizing function, ϕ̌, is the solution of the boundary value problem
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�(ϕ̌ + χ ) = 0 in V,
�(ϕ̌ + χ )

�xi
ni = 0 on �V .

Obviously, ϕ̌ = −χ + const, and the minimum value in the variational problem
(9.138) is

∫

V

1

2
ρu′i u

′i d3x .

As we discussed, u′i are uniquely determined by vorticity,

ωi = eijk� j u
′
k = eijk� jvk = eijk Xb

j Xa
k �bv̊a(X )

= 1

�
xi

cecba�bv̊a(X ) = 1

�
xi

cω̊
c(X ).

So, we arrived at the above-considered problem of calculation of kinetic energy in
terms of vorticity.

The first term in the functional (9.136) is transformed by means of (3.23):

ρ

t1∫

t0

∫

V̊

Xa
i v̊a(X )xi

t � d3 X dt = ρ

t1∫

t0

∫

V̊

1

2
eijkxi

a x j
b eabcv̊c(X )xk

t d3 X dt. (9.139)

For further transformation we need the easily verifiable identities

eijkxi
a x j

b eabcv̊c(X )xk
t = �b

(
eijkxi

a x j eabcv̊c(X )xk
t

)

−eijkxi
a x j eabc�bv̊c(X )xk

t − eijkxi
a x j eabcv̊c(X )

dxk
b

dt
,

2eijkxi
a x j eabcv̊c(X )

dxk
b

dt
= d

dt
eijkx i

a x j eabcv̊c(X )xk
b − eijkxi

a x j
t eabcv̊c(X )xk

b ,

which yield

3

2
eijkxi

a x j
b eabcv̊c(X )xk

t = �b
(
eijkxi

a x j eabcv̊c(X )xk
t

)− 1

2

d

dt
eijkx i

a x j eabcv̊c(X )xk
b

+eijkx j x i
t xk

a eabc�bv̊c(X ). (9.140)

The integral of the first term,

� =
t1∫

t0

∫

V̊

�b
(
eijkxi

a x j eabcv̊c(X )xk
t

)
dV̊ dt,

in general is not zero; however its variation is zero. Indeed,
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δ� = δ

t1∫

t0

∫

�V̊

eijkx i
a x j eabcv̊c(X )xk

t n̊bd Ådt,

where d Å is the area element, and n̊b the normal vector in the initial state. Let ξμ be
parameters on �V̊ , Greek indices run values 1,2, and Xa = r̊ a(ξμ) the parametric
equations of �V̊ , r̊ a

μ ≡ �r̊ a/�ξμ ≡ �μr̊ a . The identity holds true:

δ(eijkxi
a x j eabcv̊c(X )xk

t n̊b) = 3eijkδx j r̊ c
μxi

νeμνv̊cxk
t − �̊μ(eijkδxi r̊ c

ν x j eμνv̊cxk
t )

+�t (eijkxi
a x j eabcv̊cδxkn̊b), (9.141)

where �̊μ denotes the covariant derivative over the boundary in the initial state. To
check the validity of (9.6) we use the fact that eabcn̊b = 1√

å
eμν r̊ a

ν r̊ c
μ, å being the

determinant of the surface metric tensor; then

√
åδ(eijkxi

a x j eabcv̊c(X )xk
t n̊b) = δ(eijkxi

νx j v̊cr̊
c
μxk

t eμν) = eijkxi
ν v̊cr̊

c
μeμνxk

t δx j

+eijkx j v̊cr̊
c
μxk

t eμν�νδxi + eijkxi
νx j v̊cr̊

c
μeμν(δxk)t =

3eijkxi
ν v̊cr̊

c
μeμνxk

t δx j + �ν(eijkx j v̊cr̊
c
μxk

t eμνδxi )+ (eijkxi
νx j v̊cr̊

c
μeμνδxk)t

−eijkx j v̊c,ar̊ c
ν r̊ c

μxk
t eμνδxi − eijkx j v̊cr̊

c
μxk

t,νeμνδxi − eijkxi
ν,t x

j v̊cr̊
c
μeμνδxk .

The last two terms cancel out, the term eijkx j v̊c,ar̊ c
ν r̊ c

μxk
t eμνδxi is zero because, as

we assumed, the normal component of vorticity, v̊c,ar̊ a
μeμν r̊ c

ν , is zero, and, taking
into account (14.38), we arrive at (9.6).

The integral of the second term in the right hand side of (9.6) is zero, integral
of the third term goes to the time ends and does not affect equations and boundary
conditions. Hence,

δ� =
t1∫

t0

∫

�V̊

3eijkδx j r̊ c
μxi

νeμνv̊cxk
t d Ådt. (9.142)

The integrand in (9.142) is proportional to the volume of the parallelogram
formed by three vectors, δx j , xi

ν and xk
t . At the boundary, all these vectors are

tangent to the boundary, therefore the volume is zero, and, thus, δ� = 0 as claimed.
So, up to the time end terms and constant terms,

ρ

t1∫

t0

∫

V̊

Xa
i v̊a(X )xi

t � d3 X dt = ρ

t1∫

t0

∫

V̊

1

3
eijkx j x i

t xk
a

ω̊a

�
d3 X dt. (9.143)

We arrived at the action functional of the vortex line dynamics.
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9.7 Quasi-Two-Dimensional and Two-Dimensional Vortex Flows

We call a flow quasi-two-dimensional if each vortex line crosses the plane x3 =
const. at one point (Fig. 9.3). In such a flow rotational motion occurs mostly in the(
x1, x2

)
-plane.

The variational principles formulated cannot be applied to quasi-two-dimensional
flows because the vortex lines are not closed: if η = 0 and η = l are the values of
the parameter η for the points lying in cross-sections x3 = 0 and x3 = L , then
r3 (t, l, X )− r3 (t, 0, X ) = L �= 0, and the divergence terms vanished for the closed
vortex lines are no longer zero. Due to that the functional A must be modified8:

A = 1

3
ρ

∫

V

ei jkr j �r i

�t

�rk

�η
ω̊d2 Xdη + L

6
ρ

∫
eαβrβ (t, 0, X )

�rα (t, 0, X )

�t
ω̊d2 X

(9.144)

The variation of the second integral in (9.144) cancels the divergence terms which
appear in variation of the first integral.

Formula (9.144) can be simplified by a special choice of the parameter on the
vortex lines. Identifying η with x,

x = r3 (t, η, X ) ≡ η,

we describe the positions of vortex lines by two functions xα = rα (t, x, X ) . We
consider the flows in cylindrical domain � × [0, L] which are periodic in the
x- direction with the period L . Then functions rα (t, x, X ) are periodic:

Fig. 9.3 Quasi-two-dimensional flow

8 Greek indices run values 1, 2 and mark projections on axes x1 and x2.
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rα (t, 0, X ) = rα (t, L , X ) . (9.145)

The functional A takes the form

A = 1

3
ρ

∫

V

(
−eαβ

�rα

�t

�rβ

�η
x + eαβrβ �rα

�t

)
ω̊ (X ) d2 Xdx

+ L

6
ρ

∫
eαβrβ (t, 0, X )

�rα (t, 0, X )

�t
ω̊d2 X. (9.146)

Note the identity

eαβ

�rα

�t

�rβ

�η
x = −1

2
eαβrβ �rα

�t
+ �

�x

(
1

2
eαβrβ �rα

�t
x

)
− �

�t

(
1

2
eαβrβ �rα

�x
x

)
.

(9.147)

Plugging (9.147) to (9.146) and dropping the divergence term

∫
�

�t

(
1

2
eαβrβ �rα

�x
x

)
ω̊ (X ) d2 Xdx,

we obtain the final expression for A :

A = 1

2
ρ

∫

V

eαβrβ (t, x, X )
�rα (t, x, X )

�t
ω̊ (X ) d2 Xdx . (9.148)

Note the different factors: 1/2 in (9.148) and 1/3 in (9.118).
The variational principle for kinetic energy must also be modified because the

condition used for closed flows at the boundary, −→v · −→n = 0, does not hold on the
planes x = 0 and x = L .

Denote by v, vα, ω, ωα and ψ,ψα the axial and the transversal components of
velocity, vorticity, and stream function vector, respectively, and by [ϕ] the difference
of the values of function ϕ at x = L and x = 0 :

[ϕ] ≡ ϕ (L , yα)− ϕ (0, yα) .

We assume that the stream function vector and the axial component of vorticity
are periodic in the axial direction and the normal component of vorticity at �� ×
[0, L] is zero:

[ψ] = [
ψα

] = 0, (9.149)

ωαnα = 0 on ��× [0, L] , [ω] = 0. (9.150)

Since v = eαβ�αψβ, the axial component of velocity is also periodic:

[v] = 0. (9.151)
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The transversal components of velocity are not required to be periodic on the set
of the admissible flow fields but, as we will see, they are periodic for the minimizing
flow.

Due to the special geometry of the flow, it is convenient to change slightly the
constraints (9.121) and (9.122) for the stream vector field. We set the constraints

�αψα = 0, (9.152)

ψαnα = 0 on ��× [0, L] , (9.153)

∫

��

ψds = 0 0 ≤ x ≤ L . (9.154)

These constraints provide a one-to-one correspondence between velocity and
stream vector field. Indeed, according to (9.152) and (9.153), the potential field,
ϕ,k , which can be added to ψk without changing the velocity field, should obey the
boundary-value problem

�ϕ = 0 in ��× [0, L] ,
�ϕ

�n
= 0 on ��× [0, L] .

Here � is the two-dimensional Laplace’s operator. Hence, ϕ can be an arbitrary
function of x . This function affects only the third component of the stream vector,
ψ . The constraint (9.154) yields �xϕ = 0. Thus, the gradient invariance is elimi-
nated.

The dual variational principle (9.156) takes the form

−K = min
ψ,ψα∈(

9.149
)
,
(
9.152

)
−
(
9.154

)
ρ

∫ [
1

2

(
curl
−→
ψ
)2
−−→ψ · −→ω

]
dV .

It is easy to see that the minimizer satisfies the equations

�2ψ

�xα�x
− �3ψα = ωα, −�ψ = ω, (9.155)

�3 being the three-dimensional Laplace’s operator. Equations (9.155) can also be
written as

eαβ

(
�β

(
curl
−→
ψ
)

3
− �

�x

(
curl
−→
ψ
)

β

)
= ωα, eαβ

(
�β

(
curl
−→
ψ
)

α

)
= ω.

(9.156)
Equations (9.156) indicate that curl

−→
ψ can be identified with velocity.

Note that the one-to-one correspondence between vorticity and velocity estab-
lished for closed domains, does not hold for periodic flows: one can add arbitrary
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constant axial velocity without changing the vorticity field. The constraints imposed
select a unique stream vector and, thus, a unique velocity field. One can show that
this corresponds to a special choice of the inertial frame, namely the frame in which,
for a given vorticity field, kinetic energy is minimum.

One remark is now in order. First, the constraints (9.152) and (9.153) mean that
the functions ψα can be expressed in terms of one function, χ ,

ψα = eαβ�βχ, (9.157)

and

�χ

�n
= 0 on ��. (9.158)

The velocity is determined by two functions, ψ and χ :

vα = eαβ
(
�βψ − �xψβ

) = eαβ�βψ + �α�xχ, v = eαβ�αψβ = −�χ.

The impermeability condition simplifies to dψ/ds = 0, and without loss of
generality, for simply connected region �, due to (9.154),

ψ = 0 on ��. (9.159)

Remarkably, the interaction terms between ψ and χ in kinetic energy vanishes:

∫

�

L∫

0

(
v2 + vαvα

)
d2ydx =

=
∫

�

L∫

0

(
�αψ�αψ + �α�xχ�α�xχ + (�χ )2

)
d2ydx. (9.160)

Function χ is determined up to an arbitrary function of x . One can eliminate this
arbitrariness by putting additionally

∫

�

χd2 y = 0, 0 ≤ x ≤ L . (9.161)

In the case of two-dimensional flows functions rα (t, x, X ) do not depend on x,

and the functional A becomes

A = ρL

2

∫

V

eαβrβ (t, X )
�rα (t, X )

�t
ω̊ (X ) d2 X.

Up to divergence terms, it can also be written as
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A = ρL
∫

V

r2 (t, X )
�r1 (t, X )

�t
ω̊ (X ) d2 X. (9.162)

Further we drop the factor L in A and K.
To compute the kinetic energy we note that only one component of stream vector,

ψ3 ≡ ψ, is not zero and

vα = eαβψ,β . (9.163)

At the boundary, ψ = 0. The dual variational principle I (ψ) takes the form

−K = min
ψ∈(9.159)

ρ

⎡
⎣1

2

∫

�

�αψ�αψd2x −
∫

�

ψωd2x

⎤
⎦ , (9.164)

and kinetic energy can be expressed in terms of the corresponding Green’s function:

K = ρ

2

∫

V

G
(
x, x ′

)
ω (x) ω

(
x ′
)

d2xd2x ′.

We arrive at the following
Variational principle. The true two-dimensional vortex motion of ideal incom-
pressible fluid is a stationary point of the action functional

I =
t1∫

t0

[A−K] dt,

A =ρ

∫

�

r2 (t, X )
�r1 (t, X )

�t
ω̊ (X ) d2 X, (9.165)

K =1

2
ρ

∫

�

∫

�

G
(
r (t, X ) , r

(
t, X ′

))
ω̊ (X ) ω̊

(
X ′
)

d2 Xd2 X ′.

Let vorticity be concentrated in small vicinities, �1, . . . , �N , of points, X1, . . . ,

X N . In Lagrangian coordinates, without loss of generality these vicinities can be
viewed as circles of small radius ε. For ε → 0, in the leading approximation the
shortened action A transforms into the sum

A =
N∑

s=1

ργ(s)r
2
(s) (t)

dr1
(s) (t)

dt
,

where
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rα
(s) (t) = rα (t, Xs)

and

γ(s) =
∫

�s

ω̊ (X ) d2 X.

This suggests that the dynamics of the system can be described by the motion
in the region � of N points, r(1), . . . , r(N ). To justify such an expectation, we have
to check that the kinetic energy also becomes a function only of r(1), . . . , r(N ) as
ε→ 0. For kinetic energy we have the double sum:

K =1

2
ρ

N∑
s=1

N∑
m=1

∫

�s

∫

�m

G
(
r (t, X ) , r

(
t, X ′

))
ω̊ (X ) ω̊

(
X ′
)

d2 Xd2 X ′.

As ε → 0, the terms of the sum with s �= m are approximated by a function of r(s)

and r(m):

1

2
γ(s)γ(m)G

(
r(s) (t) , r(m) (t)

)
.

Such approximation assumes that the points r(s) (t) and r(m) (t) remain on the dis-
tances much bigger than ε in the course of motion. To obtain an approximation of
the terms with s = m we note that, as

∣∣r − r ′
∣∣→ 0,

G(r, r ′) = 1

2π
ln

1

|r − r ′| + 2g(r ),

where g(r ) is a smooth function uniquely determined by the region �. Therefore,

1

2

∫

�s

∫

�s

G
(
r (t, X ) , r

(
t, X ′

))
ω̊ (X ) ω̊

(
X ′
)

d2 Xd2 X ′ = γ 2
(s)g(r(s))

+1

2

∫

�s

∫

�s

1

2π
ln

1

|r (t, X )− r (t, X ′)| ω̊ (X ) ω̊
(
X ′
)

d2 Xd2 X ′. (9.166)

The integral in the right hand side of (9.166) is on the order γ 2
(s) ln 1

ε
, and, in

fact, much bigger than the other terms. However, it depends only on the details of
the motion inside the vortex blob �s and does not feel translations being thus in-
dependent on r(s). Therefore, the dynamics which involves only the positions of the
vortex blobs, r(1), . . . , r(N ), is self-consistent. It is called point vortex dynamics. The
self-energy of the mth point vortex (9.166) is infinite in the limit ε → 0; however
the “infinite term” does not depend on the translational motion of the vortex.

Collecting all the essential terms of the action functional, we obtain the following.
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Variational principle. The true motion of point vortices is a stationary point of the
action functional

I =
t1∫

t0

[A−K] dt,

A =
N∑

s=1

ργ(s)r
2
(s) (t)

dr1
(s) (t)

dt
, (9.167)

K =
∑
s �=m

1

2
ργ(s)γ(m)G

(
r(s) (t) , r(m) (t)

)+
N∑

s=1

ργ 2
(s)g(r(s)(t)).

Note that function g(r ) tends to −∞ as the point r approaches the boundary of
region �, and therefore the vortices never reach the boundary. The functional K
in (9.167) differs from the true kinetic energy by a large positive self-energy term.
Not surprisingly, it can take the negative values. If one takes into account the shape
change of the vortex blobs, then the additional terms characterizing the dynamics of
the shape enter the action functional and the kinetic energy.

Sometimes it is convenient to deal with positive energy and keep the self-energy
terms. This can be done, for example, by including in energy higher derivatives with
a small parameter, ε:

−K = min
ψ∈(9.159)

ρ

[∫

�

(
1

2
�αψ�αψ + 1

2
ε2�αβψ�αβψ

)
d2x −

N∑
s=1

·γ(s)ψ
(
r(s)
)
]

.

Then one can show that kinetic energy is finite and converges to the true energy as
ε → 0. The parameter, ε, plays the role of the size of the vortex core. The results
obtained for such a model are meaningful if they do not depend on ε.

9.8 Dynamics of Vortex Filaments in Unbounded Space

Vortex line dynamics deals only with the necessary degrees of freedom of fluid
motion eliminating the “slave” degrees of freedom of potential flow. As an example,
consider dynamics of a vortex filament, a thin fluid tube such that vorticity is negli-
gible outside of this tube while inside the tube it is predominantly directed along its
axis. If the size of the cross-section is much smaller than the characteristic radius of
the tube, R, then the motion of the vortex filament can be modeled by motion of a
curve, �. Accordingly, the degrees of freedom of the system are the functions

xi = r i (t, η), (9.168)
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which determine the current position of �. It seems natural to identify � with the
center line of the vortex tube and take the vortex intensity of the filament , ω̊(X ), as
a δ-function,

ω̊(X ) = γ δ(X − X0), (9.169)

X0 being the Lagrangian coordinates of �. That certainly makes sense in computa-
tion of the shortened action, A, which is meaningful for δ-type vorticity:

A = ργ

3

∫

V

ei jkr j (t, η)
�r i (t, η)

�t

�rk (t, η)

�η
dη. (9.170)

However, there is an obstacle: kinetic energy is infinite for the δ-type vorticities.
Moreover, as we will see, the “infinite term” is principally different from that for
point vortices: the infinite self-energy of a point vortex does not affect its transla-
tional motion while for the vortex filament the self-energy of a filament segment
provides the leading contribution to its translational velocity. Therefore, a more del-
icate analysis is needed. We start with a more adequate description of the filament
kinematics.

Kinematics of vortex filament. Let s(t, η) and τ i (t, s) be the arc length along the
filament,

�s(t, η)

�η
=
√

r i
,ηri,η, r i

,η ≡
�r i (t, η)

�η
, (9.171)

and the unit tangent vector,

τ i = �r i (t, s)

�s
= r i

,η√
rk
,ηrk,η

. (9.172)

We endow the line � with a couple of unit vectors, τ i
1(t, η) and τ i

2(t, η), which
form together with the unit tangent vector to � an orthonormal triad:

τ iτi = 1, , τiτ
i
μ = 0, τ i

μτiν = δμν. (9.173)

Greek indices run values 1, 2 and mark the vectors τ i
1 and τ i

2. The local basis
{τ i , τ i

1, τ
i
2} is Cartesian, and therefore the tensor components with upper and lower

indices i, j, k and μ, ν coincide.
We assume that the vortex filament has a circular cross-section, the radius of

which, a, does not change over � but may depend on time: a = a(t).
Consider motion of vortex lines of a special form:

xi (t, X, η) = r i (t, η)+ a(t)τ i
μ(t, η)Xμ. (9.174)

Here Lagrangian coordinates, Xμ, change within a unit circle,
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Xμ Xμ ≤ 1.

The vectors, τ i
μ(t, η), in (9.174) will be chosen in a special way. To describe

it we first note the relations for the derivatives of the triad over � in terms of the
curvatures of �, κμ, κ :

�τ i

�s
= κ

μτ i
μ,

�τ i
μ

�s
= −κμτ i + κe·νμ·τ

i
ν, (9.175)

κμ ≡ τ i
μ

�τi

�s
, κ ≡ 1

2
eμντ i

ν

�τiμ

�s
.

The derivation of these relations can be found further in Chap. 159 where they
are used to characterize the deformations of elastic beams. Similarly to (9.175),
differentiating the triad over time, one can write

�τ i (t, η)

�t
= �μτ i

μ,
�τ i

μ(t, η)

�t
= −�μτ i +�e·νμ·τ

i
ν, (9.176)

where

�μ ≡ τ i
μ

�τi

�t
, � ≡ 1

2
eμντ i

ν

�τiμ

�t
.

If the rate of rotation, �, and the positions of �, r i (t, η), are known, then the sec-
ond equation (9.176) may be considered as a system of partial differential equations
to determine τ i

μ(t, η):

�τ i
μ(t, η)

�t
= −

(
�τ j (t, η)

�t
τ jμ

)
τ i (t, η)+�(t, η)e·νμ·τ

i
ν . (9.177)

Here τ i (t, η) are expressed in terms of r i (t, η) by (9.172). For given initial positions
of τ i

μ and a given motion of �, the further evolution of the vectors, τ i
μ(t, η), is

defined by (9.177) uniquely. We make a special choice of τ i
μ as follows. First, we

choose some initial vectors, τ i
μ(0, η), and specify the evolution of τ i

μ by setting
� = 0. We denote these uniquely defined vectors by τ̊ i

μ(t, η). Then we introduce
the vectors τ i

μ(t, η) which differ from τ̊ i
μ by a rotation on the same angle at each

point of �:

τ i
μ(t, η) = oν

μ(t)τ̊ i
ν(t, η). (9.178)

Here oν
μ(t) is an orthogonal matrix.

9 See (15.4); we need to employ here other notation for curvatures because the letter ω is been
used for vorticity.
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The rate of rotation, �, of vectors τ i
μ is constant over �. Indeed,

� = 1

2
eμντ i

ν

�τiμ

�t
= 1

2
eμνoλ

ν τ̊
i
λ

�

�t
oσ

μτ̊iσ = 1

2
eμνoλ

ν τ̊
i
λ(ȯσ

μτ̊iσ + oσ
μ

�τ̊iσ

�t
)

= 1

2
eμνoνσ ȯσ

μ +
1

2
eσλτ̊ i

λ

�τ̊iσ

�t
= 1

2
eμνoνσ ȯσ

μ.

Here we used the fact that the rate of rotation of τ̊ i
ν is zero.

A two-dimensional orthogonal matrix, oν
μ(t), has one degree of freedom, the

angle of rotation of the cross-section, ϕ(t):

∥∥oν
μ

∥∥ =
∥∥∥∥

cos ϕ − sin ϕ

sin ϕ cos ϕ

∥∥∥∥.

It is easy to check that10

� = dϕ

dt
. (9.179)

So, in addition to r i (t, η), the vortex filament is endowed with two degrees of
freedom, the cross-sectional radius, a(t), and the angle of rotation of the filament
cross-sections, ϕ(t).

Note the following relations for variations (they are similar to (15.12)):

δϕ = 1

2
eμντiνδτ

i
μ =

1

2
eμνoνσ δoσ

μ, δτ i
μ = −(τ jμδτ j )τ i + e·νμ·τ

i
νδϕ. (9.180)

In what follows we assume that the radius of the filament cross-section is much
smaller than the total length of the filament, L , and the characteristic radius of cur-
vature of the filament, R, which is defined as

R =
(

max
s

√
κμκ

μ + κ
2

)−1

.

So, the small parameters of the problem are

a

L
� 1,

a

R � 1, aκ � 1, aκ1 � 1, aκ2 � 1.

To transform the integrals from Lagrangian to Eulerian variables we need the
formula for the determinant of the transformation,

� = eijk
�xi

�η

�x j

�X1

�xk

�X2
= a2(1+ aκμ Xμ)

�s

�η
.

10 Here the upper and low indices of oν
μ are interpreted as the row and colomn numbers, respec-

tively (i.e. o1
2 = − sin ϕ, o2

1 = sin ϕ). Otherwise, the sign in (9.179) is negative.
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In the leading approximation,

� = a2 �s

�η
. (9.181)

According to (9.106) and (9.181), vorticity in leading approximation is

ωi = �r i (t, η, X )

�η

ω̊ (X )

�
= τ i ω̊ (X )

a2
.

On the other hand, the circulation of velocity, γ, is linked to vorticity in the
leading approximation as

τ iωiπa2 = γ.

Hence, inside the vortex tube,

ω̊ (X ) = γ /π, (9.182)

and ω̊ (X ) = 0 beyond the tube.

Kinetic energy. We assume that the flow is unbounded and fluid is at rest at infinity.
To determine the kinetic energy of the flow we solve (9.91). Since vorticity, ωi , is
not equal to zero only in some bounded region V , and Green’ function of Laplace’s
operator is 1/4π

∣∣x − x ′
∣∣ :11

ψ i (x) =
∫

V

ωi (x ′)d3x ′

4π |x − x ′| . (9.183)

For a vortex filament, ωi ni = 0 at �V, and therefore functions ψ i (x) (9.183)
automatically satisfy the conditions �iψ

i = 0 :

�iψ
i (x) =

∫

V
ωi (x ′)

�

�xi

1

4π |x − x ′|d
3x ′ = −

∫

V
ωi (x ′)

�

�x ′i
1

4π |x − x ′|d
3x ′

=
∫

V

1

4π |x − x ′|
�ωi (x ′)

�x ′i
d3x ′ = 0.

We find the kinetic energy of the flow in terms of vorticity from Clapeyron’s
theorem (5.45) and (9.183):

K =1

2
ρ

∫

V
ψi (x)ωi (x)d3x = 1

2
ρ

∫

V

∫

V

ωi (x)ωi (x ′)
4π |x − x ′| d

3xd3x ′. (9.184)

11 We suppress in this subsection the dependence on time.



438 9 Ideal Incompressible Fluid

Further we consider only the case of uniform vorticity, when τ iωi is constant
over the filament cross-sections up to terms of the order a/R; the same accuracy
will be maintained in all further relations.

We are going to show that for any ε, which is much larger than a and much
smaller than the characteristic radius of �, kinetic energy considered on motions
(9.174) is the following functional of r i (t, η) and a(t) :

K =ργ 2

8π

∮

�

∮

�

τ i (s)τi (s ′)
|� r | + ε

dsds ′ + ργ 2

8π

(
2 ln

2ε

a
+ 1

2

)
L . (9.185)

Here and in what follows the logarithmic terms are treated as the terms of order
unity. The length of the filament in (9.185), L , is a functional of r i (t, η) :

L =
∮

�

√
r i
,ηri,ηdη, r i

,η ≡
�r i (η, t)

�η
. (9.186)

To prove (9.185) we split the integral (9.184) into the sum of two integrals:

K =ρ

2

∫

V

∫

V

ωi (x)(ωi (x ′)− ωi (x))

4π |x − x ′| d3xd3x ′ + ργ 2

2(πa2)2

∫

V

∫

V

d3xd3x ′

4π |x − x ′| .
(9.187)

The first integral in (9.187) is not singular. As a→ 0, it converges to

ργ 2

2

∮

�

∮

�

τ i (s)(τi (s ′)− τi (s))

4π |� r | dsds ′,

where

|� r | ≡
√

� r i � ri , � r i ≡ r i (s, t)− r i (s ′, t).

The second integral we again split into a sum of two: for some � such that a � ��
R, we present the second integral in the form:

ργ 2

2(πa2)2

∫

V

∫

V, ρ(s ′,s)≥�

d3xd3x ′

4π |x − x ′| +
ργ 2

2(πa2)2

∫

V

∫

V, ρ(s ′,s)≤�

d3xd3x ′

4π |x − x ′| , (9.188)

where ρ(s ′, s) the shortest distance along � between the points s ′ and s. The first
integral in (9.188) is not singular as a→ 0 and converges to

ργ 2

2

∮

�

∮

ρ(s ′,s)≥�

dsds ′

4π |� r | .

The second integral in (9.188), after transformation to Lagrangian coordinates, is
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ργ 2

8π3

∮

�

ds
∫

Xμ Xμ≤1

∫

X ′μ X ′μ≤1
2
∫ �

0

dξd2 Xd2 X ′√
a2(Xμ − X ′μ)(Xμ − X ′μ)+ ξ 2

.

Integrating over ξ and using that �� a, we have for this integral

ργ 2

8π3

∮

�

ds
∫

Xμ Xμ≤1

∫

X ′μ X ′μ≤1
2 ln

2�

a |X − X ′|d
2 Xd2 X ′

= ργ 2

8π3

∮

�

ds2(π2 ln
2�

a
+ J ), J ≡

∫

Xμ Xμ≤1

∫

X ′μ X ′μ≤1
ln

1

|X − X ′|d
2 Xd2 X ′.

The number, J, as easy to see12, is equal to π2/4 . Collecting the results, we obtain,

K = ργ 2

2

∮

�

∮

�

τ i (s)(τi (s ′)− τi (s))

4π |� r | dsds ′

+ργ 2

2

∮

�

∮

ρ(s ′,s)≥�

dsds ′

4π |� r | +
ργ 2

8π

(
2 ln

2�

a
+ 1

2

)
L

12 There are several ways to compute J. Perhaps, the simplest one is to use that G(X, X ′) =
1

2π
ln 1
|X−X ′ | is Green’s function of Laplace’s operator: �G(X, X ′) = −δ(X − X ′). First, we write

J in the form:

J =
∫

Xμ Xμ≤1

∫

X ′μ X ′μ≤1
ln

1

|X − X ′|
1

4

�2

�X ′μ�X ′μ

(
X ′μ X ′μ − 1

)
d2 Xd2 X ′

Integrating by parts twice we have,

J = 1

2

∫

Xμ Xμ≤1

∫

|X ′ |=1
ln

1

|X − X ′|ds ′

+
∫

Xμ Xμ≤1

∫

X ′μ X ′μ≤1

1

4

(
X ′μ X ′μ − 1

) �2

�X ′μ�X ′μ
ln

1

|X − X ′|d
2 Xd2 X ′.

The integral of ln 1
|X−X ′ | over the unit circle is zero: this can be checked by writing this integral in

terms of complex variable,
∫

|X ′ |=1
ln

1

|X − X ′|ds ′ =
∫

|z′ |=1
ln

1

|z − z′|
dz′

i z′
= − Im

∫

|z′ |=1
ln

1

z − z′
dz′

z′
,

and transforming the contour of integration to a contour surrounding the singular point, z′ = 0,

and a contour going around the singular point, z′ = z. Thus,

J =
∫

Xμ Xμ≤1

1

4

(
1− Xμ Xμ

)
2πd2 X = π2

4
.
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or, equivalently,

K = ργ 2

8π

∮

�

∮

ρ(s ′,s)≥�

τ i (s)τi (s ′)
|� r | dsds ′ + ργ 2

8π

∮

�

∮

ρ(s ′,s)≤�

τ i (s)(τi (s ′)− τi (s))

|� r | dsds ′

+ργ 2

8π

(
2 ln

2�

a
+ 1

2

)
L

The second integral is zero within the accepted accuracy. Thus,

K =ργ 2

8π

∮

�

∮

ρ(s ′,s)≥�

τ i (s)τi (s ′)
|� r | dsds ′ + ργ 2

8π

(
2 ln

2�

a
+ 1

2

)
L (9.189)

On the other hand, for ε � �,

ργ 2

8π

∮

�

∮

�

τ i (s)τi (s ′)
|� r | + ε

dsds ′ = ργ 2

8π

∮

�

∫

ρ(s ′,s)≥�

τ i (s)τi (s ′)
|� r | + ε

dsds ′

+ργ 2

8π

∮

�

∫

ρ(s ′,s)≤�

τ i (s)τi (s ′)
|� r | + ε

dsds ′

In the first integral ε can be dropped. In the second integral, expanding τi (s ′) in
Taylor series in vicinity of the point s, we see that only the first term of the expansion
provides a noticeable contribution. Therefore,

ργ 2

8π

∮

�

∮

�

τ i (s)τi (s ′)
|� r | + ε

dsds ′ = ργ 2

8π

∮

�

∫

ρ(s ′,s)≥�

τ i (s)τi (s ′)
|� r | dsds ′ + ργ 2

8π
L2 ln

�

ε

(9.190)
Comparing (9.189) and (9.190) we arrive at (9.185).

Functional A. Computation of the functional A on the motions (9.174) is a cumber-
some task. A simpler way is to use the relation (9.126), which holds for any motion,
r i (t, η, X ) :

δ

t1∫

t0

Adt = ρ

t1∫

t0

∫

V

ei jkδr j (t, η, X )
�r i (t, η, X )

�t

�rk(t, η, X )

�η
ω̊ (X ) d2 Xdηdt.

In particular, for the motion (9.174),
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δ

t1∫

t0

Adt = ρω̊

∫

V
ei jk(δr j + δ(aτ j

μ)Xμ)(r i
,t + (aτ i

ν),t X ν)(rk
,t + (aτ k

λ ),η Xλ)d2 Xdη

Using here (9.180) and (9.182) along with the formula,

∫

Xμ Xμ≤1
Xμ X νd2 X = π

4
δμν,

we have

δ

t1∫

t0

Adt = ργ

t1∫

t0

⎡
⎣
∮

�

(
ei jk

�r i

�t
τ k + �a2

4

dτ j

ds

)
δr j ds + 1

4

d(a2 L)

dt
δϕ

− 1

2

dϕ

dt
aLδa

]
dt. (9.191)

Functional A can be restored from (9.191) up to divergence terms:

A =ργ

3

∫

V

ei jkr j (t, η)
�r i (t, η)

�t

�rk (t, η)

�η
dη − ργ a2

4
L

dϕ

dt
. (9.192)

Dynamical equations of vortex filament. The action functional considered on
the vortex motions (9.174) becomes a functional of positions of �, r i (t, η), and
functions a(t) and ϕ(t) : I = I (r i (t, η), a(t),ϕ(t)). Assume that these functions
are given at initial and final instants. Then the following variational principle
holds:
Variational principle. The true motion of the vortex filament is a stationary point
of the action functional,

t1∫

t0

[A−K] dt.

To derive the corresponding dynamical equations we find the variation of kinetic
energy (9.185),

δ

t1∫

t0

Kdt =
t1∫

t0

⎛
⎝
∮

�

δK
δr j

δr j ds − ργ 2L

4πa
δa

⎞
⎠ dt. (9.193)
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Here we introduced the notations,

δK
δr j
= ργ ei jkv

iτ k − ργ 2

8π

dτ j

ds

(
2 ln

2ε

a
+ 1

2

)
,

vi ≡ γ

4π
ei jk

∮

�

τ j (t, s ′) � rk

(|� r | + ε)2 |� r |ds ′. (9.194)

The derivative, dτ j/ds, can be also written as

dτ j

ds
= −ei jkbiτ k

R
(9.195)

where bi is binormal and R curvature. Therefore,

δK
δr j
= ργ ei jk

[
vi + γ

8π

bi

R

(
2 ln

2ε

a
+ 1

2

)]
τ k .

Equating (9.191) and (9.193), we obtain the governing equations of the vortex fila-
ment dynamics:

ei jk

[
�r i (t, η)

�t
− vi − γ

8π

bi

R

(
2 ln

2ε

a
+ 1

2

)
− a2

4

dϕ

dt

bi

R

]
τ k = 0. (9.196)

dϕ

dt
= γ

2πa2
,

d

dt
a2L = 0. (9.197)

The first equation (9.197) determines the angular velocity of cross-sections, the
second one means conservation of the filament volume,

πa2L = V̊ , (9.198)

V̊ being the initial volume of the filament. If a and dϕ/dt are eliminated from
(9.196) by means of (9.198), then (9.196) along with the expression of L in terms
of r i (t, η) (9.186) become a closed system of equations for the filament positions.
One can check that this system is asymptotically equivalent to the one derived by
the asymptotic analysis of Euler equations.

An interesting question arises: Is there a variational principle on the set of fila-
ment positions only? The answer is positive due to a very simple structure of the
equations for a and ϕ. Indeed, the last term in the functional A (9.192) can be
interpreted as the one generated by Lagrange multiplier, γ ϕ/4π, for the constraint
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(9.198) after integration by parts. Therefore, the following variational principle
holds:
Variational principle. The true motion of the vortex filament is a stationary point
of the action functional,

t1∫

t0

⎛
⎝ργ

3

∫

V

ei jkr j (t, η)
�r i (t, η)

�t

�rk (t, η)

�η
dη −K(r i (t, η))

⎞
⎠ dt,

where K(r i (t, η)) is the functional,

K(r i (t, η))=ργ 2

8π

∮

�

∮

�

τ i (s)τi (s ′)
|� r | + ε

dsds ′ + ργ 2

8π

(
ln

4πε2 L

V̊
+ 1

2

)
L , (9.199)

and L is the functional (9.186).
The functional (9.199) is obtained from the functional (9.185) by eliminating a

by means of the incompressibility condition (9.198).

Self-induction approximation. In kinetic energy, the logarithmic term may be
dominant. Then, neglecting in (9.199) the terms of the order unity, one obtains for
kinetic energy the expression,

K =ργ 2

8π
L ln

4πε2 L

V̊
. (9.200)

Variation of such kinetic energy is

t1∫

t0

Kdt = −
t1∫

t0

ργ 2

8π

(
ln

4πε2 L

V̊
+ 1

)
dτ j

ds
δr j ds,

We keep here unity near logarithm for consistency of the model “forgetting” that
the terms of the same order where neglected to obtain the simple formula (9.200).
Using (9.195), we have

t1∫

t0

Kdt =
t1∫

t0

ργ 2

8π

(
ln

4πε2 L

V̊
+ 1

)
ei jkbiτ k

R
δr j ds.

Hence, the dynamical equations are:

ei jk

[
�r i (t, η)

�t
− γ

8π

bi

R

(
ln

4πε2 L

V̊
+ 1

)]
τ k = 0.
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Another form of these equations is

�r i (t, η)

�t
= γ

8π

bi

R

(
ln

4πε2 L

V̊
+ 1

)
+ λτ i , (9.201)

where λ is an arbitrary function.
The length of the filament is conserved in the self-induction approximation:

d L

dt
=
∮

τi
dr i

,t

ds
ds = −

∮
r i
,t

dτi

ds
ds = 0. (9.202)

The integrand in (9.202) is zero because dτi/ds is proportional to the normal of the
curve, �, while, according to (9.201), r i

,t is orthogonal to the normal.
Due to the conservation of the filament length, L , the cross-sectional radius, a,

does not change as well. Therefore, kinetic energy (9.200) may be written in an
asymptotically equivalent form,

K =ργ 2

4π
L ln

L

a
,

where L is a functional (9.186), and a is a constant. The corresponding dynamic
equations are:

�r i (t, η)

�t
= γ

4π

bi

R

(
ln

L

a
+ 1

)
+ λτ i .

They are called the equations of the self-induction approximation.

9.9 Vortex Sheets

Another case where the presence of a geometrical small parameter yields consid-
erable simplifications is the dynamics of vortex sheets. A vortex sheet is a thin
region of non-zero vorticity, a vicinity of some surface, �, with the thickness of
the region, h, being much smaller than the characteristic radius of the surface, R;
besides, vorticity, up to small corrections of order h/R, is tangent to �. Motion
of the vortex sheet is modeled by the motion of the surface, �. The derivation of
the governing variational principle in this case is simpler than for vortex filaments
because the singularities are weaker. We begin with a more precise setting of the
problem.

Denote the Lagrangian coordinates of the fluid particles in the vortex region by
ξα, ξ, Greek indices run values 1, 2, ξα ∈ �̊, −h/2 ≤ ξ ≤ h/2. Motion of the
surface, �, is described by the functions
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xi = r i (t, ξα).

We present the positions of the particles in the vortex region in the form

xi (t, ξα, ξ ) = r i (t, ξα)+ x ′i (t, ξα, ξ ), (9.203)

without loss of generality, we can set the condition

∫ h/2

−h/2
x ′i (t, ξα, ξ )dξ = 0. (9.204)

Assume that vorticity has only two non-zero components, ω̊α, and these com-
ponents do not depend on ξ : ω̊α = ω̊α(ξβ). Since ω̊3 = e3αβ�αv̊β is zero, v̊β is
a potential vector: v̊β = �βχ, which can be vanished by the redefining function ϕ

in (9.14). Hence, only the third component of vector v̊a is not zero; denote it by
�(ξα)/h. The non-zero Lagrangian components of vorticity are

ω̊α = eαβ�β�/h. (9.205)

Accordingly, for the Eulerian components of this vector we have

ωi = r i
αeαβ�β�/h, r i

α ≡
�r i (t, ξα)

�ξα
. (9.206)

We are going to show that, under some additional assumptions formulated fur-
ther, dynamics of a vortex sheet in unbounded space is governed by

Migdal variational principle. The true motion of a vortex sheet is a stationary
point of the functional

I (r (t, ξ )) =
∫ t1

t0

(A−K)dt, (9.207)

A =ρ

∫

�̊

ei jkr i
1r j

2 rk
t �d2ξ, (9.208)

K = ρ

8π

∫

�̊

∫

�̊

r i
αeαβ�β�r ′iα′e

α′β ′�β ′�
′d2ξd2ξ ′

|r − r ′| . (9.209)

Here the prime marks the auxiliary variables of integration, ξ ′α, and r ′ ≡ r (t, ξ ′α),
�′ ≡ �(ξ ′α), �β ′ ≡ �/�ξ ′β.

To derive this variational principle from the variational principle of dynamics of
vortex lines we use the identity (9.140). According to this identity, dropping the full
time derivative, which does not affect the equations, we can write for A,
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A =
∫

V̊

1

2
ρei jk xi

a x j
b eabcv̊cxk

t dξ 1dξ 2dξ + integrals over �V̊ .

For vortex sheets, the integrals over the vortex sheet faces vanish, because the vector,
v̊c, has only one non-zero component, v̊3, and on the faces the factors, eabcv̊cn̊b, is
zero. If the vortex sheet is closed, then there are no other boundary contributions.
If the sheet is not closed, then, in general, there is an additional integral over ��̊.

For simplicity, we make this integral equal to zero by an additional assumption that
v̊3 = 0 at the edge of the vortex sheet. Since only v̊3 is not equal to zero,

A =ρ

∫

V̊
ei jk x i

1x j
2 xk

t v̊3dξ 1dξ 2dξ

= ρ

∫

V̊
ei jk(r i

1 + x ′i1 )(r j
2 + x ′ j2 )(rk

t + x ′kt )v̊3dξ 1dξ 2dξ. (9.210)

Due to (9.204), the functional (9.210) differs from the functional (9.208) by quadratic
and cubic terms with respect to derivatives of x ′i (t, ξα, ξ ). An implicit condition
of applicability of the Migdal variational principle is smallness of these terms in
comparison with (9.208). Formula for kinetic energy (9.209) follows from (9.184)
in the limit h→ 0.

9.10 Symmetry of the Action Functional and the Integrals
of Motion

In this section the groups of symmetries of the action functional of ideal incom-
pressible fluid are found. They give rise to the integrals of fluid motion. We begin
our consideration by showing that the conservation of the velocity circulations stems
from the invariance of kinetic energy with respect to the relabeling group of trans-
formations.

Relabeling group. Consider the Hamilton variational principle: the true motion of
an ideal incompressible fluid is a stationary point of the action functional,

I (x, t, X ) =
∫ t1

t0

∫

V

1

2
ρ

�xi (t, X )

�t

�xi (t, X )

�t
d3 X, (9.211)

on the set of all functions x(t, X ) such that their initial and final values are pre-
scribed,

x(t0, X ) = x0(X ), x(t1, X ) = x1(X ), (9.212)

the fluid does not detach from or penetrate through the wall,
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x(t, X ) ∈ V if X ∈ V, (9.213)

and the motion is incompressible,

det

∥∥∥∥
�x

�X

∥∥∥∥ = 1. (9.214)

Let us rename the particles: X → Y (X ), and, for a given motion,

x = x(t, X )

consider another motion,

x = x ′(t, X ) ≡ x(t, Y (X )). (9.215)

Condition that (9.213) is obviously satisfied. To satisfy (9.214) we set

det

∥∥∥∥
�Y

�X

∥∥∥∥ = 1. (9.216)

The new motion (9.215) does not obey (9.212), but this is not necessary for our
purposes.

The action functional has the same values for both motions, x = x(t, X ) and
x = x ′(t, X ). Indeed,

I (x ′(t, X )) =
t1∫

t0

∫

V

1

2
ρ

�x ′i (t, X )

�t

�x ′i (t, X )

�t
d3 X =

=
t1∫

t0

∫

V

1

2
ρ

�xi (t, Y (X ))

�t

�xi (t, Y (X ))

�t
d3 X =

=
t1∫

t0

∫

V

1

2
ρ

�xi (t, Y )

�t

�xi (t, Y )

�t
det

∥∥∥∥
�X

�Y

∥∥∥∥ d3Y. (9.217)

Taking into account (9.216) and changing the notation for the integration vari-
ables from Y to X we see that the integral (9.217) coincides with (9.211). Therefore,

δ I = I (x ′(t, X ))− I (x(t, X )) ≡ 0. (9.218)

Let the relabeling be infinitesimal, i.e. Y = X + δX . Then

δxi = x ′i (t, X )− xi (t, X ) = �xi

�Xa
δXa . (9.219)
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The variation of functional (9.211) is

δ I =
t1∫

t0

∫

V

ρvi
dδxi

dt
d3 X =

=
⎡
⎣
∫

V

ρviδxi d3 X

⎤
⎦

t1

t0

−
t1∫

t0

∫

V

[
d

dt
ρvi (t, X )

]
δxi d3 X. (9.220)

Assume that the motion x(t, X ) obeys the momentum equations. Then the last
integral in (9.220) is zero because

t1∫

t0

∫

V

[
d

dt
ρvi (t, X )

]
δxi d3 X =

t1∫

t0

∫

V

(
− �p

�xi
δxi

)
dV =

= −
t1∫

t0

∫

�V

pδxi ni d A = 0. (9.221)

Here we used (9.6) and, integrating by parts, took into account that

�δxi

�xi
= 0 in V, and δxi ni = 0 on �V,

due to (9.214), (9.213), (9.215) and (9.216). Hence,

δ I =
⎡
⎣
∫

V

ρviδxi d3 X

⎤
⎦

t1

t0

= 0,

and this equation holds for any t0, t1. Thus, for any t0, t1,

∫

V

ρviδxi d3 X

∣∣∣∣∣∣
t=t0

=
∫

V

ρviδxi d3 X

∣∣∣∣∣∣
t=t1

,

or

∫

V

ρvi
�xi

�Xa
δXad3 X

∣∣∣∣∣∣
t=t0

=
∫

V

ρvi
�xi

�Xa
δXad3 X

∣∣∣∣∣∣
t=t1

. (9.222)

The functions δXa are not arbitrary. Due to (9.216) they obey the equation
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�δXa

�Xa
= 0.

This equation is satisfied if δXa is a vector field concentrated on any line γ

with a constant projection on this line (that is similar to conservation of Lagrangian
components of vorticity considered in Sect. 9.6). Denoting a parameter along the
line by η one obtains from (9.222)

∫

γ

ρvi
�xi

�η
dη

∣∣∣∣∣∣
t=t0

=
∫

γ

ρvi
�xi

�η
dη

∣∣∣∣∣∣
t=t1

=
∫

γ

ρvi dxi ,

i.e. the conservation of the velocity circulation along any closed fluid contour.

Isovorticity group in 2D. The variational principles for the functionals (9.165)
and (9.117) differ from the least action principle by the elimination of many sym-
metries and, consequently, many integrals of motion (the velocity circulations).
Nevertheless, certain symmetries (and integrals of motion) still remain. For ex-
ample, Euler equations of the functional (9.165) yield incompressibility of motion
(at each material point X , det ‖�x/�X‖ = const). The question arises: what are
the underlying symmetry groups for these integrals? Here we show that, for the
two-dimensional case, this is the group relabeling the particles with the same vor-
ticity. We call it the isovorticity group. More precisely, consider the action functional
for two-dimensional flows:

I (r ) =
t1∫

t0

dt

⎡
⎣ρ

∫

V

y (t, X )
�x (t, X )

�t
ω̊ (X )d2 X−K

⎤
⎦

K = 1

2
ρ

∫

V

∫

V

G
(
r (t, X ) , r

(
t, X ′

))
ω̊ (X ) ω̊

(
X ′
)

d2 Xd2 X ′ (9.223)

Let us show that the action functional has the same value for two motions x =
r (t, X ) and x = r ′(t, X ) if

r ′(t, X ) = r (t, Y (X )) ,

and the relabeling X → Y (X ) conserves the vorticity:13

13 Equation (9.224) can also be written in the form

ω̊(X )d2 X = ω̊(Y )d2Y

emphasizing the vorticity conservation as a measure.



450 9 Ideal Incompressible Fluid

ω̊(X ) = ω̊(Y (X ))

∣∣∣∣
�Y

�X

∣∣∣∣ ,
∣∣∣∣
�Y

�X

∣∣∣∣ ≡ det

∥∥∥∥
�Y

�X

∥∥∥∥ . (9.224)

Incompressibility of motion follows from this symmetry group. Indeed, the ki-
netic energy is an invariant under this transformation:

K(r ′(t, X )) = 1

2
ρ

∫

V

∫

V

G(r ′(t, X̄ ), r ′(t, X ))ω̊(X )ω̊(X̄ )d2 Xd2 X̄ =

= 1

2
ρ

∫

V

∫

V

G(r (t, Y (X )), r (t, Y (X̄ ))ω̊(X )ω̊(X̄ )d2 Xd2 X̄ =

= 1

2
ρ

∫

V

∫

V

G(r (t, Y (X̄ )), r (t, Y (X̄ )))ω̊(Y (X ))ω̊(Y (X̄ ))

∣∣∣∣
�Y

�X

∣∣∣∣
∣∣∣∣
�Y

�X

∣∣∣∣ d2 Xd2 X̄ =

= 1

2
ρ

∫

V

∫

V

G(r (t, Y ), r (t, Ȳ ))ω̊(Y )ω̊(Ȳ )d2Y d2Ȳ = K(r (t, X ))

The first integral in (9.223) is also invariant:

∫

V

y′(t, X )
�x ′(t, X )

�t
ω̊(X )d2 X =

∫

V

y(t, Y (X ))
�x(t, Y (X ))

�t
ω̊(X )d2 X =

∫

V

y(t, Y (X ))
�x(t, Y (X ) )

�t
ω̊(Y (X ))

∣∣∣∣
�Y

�X

∣∣∣∣ d2 X =
∫

V

y(t, Y )
�x(t, Y )

�t
ω̊(Y )d2Y.

In the same way as for the least action principle we obtain that

∫

V

y(t, X )δx(t, X )ω̊(X )d2 X =
∫

V

y(t, X )
�x(t, X )

�Xμ
δXμω̊(X )d2 X = const.

(9.225)

The functions δXμ in (9.225) obey the constraint which follows from (9.224):

ω̊(X ) = ω̊(X + δX )

∣∣∣∣
�(X + δX )

�X

∣∣∣∣ =
(

ω̊(X )+ �ω̊

�Xμ
δXμ

)(
1+ �δXμ

�Xμ

)
.

Keeping only the leading terms we obtain

�ω̊δXμ

�Xμ
= 0.
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Thus,

ω̊δXμ = eμν �χ (X )

�X ν
, (9.226)

where χ is an arbitrary function. Therefore, the function χ is constant at the bound-
ary. The vector, δXμ, is tangent to the boundary. Assuming that V is a simply
connected region, we set χ = 0 at the boundary. Plugging (9.226) into (9.225)
and integrating by parts we obtain

∫

V

eμν �y(t, X )

�Xμ

�x(t, X )

�X ν
χ (X )d2 X = const.

The factor at χ is the Jacobian of transformation from Lagrangian to Eulerian coor-
dinates. Since χ (X ) is an arbitrary function, the Jacobian is constant at each particle,
as was claimed.

Isovorticity group in 3D. The symmetry group of the functional (9.117) is a rela-
beling group (i.e. the group of transformation (9.215)) which conserves vorticity in
the following sense:

ω̊a(X )
√

g̊(X )
�Y b(X )

�Xa
= ω̊b(Y (X ))

√
g̊(Y (X ))

∣∣∣∣
�Y

�X

∣∣∣∣ . (9.227)

This can be checked by inspection. For an infinitesimal transformation, the ad-
missible variations δXa = Y a − Xa obey the equation14

�

�Xa

[√
g̊
(
ω̊aδXb − ω̊bδXa

)] = 0. (9.228)

The general solution of this equation is

ω̊aδXb − ω̊bδXa = 1√
g̊

eabc �χ (X )

�Xc
. (9.229)

14 Indeed, from (9.227)

ω̊a (X )
√

g̊ (X )
�
(
Xb + δXb

)

�Xa
= ω̊b

(
Xa + δXa

)√
g̊ (Xa + δXa)

(
1+ �δXa

�Xa

)
.

Keeping the terms of the first order, we obtain in the left hand side,

ω̊a (X )
√

g̊ (X )
�δXb

�Xa
= �

�Xa

(
ω̊a (X )

√
g̊ (X )δXb

)
,

and in the right hand side

�
√

g̊ω̊b

�Xa
δXa + ω̊b

√
g̊

�δXa

�Xa
= �

�Xa

(
ω̊b (X )

√
g̊ (X )δXa

)
.

That yields (9.228).
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Equation (9.229) can be solved with respect to �χ/�Xc:

�χ

�Xc
=
√

g̊ eabcω̊
aδXb. (9.230)

If δXa is proportional to ω̊a , i.e. one relabels the particles on the same vortex
lines, then �χ/�Xc ≡ 0. We consider the symmetries with respect to the relabeling
of the neighboring vortex lines, i.e. δXa �= λω̊a at all points.

Both vectors ω̊a and δXa are tangent to the boundary. Projecting (9.230) on the
tangent directions to the boundary we find that χ is constant at the boundary, and,
without loss of generality, can be set equal to zero. It also follows from (9.230) that
the vectors �χ/�Xc and ω̊c are orthogonal:

ω̊c �χ

�Xc
= 0. (9.231)

Therefore, χ is constant along the vortex lines. In the same way as in the previous
two cases, from the invariance of the action functional we obtain

∫
eijkxi (t, X ) δx j (t, X )

�xk (t, X )

�Xa
ω̊a (X )

√
g̊d3 X = const.

Here

δx j = �x j

�Xb
δXb.

Hence,

∫
eijkxi �x j

�Xa

�xk

�Xb
δXbω̊a

√
g̊d3 X =

∫
eijkxi �x j

�Xa

�xk

�Xb

1

2

(
ω̊aδXb − ω̊bδXa

)√
g̊d3 X

=
∫

eijkxi �x j

�Xa

�xk

�Xb
eabc �χ

�Xc
d3 X.

Integrating by parts, we obtain the following expression for this integral:

−
∫

eijk
�xi

�Xc

�x j

�Xa

�xk

�Xb
eabc χ (X ) d3 X = −3!

∫ ∣∣∣∣
�x

�X

∣∣∣∣χ (X ) d3 X.

In the vortex line coordinate system χ is constant along the vortex lines. The
function χ is arbitrary as a function of the vortex line. Thus, for each vortex line,
the integral

∫ ∣∣∣∣
�x

�X

∣∣∣∣ dη (9.232)

remains unchanged in the course of the motion.
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The existence of this invariant of motion can be derived directly from (9.130).
Indeed, let us take this equation in the form (9.114). Computing the divergence of
(9.114) and using the fact that velocity and vorticity fields are divergence-free we
have

�ṙ i

�xi
= ωi �λ

�xi
. (9.233)

The left hand side of (9.233) is time derivative of ln � (see (3.71)). Thus, in
Lagrangian coordinates,

d�

dt
= �ω̊3 �λ

�η
. (9.234)

The product �ω3 is a function of only X . Integrating (9.234) over a closed vortex
line we obtain the integrals of motion: for each vortex line,

d

dt

∫ ∣∣∣∣
�x

�X

∣∣∣∣�η = 0. (9.235)

The integrals (9.235) mean that the volume of any vortex tube comprised of vortex
lines does not change in the course of motion, as it must be for incompressible fluid.
Note that the integrals (9.235) do not constrain the motion of any finite number of
vortex lines.

The invariance of the action functional with respect to relabeling of the particles
on the same vortex line yields a “degeneracy” of (9.130): contraction of (9.130) with
the vorticity vector is an identity.

9.11 Variational Principles for Open Flows

To obtain an extension of the least action principle to open flows, consider motion
in four-dimensional space-time. A symbolic picture of motion in a closed container
is shown in Fig. 9.4a. Each trajectory connects the given initial and final positions
of a fluid particle. A typical open flow is shown in Fig. 9.4b. Each trajectory also

Fig. 9.4 Geometry of the
particle trajectories in
space-time for closed (a) and
open (b) flows
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connects the initial and final positions, but now some of the initial positions are at
the inlet of the flow, while part of the final positions is at the outlet of the flow. In
closed flows, the most natural choice of Lagrangian coordinates is an identification
of Lagrangian coordinates with Eulerian ones at the initial instant, X1

(
xi , t0

) =
x1, X2

(
xi , t0

) = x2, X3
(
xi , t0

) = x3. In open flows, it is natural to identify one of
the Lagrangian coordinates with the moment of the appearance of the particle in the
container, while the two others can be the coordinates of the point at the inlet, where
the particle appears for the first time.

Consider now the initial and the final positions of the fluid particles at the inlet
and outlet as given. The stationary points of the action functional are sought on the
set of functions Xa

(
xi , t

)
, which satisfy constraints (9.33), (9.34) and (9.35) along

with the following conditions at the inlet and the outlet:

Xa
(
xi , t

) = Xa
in

(
xi , t

)
at the inlet

Xa
(
xi , t

) = Xa
out

(
xi , t

)
at the outlet

(Xa
in and Xa

out are some prescribed functions). Then, the second term in (9.38) van-
ishes even if there is a flow through �V . Thus, the action functional has a stationary
point at the real motion of an ideal fluid.



Chapter 10
Ideal Compressible Fluid

Ideal compressible fluid can be considered as an elastic body the internal energy
of which depends only on the mass density of the body. Therefore, the variational
principles formulated for elastic bodies are valid for compressible fluids as well.
However, they deserve special consideration because, due to a simplified energy
structure, they are enriched by new interesting features.

10.1 Variational Principles in Lagrangian Coordinates

Consider a vessel filled with ideal compressible fluid. The region occupied by the
vessel is denoted by Ṽ . If the wall of the vessel deforms with time, then we write
Ṽ (t). The motion of the vessel is given. Moving fluid may detach from the wall of
the vessel, i.e. the region, V (t), occupied by the fluid, in general, does not coincide
with the region Ṽ (t). We consider such a case later, and begin with the discussion
of non-detaching flows, when V (t) = Ṽ (t). The initial and final particle positions
are given.

The functions x (X, t) are assumed to be twice continuously differentiable (thus,
the shock waves are excluded from consideration). The entropy of the particles is a
known function of the Lagrangian coordinates, X . The internal energy, U, is a given
function of mass density, entropy and Lagrangian coordinates: U = U (ρ, S, X ) .

The explicit dependence of U on Lagrangian coordinates can be caused by hetero-
geneity of the fluid. For homogeneous fluid, U = U (ρ, S) . If the flow is isentropic,
i.e. entropy does not change over particles, internal energy may be considered as a
function of density only, U = U (ρ) . For the general case of inhomogeneous fluid
we write U = U (ρ, X ) , implying that the dependence of entropy on Lagrangian
coordinate is incorporated in this function. The external mass forces are assumed to
possess a potential, � (x).
Least action principle. The true motion of ideal compressible fluid is a stationary
point of the functional

V.L. Berdichevsky, Variational Principles of Continuum Mechanics,
Interaction of Mechanics and Mathematics, DOI 10.1007/978-3-540-88467-5 10,
C© Springer-Verlag Berlin Heidelberg 2009
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I (x (X, t)) =
t1∫

t0

∫

V

ρ

(
1

2

�xi (t, X )

�t

�xi (t, X )

�t
−U (ρ, X )−� (x (X, t))

)
dV dt,

(10.1)
on the set of functions, x (X, t) , which satisfy the conditions

xi
(
Xa, t

) = x̊ i
(
Xa
)
, xi

(
Xa, t1

) = 1
xi
(
Xa
)
,

xi
(
Xa, t

) ∈ �Ṽ (t) for Xa ∈ �V̊ . (10.2)

This statement is equivalent to
Mopertuis-Lagrange variational principle. The true motion of ideal compressible
fluid is a stationary point of the kinetic energy functional,

t1∫

t0

∫

V

1

2
ρ

�xi (t, X )

�t

�xi (t, X )

�t
dV dt,

on the set of all trajectories satisfying the conditions (10.2) and the law of conser-
vation of energy,
∫

V

ρ

(
1

2

�xi (t, X )

�t

�xi (t, X )

�t
+U (ρ, X )+� (x (X, t))

)
dV = E = const. (10.3)

In the Mopertuis-Lagrange principle, the instant t1 at which the fluid arrives at
its finial state is not fixed and must be varied.

The equivalence of the two variational principles can be proven in the same way
as in the mechanics of the systems with a finite number of degrees of freedom.

From the energy equation (10.3),

∫

V

1

2
ρ

�xi (t, X )

�t

�xi (t, X )

�t
dV = E −

∫

V

ρ
[
U (ρ, X )+� (x (X, t))

]
dV,

one can find the “time differential”,

dt =

√
1
2

∫
V

ρdxi dxi dV

√
E − ∫

V
ρ
[
U (ρ, X )+� (x (X, t))

]
dV

.

Here dx (X ) is the differential along a path in the space of functions x (X ) . Replac-
ing integration over time in the action functional by the integration along a path in
the space of functions x (X ) , we put the Mopertuis-Lagrange principle in the form
of the Jacobi variational principle:
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Jacobi variational principle. The true motion of ideal compressible fluid starting

from the state, x̊ (X ) , and the finishing at the state,
1
x (X ) , is a stationary point of

the functional,

1
x(X )∫

x̊(X )

√√√√E −
∫

V

ρ
[
U (ρ, X )+� (x (X, t))

]
dV

√√√√1

2

∫

V

ρdxi dxi dV , (10.4)

on the set of all trajectories satisfying the law of energy conservation (10.3).

10.2 General Features of Dynamics of Compressible Fluid

Modifications of the least action principle considered further employ the remarkable
structure of solutions of the equations of ideal compressible fluid, to a discussion of
which we proceed. This structure is, in essence, similar to that of incompressible
fluid reviewed in Sect. 9.2.

The closed system of equations of ideal compressible fluid consists of momentum
equations,

dvi

dt
= − 1

ρ

�p

�xi
− �� (x)

�xi
, (10.5)

the constitutive equation for pressure,

p = ρ2 �U (ρ, X )

�ρ
, (10.6)

and the continuity equation in Lagrangian form,

ρ
√

ĝ = ρ0
√

g0,
√

ĝ = � = det
∥∥xi

a

∥∥ ,

or in the differential form,

�ρ

�t
+ �ρvi

�xi
= 0. (10.7)

We are going to show that the following statements hold:

1. If fluid is homogeneous and the flow is isentropic, then, at each fluid particle,
the contravariant Lagrangian components of vorticity, ωa, divided by mass density,
do not change in time:

ωa

ρ
= ω̊a

ρ0
. (10.8)



458 10 Ideal Compressible Fluid

In particular, this means that

a. Each vortex line consists of the same fluid particles
b. The vorticity cannot be generated or vanished in the course of motion
c. A fluid region, where the flow was potential initially, moves with a potential

velocity field

2. If fluid is inhomogeneous, then vorticity may be generated:

d

dt

ωa

ρ
= 1

ρ0

√
g̊

eabc�b

(
�U (ρ, X )

�Xc

∣∣∣∣
ρ=const

)
. (10.9)

In particular, if the fluid is homogeneous, i.e. the dependence of internal energy on
Lagrangian coordinates is caused only by the dependence of entropy on X : U =
U (ρ, S) , S = S (X ) , and entropy is not constant, then, as follows from (10.9),
generation of vorticity is governed by the equation:

d

dt

ωa

ρ
= 1

ρ0

√
g̊

eabc�b

(
T

�S

�Xc

)
= 1

ρ0

√
g̊

eabc �T

�Xb

�S

�Xc
. (10.10)

In an observer’s frame this equation takes the form:

d

dt

ωi

ρ
− ωk

ρ
vi

,k =
1

ρ
ei jk T, j S,k .

So, vorticity may develop only if the gradients of temperature and entropy are not
collinear.

3. In isentropic flows of homogeneous fluids the covariant Lagrangian compo-
nents of velocity can be written as

va = �ϕ(t, X )

�Xa
+ v̊a(X ).

where ϕ is some function of coordinates and time while v̊a depend only on the
Lagrangian coordinates. Accordingly, in an observer’s frame,

vi = �ϕ

�xi
+ Xa

i v̊a(X ) (10.11)

4. In case of homogeneous fluids, any solution of (10.5), (10.6) and (10.7) can be
expressed in terms of four scalar functions, ϕ, α, β and μ,

vi = �ϕ

�xi
+ α

�β

�xi
+ μ

�S

�xi
, (10.12)
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which satisfy the equations

dα

dt
= 0,

dβ

dt
= 0, (10.13)

dμ

dt
= T ≡ �U

�S
. (10.14)

Pressure can be found from a generalized Cauchy-Lagrange integral :

dϕ

dt
= −

(
p

ρ
+U +�− v2

2

)
(10.15)

The derivation of these statements proceeds as follows. Let us contract the mo-
mentum equations (10.5) with xi

a , i.e. project these equations onto the axes of the
Lagrangian coordinate system. On the right hand side, taking into account the con-
stitutive equation (10.6), we get

− 1

ρ

(
�p

�xi
+ ρ

��

�xi

)
xi

a = −
(

1

ρ

�p

�Xa
+ ��

�Xa

)
=

= −
(

�

�Xa

(
p

ρ
+�

)
+ p

ρ2

�ρ

�Xa

)
= − �

�Xa

(
p

ρ
+U +�

)
+ �aU.

By �aU, we denote the derivative,

�aU = �U (ρ, Xa)

�Xa

∣∣∣∣
ρ=const

.

The left hand side of momentum equation is transformed using (9.12). We obtain

dva

dt
= − �

�Xa

(
p

ρ
+U + ϕ − v2

2

)
+ �aU. (10.16)

Let us introduce the function ϕ by (10.15). Denoting the difference va−�ϕ/�Xa

by χa ,

va = �ϕ

�Xa
+ χa, (10.17)

we can write the momentum equations as

dχa

dt
= �aU. (10.18)

Any solution of the momentum equations can be written in the form (10.15),
(10.16), (10.17) and (10.18), and, conversely, for any functions ϕ and χa satisfying
the (10.15) and (10.18), the velocity va (10.17) satisfies the momentum equations.

According to (10.17), the curls of va and χa coincide:

eabc�bvc = eabc�bχc. (10.19)



460 10 Ideal Compressible Fluid

On the other hand,

eabc�bvc =
√

ĝεabc�bvc =
√

ĝωa = ρ0

√
g̊
ωa

ρ
. (10.20)

Equation (10.9) follows from (10.18), (10.19) and (10.20).
Equation (10.9) is obtained from (10.10) by contraction of (10.10) with xi

a and
the use of the first formula (10.7) and the relation,

ei jk = 1√
ĝ

x i
a x j

b xk
c eabc.

For the homogeneous fluid,

�aU = T
�S

�Xa
,

and (10.18) takes the form

dχa

dt
= T

�S

�Xa
. (10.21)

We define a function μ by (10.14). Since S does not depend on time, the solution
of (10.21) is

χa = v̊a (X )+ μ
�S

�Xa
,

where v̊a are some function of the Lagrangian coordinates. For isentropic flows this
equation along with (10.17) yield (10.11).

According to the theorem on the canonical presentation of linear differential
forms (see Sect. 9.2), for a linear differential form, v̊ad Xa, in three-dimensional
space, there exist functions ϕ̃, α and β, such that v̊ad Xa = dϕ̃ + αdβ, or

v̊a = �ϕ̃

�Xa
+ α

�β

�Xa
.

Since v̊a are function of the Lagrangian coordinates, the functions ϕ̃, α, and β

also depend only on the Lagrangian coordinates. Denote the sum ϕ+ ϕ̃ by ϕ. Then,
the equation for ϕ (10.15) does not change, while the Lagrangian components of
velocity (10.17) become

va = �ϕ

�Xa
+ α

�β

�Xa
+ μ

�S

�Xa
. (10.22)

Projecting (10.22) onto the observer’s frame (i.e. contracting it with Xa
i ), we

obtain (10.12). The dependence of α and β only on the Lagrangian coordinates is
expressed by (10.13).

Note that, according to the above-mentioned theorem on the canonical pre-
sentation of the linear differential form, the velocity vi can also be written as
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vi = ϕ̄,i + ᾱβ̄,i . In such presentation, however, ϕ̄, ᾱ and β̄ are, generally speaking,
functions of both time and Lagrangian coordinates.

For isentropic flows of compressible fluids, as for incompressible fluid, the ve-
locity is presented in terms of Clebsch’s potentials:

vi = �ϕ

�xi
+ α

�β

�xi
. (10.23)

In terms of the Clebsch’s potentials, the generalized Cauchy-Lagrange integral
(10.15) can be written in several equivalent forms:

dϕ

dt
+ p

ρ
+U +�− v2

2
= dϕ

dt
+ α

dβ

dt
+ p

ρ
+U +�− v2

2
=

= �ϕ

�t
+ α

�β

�t
+ vk

(
�ϕ

�xk
+ α

�β

�xk

)
+ p

ρ
+U +�− v2

2
=

= �ϕ

�t
+ α

�β

�t
+ v2

2
+ p

ρ
+U +� = 0. (10.24)

For potential flows (α or β is zero), the relations (10.24) become the Cauchy-
Lagrange integral

�ϕ

�t
+ v2

2
+ p

ρ
+U +� = 0.

If U = 0 for ρ = 0, then the sum p/ρ +U can also be written as

p

ρ
+U =

ρ∫

0

dp

ρ
.

Isentropic flows belong to a larger class of the so-called barotropic flows – the
flows for which pressure is a function of density only. It is easy to see that for
barotropic flows (10.23), (10.13) and (10.24) remain valid if the function U is inter-
preted as the function Ũ defined by the equation p (ρ) = ρ2dŨ/dρ. In particular,
Ũ = U for isentropic flows and Ũ = F for isothermal flows (i.e. the flows with
T ≡ const). In further consideration of the barotropic flows we keep the formulas
obtained for the isentropic flows without changes, supposing that U in this formulas
means not the internal energy but the function Ũ .

10.3 Variational Principles in Eulerian Coordinates

Variation of Lagrangian coordinates. There is a straightforward way to obtain a
variational form of the governing equations of ideal compressible fluid: the action
functional,
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I =
t1∫

t0

∫

Ṽ (t)

LdV dt (10.25)

L = ρ

(
v2

2
−U (ρ, X (x, t))−� (x)

)
, (10.26)

must be considered on the set of functions, X (x, t). Then in (10.26) mass density is
given by the formula

ρ = ρ0
(
Xa

(
xi , t

)) det
∥∥ �Xa

�xi

∥∥
det

∥∥ �Xa

�x̊ i

∥∥ , (10.27)

while velocity is defined in terms of X (x, t) by (9.30) (or (9.31)). The initial and

final values of X (t, x), X̊ (x) and
1
X (x) are given.

The functions X̊ (x) and
1
X (x) are defined in the regions V̊ = V (t0) and

1
V =

V (t1) , respectively. It is assumed that there exists a mapping V̊ →
1
V , for which

the functions X̊ a
(
xi
)

and
1

Xa
(
xi
)

coincide.
The equation of the region V̊ at the initial moment can be written as

f (X ) = 0.

The impermeability of the wall means that the equation

f (X (x, t)) = 0 (10.28)

is the equation of the boundary of the given region, Ṽ (t).
Least action principle. The true motion of ideal compressible fluid is a stationary
point of the functional (10.25) on the set of admissible functions X (x, t).

This variational principle is justified in the same way as in Sect. 9.3; one needs
only to modify (9.41):

�i L = −ρ
��

�xi
, Xa

i

�L

�Xa
k

− Lδk
i = −ρviv

k + ρ
�L

�ρ
δk

i − Lδk
i =

= −ρviv
k − ρ2 �U

�ρ
δk

i ,
�L

�Xa
t

Xa
i = −ρvi . (10.29)

Substituting (10.29) into (9.40) yields the momentum equations of ideal compress-
ible fluid (10.5).
Variations of density and velocity. In variational principles in Lagrangian coordi-
nates, the density is a dependent field. It is defined in terms of the particle trajectories
from the continuity equation. In Eulerian coordinates, density is linked to velocity
by the continuity equation
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�ρ

�t
+ �ρvi

�xi
= 0. (10.30)

Admissible velocity fields satisfy the condition that there exist functions Xa
(
xi , t

)
(Lagrangian coordinates), which are a solution of the system of equations

�Xa

�t
+ vk �Xa

�xk
= 0 (10.31)

with the initial conditions

Xa
(
xk, t0

) = X̊ a
(
xk
)
, (10.32)

such that they take on the assigned values at the time t = t1,

Xa
(
xk, t

) = 1
Xa

(
xk
)
, (10.33)

and for all t and xk ,

det

∥∥∥∥
�Xa

�xk

∥∥∥∥ �= 0. (10.34)

The definition of density (10.27) and the constraints (10.32) and (10.33) show
that the density fields at the initial and final instants should be considered as known:1

ρ
(
xi , t0

) = ρ0
(
xi
)
, ρ

(
xi , t1

) = ρ1
(
xi
)
. (10.35)

By our assumption, the flow does not detach from the wall. Thus,

vi ni = cx on �Ṽ (t) , (10.36)

where cx is the normal velocity of the wall in the observer’s frame.
Lin variational principle. The stationary points of the functional

t1∫

t0

∫

Ṽ (t)

ρ

(
v2

2
−U (ρ, X )−� (x)

)
dV dt (10.37)

on the set of functions ρ
(
xi , t

)
, vi

(
xi , t

)
, and Xa

(
xi , t

)
, satisfying the conditions

(10.30), (10.31), (10.32), (10.33), (10.34), (10.35) and (10.36), are the solutions of
the momentum equations of ideal compressible fluid.

1 In fact, one can consider density ρ1 as determined by the mapping V̊ →
1
V .
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To justify this variational principle, we get rid of the constraints by means of the
Lagrange multipliers. Denoting the Lagrange multipliers for the constraints (10.30)
and (10.31) by ϕ and ρχa , respectively, we obtain the functional

I
(
ρ, vi , ϕ, χa

) =
t1∫

t0

∫

Ṽ (t)

[
ρ

(
v2

2
−U (ρ, X )−� (x)

)
+

+ϕ

(
�ρ

�t
+ �ρvi

ρxi

)
+ ρχa

(
�Xa

�t
+ vk �Xa

�xk

)]
dV dt. (10.38)

This functional should be varied with the constraints (10.32), (10.33), (10.35) and
(10.36). The constraint (10.34) is not essential in the sense that it provides sufficient
freedom for variations of the functions involved, if it is satisfied at the stationary
point.

Varying the functional (10.38) with respect to ϕ and ψa gives the continuity equa-
tion and (10.31). Taking the variation with respect to ρ we obtain the generalized
Cauchy-Lagrange integral (10.15):

v2

2
−U − ρ

�U

�ρ
−�− dϕ

dt
= 0.

Taking the variation with respect to vi yields the expression for velocity through
the “potentials” (10.17):

vi = �ϕ

�xi
+ χa

�Xa

�xi
,

while the variation with respect to Xa gives (10.18):

−�aU + dχa

dt
= 0.

The surface integrals that appear in integration by parts are equal to zero due to
non-detachment condition and the initial/final instant constraints.

Weakening of time end conditions. At the initial and final instants let some sys-

tem of hypersurfaces be fixed in regions V̊ and
1
V . The hypersurfaces are the level

surfaces of some function β̊ (x) in V̊ and function
1
β (x) in

1
V . The hypersurfaces

1
β (x) = c are considered as the positions of the hypersurfaces β̊ (x) = c at the final
instant; besides, in the initial and final instants density takes same given values,
ρ0 (x) and ρ1 (x).
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According to (4.33), the variations δxi satisfy the relations

�
(
ρ0δxi

)

�xi
= 0, δxi �β̊

�xi
= 0 for t = t0,

�
(
ρ1δxi

)

�xi
= 0, δxi �

1
β

�xi
= 0 for t = t1.

The stationarity of the action functional yields the equations

vi = �ϕ̊

�xi
+ α̊

�β̊

�xi
for t = t0,

vi =
1

�ϕ

�xi
+ 1

α

1
�β

�xi
for t = t1,

where ϕ and ρα with indices are the corresponding Lagrange multipliers.
The condition that the hypersurfaces β̊ (x) = c transform to the hypersurfaces

1
β (x) = c in the course of motion can be formulated in the following way: there
exists a function, β (x, t), such that

�β

�t
+ vk �β

�xk
= 0, (10.39)

β|t=t0 = β̊, β|t=t1 =
1
β. (10.40)

Equations (10.39) and (10.40) are the constraints on the admissible velocity
fields. Remarkably, for barotropic flows, the following variational principle, which
we shall formulate in the Eulerian coordinates, is valid.
Variational principle. The stationary points of the functional,

t1∫

t0

∫

Ṽ (t)

ρ

(
v2

2
−U (ρ, X )−� (x)

)
dV dt, (10.41)

on the set of functions ρ (x, t) , vi (x, t) selected by the constraints (10.30), (10.35),
(10.36), (10.39) and (10.40), satisfy the momentum equations of ideal compressible
fluid.

Indeed, introducing the Lagrange multipliers ϕ and ρα for the constraints (10.30)
and (10.39), respectively, we obtain the functional

t1∫

t0

∫

Ṽ (t)

[
ρ

(
v2

2
−U (ρ)−� (x)

)
+ ϕ

(
�ρ

�t
+ �ρvi

ρxi

)
− ρα

(
�β

�t
+ vk �β

�xk

)]
dV dt.

(10.42)

Varying with respect to ϕ and α results in (10.30) and (10.39); varying with
respect to ρ yields the Cauchy-Lagrange integral
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v2

2
−U (ρ)− ρ

�U

�ρ
−� (x)− dϕ

dt
= 0;

varying with respect to vi results in the expression of velocity in terms of the
Clebsch potentials,

vi = �ϕ

�xi
+ α

�β

�xi
;

varying with respect to β gives the conservation of α along the particle trajectories

dα

dt
= �α

�t
+ vk �α

�xk
= 0. (10.43)

These equations describe a barotropic flow of compressible fluid.
The surface integrals are equal to zero due to the boundary condition (10.36) and

the relations

�ρ = �β = 0 for t = t0, t1, (10.44)

which follow from (10.35) and (10.40).
Until the end of the section, we will consider the barotropic flows only.

Bateman principles. Let us integrate by parts the second term in (10.42). We get

t1∫

t0

∫

Ṽ (t)

[
ρ

(
v2

2
−U (ρ)−� (x)

)
− ρ

(
�ϕ

�t
+ vk �ϕ

�xk

)
− ρα

(
�β

�t
+ vk �β

�xk

)]
dV dt+

+
∫

1
V

ρ1ϕdV −
∫

V̊

ρ0ϕdV . (10.45)

It is easy to check that variation of the functional (10.45) with respect to ϕ, yields
not only the continuity equation but also the non-detachment condition (10.36).
Therefore, we get
First Bateman variational principle. The stationary points of the functional (10.45)
on the set of functions ρ (x, t) , vi (x, t) , ϕ (x, t) , α (x, t) , β (x, t), satisfying the
conditions (10.35) and (10.40) are the solutions of the continuity equation and the
momentum equations which obey the non-detachment conditions (10.36).

According to the Cauchy-Lagrange integral (10.15), the integrand of the four-
dimensional integral in (10.45), P , coincides with pressure at the stationary points;
it differs from the integrand of the original action functional by a divergent term,

�

�t
(ρϕ)+ �

�xi

(
ρviϕ

)
.
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The integrand, P , is a convex function of vi and does not contain derivatives of
vi . Therefore, finding the extremum over vi is equivalent to minimization of P with
respect to vi . The calculations result in
Second Bateman variational principle. The stationary points of the functional

t1∫

t0

∫

Ṽ (t)

[
−ρ

(
v2

2
+U (ρ)+� (x)+ �ϕ

�t
+ α

�β

�t

)]
dV dt+

∫

1
V

ρ1ϕdV−
∫

V̊

ρ0ϕdV,

(10.46)
where

vi = �ϕ

�xi
+ α

�β

�xi
, (10.47)

on the set of functions ρ (x, t) , ϕ (x, t) , α (x, t) , β (x, t), satisfying the conditions
(10.35) and (10.40), are the solutions of the continuity and momentum equations
with the boundary condition (10.36).

The integrand of the four-dimensional integral in (10.46) will be denoted by P
as well:

P = −ρ

(
v2

2
+U (ρ)+� (x)+ �ϕ

�t
+ α

�β

�t

)
.

As in the first Bateman’s principle, it coincides with pressure at the stationary points.
The integrand P depends algebraically on ρ. Therefore, finding the extremum of

the functional (10.46) with respect to ρ is equivalent to calculating the extremum
over ρ of the function

P
(
ρ∗, ρ

) = ρ∗ρ − ρU (ρ) .

Here, we introduced the notation

− ρ∗ = v2

2
+� (x)+ �ϕ

�t
+ α

�β

�t
. (10.48)

The function ρU (ρ) is a strictly convex function of ρ (see Example 8 in
Sect. 5.7). For any fixed ρ∗, the function P (ρ∗, ρ) is strictly concave with respect
to ρ and has a unique maximum. The extremum of P (ρ∗, ρ) can only be the maxi-
mum. Denote the maximum of P (ρ∗, ρ) with respect to ρ by P̂ (ρ∗) :

P̂
(
ρ∗
) = max

ρ≥0

(
ρ∗ρ − ρU (ρ)

)
. (10.49)

So, P̂ (ρ∗) is the Young-Fenchel transformation of the function ρU (ρ).
After calculating P̂ (ρ∗), we get
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Dual Bateman variational principle.2 The stationary points of the functional

t1∫

t0

∫

Ṽ (t)

P̂
(
ρ∗
)
dV dt +

∫

1
V

ρ1ϕd3x −
∫

V̊

ρ0ϕdV, (10.50)

−ρ∗ ≡ 1

2
(�iϕ + α�iβ)

(
�iϕ + α�iβ

)+ �ϕ

�t
+ α

�β

�t
+� (x) .

on the set of functions ϕ (x, t) , α (x, t) , β (x, t) selected by the constraints (10.40)
satisfy the continuity equations, the momentum equations, and the non-detachment
condition.
At the extremals, P̂ (ρ∗) coincides with the pressure of the fluid.

Function P̂ (ρ∗) can be explicitly found for isentropic flows of the ideal gas. In
this case it is a power function:

P̂
(
ρ∗
) = k

(
ρ∗
) γ

γ−1 , (10.51)

k being a constant. Indeed, for an ideal gas,

U (ρ) = Aργ−1

γ − 1
,

where the constant A is related to the initial state of the gas, while γ is a character-
istic of the gas. We have

p = ρ2 �U

�ρ
= Aργ , ρ∗ = d

dt
ρU (ρ) = Aγργ−1

γ − 1
, P̂

(
ρ∗ (ρ)

) = Aργ = p.

Hence, P̂ (ρ∗) is given by (10.51), where

k = A

(
γ − 1

γ A

) γ

γ−1

.

10.4 Potential Flows

Let us expand further the set of admissible functions by discarding one of the con-
straints on β (x, t) (10.40). Then the constraint (10.39) becomes unessential. We
arrive at

2 The term “dual variational principle” is due to the fact that in this principle, only the Lagrange
multipliers are varied.
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Kelvin variational principle. The stationary points of the functional

t1∫

t0

∫

Ṽ (t)

ρ

(
v2

2
−U (ρ)−� (x)

)
dV dt,

on the set of functions ρ (x, t) and vi (x, t) satisfying the continuity equation (10.30),
the boundary condition (10.36) and the initial-final conditions (10.35) are the po-
tential flows of the fluid.

Kelvin principle is equivalent to the variational principle for the functional
(10.41), in which one of the constraints is dropped. In this case �β becomes arbitrary
either at t = t0 or at t = t1. That yields α = 0 for t = t0 or for t = t1, which, together
with (10.43), shows that α is equal to zero identically. The corresponding extremals
are potential flows.
Dual variational principle. On the set of all functions ϕ (x, t), the stationary points
of the functional (10.50), for which

− ρ∗ = 1

2

�ϕ

�xi

�ϕ

�xi
+ �ϕ

�t
+� (x) , (10.52)

satisfy the continuity equation, the momentum equations, and the non-detachment
condition, if density, velocity and pressure are defined in terms of the potential, ϕ,

by the formulas

ρ = �P(ρ∗)
�ρ∗

, vi = �ϕ

�xi
, p = P̂

(
ρ∗
)
. (10.53)

The first formula is a consequence of the definition of the function P̂ (ρ∗) (10.49).
The variational principle follows from dual Bateman variational principle be-

cause, after dropping the constraints on β (x, t) at one of the time ends, function α

becomes zero at the stationary value of the action functional. This variational prin-
ciple can also be obtained directly from Kelvin principle using the general scheme
of constructing the dual variational principles considered in Sect. 5.6.

Motion of the fluids with free surfaces. If the region V (t) , occupied by the
fluid, does not coincide with the region Ṽ (t) , then V (t) should be varied sub-
ject to the constraint V (t) ⊂ Ṽ (t) . Let us consider as an example, a general-
ization of Luke variational principle for compressible fluids moving over a plane.
Denote the Cartesian coordinates in the plane by xα, and the distance from the
free surface to the plane at the point xα by h (xα, t) . Let the fluid be in a vessel
Ṽ = {xα, x : xα ∈ �, 0 ≤ x < +∞} , where � is some bounded region in the plane{
x1, x2

}
.

Variational principle. The true potential flow of ideal compressible barotropic fluid
over a plane is a stationary point of the functional
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t1∫

t0

∫

�

h(xα,t)∫

0

(
P̂
(
ρ∗
)− p̄ (t)

)
dxdx1dx2dt +

∫

�

⎛
⎝

h(xα,t)∫

0

ρ1ϕdx −
h0(xα )∫

0

ρ0ϕdx

⎞
⎠ dx1dx2,

(10.54)
where

−ρ∗ = 1

2

�ϕ

�xi

�ϕ

�xi
+ �ϕ

�t
+� (x) ,

on the set of functions ϕ (xα, x, t) and h (xα, t) selected by the constraints

h (xα, t0) = h0 (xα) , h (xα, t1) = h1 (xα) , h ≥ 0. (10.55)

Here P (ρ∗) is the function (10.49), p̄ (t) is a given pressure on the free surface,
ρ0 and ρ1 are the given density distributions at the instants t0 and t1, respectively. If
the values of the potential at times t0 and t1 are given, then the last term in (10.54)
is an additive constant.

10.5 Incompressible Fluid as a Limit Case of Compressible Fluid

The ideal incompressible fluid can be considered as the limit in a sequence of the
models of compressible fluids, for which U (ρ, S) → +∞ if at every ρ except
the point ρ0, where the internal energy is finite. In this section, we derive the least
action variational principle for incompressible fluid by the asymptotic analysis of
the action functional of compressible fluid. We will use the Lagrangian coordinates
as independent variables.

The action functional of the ideal compressible fluid is

I =
t1∫

t0

∫

V̊

ρ

(
1

2
viv

i −U (ρ, S)−� (x)

)
dV̊ dt. (10.56)

The admissible functions xi (Xa, t) take on the assigned values at the initial and
final instants,

xi
(
Xa, t0

) = x̊ i
(
Xa
)
, xi

(
Xa, t1

) = 1
xi
(
Xa
)
, (10.57)

and satisfy the non-detachment condition

xi
(
Xa, t

) ∈ �Ṽ (t) for Xa ∈ �V̊ , (10.58)

where for each t , Ṽ (t) is a given space region. Mass density, ρ, is expressed in
terms of the functions, xi (Xa, t) , as
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ρ = ρ0
(
Xa
) det

∥∥∥ �x̊ i

�Xa

∥∥∥
det

∥∥∥ �xi

�Xa

∥∥∥
, (10.59)

where U (ρ, S), � (x), ρ0 (X ), and S (X ) are given functions of their arguments, V̊
is a fixed region in the space of Lagrangian variables, X .

According to the least action principle, the true trajectories are the stationary
points of the functional (10.56) on the set of functions selected by the constraints
(10.57) and (10.58).

For definiteness, let us take the function U in the form

U = 1

2
a2 (ρ − ρ0)2

ρ2
0

, a2 = const.

The constant, a, has the meaning of the speed of sound. We consider motions for
which velocity is much smaller than a. Formally, one can treat it as a limit,3 a →
+∞.

The leading (in the asymptotic sense) term of the action functional is

t1∫

t0

∫

V̊

1

2
a2 (ρ − ρ0)2

ρ0
dV dt. (10.60)

The minimum of the functional (10.60) is equal to zero. The minimum is reached
at the function, ρ = ρ0 (X ), or, according to (10.59), for

det

∥∥∥∥
�xi

�Xa

∥∥∥∥ = det

∥∥∥∥
�x̊ i

�Xa

∥∥∥∥ . (10.61)

The given values of the functions xi (Xa, t) at the initial and final instants should
be consistent with the condition (10.61):

det

∥∥∥∥∥∥
�

1
xi

�Xa

∥∥∥∥∥∥
= det

∥∥∥∥
�x̊ i

�Xa

∥∥∥∥ . (10.62)

3 The general scheme of the variational-asymptotic method deals with the functionals depending
on small parameters. For a verbatim application of the general scheme, a small parameter, ε = 1/a,

should be used, and, instead of the functional, I, the functional

1

a2
I =

t1∫

t0

∫

V̊

ρ

(
1

2a2
vi v

i − 1

2

(ρ − ρ0)2

ρ2
0

− 1

a2
� (x)

)
dV̊ dt,

should be considered. In this section, we employ a natural reformulation of the variational-
asymptotic method for the case of large parameters.



472 10 Ideal Compressible Fluid

We assume that (10.62) holds true.
The stationary points of the leading term of the functional are functions xi (Xa, t)

satisfying the constraints (10.57), (10.58) and (10.61). These functions comprise the
set M0 in the general scheme of the variational-asymptotic method.

At the next step of the variational-asymptotic method, we present the particle
trajectories as a sum:

xi
(
Xa, t

) = x̄ i
(
Xa, t

)+ x ′i
(
Xa, t

)

where x̄ i (Xa, t) ∈M0 and x ′i are small. Accordingly,

ρ = ρ0 + ρ ′, ρ ′ = −ρ0�i x
′i .

Keeping in the functional the leading terms containing the functions, x ′i , we get

t1∫

t0

∫

V̊

ρ0

[
(v̄i + v′i )

dx ′i

dt
− 1

2
a2
(
�i x
′i)2 −�,i x

′i −
(

1

2
v̄k v̄k −�

)
�i x
′i
]

dV̊ dt,

v̄i ≡ dx̄ i (Xa, t) /dt, v′i ≡ dx ′i (Xa, t) /dt. The leading terms must have the same
order, therefore

(the magnitude of x ′i ) ∼ v

a
�,

v and � being the characteristic length and characteristic velocity of the problem,
respectively.4 Consequently, if the functional I is considered on the set M0, the
corrections will be small (on the order of a−2) and, in the first approximation, the
variational problem is reduced to minimizing the functional

t1∫

t0

∫

V̊

ρ0

(
1

2
v̄i v̄

i −� (x̄)

)
dV̊ dt, (10.63)

on the set of functions x̄ i (Xa, t) satisfying the constraints (10.57), (10.58) and
(10.61). This is indeed the least action principle for the ideal incompressible fluid
in Lagrangian coordinates considered in Sect. 9.1. Writing down the next approxi-
mation, one obtains the variational principle of the theory of sound waves. We leave
this as an exercise for the reader.

4 We assume that ∇� ∼ ∇vivi .



Chapter 11
Steady Motion of Ideal Fluid and Elastic Body

All the preceding variational formulations, including those in Eulerian coordinates,
dealt with the case when the flow region, V (t) , contains the same particles. If this
region does not move in the observer’s frame and its boundaries are penetrable to
the media (i.e. some particles leave the region while other particles enter it), then
the variational principles considered are not true. However, one may expect that
the same functionals, perhaps, modified by additional terms describing the energy
flux through penetrable parts of the boundary, have the stationary value on the true
motion. Such expectation is supported by the variational principles for open flows
of Sect. 9.11. In this chapter we show that this is indeed the case for steady open
flows of the ideal fluids and elastic bodies. We also consider simplifications caused
by steadiness of the flow in variational principles for closed flows.

11.1 The Kinematics of Steady Flow

The flows all the characteristics of which, including velocity and density, do not
change in time at every space point are called steady flows. For steady flows, the
particle trajectories, xi (Xa, t) , are the solutions of the system of ordinary differen-
tial equations,

dxi (Xa, t)

dt
= vi (xk). (11.1)

The system of equations is autonomous, i.e. its right hand side does not depend
on time. Therefore, motion occurs over a two-parametric family of stream lines, the
lines that are tangent to the velocity field. In three-dimensional space, the stream
lines of a divergence-free vector field can be either closed or cover densely some
regions. We consider further only the case when the stream lines can be described
by parametric equations,

xi = r i (Xμ,ζ ) ,

V.L. Berdichevsky, Variational Principles of Continuum Mechanics,
Interaction of Mechanics and Mathematics, DOI 10.1007/978-3-540-88467-5 11,
C© Springer-Verlag Berlin Heidelberg 2009
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where r i (Xμ,ζ ) are smooth functions, Xμ, μ = 1, 2, mark the stream line, and ζ

is the parameter along the stream line. This includes the case of closed stream lines
for closed flows and the case of smooth stream lines for open flows. It is convenient
to choose the parameter along the stream lines in such a way as to make r i

,ζ equal to
velocity:

r i
,ζ = vi . (11.2)

Any particle trajectory starting at a stream line belongs to this stream line . There-
fore Xμ are two of the three Lagrangian coordinates. Let us show that, for any steady
flow, the dependence of particle trajectories on the third Lagrangian coordinate,
X3 ≡ X, can be written simply as

xi = r i (Xμ, X + t) . (11.3)

Indeed, the motion of particles over a stream line, Xμ, is described by the function,
ζ (Xμ, X, t). According to (11.2), �ζ (Xμ, X, t)/�t = 1. We identify the Lagrangian
coordinate, X, with the parameter, ζ, at the initial instant. Thus, ζ = X + t.

The inversions of the formulas (11.3) are

Xμ = Xμ
(
xi
)
, X = ζ

(
xi
)− t, (11.4)

where ζ
(
xi
)

is some function of the Eulerian coordinates. Therefore, the steady
motion is defined either by providing three functions of the Lagrangian coordinates
r i (Xμ, ζ ), or three function of the Eulerian coordinates Xμ

(
xi
)
, and ζ

(
xi
)
. The

functions Xμ
(
xi
)

are called the stream functions of the flow. The variational prin-
ciples for the steady motion should naturally be formulated in the Eulerian coor-
dinates; therefore, we will further use the functions Xμ

(
xi
)

and ζ
(
xi
)

as the field
variables.

Let us express velocity and density in terms of functions Xμ
(
xi
)

and ζ
(
xi
)
. To

this end we write down the equations xi
a Xb

i = δb
a for a = 3, b = 1, 2, 3. Since

xi
3 = vi , we get

vi Xα
,i = 0, viζ,i = 1. (11.5)

The first two equations (11.5) mean that the vector vi is perpendicular to the
vectors X1

,i and X2
,i . Consequently, it is proportional to their vector product

vi = aeijk X1
, j X2

,k . (11.6)

The coefficient a is found from the last equation (11.5):

1

a
= eijk X1

, j X2
,kζ,i . (11.7)



11.2 Steady Motion with Impenetrable Boundaries 475

For steady flows density ρ does not change at any space point. In particular,
on some surface P intersecting the stream lines, ρ is a function only of Xμ: ρ =
ρ̃ (Xμ). Let us show that at any space point, ρ is given by the formula

ρ = σ (Xμ) eijk X1
, j X2

,kζ,i (11.8)

where the function σ (Xμ) is defined by the density values on the surface P:

σ (Xμ) = ρ̃ (Xμ)eijk X1
, j X2

,kζ,i onP. (11.9)

Indeed, due to (11.6), (11.7) and (11.8), the mass flux ρvi can be written as

ρvi = σ (Xμ) eijk X1
, j X2

,k .

Therefore, the function ρ (11.8) satisfies the continuity equation,

(
ρvi

)
,i =

(
σ (Xμ) eijk X1

, j X2
,k

)
,i
= 0.

The solution of the continuity equation which takes on given values on P is unique,
as is easy to see.

If a coordinate transformation Xμ → X ′μ is made, the coefficient σ acquires a
factor det

∥∥�Xμ/�X ′ν
∥∥ . Therefore, it can be made equal to unity by an appropriate

choice of the coordinates Xμ. Further, we assume that σ = 1, and that

ρvi = eijk X1
, j X2

,k, ρ = eijk X1
, j X2

,kζ,i . (11.10)

The steady flows have an important feature: the components of the inverse dis-
tortion, Xa

i , and, consequently, the components of the distortion, xi
a, and its deter-

minant, �, do not depend on time at each point. This follows from the formulas
(11.4).

In the course of motion, the particles cross the surface P . As the initial values of
particle’s characteristics, one can take their values at P . In particular, let us define x̊ i

a
by the equality x̊ i

a= xi
a on P . We will assume x̊ i

a to be known functions of Xμ. Note
that such a definition of x̊ i

a differs from the definition used in Chaps. 3 and 4: x̊ i
a

= xi
a for t = t0. We accept it to preserve the property of x̊ i

a to have zero variations:
δ x̊ i

a = 0. The variations of the object xi
a

∣∣
t=0 do not equal to zero when the stream

lines are varied.

11.2 Steady Motion with Impenetrable Boundaries

Consider a steady motion of continua in some region V . The particles do not enter
or leave the region, and vi ni = 0 everywhere on �V .

The particles which are on the boundary move over the boundary. In terms of the
functions Xμ

(
xi
)
, this condition can be written in the following way: there exists a

function f (Xμ), such that for xi ∈ �V
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f
(
Xμ

(
xi
)) = 0. (11.11)

The equation f (Xμ) = 0 defines the boundary of the region �V in the Lagrangian
coordinates.

According to the least action principle in Eulerian coordinates, the following
equality takes place:

∫ (
�L

�Xa
t

�

�t
�Xa + �L

�Xa
i

�

�xi
�Xa + �L

�Xa
�Xa

)
dV dt = 0, (11.12)

where

L = ρ

(
v2

2
−U

(
Xa

i , Xa
)−�

(
xi
))

.

Recall that the symbol � means the variation at a fixed space point.
Functions U and L do not depend explicitly on X, otherwise, they would change

with time at a fixed space point, but U and L may depend on Xμ.
According to (10.29),

�L

�Xa
t
= −ρvi x

i
a

and, since for the steady flow ρ, vi and xi
a do not depend on time for every space

point, and �Xa = 0 at t = t0, t1, the first term in (11.12) is equal to zero. The
other two terms contain only �Xa and their derivatives with respect to the spatial
coordinates. Therefore, the integral (11.12) is not affected by the constraints on �Xa

for t = t0, t1, and, at every instant, the equation holds:

∫

V

(
�L

�Xa
�Xa + �L

�Xa
i

�Xa
i

)
dV = 0. (11.13)

Now, note that in varying the functions (11.4), �Xa do not depend on time, while
the dependence of �Xa on space coordinates can be arbitrary. If we limit the admis-
sible variations by the variations �Xμ and �ζ , for which �Xμ = 0, �x̊ i

a = 0 on P ,
then δg̊ab = 0, δρ0 = 0, and the left hand side of (11.13) represents the variation of
the integral of L . Besides, as follows from (10.29), the equations

�L

�Xa
− �

�xi

�L

�Xa
i

= 0 (11.14)

are the equations of the steady flow of the compressible fluid. Therefore, the follow-
ing variational principle is valid.
Variational principle. Consider the functional
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∫

V

ρ

(
1

2
viv

i −U (ρ, Xμ)−� (x)

)
dV, (11.15)

where ρ and vi are expressed through Xμ (x) and ζ (x) according to the formulas
(11.10). The stationary points of this functional on the set of all functions Xμ

(
xi
)

and ζ
(
xi
)

obey the condition

� det
∥∥Xa

i

∥∥ = 0 onP (11.16)

and the constraint (11.11), satisfy the momentum equations of ideal compressible
fluid.

Let us give a direct derivation of the momentum equations. It is convenient to
write the integrand as

L = L
(

pi , ρ, Xμ, x
) = pi pi

2ρ
− ρU (ρ, Xμ)− ρ� (x) , pi ≡ ρvi ,

because the momentum, pi = ρvi , is expressed in terms of the field variables by
simple relations (11.10). We have1

δ I =
∫

V

(
�L

�pi

(
eijk

(
�X1

)
, j X2

,k + eijk X1
, j

(
�X2

)
,k

)
+ �L

�ρ

(
eijk

(
�X1

)
, j X2

,kζ ,i+

+eijk X1
, j

(
�X2

)
,k
ζ ,i + eijk X1

, j X2
,k (�ζ ),i

)
− ρT

�S

�Xμ
�Xμ

)
dV . (11.17)

We have for the derivatives of Lagrangian:

�L

�pi
= vi ,

�L

�ρ
= −

(
v2

2
+U + ρ

�U

�ρ
+�

)
.

Denote �L/�ρ by −R. Varying ζ , we obtain the equation

eijk (R),i X1
, j X2

,k = 0.

It shows that the determinant of the matrix of the derivatives of the functions R, X1,
and X2 is equal to zero. That means that R is a function of X1 and X2 only:

R = R
(
X1, X2

)
. (11.18)

1 The fluid is assumed to be homogeneous; thus,

�U

�Xμ = T
�S

�Xμ .
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The coefficient at �ζ in the surface integral, which is obtained after integration
by parts, is equal to zero because the vector eijk X1

, j X2
,k is equal to the velocity and

is, consequently, orthogonal to the normal vector.
Using (11.18) and the equality vi eijk X1

, j X2
,k = ρv2, which follows from (11.10),

the equations resulting from variations of X1 and X2 can be written as

(−vi, j e
ijkζ ,i

(
R, j − T S, j

))
X2

,k = 0,(−vi,keijkζ ,i
(
R,k − T S,k

))
X1

, j = 0.

These equations show that the vector in the parenthesis is proportional to velocity.
Denoting the corresponding factor by μ, we can write

− vi, j e
ijk + eijk

(
R, j − T S, j

)
ζ,i = μvk . (11.19)

The three equations (11.19), in fact, contain the two equations for the required
functions while the third one serves to determine μ. The coefficient μ can be ex-
cluded by projecting (11.19) on a plane perpendicular to the velocity, i.e. by con-
tracting (11.19) with ekrsv

r . Using (3.19) and the equalities viζ,i = 1, vi R,i = 0,
vi S,i = 0, we get the equations

vi, jv
j − �i

(
v2

2

)
+ R,i − T S,i = 0,

which, as can be seen from the definition of R,

R = v2

2
+U + ρ

�U

�ρ
+�, (11.20)

are the momentum equation of the compressible fluid.
At the variation, �X1, on the boundary of region V , the coefficient is

vi e
i jkn j X2

,k − Rei jkn j X2
,kζ,i .

Since the normal vector ni is proportional to � f
�X1 X1

,i + � f
�X2 X2

,i , this coefficient is

of the form a � f
�X1 . The coefficient at the variation, �X2, is of the form a � f

�X2 . Since
� f

�X1 �X1 + � f
�X2 �X2 = 0 on �V , the variation Xα on �V does not give additional

relations.
Let us formulate the analogous variational principle for the ideal incompressible

homogeneous fluid (it can be derived, from the considered one, by the variational-
asymptotic method).

Let the density be a constant: ρ = ρ0 = const . Then the functions Xμ and ζ

satisfy the constraint

ei jk X1
, j X2

,kζ,i ≡ const. (11.21)
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Based on (11.10) and (3.19), the kinetic energy is

ρv2

2
= 1

2ρ

[
X1

,i X1,i X2
, j X2, j − (X1

,i X2,i
)2
]
.

The integral of � over the given region V plays a role of an additive constant
and, thus, can be dropped. Therefore, the following variational principle is true.
Variational principle. The stationary points of the functional

1

2ρ0

∫

V

[
X1

,i X1,i X2
, j X2, j − (X1

,i X2,i
)2
]

dV

on the set of functions X1
(
xi
)
, X2

(
xi
)
, and ζ

(
xi
)

subject to the constraints (11.11)
and (11.21), satisfy the momentum equations of ideal incompressible fluid.

A similar variational principle is valid for elastic bodies.
Variational principle. The stationary points of the functional

∫

V

ρ

(
v2

2
−U −� (x)

)
dV (11.22)

(where ρ and vi are expressed in terms of functions, Xμ (x) and ζ (x) , according to
the formulas (11.10), and U is a known function of Xμ

,i , ζ,i , and Xμ) on the set of
functions Xμ (x) and ζ (x), subject to the constraints

onP : Xμ = X̊μ (x) , ζ = ζ̊ (x) , niζ,i = å (x) , ni Xμ

,i = åμ (x)

and the constraint (11.11), satisfy the momentum equations of the steady motion
of the elastic body inside the volume V and zero boundary conditions for tangent
components of the surface force.

The constraints on the surface P are set forth in order to have zero variations
of x̊ i

α and to make the left hand side of (11.13) a variation of the integral of L . In
deriving the equations, one should take into account that the constitutive equations
for the Cauchy stress tensor in terms of functions Xa

(
xi
)

have the form

σ i
j = −ρ

�U

�Xa
i

Xa
j .

11.3 Open Steady Flows of Ideal Fluid

Now let a part of the boundary, S, of the region V be penetrable to the particles
(Fig. 11.1). In this case, the variation of the functional (11.15) is not equal to zero.
It is natural to postulate the following variational equation:
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Fig. 11.1 An open flow

δ

∫

V

ρ

(
v2

2
−U (ρ, Xμ)−� (x)

)
dV =

∫

S

(
λ�ζ+λμ�Xμ

)
d A. (11.23)

The functional on the right hand side of (11.23) should be given.
In what follows, we consider the case when the functions Xμ (x) on S are known:

Xμ (x) = aμ (x) on S. (11.24)

If the parts of the boundary through which the particles enter and leave V are
denoted by S+ and S−, respectively, the condition (11.24) means that a mapping
S+ → S− is given: the starting point of the stream line on S+ maps to the end of
this line on S−. According to (11.24), �Xμ = 0 on S.

The functional on the right-hand side of (11.23) is specified by prescribing either
ζ (x) on S :

ζ (x) = a (x) on S, (11.25)

or the coefficient λ. Since the functional (11.15) is invariant with respect to the
shifts ζ → ζ + ϕ (Xμ), where ϕ is an arbitrary function of its argument, without
loss of generality one can set ζ (x) = 0 on S−. Then, assigning ζ (x) on S+ fixes the
velocity with which the particles go over the stream lines.

To figure out the physical meaning of λ, consider the coefficient at �ζ on the
boundary. As follows from (11.17), it has the value

− Rei jkni X1
, j X2

,k . (11.26)

It includes the derivatives of Xμ only over S; therefore, assigning λ with known Xμ

on S is equivalent to assigning R on S as a given function of Xμ:

R = R̃ (Xμ) on S. (11.27)

If Xμ and ζ are given on S, then the right-hand side of (11.23) is equal to zero,
and we get the following
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Variational principle. The steady motion of ideal compressible fluid is a stationary
point of the functional

δ

∫

V

ρ

(
v2

2
−U (ρ, Xμ)−� (x)

)
dV

on the set of functions Xμ
(
xi
)

and ζ (x), satisfying the conditions (11.24) and
(11.25) on S, and the condition (11.11) on �V − S.

If Xμ and λ are given on S, then the functional on the right-hand side of (11.23)
is holonomic and we have the following
Variational principle. The steady motion of ideal incompressible fluid is a station-
ary point of the functional

∫

V

ρ

(
v2

2
−U (ρ, Xμ)−� (x)

)
dV +

∫

S

R̃ei jkni X1
, j X2

,kζd A (11.28)

on the set of functions Xμ (x) and ζ (x), satisfying the condition (11.24) on S and
the condition (11.11) on �V − S.

The surface integral in (11.28) can be written as

∫

S+

(
R̃+ (Xμ)ζ+ − R̃− (Xμ)ζ−

)
d X1d X2,

where the indices + and − mark the quantities on S+ and S−, respectively. The
volume integral in (11.28) is invariant with respect to shifts of ζ by an arbitrary
function of Xμ. Therefore, in order for the variational problem to be well-posed, the
surface integral has to be equal to zero for all functions ζ+ = ζ− = ϕ (Xμ). Thus,
there is a necessary condition which has to be satisfied by the given functions:

R̃+ (Xμ) = R̃− (Xμ) .

Using the first equation (11.10), the surface integral in (11.28) can be written as

∫

S

ρvi ni R̃ζd A.

The function R̃ can be extended on the entire region V by setting R̃ = R̃ (Xμ (x)).
Then, taking into account that vi ni = 0 on �V−S,

(
ρvi

)
,i = 0, vi R̃,i = 0, viζ,i = 1,

the surface integral in (11.28) can be rewritten as

∫

S

ρvi ni R̃ζd A =
∫

�V

ρvi ni R̃ζd A =
∫

V

ρ R̃dV .
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Note that now varying ζ is equivalent to varying the density, ρ: although ρ de-
pends on the derivative of ζ along the stream line, the values of ζ are not given at
the boundary, and this derivative (or the density ρ) can be chosen as a new indepen-
dent function (see the discussion of a similar issue on the independent variation of
velocity in Sect. 9.3). Since pi = ρvi do not depend on ζ , we get
Giese-Kraiko variational principle. The steady flow of ideal compressible fluid is
a stationary point of the functional

∫

V

(
pi pi

2ρ
− ρU (ρ, Xμ)− ρ� (x)+ρ R̃ (Xμ)

)
dV (11.29)

on the set of all functions ρ (x) and Xμ (x) satisfying the constraints (11.24) on S
and the constraints (11.11) on �V − S.

In (11.29), pi = ρvi are expressed through Xμ according to the formulas (11.10).
Varying with respect to ρ yields an algebraic problem of calculating the station-

ary value of the function

pi pi

2ρ
− ρU (ρ, S)− ρ

(
�− R̃

)
.

The stationary value of ρ is found from the equation

pi pi

2ρ2
+U + ρ

�U

�ρ
+� = R̃, (11.30)

which has the meaning of the Bernoulli integral.
After excluding pi = ρvi and ρ by means of (11.30) and (11.10), the integrand

in (11.30) becomes a function of Xμ and the derivatives of Xμ only, and, as easy to
see, it is equal to ρv2 + p. Therefore, we obtain
Giese variational principle. The steady flow of ideal compressible fluid is a sta-
tionary points of the functional,

∫

V

(
ρv2 + p

)
dV, (11.31)

on the set of all functions Xμ (x) satisfying the constraints (11.24) on S and the
constraints (11.11) on �V − S.

As an example, let us calculate the functional (11.31) for a barotropic motion of
the ideal gas, when

U = A
ργ−1

γ − 1
.

Equation (11.30) becomes
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pi pi

2ρ2
+ γ A

γ − 1
ργ−1 = R̃ −�.

From this equation we find ρ as a function of the velocity

ρ =
(

γ − 1

γ A

) 1
γ−1

(
R̃ −�− v2

2

) 1
γ−1

(11.32)

Therefore,

ρ2v2 =
(

γ − 1

γ a

) 2
γ−1

(
R̃ −�− v2

2

) 2
γ−1

v2.

On the other hand, from the first equation (11.10),

ρ2v2 = ρviρvi = X1
,i X1,i X2

, j X2, j − (X1
,i X2,i

)2
.

Equating both exptressions for ρ2v2, we get a nonlinear equation which determines
v2 as a function of Xμ

,i :

(
γ − 1

γ a

) 2
γ−1

(
R̃ −�− v2

2

) 2
γ−1

v2 = X1
,i X1,i X2

, j X2, j − (X1
,i X2,i

)2
. (11.33)

From (11.32) and the constitutive equation p = aργ , up to a constant factor, the
integrand in (11.31) has the form

L =
(

R∗ −�− v2

2

) 1
γ−1

+ a

(
R∗ −�− v2

2

) γ

γ−1

where v2 is the solution of the equation (11.33) .

11.4 Two-Dimensional Flows

Consider in the Cartesian coordinate system x, y, z two-dimensional flows , i.e. the
flows for which X1 = ψ (x, y), X2 = z, ζ = ζ (x, y).

Equation (11.10) becomes

ρvx = ψ,y, ρvy = −ψ,x , vz = 0.
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All variational principles formulated above can be applied for two-dimensional
flows. For example, in the case of the isoenergetic motion,2 the Giese-Kraiko prin-
ciple transforms to
Lin-Rubinov variational principle. Steady two-dimensional flow of ideal gas is a
stationary point of the functional

∫

V

[
1

2ρ

(
ψ2

,x + ψ2
,y

)− aργ

γ − 1
+ R̃ρ

]
dxdy

on the set of functions ψ (x, y), which are constant on �V − S and take on the
assigned values on S.3

Analogously, the variational principles for axis-symmetric flows can be obtained:
one has to take into account that in the cylindrical coordinate system r, ϕ, z: X1 =
ψ (r, z) , X2 = ϕ, ζ = ζ (r, z).

11.5 Variational Principles on the Set of Equivortical Flows

All the variational principles for steady flows considered above are “true variational
principles” in the sense that the set of admissible functions is fixed and does not
depend on a stationary point. The variational principles of this section stand apart:
they are concerned with the variational features of stationary points on the sets that
are determined by the stationary points. Such variational principles are closer to the
non-holonomic variational problems: for each element u, its own set of admissible
variations, δu, is introduced.

We begin from the consideration of incompressible fluids. First, note that the
Lagrangian components of vorticity do not change over the stream lines: from (9.15)
and (11.2), v̊c = r i

cri,ζ − �cϕ, therefore,

ω̊a(Xμ, X ) = eabc�bv̊c = eabcr i
crib,ζ . (11.34)

Differentiating this relation over time we get

0 = eabcr i
crib,ζ ζ .

On the other hand, the derivative of ω̊a over X3, is

ω̊a
,3 = eabcr i

crib,ζ ζ .

Hence, ω̊a
,3 = 0.

2 Isoenergetic is the motion for which R̃ ≡ const.
3 Here, V is a region in the plane x, y, and S is a part of its boundary.
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For a steady motion and a given vorticity, ω̊a , kinetic energy is a functional of
r (X, ζ ),

K(r (X, ζ )) = ρ0

∫

V

1

2
V i ( x | r (X, ζ ))Vi ( x | r (X, ζ ))d3x . (11.35)

Velocity does not depend on time, and so does kinetic energy.
Consider the functional A on steady motion,

A = 1

3
ρ0

∫

V̊

eijkr
j (Xμ, X + t) r i

ζ (Xμ, X + t) rk
a (Xμ, X + t) ω̊a (Xμ) d3 X.

Transforming the integral to Eulerian variables,

A = 1

3
ρ0

∫

V

eijkr
jr i

ζ rk
a ω̊a (Xμ(x))

1

�
d3x,

we see that A does not depend on time. Consider the functional

J̄ = A−K, (11.36)

A =1

3
ρ0

∫

V̊

eijkr
j (Xμ, ζ ) r i

ζ (Xμ, ζ ) rk
a (Xμ, ζ ) ω̊a (Xμ) d2 Xdζ. (11.37)

For a given vorticity, ω̊a, J̄ is a functional of diffeomorphisms that map the set of
Lagrangian coordinates, V̊ , to a given region, V .

Variational principle. The true stream lines of the steady vortex flow are the sta-
tionary points of the functional (11.36) on the set of all compressible diffeomor-
phisms V̊ → V .

We check the validity of this statement by direct derivation. We have

δ
[
eijkr

jr i
ζ rk

a ω̊a (Xμ)
]

= eijkδr jr i
ζ rk

a ω̊a (Xμ)+ eijkr
j (δr i )ζ rk

a ω̊a (Xμ)+ eijkr
jr i

ζ (δrk)aω̊
a (Xμ)

= eijkδr jr i
ζ rk

a ω̊a (Xμ)+ (eijkr
jδr ir k

a ω̊a (Xμ))ζ − eijkr
j
ζ δr ir k

a ω̊a (Xμ)

−eijkr
jδr ir k

a,ζ ω̊
a (Xμ) (eijkr

jr i
ζ δrkω̊a (Xμ))a − eijkr

j
a r i

ζ δrkω̊a (Xμ)

−eijkr
jr i

ζ,aδrkω̊a (Xμ)− eijkr
jr i

ζ δrkω̊a
,a

= 3eijkδr jr i
ζ rk

a ω̊a (Xμ)+ (eijkr
jδr ir k

a ω̊a (Xμ))ζ + (eijkr
jr i

ζ δrkω̊a)a .

Here we used that ω̊a
,a = 0. Integral of the divergence terms vanish (recall that

ω̊an̊a = 0 at the boundary, and the stream lines are closed). Finally,
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δA =ρ0

∫

V̊

eijkδr jr i
ζ rk

a ω̊a (Xμ) d2 Xdζ. (11.38)

Variation of kinetic energy is (see (9.128))

δK =− ρ0

∫

V̊

eijkδr j V ir k
a ω̊a (Xμ) d2 Xdζ. (11.39)

We obtain the equation

eijk(r i
ζ − V i )ωk = 0. (11.40)

This is equivalent to the equation of steady flows,

eijk� j (v
m�mvk) = 0,

where by vk we mean the field Vk( x | r (X, ζ )). Indeed, (11.40) can be written as

r i
ζ = V i + λωi , (11.41)

where λ is an arbitrary function. The curl of acceleration is

eijk� j (v
m�mvk) = vm�mωi + eijk� jv

m�mvk .

From (9.110),

eijk� j (v
m�mvk) = vm�mωi − ωk�ivk + ωi �kvk . (11.42)

Divergence of velocity, �kvk , is zero because velocity field is found from the
kinematic problem of Sect. 9.5 (note that divergence of r i

ζ is, in general, non-zero).
For the first term in the right hand side of (11.42) we have

vm�mωi = (
rm
ζ − λωm

)
�m

(
r i

a(Xμ, ζ )
ω̊a(Xμ)

�

)
= �

�ζ
r i

a(Xμ, ζ )
ω̊a(Xμ)

�

−λωm�mωi = r i
ζ,a

ω̊a(Xμ)

�
− ωi

�

��

�ζ
− λωm�mωi = (V i + λωi ),mωm − ωi

�

��

�ζ

−λωm�mωi = = vi
,mωm + λ,mωiωm − ωi

�

��

�ζ
.

The derivative of the determinant can be expressed in terms of derivatives of r i
ζ :

��

�ζ
= ��

�r i
a

�r i
a

�ζ
= �

�Xa

�xi

�r i
ζ

�Xa
= �

�r i
ζ

�xi
.
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According to (11.41),

�r i
ζ

�xi
= ωi �λ

�xi
.

Thus

vm�mωi = vi
,mωm,

and the right hand side of (11.42) vanishes, i.e. momentum equations hold true at
the stationary points as claimed.

The idea to consider equivortical flows, i.e. the flows with the same vorticity, ω̊a,

as a set of admissible functions, was suggested by V.I. Arnold.
Arnold variational principle. The true stream lines of the steady vortex flow are
the stationary points of kinetic energy (11.35) on the set of all incompressible dif-
feomorphismsV̊ → V .

This result follows from (11.39): for incompressible flows,

�δr i

�xi
= 0,

and therefore there are functions, χk, such that

δr i = eijk� jχk or eijkδr i = � jχk − �kχ j . (11.43)

Hence,

δK =ρ0

∫

V̊

(
v jωk − vkω j

)
� jχkd2 Xdζ,

and, due to arbitrariness of χk,

(
v jωk − vkω j

)
, j = 0. (11.44)

The left hand side of (11.44) is the curl of the momentum equations of ideal incom-
pressible fluid. The boundary terms are zero due to conditions v j n j = ω j n j = 0.

Comparison of Arnold variational principle and the variational principle for the
functional J̄ suggests that the following statement holds:
Variational principle. Let xi = ř i (Xμ, ζ ) be the parametric equations of stream
lines of an incompressible steady ideal fluid flow with vorticity, ω̊a(Xμ), and the
parameter ζ be chosen in such a way that ř i

ζ is fluid velocity. Then ř i (Xμ, ζ ) is a
stationary point of the functional A (11.37) on the set of all incompressible diffeo-
morphisms V̊ → V .
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Indeed, from (11.38) and (11.43),4

δA =ρ0

∫

V

eijkδr j ř i
ζ ω̌

kd3x = −ρ0

∫

V

(ř i
ζ ω̌

k − ř k
ζ ω̌i )�iχkd3x,

and δA =0 yields the equations,

(ř i
ζ ω̌

k − ř k
ζ ω̌i ),i = 0.

which are equivalent to the equations of ideal incompressible fluid (note that
�i ř i

ζ = 0).
Arnold’s variational principle can be generalized to compressible fluids.

Arnold-Grinfeld variational principle. The stationary points of the total energy
functional of a barotropic fluid

∫

V

ρ

(
v2

2
+U (ρ)+� (x)

)
dV

on the set of all equivortical flows conserving the mass are the steady flows of ideal
compressible fluid.

In this variational principle, velocity and density are varied. Conservation of mass
is understood in the natural sense: admissible density and velocity satisfy the equa-
tions

(
ρvi

)
,i = 0, and the mapping conserving vorticity also conserves mass.

At first glance, this variational principle contradicts the variational principle for
the functional (11.15), which claims that the difference, not the sum, of kinetic and
internal energy has the stationary value. The resolution of this “paradox” is that
there are two different functionals of kinetic energy, the functional

K(r (X, ζ )) =
∫

V

ρ

2
V i ( x | r (X, ζ ))Vi ( x | r (X, ζ ))d3x (11.45)

and the functional

K1(r (X, ζ )) =
∫

V̊

ρ

2
r i
,ζ ri,ζ �d2 Xdζ. (11.46)

They coincide at the stationary point but differ at admissible motions. In Arnold
and Arnold-Grinfeld variational principles, the functional K(r (X, ζ )) , i.e. the func-
tional on equivortical motions, is employed while in the functional (11.15) kinetic
energy is understood as K1(r (X, ζ )). The variations of K(r (X, ζ )) and K1(r (X, ζ ))
differ by sign:

4 ω̌i is vorticity at the stationary point.
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δK(r (X, ζ )) = −δK1(r (X, ζ )). (11.47)

This is why the functional (11.15) is the difference of kinetic and potential energies,
while the variational principle on the set of equivortical flows claims stationarity of
the total energy.

To prove (11.47), we note that

δK1(r (X, ζ )) = δ

∫

V̊

ρ0

2
r i
,ζ ri,ζ

√
g̊d2 Xdζ =

∫

V̊
ρ0ri,ζ (δr i ),ζ

√
g̊d2 Xdζ,

and, due to closedness of stream lines and independence of the product, ρ0

√
g̊ = σ ,

on ζ (see (11.8)):

δK1 = −
∫

V̊
(ρ0

√
g̊vi ),ζ δr i d2 Xdζ = −

∫

V
ρvi, j r

j
,ζ δr i dV = −

∫

V
ρvi, jv

jδr i dV .

(11.48)
For variation of K(r (X, ζ )) we have

δK(r (X, ζ )) = δ

∫

V

ρ

2
V i ( x | r (X, ζ ))Vi ( x | r (X, ζ ))d3x

= δ

∫

V̊

ρ0

2
V i ( x | r (X, ζ ))Vi ( x | r (X, ζ ))

√
g̊d2 Xdζ

=
∫

V̊
ρ0ViδV i

√
g̊d2 Xdζ =

∫

V
ρViδV i dV .

Variation δV i is caused by variation of vorticity:

δωi = δ

(
r i

a

ω̊a

�

)
= (δr i ),a

ω̊a

�
− r i

a

ω̊a

�

�δrk

�xk
= (δr i ),kω

k − ωi (δrk),k .

Hence, the variation of Eulerian components of vorticity at a space point, �ωi , are

�ωi = δωi − δxkωi
,k = (δr i ),kω

k − ωi (δrk),k − δxkωi
,k = (δr iωk − ωiδrk),k .

Variation of velocity at a space point, �V i = δV i −δxk V i
,k, are linked to �ωi as

eik j �k�Vj = �ωi = (δr iωk − ωiδrk),k .

The general solution to this equation, �Vj , is a sum of the partial solution,
eikjδr iωk, and an arbitrary potential field, ϕ, j :

�Vj = eikjδr iωk + ϕ, j .
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Hence,

δK(r (X, ζ )) =
∫

V
ρV j (eikjδr iωk + ϕ, j + δxk Vj,k)dV =

∫

V
ρV j

[−δr i (Vj,i − Vi, j )+ � jϕ + δxk Vj,k
]

dV =
∫

V
ρV j

[
δr i Vi, j + ϕ, j

]
dV .

(11.49)

The last term in (11.49) vanishes because at the true motion (ρV j ), j = 0, and
ρV j n j = 0. Finally,

δK(r (X, ζ )) =
∫

V
ρV j Vi, jδr i dV . (11.50)

At the stationary point,5 vi = V i , and (11.47) follows from (11.48) and (11.50).
This reasoning yields the following variational principle for elastic bodies.

Variational principle. Let xi = ř i (Xμ, ζ ) be the parametric equations of stream
lines of a steady motion of homogeneous elastic body. Then ř i (Xμ, ζ ) is a stationary
point of the functional of total energy,

K(r (X, ζ ))+
∫

V̊

ρ0
(
U
(
r i

a

)+� (r (X, ζ )
)

dV̊ , (11.51)

on the set of all mappings, V̊ → V, that have the same vorticity as ř i (Xμ, ζ ).
If there are external forces at the boundary, then the corresponding linear func-

tional must be added to (11.51).

11.6 Potential Flows

This section is concerned with the extremal features of the steady potential flows of
the compressible fluid. For such flows, the closed system of equations comprises the
continuity equation

�ρvi

�xi
= 0 in V, (11.52)

the potentiality condition

vi = �ϕ

�xi
, (11.53)

5 For admissible motions, vi �= V i .
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the Cauchy-Lagrange integral

1

2
v2 + d (ρU (ρ))

dρ
+�

(
xi
) = k = const, (11.54)

and the boundary condition

ρvi ni = h on �V . (11.55)

It is necessary for the consistency of the system of equations that the total bound-
ary mass flux, h, vanishes

∫

�V

hd A = 0. (11.56)

Denote by ρ∗ the function of ∇ϕ and x :

ρ∗ ≡ k − 1

2
v2 −� (x) , vi = �ϕ

�xi
.

Here k is the constant from the Cauchy-Lagrange integral. The Cauchy-Lagrange
integral can be viewed as the relation following from maximization of ρ∗ρ−ρU (ρ)
with respect to ρ. The corresponding maximum value has the meaning of pressure.
As before, we denote it by P (ρ∗).
Bateman-Dirichlet variational principle. On the set of all functions ϕ (x), the sta-
tionary points of the functional

J =
∫

V

P
(
ρ∗
)

dV +
∫

�V

ϕhd A (11.57)

satisfy the equations of steady potential flows of compressible gas (11.52) and
(11.55).

The Cauchy-Lagrange integral is automatically valid due to the definition of
P (ρ∗).

The function, P (ρ∗) , is a convex function of ρ∗ as the Young-Fenchel transfor-
mation of the convex function, ρU (ρ). The same cannot be said of the dependence
of P on the potential gradient, ϕi ≡ �ϕ/�xi . Indeed, let us calculate the second
derivatives of P with respect to ϕi :

�P
�ϕi
= �P

�ρ∗
�ρ∗

�ϕi
= −ρϕi ,

�2P
�ϕi �ϕ j

= −ρδi j − dρ

dp

�P
�ϕ j
= −ρ

(
δi j − 1

c2
ϕiϕ j

)
.
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Here, c denotes the speed of sound: c2 = dp/dρ. The matrix
∥∥∥ �2P

�ϕi �ϕ j

∥∥∥ is negative

for the subsonic flows (v2 < c2) and positive for supersonic flows (v2 > c2). The
subsonic flow can be selected by replacing in (11.57) P (ρ∗) by P̃ (ρ∗) :

P̃
(
ρ∗
) =

{
P (ρ∗) , v2 ≤ c2

−∞ v2 > c2

The function P̃ (ρ∗) is apparently a strictly concave function of ϕi . Therefore, after
substituting P (ρ∗) by P̃ (ρ∗) in (11.57), the corresponding functional has a unique
stationary point, and at this stationary point the functional reaches its maximum.

The solvability condition of the boundary value problem (11.56) apparently co-
incides with the necessary condition for the functional to be bounded from above. It
is obtained by considering the shifts of ϕ for a constant.

Let us construct the dual variational principle. Denote the Young-Fenchel trans-
formation of the function-P̃ , which is convex with respect to ϕi , by P∗

(
pi
)
:

P∗
(

pi
) = max

ϕi

(
piϕi + P̃ (ϕi )

)
.

The dual variables have the meaning of momentum. If the flow corresponding to a
given momentum pi is subsonic, then P∗ is equal to p + ρ v2

2 expressed in terms of
momentum pi .

For the dual principle, we have

max
ϕ

⎡
⎣
∫

V

P̃
(
ρ∗
)

dV+
∫

�V

ϕhd A

⎤
⎦ = −min

ϕ

⎡
⎣−

∫

V

P̃
(
ρ∗
)

dV −
∫

�V

ϕhd A

⎤
⎦ =

−min
ϕ

max
pi

⎡
⎣
∫

V

(
piϕi − P∗

(
pi
))

dV −
∫

�V

ϕhd A

⎤
⎦ =

−max
pi

min
ϕ

⎡
⎣
∫

V

(
piϕi − P∗

(
pi
))

dV −
∫

�V

ϕhd A

⎤
⎦ =

−max
pi

⎡
⎣−

∫

V

P∗
(

pi
)

dV

⎤
⎦ = min

pi

⎡
⎣−

∫

V

P∗
(

pi
)
dV

⎤
⎦ . (11.58)

The minimum in (11.58) is calculated over all pi satisfying the constraints

�pi

�xi
= 0 in V, pi ni = h on �V . (11.59)

Thus, we get
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Bateman-Kelvin variational principle. The minimizing element of the functional,

∫

V

P∗
(

pi
)
dV,

considered on the set of vector fields, pi , satisfying the constraints (11.59), corre-
sponds to a subsonic flow of the compressible gas.

11.7 Regularization of Functionals in Unbounded Domains

As a rule, the flows in unbounded regions have diverging energy functionals. In
order to make the variational principles sensible, it is necessary to modify (to reg-
ularize) the energy functional without changing Euler equations. We describe the
regularization method for an example of a two-dimensional potential flow of com-
pressible gas following Shiffman [277].

Consider subsonic steady potential flow of a compressible gas in two-dimensional
plane, R2. The gas flows around some body, B. The velocity potential, ϕ, is a func-
tion of two variables, x and y, defined in the exterior, R2 − B, of the body, B. The
Lagrangian of the problem, L , is a function of ϕx = �ϕ/�x and ϕy = �ϕ/�y. Let
L
(
ϕx , ϕy

)
be a strictly convex function of ϕx and ϕy satisfying the condition

kai a
i ≤ �2L

�ϕi �ϕ j
ai a j ≤ K ai a

i (11.60)

for any ai and all ϕx and ϕy . Here, k and K are constants, and, for brevity, the
notation ϕ1 = ϕx and ϕ2 = ϕy is used. One can check that the function L =
−P (ρ∗) satisfies this condition in the case of the subsonic flows.

At infinity, velocity is supposed to tend to some limit values, ϕ∞i . We formulate
this condition by subjecting the admissible functions, ϕ, to the constraint

� =
∫

R2−B

(
ϕi − ϕ∞i

) (
ϕi − ϕi∞)dxdy < +∞. (11.61)

The integral (11.61) converges only if ϕi → ϕ∞i at infinity. Note that condition
(11.61) excludes non-zero circulation of velocity around the body B: for nonzero
circulation ϕi − ϕ∞i ∼ 1/r, and the integral (11.61) diverges.

The functional ∫

R2−B

L
(
ϕx , ϕy

)
dxdy

is obviously diverging for any admissible field. We need to replace it by another
functional, which yields the same Euler equations and remains meaningful for
ϕi → ϕ∞i at infinity. Consider the variational problem
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I =
∫

R2−B

[
L
(
ϕx , ϕy

)− L
(
ϕ∞x , ϕ∞y

)− Lϕx

(
ϕ∞x , ϕ∞y

) (
ϕx − ϕ∞x

)−

−Lϕy

(
ϕ∞x , ϕ∞y

) (
ϕy − ϕ∞y

)]
dxdy→ min .

This problem yields the same Euler equations. At the same time, the functional
I is bounded from above and below, because

I =
1∫

0

Lϕi ϕ j

∣∣
ϕ∞i +τ(ϕi−ϕ∞i )

(
ϕi − ϕ∞i

) (
ϕ j − ϕ∞j

)
(1− τ )dτdxdy. (11.62)

From (11.62) and (11.60), it follows that

1

2
k� ≤ I ≤ 1

2
K �.

Therefore, the minimization problem for the functional I is well-posed.
Regularization in other variational problems is based on the same idea.



Chapter 12
Principle of Least Dissipation

The variational principles of ideal fluid and elastic body are all based on ignoring the
dissipation. If the dissipation is not negligible, the governing equations do not have a
variational structure, they possess a quasi-variational structure (see Sect. 2.6). In the
another extreme case, when the dissipation plays the key role while the inertia and
the internal energy effects are negligible, the variational structure of the governing
equations appears again, but this is the variational structure of the non-equilibrium
processes. This chapter is concerned with the corresponding variational principles.
As has been mentioned in Sect. 2.6, these variational principles, in contrast to the
least action principle, reflect the special features of the models used rather than the
laws of Nature.

12.1 Heat Conduction

Consider an adiabatically isolated body, V . The heat propagation in the body is
governed by the following system of equations: the first law of thermodynamics,
linking the internal energy rate with the heat flux,

→
q ,

ρ
�U

�t
= −div

→
q, (12.1)

the constitutive equation

U = U (S) , (12.2)

and Fourier law

qi = Di j �

�x j

1

T
, T = dU (S)

d S
(12.3)

Due to Onsager’s relations,

Di j = D ji . (12.4)
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For adiabatically isolated body, there is no heat flux through the boundary:

qi ni = 0 on �V . (12.5)

In linear non-equilibrium thermodynamics one assumes that temperature deviates
slightly from a constant value, T0 :

T = T0 + T ′, T ′ � T0.

Therefore, Fourier law in linear approximation can be written as

qi = −Di j
0

T 2
0

� j T
′, Di j

0 = Di j
∣∣
T=T0

(12.6)

while for time derivative of internal energy we have

ρ
�U

�t
= ρ

dU

dT

∣∣∣∣
T=T0

�T ′

�t
= cv

�T ′

�t
, cv ≡ ρ

dU

dT

∣∣∣∣
T=T0

.

Finally, the first law of thermodynamics transforms into a linear equation for T ′ :

cv

�T ′

�t
= �i

(
Di j

0

T 2
0

� j T
′
)

.

This equation contains Di j
0 , the values of Di j at T = T0. What follows pertains

to the case of linear non-equilibrium thermodynamics and to the special models of
non-equilibrium thermodynamics when temperature may change considerably, but,
as in the linear case, heat conductivities, Di j , do not depend on temperature.

Let us find the total dissipation1 in the continuum at an instant t :

D = d

dt

∫

V

ρSdV =
∫

V

ρ
�S

�t
dV =

∫

V

1

T
ρ

�U

�t
dV

=
∫

V

1

T
div

→
q dV =

∫

V

→
q∇ 1

T
dV =

∫

V

Di j �

�xi

1

T

�

�x j

1

T
dV . (12.7)

Here we used (12.1), (12.2), (12.3), (12.4) and (12.5). In terms of coldness, β ≡
1/T, the dissipation is

D =
∫

V

Di j �iβ� jβ dV . (12.8)

1 Another term used for this quantity is the dissipation rate.
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In (12.8) the coefficients may depend on space points but do not depend on β, and
the quadratic form, Di jξiξ j , is non-negative. In thermodynamic equilibrium, β ≡
const and dissipation is equal to zero. Since dissipation is non-negative, one can say
that dissipation is minimum in thermodynamic equilibrium. It is remarkable that
dissipation is also minimum in a non-equilibrium steady process when we maintain
temperature in some part of the body.
Least dissipation principle. If temperature is maintained in a part, V2, of region
V , then dissipation considered as a functional of temperature (or coldness) attains
its minimum value for steady heat conduction in region V1 = V − V2.

Indeed,

D =
∫

V1

Di j �iβ� jβ dV +
∫

V2

Di j �iβ� jβ dV . (12.9)

The second integral is known. Varying the first integral with respect to β, we
obtain the equation of steady heat conduction,

�i q
i = 0, (12.10)

where qi are given by (12.3). The admissible temperature fields are assumed to be
smooth. The values of β, given in the region, V2, also determine the values of β on
the surface, �, separating V1 and V2. Since the first integral in (12.9) feels the values
of β at the boundary of V1, the values of β on � must be considered as known. On
the surface �V1 − � the admissible functions, β (x), are arbitrary. This yields the
boundary condition of adiabatic isolation, qi ni = 0 at �V1 − �.

The second integral (12.9) plays the role of an additive constant and may be omit-
ted. Dropping also index 1 at the region V we arrive at the minimization problem
for the functional

D (β) =
∫

V

Di j �iβ� jβ dV

on the set of all functions β taking the prescribed values on � :

β = β(b) on �.

Applying the general scheme of construction of the dual variational principles,
we obtain the following
Dual variational principle. The true heat flux gives the maximum value to the func-
tional

2
∫

�

qi niβ(b)d A −
∫

V

D−1
i j qi q j dV (12.11)
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on the set of all vector fields, qi , selected by (12.10).
Here D−1

i j is the inverse tensor to Di j . The maximum value of the functional
(12.11) is equal to dissipation.

Note that the minimum dissipation principle does not hold if heat conductivities
depend on temperature. This emphasizes its restricted physical meaning.

If the heat flux is given on the surface �, then the true coldness field provides
minimum to the functional

∫

V

Di j �iβ� jβ dV − 2
∫

�

qnβd A. (12.12)

This functional can be obtained from the dissipation functional (12.9) in the fol-
lowing way. Let us fix β on �. Then the true β-field gives minimum to the second
term in (12.9). Presenting this term by means of the dual variational problem we
have

D =
∫

V1

Di j �iβ� jβ dV + 2
∫

�

qi niβd A −
∫

V2

D−1
i j qi q j dV . (12.13)

It remains to note that the unit normal vector in (12.13) looks outside V2, and,
therefore, qn in (12.12) is qn = −qi ni . Therefore, the variational principle for
the functional (12.12) can be also interpreted as the minimum dissipation principle
when the heat flux vector in V2 is fixed (it must be admissible, i.e. satisfy (12.10) in
V2).

12.2 Creeping Motion of Viscous Fluid

Consider a slow flow of viscous fluid in a container, V . The velocity is assumed to
be so small that inertia forces are negligible compared to the friction forces. The
velocity of the fluid is prescribed on the boundary,

vi = vi
(b) on �V . (12.14)

The flow is incompressible,

�vi

�xi
= 0, (12.15)

while the fluid is homogeneous and isotropic. Then the velocity field is the solution
of the Stokes’ equations,

− �p

�xi
+ μ�vi = 0 in V, (12.16)
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with the boundary conditions (12.14). The dependence of the velocity field on time
appears if the boundary values, or the boundary itself, slowly depend on time. Then
the following variational principle holds.
Least dissipation principle. The true motion of viscous fluid delivers the minimum
value to the total dissipation

D = 2
∫

V

μv(i, j)v
(i, j)dV (12.17)

on the set of all velocity fields selected by the constraints (12.14) and (12.15).
Indeed, introducing the Lagrange multiplier, p, for the constraint (12.15) we get

the functional
∫

V

(
2μv(i, j)v

(i, j) − pvi
,i

)
dV .

Its Euler equations with respect to velocity is (12.16).
The functional D differs from the true dissipation by the factor in the integrand:

the dissipation is

2
∫

μ

T
v(i, j)v

(i, j)dV .

We will assume in this and the next section that temperature is constant and, writing
the dissipation, drop the factor 1/T .

The minimum property of dissipation is a characteristic of the model rather than a
manifestation of a deep physical feature of nonequilibrium processes. This becomes
especially clear if we consider a class of models of viscous flow with non-linear po-

tential stress-strain rate relations. For such models, a dissipation potential, D
(

e′i j

)
,

exists such that2

σ ′i j = �D

�e′i j

, ei j ≡ v(i, j) = 1

2

(
�vi

�x j
+ �v j

�xi

)
. (12.18)

The momentum equations are

− �p

�xi
+ � jσ

′i j = 0. (12.19)

These equations can be obtained by minimization of the functional

∫

V

D
(
v(i, j)

)
dV (12.20)

2 Primes denote tensor deviators: σ ′i j = σ i j − 1
3 σ k

k δi j , e′i j = ei j − 1
3 ek

kδ
i j .
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on the set of incompressible velocity fields obeying the boundary conditions (12.14).
If D is a quadratic form,

D = μe′i j e
′i j , (12.21)

then the functional (12.20) differs from the total dissipation

∫

V

σ ′i j e′i j dV

by a factor, i.e. the minimum dissipation principle holds. The same is true for any
homogeneous function like, for example, a function

D = μ
(
e′i j e
′i j
) 1

2 (1+ 1
m )

considered in plasticity theory. However, if the dissipative potential is not a
homogeneous function, like, for example, the dissipative potential of visco-plastic
medium,

D = k
√

e′i j e
′i j + μe′i j e

′i j

then the functional to be minimized, (12.20), differs from the total dissipation.
Further, we consider the case of the media with general constitutive equations

(12.18). We assume that the dissipative potential D is a strictly convex function of
the strain rate tensor, ei j .

Let the boundary of region V comprises two surfaces, S and �; surface forces,
fi , are given on S, while velocities are given on �:

vi = vi
(b) on �. (12.22)

Besides, some body forces, Fi , acts on the fluid.
Variational principle. The true motion provides the minimum value to the func-
tional

I (v) =
∫

V

D
(
ei j
)

dV − l (v) , (12.23)

l (v) =
∫

V

Fiv
i dV +

∫

S

fiv
i d A (12.24)

on the set of all velocity fields satisfying the constraints (12.15) and (12.22),
If there are no kinematic constraints (12.22) (� = ∅ and S = �V ), then the

functional (12.23) has a kernel – the set of all velocity fields corresponding to the
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rigid motions. For such fields, D = 0. The necessary condition for the functional
I (v) to be bounded from below is the vanishing of the resultant and the total moment
of the forces acting on the fluid:

∫

V

Fi dV +
∫

�V

fi d A = 0,

∫

V

ei jk Fj xkdV +
∫

�V

ei jk f j xkd A = 0. (12.25)

The sufficiency of the condition (12.25) or (12.22) for boundedness below can
be proven in the same way as for elastic bodies. The uniqueness theorem follows
from the strict convexity of the dissipative potential and the convexity of the set of
the admissible functions.

Now we construct the dual variational principle. Denoting the dual variables, the
components of the viscous stress tensor, by τ i j and the Young-Fenchel transforma-

tion of the function D
(

e′i j

)
by D∗

(
τ i j
)

(in the space of the deviators of the strain

rate tensor),

D∗
(
τ i j
) = max

e′i j

(
τ i j e′i j − D

(
e′i j

))
,

we can write

D
(
e′i j

) = max
(
τ i j e′i j − D∗

(
τ i j
))

.

The maximum is calculated over all τ i j of the deviator space,

τ i j = τ j i , τ i
i = 0. (12.26)

Rewriting the variational principle as the minimax principle

Ǐ = min
v∈(12.22),

(12.15)

max
τ i j∈(12.26)

⎛
⎝
∫

V

(
τ i j e′i j − D∗

(
τ i j
))

dV − l (v)

⎞
⎠ .

and getting rid of the constraint (12.15) by introducing a Lagrange multiplier, the
pressure p (x), we have

Ǐ = min
v∈(12.22)

max
p,τ∈(12.26)

⎛
⎝� (v, p, τ )−

∫

V

D∗
(
τ i j
)

dV

⎞
⎠ .

Here,

� (v, p, τ ) =
∫

V

(−pgi j + τ i j
) �vi

�x j
dV − l (v) .
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Following to the general scheme of Sect. 5.8, one can check that the order of
calculation of maximum and minimum can be changed, and, if

− �p

�xi
+ �τ i j

�x j
+ Fi = 0 in V,

(−pgi j+τ i j
)

n j = f i on S, (12.27)

then

min
vi∈(12.22)

� (v, p, τ ) =
∫

�

(
−pδ

j
i + τ

j
i

)
n jv

i
(b)dσ ≡ l∗ (p, τ ) .

If p and τ i j does not satisfy the constraints (12.27), then

min
vi∈(12.22)

� (v, p, τ ) = −∞.

After minimization over vi , we need to find maximum with respect to p, and
τ i j . Therefore, all fields p, τ i j which do not satisfy the constraints (12.27) should
be excluded. Thus, we get
Dual variational principle. The true stress field provides the maximum for the func-
tional

J (p, τ ) = l∗ (p, τ )−
∫

V

D∗
(
τ i j
)

dV

on all fields p and τ i j satisfying the constraints (12.27). Moreover,

max J (p, τ ) = min I (v) .

12.3 Ideal Plasticity

In metals, elastic deformation is usually negligible compared to plastic deformation
(on the order of 10−4 compared to, say, 10−2). Therefore, one may identify the
plastic strain rate with the total strain rate

ε̇
(p)
i j = ei j = 1

2

(
�vi

�x j
+ �v j

�xi

)
. (12.28)

Since the plastic deformation usually preserves the volume, motion is incom-
pressible:

�vi

�xi
= 0. (12.29)
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For slow motion, one may ignore the inertia effects, and momentum equations
become

�σ i j

�x j
= 0. (12.30)

Besides, for slow motion heat conduction makes temperature constant over the
specimen and equal to the ambient temperature. Thus,

ρT
d S

dt
= σ i j ei j ≡ D.

In ideal plasticity, D is assumed to be a homogeneous function of first order

with respect to e′i j : D = D
(

e′i j

)
; D

(
λe′i j

)
= |λ| D

(
e′i j

)
. The total dissipation

becomes a functional of the velocity field:

D =
∫

V

σ i j ei j dV =
∫

V

D
(
ei j
)

dV . (12.31)

If velocity is prescribed on the boundary,

vi = vi
(b) on �V, (12.32)

then the variational principle holds:
Least dissipation principle. The true velocity field provides the minimum value to
the dissipation functional on the set of all incompressible velocity fields with the
prescribed boundary values.

At the minimizer, the stresses

σ i j = −pδi j + σ ′i j , σ ′i j = �D

�e′i j

satisfy the equilibrium equations, p being the Lagrange multiplier for the incom-
pressibility condition (12.29).

Ideal plastic body is a special case of non-linear viscous media. For an ideal
plastic body the dissipation is a homogeneous function of the first order. This feature
of dissipation makes an ideal plastic body drastically different from viscous fluid.
To see that, let us construct the dual variational principle. By the definition of the
Young-Fenchel transformation of the dissipation density, D:

D∗
(
σ ′i j

) = max
e′i j

(
σ ′i j e′i j − D

(
e′i j

))
. (12.33)

First, we compute D∗ for von Mises model, when

D = k
√

e′i j e
′i j .
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We have to find

D∗
(
σ ′i j

) = max
e′i j

(
σ ′i j e′i j − k

√
e′i j e
′i j
)

.

Any element in the strain rate space can be presented as a product of an element,
e̊′i j , on the unit sphere

e̊′i j e̊
′i j = 1

and a positive number, λ :

e′i j = λe̊′i j .

Therefore, the maximization problem can be split into the succession of the two
problems

D∗
(
σ ′i j

) = max
λ≥0

max
e̊′i j

λ
(
σ ′i j e̊′i j − k

)
. (12.34)

Maximum of a linear function, σ ′i j e̊′i j , on the sphere is achieved when e̊′i j is
proportional to σ ′i j : the linear function is the scalar product of a unit vector, e̊′,
and a given vector, σ ′, in a five-dimensional space of deviator tensors; it reaches its
maximum when the angle between the two vectors is equal to zero:

e̊′i j = κσ ′i j , κ
2σ ′i jσ

′i j = 1

Hence,

D∗
(
σ ′i j

) = max
λ≥0

λ
(√

σ ′i jσ
′i j − k

)
.

Obviously, D∗ may have only two values, 0 and +∞, depending on whether√
σ ′i jσ

′i j − k smaller or greater than zero:

D∗
(
σ ′i j

) =
{

0 if σ ′i jσ
′i j ≤ k2

+∞ if σ ′i jσ
′i j > k2

. (12.35)

According to the general scheme of Sect. 5.6 the dual functional is

∫

�V

(−pδi j + σ ′i j
)

n jvi(b)d A −
∫

V

D∗
(
σ ′i j

)
dV .
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We have to maximize this functional, and thus all stress fields for which D∗ =
+∞ must be excluded. Therefore, we admit only the stress field such that

σ ′i jσ
′i j ≤ k2.

The surface σ ′i jσ
′i j = k2 is called yield surface. We arrive at

Dual variational principle. The true stress field provides the maximum value to the
linear functional

∫

�V

(−pδi j + σ ′i j
)

n jvi(b)d A

on the set of all stress fields which obey the equilibrium equations and lie inside the
yield surface.

For a general homogeneous convex function of the first order, D∗
(

e′i j

)
, which

is smooth everywhere (except the origin where such a function is always singular),
Young-Fenchel transformation is similar to (12.35):

D∗
(
σ ′i j

) =
{

0 if f
(
σ ′i j

) ≤ 0

+∞ if f
(
σ ′i j

)
> 0

where f
(
σ ′i j

)
, the yield function, is some smooth convex function. Accordingly, in

the dual variational principle the admissible stresses obey the condition f
(
σ ′i j

) ≤
0. In ideal plasticity theory some non-smooth convex functions are also used; such
cases can be treated as limits in a sequence of smooth dissipation functions.

12.4 Fluctuations and Variations in Steady Non-Equilibrium
Processes

We have seen in Chap. 2 a deep relationship between fluctuations and variations:
Einstein’s formula for probability density of macroscopic variables (2.38) shows
that in thermodynamic equilibrium the most probable state corresponds to the max-
imum value of entropy, i.e. it yields the first Gibbs principle. The question arises
whether a similar fact is true for non-equilibrium processes. In this section we give
some arguments in favor of the positive answer.

Consider a steady non-equilibrium process in some region, V . The major ex-
ample will be heat conduction. Let the process be characterized by a finite set of
variables, y = (y1, . . . , ym). In case of heat conduction we partition the region in a
large number of small subregions and characterize the process in each subregion by
a finite number of variables. The variables, y, fluctuate and have some probability
density function, f (y). We define entropy of the non-equilibrium process by the
formula
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f (y) = const eS(y). (12.36)

Since the system is macroscopic, fluctuations of y are small. Besides, it is
observed a certain macroscopic state, ŷ. The most probable values of y provide
maximum to S(y). Therefore, there must be a universal
Variational principle. The true values of the characteristics of a steady non-
equilibrium process correspond to the maximum value of the non-equilibrium
entropy.

Unfortunately, we do not have a reason to state that there is a universal function
of y, S(y), which does not depend on boundary conditions. In principle, for different
true states, ŷ, the non-equilibrium entropy could be different: S = S(ŷ, y). Function
S(ŷ, y) must have a maximum over y at y = ŷ. If S(ŷ, y) does not depend on ŷ, we
would have a “true” variational principle.

Let us try to construct the non-equilibrium entropy for heat conduction. First
of all, we accept that the non-equilibrium entropy coincides with the equilibrium
one for an equilibrium process. The equilibrium entropy for two bodies being in
thermal contact was considered in Sect. 2.5. The thermodynamic state of the body
is characterized by its energy. Denote the equilibrium entropies of the two bodies
by S1(E1) and S2(E2), E1 and E2 being the energies of the bodies. The total energy,
E = E1+E2, is conserved because the system, body 1+body 2, is isolated. The total
equilibrium entropy, S(E1, E2), is the sum of equilibrium entropies of the bodies:

S(E1, E2) = S1(E1)+ S2(E2).

The energies, E1 and E2, fluctuate. Their probability density function is

f (E1, E2) = const δ(E − E1 − E2) eS1(E1)+S2(E2). (12.37)

The most probable values of energies correspond to the maximum of entropy,
S1(E1)+ S2(E2), under the constraint E1 + E2 = E . As we have seen in Sect. 2.5,
this yields the equality of the temperatures of the bodies at equilibrium.

Expanding this reasoning to a continuum, we choose as the characteristic of the
thermodynamic state of the system the field of the density of internal energy per unit
mass, U (x). The equilibrium entropy density per unit mass is denoted, as before,
by S. The thermodynamic properties of the system are described by the function,
S = S(U ). Internal energy fluctuates. The fluctuations occur in the functional space
of the functions, U (x). The corresponding probability density is a functional, f (U ).
Generalizing (12.37) we can write

f (U ) = const δ

(
E −

∫

V
ρUdV

)
eS(U ), (12.38)

S(U ) =
∫

V
ρS(U )dV . (12.39)

Again, maximum of entropy under constraint,
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∫

V
ρUdV = E,

corresponds to constant temperature over the body, as it must be in thermodynamic
equilibrium.

Let the process now be non-equilibrium. We characterize it by the two fields,
energy density, U (x), and the heat flux, qi (x). For definiteness, let the heat flux be
prescribed at the boundary,

qi ni

∣∣
�V
= q(b). (12.40)

We wish to construct a functional, S(U, q), which has the maximum value at the
solution of the boundary value problem,

�i q̂
i = 0, q̂ i = κ�i 1

T
,

1

T
≡ �S(Û )

�Û
, q̂ i ni

∣∣
�V = q(b). (12.41)

Besides, for isolated bodies, i.e. for q(b) = 0, the non-equilibrium entropy, S(U, q),
should coincide with the equilibrium one (12.39). We will consider the general case,
when the heat conductivity, κ, depends on temperature, or, for our choice of primary
thermodynamic characteristic, on energy, κ = κ(U ). Then, as was mentioned in
Sect. 12.1, the least dissipation principle is not valid, while we expect to obtain a
meaningful variational principle for such a case.

Fluctuations of energy and the heat flux are not arbitrary; they are linked by the
energy equation:

ρ
�U

�t
= −�qi

�xi
. (12.42)

Let the initial value of U be Û , and �t be so small that qi can be viewed as
practically constant during this time interval. Denote by δU and δqi the differences,

δU = U − Û , δqi = qi − q̂ i .

Then from (12.42),

ρδU = −�δqi

�xi
�t. (12.43)

We see that the fluctuations of energy are completely determined by the fluctuations
of the heat flux.
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Consider the functional

S(U, q) =
∫

V

(
ρS(U )− ρ

2κ(Û )
qi qi�t

)
dV . (12.44)

For qi = 0 it transforms to the functional (12.39). We consider the functional
(12.44) in a small vicinity of the field, q̂ i , which is divergence-free. Variations of
heat flux, δqi , are not divergence-free. The non-zero divergence of δqi yields the
variation of energy. At the boundary δqi ni = 0. The dependence of S(U, q) on the
true fields, Û and q̂ i , enters through the small deviations of U and qi from Û and q̂ i .

Variation of the functional, S(U, q), is

δS(U, q) =
∫

V
ρ

(
1

T
δU − 1

κ(Û )
qiδqi�t

)
dV . (12.45)

Plugging in (12.45) the expression of δU in terms of δqi (12.43), and setting δS =0
for arbitrary δqi , we arrive at the equations of steady heat conduction. Similarly, the
variational principles for other non-equilibrium processes can be formulated.

The variational principle described is not a “true” variational principle: the func-
tional depends on the stationary point. This makes it similar to the variational prin-
ciples for vortex flows of Sects. 9.6 and 11.5.



Chapter 13
Motion of Rigid Bodies in Fluids

13.1 Motion of a Rigid Body in Creeping Flow of Viscous Fluid

Consider in some vessel, V, a linearly viscous isotropic incompressible fluid. The
fluid occupies the entire vessel and contains a rigid body which can move in the fluid
(Fig. 13.1). At some instant, the body occupies a region B and has a translational
velocity, ui :

vi = ui on �B. (13.1)

At the walls of the vessel, the fluid does not slip:

vi = 0 on �V . (13.2)

If the region V is unbounded, then the no-slip condition at the boundary is re-
placed by the condition that the fluid is at rest at infinity.
Least dissipation principle. The true fluid motion minimizes the dissipation

D (v) =
∫

V−B

2μei j e
i j dV, ei j = 1

2

(
�vi

�x j
+ �v j

�xi

)
, (13.3)

on the set of all incompressible velocity fields,

�vi

�xi
= 0, (13.4)

satisfying the boundary conditions (13.1), (13.2).
The minimizing element, v̌i , obeys the momentum equation,

�σ i j

�x j
= 0, σ i j = − p̌gi j + μ

(
�i v̌ j + � j v̌i

)
, (13.5)

where p̌ is the Lagrange multiplier for the incompressibility constraint (13.4).
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Fig. 13.1 Notation for
motion of rigid body in a
vessel

The system of equations for the minimizer, the so-called Stokes approximation,
is linear. Therefore v̌i depends linearly on ui . Hence, the minimum value, Ď, of
dissipation D (v) is a quadratic function of ui :

Ď = Di j ui u j .

To determine the meaning of the coefficients of this quadratic form we note that,
due to (13.1), (13.2), (13.4) and (13.5),

Ď =
∫

V−B

2μv̌(i, j)v̌
(i, j)dV =

∫

V−B

σ i j v̌i, j dV =
∫

�B

σ i j n j v̌i d A = Fi ui .

Here we introduced the notation,

Fi ≡
∫

�B

σ i j n j d A. (13.6)

The normal vector in (13.6) looks outside the region occupied by the fluid, and
therefore Fi are the components of the force with which the body acts on the fluid.
The negative force, −Fi , is the force acting on the body. Since Fi is linear with
respect to ui ,

Fi = Di j u j .

The force is potential,

Fi = �D

�ui
,

with the dissipative potential, D, equal to

D = 1

2
D.

The estimates of the minimum value of dissipation yield the estimates of the
force. Consider a few elementary consequences of the least dissipation principle.
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1. For a steady flow of the viscous fluid, the force found within the Stokes approx-
imation gives a low bound for the force calculated by means of the Navier-Stokes
equations.

Indeed, the value of dissipation on any velocity field, including the velocity field
found from the Navier-Stokes equations, is greater than that for the velocity field
minimizing the functional D (v) and corresponding to the Stokes theory. It remains
to show that for steady flow, Fi ui coincides with dissipation in the framework of
the Navier-Stokes theory. If vi is a solution of the Navier-Stokes equations and Fi

N S
is the force computed from the Navier-Stokes theory, then

∫

V−B

2μv(i, j)v
(i, j)dV =

∫

V−B

(2μv(i, j) − pδ
i j

)vi, j dV

= Fi
N Sui −

∫

V−B

(2μv(i, j) − pδ
i j

), jvi dV = Fi
N Sui −

∫

V−B

ρv jvi
, jvi dV

= Fi
N Sui −

∫

V−B

1

2
(ρv jv2), j dV = Fi

N Sui −
∫

�B

1

2
ρu j u2n j d A.

Here we used the boundary conditions of the Navier-Stokes theory: vi = ui on �B.
The last integral is, obviously, zero. Thus, the dissipation is equal to Fi

N Sui .

2. The dissipation, and, consequently, the force increases as the size of the body
increases.

Indeed, let a body B ′ be added to the body B. Denote by DB (v) and ĎB+B ′ (v)
the dissipations corresponding to the bodies B and B ′, respectively, and by vi

B+B ′

the velocity field of the fluid motion around the body B + B ′.Consider the velocity
field

ṽi =
{

vi
B+B ′ , x ∈ V − (B + B ′

)
ui x ∈ B ′

The velocity field ṽi is defined outside the body B and satisfies the conditions on
�B and �V . Consequently, it is admissible in the minimization problem for the func-
tional DB (v). We have

ĎB ≤ DB (ṽ) = ĎB+B ′ ,

as claimed.
An immediate consequence of that feature is the following statement.
3. The force acting on the body in the Stokes flow increases if any additional

body is placed in the flow and kept at rest.
If the rigid body, B, moves arbitrarily, then

vi = ui + eijkω
j
(
xk−rk

)
on �B, (13.7)
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where rk are the coordinates of the point of the body with the velocity ui , and ω j

the angular velocity. It can be checked that Ď is the quadratic form with respect to
ui and ωi , and the derivatives

Fi = 1

2

�Ď
�ui

, Mi = 1

2

�Ď
�ωi

, (13.8)

have the meaning of the resultant and the moment of the forces with which the
body acts on the fluid. The moments have the same variational features as those
mentioned for the resultants.

The inversion of formulas (13.8) is

ui = �D∗(F, M)

�Fi , ωi = �D∗(F, M)

�Mi , (13.9)

where D∗(F, M) is the Legendre transformation of Ď/2 with respect to ui and ωi .

Clearly, D∗ also depends on the position vector of the rigid body, rk, and on the or-
thogonal matrix, αi

a, specifying the orientation of the body. Therefore, we write fur-
ther D∗ = D∗(r, α, F, M). Let us derive the variational formula for D∗(r, α, F, M).

Consider the variational principle dual to the least dissipation principle. Follow-
ing the general scheme of Sect. 5.6 we have

Ď = min
vi∈(13.7),(13.2),(13.4)

max
σ ′i j=σ ′ j i

∫

V−B

(
σ ′i j �iv j − 1

4μ
σ ′i jσ ′i j

)
dV

= min
vi∈(13.7),(13.2)

max
σ ′i j=σ ′ j i ,p

∫

V−B

(
(σ ′i j − pδi j )�iv j − 1

4μ
σ ′i jσ ′i j

)
dV,

where p is the Lagrange multiplier for the constraint (13.4). Denoting the sum, σ ′i j−
pδi j , by σ i j , and switching the order of computation of minimum and maximum,
we obtain

Ď = max
σ i j

min
vi∈(13.7),(13.2)

∫

V−B

(
σ i j �iv j − 1

4μ
σ ′i jσ ′i j

)
dV .

Hence, the admissible fields, σ i j , obey the constraints,

�σ i j

�x j
= 0, (13.10)

and

Ď = max
σ i j∈(13.10)

(∫

�B
σ im(ui + ei jkω

j
(
xk−rk

)
)nmd A −

∫

V−B

1

4μ
σ ′i jσ ′i j dV

)
.

(13.11)
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Using the notation

Fi =
∫

�B
σ imnmd A, M j =

∫

�B
σ imeijk

(
xk−rk

)
nmd A, (13.12)

we can write the variational problem (13.11) as

Ď = max
σ i j∈(13.10)

(
Fi ui + Miωi −

∫

V−B

1

4μ
σ ′i jσ ′i j dV

)
. (13.13)

Consider the following function of the force and the moment:

D∗(r, α, F, M) = min
σ i j∈(13.10),(13.12)

∫

V

1

4μ
σ ′i jσ ′i j dV . (13.14)

It follows from (13.13) and (13.14) that

Ď = max
Fi ,Mi

(
Fi ui + Miωi −D∗(r, α, F, M)

)
.

Therefore (13.9) holds true, while to find D∗(r, α, F, M) one has to solve the varia-
tional problem (13.14).

Since ui = dri/dt, and ωi = 1
2 eijkα

jadαk
a/dt (see (3.54)), (13.9) becomes a sys-

tem of ordinary differential equations governing motion of a rigid body in viscous
fluid:

dri

dt
= �D∗(r, α, F, M)

�Fi ,
1

2
eijkα

ja dαk
a

dt
= �D∗(r, α, F, M)

�Mi . (13.15)

If there is a system of rigid bodies, with kinematic parameters, r i
(1),

. . . , r i
(m), α

i
(1)a, . . . , α

i
(m)a, and kth body is subject to the external forces with the

resultant, Fi
(k), and moment, Mi

(k), then D∗ is a function of the sets of argu-
ments, r = (r i

(1), . . . , r i
(m)), α = (αi

(1)a, . . . , α
i
(m)a), F = ( Fi

(1), . . . , Fi
(m)), M =

(Mi
(1), . . . , Mi

(m)), and the system of differential equations takes the form

dr(k)i

dt
= �D∗(r, α, F, M)

�Fi
(k)

,
1

2
eijkα

ja
(k)

dαk
(k)a

dt
= �D∗(r, α, F, M)

�Mi
(k)

, k = 1, . . . , m.

(13.16)

The “potential” structure of this system indicates that there are quite peculiar inter-
actions between the bodies moving in viscous fluid. The system of equations (13.16)
is the basis for theoretical studies of properties of suspensions.
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13.2 Motion of a Body in Ideal Incompressible Fluid

The Thomson-Tait equations. Constructing the equations governing the motion
of a deformable body in a potential flow of ideal incompressible fluid is a non-
elementary issue if the starting point is momentum equations. The derivation is
considerably simplified if the variational approach is used.

We assume that the body occupies region B (t) at time t , B will denote the region
run by the Lagrangian coordinates of the body, Xa . The motion and the deformation
of the body are described by a finite number of parameters qk (t) (k = 1, . . . , n):

xi
(
Xa, t

) = χ i
(
Xa, qk

)
for Xa ∈ �B; qk = qk (t) .

The velocity of the boundary points depends linearly on q̇k :

ẋ i
(
Xa, t

) = �χ i

�qk
q̇k for Xa ∈ �B. (13.17)

The characteristics of the rigid motion of the body, r i (t) and αi
a (t) , are included

in the set of parameters qk .
Suppose that the fluid occupies a moving and possibly deforming vessel V (t)

and in the process of motion does not detach from the walls of the vessel and the
boundary of the body. The deformation and the motion of the vessel is also given
by a finite number of parameters, bk (t); the velocity of the vessel wall depends
linearly on ḃk . The sets of the parameters, qk and bk , will be denoted by q and b,
respectively.

Let � (x) be the potential of the external body forces, KB and UB the kinetic and
the internal energies of the body, and KB = KB (q, q̇) , UB = UB (q).
Least action principle. The true motion of the body and the fluid is a stationary
point of the functional

t1∫
t0

( ∫
V (t)−B(t)

(
1
2ρvivi − ρ� (x)

)
dV+KB − UB

)
dt (13.18)

on the set of functions x(X, t) and q (t) with the prescribed initial and final values.
Assigning the initial positions of the fluid particles fixes the choice of the La-

grangian coordinates. Assume that the final positions of the fluid particles are chosen
in such a way as to cause a potential flow in the vessel. The possibility of such a
choice is guaranteed by the solvability of the corresponding problems.

For potential flow, the velocity field of the fluid at each instant is defined by the
geometry of the regions V (t) and B (t), i.e. by the values of the parameters q and
b and the velocities of the fluid on �V (t) and �B (t), i.e. by q̇ and ḃ. The kinetic
energy of the fluid, KF , is found by solving the variational problem
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KF = min
v

∫

V (t)−B(t)

1

2
ρvivi dV, (13.19)

where the minimum is sought over all the velocity fields satisfying the conditions

�iv
i = 0, vi ni

∣∣
�B(t) =

�χ i

�qk
q̇kni , vi ni

∣∣
�V (t) = ckḃk, (13.20)

where ckḃk is the normal component of the velocity of the fluid on �V (t). The
kinetic energy of fluid motion is a function of q, q̇, b, ḃ: KF = KF (q, q̇, b, ḃ).

Suppose that the variational problem (13.19) and (13.20) is solved and the func-
tion KF

(
q, q̇, b, ḃ

)
is found. Then the functional (13.18) becomes

t1∫
t0

L
(
q, q̇, b, ḃ

)
dt, (13.21)

where

L = KF +KB − UB − �̄ (q, b) ,

�̄ (q, b) =
∫

V (t)−B(t)

ρ� (x) dV .

The least action principle yields the equations of motion

�L

�qk
− d

dt

�L

�q̇k
= 0. (13.22)

For the case of motion of rigid bodies, these equations were established by Thom-
son and Tait [293]. Consider some examples.

Example 1. Consider the motion of a rigid body in an unbounded fluid being at rest
at infinity. The position of the body is defined by the position vector r i (t) and an
orthogonal matrix αi

a (t). The constraints (13.20) become

vi
,i = 0 in R3 − B (t) , vi ni =

(
r i + eijkω j (xk − rk)

)
ni on �B (t) , (13.23)

where ωk = 1
2 eklmαl

aα̇
ma . The kinetic energy of the fluid is finite only if vi → 0 as

x → ∞; therefore, the condition that the fluid is at rest at infinity is automatically
included in the variational formulation and does not need to be mentioned explicitly.

Let Xa be Cartesian coordinates rigidly linked to the body. The constraints
(13.23) become

va
,a = 0 in R3 − B, vana =

(
ua + eabcωb Xc

)
na, (13.24)
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where ua = αa
i ṙ i , ωb = 1

2 ebacα
c
i α̇

a , and B is the region in which the Lagrangian
coordinates of the body particles change. The kinetic energy of the fluid is quadratic
with respect to ua and ωa is

KF = 1

2

(
Mabuaub + 2Rabuaωb + J abωaωb

)
. (13.25)

The coefficients Mab, Rab, and J ab depend only on the geometry of the region B.
The kinetic energy of the rigid body also has the form (13.25). The coefficients of
the quadratic form K = KF + KB will be denoted by M̄ab, R̄ab, and J̄ ab. The
explicit dependence of K on the characteristics of motion is:

K= 1

2

(
M̄abαi

aα
j
b ṙi ṙ j+ R̄abαi

aα
j
b ṙi e jklα

k
c α̇

lc + 1

4
J̄ abαi

aα
j
b eimnα

m
c α̇nce jm ′n′α

m ′
c′ α̇

n′c′
)

.

Euler equations for the action functional are the equations of motion of a free
rigid body with the effective characteristics M̄ab, R̄ab, J̄ ab.

If Lab and M̄ab are diagonal,

Mab = m(a)δ
ab, M̄ab = M̄δab

and m is the mass of the body, then

M̄ = m + m(a).

This looks like an effective increase of the mass of the body; the parameter m(a)

is called the attached mass. In general case, the tensor Mab is called the tensor of
attached mass, and its trace, 1

3 Ma
a , the averaged attached mass.

Example 2. In the previous example, the kinetic energy did not depend on the posi-
tion of the body. This is caused by the invariance of the kinetic energy with respect
to translations, which, in turn, appears due to the absence of the external boundaries
of the flow. Let us consider a problem where the flow has an external boundary.

Let the fluid occupy the half-space x ≥ 0 and a ball of radius a move in the
fluid along the x axis. The system has one degree of freedom – the distance q from
the center of the ball to the plane x = 0. The flow potential , ϕ, is defined by the
boundary value problem

�ϕ = 0,
�ϕ

�n
= 0 for x = 0,

�ϕ

�n
= q̇nx on the ball surface.

At infinity ∇ϕ = 0 because kinetic energy of the fluid is finite.
In the absence of the wall, ϕ is the dipole potential:

ϕ = 1

2
a3q̇

�

�x

1

|r − r0| .
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Here, r and r0 are the position vectors of a space point and the center of the ball,
respectively, and |r | the magnitude of vector, r . For large q/a, the harmonic function

ϕ = 1

2
a3q̇

�

�x

(
1

|r − r0| −
1

|r + r0|
)

(13.26)

satisfies the boundary condition at the wall and approximately satisfies the boundary
condition on the ball. One can show that (13.26) is the leading term of the expansion
with respect to a small parameter a/q . We will use only this term. Then kinetic
energy is

KF = πρa3

3

(
1+ 3

8

a3

q3

)
q̇2. (13.27)

In particular, it follows from (13.27) that for a ball in an unbounded fluid flow, the
tensor of attached mass is spherical and has the value, Mab = 2

3ρπa3δab.
According to (13.22), the motion equation for a ball of mass m is governed by

the equation

d

dt

[
m + 2πa3

3
ρ

(
1+ 3

8

a3

q3

)]
q̇ + 3πρa6

8q4
q̇2 = 0.

It takes much more effort to derive this equation considering the balance of forces.

Example 3. The body B may consist of several simply connected components. Then
(13.22) describes the interactions of the bodies in fluids. For example, let us consider
two balls moving in an unbounded fluid which is at rest at infinity. The system has
six degrees of freedom r i

1 (t) and r i
2 (t) – the coordinates of the centers of the balls. In

order to calculate the kinetic energy of the fluid, KF , we have to solve the boundary
value problem

�ϕ = 0 in R3 − B1 − B2,
�ϕ

�n
= ṙ i

1ni on �B1,
�ϕ

�n
= ṙ i

2ni on �B2 (13.28)

with the condition that kinetic energy of the fluid is finite. Kinetic energy is a
quadratic form:

KF = 1

2

(
M
1

ṙ i
1ṙ j

1 + 2Ni j ṙ
i
1ṙ2 + M

2
ṙ i

2ṙ j
2

)
(13.29)

The equations (13.28) are invariant with respect to translations, therefore, in the
quadratic form (13.29) the coefficients, M

1
i j , Ni j and M

2
i j , depend only on the dif-

ference, r i
1 − r i

2.
The exact solution of the problem (13.28) can be obtained in the form of series;

however, the corresponding expressions for the coefficients in (13.29) are so com-
plicated that they can hardly help in the analysis of the motion of the balls. We give
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here the first terms of an asymptotic expansion when the ratios of the radii of the
balls, a1, a2, to the distance between their centers, R = |r1 − r2| , are small. In the
first approximation, the balls do not interact, and

M
1

i j = 2πρ

3
a3

1δi j , Ni j = 0, M
2

i j = 2πρ

3
a3

2δi j .

The approximation which takes into account corrections on the order of (a1/R)3,
(a2/R)3, is as follows: the expressions for M

1
i j and M

2
i j do not change, while Ni j

becomes

Ni j = πρa3
1a3

2

R3

(
δi j − 3

R2
Ri R j

)
, Ri = r i

1 − r i
2.

Polia-Shiffer’s theorem. Even in the case of the bodies moving in unbounded fluid,
KF was found analytically only for ellipsoids. Therefore, for bodies with a more
complex shape and any bodies in bounded regions, the approximation methods are
used.

As an example of application of the variational formula for the kinetic energy,
consider an elegant statement hypothesized by Polia and proved by Shiffer:

The averaged attached mass of the body moving in an unbounded fluid being
at rest at infinity is not smaller than the attached mass of the sphere of the same
volume.

Actually, a stronger statement holds: each eigenvalue of the tensor of attached
mass is not smaller than the attached mass of the sphere; it yields the assertion on
the averaged attached mass.

Denote the region occupied by the body by B and the exterior of B by V .
According to the Dirichlet principle,

KF = max
ϕ

K∗ (ϕ) ,

1

ρ
K∗ (ϕ) =

∫

�B

ϕui n
i dσ − 1

2

∫

V

�ϕ

�xi

�ϕ

�xi
dV .

The unit normal vector is directed outward of the fluid.
Choosing various functions ϕ, we get low estimates of KF :

K∗ (ϕ) ≤ KF . (13.30)

Let us take ϕ as

ϕ = ai �χ

�xi
, (13.31)

where χ is the gravity potential of the body B,
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χ =
∫

B

d3x ′

|x − x ′| ,

and ai are some constants. We will choose ai later to optimize the estimate. We
can expect that the trial functions (13.31) provide a good estimate, because for an
appropriate choice of constants ai , formula (13.31) gives the exact solution for fluid
motion past an ellipsoid.

Substituting the trial functions (13.31) in the functional, K∗ (ϕ) , and integrating
by parts we obtain

1

ρ
K∗ (ϕ) =

∫

�B(e)

ϕ

(
ui − 1

2

�ϕ

�xi

)
ni d A. (13.32)

The index (e) emphasizes that in computation of the integral (13.32) the limit of the
integrand is taken when �B is approached from the exterior side of the body, the
fluid side. In deriving (13.32), it is taken into account that the integral over V of
ϕ�ϕ is equal to zero since ϕ is a harmonic function.

Let us replace the limit value of the integrand from the exterior of B by the limit
value from the interior of B in order to reduce the surface integral to an integral over
the region B by means of the divergence theorem. We have to take into account that
the function ϕ = aiχ,i is continuous on �B, while the derivatives, �ϕ/�xi , have a
discontinuity, and

�ϕ

�xk

∣∣∣∣
(e)

− �ϕ

�xk

∣∣∣∣
(i)

= 4πnkn j a j . (13.33)

The index (i) denotes the limit values at �B from the interior side of the body.
Replacing in (13.32) the limit values of the functions from the fluid side by the

limit values of the functions from the body side, we get

1

ρ
K∗ (ϕ) =

∫

�B(i)

ϕ

(
ui − 2πni n

j a j − 1

2

�ϕ

�xi

)
ni d A. (13.34)

Applying to (13.34) the divergence theorem, we find

1

ρ
K∗ (ϕ) =

∫

B

[
− �ϕ

�xi
ui + 2πai �ϕ

�xi
+ 1

2

�ϕ

�xi

�ϕ

�xi

]
dV .

The term ϕ�ϕ = ϕak �
�xk �χ is equal to zero in B, since the gravity potential χ

satisfies the equation �χ = const. in the region B.
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Let us decrease the last term using the Cauchy inequality (5.20):1

1

|B|
∫

B

�ϕ

�xi
dV

∫

B

�ϕ

�xi
dV ≤

∫

B

�ϕ

�xi

�ϕ

�xi
dV . (13.35)

Introducing the notation

Ai j = −
∫

B

χ,i j dV,

we get the estimate

1

ρ
K∗ (ϕ) ≥ Ai j u

i a j − 1

2

(
4π Ai j − 1

|B| Aim Am
j

)
ai a j . (13.36)

It is important that for an ellipsoid, �ϕ/�xi are constant in B; therefore in (13.35),
and, consequently, in (13.36) (for ai which maximize the right hand side) the equal-
ity is attained.

Let us choose a system of coordinates xi oriented along the principle axes of the
tensor Ai j . Then

1

ρ
K∗ (ϕ) ≥ A1u1a1 + A2u2a2 + A3u3a3 − 1

2

(
4π A1 − 1

|B| A
2
1

)
a2

1−

−1

2

(
4π A2 − 1

|B| A
2
2

)
a2

2 −
1

2

(
4π A3 − 1

|B| A
2
3

)
a2

3, (13.37)

A1 ≡ A11, A2 ≡ A22, A3 ≡ A33. In this system of coordinates, the maximum of
the right hand side is attained for

a1 = u1

4π − A1
|B|

, a2 = u1

4π − A2
|B|

, a3 = u1

4π − A3
|B|

.

Therefore,

1

ρ
K∗ (ϕ) ≥ 1

2

(
A1

4π − A1
|B|

u2
1 +

A2

4π − A2
|B|

u2
2 +

A3

4π − A3
|B|

u2
3

)
.

1 We set in (5.20) g = 1 to obtain
⎛
⎝
∫

B

f dV

⎞
⎠

2

≤ |B|
∫

B

f 2dV,

then apply this inequality to each component of the vector ∇ϕ, and take the sum of the three
inequalities such obtained.
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The following inequality holds:

A1

4π − A1
|B|
+ A2

4π − A2
|B|
+ A3

4π − A3
|B|
≥ A1 + A2 + A3

4π − A1+A2+A3
3|B|

. (13.38)

Indeed, the function

f (x) = x

4π − x
|B|

is strictly convex because, for 0 ≤ x ≤ |B| , �2 f/�x2 > 0. Let us consider the
minimum of the strictly convex function f (A1)+ f (A2)+ f (A3) with the constraint
A1 + A2 + A3 = const = c. Introducing the Lagrange multiplier, we see that the
minimum is reached for A1 = A2 = A3. Consequently, at the minimum point

A1 = A2 = A3 = c

3
, f (A1)+ f (A2)+ f (A3) = 3 f

( c

3

)
= c

4π − c
3|B|

.

For arbitrary A1, A2, A3 this yields, (13.38).
From the definition of Ai j it follows that

A1 + A2 + A3 =
∫

B

�χdV = 4π |B| .

Therefore,

1

ρ
K∗ (ϕ) ≥ 3

4
|B| (u2

1 + u2
2 + u2

3

)
,

and each eigenvalue of the tensor of the attached mass is not smaller than 3
2ρ |B| ,

i.e. the attached mass of the sphere. In particular,

1

3
Mi

i ≥
1

2
|B| = 1

3
Mi

i(ball).

13.3 Motion of a Body in a Viscous Fluid

The equations for forces and moments acting on the body moving in a potential
flow of the ideal incompressible fluid and in Stokes flow of a viscous fluid possess
a variational structure, as has been shown in the two preceding sections. The force
acting on the body in ideal fluid, is2

2 Since in this section the kinetic energy of the body does not appear and only the kinetic energy
of the fluid is encountered, the corresponding index at kinetic energy is omitted.
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Fi = �K
�r i
− d

dt

�K
�ṙ i

, (13.39)

while in viscous fluid

Fi = −�D

�ṙ i
. (13.40)

In these equations, K and D are functions of the instantaneous characteristics of the
motion only.

The following question arises: is there a universal relation between the general-
ized forces acting on the body with the kinetic energy of the fluid K and the dissi-
pative potential D, when they depend not only on the instantaneous characteristics
of the motion, but also on the “history” of the motion?

It turns out that, with some assumptions (which shall be introduced further), a
generalization of (13.39) and (13.40) is the variational equation

Qkδqk = δK − d

dt
δ.K − δ.D. (13.41)

Here, the generalized coordinates qk characterize the motion and the deformation of
the body, Qk are the corresponding generalized forces, K and D are the functionals
of the motion history. The dependence of K and D on the motion history can be
described by the two groups of variables (separated by a semi-colon)3:

K = Kτ=t
τ=0 (q (τ ) ; q̇ (τ )) , D = D

τ=t
τ=0 (q(τ ) ; q̇ (τ )) .

The actual method of distinguishing the two groups of variables is described
below. In (13.41), δ is the variation operator with respect to both variables, and δ.
is the operator which performs the variation with respect to the second group of
arguments and subsequently substitutes δq̇ by δq.

If K is a function of r i (t) and ṙ i (t) only: K = K
(
r i ; ṙ i

)
and D = 0, then (13.39)

follows from (13.41):

Fiδr i = �K
�r i

δr i + �K
�ṙ i

δṙ i − d

dt

�K
�ṙ i

δr i =
(

�K
�r i
− d

dt

�K
�ṙ i

)
δr i .

If K = 0 and D = D

(
r i ; ṙ i

)
, then (13.40) follows from (13.41) as well.

The variational equation (13.41) defines n functionals Q1, . . . , Qn through the
two functionals K and D.

Let us prove (13.41). Let V and B be regions in the space of variables Xa which
are run by the Lagrangian coordinates of the fluid and the body, respectively. The

3 The symbol Kτ=t
τ=0 (q) denotes the functionals of functions q (τ ) defined on the segment 0 ≤

τ ≤ t .
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fluid is assumed to be viscous and incompressible, and the boundary of the vessel
V does not move. For given particle positions of the body and the fluid at the initial
and final instants, and given motion of the boundary of the region V , we have the
variational equation

t1∫

0

⎛
⎝δ

∫

V−B

ρ

2
viv

i dV +
∫

�B

Piδxi d A−
∫

V

�D

�ei j
� jδxi dV

⎞
⎠dt = 0,

where Pi are the components of the surface force acting on the fluid from the body,
D is the density of the fluid dissipative potential (the fluid does not have to be
Newtonian).

The variational equation can be written as an equality valid at any time t

t∫

0

⎛
⎝δ

∫

V−B

ρ
v2

2
dV +

∫

�B

Piδxi d A −
∫

V

�D

�ei j
� jδxi dV

⎞
⎠dt −

∫

V−B

ρviδxi dV

∣∣∣∣∣∣
t

= 0.

(13.42)

Let us prescribe some motion of the body, q = q (t). Then, the motion of the
fluid can by found from the system of equations

ρ
dvi

dt
= −�i p + � j

�D

�ei j
, (13.43)

det

∥∥∥∥
�xi

�Xa

∥∥∥∥ = det

∥∥∥∥
�x̊ i

�Xa

∥∥∥∥ , (13.44)

which are supplemented by the boundary conditions

xi
(
Xa, t

) = ∗xi
(
Xa
)

on �V, xi
(
Xa, t

) = χ i
(
Xa, qk

)
on �B. (13.45)

Assume that the body and the fluid are at rest at the initial instant:

xi
(
Xa, 0

) = x̊ i
(
Xa
)
, vi

(
Xa, 0

) = 0. (13.46)

For the consistency of the initial and the boundary conditions on �B at t = 0, we
require that

q̇k (0) = 0.

We assume that the system of equations (13.43), (13.44), (13.45) and (13.46)
determines uniquely the fluid motion on the considered time interval. Then, in prin-
ciple, one can find the particle trajectories of the fluid, and, for each Xa and t, they
are some functionals of the motion history of the body B, i.e. of q (τ ) for 0 ≤ τ ≤ t .
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The variational equation (13.42) is an identity due to (13.43), (13.44) and (13.45)
and the equality,

(
−pδ

j
i +

�D

�ei
j

)
n j = Pi on �B,

for arbitrary δxi vanishing at t = 0 and on �V × [0, t] . In particular, the particle
trajectories for the fluid, satisfying (13.43), (13.44), (13.45) and (13.46), can be
substituted into (13.42), and δxi can be interpreted as its variation caused by an
infinitesimally small variation of the body motion. Then the variations δxi are some
functionals of q (τ ) and δq (τ ) at every point X, t for 0 ≤ τ ≤ t , which are linear
with respect to δq (τ ). Let us write this as follows:

δxi =
τ=t

l i

τ=0
(X, t |q (τ ) ; δq (τ )) .

At the boundary of the body,

δxi = �χ i

�qk
δqk .

The variational equation (13.42) becomes

t∫

0

⎡
⎣δK−Qkδqk−

∫

V

�D

�ei j
� jδxi

⎤
⎦dV −

∫

V−B

ρviδxi dV

∣∣∣∣∣∣
t

= 0, (13.47)

where K, the kinetic energy of the fluid calculated for the solutions of the problem
(13.43), (13.44), (13.45) and (13.46), is some functional of q (τ ), δ is the variation
of the body motion, and Qk are the generalized forces:

Qk = −
∫

�B

Pi
�χ i

�qk
d A.

It remains to check the relation

vi (X, t) =
τ=t

l i

τ=0
(X, t |q (τ ) ; q̇ (τ )) , (13.48)

to finish the proof. Indeed, if the equality (13.48) is true, then the functionals

K =
∫

V−B

ρ

2
vivi dV, D =

∫

V

D
(
�(i v j)

)
dV,
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which are calculated for the velocity (13.48), become the functionals of the two
groups of variables.

Let us introduce the operator δ. which takes the variation with respect to the sec-
ond group of variables and subsequently substitutes δq̇ (τ ) by δq (τ ). If follows from
(13.48) that

δ.v
i = δxi .

The operator δ. , as the operator of taking the variation with respect to q, commutes
with the differential operators:

δ.�iv j = �iδ.v j = �iδx j .

Therefore, the variational equation (13.47) can be written as

t∫

0

[
δK−Qkδqk − δ.D

]
dt − δ.K = 0. (13.49)

Taking the derivative of (13.49) with respect to time results in (13.41).
So, we have to prove the relation (13.48). Let us take the variation of (13.43)

and (13.44). We get some system of equations for δxi in the region V − B. Let us
write it as Lδx = 0. The operator L is a linear differential operator with variable
coefficients. Taking the variation of the initial conditions results in

δxi = 0,
dδxi

dt
= 0 in V − B for t = 0. (13.50)

At the boundary of the fluid,

δxi = 0 on �V, δxi = �χ i

�qk
on �B. (13.51)

The equations, Lδx = 0, together with the initial and the boundary conditions

(13.50) and (13.51) define the functionals
τ=t

l i

τ=0
(X, t |q (τ ) ; δq (τ )).

Let us differentiate (13.43), (13.44) and (13.45) with respect to time. We get the
equations Lv = 0 with the boundary conditions

vi = 0 on �V, vi = �χ i

�qk
q̇k on �B, (13.52)

and the initial conditions

vi = 0 at t = 0.
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Let q̈k = 0 for t = 0. Then,

dvi

dt
= 0 for t = 0. (13.53)

Indeed, it follows from (13.43) that curl dv/dt = 0 for t = 0. Differentiating
the continuity equation vi

,i = 0 with respect to time and setting t = 0, we get
div dv/dt = 0. Consequently, dv/dt = gradϕ and �ϕ = 0. On the boundary of the
fluid, taking the derivative of (13.52), we have dv/dt = gradϕ = 0 at �V and �B
for t = 0. Therefore, ϕ = const and (13.53) holds.

The assumption that the motion starts from rest is essential, because otherwise
(13.48) is not valid.

It is easy to check that the above reasoning can be applied verbatim for vis-
coelastic fluid, for which the internal energy is a function of the distortion. Then the
internal energy U , which is a functional of the previous motion of the body, must be
included in the variational equation as well:

Qkδqk = δ (K−U)− d

dt
δ.K − δ.D. (13.54)

The problem of calculating forces and moments acting on the rigid body in
viscous fluid is extremely difficult. Therefore, it is sensible to use the variational
equation (13.41) to determine forces and moments, by postulating the functionals K
and D from phenomenological reasonings. Note that there is a universal dependence
between K and D due to which they cannot be prescribed arbitrarily. Indeed, let us
set δqk = 0 at time t in (13.41). Then, for any functions δqk (τ ) which, along with
their first and second derivatives, are equal to zero at the initial time and time t , the
following relation holds:

− δK + d

dt
δ.K + δ.D = 0. (13.55)

If K and D are some functions of q, q̇ , then (13.55) is automatically satisfied. How-
ever, if memory is taken into consideration, the relation (13.55) puts the constraint
on the possible functionals, K and D.

Consider some examples.
Translational unsteady motion of a sphere. Consider a sphere of radius a in an
unbounded flow of viscous incompressible fluid. For t = 0, the fluid and the ball
are at rest. Then the sphere begins to move along a line with the velocity u (t).
Let us find the force acting on the sphere, supposing that the nonlinear terms in
the momentum equations for the fluid can be ignored. Let R, θ, ϕ be the spherical
coordinates rigidly connected to the ball, vR, vθ , vϕ the velocity components relative
to an inertial system projected on R, θ and ϕ−axes, and the velocity of the sphere
is directed along the ray θ = 0. The solution of the problem is of the form [172]
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vR = − 1

R2 sin θ

�ψ

�θ
, vθ = 1

R sin θ

�ψ

�R
, vϕ = 0,

ψ = 1

2π i

σ+i∞∫

σ−i∞

au (s)

2

{
3e−(R−a)

√
s
ν

(√
s

ν
+ ν

sa

)
− 1

R

(
a2 + 3a

√
ν

s
+ 3ν

s

)

est sin2 θ
}
ds,

u (s) =
+∞∫

0

u (t) est dt, ν = μ

ρ
,

p = ρa3u′ (t)
2R2

+ 3a2ρ
√

ν
π

2R2

t∫

0

u′ (τ ) dτ√
t − τ

+ 3μa

2R2
u (t) .

where u′ (t) = du (t) /dt . Calculations yield the following expressions for the ki-
netic energy and the dissipative potential:

K = ρπa3

3
u2 (t)+ 3

2
ρ
√

πνa2

t∫

0

t∫

0

u (t − τ ) u (t − ξ )

(τ + ξ )
3
2

dξdτ,

D = 3πμau2 (t)+ 3ρ
√

πνa2

t∫

0

t∫

0

u′ (t − τ ) u′ (t − ξ )

(τ + ξ )
1
2

dξdτ. (13.56)

Since in the system of coordinates attached to the sphere, the geometry of the region
does not change, K and D do not depend on the first group of variables. It is easy
to check that the functionals (13.56) satisfy the equality (13.55). From (13.41) and
(13.56) follows the known equation for the force acting on the sphere (Basset’s
formula):

F = −6πμau (t)− 2

3
πρa3u′ (t)− 6ρ

√
πνa2

t∫

0

u′ (t − τ )√
τ

dτ.

Bubble vibrations. Consider a spherical cavity of radius a in an unbounded viscous
incompressible non-heat-conducting fluid. There is a surface tension on the surface
of the cavity with the coefficient of the surface tension, σ . The radius of the cavity
may change with time. The cavity is filled with a gas, and its energy density per unit
mass is denoted by Ug

(
ρg, S

)
. The motions of the gas in the cavity is assumed to be

adiabatic, while the change of the gas density, ρg, over the cavity negligibly small.
There is no exchange of mass between the gas and the fluid, hence the total mass of
the gas does not change with time
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4

3
πa3ρg = m = const. (13.57)

Let us derive the equation describing the change of the bubble radius a with time
from the variational equation for the fluid-bubble system:

δ

∫ t1

t0

⎡
⎣
∫

V−B

ρ

(
viv

i

2
−U

)
dV − 4πa2σ −

∫

�

p̄δxi ni d A + δ.

∫

V

DdV

⎤
⎦dt = 0,

(13.58)

where V is the volume bounded by a sphere, �, of a large radius (further, we will
tend it to∞), p̄ is the pressure given at � (in the limit, p̄ becomes p∞); the variations
are assumed to be equal to zero for t = t0, t1.

Let us calculate the functionals in the variational equation. Due to the incom-
pressibility and symmetry, the motion of the fluid is determined by the continuity
equation

vi = −ȧa2 �

�xi

1

r
, r =

√
xi xi .

Therefore, after integration of K and D over the exterior of the bubble, we get

K = 2πa3ρȧ2, D = 8πμaȧ2.

The kinetic energy of the gas, as well as the change in the entropy of the fluid,
related to the viscous dissipation of the gas, will be ignored. The internal energy of
the gas in the bubble is

UB = 4

3
πa3ρgUg

(
ρg
)
.

For the motion of the fluid corresponding to the bubble expansion,

δxi = −
(

a2 �

�xi

1

r

)
δa.

Therefore,

∫

�

p̄δxi ni d A = p̄4πa2δa

and the integral over � in (13.58) does not depend on the radius of the sphere �.
Tending the radius of the sphere to infinity, we see that the work of the external
forces at infinity is
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p∞4πa2δa = δ

(
4

3
πa3 p∞

)
.

Finally, the variational equation becomes

δ
t1∫

t0

(
2πa2ρȧ2 − 4

3πa3
(
ρgUg

(
ρg
)+p∞

)− 4πa2σ
)
dt − δ.

t1∫
t0

(
8πμa2ȧ2

)
dt = 0.

(13.59)

Varying with respect to a, and taking into account (13.57), we obtain the equation

aä + 3

2
ȧ2 = 1

ρ

(
pg − p∞ − 2σ

a
− 4μȧ

a

)
, (13.60)

where pg = ρ2
g�Ug/�ρg is the pressure inside the bubble. This equation governs the

bubble vibrations. It was first derived from other reasoning by Rayleigh. Note that
for a moving bubble, the kinetic energy of the fluid caused by translational motion
of the bubble with velocity u, 1

3πa3ρu2, must be included in the total kinetic energy
of the system. Accordingly, the term− 1

4 u2 appears in the right hand side of (13.60).
It describes the interaction between the translational and vibrational motions of the
bubble.
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Appendices A, B, C contain some interesting variational principles that are beyond
the main scope of the book. Appendices D and E provide some details to the issues
that have been considered.

A. Holonomic Variational Equations

Consider a functional, δ�, of two variables, u and δu, which is linear with respect
to δu. The equation

δ� = 0, (A.1)

is called variational equation. The variational equation is holonomic if δ� is the
variation of some functional I (u). The question arises, what are the conditions under
which the variational equation is holonomic? In this appendix such necessary and
sufficient conditions are formulated and discussed.

Let us start with the finite-dimensional case. A “finite-dimensional model” of δ�
is a linear differential form of the type Fκ (u) δuκ , where u = {uκ} ∈ Rn :

δ� = Fκ (u) δuκ .

The usual mathematical notation for such forms is � (δ) ; we prefer the “ther-
modynamic notation” δ�. The question is: what are the conditions for δ� to be a
variation of some function ϕ (u), δ� = δ (ϕ), or, equivalently, what are the condi-
tions for the vector, Fκ (u) , to be potential, Fκ = �ϕ/�uκ?

Let functions Fκ (u) be continuous and differentiable in some region A in Rn .
Define in A two infinitesimally small fields δuκ and δ′uκ . Denote by δ′δ� the
variation of δ� along the field δ′uκ . By definition, δ′δ� is

δ′δ� = Fκ

(
u + δ′u

)
δuκ − Fκ (u) δuκ, (A.2)

where one keeps only the terms of leading order. Thus,

δ′δ� = �Fκ (u)

�uκ
′ δ′uκ

′
δuκ . (A.3)

531
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The following theorem holds: in order for δ� to be a variation of some function
in the region A, it is necessary and sufficient that the equation

δ′δ� = δδ′� (A.4)

is satisfied at every point of the region. It follows from (A.3) and (A.4), the well-
known conditions for the potentiality of the vector field, Fκ (u),

�Fκ (u)

�uκ
′ =

�Fκ
′ (u)

�uκ

. (A.5)

The conditions (A.5) are local, i.e. compliance with those conditions in a neigh-
borhood of a certain point guarantees the existence in this neighborhood of such a
function, ϕ (u) , that δ� = δ (ϕ). The extension of ϕ (u) onto the whole region is not
necessarily unique. The uniqueness is guaranteed only if A is simply-connected.

The idea of the proof of (A.4) is the following. In order for δ� to be a variation
of some function, it is necessary and sufficient for the integral of δ� over any closed
curve � in A to be zero:

∮

�

δ� = 0. (A.6)

Suppose that in A, every closed curve is a boundary of some two-dimensional
surface, �. At every point of �, we take two linearly independent vectors contin-
uously changing along �. Denote the infinitesimally small increments along these
vectors by δuκ and δ′uκ . According to the Stokes theorem,

∮

�

δ� =
∫

�

(
δ′δ�− δδ′�

)
. (A.7)

Due to the arbitrariness of the curve � and the surface �, it follows from (A.6)
and (A.7) that δ� is holonomic if and only if (A.4) holds at any point, uκ, for any
infinitesimally small increments δuκ and δ′uκ .

It turns out that this statement can be generalized to infinite-dimensional spaces
[298, 299], and (A.4) is the criterion that the functional δ� is holonomic.

Example 1. Consider the functional δ� of the form

δ� =
∫

V

F
(
x, u, ui , ui j

)
δudn x, (A.8)

where x = {
xi
} ∈ Rn, ui ≡ u,i , ui j ≡ u,i j , and F is a twice continuously

differentiable function with respect to its arguments. The function F
(
x, u, ui , ui j

)
can be considered as an operator acting on u (x). Operator F is called potential
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if δ� is a variation of some functional. Let us obtain the conditions for δ� to be
holonomic, or, equivalently, for the operator, F, to be potential. For simplicity we
will assume that the admissible functions are zero on �V :

δu = 0 on �V . (A.9)

The variation of the functional δ� is

δ′δ� =
∫

V

(
�F

�u
δ′u + �F

�ui

(
δ′u

)
,i +

�F

�ui j

(
δ′u

)
,i j

)
δudn x .

According to (A.4), the following equality holds:

∫

V

(
�F

�u
δ′u + �F

�ui

(
δ′u

)
,i +

�F

�ui j

(
δ′u

)
,i j

)
δudn x

=
∫

V

(
�F

�u
δu + �F

�ui
(δu),i +

�F

�ui j
(δu),i j

)
δ′udn x . (A.10)

Let us put the left-hand side of (A.10) into the same form as the right-hand side.
To this end, we need to move derivatives from δ′u to δu using integration by parts.
Taking into account that the integrals over the boundary of V are zero due to (A.9),
we can write

∫

V

�F

�ui

(
δ′u

)
,i δudn x = −

∫

V

(
�F

�ui
δu

)

,i

δ′udn x,

∫

V

�F

�ui j

(
δ′u

)
,i j

δudn x =
∫

V

(
�F

�ui j
δu

)

,i j

δ′udn x . (A.11)

Due to the arbitrariness of δ′u in V , it follows from (A.10) and (A.11) that the
equality is true:

�F

�u
δu −

(
�F

�ui
δu

)

,i

+
(

�F

�ui j
δu

)

,i j

=

= �F

�u
δu + �F

�ui
(δu),i +

�F

�ui j
(δu),i j . (A.12)

This equality holds at any point of the region V for an arbitrary function δu. At
every point, δu and all derivatives of δu can be considered independent. Therefore,
the coefficients at δu, (δu),i , and (δu),i j should vanish. The coefficient at (δu),i j is
equal to zero identically. Setting the coefficient at (δu),i equal to zero, we get the
condition
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�F

�ui
− �

�x j

�F

�ui j
= 0. (A.13)

The coefficient at δu is equal to zero due to (A.13). So, the necessary and suffi-
cient condition for the functional (A.8) to be holonomic is (A.13). It is easy to check
that when F = δL/δu, where L = L (x, u, ui ), the condition (A.13) is satisfied
identically.

It follows from (A.13) that when F = F (x, u), functional (A.8) is always holo-
nomic, and when F = F (x, u, ui ) (�F/�ui ≡/ 0) it is always non-holonomic.

Let us show that in the holonomic case F can depend on the second derivatives
only linearly. Indeed, a more detailed version of (A.13) is

�F

�ui
− �2 F

�x j �ui j
− �2 F

�u�ui j
u j − �2 F

�uk�ui j
uk j − �2 F

�ui j �ukl
ukl j = 0.

The third derivatives of u are present only in the last term, and, since u and the
derivatives of u can take on arbitrary values at any given point,

�2 F

�ui j �ukl
= 0,

which proves the statement made.

Holonomic integral functionals. Similarly, one can investigate when the function-
als of the form

δ� =
∫

V

Fκ

(
xi , uκ, uκ

i , . . . , uκ

i1...iN

)
δuκdn x (A.14)

are holonomic. In (A.14),

uκ

i1...ik
≡ �kuκ

�xi1 . . . �xik
,

and Fκ are functions of uκ and their derivatives up to the order N , differentiable
the necessary number of times.

We assume that uκ on �V satisfy the conditions

u|�V = ũκ

0 ,
�uκ

�n

∣∣∣∣
�V

= ũκ

1 ,
�2u

κ

�n2

∣∣∣∣
�V

= ũκ

2 , . . . (A.15)

where �/�n is the normal derivative on �V . The number of given derivatives de-
pends on N . When N is even, this number is N/2 (including the derivative of
the zeroth order), and when N is odd, the number is (N + 1) /2. The boundary
conditions (A.15) are equivalent to prescribing on �V functions, uκ , and the corre-
sponding number of their derivatives. Therefore,
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δuκ = 0, δuκ

i = 0, δuκ

i1i2
= 0, . . . on �V . (A.16)

The condition (A.4) for the functional (A.14) yields the equation

�Fκ

�uκ
′

i1...ik

=
N−k∑
s=0

(−1)k+s Cs
k+s

�s

�xik+1 . . . �xik+s

�Fκ
′

�uκ

i1...ik ik+1...ik+s

, (A.17)

which has to be satisfied identically for any functions uκ

(
xi
)
. Here, Cm

k = k!
m!(m−k)! ,

and to write the equations in a compact form, the following convention is accepted:
if a quantity, T i1...ik , is encountered in the sum for k = 0, that means that this
quantity does not have any indices; in particular, uκ

i1...ik
for k = 0, coincides with the

zeroth derivative of uκ , i.e. uκ .

Example 1 (continued). In the case of the functional (A.8), the conditions (A.17)
contains three equations corresponding to k = 0, 1, 2. Equations for k = 2, are
identities; for k = 0, 1 the equations are

�F

�u
= �F

�u
− �

�xi

�F

�ui
+ �2

�xi �x j

�F

�ui j
,

�F

�ui
= − �F

�ui
+ 2

�

�x j

�F

�ui j
. (A.18)

The second equation (A.18) can be rewritten as (A.13), while the first is an iden-
tity due to (A.13).

Example 2. Let Fκ depend on the derivatives of uκ not higher than the second order.
Then (A.17) is reduced to the three equations corresponding to k = 0, 1, 2:

�Fκ

�uκ
′ =

δFκ
′

δuκ

,

(
δFκ

′

δuκ

≡ �Fκ
′

�uκ

− �

�xi

�Fκ
′

�uκ

i

+ �2

�xi �x j

�Fκ
′

�ui j

)
,

�Fκ

�uκ
′

i

= −�Fκ
′

�uκ

i

+ 2
�

�x j

�Fκ
′

�uκ

i j

,

�Fκ

�uκ
′

i j

= �Fκ
′

�uκ

i j

. (A.19)

Using the third relation (A.19), the second one can be written as

2
�

�xi

�Fκ
′

�uκ

i j

= �

�xi

(
�Fκ

′

�uκ

i j

+ �Fκ
′

�uκ

i j

)
.

It can be put in a symmetric form:

δFκ

δuκ
′

i

+ δFκ
′

δuκ

i

= 0.
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Here we used the notation for the variational derivative,

δF

δui
= �F

�ui
− �

�xi

�F

�ui j
.

Similarly transforming the first equation (A.19), we get the following holonomic-
ity conditions:

�Fκ

�uκ
′

i

− �Fκ
′

�uκ

i

= 1

2

�

�xi

(
δFκ

δuκ
′

i

− δFκ
′

δuκ

i

)
,

δFκ

δuκ
′

i

+ δFκ
′

δuκ

i

= 0,

�Fκ

�uκ
′

i j

− �Fκ
′

�uκ

i j

= 0. (A.20)

Note that the general holonomicity conditions (A.17) can be written more com-
pactly by means of the following construction. Consider uκ as functions of n + 1
variables, xi (i = 1, . . . , n) and an auxiliary variable, τ

(
uκ

(
xi
) ≡ uκ

(
xi , τ

)
for

τ = 0). Let us introduce the “Lagrangian”:

L = Fκ

(
xi , uκ, uκ

i , . . .
) �uκ

�τ
.

Then (A.17) are equivalent to

δL

δuκ

= 0, (A.21)

where the variational derivative is taken with respect to the functions uκ

(
xi , τ

)
, and

then τ is set equal to zero.

The potential. If the conditions for the functional δ� to be holonomic are satisfied,
then the “potential,” I (u) , can be found from by the equation

I (u) =
u∫

u0

δ�,

where the integral is taken over some path in the functional space connecting a
fixed element, u0, with the current element, u. Usually, the potential of holonomic
functionals is easy to guess. The holonomicity condition is useful in cases when the
existence of the potential is not obvious.

Expanding the functional space. Some functionals can be made holonomic by
expanding the set of functions on which they are considered. A number of examples
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of this kind will be given in the next appendix. Here we consider one common
indication for such a possibility.

Let two continua occupy regions V1 and V2, respectively. These two regions have
a common piece of boundary, �.

The variational equation for the first continuum has the form

δ (I1)+ δA1 = 0.

We need to decide whether this variational equation is holonomic. Let the varia-
tional equation for the second continuum and for the system “continuum 1 + con-
tinuum 2” be

δ (I2)+ δA2 = 0, δ (I1 + I2)+ δA12 = 0.

The functional, δA12, describes the action of the surrounding on the system “con-
tinuum 1 + continuum 2.” From these variational equations,

δA12 = δA1 + δA2.

If the functional, δA12, is holonomic, then the variational equation for the first con-
tinuum is also holonomic, since

δA1 = δA12 + δ (I2) .

The holonomicity is achieved by expanding the set of field variables by including
in this set the field variables of the second continuum.

The variational equation for the first continuum is holonomic, in particular, for
δA12 = 0. This is true, for example, in the case of an isolated system “continuum
1 + continuum 2,” or in the case when the boundary of the second continuum is
clamped.

Example 3. Consider an elastic body which has a common piece of boundary, �,

with a rigid body, T . We assume that the elastic body is “glued” to T along �. The
rest of the boundary of the elastic body could be subjected to external surface force.

The virtual work of forces, acting from the rigid body on the elastic body,

δA =
t∫

t0

∫

�

f iδxi dσdt, (A.22)

can be expressed in terms of work on the infinitesimally small displacements and
rotations of the rigid body, δr i and δϕi (see (3.47)):
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δA =
t∫

t0

(
Fiδr i + Miδϕ

i
)
dt (A.23)

where Fi and Mi are the total resultant and total moments of forces acting on the
elastic body:

Fi =
∫

�

fi dσ, Mi = εi jk

∫

�

f j
(
xk − rk (t)

)
dσ.

If Fi and Mi are some prescribed functions of parameters, r i (t) and αi
a (t) ,

defining the motion of the rigid body, δA is, in general, non-holonomic. However,
if the rigid body does not experience other external actions than those from the
elastic body, then δA is holonomic on the expanded set of variables, including the
functions, r i (t) and αi

a (t), because the following variational equation holds:

δ

t1∫

t0

KT dt −
t∫

t0

(
Fiδr i + Miδϕ

i
)
dt = 0,

where KT is the kinetic energy of the rigid body, a known function of dr i/dt, αi
a

and dαi
a/dt . The potential of δA is the action of the rigid body.

This is an example of the expansion of the functional space suggested by a
physical reasoning. Using “non-physical” expansions, one can put any system of
equations in the form of Euler equations of some functional. An example of that
was given in Sect. 1.8.

B. On Variational Formulation of Arbitrary Systems
of Equations

Consider a system of equations and boundary conditions,

Fκ

(
xi ,

�uκ

�xi
,

�2uκ

�xi �x j
, . . .

)
= 0 in V,

fκ

(
xi ,

�uκ

�xi
, . . .

)
= 0 on �V . (B.1)

We are going to discuss the following question: in which cases this system of
equations is Euler system of equations for some functional?

There is a certain difficulty in getting the answer caused by the possibility of
transforming the system of equations by, e.g., multiplication on some functions of
xi , uκ , �uκ/�xi , or by substitution of the required functions. As a result, the system
may lose (or acquire) the property of being Euler system of equations.
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Example. Consider on the segment [0, a] the boundary value problem

F ≡ p (x)
d2u

dx2
+ q (x)

du

dx
+ r (x) u + f (x) = 0, (B.2)

u (0) = u (a) = 0. (B.3)

We form the functional

δ� =
a∫

0

Fδudx . (B.4)

If this functional is holonomic on the set of functions selected by the conditions
(B.3), then (B.2) are the Euler equations.

From the holonomicity conditions (A.13) for the functional (B.4), we have

q (x)− d

dx
p (x) = 0. (B.5)

If the functions, p (x) and q (x) , do not satisfy (B.5), then the functional (B.4) is
not holonomic and (B.2) cannot be the Euler equation for a functional of the form

a∫

0

L

(
x, u,

du

dx

)
dx .

Let us show that (B.2) can be transformed in such a way, that it becomes a Euler
equation. Let us make the substitution u → v:

u (x) = b (x) v (x) .

The equation takes the form

p
d2

dx2
bv + q

d

dx
bv + rbv + f = 0. (B.6)

Now we choose b (x) in such a way that (B.6) satisfy the criterion (A.13). Then
b (x) must satisfy the equation

d

dx
[b (x) p (x)] = 2

db (x)

dx
p (x)+ q (x) b (x) .

This equation has the following solution:

b (x) = cp (x) e
−

x∫
0

q(x)dx
p(x)

, c = const. (B.7)

For definiteness, we set c = 1.
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The equations and boundary conditions for the function v (x) become

G ≡ d

dx
(b (x) p (x))+ r̄v (x)+ f (x) = 0, r̄ ≡ rb + p

d2b

dx2
+ q

db

dx
, (B.8)

v (0) = v (a) = 0. (B.9)

The functional

a∫

0

Gδvdx

is holonomic on the set of functions satisfying (B.9). It is easy to guess the functional
for which (B.8) is the Euler equation:

a∫

0

(
b (x) p (x)

(
dv

dx

)2

−r̄v2 − 2 f (x) v

)
dx . (B.10)

The holonomicity was achieved by a change of the required function.
It could also be obtained by multiplying (B.2) by 1/b (x) where b (x) is the func-

tion (B.7). Then, (B.2) becomes

d

dx

(
p

b

du

dx

)
+ r

b
u + f = 0.

It is the Euler equation for the functional

a∫

0

[
p

b

(
du

dx

)2

− r

b
u2 − 2 f u

]
dx . (B.11)

The functional (B.11) becomes the functional (B.10) after the substitution
u → v: u = bv.

Another complication is related to a hardly formalized requirement that the vari-
ational principle sought has some physical meaning. Without such a requirement, it
is easy to construct various “non-physical” variational principles, which are of little
or no interest. For example: the solution of (B.1) minimizes the functional

∫

V

Fκ Fκdv +
∫

�V

fκ f κd A.
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There are no sensible answers to the posed question. However, the search for
these answers lead to the formulation of a number of nontrivial “non-physical” vari-
ational principles.

Morse-Feshbach principle. Consider the Cauchy problem for the heat conductiv-
ity equations

ut = k�u + f, (B.12)

u|�V = 0, u|t=0 = 0. (B.13)

in a four-dimensional region V × [0, T ].
It is easy to obtain from (A.17) that there are no functionals of the form

T∫

0

∫

V

L

(
xi , t,

�u

�t
,

�u

�xi

)
dVdt

for which (B.12) would be the Euler equation.
Let us introduce the adjoint boundary value problem

−vt = k�v + g, (B.14)

v|�V = 0, v|t=T = 0. (B.15)

and consider (B.12), (B.13), (B.14) and (B.15) as a system of equations for two
functions, u and v.

Then, (B.12) and (B.13) are the Euler equations for the functional

T∫

0

∫

V

(
utv + ku,iv

,i − f v − gu
)

dVdt (B.16)

with the constraints (B.13) and (B.15).

Generalization. Let u, v be elements of some Hilbert space, H , (u, v) the scalar
product in H , L – the linear operator acting from H to H , L∗ – the conjugate
operator, i.e. the operator which is defined by the equality

(Lu, v) = (
u, L∗v

)

which holds for any u and v.
Then the equations

Lu = f, L∗v = g (B.17)

are the stationary points of the functional
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� (u, v) = (Lu, v)− ( f, v)− (g, u) .

Indeed, (B.17) follow from the equations

δ� = (Lδu, v)+ (Lu, δv)− ( f, δv)− (g, δu) = (
L∗v − g, δu

)+ (Lu − f, δv) = 0.

Gurtin-Tonti principle. Consider the Cauchy problem

du (t)

dt
= f (t) , (B.18)

u (0) = 0 (B.19)

on the segment [0, a]. The functional

a∫

0

(
du (t)

dt
− f (t)

)
δu (t)dt

is obviously non-holonomic. Let us consider a different functional,

δ� =
a∫

0

(
du

dt
− f

)∣∣∣∣
a−t

δu (t)dt (B.20)

on the set of continuous differentiable functions selected by the condition (B.19).
Here, (du/dt − f )|a−t is the value of the function du/dt − f at the point a − t .

Let us check whether the holonomicity condition (A.4) is satisfied:

δ′δ� =
a∫

0

dδ′u
dt

∣∣∣∣
a−t

δu (t)dt = −
a∫

0

dδ′u (τ )

dτ
δu (a − τ )dτ =

=
a∫

0

δ′u (τ )
dδu

dτ

∣∣∣∣
a−τ

dτ = δδ′�.

Consequently, the functional (B.20) is holonomic. It is easy to guess the corre-
sponding potential,

I (u) = 1

2

a∫

0

du

dt

∣∣∣∣
a−t

u (t)dt −
a∫

0

f (a − t) u (t)dt. (B.21)

Note that the Lagrangian in the functional (B.21)
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L = 1

2

du

dt

∣∣∣∣
a−t

u (t)− f (a − t) u (t)

is nonlocal.
The analogous principle holds for the Cauchy problem for the equations of

second order:

d2u

dt2
− f (t) = 0, 0 ≤ t ≤ T, (B.22)

u (0) = 0,
du (0)

dt
= 0. (B.23)

On the set of functions u (0) = 0, the extremals of the functional

I (u) = 1

2

T∫

0

du

dt

∣∣∣∣
T−t

du

dt

∣∣∣∣
t

dt −
T∫

0

f (T − t) u (t)dt (B.24)

satisfy (B.22) and the second relation (B.23). Note that the condition du (0) /dt = 0
turns out to be the natural boundary condition for the functional (B.24), while the
“natural” functional for (B.22) with a local Lagrangian

1

2

T∫

0

(
du

dt

)2

dt +
T∫

0

f (t) u (t)dt

does not feel this boundary condition.
The variational principles for (B.18), (B.19), (B.22) and (B.23) can easily be

extended to the Cauchy problems for linear parabolic and hyperbolic systems of
equations.

C. A Variational Principle for Probability Density

The close relationship between first-order partial differential equations and ordi-
nary differential equations is well known. In analytical mechanics, its counterpart is
the relationship between the Hamilton-Jacobi equation and Hamiltonian equations.
Since Hamiltonian equations can be obtained from the variational principle, it can
be expected that a certain variational principle also exists for the Hamilton-Jacobi
equation. That variational principle cannot be of the same type as the ordinary inte-
gral variational principles because Euler equations for them are partial differential
equations of at least second order, while the Hamilton-Jacobi equation is a first-order
equation. Here we formulate and prove the variational principle for the Hamilton-
Jacobi equation. We show that a natural construction in terms of which the varia-
tional principle can be formulated is the Gibbs ensemble of statistical mechanics;
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the varied functional is the mathematical expectation of the action of analytical me-
chanics, while the Hamilton-Jacobi equation is the Euler equation corresponding to
varying the probability density function.

Consider a mechanical system with generalized coordinates q1, q2, . . . , qn, mo-
menta p1, . . . , pn, and the Hamiltonian H (p, q, t), p = {p1, . . . , pn}, q ={
q1, . . . , qn

}
. Let us take an ensemble of such systems with the probability density

function f (p, q, t). In this ensemble the velocities, ṗ, q̇, of the points representing
the system in the phase space, R, can be viewed as functions of p, q, t . The function
f (p, q, t) then satisfies the continuity equation

� f

�t
+ �

(
q̇ i f

)

�qi
+ � ( ṗi f )

�pi
= 0. (C.1)

All indices run through the values 1, . . . , n.
We introduce some “Lagrangian coordinates” of the system’s trajectories – the

functions πa (p, q, t) (a = 1, . . . , n) which are conserved along the trajectories:

�πa

�t
+ q̇ i �πa

�qi
+ ṗi

�πa

�pi
= 0. (C.2)

Consider the functional

I =
t1∫

t0

∫

R

[
pi q̇

i (p, q, t)− H (p, q, t)
]

f (p, q, t) dpdqdt −
∫

R

ϕ (q, π ) f (p, q, t1) dpdq.

(C.3)

Here ϕ (q, π ) is considered to be a given function of the arguments qi and πa and
f (p, q, t) for each t is assumed to be decaying in R at infinity with a rate sufficient
for the convergence of the integrals.

The first term in (C.3) has the meaning of the mathematical expectation of the
action functional of analytical mechanics; the second term, as will be seen, is related
to the momentum flux at t = t1.

Consider the stationary points of the functional (C.3) on a set of the functions
f (p, q, t), ṗi (p, q, t), q̇ i (p, q, t), and πa (p, q, t), subject to constraints (C.1),
(C.2), and the initial conditions

f = ψ (q, π )

∣∣∣∣
�π

�p

∣∣∣∣ for t = t0, (C.4)

where ψ (q, π ) is a given function, and |�π/�p| is the determinant of the matrix
‖�πa/�pi‖.
Variational principle. At the stationary points of functional (C.3), the functions ṗi ,

q̇i satisfy Hamiltonian equations; the Lagrange multiplier for the constraint (C.1)
satisfies the Hamilton-Jacobi equation.
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Indeed, let us write down Euler equations of functional (C.3). Denote by α and
θa f the Lagrange multipliers for the constraints (C.1) and (C.2). Euler equations are
then found by varying the functional

t1∫

t0

∫

R

[
(

pi q̇
i − H

)
f + α

(
� f

�t
+ �

(
q̇ i f

)

�qi
+ � ( ṗi f )

�pi

)

+ θa f

(
�πa

�t
+ q̇ i �πa

�qi
+ ṗi

�πa

�pi

)]
dpdqdt −

∫

R

ϕ (q, π ) f (p, q, t1) dpdq.

In R we obtain the following equations: by variation of q̇ i (p, q, t),

�α

�qi
+ θa �πa

�qi
= pi , (C.5)

by variation of ṗi (p, q, t) ,

�α

�pi
− θa �πa

�pi
= 0, (C.6)

by variation of f (p, q, t) ,

pi q̇
i − H − �α

�t
− q̇ i �α

�qi
− ṗi

�α

�pi
+ θa

(
�πa

�t
+ q̇ i �πa

�qi
+ ṗi

�πa

�pi

)
= 0, (C.7)

by variation of πa (p, q, t) ,

� (θa f )

�t
+ �

(
θaq̇i f

)

�qi
+ � (θa ṗi f )

�pi
= 0. (C.8)

The variation of α and θa yields (C.1) and (C.2). The equations hold in a region
of space R where f > 0.

By virtue of the arbitrariness of the variations δ f and δπa at t = t1, we obtain the
additional relations

α = ϕ (q, π ) at t = t1, (C.9)

θa − �ϕ

�πa
= 0 at t = t1. (C.10)

Variations at t = t0 yield the equality

∫

R

(
αδ f + θa f δπa

)∣∣
t=t0

dpdq = 0. (C.11)
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It will be shown further that equality (C.11) is fulfilled automatically by virtue of
(C.4) and (C.6).

We now proceed to the analysis of (C.5)–(C.10). Equation (C.7) can be re-written
by using (C.5) and (C.6) in a simpler form:

�α

�t
− θa �πa

�t
+ H (p, q, t) = 0. (C.12)

Suppose that functions π (p, q, t) at each q, t determine a one-to-one mapping p↔
π so that p can be considered as functions of t , q, π : p = p (π, q, t) and

|�π/�p| �= 0. (C.13)

Then all the functions of p, q, and t can also be considered as functions of π , q
and t . In particular, α = α (π, q, t). Equations (C.5) and (C.6) in terms of α (π, q, t)
take a simpler form:

�iα = pi , (C.14)

�aα = θa . (C.15)

By �iα and �aα we denoted the partial derivatives of α with respect to qi and πa , at
constant π , t and q, t , respectively. Equations (C.14) and (C.15) define a canonical
transformation of p, q → π , θ (see [4]).

By virtue of (C.14) and (C.15), (C.12) can be rewritten as a Hamilton-Jacobi
equation for the function α (π, q, t) :

�tα + H
(
�iα, qi , t

) = 0. (C.16)

Here �tα is the time derivative of α at constant π, q.
Equation (C.16) together with the initial condition (C.9) form the Cauchy prob-

lem for the function α.
Note that the assumption (C.13) is satisfied if the determinant of the matrix∥∥�2ϕ/�qi �πa

∥∥ is nonzero and t1 − t0 is sufficiently small. Indeed, for small t1 − t0
and smooth ϕ and H , one can guarantee the unique existence of a smooth solution
to the Cauchy problem (C.16) and (C.9) (see §47 in [4]). By virtue of (C.14), the
determinant of the matrix ‖�pi/�πa‖ coincides with the determinant of the matrix∥∥�2α/�qi �πa

∥∥ ; due to (C.9), at t = t1 it coincides with the determinant of the
matrix

∥∥�2ϕ/�qi �πa

∥∥. By continuity, it will be nonzero over a sufficiently small
time interval.

Let us show now that at a stationary point the Hamiltonian equations hold:

ṗi = −�H

�qi
, q̇ i = −�H

�pi
. (C.17)
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We will need the auxiliary equations

�θa

�qi

�πa

�q j
− �θa

�q j

�πa

�qi
= 0,

�θa

�pi

�πa

�p j
− �θa

�p j

�πa

�pi
= 0,

�θa

�p j

�πa

�qi
− �θa

�qi

�πa

�p j
= δ

j
i . (C.18)

These equations can be obtained by differentiating (C.5) and (C.6) with respect to
pi , qi :

�2α

�qi �q j
+ �θa

�q j

�πa

�qi
+ θa �2πa

�qi �q j
= 0,

�2α

�qi �p j
+ �θa

�p j

�πa

�qi
+ θa �2πa

�p j �qi
= δ

j
i ,

�2α

�qi �p j
− �θa

�qi

�πa

�p j
− θa �2πa

�qi �p j
= 0,

�2α

�pi �p j
− �θa

�pi

�πa

�p j
− θa �2πa

�pi �p j
= 0.

In the first equation we eliminate α and πa by alternating over i , j . That gives the
first equation (C.18). Similarly, from the last equation we obtain the second equation
(C.18). Subtraction of the second and the third equations yields the third equation
(C.18).

Let us differentiate (C.12) with respect to p and q. Making use of (C.6) and (C.7)
we have

�πa

�qi

�θa

�t
− �θa

�qi

�πa

�t
= −�H

�qi
,

�πa

�pi

�θa

�t
− �θa

�pi

�πa

�t
= −�H

�pi
.

Substituting here �πa/�t in terms of ṗ, q̇ from (C.2) and �θa/�t from the equation

�θa

�t
+ q̇ i �θa

�qi
+ ṗi

�θa

�pi
= 0

which follows from (C.8) and (C.1), and making use of (C.18), we obtain the Hamil-
tonian equations (C.17).

Equation (C.1), by virtue of Hamiltonian equations (C.17), is transformed into
the Liouville equation

� f

�t
+ �H

�pi

� f

�qi
− �H

�qi

� f

�pi
= 0.
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The system of equations obtained can be solved as follows. First we solve the
Cauchy problem (C.16) and (C.9). From its solution α (π, q, t), we find from (C.14)
the functions πa (π, q, t). The values of these functions are substituted into the initial
data (C.4), and the initial value f (p, q, t0) of the function f is found. The Cauchy
problem is then solved for Liouville equation (C.1) and (C.16). The functions θa are
reconstructed from α (π, q, t) using (C.15).

If ϕ = qiπi , then “the Lagrangian coordinates” πa , by virtue of (C.14) have the
meaning of momenta at the final time point t = t1, and ψ (q, π ) have the meaning
of the density of the simultaneous distribution of the initial coordinates and the final
momenta.

Equation (C.10) is satisfied as an identity due to (C.15) and (C.9). We will show
that (C.11) is also satisfied as an identity.

Let us find the variation of the function f at t = t0. To this end we need the
equality

δ

∣∣∣∣
�π

�p

∣∣∣∣ =
∣∣∣∣
�π

�p

∣∣∣∣
�δπa

�πa
, (C.19)

which is obtained in the same way as (4.19).
According to the initial condition (C.4) and formula (C.19), we have for the vari-

ation of the function f ,

δ f = �ψ

�πa
δπa

∣∣∣∣
�π

�p

∣∣∣∣+ ψ

∣∣∣∣
�π

�p

∣∣∣∣
�δπa

�πa
=
∣∣∣∣
�π

�p

∣∣∣∣
� (ψδπa)

�πa
.

Therefore

∫

R

αδ f dpdq =
∫

R

α

∣∣∣∣
�π

�p

∣∣∣∣
� (ψδπa)

�πa
dpdq =

=
∫

R

α
� (ψδπa)

�πa
dπdq = −

∫

R

ψ�aαδπadπdq = −
∫

R

f �aαδπadpdq. (C.20)

From equality (C.20) it follows that relation (C.11) is satisfied identically by virtue
of (C.15). This completes the proof of the variational principle stated.

Note that the constraint (C.2) could be replaced by the constraint

� (πa f )

�t
+ � (πaq̇i f )

�qi
+ � (πa ṗi f )

�pi
= 0,

in which case the Lagrange multiplier for constraint (C.1) would have the meaning
of Legendre transformation of the function α (π, q, t) with respect to πa, and would
be a function of θ , q, t .

If the function ψ (q, π ) is chosen as the δ-function, then the variational principle
becomes the Hamilton principle for a mechanical system with given coordinates q
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at t = t0. The values of momenta at t = t1 are obtained as the natural boundary
condition. One can modify the variational principle for the case when the positions
of the particles at t = t0 and t = t1 are given. Then, instead of n “Lagrangian
coordinates” πa , 2n Lagrangian coordinates should be introduced, half of which
take the given values at t = t0 and the other half at t = t1.

D. Lagrange Variational Principle

To derive (1.40) we have first to find the variation of the action functional. To this
end, it is convenient to get rid of the constraint (1.36) by means of a Lagrange
multiplier. We consider an auxiliary variational problem which contains an extra
unknown function, λ (t), and has a modified action functional,

Ĩ =
t1∫

t0

(K+λ (t) (K+U−E))dt. (D.1)

We denote the integrand by L :

L (q, q̇, λ) ≡K+λ (t) (K+U−E).

Note that this function is not necessarily equal to K−U.

At the stationary trajectory the variation of functional Ĩ must vanish for all ad-
missible variations δq, δt1 and δλ.

We will work with a more general functional,

I (q (t) , t1) =
t1∫

t0

L (q, q̇, t)dt, (D.2)

not assuming that L =K+λ (K+U−E). The difference from the Hamilton varia-
tional principle is that the upper limit of the integral is also varied.

Let us give infinitesimally small variation to the trajectory and the arrival time,

q ′ (t) = q (t)+ δq (t) , t ′1 = t1 + δt1,

and consider the difference,

I
(
q ′ (t) , t ′1

)− I (q (t) , t1) =
t ′1∫

t0

L

(
q + δq,

d (q + δq)

dt
, t

)
dt−

t1∫

t0

L

(
q,

dq

dt
, t

)
dt.

(D.3)
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To obtain δ I we have to keep only the terms of the first order in (D.3). Note that
the domain of integration of the first integral in (D.3) differs from that of the second
integral. To perform the calculation it is convenient to write down the first integral
in (D.3) as an integral over the segment [t0, t1]. Therefore, we consider a mapping
of [t0, t1] onto

[
t0, t ′1

]
:

t ′ = t ′ (t) = t + δt.

Here δt is an infinitesimally small smooth function of time which is zero at t = t0
and equal to δt1 at t = t1. Thus,

I
(
q ′ (t) , t ′1

) =
t ′1∫

t0

L

(
q
(
t ′
)+ δq

(
t ′
)
,

d(q
(
t ′
)+ δq

(
t ′
)
)

dt ′
,t ′
)

dt ′ (D.4)

=
t1∫

t0

L

(
q
(
t ′ (t)

)+ δq
(
t ′ (t)

)
,

d(q
(
t ′ (t)

)+ δq
(
t ′ (t)

)
)

dt ′
,t ′ (t)

)
dt ′

dt
dt.

Let us introduce the total variation of q (t), δ̃q, as the difference of the values
of the function, q ′ = q + δq, at the shifted point, t ′ (t), and the function, q, at the
point t :

δ̃q = q ′
(
t ′ (t)

)− q (t) .

Obviously, up to the terms of higher order,

δ̃q = q ′ (t + δt)− q (t) = δq + dq

dt
δt.

The operator δ commutes with the operator
d

dt
,

δ
dq

dt
= dq ′

dt
− dq

dt
= d (q + δq)

dt
− dq

dt
= d

dt
δq. (D.5)

The operator δ̃ does not possess such a property: δ̃
d

dt
and

d

dt
δ̃ are different and

linked by the relation

δ̃
dq

dt
= d

dt
δ̃q − dq

dt

dδt

dt
. (D.6)

This relation follows from a chain of equalities:
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δ̃
dq

dt
= dq ′

(
t ′
)

dt ′

∣∣∣∣∣
t ′=t ′(t)

− dq (t)

dt

= d
(
q + δ̃q

)

dt

dt

dt ′
− dq

dt
=
(

dq

dt
+d δ̃q

dt

)(
1+ dδt

dt

)−1

− dq

dt

=
(

dq

dt
+ d δ̃q

dt

)(
1− dδt

dt

)
− dq

dt
= d δ̃q

dt
− dq

dt

dδt

dt
.

Let us show that the variation of the functional I is

δ I =
t1∫

t0

[
δL

δqi
δ̃qi − δL

δqi
q̇iδt + d

dt

(
�L

�q̇ i
δ̃qi − Hδt

)]
dt (D.7)

where the function H is defined as

H = �L

�q̇ i
q̇ i − L . (D.8)

Indeed, expanding the integrand in (D.4), we have

I
(
q ′ (t) , t ′1

) =
t1∫

t0

L

(
q (t)+ δ̃q,

dq

dt
+ δ̃

dq

dt
, t + δt

)(
1+ dδt

dt

)
dt

=
t1∫

t0

[
L

(
q,

dq

dt
, t

)
+ �L

�qi
δ̃qi + �L

�q̇ i
δ̃

dqi

dt
+ �L

�t
δt

](
1+ dδt

dt

)
dt

= I (q (t) , t1)+
t1∫

t0

[
�L

�qi
δ̃qi + �L

�q̇ i

(
d δ̃qi

dt
− q̇ i dδt

dt

)
+ �L

�t
δt + L

dδt

dt

]
dt.

Integrating the second term in the integrand by parts, we find

δ I =
t1∫

t0

[
δL

δqi
δ̃qi+ d

dt

(
�L

�q̇ i
δ̃qi

)
+�L

�t
δt − H

dδt

dt

]
dt. (D.9)

It may be checked by inspection that there is an identity,

d H

dt
≡ − δL

δqi
q̇i − �L

�t
, (D.10)
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where
�L

�t
is the partial derivative of L (q, q̇, t) with respect to t (with q and q̇ held

fixed) and
d

dt
is the derivative which takes into account the change of all arguments

with time. Substituting
�L

�t
found from (D.10) into (D.9), we obtain (D.7).

After moving the terms with time derivative to the boundary, (D.7) takes the form

δ I =
t1∫

t0

[
δL

δqi
δ̃qi − δL

δqi
q̇iδt

]
dt +

[
�L

�q̇ i
δ̃qi − Hδt

]t1

t0

. (D.11)

The admissible variations δ̃q must be zero at the ends of the integration domain,

δ̃q = 0 at t = t0, t1, (D.12)

because q (t) are prescribed at the ends: both q (t) and q (t) + δ̃q (t) must be equal
to q0 and q1 at t = t0 and t = t1, respectively. Actually, the possibility of writing
the constraints for variations in such a simple form is the major motivation for using
the variation δ̃q instead of the variation δq. For zero δ̃q at the ends, the third term
in (D.11) vanishes.

Variation δt must be zero at t = t0. At all other points of the segment [t0, t1] the
variation δt is arbitrary.

Let us first take δt ≡ 0. Then, from the equality δ I = 0, the expression for
δ I (D.7) and the main lemma of calculus of variations, we obtain the system of
equations

δL

δqi
= 0. (D.13)

Now allow δt to be non-zero. The first two terms of (D.11) are zero due to (D.13).
Therefore, the equation, δ I = 0, yields the condition

H = 0 for t = t1. (D.14)

The equations obtained are valid for an arbitrary (smooth) function L . Let us
return now to the Lagrange function of the Lagrange variational principle,

L = K + λ (t) (K+U−E) . (D.15)

We have a closed system of equations for n+ 1 functions qi (t) , λ (t) comprising
the energy equation (1.36), (D.13) and the boundary conditions (1.37) and (D.14).
Let us show that the function λ (t) can be found explicitly. From (D.15), and the
definition of H (D.8),
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H = �K

�q̇ i (1+ λ) q̇ i − K − λ (K +U − E) .

Using the homogeneity of kinetic energy, (1.33), and the energy equation (1.36),
we see that

H = (1+ 2λ) K .

According to (D.13) and the identity (D.10),

d H

dt
= −�L

�t
.

The explicit dependence of L on time is due only to the the dependence of L on
λ, and therefore

�L

�t
= �L

�λ

dλ

dt
= (K+U−E)

dλ

dt
.

Therefore, in addition, d H/dt = 0, and H = (1+ 2λ) K = const. The bound-
ary condition (D.14) shows that this constant is equal to zero. Since K �= 0, we
have 1+2λ = const. So, function λ (t) is constant and is equal to− 1

2 . For λ = − 1
2 ,

function L , up to a constant, is half of the difference of the kinetic and the potential
energy,

L = 1

2
(K−U )+ 1

2
E . (D.16)

For the function L (D.16), (D.13) are equivalent to Lagrange equations (1.40).
Apparently, the factor 1

2 and the additive constant 1
2 E are not essential in writ-

ing down the dynamical equations, and one can replace function L (D.16) by the
function (1.41).

E. Microdynamics Yielding Classical Thermodynamics

As we have seen, the Hamiltonian structure of the equations of micro-mechanics
yields the laws of equilibrium thermodynamics. The question arises: How impor-
tant it is that the equations of micro-mechanics are Hamiltonian? In other words:
Could non-Hamiltonian equations of microdynamics yield the equations of classical
equilibrium thermodynamics? It turns out that the class of such equations is indeed
slightly wider than the class of Hamiltonian equations.

To formulate the answer, it is convenient to introduce coordinates xμ(μ =
1, . . . , 2n) in the phase space, x1 = p1, . . . , xn = pn, xn+1 = q1, . . . , x2n = qn

and write down the Hamiltonian equations (1.63) in the form
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ẋμ = ωμν �H (x)

�xν
. (E.1)

where ωμν is a constant antisymmetric tensor:

ωμν =
⎧
⎨
⎩

1 μ ≥ n + 1, ν = μ

−1 μ ≤ n, ν = n + μ

0 otherwise

Tensor ωμν has a non-zero determinant. Therefore, one can introduce an inverse
tensor, i.e. the tensor obeying the equations

�νμωμλ = δλ
ν , (E.2)

with δλ
ν being Kronecker’s tensor:

δλ
ν =

{
1 if λ = ν

0 if λ �= ν

Tensor �νμ is antisymmetric. Contracting (E.1) with �νμ and using (E.2) we obtain
another form of the Hamiltonian equations,

�νμ ẋμ = �H (x)

�xν
. (E.3)

If one makes a general coordinate transformation then �νμ and ωμλ transform in
accordance with the tensor laws. If the Hamiltonian equations are written in arbitrary
coordinates, the tensors ωμν and �μν are certain functions of those coordinates.
These functions are not arbitrary because there are special coordinates {p, q} for
which (E.3) takes (locally) the form of the usual Hamiltonian equations (1.63). It
turns out [5] that the sufficient and necessary condition for the system (E.3) to be
Hamiltonian is

��νμ

�xλ
+ ��λν

�xμ
+ ��μλ

�xν
= 0. (E.4)

Equations (E.4) are equivalent to the existence of functions Pμ(x) such that

�μν = �Pμ(x)

�xν
− �Pν(x)

�xμ
.

The coordinate system in which equations (E.3) takes the form (1.63) is the system
where the differential expression Pμ(x)dxμ takes the canonical form p1dq1+ . . .+
pndqn . Some natural reasonings on the features of micromotion show that equa-
tions of micromotion should have the from (E.1) with ωμν being functions of phase
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coordinates. These equations yield the laws of equilibrium thermodynamics if the
tensor ωμν obeys the condition [50]

�

�xμ

(
1√
ω

ωμν

)
= 0 (E.5)

where ω ≡ det ‖ωμν‖ . This condition is weaker than (E.4): one can show that (E.5)
follows from (E.4) but not vice versa.
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The diversity of topics considered makes it impossible to give a comprehensive
literature review. The bibliographic comments given here are based on the papers
which turned out to be in the view field of the author, and make no pretence at
completeness.

Chapter 1

The history of variational principles can be learned from the collection of the
original papers [248]. It is considered also in the books by E. Mach [195], A.
Mayer [207], F. Klein [149], C. Lanczos [170], and H. Goldstine [116]. There are
many excellent books to master in Hamiltonian mechanics; we mention just a few:
Arnold [4], Arnold, Kozlov and Neistadt [6], Landau and Lifshits [171], and Licht-
enberg and Liberman [182].

Chapter 2

There is a tremendous wealth of literature on thermodynamics. The key contri-
butions to the “derivation of thermodynamics from mechanics” were made by
Boltzmann, Gibbs, P. Hertz, Birkhoff, Khinchine and Kubo. The treatment of ther-
modynamics in this chapter closely follows the author’s monograph [46], where a
historic review and the references to the original papers can be found. A gener-
alization of the Einstein formula for finite-dimensional Hamiltonian systems was
obtained in [43], the quasi-Hamiltonian structure of equations of macrophysics was
suggested in [44] and later justified in [50] where the notion of the secondary and
the higher order thermodynamics was also introduced. A proposition that entropy in
secondary thermodynamics is decaying in isolated stable systems was made in [54].

Chapters 3 and 4

The contents of these chapters is standard. As an additional reading one can use
the text books by L.I. Sedov [268, 269], I.M. Gelfand and S.V. Fomin [110], A.J.
McConnell [208], S.R. de Groot and P. Mazur [87] and a paper by L.I. Sedov [270].
A key point used in the development of models with high derivatives, a proper
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transformation of surface integrals, was made by Kirchhoff. It was applied in the
1960s to the construction of refined elastic models by Mindlin [215].

Chapter 5

Additional readings: S.G. Mikhlin [209, 210, 211, 212], A.D. Ioffe and V.M.
Tikhomirov [138], I. Ekeland and R. Temam [95], R. Rockafellar [256], L.C. Young
[320], J.L. Synge [290], L.S. Pontrjagin [249], R.E. Bellman and R.E. Kalaba [20],
and K.A. Lurie [190]. See regarding inequalities [18, 124, 138, 238, 240], dual vari-
ational principles [7, 26, 81, 95, 131, 138, 232, 250, 274, 290] error estimates of
approximate solutions [151, 209, 220, 221, 250, 280, 290], method of constraint
unlocking [222], and Rayleigh-Ritz’s method [81, 117, 209, 210, 211, 253]. The
treatment of the dual variational problems in the book follows [26]. The idea to
eliminate differential constraints in the dual variational principle was suggested by
Hashin and Strikman in [126]. The treatment of this topic in the book is slightly dif-
ferent from [126] and the studies that followed. The variational-asymptotic method
was formulated in the author’s papers [28, 31]. It was further applied to various
problems in [35, 37, 62, 68, 134, 173]. Nowadays, it is being actively developed the
so-called �-convergence method (see [74, 75]), which is, in fact, a version of the
variational-asymptotic method. Some exact results in variational problems with a
small parameter were obtained by E.S. Levitin [178, 179, 180, 181]. A link between
the minimization and the integration in functional spaces was mentioned and used
in [48]. Its further applications can be found in [49, 52, 53, 56, 61, 65, 174]. In the
book we do not consider various modifications of the notion of convexity. Besides,
the minimization of non-convex functionals has not been discussed.1 This can be
learned from [12, 13, 14, 15, 16, 73, 74].

Chapter 6

There are many modifications of variational principles of linear elasticity the-
ory. Our treatment is focused on three major statements: Gibbs principle, its dual
version – Castigliano principle, and the corresponding minimax principle –
Reissner principle. These three assertions are enough for most applications. The
Hashin-Strikman variational principle is used to obtain the bounds for effective
characteristics of micro-inhomogeneous bodies (see [126, 127, 318] and a review
[214]). Regarding Korn’s inequality [153] see [105, 137, 162, 210, 217, 241, 279].

Chapter 7

Dual variational principle in geometrically nonlinear elasticity was discussed in
[30, 90, 176, 189, 203, 225, 226, 227, 228, 235, 237, 287, 288, 289, 312, 313, 314,
333, 334, 335, 336].

1 An exception is the dual variational principle in nonlinear elasticity considered in Chap. 7.
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The stationary principle for complementary energy of semi-linear material was
obtained by L.M. Zubov [333]. W. Koiter [152] noted that the functional of com-
plementary energy can be multi-valued, and it remained unclear how to choose the
proper branch of the functional. Later Zubov described the character of ambiguity
in the dependence of distortion on Piola-Kirchhoff’s stress tensor [336]; a complete
treatment of the problem was given in [38]. The extended stationary principle of
complementary energy was suggested by Fraijs de Vebeke [101] and Christoffersen
[80].

A review of the relations suggested for free energy is given by A.I. Lurie [189].
An issue of a priori constraints which should be imposed on free energy has been

actively investigated in recent years; one of the first papers was that by Ball [12].
Young-Fenchel transformation of energy of semi-linear material and the corre-

sponding dual variational principle were obtained in [66].
The conditions of phase equilibrium of elastic bodies were derived by Eshelby

[98] and Grinfeld [118, 119]; an extension to dynamics is proposed by Truskinovsky
[297].

Chapter 8

Action functional in dynamical problems is studied in practically all treatises on
classical calculus of variation. Theory of eigenvibrations of linear systems was
created by Rayleigh [253]. A comprehensive treatment of this subject was given
by Courant [81]. Note also the monograph by Gould [117]. A generalization of
Rayleigh’s variational principle to nonlinear vibrations and a variational principle
in Eulerian variables were given in [38].

Chapter 9

The first formulation of variational principle for ideal incompressible fluid was
given by Lagrange [168]. He derived from this principle the dynamical equations
of ideal fluid known now as Euler-Lagrange equations. Variational principle for
fluid with a free surface was suggested by Riabuchinsky [255]. Surprisingly, the
variational principle for a flow over a plane (Luke principle) was found only in
1967 [188]. The hypothesis on the extremal property of the attached mass was sug-
gested by Pâolya [238] and proved by Shiffer [275, 276] (see also Payne [239]). A
variational principle in terms of Clebsch’s potentials was suggested by Seliger and
Whitham [271]. The variational principle in dynamics of vortex lines was found by
Berdichevsky [46, 47] and Kuznetsov and Ruban [166]. Further modifications were
done in [49, 53]; an extension to dynamics of vortex lines in compressible fluid is
suggested in [260]. A derivation of the variational principle of vortex line dynamics
from the least action principle is given in [57]. For a vortex filament in unbounded
domain the functional A first appeared in the paper by Rasetti and Regge [251]. It
remained unclear though what is a proper choice of kinetic energy. Further analysis
[58] showed that the Rasetti-Regge variational principle yields the correct equations
in the leading approximation, when one keeps logarithmically large terms, and needs
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a correction, reproduced here, if the terms on the order of unity are also retained.
Note that the Hamiltonian structure of the dynamical equations of a vortex filament
in unbounded region, when one keeps only logarithmically large terms, was first
established by Marsden and Weinstein [202] (see also a review in [5], Sect. 6.3B).
The variational principle for open flows was formulated in [46]. Some exact results
on minimization of the action functional of ideal incompressible fluid were obtained
by Shnirelman [278].

Chapter 10

Variational principles in fluid mechanics were discussed in [76, 79, 88, 89, 91, 92,
94, 97, 135, 139, 141, 165, 175, 184, 186, 194, 198, 226, 242, 272, 273, 283, 285,
291, 292, 310, 311, 326, 327]. The Hamilton principle for ideal compressible fluid in
Lagrangian variables was studied by G. Zemplen [329]; he also obtained the discon-
tinuity conditions. A detailed treatment is given in the monograph by L. Lichtenstein
[183]. Variational principles in Eulerian coordinates when the field functions are La-
grangian variables were constructed by Davydov [84], Mauersberger [204, 205, 206]
and Rogula [258]. Herivel [128] noted that by varying velocity, density and entropy
as functions of Eulerian coordinates subjected to continuity equation and the conser-
vation of entropy in fluid particle, one obtains from the Hamilton principle the quasi-
potential flows (vi = �iϕ + μ�i S). Lin variational principle was suggested in [185].
Earlier, Davydov [84] noticed that instead of three constraints (10.31) one can use
one constraint (10.39), thus obtaining the correct expression of velocity in terms of
Clebsch’s potentials. However, since the set of admissible functions was not clearly
introduced the necessity to set the constraint (10.31) or (10.39), as was mentioned in
[271], seemed puzzling. The extension of the set of admissible functions described
in the text makes transparent the link between these two variational principles. As
was mentioned by Moffat [218] (see also [76]), presentation of velocity in terms
of Clebsch’s potentials, though possible locally, yields some integral constraints on
velocity.

Pressure as Lagrangian appears for the first time, perhaps, in Hargreave’s paper
[125]; a detailed study was given by Bateman [17].

The variational principle for the functional (10.54) [38] generalizes for com-
pressible case the Luke principle (an attempt of such generalization in [304] was
not successful).

Derivation of discontinuity conditions from variational principles was considered
in [161, 165, 183, 186, 192, 193, 330, 331].

Chapter 11

Arnold’s variational principle was suggested in [3], its generalization to compressible
fluids in [120], other variational principles of Sect. 11.5 in [57], Giese variational
principle in [112], Giese-Kraiko variational principle in [112, 161], Lin-Rubinov
variational principle in [186], variational principles for potential compressible flows
in [17], and other variational principles of this chapter in [38].
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Chapter 12

Regarding the principle of least dissipation see, e.g., Rayleigh [252]. A recent review
of variational principles of ideal plasticity is given by Kamenjarzh [145]. The idea
that variations in variational principles are closely related to fluctuations in physical
systems was suggested by Glansdorff and Prigogine [114], but they did not pursue
it to obtain quantitative statements.

Chapter 13

Theory of motion of bodies in fluids was developed by Thompson and Tait [293]. It
is discussed in detail by Lamb [169] and Milne-Thomson [213], where many exam-
ples of calculation of kinetic energy are given, and by Birkhoff [71]. Kirchhoff [148]
found a number of exact solutions of equations of motion of rigid body in potential
flows. Generalizations to vortex flows are given in [243, 244, 303]. Section 13.3
follows the paper [36]. An example with Basset force was prepared by S. Utkina.

Appendices

The proof of (A.4) in functional spaces can be found in monographs by Vainberg
[298, 299]. Holonomicity condition (A.17) was obtained independently by Tonti
[294] and the author [23]. Holonomicity condition (A.21) was suggested by B.
Kupershmidt (see [197]). Holonomicity condition (A.20) was found in the case of
functions of one variable by Helmholtz. “Non-physical” variational principles are
considered in [121, 122, 133, 196, 259, 295]. Appendix C follows paper [40].
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conservation of mass, Eulerian form, 85
conservation of mass, Lagrangian form, 84
energy, 96
entropy, 98
equilibrium equation

general solution, 299
Euler

in curvilinear coordinates, 278
Gauss, 597
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Gaussian, 759
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relabeling group, 446
rigid motion, 81

S
Schrödinger equation, 44
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convex, 169
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anisotropic heterogeneous, 665
bending measures, 607
boundary conditions, 604
energy, 613
geometric relations, 589
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linear, 612, 620
low frequency vibrations, 677
membrane, 624
phenomenology, 598
physically linear, 606
small parameters, 627
strain measures, 599
von Karman, 622

short wave extrapolation, 640, 966
Snell law, 5, 6
spring theory, 856
step function, 49
strain

measures, 77
tensor, 77, 78

strain rate tensor
Eulerian components, 81
Lagrangian components, 80

stress tensor, 94
Piola-Kirchhoff, 95
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area element, 592
compatibility conditions, 597
covariant derivatives, 594
curvatures, 597
divergence theorem, 598
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normal vector, 591

derivatives, 597
second quadratic form, 595
surface tensors, 590

T
temperature, 47, 50

gas, 56
torsional rigidity, 733
transformation

Fourier, 240, 310
Legendre, 185
Young-Fenchel, 188

free energy of geometrically nonlinear
elastic body, 365

quadratic form, 201
transverse shear, 671

V
variation

and fluctuations, 505
beam strain measures, 719
contravariant components of Lagrangian
metrics, 123
density, 462
Eulerian of mass density, 125
Eulerian of velocity, 125
integral functional, 117
inverse distortion, 123
Jacobian, 122
Lagrangian coordinates, 125, 396, 461
mass density, 122
particle trajectories of rigid body, 123
strain tensor, 123
surface characteristics, 601
tensor, 142

scalar function, 145
velocity, 122, 399, 462

variational derivative, 25
variational equation, 128, 531

d’Alambert, 129
holonomic, 531
Sedov, 132
virtual displacements, 129

variational principle
potential flows, 405
Arnold, 487
Arnold-Grinfeld, 488
Bateman, 466, 467
Bateman-Dirichlet, 491
Bateman-Kelvin, 493
beam energy density, 725, 727
bubble vibration, 527

Castigliano, 298
for stress functions, 299, 300
two-dimensional problems, 302

cell problem, 916
Dirichlet, 408
dual

anti-plane problem, 306
Bateman, 467
Dirichlet problem, 201
dislocation, 326
general integral functional, 212
general scheme, 178
geometrically nonlinear elastic body,

355, 361
heat conduction, 497
internal stresses, 320
kinetic energy of vortex flow, 410, 412
plastic body, 505
potential flows, 406, 469
semi-linear elastic body, 368
stress function, 321
viscous flow, 502

elastic body, 626
steady flow, 490

Fermat, 4
Gibbs, 59, 60

anti-plane problem, 305
dislocation, 325
elastic body, 285
geometrically nonlinear elastic body,

351
internal stresses, 320

Giese, 482
Giese-Kraiko, 482
Gurtin-Tonti, 542
Hamilton, 27, 215
Hashin-Strikman, 216

elastic body, 306, 317
ideal compressible fluid, 465

free surface, 469
open steady flow, 481
steady flow, 476

ideal fluid with free surface, 402
ideal incompressible fluid, 402

open steady flow, 481
steady flow, 479

Jacobi, 26, 457
Kelvin, 407, 469
kinetic energy of vortex flow, 409, 412
Kozlov’s cell problem, 906
Lagrange, 25, 549
Lin, 400, 463
Lin-Rubinov, 484
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Luke, 407
Migdal, 445
Mopertuis, 11
Mopertuis-Lagrange, 456
Morse-Feshbach, 541
non-equilibrium processes, 506
open flows, 453
point vortices, 433
Pontrjagin, 237
potential flows, 407
probabilities densities, 801, 809
probability densities, 920
probability density, 544
Rayleigh, 380
Reissner, 294
shell theory, 600
steady vortex flow, 485, 487
two-dimensional vortex flow, 431
vortex filament, 441, 443
vortex line dynamics, 419, 420

variational problem
and functional integrals, 270
existence of minimizer, 167
extreme values, 761
minimax, 179
minimum drag body, 228
modification, 280
quadratic functional

various forms, 165

setting, 150
stochastic, 751
uniqueness of minimizer, 168
with constraints, 224

integral constraints for derivatives, 238
variational-asymptotic method, 243

beam theory, 742
compressible flow, 472
homogenization of periodic structures, 827
homogenization of random structures, 844
shallow water, 961
shell theory, 631

vector product, 72
velocity, 70

angular , 83
volume element

in Lagrangian coordinates, 84
in Eulerian coordinates, 84
in initial state, 84

vortex filament, 434
kinetic energy, 437
self-induction approximation, 443

vortex gas, 766, 786, 792
vortex line, 415
vortex sheet, 444
vorticity, 393, 408, 458

W
Whitham’s method, 262



Notation

x a point in three-dimensional space, xi are its coordinates. Indices, i , j , k, l, m, run
through values 1, 2, 3.

In consideration of mathematical issues, x is a point in n-dimensional space,
xi are its coordinates, and small Latin indices, i , j , k, l, m, run through values
1, 2, . . . , n.

Usually, writing the arguments of a function, the indices are suppressed, and the
notation, f (x), is used for function f (x1, . . . , xn). The notation, f (xi ), is used if it
desirable to emphasize that f is a function of several arguments.

Summation is always conducted over repeated low and upper indices. Indices of
vectors and tensors are written as low or upper indices depending on convenience
and in accordance with the rule of summation over repeated low and upper index.

Indices, which do not have tensor nature are put usually in parentheses; for
example, the boundary values of a function, u, is denoted by u(b).

t time
Rn n-dimensional space
R3 three-dimensional Euclidean space
R4 four-dimensional space-time
Xa Lagrangian coordinates
a, b, c, d small Latin indices run through values 1, 2, 3 and correspond to pro-

jections on Lagrangian axes
α, β, γ, δ small Greek indices run through values 1, 2 and correspond to projec-

tions on a two-dimensional coordinate frame
gi j , gi j components of the metric tensor in observer’s frame
gab, gab components of the metric tensor in Lagrangian frame∥∥ai j

∥∥ matrix with the components, ai j∣∣ai j

∣∣ determinant of the matrix with the components ai j

g determinant of the matrix with the components gi j

ĝ determinant of the matrix with the components gab

ˆ this symbol marks quantities in Lagrangian coordinates in cases when
an ambiguity appears without such a mark; it also marks a maximizer –
the particular meaning is seen from the context.
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◦ this symbol marks quantities in the initial state
ei jk symbol Levi-Civita
εi jk tensor Levi-Civita
δ

j
i Kronecker’s delta

xi
a distortion

Xa
i inverse distortion

εab components of the strain tensor in Lagrangian coordinates
εi j components of the strain tensor in Eulerian coordinates
ε magnitude of deformation; small parameter
eab components of the strain rate tensor in Lagrangian

coordinates
ei j components of the strain rate tensor in Eulerian coordinates
σ ab components of the stress tensor in Lagrangian coordinates
σ i j components of the stress tensor in Eulerian coordinates
pa

i components of Piola-Kirchhoff’s tensor
|x |ab modulus of distortion
αi

a, α
i
j orthogonal matrices

a(−1)i j the components of matrix inverse to the matrix
∥∥ai j

∥∥
T1

¯
1
¯

physical (11)-component of the tensor Ti j (the correspond-
ing indices are underlined)

a(i j) parentheses in indices mean symmetrization: a(i j) ≡
1
2

(
ai j + a ji

)
a[i j] brackets in indices mean antisymmetrization: a[i j] ≡

1
2

(
ai j − a ji

)
u(b) parenthesis for a single index are used to emphasize its non-

tensor nature; e.g., u(b) usually denotes the boundary value
of u

bλ
(αγλβ) being combined with the contraction, the symmetriza-

tion does not act on the dummy index: bλ
(αγλβ) ≡

1
2

(
bλ

αγλβ + bλ
βγλα

)

(i → j) the expression in the previous parentheses with index i
changed by j

(i ↔ j) the expression in the previous parentheses with the substitu-
tion of indices: i → j, j → i

κ multi-index; it denotes a set of indices of various physical
nature

uκ field variables
u, x, X sometimes we drop indices and write u instead of uκ, x in-

stead of xi , X instead of Xa .
U, F, K , S densities of internal energy, free energy, kinetic energy and

entropy per unit mass
U ,F ,K,S total internal energy, free energy, kinetic energy and entropy

of the body
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ρ mass density
�t ≡ �

�t ≡ (·)t = (·),t time derivative at constant Eulerian coordinates, x
d
dt time derivative at constant Lagrangian coordinates, X

�i ≡ �
�xi = (·),i partial space derivative in Eulerian variables

∇i covariant space derivatives in Eulerian coordinates
�a ≡ �

�Xa = (·),a partial space derivatives in Lagrangian variables
∇a Lagrangian covariant space derivatives in the deformed

state
∇̊a Lagrangian covariant space derivatives in the initial

state
� the Jacobian of transformation from Lagrangian to Eu-

lerian coordinates
δ variation at constant X
δ(x) δ-function; if x is a point in n-dimensional space, then

δ(x) is the product of n one-dimensional δ-functions
θ (x) the step function: θ (x) = 0 for x < 0, θ (x) = 1 for

x ≥ 0
V usually a region in three-dimensional space
�V boundary of region V
|V | volume of region V
dV volume element
� usually a surface
|�| area of the surface �

� usually a curve
|�| length of curve �

�V f , �Vu parts of the boundary of elastic body in which one pre-
scribes forces and displacements, respectively

dn x = dx1 . . . dxn volume element in Rn

d3x volume element in R3 in Cartesian coordinates
d A area element
I, J usually functionals
I usually action functional
Ǐ minimum value of the functional
Î maximum value of the functional
L Lagrange function or Lagrangian
φ symbol of empty set
u ∈(1.1) function u satisfies the constraint (1.1)
∗ usually the symbol of Young-Fenchel transformation;

complex conjugation in consideration of Fourier
transformation

× symbol of Legendre transformation
≡ this sign is usually used for definitions
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[ϕ] difference of values of function ϕ on the two sides of the discontinuity
surface

[ϕ]t1
t0 difference of values of function ϕ at the instant t1 and t0
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