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Preface

The new challenges in Aerospace Sciences and Engineering are not limited to partial
improvement of the systems available today, but the ambition is to design innovative
machines with a jump forward of efficiency to reduce fuel consumption and noxious
emissions or, in synthesis, to fly cleaner and quieter. Mathematics is fundamental in
this respect. The series of the workshops held at the “Ettore Majorana Foundation
and Centre for Scientific Culture” of Erice continues bringing together mathemati-
cians and aerospace engineers coming from both Academia and Industry. Erice is a
place where the dialog is easy and fruitful and young research fellows can interact
and discuss in a pleasant and sophisticated scientific atmosphere.

The present volume collects most of the papers presented at the workshop “Varia-
tional Analysis and Aerospace Engineering II” held on 8–16 September 2010; some
papers, dealing with new challenges in Aeronautics, were added in order to present
a set of new problems requiring an extensive application of mathematical tools.

The editors wish to continue this series and are confident, as written in the vol-
ume published on 2009, “to capture the interest of people, . . . , particularly, young
researchers working on new frontiers of mathematical application to engineering”.

This volume is dedicated to Franco Giannessi, eminent professor of Mathematics
at the University of Pisa and Director of the School of Mathematics “G. Stampac-
chia” of the Erice Centre, on the occasion of his 75th birthday. Franco continues to
be a guide to the new generations of scientists.

Giuseppe Buttazzo
Aldo Frediani

Pisa, Italy
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PrandtlPlane Propelled with Liquid Hydrogen:
A Preliminary Study

Nicola Beccasio, Marco Tesconi, and Aldo Frediani

1 Introduction

In 1998, the world’s airlines transported more than 1600 million of passengers and
29 million tons of freight, generating an annual turnover of US$ 307 billion. These
numbers have raised up and, in the future, are supposed to improve with a predicted
growth of revenue passengers-km of 4–5% every year.

Today transport aviation is supposed to produce about 2.5% of the total CO2
emissions, and, considering its growth, this is a problem for the future of aviation
industry [13].

The document “A Vision for 2020”, published by the Advisory Council for Aero-
nautics Research in Europe, October 2002, summarizes the main guidelines to make
Aircraft and Air Transport System responding to society’s needs, despite a three-
fold increase in air transporting. The main points of interest are Quality and Afford-
ability, Safety, and Environment; Environment is the starting point of this paper. The
main exhausts of aircraft engines are Carbon Nitride CO2, Water vapour, Nitride Ox-
ides NOx , non-combusted fuels, and particulates. CO2 has a long-term permanence
in the atmosphere (about 100 years), and the impact on climate is independent of the
height of flight. It can be reduced by reducing the engine specific consumption and
improving the efficiency of the kerosene propelled aircraft; the other possibility is to
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Fig. 1 Efficiency trend of aircraft engines

eliminate the kerosene by introducing new fuels. The water vapour effect vanishes
soon at low altitudes but is persistent at high altitudes and produces some green-
house effect due to the contrails formation [1]. The result of the engine combustion
is NO, and, then, NO2 is produced by oxidation of NO into the atmosphere; these
products are dangerous for human health. Other noxious products are UHC and CO
deriving from incomplete combustion, which generally occurs at low regimes of the
engines. Particulate is made of small flying particles of carbon and hydrogen; it is
not toxic but produces smog. The efficiency of civil transport aircraft has improved
constantly in the past. The increase of efficiency has invested new materials, new en-
gines and on-board systems. In 2000 the material used for the main structures were
the following: Aluminum alloys 65%, composites 15%, Titanium 5% and steel 15%;
in 2020 the following is forecast: 65% composites, 15% Aluminum, 5% Titanium
and 15% steel. The fuel consumed per 100 seat-km have been reduced constantly as
shown in Fig. 1 [6].

The new requirements on environment are a reduction in perceived noise to one
half of the current average levels, noise nuisance outside the airport boundary elimi-
nated by quieter aircraft, CO2 emissions per passenger kilometer cutted by 50% (i.e.
a cut of 50% in specific fuel consumption) and NOx cutted by 80%.

To achieve these goals in the medium term, it is necessary to change the way to
design airplanes, introducing innovative configurations; in the long-term perspec-
tive, the fuel needs to be changed in addition. In this paper, both aircraft configura-
tion and a new fuel are indicated; the new configuration is the PrandtlPlane, and the
candidate fuel is Hydrogen.

The PrandtlPlane is potentially the most efficient aircraft configuration and, also,
permits an easy integration of different types of engines, including the hydrogen
ones. When passing from kerosene to Hydrogen, the general architecture of the aero-
nautical engines does not change apart from the combustion chambers; because the
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Table 1 Comparative
characteristics of some fuels H2 CH4 CH1.93

Molecular mass 2.016 16.04 ≈168

Heat of combustion [kJ/g] 120 50 42.08.00

Density [g/cm3] 0.071 0.29375 ≈0.811

Boiling point, 1 atm [K] 20.27 112 440–539

Freezing point [K] 14.04 91 233

Specific heat capacity [J/g K] 0.422917 3.05 0.109722

Heat of vapourization [J/g] 446 510 360

Fig. 2 NOx production with
different combustors

flame speed of Hydrogen is eight times higher than for the kerosene, the chambers
are smaller and shorter, with the consequences of a lower permanence of fuel into
the chambers (and a lower probability of NOx formation) and lower refrigeration
temperature. A comparison between the characteristics of Hydrogen and Kerosene,
taken from the literature, are presented in Table 1.

Liquid Hydrogen reduces significantly NOx emissions (from 30% to 50% com-
pared to a kerosene propelled aircraft). Recent progresses in the combustor design
(Micromix) have produced a further reduction of NOx ; a comparison of the kerosene
and hydrogen NOx emissions vs. power of an APU unit is presented in Fig. 2,
which shows that a reduction of about 85% compared with a standard combustor
of kerosene is obtained.

Hydrogen engines eliminate totally CO2, reduce the fuel mass by a factor of 2.8
but improve the water vapour by a factor 2.6 compared to kerosene for completing
the same mission (Fig. 3).
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Fig. 3 Emissions of kerosene and Hydrogen propelled engines

Fig. 4 Example of LH2 propelled aircraft [18]

The noxious emissions and water vapour productions indicated before are related
to a conventional cruise altitude, but the conclusions could be different when chang-
ing it. So, if the generation of pollution (including water vapour) is the objective
function to be minimized, the cruise altitude becomes a main parameter, and, in
addition, in order to define a compromise with aerodynamic efficiency, the second
main parameter is the aspect ratio. There are also undesired properties connected
to liquid Hydrogen as, for example, low energy required for ignition, hide range of
flammability, high volatility, high flame speed, etc.; these aspects are well known
and discussed in the literature [6, 9, 12, 14–16]. In addition, because of its low
density, about 4× fuel volume is required in comparison to conventional fuel; con-
sequently, very large pressurized fuel tanks are needed, and new concepts in Aero-
dynamics and overall architecture become the main challenges. The liquid hydrogen
configurations proposed so far have, fundamentally, conventional layout apart from
the positioning of the LH2 tanks into the fuselage; in Fig. 4, a model of LH2 aircraft
developed in the CryoPlane Project [6] is illustrated.
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Table 2 Technical
specifications of the
PrandtlPlane

Design payload 250 pax.

Range 2500 nm

Flight crew 2

Cabin crew 8

Standard pax weight 75 kg

Luggage 20 kg

Fuel Liquid Hydrogen

Unusuable fuel 5% of fuel weight

Propulsion 2 engines

Cruise speed 0.75 Mach

Approach speed <150 kts

Max take off field length 7000 ft

Max landing field length 6000 ft

Airport altitude 0 m

Landing performance WLA = 0.95WTO

N° of external tanks 2

Tank differential pressure 1.4 bar

The most serious disadvantage of this solution are tanks positioned over the heads
of passengers, and safety could be dramatically reduced.

In this paper a new PrandtlPlane configuration is proposed with the aim of prov-
ing that the Hydrogen tanks could be fully separated from the passenger cabin con-
trary to a conventional aircraft.

2 Preliminary Design

The application of liquid Hydrogen propulsion to a PrandtlPlane configuration [7]
is proposed in the case of a 250-seat medium-size aircraft, designed for continental
flights (max 2500 nm) and for a reduced cruise speed (0.75 Mach). The complete
list of design requirements is reported in Table 2.

As said before, a cut to pollution and, at the same time, an efficient air transport
system inside continental routes are the main scopes of the project. Wing aspect
ratios (AR = b2/S, where S is the sum of front and rear wing surfaces) and cruise
altitudes (hcruise) are assumed as variables in convenient ranges of variation; the
aspect ratio varies in the interval 4–11, and the cruise altitude between 27.000 and
35.000 ft.

The present optimization procedure of the lifting system is affected by more
approximations than the ones introduced in [8], due to the very preliminary design
using Hydrogen as a fuel and, also, the lack of previous experience; thus, forward
and rear wing reference surfaces are fixed as 45% and 55% of total one, respectively.
The design process is summarized in Fig. 5.
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Fig. 5 Design procedure of the aircraft [2]

Starting from an initial layout, the efficiency during cruise is optimized mean-
while the aircraft is trimmed and stable in flight.

The fuselage layout is designed in order to minimize the wetted area; in this anal-
ysis the fuselage is assigned and not subjected to any modification during the design
process. The passenger deck is the same of the other PrandtlPlane configurations,
where about 250 passengers in 2 classes or 300 passengers in one single class are
embarked; a typical solution is depicted in Fig. 6, in the case of two classes.

The cargo deck allocates two containers abreast (Fig. 7) for a total of 22 LD1
containers. A central axial support connects the passenger beam to the bottom fuse-
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Fig. 6 General overview of the seats’ disposition

Fig. 7 General fuselage
cross section (business class,
250-pax. version)

Fig. 8 General fuselage layout

lage in order to save weight and improve the stiffness; a truss loaded in traction (due
to pressurization) is mounted between the top and bottom central fuselage.

As said before, due to the low density of hydrogen, we must provide a four times
fuel volume of an equivalent aircraft propelled with Kerosene; for this reason, a part
of the fuselage after the rear bulkhead could be used to allocate a fraction of total
fuel. The presence of this tank could be avoided by reducing the range to about
1800 nm; in the case of a long route where the rear cabin tank is necessary, the
relative positions of the Centre of gravity and the neutral point can be changed by
a proper translation of the lifting system along the fuselage direction. The main
part of fuel is set on two pressurized cylindrical tanks at the wing tips, insulated
with Polymethacrylamide and all contained into an exterior aluminium case. In this
paper, we do not discuss about the fuel tank detail design, but only their external
layout is defined; the tank weight is predicted by means of statistic formulas.

In the center fuselage, two sponsons contain the main undercarriage (Fig. 8);
previous experience have shown that the sponsons are not critical as far as transonic
Aerodynamics is concerned; even more so, when the cruise speed has been reduced.

Once the external fuselage layout is fixed, preliminary wing layout and engine
integration are necessary to determine the operative point. In particular, consid-
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Fig. 9 Logic diagram used to predict take-off weight

ering FAR25 Regulations and the technical specifications in terms of Max Take
Off/Landing field length, the minimum value of thrust required is selected together
with the maximum wing load.

To predict the takeoff weight, the standard procedure indicated in the logic
scheme in Fig. 9 is adopted.

Fuel weight is first estimated by fuel fraction method, where a typical mission is
divided into steps, and fuel burnt is evaluated step by step using predictions taken
from the literature and modified with proper corrective coefficients.

Semi-empirical expressions from NASA CR-151970 [3], adapted to take the spe-
cific configuration into account, are used to evaluate the empty weight of the single
components of the aircraft.

Once Thrust/Weight (T/W) and Takeoff weight (WTO) are calculated, the neces-
sary thrust is given, and the engine features can be established. Many engine inte-
grations are possible so avoiding to mix the presence of passengers in the cabin with
hydrogen pipelines; the engines could be positioned at the rear fuselage, under the
front wing or under the rear wing, depending on the layout of the hydrogen pipelines
connecting the engines and the tanks. The configuration with the engines positioned
on the lateral fuselage is typical of the propulsion with Kerosene, but, in the case of
hydrogen propulsion, it is not allowed for safety reasons with the fuselage tank, and,
in the case of tip tanks only, the pipeline layout along the vertical and rear wings is
too long and unsafe.
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Fig. 10 The box wing system of the present PrandtlPlane

Table 3 Airfoils
1 SC 20714

2 SC 20714

3 GRUMMAR K2

4 GRUMMAR K2

5 GRUMMAR K2

6 SC 20412

7 GRUMMAR K2

The solution with two engines under the front wing is convenient when hydrogen
is contained in the tip tanks only. The solution with the engines under the rear wings
is always valid and safe, both with tip tanks and rear fuselage tank [5].

In analogy with others aircraft, a reference engine is fixed, and the final choice is
obtained using the so called Engine Scale Factor method; the Engine Scale Factor
method used here is based on ESF factor, defined as

ESF = Tdes

Tref
, (1.1)

where Tref is the reference engine static thrust, and Tdes is the actual engine static
thrust. Once ESF is obtained, the reference engine can be scaled to be adapted to the
configuration studied; this method is valid in the range 0.8 < ESF < 1.2. After hav-
ing fixed the wing load, W/S, we can define the wing shape; a typical PrandtlPlane
wing system is illustrated in Fig. 10.

Airfoils are fixed in analogy with others 250-pax (Table 3). PrandtlPlane configu-
rations; a typical aerodynamic solution is shown in Fig. 11: hereinafter, sweep angle,
wing system condition and other wing geometrical characteristics will be fixed to
make the aircraft stable and trimmed longitudinally.

The dihedral angles are set according to other PrandtlPlane configurations, The
optimization procedure allows us to obtain the following quantities (functions of
cruise altitude and Aspect Ratio): Maximum Take Off Weight, Empty Operating
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Fig. 11 Airfoil definition

Fig. 12 Results a and b

Fig. 13 Results c and d

Weight, Empty Operating Rate/Maximum Take Off Weight, Fuel Weight/Maximum
Take Off Weight, Wing Span, ESF, Wing Surface, Fuel Weight, Landing Weight/
Maximum Take Off Weight, Wing Tank Weight including fuel inside. The results
obtained are summarized in Figs. 12, 13, 14, 15 and 16.
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Fig. 14 Results e and f

Fig. 15 Results g and h

Fig. 16 Results i and j

Figure 12a shows how the maximum take-off weight depends on both cruise al-
titude and aspect ratio. The results confirm that fuel consumption is reduced when
flying at high altitudes and also that, given a cruise altitude, maximum take off
weight is a parabolic function of the Aspect Ratio: a low AR corresponds to a low
efficiency, and, as AR increases, the efficiency will raise with the same law of the
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Fig. 17 GWP for CO2, NOx

and water vapour emissions
of a typical aircraft

empty operative weight (Fig. 12b). It is worth noting that operative weight is very
high (about 68%–70% of take-off weight) because of the low density of liquid hy-
drogen; this conclusion is confirmed by Fig. 12d, where the fuel weight is small
(about 7%–9% of take-off weight). If only aircraft performances are considered,
the optimum cruise altitude is the maximum one, but, when noxious emissions and
environmental impact are considered, the optimum altitude is different. In this re-
spect, we make reference to some results in the literature to establish the cruise
flight altitude as a compromise between a high aerodynamic efficiency and a low
environmental impact.

3 The Choice of Flight Altitude

The cruise flight altitude of minimum fuel consumption is the maximum one
(35.000 ft), but it corresponds to an unacceptable level of noxious emissions. The in-
fluence of the emissions on the global warming is conventionally considered through
the so-called Global Warming Parameter (GWP). Figure 17 [16] shows the effect on
heart heating of the main emissions in terms of GWP for a typical Kerosene pro-
pelled aircraft. The effects of CO2 are nearly independent of flight altitude, the con-
trary for NOx , and no warming effect due to contrails is produced under about 9-km
altitude. Under 4000 m, NOx produces a refrigeration, and the maximum warming
effect occurs at 10000 m due the interactions of NOx with other gases (e.g. Ozone,
Methane, etc.); the global effect is the superposition of the partial ones. It appears
that, should CO2 be eliminated by an Hydrogen propelled aircraft, we could ob-
tain a good compromise between performances and pollution at altitudes lower than
9000 m, with no effect of contrails.

Figures 18 and 19 show the GWP concentrations at the altitudes of interest in the
case of kerosene and hydrogen propelled aircraft, respectively [16].

Figures 20 and 21 show the effects of Hearth warming in terms of change of
fuel burnt and MTOW for the two engines. This results that a kerosene engine has
no benefit to reduce the cruise altitude; when passing, for example, from FL390 to
FL310 the fuel burnt increases by 20%, the MTOW increases by 2% and the GWD
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Fig. 18 GWP for a typical
Kerosene propelled aircraft

Fig. 19 GWP for a
Hydrogen propelled aircraft

by 10%; under the same conditions, a hydrogen propelled aircraft experiences an
increase of MTOW of 2%, a specific consumption of 10% and a reduction of GWD
(or NOx ) of 60%.

In the present analysis, the attention is focused on the reduction of noxious emis-
sions, and, thus, we assume a flight altitude of 29000 ft (8.840 m). After that the
cruise level has been stated, it is possible to reduce all figures from Figs. 12 to 16 to
the simple curves shown in the figures from Figs. 22 to 26.

Now the aircraft configuration is obtained by means of the optimization proce-
dure presented before; the starting configuration is defined with the following char-
acteristics: 50-m maximum wing span, maximum value of AR = 8 and best value of
AR = 6.5 (with these values, the take-off weight is minimized, and reasonable tank
weights and dimensions result).

When the optimization procedure converges, the aerodynamic drag is minimized
(the relevant parameter is the friction drag coefficient CD0). The results of the op-
timization procedure are presented in the next section. Given the aerodynamic con-
figuration, the range of positions of the Centre of Gravity is defined consequently in
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Fig. 20 GWP vs change in
fuel burn

Fig. 21 GWP vs change in
fuel burn

Fig. 22 The effect of the aspect ratio on the aircraft performances, a and b
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Fig. 23 The effect of the aspect ratio on the aircraft performances, c and d

Fig. 24 The effect of the aspect ratio on the aircraft performances, e and f

Fig. 25 The effect of the aspect ratio on the aircraft performances, g and h
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Fig. 26 The effect of the aspect ratio on the aircraft performances, i and j

such a way to obtain the static stability of flight in all the flight envelope; different
operative conditions are considered, namely:

• full loaded aircraft (design condition);
• empty wing tanks;
• empty fuselage tank;
• empty tanks (wing and fuselage);
• no freight;
• no passengers, luggage and fuel;
• no passengers, luggage, fuel and freight.

Excursions of CG have been also examined in order to avoid any possible failure
for “off design” conditions. Finally, the aerodynamic shape is constructed using [4],
and the aerodynamic analysis is performed.

4 Final Configuration of the Aircraft

An artistic view of the final baseline configuration is illustrated in Fig. 27 in the case
of a range of 2500 nm, with three tanks (at wing tips and inside rear fuselage).

All main characteristics of the final configuration have been calculated starting
the formulas reported in the iterative loops illustrated in Figs. 5 and 9, using the
commercial software Matlab. In Fig. 28 below it is possible to find out the iterative
cycles necessary to have final values regarding the main aircraft weights.

In Tables 4–9 all the main data of the aircraft are summarized.
The aerodynamic chord is the average of the mean aerodynamic chords of the

two horizontal wings; the results are relevant to 250 passengers with their luggage
without any additional cargo. The empty weight has been obtained with standard
statistical methods; corrections have been introduced to take the influence of the
large fuel tanks, plants, etc., into account.

The total length of the fuselage becomes 51.64 m, resulting from the passenger
accommodation and the presence of the rear fuselage Hydrogen tank. The wing span



PrandtlPlane Propelled with Liquid Hydrogen: A Preliminary Study 17

Fig. 27 Configuration resulting from a preliminary optimization

Fig. 28 Configuration resulting from a preliminary optimization

results from the optimization process; the final span of the optimized wing is 44 m,
including the rounds to connect horizontal wings to the vertical ones (for a total of
3.24 m).

The preliminary weight estimation of this paper was conducted by using statis-
tical formulas (see [10, 11, 17]), properly modified. For example, according to [8],
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Table 4 Main LH2
PrandtlPlane characteristics Max take-off weight [kg] WTO 156627

Empty operative weight [kg] WEO 107098

Fuel weight [kg] WFUEL 14306

Payload weight [kg] WPAY 23750

Thrust/max. take-off weight T/W 0.32

Wing load [kg/m2] W/S 525

Cruise efficiency (L/D)CR 14.26

Maximum efficiency (L/D)MAX 16.47

Total fuselage length [m] LTOT 51.64

Wing span [m] b 44

Reference surface [m2] S 298.4

Main aerodynamic chord [m] MAC 3.6

Table 5 Forward wing
geometry Wing surface [m2] SFOR 134.27

Wing span [m] b 44.04

Main aerodynamic chord [m] MACFOR 3.56

Aspect ratio ARFOR 11.8

Taper ratio (CT/CR)FOR 0.45

Relative average thickness (t/c)FOR 0.12

Sweep angle 25% [deg] Λ25FOR 35

Sweep angle LE [deg] ΛLEFOR 35.94

Sweep angle TE [deg] ΛTEFOR 32.12

Root choord [m] CrFOR 5.08

Kink choord [m] CkFOR 3.37

Tip choord [m] CtFOR 2.28

Dihedral angle [deg], Bay n°1 Γ 1FOR 0

Dihedral angle [deg], Bay n°2 Γ 2FOR 5

the empty weight of a PrandtlPlane wing system is nearly the same of that of a con-
ventional aircraft; thus, we start from the statistical evaluation of the wing weight of
a conventional aircraft to be improved in order to take the position of the tip tanks,
heat exchangers and the tip local reinforcements into account and to be reduced
because the present wings are free of the engines.

Figures 29 and 30 show some aerodynamic results obtained from a BEM analysis
using Panair, even though, in these figures, vertical tail is single and not double as the
final configuration (the reason is that only longitudinal stability has been studied).
The figures give just an indication that the aerodynamic behaviour of the aircraft is
not critical.

The aircraft is stable during trimmed cruise flight, as shown in Fig. 31, where the
main longitudinal aerodynamic derivatives are reported.
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Table 6 Backward wing
geometry Wing surface [m2] SAFT 164.11

Wing span [m] b 44.04

Main aerodynamic chord [m] MACAFT 3.63

Aspect ratio ARAFT 11.82

Taper ratio (CT/CR)AFT 0.45

Relative average thickness (t/c)AFT 0.12

Sweep angle 25% [deg] Λ25AFT 20

Sweep angle LE [deg] ΛLEAFT 21.79

Sweep angle TE [deg] ΛTEAFT 14.04

Longitudinal axis choord [m] CclAFT 5.3

Root choord [m] CrAFT 4.78

Kink choord [m] CkAFT 3.75

Tip choord [m] CtAFT 2.15

Dihedral angle [deg], Bay n°1 Γ 1AFT 0

Dihedral angle [deg], Bay n°2 Γ 2AFT −5

Dihedral angle [deg], Bay n°3 Γ 3AFT −5

Table 7 Fin geometry
Surface [m2] SFIN 34.4

Wing span [m] b 5.6

Aspect ratio ARFIN 0.9

Taper ratio (CT/CR)FIN 0.6

Relative average thickness (t/c)FIN 0.1

Sweep angle 25% [deg] Λ25FIN 35

Root choord [m] CrFIN 7.2

Tip choord [m] CtFIN 4.3

Dihedral angle [deg] Γ 3FIN 15

Table 8 Engine characteristics

Engine (Ref.) GE CF6 80C2-B2

Thrust [kg] Thrust 25062

Bypass ratio BPR 5.31

Fan diameter [m] DFAN 2.4

Length [m] LENG 4.2

Cruise specific fuel consumption [1/h] SFCCR 0.2021

Loiter specific fuel consumption [1/h] SFCLOI 0.1819
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Table 9 Wing tank
Length [m] LTANK 22.7

Diameter [m] DTANK 2.1

Aspect ratio (L/D)TANK 10.8

Total volume [m3] VTANK 67.8

Insulator thickness [mm] δTANK 61.0

Insulator (mat.) Polyvinyl chloride

Table 10 DOC parameter
Block time [h] 0.269444

Utilization [h/yr] 3456

Commercial speed [km/h] 787

Aircraft delivery price [MUSD] 124.210

DOC [$/(km pax)] 0.07148

Fig. 29 Pressure coefficients

A preliminary economic analysis has been carried out, in order to investigate the
real economical feasibility of an LH2 PrandtlPlane; the main data are summarized
in Table 10.

The DOC (Direct Operating Costs) represent the cost (in USD) to be supported
to carry a passenger for one kilometer; in general, DOC can be written as

DOC = CA + CM + CV

U · Npax · Vs

, (1.2)

where
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Fig. 30 Local mach number

Fig. 31 Trim conditions

• CA represent the annual costs (fixed costs as taxes, aircraft depreciation, insur-
ance costs). In order to estimate this costs, it is necessary to have the ADP (Air-
craft Delivery Price), or MSSP (Manufacturer’s Standard Study Price): to perform
this analysis, statistic model DAPCA IV has been used;

• CM: maintenance cost;
• CV is the cost of flight (crew and fuel costs);
• Npax is the total passengers number;
• U is the use in each year and is expressed in [h/yr];
• VB = Range/BT is the speed of the plane (or block speed), and BT is the block

time (typical mission time).
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Fig. 32 Direct operating cost breakdown

Fig. 33 Manufacturer study price breakdown

In Figs. 32 and 33 details about the composition of the DOC and MSSP costs are
represented.

Fuel costs represent about a quarter of total DOC for an LH2 configuration,
higher than that of kerosene aircraft because the present cost of liquid Hydrogen is
much higher than the cost of kerosene; for this reason, the direct operating costs of
LH2 propelled airplanes are higher than conventional airplanes. The prize of liquid
Hydrogen could decrease in the future when other applications (e.g. car industry)
could be introduced or new energetic scenarios may happen.
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Fig. 34 Payload-range
diagram

Table 11 Feasibility results

Max payload range (project condition) Take-off weight, [kg] WTO 156627

Range, [nm] R 2500

Fuel, [kg] WFUEL 14306

DOC [$/(km pax)] 0.07148

Extended range Take-off weight, [kg] WTOEXT 156627

Range, [nm] REXT 2871

Fuel, [kg] WFUEL 15838

DOC [$/(km pax)] 0.06246

Only passengers range Take-off weight, [kg] WTO PAX 147771

Range, [nm] RPAX 3075

Fuel, [kg] WFUEL 16022

DOC [$/(km pax)] 0.05976

Ferry range Take-off weight, [kg] WTO ferry 123300

Range, [nm] Rferry 3593

Fuel, [kg] WFUEL 16022

Finally, the possibility of changing the operating conditions has been investigated
to make the aircraft more adaptable to many different conditions of use. In particular,
the following quantities are considered:

• Max Payload Range: maximum range covered with a fully loaded aircraft;
• Extended Range: maximum range covered with all tanks fully loaded;
• Only Passengers Range: the maximum range covered excluding freight (only pas-

sengers and luggage);
• Ferry Range: the maximum range covered with an empty aircraft.

The results are summarized in Fig. 34 and Table 11.
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5 Conclusions

This paper shows that a civil transport PrandtlPlane with liquid hydrogen propulsion
can be designed in order to fully separate the hydrogen tanks from the passengers.
Liquid hydrogen tanks can be positioned at the front wing tips of a PrandtlPlane,
after that structural optimization and aeroelastic analysis have shown that the wing
system allows this solution. In order to improve the aerodynamic performances, the
tanks volume must be reduced; this is attained by limiting the cruise speed to 0.75
Mach and limiting the range to continental flights with a maximum of 2500 nm.
With these requirements, the fuel tanks are compatible with aerodynamic perfor-
mances and structural and aeroelastic requirements, including flutter, even though
a more specific analysis is needed. A design procedure has implemented to define
the best configuration by making use of in house software properly set up to design
PrandtlPlane aircraft. Thanks to these tools, the computation time is so reduced that
several aerodynamic analyses on 3d configurations have been conducted.

Preliminary economic analysis shows that, nowadays, it is not affordable the real
production and marketing of an LH2 configuration: in fact, DOC cost is higher in
regard to kerosene-propelled aircraft because of the high costs of liquid hydrogen
production.
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Aeroacousto-Elastic Modeling for Response
Analysis of Helicopter Rotors

Massimo Gennaretti and Giovanni Bernardini

1 Introduction

Helicopter rotors in steady flight are characterized by the generation of vibratory
loads and acoustic disturbance. A passenger boarding a helicopter for the first time
is undoubtedly struck with the level of vibrations (and noise) that arises within the
cabin. It is much higher than that experienced within airplanes and makes helicopter
rides significantly less comfortable. The fuselage vibrations caused by the vibratory
loads from the main rotor also have a negative impact both on the fatigue-life of
the structure and on the functionality of onboard instruments, making their reading
difficult, too.

On the other hand, for an external observer, the passage of an helicopter is readily
noticed because of the typical tonal noise emitted. It has characteristic frequencies
that depend on the performed maneuver and in some flight conditions may produce
high levels of acoustic annoyance, insomuch as to make the environmental and pub-
lic acceptance of helicopters a critical issue.

All this explains why the reduction of both vibratory rotor hub loads and noise
emission is one of the most critical (and challenging) goals in the design of new-
generation helicopters. In this framework, the availability of reliable simulation
tools for the prediction of helicopter rotor noise and vibrations is of primary im-
portance.

The prediction of the vibratory loads transmitted by the main rotor to the fuse-
lage requires the application of an accurate aeroelastic solver derived from coupling
a blade structural dynamic model that takes into account both the strong coupling
between bending and torsion degrees of freedom and the effect of the significant

M. Gennaretti (�) · G. Bernardini
University Roma Tre, Via Vasca Navale 79, 00146 Rome, Italy
e-mail: m.gennaretti@uniroma3.it

G. Bernardini
e-mail: g.bernardini@uniroma3.it

G. Buttazzo, A. Frediani (eds.), Variational Analysis and Aerospace Engineering: Mathe-
matical Challenges for Aerospace Design, Springer Optimization and Its Applications 66,
DOI 10.1007/978-1-4614-2435-2_2, © Springer Science+Business Media, LLC 2012

27



28 M. Gennaretti and G. Bernardini

deformations usually experienced by slender structures, with an unsteady aerody-
namics model that is able to take into account the complex interaction effects aris-
ing among the blades. It is a common solution procedure to make the rotor aeroe-
lastic response analysis follow an initial evaluation of the control settings (blade
collective and cyclic pitch, shaft angle) through a helicopter trimming process, al-
though a simultaneous evaluation of helicopter trim state and rotor response could
be achieved. Once the pressure over the rotor blades is determined from the aeroe-
lastic solver, radiated noise may be computed through a pressure propagation for-
mulation. It is strongly affected by the aerodynamic solution that, therefore, plays a
fundamental role both for vibratory loads and acoustic analysis. This is particularly
true for the analysis of those flight configurations where blade-vortex interactions,
BVI, produce blade impulsive loads and corresponding extremely annoying acoustic
effects.

In the last decades, the prediction of helicopter rotor aeroelastic response aimed
at examining both emitted noise and vibratory hub loads has been the objective of
many researchers operating in the field of rotorcraft. Typically, prediction tools de-
veloped to analyze rotor aeroelasticity are based on aerodynamic models that couple
2-D airfoil-theory loads with wake inflow from a 3-D free-wake solver. If blade pres-
sures are needed for aeroacoustic computations, these are usually determined from
a different aerodynamic tool that uses blade deformations as an input. An exam-
ple of this kind of approach is the study aimed to aeroelastic applications presented
in Ref. [1], where a multiple-trailer vortex model is used in the free-wake analysis
that predicts the wake inflow to be coupled with an aerodynamic load model based
on thin airfoil theories. A similar approach is considered in Ref. [2] for aeroacoustic
purposes. The combined use of a dual vortex free-wake code with a 2-D aerodynam-
ics code is applied in Refs. [3] and [4] for the aeroelastic and aeroacoustic analysis
of rotors aimed to vibration and noise reduction. In Ref. [5] the aerodynamic analy-
sis of rotors in BVI conditions consists of a four-step procedure. An initial rotor trim
code based on 2-D aerodynamics is followed by a vortex-lattice free-wake analysis
that is then coupled with a roll-up model in order to identify the higher-intensity vor-
tex structures. In turn, these are considered as the interacting vortices in a pressure
predictor code based on a 2-D solver. Predictions of vibratory hub loads through an
aeroelastic tool combining unsteady 2-D section load models with wake inflow from
free-wake analysis are presented in Ref. [6]. An extensive review on tools available
for vibratory hub loads prediction is given in Ref. [7].

The aim of this chapter is the presentation of the aeroacousto-elastic simulation
tool for helicopter rotors developed in the last years at the Department of Mechani-
cal and Industrial Engineering of University Roma Tre. The models applied for the
description of rotor structural dynamics, aerodynamics and aeroacoustics will be
outlined in detail, along with the strategy used for their numerical integration. The
importance of the role played by the unsteady aerodynamic model in such a kind of
solvers will be examined by the numerical investigation. Aeroelastic solvers devel-
oped for helicopter and tiltrotor analysis have been presented in Refs. [8–10], the
boundary integral equation approach for the velocity potential introduced to predict
unsteady aerodynamics of rotors with significant interaction effects (like BVI) has
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been described in Ref. [11], while reduced-order aerodynamic models developed for
state-space aeroelasticity have been presented in Refs. [12–15]. Applications to ro-
tor aeroacoustic analysis are given in Ref. [16], where the examination of the impact
of the aeroelastic modelling on radiated noise prediction is discussed in details.

2 Blade Structural Modeling

A beam-like model is applied to describe the structural dynamics of rotor blades. It
is based on the nonlinear bending-torsion formulation presented in Ref. [19] that is
valid for straight, slender, homogeneous, isotropic, nonuniform, twisted blades, and
undergoing moderate displacements. In this model, second-order terms are retained
in the equations after application of an ordering scheme dropping third-order terms
(with respect to bending slope) not contributing to damping. The radial displace-
ment is eliminated from the set of equations by solving it in terms of local tension,
and thus the resulting structural operator consists of a set of coupled nonlinear dif-
ferential equations governing the bending of the elastic axis and the blade torsion
[20]. Specifically, for v(x, t) denoting the lead-lag bending (lying in the plane of
rotation), w(x, t) denoting the flapwise bending, and φ(x, t) denoting the cross-
section torsion about the deformed elastic axis, the blade dynamics is governed by
the following set of three dimensionless integro-differential equations [19]:

[(
Λ2 − Λ21 sin2 θ

)
v′′]′′ +

[
Λ21

2
w′′ sin(2θ)

]′′

+ [
Λ21

(
φw′′ cos(2θ) − φv′′ sin(2θ)

)]′′ − [
eAT cos(θ + φ)

]′′ − (T v′)′

= Lv(x) + py(x) − q ′
z(x) (1)

[(
Λ1 + Λ21 sin2 θ

)
w′′]′′ +

[
Λ21

2
v′′ sin(2θ)

]′′

+ [
Λ21

(
φv′′ cos(2θ) + φw′′ sin(2θ)

)]′′ − [
eAT sin(θ + φ)

]′′ − (T w′)′

= Lw(x) + pz(x) + q ′
y(x) (2)

Λ21
[(

w′′2 − v′′2) sin θ cos θ + v′′w′′ cos(2θ)
] − (κφ′)′ − [

K2T (φ + θ)′
]′

− eAT (w′′ cos θ − v′′ sin θ)

= Mφ(x) + qx(x) + v′qy(x) + w′qz(x) (3)

where the tension, T , is given by

T =
∫ 1

x

px(x)dx̄ (4)

and ( )′ denotes differentiation with respect to the dimensionless spanwise coordi-
nate. In the equations above, dimensionless lengths are related to the blade radius, R,
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while dimensionless time coincides with blade azimuth position. The bending equa-
tions (1) and (2) have been obtained by dividing by the factor m0Ω

2R, while the
torsion equation (3) is the result of division by the factor m0Ω

2R2, with m0 denoting
the reference blade mass per unit length, and Ω denoting the angular velocity of the
blade. In addition, Λ1 and Λ2 are the dimensionless flap and lead-lag bending stiff-
nesses, respectively, Λ21 = Λ2 −Λ1, κ is the dimensionless torsion rigidity, K is the
square of the ratio between the blade cross-section polar radius of gyration and the
blade cross-section mass radius of gyration, while eA denotes the distance between
tensile axis and elastic axis [19, 20]. The blade loading terms due to section iner-
tial forces, px , py , pz, section inertial moments, qx , qy , qz, and aerodynamic loads
per unit length, Lv , Lw , Mφ , are functions of the blade section degrees of freedom,
x = {v,w,φ}. Note that in (1)–(3) blade precone angle, hinge offset, torque offset,
and mass offset, if present, would appear in the description of the distributed inertial
and aerodynamic loads.

3 Rotor Aerodynamics Modeling

The aerodynamics of helicopters is significantly affected by the interactions among
main rotor, fuselage, and tail rotor. However, in many configurations of interest,
a crucial role is played by the interactions between rotor blades and rotor wake.
These phenomena are known as blade-vortex interactions (BVI) and include blade
passages close to the wake, as well as blade-wake impacts that produce impulsive
pressures on the blade surface. They strongly contribute to the vibratory loads trans-
mitted to the airframe and generate extremely annoying acoustic effects. Therefore,
a simulation tool applied for the optimal design of a new-generation helicopter has
to be able to predict BVI occurrence and corresponding aeroelastic and aeroacous-
tic effects. In view of this, a boundary integral formulation for potential flows suited
for the prediction of strong aerodynamic interaction effects has been presented in
Ref. [11]. It is a development of the formulation introduced in Ref. [17] and further
extended to rotors in forward flight in Ref. [18]. A brief outline of the potential-flow
formulation suited for BVI analysis is given in the following.

For the unsteady, incompressible flow around a helicopter rotor, the velocity po-
tential field, ϕ, may be described through the following boundary integral represen-
tation [17, 18]:

ϕ(x, t) =
∫

SB

(
G

∂ϕ

∂n
− ϕ

∂G

∂n

)
dS(y) −

∫

SW

	ϕ
∂G

∂n
dS(y) (5)

where SB and SW denote blades and wake surfaces, respectively, while G =
−1/4πr is the unit-source solution of the 3-D Laplace equation, with r = ‖y − x‖.
The impermeability boundary condition on SB yields ∂ϕ/∂n = v · n, with v rep-
resenting the body velocity and n its outward unit normal. In addition, 	ϕ is the
potential jump across the wake surface that is known from the past history of the
potential discontinuity at the trailing edge of the corresponding body through the
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Fig. 1 Far-wake and
near-wake decomposition

Kutta–Joukowski condition, i.e., 	ϕ(xW, t) = 	ϕ(xTE
W , t − ϑ), with t − ϑ denot-

ing the instant when the wake material point currently in xW emanated from the
trailing edge point xTE

W (see Refs. [17] and [18] for details). Equation (5) shows
that the potential field is generated by a distribution of sources and doublets over
the blades, along with distribution of doublets over the wake surface. However, us-
ing the boundary element method for the numerical solution of this equation causes
instabilities to arise when wake panels come too close to or impinge on the body sur-
faces [11]. Thus, this formulation cannot be applied as it is to examine the problem
under consideration.

The boundary integral approach proposed in Ref. [11] overcomes this limitation.
It introduces the decomposition of the potential field into an incident field, ϕI , and
a scattered field, ϕS . The scattered potential is generated by sources and doublets
over the body surfaces and by doublets over the wake portion that is very close
to the trailing edge from which emanated (near wake, SN

W ). The incident potential
is generated by the doublets over the complementary wake region that compose
the far wake, SF

W (see Fig. 1). This is the wake portion that may come in contact
with other blades. The scattered potential is discontinuous across SN

W , whereas the
incident potential is discontinuous across SF

W . Hence, as demonstrated in Ref. [11],
for ϕ = ϕI + ϕS , the scattered potential is obtained by

ϕS(x, t) =
∫

SB

[
G(χ − χI ) − ϕS

∂G

∂n

]
dS(y) −

∫

SN
W

	ϕS

∂G

∂n
dS(y) (6)

where χ = v ·n and χI = uI ·n, with the velocity induced by the far wake, uI , given
by

uI (x, t) = ∇ϕI (x, t) = −∇
∫

SF
W

	ϕS

(
yTE
W , t − ϑ

) ∂G

∂n
dS(y) (7)

The incident potential affects the scattered potential through the induced-velocity
term, χI , and, in turn, the scattered potential affects the incident potential by its
trailing-edge discontinuity that is convected along the wake and yields the intensity
of the doublet distribution over the far wake.
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Obtaining the discrete form of (7) by using N panels over the far wake and re-
calling the vortex-doublet equivalence, the incident velocity field may be evaluated
through the following expression:

uI (x, t) ≈ −
N∑

k=1

	ϕS

(
yTE
Wk

, t − ϑk

)∫

Ck

∇xG × dy (8)

where Ck denotes the contour line of the kth far wake panel, yTE
Wk

is the trailing edge
position where the wake material point currently in yWk

emanated at time t −ϑk , and
∇x denotes gradient operator with respect to the variable x. This equation represents
the velocity field given by the Biot–Savart law applied to the vortices having the
shape of the far wake panel contours and intensity 	ϕS(yTE

Wk
, t − ϑk). Equation (8)

is applied to evaluate both the term χI in (6) and, once extended to the whole wake,
the velocity field in the free-wake distortion analysis, if required.

The final step of the formulation consists of introducing in (8) a finite-thickness
vortex model that assures a regular distribution of the induced velocity within the
vortex core, and thus a stable and regular solution even in body-vortex impact con-
ditions [11]. The description of the wake influence through the use of finite-core
vortices is a way to include also diffusivity and vortex-stretching effects that, other-
wise, would not be taken into account in a potential-flow aerodynamic formulation
(see Refs. [21] and [22] for details on this issue).

Equation (6) is solved numerically by boundary elements, i.e., by dividing SB and
SN

W into quadrilateral panels, assuming ϕS , χ , χI , and 	ϕS to be piecewise constant
(zeroth-order boundary element method, BEM) and imposing that the equation be
satisfied at the center of each body element (collocation method) [11].

Once the potential field is known, the Bernoulli theorem yields the pressure dis-
tribution (see Appendix A), and hence blade loads may be evaluated through inte-
gration.

3.1 Aerodynamic Loads From Airfoil Theories

In several aeroelastic prediction tools commonly used in rotorcraft applications, the
blade aerodynamic forcing terms are obtained as radial integration of the loads given
by sectional aerodynamics models. These are typically derived from airfoil unsteady
aerodynamics theories, corrected with wake inflow to take into account the three-
dimensional effects due to wake vortices.

For a thin, straight airfoil moving in an incompressible flow, following the Green-
berg theory [23] (which is the extension of the Theodorsen theory [24] to pulsating
airstream), it is possible to determine the aerodynamic force acting on it by combin-
ing the noncirculatory lift, Lnc , orthogonal to the chord with the circulatory lift, Lc ,
directed along the normal to the relative wind (see, for instance, Ref. [20]). Specif-
ically, for ρ denoting the air density and b denoting the airfoil semi-chord length,
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the noncirculatory lift is expressed as

Lnc(t) = π ρ b2 v̇n
1/2 (9)

where v̇n
1/2 denotes the time derivative of the normal component of the relative wind

evaluated at the airfoil mid point (positive upwards). The circulatory lift, which in
practical applications is the most relevant load contribution, is given by the expres-
sion

Lc(t) = 2π ρ bV F−1[C(k)ṽn
3/4

]
(10)

where V denotes the relative wind velocity, F denotes Fourier transformation,
and ṽn

3/4 = F (vn
3/4) with vn

3/4 representing the normal component of the relative
wind evaluated at the airfoil 3/4-chord point. In addition, C(k) is the lift deficiency
(complex) function defined by Theodorsen [24] in terms of the reduced frequency,
k = ωb/V̄ , where ω is the variable in the Fourier domain, and V̄ is the mean (or
reference) value of V which is responsible for the shed vorticity convection (see
Ref. [25] for a detailed analysis of the effects of nonuniform convection of the shed
vorticity along the wake). For a harmonic vn

3/4 input, C(k) defines gain and phase
shift of the Lc/V harmonic response. The set of the aerodynamic loads acting on
the airfoil includes also the pitching moment about the 1/4-chord point (positive
clockwise for the relative wind directed from left to right), which is given by [23]

M1/4(t) = −b

2
Lnc − πρ

b3

2

(
V ωa + b

4
ω̇a

)
(11)

where ωa is the angular velocity of the airfoil. Once vn
1/2, v

n
3/4,ωa , and V are ex-

pressed in terms of the blade degrees of freedom (a major elastic contribution from
blade lag may appear also in V ), Eqs. (9), (10), and (11), combined with a model
to take into account drag effects, may be applied to develop an aeroelastic formu-
lation for helicopter rotors. Note that a similar unsteady aerodynamics formulation
has been developed by Loewy for the airfoil of a rotor blade in hovering or axial
flow [26].

Some difficulties in the application of unsteady aerodynamics airfoil theories
stem from the presence of the lift deficiency function. Indeed, it is a transcendental
function of the reduced frequency and hence requires the introduction of a convo-
lution integral for the evaluation of the circulatory lift (see (10)). Alternatively, it
may be expressed through a Padè approximant (see, for instance, Ref. [27]), thus
avoiding the computation of convolution integrals, at the cost of introducing some
aerodynamic states in the state-space realization of the aeroelastic problem. How-
ever, this problem does not appear when the so-called quasi-steady approximation
of the airfoil theory is applied. It consists of assuming that very low frequencies are
involved in the aeroelastic process and observing that C(k) → 1 as k → 0. In this
case the transcendent terms in the circulatory lift disappear, and the model is con-
siderably simplified. In many research and industry applications, the inaccuracies
introduced by the quasi-steady aerodynamic model are compensated by coupling
it with dynamic wake inflow models taking into account the influence of shed and
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trailed vorticity coming also from aeroelastic effects. Widely used dynamic wake
inflow models are those introduced by Peters and his coworkers (see, for instance,
Refs. [28–30]). When the wake inflow is evaluated without considering aeroelastic
effects (i.e., it is assumed to be independent of the blade degrees of freedom), it is
referred to as static inflow; coupled with the quasi-steady approximation of the air-
foil theory, it yields a simplified but user-friendly aerodynamic model yet frequently
applied in rotorcraft solvers.

Finally, note that for the analysis of helicopter rotors operating at high forward
flight speeds, the unsteady aerodynamics modeling has to take into account also the
effects of the reverse flow occurring at the blade root region in the retreating side,
along with the influence of the phenomenon of dynamic stall caused by the onset of
large torsional airloads and vibrations on the blade [22].

4 Harmonic Balance for Aeroelastic Response Analysis

Equations (1), (2), and (3) governing the blade structural dynamics coupled with
the unsteady aerodynamic load modelling yield the aeroelastic integro-differential
equations to be integrated. Here, the space integration is performed through the
Galerkin approach, starting from the following description of the elastic axis defor-
mation as a linear combination of shape functions

v(x, t) =
∑

n

qv
n(t)Ψ v

n (x); w(x, t) =
∑

n

qw
n (t)Ψ w

n (x);

φ(x, t) =
∑

n

qφ
n (t)Ψ φ

n (x)

For instance, considering a hingeless rotor, Ψ v
n ,Ψ w

n , and Ψ
φ
n , might conveniently

be chosen as the bending and torsion natural modes of vibration of a nonrotating
cantilever beam [20]. The resulting aeroelastic system consists of a set of nonlinear
ordinary differential equations of the type

M(t)q̈ + C(t) q̇ + K(t)q = fnl
str(t,q) + faer(t,q) (12)

where q denotes the vector of the Lagrangian coordinates, whereas M,C, and K
are time-periodic, mass, damping, and stiffness structural matrices representing the
linear structural terms (note that these matrices are time-variant because of the
cyclic pitch contribution). Nonlinear structural contributions are collected in the
forcing vector fnl

str(t,q), whereas vector faer(t,q) collects the generalized aerody-
namic forces. Specifically, the generalized forces related to lead-lag, flap, and tor-
sion equations are, respectively, given by

f v
aerj =

∫ 1

xR

LvΨ
v
j dx; f w

aerj =
∫ 1

xR

LwΨ w
j dx; f φ

aerj =
∫ 1

xR

MφΨ
φ
j dx
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where xR is the dimensionless aerodynamic root cutout, while Lv , Lw , and Mφ

denote, respectively, sectional force components along the bending directions and
sectional torsion moment about the elastic axis. Sectional aerodynamic loads may be
obtained either by integration along the airfoil contour of the pressure distribution
given by the BEM solver outlined above (or any other CFD tool available) or by
using the expressions in (9)–(11) derived from the airfoil theory.

Since the aim is the prediction of the aeroelastic and aeroacoustic steady periodic
response during forward flight, the aeroelastic system in (12) is solved by using
the harmonic balance approach. It is a methodology suitable for the analysis of
the asymptotic solution (as time goes to infinity) of differential equations forced
by periodic terms, as in the present case. The harmonic balance solution consists
of: (i) express LHS and RHS of the aeroelastic system (Eq. (12)) in terms of their
Fourier series; (ii) equate the resulting coefficients; and (iii) solve the corresponding
algebraic system in terms of the unknown Fourier coefficients of the Lagrangian
coordinates of the problem. Specifically, expressing q and f = fnl

str + faer in terms of
the Fourier series

q(t) = q0 +
N∑

n=1

[
qc

n cos(Ωnt) + qs
n sin(Ωnt)

]

f(t) = f0 +
N∑

n=1

[
f c
n cos(Ωnt) + f s

n sin(Ωnt)
]

(where qc
n, qs

n, f c
n , and f s

n denote the cosine and sine components of the nth harmonic
of q and f, whereas Ωn = nΩ with Ω representing the fundamental frequency,
i.e., the rotor angular velocity) and then combining with (12) yields the following
representation of the aeroelastic system harmonic components:

[M̂ + Ĉ + K̂]q̂ = f̂ (13)

where q̂T = {qT
0 qcT

1 qsT
1 qcT

2 qsT
2 · · · } and f̂T = {fT0 f cT

1 f sT
1 f cT

2 f sT
2 · · · }. The

matrices M̂, Ĉ, and K̂ in (13) come out from (12) by combining the harmonics of
the q, q̇, and q̈ terms with the harmonics of the matrices M,C, and K. In particu-
lar, if M,C, and K were constant matrices, in (13) one would have block-diagonal
matrices, and each harmonic of q would depend only on the same harmonic of f
(the q-harmonics equations would be uncoupled). Instead, in the problem under ex-
amination the structural matrices are periodic, and hence, once expressed in terms
of the Fourier series and combined with the harmonics of q, q̇, and q̈, they yield
fully populated M̂, Ĉ, and K̂ matrices, thus coupling the algebraic equations for the
unknown harmonics in q̂ (as an example, in Appendix B the K̂ matrix is given in
terms of the harmonics of K).

Because of the presence of nonlinear structural terms and of aerodynamic con-
tributions in f̂, (13) has to be solved using an iterative procedure. To this aim, the
Newton–Raphson method with a simplified Jacobian matrix is applied. Specifically,
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the harmonic aeroelastic solution is obtained from convergence of the following
iterative procedure (with n indicating the iteration step number):

q̂n = [M̂ + Ĉ + K̂ − Ĵaer]−1[f̂n−1 − Ĵaerq̂n−1] (14)

where Ĵaer is the aerodynamic Jacobian evaluated at q̂ = 0, while f̂n−1 denotes
the nonlinear structural terms and aerodynamic loads evaluated at q̂ = q̂n−1 (i.e.,
through the Lagrangian coordinates given by the previous iteration step). Under this
assumption, the aerodynamic portion of the forcing term is equivalent to f̂0

aer + f̂nl
aer,

with f̂0
aer denoting the aerodynamic load portion that is not influenced by the struc-

tural deformation. The introduced approximation of the Jacobian is convenient in
that it implies that the matrix inversion required in (14) has to be evaluated only
one time. If convergence problems arise (because of large differences between
the local aerodynamic gradient and Ĵaer), the aerodynamic Jacobian has to be re-
evaluated during the iteration process (either analytically or numerically, depending
on the aerodynamic solver applied), along with the inverted global Jacobian ma-
trix.

5 Radiated Noise Modeling

Once the aeroelastic (and hence aerodynamic) response has been determined, it is
possible to proceed with the evaluation of the noise radiated by the helicopter rotor.
Indeed, it requires the knowledge of blade motion, blade surface pressure distribu-
tion, and, for transonic configurations, also the flow field around it. The aeroacous-
tic solver applied in the prediction tool developed by the authors is based on the
well-known Ffowcs Williams–Hawkings equation, written for compressible flows
undergoing transformations with negligible entropy changes [31]. In this case, the
pressure-density relationship is approximated by the linear term of its series expan-
sion, namely p′ = c2

0ρ̃, where p′ denotes the acoustic pressure disturbance, c0 is the
speed of sound in the undisturbed medium, and ρ̃ denotes the density perturbation.

The Ffowcs Williams–Hawkings equation represents a rearrangement of the
mass and momentum conservation laws into an inhomogeneous wave equation
which extends to the presence of moving bodies the field of application of the
Lighthill theory for the aerodynamically generated sound. In its more general
form, for f (x, t) = 0 describing an arbitrary moving surface, the Ffowcs Williams–
Hawkings equation reads

1

c2
0

∂̄2p′

∂t2
− ∇̄2p′

= ∂̄

∂t

{[
ρ0vn + ρ(un − vn)

]
δ(f )

}

− ∂̄

∂xi

{[
	Pij nj + ρui(un − vn)

]
δ(f )

} + ∂̄2

∂xi∂xj

{
TijH(f )

}
(15)
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where Tij = ρuiuj + Pij − c2
0ρ̃δij denotes a component of the Lighthill tensor, Pij

is a component of the compressive stress tensor, 	Pij = Pij − p0δij with δij rep-
resenting the Kronecker delta function, while p0 is the pressure of the undisturbed
medium. In addition, the overbar denotes generalized derivative, the fluid and body
velocity components are indicated by ui and vi , respectively, whereas the subscript
n denotes projection along the outward normal to the surface f (x, t) = 0. The Dirac
and Heaviside functions on the right-hand side point out the particular nature of the
different source terms: two surface terms directly related to the effects of the dis-
continuity f (x, t) = 0 in the flow field and a volume term accounting for all sources
acting outside f (x, t) = 0. Generally, f (x, t) = 0 coincides with the body surface,
SB , so that the impermeability condition un = vn notably simplifies (15). Further-
more, the assumptions of an inviscid flow reduces the compressive stress tensor to
the scalar pressure field upon the surface, i.e., 	Pij = (p − p0)δij = p̃δij .

The use of the standard Green function approach yields the solution of (15) in
terms of a boundary integral form, suitable for numerical purposes. Specifically,
the aeroacoustic computational tool is based on the widely used boundary integral
representation known as formulation 1A, developed by Farassat [32, 33]. Note that
the presence of three different terms in (15) gives rise to three separate integral
contributions known as thickness, loading, and quadrupole noise, each related to
a well-defined generating noise mechanism. The thickness terms only depends on
the blade geometry and the kinematics of the problem, the loading term is related
to the blade airload, whereas the quadrupole source contribution accounts for the
possible nonlinear effects taking place in the flow field. Generally, this last term
can be reasonably neglected, provided that the blade rotational velocity is far from
the transonic/supersonic range. Within formulation 1A, the thickness and loading
integral terms (identified as p′

T and p′
L, respectively) assume the following forms:

4πp′
T (x, t) =

∫

SB

[
ρ0v̇n

r|1 − Mr |2
]

τ

dS(y)

+
∫

SB

[
ρ0vn(rṀi r̂i + c0Mr − c0M

2)

r2|1 − Mr |3
]

τ

dS(y)

4πp′
L(x, t) = 1

c0

∫

SB

[ ˙̃p ni r̂i + p̃ ṅi r̂i

r|1 − Mr |2
]

τ

dS(y) +
∫

SB

[
p̃ ni r̂i − p̃ Mn

r2|1 − Mr |2
]

τ

dS(y)

+ 1

c0

∫

SB

[
p̃ ni r̂i

r2|1 − Mr |3 (rṀi r̂i + c0Mr − c0M
2)

]

τ

dS(y)

with r denoting the distance between x and y, r = |r|, and r̂ = r/r . In addition,
M = v/c0 is the local Mach vector, M = |M|, and Mr = M · r̂.

Formulation 1A is classified as a retarded-time formulation, since it requires re-
tarded functions to be integrated over a domain corresponding to the actual rotor
blade surface [32, 33]. The integrals are computed through a simple zeroth-order
formulation applied to the blade surface discretized through panels, where the in-
tegral kernels are assumed to be uniform and equal to the values at the centroids.



38 M. Gennaretti and G. Bernardini

The notation [. . .]τ indicates that these quantities must be evaluated at the emission
time τ . Indeed, a backward-in-time integration scheme is adopted, by fixing the ob-
server time t and computing the corresponding emission time τ at each source point
by solving the root-finding problem for the equation

τ − t + r

c0
= τ − t + |x(t) − y(τ )|

c0
= 0

For given observer time t and location x, τ represents the instant when the con-
tribution to the noise signature was released from y. Due to the rotational blade
motion, the root-searching scheme requires an iterative process. Nonetheless, the
overall computational effort of the integration procedure is quite limited (even for
very fine meshes), and the acoustic pressure time history can be achieved at each
point in a handful of seconds. The availability of the noise signature in time domain
enables the evaluation of the corresponding spectrum in the frequency domain (via
a discrete Fourier transform) and the noise level in dB. Thus, by accounting for a
prescribed map of observer locations, it is possible to draw the noise level contour
plot and to appreciate the main features of the acoustic pressure field, both in terms
of noise level and directivity.

6 Numerical Investigation on Aeroelastic and Aeroacoustic
Responses

Here, some results from the aeroelastic/aeroacoustic formulation for helicopter ro-
tors outlined above are presented. First, a short overview of the validation analysis
of the aeroelastic solver carried out in the past is illustrated, along with an exami-
nation of the impact of the aerodynamic modeling on the simulation of helicopter
rotor aeroelastic response. Then, some correlations of aeroacoustic predictions with
experimental measurements are shown.

6.1 Aeroelastic Responses

First, the validation analysis concerning the rotor model examined in Ref. [34]
is considered. It is a four-bladed rotor with radius R = 4.93 m, constant chord
c = 0.395 m, NACA 0012 section profile, and a linear twist angle of −8◦. The
sectional rotor structural properties considered in the analysis are Λ1 = 0.008345,
Λ2 = 0.023198, κ = 0.00225, and blade mass per unit length m = 6.462 kg/m (see
Ref. [34] for additional details). The rotor has been examined in level flight condi-
tions with rotational speed Ω = 40 rad/s, at advance ratios μ = 0.15 and μ = 0.3.
For the two advance ratios investigated, rotor shaft angles, and collective and cyclic
pitch angles of the blades considered are those determined in Ref. [34] with linear
inflow trimming.
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Fig. 2 Blade tip deformation
for μ = 0.15

Fig. 3 Blade tip deformation
for μ = 0.30

Some results from the aeroelastic formulation presented here are compared with
those given in Ref. [34], based on the rotor code UMARC [35] that is a well-known,
widely used aeroelastic solver. It uses a nonlinear, finite-element approach for the
structural analysis, whereas unsteady aerodynamic loads are given by combination
of 2-D airfoil theory with wake inflow obtained either from analytical models or
from free-wake analysis [6, 35]. In this case, in order to describe the aerodynamic
loads similarly to Ref. [34], the sectional quasi-steady aerodynamic theory with
linear Drees wake inflow is applied (see also Ref. [8]). Figures 2 and 3 show that,
for both advance ratios, the blade tip deformations (namely, lag, flap, and torsion)
predicted by the present formulation are in good agreement with those presented
in Ref. [34]. The same level of agreement is shown in Fig. 4 in which, for μ =
0.3, the comparison is presented in terms of the 4/rev vibrating loads calculated at
the rotor hub (it is worth noting that the hub is forced by the combination of the
loads transmitted by each rotor blade, and the harmonics of the resulting loads are
multiples of the number of the rotor blades).
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Fig. 4 4/rev hub loads for
μ = 0.30

Fig. 5 Cn at blade section
r/R = 0.92

Next, some results which concern the validation of the BEM solver outlined in
Sect. 3 are shown. These have already been presented in Ref. [8] and correlate nu-
merical predictions from the BEM tool with experimental results obtained within
the European Project HELISHAPE [36]. The rotor considered is the four-bladed
EC/ONERA 7A main rotor, tested at the DNW wind tunnel [36]. It has rectangular
blades with aspect ratio equal to 15 and is examined in 6◦-descent forward flight
condition, with rotational speed Ω = 101 rad/s, advance ratio μ = 0.166, and rota-
tional tip Mach number MΩ = 0.615 (related to HELISHAPE Datapoint 70). Fig-
ures 5 and 6 show the comparisons between measurements and free-wake BEM pre-
dictions in terms of the normal force coefficient, Cn, respectively at blade sections
r/R = 0.92 and r/R = 0.98. These results demonstrate that the presented BEM
solver has a good capability of predicting unsteady airloads, with inclusion of BVI
effects that are well captured in terms of both oscillation amplitude and azimuth
location occurrence.

Now, the assessment of the effects of the aerodynamic model on the aeroelas-
tic response simulation is analyzed. Specifically, the attention is focused on the
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Fig. 6 Cn at blade section
r/R = 0.98

Fig. 7 4/rev hub loads for
μ = 0.15

prediction of the vibratory loads arising at the hub of the model rotor described
in Ref. [34]. These have been carried out through: (i) sectional quasi-steady aero-
dynamics with wake inflow from the BEM solver with a prescribed wake shape,
(ii) sectional unsteady aerodynamics (Greenberg’s theory) with wake inflow from
the BEM solver with a prescribed wake shape, and (iii) unsteady aerodynamic loads
given directly from the 3-D BEM potential formulation with a prescribed wake
shape. In these analyses, the prescribed wake consists of the surface swept by the
trailing edges of the blades during their motion. Note that, using the expression in
Eq. (8), the wake effect is equivalent to that of a vortex-lattice with the presence of
both trailed and shed vortices: the effects of shed vorticity is not taken into account
in the evaluation of the wake inflow used in Greenberg’s theory.

For advance ratio μ = 0.15, Fig. 7 depicts the comparison among the results from
the three aerodynamic models considered in terms of vibratory hub loads, while the
results for μ = 0.30 are given in Fig. 8. These results demonstrate that, at least for
the prediction of the vibratory hub loads, the aerodynamic quasi-steady approxima-
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Fig. 8 4/rev hub loads for
μ = 0.30

Fig. 9 4/rev hub loads for
μ = 0.15

tion combined with wake inflow from a 3-D solver gives results that are comparable
with those from the application of the complete unsteady section theory (i.e., with
inclusion of lift deficiency function effects). Rather, different results come from the
evaluation of loads directly through the BEM solver, thus proving the relevant con-
tribution due to 3-D and interaction effects.

Finally, fixing the sectional Greenberg aerodynamic model, Figs. 9 and 10 show
the influence of the wake inflow model applied on the predicted hub loads. While
for μ = 0.30, wake inflows from prescribed wake shape and from free-wake anal-
ysis give different but comparable hub loads, for μ = 0.15, they yield dramatically
different hub loads predictions. This is due to the fact that the role of the wake is
crucial when the wake remains in the vicinity of the rotor (μ = 0.15 case), whereas
it tends to decrease as the wake rapidly goes far from the rotor (μ = 0.30 case).
This confirms the great attention that has to be paid on the definition of the wake
contribution in helicopter rotor aeroelastic analyses.
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Fig. 10 4/rev hub loads for
μ = 0.30

6.2 Aeroacoustic Responses

Here, the present formulation is applied to the aeroacoustic analysis helicopter ro-
tors in BVI conditions. The rotor considered is the above-mentioned four-bladed
EC/ONERA 7A main rotor analyzed within the European Project HELISHAPE
[36], and the flight condition examined is the 6◦-descent forward flight (HEL-
ISHAPE Datapoint 70). The results discussed in the following have already been
presented by the authors in Ref. [11]. The numerical analysis has been performed
using the azimuthal step 	ψ = 1.33◦ and including two wake spirals. In BVI con-
ditions the aerodynamic field and the corresponding radiated noise are strongly de-
pendent on the shape of the wake and on its distance from the rotor blades, and
thus an accurate prediction of the distorted wake is essential. Figures 11 and 12 de-
pict rear and side view, respectively, of the distorted wake geometry given by the
present free-wake analysis. These figures show clearly that during the descent flight
the wake remains close to the rotor disk, thus inducing severe blade/wake impinge-
ment. In addition, for the sake of clarity, Fig. 13 depicts the wake of only one blade
and shows the impact between one rotor blade and the wake generated by the pre-
ceding blade. This figure concerns the azimuth position ψ = 65◦ and indicates that
the strongest BVI occurs at positions around ψ = 60◦ in the advancing side, al-
though close blade/wake interaction occurs also around ψ = 310◦ in the retreating
side. For this flight condition, the experimental measurements have detected strong
BVI occurrence at azimuth positions around ψ = 55◦ [36].

Once the blade pressure distribution has been obtained from the aeroelastic
solver, the aeroacoustic formulation described in Sect. 5 has been applied to predict
the noise emitted by the helicopter rotor. Figures 14, 15 and 16 present a comparison
between the measured acoustic pressure and the acoustic time signature given by the
numerical predictions concerning observers that are located 2.286 m below the rotor
disk. The first one (Obs A) corresponds to the upstream microphone that is 2-m dis-
tant from the rotor hub (advancing rotor side), the second one (Obs B) corresponds
to the upstream microphone located 3 m far from the rotor hub (advancing rotor
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Fig. 11 Rotor 7A: rear view
of computed wake geometry

Fig. 12 Rotor 7A: side view
of computed wake geometry

Fig. 13 Rotor 7A:
blade/wake impingement
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Fig. 14 Rotor 7A:
experimental and numerical
acoustic signature at Obs A

side), while the third one (Obs C) corresponds to the upstream microphone located
3.5 m far from the rotor hub (retreating rotor side). The acoustic correlations show
that, although the numerical results present a bit more oscillating behavior with re-
spect to the experimental data, the impulsiveness of the signal and the intensity of
the peaks due to BVI are well captured by the aeroacousto-elastic solvers outlined
here that, therefore, seem to be suitable tools for helicopter design applications.

Appendix A

From the decomposition of the potential field into a scattered component, ϕS , and
an incident component, ϕI , introduced in Sect. 3, in a body-fixed frame of reference
the Bernoulli theorem reads

ϕ̇S + ϕ̇I − vB · (∇ϕS + uI ) + ‖∇ϕS + uI‖2

2
+ p

ρ
= p0

ρ
(A.1)

where p0 is the pressure of the undisturbed medium. In order to evaluate the pressure
distribution, the expression above requires the determination of ϕ̇I , which is the only
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Fig. 15 Rotor 7A:
experimental and numerical
acoustic signature at Obs B

term not directly available from the aerodynamic formulation presented in Sect. 3.
The incident potential (and the corresponding time derivative) could be obtained
from the doublet distribution over the far wake, SF

W , using the following integral
expression (see also Eq. (7)):

ϕI (x, t) = −
∫

SF
W

	ϕS

(
yTE
W , t − ϑ

)∂G

∂n
dS(y) (A.2)

that, dividing the wake into panels, SF
Wk

, is approximated as

ϕI (x, t) ≈ −
N∑

k=1

−	ϕS

(
yTE
Wk

, t − ϑk

)∫

SF
Wk

∂G

∂n
dS(y) (A.3)

However, as already mentioned in Sect. 3, the above expression cannot be applied
to those wake panels coming in contact with the body or passing very close to it
(BVI occurrence), in that they become numerically unstable and yield unrealistic
potential distributions.

In order to avoid this problem, for the far wake panels, the contribution to ϕ̇I

is obtained in the following robust and accurate way. Consider the closed vortex at
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Fig. 16 Rotor 7A:
experimental and numerical
acoustic signature at Obs C

the contour of the kth panel of the far wake that might risk to come in contact with
the body, Ck = ∂SF

Wk
, and introduce a frame of reference rigidly connected with it

such that, under the assumption of undeformed wake panel, the incident potential
induced by the vortex is constant in time on each point of it. Next consider a body
surface point and a vortex frame point that at a given time coincide. Observing that
for a generic function, f = f (x, t),

∂f

∂t

∣∣∣
∣
V

= ∂f

∂t

∣∣∣
∣
B

+ vB−V · ∇f

where ∂f/∂t |V and ∂f/∂t |B denote the time derivatives observed, respectively, in
the vortex frame and in the body frame, while vB−V = vV − vB is the relative ve-
locity between the two frames at the considered point, for f = ϕk

I (with ϕk
I denoting

the incident potential due to the kth far wake vortex) and recalling that ϕ̇k
I = 0 in the

vortex frame, it is possible to obtain, for the time derivative of the incident potential
in the body frame,

∂ϕk
I

∂t

∣∣∣∣
B

= −vB−V · uk
I (A.4)
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with uk
I known from the (regularized) kth contribution in (8).

If the evaluation of the pressure is carried out within a free-wake solution, each
far wake vortex is subject to deformation. In this case, the related (doublet) potential
induced in the corresponding vortex frame yields an additional contribution in that
it is no longer stationary, although the intensity of the doublet is time independent
(indeed, it is given by the potential jump across the wake that is constant following
a material point [17, 18]). Nevertheless, this contribution is not taken into account
for the vortices that are close to the evaluation point, in that negligible with respect
to the contribution from the term in (A.4), due to the very high induced velocity
arising. Note that, a further contribution comes from the wake vortices entering the
far wake region at each time step, in terms of the corresponding incident potential
variation in the unit of time.

A procedure similar to that described above for the evaluation of the ϕ̇k
I from a

wake vortex has been applied in Ref. [37] for the evaluation of the pressure on a
body induced by vortex filaments.

Appendix B

This Appendix yields the stiffness matrix appearing in the Fourier-transformed
aeroelastic equations, namely (13) and (14).

It is obtained by expressing the stiffness matrix in terms of the Fourier series

K(t) = K0 +
N∑

n=1

[
Kc

n cos(Ωnt) + Ks
n sin(Ωnt)

]

and combining it with the harmonics of q. The result is that the harmonics of the
term K(t)q in (12) are given by K̂ q̂ with

K̂ =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

K0
1
2 Kc

1
1
2 Ks

1
1
2 Kc

2
1
2 Ks

2 · · ·
Kc

1 K0 + 1
2 Kc

2
1
2 Ks

2
1
2 (Kc

1 + Kc
3)

1
2 (Ks

1 + Ks
3) · · ·

Ks
1

1
2 Ks

2 K0 − 1
2 Kc

2 − 1
2 (Ks

1 − Ks
3)

1
2 (Kc

1 − Kc
3) · · ·

Kc
2

1
2 (Kc

1 + Kc
3) − 1

2 (Ks
1 − Ks

3) K0 + 1
2 Kc

4
1
2 Ks

4 · · ·
Ks

2
1
2 (Ks

1 + Ks
3)

1
2 (Kc

1 − Kc
3)

1
2 Ks

4 K0 − 1
2 Kc

4 · · ·
...

...
...

...
... · · ·

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

where only the contribution of the lowest two harmonics is explicitly expressed.
Similar expressions are derivable for M̂ and Ĉ.
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Crack Extension Energy Rate and Energetic
Approaches in Elastic–Plastic Fracture
Mechanics

Vincenzo Binante

1 Introduction

The explanation of fracture in terms of the energy balance during the extension of
a pre-existing crack began with the classic work of Griffith [9], by equating the
decrease in potential energy caused by a crack extension in a linear elastic material
to the surface energy of the newly created crack surfaces.

The Griffith fracture theory fails when applied to inelastic bodies. A generaliza-
tion where surface energy includes crack tip plastic dissipation work was proposed
by Irwin [12] in the case of small scale yielding, where the decrease in the potential
energy resulting from crack extension equals the sum of the energy to create new
crack surfaces and plastic work dissipation during crack extension.

Later on, Rice [21] proposed the J-integral as an extension of the Griffith’s ap-
proach to inelastic solids. The starting point of Rice’s considerations was the as-
sumption that the inelastic material behavior can be treated as nonlinear elastic one;
for such a material, he wrote the energy balance, during crack extension, in terms
of a path-integral surrounding the crack tip, and, because the stresses can be derived
from a potential, the strain energy density, which is a unique function of stresses
or strains, he showed that the J-integral is path independent. In virtue of its path-
independence, the J-integral is equivalent to the energy release rate.

For a cracked body B, the J-integral represents the flow of the energy momentum
tensor (also called Eshelby tensor) out of B −Γ across the path Γ moving with the
crack tip; in [7] Eshelby gave the energy momentum tensor a physical interpretation
of a generalized driving force acting on point defect (crack), and, for homogeneous
elastic body, it is divergence free. This property was later used in [10] to show the
path independence of the J-integral under the assumption of straight crack.
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The path-independence made the J-integral the most used crack-tip integral in
nonlinear fracture mechanics; with regard to numerical analyses of crack prob-
lems, the calculation of the energy release rate can be done by evaluating the
J-integral over a path far away from crack tip, where numerical inaccuracy may
occur.

Although the J-integral was derived in the context of nonlinear elasticity, its role
of energy release rate is, approximately, valid for elastic–plastic material, under
the assumptions that plastic zone size is small compared with a crack length and
body dimension (Small Scale Yielding, SSY), and monotonic increasing loads are
applied. In such case, Hutchinson [11] showed that the elastic J-integral controls
the stress and strain fields in the plastic zone close to crack tip (J-dominance); in
the framework of deformation theory of plasticity, he found asymptotic solutions
for stress and strain fields in the vicinity of a crack (HRR fields) which depend on
the J-integral. Hence, when SSY conditions are satisfied and proportional loading
is applied, the J-integral can be considered a valid fracture parameter, providing a
measure of singularity of stress and strain fields at a crack tip.

However, when applied loads are no longer growing monotonically or the plastic
zone size is large, the J-integral is not path-independent, and, therefore, the meaning
of energy release rate is lost. In a context of ductile fracture, many efforts were made
to find new path-independent crack-tip integrals [1, 13, 19, 23].

In [1, 13], Kishimoto, Aoki, and Sakata argued that the mechanism of ductile
fracture is accomplished by nucleation, growth and coalescence of voids or micro-
cracks in a region near the crack tip called Fracture Process Zone (FPZ) and the
energy release rate is associated with the evolution of the FPZ (translation, rotation,
self-similar expansion, and distortion [1, 4]). In the case of a translation of the FPZ,
the energy release rate is a new path-independent crack-tip integral Ĵ , which is the
sum of a line and an area integrals. Similar crack-tip integrals (denoted as L̂, M̂ ,
and Î ) had been obtained for the energy release rate associated with the rotation,
self-similar expansion, and distortion of the FPZ, respectively. However, the evalu-
ation of the crack-tip Ĵ -integral (as well as L̂, M̂ , and Î ) requires the knowledge of
the size and shape of the FPZ at each instant of the deformation process, and then
the criterions appear useful only when the role of the FPZ vanishes.

In [19], Moran and Shih obtained several crack-tip integrals based on momen-
tum and energy balances for elastic–plastic materials; furthermore, they examined
the conditions under which these crack-tip integrals are (globally or locally) path-
independent. In the case of bidimensional cracked bodies, they restated the energy
release rate as integrals over finite domains around the crack tip (domain integrals);
for elastic-plastic materials, the path-independence of a crack-tip integral was re-
stored by introducing a weighting function q1 defined over the domain of interest to
be interpreted as the virtual translation of a material point due to a unit extension of
the crack. In so doing, the energy release rate has been derived as a sum of a line
and an area integrals and is independent on the size and shape of the domain where
the weighting function is defined.

In [23], Schmitt and Kienzler extended the J-integral to materials described by
an incremental theory of plasticity, by replacing the strain energy density with the
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stress work density; path independence was restored by adding an area (or a volume
in the case of 3-D problems) integral. So, the extended J-integral was identified as
work dissipation rate and related to the energy release rate.

The idea to restate the crack-tip integral as sum of a path and area integrals was
pursued by Chiarelli, Frediani, and Lucchesi [5, 6, 8] to extend the J-integral to
elastic–plastic materials with work-hardening; from the stress-power theorem they
derived an energy balance. In the framework of a general theory of plasticity for
ductile materials, proposed by Lucchesi, Owen, and Podio-Guidugli [14, 16, 17],
they defined a quantity named Crack Extension Energy Rate (CEER) and derived a
closed-form expression of the stress work density [15], allowing a simpler evalua-
tion of the CEER on numerical basis. The CEER represents the amount of the work
done by the applied forces available to crack growth. The path-integral of CEER,
even though the expression is similar, is totally different from the J-integral, because
the J-integral depends on the current elastic state, while the path-integral of CEER
depends on the whole deformation process. The area-integral of CEER takes dissi-
pative effects due to a plastic zone near a crack tip into account. Both path and area
integrals are domain-dependent, but their sum is independent of the domain.

Numerical evaluations of the CEER in 2-D cracked bodies [2, 5, 6, 8, 20] have
been carried out under generic loading histories and work-hardening rules for sta-
tionary cracks; under monotonic increasing loads, the results of these studies show
that the material behaves elastically and the CEER predicts the same value of the
J-integral, confirming the J-dominance pointed-out in [11]. However, when a cyclic
loading history is considered, the plasticity around the crack tip plays an important
role even in SSY conditions; in such a case the CEER completely differs from the
J-integral. The latter fails due to non-proportional stress at the crack-tip region, and
the HRR fields are no longer valid; on the contrary, the CEER is able to detect some
peculiar aspects of ductile fracture, such as elastic unloading, dependence on the
amplitude of alternating and medium tensile stress, crack-closure effect, crack-tip
constraint effect on fracture toughness.

Therefore, for elastic–plastic cracked bodies, undergoing quasi-static deforma-
tions with stationary cracks, the CEER can be considered a valid fracture criterion
in Non-Linear Fracture Mechanics. Nevertheless, as shown in [2, 3], this criterion,
as well as any energetic approach based on the Griffith criterion, fails to describe
stable crack propagation in ductile materials.

2 Fundamentals of the Theory of Plasticity

This section introduces some results of the flow theory of infinitesimal plasticity,
starting from the general theory of materials with elastic range proposed in [14]
with regard to Von Mises materials under the assumption of small displacement
gradient from a fixed reference configuration.

We begin with a number of indispensable definitions.
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Definition 1 (History) Let ̂E : [0, τ ] → Sym be a continuous and continuously
piecewise differentiable mapping, defined on the closed real interval [0, τ ] with val-
ues in Sym and such that ̂E(0) = 0.

The value ̂E(τ ) at the instant τ of a history ̂E is the infinitesimal strain tensor,
starting from a fixed reference configuration, in a fixed material point. At each in-
stant τ in which ̂E is differentiable, Ė is the time derivative of ̂E at the instant τ ;
for each instant τ in which Ė is discontinuous, we shall denote by Ė the right-hand
derivative. All deformation processes are thought to begin at some fixed initial state.

We shall consider elastic–plastic isotropic materials whose mechanical response
to deformation processes is described by a frame-indifferent and rate-independent
constitutive functional. For each history ̂E(τ ), ̂TE(τ) is the Cauchy stress tensor at
the instant τ associated with the history ̂E by the constitutive functional.

The kind of constitutive response is further specified by the notions of elastic
range and plastic history.

Definition 2 (Elastic range) The elastic range EE(τ) at time τ corresponding to
the history ̂E is the closure of an arcwise connected open subset of Sym, whose
boundary is attainable from interior points only; it contains ̂E, and its points are
infinitesimal strains from a reference configuration to configurations that are elasti-
cally accessible from the current one.

Definition 3 (Plastic history) Let ̂EP : [0, τ ] → Sym0 be a continuous and contin-
uously piecewise differentiable mapping defined on the closed real interval [0, τ ]
with values in Sym0 and such that ̂EP (0) = 0.

The value ̂EP (τ) is the plastic history at time τ associated with the deformation
process ̂E and belongs to EE(τ). It corresponds to an unstressed configuration.

Definition 4 (Cauchy structural mapping) Let μ and λ be two material constants
such that, if ̂E and ̂EP are the infinitesimal total and plastic strains, we have, for
each τ ∈ [0, τ ]:

̂TE(τ) = T
[

̂E(τ ) −̂EP (τ)
] = 2μ

(

̂E(τ ) −̂EP (τ)
) + (

λ tr ̂E(τ)
)

I. (1)

Remark 1 In analogy with the theory of linear elasticity, μ and λ are identified
as Lamè moduli. Equation (1) reflects the classical assumption that the stress re-
sponse to a purely elastic strain starting from the unstressed configuration reached
after unloading is both unaffected by the past deformation process and completely
determined by ̂E(τ ) and ̂EP (τ).

Definition 5 (Odqvist parameter) For each history ̂E and for each instant τ ∈ [0, τ ],

ζE(τ) =
∫ τ

0

∥

∥
˙̂EP (τ ′)

∥

∥dτ ′ (2)
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is the Odqvist parameter which represents the length of the path described up to the
instant τ by the plastic strain tensor.

According to the Von Mises criterion, for each history ̂E and for each instant
τ ∈ [0, τ ], the elastic range is the cylinder

EE(τ) = {

̂E ∈ Sym : ∥∥̂E0 − ̂C(τ )
∥

∥ ≤ ρ
(

ζE(τ)
)}

, (3)

where

(i) ρ : R+ → R
+ is a nondecreasing differentiable function that depends on the

material but is independent of the history.
(ii) for each history ̂E, ̂CE is a tensor at value in Sym0 and represents the center of

the elastic range.

Moreover, in order to take the Buaschinger effect into account, we consider the
classic kinematic hardening rule, according to which, for each history ̂E and for
each instant τ ∈ [0, τ ], we have

̂CE(τ) = (1 + η)̂EP (τ), η ≥ 0. (4)

Remark 2 The elastic range of Eq. (3), associated with a history ̂E, is univocally
determined once the radius, ρ(ζE), and the center, ̂CE , of the cylinder are known.
They reflect a general combined work-hardening rule, in particular, a material for
which ρ(ζE) is a constant function and η = 0 is perfectly plastic. If η > 0 and ρ(ζE)

is a constant function, then a material undergoing the plastic history exhibits kine-
matic work-hardening, while if η = 0 and ρ(ζE) is a variable function, the material
undergoing the plastic history exhibits isotropic work-hardening. The constant η is
called the Melan modulus.

The set of the constitutive hypotheses is completed by the flow rule, according to

which, when ˙̂EP is not null, it is parallel to ̂NE(τ), the outward unit normal to the
elastic range at the point ̂E(τ ):

ĖP = ζ̇E(τ )̂NE(τ),

̂NE(τ) = [

ρ
(

ζE(τ)
)]−1(

̂E(τ ) − ̂CE(τ)
)

.
(5)

The evolution of the Odqvist parameter is described by the following first-order
differential equation [14]:

ζ̇E =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, ‖̂E0 − ̂CE‖ < ρ(ζE),

0, ‖̂E0 − ̂CE‖ = ρ(ζE), ̂NE · ˙̂E0 ≤ 0,

̂NE · ˙̂E0[1+η+ρ′(ζE)] , ‖̂E0 − ̂CE‖ = ρ(ζE), ̂NE · ˙̂E0 > 0.

(6)

with ρ′ = dρ
dζ

. In the first two cases the material behaves elastically, while the last
one denotes a plastic loading condition.
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For each history ̂E and for each instant τ ∈ [0, τ ], ̂TE(τ) · ˙̂E(τ ) is the stress
power. The work density done by the internal forces during the history ̂E up to time
τ is given by

ŵE(τ ) =
∫ τ

0

̂TE(τ ′) · ˙̂E(τ ′) dτ ′. (7)

With the following proposition, for each history ̂E and for each instant τ ∈ [0, τ ],
an explicit relation, expressing ŵE(τ ) as a function of the state (̂E(τ ),̂EP (τ), ζE(τ)),
can be defined [15].

Proposition 1 For each history ̂E and for each instant τ ∈ [0, τ ], one gets

ŵE(τ ) = 1

2

(

̂E(τ ) −̂EP (τ)
) ·T[

̂E(τ ) −̂EP (τ)
] + μη

∥

∥̂EP (τ)
∥

∥

2

+ 2μω
(

ζE(τ)
)

, (8)

where ω is the primitive of ρ such that ω(0) = 0.

Proof Bearing in mind that a plastic history ̂EP ∈ Sym0, from Eqs. (1) and (7) we
have

ŵE(τ ) =
∫ τ

0

̂TE(τ ′) · ˙̂E(τ ′) dτ ′ =
∫ τ

0

˙̂E(τ ′) ·T[

̂E(τ ) −̂EP (τ)
]

dτ ′

=
∫ τ

0

( ˙̂E(τ ′) − ˙̂EP (τ ′)
) ·T[

̂E(τ ) −̂EP (τ)
]

dτ ′

+
∫ τ

0

˙̂EP (τ ′) ·T[

̂E(τ ) −̂EP (τ)
]

dτ ′

= 1

2

[(

̂E(τ ) −̂EP (τ)
) ·T[

̂E(τ ) −̂EP (τ)
]]τ

0

+
∫ τ

0
2μ

(

̂E(τ ) −̂EP (τ)
) · ˙̂EP (τ ′) dτ ′.

Moreover, from Eqs. (4)–(6) we get

∫ τ

0
2μ

(

̂E(τ ) −̂EP (τ)
) · ˙̂EP (τ ′) dτ ′

=
∫ τ

0
2μρ

(

ζE(τ ′)
)

̂NE(τ ′) · ˙̂EP (τ ′) dτ ′ +
∫ τ

0
2μη̂EP (τ ′) · ˙̂EP (τ ′) dτ ′

= [

2μω
(

ζE(τ ′)
) + μη

∥

∥̂EP (τ ′)
∥

∥

2]τ
0 .

Finally, keeping in mind that ̂E(0) = ̂EP (0) = 0 and ω(ζE(0)) = 0, we obtain
the result. �
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Fig. 1 Edge crack modeled
as a smooth, nonintersecting
curve χ̂l (α)

3 The Energy Release Rate

In this section, the energy release rate (ERR) is obtained from a mechanical energy
balance, under the classic assumptions of regularity of fracture fields (defined be-
low), SSY conditions, quasi-static deformations and in the absence of body forces.

Let B is a regular homogeneous two-dimensional elastic–plastic body, whose
mechanical response to deformation process is described by the set of the constitu-
tive equations (1)–(7). We identify B with the particular region of R2 occupied by
the body in the reference configuration; we consider a motion of B during the time
interval [0, τ ], and for each material point x ∈ B, let us denote by ̂Ex and ̂EP

x the
infinitesimal total and plastic strains at the material point x, respectively. We also
assume that B contains an edge crack of negligible thickness. The crack is modeled
as a smooth, nonintersecting curve

χ̂l : [0, l] → B, α → χ̂l(α),

which is parameterized by arc length α ∈ [0, l] (see Fig. 1).
The length l = l(τ ) of the curve χ̂l is a nondecreasing function of the time τ

during the motion of B; moreover, if l2 > l1, then χ̂l2 is a continuation of χ̂l1 .
Let us define

C (l) �
{

x ∈ B : x = χ̂l(α), α ∈ [0, l]} (9)

as the set of points of B lying on the crack edges, where χ̂l(l) is the current crack
tip. The unit vector tangent to the crack is

e(α) = dχ̂l

dα
; (10)

in particular, e(l) defines the direction of propagation.
Let us suppose that there is a time interval [τ0, τ1] ⊂ [0, τ ] such that

l(τ0) > 0 and
dl

dτ
> 0 ∀τ ∈ [τ0, τ1];

then, in this time interval, l is a strictly increasing function of time, and, thus, it can
be identified as a time scale. For l ∈ [l(τ0), l(τ1)], the crack tip propagates in the
direction e(l).
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Fig. 2 Definition of the
crack tip region

Definition 6 (Fracture field) Let ϕ(x, l) be a field defined at each material point
x ∈ B − C (l) and for each l ∈ [l0, l1). ϕ is a C

n fracture field (n ≥ 0, integer) if

(i) the derivatives of ϕ of order ≤ n exist away from the crack;
(ii) ϕ and its derivatives of order ≤ n are continuous away from the crack and,

except at the tip, are continuous up to both crack faces.

Thus, ϕ(x, l), as a function of x, could admit a jump discontinuity when crossing
the crack faces C (l) − χ̂l ; so, we can write:

ϕ±(α, l) = lim
δ→0+ ϕ

(

χ̂l(α) ± δm(α), l
)

α ∈ [0, l]

for the values of ϕ on the upper and lower faces of the crack, with m(α) the outward
unit normal to crack faces.

Remark 3 In the above definition, nothing is said about the behavior of ϕ at the
crack tip. Generally, the total strain rate tensor is singular.

For all l ∈ [l0, l1] and for each vanishing δ > 0, Dδ(l) denotes the disc of radius
δ with center at the crack tip, and Bδ(l) = B − Dδ(l) is the complement of Dδ(l)

with respect to B; ν and n are the outward unit normals to ∂B and Dδ , respectively
(see Fig. 2).

For x ∈ B and l ∈ [l0, l1], u(x, l) denotes the displacement field evaluated with
respect to the reference configuration, and we put

E(x, l) �̂Ex(τ ), EP (x, l) �̂EP
x (τ ),

T(x, l) � T
[

E(x, l) − EP (x, l)
]

,

ζ(x, l) � ζEx (τ ),

w(x, l) � ŵEx (τ ),

where ζ and ŵ are defined by Eqs. (6) and (7), and l = l(τ ).
We are now in the position to state the main hypotheses regarding the fields

u(x, l), T (x, l), and w(x, l) [8, 10].

A1 u(x, l) is a C
2 fracture field, while T(x, l) and w(x, l) are necessarily C

1 frac-
ture fields.



CEER and Energetic Approaches in Elastic–Plastic Fracture Mechanics 59

A2 For each l, w(x, l) and its derivative with respect to l are integrable in x over
B.

A3
∫

B w(x, l) da is differentiable with respect to l, and furthermore

lim
δ→0

d

dl

∫

Bδ

w(x, l) da = d

dl

∫

B
w(x, l) da.

A4

lim
δ→0

∫

∂Dδ

T(x, l)n · u̇(x, l) ds = − lim
δ→0

e(l) ·
∫

∂Dδ

∇uT (x, l)T(x, l)nds.

A5 For each l, div(w(x, l)I − ∇uT (x, l)T(x, l)) is integrable in x over B.
A6 B undergoes to quasi-static deformations, and, in the absence of body forces,

div T(x, l) = 0.

A7 The crack face are traction-free, i.e.,

T±(α, l)m(α) = 0, α ∈ [0, l].

Remark 4 Assumption A6 and the constitutive relations in Sect. 2 are not strictly
necessary in order to obtain the ERR, i.e., it is possible to obtain an expression of the
ERR in a similar way when large deformations occur and in the presence of body
forces and inertial load. In such cases, assumptions A1–A5 and A7 are still valid.

We are now able to write a global energy balance for body B undergoing a quasi-
static crack propagation in the time interval [τ0, τ1]. In analogy with the Griffith’s
criterion, the change in the work done by the external loads equals the sum of change
in stored elastic energy and the energy dissipated into the material. Unlike the elastic
material, the dissipation energy rate is related to the newly created crack surfaces
and the plasticity arising around the crack tip; thus, the global energy balance is

E (l) =
∫

∂B
Tν · u̇ds − d

dl

∫

B
w da, (11)

where d
dl

∫

B w da is the change in the internal energy (elastic plus plastic energy).
The function E (l) is called Energy Release Rate, and for each l ∈ [l0, l1], the

integral
∫ l

l0
E (ξ) dξ is interpreted as the work per unit thickness needed to increase

the length of the crack from l0 to l.
As a direct consequence of the previous assumptions, it is possible to evaluate

the ERR from a local energy balance in the crack tip region [6, 8, 22].

Proposition 2 For each l ∈ [l0, l1],

E (l) = lim
δ→0

e(l) ·
∫

∂Dδ

(

wI − ∇uT T
)

nds. (12)
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Fig. 3 Definition of the
integration path around the
crack tip

Proof From Eq. (7) and assumption A6 we obtain

w′ = T · E′ = T · ∇u′ = div(Tu′) − u′ · div T = div(Tu′).

Applying the divergence theorem to the set Bδ and keeping assumption A7 in mind,
we have

∫

Bδ

w′ da =
∫

∂B
Tν · u′ ds −

∫

∂Dδ

Tn · u′ ds.

The transport theorem states that, for δ > 0,

d

dl

∫

Bδ

w da =
∫

Bδ

w′ da − e(l) ·
∫

∂Dδ

wnds;

therefore, it results in

− d

dl

∫

Bδ

w da +
∫

∂B
Tν · u′ ds =

∫

∂Dδ

(e · wn + Tn · u′) ds.

Finally, with assumptions A3 and A4 we conclude the proof. �

Let Γ denote any smooth nonintersecting path which starts and ends on the crack
and contains the crack tip; let n denote the outward unit normal on Γ (see Fig. 3).
Let us denote by

J̃ (Γ ) = e(l) ·
∫

Γ

(

wI − ∇uT T
)

nds (13)

the crack-tip integral for the path Γ ; thus, in view of Eqs. (12) and (13), we can
write

E (l) = lim
δ→0

J̃ (∂Dδ). (14)

This result expresses the concept that the energy release rate depends on the lo-
cal stress and strain fields in a region close to the crack tip; this conclusion is due to
the classical assumptions A1–A7 of the continuum mechanics according to which
singularities in stress and strain fields occur solely at the crack tip. As a conse-
quence of the local nature of singularities in the fracture fields, nonsingular terms in
Eq. (11) make no contribution, and, thus, a criterion of fracture is determined solely



CEER and Energetic Approaches in Elastic–Plastic Fracture Mechanics 61

by singularities in stress and strain fields. For this, the energy release rate evaluated
through Eq. (11) is the same as calculated by Eq. (12).

For quasi-static propagation, this suggests the validity of Irwin’s [12] proposal
that fracture occurs when the crack tip SIF, as calculated from linear elasticity, at-
tains a critical value. If the crack size and other geometric dimensions are suffi-
ciently large so that the plastic zone size is small in comparison, one may expect
that the linear elastic field is little disturbed and that the stress and strain field in
the nonelastic zone is controlled by the SIF which determines the strength of the
singularity in the linear elastic solution.

With the assumption of SSY and under some loading conditions in quasi-static
crack growth problems, Eq. (14) can be simplified; this allows us to determine a
criterion of fracture without evaluating the stress and strain fields at the crack tip.
Under the conditions for which the nonlinear elastic solution controls the deforma-
tion process in the small plastic zone [11], the crack-tip integral of Eq. (13) reduces
to the Rice’s J-integral, which is path-independent.

In order to assess the path-independence of the J-integral, we begin with observ-
ing that the integrand of Eq. (13), P = wI − ∇uT T, is the energy momentum tensor
which, for elastic bodies, is also known as Eshelby’s tensor; Eshelby [7] showed
that the energy momentum tensor can be interpreted as a generalized force act-
ing on moving crack and established a connection with the J-integral. Furthermore,
when an elastic body is also homogeneous, he proved that the elastic strain energy
density, W , does not explicitly depend on the position of material points and, thus,
its divergence vanishes,

div
(

W I − ∇uT T
) = 0. (15)

With assumption A7, assuming that the crack is straight, the solenoidal nature of
the Eshelby’s tensor shows the path independence of the J-integral.

Remark 5 The condition of homogeneous body, kept in this section, is not strictly
necessary [10]; as claimed in [19], it is useful to assure the global path indepen-
dence of the J-integral through the solenoidal nature of the Eshelby’s tensor. When
homogeneity is lost, the Eshelby’s tensor is not solenoidal and its divergence is [7]

div
(

W I − ∇uT T
) = ∂W

∂X

∣

∣

∣

∣

explicit
.

In this case, the global path-independence of the J-integral is lost; however, a local
path-independence can be restored with the assumption that the energy momentum
tensor is singular at the crack tip [19], that is,

P1j ≈ Aj(θ)

r
+ o(1/r) and

∂P1j

∂xj

= o
(

1/r2) as r → 0+,

where r is the radial distance from the moving crack tip, and θ is the angle formed
with the direction of propagation. This result can be interpreted as a condition for
locally steady-state behavior.
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Because of the path-independence of the J-integral, we get

E (l) = J (Γ ) = e(l) ·
∫

Γ

(

W I − ∇uT T
)

nds. (16)

This result qualifies the J-integral as a crack driving force; from the point of view
of the finite element method (FEM), the calculation of the energy release rate, during
a quasi-static crack propagation, can be done by evaluating the integral of Eq. (13)
around a path Γ sufficiently far away from the crack tip such that no knowledge
of the stress and strain field is required here. This made the J-integral the most
attractive tool of nonlinear fracture mechanics, widely used since 1970.

Generally for elastic–plastic bodies, the crack-tip integral of Eq. (13) differs from
the Rice’s J-integral because w is no longer the strain energy density but the stress
work density which depends on the overall deformation process; furthermore, the
crack-tip integral is not path-independent, and, then, it cannot be identified as the
energy release rate. However, as already mentioned, there are some conditions for
which Eq. (16) can be used even for elastic–plastic materials. When SSY condition
is also satisfied for quasi-statically loaded body, if each material point is proportion-
ally stressed, the crack-tip integral is globally path-independent [19]. Therefore, it
is not necessary to shrink the radius δ onto the crack tip in order to evaluate the en-
ergy release rate and, thus, Eq. (16) provides a tool to predict the initiation of crack
growth and subsequent quasi-static crack growth.

Under these conditions, using the deformation theory of plasticity, Hutchinson
showed in [11] that there is an annular zone which surrounds a region of finite
strain where the nonlinear elastic J-integral controls the deformation process in the
small plastic zone; he established a correlation between the elastic J-integral and the
stress, strain, and displacement fields near a crack tip, showing that the nonlinear
elastic J-integral provides a measure of the crack-tip singularity fields (called HRR
fields). While the asymptotic solutions for HRR fields are a good approximation in
stationary crack problems, for quasi-static crack propagation, they are less accurate
due, mainly, to elastic unloading and nonproportional plastic loading. However, if
the amount of crack extension stays within certain limits and if nonproportional
loading zones at the crack tip are surrounded by a much larger zone of proportional
loading, then it is possible to describe stress, strain, and displacement fields here
with the HRR fields.

For this, when the above conditions are met, it is still useful to evaluate the en-
ergy release rate from Eq. (16); this is the reason for which the Rice’s J-integral is
nowadays used.

When the conditions of HRR fields are not satisfied (elastic unloading and non-
proportional plastic loading in cyclically loaded bodies), the elastic J-integral is no
longer valid to estimate the energy release rate; in these cases, an appropriate eval-
uation of the ERR requires the determination of the crack tip-integral J̃ (Γ ) with Γ

shrinking onto the crack tip; with the application of the finite element method (from
a point of view of numerical simulations of quasi-static crack propagation), Eq. (14)
is no longer useful to assess a criterion of fracture.
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Even when the effects of plastic flow at the crack tip are no longer negligible
and loading histories are whatever (quasi-static or variable loading), it is possible
to restore the path-independence of the crack-tip integral and then obtain a more
advantageous expression of the equation.

In [1, 13], Kishimoto, Aoki, and Sakata have restated the crack-tip integral of
Eq. (13) in terms of equivalent path and area integrals. They have considered a
closed curve formed by an outer path, the crack faces, and an inner path, which
surrounds the FPZ, where microstructural damage processes occur during crack ex-
tension, and continuum mechanics does not work. Applying an energy balance over
the domain inside the closed curve, they have derived a crack-tip integral as sum of
a contour integral over the outer path and the crack faces, a contour integral over the
path delimiting the FPZ, and an area integral; in so doing, they have shown that, for
a prescribed FPZ, the crack-tip integral is independent with respect to any arbitrary
outer path. However, as they have pointed out, it depends on the dimensions and
shape of the FPZ, which are influenced by loading conditions, crack length, and di-
mensions of microvoids; so, this approach is not so suitable for numerical evaluation
of the energy release rate.

The idea to restate the crack-tip integral of Eq. (14) as sum of a path and an area
integral have been later pursued by Schmitt and Kienzler [23], who showed that the
path-independence of the crack-tip integral with respect to the size and shape of
the domain can be recovered by introducing an additional volume integral, which
receives nonzero contributions only from those plastically deformed regions that,
due to crack propagation, suffer from nonproportional loading. Unlike the crack-tip
integral proposed by Aoki et al. [1, 13], no knowledge of the shape and dimensions
of the FPZ is required. They have given a physical interpretation of the crack-tip
integral as work dissipation rate.

In a similar way, Chiarelli, Frediani, and Lucchesi [5, 6, 8], on the basis of the
infinitesimal theory of plasticity of the previous section, have rewritten Eq. (14),
making the crack-tip integral independent of the domain and extending it to elastic–
plastic work-hardening materials undergoing general loading conditions. In so do-
ing, they have considered, for each l ∈ [l0, l1], the set Bζ ⊂ B of material points in
which plastic flow occurs,

Bζ (l) = {

x ∈ B : ζ(x, l) �= 0
}

, (17)

where ζ(x, l) is defined by Eq. (6).
For each path Γ surrounding the crack tip, let F be the subset of B enclosed by

Γ ; let L = F ∩ Bζ be the intersection between F and Bζ (see Fig. 4).
With the following proposition we can obtain an expression more useful than

Eq. (14).

Proposition 3 If the crack is straight, for each path Γ around the tip, we have

E (l) = J̃ (Γ ) − e ·
∫

L
div

(

wI − ∇uT T
)

da. (18)
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Fig. 4 Definition of the domain L

Proof Let δ > 0 be enough small so that the region Dδ is enclosed by the path Γ

(see Fig. 4); let Fδ the subset bounded by the curve Cδ = Γ + ∂Dδ + Γ + + Γ −
with Γ + and Γ − denoting the upper and lower crack faces. Keeping assumption
A7 in mind, if the crack is straight, the divergence theorem applied to the subset Fδ

states

J̃ (∂Dδ) = J̃ (Γ ) − e ·
∫

Fδ

div
(

wI − ∇uT T
)

da.

On the other hand, at all material points x /∈ Bζ the stress work density coincides
with the strain energy density, and, then, the elastic–plastic energy momentum ten-
sor reduces to the Eshelby tensor. Keeping Remark 5 on mind, by taking the limit
for δ → 0 in the above equation, the nonvanishing contribution to the second term
is given by all material points of the subset Lδ = Fδ ∩ Bζ ; thus, Eq. (14) becomes

E (l) = J̃ (Γ ) − lim
δ→0

e ·
∫

Lδ

div
(

wI − ∇uT T
)

da.

Finally, bearing assumptions A3 and A4 in mind, we conclude the proof. �

The quantity E (l) in Eq. (18) is known as Crack Extension Energy Rate; the
second term of the CEER takes plastic effects near the crack tip into account and
allows us to restore the path independence of CEER. For elastic bodies, the CEER
coincides with the Rice’s J-integral; so, CEER represents a generalization of the
J-integral for elastic–plastic materials.

Numerical evaluation of the CEER [2, 6, 20] for elastic–plastic work-hardening
materials in stationary crack problems and SSY conditions showed that, when
monotonic increasing loading conditions are considered, the Rice’s J-integral com-
pletely describes the fracture behavior of a ductile material; this agrees with what
Hutchinson [11] discussed earlier. However, when variable loading histories are ap-
plied, the Rice’s J-integral is no longer able to describe the fracture process. Unlike
the Rice’s J-integral, the CEER is able to take into account work-hardening effects,
dissipative effects due to elastic unloading or effects due to residual stresses sub-
sequent to an overload. In fact, as shown in [2, 6, 20], the occurrence of overloads
gives rise to a reduction of the CEER, and then, the delay in crack growth can be
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linked to the CEER vs load curves. For these considerations, we might conclude that
the CEER is the crack driving force for ductile materials.

Remark 6 With applications to FEM, the evaluation of the area integral requires
the calculations of the spatial derivative of the stress and strain tensor over the do-
main of interest, and, in proximity of the crack tip, numerical difficulties can arise;
when they occur, path-independence of the CEER may be lost. In such cases, the
domain integral method [18, 19] might be considered, which consists in evaluating
the crack-tip integral of Eq. (14) as an integral over the finite domain Fδ around
the crack tip and considering any arbitrary smooth scalar-value weighting function
q(x) defined over Fδ . The weighting function may be interpreted as the virtual
translation of the material point x due to a unit crack extension in the direction e(l);
furthermore, q(x) = 1 on ∂Dδ , q(x) = 0 on Γ and q(x) ∈ [0,1] in Fδ . Bearing as-
sumption A7 in mind and applying the divergence theorem to the subset Fδ , we get
the finite following domain representation of the crack tip integral of Eq. (14):

E (l) = −e ·
∫

Fδ

(P∇q + q∇ · P) da.

Although the domain integral method may circumvent the difficulties arising
from near tip integration, it requires a greater effort in numerical implementation
into a FEM code; the function q must be evaluated for each mesh element belong-
ing to the domain of interest according to the integration scheme for the evaluation
of the tangent stiffness matrix of the element. That means an additional degree of
freedom for these elements and, as a direct consequence, a greater computational
cost for the solution.

4 Conclusions

An overview on energetic approaches in Non-Linear Fracture Mechanics has been
presented; starting from the original work of Griffith for brittle materials, several
Griffith-like methods for ductile materials, available in the literature, have been dis-
cussed; a particular attention has been confined to the Crack Extension Energy Rate
method, which has shown, in several works, to be a valid fracture criterion for ap-
plications to 2-D stationary crack problems.
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A Criterion for Ductile Crack Growth Based
on the Energy–Momentum Tensor

Vincenzo Binante and Aldo Frediani

1 Introduction

Residual static strength and crack growth resistance curve in a cracked body can
be evaluated by means of an energy balance, according to which the decrease in
potential energy caused by a crack extension equals the surface energy of the newly
created crack surfaces.

For an elastic–plastic bidimensional body with a straight crack, undergoing
quasi-static deformations in the absence of body forces, the energy required to pro-
duce a unit crack extension can be defined as

E (l) = J̃ (Γ ) − e ·
∫
L

div
(
wI − ∇uT T

)
da, (1)

for each path Γ around the crack tip, with L the region enclosed by Γ where plastic
strains occur (see Fig. 1). The first term of the right-hand side of Eq. (1) is defined
as

J̃ (Γ ) = e(l) ·
∫

Γ

(
wI − ∇uT T

)
nds, (2)

where w is the work density done by the internal forces, T is the Cauchy stress ten-
sor, ∇u is the displacement gradient tensor, e(l) defines the direction of propagation,
l is the crack length, and n is the outward unit normal to the path Γ .
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Fig. 1 Definition of the
domain L for numerical
evaluation of the CEER

Equation (1) is the Crack Extension Energy Rate (CEER) as proposed in [3, 4, 6];
the first term of CEER has the same formal expression of the Rice’s J-integral [11]
but denotes a different quantity. In fact, the J-integral depends only on the actual
elastic state, while J̃ (Γ ) depends on the whole deformation process. Furthermore,
the Rice’s J-integral is path-independent because of the solenoidal nature of its inte-
grand (i.e., the elastic energy momentum tensor or Eshelby tensor [5]), while J̃ (Γ )

is not. The path-independence of the CEER is restored with the addition of the sur-
face integral of the divergence of the energy–momentum tensor, which denotes the
dissipative contribution to the energy balance, due to plasticity arising around the
crack tip. Nevertheless, for elastic materials, Eq. (1) reduces to the Rice’s J-integral,
and thus the CEER is an appropriate generalization of the J-integral for elastic–
plastic materials.

Several studies of numerical evaluation of the CEER can be found in
[1, 3, 4, 6, 10], relevant to stationary cracks in different specimens, under small
scale yielding (SSY) conditions with different hardening rules. The results show
that, under monotonic increasing load, the material behaves elastically and the
plastic zone at the crack tip has small effects; in such a circumstance the frac-
ture toughness predicted by both the Rice’s J-integral and the CEER are equiva-
lent.

However, when the specimens are subjected to cyclic loads, the effects of plas-
ticity become important, even in SSY conditions, and the value of the CEER com-
pletely differs from the Rice’s J-integral. In particular, at the end of the unloading
phase the CEER assumes negative values and during the subsequent phase of in-
creasing load applied the material behaves elastically again, and the CEER increases
until a new peak lower than that corresponding to the previous one; this process con-
tinues at any cycle of applied load, but the difference between the peaks reduces until
a quasi-constant value of the CEER is achieved [1, 4]. The effects on CEER of the
amplitude and average tensile stress applied become clearly detectable, and certain
phenomena as, for example, the delay of crack growth after a peak of tensile load
applied could be qualitatively explained. The effect of hardening rules is mainly im-
portant at the end of the unloading phase; then the delay in increasing CEER, during
the loading phase subsequent to unloading, can be identified as a closure effect of
crack faces.



A Criterion for Ductile Crack Growth Based on the Energy–Momentum Tensor 69

The aforementioned numerical studies seem to indicate that the CEER can be
considered a generalized crack driving force for elastic–plastic materials and, thus,
a valid tool of nonlinear Fracture Mechanics.

However, in quasi-static crack propagation under monotonic increasing load, the
CEER or, more generally, any Griffith-like energy balance supplies vanishing value
of the energy release rate; this results is commonly accepted in literature and known
as the paradox of Rice [1, 8, 12, 15, 16].

In [12], Rice examined the fracture energy balance for a growing crack in an
elastic–perfectly plastic body, under a constant load applied and the assumption of
infinitesimal strain; in the case of quasi-static deformations, Rice showed that, from
the point of view of the continuum mechanics, the rate of change of the work of
applied forces during crack extension equals the rate of change in the stored energy
plus the dissipated energy. Consequently, no energy surplus is available to extend
the crack. Rice argued that the paradox is a direct consequence of the assumption
of perfect plasticity and the classical hypotheses of continuum mechanics (accord-
ing to which the stress and strain are bounded and change continuously with crack
length everywhere in the body except almost at the crack tip). Under these condi-
tions, a Griffith-like energy balance is unable to describe a crack extension, and,
therefore, a fracture criterion should be based on the assumption of surface energy
from microstructural considerations regarding the separation of material surfaces.
In addition, Rice argued that for an elastic-plastic material with work-hardening, a
Griffith-like energy balance could predict a nonzero value of the surface energy; this
conclusion was based on the assumption that an elastic–plastic material with a high
degree of hardening can be treated as an elastic one for which finite energy release
rate is found.

In [8], Moran and Shih argued that a nonzero value of the energy release rate can
be obtained only if the energy momentum tensor (denoted in their paper as H) is of
order r−1 as r → 0, with r a radial distance from the crack tip; for material response
which can be characterized as highly nonlinear, the energy–momentum tensor is less
singular than r−1, and therefore the energy flow to the crack tip is necessarily zero.
More precisely, for elastic–plastic materials they argued that, while for a stationary
crack in a quasi-statically loaded body, it is worth to assess the surface energy in
terms of a Griffith-like energy balance, for growing cracks, this energy balance is
zero; furthermore they raised the question whether a Griffith-like energy balance is
properly formulated or not for such materials.

The fracture energy balance for elastic–perfectly plastic bodies was later exam-
ined using the finite element method by Sun and Wang in [16]; under the assump-
tion of SSY conditions, the results of their simulations confirm the inadequacy of
a Griffith-like criterion to predict stable crack growth for any assumed crack exten-
sion. They also argued that, at the onset of fracture, a critical value of the plastic
dissipation work rate (denoted in their paper as Gp) might be regarded as critical
condition for crack extension, and then a relationship between critical plastic dis-
sipation work rate and surface energy of fracture might be stated. However, when
finite plastic strains occur, this relationship cannot be established, and, then, the
surface energy of fracture must be evaluated on the basis of continuum microme-
chanics.
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In a similar way, Sumpter [13–15] oriented his studies to find a fracture criterion
on the basis of a critical value of the energy dissipation rate (denoted in his works as
D and representing the derivative of the plastic dissipation with respect to a crack
length). The starting point is supplied by a Griffith-like energy balance in which
the term due to surface energy is suppressed (that means a zero value of the energy
release rate). With such an energy balance, Sumpter identified a condition for stable
crack growth in SSY conditions by matching the energy input rate (denoted as Cp

or CRL, depending on whether applied loads are constant or increasing during crack
extension) to the energy dissipation rate, the latter assumed as a material constant,
representing a measurement of fracture toughness.

In [1], Binante raised the question whether the Sumpter’s dissipation rate crite-
rion is adequate or not; as it will be shown later on in this paper, the method based
on the energy dissipation rate does not represent a fracture criterion, rather it is a di-
rect consequence of the constitutive model of the continuum mechanics considered.
The numerical results of this work show that during the whole loading-crack growth
process the rate of the work of applied forces is converted into stored energy rate and
plastic dissipation rate; therefore, this situation is not an intrinsic feature of crack
extension. Furthermore, the plastic dissipation rate cannot be regarded as a material
constant (or equivalently as a measurement of fracture toughness), but, as shown
in [1] and in this paper, it depends on the applied load, crack length, and specimen
shape. It is clearly difficult to identify a critical value of the energy dissipation rate
at fracture.

In the literature the paradox of Rice has been assumed to depend on the hy-
pothesis of perfect plasticity and infinitesimal strain; in this paper we show that
the paradox is valid even for isotropic-hardening rule under finite deformation. Nu-
merical simulations conduced on compact tension (CT) specimens show both the
inadequacy of an energy balance based on the Griffith criterion to describe the sta-
ble crack propagation and the impossibility to identify in the plastic dissipation rate
a critical condition for crack extension. The results obtained also show that during
all crack extension steps the trace of the energy–momentum tensor, PH , evaluated
at the current crack tip, assumes a constant value which is independent of applied
load, crack length, and specimen size. If we assume this value as a critical condition
for crack propagation, we obtain a load versus crack extension curve which is in
excellent agreement with experimental data.

The paper is organized into two main parts. First, we show the results of the
finite element analyses of quasi-static growing crack in CT specimens under the
assumption of monotonic increasing load; then, we introduce a proposal of crack
growth criterion based on the energy–momentum tensor (and called P-approach).

2 Numerical Studies of Crack Growth in CT Specimens

In this section, the results obtained from numerical analyses of quasi-static crack
propagation under monotonic increasing load are presented. Numerical studies have
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Fig. 2 CT specimen
geometries

Table 1 Dimensions of the
fracture specimens used in
numerical studies

Sample Sample size in mm a
W

W B a

CT2 51 12.5 25.5 0.5

CT3 102 12.5 51 0.5

Table 2 Material properties and hardening parameters

Sample Elastic–plastic properties Hardening parameters

E [GPa] n σY [MPa] β n ρ0 [MPa]

CT2-CT3 71 0.33 315 185.78 0.15 257.31

been restricted to 2-D bodies in plane strain conditions. Two compact tension (CT)
samples have been used (see Fig. 2), whose sizes are shown in Table 1.

Elastic–plastic isotropic hardening material have been used for both samples,
with mechanical properties shown in Table 2.

The isotropic hardening function can be written in the following way:

ρ(ζ ) = ρ0(1 + βζ)n

with n ≤ 1; for n = 0, the material is perfectly plastic, while n = 1 expresses a linear
isotropic hardening function. At each instant τ of a deformation process, ρ(ζ(τ ))

determines the radius of the yield locus, and ζ(τ ) is the Odqvist parameter, repre-
senting the amount of plastic strain [2].

The uniaxial true stress-strain curve is depicted in Fig. 3, relevant to Al2024-T3
aluminium alloy.

Depending on the step-wise approximation of the experimental load-crack ex-
tension curve, which have been used to describe the whole process of crack growth,
two numerical simulations have been carried out for CT2 samples.

The finite element mesh of a half CT2 specimen have been setup with the fol-
lowing procedure: first, we choose to split the continuous crack growth into a finite
number of extension steps �a, during which the applied load is kept constant; thus,
a step-wise approximation of the load-crack extension experimental curve is made
(see Fig. 4). During a crack extension from a point A to a point B, it is necessary to
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Fig. 3 Uniaxial stress-strain
curve of Al2024-T3 alloy,
whose mechanical properties
are shown in Table 2

use a large number (N ) of extension substeps (see Fig. 5). In other words, each ex-
tension substep δa = �a/N must be sufficiently small in order to capture the work
done during the continuous advance of the plastic zone ahead of the crack tip. If the
extension substep is not small enough, the plastic dissipation work might be under
estimated.

Sun and Wang [16] propose a relationship between the number N of extension
substeps and the plastic zone size, which ensures converged solutions; they assert
that, for values of the ratio δa/rp ≤ 0.01, with rp the plastic zone size, it is possible
to capture the small plastic zone, and, then, the plastic dissipation work is accu-
rately calculated. Therefore, in all simulations of crack growth we have maintained
δa/rp = 0.01. We remark that δa determines the characteristic length of the element
on crack front ahead of the current crack tip.

To estimate the plastic zone size, the Irwin’s plane strain formula has been used,
namely,

rp = K2
I (a)

6πσ 2
Y

,

where σY is the uniaxial tensile yielding stress, and KI (a) is the Stress Intensity
Factor (SIF), as evaluated from SIF handbook for CT specimen

KI = P

B · W
√

a ·
(

29.6 − 185.5 ·
(

a

W

)
+ 655.7 ·

(
a

W

)2

− 1017 ·
(

a

W

)3

+ 638.9 ·
(

a

W

)4)
.

This expression is valid for a/W ≤ 0.7; in the above formula, P is the applied load
taken from the experimental curve (“P ” versus “a”), corresponding to the current
crack length a.

With this procedure, a finite element mesh of 46066 plane strain isoparametric
four-node elements with 46613 nodes has been used. The characteristic length of
the elements immediately ahead the crack tip is about 0.005 mm.
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Fig. 4 Load versus crack extension curve used in numerical simulation of crack growth for CT2
specimens. Experimental curve from [7]

The separation of crack surfaces during crack growth has been simulated using
the nodal release technique in which the crack tip nodal reaction force is decreased
to zero by M steps, where M should be large enough to ensure numerical conver-
gence (see Fig. 6(a)). As proposed in [16], a value of M = 50 debonding steps has
been chosen. Figure 6(b) shows the crack length as a piecewise linear function of
time, which has been considered for the crack growth in any extension substep.

The experimental load versus crack extension curves used in all numerical simu-
lations are taken from [7, 9, 17].

As shown in Fig. 4, two stepwise approximations of the experimental curve have
been used: the first loading history L1 consists of 29 loading steps and 384 debond-
ing steps, each realized by 50 release steps. Thus, a total of 413 loading–debonding
steps have been used to simulate 8.5 mm of crack extension. At the first stages
of the crack growth process, small extension steps �a (typically �a = 0.07 mm),
in which load is kept constant, were used; later on, when crack growth resistance
curve decreases, larger values of �a have been used, up to a maximum value of
�a = 0.5 mm. The maximum experimental load is about 15 kN corresponding to
about 4.5 mm of crack extension. Loading history L2 differs from L1 as far as
loading steps are concerned; a total of 17 loading steps have been applied up to
8.5-mm crack length and, for any applied load, the crack has been extended for
�a = 0.5 mm (see Fig. 4).

Now, before discussing the numerical results, we need to correlate the Crack
Extension Energy Rate (CEER) and global energy rate during a crack growth [2].

Let t0 and t1 be the initial and final time in which crack grows from a length a0 to
a1, respectively. In all numerical simulations, assumptions A1–A7 in [2] have been
kept, together with the condition of a constant applied load during crack increments;
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Fig. 5 Partition of an extension step �a into N substeps δa

furthermore, finite strains may occur in the crack tip region. For convenience, some
of the assumptions in [2] are reported below.

1. P = const ∀t ∈ [t0, t1];
2. a(t0) > 0, da

dt
> 0 ∀t ∈ [t0, t1];

3. Tm = 0 on A′.

The second assumption identifies the crack length as a time scale so that ∂(·)/∂a ∝
∂(·)/∂t ; the third assumption implies that the newly created crack surfaces, A′, are
stress-free.

Let V be the volume of a region occupied by the body whose boundary ∂V

consists of a region AT , where a constant stress tensor T0 is applied, a region AU ,
where fixed displacements are imposed, and the newly created crack surface A′ (see
Fig. 7). During a crack growth process in the time interval [t0, t1], because the new
crack surface is stress-free and u̇ = 0 on AU , the work done by the external loads is

W =
∫

∂V

[∫ t1

t0

T0n · u̇dτ

]
dA =

∫
∂V

T0�u · ndA.

Applying the divergence theorem to volume V and bearing in mind that body
forces are null, we get

W =
∫

V

[∫ t1

t0

T0 · ∇u̇dτ

]
dV =

∫
V

w0 dV ;
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Fig. 6 A process of crack growth: (a) nodal release technique; (b) piecewise linear function of
crack length versus time used in an extension substep δa (Fig. 5)

Fig. 7 Schematic
representation of the crack-tip
region
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the work done by the internal forces during a crack extension is

U =
∫

V

w dV =
∫

V

[∫ t1

t0

T · ∇u̇dτ

]
dV.

With reference to Fig. 7, we consider a finite volume VΓ which completely sur-
rounds the crack-tip region at the time t0 and such that the newly created crack
surface A′ at time t1 is inside VΓ . Let Γ be the bounding surface of VΓ .

The external work can be rewritten as

W =
∫

VΓ

w0 dV +
∫

V −VΓ

w0 dV ;

the derivative with respect to crack length is

∂W

∂a
= ∂

∂a

∫
VΓ

w0 dV + ∂

∂a

∫
V −VΓ

w0 dV .

By applying the classical transport theorem to the integral over V − VΓ , we
obtain [2]

∂

∂a

∫
V −VΓ

w0 dV =
∫

V −VΓ

∂w0

∂a
dV − e ·

∫
Γ

w0nds;

bearing in mind Assumption 2 and applying the divergence theorem to the integral
over V − VΓ on the right-hand side of the above equation, we can rewrite the rate
of the external work as

∂W

∂a
= ∂

∂a

∫
VΓ

w0 dV +
∫

AT

T0ν · u̇ds −
∫

Γ

T0n · u̇ds − e ·
∫

Γ

w0nds.

Finally, taking the limit for Γ → 0 of the above expression and keeping assump-
tions A3 and A4 in mind, we get:

∂W

∂a
−

∫
AT

T0ν · u̇ds = −e · lim
Γ →0

∫
Γ

(
w0I − ∇uT T0

)
nds = −CEER(a0), (3)

where CEER(a0) is the value of the energy release rate at the onset of the crack
extension.

Similarly, the rate of the work done by the internal forces, during the crack ex-
tension, is obtained by

∂U

∂a
−

∫
AT

Tν · u̇ds = −e · lim
Γ →0

∫
Γ

(
wI − ∇uT T

)
nds = −CEER(a), (4)

which is equivalent to Eq. (11) of [2]; subtracting Eq. (4) from Eq. (3), we get

∂W

∂a
(a) − ∂U

∂a
(a) = �E (a) = CEER(a) − CEER(a0); (5)
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thus, during the crack extension from a0 to a1, the energy release rate is evaluated
as the change in CEER between the current crack length and that at the onset crack
growth.

The energy release rate may also be evaluated from the global energy balance
as the difference between the rate of the external work and the rate of change in
internal energy.

Figure 8 shows a numerical evaluation of a global energy balance per unit thick-
ness for the CT2 specimen undergoing the loading history L1 during the first 3.5 mm
of crack growth. The work done by the internal forces, U , is split into a stored
elastic energy, Uel, and a dissipated plastic energy, Upl; the bulk energy, Ebulk, is
evaluated as the difference between the external work and the internal energy. Thus,
in Fig. 8(a) we show all the energy terms as functions of crack extension during
the whole loading-crack growth process; due to the approximation of the loading
history, each energy is described as a step-wise function f (P,�a) of the applied
load, P , and the crack growth, �a, in which the step represents the loading applica-
tion. Figure 8(b) shows the rate of the energy terms, and Fig. 8(c) depicts the ratio
of elastic, plastic, and bulk energy rates to the external work rate.

The result is that, during a crack extension under constant load, the external work
is converted into a stored elastic energy and a dissipated plastic energy and the bulk
energy is negligible; this occurs for every crack extension step.

Furthermore, with reference to Eq. (5), we obtain that the rate of the bulk energy
represents the energy release rate during a crack extension; for each extension step,
the bulk energy is negligible, or, equivalently, no energy surplus is available during
the extension of a crack length from a0 to a1, and the crack extension is unreal.

Similar results have been obtained for loading history L2 (Fig. 9 relevant to
5.5 mm of crack extension); contrary to loading history L1, the energy rates during
the crack extension are not constant. This is due to the step-wise approximation of
the loading history; in fact, the loading history L1 better fits the experimental curve
than L2, and, therefore, we can expect that the energy rates, during a crack extension
previous to the achievement of the maximum applied load, assume a quasi-constant
value. Thus, it is reasonable to assume that the external work rate and the rate of
change in internal energy depend only on the current applied load for values of the
cumulative crack growth �a less than a critical value, in correspondence of which
unstable crack growth occurs. This critical value can be determined from the slope
of the experimental curve dP

d(�a)
(similar to tearing resistance curve); when dP

d(�a)
decreases more quickly until negative values, the rate of all energy terms are no
longer constant with respect to crack length (see Fig. 9(b)). In this circumstance, the
plastic dissipation rate becomes larger than the elastic strain rate and, furthermore,
shows a more marked dependence on crack length. Anyway, the most important fea-
ture shown in Fig. 9(b) is a negligible value of the bulk energy rate during the whole
crack growth process, as we have found for the loading history L1.

The result of a vanishing energy surplus is known as the paradox of Rice. As
shown in [12], the inadequacy of a Griffith-like energy balance to assess a fracture
criterion for crack propagation is due to limits of continuum mechanics, on the basis
of which the energy balance is formulated. Relative to small scale yielding condi-
tions and for elastic–perfectly plastic materials, Rice showed that the paradoxical
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Fig. 8 Energy rates versus
crack extension in the first
3.5 mm of crack growth for
CT2 sample undergoing the
loading history L1

conclusion is due to the classical assumptions of smoothness in stress and strain
fields, with respect to which stress and strain fields may be singular only at the
crack tip. Furthermore, Rice argued that, when an elastic–plastic material exhibits a
work-hardening behavior, a nonnull value of the energy surplus might be achieved.
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Fig. 9 Energy rates versus
crack extension in 5.5 mm of
crack growth for CT2 sample
undergoing the loading
history L2

This consideration is justified considering that, when the level of work-hardening is
sufficiently high to have an elastic behavior of material, the energy release rate is
finite; on the contrary, a very small work-hardening level is equivalent to a perfectly
plastic material; in this case the energy release rate is zero.



80 V. Binante and A. Frediani

The results of Figs. 8–9, however, show that the energy release rate is null, even
when work-hardening behavior is taken into account, regardless of small or finite
strain conditions; in fact, the global energy balance states that

W − U =
∫

V

[∫ t1

t0

(T0 − T) · ∇u̇dτ

]
dV =

∫
V

(w0 − w)dV ≈ 0,

and, because it is valid for any finite volume V , we get

∫ t1

t0

(T0 − T) · ∇u̇dτ ≈ 0.

The above relationship states that, during the crack extension, the stress and
strain fields vary continuously everywhere in V , except, almost, just at the crack
tip. Furthermore, the changes in stress field for t ∈ [t0, t1] are negligible. From the
Eqs. (3)–(5), this implies

�E (a) = −e · lim
Γ →0

∫
Γ

[
(w0 − w)I − ∇uT (T0 − T)

]
nds

≈ e · lim
Γ →0

∫
Γ

[∇uT (T0 − T)
]
nds ≈ 0,

and, thus, irrespective of small or finite conditions on the displacement field, the
energy release rate during the crack extension is null.

Therefore, for elastic–plastic materials an energy balance according to the Grif-
fith’s criterion cannot be formulated; in the case of stationary crack and/or quasi-
static crack propagation in an elastic body, the only dissipative mechanism is due to
a crack (extension), and, then, the energy surplus in Griffith’s criterion, representing
the energy dissipated into the body, can be identified as energy available to extend
a crack. For elastic–plastic materials, there are essentially two dissipative mecha-
nisms: one is due to the creation of a plastic zone close to the crack-tip region with
increasing load; the other is due to the spread of plastic flow on the crack front as the
crack advances. In the case of stationary crack in an elastic–plastic body, a Griffith-
like energy balance can yet be formulated, with the plastic work rate expressing
the effect of arising plastic zone at the crack tip with increasing load. In the case of
crack propagation in elastic–plastic materials, the plastic work rate takes the loading
and crack growth effects on plastic flow into account, and, thus, no other energy rate
term into an energy balance should be considered. This is true whether infinitesimal
or finite strain conditions are used. In other words, in order to assess a fracture cri-
terion, the energy required for extending a crack (called surface energy of fracture)
may be correlated to some critical condition of the plastic dissipation rate. In such a
sense, Rice argued that, from a point of view of continuum mechanics, the fracture
criterion might be restated in the following way:

∂W

∂a
(Pf ) − ∂Uel

∂a
(Pf ) = ∂Upl

∂a
(Pf ), (6)
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where in his paper the left-hand side of the above relationship was denoted as G and
∂Upl
∂a

as p; Pf is the load at fracture. However, the value of the plastic dissipation rate
at fracture cannot be considered as a material constant; rather it should be related to
the surface energy (denoted in his paper as 2Γ ), the latter being evaluated from mi-
crostructural considerations of the separation of material surfaces. This concept has
been later resumed by Sun and Wang [16], who stated that under small scale yielding
conditions for elastic-perfectly plastic materials the plastic dissipation rate (denoted
in their paper as plastic dissipation work rate Gp) at the onset of fracture might be
regarded as a fracture criterion, even though it cannot be identified as the surface
energy of fracture which must be evaluated on the basis of continuum microme-
chanics. Furthermore, they argued that, when finite plastic strains occur, a relation
between plastic dissipation rate and surface energy of fracture cannot be established,
and then this approach is no longer adequate. Along the same line, Sumpter oriented
his works [13–15] to find a fracture criterion on the basis of a critical value of the
energy dissipation rate. The starting point is supplied by Eq. (6) (in his papers,

∂Upl
∂a

is the dissipation energy rate denoted as D, while the left-hand side of the equation
is identified as the input energy rate and denoted as C); he confined his attention
to identify in this relation a condition to predict stable crack growth and tearing in-
stability in small scale yielding conditions. According to his approach, stable crack
growth occurs when the value of the energy input rate CRL under increasing load
matches the value of the energy dissipation rate D, while the unstable tearing, oc-
curring when the crack propagates under constant load, is predicted by the matching
of Cp to D. In this approach, the input energy rate C depends on specimen geom-
etry, crack length, stress, and load path during crack advance and can be evaluated
from numerical analyses. The energy dissipation rate D is considered as a constant
material and represents a measure of material toughness.

Some conclusions concerning the use of the plastic dissipation rate as a fracture
criterion are questionable: (1) is this approach adequate? In our opinion, it does
not represent a fracture criterion, rather it is a direct consequence of the constitu-
tive model considered, based on continuum mechanics. As the present numerical
results show, during the whole loading-crack growth process, the external work is
quasi-completely converted into stored elastic energy and plastic dissipation energy;
therefore, this situation is not an intrinsic feature of fracture. Furthermore, even if
the effect of the crack extension on the plastic flow can be regarded as some crit-
ical condition of fracture, generally, it is difficult to identify this condition, even
with the support of finite element analyses. A relation between critical value of the
plastic dissipation rate and surface energy of fracture, as Rice suggested, requires
the knowledge of the latter, which, generally, cannot be regarded as a material con-
stant, but it should be evaluated from continuum micromechanics. (2) Should we
take the total or local plastic dissipation rate into account, as a fracture criterion? In
the literature this is yet an open question. In our opinion, a local form of the frac-
ture criterion is preferable for two considerations; first, from a point of view of the
correlation between fracture process zone and plastic dissipation rate, it is prefer-
able to discard the work due to plastic flow at material points away from the crack
surface. Secondly, we should consider only the contribution of plastic flow due to
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crack extension. (3) On what basis can a critical condition of the plastic dissipation
rate be established? As we already said, it is difficult to identify a fracture condi-
tion from a critical value of the plastic dissipation rate because, generally, the latter
depends on the applied load, crack length, and specimen geometry. Therefore, it
cannot be considered as a material constant. Sumpter assumed a constant value of
the energy dissipation rate D as a material toughness, however, this is not correct,
according to our opinion. To better understand this concept, we look at the results

of Fig. 8(b); they show that, during the crack extension,
∂Upl
∂a

assumes a constant
value with respect to crack growth �a but depends on the current fixed value of the

applied load P , that is,
∂Upl
∂a

= ∂Upl
∂a

(P ). Furthermore, if we consider the results of
Fig. 9(b), we can see that, during a crack extension step, the plastic dissipation rate

can vary linearly with respect to crack growth, and then
∂Upl
∂a

= ∂Upl
∂a

(P, a). Clearly,
these results depend on step-wise approximation of the experimental curve load ver-
sus crack length and that the loading history L1, for which a constant value of the
plastic dissipation rate is found during crack growth, better fits the experimental
curve than the loading history L2. However, for large values of �a, L1 and L2 are
identical, and we can see from Fig. 9(b) that there is a trend in plastic dissipation
rate and elastic strain rate, which is inverse with respect to small values of �a. That
is, for values of �a in correspondence of which dP

d(�a)
decreases or becomes nega-

tive (tearing instability), the plastic dissipation rate increases with increasing crack
length more quickly than the elastic strain rate. Thus, if it is reasonable to assume
a constant value of the plastic dissipation rate with respect to a crack length, for
values of �a previous to the tearing instability, this is no longer valid as the tear-
ing instability is approached. Finally, it is known in the literature that a geometry
dependence of the plastic dissipation rate is envisaged. Therefore, we can conclude
that a critical value of the plastic dissipation rate cannot be considered as a measure
of material toughness.

From the above considerations we can conclude that the energy release rate, as
evaluated from continuum mechanics according to Griffith’s criterion, does not cor-
respond to the surface energy of fracture because the former predicts zero value dur-
ing crack extension. The plastic dissipation rate, as evaluated from continuum me-
chanics, is not a valid approach to predict crack growth because if it admits a critical
value, this cannot be regarded as a characteristic parameter of fracture. Therefore,
it is not possible to derive a fracture criterion by using an energetic approach based
on continuum mechanics.

The surface energy of fracture represents the rate of work done by surface frac-
tions on A′ as the new crack surface is created:

G
(
l
j
FPZ, T

) = − lim
A′→0

1

A′

∫
A′

[∫ t1

t0

Tn · u̇dτ

]
da, (7)

which is negative since the surfaces are pulled apart under opposing stresses; the
work should be evaluated by microstructural considerations of the separation of ma-
terial surfaces. Thus, it depends on some characteristic parameters of the Fracture
Process Zone (FPZ) l

j
FPZ (such as void volume ratio f , void aspect ratio S, void

distribution λ, which are tied to material microstructure) and stress triaxiality T .
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When a mechanism of fracture is quasi-brittle or in the case of stationary crack in
small scale yielding, a Griffith-like energy balance can be expressed by Eq. (7), and,
thus, the continuum estimate of the surface energy agrees with microstructural one.
When this is no longer valid (mechanism of fracture involves large plastic deforma-
tions in the FPZ, outside of which small scale yielding conditions are still valid),
the continuum estimate predicts zero value of the energy release rate, while a crack
grows from a length a0 to a1.

Experimental investigation of fracture surfaces, associated with a ductile-type
mechanism of fracture, suggests that crack extension is a result of large plastic flow
causing a large void to coalesce with smaller voids nearby, the latter being either
preexisting or created by deformation around inhomogeneities. In such a case, the
fracture propagation is a consequence of large deformations causing a crack exten-
sion by the flowing together of voids. One may define a surface energy G by con-
sidering the work required to coalesce a row of voids with the proper mean spacing
λ, and proceed to obtain a fracture criterion through the energy balance. Some re-
searchers state that fracture occurs when local stresses in a region close to crack tip
overcomes cohesive forces acting on the crack surface; in such a context, the surface
energy G is interpreted as the work per unit area done by cohesive forces in a small
region near the crack tip to push crack surfaces. Anyway, the cohesive forces should
be evaluated on microstructural sound, and, then, they may be correlated to the FPZ.

The evaluation of surface energy for elastic–plastic materials requires the knowl-
edge of some phenomena occurring in the FPZ such as void nucleation, void growth,
and void coalescence. In order to derive a fracture criterion based on energetic ap-
proach, it is opportune to leave the classical assumptions of continuum mechanics
and adopt constitutive model more suitable to describe the microstructural phenom-
ena in FPZ.

Concerning to the role of the FPZ on ductile-type fracture mechanism, here, we
want to conclude showing that, if we adopt a constitutive model which incorporates
damage phenomena such as those aforementioned, a nonnull value of the energy
release rate may be achieved, and a relation with the surface energy can be restored.
In so doing, we rewrite Eq. (5) as

�E = lim
A′→0

1

A′

∫
V

[∫ t1

t0

(T0 − T) · ∇u̇dτ

]
dV ;

as already done, we split the volume V into two parts: a small volume VFPZ sur-
rounding the FPZ in the crack tip region and the volume V − VFPZ , where the ma-
terial behavior can be described according to continuum mechanics. As we have
previously seen, the changes in strain and stress fields in V −VFPZ during the crack
extension are negligible, and then the integral over V −VFPZ is infinitesimal of order
two in A′ and disappears as A′ → 0. Thus Eq. (5) reduces to

�E = lim
A′→0

1

A′

∫
VFPZ

[∫ t1

t0

(T0 − T) · ∇u̇dτ

]
dV .

As known, the void coalescence represents the final stage of ductile fracture pro-
cess and implies a localization of plastic flow in narrow bands of coalescing voids,
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Fig. 10 Discontinuity
surfaces inside of the FPZ

outside of which the material undergoes elastic unloading. The different mechanism
of deformation between the outside region and inside of the narrow-band triggers
off the creation of discontinuity surfaces Σ of the total strain rate ∇u̇ (see Fig. 10).
In such a case, we have

�E =
∫

Σ

[∫ t1

t0

(T0 − T)n · u̇dτ

]
da,

which allows us to overcome the paradox of Rice.

3 A Proposal of a New Criterion of Quasi-static Crack
Propagation

Although a continuum treatment of the energy release rate predicts paradoxical re-
sults and the plastic dissipation rate seems to be not a valid approach, it seems to be
still possible to use the framework of continuum mechanics in order to find some
critical conditions at fracture. A new approach to describe quasi-static crack growth
is proposed here, based on the numerical studies of the previous section. This ap-
proach is, currently, supported by only numerical results, and, thus, more research
activity is needed to validate it on a theoretical basis and more numerical studies
must be carried out concerning different structures and materials.

The stress and strain fields at the current crack tip are investigated, and, in par-
ticular, the energy–momentum tensor P is examined; as we have discussed in [2],
P represents the generalized force acting on defect (crack). In the absence of a more
refined theoretical basis, the present proposal starts from the assumption that the
energy–momentum tensor stores the whole history of deformation, plastic region
expansion, elastic unloading when the crack advances, and so on. We consider the
hydrostatic component of the energy–momentum tensor PH ,

PH = P · I =
∑

i

Pi . (8)

Figure 11 shows the distribution of PH along the crack front, in the presence of
the loading history L2 for a CT2 specimen; the trace of the energy–momentum ten-
sor is evaluated at the centroid of each element positioned into the plane of fracture,
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including also the elements positioned along the crack faces. The profile of PH is
shown for some loading steps (at the last increment of them) before a crack exten-
sion. Thus, Fig. 11(a) depicts the value of PH at the end of the load step of 7 kN
at the incipient propagation (�a = 0) for all bonded elements of the crack front;
the maximum value of PH is at the current crack tip and, quickly, decreases with
increasing distance from crack tip. The same occurs for the other considered load-
ing steps during the crack-growth process; in particular, for a given loading step of
the deformation process, PH is maximum at the current crack tip and in correspon-
dence of those underwent the previous load increments. Ahead of the current crack
tip, PH decreases quickly to negligible values, while, all elements behind it, which
did not have to undergo a load increment, assume a quasi-constant value of PH .
The over-peaks of PH depend on the magnitude of the load increment, �F ; with
reference to Fig. 4, the step-wise loading function L2 provides a maximum value of
�F ≈ 2.6 kN in correspondence with the second loading step. In such a case, the
element undergoing this load increment exhibits larger strains than the others and,
then, a higher value of PH . Therefore, we can deduce that the over-peaks depend
on the particular step-wise approximation of the loading history considered. If a
step-wise approximation is made of small values of �F , the magnitude of the over-
peaks of PH is correspondingly reduced; this occurs for the loading history L1 (see
Fig. 12), which is characterized by more loading steps than L2 with smaller �F .
As a limiting case in which �F is infinitesimal, a crack growth history with contin-
uous loading applications should be characterized by a constant value of PH for all
elements behind the current crack tip.

By comparing the two step-wise loading functions, we can see that, irrespective
of the over-peaks and the level of the applied load, all elements which do not have to
undergo a load increment show, approximatively, the same value of PH , suggesting
that the force acting on the crack during its propagation is quasi-constant.

Therefore, confining our attention at the current crack tip only, we are interested
in knowing the value of PH at the onset of fracture; thus, Figs. 13(b) and 13(a)
show that, irrespective of the considered loading history, during crack growth, the
trace of the energy–momentum tensor assume a constant value, with a high degree
of approximation. This remark suggests us to identify this constant value as the
critical condition for crack growth. In particular, the constant value of PH is about
P̄ = 40 MPa in the case considered. We conclude that, for a given shape of the
specimen, P̄ is independent of the current applied load and crack length, unlike the
value of plastic dissipation rate which, as already discussed, shows a dependence on
them.

In order to candidate this critical condition as a criterion of crack growth, we
should verify that P̄ is independent of the specimen size. In such a context, we have
considered the CT specimen, CT3, whose dimensions are shown in Table 1, and the
value P̄ = 40 MPa has been kept. The finite element mesh of a half CT3 has been
made according to the procedure shown in Sect. 2; the numerical simulation requires
an iterative procedure for the load application, because a priori knowledge of the
boundary conditions which imply PH to be equal to P̄ is not possible. The flow-
chart of the iterative procedure is shown in Fig. 14; regarding the loading history to
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Fig. 11 Trace of the energy–momentum tensor along the crack front at several load increments.
Loading history L2
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Fig. 12 Trace of the energy–momentum tensor along the crack front at several load increments.
Loading history L1
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Fig. 13 Trace of the energy–momentum tensor at the current crack tip for two loading histories

be reproduced, we have used only the value of the load applied, FIC , at the onset
of crack growth, taken from experimental data [7]. This is necessary because the
fracture criterion proposed might predict crack-growth conditions, but not fracture
toughness. The iterative procedure in Fig. 14 is based on the application of small
extension steps �ai (then δai ) in which the unknown load Fi = Fi−1 + �Fi is kept
constant. As far as the influence of the applied load on PH is concerned, a large
applied load produces high peaks of PH , and, then, more steps of computation are
needed to verify that PH equals P̄ . Thus, a choice of small �ai is more suitable;
in particular, the first check on PH has been carried out after N∗ = 4 extension
substeps δai subsequent to the load application.
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Fig. 14 Flow-chart of iterative procedure for load applications in CT3 sample

Figure 15 shows the experimental load versus crack extension curve together
with that obtained by the above iterative procedure. As we can see, they are in a
good agreement (see also Table 3); therefore, on the basis of the independence from
the applied load, specimen size, and crack length, the condition PH = const may be
a valid approach to describe the crack growth process in ductile materials; we define
it as P-approach.

Some comments could be useful when comparing P-approach with KR , JR crite-
rions and energy dissipation rate. The energy dissipation rate approach is geometry
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Fig. 15 Load versus crack extension curve for CT3 sample. Experimental data from [7]

Table 3 Load versus crack
extension curve for CT3
sample

Experimental curve from [7] Load curve at PH = 40 MPa

F [kN] �a [mm] F [kN] �a [mm]

10.0 0.0 10.0 0.0

14.7 0.7 14.4 0.7

16.0 1.0 16.0 1.0

18.7 1.7 17.9 1.6

22.0 2.7 21.3 2.8

23.3 3.3 22.8 3.5

26.0 5.3 25.6 5.5

27.3 6.7 26.9 7.0

29.0 10.0 29.0 10.0

27.3 14.0 28.0 12.0

dependent, and it depends also on applied load and crack length and, above all,
is not a critical condition at fracture, because Eq. (6) is always valid, also when
the load is applied and no crack propagation occurs; the KR criterion is based on
the elastic solution of the near crack tip fields, and it is applicable only when the
plastic zone size is small and plastic effects are negligible. Similarly, the JR crack
growth resistance curve is based on the J-dominance (HRR-dominance) concept,
according to which an outer region of material with elastic behavior, undergoing
proportional stress, controls a small plastic zone close to a crack tip. Furthermore,
the JR-based methods show a dependence on specimen size, specimen geometry,
and crack length.

On the contrary, the P-approach is independent of the applied load, crack length,
and specimen size.
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4 Conclusions

The results of this work show that:

• the paradox of Rice is also valid when isotropic hardening behavior and large
scale yielding are considered; thus, a Griffith-like energy balance is no longer
valid to predict stable crack growth in a material when the mechanism of fracture
is ductile;

• a criterion based on the plastic dissipation rate, as proposed in [15], cannot be
properly identified as a fracture criterion, because plastic dissipation rate depends
on a crack length and loading history;

• the proposed P-approach model represents a valid alternative to the classical ap-
proaches; the numerical studies of this work show that the P-approach expresses
a characteristic condition of crack growth and is independent of the applied load,
crack length, and specimen size. In addition, it is based on a more suitable theoret-
ical framework because the energy–momentum tensor represents the generalized
force acting on a defect.

Future works will be confined to assess the proposed criterion on the basis of
both theoretical ground and numerical investigations on a wide range of materials
with different hardening rules and fracture specimens.
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Optimal Location of Support Points
in the Kirchhoff Plate

Giuseppe Buttazzo and Sergey A. Nazarov

1 Introduction

1.1 The Kirchhoff Plate with a Clamped Edge

Let Ω be a domain in the plane R2 with a smooth (of class C∞ for simplicity)
boundary Γ = ∂Ω and the compact closure Ω = Ω ∪ ∂Ω . The bi-harmonic equa-
tion

Δ2
xw(x) = f (x), x ∈ Ω, (1)

with the Laplacian Δx in the Cartesian coordinates x = (x1, x2) is known as an ad-
equate model to describe the deflexion w(x) of a thin isotropic elastic plate under a
transversal loading proportional to the right-hand side f (x) of (1) (the proportion-
ality coefficient is not important for our purposes).

Equation (1) is called the plate equation after S. Germain, who, for the first time
in 1815 [13],1 discovered a relationship between a fourth-order differential operator
and a bent plate. A consistent method to infer equations of type (1) together with
concomitant boundary conditions in the theory of plates was developed by Kirch-

1For this work, Mademoiselle Sophie Germain was awarded with a prize by French Academy of
Sciences. Actually, the original manuscript contained a mistake corrected by Poisson [25] in 1829.
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hoff [14] in 1850–1859 under suitable hypotheses,2 i.e. by means of an intuitive
asymptotic analysis.

A rigorous mathematical derivation of two-dimensional thin plate equations from
three-dimensional elasticity problem, together with asymptotically sharp error es-
timates, has been performed in many publications in the last century by various
methods and with miscellaneous formulations of the problem. Mentioning a few of
works [6, 22, 24, 27] only, we refer to books [5, 10, 23] for a much more complete
list.

The bi-harmonic equation can be considered with the simplest boundary condi-
tions

w(x) = 0, ∂nw(x) = 0, x ∈ Γ, (2)

where ∂n stands for differentiation along the outward normal. These conditions cor-
respond to clamping the plate edge, and we call (2) the Dirichlet conditions because
they are fully inherited by the energy space in the variational formulation of the
boundary-value problem (1), (2), namely w ∈ H 2

0 (Ω) and

(Δxw,Δxv)Ω = (f, v)Ω ∀v ∈ H 2
0 (Ω), (3)

where (·, ·)Ω is the natural scalar product in the Lebesgue space L2(Ω), and H 2
0 (Ω)

is the completion of the linear set C∞
c (Ω) (infinitely differentiable functions with

compact supports) with respect to the standard norm in the Sobolev space H 2(Ω).
We also refer to [18] for a couple of known facts formulated below.

For any functional f ∈ (H 2
0 (Ω))′ linear and continuous in the space H 2

0 (Ω), the
variational problem (3) admits a unique (generalized) solution w ∈ H 2

0 (Ω), and the
estimate

‖w‖H 2(Ω) ≤ c‖f ‖(H 2
0 (Ω))′

is valid. If f ∈ L2(Ω), the generalized solution becomes classical, falls into the
Sobolev space H 4(Ω), and satisfies the estimate

‖w‖H 4(Ω) ≤ c‖f ‖L2(Ω). (4)

We emphasize that the bilinear form on the left of (3) is coercive in H 2
0 (Ω)

due to the second fundamental inequality [17] which needs, at least, one Dirichlet
condition w = 0 on Γ (cf. Sect. 3.3).

Remark 1 The integral identity (3) extended over the whole Sobolev space H 2(Ω)

cannot be well posed: the bi-linear form on the left of (3) degenerates on the infinite-
dimensional linear space of harmonic functions in Ω , while the corresponding Neu-
mann boundary conditions (intrinsic, in the terminology of [18])

Δxw(x) = ∂nΔxw(x) = 0, x ∈ Γ, (5)

2Two Kirchhoff hypotheses contradict to each other and must be used in a proper order and at an
appropriate moment of the analysis. An example of the erroneous usage of the hypotheses leading
to a wrong conclusion is explained and discussed in [28] (see also [23, Mistake 4.2.5]).
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do not satisfy the Shapiro–Lopatinsky requirement, i.e., the boundary-value problem
(1), (5) is not elliptic in any sense. In this way, a plate with a free edge must be
supplied with another bi-linear form, namely the plate elastic energy (45), and a
couple of second- and third-order boundary conditions (48), which are different
from (5) (see, e.g., [21]). The fact that the quadratic form 1

2 (Δxu,Δxu)Ω coincides
with the elastic energy (45) of the Kirchhoff plate is exclusively due to the full
family of the Dirichlet conditions (2) and can be verified using an integration by
parts (see, e.g., [21] and cf. the Green formula (47)).

As mentioned, the Dirichlet conditions (2) correspond to a three-dimensional
thin plate with a clamped edge. This conclusion can be made along the construction
of boundary layers, i.e., asymptotic components of elastic fields which manifest
themselves only in the vicinity of the plate edge and decay exponentially in the plate
body, see [9, 28] for thin solids and [20, Chaps. 15, 16] for a general procedure to
study the boundary layer phenomenon. Notice that the boundary conditions at the
contour Γ appear as a decay condition of the boundary layer and result from the
boundary conditions at the lateral side of the thin plate in the three-dimensional
elasticity problem.

1.2 The Sobolev Conditions at Support Points

Let P = {P 1, . . . ,P J } be a finite family of points inside of Ω with P j 	= P k as
j 	= k. Since we are in a two-dimensional domain, according to the Sobolev em-
bedding H 2 ⊂ C0,α (C0,α is the Hölder class of exponent α ∈ (0,1)), the linear
set

H 2
0 (Ω;P) = {

w ∈ H 2
0 (Ω) : w

(
P 1) = · · · = w

(
P J

) = 0
}

(6)

is a closed subspace of H 2(Ω). Hence, the variational problem

(Δxu,Δxv)Ω = (f, v)Ω ∀v ∈ H 2
0 (Ω;P) (7)

is well posed in the space (6). We call it the Sobolev problem, while

u
(
P 1) = · · · = u

(
P J

) = 0 (8)

are called either point or Sobolev conditions at the support set P . The following
assertion is a direct consequence of the Riesz representation theorem.

Lemma 1 The Sobolev problem (7) has a unique solution u ∈ H 2
0 (Ω;P) for any

right-hand side f ∈ (H 2
0 (Ω;P))′, and the following estimate holds:

‖u‖H 2(Ω) ≤ c‖f ‖(H 2
0 (Ω;P))′ . (9)
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The differential formulation of the variational problem (7) relies on the equation

Δ2
xu = f on Ω \ P (10)

with the point conditions (8) and the boundary conditions (2).
Notice that the differential equation (10) is posed in the punctured domain

Ω \ P . As a result, solutions of the Sobolev problem with the right-hand side
f ∈ L2(Ω) do not belong to H 4(Ω) due to their possible singularities at the points
P 1, . . . ,P J . However, u belongs to H 4

loc(Ω \ P) and, together with its deriva-
tives, is Hölder continuous, so that the point conditions can be understood properly.
Moreover, u lives in the Kondratiev space V 4

0 (Ω;P) [15]. The space V l
β(Ω;P)

is defined as the completion of the linear space C∞
c (Ω \ P) with respect to the

weighted norm

‖v‖V l
β(Ω;P) =

(
l∑

p=0

∥∥ρβ−l+p∇p
x v

∥∥2
L2(Ω)

)1/2

, (11)

where l ∈ {0,1,2, . . . } and β ∈ R are the smoothness and weight indices, ∇p
x v is

the family of all pth-order derivatives of the function v, and ρ(x) = minj {|x −
P j |}. Note that V l

β(Ω;P) consists of all functions v ∈ Hl
loc(Ω \ P) such that

the norm (11) is finite. The Kondratiev theory [15] of elliptic problems in domains
with conical singularities of the boundary applies to the Steklov problem because
any isolated point P j of the boundary ∂Ω ∪ P can be treated as the top of the
“complete” angle R2 \ P j .

The next lemma delivering asymptotic representations of solutions as x → P j is
fully analyzed in [20, § 5.5.2], and here we only sketch its proof.

Lemma 2 In the case f ∈ L2(Ω), the solution u ∈ H 2
0 (Ω;P) takes the asymptotic

form

u(x) =
J∑

j=1

χj (x)

(
∑

i=1,2

ai
j

(
xi − P

j
i

) + a0
j

8π

∣∣x − P j
∣∣2 ln

∣∣x − P j
∣∣

+ 1

2

∑

i,q=1,2

a
iq
j

(
xi − P

j
i

)(
xq − P

j
q

)
)

+ ũ(x), (12)

where ai
j , a0

j , a
iq
j are some coefficients, χj is a smooth cut-off function such that

χj = 1 in a neighborhood V j ⊂ Ω of the point P j and χj (x) = 0 for x ∈ V k with
k 	= j , and the remainder ũ ∈ H 4(Ω) belongs to the Kondratiev space V 4

β (Ω;P)

with any β > 0. The estimate

‖ũ‖V 4
β (Ω;P) +

J∑

j=1

(∣∣a0
j

∣∣ +
∑

i=1,2

(∣∣ai
j

∣∣ +
∑

q=1,2

∣∣aiq
j

∣∣
))

≤ cβ‖f ‖L2(Ω) (13)

holds, where the factor cβ is independent of f , with cβ → ∞ as β → +0.
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Proof Generally speaking, decomposition (12) and estimate (13) follow from the
relation f ∈ L2(Ω) = V 0

0 (Ω;P) and the theorem on asymptotics [15] (see also,
e.g., monograph [20, § 5.2]). Let us outline the scheme of application of general
results. First of all, we need a variant of the one-dimensional Hardy inequality

∫ ρ

0
r−4

∣∣∣∣ln
r

ρ

∣∣∣∣

−2∣∣V (r)
∣∣2

r dr ≤ c

∫ ρ

0
r−2

∣∣∣∣ln
r

ρ

∣∣∣∣

−2∣∣∣∣
dV

dr
(r)

∣∣∣∣

2

r dr

≤ C

∫ ρ

0

∣∣∣∣
d2V

dr2
(r)

∣∣∣∣

2

r dr,

which is valid for any V ∈ C∞
c [0, ρ). This inequality uses the radial variable

rj = |x − P j | (the factor r stands on dr for the Jacobian) and must be addition-
ally integrated over the angular variable ϕj ∈ [0,2π). As a result, we conclude that,
with any β > 0,

‖u‖V 2
β (Ω;P) ≤ c

(∥∥ρ−2(1 + | lnρ|)−1
u
∥∥

L2(Ω)

+ ∥∥ρ−1(1 + | lnρ|)−1∇xu
∥∥

L2(Ω)
+ ∥∥∇2

xu
∥∥

L2(Ω)

)

≤ C‖u‖H 2
0 (Ω;P). (14)

Furthermore, u ∈ V 4
β+2(Ω;P) due to the theorem on lifting the smoothness

[15]; notice that V 4
β+2(Ω;P) ⊂ V 2

β (Ω;P) by virtue of (11). Applying the the-
orem on asymptotics [15] ([20, Theorem 3.2.9]) to the problem (10), (8), (2) with
the right-hand side f ∈ L2(Ω) ⊂ V 0

β (Ω;P), we arrive at expansion (12) with any
small β > 0 (the weight index β = 0 is not available due to logarithmic weights, see
the middle of (14)) and at the detached asymptotic terms that live in V 4

β+2(Ω;P)

and in H 2(Ω) but stay outside the smaller space V 4
β (Ω;P). �

Lemma 2 describes the smoothness of the Sobolev problem solution u and de-
fines the coefficients in its expansions at the points P j . Notice that the embed-
ding H 2 ⊂ C0,α is only able to ensure the equalities, while, by the embedding
ũ ∈ H 4(Ω) ⊂ C2,α(Ω) and the inclusion |x −P j | ln |x −P j | ∈ C1,α(Ω), Lemma 2
shows that u ∈ C1,α(Ω) and

ai
j = ∂u

∂xi

(
P j

) =: u,i

(
P j

)
.

Although the theory of three-dimensional boundary layers in thin elastic plates
is not completed yet, the Sobolev conditions (8) ought to be interpreted as a model
for small supports of the plate. One may think about clamped zones of infinitesimal
diameter on the plate bases, however error estimates for such a model do not yet
exist in the literature.
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1.3 The Minimization Problem

Problems (3) and (7) can be formulated as minimization problems for the functional

E(v;f ) = 1

2
(Δxv,Δxv)Ω − (f, v)Ω (15)

in the function spaces H 2
0 (Ω) and H 2

0 (Ω;P), respectively, and with the loading
f in the corresponding dual space. A solution of the problem gives the minimum
of the functional (15) which is nothing but the potential energy of the plate (elastic
energy minus work of external forces).

Since H 2
0 (Ω) ⊂ H 2

0 (Ω;P), the solutions w and u of the Dirichlet and Sobolev
problems respectively, provide the relationship

E(w;f ) ≤ E(u;f ), (16)

which mechanically means that supporting the plate at the points P 1, . . . ,P J in-
creases concurrently the potential energy stored.

1.4 The Optimization Problems

For a fixed integer N , we are interested in the optimal location of N points P =
{P1, . . . ,PN } in Ω in order to minimize the total compliance functional. As usual,
the compliance is defined as

C(P;f ) =
∫

Ω

u(x)f (x) dx, (17)

where u minimizes the potential energy (15). An integration by parts readily shows
that

C(P;f ) = −2 min
{
E(v;f ) : v ∈ H 2

0 (Ω;P)
} = (Δxu,Δxu)Ω ≥ 0. (18)

The optimization problem we deal with is then

min
{
C(P;f ) : P ⊂ Ω, #P ≤ N

}
, (19)

where #P is the number of points in P . If it is proved that the compliance func-
tional varies continuously when the points P 1, . . . ,P J move in Ω , then the exis-
tence theorem, formulated below, is straightforward. However, the following situa-
tion can hypothetically happen: caused by a singularity of the right-hand side f , the
potential energy (15), calculated for the solution uP of the Sobolev problem (10),
(2), (8), grows indefinitely when one point P j in the set P approaches another
point P k ∈ P . In Appendix we verify that the assumption f ∈ L2(Ω) is sufficient
to confirm the continuity of the function

Ω #P � P �→ E
(
uP ;f )

, (20)
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where uP denotes the solution to problem (7) with the point conditions (8) at P .

Theorem 1 In the case f ∈ L2(Ω), the optimization problem (19) admits a solution
for every N .

As remarked in Sect. 1.3, the Sobolev space H 2
0 (Ω;P) shrinks when P ex-

pands, and therefore the corresponding energy increases, and, by formulas (18) and
(15), (16), we immediately deduce the following result.

Proposition 1 If f ∈ L2(Ω) and Popt is an optimal solution, then #Popt = N .

The inclusion uP ∈ H 2(Ω) ⊂ C0,α(Ω) suggests to consider also the minimiza-
tion of the deflexion functional

W (P;f ) = max
{∣∣uP (x)

∣∣ : x ∈ Ω
}
, (21)

which is much more relevant to the engineering practice than the compliance func-
tional. The optimization problem

min
{
W (P;f ) : P ⊂ Ω, #P ≤ N

}
(22)

is discussed in Sect. 2.5.
When the number N of points that have to be located becomes large, since the

cost functions C(P;f ) and W (P;f ) are highly nonconvex, the numerical com-
putations necessary to determine the set P

opt
N are very heavy. On the other hand,

problems of this type appear in many practical situations (think, for instance, of the
problem of supporting a big roof by a large number of columns). This is why, in-
stead of determining P

opt
N , it is much simpler to find its asymptotic density, defined

as the probability measure

μ = lim
N→∞

1

N

∑

P∈Popt
N

δP .

In Sect. 2.6 we address this interesting point of view that has been fruitfully devel-
oped for various kinds of problems but, as far as we know, still remains open for the
case of plates.

1.5 The Structure of the Paper

We start the next section by introducing the Green function G(x,y) of the prob-
lem (1), (2) and detecting a relation between solutions of the Dirichlet and Sobolev
problems in terms of G that leads to an “almost explicit” representation formula for
the energy (33) and compliance (17) functionals. Based on this formula, a simple
approach is realized in Sect. 2.3 to get a necessary condition for the optimal location
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of the support points P 1, . . . ,P J (Theorem 2). At the first sight, the logarithmic sin-
gularities of second derivatives of G do not permit to derive a sufficient condition,
however the representation formula contains only twice differentiable functions, and
therefore a sufficient conditions is straightforward as well (Theorem 3). In Sect. 2.5
we discuss the minimization of the deflexion functional (21), and in Sect. 2.6 we
point out the questions related to determining the asymptotic density, as N → ∞,
of the optimal set P

opt
N .

In Sect. 3 we remark that the optimization problem (19) with #P = 1 requires
to locate the only support point P 1 at an extremal point of the function

Ω � x �→ G(x,x)−1/2w(x) (23)

(note that G(x,x) > 0 inside Ω , see (28)). We also give an example and discuss
several open optimization problems for linear and nonlinear plate models.

In Appendix we confirm the continuity of the function (20).

2 Optimizing the Location of Support Points

2.1 The Green Function

Let us introduce the Green function G(x,y), i.e., a solution of the problem

Δ2
xG(x, y) = δ(x − y), x ∈ Ω,

G(x, y) = ∂n(x)G(x, y) = 0, x ∈ Γ,
(24)

where δ(x − y) is the Dirac mass concentrated at the point y ∈ Ω . Since a funda-
mental solution of the bi-harmonic operator in the plane R2 takes the form

Φ(x) = (8π)−1|x|2 ln |x|
and, therefore, belongs to H 2

loc(R
2), the distributional solution G of problem (24)

becomes a generalized solution in H 2
0 (Ω) and satisfies the integral identity

(ΔxG,Δxv)Ω = v(y) ∀v ∈ H 2
0 (Ω). (25)

Notice that H 2
0 (Ω) � v �→ v(y) is a continuous functional due to the Sobolev em-

bedding theorem. Furthermore, the difference G (x, y) = G(x,y)−Φ(x−y), which
is the regular part of the Green function, is an infinitely differentiable function in
x, y ∈ Ω . The symmetry property

G(x,y) = G(y,x) (26)

is known as well.
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The function Ω \ P j � x �→ Gj(x) = G(x,P j ) with the fixed second argument
admits the expansions, as x → P k ,

Gj(x) = Φ
(
x − P j

)
δj,k + G 0

jk +
∑

i=1,2

G i
jk

(
xi − P k

i

)

+ 1

2

∑

i,q=1,2

G
iq
jk

(
xi − P k

i

)(
xq − P k

q

) + O
(∣∣x − P k

∣∣3)
, (27)

where the coefficients G 0
jk , G i

jk , and G
iq
jk = G

qi
jk are given by the Taylor coefficients

of the regular part Gj of the Green function Gj . Thus G 0
jk = G (P k,P j ) depends

smoothly on the points P j and P k inside Ω .
Inserting v = Gk into (25) and changing G for Gj , we see that the (J ×J )-matrix

G 0 with the entries

G 0
jk = Gj

(
P k

) = G
(
P k,P j

) = (ΔxGj ,ΔxGk)Ω (28)

is symmetric and positive definite since it is the Gram matrix constructed from lin-
early independent functions G1, . . . ,GJ with the help of a specific scalar product
in H 2

0 (Ω).

2.2 Relating the Solutions of the Dirichlet and Sobolev Problems

We set

u(x) = w(x) + G(x,P)A, (29)

where A = (A1, . . . ,AJ )� is a column in RJ , � stands for transposition, and

G(x,P) = (
G1(x), . . . ,GJ (x)

)
.

Evidently, G(P 1,P), . . . ,G(P J ,P) are lines in the matrix G 0 = G (P,P).
Thus, to satisfy the point conditions (8), we write

RJ � 0 = u(P) = w(P) + G (P,P)A,

where u(P) = (u(P 1), . . . , u(P J ))�, and obtain

A = −G (P,P)−1w(P) = −G (P,P)−1(w(P 1), . . . ,w(P J )
)�

, (30)

so that

u(x) = w(x) − G(x,P)G (P,P)−1w(P). (31)
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Remark 2 Estimate (4), the Sobolev embedding H 4 ⊂ C2,α , and the Taylor formula
yield

w(x) =
J∑

j=1

χj (x)

(
b0
j +

∑

i=1,2

bi
j

(
xi − P

j
i

)

+ 1

2

∑

i,q=1,2

b
iq
j

(
xi − P

j
i

)(
xq − P

j
q

)) + w̃j (x), (32)

where w ∈ V 4
β (Ω;P) with any β > 0, and

b0
j = w

(
P j

)
, bi

j = w,i

(
P j

)
, b

iq
j = w,iq

(
P j

)
.

Comparing formulas (32) and (31), (12), (27), we find out the relations

a0 = −(
G 0)−1

b0, ai = bi − G i
(
G 0)−1

b0, aiq = biq − G iq
(
G 0)−1

b0,

where bp = (b
p

1 , . . . , b
p
j )�, ap = (a

p

1 , . . . , a
p
j )�, and so on are coefficient columns,

and G i , G iq coefficient matrices from (27).

Furthermore, using (3) with v = Gj and (25) with v = w, we calculate the po-
tential energy

E(u,f ) = −1

2
(f,u)Ω = −1

2
(f,w)Ω + 1

2

(
f,G(·,P)

)
Ω

(
G 0)−1

w(P)

= E(w;f ) + 1

2
w(P)�

(
G 0)−1

w(P)

= E(w;f ) + 1

2

J∑

j,k=1

((
G 0)−1)

j,k
w

(
P j

)
w

(
P k

)
. (33)

Here ((G 0)−1)j,k denotes an entry of the inverse matrix (G 0)−1, symmetric and
positive definite. Hence, the energy increment E(w;f ) − E(u;f ) caused by im-
posing supports at the points P 1, . . . ,P J is negative that is in accord with Sect. 3,
Chap. PrandtlPlane Propelled with Liquid Hydrogen: A Preliminary Study.

Clearly, the quantity (33) depends continuously on the points P 1, . . . ,P J in the
set when P j 	= P k for j 	= k and P j 	∈ ∂Ω (the matrix G 0 is then nonsingular). In
Appendix, under the assumption f ∈ L2(Ω), we shall verify that both exceptional
cases are not optimal, so that the problem on the maximization of the energy func-
tional (33) with respect to the location of the points P 1, . . . ,P J ∈ Ω has a solution
(see Theorem 1).
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2.3 The Necessary Condition for the Optimal Location of Support
Points

Let us perturb one of the points in P , namely P jε = P j + εe(i); here e(i) is the unit
vector of the xi -axis, and ε is a small parameter. By uε we denote the solution of the
Sobolev problem with Pε = {P 1, . . . ,P j−1,P jε,P j+1, . . . ,P J }.

We assume that f ∈ L2(Ω) and, therefore, w ∈ H 4(Ω) due to (4). Since w ∈
C2,α(Ω) by the Sobolev embedding theorem, we have

w
(
P jε

) = w
(
P j

) + εw,i

(
P j

) + O
(
ε2)

with the traditional notation w,i = ∂w/∂xi . Hence,

w
(
Pε

) = w(P) + εe(j)w,i

(
P j

) + O
(
ε2), (34)

where e(j) = (δj,1, . . . , δj,J )� is a basis vector in RJ .
Owing to (27), the Green function G(x,y) satisfies

G
(
P jε,P k

) = G
(
P j ,P k

) + ε
∂

∂xi

G
(
P j ,P k

) + O
(
ε2| ln ε|),

G
(
P k,P jε

) = G
(
P k,P j

) + ε
∂

∂yi

G
(
P k,P j

) + O
(
ε2| ln ε|),

G
(
P jε,P jε

) = G
(
P j ,P j

) + ε
∂

∂xi

G
(
P j ,P j

) + ε
∂

∂yi

G
(
P j ,P j

) + O
(
ε2| ln ε|),

where k = 1, . . . , J and k 	= j . In view of (26), we have

∂G

∂xi

(
P j ,P k

) = ∂G

∂yj

(
P k,P j

)
,

and, therefore, the matrix G 0ε corresponding to the support set Pε takes the form

G 0 + ε
(
e(j)Gj,i(P)� + Gj,i(P)e�

(j)

) + O
(
ε2| ln ε|),

where, according to (27),

Gj,i(P) = (
Gj,i

(
P 1), . . . ,Gj,i

(
P J

))� = (
G i

j1, . . . ,G
i
jJ

)�
. (35)

Applying the Neumann decomposition, we conclude that

(
G 0ε

)−1 = (
G 0)−1 − ε

(
G 0)−1(e(j)Gj,i(P)� + Gj,i(P)e�

(j)

)(
G 0)−1

+ O
(
ε2| ln ε|). (36)
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According to (33) and (34), (36), we now obtain

E
(
uε;f ) = E(w;f ) + 1

2
w

(
Pε

)�(
G 0ε

)−1
w

(
Pε

)

= E(w;f ) + 1

2
w(P)�

(
G 0)−1

w(P) + 1

2
ε
(
w(P)�

(
G 0)−1e(j)w,i

(
P j

)

+ (
e(j)w,i

(
P j

))�(
G 0)−1

w(P) − w(P)�
(
G 0)−1(e(j)Gj,i(P)�

+ Gj,i(P)e�
(j)

)(
G 0)−1

w(P)
) + O

(
ε2| ln ε|)

= E(u;f )+ ε
((

G 0)−1
w(P)

)�e(j)

(
w,i

(
P j

)−Gj,i(P)�
(
G 0)−1

w(P)
)

+ O
(
ε2| ln ε|).

Thus, the necessary condition for the optimal location of J support points implies
the following 2J equations (j = 1, . . . , J , i = 1,2):

((
G 0)−1

w(P)
)�e(j)

(
w,i

(
P j

) − Gj,i(P)�
(
G 0)−1

w(P)
) = 0. (37)

If the scalars

e�
(j)

(
G 0)−1

w(P), j = 1, . . . , J, (38)

do not vanish, then, in view of representation (31), conditions (37) lead to the equal-
ities

∇xu
P(

P j
) = 0, j = 1, . . . , J,

which means that the first-order derivatives of the solution uP to the Sobolev prob-
lem (10), (8), (2) with the optimal location of the support points vanish at the points
P 1, . . . ,P J .

Remark 3 Since the matrix (G 0)−1 is symmetric and positive definite, all the scalars
(38) can vanish only in the case w(P) = 0 ∈ RJ .

Theorem 2 If f ∈ L2(Ω) and Popt is an optimal solution of (19), then relations
(37) are equivalent to

((
G 0)−1

wPopt(
Popt))�e(j)u

Popt

,i

(
P j opt) = 0, j = 1, . . . , J, i = 1,2. (39)

2.4 A Sufficient Condition for a Local Extremum
of the Compliance

Although the second-order derivatives of the Green function G have logarithmic sin-
gularities, the matrix G 0 in (35) depends smoothly on the support points P 1, . . . ,P J
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since it involves the values G 0
jk = G(P k,P j ) = G (P k,P j ) of the regular part G

which is C∞-smooth inside Ω × Ω . Moreover, w ∈ C2,α(Ω). Hence, the func-
tion

ΩJ � P �→ M(P) = w(P)�
(
G 0)−1

w(P),

together with its second-order derivatives, is Hölder continuous. Furthermore, for
the perturbed support set Pε composed from the points P jε = P j + εXj where
j = 1, . . . , J , Xj ∈ R2, and ε > 0 is a small parameter, we have

M
(
Pε

) = M(P) + ε

J∑

j=1

2∑

i=1

∂M

∂X
j
i

(P)X
j
i

+ ε2

2

J∑

j,k=1

2∑

i,q=1

M
iq
jk (P)X

j
i Xk

q + O
(
ε2+α

)
,

where

M
iq
jk (P) = ∂2M

∂X
j
i ∂Xk

q

(P). (40)

Note that the derivative ∂M/∂X
j
i has been computed in the previous section. There-

fore a sufficient condition for a local minimum of the compliance functional is the
following.

Theorem 3 Let conditions (37)–(39) be satisfied for a support set P =
{P 1, . . . ,P J }, and let the matrix M with entries (40) be negative definite. Then
the compliance (17) attains a local minimum at the support set P .

2.5 The Minimal Deflexion Functional

If the optimization problem (22) gets the supplementary restrictions

dist
(
P j ,Γ

) ≥ ρ,
∣∣P j − P k

∣∣ ≥ δ, j = 1, . . . , J, P k 	= P j , (41)

with ρ > 0 and δ > 0, the matrix G 0 in the representation formula (33) for the so-
lution uP of the Sobolev problem stays uniformly positive definite. Thus, problem
(22), (41) admits a solution, and #P

opt
ρ = J . In Appendix we prove (cf. estimate

(65)) that the minimal deflexion functional (21) remains continuous in both the cases
P j → P k and P j → Γ . This means that the optimization problem (22) itself has a
solution, even if it may happen that #Popt < J .



106 G. Buttazzo and S.A. Nazarov

2.6 The Asymptotic Analysis

Locating in an optimal way a given number J of support points for a clamped plate
could be a very hard numerical problem when the number J is not small. Thus it
becomes interesting to investigate the asymptotic density of Popt in Ω instead of the
precise location of every point of Popt. This density is defined in the following way:
for every J ∈ N, consider the optimal set P

opt
J = {P J

1 , . . . ,P J
J } and the probability

measure

μJ = 1

J

J∑

j=1

δPJ
j
;

the measures μJ will converge (at least for a subsequence) to a measure μ that we
call the asymptotic density of P

opt
J .

In many situations the measure μ can be recovered through a very simple mini-
mization problem of the form

min

{∫

Ω

j
(
x,μ(x)

)
dx :

∫

Ω

dμ = 1

}
, (42)

where the integrand j (x, s) depends on the nature of the problem and on the right-
hand side f . Once reduced to (42), the determination of μ is straightforward and
comes out from the equation

∂j

∂s

(
x,μ(x)

) = constant.

For instance, this happens in the Monge location problem (see [2, 3]) and in the
location of supports for a membrane (see [4]), while for the case of plates, this
problem is, as far as we know, still open.

3 An Example and Open Questions

3.1 One Support Point

If J = 1, the support set P is made by only one point P , and we have

E(u;f ) = E(w;f ) + 1

2
G(P,P )−1

∣∣w(P )
∣∣2

.

Hence, the point P must be an extremum point of the function (23). This simple
conclusion is in accord with conditions (37), which in the case P = {P } read

G(P,P )−1w(P )

(
∂w

∂xi

(P ) − G(P,P )−1w(P )
∂G

∂xi

(P,P )

)
= 0, i = 1,2. (43)
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Indeed, the left-hand side of (43) is equal to

G(P,P )−1/2w(P )
∂

∂xi

(
G(x,x)−1/2w(x)

)∣∣
x=P

.

Let us present results of a simple calculation for the unit disk Ω = {x : r =
|x| < 1}. The solution w of the Dirichlet problem (1), (2) with the right-hand side
f (x) = 1 (a horizontal cylindrical plate is bent by gravity) takes the form

w(x) = 1

64

(
r4 − 2r2 + 1

)
.

The solution u of the Sobolev problem with the support point at the center of the
disk is given by

u(x) = 1

64

(
r4 − 2r2 ln r − r2).

Then

C(w;1) = π

192
, C(u;1) = π

768
= 1

4

π

192
,

W (w;1) = 1

64
, W (u;1) = 1

64
r2∗

(
1 − r2∗

) = 1

64
0.16190 . . . , (44)

while the maxima of w and u are attained at the point r = 0 and the circle r =
r∗, respectively, and r∗ = 0.45076 . . . is the only root of the transcendent function
1 − r2 − ln r in the interval (0,1). Formulas (44) show how the functionals (17)
and (21) decrease due to the presence of the support point, that is, 4 and 6.17665. . .
times, respectively. Since the Green function in the unit disk is known explicitly [1],

G(x,y) = 1

8π
|x−y|2(ln |x−y|− ln

√
|x|2|y|2 − 2x�y + 1

)+(
1−|x|2)(1−|y|2),

the solution of the optimization problems (19) and (22) using formulas derived in
Sect. 2 needs computer resources only.

3.2 The Kirchhoff Plate with a Free Edge

In this subsection we continue the discussion started in Remark 1. To formulate
the correct Neumann boundary-value problem in the Kirchhoff theory, we ought to
consider the functional

a(w,w;Ω) =
∫

Ω

(∣∣Δxw(x)
∣∣2 +2(1−σ)

(∣∣w,12(x)
∣∣2 −w,11(x)w,22(x)

))
dx, (45)

which involves all second-order derivatives w,iq = ∂2w/∂yi∂yq of the deflexion
w, depends on the Poisson ratio σ , one of physical characteristics of the elastic
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material, and implies the main asymptotic term of the elastic energy kept by the
three-dimensional thin plate. From definition (45) one readily derives the inequality

a(w,w;Ω) ≥ (1 − σ)

2∑

i,q=1

‖w,iq‖2
L2(Ω)

and, on the base of the Riesz representation theorem, concludes that the variational
problem

a(w,v;Ω) = (f, v)Ω, v ∈ H 2(Ω), (46)

is well posed with the bilinear form

a(w,v;Ω) = 1

4

(
a(w + v,w + v;Ω) − a(w − v,w − v;Ω)

)

= (Δxw,Δxv)Ω

+ (1 − σ)
(
(w,12, v,12)Ω − (w,11, v,11)Ω − (w,22, v,22)Ω

)
.

The following Green formula is valid (cf. [21]):

a(w,v;Ω) = (
Δ2

xw,v
)
Ω

+ (
N1w,∂nv

)
Γ

+ (
N0w,v

)
Γ

, (47)

where w ∈ H 4(Ω), v ∈ H 2(Ω), and

N1(x,∇x)w(x) = σΔxw(x) + (1 − σ)∂2
nw(x),

N0(x,∇x)w(x) = ∂nΔxw(x) + (1 − σ)∂s∂s∂nw(x),
(48)

while ∂s stands for differentiation along the contour Γ . In other words, the (intrinsic)
Neumann boundary conditions read

N1(x,∇x)w(x) = 0, N0(x,∇x)w(x) = 0, s ∈ Γ. (49)

We refer to [18] for the following solvability and smoothness results. If the func-
tional f ∈ (H 2(Ω))′ fulfills the compatibility conditions

(f, �)Ω = 0, � ∈ R = {a0 + a1x1 + a2x2 : am ∈ R}, (50)

then the variational problem (46) has a (generalized) solution w ∈ H 2(Ω) which is
determined up to an addendum in R and, under the orthogonality condition

(w, �)Ω = 0, � ∈ R, (51)

becomes unique and satisfies the estimate

‖w‖H 2(Ω) ≤ c‖f ‖(H 2(Ω))′ .
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Let the right-hand side f ∈ L2(Ω) be subject to (50). Then a solution w ∈ H 2(Ω)

of (46) becomes a classical solution to the Neumann problem (1), (49) and enjoys
estimate (4) in the case (51).

The problem, composed by the differential equation (10), the boundary condi-
tions (49), and the point conditions (8), is called the Neumann Sobolev problem (in
contrast to the Dirichlet Sobolev problem (10), (8), (2)). The integral identity

a(w,v;Ω) = (f, v)Ω, v ∈ H 2(Ω;P), (52)

gives the variational formulation of this problem, where we denoted by H 2(Ω;P)

the subspace of functions in H 2(Ω) satisfying the point conditions (8).

Lemma 3 The Neumann Sobolev problem (52) has a solution u ∈ H 2(Ω;P) if
and only if the functional f ∈ (H 2(Ω;P))′ verifies the orthogonality conditions

(f, �)Ω = 0, � ∈ R(P),

where

R(P) = {
� ∈ R : �

(
P 1) = · · · = �

(
P J

) = 0
}
. (53)

This solution is determined up to an addendum in R(P) but, under the orthogo-
nality condition

(u, �)Ω = 0, � ∈ R(P),

becomes unique and verifies estimate (9).

Corollary 1 The Neumann Sobolev problem with f ∈ (H 2(Ω;P))′ is uniquely
solvable, provided that the family P satisfies the condition

P contains three points not lying on a same line. (54)

Remark 4 If J = 1 and P consists of the only point P 1, then R(P 1) = {a1(x1 −
P 1

1 ) + a2(x2 − P 1
2 ) : ai ∈ R} and, therefore, dimR(P 1) = 2. If P ⊂ L , that is,

all the points lie in a line L ⊂ R2, then the subspace (53) is of dimension 1 and is
spanned over the linear function � ∈ R such that |�(x)| = dist(x,L ).

In the present paper we do not consider the optimization problem for the plate
with the free edge ∂Ω and the support points P 1, . . . ,P J . Notice that in the case
where relation (50) is violated, the disposition of these points must take into account
the necessity to satisfy condition (54) of the unique solvability, and, therefore, the
assumption J ≥ 3 is needed.

The furniture industry has been focusing upon the problem on optimizing, for
the functional (21), the support set P in the rectangular or circular domain Ω with
#P = 4 and #P = 3 (cf. Sect. 3.1). No mathematically rigorous result has been
obtained yet.
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3.3 The Simply Supported Plate

If Eq. (1) is supplied with one stable and one intrinsic boundary conditions, chosen
from the groups (2) and (48) in coordination with the Green formula (47), the prob-
lem still admits a variational formulation (see [18] for the terminology and general
procedures). For example, the boundary conditions of the simple support

w(x) = 0, N1(x,∇x)w(x) = 0, x ∈ Γ, (55)

lead to the problem

a(w,v;Ω) = (f, v)Ω, v ∈ H 2(Ω) ∩ H 1
0 (Ω).

Since this problem enjoys all properties of the Dirichlet problem (3), we avoid here
a repetition of inferences and mention only that, owing to the first (stable) condition
in (55), the second (intrinsic) condition is equivalent [21] to

Δxw(s) + σκ(s)∂nw(s) = 0, s ∈ Γ,

where κ(s) is the curvature of the contour Γ at the point s.

3.4 The von Kármán Plate

The nonlinear system of the von Kármán equations, which, in the framework of the
nonlinear elasticity, takes into account an interaction of the deflexion and longitudi-
nal deformation of a thin plate (see, e.g., [7]), reads

Δ2
xu(x) − μ〈F,u〉(x) = f (x), x ∈ Ω,

Δ2
xF (x) + λ〈u,u〉(x) = 0, x ∈ Ω,

(56)

where μ = E
2(1+σ)

and λ = σE
(1+σ)(1−2σ)

are the Lamé constants, E > 0 is the Young
modulus, and σ is the Poisson ratio. Furthermore, u is the deflexion of the plate, and
F the Airy function, a potential for the longitudinal two-dimensional stress field in
the plate Ω . The bi-linear form 〈F,u〉 is given by the formula

〈F,u〉 = F,11 u,22 + F,22 u,11 − 2F,12 u,12.

System (56) can be enclosed by the Dirichlet boundary conditions

u(x) = ∂nu(x) = 0, F (x) = ∂nF (x) = 0, x ∈ ∂Ω. (57)

Note that the second couple of the boundary conditions requires that Ω is a simply
connected domain (cf. [16]). It is known (see [7]) that problem (56), (57) with any
right-hand side f ∈ L2(Ω) has a (generalized) solution {u,F } ∈ H 2

0 (Ω)2; more-
over, it is classical, and w,F ∈ H 4(Ω). Owing to the embedding H 2(Ω) ⊂ C(Ω),



Optimal Location of Support Points in the Kirchhoff Plate 111

system (56) can additionally be supplied with the point conditions (8), while re-
peating a standard argument proves the existence of a generalized solution to the
obtained nonlinear Sobolev problem (see [19] for the asymptotic behavior of the so-
lution near the support point). The point conditions on the Airy function F have no
physical sense, but the point conditions for the deflexion u can be readily interpreted
as supporting the plate at the points P 1, . . . ,P J without prohibiting the longitudinal
sliding. Optimization of the location of support points for the von Kármán plate is a
fully open problem.

3.5 Increasing the Dimension and the Differentiation Order

One may consider the Dirichlet problem (1), (2) in a multidimensional domain Ω ⊂
Rd with d ≥ 3. Since the fundamental solution of the bi-harmonic operator Δ2

x in
Rd takes the form

Φ(x) =

⎧
⎪⎨

⎪⎩

C3|x| for d = 3,

C4 ln |x| for d = 4,

Cd |x|4−d for d ≥ 5,

where Cd are some constants, the Sobolev conditions (8) can be imposed in the case
d = 3 only. The problem (10), (8), (2) may be examined in the same way as it has
been done for d = 2; however the authors do not know a three-dimensional model
in the mathematical physics which utilizes a fourth-order equation.

Certain mathematical models, like the Reissner–Mindtin plates [24, 26] and the
micro-polar elasticity [8], invoke the polyharmonic operator (−Δx)

m for a potential
U of some kind. Considering the case m = 3 and d = 2 only, we write the boundary-
value problem as follows:

−Δ3
xU(x) + B(∇x)U(x) = F(x), x ∈ Ω ⊂ R2,

U(x) = ∂nU(x) = ∂2
nU(x) = 0, x ∈ ∂Ω.

(58)

Here, B(∇x) stays for formally self-adjoint fourth-order differential operator. For
any F ∈ (H 2

0 (Ω))′, the Dirichlet problem (58) admits a unique generalized solution
U ∈ H 3

0 (Ω). By the Sobolev embedding H 3(Ω) ⊂ C1(Ω), one may assign point
conditions, as either the triple

U
(
P j

) = U,1
(
P j

) = U,2
(
P j

) = 0 (59)

or any subset of (59) at each point in P . Of course, any point condition for a poten-
tial needs a clear physical interpretation. No result is known for an optimal design of
these point conditions. Green functions of the Dirichlet problem for a polyharmonic
operator in a ball have an explicit form (see [1]).
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3.6 One-Side Conditions

The Sobolev condition (8) corresponds to the case where the point supports are
double sided, i.e., they prohibit from both the up- and down-deflexions of the plate.
It is quite natural to consider one-sided conditions. In this case the minimization
problem for the energy functional (15) must be posed in the closed cone

H 2
0 (Ω;P)+ = {

u ∈ H 2
0 (Ω;P) : u

(
P j

) ≥ 0
}
.

Such a minimization problem can be treated as a variational inequality, and it is
known that it has a unique solution for any right-hand side f ∈ L2(Ω) (see, e.g.,
[12]). This solution may verify the Sobolev condition on a subset P+ of P , while
points in P \ P+ do not support the plate being not in the contact with it. Since
the Dirichlet problem for the bi-harmonic equation in general is not sign-preserving
(see [11] and others), for a general set P , some points can be removed without
any change in the energy, and only the optimality conditions may give again that
#P = J . In general, however, our results for the linear Sobolev problem do not
apply to problems with one-sided conditions.
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Appendix

Let us assume that the points P 1, . . . ,P J in P are different, i.e., |P j −P k| ≥ cP >

0 for j 	= k, but the additional points P J+1
ε , . . . ,P N

ε are situated close to P J which
is put at the coordinate origin O . In other words,

P j
ε = εXj , j = J + 1, . . . ,N,

where Xj 	= Xk for j 	= k, |Xj | ≤ 1, and ε > 0 is a small parameter. We denote by
Pε the set

{
P 1, . . . ,P J ,P J+1

ε , . . . ,P N
ε

}

and by uε the solution to the Sobolev problem (10), (8), (2) with the support points
listed above, i.e., with Pε replacing P . The notation u is kept for the solution of
the Sobolev problem with P .

By representation (29), (30) of u and estimate (4) for w, we recall the smoothness
of the regular part G of the Green function G and observe that (compare Lemma 2)

u(x) = −a|x|2 ln |x| + ũ(x), ũ ∈ H 4(V ),
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where a is a constant, and V ⊂ Ω a neighborhood of the point O = P J which is free
of the points P 1, . . . ,P J−1. Hence, the Sobolev theorem on embedding H 4 ⊂ C2

ensures the pointwise estimates

∣∣u(x)
∣∣ ≤ b|x|, ∣∣∇xu(x)

∣∣ ≤ b,
∣∣Δxu(x)

∣∣ ≤ b
(
1 + ∣∣ln |x|∣∣), x ∈ U . (60)

Notice that the quantities |a|, b, and ‖ũ‖H 4(Uj ) do not exceed c‖f ‖L2(Ω) with some
constant c (cf. (13)).

The function uε ∈ H 2
0 (Ω;Pε) vanishes at all points P 1, . . . ,P J , and, therefore,

the difference u − uε can be taken as the test function in the integral identity for u,
that is,

(
Δxu,Δx

(
u − uε

))
Ω

= (
f,u − uε

)
Ω

. (61)

The function u ∈ H 2
0 (Ω;P) may not belong to H 2(Ω;Pε), and we multiply it by

χ(| ln ε|−1| ln |x||), where χ is a smooth cut-off function such that

0 ≤ χ ≤ 1, χ(t) = 0 for t ≥ 1, χ(t) = 1 for t ≤ 1/2.

Notice that

χ
(| ln ε|−1

∣∣ln |x|∣∣) = 0 for |x| ≤ ε,

χ
(| ln ε|−1

∣∣ln |x|∣∣) = 1 for |x| > ε1/2,
(62)

and, therefore, the product χu vanishes at the points P J+1
ε , . . . ,P N

ε which live in
the ε-neighborhood of O . Here and further, the argument | ln ε|−1| ln |x|| is assumed
for χ .

We insert uε − χu into the integral identity for uε and, after a simple transfor-
mation, obtain

(
Δxu

ε,Δx

(
uε − u

))
Ω

= (
f,uε − χu

)
Ω

− (
Δxu

ε, (1 − χ)Δxu
)
Ω

+ (
Δxu

ε, [Δx,χ]u)
Ω

, (63)

where [Δx,χ] is the commutator of the Laplace operator and the multiplication
operator, i.e.,

[Δx,χ]u = 2(∇xu)�∇xχ + uΔxχ, (64)

while, in view of (62), expression (64) differs from zero in the annulus Θ(ε) = {x :
ε < |x| < ε1/2} only.

Applying estimates (60) and differentiating the cut-off function, we observe that

∥∥[Δx,χ]u∥∥2
L2(Ω)

≤ c

| ln ε|2
∫

Θ(ε)

(
1

|x|2
∣∣∇xu(x)

∣∣2 + 1

|x|4
(

1 + 1

| ln ε|2
)∣∣u(x)

∣∣2
)

dx

≤ cb2

| ln ε|2
∫ ε1/2

ε

1

ρ2
ρ dρ ≤ c

| ln ε| ‖f ‖2
L2(Ω)

.
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Using a similar but simpler argument and taking the first and third estimates (60)
into account yield

∥∥(1 − χ)u
∥∥2

L2(Ω)
≤ cb2

∫ ε1/2

0
ρ2 ρ dρ ≤ cε2‖f ‖2

L2(Ω)
,

∥∥(1 − χ)Δxu
∥∥2

L2(Ω)
≤ cb2

∫ ε1/2

0
| lnρ|2 ρ dρ ≤ cε| ln ε|2‖f ‖2

L2(Ω)
.

Thus, adding (63) to (61) and using the second fundamental inequality, we derive
the relation

cΩ

∥∥u − uε
∥∥2

H 2(Ω)
≤ ∥∥Δx

(
u − uε

)∥∥
L2(Ω)

= (
f, (1 − χ)u

)
Ω

− (
Δxu

ε, (1 − χ)Δxu
)
Ω

+ (
Δxu

ε, [Δx,χ]u)
Ω

≤ c| ln ε|−1(‖f ‖L2(Ω) + ‖Δxu
ε‖L2(Ω)

)‖f ‖L2(Ω)

≤ c| ln ε|−1‖f ‖2
L2(Ω)

,

where cΩ > 0, and hence

∥
∥u − uε

∥
∥

H 2(Ω)
≤ c| ln ε|−1/2‖f ‖L2(Ω). (65)

The following assertion becomes trivial.

Lemma 4 Under the above restriction on the location of the points P 1, . . . P J and
P J+1

ε , . . . ,P N
ε , there holds estimate (65) and the relationship

E(u;f ) ≤ E
(
uε;f ) ≤ E(u;f ) + c| ln ε|−1/2‖f ‖2

L2(Ω)
. (66)

A formula of type (31) relates the solutions of the Sobolev problems with sup-
ports at P 1, . . . ,P J and P 1, . . . ,P J ,P J+1, . . . ,P N . Thus, locating the additional
points P J+1, . . . ,P N at a small distance from P 1, . . . ,P J gives a small increment
to the energy functional, due to estimate (66). This means that placing new support
points near the old ones P 1, . . . ,P J is surely not profitable.

If the point P J+1 stays near a point Q on the boundary ∂ω, i.e., |P J+1 − Q| =
ε � 1, then by virtue of the conditions (2), estimates (60) turn into

∣∣u(x)
∣∣ ≤ bd(x)2,

∣∣∇xu(x)
∣∣ ≤ bd(x), |Δxu(x)| ≤ b, x ∈ Ω ∩ V ,

where b = c‖f ‖L2(Ω), d(x) = dist(x, ∂ω), and V is a neighborhood of Q. This
modification brings the small factor ε instead of | ln ε|−1/2 into inequalities (65) and
(66). In other words, putting a new support point near the clamped boundary is not
advantageous as well.
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A Code for Shape Generation and Aerodynamic
Design of Aircraft

Rauno Cavallaro and Aldo Frediani

1 Introduction

The preliminary design optimization holds an important role in the aircraft design
process. To be efficient, optimization needs a high degree of automation, leaving
to the designer only minor tasks. The efficiency would be enhanced if the differ-
ent modules required to the overall process of optimization are part of an unique
integrated framework.

The preliminary aerodynamic property estimation represents the basis of a de-
sign procedure. Although theoretical prediction or lower-order aerodynamic solver,
like vortex lattice codes, may be enough accurate for an early preliminary design,
when investigating innovative configurations, the order of approximation may be
unacceptable [4], mainly because its effect can lead to unreliable results. For ex-
ample, blended wing body or PrandtlPlane stability of flight are highly sensitive
to small aerodynamic load variations, and, hence, an efficient and fast code for
preliminary aerodynamic design is needed. Moreover, the gained experience with
the traditional configurations in aeronautics, which drives many design choices in
the preliminary stages, may not directly carry-over to the new configuration to de-
sign.

The steps for obtaining an aerodynamic analysis consist into a geometrical con-
figuration definition, a grid generation, and an aerodynamic solution; an integrated
framework where preliminary aerodynamic design is easily undertaken is presented
in this paper.
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Fig. 1 Logical layout of the
code

The logical layout of the code is illustrated in Fig. 1. The three main modules
are depicted: geometric modeling, grid generation, and aerodynamic solver; pos-
sible interactions with external codes are also pointed together with an automated
optimization tool.

The geometric modeling module provides the aerodynamic surface. This code is
the result of research activities, carried out at Pisa University, with the aim of assess-
ing a code for a quick, accurate, and flexible shape generation, Refs. [12, 15]; the
code, named ASD (Aerodynamic Shape Design), indeed proved to be an excellent
design tool, easily integrated into an aerodynamic design process, which allowed
one to develop conventional and unconventional aircraft configurations. The geo-
metric engine is based on a modern branch of Mathematics called NURBS (Non-
Uniform Rational B-Spline), which received an enormous attention with the ad-
vent of CAD CAM tools. Some basic information on NURBS are given in the next
paragraph, and, afterwards, a brief description of the shape generation module is
presented; this module makes use of specific features; typical features for the wing
surface generation are airfoil definition, their linear and angular position along span,
fillets, curved wings or winglets, etc. A keypoint for the efficiency of the code is its
user friendly approach. The GUIs enable one to easily set the parameters defining
the design process; moreover, the parametric nature of the code is well suited for a
fully automated optimization process.

The mesh generation module allows one to define both structured and unstruc-
tured meshes, provided with a mesh quality analyzer and a post-processing tool. The
structured mesher is associated with a grid generation for different panel method
codes. The aerodynamic mesh generation is fully automated to be coupled with the
aerodynamic solvers, and the user can obtain the aerodynamic solution directly from
the shape generation. Some examples of application are reported to show the per-
formance of the present code. Now the code is available to produce an advancement
into the aeronautical engineering field.
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2 NURBS

NURBS is the acronym of Non-Uniform Rational B-Spline, Ref. [13]. It is a mathe-
matical model commonly used in computer graphics for generating and representing
curves and surfaces.

A NURBS curve is a vector-valued piecewise rational polynomial function of the
form

C(u) =
∑n

i=0 wiPiNi,p(u)
∑n

i=0 wiNi,p(u)
, (1)

where the wi are the so-called weights, the Pi are the control points (just as in the
case of nonrational curves), and Ni,p(u) are the normalized B-spline basis functions
of degree p defined recursively as

Ni,0(u) =
{

1 if ui ≤ u < ui+1,

0 otherwise,

Ni,p(u) = u − ui

ui+p − ui

Ni,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u), (2)

where ui are the knots, and the set of knots

U = {u0, u1, . . . , um} (3)

is the so-called knot vector. The degree, the number of knots, and the number of
control points are related by the formula m = n + p + 1. For nonuniform and non-
periodic B-splines, the knot vector takes the form

U = {α,α, . . . , α,up+1, . . . , um−p−1, β,β, . . . , β}, (4)

where the end knots α and β are repeated with multiplicity p + 1. In most practical
applications α = 0 and β = 1, as is assumed throughout this article.

A NURBS surface is the rational generalization of the tensor-product nonrational
B-spline surface and is defined as follows:

S(u, v) =
∑n

i=1
∑m

j=0 wi,j Pi,jNi,p(u)Nj,q(v)
∑n

i=1
∑m

j=0 wi,jNi,p(u)Nj,q(v)
, (5)

where wi,j are the weights, Pi,j form a control net, and Ni,p(u) and Nj,q(v) are
the normalized B-spline basis functions of degree p and q in the u and v directions,
respectively, defined over the knot vectors

U = {0,0, . . . ,0, up+1, . . . , ur−p−1,1,1, . . . ,1}, (6)

V = {0,0, . . . ,0, vq+1, . . . , vs−q−1,1,1, . . . ,1}, (7)

where the end knots are repeated with multiplicities p + 1 and q + 1, respectively,
and the relations r = n + p + 1 and s = m + q + 1 hold.
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Fig. 2 The Main GUI

NURBS are very popular both in the academic and commercial geometric mod-
eling world. They offer advantages which make them attractive for design applica-
tions:

− evaluation is straightforward, fast and computationally stable;
− they offer a common mathematical form for representing and designing both

standard analytic shapes (conics, quadrics, surfaces of revolution, . . . ) and free-
form curves and surfaces;

− by manipulating the control points and the weights, NURBS provide the flexi-
bility to design a large variety of shapes;

− NURBS have clear geometric interpretations, making them particulary useful for
designers;

− NURBS have a powerful geometric tool kit which can be used throughout to
design, analyze, process, and interrogate objects;

− NURBS are invariant under scaling, rotation, translation and shear both parallel
and perspective projections.

3 Surface Generation Module

In the surface generation module the user is guided through the definition of the
configuration surfaces. The main graphical interface is depicted in Fig. 2. Surfaces
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Fig. 3 Wing, body, and wing-body features (highlighted)

that belong to a configuration are classified in different features. Each box in Fig. 2
represents a feature, and the defined surfaces are listed in each box according to
their nature. To outline a surface, a further intuitive GUI is displayed. This GUI
asks the user to set the reference parameter and is fitted for the particular needs of
the feature.

The three main features include wings, bodies, and wing-bodies. A configuration
should contain at least one of these features. The remaining class of surfaces are de-
fined starting from the main ones, basically as their intersections and connections.
To be more precise, the wround and bulk class of surfaces are well suited for con-
necting different wings in an appropriate way. The fillet and tfillet connect a wing
with a body or wing feature, respectively. The last class of feature, the inlet–outlet,
is built specifically for drawing ducts inside a wing-body feature.

In order to support the user in the process of defining the reference parameters of
the surfaces, a set of tools is also provided with the code.

As stated, the main features comprehend wings, bodies, and wing-bodies. The
graphical interface asks for the reference parameters in order to build a frame (in
terms of set of points) of the surface. Such parameters are appropriate for the feature
to be generated and are explained through graphical examples in the GUI. The main
features are depicted in Fig. 3.

In the wing feature the frame is obtained by the definition of the airfoils and by
setting the parameters controlling the airfoil dimension and spatial positioning; it is
also possible to position mobile surfaces or high-lift devices. The wing feature GUI
is depicted in Fig. 4.

The body feature is well suited to describe fuselage-like surfaces. However, this
feature is much more flexible and allows one to model more complicated shapes.
The surfaces are defined mainly by sections shape definition and spacing, and top,
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Fig. 4 The wing feature GUI

lower, center, and sideline curves which give the reference positioning of the sec-
tions.

The wing-body feature is wing-like surface to blend a generic root section to a
wing. The result is a smoothly blended surface that extends the wing to the sec-
tion specified by the user using different options to control section smoothness and
generation.

When the parameters are set, the surface is ready to be generated by means of a
NURBS interpolating algorithm, and, eventually, a continuous surface is obtained.
However, the interpolation at this stage does not yet take intersections into account,
such as the one between wing and fuselage.

3.1 The Connection/Intersection Features

These features define the surfaces which connect the main ones. The bulk and
wround features connect wing edges, like the bulkhead in a box-wing system or
a connecting surface between wing and winglet. The user should first specify which
wings should be connected. For bulk surface, more parameters are required to better
control the shape.
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Fig. 5 Intersection features
(highlighted): bulk, fillet, and
tfillet

Fig. 6 Inlet–outlet feature
(highlighted).

The fillet feature fills the gap between a wing and a fuselage with a connecting
surface. According to some reference parameter, an algorithm computes the inter-
section between the selected body and a projection of the wing. The user controls
the way this projection is carried out and, thus, the shape of the connection. Once
the intersection has been calculated, the connecting surface is easily generated, and
the pierced body is recalculated as a trimmed surface.

The tfillet feature is similar to the fillet one, with the exception that the inter-
section is between two wings. Compared to the fillet feature, the user could control
a lower number of parameters. Examples of connection/intersection features are
shown in Fig. 5.

3.2 The Internal Duct Feature

The inlet–outlet feature is specifically designed to generate the cavity of an inlet
or outlet inside a wing-body like surface (an example in Fig. 6). The surface is
generated by defining a set of sections and their spatial positions. The surface is
finally given by interpolation of the section points.

As a final step, an intersection algorithm between the inlet/outlet and the involved
wing-body leads to the definition of the final trimmed wing-body surface.

In order to support the user in the surface generation and exportation, some useful
tools are provided within the geometric module.

3.3 Airfoil Tool

Airfoil Manager is a graphical user interface designed to manage airfoils. The layout
is depicted in Fig. 7. A comprehensive database is given as part of the tool and is
also possible to import external databases or wing sections.
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Fig. 7 The airfoil manager
GUI

In the main window the airfoil is plotted, and some of its attributes such as cam-
ber or thickness are also estimated. The tools is particulary useful to define the airfoil
when asked from the feature GUI. Other options are available, like coarser or finer
airfoil points redistribution, and exportation tool.

The NACA Airfoil Generator is a graphical user interface designed to create
NACA 4-digit and NACA 5-digit airfoil series. The interface asks the user the name
of the airfoil and gives a plot of it. Simultaneously, thickness distribution and cam-
ber line are also plotted.

3.4 The Section Sketcher

With the aid of this tool the user is given the capability to create a section with
any shape in an interactive way, adding or deleting points. A number of options
are provided to assist the user to obtain the desired curve. The final product can be
exported or used to define sections when asked from the feature GUI.

3.5 Flap Sketcher

Flap Sketcher is a graphical user interface designed to help defining two-dimensional
mobile curves on different airfoils by means of NURBS. The tool layout is depicted
in Fig. 8.
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Fig. 8 The section Sketcher GUI

The interface gives the user the capability to create any flap/slat configuration
starting from the base airfoil or to modify an existing configuration. The idea is to
create a description of the mobile surfaces that is, to some extent, independent of
the original airfoil it was created on. To achieve this, the mobile surfaces are saved
in a parametric format and automatically adjusted to the loaded airfoil.

The flap/slat creation process consists of three basic steps:

− select the base airfoil,
− draw the flap/slat lines using the sketch assist tools of the flap sketcher,
− position the center of rotation of every surface.

In the first step, an airfoil is easily loaded by means of the menu. Once loaded, the
airfoil is shown on both windows. The upper window shows the lines and should be
used to sketch, while the lower window shows the results of the operations. Besides
this, both windows can be used to enter points.

There are several methods to input the lines that define a flap/slat surface. Every
line added modifies the flap configuration and the result is displayed on the lower
window. There are many types of lines, that differ essentially for the end derivatives,
each well suited for drawing a particular flap, slat, or mobile surface configuration.

Once a configuration of the mobile surface lines and the center of rotation is de-
fined, it could be recalled within the wing feature GUI, together with its position and
the motion law of the flap/slat elements so to complete the mobile surface definition
on the wing. An example of an obtained flapped wing is depicted in Fig. 9.
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Fig. 9 A wing with flaps/slats and mobile surfaces

3.6 Advanced NURBS

This tool gives some control on the interpolating algorithm. As previously stated,
the features are first defined by their typical parameters, leading to the definition of
a set of points to be interpolated. Fitting of these points finally gives the NURBS
description. Every feature has his own peculiarity, and the algorithm should be tuned
for each situation. Even if this is done automatically, the user may need more control
on the process.

One of the most important abilities of this GUI is the possibility to set the sur-
face’s level of quality. A C1 (tangent continuous) or C2 (curvature continuous) level
of continuity for the surfaces are the available options. The second choice gives
an high-quality surface, obtained through a minimization of a fairness functional
related with the second- or third-order derivatives, depending on the user choice,
Ref. [3]. If the choice is on the second derivatives, the functional Φ is expressed by

Φ =
∫

u

∫

v

∥
∥S(uu)(u, v)

∥
∥2 + ∥

∥S(vv)(u, v)
∥
∥2

, (8)

where S(u, v) represents the surface in terms of the parameters u and v, and S(uu)

is the second-order derivative in respect of the parameter u.
The idea of fairing functional goes back to the observation that in nature a loaded

flexible beam assumes a smooth deformed configuration according to the minimal
energy principle. Since the stored energy mainly depends on the squared curvature,
the minimization of the functional

Φ =
∫

k2 ds, (9)

where k represent the curvature, would lead to a smooth solution, accordingly with
the external forces and constraints. Some articles and numerical experimentations
have proposed also the variation of the curvature as a valuable choice, Ref. [10].
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Whatever the choice, the minimization of a fairing functional is a widely used
technique in the data fitting branch and results in smooth and aesthetical shapes,
Refs. [14, 16].

In NURBS representation, due to its parametric nature, it is easier to refer to
second-order derivative instead of directly to curvature, as the optimization problem
becomes a linear one. In fact, for a B-spline1 curve, it holds that

C(u) =
n∑

i=0

PiNi,p(u), (10)

C(u)(u) =
n∑

i=0

PiN
(u)
i,p = αet, (11)

where et is unitary vector tangent to the curve, α depends on the parameterization,
and

C(uu)(u) =
n∑

i=0

PiN
(uu)
i,p = α(u)et + αe(u)

n . (12)

By means of basic differential geometry and Frenet–Serret formulas, the last term
could be rearranged as

e(u)
n = αk, (13)

where k is the curvature vector whose magnitude k is the curvature. The inverse of
k is called the radius of curvature.

It is straightforward to realize that employing a functional as the one in Eq. (9)
leads to a nonlinear minimization problem. This explains the choice of the functional
of Eq. (8).

Considering for the sake of simplicity a curve, the functional could be written as

Φ =
∫

u

∥
∥C(uu)(u)

∥
∥2 =

∫

u

∥
∥
∥
∥
∥

n∑

i=0

PiN
(uu)
i,p

∥
∥
∥
∥
∥

2

(14)

and, using a more comfortable matrix form,

Φ =
∫

u

[P ]T [
N(uu)

]T [
N(uu)

][P ] = [P ]T
(∫

u

[
N(uu)

]T [
N(uu)

]

︸ ︷︷ ︸
[K]

)

[P ], (15)

where [K] is the stiffness matrix. The mathematical problem is a classic calculus of
variation, widely used for finite element method. However, here the basis function
are the B-Spline basis functions.

1B-Spline are particular cases of NURBS, where the weights wi are set to unity.
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The generic curve and surface have also to interpolate the given points. Moreover,
constraints on the derivatives are also necessary for smoothly closed shapes, flat
parts, and other situations where local control is needed. For a curve, the constraints
can be expressed as

g(P) = 0 →

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=0

Ni,p(ūk)Pi − Qk = 0, k = 1, . . . , nk,

n∑

i=0

N
(u)
i,p (ūl)Pi − Q′

l = 0, l = 1, . . . , nl,

n∑

i=0

N
(uu)
i,p (ūm)Pi − Q′′

m = 0, m = 1, . . . , nm,

(16)

where ūk , ūl , ūm are the generic parameter values where the position, first deriva-
tive, and second derivative constraints are enforced, Qk , Q′

l ,Q′′
m are the points to

be interpolated, the first-order derivatives and second-order derivatives values re-
spectively, and nk , nl , nm are the numbers of respective constraints. In the matrix
form,

[g] = [Nc][P ] − [Q] = 0. (17)

In order to enforce the constraints, a penalty or Lagrange multiplier method could
be employed. In the last case, the constrained variational problem can be reduced to
an unconstrained variational one with the following modified functional:

Φ̃ = 1

2
[P ]T[K][P ]

︸ ︷︷ ︸
Φ

+[λ]T[g], (18)

where [λ] is the Lagrange multiplier column vector and has the same dimension
as the number of constraint equations. Differentiate Eq. (18) in order to find the
stationary point:

δΦ̃ = [δP ]T[K][P ] + δ
([λ]T[g]) = 0, (19)

which gives, with the aid of Eqs. (17), (18),

⎧
⎪⎪⎨

⎪⎪⎩

∂Φ̃

∂P
= 0,

∂Φ̃

∂λ
= 0

−→
⎧
⎨

⎩

[K][P ] + [λ]T[Nc] = 0,

[Nc][P ] − [Q] = 0.

(20)

The above is a linear system of n+nc equations, where nc = nk +nl +nm is the
number of total constraints, which can be represented in the form

[ [K] [Nc]T
[Nc] [0]

]{[P ]
[λ]

}

=
{ [0]
[Q]

}

. (21)
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The linear system is defined as soon the matrices [K] and [Nc] are computed.
Since B-spline basis Ni,p is piecewise polynomial of order p, the Gaussian quadra-
ture can be used to evaluate exactly the integral inside the stiffness matrix. The
computation of the constraints matrix [Nc] is easily achieved since it is nothing
more than evaluation of the B-spline basis functions and their derivatives at the knot
parameters associated with the constraints.

It is worth noting that, in the above matrix form, [P ] is intended as a column vec-
tor, even if its three spatial components require [P ] to be a matrix. Nonetheless, due
to the constraints which set directly the derivatives, the development and resolution
of the equations could be done separately for each of the three dimensions.

The generalization to the surface case is conceptually easy to do, but the notation
would have been labored.

The tool offers much more control on the interpolating options, some of which
are required a good knowledge of the subject. More details are reported in [3].

3.7 IGES Import/Export

It is possible to import and export NURBS surfaces or curves from/to a file written
in IGES format. This capability enables to interface the code and other commer-
cial softwares. The gained flexibility is of foremost value, as commercial softwares
often represent a standard and offer powerful tools for further modifications and
assessments.

Due to the way it has been arranged, this code meets the requirements of aero-
nautical shapes, providing an optimized tool in terms of efficiency and effort.

4 Grid Generation Module

NURBS representation is well suited for grid generation. In fact, with NURBS it
is possible to maintain high level of accuracy, efficiency, and numerical stability
during the grid generation, due also to its parametric nature.

The grid generation module routes the user through the meshing process. The
mesh is intended as surface mesh and can be both structured or unstructured, de-
pending on the objectives. It is worth noting that the aerodynamic solvers integrated
within the code (PanAir, UPM, etc.) accept only structured meshes. However, in or-
der to submit more rigorous analysis, the capability of exporting the grid in standard
formats is also provided for both the structured and unstructured meshes, depending
on which one is needed from the chosen solver. Within the grid generation module
graphical tools for monitoring mesh quality are also integrated.

Since grid generation is an intermediate stage between the geometric definition
and the mathematical solver, it should ideally be fast and automatic, requiring min-
imal user intervention. This requirements are nicely met with the GUI and arrange-
ments of the grid generation module.
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Fig. 10 The structured grid
generation GUI

4.1 Structured Grid Generation

The structured grid requires a multiblock approach in order to overcome the topo-
logical limitations which arise when meshing complex geometries. Every block is
meshed independently, but at the interfaces among two or more blocks the grid
points should follow some basic rules, dictated from the solver requirements. For
example, one of the integrated solver (PanAir) requires that no gaps exist at the
common interfaces, where other solvers (UPM) do not. It is usually good practice to
avoid such holes, and thus this has been set as a general rule. All the logical subdivi-
sion choices are done automatically by the code, without prompting and bothering
the user. The structured grid generator GUI layout is depicted in Fig. 10.

In the first step the user is just asked to set the number of subdivisions in the
chordwise direction for the largest wing of the configuration or the largest wings of
each logical block. Also the distribution of the grid point, cosinusoidal or linear, can
be set. The cosinusoidal distribution thickens the mesh at the leading and trailing
edge of the wing, where bigger gradient of the aerodynamic flow properties are
expected. Next, the number of subdivision should be set for the spanwise direction:
this is done by defining the mean aspect ratio of the panels. All the features, except
for the bodies, are meshed in such way. Now the user is asked to set parameters in
order to build a grid for bodies. The first parameter is the maximum allowable aspect
ratio for the panels, which is connected with the maximum number of iterations: it
can happen, in fact, that the refinement process is unable to satisfy this parameter,
thus a stop criterion is given. Moreover, the user can set some vertical mesh lines
at the wished locations or obtain a grid that reproduces the original shape of the
body at a desired level. An example of structured grid generated for a PrandtlPlane
configuration is shown in Fig. 11.
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Fig. 11 A structured grid of
a PrandtlPlane configuration

It is possible to export the obtained grid in the LaWGS format, Ref. [5]. The
description follows precise rules in terms of grid point order which accords to the
right-hand rule. It is important to notice that every panel is associated with an out-
going normal vector depending on the order of description of its vertices.

4.2 Unstructured Grid Generation

The unstructured grid typically provides great flexibility (highly required from com-
plex configurations). As a first step, every feature is independently meshed accord-
ingly to some basic parameters. After, it is possible to modify the grid in order to
have a correct mesh connection or to satisfy other criteria. The unstructured grid
generator GUI layout is depicted in Fig. 12.

The basic parameters for the unstructured grid specify the maximum distance
from the real surface to the mesh, and the maximum element side length. The mesh-
ing process can also take a correct correspondence at the interfaces of different
features into account. This builds a first grid on which some transformation can be
done. A first modification to the grid bounds together triangles in order to obtain
a mixed grid, according to user parameters which dictate when the bounding pro-
cess can be undertaken. It is also possible to execute a Delaunay flip or to collapse
points closer to a specified value into single points. An example of unstructured grid
generated on a traditional configuration is shown in Fig. 13.

The obtained grid can be exported in different formats, in order to give a large
flexibility. Between them, the STL format represents surely one of the most popular
standards.

4.3 Mesh Analysis and Visualization

Once the grid has been created, it is possible to have a statistics about mesh el-
ements. The statistics include the maximum, minimum, and average values of the
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Fig. 12 The unstructured
grid generation GUI

Fig. 13 An unstructured grid
for a traditional configuration

mesh geometric parameters skew, aspect ratio, and area. Also the total number of el-
ements is calculated. The statistics are reported in the main meshing GUI, as shown
in Figs. 10 and 12.

From a visualization perspective, a three-dimensional plot of the mesh is given.
A graphic visualization of the statistics is also provided, in order to have a direct
knowledge of the areas where the quality parameters are more or less critical. This
capability is further enhanced with a filter applicable to these plots, so as to look
for mesh elements with a mesh geometric parameter value within a chosen range.
Figure 14 shows an application of this capability.

5 Aerodynamic Solver Module

The aerodynamic module relies on a generic panel method code. In house unsteady
panel code UPM, as well as PanAir have been used. The parameters are given to the
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Fig. 14 Mesh elements with
aspect ratio smaller than 0.2

solver by means of the preprocessor. Here the solver can be launched, and the solu-
tion parameters are graphically displayed with the aid of the postprocessor. Differ-
ent panel solvers can theoretically be chosen, however, the pre- and post-processing
tools have to be readapted in order to comply with the specific input and output
formats.

PanAir (acronym of Panel Aerodynamics) is generally considered to be the first
actual surface panel code with reliable numerics, even for supersonic flows, Refs. [2,
6]. Relative insensitivity and stability of computed results to paneling was a key for
its success. In addition, the boundary condition flexibility allowed users to experi-
ment with various types of modeling, leading to a wide variety of applications never
entirely envisioned by the developers. Thus, within the limitations of linear poten-
tial flow theory, it could be used as an analytical wind tunnel for the analysis of
completely arbitrary configurations. The code was first developed in the early 1970s
at NASA and Boeing (were it was known as A502 code). Later, many featured
were added. The code was successfully used in the project of big transport airplanes
(Boeing 737, 707, 747) and military fighters, Ref. [7]. Sometimes it was used in
conjunction with A598 code (a Boeing code for boundary layer analysis), even in
fields like yacht design.

UPM (acronym of Unsteady Panel Method) is based on [9, 11] theory, with added
unsteady capability. One of the advantages of such feature in steady regime is the
so-called wake relaxation: the wake shape is been free to evolve from an initial pre-
scribed to a more realistic one. Moreover, unsteady problems (rotor’s blade, etc.)
may be modeled. However, in such a case, only incompressible flow cases are sup-
ported.

Panel codes solve generally the Prandtl–Glauert equation

(
1 − M2∞

)
φxx + φyy + φzz = 0, (22)

where the free stream is aligned with the x direction, φ is the perturbation potential,
M∞ is the freestream Mach number. To solve the equation, they use the classic
approach adopted from boundary element method, that is, distributing singularities
at the boundaries of the domain.
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Fig. 15 Preprocessor GUI for PanAir

The used singularities are sources and doublets. To be more precise, UPM em-
ploys the classical flat panels with constant singularity distribution, where PanAir
features a linear source and a quadratic doublet distribution on a triangular subpanel
created starting from a rectangular one, in order to avoid numerical troubles in su-
personic flows. This explains why PanAir is called an high-order panel method.

The issue on where higher- or lower-order panel methods are more efficient has
been analyzed in [1, 6, 8]. It seems that, employing the so-called Morino’s boundary
condition, the lower-order panel methods perform significantly better in most cases,
among which external flows. There are however situations where higher-order meth-
ods, such as internal flows, are necessary for reliable results.

5.1 Pre- and Postprocessors

The preprocessor aids the user to define mainly the flow conditions; moreover it
helps in many other tasks like defining reference parameters for adimensionalization
of the forces, setting the wakes shed from the surfaces, calculating the streamlines
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Fig. 16 The wake generator GUI

and the flow properties in off-body points, and other useful tools. The GUI is elo-
quent and saves the user from compiling manually a text input file specific for the
aerodynamic solver, Fig. 15.

It is worth noting that the wake placement is aided by a further dedicated GUI,
Fig. 16. Wake placements are of foremost importance in panel method, and an ad-
equate knowledge of the theory is strongly required for reliable results. This is of
even more importance for solvers that are not given wake relaxation capabilities
(such as PanAir).

Once the input file is created, it is possible to submit the simulation launching
the solver or to store the input file.

The main panel code output is a text file which stores the solution in a numerical
format. Postprocessor permits a graphical visualization of the results. The main GUI
is depicted in Fig. 17.

The window gives a brief resume of the onset flow condition, the reference pa-
rameters, and the force and moment coefficients. It is then possible to plot the force
coefficient versus angle of attack/sideslip graphs. A window with the configuration
networks is also automatically plotted when postprocessor is launched. In this same
window it is possible to visualize, for the solution submitted and one at the time,
the flow or singularity characteristics for points on the surface. The values of the
solution are shown by means of coloration of the surface, and a color bar gives the
relation between colors and solution values. Both the selected flow characteristic
and the onset flow angles (angle of attack and yaw angle) are recalled directly in
the window. An example of the pressure coefficient distribution for two different
configuration is depicted in Figs. 18 and 19. The postprocessor enables also the vi-
sualization of the streamlines. In the proper listbox, all the streamlines defined at the
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Fig. 17 Postprocessor GUI

Fig. 18 Pressure coefficient
distribution for a traditional
configuration at 5◦ angle of
attack

Fig. 19 Pressure coefficient
distribution for a PrandtlPlane
configuration at 2◦ angle of
attack
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Fig. 20 Streamlines of a flow
around a conventional
configuration at 7.5◦ angle of
attack

Fig. 21 Combined pressure
coefficient and streamline
visualization of a flow around
a PrandtlPlane ULM
configuration at 10◦ angle of
attack

Fig. 22 Two-dimensional lift
coefficient distribution along
spanwise direction for a
PrandtlPlane configuration

preprocessing stage are listed. It is possible then to select more of the elements of
the list and plot them. An example of streamline visualization is depicted in Figs. 20
and 21.

Another useful tool implemented in the postprocessor is the ability to plot the
two-dimensional lift coefficient along the spanwise direction for every selected net-
work. In the sectional forces panel, just select the networks of interest and add them
to the listbox; then, selecting the plot option, the lift coefficient versus the spanwise
direction coordinate is plotted. An example is shown in Fig. 22 for a PrandtlPlane
configuration. The wings and the bulk have been selected, and the plot shows the
different behavior of upper and lower wings.
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Fig. 23 Pressure coefficient distribution along chordwise direction, at different spanwise sections

To a more detailed knowledge of the flow, the possibility is given to plot the
pressure coefficient along the chord at a fixed spanwise section, Fig. 23.

A Flight Mechanics tool providing information about the stability and trim of
the configuration is also included at post processing level. Once the trim lift coef-
ficient is set, the center of pressure and neutral point are automatically evaluated.
A preliminary margin of stability calculation is then straightforward.

6 Conclusions

In this paper a code is presented featuring all the aspects related with a preliminary
aerodynamic evaluation of complete aircraft configurations, from geometric model-
ing to aerodynamic flow solution. The output given by pressure distributions allows
us to obtain immediate information on the trim and stability of flight; all the aerody-
namic derivatives are made available including the aerodynamic controls. The use
of external software resources is avoided as the main tools needed for the purpose
are all integrated within a single framework. Capabilities of interface with commer-
cial software is also guaranteed by exportation tools. The code is arranged in GUIs,
so the user is easily routed through all the required steps. Moreover, the parametric
nature is well suited for an eventual interface with an external optimization tool.
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Nomenclature
AM Air Mass
ACV Aerodynamic centre of vertical surfaces
b Wingspan
B Balancing Mass Fraction
CG Centre of gravity
CP Centre of pressure
CL Lift coefficient
CD Drag coefficient
E Energy
EA Aerodynamic efficiency
Gh Non-dimensional horizontal distance between wings
Gv Non-dimensional vertical distance between wings
H Altitude
Hcruise Cruise altitude
m Pitch moment
mac Mean aerodynamic chord
M Mass
MoS Margin of longitudinal stability
nz Vertical load factor
NP Neutral point
NV Number of vertical wings
Nwt Number of wing trunks on half wingspan
P Power
Pmin Minimum required power
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Preq Required power for cruise flight
Re Reynolds number
SH Horizontal wing area
SR Ratio between rear wing and front wing areas
SV Vertical wing area
T Mission endurance
V Speed
Vcruise Cruise speed
VPmin Minimum required power speed
VV Vertical tail volume

Greek Symbols
α Angle of attack
β Angle of sideslip
γ Angle of climb
�Tth Endurance variation threshold
�Mth Mass variation threshold
εg Energy Density
Φ Latitude angle
η Efficiency
ρ Density

Subscripts
ac Accumulator
st Structure
lg Landing gear
m Motor
pay Payload
ch Charge (ref. to accumulators)
dis Discharge (ref. to accumulators)
sa Solar array
sc Solar cell
p Propeller
f Flight
d Devices
in Input or initial
out Output
th Threshold

Acronyms
AFOV Angular Field of View
DARPA Defense Advanced Research Projects Agency
DIA Department of Aerospace Engineering
ERAST Environmental Research Aircraft and Sensor Technology
FEM Finite Element Method
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HALE High Altitude Long Endurance
IFOV Instantaneous Field of View
IRS Intelligence, Reconnaissance and Surveillance
LE Leading edge
NASA National Aeronautics and Space Administration
SPB Solar Powered Biplane
TE Trailing edge
TLC Telecommunication
UAV Unmanned Aerial Vehicle
VLM Vortex-Lattice Method

1 Introduction

In order to perform High Altitude Long Endurance (HALE) missions and be effec-
tive, a solar-powered Unmanned Aerial Vehicle (UAV) has to show the fundamental
capability to fly continuously, even at high latitudes angles or during Winter. This
means that, for each day of mission, during daylight hours the UAV has to collect
enough solar energy to feed the propulsion system and to charge the accumulators
to be used for night flight. This requirement can be fulfilled only if aerodynamic ef-
ficiency of the aircraft is high, which means lightweight structures and high aspect
ratio wings.

On the other side, since the long-endurance requirement, such a system has to be
reliable, and the lightweight structure has to succeed in facing all the flight loads,
including those due to gusts, and to be stiff enough to guarantee the aircraft control-
lability and manoeuvrability.

The combination of these two aspects can be critical, as the experience of the
NASA’s prototype Helios has shown. Helios was developed within the Environ-
mental Research Aircraft and Sensor Technology (ERAST) program, with the goal
of proving the feasibility of the “eternal flight”. After several successful results, the
Helios was involved in a fatal accident due to unexpected gusts that made its struc-
ture collapse during the second flight test.

The idea on which the present paper is based is the possibility of adopting a
different airframe architecture to solve this critical issue, overcoming the limitation
of the cantilever wing, which brings to extremely flexible structures that may have
unexpected aeroelastic behaviour when flying off-design conditions, as it happened
to Helios.

The proposed architecture is a biplane reinforced by several vertical wings
that have both aerodynamic and solar collection tasks. This solution, called So-
lar Powered Biplane (SPB) and shown in Fig. 1, comes from several years of
research on box-wing airplanes carried out at Department of Aerospace Engi-
neering (DIA) of Pisa University and, in particular, from a preliminary study
in which the potentialities of this solution have been investigated for the first
time [11].
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Fig. 1 SPB concept

Since the introduction of a new architecture brings new questions about possi-
ble reduction in aerodynamic efficiency, increase of the total weight, solar energy
collection and flight mechanics behaviour, it is required to verify the aircraft capa-
bility of fulfilling the operating requirements with an assigned level of performance.
Therefore, this paper aims at:

• proposing an innovative airframe concept that may reduce the risk related to high
flexibility of structures;

• defining the SPB sizing process;
• proving the capability of this kind of aircraft of fulfilling the “eternal flight” re-

quirements, defined, according to Defense Advanced Research Projects Agency
(DARPA) Vulture Program [5], as follows:
– latitude up to 45◦;
– 18 000 m as minimum loiter altitude;
– operative in each year’s day.

2 The Solar Powered Biplane Layout

In the present paper, the SPB configuration is introduced under some assumptions
[4], according to which the general layout can be simplified as shown in Fig. 2. In
such a case, an SPB can be described through the following set of parameters:

• horizontal wing area (SH );
• wingspan (b);
• number of vertical wings (NV );
• non-dimensional vertical distance between wings (Gv), defined as the distance,

along Z axis, between front and rear wing sections belonging to symmetry plane,
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Fig. 2 General (top) and simplified (bottom) layout of the SPB configuration

divided by b:

Gv = {ZLE2 − ZLE1}y=0

b
, (1)

where LE1 and LE2 indicate the leading edges of wing sections;
• non-dimensional horizontal distance between wings (Gh), taken along X axis and

defined as follows:

Gh = {XLE2 − XLE1}y=0

b
; (2)

• ratio between rear wing and front wing areas (SR).

3 Mission Requirements

Two reference mission types have been selected as the most significant:

• a Telecommunication (TLC) mission, in which the payload is made of antennas;
• an Intelligence, Reconnaissance and Surveillance (IRS) mission, in which

electro-optical sensors are mounted on board for image acquisition and remote
sensing applications.

It is assumed that each mission has to be performed flying along a closed path that
can be considered as elliptical. The dimensions of ellipse axes depend on the foot-
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Fig. 3 Effect of flight path
on full coverage area
dimension

print of payload devices (sensors or antennas) and on the extension of the area that
must be served.

Under the assumption

a = φf

2
, (3)

where a is the minor axis length, and φf is the footprint diameter, the area which can
be observed by sensors or antennas from every point of the flight path (full coverage
area), has maximum extension when major axis (A) is equal to a, i.e. for a circular
path (Fig. 3(a)). Increasing A, the covered area will be smaller (b) and disappear
when A = 2a (b).

Introducing the ratio between major and minor axes,

Ar = A

a
, (4)

the existence of a full coverage area gives a first constraint on the flight path:

Ar < 2. (5)
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Fig. 4 Flight path, footprint,
full coverage area and “core”

Fig. 5 Radio horizon
concept

A conservative estimate of the full coverage area dimension is given by the di-
ameter of the largest inscribed circle, φc. As shown in Fig. 4, such a circular area is
called “core”, and φc is calculated as follows:

φc = φf − A. (6)

Given Eq. (3) and the definition of Ar , Eq. (6) becomes

φc =
(

1 − Ar

2

)
φf . (7)

In the next sections, φc requirements are specialized for TLC and IRS design
missions.

3.1 TLC Design Mission

In telecommunications, the operating range of an antenna is given by the radio hori-
zon, which is the locus of points at which the direct waves transmitted are tangential
to the surface of the Earth.

Hence, for a given antenna located at a height H from Earth, the distance from
the radio horizon (D̄), also called “line-of-sight”, is given by the length of the line
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shown in Fig. 5, multiplied by a factor (K), that takes the effect of atmospheric
bending on waves into account. Assuming that the Earth is smooth out to the hori-
zon, the communication range can be approximated through the following formula:

D̄ � K · √2RH, (8)

where R is the Earth’s radius, whose mean value is 6371 km. As can be found in
the literature [1], K is usually taken equal to

√
4/3, which brings to the following

formula:

D̄ � 4124 · √H, (9)

with D̄ and H in meters.
Approximating the footprint radius with the length D̄, it follows that

φf = 2 · D̄ = 8248 · √H. (10)

Hence, substituting Eq. (10) into Eq. (7), the core diameter is given by the function

φc = 4214 · (2 − Ar) · √H. (11)

The TLC design mission is introduced as follows:

• the core diameter of the served area must be greater than 300 km;
• the flight altitude must be above 14 000 m;
• the mission must be performed also at Winter solstice for latitudes up to 45◦

North;

At the minimum altitude, φc is above 300 km for Ar = 1.4; hence, mission con-
ditions can be written as follows:

• Ar = 1.4;
• H ≥ 14 000 m;
• latitude angle = +45◦;
• Day = 21 Dec (Winter Solstice).

3.2 IRS Design Mission

The IRS mission depends mainly on the electro-optical sensor, whose characteristics
are given by the following parameters:

• the Angular Field of View (AFOV) angle that, depending on flight altitude (H ),
defines the footprint width of the sensor (also called swath width, Fig. 6):

φf = 2H · tan
AFOV

2
; (12)

by Eq. (7), φc becomes

φc = H · tan
AFOV

2
· (2 − Ar); (13)
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Fig. 6 Instantaneous Field Of View (IFOV) and Angular Field Of View (AFOV)

• the ground resolution (Rg), defined as the linear dimension of the smallest area on
Earth’s surface detectable by the sensor. In remote sensing, the ground resolution
is commonly described through the Instantaneous Field of View (IFOV), which
depends on the distance from target (H in this case) and on the number of pixels
of the sensor (Np). The ground resolution can be calculated dividing the swath
width by the number of samples (Np) as follows:

Rg = 2H

Np

· tan
AFOV

2
. (14)

When sensor characteristics AFOV and Np are given, the core dimension re-
quirement sets the minimum flight altitude, while the ground resolution one sets the
maximum altitude. From (13) and (14) it follows:

φc cot AFOV
2

2 − Ar

≤ H ≤ RgNp cot AFOV
2

2
. (15)

Then, the IRS design mission is introduced taking the following requirements
into account:

• the surveilled area with core diameter of 2 km;
• the ground resolution of 10 m or less;
• operative also at winter solstice for latitudes up to 45◦ North.

The given sensor is a hyperspectral camera with the following specifications:

• AFOV = 18.4◦;
• Np = 640.

Using Eq. (15), altitude constraints are found:

12348

2 − Ar

≤ H ≤ 19757, (16)
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Fig. 7 Overview of the
sizing process

where the values are in metres. In order to avoid the air traffic, Hmin = 16000 is
chosen and, therefore, Ar is found from Eq. (16):

Ar = 1.22.

Therefore, mission conditions are:

• Ar = 1.22;
• 15831 m ≤ H ≤ 19757 m;
• latitude angle = +45◦;
• Day = 21 Dec (Winter Solstice).

3.3 Payload Requirements

Payload requirements are related to UAV capabilities to fly sensors/antennas with
given weight and required power. Such requirements are defined on the basis of
previous UAV projects as follows:

• Mpay = 100 kg;
• Ppay = 1 kW.

4 The Sizing Process

4.1 Overview

The sizing process aims at evaluating the actual aircraft mass (Mout) through the
steps illustrated in Fig. 7, which are:
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• the input mass (Min) definition, where a guess value of the aircraft mass is calcu-
lated;

• the aerodynamic analysis, where the minimum required power conditions are cal-
culated;

• the flight mechanics/mass balance cycle, where the equilibrium and stability re-
quirements are met by means of a mass balance strategy;

• the energy balance, where the flight endurance and accumulators mass are calcu-
lated;

• the sizing of motors, where the motors mass is defined in order to fulfill the max-
imum power request;

• the sizing of structures, where the structural components are sized to operate un-
der an assigned stress level.

As the flow chart shows, the process requires the definition of some input data,
such as constants and settings for the several models implemented, and mission
parameters as defined in Sect. 3.

In addition, Flight Mechanics, energy balance, motors and structures sections
are linked to a “Performance check” block, in which other requirements related to
expected performance are introduced:

• Flight Mechanics
– trimmed flight;
– longitudinal stability;
– directional stability;
– dihedral effect;
– spiral stability.

• Energy Balance
– minimum mission endurance (T ) given by

Tmin ≥ 24 − �Tth (in hours), (17)

where the endurance variation threshold (�Tth) is set to 0.5 hours, that is, the
2% of the nominal 24 hours mission duration.

• Structures
– maximum structural stress.

If such requirements are met, the sizing process leads to the evaluation of the
actual aircraft mass, which is compared to the Min value, in order to check the
convergence of the whole process. The convergence requirement is fulfilled if the
following inequality holds:

|Mout − Min| ≤ �Mth, (18)

where mass variation threshold (�Mth) is the accumulators mass that, for a given
configuration and a given required power, if added or removed, gives a flight en-
durance variation equal to �Tth. Such definition can also be written as follows:

�Mth = Preq�Tth

εg

, (19)
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Fig. 8 Flow chart of the input mass evaluation

Table 1 Guess values for
input mass evaluation Guess values

Mac/M 50%

Mst/M 25%

Mm/M 10%

M/SH 8–11 kg/m2

where εg is the energy density of the accumulators.

4.2 Input Mass Evaluation

As Fig. 8 shows, the input mass is calculated as follows:

Min = Mpay + Msa + Mac + Mst + Mm + Mlg, (20)

where:

• Mpay is the payload mass, given as a requirement;
• Msa is the mass of solar arrays, which can be calculated multiplying the surface

density of solar panels by horizontal and vertical wing areas;
• Mac, Mst and Mm are the guess values of accumulators, structures and motors

mass, respectively, which are calculated as fractions of the aircraft guess mass M .
This latter is calculated multiplying the horizontal wing area (SH ) by a guess wing
loading value;

• Mlg is the guess landing gears mass, which depends on the estimated position of
the aircraft centre of gravity (CG).

Table 1 shows the typical guess values used in this part of the sizing process.
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4.3 Aerodynamics

The aerodynamic analysis aims at finding the minimum value of the required power
for cruise flight (Preq) and the associated speed (VPmin ), under the trim constraints.
Therefore, the problem to be solved is the following:

⎧⎪⎪⎨
⎪⎪⎩

minPreq(Vcruise),

CL = Ming
1
2 ρSH V 2

cruise
,

m|CG(Vcruise) = 0,

(21)

where Vcruise is the cruise speed, CL is the lift coefficient, g is the acceleration of
gravity, ρ is the air density, and m is the pitching moment.

Preq is calculated as follows:

Preq = 1

2
ρSH V 3

cruiseCD, (22)

where the drag coefficient (CD) is obtained by summing the following contributions:

• induced drag (CDind ), evaluated by means of a Vortex-Lattice Method (VLM)
code, which gives good results in absence of non-lifting bodies;

• airfoil drag (CDairf ), including both pressure and friction drag, calculated applying
the strip theory to airfoil polar curves;

• friction drag of landing gear fairings, calculated through the flat plate analogy as
in [10].

Concerning airfoil drag, it has been observed that a subsonic flow at low Reynolds
number (Re), as it is for HALE UAVs, pressure drag and friction drag have compa-
rable values and approximated methods which take only friction into account (e.g.
flat plate analogy) are not accurate [2]. For this reason, the aforementioned airfoil
polar curves have been calculated for different Re by means of the code XFOIL and
then implemented in the VLM.

Since the parabolic polar curve approximation does not fit the real polar curve
trend (Fig. 9) and introduces errors of ±10% on VPmin evaluation, the minimum
required power is calculated using an optimization algorithm that finds the local
minimum of the continuous single-variable function Preq(Vcruise) on a fixed speed
interval, typically inside the range 25–40 m/s.

4.4 Flight Mechanics and Mass Balance

Once the minimum power conditions are found, the aircraft mass balance is found
by means of an iterative procedure, in order to fulfill the Flight Mechanics require-
ments, which are:
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Fig. 9 Example of polar curve and parabolic approximation

• The trim requirement, defined like in Eq. (21), with the pitching moment equilib-
rium imposed as follows:

CP ≡ CG, (23)

where CP is the centre of pressure.
• Longitudinal stability requirement, which is given applying upper and lower

boundaries to the margin of longitudinal stability (MoS), defined as follows:

MoS = xNP − xCP

mac
, (24)

where xNP and xCP are the longitudinal coordinates of neutral point and centre of
pressure, respectively, and mac is the mean aerodynamic chord.

• Directional stability requirement, which is defined by setting a minimum value
for the vertical tail volume (VV ), defined as

VV = SV (xACV
− xCG)

bSH

, (25)

where SV is the vertical wing area, and ACV is the aerodynamic centre of vertical
surfaces.

• Dihedral effect requirement, fulfilled when the following inequality holds:

Clβ < 0, (26)

where Clβ is the change in rolling moment coefficient (Cl) due to a sideslip angle
(β) variation.
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Fig. 10 Rear wing dihedral angles

• Spiral stability requirement, which is expressed as follows:

ClβCnr

ClrCnβ

> 1, (27)

where Cnr is the derivative of the yawing moment coefficient (Cn) with respect
to yaw rate (r), Clr represents the rolling moment change due to yaw rate, and
Cnβ gives the yawing moment variation due to sideslip angle.

Because of the trim constraint, Eq. (24) becomes

MoS = xNP − xCG

mac
. (28)

Therefore, the trim, longitudinal stability and directional stability requirements can
be met by changing the distribution of batteries between the two horizontal wings
in order to move the aircraft CG.

Dihedral effect and spiral stability requirements, instead, are fulfilled by modi-
fying the dihedral angles of some rear wing trunks (Fig. 10), in order to change the
Clβ value.

4.4.1 Mass Balance Procedure

The mass balance procedure is based on the CG position evaluation, which is per-
formed as follows:

CG = 1

Min
(MpayCGpay + MsaCGsa + MacCGac

+ MstCGst + MmCGm + MlgCGlg), (29)

where subscripts have the same meaning as in Eq. (20). Then, the following assump-
tions are made:

• the payload mass can be positioned in order to have a small influence on the CG
location; hence,

CGpay ≡ CG;
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• the structural components and solar arrays can be assumed as homogeneously
distributed on both wings; therefore,

CGst ≡ CGsa.

Given these assumptions, Eq. (29) becomes

CG = 1

Min − Mpay

[
(Mst + Msa)CGw

+ MacCGac + MmCGm + MlgCGlg
]
, (30)

where CGw indicates the centre of gravity of horizontal and vertical wings, which
coincides with CGst and CGsa.

The first step of the mass balance procedure consists in assuming that the centres
of gravity of accumulators and horizontal wings (CGwH ) coincide, which means
that the accumulators are considered as homogeneously distributed on horizontal
wings. Therefore, the starting condition can be described as follows:

⎧⎨
⎩

Mac1 + Mac2 = Mac,

Mac2
Mac1

= SR,
(31)

where subscripts 1 and 2 indicate front and rear wings, respectively, and SR is the
ratio between rear wing and front wing areas. Hence, batteries repartition on the two
wings is given by {

Mac1 = 1
SR+1Mac,

Mac2 = SR

SR+1Mac.
(32)

The balancing process aims at finding the amount of batteries M∗
ac that has to be

moved from the rear wing to the front one, in order to meet the Flight Mechanics
requirement.

Introducing the Balancing Mass Fraction (B) as

B = M∗
ac

Mac2

, (33)

the modified battery repartition becomes

{
M ′

ac1
= (1 + B · SR) 1

SR+1Mac,

M ′
ac2

= (1 − B) SR

SR+1Mac.
(34)

B is used to control the balancing procedure convergence: when B > 1, a diver-
gence occurs, and Flight Mechanics requirements cannot be fulfilled. It has been
observed that feasible solutions have B < 0.5.

Given the definition of B , the mass balance procedure is described here below:
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Fig. 11 Mass balance process

1. the results from Aerodynamics section provide initial flight mechanics charac-
teristics, such as the neutral point (NP) and the aerodynamic centre of vertical
surfaces (ACV );

2. the CG longitudinal position is imposed as follows:

xCG = min

(
xNP − MoSmin · mac, xACV

− VVmin · SH

SV

· b
)

; (35)

3. the associated value of B is calculated;
4. if B < 1, the procedure continues, and trim conditions on lift and pitch moment

are imposed;
5. the aerodynamic and flight mechanic characteristics are calculated by means of

the VLM code, in which the trim requirement in Eq. (23) is met by modifying
the angles of incidence of front and rear wings;

6. new values of NP and ACV are calculated.

The procedure is reiterated from point 2 and stops if both requirements on MoS
and VV are fulfilled or if B > 1. In the first case, Flight Mechanics check is passed,
otherwise the sizing process is stopped. Figure 11 shows an example of the balanc-
ing process iterations.

4.5 Energy Balance Evaluation

According to the scheme in Fig. 12, the main variables involved in energy balance
evaluation are the following:
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Fig. 12 Flow chart of the daily energy balance

• ηsa: solar array efficiency calculated taking Albedo effect into account;
• ηm: brushless motors efficiency;
• ηp: propeller efficiency;
• ηd: efficiency of payload devices (electro-optical sensors or antennas);
• ηch: accumulators charge efficiency;
• ηdis: accumulators discharge efficiency;
• Esc: collected solar energy;
• Ef: required energy for flight;
• Ed: energy required to feed payload devices;
• Eac: energy stored in the accumulation system.

Energy balance can be “checked” when the energy flowing through accumula-
tors during one day, �Eac, is 0, “unchecked” if �Eac < 0 and “over-checked” if
�Eac > 0.

If the energy balance is checked or over-checked, the aircraft is able to use solar
energy to feed motors and devices during daylight hours and to charge batteries
with an amount of energy that is sufficient to fly with all systems working during
the night. In the second case, the exceeding energy can be used to feed optional
devices, to climb and fly at a higher altitude or for speed variations.

Hence, the starting equation for energy balance evaluation is the following:

�Eac = 0, (36)

which can be written as the balance between the energy stored during daylight ED
ac

and the energy released during night EN
ac:

ED
ac − EN

ac = 0. (37)

The time intervals indicated by superscripts D and N depend on the collected
solar power (Psc), the required power for flight (Pf) and the required power for
devices (Pd). They are defined as follows:
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• D is the time interval in which solar panels suffice in providing power to motors
and payload devices:

Pscηsa ≥ Pf

ηmηp
+ Pd

ηd
; (38)

• N is the time interval in which energy provided by solar panels is not sufficient
to feed motors and payload devices and accumulators’ contribution is required:

Pscηsa <
Pf

ηmηp
+ Pd

ηd
. (39)

The energy stored during daylight is obtained as follows:

ED
ac = ηch

(
ηsaEsc − ED

f

ηmηp
− ED

d

ηd

)
, (40)

while the energy spent during night time is given by

EN
ac = 1

ηdis

(
EN

f

ηmηp
+ EN

d

ηd

)
. (41)

Substituting Eq. (40) and Eq. (41) into Eq. (37), the energy balance equation is
obtained:

ηsaEsc =
[

ED
f

ηmηp
+ ED

d

ηd
+ 1

ηac

(
EN

f

ηmηp
+ EN

d

ηd

)]
, (42)

where ηac is the accumulator charge/discharge efficiency, given by

ηac = ηch · ηdis. (43)

It is assumed that charge and discharge efficiencies are equal, and therefore,

ηch = ηdis = √
ηac. (44)

If the energy balance is checked or over-checked, the accumulators mass is cal-
culated dividing the energy spent for night time flight by the Energy Density (εg) of
accumulation system:

Mac = EN
ac

εg

. (45)

4.5.1 Incoming Solar Energy Model

The total incoming radiation (Itot) is calculated through the following formula:

Itot = I · (τb + τd)AM, (46)

where
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Fig. 13 Averaged beam
radiation coefficient [11]

• I is the incoming solar power collected by a panel with unitary area, which de-
pends on the angle of incidence of sunbeams respect to the normal direction to
panel surface and is calculated as in [6];

• τb is the beam radiation coefficient, given by

τb = τscatt(λw,H,k1, k2) · τabs(λw,H,k1), (47)

where τscatt is the scattering coefficient due to particles (air, dust and water va-
por), τabs is the absorption coefficient due to ozone and water vapour, λw is the
radiation wavelength, H is the altitude, k1 is the turbidity coefficient (0 = clear
conditions, 0.4 = very turbid conditions), and k2 is related to aerosols size.

According to previous works [11, 12], air scattering is evaluated with the
Reyleigh model, water and dust scattering by means of the Ångström model
and the absorption coefficient, assumed constant for altitudes between 3000 and
20 000 m, as a function of the atmospheric turbidity. Because of water vapour
presence, λw effect is important only at low altitudes, where the aircraft flies for
short periods. Therefore, it is possible to approximate τb with the λw averaged
value, which depends on altitude and turbidity coefficient as Fig. 13 shows;

• τd is the diffused radiation coefficient, which is much smaller than the direct one
and can be neglected [6];

• AM is the Air Mass, which represents the ratio between the actual distance cov-
ered by sunbeams to reach the panel and the minimum possible distance. It is
related to the zenith angle (θz) through the following expression:

AM = 1

cos θz

. (48)

4.5.2 Collected Solar Energy Model

The model used to calculate energy collected by solar panels take the following
aspects into account:
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Fig. 14 Strip of solar panels
on a wing surface

• solar cells on horizontal wings are placed on the upper surface and preserve the
airfoil shape;

• solar cells on vertical wings are placed on both sides and preserve the airfoil
shape;

• panels are defined as “strips”, whose chordwise dimension is given by cell length
and spanwise length is the wing trunk span (Fig. 14);

• angle of attack, angle of trajectory, angle of climbing and angles of incidence (one
for each horizontal wings) contribute in panel elevation angles;

• at each time step in which the mission is discretized, the aircraft orientation is
calculated in order to find the azimuth angle of panels.

For a given time (t), the total solar power collected by panels on aircraft is cal-
culated as follows:

Psc(t) =
∑
w

[∑
i

Ii(t) · Si

]
w

(τb + τd)AM(t), (49)

where subscript w indicates a generic wing (horizontal or vertical), and subscript
i indicates a generic solar panel strip having area Si . For each strip, the term Ii

is calculated taking the panel orientation (elevation and azimuth angles) and the
mission condition (latitude, declination and hour angles) into account.

Since panel angles change as the aircraft moves along the flight path, the mission
is divided in time steps, and for each of them, Psc is evaluated. For each of these
intervals, Psc value is used to verify Eq. (38) or Eq. (39), and, if the first one holds,
it is integrated to calculate the energy balance term Esc (see Eq. (42)).

Details on power collection for a typical winter mission are shown in Fig. 15,
where the chord station is 0% at the leading edge and 100% at the trailing
edge.

4.6 Structures Sizing

The model for structures sizing is based on previous works [3, 9], whose achieve-
ments have been the determination of the SPB flight envelope, the definition of a
design solution for the main components and the evaluation of the admissible stress
level by means of Finite Element Methods (FEMs).
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Fig. 15 Solar power per area
unit collected by horizontal
(top) and vertical (bottom)
wings

4.6.1 The Flight Envelope

The flight envelope has been found according to MIL-F-8785C, MIL-STD-1797A
and FAR regulations, adopting the 1 − cos discrete model for gust loads. A refer-
ence SPB configuration, designed for Winter missions, has been considered, and it
has been found that, because of the low wing load of such a kind of aircraft, the
maximum load factors (nz) are those due to gusts (Fig. 16).

As Fig. 17 shows, the nz limit values are obtained for altitude around 10 000 m, at
which the aircraft flies only for short periods, during climb and descent. Therefore,
the related nz values (+6.5 and −4.5) have been indicated as ultimate and then used
for structural sizing.

4.6.2 The Design Solution

Concerning the design solution, structure components of each wing trunk, horizontal
or vertical, have the same design scheme, which is shown in Fig. 18 and described
hereafter:

• each wing section has a double spar, which provides a high bending stiffness;
• in order to improve the torsional stiffness, spars have a closed cross-section;
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Fig. 16 Flight envelope at
16 000 m (top) and 20 000 m
(bottom) [3]

• ribs consist of trusses placed at constant distance along the wingspan;
• spars and ribs are made of laminates of Carbon-Epoxy plies of thickness above

1 mm.

Spar sections are shaped in order to fit exactly inside wings, in order to provide
a physical connection to solar panels with no need of other components. As shown
in Fig. 19, the sizing parameters for leading edge (LE) and trailing edge (TE) spars
are the width (wLE, wTE) and the average wall thickness (t).

4.6.3 FEM Analyses

By means of a commercial FEM code, static and buckling analyses have been car-
ried out taking maximum (positive and negative) load factors conditions and im-
pact at landing into account. For static analyses, spars and ribs have been modelled
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Fig. 17 Maximum positive
(top) and negative (bottom)
load factors at various
altitudes [3]

by means of beam elements, while shell elements have been used to model spars’
walls.

The structural components have been sized on the basis of FEM results, and the
following achievements have been reached:

• at every load condition, stresses are below the first-ply-failure values of the com-
posite material;

• at every load condition, the twist due to wing deformation does not provoke stall
in any section;

• buckling phenomena take place on the internal and lower walls of the spars, where
the integrity of cells is not affected (Fig. 20). The “allowed buckling” cases are
indicated in Table 2, in which it can be observed that load factors intervals are
compatible to the maximum and minimum values calculated from flight envelope.

As a further result, a distribution scheme for battery packs has been defined under
the constraint of avoiding the impact of front wing on the ground during landing.
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Fig. 18 Overview of the SPB
main structures [9]

Fig. 19 Sizing parameters
for spars

Fig. 20 “Allowed buckling”
on a LE beam at positive load
factor [9]

Table 2 Load factors
intervals for “allowed
buckling” on front and rear
wing structures

Front wing

Positive load factors +4.6 < nz < +6.5

Negative load factors −4.5 < nz < −2.3

Rear wing

Positive load factors +6.6 < nz < n.c.

Negative load factors −4.4 < nz < −2.2
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4.6.4 Model for Structures Sizing

The structural model has been built on the basis of the assumption, derived from
FEM results, that the sizing condition is given by the buckling absence requirement
at the maximum positive load factor (nz = +6.5). In addition, it has been observed
that rear wing structures experience the highest stress levels, and hence a simplified
model can be derived, isolating the rear wings and introducing the internal forces
calculated through by FEM simulations. By means of this model, the bending mo-
ment distribution and the maximum tensile stress are then calculated.

According to the previous assumption and FEM results, a structural configuration
able to fulfill the given requirements is characterized by Von Mises stress levels be-
low 300 MPa at the maximum load factor condition. This characterization has been
used to define a sizing criterion for the design of beams: the structure is efficient if
the maximum Von Mises stress (σmax) is close to the “operating stress” (σoper) of
300 MPa, as expressed in the following relation:

|σmax − σoper|
σoper

≤ 5%. (50)

The inequality in Eq. (50) represents the performance requirement for structures
sizing, which is achieved, when possible, through the following procedure:

1. the initialization consists of setting the sizing parameters wLE, wTE and t to their
minimum value;

2. while t is kept constant, σmax is calculated for all the allowed combinations of
wLE and wTE;

3. if one or more (wLE, wTE) combinations meet the performance requirement, the
solution is the one with the lowest structural mass, otherwise t is increased, and
the procedure is repeated from previous step;

4. if a combination (t , wLE, wTE) does not exist, the structural sizing cannot be
performed, and the SPB configuration is discarded.

4.7 Motors Sizing

The model for brushless motors sizing is taken from [11], in which the following
statistical relation is used:

Mm = 0.0045 · P, (51)

where motor mass (Mm) is in kg, and the nominal power (P ) is in W.
Observing that the power required for flight is obtained multiplying nominal

power by motor efficiency (ηm) and propeller efficiency (ηp), Eq. (51) becomes

Mm = 0.0045 · Pmax

ηmηp
. (52)
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Fig. 21 SPB configuration for Winter TLC missions at 18 000 m

Therefore, the mass of the entire propulsion system can be defined by means of
the maximum power request (Pmax) that the aircraft experiences during the mission.
Such a value is found when the aircraft, flying at the maximum required altitude,
climbs with a given angle of climb (γ ). In such case, the required power has the
following expression:

Pmax = P(Hmax) +
√

(Mg)3

ρ(Hmax)SH CL

sinγ, (53)

where CL is referred to level flight at Hmax.

5 Results

In [4] the sizing process here presented has been implemented in an optimization
problem, aiming at finding minimum mass SPB configurations, under different mis-
sion requirements.

In this paper, one of the most significant result is shown: it is an SPB designed
for TLC missions at latitude of 45◦ and cruise altitude above 18 000 m. It has been
found that such a configuration can operate continuously in each year’s day and,
therefore, is able to meet the aforementioned DARPA requirements.

A scheme of this solution is given in Fig. 21, and its main characteristics are
listed in Table 3. It is worth noticing that the predicted Aerodynamic Efficiency is
38, which is comparable to other HALE UAVs (Fig. 22).

As a further result, Fig. 23 shows two Operating Domains used to evaluate the
flexibility of such aircraft in performing TLC and IRS missions.

The Operating Domain is a design tool, introduced in [4], which consists of a
chart, where, for each altitude, the region of the Day-Φ plane in which the given con-
figuration can fulfill the energy balance requirement is represented. Such a region,
assumed to be symmetric to acsLat = 0◦ and Summer Solstice axes, is bounded
from above by a parabolic arc, whose vertex belongs to the Winter Solstice axis.
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Table 3 Data of the SPB for
Winter TLC missions at
Hcruise = 18 000 m and
Φ = 45◦

DESIGN PARAMETERS

SH 392.4 m2

b 99.1 m

Gv 0.214

SR 0.8

Gh 0.12

NV 7

CHARACTERISTICS

M 3525 kg

M/SH 9 kg/m2

Vcruise 33.5 m/s

Preq 30509 W

Preq/SH 78 W/m2

�T −0.3 h

EA 38

MoS 19.9%

VV 1.02%

Ppay 1000 W

Mpay 100 kg

φc 340 km

Fig. 22 Comparison between
aerodynamic efficiencies

The vertex ordinate is the maximum Φ for which the aircraft is operative, i.e. it can
fly continuously, at the given loiter altitude. Since the solar energy model is not valid
for latitudes above 70◦, in any case the chart is limited by the Φ = 70◦ line.

The Operating Domain analysis shows that such aircraft can perform both TLC
and IRS missions: altitudes above 20 000 m can be reached at latitudes up to 16◦
(TLC) and 4◦ (IRS), while, at the minimum altitude of 16 000 m, the highest oper-
ating latitudes are 50◦ (TLC) and 38◦ (IRS).
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Fig. 23 Operating domain of the 18 000 m, winter SPB for TLC (top) and IRS (bottom) missions

6 Structural Design Review and Aeroelastic Analysis

The SPB configuration described in Sect. 5 has been the object of aeroelastic anal-
yses inside the M.Sc. Thesis work carried out at DIA [8]. Such analyses have been
performed by means of the software MSC Nastran, taking the structure resulting
form the aforementioned sizing process as a starting point.

Beside the aeroelastic studies, one of the outcomes of this work has been a design
review of wing structures, in which the D-shaped front beam of each wing has been
replaced with a multi-box beam obtained by adding an internal vertical wall inside
the previous section. This type of structure, Fig. 24, has been verified for static and
buckling loads and has been chosen in order to improve the technological feasibility
of the solution.

Concerning the static analysis, it has been observed that the in-plane stiffness
of vertical wings requires an improvement, since the loading condition associated
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Fig. 24 The modified wing section structures [8]

Fig. 25 Stiffness improvement due to internal braces presence (right) on vertical wings [8]

to ground manoeuvres, in which the lift force is absent, causes significant defor-
mations. Therefore, the wing design has been modified, increasing the distance be-
tween ribs and adding internal braces, which can reduce the rear wing displacement
(Fig. 25).

Once static and buckling requirements have been fulfilled, the aeroelasticity of
the SPB has been analysed, focusing on both steady and dynamic phenomena.

6.1 Steady Aeroelasticity

From the steady standpoint, it has been observed that the difference in deformations
between rigid trim and flexible trim cases depends on the horizontal wings local
equilibrium between lift and weight. In particular, when the weight distribution does
not equilibrate the lift distribution, as it happens at wing tips, where lift decreases,
aeroelastic effects on lift can be great (Fig. 26).

Although it has been found that such effects do not cause divergence, it is better
to have them under control, hence a possible solution is to change the accumulators
distribution along wingspan in order to achieve the local equilibrium. Figure 27
shows the distribution of batteries which minimizes this effect, and, as said before,
it is worth noticing that its characteristic is an unloaded area close to wing tip.
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Fig. 26 Initial lift distributions along wingspan for rigid and flexible trim cases on front wing [8]

Fig. 27 Final distribution of batteries along wingspan [8]

As a result, in cruise condition the weight distribution given by such accumu-
lator layout gives a maximum displacement of 0.65 m (0.6% of wingspan) against
5.24 m (5.2% of wingspan) obtained considering batteries also on wing tips. As a
consequence, this layout minimizes also the steady aeroelasticity effects; Fig. 28, in
fact, shows the small difference between rigid and flexible trim cases.

6.2 Dynamic Aeroelasticity

The dynamic aeroelasticity study has been focused on flutter and, as a first case, the
SPB configuration modified with internal braces on vertical wings and the afore-
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Fig. 28 Final lift distributions along wingspan for rigid and flexible trim cases on front wing [8]

Table 4 Structural modes of the initial configuration

Mode Frequency [Hz] Deformation

1 0.06 Bending out of the horizontal plane (mainly)

2 0.08 Bending inside the horizontal plane (mainly)

3 0.11 Torsion around wingspan direction (mainly)

4 0.30 Bending out of the horizontal plane (mainly)

5 0.38 Bending and torsion

6 0.47 Bending and torsion

mentioned batteries distribution, has been analysed by means of the p − k method
applied to the cruise condition, for speed between 10 m/s and 80 m/s.

The first six structural modes, for which details are given in Table 4, have been
recognized as significant, and the associated flutter analysis has shown that the 2nd
mode, which causes a bending almost inside the horizontal plane, is not damped
(g > 0, Fig. 29).

The cause of such a behaviour has been found in the poor in-plane stiffness of the
considered double-spar structure. As already done for vertical wings, the solution
found is the addition of internal braces and the reduction of ribs, for both front and
rear wings (Fig. 30).
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Fig. 29 Flutter diagram of the initial configuration (Hcruise = 18 000 m) [8]

Fig. 30 Horizontal wing
structures with internal braces
[8]

Such a solution changes the structural modes of the SPB, making the natural
frequencies of the system higher and removing any dynamic instability, as Table 5
and Fig. 31 show.

Finally, the previous analyses have been performed also at sea level conditions,
for trim speed between 10 and 20 m/s, showing the absence of dynamic instability.
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Table 5 Structural modes of the final configuration

Mode Frequency [Hz] Deformation

1 0.07 Bending out of the horizontal plane (mainly)

2 0.30 Torsion around wingspan direction (mainly)

3 0.31 Bending out of the horizontal plane (mainly)

4 0.40 Bending and torsion

5 0.72 Bending of vertical wings

6 0.76 Bending out of the horizontal plane (mainly)

Fig. 31 Flutter diagram of the final configuration (Hcruise = 18 000 m) [8]

7 Conclusions

The present paper has shown some of the outcomes of a research concerning the de-
sign of solar powered unmanned biplanes (SPB) for High Altitude Long Endurance
(HALE) missions, whose architecture has been chosen in order to increase the struc-
tural stiffness without reducing the aerodynamic efficiency.

Inspired by several years of studies on box-wing airplanes at the Department of
Aerospace Engineering (DIA) of Pisa, the main tasks of the present research have
been the definition of a design methodology and the design of an SPB configuration
able to fulfill the HALE flight requirements defined by DARPA within the Vulture II
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program: to fly continuously in each year’s day, at latitudes up to 45◦ and altitudes
above 18 000 m.

The SPB layout has been presented, and, by means of some assumptions, a small
set of geometric variables has been defined for the SPB description.

Two kinds of mission have been object of study: a first one for telecommunication
(TLC), in which the aircraft has antennas as payload and operates on big areas (100–
1000 km), and a second one for remote sensing purposes (IRS), in which the payload
consists of electro-optical sensors and the operating area is much smaller (<10 km).

The design procedure, called “sizing process”, has been described, presenting
each model implemented in it. These are: the aerodynamic model, whose main task
is to define the minimum required power conditions; the flight mechanic model,
which is coupled with a Mass Balance model and aims to meet the stability and trim
requirements; the energy balance section, in which the fulfillment of the endurance
requirement is verified and the energy accumulation system is sized; the structural
model, whose result is the structural components sizing, under a maximum stress
constraint; and, finally, the propulsion system sizing, which defines the dimension
of motors on the basis of the maximum power request.

For TLC missions, an SPB able to meet DARPA requirements has been found,
and its characteristics have been shown, underlining that the predicted aerodynamic
efficiency is comparable to those ones of flying wing and wing-tail configurations.
A flexibility analysis has been carried out by means of a tool called Operating Do-
main, which has been applied in order to investigate the aircraft capabilities of per-
forming both TLC and IRS missions under different altitude–latitude–day condi-
tions. It has been found that it is possible to operate continuously at altitudes above
20 000 m for latitudes up to 16◦ in the case of TLC missions and 4◦ for IRS mis-
sions. On the other hand, given the minimum altitude of 16 000 m, the operating
latitudes can reach 50◦ (TLC) and 38◦ (IRS).

In conclusion, the SPB configuration has been an object of a structural design
review and an aeroelastic analysis, which have brought to some modifications: for
horizontal wings, multi-box spars have been introduced to fulfill static and buck-
ling loads requirements, internal braces have been added to avoid flutter phenom-
ena, internal braces have been adopted also on vertical wings in order to minimize
ground deformations, and, finally, the accumulators distribution along wingspan has
been modified to reduce deformations and steady aeroelasticity effects on horizontal
wings.
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Appendix

This section contains information about the characteristics of main components
taken into account for the design of SPBs (Table 6).



176 V. Cipolla and A. Frediani

Table 6 Components data
Solar Cells

Bi-facial Monocrystalline Silicon

Efficiency (front) 20%

Efficiency (back) 17%

Density 0.32 kg/m2

Solar Array

Evaporated Back-Contacts [7, 13]

Fill Factor 81%

Efficiency (@ 10% Albedo) 18%

Efficiency (@ 40% Albedo) 22%

Density 0.46 kg/m2

Accumulators

Li-S Rechargeable Batteries

Energy Density (εg) 350 Wh/kg

Charge/Discharge Efficiency 99.7%

Life Cycles 100

Motors

Brushless Direct Current Motors

Efficiency 95%

Propellers

Type 3-blade

Diameter 2 m

Efficiency 80%
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The PrandtlPlane Configuration: Overview
on Possible Applications to Civil Aviation

Aldo Frediani, Vittorio Cipolla, and Emanuele Rizzo

1 Introduction

From the advent of powered flight at the age of commercial aviation in the 1950s,
the aeroplane conception changed completely. Comparing the first airliner in the
1950s to the present ones, however, the external shape of aircraft does not seem
to have evolved a lot, as pointed out in [1]; the basic layout fuselage–wing–tail is
still the dominant design. Changes happened however, as the costs were reduced
by a factor of 3 through improvements in aerodynamics, structures and materials,
control systems, propulsion technology and, according to [30], also to smoother skin
surfaces, scale effects and winglets.

Recently, a great interest is devoted to new concepts of aircraft (or “innovative”
in the rest of the paper), characterized by a layout different from the one still in use
today (or “conventional”). The interest towards new designs is in the scope of the
“Vision 2020” report [2]; here, the future of aviation is discussed, as well as the
challenges laying ahead of its development. Future aviation will possibly need to
respond to restrictive imperatives in terms of costs, environments, safety and secu-
rity; at the advent of commercial aviation, the aim was to fly faster and higher than
ever, while now the focus is on flying quieter and greener. A new document, named
“Vision 2050” has been recently emitted; some new requirements are introduced
(the entire aircraft should be fully recyclable, flying 24 hours a day, etc.), but we
maintain the attention on the Vision 2020 document in this paper.

A. Frediani (�) · V. Cipolla
Department of Aerospace Engineering, University of Pisa, Via G. Caruso 8, 56122 Pisa, Italy
e-mail: a.frediani@ing.unipi.it

V. Cipolla
e-mail: vittorio.cipolla@for.unipi.it

E. Rizzo
SkyBox Engineering S.r.l., Via San Biagio 49, 56124 Pisa, Italy
e-mail: e.rizzo@skyboxeng.com

G. Buttazzo, A. Frediani (eds.), Variational Analysis and Aerospace Engineering: Mathe-
matical Challenges for Aerospace Design, Springer Optimization and Its Applications 66,
DOI 10.1007/978-1-4614-2435-2_8, © Springer Science+Business Media, LLC 2012

179



180 A. Frediani et al.

The main areas for development are: Quality and Affordability, Safety, Environ-
mental concerns, Efficiency of Air Transport System, Security.

The challenge of quality and affordability is to provide high quality standards to
customers, meanwhile having competitive economy and performance characteris-
tics (e.g. broader choice for journey, higher punctuality, reduced time spent in the
airports, reduced cabin noise, improved comfort) with a 30% or more cut in Direct
Operating Costs.

Safety will remain the highest concern of aircraft industry, although air traffic is
expected to grow significantly.

Requirements on environment will become more restrictive: a 50% cut in CO2
emissions per passenger kilometre and 80% cut in NOx emissions are required at the
horizon 2020. Another objective is to eliminate noise nuisance outside the airport
boundaries by day and night and to obtain a 50% reduction on perceived external
noise by a proper design of aircraft.

The challenges for the air transport system efficiency are very ambitious: a three-
fold augmentation of passengers freight and air traffic, the time spent in airports re-
duced to less than 15 min for short-haul flights and to less than 30 min for long-haul
flights, 99% of the flights able to depart within 15 min of their scheduled departure
time in all weather conditions.

The security challenge have been greatly influenced by the 9/11 terrorist attacks;
the navigation and ATM system must be protected from hostile actions, and the
design should prevent the access to the cockpit during flight.

The operating costs of aircraft can be reduced with increasing size or capacity.
So far, aircraft manufacturers have increased aircraft size by improving the scale of
the smaller ones; this scaling-up process has been possible until hosting 700–800
passengers with the same aerodynamic configuration, but, as remarked in [13], the
advantages of increasing aircraft size further has come to an end with the advent of
the A380 aircraft, being already an issue the integration with current airport facil-
ities. In fact, further extending the conventional concept to much larger size must
satisfy external constraints as compatibility with existing airports (maximum dimen-
sions 80 × 80 m) and meet noise and evacuation regulations.

The future commercial success will strongly depend on the improvement of aero-
dynamic performance. Improving drag would reduce operating costs through in-
creased fuel efficiency, pollutant and noise emissions reduction. During cruise, fric-
tion drag of large aircraft accounts for 45–50% of the total drag and induced drag
for 40–45%. Possible ways of reducing friction drag (e.g. boundary layer suction,
turbulent flow control, etc.) are studied, and it appears that any friction reduction
could be applicable to aircraft configurations, even the innovative ones. On the con-
trary, induced drag depends on the lift distribution over wing span, and the aircraft
configuration is fundamental in this respect; besides, the fraction of induced drag be-
comes more important during take-off (typically, around 80–90% according to [19]),
and this is particularly relevant considering that the one engine failure at climbing
condition represents one of the most demanding constraints. For example, a 1% re-
duction on vortex drag would improve the low speed climb performance to allow an
increase by 1% of take-off weight [18]. Apart from improving the lift distribution
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Fig. 1 Configuration matrix

along span, induced drag can be reduced by increasing span; this would however
increase structural weight, and, for very large airplanes of the class of an A-380, the
airport compatibility criteria can be soon overruled.

Finally, vortex separation increases with aircraft size and becomes a major prob-
lem for airport at which large airliners are operating.

On conventional aircraft, advanced CFD computation, wind tunnel tests, flight
tests and a long service experience have produced such a refined aerodynamic design
that further reductions of induced drag are not easy to be achieved.

Due to limitations of conventional designs, new concepts have been conceived
for future aviation to meet the severe indications by the Vision 2020 report. A well-
known matrix of new concepts is depicted in Fig. 1.

Horizontally, the matrix presents various combinations of one, two or three lifting
surfaces; vertically, different strategies to allocate the payload inside one or two
fuselages or partly or completely inside the wing are depicted.

All these new aircraft configurations are associated with high development risks
and huge costs; thus, they have to be correctly assessed and carefully studied to
convince manufacturers, airline companies and passengers that these concepts are
feasible, viable and safe.

Aircraft manufacturers seem to be more interested to the Blended Wing Body
configuration. Universities are also studying the BWB project; in the period 2002–
2005, a European consortium studied different BWB configurations under the name
VELA (Very Efficient Large Aircraft).

Lockheed–Martin and Stanford University (United States) are also studying the
possibility of a Box-Wing aircraft and C-Wing aircraft. Pisa University (Italy) is
currently developing a Box-Wing aircraft, named PrandtlPlane. The concepts briefly
discussed in the following represent a significant departure from conventional con-
figurations; they are: the Oblique Flying Wing, the Blended Wing Body, the C-Wing
and the PrandtlPlane, the main subject of this paper.
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2 Innovative Designs

2.1 Oblique Flying Wing

Oblique wing and Oblique Flying Wings (OFW) design are both based on a concept
developed in the late 1950s from NASA (see [15] for example). The basic idea of
the Oblique Flying Wing is to have an efficient wing at both subsonic and super-
sonic Mach numbers. The oblique flying wing was found to be a minimum drag
solution in supersonic flow, dominated by wave drag; at low speeds, though, drag is
dominated by induced drag, inversely proportional to the aspect ratio. The most effi-
cient configuration is thus a high-aspect-ratio elliptically loaded wing, which allows
variation in sweep angle depending on flight conditions and speed. A significant
advantage of oblique wings in supersonic flight is discussed in [3] (lift distributed
over about twice the wing length compared to a conventional one); moreover, the
problem of the bending of isobars at the center part of the wing is avoided. The
oblique wing is naturally area ruled, meaning better supersonic performances and
lower drag. In addition, an OFW configuration was found to have a rapid decrease
in cost per passenger-seat-mile with size increase [17].

However, some important challenges are still present in the development of
the OFW. The complexity of the aerodynamic phenomena and their nonlinear and
strongly coupled nature induce difficulties in flight dynamics characteristics: signif-
icant variations in rolling moment with angle of attack are observed. Longitudinal
stability and control remain an issue, especially because of the short moment arms.
Changes in control effectiveness with angle of sweep are observed at moderate and
high lift coefficients. Changing sweep angle means that several parts like engines
and vertical fin would have to move with respect to the body, which leads to com-
plex mechanical systems and weight increase. The dimensions of the viable solu-
tions exceed easily the 80 × 80 m horizontal square. The wheel track needed for
stability during taxi and take-off would also greatly exceed taxiway width, and this
would require to taxi at a sweep angle; take-off would be impossible in this position.

The most complex problem to solve remains the accommodation of passenger,
payload and fuel in the fuselage; integrating passengers into the wing creates a fun-
damental conflict between the packaging capability, which is improved if aspect
ratio is lower, and the aerodynamic efficiency. Passenger comfort is also an issue: a
cabin is windowless, and load factors on passengers far from the centreline would
be unacceptable. The necessary angle of attack of the OFW during flight would also
tilt the seats in an unnatural position.

These showstoppers were judged unacceptable, and the OFW concept was
dropped as a viable commercial aircraft in the 1980s. The new perspectives brought
by the UAVs (Unmanned Air Vehicle) could benefit from the advantages of the
OFW configuration, but this is not a subject of this paper.
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Fig. 2 Design of a Blended Wing Body by Liebeck

2.2 Blended Wing Body

The Blended Wing Body (BWB) concept was initiated at McDonnell–Douglas in
1988 in order to create a new and more efficient configuration for a high-subsonic
transport aircraft. The initial approach was to improve the aerodynamics of conven-
tional aircraft by increasing the wetted aspect ratio. An early BWB design is shown
in Fig. 2, and passenger accommodation is shown in Fig. 3.

The passenger cabin is double-decked and provided with windows on both decks;
egress is effectuated via the main cabin doors in the leading edge and through doors
in the rear spar. Passengers are located in the centerbody, the cargo compartments
are outboard of the passenger bays and the fuel is into the wing, outboard of the
cargo. In this layout, 450 passengers could be hosted in the cabin.

The possible advantages of the BWB configuration are listed below.

Aerodynamics Reduction of wetted area, structurally efficient use of wing span,
optimum span loading, inherently area ruled (ameliorating thus the performances at
transonic speeds), increase of the cruise speed in the transonic range.

Structures Quasi-elliptical distribution of lift, weight and lift applied at almost
the same points of application (reducing thus bending moments), peak bending mo-
ment and shear about one-half of that of a conventional configuration [21, 22], sim-
ple hinged control surfaces and no spoilers.

Noise and Emissions Potential advantages for the BWB configuration could be
a significant reduction in weight, less engine power required and a reduction in fuel
burn per seat mile. The centrebody shields forward radiated noise emitted by the fan
and engine exhaust, and noise is not reflected downward by the wing. An engine
failure cannot impact the pressure vessel, other engines, fuel tanks or systems; fuel
is separated from the passenger by large cargo bays, and the trailing edge controls
are redundant.
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Fig. 3 Blended Wing Body passenger accommodation

The promising performances of the BWB configuration are supposed to represent
a significant step forward in aeroplane design, but, to become operational, several
aspects still need to be assessed. The natural tendency of a flying wing is to have
an unstable behaviour. The instability of flight of a civil aircraft is not accepted for
safety reasons, and, in such a case, the power needed to actuate the controls would
be prohibitive due to the large deflections and the rate of movements of the controls.

Angle of attack and angle of yaw require hard limits in the flight control laws.
Maximum deck angle requirement remains an issue, especially in approach. Air-
port compatibility is also an issue; indeed, for a high-capacity aircraft equivalent
to a B747-8, the wing span attains 85 m. Several solutions for engine integration
were proposed: pod and pylon concept (with engines on top of the body), S-bend
with diverted or mid-bifurcated inlet with Boundary Layer Ingestion (BLI). It is
however not clear which candidate is the most advantageous in terms of weight,
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Fig. 4 General layout of a C-wing design

performances, noise and emissions; the whole design could depend on the concept
selected. If a BLI engine were to be selected, a proper design of the thick airfoil
would be necessary to provide attached flow at the inlet at all angles of attack. The
thick airfoil needed for the passenger compartment is unusual for high subsonic or
transonic speeds; obtaining an attached flow over the main part of the cabin section
appears to be very challenging. Further difficulties could come from the doors po-
sitioned at the leading edge; this location is critical as it is subject to high pressure,
and important drag penalties can be implied by small surface imperfection and door
joints. Passenger accommodation remains the biggest challenge for the BWB. First
of all, most passengers do not have access to any window, affecting the passenger
acceptance, especially for long-haul flights. Another major concern [7] is the dis-
tance from the centre line: passengers will experience unacceptable vertical speed
and acceleration. Emergency egress is also a challenge. The main issue found for
this scheme is that the most central seats are far away from any exit and, thus, the
certification process could fail.

2.3 C-Wing

The C-wing concept was proposed in the 1990s as a solution to the problem of
accommodating more than 600 passenger in an aeroplane that does not exceed the
80-m wing span limit [1, 20, 23, 24]. A C-wing is a wing with vertical winglets at the
tip and horizontal “winglet-let” at the tip of the winglets. Applied to a commercial
aircraft, the design resembles to the one presented in Fig. 4, which features a canard
design as well.

Studies on this configuration show the high value of the Oswald factor for the
C-wing configuration (e = 1.45), meaning lower induced drag; thus, it was con-
cluded that the C-wing configuration achieves almost the same span efficiency as
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Fig. 5 C-Wing passenger accommodation

the Box-Wing configuration without needing an additional area to close the box.
Besides, with a sweep angle of about 35◦, the horizontal winglets are about at the
same longitudinal position of a horizontal stabilizer of a T-tail design to produce a
downward lift component just as the horizontal stabilizer of a conventional aircraft.
Another advantage of the C-wing lays in the possibility offered for passenger ac-
commodation. Studies proved that a sufficiently thick profile could be designed for
the inner wing section that could meet performance requirements meanwhile being
capable of containing passengers inside.

The configuration could allow to place 36 abreast seats in the widest section of
a single deck, as depicted in Fig. 5. In addition, the C-wing configuration could
possibly reduce the intensity of the wake sheet, shrinking separation between two
aircrafts during take-off and landing.

This configuration offers several potential advantages over a conventional one,
as: reduced vortex drag at a fixed span; possible wake vortex reduction; improved
aero-structural performances; aerodynamic load and payload weight distributed
along the span, acceptable balance between all-wing design risks and advantages
(egress, presence of windows); growth potential by fuselage stretching; structure;
single-deck layout (facilitating loading and emergency egress).

The following areas have been identified as challenges to be overcome:

− The aerodynamics of the thick inboard section is unusual for high subsonic or
transonic speeds and has to be thoroughly investigated taking passenger accom-
modation constraints into account. The large wetted area of the vertical wing is
a drawback for the aerodynamic efficiency.

− The effects of the wing shape on structural dynamic characteristics could pro-
duce a significant increase of the aircraft empty weight.

− The flutter characteristics could be dramatic.
− Stability and control characteristics are to be determined. In particular, the pitch-

ing moment behaviour could justify the use of a canard configuration.
− The structural concept for the flat pressure vessel needed for passenger accom-

modation in the central section has to be investigated.
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Fig. 6 Induced drag of “Best
Wing System” (Db) and
monoplane (Dm)

− The detail of the emergency egress is still uncertain, mainly in the central section
where the most central seats are far away from any exit.

In summary, we can remark that the challenges raised by the C-Wing are quite
similar to the issues encountered by the BWB. The two concepts could indeed bene-
fit from the advances of each other, and the airport compatibility issues of the BWB
could be resolved, in principle, by applying a C-Wing design.

All the configurations examined so far are limited to the single category of a very
large aircraft, which represents just a part of the future global market. In the rest
of this paper, we examine the PrandtlPlane configuration to show that all aircrafts,
from very small to very large ones, can be designed with this configuration.

2.4 PrandtlPlane

The PrandtlPlane concept follows an intuition of Prandtl. In 1924, Prandtl [26]
showed that a particular layout exists, called “Best Wing System”, that minimizes
the induced drag for given span and total lift; an exact solution of Prandtl’s problem
can be found in [11].

This system is made of a box in the front view, where the two horizontal wings
are carrying the same lift, and the lift distribution is the superposition of an ellip-
tical part and a constant one; the induced velocity is constant, and its value de-
pends on the total lift. Along the vertical wings, the lift distribution is symmetric
and butterfly shaped, and the induced velocity is identically zero. In this configu-
ration, an important parameter is the gap-to-span ratio, denoted h/b; as this ratio
increases, the efficiency of the wing system increases correspondingly. In the inter-
val 0.1 < h/b < 0.25, this configuration achieves up to 30% reduction in induced
drag with respect to a monoplane configuration (Fig. 6)

The application of Prandtl’s configuration to a commercial aircraft stems mainly
from the fact that, due to the Munk theorems, the induced drag is independent of
the sweep angle of all wings, and thus this concept can be applied to any range
of flight speed. During the period 2000–2002, five Italian Universities cooperated
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in the frame work of a national project to develop a PrandtlPlane aircraft capable
of carrying 600 passengers [8]. The main outcome was the resolution of the con-
flict between the aerodynamic efficiency and the static stability of flight, found in
a previous preliminary study; this conflict is summarized as follows. The centre of
gravity of the aircraft trimmed with equal lifts on both wings is in the middle of
them; the aircraft is stable when the neutral point is backward to the centre of grav-
ity, and, thus, a high aerodynamic efficiency of the rear wing is needed. The solution
is a continuous upper wing over the rear fuselage and connected to the same with a
double fin; the double fin solution is also fundamental to solve the flutter problem,
and, consequently, a new section of the fuselage was conceived through enlarging it
horizontally. The possible benefits of such a configuration are summarized below in
terms of aerodynamics, flight mechanics, structure and operational.

Aerodynamics In addition to minimizing the induced drag, the lift on both wings
points upward, allowing for improved efficiency, simple high lift devices, low ap-
proach and landing speeds, high control capacity.

Flight Mechanics and Control A PrandtlPlane aircraft is stable in flight with a
proper margin of stability, and, at the same time, the two wings have the same lift.
The shape of the PrandtlPlane presents unconventional controls. In particular, the
pitch control could be obtained by means of two elevators located on both front and
rear wing roots, moved in phase opposition; thus, a pure couple without variation in
total lift is produced and safety for pitch manoeuvres is improved, especially close
to the ground. Alternative control strategies are also possible, but they are not faced
in this paper. The strength of the pitch command is high, even with small forces, due
to the long distance between front and rear elevators. Stall is correctly induced in
the front wing first, because the effective angle of attack of the rear one is decreased
by the downwash effect. Locating the fuel in the two wing boxes achieves small
centre of gravity variations, opening the opportunity to optimize one single flight
condition. Concerning lateral control, a typical medium–large sized PrandtlPlane
aircraft presents a twin fin; together with the two vertical tip wings, the system
allows one to adopt different trim and control strategies for lateral motion, and, in
particular, the ailerons can be typically positioned at both wing tip segments to gain
efficiency (e.g. [31, 32]).

Aircraft Layout and Structures The fuselage is structurally equivalent to a
beam, doubly supported by the attachments of the two wings; proper longitudinal
positions of the wings could reduce significantly the maximum bending moment
and, thus, structural weight of fuselage. In order to put the two fins far each other to
check the aeroelastic constraints, the fuselage is enlarged horizontally; sections are
designed to carry flight loads and pressurization. Contrary to conventional aircraft,
the lifting system is over-constrained to fuselage, and it can be easily designed as
“Damage Tolerant”.
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Fig. 7 Artistic view of a PrandtlPlane transport aircraft

Operational The most constraining limit to further improvements of aircraft ca-
pacity is the 80 × 80 m maximum dimensions. The PrandtlPlane configuration al-
lows one to nearly double the capacity of the present aircraft, meanwhile remaining
the overall dimensions into these limits without significant drag penalties. The front
wing could cross the fuselage under the cargo bay, and, as a result, the cargo com-
partment is continuous along the fuselage, enhancing significantly the cargo capac-
ity; if the wing crosses the fuselage under the passenger deck, the wetted fuselage
surface is reduced, while the cargo capacity accords anyway to the standards. More-
over, the time to embark and disembark can be reduced by multiple cargo doors
and by the possibility of loading and unloading at the same time. Certain areas
need however further studies. From a flight dynamics perspective, the unconven-
tional controls of the configuration induce a more complex dynamic behaviour. Due
to the high moment of inertia along the pitch axis, the short period mode is stable
and strongly damped, and the phugoid mode is believed to be stable, though with a
lower damping. The asymmetric modes are however more problematic, and the dou-
ble fin-rudder could pose questions on the dynamic behaviour. CFD studies would
be needed to determine the dynamic derivatives, as empirical methods will not give
accurate results. Also, as noted in [16], the high-lift device design still needs further
studies. The design of high-lift devices will have important consequences on take-
off drag with a possibility of reducing it, which in turn influences engine sizing. The
aeroelastic phenomena remain a challenge. The static phenomena can be governed
by structural parameters of the wings; in particular, the high stability against diver-
gence of the positive-swept front wing allows the unstable negative-swept rear wing
to be stabilized. In general, flutter is a critical aspect of the structural design of large
PrandtlPlane aircraft, where the double fin solution is mandatory.

Applied to a transport aircraft, the PrandtlPlane concept could look like the one
presented in Fig. 7.

From an operational viewpoint, the efficiency of the operations of embarking and
disembarking cargo is improved through multiple doors and a continuous cargo bay.
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Fig. 8 PrandtlPlane configuration adopted by Bauhaus Luftfahrt

Engine Integration Engine placement is not problematic; several options are
possible, with different engines and propellers, as shown in [32] in the case of prop-
fan propulsion, in [25] for turboprop and in [14], in the case of a solution adopted
by Bauhaus Luftfahrt (Fig. 8).

In the rest of this paper, possible applications of the PrandtlPlane concept to de-
velop aircraft of different categories are presented. All the aircrafts proposed are
conceived by using the same basic design rules, in particular as far as aerodynam-
ics and flight mechanics is concerned. Possible applications of different engines to
freighter and passenger aircraft categories are also shown. The solutions proposed
below are only preliminary; some of these solutions are analysed into more detail in
other chapters of this book.

The PrandtlPlane aircraft was conceived in order to fulfill all the requirements
which define a sustainable growth in the civil aviation of the future, as for example,
high aerodynamic efficiency, intrinsic stability of flight, level 1 flight qualities, quick
and easy ground operations, family of aircrafts ranging from small to very large
ones, many possible engine integrations.

3 Civil Transport 250-Seat Category

The example shown in this section is the application of the PrandtlPlane concept
to a 200–300 seat civil transport aircraft. A sketch of a typical configuration of the
aircraft is shown in Fig. 9. There are two decks in the fuselage, one for passengers
and the lower one for goods and luggage. The cockpit is positioned at the cargo deck
level to meet the visibility requirements and, for security reasons, is fully separated
from the passengers; behind the cockpit a room can be present for the pilot rest.

A typical solution consists into two cabin aisles with 10 passengers abreast in
the economic class and 8 passengers in the business class; many solutions are pos-
sible for passenger accommodation, galleys and services as shown, for example, in
Fig. 10, in the case of 258 passengers in two classes (210 + 48).

A family of aircrafts can be obtained with the adoption of same wings as shown
in Fig. 11 [29].
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Fig. 9 View of a 250-seat PrandtlPlane aircraft

Fig. 10 Sketch of a solution with two classes

Fig. 11 Example of a 200–300 passenger family by the adjoin of fuselage barrels behind and
afterwards the centre of gravity; the sweep angle of the vertical wings is changed accordingly
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Fig. 12 The cargo deck with 32 LD3 (top) and 38 LD1 containers (bottom)

Fig. 13 Artistic view of a simulation of ground operations

A typical cargo compartment of a 250-seat aircraft contains 32 LD3 or 38 LD1
containers (Fig. 12), about the double of an equivalent conventional aircraft. In both
cases, the containers are loaded through the two front doors and unloaded by the
rear doors (or vice versa) to halve the time spent for ground operations.

Figure 13 shows a simulation of the ground operations and, in particular, the
cargo loading and unloading, using both front and rear doors at the same time.

Other fuselage design are possible and, sometimes, more efficient. For example,
Fig. 14 shows a fuselage section with a smaller eight. The front wing crossing of the
cargo deck reduces from 38 to 24 the LD3 containers (the standards are satisfied),
but the new cargo bay is continuous once more, and the loading operations are the
same as before. The great advantage of the new solution is a higher efficiency of the
aircraft due to the reduction of weight and wetted surface. The Load Index (LI) and
the Comfort Index (CI) are 0.92 m2 and 1.52 m2, respectively.

The shape of the fuselage is designed in order to optimize the volume in the
cargo compartment and also to obtain a better positioning of the passenger seats.
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Fig. 14 Reduced height
section

Figure 15 shows the external perimeter of the fuselage cross section of the aircraft in
Fig. 9; the curve is joined together with the continuous first derivative; Fig. 15 shows
a sketch of the fuselage structural solution. The internal width of the passenger
compartment is 6500 mm, with a maximum height of 2300 mm; the cargo deck is
4200 × 1700 mm.

The overall dimensions of the aircraft are: 47-m wing span and 46-m length. As
shown in Fig. 15, a vertical strut connects the top and bottom fuselages (except at
the exit and emergency doors).

One keel beam is on bottom of the fuselage, and a second one is possible at
the top to prevent the compression instability of the central fuselage during flight.
The pressurized fuselage is the external contour; the air ducts and other installations
occupy the two top fuselage spaces and the lateral spaces in the cargo deck. The pas-
senger and cargo deck beams have a central vertical support, which is independent
from the pressurization truss; this solution reduces the empty weight significantly.

The main undercarriage is designed according to the aircraft scale; in the present
example, it is made of four groups with 4 wheels, for a total of 16 wheels, 30-inch
diameter.

The structural solutions have been developped on the basis of Finite Element
Method analysis, considering the loads in flight (gusts and manoeuvres) and pres-
surization into account.
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Fig. 15 Reference cross section (left) and structural solution (right) of the fuselage

Fig. 16 Finite Element
model of the central fuselage

Figure 16 shows a typical FEM result of the central fuselage which includes the
sponsons of the main undercarriage (external skin is omitted for the sake of clarity).

These preliminary analyses aim at evaluating the fuselage structural weight, with
the following conclusions: (i) the presence of the central bar (Figs. 15 and 16) re-
duces significantly the weight of the frame and passenger deck, (ii) the solution is
very efficient as far as pressurization is concerned, (iii) a fuel tank is obtained just
in the Centre of Gravity position (with this supplementary tank, the position of the
C.G. during the mission is maintained unaltered), (iv) the presence of the lateral
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Fig. 17 Typical CFD result

sponsons for hosting the main undercarriage does not influence significantly the
aerodynamics of the aircraft, as shown in Fig. 17.

One of the main characteristics of the PrandtlPlane concept is to obtain a Best
Wing System condition in take-off and landing too and to reduce the approach
speed, compared to conventional or innovative aircraft. This result is obtained by
positioning high-lift devices along the two wings. Once again, the Centre of Grav-
ity must be positioned between the two wings, because we can improve lift on both
wings by the same amount. Hence, the condition of Best Wing System during cruise
flight is valid also at low speed with high-lift devices extended. The system of flaps
and slats is simple (plain flap and single Fowler) and the same is valid for controls.
Figure 18 [31] shows a typical solution adopted; in particular, the pitch control is
made by two elevators, one in the front wing and the second on the rear wing. They
are activated in phase opposition in such a way as to generate a pure pitch control
moment, but other strategies are possible by mixing canard and pure pitch moment
controls. This solution could reduce noise and noxious emissions in take-off and
landing according to the above-mentioned principle of sustainable growth. Ailerons
are positioned on both wing tips.

The structural and aeroelastic problems of the lifting systems have been studied
in the past, and some results are also reported in this book [9, 10, 12]; these studies
indicate a high structural efficiency of the present solution.

4 Unmanned Aerial Vehicles

The PrandtlPlane configuration can be applied also to Unmanned Aerial Vehicles
(UAVs). Besides the enhancement of the range, thanks to the lower induced drag,
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Fig. 18 PrandtlPlane high-lift devices layout

Fig. 19 Application to UAV

other advantages are related to the flight mechanics. As shown before, unconven-
tional pitch controls lead to an increase of the manoeuvre capability, and a very
high aerodynamic damping is favourable to the installation of sensors and observa-
tion devices.

One example of the application of the wing-box concept to a UAV is depicted in
Fig. 19 [27]. This model has been conceived for a Vertical Take-Off and Landing
application. The front and rear wings are equipped with elevators for pitch control
and with moveable surfaces on trailing edge with the purpose of minimizing the
wetted area during the vertical flight. The vertical take-off and landing is guaran-
teed by two counter-rotating electric motor fans located inside the fuselage; these
fans permit also the hovering. At the nose of the fuselage the batteries are located.
The horizontal thrust is produced by two electric motor ducted fans inserted on the
vertical wings (bulkheads). If needed, these motors can be also tiltable. All the ro-
tating parts are inside the structure or protected by the wings, giving a high level of
safety for the operator at ground.

A PrandtlPlane wing arrangement allows one to integrate the vertical take-off
propulsion system easily. Indeed, for the equilibrium during the vertical flight or
while hovering, the vertical thrust system must be located on the centre of mass, or,
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Fig. 20 Examples of ultralight PrandtlPlane

alternatively, more than one rotor shall be used. The same is worth for the lifting
system, which, due to trim, shall be located near the centre of mass of the con-
figuration. In a conventional configuration, this leads to a complex integration of
propulsion system and aerodynamic solutions. On the contrary, in the case of the
PrandtlPlane, the vertical thrust system (e.g. ducted fans or one helicopter-like ro-
tor) can be installed between the two wings; moreover, the wings are not subjected
to additional downward flow coming from the vertical thrust, and, therefore, drag
during the vertical flight is reduced.

5 Ultralight Aircraft

For ultralight aircraft, such as those belonging to LSA and ULM categories, the in-
duced drag reduction provided by the “best wing system” turns into a minor benefit
in terms of operating cost, due to the small wing load and the reduced influence of
fuel on the overall operating costs. Nevertheless, the application of the PrandtlPlane
configuration, shown in Fig. 20, is interesting since it introduces new concepts that
may increase the flight safety.

In the accidents of these aircraft, human errors represent about 2/3 of all cases
(Italy, 2009); the occurrence of stall represents a significant part of these accidents
(about 30%), and become fatal for the fire provoked by the contact of fuel with hot
components, like the engine. The PrandtlPlane ultralight aircraft has been devel-
opped to reduce the probability of human errors and the risk of fire ignition inside
the cabin. Regarding the stall occurrence, the advantages are due to an anti-stall be-
haviour and the control in pitch. As shown in Fig. 21 [6], wind tunnel tests have
demonstrated that the PrandtlPlane lifting system reaches the stall condition at an
angle of attack (α − α0) around 15◦, and, after that point, the lifting force decreases
smoothly inside a wide range of incidence. In addition, stall involves the front wing
first, therefore a nose-down moment is generated by the rear wing, and the aircraft
tends to oppose to a further angle of attack increase.

As far as pitch control devices is concerned, it has already said that the
PrandtlPlane control is a pure couple, contrary to conventional one, where pitch
control is a couple associated to a negative force. A sketch of a typical ultralight
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Fig. 21 Wind tunnel tests on
a PrandtlPlane scaled model

Fig. 22 Example of
PrandtlPlane control surfaces
positioning

PrandtlPlane is shown in Fig. 22. Both front and rear wings are provided with ele-
vators, flaps and ailerons.

Another important safety aspect is the prevention from fire ignition inside pilots’
cabin. In a conventional aircraft, the distance between the cabin, the fuel tank and
the engine is small, and, in case of accident, pilots can be exposed to fire. In a
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Fig. 23 Scaled R/C models

PrandtlPlane, since lift force is transmitted to fuselage through two points, it is easier
to balance the aeroplane with the pilots far from fuel and engine.

The PrandtlPlane configuration can provide other advantages, such as high vis-
ibility and flight comfort. The visibility is high because the engine is behind the
cabin; the high damping of the short period mode is obvious; it produces a smooth
response to gust and turbulence and a flight comfort enhancement.

In last years, the Department of Aerospace Engineering of Pisa has carried out
several research projects concerning the design of these aircraft, the development of
design tools and the construction of scaled R/C models (Fig. 23).

As a result of this experience, a full scale prototype has been constructed, with
the characteristics (Fig. 24):

− 2 seats in tandem layout
− Engine: Rotax 912 ULS, 100 hp
− Propeller: 3-blades, pusher, Φ = 1.6 m
− Maximum Take-Off Weight: 500 kg
− Wingspan: 8 m
− Wing area: 14.2 m2

− Cruise speed (approx.): 250 km/h
− Landing Speed (approx.): 65 km/h

6 Example of Application to an Executive Aircraft

Executive aircraft can be designed and modified according to the PrandtlPlane con-
figuration. As an example, we consider the Piaggio P180 aircraft (Fig. 25, [28]),
and we suppose, as an exercise, to improve the performances while maintaining the
same layout and elegance.

The P180 reaches the maximum Mach number of 0.7 at an altitude of 9450 m
and can have up to 9 passengers + 2 crew members, the stall speed is 97 kn, and the
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Fig. 24 Full scale prototype of an ultralight PrandtlPlane

Fig. 25 The Piaggio P180

landing speed is 126 kn. The exercise consists in improving the number of passen-
gers of 4 units, reducing the landing speed to 119 kn and flying at 0.85 Mach cruise
speed.

Figure 26 shows a sketch of a possible new aircraft design; right side shows
the original configuration, and the left side shows the modified aircraft using the
PrandtlPlane configuration.

The number of passengers is increased by removing the cantilever wing from
its present position, to gain the internal volume while the overall centre of gravity
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Fig. 26 PrandtlPlane version of the Piaggio P180

is moved backward. Thus, the present lifting system, made of canard, cantilever
wing and T tail is substituted by the PrandtlPlane wing system, with the following
effects: a reduction of the induced drag for the fixed span, possibility to enhance
the maximum take-off weight and to reduce the maximum lift coefficient by an
improvement of the lifting surface, new high-lift devices on both wings to reduce
further the landing speed, a new aerodynamic control system to improve the safety
during pitch manoeuvres. The new configuration can integrate different engines;
the present turboprop engines could be maintained or substituted by two turbofan
positioned on rear fuselage to get a cruise speed of 0.85 Mach. The modified aircraft
has the same span, smaller overall length and total height, and the same elegant
layout.

7 Liquid Hydrogen Propulsion

The main problems of conventional fuel (Kerosene) are pollution and availability
in the next decades; the problem of new fuels is under discussion for medium long
terms. The new fuels for future aviation could guarantee a reduction of emissions
and allow the civil aviation to grow up. One possible fuel of the future is Liquid
Hydrogen.

Figure 27 shows a comparison between the properties of Kerosene and Liquid
Hydrogen; the liquid hydrogen has the following advantages on Kerosene: no pro-
duction of CO2 and CO, 80% reduction of NOx , 2.8 times energy for unit mass.
On the other side, the drawbacks are: a cryogenic temperature needed, the present
costs of Hydrogen (3–5 times higher) and the volumes of tanks (4 times higher than
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Fig. 27 Comparison between Kerosene and Liquid Hydrogen characteristics

Fig. 28 Present idea on Hydrogen tanks positioning

Kerosene). The configurations proposed so far for using Hydrogen are similar to that
in Fig. 28, made by conventional aircraft containing large tanks on top of fuselage.

The PrandtlPlane configuration provides new solutions avoiding the positioning
of the Hydrogen tanks inside the fuselage. In fact, the main Hydrogen tanks could
be located at the tips of front wing, taking advantage of the particular behaviour of
the lifting system and, meanwhile, relieving flutter problems [10]. A more exten-
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Fig. 29 Cryogenic 250 passenger PrandtlPlane solution

sive description of the PrandtlPlane solution is reported in [4], tuned for a 250-seat
category aircraft as an example of application. In this case, the cruise speed is lim-
ited to 0.75 Mach, the cruise eight is 29.000 feet in order to minimize pollution and
contrails, the range is 2.500 nm.

A sketch of the final configuration is depicted in Fig. 29. In this solution, a tank
is also present in the rear portion of fuselage; reducing the range to 1.800 nm, which
is the most common utilization in continental air transport, this last tank is no longer
needed.

Although the sketch is qualitative and more research activities are needed, the
solution shown in Fig. 29 suggests the way to solve the problem of the fire safety,
taking Hydrogen very far from the passengers. The position of the tanks matches the
requirement for alleviating flutter onset of the PrandtlPlane lifting system, discussed
in [10].

8 Application to Freighters

In the next years, the airfreight may become a strategic sector for the air industry
because of the very high growth expected (about +6% per year).

Air transport could potentially be a solution to improve the international com-
merce if the transportation costs will be cut at a level that the product of an emerging
economy could be profitably transported by air. Thus, the rising of airfreight has to
be supported by proper activities in economy, technology and logistics. This effort
should result into the definition of a new concept of properly conceived freighter,
and the aircraft design should be integrated by a new logistic arrangement in order
to cut the current operating costs.

Given this picture, the PrandtlPlane configuration allows multiple benefits, start-
ing from aerodynamic improvements. Other possible advantages are the following:
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Table 1 Requirements of the
very large freighter Operating requirements

Gross Payload 250 [tons]

Uld 20 ft intermodal container

Range 3000 [NM]

Mcr 0.6

Hcruise 20000 ft

Fig. 30 General layout of a very large PrandtlPlane freighter

the load capacity can be easily increased (250 tons) while maintaining the allow-
able maximum dimensions; the longitudinal stability and manoeuvrability is signif-
icantly enhanced; the fuselage can be designed for intermodal container transporta-
tion; loading and unloading of containers are rapid and safe; the cargo deck is close
to the ground; the fuselage structure is lighter than the conventional monoplane, etc.;
a complete analysis of the application of PrandtlPlane concept to airfreight transport
is to be found in this book [25].

A conceptual solution of a possible PrandtlPlane freighter is presented here to
transport 24 intermodal containers; they are set transversally in the fuselage; the
most important features are reported in Table 1, and a general layout of the aircraft
is depicted in Fig. 30 [25].

In order to cut the operating costs, a new propulsion system is needed; in fact, the
specific fuel consumption of current turbofans is not compatible with goods trans-
portation, and there is no need to fly in the transonic range. From this perspective,
the open rotor architecture represents an interesting solution: its specific fuel con-
sumption is reduced more than 50% compared with existing turbofans, while the
available power is about 14000 ehp per engine. From a first performance estima-
tion, eight engines are required; the PrandtlPlane ensures a high engine integration,
and many different solutions can be considered for the engine positioning. The main
drawbacks of the present open rotors are high noise and vibrations due to the contra-
rotating propellers, especially when flying at a cruise height of about 6.000 m. The
possibility of an easy engine integration will be a key point in this respect.
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Fig. 31 Take-off rotation in a conventional aircraft

As previously said in Sects. 2.4 and 5, the pitch control of a PrandtlPlane is per-
formed using two contra-rotating elevators, placed on the two wings. When applied
to a freighter aircraft, this feature can turn into an advantage in terms of more pay-
load. In fact, in a conventional (wing-tail) aircraft, the take-off rotation is given by
a moment generated by the down-force produced by the horizontal tail and the in-
duced reaction acting on the main landing gear. The rotation is performed around
the landing gear and, being this at a significant distance from the fuselage aft, an up-
sweep angle is required, with the consequence that a fraction of the internal volume
of fuselage is lost (Fig. 31).

In PrandtlPlane, instead, the particular pitch control allows one to generate the
rotation moment aerodynamically. In fact, while the rear wing provides a down-
force, the front wing gives an up-force, and a pitch-up moment is obtained; again,
the take-off rotation takes place around the landing gear, but in this case its distance
from the fuselage aft can be reduced, as well as the volume affected by the upsweep
angle.

As a result, for given fuselage length and section, more internal volume becomes
available; this property could be of great interest in the case of a freighter.

9 An Ultra-Large PrandtlPlane Application

As already said many times, the very large aircraft category is limited by the overall
dimensions; the largest aircraft, Airbus A380, fills completely the 80 × 80 m hor-
izontal square; the conventional configuration does not allow any larger solution.
The contrary occurs for the PrandtlPlane configuration due to the reasons exposed
in the following.

We consider a 1500-seat civil aircraft as reference, and, although preliminarily,
we try to show how the disadvantages of a conventional aircraft can be overcame by
the PrandtlPlane solution. In the conventional configuration, the wing root thickness
is not compatible with overall dimensions of the fuselage; the opposite happens for
the PrandtlPlane, where the total wing surface is divided into two wings, and the
thickness of the front wing is nearly halved. The wing surface of a conventional
very large aircraft, with the limitation to 80-m span, will result into a reduced aspect
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Fig. 32 Fuselage design procedure

ratio; in a PrandtlPlane this limitation is not present, and, moreover, we can reduce
the induced drag by incrementing the vertical gap.

The fuselage section could be doubly symmetric and made by just two circular
sectors; the design procedure is defined in Fig. 32. The first derivative is continuous
everywhere, and the curvature is discontinuous only into four points of the external
perimeter. The fuselage surface is obtained by using ASD (Aircraft Shape Design)
code [5], and the final layout of the fuselage is depicted in Fig. 33. Preliminary
structural analysis indicates that the fuselage empty weight per passenger can be
reduced up to 80% compared to the 250 passengers class, due to the large-scale
effect.

The fuselage section is divided into three decks, two for passengers and the bot-
tom one for cargo. Upper and lower passenger decks contain 16 seats abreast with
three isles each, with a total of 32 passengers per section. A reference solution for
passenger accommodations and a sketch of possible services layout are shown in
Fig. 34. The proposed configuration consists of 1498 passengers in one economy
class, 43 flight assistants and 2 or 3 pilots; any passenger deck contains 19 toilets
(1/40 passengers) and 10 class A emergency exits.

The cargo vain contains 3 LD3 containers abreast per section for a total of 51
containers, corresponding to 0.065 m3 per passenger. As shown in Fig. 35, the fuse-
lage webs are connected by three decks horizontally and two trusses vertically; the
trusses, connecting top and bottom fuselage, are designed against pressurization to
save much weight under internal pressure. The two passenger decks are also con-
nected each other vertically, and they both to the bottom fuselage, by means of
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Fig. 33 Fuselage layout

Fig. 34 Passenger accommodation

supports in order to reduce the empty weight of the two decks. In this way, the fuse-
lage is divided into two lateral compartments and an internal one. In the areas in
front of the exits, some vertical trusses are missing, and some structural problems
could arise; they are solved by means of a proper structural design of the upper keel
beams.

Figure 36 shows a sketch of the aircraft without the engines (different engine
integrations are possible).

10 Conclusions

The interest towards non-conventional aircraft has increased in the last decade. In
this paper, after a brief digression on Oblique Flying Wing, Blended Wing Body
and C-Wing, possible applications of the PrandtlPlane configuration have been in-
dicated. The thesis of this paper is that the PrandtlPlane configuration can be applied
to any kind of transport aircraft, and some examples have been given, ranging from
very small to very large, both civil and freighter, transport aircraft. Very large aircraft
able to transport nearly the double passengers of the largest conventional aircraft fly-
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Fig. 35 A section of a very
large aircraft

Fig. 36 General layout of the 1500-seat civil transport PrandtlPlane

ing today are made possible by the PrandtlPlane concept. The main characteristics
are outlined.
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The Lifting System of a PrandtlPlane, Part 1:
Design and Analysis of a Light Alloy Structural
Solution

Dario Dal Canto, Aldo Frediani, Gian Luca Ghiringhelli, and Mauro Terraneo

1 Introduction

In theory, a PrandtlPlane configuration can achieve up to a 30% reduction in induced
drag with respect to an optimum monoplane configuration [6] with the same span
and total lift; we assume that the lifting system has the same area of a conventional
equivalent aircraft (cantilever wing plus elevator) to avoid any friction drag penalty.
Therefore, for equal span and profiles, the local thickness and the chord are nearly
the half (some more to take the area of elevator into account) of that pertaining to
a conventional wing; thus, the structural design of the lifting system is a big chal-
lenge. In this paper, we aim at carrying out a preliminary structural design of the
wings and to evaluate the overall empty weight. A weight estimation is not possible
using empirical methods, no experience is available on such structures, and, also,
aeroelasticity could have a strong influence on the preliminary design. The lifting
system is made of an aluminium alloy, and the optimization of the structures is con-
ducted using an approach, set up at Polytechnic of Milano, under the constraints of
maximum allowable stress, stability of equilibrium in compression, aileron effec-
tiveness, static aeroelasticity and flutter. Any step of the optimization can produce
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Fig. 1 Artistic view of a 250-seat PrandtlPlane transport aircraft

a weight increment, the level of which indicates the sensitivity to the relevant con-
straint. Some aspects of the design against flutter suggested to investigate with more
detail the flutter problem and also to make the wings in composites. A flutter analy-
sis is reported [8], and a solution made in composites is presented in [9]; both papers
can be found in this book.

The wing sections of both horizontal and vertical wings and the two fins are two-
spar box; in a first model, the box is modelled in a simplified way and described by
means of three parameters per section for a total of 162 degrees of freedom. The
parameters are the skin thickness (the same for panels in tension and compression),
the spar web thickness (the same in the front and rear spars) and the total area of
the stringers (the same in tension and compression). The model proved to be un-
satisfactory mainly because the out-of-plane bending moment is significant; a new
asymmetric box section has then been designed with five parameters per sections
for a total of 270 degrees of freedom. In the first hypothesis the structural weight es-
timation is 17.8% of the maximum takeoff weight, and, in the second one, the new
structural weight results in 15.8% of MTOW. This result is not so different from
the weight of wings, elevator and fin of an equivalent conventional aircraft with the
same span and total lift.

2 The PrandtlPlane of Reference

We consider a 250-seat PrandtlPlane aircraft as reference for the evaluation of the
efficiency of the structural solution. A sketch of the aircraft is depicted in Fig. 1.

The benefits of this configuration are: a more efficient aerodynamics, an innova-
tive pitch control, a high efficiency of the operations of embarking and disembark-
ing of passengers and cargo, easy engine integration, etc; more details can be found
in [7]. The present aircraft configuration was developped to demonstrate the feasibil-
ity of the concept and to evaluate the empty weight without using statistical weight



The Lifting System of a PrandtlPlane (Part 1) 213

Table 1 Characteristics of
reference Feature Value

Range 6000 [nm]

Maximum take-off weight 230 000 [kg]

Take-off airport altitude 0 [m]

Cruise altitude 10 500 [m]

Cruise mach 0.85

W/S cruise 634.3 [kg/m2]

Span 55 [m]

Sref 394.52 [m2]

estimations and starting from a preliminary maximum take off weight assumption.
The useful characteristics of the aircraft are listed in Table 1.

The main characteristics of the aircraft are reported in [7]; in the present anal-
ysis we examine the wing system only. The aircraft shown in Fig. 1 is the result
of an aerodynamic optimization with the constraint of the static stability of flight.
The front wing presents a kink at zero angle of dihedral; at the end of the kink,
the dihedral angle passes from zero to third degree. This solution could introduce
local stress concentration; the present analysis aims also at verifying whether this
aerodynamic solution could be maintained or, on the contrary, needs to be modified.

A reliable evaluation of the empty weight is mandatory in any design approach
of aircraft. In the case of conventional aircraft, empirical and statistical methods
of weight predictions are usually adopted (e.g. [12, 13]); the reliability of these
methods derives from more than 50 years experience on design and utilization. In
the case of a PrandtlPlane, these statistical methods are no longer valid, and no
previous experience is available so far; the only way to predict the structural weight
is to design the lifting system.

The design method adopted in this paper has been carried out at the Department
of Aerospace Engineering of Polytechnic of Milan. This method is an optimization
tool initially conceived for cantilever wings, and it was applied successfully to pre-
dict the empty weight of wings [3]. This tool was then modified to include also a
PrandtlPlane wing system. The optimization procedure is applied to the wing box
only, while the weight of the leading and trailing edge systems is evaluated with
a statistical method developped in [13]; these systems are equivalent to dead loads
positioned along the span. The objective function is thus the weight of the lifting
system box beam, and the optimization is carried out at different stages: results con-
cerning the first stage are reported in this document.

In the first stage the wings are simulated as beams, a mono-dimensional model
subjected to external aerodynamic and inertial forces; the shape of the wing box is a
rectangular section supposed to be continuous along the span so as to use a gradient-
based module for the optimization (SOL200 of Nastran [1]), which was used at
the beginning, while recently OPTIMUS (LMS) has been preferred as optimization
driver, coupled with Nastran for static, dynamic and aeroelastic analyses.
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The positions of ribs are given, and the distance between them is kept constant
both in horizontal and vertical wings and, also, in the fins. In the present preliminary
design, this assumption allows a great numerical simplification of the problem while
the weight estimation was supposed to be acceptable; the final results suggest that
some weight saving could be obtained by removing this hypothesis.

The optimization procedure takes different constraints into account; stability of
the compressed structures, aileron aeroelastic stability, aeroelastic effects on the
loads applied, and flutter. Because the optimization against flutter could depend on
the simplified procedure used, the structure obtained has been then selected as a
basis for specific further analyses reported in this book [8].

The results of the optimization process on the doubly symmetric wing box indi-
cate that the empty weight of the lifting system, including the two fins, is 17.8% of
maximum take-off weight; the optimization was conducted supposing that the total
fuel embarked into the box is 79.790 kg. This structural solution is not the optimum
one due to the hypothesis of double symmetry of the wing box. A new wing box has
been studied with the introduction of two more parameters, namely the areas of two
spar flanges; in this case, the empty weight becomes 15.8% of MTOW, similar to
the actual most efficient conventional aircraft. After the second stage of design, a 3D
Finite Element analysis could allow us to check the reliability of the procedure used
or to study local details of the wing structure; this analysis is reported in a chapter
of this book [9].

3 First-Stage Optimization Procedure

The first-stage optimization is mainly used into the preliminary design stage to de-
termine the best stiffness distributions along the beam axes. The layout of the pro-
cess, with the interactions between the different computer codes, is shown in Fig. 2:

“Interface to aircraft design” is the set of information on wing geometrical
properties, aerodynamic characteristics, load conditions, constraints and constitu-
tive characteristics of materials. The aerodynamic module is a Boundary Element
Method code to determine the pressure distribution on the wings and, also, to locate
the aerodynamic and inertial forces along the wing axes, together with the asso-
ciated moments; these data are transferred to the Structural Optimization module.
The inputs of the Structural Optimization module are the aerodynamic forces ap-
plied and the structural data; the outputs are masses and inertial properties along
the wing spans, local forces and moments applied and the stiffness distribution that
minimize the overall weight resulting from Nastran SOL200 optimizer.

3.1 Structural Model

The process starts with the translation of the basic aircraft design into data for
both structural and aerodynamic models; the initial data include non-structural mass
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Fig. 2 Stage-1 optimization
procedure

(leading and trailing edge) and the fuel mass. The total fuel mass embarked is
79.790 kg, inside both front and rear wings, in accordance to the local volume
available into the wing box. The leading and trailing edge masses are estimated
by means of empirical formulae to take also the masses of the hydraulic, pneumatic
and electric devices into account; the estimation of the total mass of these devices
is 8.638 kg; these masses are assumed to be proportional to the chord lengths and
positioned along the wings as point masses by means RB2 elements. According to
[14], the single plants influence total weight as follows: 29% leading edge mobile
systems, 17% leading edge fixed systems, 21% fixed trailing edge systems, 22%
mobile trailing edge systems, 9% ailerons and spoilers, and 2% others. Figure 3
shows the one-dimensional model of the lifting system, including the masses on the
leading and trailing edge, the masses of fuel and the positions of them. The lift-
ing system has been divided into 54 beam elements, and the nodes are numbered
starting from the centreline of the front wing; elements 1–23 identify the front wing
including the connection wing–winglet, elements 24–29 identify the vertical wing,
elements 30–48 the aft wing, and elements 49–54 the fin of the half wing. Rigid el-
ements RBE2 are used to connect the beam section to punctual masses, i.e. leading
and trailing edge masses put on their centre of gravity; in addition, the structural
mass of the ribs is applied at each end of the beam elements, whereas fuel mass is
divided into a set of concentrated masses, positioned along the span and linked to the
nodes. The local reference system is defined according to Fig. 4; the x-axis in node
i is directed to node i + 1, starting from node 1 of the front wing and following the
sequence of nodes given before; the y axis is directed from the local leading edge
towards the trailing edge, and z-axis is defined according to the right-hand rule. The
model shown in Fig. 3 is generated automatically.
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Fig. 3 One-dimensional structural model of the PrP250, isometric view

Fig. 4 Definition of the local
reference system

The aerodynamic loads are assessed by means of ALIS code [2], developed at
Polytechnic of Milano in the case of linear stationary and non-stationary aerody-
namics. ALIS is a zero-order BEM code, based on a direct integration of the Green
integral equation for stationary and non-stationary aerodynamics corrected with the
compressibility effects; the wake is fixed. A code, ALISEO, generates the surface
mesh, starting from the wing profiles. The aerodynamic analysis is performed by
means of code ALISSTA, which generates the pressure distribution on the wings;
finally, a loading interpolation procedure generates the aerodynamic forces and mo-
ments at the aerodynamic nodes. The interaction between aerodynamic loads and
structural flexibility is accounted for by looping ALIS and NASTRAN, by means
of geometry modifications due to structural deflection; there is no need for a full
convergence, being 98% and more the effects obtained by two iterations and being
load used to modify the structure.

The lifting system is made of Aluminum alloy 2024, with the following proper-
ties: density = 2800 kg/m3, Young’s modulus = 70 GPa, Poisson’s ratio = 0.33,
shear modulus = 27 GPa.
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Fig. 5 Parameter wing section

4 Second-Stage Optimization Procedure

Once the one-dimensional beam system has been optimized, the second stage of
the design procedure is activated in order to define the sections of the wing box
(generated automatically along the span). As said before, this optimization is con-
ducted by means of a neural network, starting from some preliminary assumptions
summarized as follows:

• position of front spar and rear spar: 18% and 68% of the local chord, respectively;
• rib spacing: 0.75 m for all the wings, normal to the local beam axis;
• rectangular shaped wing box (eight and width are the average values of the actual

sections);
• two different models of the wing box, shown in Fig. 5, cases (a) and (b).

The parameters used in Fig. 5(a) to describe the sections have been limited to the
following:

• ts : skin thickness (the same for upper and lower skins).
• tw: spar web thickness (the same for front and rear spars).
• As : total area of the stringer sections (the same for upper and lower panels).

The solutions in Fig. 5(a) and (b), will be discussed separately in this paper; in
the case of the solution in Fig. 5(b), the following parameters have been added:

• CM1, CM2: areas of the flanges in the positions northeast–southwest and
northwest–southeast, respectively.

Other approximations are added to the previous ones, namely:

1. The relationships between the design parameters and the geometric properties
are approximated as follows (Dvprel of Nastran is used):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Jz = (twh + CM1 + CM2 + (As ∗ N))c2

2 + ts
c3

6 ,

Jy = tw
h3

6 + (tsh + CM1 + CM2 + (As ∗ N))h2

2 ,

Jt = 2Ω2twts
ctw+hts

,

(1)

where c, h and Ω are width, eight and area of the section, respectively;



218 D. Dal Canto et al.

2. The initial position of the shear centre is supposed to coincide with the centre of
gravity; during the optimization, the error is corrected;

3. The beam axis coincides with the centre of the section, independently of the
efficiency of the panels in tension and compression;

4. The stiffener sections are the same in the upper and lower panels.

4.1 Objective Function and Constrains

The objective function is the volume of the structure to be minimized. The con-
straints considered are: (i) maximum allowable stress, (ii) instability of stiffened
panels under compression, (iii) aileron’s effectiveness, (iv) aeroelastic effects on
load distribution and (v) flutter speed. A brief description of the single constraints
is exposed in the following.

4.1.1 Stress

Von Mises allowable stress is assumed as 233 MPa at nz = 2.5 limit load factor;
this value is lower than yield stress of the Aluminum alloy (σy = 290 MPa) in order
to account for phenomena like local stress concentrations, fatigue strength, stability
of compressed structures, etc. The allowable stress corresponds to σ = 93 MPa at
cruise speed and Maximum Take Off Weight.

4.1.2 Static Stability Under Compression Loads

The critical stress is evaluated in any compressed panel and is compared with the
actual stress; the optimizer guarantees that the critical stress is not lower than the al-
lowable one (233 MPa). The critical stress of stringers is given by the Euler formula

σScr = π2EIs

l2As

, (2)

where Iz is relevant to the stringer together with the collaborating skin; l is the
distance between the ribs (l = 0.75 m, constant); Az is the area of stringer plus the
collaborating skin. All the stringers are identical with a Z section and a constant
ratio between flange width (d) and height (h) independently of the position along
the span; we assume that d/h = 0.3. The critical stress of a panel under compression
stress is

σP cr = π2Ekc

12(1 − ν2)

(
t

b

)2

, (3)

where t is the equivalent thickness of the panel, ν is the Poisson modulus, b is the
stringer distance, and Kc is a non-dimensional coefficient related to t/b [4].
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Fig. 6 Parameters of the
wing sections

Fig. 7 Stringer section

As said before, we assume a Z section of the stringers and a constant thickness
of the skin (Figs. 6 and 7); besides, the initial area of the stringers is nil because
the efficiency is maximum when all material is into the skin. Thus, we introduce
the stringers to enhance the critical stresses of the panels, and we reduce the skin
thickness step by step, while controlling that the inertial properties from stage 1 are
satisfied at any cycle. This design process is described in the following procedure.

(i) The number of stiffeners, Nr , is initially assumed as a percentage of the box
width, wb.

(ii) The critical Euler and local stresses are prescribed; they are smaller of the
yielding stress of material and higher of the allowable stress, 233 MPa. The
ratio between the stringer thickness and the skin thickness in prescribed in the
range 0.6–1.6 for technological reasons.

(iii) The skin thickness is reduced by steps of 0.01 mm, and, at any iteration, we
impose that the reduction of inertia of the skin (Iskin) is accomplished by an
improvement of the inertia due to the stringers (Istr); in this process the weight,
obviously, cannot decrease.

(iv) Given Istr, we solve a fourth-degree polynomial equation which gives the
height (h) of the stringer and, consequently, the flange width (d), the thick-
ness (t), the stringers area (As ) and the centre of gravity of the stringers are
determined.

(v) The Euler and local critical stresses of the section made by the stringer plus the
collaborating skin area are calculated and compared with the critical stresses
stated before. If the actual stresses are higher than the critical stresses, a new
reduction of the skin thickness is performed and a cycle repeated. The crip-
pling stress is also assessed together with a check to verify that this stress is
higher than the yielding one.
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(vi) The previous procedure is repeated with a new number of stringers.
(vii) The final solution minimizes the total area of the section.

4.1.3 Aileron Effectiveness

Aileron effectiveness is a requirement able to constrain the stiffness of a wing. The
incremental load due to the aileron deflection induces a change in airfoil attitude and
a modification of lifting forces; a positive sweep angle reduces the aileron efficiency
due to the well-known bending effect; the opposite happens for a negative sweep
angle. It is to be noted that PrandtlPlane wings allow one to position the ailerons
on the rear negative swept wing or to split it between the front and rear wings. The
best solution from the point of view of the control efficiency is to split the aileron
on both the wings [10, 15, 16]. In the present analysis, however, only one aileron is
put on the rear wing for simplicity sake and, also, because the aileron efficiency is
very high and no weight increment is produced. Roll effectiveness is evaluated as

η = MRoll

MRollRigid
, (4)

where MRoll is the actual rolling moment, and MRollRigid is the rigid body rolling
moment; the condition η = 0 corresponds to the aileron reversal. The two terms are
obtained as outputs of the application of a unit step of aileron, using the strip theory
to assess the aeroelastic effect.

4.1.4 Static Aeroelasticity

Static aeroelasticity is introduced as follows: initial aerodynamic loads are calcu-
lated in the hypothesis of rigid wing and the weight is minimized; the deflections
of the optimized structure are calculated under aerodynamic loads by modifying the
aerodynamic mesh accordingly; a new calculation is conducted on the deformed
aerodynamic mesh, and the optimization is restarted accounting for the new loads;
the process ends when the deflection stays within a certain tolerance between two
steps.

4.1.5 Flutter Speed

It must be demonstrated that the aeroplane must be free from flutter in the flight en-
velope enlarged by 15%. At the cruise altitude of 10 500 m, the calculation is based
on cruise Mach number, MC = 0.85; at sea level, the diving speed, VD , is directly
correlated to VC , VD = 1.25VC . In order to maintain the CPU time affordable, the
flutter analysis is executed at fixed altitudes (0 m and 10 500 m) and fixed Mach
number (0.8) up to the maximum velocity, Vmax, during the optimization process;
of course, this produces some errors to be discussed later on.
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Table 2 Influence of the constraints on wing weights

Case A Case B Case C Case D Case E

Wingbox, fuselage 1345 1414 1414 978 996

Wingbox, front wing 5313 5837 5837 3845 4065

Wingbox, rear wing 5776 6405 6405 8914 8914

Wingbox, bulk 500 617 617 638 684

Wingbox, fin 1000 1167 1167 1471 1471

Wingbox, complete 27868 30880 30880 31692 32260

Wing, complete 36506 39518 39518 40330 40898

5 Optimization Model with a Three-Parameter Wing Box
Section

The optimization process was applied in the case of a wing box defined by the
three parameters (web thickness, skin thickness and stringer area) for a total of 162
variables with 54 beam elements. The optimization is conducted in the presence of
the wing plants (8.638 kg including all the ribs for a total of 716 kg), and the weight
of the fuel inside (79.790 kg). The constraints are applied successively so that their
influence on the structural design can be easily evaluated; the cases considered are
the following.

Case A: Constraint on maximum stress (233 MPa at the limit load factors n = 2.5).
Case B: Same as Case A with an additional constraint on the stability of stiffened

panels.
Case C: Same as Case B with the additional constraint of aileron’s effectiveness.

The minimum aileron’s effectiveness has been stated as 52%.
Case D: Same as Case C taking static aeroelasticity effects on loads distribution

into account.
Case E: Same as Case D with the additional constraint on flutter speed.

Table 2 shows the evolution of the objective function (weights) following to the
constraints application.

Table 3 shows the percentage of weight increments due to the single constraints.
It is interesting to remark that the design against instability under compression loads
produces the highest weight penalty; the penalty is remarkable on the vertical wings,
subjected to a high compression stress deriving from the lift difference of the front
and rear wings (about 54% on the front wing and 46% on the rear one); in the case
of the fins, the high weight penalty is due to an anomalous sweep angle. The present
sweep angle is too high, and the fin shape has to be modified by increasing root
chord and reducing the sweep angle accordingly, as shown also in [16].

The estimated total weight of the wing box, fins included, is 32.260 kg, and, con-
sidering the control systems, it becomes 40.898 kg, 17.8% of MTOW. In a modern
two-engine transonic aircraft (e.g. A300) the weight of the lifting system is about
16.5% of MTOW; the fuel weight is not included, though it has been considered in
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Table 3 Percentage variation
of structural weights ΔA−B ΔB−C ΔC−D ΔD−E

Wingbox, fuselage +5.1% 0% −30.8% +1.8%

Wingbox, front wing +9.9% 0% −34.1% +5.7%

Wingbox, rear wing +9.8% 0% +39.1% 0%

Wingbox, bulk +23.4% 0% +3.4% +7.2%

Wingbox, fin +16.7% 0% +26% 0%

Wingbox, complete +10.8% 0% +2.6% 0%

Wing, complete +8.2% 0% +2.0% +1.4%

the structural model. Thus, the first solution found is unfavourable compared with
the empty weight of an efficient conventional aircraft.

The constraint on aileron’s effectiveness does not require any additional weight;
the particular geometry of the lifting system, with the ailerons mounted on the neg-
ative swept wings, offers high aileron efficiency. As said before, the final configu-
ration of ailerons will be different, with double ailerons at the tips of both wings;
the efficiency of this system will not vary significantly. Static aeroelastic effect on
load redistribution is favourable for the front wing, where lift is reduced due to out-
of-plane bending and torsion coupling that generates lower angles of attack and is
unfavourable for the aft wing where the opposite occurs. Taking these previous ef-
fects into account, the overall result is a 2% increase in total weight. The movement
of the centre of gravity of the whole wing during the optimization is taken into ac-
count. The introduction of the Flutter constraint produces a weight increment on the
front wing (including the trunk inside the fuselage) and also in the vertical wings;
owing to the stiffness improvement introduced before, the rear wing already satisfies
the flutter constraint. Some comments on flutter are needed; first, the flutter analysis
is approximate; second, there is a total lack of data and experience about the flutter
phenomenon of a PrandtlPlane wing. For these reasons, a detailed study on flutter
has been reported into a proper paper, published in this book [8]. According to the
results shown before, the flutter constraint produces 1.4% increment of total weight.
The final weight repartition is the following:

• Back wing 55%
• Front wing 32%
• Winglets 4%
• Fins 9%

Now, some characteristics of the sections are illustrated. Figure 8 shows the skin
thickness of the aft wing and the variations due to the constraints application. Node
1 is at the central section of the aircraft, node 4 is at the outer fuselage, node 9 is
the end of the kink, and node 23 is the wing tip. The curve corresponding to step
A is the highest one, and the maximum is located at node 9, the end of the kink.
Passing from A to B (B and C are equal), the thickness diminishes of about 7 mm;
more significant reductions occur for step D (static aeroelasticity), and no other
variation is introduced for step E (flutter). The thickness is reduced when passing
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Fig. 8 Skin thickness of the aft wing along the span

Fig. 9 Stringer section along the aft wing

from step A to B due to the introduction of stiffeners; in total, the presence of the
stiffeners produces an improvement of material volume given the lower efficiency
of them, compared to the pure skin. The end of the kink appears to be a critical
point; the results of the structural analysis confirm this conclusion, as shown in the
next figures. All the curves converge in node 18 (at about 78%, of the span), where
bending moment My becomes zero. Flutter produces only a slight modification of
thickness; on the contrary, static aeroelastic effects on load distribution reduce the
thickness significantly (from 33 mm to 18 mm).

The area of the stringers in the aft wing is deployed in Fig. 9; the variation along
the span is similar to the skin thickness; the static aeroelasticity reduces the stringer
sections, and the aeroelastic constraint does not modify the weight of the stringers
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Fig. 10 Skin thickness variation on the vertical wings

Fig. 11 Stringers section area on the vertical wings

with the exception of node 16. Once again the end of the kink, node 9, is the most
critical section of the aft wing.

Along the vertical wing, the skin thickness experiments small variations; the
same happens for the area of the stringers (Figs. 10 and 11).

The evolution of the skin thickness along the aft wing box is presented in Fig. 12,
where node 30 is the wing tip, node 46 corresponds to the position of the fin, and
node 48 to the symmetry plane. Between node 38 and wing tip, the thickness im-
proves, and the contrary happens (with a more evidence) from the root to node 38.
The skin thickness is always maximum at the fin support (node 46). Contrary to the
aft wing, the static aeroelasticity constraint produces a weight increment; the flutter
constraint is more influent in the tip segment (between node 37 and the tip). The
thickness is very high (very close to 40 mm) around the fin support even though the
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Fig. 12 Skin thickness of the aft wing

Fig. 13 Area of the stringer section of the aft wing

peak of thickness is local and can be reduced in a local design; serious technolog-
ical problem could arise, but, fortunately, the skin thickness in that region will be
strongly reduced when adopting an asymmetrical box section (see the next section).
A similar behaviour happens for the stringer section in Fig. 13, which, in turn, is the
same of the My bending moment [5].

The skin thickness of the fin varies according to Fig. 14. The differences are
more significant close to the aft wing (node 49), where the final thickness is near to
32 mm; the thickness variations are very small in correspondence with the rear wing
tip (node 54), where the thickness is about 7 mm. The area of the stringer sections
varies in accordance to the variation of the thickness, as deployed in Fig. 15.

The final thickness of the spar webs is, in general, high: in the front wing (Fig. 16)
it varies between 6 mm at node 16 to 20 mm at node 9, and, the rear wing (Fig. 17),
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Fig. 14 Skin thickness of the fin box

Fig. 15 Area of stringers in the fin box

between 5 mm at node 38 to 44 mm at node 45. The end of the kink in node 9
continues to be critical.

The primary difference between a PrandtlPlane wing and a cantilever wing is
shown by the out of plane bending moment diagram. On a cantilever wing the bend-
ing moment is nil at the tip, while in the case of a PrandtlPlane is nil before (about
3/4 of span); thus, the maximum bending moment at the wing root is lower than
that of a traditional aircraft under the same total loads. The bending moment distri-
bution on the rear wing is clearly influenced by the presence of the fin, and, in order
to reduce empty weight, the design features a maximum distance between the two
fins.

The rear wing, even though the volume of the structural material is higher, has
a smaller out of plane, in plane and torsional inertias with respect to the front one,
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Fig. 16 Spar web thickness of the front wing

Fig. 17 Spar web thickness of the rear wing

due to the smaller thickness of the airfoils; more details on the final inertial charac-
teristics can be found in [5].

Following the optimization process, a comprehensive flutter study was conducted
in order to give more insight into the flutter mechanism and to understand the limits
of the simplification adopted. For the PrandtlPlane lifting system, the problem of
flutter prediction is particularly important owing to the lack of data and flight expe-
rience. A comprehensive flutter analysis is reported in a chapter of this book [8].

6 Optimization Model with a Five-Parameter Wing Box Section

The box beams of the lifting system experience in-plane and out-of-plane bending
moments along the span. In plane is referred to the moment vector in the plane of the
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Table 4 Total weight variation history of the asymmetric section

Case A Case B Case C Case D Case E

Wingbox, fuselage 1228 1304 1304 933 933

Wingbox, front wing 4425 4701 4701 3362 3362

Wingbox, rear wing 5039 5502 5502 7277 7298

Wingbox, bulk 662 814 814 842 842

Wingbox, fin 984 1152 1152 1477 1477

Wingbox, complete 24676 26946 26944 27782 27824

Wing, complete 33314 35584 35584 36420 36462

wings and produces compression or tension in the skins, typical of a cantilever wing;
out of plane is the component orthogonal to the first one, similar to the bending
moments due to wing drag. The stiffness to react against the out-of-plane bending
moment is given by the front and rear webs. In a PrandtlPlane, the out-of-plane
component is relatively high; thus, two corners of the rectangular box (the farthest
from the resultant neutral axis of the section) are the most stressed, and more axial
stringers have to be positioned there to gain the maximum efficiency. A symmetric
box wing section is clearly unfit to minimize the empty weight; an unsymmetrical
section is needed, and there are many ways to do so. We examine the one, in which
the external section shape is rectangular again, but two new variables are introduced:
the areas of the spar flanges. With reference to Fig. 5b, flanges 1 are positioned in the
NorthEast and SouthWest corners, and flanges 2 are in the NorthWest and SouthEast
positions.

Consequently, the number of the variables improves from 162 to 270 with a very
relevant increase in computational time. The equations to evaluate the beam cross
section (A), principal inertia moments (I1 and I2), static inertia moment (I12) and
the torsional stiffness coefficient (J ) are changed correspondingly. After having im-
proved the number of parameters, the optimization process proceeds in the same
way as before. Starting from the base solution (step A), where the von Mises stress
is limited to 233 MPa, the sequence of constraints is the same. Table 4 summarizes
the influence of the constraints on the weight of the single parts in the asymmetric
wing box; Table 5 shows the incremental percentage variations.

Total weight (fuel excluded) has been reduced to 36.462 kg corresponding to
a structural wing box of 27.824 kg; compared with the weight of the symmetric
box (32.260 kg), we obtain a reduction of 4.436 kg, i.e. a reduction of 13.75% of
the initial one; the total weight is now 15.8% of the MTOW, very close to that of
a conventional aircraft. From Tables 2 and 4 it results that the main advantage of
the asymmetric box concerns the condition of maximum allowable stress; flutter
constraint is also less critical than before. Some remarks could be interesting. The
introduction of the constraint on the static stability under compression (case B),
produces a weight penalty of 9.2% on the rear wing and 6.2% on the front one; this
result is also influenced by the dihedral angles (negative on the rear wing and pos-
itive on the front one). The weight increment of the vertical wings is caused by the
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Table 5 Relative variation
history of the asymmetric
section

ΔA−B ΔB−C ΔC−D ΔD−E

Wingbox, fuselage +6.2% 0% −28.5% 0%

Wingbox, front wing +6.2% 0% −28.5% 0%

Wingbox, rear wing +9.2% 0% +32.3% 0.3%

Wingbox, bulk +23% 0% +3.4% 0%

Wingbox, fin +17% 0% +28.3% 0%

Wingbox, complete +9.2% 0% +3.1% 0.1%

Wing, complete +6.8% 0% +2.4% +0.1%

compression loads, which depend on the higher lift acting on the lower wing (53%
on the front wing and 47% on the rear one). The effect of the static aeroelasticity
constraint is twofold: a reinforcement of the rear wing to recover stability against
divergence and a reduction of material on the front wing; on the whole, it results in
a modest weight increment (about 3.1%). A small weight increment is due to Step E
(flutter) only on the rear wing. In total, the final weight distribution is the following:
Rear wing 52% , front wing 31%, two fins 11%, winglets 6%. Now, we can compare
the local characteristics of the sections, described by three and five parameters.

7 Comparison of Symmetric and Asymmetric Wing Box

The skin thickness of the optimum front wing asymmetric box is smaller of the
symmetric one; the maximum reduction is from 19 mm to 11 mm and occurs at the
end of the kink (node 9 in Fig. 18); a thickness improvement occurs (from about 9
to 14 mm) in the transition with the vertical winglet (nodes 20–23). The thickness
peak around the end of the kink is due to a stress peak produced by the geometric
discontinuity, and it could be reduced by local modifications, to be introduced in
a detailed design step. In the symmetric case, the reduction of the skin thickness is
localized in the range between nodes 18 and 19; in the asymmetric case the presence
of the flanges produces a skin thickness reduction in a larger segment (between
nodes 14 to 20).

In the lower segment of the winglet (starting from node 24), the opposite hap-
pens, with a thickness improvement of about 6 mm. As shown in Fig. 19, the thick-
ness is small in the middle of the winglet, where the aerodynamic loads are small as
well.

The comparison between skin thicknesses of symmetric and asymmetric sections
of the rear wing is depicted in Fig. 20. The skin thickness reduction in the asym-
metric section occurs along the whole span. The comparison of the skin thickness
of the fins is depicted in Fig. 21; the thickness variations are more evident in the
connection between fin and rear wings, where the difference is not totally realistic;
no significant variation occurs elsewhere.

In the following figures the comparisons between the web thicknesses are pre-
sented. The effect of the asymmetric solution is very important in the case of the
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Fig. 18 Comparison between skin thicknesses of symmetric and asymmetric box of front wing

Fig. 19 Comparison between skin thicknesses of symmetric and asymmetric box of winglet

front wing where a reduction from 19 mm to 12 mm happens in the kink region; the
thickness is reduced everywhere in the span (Fig. 22). Figures 23, 24 and 25 show a
trend which is common to the other parameters, that is, a weight relief along all the
span and a cut of the local peaks of thickness; this last aspect is an important benefit
of the asymmetric section as far as technology is concerned. The same conclusions
can be carried out as far as the area of the stringers are concerned; these results can
be found in [5].

Due to the introduction of the cross lumped masses at the vertices, the principal
axes of inertia rotate from the horizontal direction; this rotation is a consequence of
the section design and, thus, is taken into account during the optimization process.
More details on this modifications are to be found in [5] and show that, even though
the rotation is smaller than 10 degrees, the weight reduction is relevant, as proved
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Fig. 20 Skin thickness comparison on the rear wing

Fig. 21 Skin thickness comparison on the fin

by the significant. decrease of the total weight. The material to react to torsion is
reduced thanks to the introduction of the asymmetry. In the case of the front wing,
the reduction is large between the root and half span, and the same occurs for the
rear wing [5].

Lastly, a comparison between the structural weight of the PrandtlPlane wing (fuel
excluded) and three conventional airplanes have been chosen for comparison. The
wing mass of A330-300, B767-300 and B777-300 are not explicitly available, and,
thus, some analytical/statistical procedures have been conducted; also the tail weight
has been estimated. The comparison is reported in Table 6.

In the limit of the approximations adopted in the present conceptual design,
the PrandtlPlane configuration results comparable, in terms of wing structural ef-
ficiency, to standard solutions once the same material, an Aluminium alloy, is used.
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Fig. 22 Spar web thickness comparison in the front wing

Fig. 23 Spar web thickness comparison in the vertical wing

Table 6 Comparison of the
wing weights of different
transport aircraft

A330-300 B767-300 B777-300 PrP250

Wto [kg] 230000 158758 299370 230000

Wwing+tail [kg] 37067 22701 52438 36462
Wwing+tail

Wto
[%] 16.1 14.3 17.5 15.8

8 Conclusions

A structural design of a PrandtlPlane wing system is carried out in order to evaluate
the efficiency to be compared with conventional aircraft wings. The aerodynamic
design of the wing system includes a kink and, at the end of it, a variation of the di-



The Lifting System of a PrandtlPlane (Part 1) 233

Fig. 24 Spar web thickness comparison in the rear wing

Fig. 25 Spar web thickness comparison on the fin

hedral angle. The structural design has been developed by means of an optimization
procedure set up at Milan Polytechnic, with the following constraints: maximum
stress of 233 MPa at the limit load factor n = 2.5, stability of compressed panels,
aileron efficiency, static aeroelastic effects on load distribution and flutter.

The results obtained indicate to modify the doubly symmetric wing box shape
introducing an asymmetric section.

This modification proved to be successful and the total Wwing/MTOW passed
from 17.5% to 15.8%, similar to well-optimized conventional transport aircraft. Skin
and spar webs are thick, and the consequent technological aspects have to be faced
with great attention. In particular, the skin thickness, web thickness and area of
the stringer section present a peak in correspondence of the end of the kink. The
analysis performed in this paper indicates that the double dihedral angle of the front
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wing must to be modified into a single constant dihedral angle all over the span.
Thus, the weight estimation performed so far could be ameliorated.
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The Lifting System of a PrandtlPlane, Part 2:
Preliminary Study on Flutter Characteristics

N. Divoux and A. Frediani

1 Introduction

Aeroelasticity is the field in aerospace engineering that considers phenomena of in-
teraction between aerodynamic flow and elastic structures. At the event of aviation,
aeroelasticity was not entirely understood, and its influence not recognized. Aeroe-
lastic issues became important when aircraft increased their size and became lighter,
while flying faster and higher. Unexpected large deflections and self-sustained oscil-
lations with dramatic rate of growth that could both lead to structural failure started
to appear. Once these phenomenons were recognized after World War I, simpli-
fied static and dynamic analyses were carried out. During World War II, significant
improvements in aeroelastic analysis were made by taking the effect of compress-
ibility and unsteady aerodynamics into account. In the 1960s, digital computers
contributed to new prediction methods, and the first methods for three-dimensional
incompressible unsteady flow appeared. In the 1970s it became possible to pre-
dict the dynamics of real aircraft configuration. These analysis took place during
the verification stage of the design. The growing power and availability of today’s
computing methods tend to consider aeroelasticity earlier in the design cycle, and
modern transport aircrafts are now optimized taking aeroelasticity into account. The
problem of aeroelasticity is thus shifting from preventing instability at the stage
of design verification to designing a configuration in which aerodynamics, struc-
ture and active control are optimally combined for maximum performance and effi-
ciency.
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Flutter, in particular, is a self-sustained excitation of the structure by the airflow
around it arising at certain conditions of airspeed, dynamic pressure, centre of grav-
ity position and configuration. It must be demonstrated that all different configura-
tions of the aircraft are free from flutter. Thus, all aerodynamic and structural varia-
tions have to be assessed. Aerodynamic variations are particularly critical in combat
aircraft, in which external store configurations significantly affect both aerodynamic
and mass properties, but different loading conditions are present in civil aviation as
well, according to the fuel on board and flight altitude. Combining all possible varia-
tions leads to a significant amount of cases, and computation costs and time increase
significantly. It is thus of common practice to reduce these cases to a subset that can
be treated in a realistic amount of time. They are called critical configurations and
are most susceptible to cause problems. These configurations are based mainly on
previous experience and empirical methods. There is then the risk that the most crit-
ical configuration is not detected and not analysed; this risk is present also in the
actual case of a non-conventional lifting system.

In the previous structural analysis of the lifting system of a 250-seat PrandtlPlane
(“PrP250”), the wing design was performed through an optimization procedure un-
der the constraints of allowable static stress, structural stability under compression
loads, static aeroelasticity and flutter too. Thus, the constraint of static aeroelasticity
has been already accomplished; the introduction of the flutter constraint produced a
weight increment, but the final flutter speed was close to the critical one, and, also,
some approximations were present in the computation procedure; finally, no past
experience is available on the PrandtlPlane wings. Thus, the design against flutter
has been performed once more with the aim of investigating the influence of the
main parameters and possibly finding the weight penalty associated to modify the
structural configuration.

For an unconventional concept as the PrP250, the problem of flutter prediction
is particularly delicate. For traditional aircraft, flutter analysis is in general based
on previous experiences; for the case of the PrP250, the total absence of previous
analysis requires theoretical studies. The structurally closed lifting system of the
PrandtlPlane offers though new opportunities to solve possible flutter problems. On
conventional aircraft, if flutter is detected in the increased flight envelope, the so-
lution is to increase the stiffness (and weight) of the structure. This is not easy in
our system because it is six-degree-of-freedom overconstrained to the fuselage, as
shown in Figs. 1 and 2, and any local stiffness modification influences the behaviour
of the whole lifting system. No previous study on this subject is available till now.
A preliminary study of the flutter characteristics of the lifting system is presented in
this paper.

From an airworthiness point of view, aeroelastic effects and particularly flutter
are of primary importance. The JAR-25, relative to transport aircraft, states that:

(a) The aeroplane must be designed to be free from flutter and divergence (unstable
structural distortion due to aerodynamic loading) for all combinations of alti-
tude and speed encompassed by the VD/MD versus altitude envelope enlarged
at all points by an increase of 15% in equivalent air speed at both constant Mach
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Fig. 1 Artistic view of a PrandtlPlane transport aircraft

Fig. 2 Concept of a PrandtlPlane aircraft presented at the Berlin air show ILA 2008 by Bauhaus
Luftfahrt

number and constant altitude, except that the envelope may be limited to a max-
imum Mach number of 1.0 when MD is less than 1.0 at all design altitudes
[. . . ].

(b) When MD < 1, a proper margin of damping exists at all speeds up to MD , and
there is no large and rapid reduction in damping as MD is approached.

(c) The aeroplane must be free of flutter or divergence that would preclude safe
flight, at any speed up to VD after:
(c1) Failure of any single element of the structure supporting any engine, in-

dependently mounted propeller shaft, large auxiliary power unit or large
externally mounted aerodynamic body.

(c2) Absence of propeller aerodynamic forces resulting from the feathering of
any single propeller, and, for aeroplane with four or more engines, the
feathering of the critical combination of two propellers.

(c3) Any single propeller rotating at the highest likely overspeed.
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(c4) Failure of critical component identified in 25.571 (e.g. wing, empennage,
control surfaces, fuselage, engine mounted landing gear).

(c5) Any single failure in any flutter damping system.

The wing system shown in Fig. 1 is the result of a previous analysis regarding Flight
Mechanics and Control and, also, an optimization of the propulsion system; this
analysis has indicated that the best propulsion system consists of two turbofans
positioned in the rear fuselage; the wings are then free of concentrated loads and
aerodynamically clean; consequently, all the constraints (c1–c5) are satisfied.

The certification process is strongly influenced by flutter verification, and com-
pliance with the requirements must be shown by analysis, wind-tunnel tests and
flight tests. Practically, analytical results are often verified by wind-tunnel flutter
models and ground vibration tests. The final verification is done by flight tests to
prove the compliance of the aircraft to the requirements.

The development of flight flutter test technique becomes then essential to ac-
curately determine the flutter characteristics of the actual aircraft. Although essen-
tial, these tests are very delicate to perform because of their dangerousness and
the possible loss of vehicle. Even today, these tests are considered hazardous. In-
deed, the speed needed for accurate predictions must be close to the actual flutter
speed. Then, the trends in damping used to determine stability at a higher speed
are not always accurate. Finally, aeroelastic stability may change from a stable to
an unstable condition abruptly for a small increase in airspeed so that sudden flut-
ter arises. In the case of the innovative PrandtlPlane, the difficulties are even more
incremented. The advent of computers improved greatly the prediction speed. Fre-
quency and damping were determined by parameter identification and their trends
established as functions of airspeed. Extrapolation was used to determine the flutter
speed. The drawback of this technique is that it requires many test points (e.g. 177
for a Gulfstream III aircraft [6]) to clear the flight envelope of the aircraft. A damp-
ing trend is then computed as a function of airspeed and extrapolated to determine
the stability of the next point. In any case, a preliminary flutter analysis is funda-
mental in the development of the aircraft.

Flutter analyses are conducted using the flutter resolution method of the MSC
NASTRAN® program. It was found that the structure optimized for all constraints
does not meet exactly the requirement on flutter speed due uncertainty of the struc-
tural damping and to a simplistic flutter analysis in the optimization process; as said
before, the structure optimized for all constraints but the one on flutter was thus se-
lected as a basis for further analyses. Two different methods are then used to meet
the flutter requirement: first, the skin thickness is increased on both wings. A para-
metric study allowed us to find out that the most efficient way to meet the flutter
speed requirement was to increase the front wing’s skin thickness. A 3.58% increase
in structural weight is necessary to meet the flutter speed requirement. Finally, fuel
mass was added at the tip of the wings; again different parameters (weight, position,
distribution front/aft wing) were varied, and it was found that adding fuel mass at
the front wing’s tip allowed the structural design to clear flutter speed.
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2 Flutter Analysis with MSC NASTRAN®

The default method to solve the flutter equation in MSC NASTRAN® is the p–k

method. In order to implement a flutter analysis into MSC NASTRAN®, we start
from the equation of flutter [2]:

[
Mhhp

2 +
(

Bhh − 1

4
ρc̄V QI

hh/k

)
p +

(
khh − 1

2
ρV 2QR

hh

)]
{uh} = 0, (1)

where

Mhh: Modal mass matrix
Bhh: Modal damping matrix
Khh: Modal stiffness matrix
QI

hh: Modal aerodynamic damping matrix, a function of M and k

QR
hh: Modal aerodynamic stiffness matrix, a function of M and k

p: Eigenvalue
g: Artificial structural damping
γ : Transient rate of decay coefficient. The structural damping coefficient is g =

2γ

c̄: Reference chord length.

The eigenvalue p is

p = ω(γ ± i). (2)

As written in Eq. (1), all the matrices are real. QR
hh and QI

hh are, respectively, the real
and imaginary parts of the aerodynamic force matrix Qhh. The reduced frequency
and circular frequency are related by

k = ωc̄

2V
or (3)

k = c̄

2V
Im(p). (4)

The solution of the p–k method is found by writing Eq. (1) in state space form,

[A − pI ]{ūh} = 0, (5)

where [A] is the real matrix

[A] =
[

0 I

−M−1
hh [Khh − 1

2ρV 2QR
hh] −M−1

hh [ 1
4ρc̄V QI

hh/k]
]

, (6)

and {ūh} now contains both modal displacement and velocities. Now, the oscillatory
solutions of Eq. (1) require an iterative solution satisfying both Eqs. (1) and (4).
Once the k values are found, as well as the converged values for p, γ is computed
as follows:
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• For real root,

γ = pc̄

V ln 2
; (7)

• For complex root,

γ = Re(p)

Im(p)
. (8)

Then, the virtual structural damping g is computed from g = 2γ . The flutter is
assumed in the point where g = 0, and flutter occurs for g > 0, i.e. for a complex
root with a positive real part.

One advantage of the p–k method is that the matrices treated are real, making
the computations easier. The aerodynamic forces matrix is decomposed into real
and imaginary parts; the imaginary matrix is interpreted as a damping, and the real
part is related to a stiffness. The convergence to the solution is rapid, and the results
are produced directly for given values of the velocity. The following treats how the
analysis is set up for application to the case of the PrP250. The structural model has
already been presented in [4].

2.1 Aerodynamic Model

An aerodynamic model is used to solve the following matrix equations that in turn
will give the aerodynamic forces and moments.

The aerodynamic method used by MSC NASTRAN® in subsonic regime is
called the Doublet-Lattice method (DLM) and was first presented by Albano and
Rodden [1]. This method, based on linearized aerodynamic potential theory, is com-
monly used for the calculation of unsteady air loads on an aircraft. The downwash
factors in the DLM are calculated as the sum of an exact steady component and
an approximated unsteady component. All lifting surfaces are assumed to lie nearly
parallel to the flow and are divided into flat finite panels, as shown in Fig. 3. As the
lifting surfaces are divided into finite panels, the DLM suffers from a discretization
error and is sensitive to chordwise panelling. Thus a minimum number of chordwise
boxes per wavelength has to be specified to limit this error, as well as a maximum
box aspect ratio to limit the integration error. These issues are addressed in Ref. [11].
In MSC NASTRAN®, a minimum of 12.5 boxes per wavelength is advised, as well
as a maximum box aspect ratio of 3. In Figs. 4(a) and 4(b), the boxes per wavelength
are depicted for two different velocities. The number of boxes per wavelength is cal-
culated as follows:

box

wavelength
= πc

k�x
= V

f �x
. (9)

The minimum number of box, the worst case, encountered during the flutter
analysis is for Vmin and fmax. The maximum frequency chosen is of 8.25 Hz, cor-
responding to the frequency of the 10th mode. From Fig. 4(a) it is clear that the
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Fig. 3 Aerodynamic model
of the PrP250

aerodynamic model does not respect the minimum criteria at V = 58 m/s, but for
a small increase in speed (V = 128 m/s), this criteria is met (see Fig. 4(b)). It is
however not of primary importance to meet this criteria at low velocities and high
frequencies, as the region of interest is the one in the vicinity of the flutter point
which lies further in the velocity plot (see Sect. 3). Also, the 10th mode is unlikely
to cause instability, and thus the considered frequency may be too high. Moreover,
as discussed previously, the flutter model far from the flutter point does not give an
exact solution; the results at low velocities are thus to be taken as trends, and an
approximate model is sufficient for that. Finally, modifying the aerodynamic mesh
to meet the criteria at the lowest velocity of the analysis (6 m/s for the analysis
at cruise altitude) would increase significantly the size of the mesh and induce an
unacceptable increase in required computer memory and computing time.

As already said, a maximum aspect ratio is set for the aerodynamic mesh in order
to limit integration errors. The following figure (Fig. 5) shows the aspect ratio of the
adopted aerodynamic model. The criteria of a maximum aspect ratio is met for the
whole mesh. Meeting these criteria was also a reason why the previous criteria is not
met for low velocities. To meet the first criteria, the chordwise elements had to be
diminished. In order to meet the aspect ratio criteria, the spanwise elements would
have to be diminished accordingly, increasing even further the size of the mesh.
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Fig. 4 Number of box per
wavelength of the
aerodynamic mesh

Fig. 5 Boxes aspect ratio of
the aerodynamic mesh
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2.2 Aero-structure Coupling

Now that the structural and aerodynamic models needed for flutter analysis are pro-
vided, a special tool is needed to connect them and make them interact. The struc-
tural deformations need to be transferred to the aerodynamic mesh so that it can
deform, and the forces on the aerodynamic mesh need to act on the structure. In
MSC NASTRAN®, the two grids are connected by interpolation. This way, a num-
ber of grid points of the structural grid are selected by the user to be connected
to the aerodynamic surfaces. The interpolation method is called splinning, and the
group of selected points a spline. In the splinning theory of MSC NASTRAN®, the
structural points are chosen as independent degrees of freedom; the aerodynamic
degrees of freedom are dependent. For the structural model of the PrP250, the cho-
sen structural points are the points on the leading edge and trailing edge; this choice
allows a limited number of structural points to describe correctly deflections and
twisting, which is an asymmetrical deflection of two points at the same span posi-
tion. The dependent aerodynamic points are the middle points of the aerodynamic
mesh. A matrix relates the dependent degrees of freedom to the independent ones.
The components of the structural grid point deflection {ug} and the deflection of
the aerodynamic grid points {uk} are related through the interpolation matrix [Gkg]
as [2]:

{uk} = [Gkg]{ug}. (10)

The derivation of the [Gkg] matrix is the main objective of the theory of splines. The
basic idea stems from the requirement that the two force systems must be “struc-
turally equivalent” rather than statically equivalent. Structural equivalence means
that the two systems deflect the structure equally. A statically equivalent system
however does not yield to equal deflections. As in aeroelasticity, the deflection are
of more interest than the resultant loads, and the first equivalence has been opted in
MSC NASTRAN®. More detail on these theories can be found in [2].

2.3 Analysis Setup

As already said, in order for the p–k method to be efficient, a fairly accurate initial
guess for k is needed. The reduced frequency is

k = πf c̄

V
, (11)

where c̄ is the reference chord, and V the velocity. Then, the minimum value kmin is
computed by substituting the maximum velocity Vmax and the value of the dimen-
sional frequency fmin of the first structural eigenmode of interest (generally the first
mode). Inversely, the maximum value kmax is computed with the minimum velocity
and the frequency of the last mode of interest (in our case the 5th mode). It is advised
that for analysis, the number of reduced frequencies should be 6–10; increasing this
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number further would actually decrease the accuracy of the results. Next, a set of
velocities is selected, as well as a density and a Mach number at which the analysis
should be performed. It is interesting to note that the information given is redundant,
as when two values between Mach number, velocity and density (i.e. altitude), are
selected, the third one is fixed. That means also that as the analysis is performed at
constant Mach number and density, but varying the velocity, the points at which the
velocity is inconsistent with the two other parameters contain an error.

3 Flutter Results

In this section, the results obtained for different configurations at sea level and
cruise altitude are presented. First, a modal analysis is conducted in order to find
the eigenmodes of the structure, used to determine the initial guesses for the re-
duced frequencies. The mode shapes will be discussed as well, as they differ from
the shapes traditionally found in conventional aircraft. Next, flutter analysis is con-
ducted at two different altitudes; the damping and frequency of the modes of interest
are plotted against the velocity. In the following, the first five modes are plotted, as
the other modes are unlikely to appear on the actual aircraft and are not contributing
to aeroelastic instability.

As already discussed, each analysis in MSC NASTRAN® is conducted at con-
stant Mach number and density, but with varying velocity, inducing thus an error.
The solution adopted here is to run several analyses at different Mach numbers and
constant density, and take only into account the velocity which is consistent with
respect to the two other parameters. However, as the Mach number becomes su-
personic, the aerodynamic model and the mesh have to be changed. In the present
case, only a few velocities in the analysis are supersonic. Then, in order to sim-
plify the analysis, the Mach number is kept subsonic, so the model does not need
to be changed, and the velocities are allowed to go supersonic. In other words, if
one would compute the Mach number from the velocity and density, it would be
supersonic, but the analysis in itself is conducted at a subsonic Mach number. This
means that at supersonic velocities, the analysis contains an error. This was how-
ever judged acceptable, because at these points, flutter had already occurred. In the
following, the flutter velocity is found using a MATLAB® routine.

3.1 Flight Envelope

It must be demonstrated that the aeroplane is free from flutter in the flight envelope
enlarged by 15%. It is then of primary importance for flutter analysis to determine
precisely the design speeds at the different altitudes. The following figure (Fig. 6)
shows the Equivalent Air Speed (EAS) against flight altitude for a jet aircraft. At
high altitude, the limiting factor is the Mach number, thus the curve of constant
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Fig. 6 EAS versus altitude
for a jet aircraft

Mach number is depicted. Indeed, for a constant Mach number and increasing alti-
tude, the EAS decreases. At lower altitude though, the cruising velocity VC is used
as a limitation.

To determine the flutter velocities, the cruising velocities must be found first
through two different calculations, one at cruise altitude and the other at sea level.
The methodology is taken from [10]. The FAR regulations state that the calculation
for flutter speed have to be based on EAS; the following calculations take this into
account. These calculations are used to determine Vmax, that is the velocity under
which no flutter should occur.

1. At the cruise altitude of 10500 m, the calculation is based on Mach number, as
it is the limiting number. The cruise Mach number being MC = 0.85, the design
dive Mach number at cruise altitude is computed as

MD = MC + 0.05

= 0.90.

Meaning a diving speed of VD = 267.55 m/s, True Air Speed (TAS). The
TAS is related to the EAS by TAS = EAS

√
ρ0/ρ. Taking the EAS, one ob-

tains VD = 150.52 m/s. Enlarging the flight envelope by 15%, one obtains
Vmax = 173.1 m/s .

2. At sea level, the diving velocity is directly computed from the cruise velocity.
The issue is then to find the value of the cruising speed at sea level. This speed is
conveniently calculated at the point of intersection of the curve and the straight
line as shown in Fig. 6. According to Ref. [10], this point is generally situated at
altitudes comprised between 20,000 and 25,000 ft for jet aircraft. Taking the most
constraining case at 20,000 ft, one obtain for a cruise Mach number of MC =
0.85, a cruising velocity of VC = 268.63 m/s, TAS. Taking the EAS following
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Fig. 7 Damping against velocity plot at cruise altitude

the same relation as previously, one obtains VC = 196.08 m/s. The diving speed
is then computed as

VD = 1.25VC

= 245.10 m/s.

Again enlarging the flight envelope by 15%, one obtains Vmax = 281.87 m/s .

The flutter analysis must then show that no flutter occurs before the speeds deter-
mined above.

3.2 Optimized Structure

A first flutter analysis was made on the structure optimized for all constraints as
described in [4]. The damping against velocity graph is presented in Fig. 7. Here,
we can clearly see that this design does not meet perfectly the requirements for
the flutter velocity, although this structure was optimized for flutter. Indeed, flutter
arises at 279 m/s, 3 m/s below the maximum velocity previously computed. This
discrepancy is explained by the fact previously discussed that the flutter analysis in
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Table 1 Principal modes of the PrP250

Mode Frequency (Hz) Comment

1 0.741 In-phase quarter wavelength bending of the two wings,

No in-plane deformation

2 1.453 Out-of-phase quarter wavelength bending of the two wings,

Out-of-phase in-plane deformation

3 2.072 In-phase half wavelength bending of the two wings,

In-phase in-plane deformation

4 2.824 In-phase half wavelength bending of the two wings,

In-phase in-plane deformation

5 3.065 Out-of-phase half wavelength bending of the two wings,

Out-of-phase in-plane deformation

the optimization process is conducted at constant Mach number and altitude, but
with varying velocity; an error is thus introduced in the calculation of one of the
three parameters.

If it was assumed that g = 0.05, no discrepancies would be present, but the sub-
ject of flutter is so important, and moreover for the PrandtlPlane configuration, that
a proper analysis has to be conducted. Then, it was decided to work on the structure
optimized for all constraints but the one on flutter, as the flutter analysis and the
method to increase the stiffness in the optimization process was believed to be too
basic.

3.3 Pre-optimized Structure

The structure used in the following flutter analysis was optimized following the
process described in [4], with all constraints active except the one on flutter. The so-
lution adopted here is to take the pre-optimized structure, make a first flutter analysis
and determine the flutter speed, and in case of a non-compliance with the require-
ments, find solutions to increase the flutter speed, as explained in the following.

Normal Modes Eigenmode shape and frequencies are obtained with MSC
NASTRAN® using the “SOL 103” analysis, a normal mode analysis. Results are
presented in Table 1. Figures 8(a) to 8(e) also show the different mode shape. The
first mode, with a fairly low frequency of 0.741 Hz, is principally a quarter wave-
length bending mode, where the front and aft wings are moving in phase; the node
for the front wing is situated at the junction with the fuselage, whereas the node
of the aft wing is situated at the connection with the fin. This causes the vertical
surface connecting the two wings to vertically oscillate parallel to itself around its
equilibrium position. The second mode is less simple: the bending of the two wings
is also of a quarter wavelength, but the two wings move in opposition of phase.



248 N. Divoux and A. Frediani

F
ig

.8
M

od
e

sh
ap

es
fo

r
th

e
Pr

P2
50



The Lifting System of a PrandtlPlane, Part 2: Flutter Characteristics 249

F
ig

.8
(C

on
tin

ue
d)



250 N. Divoux and A. Frediani

Fig. 8 (Continued)

This causes the vertical wing to rotate about a point situated at around a third of
its span, closer to the front wing. The vertical wing is thus working in compres-
sion, without significant deformation. As a consequence, a non-negligible amount
of in-plane deformation is introduced on both wings; when the front wing moves
forward, the aft wing moves backward and vice versa. The third mode exhibits a
half-wavelength bending deformation; the nodes are, in addition to the two already
cited, situated at the wing-tips. The vertical wing is moving parallel to itself, fol-
lowing a quasi-horizontal axis. Here also, the in-plane deformations are significant,
but the two wings are moving in phase. Similarly to the situation encountered in the
first mode, in the fourth mode the vertical wing is vertically translating parallel to
itself. The bending shape of the wings however exhibits a half wavelength. In-plane
deformation is also non-negligible; the observed behaviour is similar to the one of
the third mode, where the two wings move in phase. Finally, the fifth mode exhibits
a behaviour analogous to the second mode. The vertical wing rotates around a point,
and the in-plane movements of the wings are out-of-phase. The bending shape ex-
hibits slightly more than a half wavelength, the nodes being at around 6 m from the
wing tips on each wing.

We can remark that for all these modes, neither the fin nor the vertical wing are
deforming. This is principally due to the fact that they are both working in com-
pression, for which the deformation energies are much higher than the one involved
in bending modes. During the optimization process, the constraint in buckling in-
creased significantly the weight (and thus its stiffness) of the vertical wing. Also,
their relatively small span compared to the span of the wings requests more energy
to bend them. For higher modes, it can be seen that the vertical wing and fin are
indeed working in bending, but these modes occur at much higher frequencies and
are not physically relevant.

Flutter Analysis Flutter analysis was conducted at both sea level and cruise alti-
tude. As we can see in Fig. 9, no flutter is encountered at cruise altitude. All modes
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Fig. 9 Damping against velocity plot at cruise altitude

have a negative damping. Analysis at sea level however exhibits flutter, as shown in
Fig. 10. Indeed, in Fig. 10(a), we can see that the damping for both modes 1 and 3
becomes positive at a certain velocity. The first mode encounters flutter at a veloc-
ity of circa 276 m/s, corresponding to a Mach number of 0.81, in the vicinity of the
cruise Mach number. The third mode however becomes unstable at around 330 m/s.
The flutter of mode 3 is progressive, as its damping is small (in an absolute sense)
for all velocities. Flutter of the first mode is much more sudden and can be more
dangerous as the difference in speed from a stable condition to an unstable one is
relatively small. The critical mode for this configuration seems thus to be the first
mode, as its flutter velocity is the smallest. Recalling the previous considerations
on flight envelope in Sect. 3.1, the structure does not comply to the flutter speed
requirement. The first mode becomes unstable some 7 m/s before Vmax.

On conventional aircraft, flutter appears to be a combination of a bending and
a torsion mode (generally modes 1 and 2); both dampings become positive around
the same frequency. In the case of the PrandtlPlane, however, no coupling between
two modes is observed. Although the damping of the third mode is relatively low,
flutter for this mode appears much later. Recalling the description of the modes made
previously, it seems that bending movement is primarily excited. Also observed
on conventional aircraft, the frequencies of the bending and torsion modes tend to
merge in a single frequency. As it can be seen in Fig. 10(b), it is also the case here;
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Fig. 10 Flutter analysis at sea level for the clean configuration
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Table 2 Skin thickness modifications1

Skin thickness increase Box weight (kg) Total weight (kg)

Basic configuration 30754.22 39392.62

Mod. 1 +10% front wing 31079.24 39717.64

(+1.06%) (+0.83%)

Mod. 2 +10% aft wing 31323.44 39961.84

(+1.85%) (+1.44%)

Mod. 3 +10% front 31866.1 40504.5

and aft wings (+3.62%) (+2.82%)

Mod. 4 +20% front wing 31621.9 40260.3

(+2.82%) (+2.20%)

Mod. 5 +20% front wing 32408.76 41047.16

+10% aft wing (+5.38%) (+4.20%)

Mod. 6 +30% front wing 32164.56 40802.96

(+4.59%) (+3.58%)

the frequencies of modes 1 and 3 get closer at the flutter point and still approach
after but in a much lower extend than on conventional wings.

4 Modified Version, Increased Skin Thickness

As seen in the previous section, the basic configuration does not meet the require-
ment on flutter speed. A different structural solution is then needed to meet this
requirement. From the previous analysis it seems that the first mode is the criti-
cal one. The first mode being principally a bending mode, the idea was to increase
the bending stiffness by increasing the skin thickness. Moreover, the two wings be-
ing involved in the bending movement, the skin thickness is increased on the front
wing and/or the aft wing. The area of the stiffeners was not modified, as the cross-
section model was believed to be too basic to clearly separate both effects. Table 2
presents the modification added to the structure and their effects on the total box
and wing weights (that includes non-structural weight like leading edge and trail-
ing edge weight). The increases in weight with respect to the basic configuration
are also presented (percentages into parenthesis). Flutter analysis for these modifi-
cations is presented in the following. Only the results at sea level are presented, as

1The percentages in parenthesis represent the change in the respective weight with respect to the
Basic configuration.
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Fig. 11 Flutter analysis at sea level for Mod. 1

the results at cruise altitude present the same characteristics, with no occurrence of
flutter.

Modification 1. The first modification added to the structure consists in increasing
the skin thickness of the front wing by 10%, inducing an increase in total weight of
0.83% to attain 39717 kg, representing roughly 17.2% of the maximum take-off
weight. The effect of the increase in skin thickness is to raise the flutter velocity
by 1 m/s, taking it to 277 m/s (see Fig. 11). The structure still does not meet the
requirements, but the flutter velocity has been taken to 5 m/s below the required
velocity.

Modification 2. Increasing the skin thickness of the aft wing seems to be more
penalizing for the structure in terms of weight, adding 1.44% on the total weight.
Flutter for the first mode appears at a velocity of 276.5 m/s, as shown in Fig. 12,
even before the occurrence of flutter in the first modification.

Modification 3. Increasing by 10% the skin thickness on both wings induces an
increase in total weight of 2.82%. It has a positive effect on flutter velocity, as it is
raised to 279.5 m/s (see Fig. 13). It appears thus that increasing the skin thickness
on both wings is an efficient solution to raise the flutter velocity.

Modification 4. It was however noticed that increasing the skin thickness for the
front wing only seemed to be more efficient; in this case, indeed, a 20% increase for
the front wing only induces a 2.2% increase in total weight, less than the preceding
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Fig. 12 Flutter analysis at sea level for Mod. 2

Fig. 13 Flutter analysis at sea level for Mod. 3



256 N. Divoux and A. Frediani

Fig. 14 Flutter analysis at sea level for Mod. 4

solution, while the flutter velocity is raised to 280 m/s (see Fig. 14). The maximum
velocity is however not attained.

Modification 5. The idea was then to keep the previous solution, adding 10% skin
thickness to the aft wing. This modification induces a 4.2% increase in total weight,
while raising the flutter velocity to 282 m/s, slightly higher than the maximum
velocity, as shown in Fig. 15. This solution meets then the requirement on flutter
velocity.

Modification 6. Increasing the skin thickness by 30% on the front wing only is
less penalizing for the structure than the previous solution; a 3.58% increase in total
weight is experienced, raising the flutter velocity to 282.5 m/s (see Fig. 16), even
higher than the previous solution.

5 Modified Version, Addition of Tip Tanks

Motivation. After first analysis on the basic configuration, the idea was to add fuel
mass at the tips of the wing in order to see if it was possible to have a certain control
on flutter characteristics. In first approximation, it was assumed that the optimum
structural solution would not change due to the addition of the tip tank. Different
configuration were studied, in order to understand which parameters could influ-
ence flutter characteristics and how. To get an overview of this influence, three pa-
rameters were varied: the fuel mass in the tanks, their chordwise position and the
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Fig. 15 Flutter analysis at sea level for Mod. 5

Fig. 16 Flutter analysis at sea level for Mod. 6
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repartition of mass between front and aft wing. The geometry of the tip-tank is a
simple cylinder with an ogival-shaped nose and aft body. The aerodynamic influ-
ence of the tip-tanks was not taken into account, as their contribution to the overall
coefficients is not significant. However, a careful design is needed to prevent an ad-
verse superposition of velocities at the junction between the wing and the vertical
surface. Though further studies would be needed, the fuel contained could serve as
a fraction or the totality of the reserve fuel (5% extra of the fuel needed for the
mission and loiter, i.e. around 4050 kg [3]); the benefits (if any) of the addition of
tip-tanks could then apply for the entire duration of the flight.

Model. The structural model of the PrP250 was modified in order to reflect the
addition of tip-tanks. The aerodynamic model, however, was unchanged as the con-
tribution of the tip-tanks to the aerodynamics of the aircraft is not significant. The
structural contribution of the tip-tanks was modelled as three CONM2 elements,
each of them positioned at the mass centre of a third of tip-tank and carrying a third
of the total weight. The different configurations analysed are described below.

• Configuration 0: 1500 kg at the tip of the front wing, centre of gravity at mid-
chord

• Configuration 1: 1000 kg at the tip of the front wing, centre of gravity at mid-
chord

• Configuration 2: 500 kg at the tip of the front wing, centre of gravity at mid-chord
• Configuration 3: 1500 kg at the tip of the front wing, centre of gravity at 1 m in

front of the mid-chord
• Configuration 4: 750 kg at the tip of the front wing, 750 kg at the tip of the aft

wing, centers of gravity at mid-chords
• Configuration 5: 1500 kg at the tip of the aft wing, centre of gravity at mid-chord

Prior to the flutter analysis, a modal analysis was effectuated. It is interesting to note
that the mode shapes are not significantly influenced by the addition of tip-tanks.

Flutter. Next, the flutter analysis is effectuated. From the results obtained for the
eigenmodes, a new set of reduced frequency is computed and used in the analysis. In
order to compare the different configurations, this is the only parameter to vary, all
the others are kept constant, e.g. velocity set, Mach numbers and altitude (density).
The reference configuration is the clean configuration; comparison will be made on
the basis of its flutter characteristics.

Configuration 0. This first configuration features a tip tank of 1500 kg at the tip
of the front wing and was actually the first configuration to be thought (therefore the
term “configuration 0”). It principally influences the first mode, although a small
change (in the negative sense) is perceived for the third mode, decreasing the veloc-
ity from 328 m/s to 318 m/s (see Fig. 17). The first mode is however favourably
influenced, the damping becoming positive at 285.5 m/s. The structure complies
then to the requirements in terms of flutter velocity.

Configuration 1. In this configuration, the tank was lightened to 1000 kg. Again,
the biggest influence is seen on the first mode, now becoming unstable at a velocity
of 282 m/s (see Fig. 18), slightly more than the Vmax calculated previously. This
configuration meets the requirement as well.
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Fig. 17 Flutter analysis at sea level for configuration 0

Fig. 18 Flutter analysis at sea level for configuration 1
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Fig. 19 Flutter analysis at sea level for configuration 2

Configuration 2. As shown in Fig. 19, with a weight of 500 kg at the tip of the
front wing, the structure does not meet the requirement on flutter speed. Indeed, the
first mode becomes unstable at 279 m/s, below the maximum velocity, but higher
than the clean configuration.

Configuration 3. As instability also involves a torsional component, a configura-
tion in which the tip tank would counteract the torsional movement was imagined.
This way, the tank has been moved 1 m in front of the mid-chord. The results how-
ever do not seem to improve compared to configuration 0, where the same weight
was used. Indeed, the flutter velocity was found to be 282 m/s, as shown in Fig. 20.
This configuration meets flutter requirement.

Configuration 4. Putting a tip tank on the aft wing affects particularly the first
and third modes; the flutter velocity has now decreased to 272 m/s, 5 m/s below
the clean configuration (see Fig. 21). The effect is thus clearly unfavourable for
flutter characteristics; from a flight dynamics point of view, it is also not preferable
as the centre of gravity is moved aft and up.

Configuration 5. This configuration, with a 1500-kg tank at the tip of the aft
wing, clearly shows the unfavourable effect of adding mass at the rear wing (see
Fig. 22). Indeed, the flutter appears now at a velocity of 258 m/s, decreasing it by
almost 20 m/s with respect to the clean configuration.
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Fig. 20 Flutter analysis at sea level for configuration 3

Fig. 21 Flutter analysis at sea level for configuration 4
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Fig. 22 Flutter analysis at sea level for configuration 5

6 Conclusions and Recommendations for Further Studies

An optimization tool, conceived at Politecnico di Milano, was used to make the
preliminary design of the wing box. It was however believed that the flutter analysis
carried in the optimization process was not accurate enough, due to a discrepancy
in the determination of the Mach number.

Indeed, once flutter analysis was carried on the structure optimized for all con-
straints including the one on flutter, it was seen that the structure was not exactly
complying to the requirements regarding flutter speed. It was then decided to base
the analysis on the structure non-optimized for flutter speed; this structure did not
meet the requirement on flutter but was taken as a basis for further investigations.
Two different strategies were adopted to raise the flutter speed. First, the skin thick-
ness was increased on the front and/or aft wing. From these analyses two different
solutions met the flutter requirement; adding 20% skin thickness on the front wing
and 10% on the aft wing, as well as 30% on the front wing only allows the flutter
to occur after the maximum velocity. Out of these two solutions, the most advanta-
geous one is the latter, as the weight associated with the increase in skin thickness
is lower than with the other solution. Increasing the skin thickness on the front wing
seemed to be the most efficient and least penalizing solution for the structure. Then,
solutions with addition of a fuel tank at the tip of the wings were studied. These
solutions allow one to meet flutter requirement without additional structural weight.
Different parameters of the tanks were varied: their weight, position and distribution
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Table 3 Flutter velocities for different configurations

Configuration Remark Flutter velocity Vf (m/s)

Maximum velocity 281.87

Optimized for case G 279

Optimized for case D Base configuration 276

Mod. skin thickness 1 +10% front wing 277

Mod. skin thickness 2 +10% aft wing 276.5

Mod. skin thickness 3 +10% front and aft wing 279.5

Mod. skin thickness 4 +20% front wing 280

Mod. skin thickness 5 +20% front wing, +10% aft wing 282

Mod. skin thickness 6 +30% front wing 282.5

Tiptanks 0 1500 kg front wing 285.5

Tiptanks 1 1000 kg front wing 282

Tiptanks 2 500 kg front wing 279

Tiptanks 3 1500 kg moved 1 m forward front wing 282

Tiptanks 4 750 kg front wing and aft wing 272

Tiptanks 5 1500 kg aft wing 258

on the wings (front/aft). This way, three configurations met the flutter requirement:
configurations with 1000 kg, 1500 kg at the tip of the front wing, and 1500 kg at
the tip of the front wing, moved 1 m in front of the mid-chord. In order to improve
flutter performances, it seems favourable to place a mass at the tip of the front wing
only; it is however very disadvantageous to place the tank on the aft wing, as the
flutter velocity experiences a important decrease with respect to the other configura-
tions. Operational considerations could be used to determine the desirable weight of
the tip-tanks, providing that they are heavier than 1000 kg. To summarize, Table 3
presents the flutter velocities found for each configuration.

Here some remarks should be done on the method used by MSC NASTRAN® to
solve the flutter equation. A DLM aerodynamic code is used in the program, which
models the aerodynamic surfaces in finite panels, neglecting thus their thickness.
This way, the effects of the compressibility of the air are not included in the DLM.
These effects are however of importance in the transonic regime (M ≥ 0.8); the flut-
ter points in the previous analyses being in this region, the results obtained do not
take compressibility effects into account. It boils down to the fact that flutter in tran-
sonic regimes is still an open question, also in industrial environment; the definitive
characteristics are known only at the last stage of flight test, where the actual aircraft
is being flown. The analyses made in the frame of this research are thus to be taken
as trends and indications on the behaviour of this innovative structure.

The problem of flutter, and in a more general sense aeroelasticity, of a
PrandtlPlane aircraft is an unexplored domain, plenty of issues, and still needs to be
investigated. First, the structures with the tip-tanks of 1000 and/or of 1500 kg have
to be optimized through the method described previously. Indeed, the additional
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mass of the tanks influences the mass distribution and thus the structural solution
meeting the different constraints. Then, the second level optimization should be run
for the structures meeting the requirement on flutter speed (see Table 3) to get more
insight into the behaviour of the structure. If necessary, a loop can be executed be-
tween the first- and second-level optimization. Also, a conventional aircraft’s wing
should be designed for the same mission in order to assess the actual advantages of
the PrandtlPlane configuration. Finally, body freedom flutter could be of importance
for the PrandtlPlane configuration. This phenomenon, often mentioned in the liter-
ature (see for example Refs. [7] and [8]), is a coupling between a rigid body mode
(pitch, roll) and the low-frequency structural modes. In the case of the PrP250, the
first bending mode has a frequency of 0.741 Hz, which is fairly low and could thus
interact with rigid modes. On the other side, it is well known that the pitch damping
of a civil transport PrandtlPlane is very high compared to a conventional aircraft and
this behaviour could prevent the flutter associated to the body pitch motion; anyway,
the problem is still open.

Appendix

The generalized stiffness and generalized mass being introduced, generalized coor-
dinates can be used in the problem of flutter prediction:

[M]{q̈} + [D]{q̇} + [K]{q} = QA, (12)

where:

[M]: Generalized mass matrix
[D]: Structural damping matrix
[K]: Generalized stiffness matrix
{q}: Vector of generalized coordinates
QA: Generalized aerodynamic forces

In Eq. (12), QA is determined by an appropriate aerodynamic model.
In general, the flutter equation is solved by assuming a harmonic solution of the

form {q} = {q̂}ept and finding roots of the characteristic equation for p. It can still
be done to solve Eq. (12), provided that the aerodynamic forces QA can be explic-
itly expressed as algebraic functions of {q}. It can be done for simple aerodynamic
models, but not when only pure harmonic results are available or when the data is
available only in tabular form from experiments.

An intuitive approach to solve this would be to add a harmonic forcing term
F(t) to the system and evaluate its response as a function of flight conditions (e.g.
the dynamic pressure q of the flight speed U ) and the frequency ω of the forcing
function. This is actually the method used for flight tests, but it is quite inefficient
from a numerical standpoint as it requires harmonic time domain simulation for
each point in the U–ω plane.
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A number of more efficient methods have been developed and will be described
in the following. These methods are less time-consuming than the forcing approach
and generate directly approximate flutter diagrams. The two presented methods,
the k method [9] and p–k method [5], are both assuming that aerodynamic data is
pure harmonic. As we know that at the flutter points, the response is indeed pure
harmonic, the solution at these points will be exact.

For the sake of ease and generality, we will manipulate non-dimensional equa-
tions. Thus, we will employ a non-dimensional expression for p,

p = b

U
(σ + iω) = δ + ik, (13)

where b is the half-chord, and k is called the reduced frequency and is a parameter of
primary importance in the determination of the aerodynamic forces; it is computed
as

k = ωb

U
. (14)

The solutions will be assumed to be of the form {q} = {q̂}ep Ut
b . The equations of

motion (12) are then written as

[
U2

b2
[M]p2 + U

b
[D]p + [K]

]
{q̂} = 1

2
ρU2[A(p)

]{q̂}. (15)

Here, A(p) is the aerodynamic matrix and is a function of the Mach number and
Reynolds number. It is important to note here that if the aerodynamic forces can be
expressed as a sufficient simple function of p, Eq. (15) defines a polynomial in p

with real coefficients. In this case, this expression is equivalent to the equations of
motion developped in the two-degree-of-freedom model.

The p–k method is based on the assumption that it is possible to approximate
the aerodynamics of sinusoidal motions with slowly increasing or decreasing am-
plitudes using purely harmonic aerodynamic data, i.e. that

[
A(p)

] = [
A(δ + ik,M,Re, . . .)

] ≈ [
A(ik,M,Re, . . . )

]

for sufficiently small δ. With this assumed form of aerodynamic terms, the equation
of motion is written as

[
U2

b2
[M]p2 + U

b
[D]p + [K]

]
{q̂} = 1

2
ρU2[A(ik)

]{q̂}, (16)

which we can write [
F(p, k)

]{q̂} = 0. (17)

Once [A(ik)] has been computed from a first estimation of k, one can solve
Eq. (16) for p1 = δ1 + ik1, compute [A(ik1)], and again solve equation (16) for
p2 = δ2 + ik2, etc., until the imaginary part ki of the solution pi equals the ki−1
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value of the aerodynamics. Hence, this method is called method p–k. An iterative
solution method is normally used, the most common one being the “determinant
iteration” [5]. For this method to work properly, the initial guesses for p must be
reasonably good and are thus determined from the previously analysed flight condi-
tion. The assumption on the form of the aerodynamic data proved to be accurate in
Ref. [5], as the p–k method is compared with an exact method for damping (the p

method), giving a good agreement between the two.
To obtain flutter diagrams, the basic procedure is as follows. First, the mode that

will be tracked is chosen as well as a starting value for U , near U = 0. The Mach and
Reynolds numbers are computed from this U . A first guess, p1, can be made using
the natural frequency of the chosen mode. Another guess p′

1 is made by adding a
small damping to p1. Then the following steps are performed:

1. Compute or interpolate for [A(k1,M, . . .)] and [A(k′
1,M, . . .)].

2. Compute the determinants F1 = |[F(p1, k1)]| and F ′
1 = |[F(p′

1, k
′
1)]|.

3. Update p using p3 = p2F1−p1F2
F1−F2

.
4. Set p′

1 = p2 and p1 = p′
1, and repeat from step 1 until converged.

5. Choose the next flight condition (ρ,U,M,Re, . . .).
6. Choose two new values for p based on extrapolation from previous flight condi-

tions.
7. Return to step 1 and repeat to find the new p at the next flight condition.

This procedure is repeated for each desired mode. Once a converged solution pc =
δc + ikc has been found, the frequency and damping are computed as

f = Ukc

2πb
and γ = δc

kc

= g

2
(18)

and used to draw the frequency-damping-velocity diagrams, or flutter diagrams.
The p–k method has two distinct advantages. First, the plots obtained are in-

terpreted much easier. Indeed, the non-physical behaviours that can arise with the k

method are not present. Then, no further iteration is required to incorporate Mach or
Reynolds number effects, as the density computed already contains this information.
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The Lifting System of a PrandtlPlane, Part 3:
Structures Made in Composites

Aldo Frediani, Flavio Quattrone, and Francesco Contini

1 Introduction

The structures of a 250-seat PrandtlPlane wing system has been designed and, even
though at a preliminary stage, optimized as reported in [10]. The optimization pro-
cess used in [10] starts with an initial solution based on a beam model, in which
the section characteristics are defined in such a way that the maximum von Mises
stress is lower than the allowable one (233 MPa at n = 2.5 load factor); this has been
named as level 1. Afterwards, a standard cross-section is assumed, and the parame-
ters defining the section geometry are defined in order to satisfy a sequence of con-
straints, namely: the design against instability under compression loads, static aeroe-
lasticity, including aeroelastic effects on load distribution and aileron efficiency, and
flutter.

The wings are made in an Aluminium Alloy typical of aeronautical applications,
in order to compare the results obtained with those of equivalent conventional metal-
lic aircraft. In this optimization process the wing box was first assumed as doubly
symmetric; this solution was then modified into a non-symmetric section, introduc-
ing two new unknowns per section, namely the areas of the spar flanges; the weight
saving appears to be very significant.

In conclusion, this analysis showed that the empty weight of the selected
PrandtlPlane wing system is nearly the same as a traditional one of an equivalent
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aircraft. The results of the research activity described so far were considered en-
couraging to try to improve further the solution.

A further step towards the improvement of the structural efficiency has been per-
formed in this paper. The non-symmetric wing box resulting from the optimization
process with the constraint of stability under compressive loads was analysed with
the Finite Element method in order to check the efficiency of the optimization pro-
cedure and, also, to provide a reference configuration for further solutions. The F.E.
analysis shows that the optimization procedure adopted cannot give an absolute op-
timum; as a matter of fact, indeed, the local von Mises stress is higher than the
allowable one, but, almost everywhere, there exists a part of the same section where
the stress level is lower than the allowable one. We could then conclude that the
local stress level after optimization is not correct locally but the average level of
von Mises stress is acceptable and a reasonable preliminary weight estimation is
provided.

As shown in [18], the propulsion system of the aircraft is provided by two tur-
bofans, positioned into the rear fuselage; thus, the lifting system is free of con-
centrated loads due to the engines, and a solution in composites becomes more at-
tractive. The main structures manufactured in composites are becoming usual in
modern civil transport aircraft; wings, in particular, are free of possible strokes and
impacts during ground operations and are a candidate to be such a structural solu-
tion.

Thus, a design of the lifting system main structures has been performed us-
ing Carbon Fibres composites. In particular, a special sequence of layers has been
adopted which produces an isotropic material. This staking sequence of layers has
been adopted for the whole system, similar to the brick of a building, and the solu-
tion was verified with a new F.E. analysis. This design process is a trade off, being
the lifting system over constrained to the fuselage; the final result is that the weight
reduction could be very significant. Another characteristic of the solution is the high
thickness of the skins as a consequence of the smaller chord lengths compared to
cantilever wings; when the technological problems could be solved, the wing box
could be manufactured without stringers: it could be a very remarkable saving in the
manufacturing costs.

2 FEM Analysis of the Aluminium Alloy Structure

The 250-seat PrandtlPlane aircraft of reference is shown in Fig. 1, and the lifting
system in Fig. 2; the main characteristics of the aircraft, including the general layout
and architecture are to be found in [6]. The main dimensions of the lifting system
are presented in Table 1.

The structural design and optimization process of the lifting system, including
the fins, are described in [9]. For the reader’s convenience and, also, to realize the
limits of the results obtained, we summarize here the main steps and the relevant
outputs.
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Fig. 1 The 250-seat PrandtlPlane, aircraft of reference

Fig. 2 250-seat PrandtlPlane
wing system

Table 1 Wings main
dimensions Wing surface 394.52 m2

Front wing surface 205.5 m2

Back wing surface 189 m2

Wing span 55 m

Angle of sweep front wing +36◦

Angle of sweep back wing −16.5◦

Angle of sweep side bulkheads 38.5◦

Wing chord at front center-line 7.4 m

Wing chord at back center-line 5.04 m

Wing chord at front tip 2.32 m

Wing chord at back tip 2.32 m

Fuselage width 7 m

Percentage airfoil thickness at front root 14%

Percentage airfoil thickness at back root 12%

Percentage airfoil thickness at front tip 10%

Percentage airfoil thickness at back tip 10%



272 A. Frediani et al.

Fig. 3 Asymmetric wingbox layout with notation

In the first step, the wing section was assumed as a doubly symmetric box with
the following parameters: web thickness, skin thickness, area of a fixed number of
stringers; the structural design was the result of a multistep optimization including
the constraints of: Aluminium alloy characteristics, aeroelastic effects on load dis-
tribution, design against instability under compression loads, aileron effectiveness
and flutter. The assumption of the double symmetry of the wing section is not satis-
factory for a PrandtlPlane lifting system, and, in a second analysis, new parameters
were introduced, namely two areas of the spar flanges, equal in the cross positions,
and a second optimization under the same constraints was performed with the final
result of a significant weight saving.

In this paper, two next steps are performed. The first one is a Finite Element
analysis of the structure resulting from the procedure before. The second one is the
design of a new solution of the lifting system made in composites.

As said before, the Finite Element analysis is performed in order to verify the
reliability of the optimization code; to do so, we verify the stress levels after the
first steps of the process, where the only constraints of allowable stress and insta-
bility under compression are satisfied. The FEM analysis is then conducted on the
structural solution with unsymmetrical wing box, the best structural result obtained,
under the loads corresponding to the n = 2.5 load factor in symmetric flight.

The condition on instability is not active, because we assume a priori that any
instability could ever occur, and, thus, only the area of the stringers and their centre
of gravity (but not the shape of them) are the actual ones.

The model of the wing structure is divided into 54 sections, characterized by
different properties assignment: for example, the number of the stringers (having a
fixed pitch), the overall area of the sections, etc. The wing box layout is shown in
Fig. 3; this layout remains the same for all the wings, both horizontal and vertical.
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Fig. 4 Thickness distribution top view

Fig. 5 Thickness distribution bottom view

The output data, section by section, are the following:

1. As = stringer area;
2. CM1 = Area of the “South–West” and “North–East” spar flanges (see Fig. 3 for

reference);
3. CM2 = Area of the other spar flanges;
4. ts = Skin thickness, the same for upper and lower wing panels;
5. tw = Spar web thickness, the same for the two spars.

The other dimensions of the wing box (positions of the spar, webs, stringers, etc.)
are deduced from the aerodynamic layout, considering that the front spar is at the
18% of the wing chord, and the rear spar is at the 68%.

In the beam model, the ribs are equivalent to masses positioned along the beam
with a fixed pitch of 750 mm, perpendicular to the beam axis. The thickness distri-
bution of the whole F.E. model, in mm, can be deduced from Figs. 4 and 5. In the
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Table 2 Mechanical
properties of 2024-T3
Aluminium alloy

E = 70 GPa

ν = 0.3

ρ = 2800 kg
m3

top view the thickness of the upper skin is maximum (25.9 mm) in correspondence
of the fin, in a very local region of the rear wing; in the front wing the thickness is
maximum (about 19 mm) around the end of the kink.

As for the stringer runouts, we assume that each stringer ends in coincidence
with a rib [5]. In order to obtain a FEM model similar as more as possible to the
beam model resulting from the previous optimization, the external loads are applied
in coincidence with the 54 station points, and each station point is connected to the
ribs with an RBE3 multi-point constraint (MPC); more details on this constraint are
given in [2].

Any external load is made by a force and a moment, generated as outputs from
the aerodynamic simulation; the inertial loads result from a gravity acceleration of
9.8 m/s2. Structure constraints are the following:

• At the front wing root, all the degrees of freedom are blocked;
• At the rear wing centerline, a symmetry constraint is applied;
• The fin root is clamped to the fuselage, which in turn is assumed to be rigid.

Once the whole FEM model is defined, we need to assign the element properties.
The shell elements are the QUAD4 thin shell elements with constant thickness. The
beam elements are BAR2; the section area is that obtained from the optimization
process, while the section shape is whatever because the constraint of the instability
under compression loads is satisfied by the structural solution under examination;
in this analysis the section is assumed as circulate around the C.G. According to
the requirements, the material chosen is 2024-T3 Aluminium alloy, isotropic and
homogeneous, with the properties listed in Table 2.

3 Results of the Finite Element Analysis of the Metallic Wing

The elements composing the upper and lower skins have equal thickness, and the
same occurs for the two spar webs. The thickness of the single elements is the aver-
age value along the span segment, derived from the optimized solution in [10]. The
first check of the F.E. model is the assessment of the resulting total weight of the
system. The weight of the half lifting system resulting from the F.E. analysis and
the weight of reference are, respectively,

• Finite Element model (structural weight): 13.007 kg,
• Optimization procedure (structural weight): 13472 kg.

Because the difference is about 3%, we consider the F.E. model as sufficiently
accurate. Thus, we can determine the stress state under the same reference loads in
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Fig. 6 Von Mises’s stress for the asymmetrical wing box in the step B case—top isometric view

Fig. 7 Von Mises’s stress for the asymmetrical wing box in the step B case—bottom isometric
view

any point of the system and verify the stress state to be lower than the allowable
equivalent stress. The FEM results show that the maximum stress condition is not
fully satisfied everywhere. The following Figs. 6, 7, 8, 9 show the results of the
simulation. The von Mises’ stress, in MPa, and displacements, in mm, are displayed.
Figures 6 and 7 show the von Mises stress in the whole system, and Figs. 8 and 9
show stress details in the front and rear wings.

The von Mises stress overcomes the maximum stress of 233 MPa somewhere,
but with very high local peaks. Some part of the stress peaks are due to the local
introduction of the external loads, and, thus, these peaks are not considered as totally
reliable. An interesting remark is that, in the wing sections where some high stresses
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Fig. 8 Von Mises’s stress for the asymmetrical wing box in the step B case—detail of the front
wing

Fig. 9 Von Mises’s stress for the asymmetrical wing box in the step B case—detail of the rear
wing

are present, some part of the section is always under-stressed, to compensate the first
ones.

In the present preliminary design, this averaged stress condition is supposed to
be acceptable; in view of a more advanced design in which the thickness along some
sections can be modified, a more refined analysis shows that in some sections the
average stress along the span is too high, but these regions are so limited that the
reinforcements are very local and with a so small weight penalty to be disregarded.

In these hypotheses, the deformation of the system is displayed in Fig. 10; the
maximum displacement is about 5650 mm, equivalent to abut 1/10 of the span
under the loads corresponding to the limit condition and about 2 m, equivalent to
1/25 of span, under the cruise load at maximum take-off weight. The hypothesis
of F.E. linear analysis could be questionable under limit loads, but, at this stage of
approximation, we retain it acceptable.
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Fig. 10 Step B deformed structure solution

4 PrandtlPlane Wing Box Design Using Composites

As shown in [10], the skin thickness of the wing box is higher than the correspond-
ing of conventional wings; this result is reasonable because of the reduced local
stiffness of the wings. When a new structural design is performed using composites,
the optimal layout of the very large thickness is very hard to be obtained without
advanced optimization algorithms; this is a necessary activity for the fully exploita-
tion of composites. The required thickness, as well, needs a great amount of layers,
and, for this reason, the FEM model could be very hard to handle. Another prob-
lem connected with the large thickness is that the 3D stress state does not fit with
the typical orthotropic behaviour of standard stacking sequences for composite ap-
plications. Finally, the 3D layout of the PrandtlPlane wings requires an appropriate
manufacturing strategy. All these aspects are analysed in the following.

4.1 Manufacturing

Composite materials are ideal for structural applications where both high strength-
to-weight and high stiffness-to-weight ratios are required; it is well known that, in
aeronautics, these two requirements must be satisfied; in addition, a reduction of
manufacturing costs could be obtained by reducing the operations and the number
of sub-elements to be joined together. Therefore, composite materials can be truly
cost-effective for the present applications. The half-wing structure is more than 27
meters wide, and, thus, the present manufacturing equipment allows one to produce
the complete half-wing by assembling a small number of substructures.

The stress state behaviour along the span suggests where positioning the sections
to be joined together. Figure 11 shows a possible solution of joints in the case of
three main elements; the junction can be placed in the region where the bending
moment is small, approximately from 3/4 of the wing span to the tip, depending on
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Fig. 11 Substructures to be assembled

the ailerons span; as said before, ailerons are positioned on both wing tips and can
have different spans [18].

The composite solution is also appealing because, due to the very high skin thick-
nesses, the wing box could be designed without stringer inside, using skin thickness
associated with a proper number of ribs to avoid instability phenomena under com-
pression loads.

Finally, the particular configuration of the 250-seat PrandtlPlane characterized
by the engines mounted in the back of the fuselage, and the undercarriage system,
positioned far from the wing structure, eliminates the problem of concentrated loads
on the wings; the wings are aerodynamically clean.

With a no-stringer wing box, a standard procedure could be applied, as, for ex-
ample: the spars can be laminated first, then connected together with the ribs, and,
finally, the upper and lower laminated skins are bonded to the structure in a vacuum
bag. The connection between fins and upper wing needs to be carefully studied,
because the solution affects the overall stress distribution.

4.2 Laminates

The theory of composites has produced many interesting results in the last years.
Completely isotropic, both in stretching and in bending, and decoupled laminates
are named “quasi-homogeneous laminates”. Many exact non-symmetrical solutions
exist, obtained by solving the constitutive equations iteratively [16]. Is interesting to
notice that the quasi-homogeneous property is maintained with a stacking of quasi-
homogeneous sequences, obtained overlaying these sequences. The following 24
layers stacking sequence is a quasi-homogeneous one, and it is here reported be-
cause the angles used are common in aeronautical applications; the sequence is the
following [16]:

0 1 2 3 3 2 3/1 3 0 2 0 1/0 1 3 1 2 0/2 3 2 3 0 1

Each sequence number is a tag, and it can be a whatsoever orientation, among
these angles: 0◦, 45◦, 90◦, −45◦. In the current design, the quasi-homogeneous
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Table 3 Torayca M55J cured
laminae properties Longitudinal tensile modulus 340 GPa

Longitudinal compression modulus 285 GPa

Transverse tensile modulus 6.4 GPa

In-plane shear modulus 3.9 GPa

ν Poisson’s ratio 0.30

Longitudinal tensile strength 2.01 GPa

Longitudinal compression strength 880 MPa

Transverse tensile strength 34 MPa

Transverse compression strength 108 MPa

Shear strength 44 MPa

ILSS 69 MPa

Table 4 Constitutive
properties E11 119 GPa

E22 119 GPa

G12 44.8 GPa

ν 0.32

stacking sequence is adopted with the consequence that the mechanical properties of
the composites could be diminished, the layout configuration fits the internal stress
distribution, and the typical problems of anisotropic materials (such as peculiar de-
formations under asymmetric thermal loads) are avoided. The sequence adopted is
also interesting at the light of a possible comparison between the Aluminium alloy
and the composite solutions. The fibre chosen is M55J Torayca, and the epoxy resin
is #2500–250◦F; the characteristics are listed in Table 3.

The laminae thickness is 0.125 mm, with a density of 1603 kg/m3; using the
sequence shown before the minimum thickness becomes 3 mm. The material so
obtained is chosen for its very high elastic modulus, the very high strength in tension
and compression, the low specific weight and, finally, because the thickness is not a
drawback because of the high thickness required in the presented structural solution.

With the stacking sequence told above, the laminate has the properties shown in
Table 4, calculated with the classic theory of laminates [16].

5 The Composite Wing Box: CAD and FEM Set-Up

The wing external shape is derived from the aerodynamic surface, considering a
front spar at 18% and a rear one at 68% of the wing chord. The maximum rib pitch
has been determined to avoid the buckling stress of the non-reinforced upper skin,
and, in the present analysis, it is assumed as constant along the span; the analysis
showed that, when the rib is 3-mm thick, the maximum rib pitch allowable along
the span is 425 mm in the kink region.
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Fig. 12 Skin thickness—front wing upper panels

The rounds between the bulkheads and the wings have been re-designed to min-
imize local effects of stress concentration and simplify the F.E. computation; the
same for the connections of fin and rear wing, which strongly influence the defor-
mation and the stress distribution of the entire structure. These zones have been care-
fully analysed, to meet a reasonable FEM solution and to provide adequate stiffness
without significant variations of the structural weight. The maximum dimension of
the mesh elements is 100-mm wide, with more refined meshes where needed. The
lack of stringers simplify the generation of the mesh grid.

The design process begins with the assessment of the inertial properties along the
wing span of the optimized configuration made of Aluminium; then, we determine
the new box in composites with the same distribution of inertial properties along the
wingspan.

According to before, the thickness is a multiple of 3 mm (the minimum thickness
for the quasi-homogeneous stacking sequence), and, besides, in order to simplify the
fabrication procedure, the skin thickness is kept constant in any wing strip, normal
to the longitudinal axis.

5.1 Upper and Lower Panels

The upper and lower skin panels are set up with the quasi-homogeneous laminate
stacking sequence described before; this assumption, together with the hypothesis
of constant thickness in any wing section, leads to a thickness distribution presented
in the following.

Figures 12, 13, 14 and 15 show the thickness distribution designed for the up-
per and lower skin panels of the front and back wings. The thickness is maximum
(30 mm) on the front wing upper panel in the region of the kink and is 24 mm in the
lower panel of the same kink; at the root of the back wing, the thickness is lower
(27 mm), both in the upper and lower panels; the thickness is 12 mm at the tip re-
gions of all the wings. The total weight of the skin is about 6700 kg, corresponding
to 67.5% (35.4% for the lower and 32.1% for the upper skins).

These thickness sequences could be revisited when dealing with manufacturing;
in fact, the passage from 27, 21 and 24 mm to 12 mm (at tip regions) needs to be
smoother, and some modest weight penalty may be paid.
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Fig. 13 Skin thickness—front wing lower panels

Fig. 14 Skin thickness—back wing upper panels

Fig. 15 Skin thickness—back wing lower panels

5.2 Spar Webs and Flanges

The spar webs and flanges are both modelled with shell elements, in order to ob-
tain a double T-shaped section. They are set up with the quasi-homogeneous lami-
nate stacking sequence pre-described. It is worth saying that a better solution could
be obtained using +45◦/−45◦ stacking sequences for the webs, and unidirectional
laminates for the flanges, but at this stage of the design, quasi-homogeneous lami-
nates could be a simpler choice. The weight of the spars corresponds to 14.1% of
the total (10% for the webs and 4.1% for the flanges).

Figures 16, 17, 18, 19 show the thicknesses obtained. The front spar flanges of
the fore wing are 15-mm thick and the web thickness varies from 12 at the root to 9
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Fig. 16 Web and flanges thickness—front wing front spar

Fig. 17 Web and flange thicknesses—front wing back spar

Fig. 18 Web and flange thicknesses—back wing front spar

at tip (Fig. 16); the same occurs for the rear spar of the same wing (Fig. 17). A larger
thickness is needed in the back wing, and, once more, the critical region is the end
of the kink (Figs. 18 and 19). According to the conclusions established in [10], the
variation of dihedral angle needs to be eliminated.

5.3 Ribs

The ribs are made up with 3-mm constant thickness quasi-homogeneous carbon
fibre laminate. The kink rib and the fin ribs have, instead, different thickness with
more 3-mm basic laminates. A local design of these ribs has been carried out in
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Fig. 19 Web and flange thicknesses—back wing back spar

order to evaluate the total weight; more accurate analysis will be necessary when
dealing with the detail structural design. The total weight of the ribs is 380 kg,
corresponding to 4.61%.

6 Structural Efficiency of Composite Solution

The Finite Element analysis has be conducted under flight symmetric loads corre-
sponding to the limit load factor. The requirements concerning aeronautical struc-
tures made in composites impose the limit load to be multiplied by a safety factor
of 1.5, so the total value of nz is 3.75.

This safety factor is necessary to take manufacturing defects into account. The
analysis is linear, and, thus, the results could be no longer valid in the nonlinear
range when constitutive or geometric nonlinearities have a significant influence. The
geometric nonlinearities are not very significant, because overall deformations are
smaller than those relevant to Aluminium alloy structure. We assume as the total
weight of the lifting system (including fins) the one in which the stress state of such
lifting system verifies the failure index conditions of composites. The failure index
used here is the maximum stress criterion [16], based on the comparison between
the real stresses and the strengths for the considered material; since these parameters
are known in the orthotropic direction, the comparison is made in those directions,
and the failure is assumed to occur when one of the following conditions is not
verified:

−Xc ≤ σ1 ≤ Xt,

−Yc ≤ σ2 ≤ Yt ,

σ6 ≤ S,

(1)

where σ1 is the stress in the first orthotropic direction, σ2 is the stress in the second
orthotropic direction, and σ6 is the shear stress. This criterion is included in the
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Fig. 20 Structural deformation

Fig. 21 Failure index—upper panels of the front wing

Nastran SOL100, in terms of failure index; when this index equals 1, the failure
occurs in one ply, and this single failure is assumed to make the entire laminate fail
as well. The first ply failure criterion is conservative, not taking the further residual
static strength of the laminate into account.

In the next figures the results of the F.E. analysis are reported, with reference to
the structural solution shown in the previous figures. Figure 20 shows the overall
displacements under 3.75 limit load factor with the total displacement of 3.83 m.
Comparing these results with those in Fig. 10 (metallic solution with 2.5 limit load
factor) we have:

Composite solution displacement

Metallic solution displacement
= 3.83

5.65
= 0.67.

This result, accompanied with a lighter solution, as shown later on, allows us to
avoid any other investigation on static aeroelasticity and flutter to conclude that the
solution in composites is more efficient from the structural viewpoint. Figures 21,
22, 23, 24 and 25 present the failure indexes of the main parts of the lifting system.
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Fig. 22 Failure index—upper panels of the back wing

Fig. 23 Failure index—front wing spars

Fig. 24 Failure index—back wing spars

These figures need some comments. Figures 21 and 22 show that the failure
index condition of upper skins of both wings is not verified in the local area of the
kink; we accept this discrepancy because it is due to the dihedral jump, which will
be eliminated. In the case of the spars, the index is correct apart from single spots.
With these assumptions, the structural weight of the complete lifting system is given
in Table 5, where the weight of the solution in Aluminium alloy is also reported.
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Fig. 25 Detail of the critical zone, next to the kink

Table 5 Wing-box weight of
metal and composite
solutions

Weight of metal structure 26014 kg

Weight of composite structure 16501 kg

Weight saving 9513 kg

It is evident that the weight saving of the wing system made in composite is
remarkable. Although results may be affected by errors, the conclusion could be
that the PrandtlPlane lifting system made in composites allows a weight reduction
of about 1/3 compared to the metallic solution, while the overall deformation is
about 2/3 (0.67) of the metallic one, at the limit load condition.

7 Conclusions

The wing structure of a 250-seat PrandtlPlane has been analysed in this paper.
The wing structure, being globally overconstraint to the fuselage, needs to be

dealt with a non-conventional approach; furthermore, no historical data are avail-
able for the preliminary weight estimation. For this reason, the structure was pre-
liminarily optimized with a multistep tool developed by the Politecnico of Milan,
and a minimum weight solution complying with static and dynamic load conditions
was assessed.

A FEM analysis has been conducted in the first part of the paper, highlighting
some problems in the optimization process; in fact, the stress constraints were vi-
olated somewhere, but locally. In spite of these local stress peaks, the solution ob-
tained could be assumed as a starting point of new developments.

In the second part of this paper a hypothesis of composite design for the structure
under the same loads and constraints has been presented. A first preliminary sizing
was performed, using the composite material as obtained from the classical theory
of laminates to reproduce the same stiffness distribution of the previous solution.
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To gain a significant technological advantage, a no-stringer wing box was de-
signed, with the hypothesis of modifying the rib pitch to control the buckling phe-
nomena. A model has been build up in order to check the stress constraints for each
lamina, and the first ply failure criterion was adopted, using the failure index within
the theory of maximum stress. Full compliance with constraints has been obtained,
with the exception of small critical zones, even though very localized.

In the framework of many approximations and assumptions, some significant
conclusions can be carried out, namely:

• the zone of the kink of the front wing is characterized by a change of dihedral
angle with the effect, both in the Aluminium and in the composite structure, of
localizing peaks in term of von Mises stress or failure index. This zone represents
a very little portion of the whole structure and should be treated in detail. A new
design with no change in dihedral angle should be provided;

• the composite solution examined is more rigid than the metallic solution, and the
maximum displacements at limit load conditions are in the ratio of 2/3;

• the composite solution is approximately 30% lighter than the metallic one, under
the same loads and constraints.
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Elastic Structures in Adhesion Interaction

Francesco Maddalena, Danilo Percivale, and Franco Tomarelli

1 Introduction

One goal of modern structural engineering relies in understanding and modeling
the improvement of several characteristics of structural members, such as the load
capacity, ductility, and durability. The request of upgrading inadequate or damaged
structures stimulates the study of suitable tools to deal with nonconventional design
issues such as debonding problems in fiber-reinforced elements. Indeed, the appli-
cation of fiber-reinforced polymer (FRP) sheets as an externally bonded reinforce-
ment is generally accepted as an efficient technique to reinforce concrete structures.
Though numerical techniques based on classical elastic models are very often con-
sidered as a quantitative tool helping the design process, the lack of a qualitative
understanding of the mechanical and/or analytical aspects of the phenomena hides
the fundamental facts regulating these intriguing mechanical interactions.

It is generally accepted that the essential mechanical behavior of FRP-strength-
ened structural elements relies in the stress transfer between the fiber and the con-
crete beam through bonding interface (see, for instance, [4, 6, 11, 12, 23]). Therefore
the overall mechanical behavior crucially depends on the interfacial bonding and its
governing laws.
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Here we pursue an energetic approach by exploiting a unifying perspective for
the problems of adhesion and reinforcement of elastic thin structures ([8–10, 13–
18]) and show that reinforcement reduces to adhesion when the stiffness of one of
the structures involved becomes arbitrarily large (for adhesion problems, see also
[2, 3, 5, 7, 20–22]).

In this paper, we study a variational model describing two one-dimensional ma-
terial bodies (typically a reinforcement fiber and a concrete beam) that interact
through an adhesive layer (typically a soft material) under prescribed displace-
ment conditions. Both the reinforcing fiber and the matrix are described as elastic
bodies, while different constitutive assumptions on the adhesive layer are investi-
gated.

In Sect. 2 we assume that the adhesive layer reacts elastically to the slip of the
reinforcing fiber with respect to the matrix, while in Sect. 3 the interfacial bond is
modeled with a governing law exhibiting a softening branch for the slip exceeding
a maximum value.

The analysis of the solutions suggests that the quadratic interaction described in
of Sect. 2 is not able to capture the essence of adhesion, and this fact justifies the
assumption of a softening law for the slip constitutive behavior.

In Sect. 3 we obtain a full characterization of equilibrium states when the ma-
trix has elastic behavior, by studying two different constitutive assumptions, both
discontinuous and smooth softening behaviors for the adhesive layer. Moreover we
deal with the limit case of rigid matrix (concrete beams): the main results are pre-
sented in Theorem 41, Corollary 1, and Remark 3, which provide a length estimate
of the elastically detached portion of the beam; such an estimate depends on the
carrying capacity of the glue and the constitutive parameter of the fiber.

2 Adhesion of Elastic Structures

We consider a system composed of two elastic one-dimensional structures that are
bonded through an adhesive layer. One structure is a fiber, the other one is a matrix,
and both are parameterized by the variable x in the interval [0,L]. The fiber and the
matrix are endowed respectively with the elastic energies Ef,Em:

Ef(vf) = 1

2

∫ L

0
kf|v′

f|2 dx, kf > 0;

Em(vm) = 1

2

∫ L

0
km|v′

m|2 dx, km > 0;
(1)

where the functions vf, vm : [0,1] → R denote the axial displacements respectively
in the fiber and in the matrix, while the strictly positive constants kf, km are the ex-
tensional stiffnesses (the Young modulus times the area of the transverse section).



Elastic Structures in Adhesion Interaction 291

The adhesion material layer which bonds together the two elastic structures is ener-
getically represented by the functional

Ead(s) = 1

2

∫ L

0
kad|s|2 dx, kad > 0, (2)

where kad is a constitutive parameter characterizing the adhesion material, and the
slip function s is given by

s(x) = vf(x) − vm(x). (3)

The slip s measures the difference of the elastic displacements occurring at the inter-
face separating the two different materials. We introduce the notation v = (vf, vm)

and examine the total potential energy

E = Ef + Em + Ead

of the following form:

E(v) := E(vf, vm) = 1

2

∫ L

0

(
kf|v′

f|2 + km|v′
m|2 + kad|vf − vm|2)dx. (4)

We assume that the displacement d > 0 is given. Then the admissible configurations
belong to the set

A = {
v = (vf, vm) ∈ H 1((0,L);R2), vf(L) = d, vm(0) = 0

}
. (5)

The equilibrium states of the system are the solutions the following variational prob-
lem:

min
{
E(v) | v ∈ A

}
. (6)

The existence of solutions of (6) follows by a straight application of the direct
methods of the calculus of variations. For this purpose, we observe that E(v) ≥
‖v′

f‖2
L2 +‖v′

m‖2
L2 for every v ∈ A , and hence the functional E enjoys the coercivity

property due to the Poincaré inequality and the boundary conditions in A . More-
over, the convexity of E with respect to v′ ensures the weak lower semicontinuity
in H 1(0,L).

By employing a standard variation argument we get that any minimizer of (6)
satisfies the following Euler–Lagrange equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−kfv
′′
f (x) = kad(vm − vf) ∀x ∈ (0,L),

−kmv′′
m(x) = kad(vf − vm) ∀x ∈ (0,L),

v′
f(0) = 0, vf(L) = d,

vm(0) = 0, v′
m(L) = 0.

(7)
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The unique solution of (7) is explicitly given by

vf (x) = μ(c2 − c1)x + k(c2 + c1) + c1e
μx + c2e

−μx,

vm(x) = μ(c2 − c1)x + k(c2 + c1) − k
(
c1e

μx + c2e
−μx

)
,

(8)

where we have set

μ =
√

kad

km

(k + 1)

k
, k = kf

km

, (9)

and

c1 = d
(k + eμL)

1 + 4keμL + k2 − μkL + e2μL(1 + k2 + μkL)
,

c2 = d
eμL(1 + keμL)

1 + 4keμL + k2 − μkL + e2μL(1 + k2 + μkL)
.

(10)

Then

vf (x) − vm(x) = (1 + k)
(
c1e

μx + c2e
−μx

)
> 0 ∀x ∈ [0,L], (11)

and hence vf is strictly convex, and vm is strictly concave; moreover, vf − vm attains
its minimum value

m = vf(x̄) − vm(x̄) = 2(1 + k)
√

c1c2

at the point

x̄ = 1

2μ
ln

c2

c1
∈ (0,L).

In the limit case where the supporting matrix becomes rigid, say km → ∞, we
have

x̄ → 0, μ →
√

kad

kf
, m → m∞ := d

cosh(L
√

kad/kf)
.

Notice that, if kad is of the same order as kf, then the value m∞ is smaller than
d , but, as d → 0, it is of the same order as d . This last remark may suggest some
inadequacy of the constitutive assumption (2). Nevertheless, in problems arising in
structural engineering, typically the ratio kad/kf is very large, and so for any d , the
value m∞ goes to zero much faster than d . It follows that the quadratic interaction
described in this section is able to capture the essence of adhesion only in the case
kad/kf is very large. For this reason, in the next section we examine a different
constitutive assumption given by (14) and (15) (or (47) and (48)). Figures 1 and 2
display the graphs of vf, vm and s = vf − vm, for relevant choices of the parameters:
we emphasize the resulting small magnitude of the slip.
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Fig. 1 kf = 210000 MPa; km = 30000 MPa; kad = 10000 MPa; L = 5 m; d = 0.01 m [1]

Fig. 2 CFRP plate: kf = 165000 MPa; Concrete: km = 25000 MPa; Epoxy adhesive:
kad = 4500 MPa; L = 5 m; d = 0.01 m [6]

Remark 1 Notice that, if kf = km, then the unique minimizer v = (vf, vm) exhibits a
graph which is symmetric with respect to the point (L/2, d/2), that is,

⎧⎨
⎩

vf(x) = d
2 − vm(L

2 − x),

vm(x) = d
2 − vf(

L
2 − x).

(12)

Relationship (12) is a consequence of the uniqueness and the following invariance
property of the energy:

E

(
d

2
− vm

(
L

2
− x

)
,
d

2
− vf

(
L

2
− x

))
= E(vf, vm), ∀(vf, vm) ∈ A .

3 Adhesion with Softening

In this section we examine two constitutive softening laws for the adhesion layer.
The first one (discontinuous softening, Sects. 3.1, 3.2) presents a sudden transition
of the stress which goes to zero discontinuously, while the second one (smooth
softening, Sect. 3.3) exhibits a smooth decay of the stress after a certain value of the
slip. For the first one, we also consider the limit case where the supporting matrix
becomes rigid.
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Fig. 3 Energy and constitutive law for discontinuous softening

3.1 Elastic Supporting Matrix with Discontinuous Softening Glue

In this section we assume that the interface law governing the constitutive behavior
of the glue behaves elastically up to a given value of the slip, while beyond such a
threshold the stress discontinuously drops to zero. More precisely, we assume

{
τ : R+ → R+ continuous and weakly increasing in [0, S∗],

τ (0) = 0, τ (s) > 0 ∀s ∈ (0, S∗], τ (s) = 0 ∀s > S∗
}
. (13)

The function τ represents the stress-slip constitutive relationship of the adhesive
material, and for the adhesion energy, we assume the following density function
defined for every σ ≥ 0:

T (σ ) = G

∫ σ

0
τ(t) dt, (14)

where G > 0 represents the stiffness of the glue. (A qualitative graph of an admis-
sible constitutive law is displayed in Fig. 3.)

Notice that T is continuous and convex in [0, S∗] since τ ∈ BV (0, S∗) and T ′′ =
τ ′ ≥ 0 in (0, S∗). We set

Êad =
∫ L

0
T

(∣∣s(x)
∣∣)dx, (15)

where s(x) = vf(x) − vm(x).
The total energy of the system takes the form

Ê(v) := Ef(v) + Em(v) + Êad(v), v = (vf, vm), (16)

where the elastic energies Ef and Em are defined in (1), and Êad is defined in (15).

Remark 2 Note that, if d > S∗, then v0 = (d,0) ∈ A corresponds to the completely
detached state of the two structures.
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Motivated by the above remark, we analyze only the nontrivial case occurring
when

0 < d < S∗. (17)

Along this subsection we assume (1) and (14)–(17) and select the same admissible
set of displacements A defined in (5). The effective role played by (17) and the
consequences of its failure will be clarified at the end of this section.

The equilibrium states of the system are the solutions the following variational
problem:

min
{
Ê(v) | v ∈ A

}
. (18)

Let us note that v0 = (d,0) ∈ A , i.e., v0 is an admissible displacement, and, by
taking into account (17), we have the following energy estimate:

Ê(v) ≤ Ê(v0) ≤ LT (S∗) ∀v ∈ argmin
A

Ê. (19)

Lemma 1 Assume (1), (5), (14)–(17), and v ∈ argminA Ê.
Then 0 ≤ vf ≤ d and 0 ≤ vm ≤ d .

Proof The thesis follows by observing that for every (vf, vm) ∈ A , by setting ṽf =
min(vf, d) and ṽm = min(vm, d) we have

(vf
+, vm

+) ∈ A , (ṽf, ṽm) ∈ A , (20)

T
(|vf

+ − vm
+|) ≤ T

(|vf − vm|), (21)

and the inequality in (21) is strict if |{x | vf(x) < 0 or vm(x) < 0}| > 0,

T
(|ṽf − ṽm|) ≤ T

(|vf − vm|), (22)

and the inequality in (22) is strict if |{x | vf(x) > d or vm(x) > d}| > 0. �

Theorem 1 Assume (1), (5), and (14)–(17). Then problem (18) admits a unique
solution v ∈ C2([0,L];R2). Moreover, v fulfills vf(x) ≥ vm(x) ∀x ∈ [0,L] and the
Euler–Lagrange equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kfv
′′
f (x) = Gτ(vf − vm ), x ∈ (0,L),

−kmv′′
m(x) = Gτ(vf − vm), x ∈ (0,L),

v′
f(0) = 0, vf(L) = d,

vm(0) = 0, v′
m(L) = 0.

(23)

Moreover, the following Compliance Identity holds:

Ê(v) =
∫ L

0

[
G

2
τ
(
vf(x) − vm(x)

)(
vf(x) − vm(x)

) + T
(
vf(x) − vm(x)

)]
dx

+ kfd v′
f(L). (24)
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The previous theorem will be proved through a pair of lemmas.

Lemma 2 Assume (1), (5), and (14)–(17). Then the variational problem (18) ad-
mits a solution, and if v ∈ argminA Ê, then v ∈ C2([0,L];R2) and satisfies the
following Euler–Lagrange equations in (0,L):

⎧⎪⎨
⎪⎩

−kfv
′′
f (x) = Gτ(|vf − vm|) sign(vm − vf),

−kmv′′
m(x) = Gτ(|vf − vm|) sign(vf − vm),

v′
f(0) = 0, v′

m(L) = 0,

(25)

together with boundary conditions

vm(0) = 0, vf(L) = d. (26)

Proof Notice that Ê(v) ≥ ‖v′
f‖2

L2 + ‖v′
m‖2

L2 for every v ∈ A , and hence the func-

tional Ê enjoys the coercivity property due to the Poincaré inequality and the bound-
ary conditions in A . Moreover, the convexity of Ê with respect to v′ ensures the
weak lower semicontinuity in H 1(0,L). Then existence of solutions for the mini-
mization (18) follows by a straight application of the direct method of the calculus
of variations.

The usual computation shows that the Euler–Lagrange equations (25) and the
boundary conditions (26) are satisfied in D ′(0,L), and by recalling Lemma 1 and
assumptions on τ , we have that τ(|vf − vm|) sign(vm − vf) is continuous in [0,L]
and hence v ∈ C2([0,L];R2). �

Lemma 3 Assume (1), (5), (14)–(17), and v ∈ argminA Ê. Then

vm(x) ≤ vf(x) ∀x ∈ [0,L], (27)

and the equality may occur only in a (possibly empty) closed interval [a, b] s.t.

[a, b]� [0,L].

Proof Two alternatives may occur: either vm ≥ vf in the whole [0,L], or there
exists x̄ ∈ [0,L] such that vm(x̄) < vf (x̄).

In the first case by Lemma 1 we get vf (0) = vm(0) = 0, vm(L) = vf (L) = d ,
and by the Euler–Lagrange equations we have that vm is convex and vf is concave,
and hence vm − vf is convex, and therefore vm ≤ vf , that is, vf ≡ vm, which is in
contradiction with the boundary conditions in (25).

We prove now that if there exists x̄ ∈ [0,L] such that vm(x̄) < vf (x̄), then vm ≤
vf in the whole [0,L].

We set x1 = inf{x ≤ x̄ : vm(x) < vf (x) in (x, x̄)}, x2 = {x ≥ x̄ : vm(x) <

vf (x) in (x̄, x)}, and we may consider the following cases:

(i) 0 < x1 < x2 < L: then by the E–L equations we get vf − vm convex in [x1, x2]
and vm(x1)−vf (x1) = vm(x1)−vf (x1) = 0, that is, vf ≤ vm in [x1, x2], a con-
tradiction.
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(ii) x1 = 0 < x2 < L: then vf (x2) = vm(x2) = 0, and again either vm ≥ vf in
the whole [x2,L], or there exists x3 ∈ (x2,L] such that vm(x3) < vf (x3).
Therefore, either vf ≡ vm in [x2,L], or vf ≥ vm in [0, x2] ∪ [x3,L] and
(vf −vm)(x2) = 0 = (vf −vm)(x3). By the minimality of (vf , vm), it is readily
seen that vf = vm in [x2, x3], thus proving the statement in this case. Since the
case 0 < x1 < x2 = L can be handled as the previous one, the proof of (27) is
achieved. By the boundary conditions in (25), equality in (27) may occur only
in a proper subset of [0,L], a closed interval [a, b] ⊂ [0,L] with [a, b] �≡ [0,L].�

Proof of Theorem 1 Let v ∈ argminA Ê. By Lemma 2 we deduce that v ∈
C2([0,L];R2) and fulfills Euler–Lagrange equations (23). We are left to show the
uniqueness that we will obtain by a technique similar to [19], Theorem 5. We set

ψ(p,q) = kf(q1)
2 + km(q2)

2 + T (p1 − p2),

∀p = (p1,p2), q = (q1, q2). (28)

If there exist two solutions v = (vf, vm) and w = (wf,wm) with v �≡ w, then recalling
(27) and

0 ≤ s(x) = vf(x) − vm(x) ≤ d ≤ S∗ ∀x ∈ [0,L],
from the convexity of T in [0, S∗] we get

ψ
(
tv + (1 − t)w, tv′ + (1 − t)w′) − tψ(v,v′) − (1 − t)ψ(w,w′) ≤ 0; (29)

hence the minimality of v and w implies
∫ L

0
ψ

(
tv + (1 − t)w, tv′ + (1 − t)w′)dx

= t

∫ L

0
ψ(v,v′) dx + (1 − t)

∫ L

0
ψ(w,w′) dx, (30)

and by (29) we have

ψ
(
tv + (1 − t)w, tv′ + (1 − t)w′) − tψ(v,v′) − (1 − t)ψ(w,w′) = 0

∀x ∈ [0,L], ∀t ∈ [0,1]. (31)

By differentiating the previous equality with respect to t we get

ψp

(
tv + (1 − t)w, tv′ + (1 − t)w′) · (v − w)

+ ψq

(
tv + (1 − t)w, tv′ + (1 − t)w′) · (v′ − w′)

= ψ(v,v′) − ψ(w,w′) ∀x ∈ [0,L], ∀t ∈ [0,1]. (32)

Hence by evaluating (32) at t = 1 and t = 0 we have

ψp(v,v′) · (v − w) + ψq(v,v′) · (v′ − w′)

= ψp(w,w′) · (v − w) + ψq(w,w′) · (v′ − w′). (33)
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Then, taking into account (27), (28), and (33) and the fact that τ is nondecreasing,
we get

2kf(v
′
f − w′

f)
2 + 2km(v′

m − w′
m)2

= (vf − vm − wf + wm)
{
τ(wf − wm) − τ(vf − vm)

} ≤ 0, (34)

that is, v′
f − w′

f = v′
m − w′

m = 0. Hence v = w in the whole [0,L].
Eventually, integrating by parts the elastic energies in (1) and taking into account

(23) and (25), we get the Compliance Identity (24). �

A slight modification of the proof of the previous theorem permits to show also
the following:

Theorem 2 Assume (1), (5), and (14)–(17). If the odd extension of τ is analytic in
a neighborhood of the origin, then, in addition to the statement of Theorem 1, we
have

vm(x) < vf(x) ∀x ∈ [0,L]. (35)

Proof Since here all the assumptions of Theorem 1 hold, we have only to prove (35).
If there exists x̄ such that vf(x̄) = vm(x̄), then by v ∈ C2([0,L];R2) and

Lemma 2 we get v′
f(x̄) = v′

m(x̄), and by using the Euler–Lagrange equations we

deduce that v
(j)

f (x̄) = v
(j)
m (x̄) for every j ≥ 0 and hence vf(x) ≡ vm(x) in [0,L] by

the identity principle of analytic functions, so that

vf ≡ vm ≡ d

L
x,

in contrast with the Neumann boundary conditions v′
f(0) = 0, v′

m(L) = 0. �

3.2 Rigid Supporting Matrix with Discontinuous Softening Glue

In this subsection we face the case of a rigid matrix, as is the case of concrete beams.
When assuming the structural assumptions of the previous subsection (say, (1),

(5), and (14)–(17)), if kf is fixed, km → +∞, and (vf, vm) is the minimizer of Ê on
A , then vm → 0 in H 1(0,L).

This claim is a straightforward consequence of estimate (19) since we have

0 ≤ ‖v′
m‖2

L2(0,L)
≤ 1

km
Ê(v) ≤ 1

km
LT (S∗).

Then it is natural to describe the rigid supporting matrix by selecting as admissible
only those axial displacements v that fulfill vm ≡ 0. Moreover, in this case we can
assume without any restriction that the length of the matrix is greater than the length
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L of the fiber. To simplify the notation, we set v ≡ vf, and so we reduce to study the
energy

H(v) =
∫ L

0

(
kf

2
|v′|2 + T

(|v|)
)

dx. (36)

Precisely, we deal with the problem

min
{
H(v) | v ∈ H 1(0,L), v(L) = d

}
. (37)

Theorem 3 Assume (13), (14), (17), (36). Then:

(i) Problem (37) admits a unique solution v ∈ C2([0,L]). Moreover, 0 ≤ v(x) ≤ d

∀x ∈ [0,L].
(ii) The solution v of (37) fulfills the Euler–Lagrange equation

{
kfv

′′(x) = G τ(v(x)), x ∈ (0,L),

v′(0) = 0, v(L) = d.
(38)

(iii) The solution v of (37) fulfills the Compliance Identity

H(v) =
∫ L

0

[
G

2
τ
(
v(x)

)
v(x) + T

(
v(x)

)]
dx + kf dv′(L). (39)

(iv) The solution v of (37) fulfills the following equation (first integral):

T
(
v(x)

) − kf

2

(
v′(x)

)2
is constant in [0,L]. (40)

(v) If v is the solution of (37), then either v(x) > 0 ∀x ∈ [0,L], or there exists ξ ∈
[0,L), with ξ = ξ(d), such that v(x) = 0 ∀x ∈ [0, ξ ] and v is strictly increasing
in [ξ,L].

Proof Statements (i), (ii), (iii) and the fact that v �≡ 0 can be proved as in the proof
of Theorem 1.

(iv) Since H(v) = ∫ L

0 f (v, v′)dx, we get d
dx

[f − pfp] = 0 and hence (40).
(v) The fact that the null set of v, when nonempty, is connected and contains

x = 0 is true since otherwise we could modify v by setting v = 0 in the interval
[0, ξ ] and strictly reduce the energy, in contradiction to the minimality of v. Then,
by (38), since τ(0) = 0 and τ(s) > 0 ∀s ∈ (0, S∗), we get the statement. �

Theorem 4 Assume (13), (14), (17), (36) and let v be the solution of (37). Set
ξ = inf{x ∈ [0,L] | v(x) > 0}. Then

L − ξ =
√

kf

2

∫ d

v(ξ)

dt√
T (t) − T (v(ξ))

. (41)
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Proof Clearly v′(ξ) = 0, and since v′(x) ≥ 0, by (40) we get

√
kf

2
v′(x) =

√
T

(
v(x)

) − T
(
v(ξ)

) ∀x ∈ [ξ,L],

L − x =
√

kf

2

∫ d

v(x)

dt√
T (t) − T (v(ξ))

∀x ∈ (ξ,L],

and now the statement easily follows by letting x → ξ . �

A straightforward consequence of (41) is the following statement, which, in the
spirit of [1], where an estimate analogous to (41) is deduced through heuristic ar-
guments, establishes a sharp estimate on the length of the fiber according to the
carrying capacity of the glue and the constitutive parameters of the reinforcing fiber.

Corollary 1 Assume (13), (14), (17), (36) and let v be the solution of (37). Set

L :=
√

kf

2

∫ d

0

dt√
T (t)

. (42)

Then:

(i) If L < L, then 0 < ξ = L − L.
(ii) If L = L, then ξ = 0 and v(0) = 0.

(iii) If L > L, then ξ = 0 and v(0) > 0.

Proof By T (0) = 0 and the convexity of T , we get

T (y − z) + T (z) ≤ T (y) ∀y ∈ [z, d], 0 < z < d,

∫ d

z

dy√
T (y) − T (z)

≤
∫ d

z

dy√
T (y − z)

=
∫ d−z

0

dη√
T (η)

<

∫ d

0

dη√
T (η)

, (43)

and therefore, if L = L, then by (41) and (43) we get ξ = 0 and v(0) = 0, and
(ii) is proved. If L < L, then either ξ = 0, v(0) > 0, or 0 < ξ = L − L, but if ξ = 0
and v(0) > 0, then by using (43) with z = v(0) we get L < L, a contradiction.
Eventually (iii) is an obvious consequence of (41). �

Remark 3 Assume (13), (14), (17), (36), and (42).

• If L ≤ L, then ξ [d] = 0.
Then the mathematical solution v describes a state in which the whole fiber is

elastically detached from the matrix: v(x) > 0 for every x when L < L, v(x) = 0
iff x = 0 when L = L. This suggests the possibility of structural breakdown. This
case includes the case L = +∞, which corresponds to the nonintegrability at 0

of T − 1
2 .
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• If L > L, then ξ [d] = L − L > 0.
Then the mathematical solution v describes a state in which the fiber is only

partially elastically detached from the matrix. This suggests that the structure is
able to sustain the traction without breakdown. This case may happen only if

T − 1
2 ∈ L1(0, S∗), hence it is not compatible with any linear or superlinear stress-

slip law for the adhesive material.

An interesting outcome of Corollary 1 is the suggestion to study suitable adhesive
property of the glue, say qualitative behavior of τ , in order to make L as small as
possible.

Now we prove that when τ is concave near the origin, then the displacement in 0
is negligible with respect to d . This result is in good agreement with the experimen-
tal observations (in contrast with the one obtained in Sect. 2 in the case of quadratic
adhesion law), and hence it provides reasons in favor of the choice of constitutive
assumptions (13) and (14).

To make explicit the dependence of the solution v on the Dirichlet datum d ,
we label the unique v solution of (37) by v[d] = v[d](x) and set ξ [d] = inf{x ∈
[0,L] | v[d](x) > 0} for every d ∈ (0, S∗).

Theorem 5 Assume (13), (14), (17), (36), and

lim
s→0+ s−1τ(s) = +∞. (44)

Then either v[d](0) ≡ 0 in a neighborhood of d = 0, or d−1v[d](0) → 0 as d → 0.

Proof If dn → 0 and v[dn](0) > 0, then ξ [dn] = 0, and formula (41) holds; more-
over, since v[dn](L) = dn > 0, ξ = 0, and v[dn](ξ) = v[dn](0) > 0, we have

L =
√

kf

2G

∫ dn

v[dn](0)

dt√∫ t

v[dn](0)
τ (s) ds

. (45)

Recalling that τ is increasing and v[dn](0) < dn, we get

2G

kf
L2

(∫ dn

v[dn](0)

dt√
(dn − v[dn](0))τ (v[dn](0))

)2

≤ dn − v[dn](0)

τ (v[dn](0))
,

2Gτ
(
v[dn](0)

)
L2 ≤ kf dn,

which, together with (44), yields the thesis. �

3.3 Elastic Supporting Matrix with Smooth Softening Glue

In this section we assume that the stress-slip law governing the constitutive behavior
of the glue is continuous with compact support.
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Fig. 4 Energy and constitutive law for smooth softening

The scheme includes the case of unimodal law which behaves elastically up to a
given value of the slip and exhibits a softening range beyond such a value. Never-
theless, we do not make any assumption about the monotonicity region of τ̃ . More
precisely, let

{
τ̃ :R+ → R+ continuous, S∗ > 0,

τ̃ (0) = 0, τ̃ (s) > 0 in [0, S∗], τ̃ (s) = 0 ∀s ≥ S∗
}
. (46)

τ̃ represents the stress-slip constitutive relationship of the adhesive material (a qual-
itative graph is displayed in Fig. 4); hence the adhesion energy is now defined as
follows:

T̃ (σ ) = G

∫ σ

0
τ̃ (t) dt, (47)

Ẽad =
∫ L

0
T̃

(∣∣s(x)
∣∣)dx. (48)

The total energy of the system takes the form

Ẽ(v) := Ef(v) + Em(v) + Ẽad(v), v = (vf, vm), (49)

where vf and vm are the axial displacements of the fiber and the matrix, the elastic
energies Ef and Em are defined in (1), and Ẽad is defined in (48). Referring to (5)
and (49), we face the minimization problem

min
{
Ẽ(v) | v ∈ A

}
. (50)

Theorem 6 Assume (1), (5), (17),(46), (47), (48), and (49). Then problem (50) ad-
mits a solution v ∈ C2([0,L];R2), which satisfies the Euler–Lagrange equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kf v
′′
f (x) = Gτ̃(vf − vm ), x ∈ (0,L),

−km v′′
m(x) = Gτ̃(vf − vm), x ∈ (0,L),

v′
f(0) = 0, vf(L) = d,

vm(0) = 0, v′
m(L) = 0.

(51)
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Moreover, the following Compliance Identity holds:

Ẽ(v) =
∫ L

0

[
G

2
τ̃
(
s(x)

)
s(x) + T̃

(
s(x)

)]
dx + kf dv′

f(L). (52)

If, in addition to the previous assumptions, the odd extension of τ̃ is analytic in a
neighborhood of the origin, then the minimizer v fulfills

vm(x) < vf(x) ∀x ∈ [0,L]. (53)

Proof Lemmas 2 and 3 can be proved in the same way when τ̃ is substituted to τ .
Then the proofs of the existence, (51), and (52) follow as in Theorem 1. The final
part of the proof of Theorem 1 was based on the convexity of T in [0, S∗], hence
it cannot be adapted to T̃ , and therefore we cannot deduce the uniqueness of the
minimizer in general. Nevertheless, inequality (53) can be proved exactly as in the
proof of Theorem 2. �

Remark 4 We set τ̃ (S0) = maxs∈[0,S∗] τ̃ (s), hence ˙̃τ(s) ≥ 0 if 0 ≤ s ≤ S0 and ˙̃τ(s) ≤
0 if S0 ≤ s ≤ S∗. Let v ∈ argmin Ẽ. For any ϕ ∈ C1

0([0,L];R2), we compute the
second variation of Ẽ, given by (16), at v in the direction of ϕ, say

δ2Ẽ(v, ϕ) = 2
∫ L

0

(
(kf + km)|ϕ′|2 + G ˙̃τ |ϕ|2)dx. (54)

By virtue of (54) we conjecture that instability phenomena may occur since for large
values of the slip, i.e., s > S0, τ ′(s) < 0, and δ2Ẽ(v) could be negative for some ϕ.
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Conceptual Design of a Very Large PrandtlPlane
Freighter

Fabrizio Oliviero and Aldo Frediani

1 Introduction

The airfreight represents a marginal sector of the air industry, due to the high oper-
ating costs, compared to the other means of transport. This situation is based on the
assumption that a large-scale air freight is currently not optimized because it is not
profitable.

An efficient airfreight transport could improve the international commerce, and
it could be fundamental to sustain the economies of the developing countries, espe-
cially those currently far from the main communication routes.

This paper shows how the air freight could become an efficient transport system
with a cut of the operating costs and how to improve both aircraft technology and
worldwide logistic system.

The study results in the conceptual layout of a new freighter, properly conceived
for the transportation of intermodal containers; its operational requirements are se-
lected in order to fit with the long-term developments of markets.

The proposed aircraft is a PrandtlPlane box wing concept, and the propulsion
system makes use of open rotor engines. The technological improvements in both
the wing and propulsion systems could reduce significantly the fuel consumption
compared with the ones of the current freighters.

Further improvements in transport efficiency are possible thanks to the creation
of an adequate net of freight airports, in order to optimize the goods flows and to
increase the aircraft load factor.
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Fig. 1 Energy consumption
(kg of equivalent oil) per unit
of traffic

2 Current Aspect of Airfreight

Today, the importance of the airfreight is negligible when compared to the other
means of transport in terms of quantity of carried goods; only 0.2–0.5% of the total
moved tons are carried by air. Nevertheless, the scenario changes radically when
considering the money exchanges: in this case the airfreight represents about 30%
of the total economic flows connected to the goods transportation. This situation is
totally unfavourable for the market economies that are able to produce only low-
cost goods. A point-to-point transportation by air could change these economies
and, maybe, improve also the life standard of the populations of many countries of
Africa, South America and Asia.

The difference between quantity of carried goods and economical flows depends
mostly on the very high costs of the fuel consumed: in fact, in the case of air
transport, the consumed energy per TonxKm of transported goods can become even
two orders of magnitude higher than the other means of transport [1] as displayed
in Fig. 1.

Hence, only few categories of freight that can support an elevated value-added
are carried by air; according to some economical studies (e.g. [2]), air transport
becomes not convenient under a total value of about 15 US$/kilogram.

Even though the air transport appears totally unfavourable in terms of specific
energy consumption, the comparison shown in Fig. 1 is misleading. Several factors
tend to reduce significantly the differences with the other means of transport when
the global shipping costs are considered:

Reliability The air transport is not affected by geographical obstacles, and a point-
to-point connection could be done easily along the minimum distance; in the case
of all the other means of transport, a direct connection is often not possible, the ef-
fective journey is many times larger, and intermediate transfers to other carrier are
often necessary. In addition, both the origin and destination points can be located
far from the sea ports, so that changes in the mode of transport are needed when
maritime and ground transportation is involved; this aspect determines a rise in the
warehousing, storage and load–unload operations.

Service Speed and Efficiency The air freight ensures the best on time service to-
gether with the lowest block time; typical long-haul routes can be covered in 14–18
hours, including also the load–unload operations, while the correspondent service
by ships is performed in about 12–15 days. The air transports becomes the only
possible choice in case of perishable transport or emergency scenarios. In the case
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Table 1 Accident costs in
EU, year 2001 Mode Eur (billion)

Road 162

Air 0.5

Rail 2.74

Maritime 1.78

Fig. 2 Global growth of the
Gross Domestic Product GDP
and air freight volumes

of road and rail transportation, the costs related to jams and congestions are be-
coming significant especially in areas like Europe and America; the efficiency of
the air ensures negligible jams costs, increasing the competitiveness further on.

Safety and service quality Aircraft is the safest mean of transport with the lowest
costs related to accidents; for example, Table 1 reports the year 2001 accident costs
over Europe for different modes of transport [3].

Infrastructure Airports have the smallest land requirements in terms of construc-
tion costs and environmental impact. Moreover, the construction costs can be also
amortized by the productivity of the airports itself.

In the case of air transport the global growth rate in the last two decades has been
nearly double of the global Gross Domestic Product, GDP, growth rate [2] as shown
in Fig. 2.

The distribution of the traffic among the different geographical areas is uneven:
for example, in 2009 [4] air freight growth in Asia was +10%, while a strong con-
traction occurred in America (−10%) and in Europe (−12%) due to the economical
crisis.

At present, only about 50% of the air freight is carried by cargo aircraft with
about 2000 units. Most cargo aircraft, about 90% of total, comes from the con-
version of old passenger aircraft. Although acquisition costs are very low, many
disadvantages can be denoted.

• Aircraft have old technology and short operative life, so that maintenance and
flight costs are high.

• Their operational requirements are properly conceived for passenger transporta-
tion with a low efficiency for freight transport, especially in terms of cruise speed,
payload (capacity and typology) and range.
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Fig. 3 20 year forecast: global growth margin and fleet composition

• Large wide-body freighters (payload > 80 tons), used mainly for point-to-point
commerce, represent only 25% of the current global fleet, and their load factor
hardly exceeds 65%; the operational costs per unit of freight transported are in-
creased consequently.

• The usual Unit Load Devices (ULD) have been designed to optimize the cargo
volume of passenger aircraft, not used for ground or rail transportation.

The long-term forecast model proposed by Boeing [2] and displayed in Fig. 3
predicts that traffic will more than triple between 2009 and 2029 reaching about 600
billion Revenue Tonne Kilometer (RTK) while the fleet will be doubled, shifting
towards the use of large wide bodies, that will derive directly from the production
of new aircraft, in order to reduce flight costs.

3 New Generation Freighter

The economical aspect is the primary driver for the design of an innovative freighter;
the operating requirements have to be properly conceived for an “optimum” goods
transportation. No compromise for a future passenger conversion could be accepted.

3.1 Payload

An increase in aircraft capacity is desirable in order to reduce costs per unit of
freight carried. At the same time, the aircraft dimension cannot exceed the maximum
allowed ones by the airport operations, a 80 × 80 [m] square.

Although the dimensions limit the aircraft capacity in the case of monoplane
configuration, a payload increase until 250 tons is possible through the adoption of
a non-conventional lifting system.
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Fig. 4 M2-AGA container

Table 2 AGA intermodal
container Feature Value

Designation (IATA) M-2 (AGA)

Maximum gross weight [kg] 11 340

Tare weight [kg] 1000

Available volume [m3] 33.7

In the case of freighter design, the determination of an adequate average goods
density is necessary to optimize the fuselage dimensions. In the present aircraft
design we assume a density of about 220 kg/m3 despite the currently used value of
160 kg/m3, representative only of the density of passenger luggage.

3.2 Intermodality

The integration within a more efficient intermodal system plays a critical role in the
airfreight future development. The possibility to carry intermodal containers that can
be quickly moved out of the airport area by rail or truck helps to consistently reduce
ground costs avoiding the break of the unit load in the airport area. The aluminium
ISO containers allow a reduction of the elevated tare of the current marine and rail
ones (about 3 tons); Fig. 4 shows the “AGA-M2” IATA 20-ft intermodal container,
and its features are reported in Table 2.

The aircraft proposed in this paper can transport 24 ISO containers 20-ft length.

3.3 Range

A design range of 3000 [nm] is assumed as the optimum, contrary to the current
trend of wide bodies aircraft, able to cover long routes (5000–6000 n.m.) without
intermediate landings. In the present case, typical routes could be: Boston–Dublin
(2889 nm), Sapporo–Anchorage (2993 nm), Brasilia–Dakar (2952 nm), Mombasa–
New Delhi (2920 nm), Shanghai–Mumbai (2715 nm), Frankfurt–Dubai (3000 nm).
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Fig. 5 Typical long-haul route (HGK–FRA) covered with one intermediate landing

The range reduction allows us multiple benefits: first, the requested fuel per
ton·km is reduced; at the same time, the air transport can become efficient also
for the continental commerce that is destinated to become more and more important
in the next years as also remarked in [2] and [5].

Long-haul missions can be covered through intermediate landings that do not
reduce the competitiveness of air transport because the block speed reduction is
unsignificant in the case of goods transport. Taking also the flight performance (de-
scribed later on this paper) into account, the projected block time of a typical long
haul route displayed in Fig. 5 (Hong Kong–Frankfurt, about 5100 nm), with one in-
termediate landing, is increased only by 40% (15,5 hours) with respect to the current
block time (11-hour direct flight).

The intermediate landings become also strategic for an optimization of the logis-
tic system: in fact, a network of freight airports is necessary to distribute the payload
coming from one origin for multiple destinations, increasing the aircraft load factor
and reducing the flight costs per unit of freight further more.

3.4 Flight Performance and System Propulsion

The specific fuel consumption of existing turbofans is not compatible with any cost
reduction. In order to cut the fuel consumption, the new freighters will be propulsed
by means of open rotor engines. Open rotor cannot easily be integrated into aircraft,
and, in particular, conventional aircraft cannot integrate a large number of engines;
thus, the integration of the propulsion system into the aircraft represents one of the
most important challenges in the aircraft design; in this sense, the PrandtlPlane con-
figuration allows a greater flexibility in engine location, and several configurations
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Table 3 Operating
requirements Feature Notation Value

Gross payload [kg] Wpay 250 000

ULD type – 24 ISO container

Range [nm] R 3000

Cruise speed M 0.6–0.7

Cruise altitude [ft] h 20 000

Engine – Open rotor

Max. length [m] Lfus 80

Max. wingspan [m] b 80

are possible with a high number of engines. Flight performance must fit with the
chosen engines; so the data of existing open rotor [6] are selected as the following
reference point: M = 0.60–65 and h = 18 000–21 000 ft.

The altitude allows one to avoid possible congestions of the airways currently
used by the passenger transonic aircraft; moreover, the loss of speed due to the
cruise Mach reduction is partly balanced by the increase of the sound speed; the
True Airspeed is calculated as follows for the two cases:

⎧
⎨

⎩

TASM=0.65, h=20000 ∼= 205 [m/s]

TASM=0.85, h=33000 ∼= 254 [m/s]
(1)

The operating requirements of the aircraft are reported in Table 3:

4 Freighter Conceptual Design

4.1 The PrandtlPlane

The conceptual layout reported in the present paper and in [7] refers to the
PrandtlPlane configuration based on the Prandtl’s concept of the Best Wing sys-
tem [8]. As is well known, this box wing is composed by a front wing and a rear
one, connected each other by two lateral bulks; the front wing has a positive sweep
angle, the contrary on the rear one; the box wing efficiency depends on the non-
dimensional gap between the vertical distance and wingspan h/b, and for values
in [0.15–0.20] ratio, the induced drag is reduced by 20–30% with respect to the
correspondent optimum monoplane [9]. The PrandtlPlane presents two vertical fins
disposed in order to avoid flutter as illustrated in [10], and also it determines other
interesting advantages when applied to a Very Large Aircraft:

• The static stability of flight is obtained by a proper design of the wings; in general,
the rear wing chords are larger than the front one. The static stability of flight is
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also affected by the sweep angles, and, in particular, it is enhanced by reducing
that of the rear wing.

• The pitch control is obtained by means of elevators in both the front and rear
wings that operate in phase opposition so that the control can be a pure moment
in pitch. Thus, the pitch control can be neutral with respect the lift variations, and
it becomes safer especially close to the runway. The elevators are positioned at
the wings roots.

• The high-lift devices are located along the entire wingspan of both the wings;
thus, an increase of the low speed performance, lower noise and oxide emissions
in take off, climb, approach and landing, are expected.

• The ailerons can be divided into two parts positioned at the tips of both wings to
enhance the roll control with a reduced aileron total surface as shown in [11].

• The yaw stability and control are obtained by means of a double fin which connect
the rear wing to the fuselage. The efficiency of the fins is high due to the reflection
effect of the rear wing. The distance between the fins is the maximum possible in
order to prevent flutter.

• The maximum thickness of the single wing is nearly the half of that of a corre-
spondent monoplane; the front wing can cross the fuselage without any interfer-
ence with the cargo deck.

4.2 Definition of the Fuselage

The fuselage is enlarged horizontally in order to position the containers, to locate
the main under carriage with a proper distance and to have the vertical fins as far
as possible. Moreover, the front wing crosses the fuselage in the lower part, without
interferences with the cargo deck.

The fuselage is not pressurized, and from a structural point of view, it is equiv-
alent to a beam doubly supported in correspondence with the front and rear wing
connections.

The fuselage section is in accordance to the ISO container transportation: no
windows are required, pressurization is limited to cockpit area, and doors allow
easy and quick load/unload operations.

In order to facilitate loading and unloading, the container are disposed in a single
deck, set transversally to the aircraft longitudinal axis, as shown in Fig. 6. The cor-
responding fuselage transversal section is created in order to minimize the wetted
surface, to avoid any interferences between payload and structures and to ensure the
adequate bending stiffness.

Figure 6 shows the cross sections of cargo aircraft: B747-F (A), AN-225 (B), the
“ecolifter” project [5] (C), and the fuselage of the PrandtlPlane Freighter (D).

Section A is typical of a passenger aircraft, where the cargo container is adapted
to the fuselage shape, and not the contrary; section B is a conventional very large
aircraft not properly designed for an intermodal transport but for carrying a large va-
riety of goods, from packages to tanks, fuselage sections, etc. Section of solution C
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Fig. 6 Definition of the transversal shape

is designed for ISO container transportation, but the loading/unloading operation
seems to be complicated apart from structural design problems and high inertial
loads during flight manoeuvres.

The present PrandtlPlane section (D) is doubly symmetric, and, in this figure, it
is obtained by two circular portions joined with the continuity of the first derivative.
The containers, set in a single level, are positioned transversally, and thus the weight
load is applied in proximity of points (1) and (2) of Fig. 7, very close to the web; the
lateral gap between the container and the fuselage shape allows the passage of the
crew during the ground operations. As shown in Fig. 7, the front wing of the aircraft
crosses the fuselage under the cargo deck (the red line refers to the fuselage shape
in correspondence of the wing cross, while the reference section is reported in blue
line).

The main undercarriage is located in lateral sponsons, designed in order to obtain
an adequate stability for ground manoeuvres. The volume under the cargo deck is
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Fig. 7 Section of the
fuselage in correspondence of
the front wing

Fig. 8 Definition of the transversal shape

Fig. 9 View envelope

continuous along the fuselage length; this volume could be utilized to add more
payload or to introduce tanks for Liquid Hydrogen engines, as displayed in Fig. 8.

The cockpit is located in the front part of the fuselage obtaining adequate living
space and ensuring a correct view envelope (Fig. 9).
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Fig. 10 Side doors

The loading/unloading operations are simply conducted through two side doors
in front and back fuselage (Fig. 10); during the loading procedure, the container is
introduced from the two side doors and then simply translated along the aircraft lon-
gitudinal axis by means of a proper system of rollers (the contrary happens during
the unloading operations). The structural reinforcements required in the area of the
side doors and also the hydraulic system for the opening are very simple and lighter
than the ones required in the case of front and rear ramps, as shown, for example, in
Fig. 12. In the case of rear ramp, the upsweep angle of the tail cone can become very
high, and thus the aerodynamics can become often deteriorated. In the present case,
the tail cone can be designed to optimize the aerodynamics, reducing the friction
drag and avoiding the flow separation.

Moreover, as remarked in [12], for a given overall fuselage length, the Prandtl-
Plane freighter ensures an increase of the useful length to locate the payload, dis-
played in Fig. 11 with the red line, because the tail cone volume can be reduced
maintaining the adequate margin of stability.

A solution shown in Fig. 12 is also possible, but it is not the optimum when pro-
duction and maintenance costs have to be minimized. Nevertheless the configuration
shown in Fig. 12 could become the optimal one when increasing the design payload
and positioning the containers longitudinally.

4.3 Weight and Performance Estimation

Weight and flight performance has been estimated by the use of preliminary sim-
ple models: the operative weight fraction Weo/Wto is determined by the statistical
model developed by Jane [13], using proper values for the coefficients A and B in
the case of very large aircraft:

Weo

Wto

= A · WB
to with A = 2.385 and B = −0.1246. (2)
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Fig. 11 Comparison of the useful length for different wing configurations

Fig. 12 Frontal door possible
configuration

The Breguet formula is used to estimate the fuel consumption during cruise and
loiter segments, in the case of propelled aircraft; for the cruise, we have

Wfin

Win
= e

− R·SFCcr
ηprop·Ecr , (3)

and, in the case of loiter, we have

Wfin

Win
= e

− vloi ·Loi·SFCloi
ηprop·Eloi , (4)

where:

• Wfin
Win

is the ratio between the weight at the end of the flight segment and the initial
one;
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Fig. 13 Project Point
determination

• R is the design range;
• LOI is the time of loiter segment;
• SFCcr and SFCloi indicate the specific fuel consumption of the engine during the

cruise and loiter, respectively;
• vloi is the aircraft speed during loiter;
• E is the flight efficiency;
• ηprop is the propeller efficiency.

Since both (2) and (3)–(4) depend on the MTOW, they have been inserted within
an iterating process to determine the weights.

The preliminary sizing is completed by the estimation of the wing surface and the
requested power in such the way that all the flight segments can be accomplished.
Then the “Project point”, defined as the couple of the wing loading W/S and the
power-to-weight ratio, hp/W , can be graphically determined considering simple
relations of flight mechanics for the following conditions: take-off, climb, cruise,
approach and landing. The results are graphically shown in Fig. 13.

The results reported in Table 4 show that the empty operative weight represents
about 40% of the MTOW smaller than ones of an existing aircraft. This reduction is
due to different aspects: first, the larger the aircraft, the lower the empty weight frac-
tion (note that the coefficient B in (2) is negative); moreover, the fuselage structure
of a PrandtlPlane results lighter than that of a monoplane one by about 7.5–8%.

The fuel weight fraction is highly reduced as well because of both the very low
specific fuel consumption of the propfans and the improved aerodynamic efficiency
of the box-wing system. The requested power resulting by the calculation procedure,
can be satisfied by eight existing propfan engines “Ivchenko Progress D-27” [6]: in
the layout reported in Fig. 14, one possible configuration consists in locating four
engines in the upper surface of the front wing, two engines on the vertical fins and
the last ones on the rear wing. The wing planforms are preliminary designed in order
to obtain the optimal lift distribution according to the PrandtlPlane aerodynamics,
and the airfoils are chosen for the required flight subsonic cruise speed. All these
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Table 4 Weights and
performance results Feature Notation Value

Maximum take-off weight [kg] Wto 624 800

Gross payload [kg] Wpay 250 000

Empty operative weight [kg] Weo 250 400

Fuel weight [kg] Wfuel 124 460

Wing loading [kg/m2] W/S 540

Power to weight ratio [ehp/kg] hp/W 0.175

Requested power [ehp] hp 109 000

Fig. 14 Conceptual layout

aspects contribute to limit the MTOW to 625 tons that is the value comparable with
the existing large aircrafts although the Payload is increased by about 30%.

4.4 Fuselage Structure

During flight, the PrandtlPlane fuselage is equivalent to a beam doubly supported
in correspondence of the rear and front wings. A preliminary structural model of
the fuselage is carried out in order to evaluate the weight saving due to the lack of
pressurization and first of all, the effects of the position of the wing crossing. In fact,
the position of the wing is the main parameter affecting the fuselage design, taking
in mind that the payload per unit of length is one order of magnitude higher than in
the case of passenger aircraft.

The fuselage section is designed against fatigue on the parts under tensile stresses
and against instability of equilibrium in the case of the compressed parts. A first
F.E. analysis allows us to estimate the dimensions of main structural elements and
to assess the effect of the wing positions; the stringers and frames are modelled
as mono-dimension beams, and the skin is modeled with two-dimension shell el-
ements; the material is Aluminium alloy 2024-T3. Figures 15 and 16 present the
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Fig. 15 Model of the
reference bay

Fig. 16 3D model of the fuselage main section

structural arrangement adopted for the preliminary fuselage bay and the 3D F.E.
model used.

Figure 17 shows the Von Mises maximum stress due to the wing position along
the upper fuselage. The upper fuselage is in compression contrary to the monoplane
configuration (reported in green line as a reference). When the distance between
the wings is reduced, the loads on the fuselage behind the front wing and the ones
after the rear one reduce the maximum negative bending moment as in the case of a
doubly supported beam. The optimum distance can be easily obtained, and with this
solution, the preliminary results indicate a possible weight saving of about 7.5–10%
between the reference case and the correspondent monoplane configuration.

5 Conclusions

The reduction of air transport costs is possible through the introduction of a new-
generation very large freighter flying at about 6000-m altitude, at a cruise speed of
Mach 0.6–0.7 and able to operate from existing airfields.
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Fig. 17 Stress distribution on the upper fuselage

A possible layout for a large freighter has been presented at a conceptual level, re-
marking all the possible advantages/disadvantages with respect to the conventional
aircraft and the aspects that have to be analysed in further studies.

The improved aerodynamic efficiency of the PrandtlPlane configuration allows
us to obtain a total drag reduction of about 15–20% during cruise, and the Specific
Fuel Consumption of existing open rotor engines is nearly halved if compared to
current turbofan performance. Considering the fuel weight reported in Table 4, the
reduction of fuel costs is about 20% in terms of $/(tons·km) when compared with
the current ones.

The primary challenge is represented by the design of new open rotor engines
able to satisfy the power requirement in order to reduce the number of mounted
engines. Nevertheless, the present research programs seems to be oriented into im-
proving both the speed (M = 0.85) and altitude (h > 30 000 ft) performance during
the cruise and not to improve the engine power, in order to extend the fuel sav-
ing benefits to the passenger transonic aircraft. The main drawback in improving
the produced power is represented by the weight increase and overheating of the
mechanical transmissions from turbine to fans. The preliminary estimation proves
that it is possible to accomplish the flight conditions with eight existing open rotor
engines.

The technological effort towards a PrandtlPlane and open rotor configuration
must be integrated within a global optimization of the air freight logistic system
in order to reduce costs further on. The possibility to insert air into an intermodal
system involves a re-definition of the ground facilities that will be able to move
quickly the container from/towards the airport area. The creation of a net of low-
cost freight airports, simply constructed, can increase the global efficiency of the air
freight.
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The airports must be located in such a way that transportation costs are mini-
mized: “optimum location models” can be used to determine the airport positions
when some transportation “rules” are preliminary defined; for example, for the hub-
and-spoke system or point-to-point connection between the airports, the minimum
airport distance must not exceed 3000 nm, etc.

When the long routes are investigated, the net of new freight airport can re-
sult efficient especially in the developing countries of the African continent which
represent the natural bridge between the America and Europe/Asia, improving the
economies and the way of life of the emerging countries.
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Mesh Adaptivity and Optimal Shape Design
for Aerospace

Frédéric Alauzet, Bijan Mohammadi, and Olivier Pironneau

1 Introduction

Optimal shape design is the next step once the numerical simulation is mastered
and computationally reasonably cheap. It is so important for airplane design that
it is practiced everywhere now (see [13–16, 18, 19] and their bibliographies). For
cars, aerodynamic optimization is important at high speed, but internal engine op-
timization is even more so. Boats are harder to optimize (see [6]), and even a frac-
tion of percent improvement implies substantial savings. There are in fact so many
applications that we cite only just a few like airplane and boat propellers [9], car
ventilators [18], windmill design, and so many more.

Environment friendly airplane design has brought new optimization criteria such
as noise reduction. In earlier papers [3, 18, 20] we pointed out that the calculus of
variation is not valid in the presence of shocks, at least in the continuous prob-
lems. Thanks to Ulbrich and Giles [12, 23, 24], the problem is solved for one-
dimensional conservation laws. For the Euler equation, an extended numerical study
was performed and will be reported in [2], but we will give here some of the find-
ings.
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Fig. 1 Two finite volume
cells Ci and Cj , and the
upwind triangles Kij and Kji

associated with edge PiPj .
The common boundary ∂Cij

with the representation of the
solution extrapolated for the
MUSCL correction is shown

2 Compressible Euler Solver

The two-dimensional compressible Euler equations are

∂tW + ∇ · F(W) = 0, W(0) = 0, (1)

where W = (ρ,ρu,ρv,ρE)T is the vector of conservative variables, and the tensor
F represents the convective flux: F(W) = F1(W)ex + F2(W)ey with

F1(W) =

⎛
⎜⎜⎜⎝

ρu

ρu2 + p

ρuv

(ρE + p)u

⎞
⎟⎟⎟⎠ and F2(W) =

⎛
⎜⎜⎜⎝

ρv

ρuv

ρv2 + p

(ρE + p)v

⎞
⎟⎟⎟⎠ .

We assume that W is given at time t = 0, and we add boundary conditions which
we will discuss later at length and which we denote loosely by W ∈ Wad . As usual,
ρ is the density, u,v the velocity, p the pressure, and E the energy at position x and
time t in the fluid.

In this study, (1) is discretized by a vertex-centered finite volume (FVM) scheme
applied to simplicial unstructured meshes; it uses a particular edge-based formula-
tion with upwind elements [1, 7]. The formulation consists in associating with each
vertex Pi of the mesh a finite volume cell, Ci , built by joining each vertex to the
middle point of its opposite edge. The common boundary between two neighboring
cells Ci and Cj is denoted ∂Cij = ∂Ci ∩ ∂Cj (see Fig. 1).

The FVM assumes W piecewise constant on the cells and integrates (1) on each
cell Ci :

|Ci |dWi

dt
+

∫
∂Ci

F (Wi) · ni dγ = |Ci |dWi

dt
+

∑
Pj ∈V (Pi )

F |ij ·
∫

∂Cij

ni dγ = 0, (2)
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where ni is the outer normal to cell Ci , V (Pi) is the set of all neighboring ver-
tices of Pi , and F |ij represents the constant value of F(W) at interface ∂Cij from
the Pi -side. A numerical flux function, denoted Φij and compatible with F |ij , is
introduced:

Φij := Φij (Wi,Wj ,nij ) = F |ij ·
∫

∂Cij

ni dγ, (3)

where nij = ∫
∂Cij

ni dγ . Several upwind numerical flux functions are available, but
here the Roe approximate Riemann solver described in [21] is used.

Roe’s Approximate Riemann Solver It is based on the Jacobian F ′(W):

ΦRoe(Wi,Wj ,nij ) = F(Wi) + F(Wj )

2
· nij + ∣∣Ã(Wi,Wj )

∣∣Wi − Wj

2
, (4)

where Ã = F ′(W̃ ) is evaluated for the Roe average variables W̃ := (ρ̃, ρ̃u, ρ̃v, ˜ρE)

as explained in [21]. For a diagonalizable matrix A = PΛP −1, |A| stands for |A| =
P |Λ|P −1. The eigenvalues of F ′(W) are real and equal to u, u + c and u − c.

The previous formulation gives at best only a first-order scheme; higher-order
extensions are possible with a MUSCL addition (see [2]). Such MUSCL schemes
are not monotone, and therefore a slope limiter is needed such as the Superbee
limiter [5].

Boundary Conditions Slip boundary conditions are imposed for the walls be-
cause the flow is inviscid: U.n = 0. This boundary condition is imposed weakly by
setting

ΦSlip(Wi) = (0,pi ni ,0)t . (5)

For free-stream external flow conditions at inflow boundaries Γ∞ which approx-
imate infinity, a free-stream uniform flow W∞ is known. There, the Roe flux is
replaced by the Steger–Warming flux [22]:

Φ∞(Wi) = A+(Wi,ni )Wi + A−(Wi,ni )W∞, (6)

where A± = 1
2 (|A| ± A) and A = F ′(W).

At free-stream outflow boundaries no condition is imposed, so nothing is done to
the finite volume scheme.

To discretize in time, an implicit Euler scheme (implicitEuler) is used, the lin-
earized version of which is

( |Ci |
δtni

Id + Ψ 2
i

′(
Wn

))(
Wn+1

i − Wn
i

) = −Ψ 2
i

(
Wn

)
. (7)
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3 Implied FVM for the Discrete Adjoint

As the second-order flux is too difficult to differentiate by hand, the second-order
Jacobian matrix is approximated by the first-order one leading to( |Ci |

δtni
Id + Ψ 1

i

′(
Wn

))(
Wn+1

i − Wn
i

) = −Ψ 2
i

(
Wn

)
.

Thus the variation of the state variables δW is given by

A n δWn+1 = −Ψ 2(Wn
)
.

Consequently, for a given functional J (W), the adjoint state W ∗ is defined by

A n∗
W ∗ = J ′(W), (8)

where A n∗ is the transposed of matrix A n. Note however that it suffices to take
A n∗ = (Ψ 1

i

′
(Wn))T because at convergence the solution does not depend on time

and Ψ 2(Wn) tends to 0.

4 Goal Oriented Self Adapting Meshes

4.1 Multiscale Anisotropic Mesh Adaptation

Recall the Delaunay–Voronoi criteria: The fourth point of the quadrilateral made by
two adjacent triangles should be outside the circle defined by the three other points.
If not, the diagonal of the quadrilateral should be swapped.

On convex domains, applying the criteria within a loop on the edges of a triangu-
lation increases the minimum angle in the triangulation. Thus, the loop converges,
and the triangulation ends up “looking good” though there is no solid definition for
this.

The generalization of this criteria can be done by replacing the Euclidian circles
by M-circles where M is symmetric positive definite:

M − circle := {
x : ‖x − xc‖M := (x − xc)

T M(x − xc) = r
}
. (9)

Let hi(a) be the edge length in the ith direction at point a, and let

M (a) = R(a)

⎛
⎜⎜⎝

1
h2

1(a)
1

h2
2(a)

1
h2

3(a)

⎞
⎟⎟⎠R(a)T . (10)

If H(u) = R−1
u ΛuRu is the Hessian of u, and ΠM is the M-orthogonal projection,

then the following problem has a solution [17]:

min
M

‖u − πM u‖Lp ⇒ MLp =
(

N
∫
�

det |H(u)| p
2p+3

) 2
3 (

det |H(u)|)− 1
2p+3 R|u|tR,

(11)
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Fig. 2 With appropriate mesh adaptation, it is possible to propagate accurately shock wave in the
whole domain (left) or to track down the main vortices behind an airplane quite far downstream
(right)

where N is the mesh size. Therefore in a sense to distribute the Lp error evenly,
one should choose hi proportional to Λi in the direction of the eigenvectors of the
Hessian of u. Applications of this criteria are shown in Figs. 2 and 3.

4.2 Goal-Oriented Mesh

For optimal control and optimal shape design, one would like to find the best mesh
to compute a criteria, for instance,

j (a) = 1

2

∫
C

|BWh − b|2 : (F(Wh), ŵh

) = 0 ∀ŵh ∈ Wh, (12)

where a is a parameter in the boundary conditions, B is a rectangular matrix, and b

is a vector or scalar.
There is a solution to this problem (see [4]), and an empirical proof goes as

follows: first linearize the continuous state equation F(W) = 0:

F(Wh) = F(W) + F ′(W)(Wh − W) ⇒ F(Wh) + F(W)′(W − Wh) = 0. (13)

Then introduce an adjoint state W ∗ solution of F(W)′T W ∗ = BT (BWh − b), so
that

j (Wh) − j (W) ≈ (
BWh − b,B(W − Wh)

) = −(
W ∗,F (Wh)

)
. (14)

Therefore, to reduce the error, one should adapt the mesh so as to compute
(W ∗,F (Wh)) with the best possible precision. An illustration of this procedure is
shown in Fig. 3.
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Fig. 3 Top, supersonic
business jet geometry.
Comparison between
multiscale (middle) and
goal-oriented (bottom)
anisotropic mesh adaptation.
Multiscale adaptation is
based on a control of the
interpolation error in L2 norm
of the local Mach number.
Goal-oriented adaptation
focuses on the observation
of the pressure on the ground

5 Mesh Adaptation and Approximate Gradient

Consider

min
z∈Z

J (z) approximated by min
z∈Zh

Jh(z).

Let us solve it using the method of Steepest descent with Goldstein’s rule for the
step size:
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Algorithm 1
while ‖gradz Jh(z

m)‖ > ε do
{

zm+1 = zm − ρ gradz Jh(z
m) where ρ is any number satisfying

−βρ‖w‖2 < Jh

(
zm − ρw

) − Jh

(
zm

)
< −αρ‖w‖2

with w = gradz Jh(z
m). Set m := m + 1;

}

Now consider the same algorithm with parameter refinement.

Algorithm 2 (Steepest descent with refinement)
while h > hmin do

{
while ‖gradz Jh(z

m)‖ > εhγ do
{
zm+1 = zm − ρ gradz Jh(z

m) where ρ such that

−βρ‖w‖2 < Jh

(
zm − ρw

) − Jh

(
zm

)
< −αρ‖w‖2

with w = gradz Jh(z
m). Set m := m + 1;

}
h := h/2;

}

The convergence is obvious because it is either Steepest Descent or gradJh → 0

because h → h/2. There is a great gain in speed because we can begin the algorithm

with a very coarse mesh!

Now let N be an iteration parameter, and let Jh,N ≈ Jh and gradz Jh,N ≈ gradz Jh

in the sense that

lim
N→∞Jh,N (z) = Jh(z) and

lim
N→∞ gradzN

Jh,N (z) = gradz Jh(z).
(15)

Let γ , K , and N(h) be given with N(h) → ∞ as h → 0. The final algorithm is the

Steepest descent with Goldstein’s rule mesh refinement and approximate gradients.

It is particularly suited to Euler’s equation in which h is the mesh size and N is

the number of iterations (or the time step) for the implicit Euler solver and/or the

precision with which the adjoint is computed:
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Algorithm 3 (E. Polak et al., see [18])
while h > hmin

{
while |gradzN

Jm| > εhγ

{
try to find a step size ρ with w = gradzN

J (zm)

−βρ‖w‖2 < J
(
zm − ρw

) − J
(
zm

)
< −αρ‖w‖2

if success then{
zm+1 = zm − ρgradzN

Jm; m := m + 1;}
else N := N + K;
}
h := h/2; N := N(h);
}

In the case of strictly convex J the convergence can be established from the
observation that Goldstein’s rule gives a bound on the step size:

−βρ gradz J · h < J(z + ρh) − J (z) = ρ gradz J · h + ρ2

2
J ′′hh

⇒ ρ > 2(β − 1)
gradz J · h
J ′′(ξ)hh

so

Jm+1 − Jm < −2
α(1 − β)

‖J ′′‖
∣∣gradz(J )

∣∣2
. (16)

Thus at each grid level the number of gradient iterations is bounded by O(h−2γ ).
Therefore the algorithm does not jam, and so it must converge.

6 Calculus of Variations with Euler Equations

Calculus of variation is not valid across shocks. For instance, if the density ρ

and the velocity u are discontinuous, but with ρu continuous, it is meaningless to
write

δ(ρu) = uδρ + ρδu (17)

because δρ and δu have Dirac singularities at the shock and u,ρ are discontinuous
there.

Although (17) is not allowed, yet one has

δ(ρu) = (δρ)ū + ρ̄δu, (18)

where ρ̄ (and ū) stands for the mean value of ρ at all points:

ρ̄(x) = 1

2

(
ρ(x+) + ρ(x−)

)
.
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Let [u] denote the jump across the shock; then on the right-hand side of (18), the
weight of the Dirac mass is

−[ρ]x′
sδaū − [u]x′

sδaρ̄

= −x′
s

δa

2

((
ρ+ − ρ−)(

u+ + u−) + (
u+ − u−)(

ρ+ + ρ−))

= −x′
sδa[ρu] = 0. (19)

Even if [ρu] = 0, the weights on the Dirac masses are the same on both sides, so
(18) is true pointwise and singularity wise at the shock.

More complex functions need to be decomposed into elementary products; for
instance, ρ−1u2 being (ρ−1)v with v = uu, the mean value can be computed as
such. For nonrational functions, the overline operator on derivatives is the Volpert
ratio

δF (u) = F(u)′δu with F(u)′ =
∫ 1

0
F ′

u

(
su+ + (1 − s)u−)

ds. (20)

7 Optimal Wing Profile with Least Sonic Boom

7.1 Optimization with the Euler Equations

Consider the cost function

J = 1

2

∫
S

|BW − b|2 : W solution of Euler equations,

where S is a part of the boundary of ∂Ω . The adjoint equation for the minimization
of J with respect to boundary parameters is

∂W ∗

∂t
+ F ′(W)∇W ∗ = 0, W ∗(T ) = 0. (21)

Let us multiply this equation by δW and integrate it in time and space:

0 =
∫

Ω×(0,T )

δW ·
(

∂W ∗

∂t
+ F ′(W)∇W ∗

)

= −
∫

Ω×(0,T )

W ∗ ·
(

∂δW

∂t
+ ∇ · (F ′(W)δW

))

+
∫

Ω

W ∗δW |T0 +
∫

∂Ω×(0,T )

W ∗ · (n · F ′(W)δW
)

(22)

⇒
∫

∂Ω×(0,T )

W ∗ · (n · F ′(W)δW
) = 0. (23)

This gives δJ if the boundary conditions are on ∂Ω − S, so that W ∗ · (n ·
(F ′(W))δW) = 0, and

W ∗ · (n · F ′(W)
) = (BW − b)BT on S. (24)
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Then we obtain

δJ = −
∫

∂Ω\S×(0,T )

W ∗ · (n · F ′(W)δW
)
.

7.2 Supersonic Wing Profile Optimization

An airfoil Σ at rest is a semi-infinite domain Ω .
Air comes in from the left boundary L at M > 1 and exits by right boundary R.

S is the ground.

min
Σ

{
J = 1

2

∫
S

(p − p0)
2 ⇒ δJ =

∫
S

(p − p0)δp

}
. (25)

Then, since J has no part on R,

W ∗ · F ′(W).n = 0 on R.

As F ′(W).n is a nonsingular matrix when the flow is supersonic, this equation im-
plies that all four components of W ∗ are zero on R:

W ∗ = 0 on R. (26)

The flow is supersonic on L, so all components of the linearized flow δW are equal
to zero. All the characteristics are coming in, so for the adjoint state, the character-
istics are coming out, and hence,

W ∗ needs no boundary conditions on L. (27)

The shock is assumed to reflect perfectly, so the vertical component of the velocity
is zero: W3 = 0. There is only one incoming characteristic. Assume that δW3 = 0
is the boundary condition for the linearized Euler system. Giles and Pierce have
showed that W ∗

3 should be given. Let us justify this choice. On S, the normal is
(0,1)T , and the velocity is (u,0)T , so

W ∗ · (n · F ′(W)
)
δW

=
(

0 0
(γ − 1)

2
u2δW1 − (γ − 1)uδW2 + (γ − 1)δW4 0

)
W ∗

= (γ − 1)

(
u2

2
δW1 − uδW2 + δW4

)
W ∗

3 . (28)

On the other hand,

p = (γ − 1)ρe − γ − 1

2

(ρu)2 + (ρv)2

ρ
= (γ − 1)

(
W4 − W 2

2 + W 2
3

2W1

)

⇒ δp = (γ − 1)

(
W 2

2

2W 2
1

δW1 − W2

W1
δW2 + δW4

)

= (γ − 1)

(
u2

2
δW1 − uδW2 + δW4

)
.
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Fig. 4 NACA airfoil:
goal-oriented adapted mesh
(top) and associated level
lines of the density (bottom)

By choosing W ∗
3 |S = p − p0 we have W ∗ · (n · F ′(W))δW = W(p − p0)δp, and

so

δJ = −
∫

∂Ω\S
W ∗ · (n · F ′(W)δW

)
. (29)

Boundary Conditions on the Adjoint at airfoil Σ The flow is subsonic and
tangent to Σ so u · n = 0. As for S, one boundary condition is required for δW . Let
δW · n be given. An elementary calculus gives

W ∗ · (F ′(W) · n)
δW = (γ − 1)W ∗ · n

(
1

2

(
u2 + v2)δW1 − uδW2 − vδW3 + δW4

)

+ (
W ∗

1 + uW ∗
2 + vW ∗

3

)
δW · n. (30)
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Fig. 5 NACA airfoil. Top,
level lines of the density
adjoint associated with the
goal-oriented adapted mesh
of Fig. 4. Bottom, comparison
between W ∗

3 , the component
of the adjoint in duality with
ρv and p − p0 on S.
Although the adjoint’s
equation is generated by
automatic differentiation for
discrete case, it agrees with
continuous limit

This expression involves only δW · n when

W ∗ · n = 0 on Σ. (31)

Thus the following holds (already in [10, 11]).

Proposition 1 Let W ∗ be defined by

∂T W ∗ + F ′(W)
T ∇W ∗ = 0, W(T ) = 0,

W ∗ · n = 0 on Σ, (32)

W ∗|R = 0, W ∗
3 |S = p − p0.

Then, asymptotically in time,

δJ = −
∫

Σ

(
W ∗

1 + U · W∗
2,3

)
δW2,3 · n. (33)

This is essential to set up descent algorithms for optimal shape design to mini-
mize J .
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Fig. 6 Optimization of a supersonic business jet: the shape before optimization (top) and after
(below)

Remark It may be more readable to rewrite the result as

δJ = −
∫

Σ

(
ρ∗ + U · (ρU)∗

)
δ(ρU) · n.
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7.3 A Gradient Method for Shape Optimization

Consider the wing profile deformation Σα = {x + α(x)n(x) : x ∈ Σ}; then

δV · n|Σ = −α

(
∂Vn

∂n
− κVt

)
, (34)

where t is the tangent vector associated with n, and κ is the curvature (inverse of
the radius of curvature). Therefore, by choosing

α = −λ
(
ρ∗ + U · (ρU)∗

)(∂(ρUn)

∂n
− κρUt

)
(35)

for a small enough constant scalar λ, J will decrease because

δJ = −λ

∫
Σ

(
ρ∗ + U · (ρU)∗

)2
(

∂(ρUn)

∂n
− κρUt

)2

+ o(λ). (36)

7.4 Numerical Tests: Mesh Compatibility

A NACA0012 wing profile at Mach 1.6 is computed together with its adjoint. The
mesh and the density are shown in Fig. 4. The adjoint density is shown in Fig. 5
together with a comparison of the trace of (ρu)∗ on the ground, calculated by the
code where the adjoint is the discrete adjoint (with boundary conditions imposed in
weak form by the FVM), and the analytical value. Agreement is excellent.

7.5 Optimization of a 3D Business Jet

Already some years ago [18], combining all these techniques, the authors improved
the design of business jets so as to minimized the sonic boom at the ground (see
Fig. 6). But the model used Thomas’ approximations to transport the sound waves
away from the aircraft up to the ground some 10 km below. Since then, the technique
has been used in an industrial code [8].
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Numerical Simulation of Sailing Boats:
Dynamics, FSI, and Shape Optimization

Matteo Lombardi, Nicola Parolini, Alfio Quarteroni, and Gianluigi Rozza

1 Introduction, Motivation, and Problem Setting

The analysis of the dynamics of a boat advancing into the sea and the correspond-
ing numerical simulations is an interesting and challenging problem [16]. From
an engineering point of view it is useful to evaluate the dynamic behaviour of a
hull in as many configurations as possible. This can be a helpful tool for boat de-
sign, where it could be used to improve the hull performance. This task can be
accomplished in two (complementary) ways: experimentally in a towing tank or nu-
merically by Computational Fluid Dynamics (CFD) simulations. Not surprisingly,
experimental measurements are usually very expensive since they require the con-
struction of as many scale-models as the number of configurations to be analysed
and also technical equipments and facilities are particularly onerous. Furthermore
it is possible to reproduce only a limited range of configurations due to practical
limitations with the experimental set-up. For these reasons, numerical computations
are becoming more and more relevant in this field, and much effort is being de-
voted in the industrial and academic research to make them as accurate as possible.
When a numerical simulation approach is used, it is easy to switch from a model
to another one, and the spectrum of configurations that it is possible to analyse is
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a priori unlimited. On the other hand, the physical problem is very complex, and
the most advanced mathematical models have to be used to simulate the problem
correctly.

The computation of the flow around ships is a subject studied since long time,
at first through the analysis of simplified models and more recently with use of
increasingly complex and accurate numerical models. The earliest important theo-
retical results concerning ship hydrodynamics date back to the end of the nineteenth
century. Froude, Kriloff and Reynolds were the fathers of the first theories about ship
motion. Froude investigated the role of the wave component of the resistance defin-
ing the important dependence on a parameter, nowadays called the Froude number.
In 1898, a thin ship theory was proposed in [53] to describe the wave generated by
an advancing ship and an analytical estimation of the wave resistance (based on the
Mitchell integral) was derived. More complex models date back to the 1960s with
the solution of potential flow equations, thanks to important efforts in the aerody-
namic fields (see, e.g., the pioneering work by Hess and Smith [32]). Those models
were later extended to the solution of ship hydrodynamic problems [18, 19] and
added mass models. Although based on simple irrotational and inviscid flow mod-
els, potential flow panel codes are still commonly used in the ship hydrodynamics
community [75] thanks to their low computational cost and because in several sit-
uations they manage to reproduce the main features of the flow quite accurately.
With the continuous growth of computation power and improvement of the numeri-
cal models for the solution of partial differential equations, more and more complex
ship hydrodynamics problems can be simulated accounting for viscous (and turbu-
lent) flows and moving domain (for boat dynamics). Indeed, in the last two decades,
numerical methods based on the solution of complex PDEs, the Navier–Stokes (and
Euler) equations, have been successfully applied to naval engineering problem (see,
e.g., [1, 22, 33, 36, 65]) and are, nowadays, standard numerical tools adopted in the
design process for ship performance evaluation.

The Navier–Stokes equations can be written as

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) = ∇ · T (u,p) + G in Ω × (0, T ), (1)

∂ρ

∂t
+ ∇ · (ρu) = 0 in Ω × (0, T ), (2)

where u is the velocity field, p is the pressure, T (u,p) = μ(∇u + ∇uT ) − pI

is the stress tensor, ρ the density, μ the viscosity coefficient, and G the gravity
term. In the case of incompressible fluids, the second equation reduces to ∇ · u = 0.
Finally, Ω is the computational domain occupied by the fluid, while (O,T ) is time
interval in which the problem will be studied. The Reynolds number Re = ρUL

μ
=

UL
ν

is a dimensionless indicator of the ratio of inertial forces to viscous forces and
thus quantifies the relative importance of these two types of forces for given flow
conditions. Another fundamental dimensionless number is the Froude number Fr =

U√
gL

, which involves the ratio between the gravity force and the inertial forces.
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Typically, the Reynolds numbers that characterize ship hydrodynamics problems
are large (order of magnitude 107–109); the flow is indeed fully turbulent around a
large portion, to a first approximation all of it, of the boat, and suitable turbulence
models have to be used to correctly estimate the forces acting on it. A Direct Numer-
ical Simulation (DNS) of such flows is unaffordable with the computational power
available today. Although the Large Eddy Simulation (LES) [79] and the Detached
Eddy Simulation (DES) [84] are gaining interest also in the ship hydrodynamics
community [2, 90], the Reynolds Averaged Navier–Stokes equations (RANS) still
represent the most common approach to solve this kind of problems. In the RANS
approach, velocity and pressure are decomposed in two components, an average one
and a fluctuation part, and the Navier–Stokes equations are solved only with respect
to the averaged variables, while the effect of the fluctuation part is modelled via
some extra turbulence models [9, 24, 88].

If we split the flow variables into an averaged part and a fluctuation part

u = ū + u′, p = p̄ + p′, (3)

where ū = 1
�t

∫ t+�t

t
udt with the value of �t higher than the turbulent time scale

but smaller than the one chosen for the actual numerical discretization of the equa-
tions, and we substitute into Eqs. (1)–(2) (under the assumption of incompressibil-
ity), the RANS equations are obtained as:

∂

∂t
(ρ̄ū) + ∇ · (ρ̄ū ⊗ ū) = ∇ · T (ū, p̄) + ∇ · R in Ω × (0, T ), (4)

∂ρ̄

∂t
+ ū · ∇ρ̄ = 0 in Ω × (0, T ), (5)

∇ · ū = 0 in Ω × (0, T ), (6)

where R is the so-called Reynolds stress tensor Rij = ρu′
iu

′
j which is derived from

the nonlinear convective term. From a physical point of view, this term corresponds
to the extra mixing due to the turbulent eddies not represented by the averaged vari-
ables. Many different turbulent models exist in literature, and they can be grouped
into the following three classes:

• algebraic models,
• models based on differential equations (one- or two-equation models),
• models based on the Reynolds stress tensor transport equation.

In this work, we have considered the SST (Shear Stress Transport) [51] model,
which is a combination of the K-epsilon [54] and K-omega [50] models. This model
has been validated extensively in the literature [88] and successfully applied to naval
hydrodynamics problems [65, 91].

Two main classes of methods for the solution of free surface flows are present
in the specialized literature: front tracking methods and front capturing methods.
In the formers, only one phase is simulated, the water, and the boundary of the
domain follows the free-surface evolution. In this case, the computational domain
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Ω in Eqs. (1) and (2) does depend on time. The main drawback is that complex free-
surface behaviour, like spray or overturning waves, cannot evidently be simulated,
and the mesh quality can rapidly deteriorate. By front tracking methods, on the
contrary, both air and water are simulated, and the computational domain and mesh
are kept fixed. An extra variable is introduced to specify for every cell of the domain
whether it belongs to the air or water. The most common methods that belong to this
class are the Volume of Fluid (VOF) method [5, 34] and the Level Set (LS) method
[60, 61]. The volume of fluid method is based on a homogeneous approach, where a
unique velocity and pressure field is defined for both fluids. A new variable c, called
the volume fraction of the water, is defined on the whole domain and such that
c = 0 if the element corresponds to an air zone, c = 1 if the element corresponds
to a water zone and an intermediate value if both fluids are present in the element.
Furthermore, c must be bounded between 0 and 1. With this approach, it is thus
possible to solve a unique fluid-dynamic problem for both fluids and Navier–Stokes
equations (1)–(2), under the assumption of incompressibility, become:

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) = ∇ · T (u,p) + G in Ω × (0, T ), (7)

∇ · u = 0 in Ω × (0, T ), (8)

where Nel is the number of different fluids, i.e. two in this case, and ρ and μ are
defined as

ρ = cρwater + (1 − c)ρair, μ = cμwater + (1 − c)μair, (9)

where μ is present in the tensor T . For the evolution of the interface between air and
water, a further transport equation for the volume fraction variable has to be solved:

∂c

∂t
+ ∇ · (cu) = 0. (10)

In order to keep the interface sharp, ad hoc numerical terms can be introduced
into those equations. In this work, the Volume of Fluid (VOF) model is adopted
and solved using the Multidimensional Universal Limiter with Explicit Solution
(MULES) algorithm, in which a compression term is added to the standard VOF
formulation in order to keep the interface sharp (see [78] for details).

In the case of mesh motion, for example when simulating the boat dynamic or
when solving the Fluid-Structure interaction problem, the Arbitrary Lagrangian Eu-
lerian (ALE) formulation has to be implemented [17, 28, 29, 35]. This correction
takes care of the fact that the mesh is moving and thus corrects the convective term
with the actual mesh motion velocity.

Equations (4) thus become

∂

∂t

(
ρ̄ū

) + ∇ · (ρ̄(ū − w) ⊗ ū
) = ∇ · T (ū, p̄) + ∇ · R in Ω(t) × (0, T ), (11)

where w is the mesh velocity. The same correction has to be applied to the turbu-
lence and volume fraction equations.
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An important feature of this research project is the use of open-source codes.
All over the world, the scientific community is investing a great effort in the de-
velopment and validation of free software like FreeFem [68], DealII [45], LifeV
[25], OpenFOAM [59]. The latter is growingly very rapidly and is being extensively
used and developped by many academic and industrial research centres. It features
many of the key-points needed for our kind of applications, more notably a Navier–
Stokes solver, turbulence models, VOF models, and parallel scalability. Furthermore
its modular organization allows one to easily transfer specific development to other
applications/solvers, yielding a larger impact of the research carried out by single
research groups on the global scientific community. For these reasons, the authors
have chosen to use OpenFOAM as the base library to solve the flow problem.

OpenFOAM (Open Field Operation and Manipulation) is a C++ object-oriented
programming toolbox capable of solving several continuum mechanics problems,
among which the solution of partial differential equations like the Navier–Stokes
equations [38]. It works on structured and unstructured meshes, and the space dis-
cretization is done by means of finite volume method. The time marching scheme is
based on a pseudo PISO algorithm, where the pressure and velocity are solved in a
segregated way and, for every time step, sub-iterations are needed to reach conver-
gence [24].

An accurate solution of the flow problem is the starting point for the solution
of more complex physical behaviour such as the rigid-body boat dynamics [4, 16]
or the fluid-structure interaction between sails and wind [20, 73, 87, 89]. Another
valuable development direction of numerical tools for hydrodynamic design is rep-
resented by the integration of the flow solver in a shape optimization process. In the
naval engineering community, shape optimization techniques are receiving an in-
creasing interest, both when considering gradient-based optimization schemes [48,
85] and derivative-free algorithms [8, 18].

In this paper, we present a numerical model that has been developped for the
simulation of free-surface boat dynamics problems and the Fluid-Structure inter-
action algorithm devised for the prediction of the flying shape of downwind sails.
We also introduce a shape optimization technique for hydrodynamic drag reduction
based on gradient methods (with and without the solution of the adjoint problem),
which makes use of the FFD method for the shape parameterization and mesh mo-
tion. Finally, a set of simulations obtained with the different methods proposed are
presented and discussed.

2 Hull Dynamics

In order to simulate the dynamics of the hull, it is necessary to estimate the loads
exerted by the fluids (air and water) on the structure and the dynamic response of
the structure to these loads. Our attention has been focused, in particular, on the
resolution of the equations of motion of the boat and the coupling algorithm for the
fluid-structure interaction.
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The motion of a boat, once neglecting the deformation of the hull (provided that
they are small) is governed by the equations of motion of a rigid body: those can
be split in a translation motion of a point, which for simplicity is usually chosen the
barycentre (equivalent in this case to the centre of mass, i.e. the mean location of all
the mass in the system) and the rotation of the body around it.

The equation for the variation of the linear momentum referred to the barycentre
is

mẌG = R, (12)

where m is the mass of the boat. R is the total force acting on the boat obtained via

R = FFlow + mg + Fext, (13)

where Fflow is the hydrodynamic force, mg the gravity force, and Fext corresponds to
the resultant of the external forces. The hydrodynamic force FFlow can be evaluated
integrating the viscous and pressure stresses acting on the wetted surface of the boat:

FFlow =
n∑

j=1

(−pj nj + τ j )Sj , (14)

where the sum is taken over all faces of the volume that defines the surface of the
boat, and Sj are the corresponding areas.

In order to solve the equation for the variation of angular momentum, first of all
it is necessary to define two reference systems: one referred to the fixed domain,
which we will call the principal reference system, and one that rotates with boat, the
secondary reference system. It can be shown that the union of the unit vectors i, j,k
of the secondary reference system expressed in the principal system generates the
rotation matrix form one system to the other.

The equation of variation of angular momentum, referred to the principal refer-
ence system, can be finally expressed as

¯̄T ¯̄IG
¯̄T −1ω̇ + ω × ¯̄T ¯̄IG

¯̄T −1ω = MG, (15)

where ω is the angular velocity, ¯̄IG is the matrix of the moments of inertia,

¯̄IG =
⎡

⎣
IXX IXY IXZ

IYX IYY IYZ

IZX IZY IZZ

⎤

⎦ ,

and MG is the total moment around the rotation centre acting on the boat expressed
in the principal reference system. The total moment can be expressed as

MG = MFlow + Mext, (16)

where Mext = (Xext − XG) × Fext is the moment due to the external forces, and
MFlow is the moment due to the hydrodynamic forces, which, analogously to
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Eq. (14) for the hydrodynamic forces, corresponds to

MFlow =
n∑

j=1

(Xj − XG) × (−pj nj + τ j )Sj . (17)

These equations form a system of six second-order ordinary differential equa-
tions, three for the translation motion and three for the rotation. The translation
equations are not coupled and can be resolved separately. The rotation ones, ex-
cept when the rotation is around one single axis, are coupled nonlinear equations
and have to be resolved as a coupled system. The rotation is handled via Euler an-
gles, and the dynamic problem is solved via Adams–Bashforth/Crank–Nicholson
schemes, see [46] for a detailed analysis.

As mentioned in the previous sections, the RANS model has been adopted to
simulate the fluid-dynamic behaviour of the flow around the boat, and particular
care has been paid to model the boundary layer around the hull. The free-surface
dynamics has been tracked using a VOF model. The coupling between the fluid
solver and the hull dynamics solver has been done explicitly: for every time step,
the fluid solver advances using the hull position at the previous time step, then the
fluid forces at time tn+1 are evaluated, and the new boat position is obtained. Finally
the fluid mesh is adjusted, and the next time step can be computed. For this kind of
applications, such a simple and explicit coupling algorithm is usually stable since
the transient fluid solver requires a quite restrictive time step constraint while the
hull dynamic time-scale is usually much higher. A more general and detailed anal-
ysis of Fluid-Structure Interaction coupling algorithm is presented in the following
sections. For more details on the hull dynamics model, we refer to [4, 16, 64].

3 Wind/Sail Fluid-Structure Interaction

The problem of modelling and simulating the interaction between fluids and solids
arises in many different applied fields. Examples are the interaction of the blood flow
within arterial walls, the flow around the sails of a sailing boat, the deformation of
the wing of an aeroplane or a Formula-1 car. Although extensively studied in litera-
ture, due to its complexity, this problem is still a subject of intensive investigation.
A complete review of the existing literature goes far beyond the scope of this work,
however we refer for example to [12, 13, 58, 71] and the references therein. Here
we would simply like to mention the different approaches that can be chosen and
the reasons behind those choices. The first classification depends on whether one is
interested only in the equilibrium solution or to the whole transient behaviour. In
case of wind/sail fluid structure interaction, both situations are of interest.

Secondly, one should consider which level of accuracy is needed for the simula-
tion of the fluid and solid parts and if any simplified model could be meaningful. For
example, in upwind sailing configuration, it is usually not indispensable to solve the
full Navier–Stokes equations around the sails; indeed, simpler models, like the one
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based on potential flow, are accurate enough to obtain realistic flow fields. The same
argument can be applied to the structural part, where assumptions like linear elas-
ticity model or small deformation can lead to simplified, and much faster, numerical
methods.

In this work, a full RANSE solver has been used since, in the configurations to
be analysed, flow separations may occur and viscous stresses may be important,
phenomena which cannot be simulated accurately with potential flow solver. As
structural solvers, different options may be considered. For cases where a linear
elasticity model is adequate, classical simple structural solver, like the one already
implemented in OpenFOAM, can be used. For the sails simulations, a specific solver
for membranes/shells specifically tuned for sails must to be used. More details are
given in the following subsection.

Another important aspect to be taken into consideration is the amplitude of the
deformation and the added-mass [10] effect; this determines the FSI coupling strat-
egy to be used in order to obtain stable simulations. In this respect, we refer to parti-
tioned strategies when we solve iteratively the fluid and structure sub-problems (and
never assemble the full matrix). This allows the possibility of coupling two existing
codes, one solving the fluid equations and the other the structure problem. We refer
instead to monolithic schemes when we solve the nonlinear coupled problems all
at once. In this case, a global linear system is assembled and solved for all the un-
knowns of the problem: fluid and structural variables as well as all the geometrical
information (like the interface position). The complete fluid–solid system has to be
solved as a whole, and memory issue may arise due to the size of the global matrix.
Other possible models that are in between these two approaches exist: for instance,
one can formally write the monolithic problem and then use a block preconditioner
to solve it. In this way one recovers partitioned procedures [12].

In case of small deformation and/or high density ratio between air and fluid, a
simple coupling strategy can be used, e.g. the so-called weakly coupled partitioned
approach where the two solvers can be run in a segregated way. For example, at first
the fluid solver is run, then the interface conditions (the stresses) are passed from
the fluid mesh to the solid mesh, and then the solid solver is run; the solid inter-
face conditions (the interface positions and its rate of deformations) are then passed
back to the fluid solvers, and the fluid mesh and boundary conditions are updated
accordingly; a new time step can then be computed. Unfortunately, when the added
mass effect gets more important, it has been proven (see e.g. [10]) that this kind of
schemes becomes unconditionally unstable and it is necessary to sub-iterate, with
relaxation, for every time step. The strongly coupled partitioned approach consists
in introducing sub-iterations at every time step between the two solvers. Usually the
interface conditions are imposed via a relaxation procedure, for example with the
Aitken relaxation method, see [13]. A potential drawback of this approach is that
the number of sub-iterations may become large, of the orders of a few tens depend-
ing on the case, and thus the computational cost may rise very quickly. In our case,
since the fluid and structural solvers are in general two different codes and the FSI
problem is stiff, the strongly coupled partitioned approach has been adopted.

In Fig. 1 a schematic flow chart of the strongly coupled partitioned FSI algorithm
adopted in this work is shown. For every time step, sub-iteration cycles have to be
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Fig. 1 Schematic flow-chart
of the Fluid-Structure
interaction coupling
algorithm

computed. At first, the structural solver is run using as boundary condition the fluid
solver stresses from the previous time step. The new position of the sail is passed to
the fluid, and an iteration of the fluid solver is computed. The updated fluid stresses
are then transferred back to the solid, and the structural solver is run again. Once
again, the new deformed sail position is passed to the fluid, and the new flow solution
is computed. If the difference between the solid deformation and fluid stresses at the
previous and current sub-iterations is below a given tolerance, the FSI is considered
converged, and a new time step is computed, otherwise, a new sub-iteration cycle
is carried out. In order to accelerate the convergence and ensure the stability, the
deformation passed from the solid to the fluid is relaxed with the one obtained at
the previous sub-iteration cycle via Aitken relaxation technique. Furthermore, since
the structural solver is explicit, a smaller time step has to be used for the solid
solver than for the fluid solver. For every sub-iteration, the solid solver performs
many iterations, until it covers the whole fluid solver time interval; the boundary
condition imposed at every sub-step is obtained via linear interpolation of the fluid
stresses at times tn and tn+1.

3.1 The Sails Structural Solver

In this section, we present the shell model used for the simulation of the sail defor-
mation. Consider a shell body of constant thickness h immersed in a fixed reference
frame {ii}, i = 1,2,3. Within the context of the inextensible director shell theory,
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the geometry of the shell in the reference configuration is described by the mapping

X = Φ(ξ̄) = Φ̄
(
ξ1, ξ2) + ξ3L

(
ξ1, ξ2), −h

2
≤ ξ3 ≤ h

2
, (18)

where X is the position vector of a material point in the shell body identified by the
convective system of coordinates ξ̄ = (ξ1, ξ2, ξ3); X̄ = Φ̄(ξ1, ξ2) is the position
vector of points belonging to the shell middle surface M(ξ3 = 0) with boundary
∂M, and the unit vector L(ξ1, ξ2) denotes the director field. In the present formula-
tion, L is assumed to be normal to the middle surface in the original configuration,
but, according to the Mindlin–Reissner assumption, it is not forced to remain normal
during the deformation.

A shell deformed configuration at time t ∈ [0, T ] is defined by the mapping x =
χt (X) where χt represents the motion. The displacement s at a generic point X
follows from the kinematic description as

s(ξ̄) = x(ξ̄) − X(ξ̄). (19)

For a generic solid medium with density ρ and subjected to the body forces B,
the equation of motion (momentum conservation) in the reference configuration,
can be written as

ρ0
∂2s
∂t2

= ∇R · S + B, (20)

where ∇R· is the divergence operator in the reference configuration, and S =
JσF−T is the first Piola–Kirchhoff stress tensor, σ is the Cauchy stress tensor, F is
the deformation gradient, and J is the determinant of F.

From the numerical point of view, the structural problem is solved by the
Galerkin Finite Element method [72]. More specifically, the MITC4 elements
[19] have been used for the space discretization. These shell elements are three-
dimensional solids, but the typical constraints of the shell kinematics are forced.
To avoid shear locking, a mixed interpolation of the tensorial component has been
adopted [11].

The assumption of large displacements and small strains are considered, and a
linear elastic constitutive model with an isotropic material is implemented.

After space discretization, the semi-discrete equations of motion governing the
structural dynamic response of a system can be written as

Ms̈ + Cṡ + F(s) = P, (21)

where M is the mass matrix, C the damping matrix, F the vector of internal force,
and P is the vector representing the external loads. s̈, ṡ and s are respectively the
acceleration, velocity and displacement vectors, collecting all the nodal degrees of
freedom employed to describe the solid kinematics.

The central difference explicit method [6] has been chosen for the time inte-
gration of Eq. (21). A variable time increment version of the algorithm is used,
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in which, inside the single time marching step, the velocity is approximated at the
midpoints of the time interval with the following formula:

ṡn+1/2 = sn+1 − sn

�tn+1/2
, (22)

while the acceleration can be written as

s̈n = ṡn+1/2 − ṡn−1/2

�tn
, (23)

where �tn+1/2 = tn+1 − tn and �tn = tn+1/2 − tn−1/2. Finally, the acceleration can
be directly expressed in terms of the displacements:

s̈n = �tn−1/2(sn+1 − sn) − �tn+1/2(sn − sn−1)

�tn+1/2�tn�tn−1/2
. (24)

Using approximations (22)–(24) and the equation of motion (21), the nodal velocity
can be updated as

ṡn+1/2 = ṡn−1/2 + �tnM−1(Fn − Pn − Cṡn−1/2). (25)

At every time step the displacements s, the external forces Pn (or Pn+1, depending
on the coupling) and the viscous forces are known; the internal nodal forces Fn can
be determined by the constitutive law and the strain-displacement relation. So the
right-hand side of (25) is known, the velocity can be obtained, and the displacement
can be subsequently computed using (22).

If the mass matrix M is diagonal (e.g. due to a mass-lumping reduction), the
update of the nodal velocities and nodal displacements can be obtained without
solving any linear system. This choice has significant computational advantages:
problem (21) is transformed into an uncoupled system of algebraic equations in
which each solution component may be computed independently, with no need for
assembly or factorization of any global matrix.

The central difference method is not unconditionally stable, so that the time inter-
val �t needs to be small to satisfy the CFL (Courant–Friedrichs–Levy) condition.

At the moment, a simple homogeneous constitutive law for the sail material prop-
erty is being used, but more complex models are under implementations. A modern
sailing boat sail is in fact a complex masterpiece of modern technology, with the
use of carbon fibres inside two PET (polyethylene terephthalate) films cooked in
a vacuum oven to get very light but also very resistant sails. The disposition and
orientation of the fibres is done in a way that the material properties of the sails
vary greatly from zone to zone so that the sail shape under load is the closest to the
optimum shape (chosen at the sail design stage).
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4 Shape Optimization

For the design of a sailing boat, an efficient numerical scheme ought to be combined
with a shape optimization strategy through the minimization of suitable cost func-
tionals [37, 56]. A general abstract formulation of shape optimization problems can
be set up as follows: given a set of admissible shapes Oad, find the optimal shape
Ω̂ ∈ Oad such that

Ω̂ = arg min
Ω∈Oad

J
(
Ω,y(Ω)

)
, with R

(
y(Ω)

) = 0, (26)

where J (·, ·) is the cost functional to be minimized, y(Ω) are the state variables,
and R represents the state equations (i.e. the Navier–Stokes equations in the current
context).

Many possible ways to achieve this target exist, each bringing its own advantages
and disadvantages, and therefore some clear choices have to be made. In Fig. 2,
a schematic diagram of the different methodology for shape optimization cited in
this section is drawn. In particular, the two approaches adopted in this work have
been highlighted with solid and dashed–dot arrows. The results obtained are re-
ported in Sect. 6.

4.1 Optimum Research Algorithm

The next step is the choice of the optimization algorithm. Given a certain cost func-
tional and parameter space, many different ways to reach the optimum can be pur-
sued [37, 56], e.g. the gradient-like methods, genetic algorithms (GA) and neural
networks. Gradient-like methods [57] require the gradients of the cost functional
and constraints (dependent variables) with respect to the shape design (independent)
variables. These gradients, commonly referred to as sensitivity derivatives, provide a
mechanism for changing the design variables in order to improve the objective func-
tion without violating the given constraints. Sensitivity derivatives may be approx-
imated by finite differencing; however, besides being computationally expensive,
unless carefully monitored, this approach can produce inaccurate gradient approx-
imations. In this case, the number of control points must be small. The preferable
approach [72] is to derive the analytical expression of the sensitivity field; however
this requires the solution of the adjoint field. The latter can be obtained writing the
adjoint equations either at continuous level and using the same approach as for the
discretization of the direct fluid problem, or at discrete level, thus via a proper ma-
nipulation of the already assembled discrete elements. Another possible technique
to obtain the adjoint field is through automatic differentiation [55] algorithms.

In this case, the control points are precisely all the surface mesh points (possibly
many). In fact, the advantage of this technique is that the cost of the optimization
does not depend linearly on the number of control points, the drawback being that
for every optimization step, also the adjoint problem has to be solved.
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Fig. 2 Diagram showing a range of possible approaches to perform shape optimization, subdi-
vided into the five main steps to be performed. The solid and dashed-dot arrows represent the two
approaches developped in this article, while the thin-dotted ones are other possible methodologies
taken in consideration by the authors but not used in this work

Once the direct and adjoint fields have been computed, the sensitivity field, i.e.
the gradient of the cost functional for every surface mesh point, can be obtained.
After a proper choice of the sensitivity-descent step size, the surface mesh points
position can be updated, and a new optimization step can be computed.

The adjoint approach should thus be very fast to converge to the optimal solution
since for every iteration, the best descent direction is chosen. A weakness of this
approach is that there is no control over the shape that the geometry may assume,
since every node is moved independently. If applied “directly”, this approach may
not maintain the smoothness and regularity of the geometry or other features that
one may want to preserve, e.g. symmetry. Usually some smoothing iterations of the
gradient field are performed and, only after this regularizing steps, the geometry
is deformed. In the following, a combination of adjoint-gradient method with sur-
face parameterization technique to improve mesh quality and surface smoothness is
proposed.

Another weakness of gradient-like methods is that they may converge to a local
optimum and not to the global one. Genetic algorithms (GAs) [30, 31], on the other
hand, have proven their strength in avoiding local extrema and numerical noise in
aerodynamic optimization. In problems with constraints, however, they may require
a very high number of parameter evaluations to converge. In our case, the cost of
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GAs methods is still not affordable, and thus we are oriented to the use of a deter-
ministic approach, and we will focus at first only on gradient-like methods.

In this work, two approaches for shape optimization have been chosen. The first
one consists in using optimization algorithms that do not require the direct evalua-
tion of the gradient of the cost functional. Thanks to the open-source library Nlopt
[39], many different derivative-free methods are available. For our test cases, we
have used the Cobyla (Constrained Optimization By Linear Approximations) and
Bobyqa (Bound Optimization By Quadratic Approximation) methods. The Cobyla
algorithm constructs successive linear approximations of the objective function and
constraints via a simplex of n + 1 points (in n dimensions) and optimizes these
approximations in a trust region at each step [69]. The Bobyqa algorithm instead
performs gradient-free optimization using an iteratively constructed quadratic ap-
proximation of the objective function [70]. As stated before, the drawback of using
gradient-free methods is that the cost of the optimization is linearly dependent on
the number of control points and, due to the high cost of every cost function evalu-
ation (i.e. the cost of the solution of a full Navier–Stokes simulation), only a small
number of control points can be used. It is thus infeasible to use as control points
the location of all nodes of the surface mesh to be optimized, which may be in the
order of tens of thousands, while an FFD parameterization fulfills very well this
requirement.

The second approach that has been explored is based on the solution of the ad-
joint Navier–Stokes equations for the direct evaluation of the gradient of the cost
functional. In this work the continuous adjoint formulation of the Navier–Stokes
have been adopted. Here a short description on this approach is reported; for a more
detailed analysis, we refer to [62, 63].

With the introduction of a Lagrange multiplier λ, problem (26) can be rewritten
as an unconstrained minimization problem for the Lagrangian functional L given
by

L = J +
∫

Ω

λRdΩ. (27)

In the specific case of drag minimization around an object under a steady laminar
Newtonian flow, the state equations governing the problem are the Navier–Stokes
equations (1) (without the time derivative term) and the cost functional can be ex-
pressed as

J = −
∫

ΓBody

(
T (u,p)n

) · ûf dΓ =
∫

ΓBody

(
p · n − 2νσ(u)n

) · ûf dΓ, (28)

where Γbody is the boundary associated to the shape to be optimized, σ(u) =
1
2 (∇u + ∇uT ) is the strain rate tensor, and ûf is the unit-vector in the main flow
direction. The Lagrange multiplier is given as λ = (v, q), where v and q are the
so-called adjoint velocity and pressure, respectively.

If we define as design variables β the deformation of every boundary point
in the normal direction, the Lagrange problem (27) can be expressed as L =
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L(u,p,v, q,β), and its total variation becomes

δL = δuL + δpL + δvL + δqL + δβL. (29)

The first-order optimality condition for the Lagrange functional entails that the first
four terms on the right-hand side of Eq. (29) are equal to zero. The third and fourth
terms correspond to the Navier–Stokes equations and are indeed equal to zero since
fields (u,p) satisfy those equations. The first and second terms are equal to zero
if the so-called adjoint Navier–Stokes equations are satisfied by adjoint variables
(v, q). If we decompose the cost functional into contributions from the boundary
JΓ and from the interior of the domain JΩ , after integration by parts, the adjoint
Navier–Stokes equation are defined as:

(∇vT
)
u − (u · ∇)v = −∇q + ∇ · (2νσ(v)

) − δJΩ

δu
in Ω (30)

∇ · v = −δJΩ

δp
in Ω, (31)

with the boundary conditions

⎧
⎪⎨

⎪⎩

v = −( δJΓBody
δp

· n
) = −ûf on ΓBody,

v = 0 on Γin ∪ Γw,

T (v, q) · n + (u · n)v = 0 on Γout.

(32)

They have been derived under the assumption that in the primal problem, Dirichlet
boundary conditions on the velocity have been imposed on the inlet and external
wall (Γin

⋃
Γw) as well as a free-stress condition on the outlet (Γout).

Furthermore, since in our case the cost functional does not depend on volume
values but only on boundary integrals, problem (30)–(31) reduces to

(∇vT
)
u − (u · ∇)v = −∇q + ∇ · (ν∇v) in Ω, (33)

∇ · v = 0 in Ω. (34)

The adjoint problem (33)–(34) has a structure similar to that of the primal Navier–
Stokes equations, and the solution of its numerical counterpart has been imple-
mented and solved with the OpenFOAM library. Albeit linear, problem (33)–(34)
is computationally not much cheaper than the primal Navier–Stokes equations, be-
ing often a stiffer problem, and thus the final cost is strongly affected by the actual
algorithm implemented in the solver.

Equation (29) thus reduces to

δL = δβJ +
∫

Ω

(v, q)δβRdΩ. (35)

Since there is no explicit dependence of the cost functional on the deformation,
the term δβJ is equal to zero.
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Finally, it is possible to show (see [83] for details) that the volume integral in
(35) can be expressed as a boundary integral defined on the portion of the boundary
to be optimized,

δL =
∫

ΓBody

g · ndΓ, (36)

reducing its computation cost to a simple post-processing step. It can be demon-
strated [62] that, after some simplification, the sensitivity field g can be approxi-
mated as

g = A
(
2νσ(u) : σ(v)

)
n, (37)

where A represents the area of every face.

4.2 Parameters Constraints

Another issue to be addressed is how to treat the control parameter constraints. Usu-
ally the object to be deformed cannot deform freely but is subject to some geomet-
rical constraints, like keeping the constant or imposing a minimum size of certain
parts of the shape to be optimized. One of the most common methods to enforce a
constraint is to add a penalization term inside the cost function whose magnitude is
adjusted dynamically until the constraint is satisfied. In this respect, a very popular
method is the augmented Lagrangian method [74].

Another more empirical technique consists instead in recovering the constraint a
posteriori, i.e. after the shape deformation due to the sensitivity field, via a second
mesh motion. For example, in the case of a volume constraint, after each sensitivity-
based deformation, the shape can be inflated/deflated homogeneously, i.e. the same
amount in the normal direction of every face, until the required volume is obtained.

Finally, some optimum research algorithms, like Cobyla, satisfy the constraints
modifying the trust region dynamically at each step based on the information avail-
able at the previous iterations. Notice that during the initial stages the constraints
may not be respected, but as soon as more data are available and the magnitude
of deformation becomes smaller, the constraints requirements are fulfilled. In this
work the a posteriori recovery technique [69] and the adjustable trust region tech-
nique have been used.

4.3 Geometry Parameterization

At this point, decision on how to model the geometry (and how to control the mor-
phing process) has to be taken. Usually, industrial geometries are drawn using spe-
cific CAD programs, e.g. Rhino [14], AutoCad and Maya [26], SolidWork [82], etc.
Those geometries are then exported in a suitable format and imported into the mesh
generator, where a space discretization of the domain is produced.
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One can therefore, at every iteration of the shape optimization algorithm, modify
the geometry directly inside the CAD program, and then re-export it to the mesh
generator. By so doing, one has to link the shape optimization method with the
CAD program, create a new geometry assembly (a process which may not be easy to
automatize on complex geometries) and finally generate a new mesh. In the case of
unstructured meshes this last part, although very expensive, may be relatively easily
automatized, while in the case of structured meshes, like the one typically used by
the authors for the hydrodynamic solver component, the automation is usually not
feasible. For those reasons, we have decided not to follow this approach.

Another possible way to proceed is to deform directly the computational mesh.
By this approach one can decide whether to modify just the nodes that define the
mesh-surface of the geometry that one wants to optimize or to deform the whole
mesh. In the first case, a suitable numerical algorithm has to be used in order to mod-
ify the volume mesh according to the imposed surface-mesh displacement. In the
mesh motion framework, many alternatives exist. The most common one is to solve
a Laplace problem on the whole domain using as boundary conditions the surface
displacements. Another popular mesh-motion technique is the so-called spring anal-
ogy model [21]. Many variants and sophisticated numerical modification of those
schemes can be implemented in order to help preserving the mesh quality. The im-
portant advantage of this choice is that the mesh must not be recreated but simply
modified. The disadvantage is that nothing assures that the quality of the mesh is
maintained, and, in case of large deformations, the mesh can even become invalid.
In this case either special untangling schemes are adopted, see for example [15], or
the mesh has to be fully regenerated. Furthermore, the solution of the internal mesh
node displacement may have a not negligible computational cost.

For the actual shape parameterization, different techniques can be used, like B-
splines [7], NURBS [67], or similar. By changing the value of the shape parameters,
representing for example the position of the control points of the spline, the shape
is modified. An “interpolator” to reduce the continuous shape displacement to the
discrete level, i.e. to the mesh, is needed.

Another possible technique is that based on the so-called Free-Form Deformation
(FFD). Originally introduced in the late 1970s [80], FFD has been first used in
computer graphics; only in recent years it has been employed in optimal design
problems [3].

Recently, this technique has been coupled with Reduced Basis methods [44,
47, 77] and used also for simple FSI problems [42, 43]. A free-form deformation op-
erates on a bivariate Bezier control area, built around (and regardless of) the shape
we want to optimize, manipulating a lattice of control points. In this way, design
parameters are directly connected neither to geometrical properties nor to the shape
boundary, see Fig. 3. This is at the same time a great advantage and disadvantage
of this technique: on the positive side, it does not bound the optimization process
to a restricted subset related to geometrical quantities; on the other hand, it is very
difficult to control some geometrical quantities, like, e.g. the length of an edge or
the angle of attack of a foil, in a “classical” way.

A brief description follows in the simple case of a 2D computational domain.
Given a fixed rectangular 2D domain D such that Ω ⊂ D, we assume the exis-
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Fig. 3 Schematic illustration
of the Free-From
Deformation (FFD)
technique. Through a series
of maps and transformation,
the geometry is deformed
following the movement of
the control points

tence of a differentiable and invertible map Ψ : (x1, x2) → (s, t) such that Ψ (D) =
(0,1)2; by this freezing procedure, FFD can be defined in a simpler way in the
coordinates (s, t) of the spline parameter space (0,1)2. We thus select a lattice of
(L + 1) × (M + 1) unperturbed control points Pl,m = [l/L,m/M]T , l = 0, . . . ,L,
m = 0, . . . ,M , and modify the object by moving control points to a new posi-
tion. The corresponding perturbed control points Po

l,m(μl,m) = Pl,m + μl,m are thus

specified by a set of (L + 1)(M + 1) parameter vectors μl,m ∈ R
2, giving in all

2(L + 1)(M + 1) possible degrees of freedom. In general, among the control points
Pl,m, we indicate the effectively free scalar-valued parameters, chosen as design
variables, μ1, . . . ,μP —each corresponding to the displacement of a control point
in the s or t direction—and define the parametric map T̃ (·,μ) : D → R

2 by which
the uploaded geometry is computed as follows:

T̃ (x;μ) = Ψ −1

(
L∑

l=0

M∑

m=0

b
L,M
l,m

(
Ψ (x)

)
Po

l,m(μl,m)

)

, (38)

where b
L,M
l,m (s, t) = bL

l (s)bM
m (t) are tensor products of one-dimensional Bernstein

basis polynomials bL
l (s) = (

L
l

)
sl(1 − s)L−l and bM

m (t) = (
M
m

)
tm(1 − t)M−m defined

on the unit square (s, t) ∈ [0,1] × [0,1]. Finally, we have Ωo(μ) = T (Ω;μ) by
using the restriction T = T̃ |Ω .

4.4 Surface and Volume Mesh Deformation

Once the new value of the shape parameters is obtained, the surface mesh describing
the shape has to be deformed. If the shape has been parameterized via FFD, the new
position of the surface mesh nodes is obtained applying the FFD map to every node.
If, instead, the adjoint approach has been used and the sensitivity field is known
for every surface mesh node, two approaches can be adopted: either move the mesh
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points directly, or “project” them to some other shape parameterization. In the first
case, usually some smoothing of the sensitivity field has to be done, otherwise the
nodes near the edges and corners tend to be over-deformed, the mesh anisotropy
may create small oscillations, and in general the smoothness of the deformed shape
is not guaranteed. Another possibility is to use once again the FFD parameterization,
projecting the sensitivity field on the FFD control parameters. This time we are not
limited to a small lattice and can indeed choose a very fine one, in order to reduce
the loss of information due to the projection below an acceptable threshold. This
projection can be accomplished for example by a least-square interpolation of the
surface mesh points and the FFD control points:

μ̂ = arg min
μ∈μad

∑

i∈Surf nodes

(
xi − T̃

(
Ψ (xi );μ

))2
, (39)

where T̃ (Ψ (xi );μ) is the FFD map as defined in Sect. 4, Eq. (38), and μad is the do-
main of admissible μ such that the FFD control points Po

l,m stay inside the domain
[0,1] × [0,1]. Furthermore, stricter constrains on the deformation μ are usually
imposed in order to avoid excessive mesh deformation. Without the interval con-
straints, the least square minimization reduces to the solution of a linear problem,
with size the number of FFD control points, of the form

FT F μ̂ = FT x, (40)

where F is the FFD map matrix, and x is the vector containing the displacement of
the surface mesh points. The solution of the same problem but with interval con-
straints is a typical problem of linear programming, and its solution requires that
of an optimization sub-problem by itself. In order to save computation time, we
have chosen to use a numerical trick to maintain the magnitude of the control points
small: we impose some extra line to problem (40) thus requiring m to be close to
zero (this turns out to add an identity matrix at the bottom of F and a vector of 0
at the bottom of x). Although not equivalent to the constrained minimization prob-
lem, this technique allows us to obtain all the control points displacements with
a single solution of the now modified problem (40). We believe that this inaccu-
racy introduced is justified by the fact that the error committed is anyway smaller
than the one introduced by the other numerical steps of the optimization proce-
dure.

Once the new shape has been evaluated, the volume mesh can be deformed either
by solving a modified Laplace problem or directly using the FFD map. We believe,
and our numerical results are in agreement with our conjecture, that using the FFD
map is the best solution in this case. The mesh motion technique is in fact mesh-
independent and thus is not affected by the typical problem generated by Laplace-
like methods with small and skewed elements and in general produces meshes with
higher quality.
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Fig. 4 Overview of the different methodologies and tools considered in this work

5 Numerical Results

In this section an overview of the numerical results obtained is presented. The re-
sults concern free-surface flows and hull dynamics, shape optimization and fluid-
structure interaction problems. In Fig. 4 a flow diagram of the entire simulation and
optimization processes for a sailing boat is drawn. Obviously, some parts are shared
by more than one part, like the Navier–Stokes solver which is used for simulating
both the water field and air field or the mesh motion technique found in both the
boat dynamics and the optimization steps. For every sub-section, a diagram of the
numerical/methodological tools needed by that section is outlined.

5.1 Hull Dynamics

As described in the previous sections, the numerical tools needed for the simulation
of the hull dynamics are (Fig. 5): a Navier–Stokes solver with free-surface capabili-
ties, suitable turbulence models, a dynamic model for the rigid body of the hull and
a mesh motion solver. Furthermore, if one is interested in the simulations of waves,
a mathematical model for the imposition of the correct boundary condition in order
to generate and maintain the wave on the whole domain is needed [23, 41, 49].
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Fig. 5 Overview of the different methodologies and tools considered for the simulation of the hull
dynamics

Fig. 6 Wave profiles along
the Series 60 hull for different
grid resolutions

The free-surface solver and its interaction with the rigid-body hull dynamic
module have been tested on a classical benchmark problem, namely the Series 60
hull with a block coefficient CB = 0.6 (see [86]). We have considered a flow at a
Reynolds number Re = 4 × 106 and a Froude number Fr = 0.316. First, the steady
solution at a fixed attitude has been computed on three different grid resolutions with
a number of cells of around 70 000, 200 000 and 650 000, respectively, and a time
step dt = 0.001 s. The wave profiles on the hull obtained with the different grid res-
olutions are presented in Fig. 6 and compared with the experimental measurements.
These results, together with the drag coefficients reported in Table 1, show a good
convergence to the experimental data.

Starting from the steady solution obtained with the medium resolution grid, we
have activated the hull dynamics module and left the hull free to sink and pitch.
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Table 1 Pressure, viscous
and total drags coefficient for
different grid resolutions

Grid Cp Cv Ct

Coarse 0.00274 0.00344 0.00619

Medium 0.00179 0.00372 0.00552

Fine 0.00163 0.00388 0.00551

Experiment 0.00542

Fig. 7 Sink (left) and trim (right) evolutions of the Series 60 hull towards hydrodynamic equilib-
rium

The time evolution of the two degrees of freedom towards the hull running attitude
(hydrodynamic equilibrium) are presented in Fig. 7.

Finally, we tested the behaviour of the model simulating the dynamics of the hull
in waves. This was achieved imposing at the inflow an incoming wave modelled us-
ing the fifth-order Stokes wave expansion, see [66] for more details. The wave model
sets a time-dependent wave elevation and the correspondent orbital velocity at the
inflow boundary of the domain. We have considered a wave amplitude λ = 0.01L

where L is the boat length, about 3.5 m for the problem at hand, and a wave fre-
quency correspondent to an incoming wave length of 0.2L. In Fig. 8 the free-surface
elevation is represented: the incoming wave and its typical pattern modification in
the boat wake can be clearly observed.

A comparison between the time evolution of drag and pitching moment for the
two-dynamics case (with and without the incoming wave) is reported in Fig. 9.

Free-surface simulation of this type has been extensively adopted during the past
few years in the framework of a collaboration of our research group with the Alinghi
Team for the design of the boats which participated to the last three America’s Cup
campaigns preparation [16, 64, 65].

In particular, more recently, the focus has been on the simulation of the free-
surface flows around the Alinghi multi-hull catamaran designed for 33rd America’s
Cup. A large-scale simulation analysis was performed to predict the drag and lift on
the hulls in many sailing conditions and attitudes. All those data were then integrated
in a Velocity Predictor Program (VPP) that estimates the performance of a sailing
yacht for given boat design and sailing conditions.
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Fig. 8 Series 60 dynamic simulation with waves: free-surface elevation

For this analysis, different simulation software were used, including the Open-
FOAM free-surface solver described above, the Ansys CFX free-surface solver [27]
and a linear free-surface potential solver, with the viscous component predicted via
ITTC formulas, developped by the Alinghi Design team. In Fig. 10, the drag pre-
diction obtained with the different codes are compared with the experimental re-
sults. As can be seen, OpenFOAM data trend is in line with the other numerical
solvers, predicting drag values slightly higher than CFX. The potential flow solver
under-predicts the drag values, which is acceptable since the viscous contribution
is obtained through empirical formulas and flow solver is based on a more sim-
plified model. The drag values obtained via experimental test in a towing tank are
quite close to the numerical values obtained (less than 5% of error on average), with
higher values for small trim angles and lower values for high trim angles.

5.2 High Performance CFD: Parallel Scalability

An investigation on the parallel scalability of the code has also been carried out,
and some important features that allowed us to fully benefit of the parallel compu-
tational power have been highlighted. We compared the parallel performance of the
free-surface solver implemented in OpenFOAM on a clusters available at the École
Polytechnique Fédérale de Lausanne. The technical specifications of the cluster are:
56 bi-processor nodes of Intel Xeon Nehalem quads-cores at 2.66 GHz with 24 GB
of RAM and connected via InfiniBand.
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Fig. 9 Drag (top) and pitching moment (bottom) for the dynamic Series 60 simulations in wavy
and flat sea

Fig. 10 Drag prediction
results on the Alinghi AC33
catamaran hull obtained with
different numerical tools and
compared with the
experimental results. No axis
values are reported due to
confidentiality agreement
with the Alinghi team

A transient free-surface Navier–Stokes simulation for the Series 60 hull with a
large grid (about 4 millions cells) has been considered as a test case.

A brief scalability analyses has the been performed on the Nehalem cluster and
results are reported in Table 2.

As reported in the table, OpenFOAM, for a fixed number of partitions, is signifi-
cantly slower when using all cores of a node rather than twice the number of nodes
but using only half of the cores available per node. This is due to the fact that when
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Table 2 OpenFOAM
scalability test on the
Nehalem cluster

Nodes*core # partitions Wall clock time

4*4 16 647

2*8 16 664

4*8 32 350

8*4 32 296

8*8 64 177

using all 8 cores, a bit of memory communication bottleneck arises. When keeping
the number of cores per node fixed and increasing just the number of nodes, the
scalability factor is instead very high (at least for the number of partition tested),
namely 95–98%.

OpenFOAM has been installed also on the EPFL cluster BlueGene-P [30], whose
major strength is not the speed of every single node, only 800 MHz, but rather the
possibility to use a very large number of cores, up to 16 000 in this case, and the
highly optimized memory communications. In order to be able to use this cluster
efficiently, the solver must scale well up to a high number of partitions. Special
attention has thus to be taken in compiling the code properly to benefit from the
special architecture.

Two different grid decomposition methods have been considered in this case: the
former, referred to as Xdir decomposition, simply subdivides the grid into slices
(each containing approximately the same number of grid cells) in a given direction
(in this case the stream-wise direction X); the latter is based on the Metis [40] li-
brary, which decomposes the grid trying to minimize the number of faces on the
partition interfaces.

The results obtained with the partitioner “ Xdir” shows a deterioration of the
scalability property of the solver when increasing the number of partitions beyond
64, see Fig. 11. This is due to the fact that with this partitioner, as the number of
domains increases, the number of faces on the partition interface increases linearly.
Since the amount of data passed from core to core is proportional to this value, it
is easy to reach the memory communication bottleneck. With the Metis partitioner,
much better scalability is achieved: 87.5%, up to 512 partitions. When using a even
higher number of partition, i.e. 1024, no gain is observed compared to the run with
512 partitions. This is due to the fact that, the test case having 4 million cells, when
using 1024 partitions, every partition has about only 4 thousand cells. This number
is too small for the solver to be efficient requiring a too short computational time for
every node when compared to the communication lag time. If a bigger test case were
to be chosen, the solver would be able to scale efficiently up to a higher number of
partitions. For BlueGene-P as well, the fact of using just one, two or all four cores of
every node has some effects on the scalability, although not as much as on classical
clusters.
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Fig. 11 Scalability trend of
the solver OpenFOAM on the
BlueGene/P cluster for two
different partitioning method

Fig. 12 Overview of the different methodologies and tools considered for the simulation of the
Fluid-Structure interaction of the sail

5.3 Fluid-Structure Interaction

In Fig. 12, the main tools for the simulation of the Fluid-structure interaction of a
sail are reported. The Navier–Stokes solver and the turbulence model are the same
ones used in the previous section, while the mesh motion is in general more critical
due to the higher deformation, and thus special care has to be taken to preserve the
quality of the mesh. The structural solver for the simulation of the sail deformation
under the aerodynamics loads and the coupling algorithm have been introduced in
Sect. 3.

The fluid structure interaction between wind and sails has been analysed. An
external structural solver capable to simulate the membranes/shells structural defor-
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Fig. 13 Gennaker FSI: velocity vectors on a slice at Y = 15 m and displacement vectors and
displacement magnitude on the sail surface

mations has been used. The coupling algorithm between the two solvers is described
in Sect. 3.1, with the extra complexity of the communication and data interpolation
from the two independent solvers. In this case the fluid solver has been considered
as the master program responsible for the interpolation of the stresses from the fluid
mesh to the structural solver and the interpolation of the sail displacement to the
fluid mesh, as well as starting and pausing the structural solver when needed. The
meshes used for the flow solver, generated with the commercial code ICEM [52], are
made of hexahedra, tetrahedra and pyramids and are not geometrically conforming
with the one of the shell solver. As an initial condition, the steady converged so-
lution of the flow field obtained while keeping the sail fixed has been used. First,
a single sail, a gennaker, immersed in a steady atmospheric flow has been simu-
lated; in Fig. 13 the flow field and the sail deformation are presented at different
time-steps.

Many different configurations are currently under investigation, and the results
are so far very encouraging. For example, a variation of the structural property of
the sail has been investigated: setting the width of the sail to a higher value produces
a final shape that is rounder near the bottom and flatter near the top, see Fig. 14, and
in general less deformed. This is due to the fact that now the sail is heavier and more
rigid: the weight of the sail plays now a more important role. Furthermore, from a
numerical point of view, this configuration is easier to compute from an FSI point
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Fig. 14 Comparison of the final shape (i.e. at convergence) of the sail for different structural
properties and versus the initial shape. View from the front and from the side

of view, since the inertia of the sail is higher: in good agreement with this concept,
the number of FSI sub-iterations for every time step drop from about 50 to 20 (for a
relative convergence criteria of 0.05%).

In these simulations the three vertices of the sails are kept fixed, but the possi-
bility to insert more realistic constraints is possible. More complex configurations,
such as multiple sails (main sail plus gennaker), mast deformation and full sailing
boat dynamics are currently under investigation and will be reported in a future
paper.

In terms of efficiency, the resolution of a full transient FSI problem is much more
demanding than the sole aerodynamic simulations. To give a general idea of the FSI
overhead, hereafter we provide some data of the computation time for one of the
simulations described above run on 32 i7 2.66 GHz processors. The cost for one
time step of the aerodynamic simulation is about 8 seconds. The cost of a single
FSI sub-iteration step comprehends the aerodynamic solver, about 8 seconds, the
mesh motion, about 2–5 seconds (depending on the mesh motion technique) plus
the structural solver. The latter, being an explicit solver in our case, usually requires
a much smaller time step than the fluid one and thus requires several sub-iterations.
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Fig. 15 Overview of the
different methodologies and
tools considered for the shape
optimization problem

The constraint on the structural solver time step depends heavily on the structural
property of the sail: a very stiff material induces very fast modes on the structures,
and thus a very small time step constraint is required to be stable. In our case, the
structural solver required about 2–5 seconds for FSI sub-iteration. Finally, for every
time-step, there are about 20–50 FSI sub-iterations, mainly depending on the time
step chosen, convergence criteria and structural property of the sail, and thus the
total time for an FSI time step is about 30–100 times longer than the one of a simple
aerodynamic simulation.

6 Shape Optimization Test Cases

For the shape optimization, besides the solver needed for the solution of the Navier–
Stokes equations, a solver for their adjoint counter-part may be required, as well as a
proper geometric parameterization technique (Fig. 15). Once the objectives function
and constraint are defined, a module that takes care of the parameters exploration
and that adjusts the mesh accordingly has to be implemented.

The Free-Form Deformation method has been chosen for the geometry defor-
mation. An analysis of the FFD method aimed at shape optimization algorithm on
ship-related geometries, like the bulb and the rudder of a sailing boat, has been done
at first with the use of the code COMSOL [81] for the solution of the Navier–Stokes
problem and used the Matlab Optimization toolbox for the exploration of the pa-
rameters set. This work showed a good potential of this approach, although it also
outlined the necessity to use much more efficient numerical tools to obtain reason-
able computation time even for simple test problems.
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Fig. 16 FFD lattice over the 2D domain for the shape optimization of a cylinder. Although the
lattice is composed of 5 × 5 = 25 control points, only six FFD points have actually been chosen
as control points. The full black points are kept fixed, while the empty one can move in the arrows
directions. Control points with the same colours mean that the two movements have the same value
but opposite sign (symmetrical displacement)

In fact, although Matlab is a very powerful program with many built-in functions,
it is fairly slow compared to an efficient C/C++/Fortran code. Furthermore, since our
final goal is to have an automatized program for shape-optimization, the code have
been rewritten in C++ in order to allow us a better integration with OpenFOAM.

An FFD class has been implemented directly into OpenFOAM so that a call can
be made inside the code, using the flexibility of the C++ class structure, to update
the position of the mesh points with the FFD module. This allows us to use both
approaches of mesh motion based on the FFD: one can either decide to move all
points, both surface and internal nodes, or just to move the surface meshes and then
use the other options, i.e. Laplacian solvers, already implemented in OpenFOAM
for the movement of the internal nodes. Special care has also to be taken so that the
code works in a parallel environment as well.

The test case that we have chosen is a 2D cylinder immersed in a flow in laminar
regime, Re = 40, with the drag as cost functional to minimize under the constraint
of fixed volume. The shape has been parameterized via an FFD lattice made of 5×5
control points set around the cylinder inside the domain. Out of the total 50 degrees
of freedom (25 × 2, because all control points can move in both longitudinal and
vertical directions) we have chosen to keep fixed the external points, so that the
points on the FFD lattice border are not deformed and thus the FFD map can be
used also for the volume mesh deformation. Thanks to the symmetry with respect
to the horizontal axis of the problem and geometry, the same symmetry condition
can be imposed on the control points movement in the vertical direction. We have
thus chosen to select only six control points, three in the longitudinal direction and
three in the vertical direction (which counts as double thanks to the symmetry), as
represented in Fig. 16.

Besides the volume constraint, a bound-constrain of [−0.4;0.4] has been im-
posed to the value of the control points. The optimization problem has been solved
via the Cobyla algorithm, and the results are reported in Figs. 17–18. In the first
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Fig. 17 Shape Optimization of a 2D cylinder in laminar regime. Comparison between the initial
geometry and optimized ones

Fig. 18 Shape Optimization of a 2D cylinder in laminar regime. Cost functional: drag minimiza-
tion. Constraint: fixed volume. Method: Cobyla. The data in the plot have been non-dimensional-
ized with the initial (i.e. not deformed) values

figure, the qualitative comparison between initial and final shape and corresponding
meshes is reported. As can be seen, the magnitude of the deformation is quite big,
although only six control points have been used, and the mesh deformation is very
smooth. Quantitatively, the new shape has reduced the drag by 11–12% in about 80
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Fig. 19 2D section of the
two-level FFD lattice over the
3D domain for the shape
optimization of a sphere.
External lattice: black dots.
Internal lattice: white dots

iterations, but more than half of them have been spent in very small adjustment to
satisfy with high accuracy, i.e. 10−4, the volume constrained. With a less restrictive
constraint, about 40 iterations would suffice.

The exploration of the parameters space at first does not necessarily produce
a better geometry, neither fulfills the volume constraints. As more information is
available and the control parameters influence is better defined, the descent to the
(local) optimum is achieved, and the calibration of the penalty terms for the volume
constraint imposed so that the volume condition is satisfied.

We then consider a similar test case, where we look for the drag minimizing
shape in 3D, Re = 40, starting from an initial spherical shape and considering the
volume fixed. In this case the adjoint-based gradient method has been used, and
the volume constraint has been recovered at every iteration via a posteriori mesh
motion. The sensitivity field has been projected to a double FFD lattice around the
sphere (see Fig. 19): an external one able to capture the macro-deformation and have
them “absorbed” by a wide region of the domain, and an inner one to capture more
details. In this case as well, the outer control points of the lattices are kept frozen, so
that the FFD mapping can be used for both surface and volume mesh deformation.

The methodology has proven to be robust and efficient, see Figs. 20–21. The
magnitude of the deformation is very important, and, although no symmetry con-
dition is imposed this time, the optimal shape is symmetric with respect to the
span-wise and vertical directions (as expected). The sensitivity field and the volume
constraints tend to deform the shape in opposite ways; indeed, the sensitivity field
tends to make the shape smaller, while the volume constraints recovery re-inflates
it. Thus the optimization stopping criteria is reached when the sensitivity field is
uniform in the normal direction all over the shape. At the beginning, the sensitiv-
ity field mainly tends to squeeze vertically the sphere and the volume constraints,
acting uniformly, and makes the resulting deformation equal to a vertical/span-wise
contraction and longitudinal expansion. At convergence, being the shape already
elongated, the sensitivity field requires a uniform contraction in all directions which
is counter-balanced by the volume constraint.

The optimized shape is about 30% more efficient than the initial one while main-
taining the same volume. The optimum search, thanks to the gradient evaluation, is
monotonic and stops after about 80 iterations, although after 40 iterations a value
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Fig. 20 Shape optimization of a 3D sphere in laminar regime

Fig. 21 Shape optimization of a 3D sphere in laminar regime. Cost functional: drag minimization.
Constraint: fixed volume. Method: gradient-like. The data in the plot have been non-dimensional-
ized with the initial (i.e. not deformed) values

very close to the optimum is already reached. In this case the descent step size has
been kept fixed and relatively small: with a higher value or, even better, a dynamic
step size, the convergence could be even faster. The error on the volume constrains
is always very small and never higher than 0.7%.

7 Perspectives

In this section we report some perspectives in the numerical models and simulation
of sailing boat dynamics and its shape optimization.

Further methodological and code development has to be carried out in order to
achieve the targets highlighted in the previous sections. Although a substantial work
has already been accomplished, further developments are needed in order to be able
to simulate more accurately the full dynamics of a sailing boat. After the success-
ful shape optimization test cases, more realistic geometries and conditions have to
be analysed. Below a more detailed description of the future development plan is
reported.
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7.1 Fluid-Structure Interaction

An accurate and stable coupling technique has to be proposed for more complex
and fast-varying dynamics, and an analysis on the interpolation of the data from
non-conformal meshes has to be conducted. At the moment the structural and fluid
solvers are computed in serial, i.e. one after the other, while a better synchronized
strategy, relying on running media at the same time and exchanging information
only at given times, may be investigated. Other mesh motion techniques can also be
explored; in particular it would be interesting to couple the FFD techniques devel-
opped for the shape optimization analyses for this kind of problems. The capability
of the FFD technique to keep the mesh valid also for large deformations could in
fact be very useful in the case of large motion, like the one of a gennaker under a
gust. A coupled local FFD/Laplacian may indeed perform very well.

From a programming point of view, the FSI codes available need further devel-
opment in order to be able to handle realistic flow conditions and geometries. The
structural solver also needs to be methodologically developped to take into account
the complex constitutive law of modern sails and account for more realistic con-
straints. Furthermore the mast deformation has to be taken into account as well as
real sailing boat sail configurations, i.e. gennaker-main sail-mast.

7.2 Full Sailing Boat Dynamics

Once both the sail FSI and the free surface simulations have been validated, the
simulation of the full dynamic of the sailing boat can be finally computed.

To accomplish it, a proper way to couple the FSI solution of the sails with the
6-dof motion of the hull has to be set up, taking into account all the physical con-
straints, like where are the sails forces applied on the hull, and numerical issue, for
example, the fact that the boat cannot freely move into the domain, but it has to be
kept more or less at the centre. One way to achieve this point would be to fix the
longitudinal position of the boat and insert an acceleration term inside the Navier–
Stokes equations like if we were in a non-constant-reference system, or we could
just keep the average speed fixed and let the boat floats (if it does not drift away;
otherwise the mesh may easily become invalid).

7.3 Optimization

The performance of shape optimization tools for turbulent flows is of interest and
subject of many studies nowadays. Although recently the full adjoint formulation of
the Navier–Stokes equations with turbulent models has been proposed [92, 93], the
most common approach in literature is to freeze the turbulent viscosity obtained by
the direct solver and use it in the laminar Navier–Stokes adjoint equations. Special
care has to be taken when the direct turbulent model uses wall functions, since this
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is not seen “naturally” by the laminar adjoint equations and may lead to un-physical
results.

Complex geometries may prove critical in terms of smooth deformation and va-
lidity of the deformed mesh and thus may require special care in the motion algo-
rithm and smoothing techniques. The possibility to use combined local-FFD have
to be developped to further enhance the effectiveness of the methodology. Also the
coupling of the proposed approach with Reduced Basis/Reduced models [76] tech-
niques is a subject of current interest. Due to the very heavy computational load en-
tailed by every direct and adjoint computation, the possibility to use reduced models
may greatly benefit the effectiveness of the proposed methodology and could allow
one to tackle even more complex problems. Instead of computing a full RANS sim-
ulation for every geometry, an approximated solution could indeed be extrapolated
thanks to RB techniques, thus reducing drastically the computational cost.

8 Conclusions

This work represents an overview of state-of-the art numerical models for the sim-
ulation and shape optimization of sailing boats combined with the experience about
methodological development and numerical simulations accomplished by the au-
thors.

A preview of the complexity of the task of a full simulation of a sailing boat
has been highlighted, and the main tools to achieve everyday more complex and
accurate simulations have been described. Successively, some of the results obtained
so far by the authors with open-source codes have been presented. Promising results
in the simulation of free-surface flows and hull dynamics have been achieved, and
soon more complex configurations will be tackled.

The set-up for the simulation of the Fluid-Structure interaction of a sail un-
der steady wind conditions has been established, and the results obtained are very
promising. The full transient FSI simulation of a gennaker has been successfully
computed for different sail structural properties, and the shape deformation obtained
seems qualitatively very reasonable.

The basic tool for automatic shape optimization has been presented, and the
combination of classical optimization methods with modern shape parameterization
techniques, the FFD parameterization, have been proposed. The FFD control points
have been used both as optimization control parameters and/or as shape parameter-
ization space on which the sensitivity field is to be projected. This last approach is
innovative and has proven its effectiveness in some initial test cases. More challeng-
ing and realistic configurations are foreseen for this topic as well.

Finally, the work presented here has direct applications in many real-life cases,
not only for sports competitions, but also for helping sails/boat manufacturers and
naval and ocean engineering groups in general. Furthermore, the flexibility of the
fluid code used and the numerical tools under development may be relatively eas-
ily modified to be applied to many other fields, like the shape optimization of the
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geometry of cardiac bypass and stents or the shape and structural composition of
aeroplane wings under aerodynamic loads.

The most significant contribution of the methodology is the combination of sev-
eral techniques to provide a platform for the simulation of complex systems from a
geometrical and multi-physics point of view.
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On the Way to ACARE 2020 and Beyond

Dieter Schmitt

1 Air Transport System

The air transport system is today a global business and has several stakeholders who
have to work closely together to provide an efficient transportation system. Figure 1
is highlighting the main actors and their interrelationship.

Air Transport system is traditionally an essential activity of national interest for
each state/government, and this is especially true for air transport because this hap-
pens mainly internationally. Transport recognizes a privilege compared to other do-
mains of the economy:

• Economic Reasons:
– Export-oriented industries need proper means of transport for goods.
– Production areas need fast, cheap and reliable ways of transport.

• National Reasons:
– Demonstration of power/sovereignty, one of the reasons to have a national air

force to demonstrate Air supremacy.
– National Air fleet Reserve for transport needs during war.
– Prestige national “flag carrier” (Air France, Iberia, Air India, Alitalia, British

Airways, etc.).

Due to the internationality of air transport on one side and the air supremacy of
the national states on the other side, a lot of contact points and common interests
exist between state/government and air transport! A strong link between economic
growth and air transport can be seen by the surprising correlation between Domestic
Growth Product GDP and the transportation performance, expressed in Revenue
passenger Miles (RPM).

As shown in Fig. 2, there is a strong similarity in percentage growth per year for
GDP and RPM (revenue passenger miles), which means in simple terms sold air
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Fig. 1 Air transport system

Fig. 2 Revenue Passenger miles versus GDP

tickets per year. All world crises like 11th of September or the beginning of Iraq
war can be seen directly in the GDP curve, but are also directly reflected by the
sold air tickets. The RPM is, however, by a factor of 2–3 higher. This means that
the air travel request is a very sensitive indicator for world economy and its growth
potential.
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Fig. 3 Typical life cycle of a civil aircraft programme

The aeronautical industry is a very specific business [3, 5, 6, 12]. The product is
very complex, the number of production units is fairly small, at least compared to
other sectors like automotive industry, and the investment for new products is very
high. Therefore a lot of risk is involved when a company is deciding to invest in a
new aircraft programme. Figure 3 is showing the development cycle of an aircraft
programme.

It takes 10 years to define the product corresponding to the market requirements,
then it takes another five years to develop the aircraft, certify it and deliver it to the
market. If the design was market adequate, there will be a chance to produce the
aircraft for 20 to 40 years (B747, B737, A320, etc.) with sometimes some improved
versions, and the final aircraft will still have an operative life of roughly 25 years.

Taking such a cycle, it becomes obvious, that all financial institutions will be
hesitating to invest in such critical long-term programmes. On the other hand, the
civil aeronautical industry is seen by many countries as a strategic industry, closely
linked to the military aircraft market and with a lot of synergies between both.

2 ACARE Vision 2020

In the year 2000, a Group of Personalities (GoP) has started in Europe to think about
a long-term strategy for the European aeronautical industry.

Background was that the USA had launched some years before a Supersonic
Research Programme, with a financial volume of more than 2 billion US$.
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Fig. 4 ACARE and the development of aeronautical research in Europe

Fig. 5 ACARE Vision 2020
and the goals

It was obvious that this supersonic research programme would not only develop
technologies for a possible future SST aircraft (Concorde successor) but also deliver
a lot of technologies for the subsonic civil aircraft design.

This GoP defined a Vision 2020 for the European aeronautical industry. But more
important was the creation of an Advisory Group with all useful and mandatory
partners involved. This Advisory Group was named ACARE (Advisory Group for
Aeronautical Research in Europe) and included all necessary stakeholders for this
domain, the operators, the industry, the political decision makers and the research
institutions (see Fig. 6).

The ACARE Vision 2020 identified the major challenges for the future and de-
fined very ambitious goals. The goals covered all domains, the aircraft development
the operation and the society. 50% of reduction in CO2 was the obvious goal, and
major progress has been achieved over the last 10 years (Fig. 5).

However, this could only be done by national and European research programmes
that were established to identify the necessary technologies to reach the targets. Two
Strategic Research Agendas (SRA1 and SRA 2) have been identified (see Fig. 4),
and the following European Research Framework programmes (FP6 and FP7) were
using the technology guidelines from SRA1 and SRA2 for the internal evaluation of
the projects.

In SRA1 one of the five major challenges was “Environment” and in SRA2 High-
level target Concepts have been defined [9], and the “Ultra Green Air transport sys-
tem” was one of the leading concepts.
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Fig. 6 ACARE Stakeholders—European Technology Platform

3 Aircraft Design Drivers

In the past the aircraft design drivers have been aimed:

Further: increase in range
Larger: increase in size
Faster: increase in speed

The design driver “range” has come to a natural stop.
The increase in range has been a major objective in the 1980s and 1990s, to

follow the intention from the airlines to fly all major routes, even the very long ones
(Singapore–New York, London–Sydney) as non-stop routes [8].

Both aircraft manufacturers, Boeing and Airbus, have demonstrated that their
latest long-range aircraft (B777 and A340-500) can fly nearly half around the world,
if needed, however with some payload restriction. A greater range capability is not
really needed, as it will also have some impact on the fuel used to fly the mission
(see Chap.: Optimal Location of Support Points in the Kirchhoff Plate).

The design driver “size” has also considerably increased with the development of
the Airbus A380, which can transport up to 850 passengers in a high-density version.
The further market survey will show whether the travelling public is accepting or
even preferring a large aircraft compared to a smaller long-range aircraft. A larger
aircraft will only be accepted by the airlines if it can be shown that it is more fuel
efficient than the smaller ones. Some specialists are already postulating that with an
aircraft even larger than the A380, no further improvement in fuel efficiency with
same technology standard will be achievable (economy of scale) [6]. There is the
possibility of using and developping a larger aircraft, but only when other factors,
such as airport congestion, public acceptance, economy of scale, etc., will give a
clear advantage even to larger planes.

The design driver “speed” is no longer a design driver. For a long-range aircraft,
the typical cruise speed in terms of Mach number is 0.85. Flying faster would mean
a higher fuel consumption, and flying at lower speed (as A330 and A340) is giving
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Fig. 7 Classical design drivers for an aircraft

a disadvantage in the operation as these aircrafts will not always get the optimum
flight altitudes from ATC, where a faster aircraft will get the better cruise altitude.
So a certain standard has been achieved [3, 5, 6, 12]:

Long-range cruise: Ma = 0.85
Short-range cruise: Ma = 0.78

There have been some attempts in the 1990s to develop a new Supersonic civil
transport aircraft, but the studies have shown that there are still two major obstacles:

• noise issue in cruise (shock waves will be heard on ground);
• emission problems (CO2 will be emitted in the stratosphere, and the impact on

Greenhouse gas, radiation, etc. is not predictable).

Therefore, the classical design drivers are no longer valid. The obvious new air-
craft design drivers are:

Greener
Cheaper

All greening efforts are also linked with further fuel reduction. In this respect
ecological and economical improvement efforts are going in the same direction.

As can be seen in Fig. 7, the main efforts and technologies for further fuel ef-
ficiency are the further improvement in aerodynamics (L/D improvement), the im-
provements in light weight structure, i.e. reducing the Manufacturing Weight Empty
(MWE) relative to the Max Takeoff Weight (MTOW), and improvements in the
propulsion efficiency of the engines.

Figure 8 identifies some additional technological areas, where new technologies
are leading to further improvements, but these areas are targeting to mainly reduce
cost, passenger acceptance or are secondary features in the design cycle.

Safety is not a design driver by itself. All new aircrafts have to meet the certifi-
cation requirements, and it is mandatory to constantly improve the safety standards
and keep a reasonable compromise between efficiency and safety.

A safe and reliable operation is a major criterion for all airlines when buying a
new aircraft.

In order to achieve the ACARE Vision in 2020, the 50% fuel efficiency improve-
ments have to be broken down in three major parts as shown in Fig. 9. An aircraft
and engine will have to contribute with 20%, and the Air Traffic Management has



On the Way to ACARE 2020 and Beyond 385

Fig. 8 Additional research supporting green aircraft manufacturing

Fig. 9 Breakdown of ACARE target

to provide the final 10%. This target of 50% is ambitious and may not be reached,
but about 30% improvement will be available in 2020 compared to 2000 technol-
ogy standard. The verification is difficult, as there is no a new design in 2020 and a
corresponding design in 2000 that can be directly compared. But the A320 NEO, to
be delivered in 2016, is showing already a +15% fuel improvement, without major
improvements on the aircraft and ATM side. So the target is visible, and a constant
technology effort is mandatory.

4 Environmental Challenges

The environmental challenge is very important for the air transport sector. The re-
cent discussion about the constantly increasing CO2 emissions and the impact on the
climate change is and will further push the transport sector to strengthen all efforts
to reduce the emissions.
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Fig. 10 Fuel in kg/atmospherical cube/year, summed up over flight levels

The proposed Emission Trading System (ETS) and the decision of the European
parliament and the EC to introduce the air transport sector in Europe into the ETS
System from 2012 onwards is a clear signal from the political side. So there is the
political push to improve the efficiency of the aircraft and also the efficiency of the
operational elements of the air transport system. ACARE is just redefining their
objectives and have issued a new Vision called Flight Path 2050 [1].

Figure 10 is providing a visual impression of all the fuel used in air transport
in the year 2002. The situation today is similar, and with the further increase in air
transport demand and new aircraft entering the market, the situation will be further
increasing, despite the efforts of new aircraft with better fuel efficiency. Figure 10 is
also showing a very uneven distribution of emissions with a very strong impact on
the northern hemisphere compared to the southern hemisphere.

Figure 11 is a picture from the IPCC report [7] highlighting the Radiative Forcing
from the air transport sector. The emissions with highest impact are CO2, NOx and
Contrails.

While the impact of CO2 is fairly well understood, there is a clear route for
improving the CO2 emission by either further reducing the fuel consumption or by
using alternative fuels with a lower carbon footprint. There is no specific effect for
the air transport system and specifically the aircraft flying at high altitudes. All CO2

is accumulating anyhow over some time in the stratosphere and stays there for some
100 years, the dominating emission gas with high and real climate impact [7].

NOx is more difficult than a green house gas. NOx is partly increasing the tem-
perature and partly cooling the atmosphere, depending on the different interactions
with other radicals like Methan and Ozone in the higher atmosphere. Here the dif-
ferent atmospheric research teams are not giving the same explanations. The impact
of NOx is varying with altitude, and there is yet no clear indication and common
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Fig. 11 Climate relevant emissions—radiative forcing (RF) (IPCC report [7])

sense, whether this would mean to fly higher or lower, if this would help to reduce
the relevant emission impact.

Contrails are also not fully evaluated in their relation to the Radiative Forcing.
But there seems to be a common understanding that there is an impact on the total
temperature increase, but not yet agreed how much and how important this might
be.

First conclusion about the impact of air transport on climate:

• CO2 is the main impact component.
• There is not yet any clear indication about the optimal altitude.
• Contrails and the additional water vapour may give an additional negative impact.

The first means to reduce the fuel consumption could be the design of aircraft
with less range. In [2] a simulation has been done for the layout of a long-range air-
craft. At similar technology standard, an aircraft which is designed for a long-range
mission of 6500 nm will have a Specific Air range (SAR) of about 0.083 nm/kg
fuel. SAR is an important indicator, showing how far in nautical miles an aircraft
can fly with a given fuel quantity (1 kg fuel). This SAR is improving if the same
aircraft (designed for R = 6500 nm) will only be operated at a distance of 4000 nm
to 0.089, which is nearly 8% better in fuel efficiency. If now the aircraft is designed
for a lower range (i.e. R = 4000 nm) than the specific air range will be improved to
SAR = 0.107, which is nearly a 20% improvement of fuel efficiency (see Fig. 12).

So a first indicator is already given: Design the new transport aircraft for lower
range and operate the long-range missions with an interim stop. This however will
not yet be very clear and popular with the operators. They want to have a lot of
flexibility for their fleet and operate the same aircraft at different stage lengths. But
as shown in [2], there is quite a huge potential for efficiency improvement by just
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Fig. 12 Improvement in
Specific Air Range (SAR)
with reduced design range

Fig. 13 Emissions from the airport Munich and the local distribution [2]

reducing the design range for a new aircraft and operate them with an interim stop
on long-haul routes.

But it also has been stated in several papers (see [11]) that modern aircraft like
B737 and A320 are consuming not more primary energy per passenger and km
compared to other transport systems like High-Speed trains, Megalev or Transrapid
or private cars. A380 for example consumes on a long-range flight less than 2.9 l of
kerosene per passenger and 100 km!
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Another aspect of environmental impact of the aircraft operation is the local im-
pact at an airport. In [4] a simulation of all vehicles around an airport and their
emission has been conducted. Besides the aircraft and their emissions, which are
now calculated in the LTO cycle, a realistic study, with the modelling of all vehicles,
circulating in the airport areas with the buses, the small baggage handling vehicles,
the GPU vehicles, aircraft service vehicles, de-icing features, etc., has been done.
The result is insofar interesting, as the emissions from the aircraft are quite impor-
tant but not as dominant as expected. The emissions from the cars and car parks
are also very important, and as shown in a summary chart in Fig. 13, the emissions
around and within the airport area are quite high. But as it can be seen from Fig. 13,
also the emissions from the motorways leading to the airport are significant and can
be seen clearly. On the other hand, the impact of aircraft operation at the airport
on the surrounding communities is not very significant even outside of the airport
areas; there is only a very small impact from the emissions of the airport activities.
More dominant are then also the motorways and their related emissions. This has
also been confirmed by measurements around the airport. But the importance of [6]
is that now the airport has a qualified model and can simulate how to further improve
the emissions around the airport by:

• changing the fuel of the buses and use Hydrogen,
• reducing the GPU vehicles and install fixed power stations at each gate,
• relocating parking areas and collect the passengers with hydrogen buses,
• etc.

The item noise has not to be forgotten, but it is not the subject of this paper.

5 Fuel Reduction Potential

The main goal in all aeronautical research programmes is still the reduction of fuel
consumption for a given mission. As has been explained in Chap. Crack Extension
Energy Rate and Energetic Approaches in Elastic–Plastic Fracture Mechanics and
Fig. 8, the main efforts for achieving these goals are in the domains of aerodynamics,
structures, engines and new aircraft configurations. The following items are high on
the research agenda.

5.1 Aerodynamic

Decreasing drag is the main objective in the aerodynamic field. The main potential
is still to be identified in the following fours areas:

• Blended Winglets, Spiroids, other wingtip devices (see Fig. 14);
• Improved profiles, Riblets, reduction of turbulent skin friction drag;
• Hybrid laminar flow (HLFC);
• Adaptive wings, morphing structures.
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Fig. 14 Winglets and other wingtip devices

5.2 Structures

Decreasing mass for a given mission is the main objective for all structural related
research. The new aircraft designs from Airbus and Boeing are pushing in this di-
rection, to use CFRP for the main wing and fuselage structure. However there are
more problems than anticipated, mainly with the manufacturing of large barrels and
panels out of CFRP, the precision needed and the quality and reliability of the man-
ufacturing process. Partly new problems are to be solved like lightning strike, elec-
tromagnetic interference and impact acceptability. So the two main domains are:

• Materials: GLARE, CFRP, new aluminium alloys, metal matrix structures, etc.
• Design and manufacturing processes.

5.3 Configurations

Decreasing mass and drag and proper integration of the engine are the domains for
all alternative aircraft concepts under investigation. The main areas are:

• Flying wing, Blended Wing Body Concepts (BWB);
• Three-Surface Aircraft (TSA);
• Joined Wing and Box-Wing concepts;
• Low-noise concepts (shielding of engine noise).

Several examples are shown in Fig. 15.

6 CREATE Proposals

All research areas described before are very much technology oriented and are on
the agendas of all the industrial research portfolios. There are however also a lot of
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Fig. 15 New aircraft concepts with potential for future fuel improvements

“crazy” ideas in the air where it is not always obvious whether there is any value or
benefit in it or whether it is really nonsense and should be no longer considered. For
the evaluation of all these ideas, a certain budget and a specific process are needed.

In December 2006, the “Out Of the Box” report from ACARE, sponsored by the
European Commission (EC), has been published [13], where a lot of those long-term
ideas for future air transport options have been identified and published. A follow-on
study has been launched in 2008 from the EC under the name “CREATE” [10].

This project investigated several concepts how to prepare a process for these
long-term research projects and finally proposed a process for the incubation of
“innovative ideas” with the important elements:

• Generation and Developing of unconventional ideas;
• Support possibilities for individuals, assessing the value of these ideas;
• Evaluation of the project proposals following specific criteria and launch condi-

tions;
• Project start and project accompanying measures;
• Documentation of results for further incubation/risk reduction steps.

Figures 16 and 17 show some of those ideas, which have been identified for
further exploration in a future CREATE process.

This CREATE process would be mainly targeted for research institutions (Uni-
versities and Research Centers) with small budgets but allowing the incubation of
innovative ideas.

The Project CREATE [10] is finished, and the main process elements have been
discussed with relevant personalities from industry, Research Centers and Funding
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Fig. 16 Flying Car Concept

Fig. 17 Civil Transport Aircraft refuelling in the air

authorities. Main feedback from different stakeholders is also that they confirm the
pressing need for such an incubation process.

There are some different opinions about the boundary conditions for the incuba-
tion process. The following conclusions are supported:



On the Way to ACARE 2020 and Beyond 393

• Fund more smaller projects rather than fewer and bigger incubation projects;
• Public funding is mandatory to achieve the long-term focus of incubation;
• Excellence of the technical and scientific approach should be the main evaluation

criteria;
• Some trials for incubation should already be integrated in the running FP7 pro-

gramme.

These long-term research studies are now an element in the next Calls of the EC
FP7 programme. These instruments are vital for the technical education of students
and PhD students, to allow them to familiarize with technological upfront research
work, improve skills in project management and get in close international contact
with their research studies.

7 Conclusion

The following conclusions can be drawn:

• Air transport is still a very important element in the transport sector.
• Air transport is still growing over the next 20 years with quite high rates.
• The design drivers for aircraft will slightly change. The dominant factor in re-

search will be the further reduction of fuel consumption, but environmental as-
pects are becoming more importance.

• The classical research domains like aerodynamics, structures and engines are al-
ready at a very high level, but further improvements are mandatory. Especially
the integrated research items will need further attention.

• More results from the “Atmospheric climate research” are needed to give guid-
ance of a future green air transport.

• Aeronautical research has to continue in all technology levels, but the low TRL
research needs specific attention in the future to prepare ideas for future changes
in the air transport sector.
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Design Problems of Anisotropic Structures:
Some Recent Results

Paolo Vannucci, Boris Desmorat, and Angela Vincenti

1 Introduction

Stiff and robust lightweight structures are of paramount importance in aeronautics,
and a common way to obtain them is to use laminated composite materials. The
drawback, for the engineer, is the fact that the design process is much more compli-
cate than in the case of classical materials, like alloys. In fact, not only the properties
concerning stiffness, strength and so on must be controlled and/or designed, but in
addition, the general elastic properties must be taken into account in the design
process. These properties concern namely the elastic symmetries and the elastic and
multi-physics (e.g. thermo-elastic) couplings. The usual approach used by design-
ers consists in a drastic simplification of the problem: some simple rules are used
in order to automatically obtain some desired properties. The most well known of
these rules is the use of symmetric stacking sequences, in order to get the uncou-
pling between the in-plane and the bending behaviour. The use of such rules has
some drawbacks on the final design; for instance, the symmetric stacking sequence
strategy has the immediate consequence of doubling the weight, which is a seri-
ous problem with aeronautical structures. In addition, some general properties, like
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for instance bending orthotropy, cannot be, generally speaking, obtained using such
simple rules.

An alternative approach is a proper and modern use of optimization strategies:
the design problem is entirely formulated as an optimization problem, the require-
ments concerning the elastic symmetries being part of the problem, as an objec-
tive or a constraint, according with the problem at hand. Under a mathematical
point of view, this leads to the formulation of a global optimization problem in
the double sense that the feasible domain is not reduced by simplifying rules and
that the global minimum of the objective function has to be found. Such problems
are generally non-convex, the objective function is highly nonlinear. Nevertheless,
modern strategies of computation can effectively approach and solve such prob-
lems.

In this presentation, we show a general procedure to tackle the problem of design-
ing anisotropic laminates corresponding to given criteria and optimizing a given ob-
jective function. The method is based, on one side, on the use of tensor invariants for
the description of the anisotropic properties and, on the other side, on a free-material
approach for the determination, first, of the optimal fields of anisotropic properties
and, then, using numerical metaheuristics, of a suitable stacking sequence. Some
general results concerning the method are introduced, along with a brief discussion
of the influence of anisotropy on the optimal design of laminates. Finally, for show-
ing the effectiveness of the approach, we present different problems that are mainly
concerned with some potential applications in aeronautics.

2 Basic Equations and the Polar Method

All the equations of the Classical Laminated Plates Theory (CLPT) can be written
with the polar formalism, and this can be advantageous in several cases, namely
in design problems. The polar method is a mathematical tool introduced as early
as 1979 by Verchery, [26]. Basically, this is just a method for representing the
Cartesian components of a plane tensor T by a minimal set of independent invari-
ants.

The basic relations, giving the Cartesian components in a frame rotated counter-
clockwise through an angle θ from the x1 direction, are:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Txxxx(θ) = T0 + 2T1 + R0 cos 4(Φ0 − θ) + 4R1 cos 2(Φ1 − θ),

Txxxy(θ) = R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ),

Txxyy(θ) = −T0 + 2T1 − R0 cos 4(Φ0 − θ),

Txyxy(θ) = T0 − R0 cos 4(Φ0 − θ),

Txyyy(θ) = −R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ),

Tyyyy(θ) = T0 + 2T1 + R0 cos 4(Φ0 − θ) − 4R1 cos 2(Φ1 − θ).

(1)

In Eqs. (1), the quantities T0, T1, R0, R1 are invariant moduli that, together with
the difference Φ0 − Φ1, constitute a minimal set of independent tensor invariants
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for tensor T. For the sake of shortness, in the following the Cartesian components
of a tensor in the original frame θ = 0 will be denoted by numerical indexes (e.g.
Txxyy(θ = 0) = T1122, and so on). Equations (1) show that the polar representa-
tion allows for splitting the Cartesian components in their isotropic, T0 and T1, and
anisotropic, R0, R1, Φ0 − Φ1, parts. The choice of one of the two polar angles fixes
the frame (usually Φ1 = 0).

An important property of the polar method is the fact that the invariants so found
are linked to the elastic symmetries of the tensor T: the necessary and sufficient
condition for ordinary orthotropy is

Φ0 − Φ1 = k
π

4
, k ∈ {0,1}. (2)

Hence, ordinary orthotropy is actually of two types, determined by the two pos-
sible values of the parameter k; we will see in the next section how k affects the
optimal solution of a design problem, i.e. how the two ordinary types of orthotropy
have different behaviours with respect to optimal solutions.

Besides the two ordinary orthotropies above, two types of special orthotropy are
also possible, both determined by the vanishing of the invariants R0 or R1; the last
one is the classical case of square symmetry, the 2D equivalent of cubic syngony,
while the first one is called R0-orthotropy, and it must be considered separately for
stiffness and compliance, see [18].

The same Eqs. (1) can of course be adapted to represent the Cartesian compo-
nents of the tensors describing the elastic behaviour of a laminate in the framework
of the CLPT:

{
N
M

}

=
[

A B
B D

]{
ε

κ

}

, (3)

relating the internal action tensors N (extension forces) and M (bending moments)
to in-plane and curvature tensors ε and κ , respectively.

The Cartesian components of tensors A, B and D, describing respectively the
extension, coupling and bending elastic response of the laminate, can be given as
functions of their polar components in the same way of Eqs. (1). Let us denote by
the superimposed symbols −, ˆ and ∼ the polar components of, respectively, the
normalized tensors

A∗ = A
h

, B∗ = 2
B
h2

, D∗ = 12
D
h3

, (4)

h being the total thickness of the laminate. Then, using the composition laws given
by the CLPT, for equal layer laminates, we obtain, after some standard manipula-
tions, the polar components of A∗, B∗ and D∗ as functions of the orientation an-
gles δj, of the stacking sequence and of the polar components of the basic layer, T0,
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T1, R0, R1, Φ0 and Φ1:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T
∗
0 = T0,

T
∗
1 = T1,

R
∗
0e

4iΦ0 = 1
n
R0e

4iΦ0
∑n

j=1 e4iδj ,

R
∗
1e

2iΦ1 = 1
n
R1e

2iΦ1
∑n

j=1 e2iδj ;

(5)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T̂ ∗
0 = 0,

T̂ ∗
1 = 0,

R̂∗
0e4iΦ̂0 = 1

n2 R0e
4iΦ0

∑n
j=1 bj e

4iδj ,

R̂∗
1e2iΦ̂1 = 1

n2 R1e
2iΦ1

∑n
j=1 bj e

2iδj ;

(6)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T̃ ∗
0 = T0,

T̃ ∗
1 = T1,

R̃∗
0e4iΦ̃0 = 1

n3 R0e
4iΦ0

∑n
j=1 dj e

4iδj ,

R̃∗
1e2iΦ̃1 = 1

n3 R1e
2iΦ1

∑n
j=1 dj e

2iδj ;

(7)

in the above equations (5) to (7), n is the number of layers, while the coefficients bj

and dj are given by

bj = 2j − n − 1,

dj = 12j (j − n − 1) + 4 + 3n(n + 2).
(8)

3 Influence of Anisotropy on Optimal Solutions

A subject that has been largely unconsidered by literature is the influence that
anisotropy has on the solution of a given optimum problem. The question is not
simple, because one should consider at first what parameter describing anisotropy
is of some importance in examining the dependence of a solution on anisotropy of
the material. The advantage of the polar formalism is that it is based on material in-
variants, so these ones can be used as intrinsic quantities characterizing the material
in order to consider their influence on an optimal solution. This point constitutes
by itself an intrinsic advantage with respect to the use of frame-dependent quanti-
ties. More specifically, we will see in the following that interesting dimensionless
invariant parameters are introduced using the polar invariants. The considerations
presented hereafter concern two problems; the first one, rather elementary but very
helpful in understanding the influence of anisotropy on optimal solutions, concern
an in-plane problem, while the second regards the flexural optimal design of a lam-
inate. In both cases, we are concerned with the influence that the anisotropy of the
material, not of the final behaviour of the laminate, has on the optimal solution.
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Fig. 1 Feasible domain in
the lamination plane

The first case that we consider here is a simple problem: design the laminate
having the greatest shear modulus Gm

xy in extension. By assumption, the laminate is
composed of identical orthotropic plies whose polar parameters are T0, T1, (−1)kR0
and R1. Formalizing the problem by the polar method, it is simple to show that the
problem becomes

max
δj

Gm
xy = max

δj

[
T0 − (−1)kR0ζ0

]
, (9)

where ζ0 and ζ1, this last not appearing in (9), are the classical lamination parame-
ters (see for instance [9]):

{
ζ0 = 1

n

∑n
j=1 cos 4δj ,

ζ1 = 1
n

∑n
j=1 cos 2δj .

(10)

Lamination parameters take into account for the geometry of the stack; they sat-
isfy the following bounds:

−1 ≤ ζ1 ≤ 1, 2ζ 2
1 − 1 ≤ ζ0 ≤ 1; (11)

they define a feasible domain in the lamination plane: the sector of parabola shown
in Fig. 1. Each point of this domain is a lamination point that defines the in-plane
elastic properties of the laminate, but not its stacking sequence. In Fig. 1, there are
also shown the line of the cross-ply laminates (sequences of plies at 0◦ and 90◦) and
the arc of angle-ply laminates (sequences of plies at ±δ, in equal number).

The objective function (9) is linear and does not depend on ζ1: it is a plane defined
on the feasible domain (11), whose slope is along ζ0 and depends essentially on the
value of k. The optimal solution is hence on the boundary of the feasible domain,
and it is easy to see that:

• if k = 0, the solution is the point ζ0 = −1 and ζ1 = 0, to which corresponds an
angle-ply laminate with orientation angles δ = ±45◦;

• if k = 1, the solution is any point on the line ζ0 = 1, −1 ≤ ζ1 ≤ 1: any cross-ply
combination, including unidirectional laminates with all the layers at 0◦ or 90◦,
is a solution.

In addition, it is immediate to recognize that what is an optimal solution for a value
of k, is an antioptimal (i.e. the worst one) for the other possible value of k.
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Hence, we can see by this simple example that the parameter k, determining the
type of ordinary orthotropy, affects considerably the optimal solution of a problem:
it works like a switch from an optimal to an antioptimal solution (we will find again
this effect of k) and, in this case, it determines the uniqueness or not of the solution.
However, in both cases of k = 0 or 1, the value of the optimal solution is (Gm

xy)max =
T0 + R0, while the antioptimal solution is (Gm

xy)min = T0 − R0.
Let us now turn our attention to a rather unusual problem in laminate design:

the flexural optimal design of a laminate. Normally, in fact, literature pays a lot of
attention to extension design of laminates, and only a very small part of it is devoted
to the optimal design with respect to flexural properties. This is due to the fact that
the flexural design is much more complicate than the extensional one. The results
presented hereafter have been presented, in more detail, in [17].

More specifically, we consider here the flexural behaviour of bending-extension
uncoupled laminates composed of identical layers; the plate is rectangular, with
sides’ of length a and b, respectively, along the axes x and y. Along its boundary,
the plate is simply supported, and its mass per unit area is μ. A constraint is imposed
on the anisotropy of the laminate: tensor D∗ has to be orthotropic, and the axes of
orthotropy to be aligned with the axes of the plate. These assumptions, along with
that of uncoupling, are needed for having exact solutions for flexural problems and
are, anyway, those normally used by designers. We bound ourselves to remark here
that it is possible to find uncoupled laminates with D∗ orthotropic, see [13] for more
details.

In the above assumptions, it can be shown that (cf. [17]):

• the compliance J of the plate, loaded by a sinusoidal load orthogonal to its mean
surface, is given by

J = γpq

p4h3(1 + χ2)2
√

R2
0 + R2

1

1

ϕ(ξ0, ξ1)
; (12)

• the buckling load multiplier λpq for the mode pq when the plate is loaded by
in-plane distributed forces Nx and Ny is given by

λpq = π2p2h3

12a2

(1 + χ2)2
√

R2
0 + R2

1

Nx + Nyχ2
ϕ(ξ0, ξ1); (13)

• the frequency of transversal vibrations ωpq for the mode pq is expressed by

ω2
pq = π4p4h3

1μa4

(
1 + χ2)2

√

R2
0 + R2

1ϕ(ξ0, ξ1). (14)

In the above equations, h is the laminate’s thickness, γpq is a coefficient de-
pending on the geometry of the plate and on the loading, p and q are the number of
half-waves in the directions x and y respectively, while the dimensionless parameter
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χ is the ratio of the wavelengths in the two directions, i.e.

χ = a

b

q

p
. (15)

Finally, the function ϕ(ξ0, ξ1) is

ϕ(ξ0, ξ1) = τ + 1
√

1 + ρ2

[
(−1)kρξ0c0(χ) + 4ξ1c1(χ)

]
, (16)

and it is a dimensionless function of dimensionless parameters and variables:

τ = T0 + 2T1
√

R2
0 + R2

1

(17)

is the isotropy-to-anisotropy ratio;

ρ = R0

R1
(18)

is the anisotropy ratio;
{

ξ0 = 1
n3

∑n
j=1 dj cos 4δj ,

ξ1 = 1
n3

∑n
j=1 dj cos 2δj ,

(19)

are the bending lamination parameters, see [9]; they obey to the same kind of limi-
tations as in (11) and define a feasible domain identical to that sketched in Fig. 1;

c0(χ) = χ4 − 6χ2 + 1

(1 + χ2)2
and c1(χ) = 1 − χ2

1 + χ2
(20)

are two dimensionless functions of χ , hence accounting of the geometry of the
problem.

From the above equations, it is apparent that in the three cases, regarding all the
possible situations concerning the flexural response of the plate, this response is
always a function of ϕ(ξ0, ξ1); in this dimensionless function, the isotropic part is
well separated from the anisotropic one.

The question here is the dependence of the optimal solutions on the values of
τ and ρ. It can be shown that all the optimal solutions can be of only two types,
cross-ply or angle-ply laminates. Let us first consider cross-ply solutions, for which
ξ0 = 1 and −1 ≤ ξ1 ≤ 1. The conditions to be satisfied for (16) to be a maximum
are:

(−1)kc0(χ) > 0 ⇔
{

k = 0 and χ ∈ [0,
√

2 − 1] or χ >
√

2 + 1,

k = 1 and
√

2 − 1 < χ <
√

2 + 1,

c1(χ)
√

1 + ρ2
= 0 ⇔ χ = 1 or ρ = ∞.

(21)
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The corresponding highest values of the function, hereafter denoted by ϕcp , are

ϕcp = τ − (−1)kρ
√

1 + ρ2
for χ = 1,

ϕcp = τ + (−1)kc0(χ) for ρ = ∞.

(22)

The maximum value of ϕcp is

ϕmax
cp =

[

τ − (−1)kρ
√

1 + ρ2

]

k=1,ρ=∞
= [

τ + (−1)kc0(χ)
]

k=0,χ={0,∞}

= [
τ + (−1)kc0(χ)

]

k=1,χ=1 = τ + 1. (23)

Some remarks can be done; first of all, cross-ply solutions exist only in the pres-
ence of a generalized square symmetry: of the material, i.e. ρ = 0 (hence, a basic
ply reinforced by a balanced fabric) or of the geometry and mode, i.e. χ = 1 (e.g. a
square plate with p = q). Then, we see easily that changing the type of ordinary or-
thotropy, i.e. changing k from 0 to 1, corresponds once again to transforming an op-
timal into an antioptimal solution. Finally, as the lamination parameter ξ1 disappears
from the above equations, this means that any laminate composed by a combination
of layers at 0◦ and at 90◦ is an optimal solution: the uniqueness of the solution is
not present for the optimal (or antioptimal) case whenever cross-ply laminates are
sought for.

Let us now consider angle-ply solutions; in such a case, the two lamination pa-
rameters are linked by the relation (cf. Eq. (11))

ξ0 = 2ξ2
1 − 1, (24)

and the objective function becomes

ϕ(ξ1) = τ + 1
√

1 + ρ2

[
(−1)kρc0(χ)

(
2ξ2

1 − 1
) + 4c1(χ)ξ1

]
, (25)

whose maxima and minima can be only

ϕ11 = ϕ(ξ1 = 1) = τ + 1
√

1 + ρ2

[
(−1)kρc0(χ) + 4c1(χ)

]
,

ϕ22 = ϕ(ξ1 = −1) = τ + 1
√

1 + ρ2

[
(−1)kρc0(χ) − 4c1(χ)

]
, (26)

ϕδδ = ϕ
(
ξ1 = ξ st

1

) = τ − (−1)k
√

1 + ρ2

ρ2c2
0(χ) + 2c2

1(χ)

ρc0(χ)
,

with

∂ϕ

∂ξ1

∣
∣
∣
∣
ξ st

1

= 0 ⇒ ξ st
1 = − (−1)k

ρ

c1(χ)

c0(χ)
. (27)
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Fig. 2 Domain of the plane
(ρ,χ ) where solution ϕδδ

exists (shaded)

Actually, only ϕδδ is an angle-ply solution, because the orientation angle corre-
sponding to ξ1 = 1 is δ = 0◦, while to ξ1 = −1 corresponds δ = 90◦, so these two
cases determine laminates with all the layers aligned along the x or y directions,
respectively. The orientation angle giving solution ϕδδ is

δ = 1

2
arccos ξ st

1 . (28)

Angle-ply solutions do not always exist because of the bounds ξ ∈ [−1,1], im-
posed to each lamination parameter, hence to ξ st

1 too. These bounds are satisfied
for

ρ > 1 and 0 < χ ≤ χ1(ρ),

ρ ≥ 0 and χ2(ρ) < χ ≤ χ3(ρ), (29)

ρ > 1 and χ ≥ χ4(ρ),

where the functions χi(ρ), i = 1, . . . ,4, are the solutions of the equations ξ st
1 = ±1

with k = 0 or 1:

χ1(ρ) =
√

3ρ − √
8ρ2 + 1

ρ + 1
, χ2(ρ) =

√

3ρ − √
8ρ2 + 1

ρ − 1
,

χ3(ρ) =
√

3ρ + √
8ρ2 + 1

ρ + 1
, χ4(ρ) =

√

3ρ + √
8ρ2 + 1

ρ − 1
.

(30)

Conditions (29) determine, in the plane (ρ,χ ), the region where angle-ply so-
lutions exist; in Fig. 2, this region is shaded; inside it, the optimal solution is an
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angle-ply laminate, outside it, the optimal solution is a unidirectional laminate, ei-
ther at 0◦ or at 90◦.

Computing the second derivative of the function in Eq. (25) gives

∂2ϕ

∂ξ2
1

= 4(−1)k
ρ

√
1 + ρ2

c0(χ);

therefore, once more, optimal solutions become antioptimal whenever k changes
from 0 to 1. Namely, by Eq. (20), it can be easily seen that:

• if (ρ > 1,0 < χ ≤ χ1(ρ)) or (ρ > 1, χ ≥ χ4(ρ)), then ϕδδ = ϕmax for k = 1 and
ϕδδ = ϕmin for k = 0;

• if (ρ ≥ 0, χ2(ρ) < χ ≤ χ3(ρ)), then ϕδδ = ϕmax for k = 0 and ϕδδ = ϕmin for
k = 1.

We can see hence that anisotropy affects optimal solutions also in this case: the
parameter k, determining the type of ordinary orthotropy, changes each optimal so-
lution into an antioptimal one and vice versa, whilst parameter ρ, along with the
geometric parameter χ , determines the region where the optimal solution is of the
angle-ply type, i.e. the region where optimisation is meaningful. Actually, unidirec-
tional laminates are limit solutions, and in such cases an optimization procedure,
i.e. the computation of angle δ by Eq. (28), becomes unnecessary. Nevertheless, the
value of these three solutions ϕ11, ϕ22 and ϕδδ can be compared. It is not difficult to
find the following result:

ϕ11 > ϕ22 ⇔ χ > 1,

ϕδδ >

{
ϕ11
ϕ22

⇔
{√

2 − 1 < χ <
√

2 + 1 if k = 0,

0 < χ
√

2 − 1 or χ >
√

2 + 1 if k = 1.

(31)

These results are summarized in Fig. 3, which completely shows, along with
Eqs. (26), (27) and (28), the influence of the two anisotropic dimensionless parame-
ters k and ρ on the optimal and antioptimal solutions; in Fig. 2, the layer orientations
of the different solutions are indicated by simple schemes.

More details can be found in [17]; finally, these cases show that anisotropy of the
material actually has a great influence on the solution of an optimization problem;
it can affect the uniqueness of the solution, it can switch an optimum into an an-
tioptimum, it determines the size and shape of the feasible domain, and it affects, of
course, the value of the minimum or maximum.

4 Design Problems of Laminates

Design problems concerning structural laminates can be of various types; in the
most elementary cases, only some basic properties are of concern, e.g. extension
orthotropy and bending-extension uncoupling. In some other cases, some minimal
properties are asked for in addition, and in more involved cases, precise quantities
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Fig. 3 Map of the optimal and antioptimal solutions

are to be maximized or minimized, like for instance compliance or vibration fre-
quencies or strength. As already said in the introduction, usually designers use some
simple sufficient conditions to ensure automatically the basic elastic properties, e.g.
they use symmetric stacking sequences to automatically ensure bending-extension
uncoupling. Under a mathematical point of view, this corresponds always to a se-
vere shrinking of the feasible domain, dramatically lowering the number of possible
optimal solutions. Vannucci and Verchery [22, 23], for instance, have shown that the
number of uncoupled symmetric laminates is far less than the number of uncoupled
and unsymmetrical laminates: limiting the search of an optimal uncoupled laminate
to symmetrical stacking sequences corresponds, hence, to depriving the problem of
the most part of possible candidates to be solution, and it is very likely that the true
best solution is among the unsymmetrical sequences. Such a simple example shows
why another approach to the design of laminates should be used, in which the de-
sign problem has to be formulated as an optimization problem including, besides
the objective to be optimized, the basic elastic properties desired for the laminate,
for instance in the form of constraints imposed to the problem. This approach is
possible, and we illustrate it in the following of this section, classifying the design
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problems of the laminates in three different classes, depending on the mathematical
structure of the problem itself. Before, we give a rapid account of a special class of
laminates, the quasi-homogeneous laminates, that can be profitably used in several
cases of laminate optimal design problems.

4.1 Quasi-homogeneous Laminates

Thanks to the polar formalism, the concept of quasi-homogeneous laminates has
been introduced in 1988 by Kandil and Verchery [11]; then, in 1992, Wu and Av-
ery [30] have also used this concept, as well as Grédiac [4], who gave some approx-
imated numerical solutions. Vannucci et al. [20, 22, 23] have shown the existence of
a particular set of quasi-homogeneous laminates that they called quasi-trivial solu-
tions, having the particularity of being not only exact solutions, but also the fact that
in such cases quasi-homogeneity does not depend on the orientation of the layers,
only on the stacking sequence.

Quasi-homogeneous laminates are defined as the laminates having the double
property of being uncoupled and with the same behaviour in bending and in exten-
sion; if one introduces the homogeneity tensor C,

C = A∗ − D∗, (32)

then a laminate is quasi-homogeneous if and only if

B = C = O. (33)

Recalling Eqs. (5) and (7), the polar components of C are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T̆0 = 0;
T̆1 = 0;
R̆0e

4iΦ̆0 = 1
n3 R0e

4iΦ0
∑n

j=1 cj e
4iδj ;

R̆1e
2iΦ̆1 = 1

n3 R1e
2iΦ1

∑n
j=1 cj e

2iδj ;
(34)

in Eq. (34) the coefficients cj are given by

cj = n2 − dj = 4n2 + 6n + 4 − 12j (j − n − 1). (35)

The interest of quasi-trivial quasi-homogeneous (QT–QH) laminates is due to
the fact that they can be profitably used in optimization problems. In fact, they au-
tomatically ensure uncoupling and the same behaviour in extension and bending.
So, several problems of laminates optimization can be drastically simplified if one
decides to look for solutions within the set of QT–QH sequences because, on one
side, uncoupling is automatically obtained and, on the other side, optimization can
be done directly upon the extension properties, which is simpler than on the bending
ones, and the same results will apply to the bending behaviour.
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The QT–QH sequences have been used in the past for finding special laminates;
for instance, Vannucci and Verchery [24] have shown the existence of five exact fully
isotropic laminates with a minimum of 18 layers that are five quasi-trivial sequences,
while Valot and Vannucci [13] have used the same type of sequences to give an exact
solution for fully orthotropic laminates (the design of bending orthotropic laminates
is a cumbersome problem that has been almost always neglected by designers be-
cause of its difficulty). Gong et al. [3] have used special QT–QH sequences with
16 plies to experimentally study the propagation of a crack in a laminate. More re-
cently, some works of York, [31] and [32], show the interest of quasi-homogeneous
laminates for special applications.

4.2 Design Problems of the First Class

A problem of the first class concerns only the design of basic elastic properties,
like for instance bending-extension uncoupling, orthotropy, isotropy and so on. All
problems of this kind can be formulated as follows:

min
Pj

I (Pj ) = HrsPrPs, r, s = 1, . . . ,18. (36)

In the above equation, Hrs are the components of a 18 × 18 symmetric matrix,
whose entries determine the objective of the problem to be solved, see [14]. The
terms Pr are the eighteen polar parameters of the laminate, representing the tensors
A∗, B∗ and D∗; eventually, they are used in a dimensionless form, after diving them
by a suitable modulus (e.g. the Euclidean norm of the stiffness tensor of the basic
layer).

The form (36) is positive semi-definite; its absolute minima are zero valued, and
they are the solution of the problem; hence, the problems of class 1 are reduced to
the search for the minima (zeros) of the form (36); by its nature (cf. Eqs. (5), (6)
and (7)), problem (36) is non-convex, and several minima can exist (usually, the
number of solutions is infinite). So, a suitable numerical strategy is needed to effec-
tively search for the minima. Some very effective methods are metaheuristics; we
have successfully used Genetic Algorithms (GA) and Particle Swarm Optimization
(PSO); both are very indicated for this class of problems, see [16, 27].

The problems of the first class formulated as in (36) concern exclusively elas-
tic properties; nevertheless, by a similar approach, also other properties, like the
thermal, hygral or piezoelectric ones, can be handled in the same manner.

Example 1 As a numerical example of the first-class problems, let us consider
the following case: a 12-plies laminate, made of T300/5208 carbon-epoxy unidirec-
tional layers, whose properties are summarized in Table 1 [12, 25].

For what concerns its elastic properties, it has to be isotropic in extension, k = 0
orthotropic in bending and uncoupled (B∗ = O). In addition, its thermoelastic re-
sponse has to be isotropic in membrane (i.e. the thermal expansion coefficients, for
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Table 1 Properties of T300/5208 carbon-epoxy pre-preg layers (moduli in GPa)

E1 E2 G12 ν12 T0 T1 R0 R1 Φ0 Φ1

181 10.3 7.17 0.28 26.88 24.74 19.71 21.43 0◦ 0◦

α1 (◦C−1) α2 (◦C−1) Thickness (mm)

2 × 10−8 2.25 × 10−5 0.125

Fig. 4 Directional diagrams of some Cartesian components for the case test of Example 1: (a) elas-
tic moduli; (b) thermal coefficients

a change of temperature uniform through the thickness, have to be the same in each
direction), while under a linear temperature variation across the thickness of the
laminate, this has to bend in a cylindrical way (i.e. the tensor of the coefficients
of thermal curvature has to be orthotropic). This is a very cumbersome problem
that has been solved using the GA BIANCA, [25], specially conceived for laminate
optimization problems. The best solution found is (angles in degrees)

[0/−29.9/44.3/−61.8/89.3/61.8/31.5/−89.1/33.4/−71.7/−11.6/−28.1].
Figure 4 shows the directional diagrams of some of the Cartesian components of

the elastic tensors and of the tensors of thermal coefficients. It is apparent that the
extension behaviour is isotropic, the bending one orthotropic, both for the elastic
and the thermal behaviour, and that the smallness of component B11 compared to
A11 and D11 testifies, practically, of a null coupling.

4.3 Design Problems of the Second Class

The second class of problems concerns problems for which the objective function is
still like in class 1, but in addition some constraints have to be satisfied. Generally
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speaking, class 2 problems can be formulated as follows:

min
Pj

I (Pj ) = HrsPrPs, j, r, s = 1, . . . ,18,

with gi(Pj ) ≤ 0, i = 1, . . . , ng,

(37)

with ng the number of inequality constraints imposed to the problem. Hence, in
this class we find classical minimal requirement problems, typical of engineering,
but with the peculiarity that the objective is still a requirement concerning the basic
elastic properties, just like in class 1.

Example 2 This is the case of a rectangular laminated plate with 12 plies, de-
signed to be uncoupled and orthotropic in bending, with axes of orthotropy at 0◦
and 90◦; the plate is simply supported, with side lengths along the axes x and y

respectively equal to a and b. The minimal requirement imposed here is that the
frequency of the first mode of the bending vibrations must be greater than a min-
imum specified value ω0. So, the objective function is still I (Pj ), with Hrr = 1
for r = 9,10,17,18, while the other components Hrs are null. The constraint is
ω11 − ω0 ≤ 0 with ω11 given by (14).

The results of the numerical tests for this example refer to the case of a
T300/5208 carbon-epoxy plate with sides a = 1 m, b = 0.5 m, designed to have
ω11 ≥ ω0 = 150 s−1; the mass of the plate per unit of area is μ = 2.4 kg/m2. To find
a solution, we have used the PSO code ALE-PSO, [16]. The best result obtained is
(angles in degrees)

[66.15/66.53/44.83/36.44/48.52/5.68/77.57/89.94/84.48/38.45/57.48/46.03].
For this sequence, the objective function is very close to zero (7.20 × 10−35),

while for the frequency, we get ω11 = 162.72 s−1. We show in Fig. 5 the directional
variation of two moduli, for bending and extension; the diagram shows clearly that
the laminate is orthotropic in bending, with the axes of orthotropy aligned with the
sides of the plate (axes x and y), while the extension behaviour is not orthotropic, as
a consequence of the fact that no requirement has been imposed on this behaviour.

4.4 Design Problems of the Third Class

Problems of class 3 are classical optimization problems: an objective has to be mini-
mized, with some constraints to be satisfied. But, in this particular case of laminates
design, also some selected basic elastic properties have to be guaranteed. So, now
the requirements concerning the elastic properties of the laminate play no more the
role of the objective, but they become an equality constraints. This is possible be-
cause the form I (Pj ) determines the type of the elastic property and its value in
correspondence of a solution is known: it is zero.
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Fig. 5 Directional diagrams
of some elastic Cartesian
components for the case test
of Example 2

So, generally speaking, a problem of the third class is formulated as follows:

min
Pj

f (Pj )

with I (Pj ) = HrsPrPs = 0 and

gi(Pj ) ≤ 0, i = 1, . . . , ng.

(38)

Of course, Eq. (38) can be easily generalized, considering for instance additional
design variables and equality constraints. The true difference between this class of
problems and the two others is in the fact that now the form I (Pj ) is no more the
objective but rather an equality constraint. Really, by its algebraic nature, this is a
hard constraint, and a formalization like (38) will be useful only if the numerical
strategy used for the search of the solutions will be able to deal very effectively with
hard equality constraints. We have implemented in the GA BIANCA a new strategy
for handling constraints that we called ADP (Automatic Dynamic Penalization) that
has revealed to be very effective in handling not only inequality constraints, but also
equality constraints once these have been transformed, by a classical procedure, into
two equivalent inequality constraints [27]. Actually, for the problem in (38), this can
be done easily because the form I (Pj ) is positive semi-definite; hence, once chosen
a small positive residual ε, problem (38) can be transformed into another equivalent
one, depending only on inequality constraints:

min
Pj

f (Pj )

with I (Pj ) = HrsPrPs ≤ ε and

gi(Pj ) ≤ 0, i = 1, . . . , ng.

(39)

The real advantage of the formulation in Eq. (38), or equivalently in (39), is that
it is completely general: the design of the basic elastic properties of the laminate
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being part of the problem itself, no restrictions are artificially imposed on the solu-
tions, due to some simplifying assumptions. The problems of the optimal design of
laminates is in this way completely formulated without restrictions, and the problem
is now to dispose of a suitable, effective numerical tool for the search of the solu-
tions; GAs like the code BIANCA have proven to be able to solve very effectively
this kind of problems.

Example 3 As a numerical example, let us consider the following one: maximize
the buckling load multiplier λcr for a simply supported rectangular laminate, acted
on in-plane compressive distributed loads Nx and Ny along the boundary. The plate
has to be k = 1 orthotropic in bending, with the axes of orthotropy aligned with the
plate’s sides, and bending-extension uncoupled. In such hypotheses, the buckling
multiplier can be calculated using Eq. (13). We have added some supplementary
requirements: the plate has to be k = 1 orthotropic also in extension, with the same
axes of orthotropy as in bending; two constraints, minimal requirements, are im-
posed on the value of the Young’s modulus Em in extension, along the orthotropy
directions, and in addition we admit discrete orientation angles that can take values
each 1◦ only. Finally, this problem can be formulated as

max
δj

(
min
p,q

λcr

)

with I (Pj ) = HrsPrPs ≤ ε,

Em
x ≥ E0

x,

Em
y ≥ E0

y .

(40)

We have considered, as numerical application, the following values: a/b = 1.5,
Nx = Ny = 1 N/mm, ε = 10−4, E0

x = 60 GPa, E0
y = 30 GPa; the laminate is com-

posed of 16 identical T300/5208 carbon-epoxy layers. The best solution found by
the GA BIANCA, running with the ADP strategy, is (angles in degrees)

[−24/39/−47/37/32/−47/−6/−47/55/59/18/−38/−38/19/−40/42].
For this solution, we obtain Em

x = 60.61 GPa, Em
y = 31.16 GPa and I (Pj ) =

8.8 × 10−5. We show in Fig. 6 the directional diagrams of some elastic moduli of
the laminate solution. Once again, the coupling component is so small compared
to the extension and bending ones that uncoupling can be considered as obtained.
We remark the respect of the conditions of orthotropy in extension and in bending,
along with the values of the two constraints on the value of the Young’s modulus in
extension.

4.5 General Remarks

Some general remarks can be done about the strategy shown above. First of all, it
is completely general, so it lets, in principle, to attain all the solutions, in particular
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Fig. 6 Directional diagrams of some elastic Cartesian components and moduli for the case test of
Example 3

true global optimal solutions. No restrictions, like for instance the symmetry of the
stack, are imposed to the procedure. Generality means also that all the problems
concerning the design of laminates can be formulated as problems of class 1, 2 or 3.

The approach is based on the use of the polar formalism, which has some advan-
tages, mainly in the formalization of the elastic symmetries and also in the separa-
tion of the anisotropic from the isotropic part, this last being redundant (it cannot be
modified) in all the cases of laminates composed by identical layers, which is by far
the most common case.

The success of the approach depends on the use of a suitable numerical strategy
for the search of the solutions; we have verified on several examples that PSO and
especially GAs are particularly suited for these problems. Namely, we have pro-
posed a strategy for handling constraints that reveals to be very effective and able
to tackle also the problems of class 3 type, having hard equality constraints. The
problems presented as examples are rather cumbersome and difficult, and we have
not been able to find in the literature something comparable to them. Nevertheless,
with this approach that we called polar-genetic, we are able to solve them.

5 Optimal Design Problems of Piezoelectric Laminates

The above approach can be used also in the case of multiphysics couplings, like
for instance those deriving from the thermal or hygral behaviour or from the use
of bonded piezoelectric patches, used as actuators and/or sensors. Some thermal
and hygral problems have been considered by Vannucci and Vincenti [25]; all these
problems are reduced to problems of class 1 type, like the one in Example 1, and for
the sake of shortness, they will not be presented here; the reader is addressed to the
cited paper for more details.

The design of laminates acted upon by piezoelectric patches can be very inter-
esting in several applications. Also in this field, the use of the polar formalism can
be very helpful. By this method, the invariants of the piezoelectric tensor in the bi-
dimensional case [15] have been found. The number of different potential problems
concerning smart piezoelectric laminates is very great, so it becomes necessary to be
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Fig. 7 General sketch of an
SPL (Standard Piezoelectric
Laminate)

specific. Some researches have been conducted by Vannucci and co-workers on what
could be called a Standard Piezoelectric Laminate (SPL), see [19, 21] and [29]. This
is a laminate composed of identical anisotropic layers; on its top and bottom surfaces
two identical piezoelectric patches are perfectly bonded. These patches have an in-
plane isotropic behaviour, under both the piezoelectric and elastic points of view
(i.e. they are classical piezoelectric actuators, like for instance PZT patches). The
patches are chosen and cannot be modified; this assumptions has a consequence:
the whole piezoelectric part disappears from the optimal design process that will
concern only the laminate. The general sketch of an SPL is shown in Fig. 7.

In [21], the problem of finding SPL with a direction of null piezoelectric expan-
sion coefficient is addressed as an optimum problem in the framework of the polar
formalism and analytically solved for the extension case. In [29], several problems
concerning the case of the bending piezoelectric response are formulated; never-
theless, it is not possible to obtain an analytical solution for bending problems, so
they are formulated just like a problem of class 1 and solved by the use of the GA
BIANCA.

A different problem is dealt with in [19], and a novel approach is proposed. It
is the case of an SPL designed to be uncoupled, orthotropic in bending and to have
a bending piezoelectric response which is cylindrical. In other words, under the
isotropic action of standard PZT actuators, the laminate will bend cylindrically;
in addition, this piezoelectric bending has to be maximized when a difference of
electric potential of equal amount but opposite sign is applied to the two actuators.
This study was motivated by possible aerospace applications. Generally speaking,
this is a class 3 problem; in fact, in the framework of the CLPT, by some simple
passages the problem can be formalized as follows, see [19]:

max
δj

f = d∗
12 + d∗

22,

with g1 = d∗
12 + d∗

11 = 0,

g2 → B = O,

g3 → D orthotropic.

(41)
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In the above equation, d∗
ij are the Cartesian components of the tensor

d∗ = D∗−1 = h3

12
D−1, (42)

which is the normalized compliance bending tensor in absence of coupling. The
constraint g1 imposes the cylindrical bending around axis x (i.e. null curvature of
this axis), while the objective function prescribes the maximization of the bending
of axis y.

The problem in (41) can be tackled numerically by the same procedure described
in Sect. 4.4. Nevertheless, here another approach can be more effective. In fact, us-
ing the polar formalism and the lamination parameters, problem (41) can be trans-
formed into two linked problems; the first one can be solved analytically and is very
simple; the second one becomes a problem of class 1 type, so much easier to be
solved numerically than a problem of class 3, like (41), because it is unconstrained.
Addressing the reader to [19] for the details of the procedure, the result is the fol-
lowing one:

• Problem 1:

max
ξ0

f (ξ0), where f (ξ0) = 1

4(2T1 − T0 − (−1)kR0ξ0)
,

with g(ξ0, ξ1) = T0 + (−1)kR0ξ0 − 2R1ξ1 = 0,

−1 ≤ ξ1 ≤ 1,

2ξ2
1 − 1 ≤ ξ0 ≤ 1.

(43)

• Problem 2:

min
δj

F (δj ) = (
ξ0 − ξ s

0

)2 + (
ξ1 − ξ s

1

)2 + ξ2
2 + ξ2

3 + η2
0 + η2

1 + η2
2 + η2

3. (44)

In the above equations, T0, T1, (−1)kR0 and R1 are the polar parameters of the
basic layer (without loss of generality, we have chosen a frame fixing Φ1 = 0 for the
basic layer), and ξ2 and ξ3 are the two remaining bending lamination parameters,

{
ξ2 = 1

n3

∑n
j=1 dj sin 4δj ,

ξ3 = 1
n3

∑n
j=1 dj sin 2δj ,

(45)

and
{

η0 = 1
n2

∑n
j=1 bj cos 4δj ,

η1 = 1
n2

∑n
j=1 bj cos 2δj ,

{
η2 = 1

n2

∑n
j=1 bj sin 4δj ,

η3 = 1
n2

∑n
j=1 bj sin 2δj

(46)
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are the coupling lamination parameters, with the coefficients bj given by (8). Fi-
nally, ξ s

0 and ξ s
1 are the solutions of Problem 1; these ones must be inserted into

Problem 2 to find a stacking sequence satisfying all the requirements. Problem 2
is a classical problem of class 1, and, being unconstrained, it is particularly easy
to be solved numerically. About Problem 1, its solution is elementary; in fact, the
constraint g(ξ0, ξ1) is a straight line, and on it the objective function increases with
ξ0 if k = 0, while it decreases if k = 1. Hence, once again k switches an optimal
solution to an antioptimal one, and, more important here, the solution is on the
boundary of the feasible domain, which is a sector of parabola just like the one
sketched in Fig. 1, but with ξ0 and ξ1 along the axes. So, only two situations are
possible:

• the straight line g(ξ0, ξ1) = 0 crosses the curved boundary only in the two points

A =
(

ξ s
1 =

R1 +
√

R2
1 − 2(−1)kR0[T0 − (−1)kR0]

2(−1)kR0
, ξ s

0 = 2
(
ξ s

1

)2 − 1

)

,

B =
(

ξ s
1 =

R1 −
√

R2
1 − 2(−1)kR0[T0 − (−1)kR0]

2(−1)kR0
, ξ s

0 = 2
(
ξ s

1

)2 − 1

)

;
(47)

• the straight line g(ξ0, ξ1) = 0 crosses once the boundary ξ0 = 1 and once the
curved boundary:

A′ =
(

ξ s
1 = T0 + (−1)kR0

2R1
, ξ s

0 = 1

)

,

B ′ =
(

ξ s
1 =

R1 −
√

R2
1 − 2(−1)kR0[T0 − (−1)kR0]

2(−1)kR0
, ξ s

0 = 2
(
ξ s

1

)2 − 1

)

;
(48)

It should be noticed that Problem 1 determines the lamination point and that it
depends only on the mechanical characteristics of the basic layer (its polar pa-
rameters). Hence, all the laminates made by the same material have the same
solution for Problem 1, i.e. the same lamination point and hence the same nor-
malized tensors, i.e. the same elastic behaviour, regardless of the number of lay-
ers.

Example 4 As an example, let us consider the case of a laminate composed of
T300/5208 carbon epoxy identical layers; in such a case, the solution is given by
point A above (Eq. (47)) and is ξ s

1 = 0.88, ξ s
0 = 0.55, which brings to the follow-

ing value of the optimum: fmax = 0.021, Eq. (43). The lamination point solution of
Problem 1, once inserted into Eq. (44), defines Problem 2 that can be solved nu-
merically to find a laminate realizing the properties prescribed by the solution of
Problem 1. In this case we have used the PSO code ALE-PSO for looking for a
16-layer laminate with the additional constraint to choose the possible orientation
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Fig. 8 Directional diagrams of D∗
11 and B∗

11 for the case of Example 5

angles among the multiples of 5◦ (discrete problem). The best solution found is
(angles in degrees)

[−20/5/0/15/15/5/40/45/90/−10/20/−15/10/5/20/−15],
which gives directional diagrams of D∗

11 and B∗
11 shown in Fig. 8; these diagrams

confirm that the laminate is orthotropic in bending, with orthotropy axes parallel to
the coordinate axes, and that it is uncoupled.

6 Topological Optimization of the Anisotropy Fields

Structural optimization is the process of designing structures that give the best re-
sponse to a given set of criteria. Topology optimization allows for the definition of
the optimal distribution of material, within a given domain and under given loads,
with respect to a given criterion (e.g. maximizing global stiffness).

Applied to composite materials such as laminates, Vincenti and Desmorat [7, 8,
10, 28] developped a methodology of topology optimization of the anisotropic fields
that is twofold: it involves structural design—via topology optimization—and the
definition of the local architecture of the material (i.e. fibre orientations and stack-
ing sequence), which is likely to change from one point of the structure to another
one, leading to pointwise variable stiffness laminates. The optimization methodol-
ogy combined with the polar method can be applied to both in-plane loading and
bending loading. The use of the polar parameters allows us to solve independently
the problem of designing the lamination of the optimized structure.

6.1 Structural Optimization Problem

Two assumptions are made: in-plane only or bending only loading and bending-
extension uncoupling.
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Because of uncoupling between extension and bending, the compliance matrices
a and d of the laminate for extension and bending are respectively a = A−1 and
d = D−1, and the normalized compliance matrices a∗ and d∗ in membrane and
bending respectively are such that

a = 1

h
a∗, d = 12

h3
d∗. (49)

The objective is to maximize the global stiffness of an elastic plate. This objec-
tive can be realized by minimizing the compliance G, which is twice the energy of
deformation in linear elasticity:

G =
∫

S

ψSijklσij σkl dS, (50)

in which the stress σαβ and the homogenized stiffness matrix S are defined as:

• in extension: σαβ = Nαβ (membrane stresses), S = a∗ and ψ = 1
h

;
• in bending: σαβ = Mαβ (bending moments), S = d∗ and ψ = 12

h3 .

The optimization criterion is written in the same generic form in extension or in
bending. To simplify the notation, we denote by t0, t1, r0, r1, ϕ0 and ϕ1 the polar
parameters of S (i.e. of a∗ or d∗) and T0, T1, R0, R1, Φ0 and Φ1 those of S−1 (i.e.
of A∗ or D∗).

In the case of a laminate with identical orthotropic layers, the elementary layer
parameters T EL

0 , T EL
1 , REL

0 , REL
1 , KEL are given. We will consider orthotropic el-

ementary layers with KEL = 0, which corresponds for example to the most part of
unidirectional carbon-epoxy layers (see [10] for a more general discussion).

Because the layers are identical, the polar isotropy parameters of the laminate are
equal to those of the elementary layer: T0 = T EL

0 and T1 = T EL
1 for both A∗ and D∗.

Considering orthotropic laminates, the orthotropy shape is represented by the polar
parameter K ∈ {0,1}. The optimization parameters are then the polar parameters
(R0,R1,K) and the orientation Φ1 of the orthotropic homogenized laminate.

Two types of optimization constraints are to be considered:

• Thermodynamic admissibility: The polar parameters R0 and R1 satisfy the con-
ditions

{
R0 < T EL

0 ,

T EL
1 [T EL

0 + (−1)KR0] − 2R2
1 > 0.

(51)

• Feasibility constraints: The polar parameters R0 and R1, of A∗ or D∗, are
bounded by those of the elementary layer:

{
R0 ∈ [0,REL

0 ],
R1 ∈ [0,REL

1 ]. (52)

For displacements boundary conditions fixed to zero, the optimization prob-
lem takes the form of a double minimization with respect to the polar parameters
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(R0,R1,K,Φ1) and to statically admissible stress (S.A.) τij (i.e. satisfying the equi-
librium equations and the boundary conditions in terms of forces):

min
(R0,R1,K,Φ1)

G = min
(R0,R1,K,Φ1)

min
τ S.A.

[∫

Ω

ψSijklτij τkl dS

]

. (53)

6.2 Structural Optimization Algorithm

The use of the algorithm presented in this section allows for performing the mini-
mization of the compliance and for finding the associated distributed fields of polar
parameters (R0,R1,K) and of orientation Φ1 of a homogenized orthotropic be-
haviour. The problem of finding, from the distributed optimal field, an associated
layup of a laminated plate will be considered in Sect. 6.3.

The structural optimization problem (53) is solved by the convergent optimiza-
tion algorithm introduced by Allaire and Kohn [1] in which every iteration is com-
posed of two parts:

• local minimizations with respect to optimization parameters with a fixed stress
field (i.e. for every finite element),

• one global minimization with respect to the stress field with fixed optimization
parameters (i.e. a finite element calculation).

The local minimization problem to be solved during the iteration of the optimiza-
tion algorithm reads

min
(R0,R1,K,Φ1)

G(R0,R1,K,Φ1),

such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R0 < T EL
0 ,

T EL
1 [T EL

0 + (−1)KR0] − 2R2
1 > 0,

0 ≤ R0 ≤ REL
0 ,

0 ≤ R1 ≤ REL
1 .

(54)

This local optimization problem, which is more general than the optimisation prob-
lem with respect to the orientation only considered by Cheng and Pedersen [2], is
solved analytically [7, 10].

The optimal orientation Φ
opt
1 corresponds to the main direction of the maximum

principal stress:

Φ
opt
1 = direction

(
max

(|σI|, |σII|
))

, (55)

where σI, σII represent the principal stresses in membrane or in bending.
Locally, the stress state is described by the polar parameters T = σI+σII

2 and R =
σI−σII

2 and characterized by the parameter X = R
|T | . The optimal values of R0, R1

and K are described by three types of solutions with increasing values of X:
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• Case 1 (Free Lamination Sequence): for 0 ≤ X ≤ REL
1

T EL
1

,

K ∈ {0,1}, Rmin
0 ≤ R

opt
0 ≤ Rmax

0 , R
opt
1 = T EL

1 X, (56)

such that

for K = 0,

{
Rmin

0 = max{2T EL
1 X2 − T EL

0 ;0},
Rmax

0 = REL
0 ;

for K = 1,

{
Rmin

0 = 0,

Rmax
0 = min{T EL

0 − 2T EL
1 X2;REL

0 }.

• Case 2 (Unidirectional Lamination Sequence): for
REL

1
T EL

1
≤ X ≤ T EL

0 +REL
0

2REL
1

,

K = 0, R
opt
0 = REL

0 , R
opt
1 = REL

1 . (57)

• Case 3 (Cross-ply Lamination Sequence): for (T EL
0 + REL

0 )/2REL
1 ≤ X,

K = 0, R
opt
0 = REL

0 , R
opt
1 = T EL

0 + REL
0

2X
. (58)

6.3 Optimal Design of the Stacking Sequence

On the local scale (i.e. at every point within the structure), the search for a stacking
sequence corresponding to the optimal values of the distributed polar parameters
needs to be performed. It requires to formulate and solve a new local optimization
problem with respect to optimization parameters relative to the laminate layup.

Let us consider a single element within the plate under in-plane or bending loads.
For this element, topology optimization produced a couple of optimal polar compo-
nents (R

opt
0 ;Ropt

1 ) for membrane or bending loading.
The optimal material is chosen as an orthotropic, uncoupled laminate made of

n identical layers (i.e. with the same thickness and the same material). The latter
condition ensures that polar components (T0, T1) of A∗ or D∗ are fixed and equal to
those of the elementary layer.

Therefore, the optimization parameters of this new local optimization problem
are the orientation angles δk , k = 1, . . . , n, of the fibres within the kth layer, ex-
pressed in the element’s orthotropy axes. The local optimization problem, in case of
membrane or bending loading, can be formulated as:

given
(
R

opt
0 ;Ropt

1

)
,find{δ1, . . . , δn} such that

{
R0 = R

opt
0 ,

R1 = R
opt
1 .
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Fig. 9 Admissibility of angle-ply or cross-ply laminates with respect to polar parameters

An analytical resolution method for the problem is found through the use of
closed-form relations linking lamination parameters to the elastic properties of the
laminate. Two specific types of laminates for which this link is easily written and
workable are considered, cross-ply laminates (orthogonal layers) and angle-ply lam-
inates. For these laminates, the lamination sequence is described with only two ori-
entations (even though the actual sequence remains undetermined): {0◦,90◦} for
cross-ply laminates and {α,−α} for angle-ply laminates, with α ∈ [0◦,45◦]. Con-
sidering specific stacking sequences assuring uncoupled behaviour, there is only one
independent optimization parameter remaining: the relative thickness h (ratio of 0◦
layers thickness over total thickness) for cross-ply laminates and the orientation an-
gle α for angle-ply laminates.

The optimization problem is solved by replacing the optimal moduli (R
opt
0 ,R

opt
1 )

in the closed-form relations relating the polar parameters to the relative thickness
for cross-ply laminates or to the orientation angle for angle-ply laminates. Figure 9
shows, in the (R0–R1) axis system, the laminate design space. Its bounds are the
maximal values of the moduli (i.e. those of the elementary layer) on one hand and
thermodynamic admissibility conditions on the other hand. They are represented
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Fig. 10 Schematic
representation of the
centre-hole plate under
membrane loading

respectively by the solid straight lines and the solid curve on each figure. The or-
thotropy shape K of the material influences the shape of the design space.

Within these different design spaces, the symbols represent the properties ob-
tained for several values of the polar parameters, be it for angle-ply or cross-ply
laminates. Figure 9(a) shows the characteristic points (crosses) of an angle-ply with
K = 0 (α ∈ [0◦,22,5◦]), Fig. 9(b) those (circle points) of an angle-ply with K = 1
(α ∈ [22,5◦,45◦]), and finally Fig. 9(c) those (square points) of a cross-ply lami-
nate.

It is proved that the cross-ply laminates are acceptable optimal solutions for every
case (cases 1, 2 and 3), while angle-ply laminates are acceptable optimal solutions
only for cases 1 and 2 (recalling that these results are valid in membrane only and
in bending only cases). The fact that the cross-ply is an optimal layup in membrane
loading was demonstrated by Hammer et al. [5, 6]. The extension of this result to
bending, and the optimality of the angle-ply in cases 1 and 2 are new results.

6.4 Numerical Example: Centre-Hole Plate Under Membrane
Loads

The structure and the boundary conditions (forces and displacements) considering
the symmetries of the problem are shown in Fig. 10. The line load Fx is equal to
twice the line load Fy . The elementary layer is made of carbon-epoxy T300/5208,
whose polar components are given in Table 1.

The initial polar parameters are those of a unidirectional laminate (R0 = REL
0 ,

R1 = REL
1 ) aligned with the x-axis (Φ1 = 0). During the local minimization steps,

the optimal value of R
opt
0 is chosen equal to REL

0 in case 1. The optimal distribu-
tions of polar components are shown in Fig. 11. The case distribution is presented
in Fig. 12. It is worth noting that only cases 1 and 2 occur. During the optimiza-
tion process, the compliance decreases by 65%, while the maximal displacement
decreases by 80%.

For cross-ply solutions, the local orientations of the layers are already determined
and equal to {Φopt

1 ; Φ
opt
1 + π

2 }. The layup parameter is the relative thickness of plies
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Fig. 11 Optimal polar parameters

oriented at the angle Φ
opt
1 , shown in Fig. 13. The variations of h coincide with those

of R
opt
1 because they are linearly related: R1 = REL

1 (2h − 1).
For an angle-ply solution, we consider lamination sequences that lead to uncou-

pled behaviour. The principal orthotropy direction is Φ
opt
1 . Figures 14(a) and 14(b)

show the local fibre orientations of the layers corresponding to δ1 = Φ
opt
1 +αopt and

δ2 = Φ
opt
1 − αopt.

This example demonstrates that it is possible to design laminated cross-ply or
angle-ply plates that are optimal solutions to the problem of the centre-hole plate
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Fig. 12 Distribution of cases
in the optimal state

Fig. 13 Optimal relative
thickness distribution for a
cross-ply laminate

under in-plane loads. The use of the polar method has permitted to find the optimal
angle-ply plate solution.

7 Final Remarks and Conclusion

We have shown some recent developments in the field of laminates design. They
are mainly based on the use of the polar formalism that allows an effective rep-
resentation of anisotropy in terms of tensor invariants. The approach proposed is
completely general and has allowed us to deal with complicate problems, never
considered before in the literature. The examples reported in the paper show that it
is today possible to tackle effectively any problem of laminates design in a com-
pletely general way, without the use of simplifying and limiting assumptions. The
polar formalism has proven to be effective also in a very new field, the design of the
anisotropy fields, allowing for a local tailoring of laminates, which is today possible,
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Fig. 14 Representation of local fibre orientations within δ1/δ2 plies for an angle-ply laminate

under a practical point of view, by the use of numerically controlled machineries.
Multiphysics problems can be considered too, in a very effective way, and this is
rather interesting for modern applications, like smart structures. The effectiveness
of the approach is based, on one side, on the polar formalism and, on the other
side, on a robust numerical strategy for the search of solutions. We have used two
kinds of metaheuristics, specially conceived for the optimal design of laminates,
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the GA BIANCA and the PSO code ALE-PSO. Both have proven to be very effec-
tive and robust for solving the different problems that we have formulated. Several
other problems are still waiting to be solved, namely those concerning the design
of laminated structures with respect to strength or to other resistance, in a general-
ized sense, criteria, or the optimal design of thermally stable laminated structures.
Research is going on in these directions.
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The Warlike Interest in Impact Theories

Piero Villaggio

1 The Neolithic Revolution and the Advent of Fortresses

According to climatologists (Burroughs [1, p. 24]), the latest ice age (Wurmian)
ended 25 000 years ago, and the present interglacial age started with the prospect of
lasting 50 000 years at least. In the beginning, the global warming was continually
adjusting by huge shifts, but, thereafter, the turbulent climate became stable so that,
about 15 000 years ago, the temperature rose to values comparable with those of our
modern times.

This stabilizations of the climate to higher temperatures and the consequent
melting of large iced zones determined an unpredictable enlargement of habitable
regions and the birth of agriculture and animal-husbandry. Humans, from being
hunters and gatherers, became farmers. As Diamond describes in one of his books
[2, p. 180–191], this conversion not only permitted the accumulation and conser-
vation of food, but caused a radical change in the way of life. People had more
time to communicate with each other, transmit technical knowledge and poetry. The
average life span doubled.

Unfortunately, the progress was inhomogeneous. The geographic map of the dis-
tribution of population about 10 000 years ago in the Mediterranean basin shows the
contemporary presence of areas inhabited by stable farmers and others controlled
by nomadic hunters (Fig. 1). However, the coexistence was not peaceful because
nomads, especially in case of necessity, found it easier to get food by making sud-
den incursions into the lands of their neighbours, and these reacted with punitive
expeditions.

This alternation of raids and reprisals did not last too long because sedentary
populations protected their territories by surrounding them with fences and, possi-
bly, with walls. The most celebrated examples of town walls are those of Jericho
(8000 B.C., 8 m high), Hattusas (1600 B.C., 25 m high), Niniveh (1200 B.C., 25 m
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Fig. 1 Contiguous stable and
nomadic populations

Fig. 2 The classic shape of a
wall

high) and Babylon (600 B.C., 35 m high). Babylon’s walls, made of burnt bricks,
represent the greatest monumental fortified work for antiquity until the time of the
Romans (see Oravas, [7, p. 62]). The typical defensive structure was made of three
elements: the wall, the watch tower and the trench filled with water (Fig. 2). In
his book on the history of war strategies, Keegan [5, p. 144] writes that a city sur-
rounded by a belt of walls endowed with these three elements was impregnable. The
only hope of conquering the city was the starving of the inhabitants and treachery
(eventually with a wooden horse!).

This technique of self-defence lasted for about 12 000 years until the discovery
of gun powder in Europe. Gun powder, a highly inflammable mixture of Carbon–
Sulphur–Saltpeter, was already known in China since the beginning of the 11th
century A.D., but the three substances were ground too finely so that they burned
slowly because of inadequate airspace between its constituent particles. The explo-
sive property of the gun powder was discovered by chance in the second decade
of the 14th century A.D. by a team of alchemists monks in Freibourg who kindled
the “corned powder” that is an aggregate of grains if the same mixture (Oravas, [7,
p. 400]). However, notwithstanding the efforts of four generations of artisans, the
military success and widespread of gun powder for launching projectiles from a ri-
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Fig. 3 End of the traditional
fortresses

fle or a cannon started only in the first half of the 15th century, when metallurgists
found that pure cast iron was too brittle for supporting the forces generated by an
abrupt blow of the explosive charge, but the newly introduced alloys, in particular
bronze (a combination of iron–copper–tin), permitted the construction of guns suf-
ficiently tough for firing balls of stone and iron at a distance of 1000 m without
affecting the efficiency of the gun barrels. The first historical use of gun powder was
in the siege of Byzantium in A.D. 1453 by the Ottoman Turks. The besiegers owned
only one giant cannon that, set up at the main gate of the city, succeeded in break-
ing the massive walls which had withstood countless attacks over many centuries
(Oravas, [7, p. 290]). But after 40 years, exactly in A.D. 1494, when the French King
Charles VIII invaded the Kingdom of Naples, the artillery demonstrated its enor-
mous destructive efficiency. The French used thirty cannons, easily transportable
and capable of shooting iron balls without long pauses between two subsequent det-
onations. The era of the great fortifications, huge walls and long sieges was at an
end (Fig. 3).

But the crisis did not last a long time because military engineers soon found a
remedy against the effect of artillery. In the course of five decades the architec-
ture of fortifications was radically changed. Protagonists of the new technique were
men like Francesco di Giorgio Martini and Giuliano da San Gallo. Also Michelan-
gelo and Leonardo were hired as military architects, but with less success. The new
fortresses were much lower (less than 10 m high), their walls were protected on the
outside by a deep layer of soft material and on the inside by a clay embankment able
to absorb the shocks (Fig. 4). The plan was a pentagonal star with a tower at each
of the five vertices, from which riflemen could fire against the opposing artillerists.
This shape of fortress was, almost identically, maintained during the subsequent
four centuries until the beginning of the Second World War, when defensive works
were made of reinforced concrete.
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Fig. 4 The new fortresses

Fig. 5 Galilei’s ideal
experiment for measuring the
impact force

2 The First Scientific Theories on Impact

The 17th century is considered the period of birth of the modern science, and it is not
surprising that the great scholars of the century committed themselves with the mil-
itarily important problems of the collision between solid bodies. The fundamental
question was that of predicting the velocities of rebound of two centrally colliding
rigid spheres. The problem was tackled successively by Galilei, Descartes, Huy-
gens, Newton and others. The surprising common feature of these theories is that
all are wrong or, at least, defective, since the proponents considered only particular
features of the phenomenon mixing inaccurate experiments with primitive mathe-
matics. For example, the most debated quarrel was that about the mechanical quan-
tities conserved during the impact: momentum or kinetic energy? The “Western”
scholars (Marcus Marci, Descartes, Wren and Newton) affirmed that momentum is
conserved; “Continental” scholars (Huygens, Johann Bernoulli, Leibniz) defended
the principle of conservation of energy. The dispute was, however, futile because
both these quantities must be conserved as first integrals of the differential equa-
tions of motion.

Galilei (1564–1642) is credited as the initiator of the impact theory, discussed on
the Sixth Day of his Discorsi (1638), but the accounts of historians (of science) on
his achievement are discordant. The great historian Dijksterhuis [3, p. 358] writes
that Galilei tried to weigh the forces during impact, but this attempt was bound
to fail, since momentum and energy have different physical dimensions. On the
other hand, Dijksterhuis praises Galilei for having realized that impact force, if any,
must be infinite. Another historian of mechanics, Szabó [9, p. 427–428], examines
Galilei’s conceptual experiment. A balance carries a weight G at one extremity and
a small reservoir at the other (Fig. 5). The reservoir is divided into two chambers:
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one above, filled by water, and one below, empty. The weight of water is G, so that
the system is in equilibrium at rest. The two chambers are separated by a removable
diaphragm d . If the diaphragm is instantaneously removed, the water falls down,
hits the bottom of the reservoir, the left arm of the balance sinks, and the additional
weight that must be added to the right arm in order to restore the equilibrium mea-
sures the impact force. Galilei’s argument is wrong, and Szabó explains why.

The subsequent two important contributions to the impact theory are due to
two contemporaneous scientists, Marcus Marci (from Kronland) (1595–1667) and
Descartes (1596–1650). Marcus Marci proposed the first correct quantitative laws
on the elastic collision between spheres. But the work of Marcus Marci was ig-
nored for two centuries and rediscovered and appreciated by E. Mach (see Szabó [9,
p. 430]). In contrast, Descartes’s work was instead popular since its publication, he
enunciated seven qualitative propositions concerning the impact, but all are wrong!
(see Dijksterhuis [3, p. 410–412]).

The two last contributors of the 17th century to the impact theory were Huygens
(1629–1695) and Newton (1642–1727). Both of them considered the central colli-
sion and rebound of two rigid spheres, and both proposed mathematical equations
(not qualitative criteria) for describing and predicting the phenomenon. Huygens ap-
plied the principle of conservation of kinetic energy; Newton introduced the notion
of “coefficient of restitution” in order to account for the loss of impulse between the
initial and final instants of the collision. Both theories represented a decisive step
towards a precise formulation and systematic treatment of impact problems. Both
theories, however, are questionable. Huygens’s method is incomplete, because in the
case of multiple impacts between several particles, the principle of conservation of
momentum is also necessary. On the other hand, Newton’s definition of coefficient
of restitution has given rise to some unphysical paradoxes (see Stronge [8, p. 47]).

3 The Concept of Impact as a Continuous Phenomenon

At the end of the 17th century the debate about the true physical quantities conserved
during the impact was still open. In a celebrated memoir published in 1686, Leibniz
(1646–1716) attacked the Cartesian concept of “force” exerted by a colliding body
as represented by the product mv, where m is the mass, and v the velocity, and re-
placed it by the concept of “living force” mv2. The question was fundamental since
it put into discussion the intimate concept of force. Is it a continuous action exerted
on a body or a sudden entity impressing instantaneous variations to the motion of a
body? The Italian historian G. Maltese [6, p. 73] writes that even Newton was led to
accept two forms of the Second Law of motion, F = Ma and F = �(mv).

Historians agree that the dilemma was resolved by Euler (1707–1783) in favour
of the law F = ma, by abandoning the model of the perfectly rigid body and consid-
ering its unavoidable deformability as a small spring interposed between the body
and the other body with which it collides (Fig. 6). But Euler’s priority is not univer-
sally accepted. Stronge [8, p. 262] points out that the artifice of concentrating the
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Fig. 6 u1, u2 are the
velocities just before the first
contact

Fig. 7 E and P represent the
elastic and the plastic regions

deformability of a body in an elastic or inelastic small element concentrated at the
point of collision was originally introduced by Maclaurin and not by Euler.

The precise, mathematical, evaluation of the mutual compliance of two spherical
or ellipsoidal bodies, pushed each against the other, is the result of a celebrated
solution by Hertz (1857–1894), in the case of perfect linear elasticity [4]. If the
material is perfectly plastic, a rigorous and elegant solution, like that of Hertz, is
not available, because the plastic region is localized around the point of first contact
and its shape and extent is one of the unknowns of the problem. In recent decades a
great effort has been made to suggest simple, but satisfactory, approximate solutions
to the problem of the elastic–plastic impact (see Stronge [8, p. 119–126]).

In the particular case of the plastic impingement of a cylindrical bullet against
rigid armour, G.I. Taylor (1886–1975) proposed an ingenious model for determining
the boundary between the elastic and plastic regions after the partial splashing of the
bullet (Fig. 7). Taylor’s model [10] is able to predict the height hp of the plasticized
region, its transversal dilatation dp , the impulse against the rigid surface, and the
time of arrest of the bullet after the first contact. Taylor’s model has proven itself
valid for describing other impact phenomena, like the crash between two cars or the
spreading of an avalanche when it reaches the bottom of a valley.

4 Structural Impact

The studies on impact surveyed so far consider the collision between compact bod-
ies for which the contact region is relatively small and the times of propagation
of deformations are almost instantaneous. The situation is, however, very different
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when a compact body hits a flexible structure or a system containing flexible ele-
ments. In this case the contact period may be long, the maximum contact force is
reduced, and a significant amount of energy is converted into structural vibrations.

Saint-Venant (1797–1886) found an explicit solution for the wave propagation in
an elastic uniform bar struck at one end by a rigid mass and clamped at the opposite
end. Saint-Venant (1867) succeeded in integrating d’Alembert’s equation with non-
standard boundary conditions and singular initial data. His results is astonishingly
skilful, but limited to one-dimensional problems.

The difficulty of treating cases of impact in more than one dimension was rec-
ognized one century before Saint-Venant, and history registers several attempts for
finding approximate procedures of solution to structural impact problems. The first
result in the field is due to Daniel Bernoulli (1700–1783), who determined the max-
imum inflection of an initially straight beam due to a central percussion. Bernoulli’s
solution is variational and, according to Szabó [9, p. 467], anticipated by more than
one century the classical Rayleigh–Ritz method.

In the middle of the 19th century, during the diffusion of railways, engineers in-
troduced an approximate method for evaluating the forces induced in iron bridges
by the rapid transit of trains. They simply reduced complex structures to systems
with one or few degrees of freedom, determined the maximum elongations, and cal-
culated the related internal forces. The most representative user of this method was
the English engineer H. Cox (1821–1895). These techniques may appear too prim-
itive in an era in which numerical calculations can provide a detailed estimate of
the stress state at every point of a structure during the whole period of compres-
sion and rebound (if any). Nevertheless, the approximate procedures, owing their
elegance and their sound mathematical foundation to the calculus of variations, are
still popular.

5 New Extensions

Impact theory is a branch if classical mechanics. Its retarded development rests
on the fact that the equations governing impulsive actions are singular. But its im-
portance is growing because many phenomena, traditionally modelled in terms of
smooth mathematics, involve discontinuous quantities. In some fields of science
and technology these properties of the solutions were known for a long time, like
in seismology or in moulding metals. But there are other emerging fields, like fi-
nance, social revolutions, epidemiology, in which impact theory will find promising
applications.
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Nomenclature
A System matrix –
B Input matrix –
B Aerodynamic effectiveness matrix –
C Output matrix –
D Direct matrix –
Dnac Nacelle diameter m
h Altitude m
Lnac Nacelle length m
md Desired moments vector Nm
M Mach number –
n Load factor –
p Body axis roll rate rad/s
q Body axis pitch rate rad/s
r Body axis yaw rate rad/s
T Thrust N
T4 Burner outlet temperature K
u Longitudinal velocity in body axis m/s
u Vector of input variables –
v Lateral velocity in body axis m/s
w Vertical velocity in body axis m/s
WTO Take-off weight N
x State vector –
y Output vector –
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Greek symbols
α Angle of attack rad
β Sideslip angle rad
δ Vector of control surface deflections rad
δi ith control surface deflection rad
δthrottle Throttle position –
φ Roll attitude rad
θ Pitch attitude rad
ωd Dutch roll natural frequency rad/s
ωph Phugoid natural frequency rad/s
ψ Yaw attitude rad/s
ζd Dutch roll damping ratio –
ζph Phugoid damping ratio –
ζsp Short period damping ratio –

Abbreviations
BPR Bypass Ratio
DLC Direct Lift Control
FMT Flight Mechanics Toolbox
MIMO Multi-Input Multi-Output
OPR Overall Pressure Ratio
P Proportional control
PI Proportional plus Integral control
RC Rate Command
TC Turn Coordination

1 Introduction

With respect to aircraft performance, the need for a significant reduction in CO2
emissions, reduction of the perceived noise level, improved safety and larger capac-
ity has been expressed by the European Union [6]. A large number of publications
can be found in the literature, addressing these challenges with novel aircraft de-
signs and/or new propulsion systems. The main focus however is on the Blended
Wing Body aircraft configuration [28] and open-rotor propulsion systems [8]. Sev-
eral technical problems are still present for the Blended Wing Body: pressurized
fuselage design, the inherent stability in the longitudinal and lateral directional axes,
passenger comfort, high-lift system design, aerodynamics (center body profile with
large thickness over chord ratio) and airport compatibility [28]. One aircraft con-
figuration that has received less attention is the box-wing configuration, designated
as the PrandtlPlane. Ludwig Prandtl predicted already in the 1920s that this is the
ideal configuration with respect to induced drag [37]. This prediction was verified
nearly 80 years later by Frediani et al. [15]. Various other research studies sup-
port the findings of Prandtl [11, 24, 27]. A consortium of Italian Universities there-
fore investigated the box-wing configuration recently, which resulted in a new air-
craft design [16]. This design was called the PrandtlPlane in honor of the work of
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Prandtl. Currently there are still many technical issues which must be investigated
thoroughly to demonstrate the feasibility of this configuration. Examples are the
elastic behavior of the closed-wing system [27] and the fuselage design, which is
loaded in a manner different from the conventional aircraft configuration. This re-
search study is focused on two aspects of the PrandtlPlane design: (1) the propulsion
system and (2) the flight control system, where the flight control system design in-
cludes the sizing and placement of the primary control surfaces, the allocation of the
controls following a control input, and the design of an automatic flight control law.

The design of the propulsion system, in terms of the selection of the propulsion
system type, the number of engines and their location, is still an open issue. Only
limited information can be found in the literature about the propulsion system de-
sign for box-wing configurations. Iemma et al. [23] performed a multidisciplinary
design optimization of a large PrandtlPlane with four turbofan convention turbo-
fan engines. The location of these engines is unfortunately not mentioned, nor is
the rationale for the choice of four conventional engines elaborated upon. Lange
et al. [27] investigated a box-wing configuration which had four jet-fan engines on
the front wing. The inboard engines were located at 50% span and the outboard en-
gines near the tips. Relocation of these engines to the aft section of the fuselage was
also considered in this study to improve the flutter characteristics. This relocation
only resulted in a small improvement with respect to flutter and created difficulties
with respect to obtaining a smooth area distribution for minimum wave drag. Hence
the relocation was abandoned. The limited information in the open literature sup-
ports the fact that a propulsion system design study should be performed. There are
various opportunities for the propulsion system design of the aircraft considered in
this study. For example, open-rotor systems can be placed underneath the rear wing
without having ground clearance issues. These opportunities and possible technical
issues should be identified.

Flight control of the PrandtlPlane is quite different than the control of a conven-
tional aircraft. If one places control surfaces on the front and rear wings, then a pure
moment can be created by differential deflection of these controls. This is a clear ad-
vantage over conventional aircraft configurations which show nonminimum phase
behavior; an upward deflection of the elevator first results in a slight downward mo-
tion before the aircraft rotates and starts to climb. In this respect, the PrandtlPlane
could have superior handling qualities over a conventional configuration. Further-
more, a combined deflection of the front and rear wing control surfaces allows the
use of direct lift control. Direct lift control has proven to improve handling qualities
in the landing and approach phase [10, 41]. However, the disadvantage of imple-
menting such a system on a conventional configuration is that flaps or spoilers must
be utilized for this purpose. The PrandtlPlane does not have this disadvantage. Fur-
thermore, the inherent stability can differ substantially due to the novel wing system
and the inertia of the aircraft.

One cannot rely on traditional handbook methods for the design of an uncon-
ventional configuration such as the PrandtlPlane because there are simply no refer-
ence aircraft. The design methodology should therefore be physics based. For the
analysis of the overall aircraft behavior, including the propulsion and flight control
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system, a flight mechanics model is required. Flight mechanics is defined herein as
the discipline which consists of both flight performance and flight dynamics [42].
Such a flight mechanics model should be straightforward to apply in the conceptual
and preliminary design phase. The preliminary design phase in this context aims
for the definition and selection of design concept on the level of each individual
system [43].

The aim of this research study is twofold. First, the capabilities of an in-house
developed flight mechanics toolbox and its application in the conceptual and pre-
liminary design phase are demonstrated. Second, the propulsion system and flight
control system design of a 300-passenger version of the PrandtlPlane is investigated.

The paper is structured as follows. First, the flight mechanics modeling envi-
ronment and the baseline aircraft configuration are described in Sect. 2. Next, the
propulsion system design is presented in Sect. 3. The inherent flying qualities,
control surface sizing, and automatic flight control system design are discussed
in Sect. 4. Finally, conclusions and recommendations are made.

2 Flight Mechanics Model

2.1 Modeling Environment

An in-house developed flight mechanics toolbox (FMT) is used as modeling envi-
ronment. This toolbox enables the integration of submodels from various disciplines
such as aerodynamics, structures, flight control, and propulsion, in a single full non-
linear aircraft model. The aircraft model can be used to analyze the performance
of the complete system. The general application for which this toolbox has been
designed is to be part of a design framework. The toolbox is therefore developed
such that aircraft models can be created and analyzed in an automated fashion. This
makes it possible to integrate the flight mechanics toolbox in a multidisciplinary
design optimization framework. Some key features for which this modeling toolbox
can be used are listed below:

• Basic aircraft performance analysis
• Mission analysis
• Handling qualities analysis
• Linearization
• Control law design
• Time domain simulation
• Loads prediction
• Aircraft response to atmospheric turbulence
• Automated model generation enabling multidisciplinary design optimization
• Simulation of in-flight dynamic transition of morphing aerostructures
• Real time simulation with a pilot in the loop
• Flexible aircraft dynamics
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Fig. 1 Top-level overview of flight mechanics toolbox

The last feature (flexible aircraft dynamics), is currently still under development.
The toolbox is set up in a modular structure which makes it straightforward to im-
prove the fidelity of the various submodels and to extend the capabilities. It should
be noted that the toolbox can be used both for aircraft and rotorcraft analysis. The
FMT is created in the Matlab/Simulink environment and makes use of multibody
dynamics (SimMechanics) when needed, e.g., for simulation of dynamic fuel trans-
fer, landing gear motion and ground operations, flexible aircraft dynamics, slung
loads under rotorcraft, and morphing aerostructures. A top-level overview of the
complete model is presented in Fig. 1.

The user has to supply information about the model fidelity and corresponding
data. For example, if the actuators of the flight control system are considered, then
model fidelity contains information about the type of actuator model (transfer func-
tion, physics-based, user-defined etc.). The data contains all the relevant parameters
for the actuator models such as rate limits, saturation limits but also the number
and location of the actuators. Both the model fidelity and data are stored in a stan-
dardized input file. Automatic model construction commands are then used to create
an aircraft model in Simulink. This model can be analyzed with a suite of analysis
functions. All of these steps can be performed in an automated fashion or manually.

2.2 PrandtlPlane Aircraft Model

The basic aircraft configuration under investigation is a 300 passenger version of
the PrandtlPlane. A number of PrandtlPlane designs with various sizes ranging from
general aviation to very large aircraft capable of transporting up to 600 passengers
were investigated by a consortium of Italian Universities [16] and by the University
of Pisa [13–15]. An artist impression of a 250-passenger version of the PrandtlPlane
during ground operations is presented in Fig. 2.

A basic flight mechanics model of this aircraft was developed with the flight me-
chanics toolbox. The aerodynamics is represented in the model with an aerodynamic
dataset, which is a function of Mach number (M), angle of attack (α), sideslip angle
(β), control deflections (δ), and angular rates (p, q , r). This dataset is created with
the commercial software tool VSAERO [4], which is a first-order panel code with
viscous boundary layer integration. The input to VSAERO is created with a para-
metric aircraft model, which contains all relevant design parameters of the aircraft.
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Fig. 2 Artist impression of the PrandtlPlane during ground operations [13]

The output is automatically transformed into the required format for the flight me-
chanics toolbox. In the current research, control surface deflections are modeled in
VSAERO by changing the airfoil shape. Details on the fidelity of control derivatives
obtained with VSAERO can be found in [35]. The engines are modeled with an in-
let and exhaust velocity. The equations of motion are represented with multibody
dynamics. Two separate bodies are present, one for the empty aircraft structure and
one for the fuel. The fuel is in fact a body with variable mass and inertia, which
can move relative to the airframe. The engines are modeled as static engines using
lookup tables, which are functions of Mach number and altitude. The thrust, fuel
consumption, and propulsion-related drags are all calculated. The propulsion tables
are created using an in-house developed gas turbine simulation tool, of which more
details are presented in the next section. Actuators are modeled as second-order sys-
tems with rate and saturation limits. An international standard atmosphere model is
present [1], as well as two atmospheric turbulence models, the von Karman turbu-
lence model and the Dryden wind turbulence model [2, 3]. Currently, the landing
gear is not modeled.

3 Propulsion System Design

One particular aspect of the design of the 300-passenger version of the PrandtlPlane
that has not been investigated is the propulsion system. The overall aircraft con-
figuration allows some new possibilities in terms of the type of propulsion system,
the number of engines, and their location. Engines can be placed on the front wing,
the rear wing, on the rear of the fuselage, in between the two vertical tails, near
the connections between the vertical tails and the rear wing, or at the connections
of the vertical tails with the fuselage. Engines could even be placed in the vertical
side wings, although this is most likely highly unfavorable with respect to engine
out conditions. Conventional turbofan engines with a high bypass ratio can easily
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be placed at the rear wing, without having to flatten the intake. This can be done be-
cause the rear wing has a large clearance from the ground. The rear wing could even
be used to mount an open-rotor system. Engines placed on either the front or rear
wing will have a significant impact on the center of gravity location, and this effect
must be accounted for. The propulsion system design process used in this study is
represented in Fig. 3.

The design process starts with the baseline aircraft design (without engines). The
lift drag polar and weight are used to size the engines and to optimize the thermo-
dynamic cycle. The lift drag polar is determined with empirical equations. The Os-
wald factor, which takes into account the improvements with respect to the induced
drag compared to a conventional aircraft, is estimated with the method proposed by
McMasters and Kroo [33]. The sizing and cycle optimization is done after the con-
figuration is selected, in terms of number, location, and type of propulsion system.
The shape of the propulsion system and the aircraft geometry are then taken as input
for the aerodynamic analysis with VSAERO. Results of the aerodynamic analysis,
the propulsion system tables, and the mass, centre of gravity, and inertia informa-
tion of the aircraft including propulsion system are then fed as input to the flight
mechanics model. This model is used to fly a complete mission. If desired, this pro-
cess can be repeated until the best aircraft engine combination is found. In the next
three sections, the configuration selection, engine sizing and cycle optimization, and
aerodynamic and flight mechanics analysis is presented in more detail.

3.1 Configuration Selection

Several propulsion system types were considered for the 300-passenger version of
the PrandtlPlane; the conventional turbofan, the geared turbofan, the intercooled re-
cuperative engine, the more electric engine [38], the ducted propfan, the unducted
propfan, boundary layer ingestion, distributed turbofans, and the hybrid turbofan.
Some of these options are in fact complementary. For example, the intercooled re-
cuperative engine makes use of the heat of the exhaust flow to preheat the flow be-
tween the high-pressure compressor and the combustion chamber through a recuper-
ator [32]. This can be applied to all engine types. An extensive trade-off study was
performed to select the most suitable option. The following criteria were evaluated
in this trade-off: fuel burn, emissions, noise, compatibility with the PrandtlPlane
configuration, development risk, acquisition cost, and maintenance costs. Based on
this study, the more electric conventional turbofan was selected. In the more elec-
tric engine, the separate systems used to generate power for electric, pneumatic, and
hydraulic systems are replaced by electrical generators, driven by the main shafts
of the engine. According to NASA [22], this should result in a more efficient and
reliable engine. The conventional turbofan outperformed the other propulsion types
mainly due to the low risk, lower acquisition costs, and lower maintenance costs.
The wing design of the PrandtlPlane is already a high-risk design, and therefore
other systems should have a relatively low risk in order to keep the risk of the over-
all design acceptable.
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Two additional trade-offs were performed to determine (1) the number of engines
and (2) their location. Selection criteria for the number of engines were: fuel effi-
ciency, reliability/safety, acquisition costs, maintenance costs, construction weight,
and finally the agreement between the take-off thrust requirements versus the cruise
thrust requirement. It was decided to select a twin engine option mainly due to the
high fuel efficiency. In the final trade-off (engine locations), several factors were
taken into account: required landing gear length, aerodynamic interference, struc-
tural weight, cg location, one-engine out moment, structural stiffness, cabin noise
and vibrations, accessibility, noise shielding from the ground, engine inlet, and the
pitching moment of the thrust vector. Having two engines at the rear of the fuselage
proved to be the most promising concept.

In summary, the propulsion system consists of two conventional turbofan engines
located at the rear of the fuselage with electric power off-take only, known as the
more electric engine.

3.2 Engine Sizing and Cycle Optimization

After the selection of the configuration, the engines have to be sized, and the ther-
modynamic cycle must be optimized. The process for engine sizing and cycle opti-
mization is represented in Fig. 4.

The inputs to this process are basic aircraft parameters (mass, cg, inertia, lift-
drag polar). As a starting point, a guess is made for the bypass ratio (BPR), the fan
pressure ratio (FPR), the overall pressure ratio (OPR), and the burner outlet tem-
perature (T4). A first guess is then made for the mass flow through the engine and
the total fuel weight. With all these parameters, a design point (cruise) analysis can
be made. The design point analysis is done with an in-house developed gas turbine
simulation tool [25]. It determines the cooling flows needed to keep the temperature
of the turbines within the allowable limits. Subsequently, it calculates the condition
of the gas at several stations throughout the engine. Finally, engine weight and drag
are predicted with the weight prediction methods of Gerend [18] and Seddon [40]
and the drag prediction methods of Mount [34] and Mattingly [31]. The aircraft mis-
sion analysis is performed simply with the Breguet range equation. A check is then
made if the engines deliver the right amount of thrust and whether the design range
is reached. If necessary, the mass flow through the engine and the total amount of
fuel are adjusted, and the design point analysis is repeated until the results converge.
After this process, an off-design point analysis is performed. A genetic algorithm is
coupled to the process to find the best engine design in terms of BPR, FPR, OPR,
and T4. The genetic algorithm is based on the work of Whellens [44]. The objective
of the optimization is to minimize direct operating cost, which in this case is for-
mulated as a linear function of engine weight, MTOW, and mission fuel burn [30].
Once the optimum is found, a gradient-based optimization is employed to refine the
results. Several constraints are placed on the design parameters to keep them within
acceptable limits. The final design and an image of the engine location are presented
in Table 1 and Fig. 5.
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Table 1 Basic engine
parameters Design parameter Value

BPR 11 [–]

FPR 1.58 [–]

OPR 46 [–]

T4 (cruise) 1610 [K]

T/WTO 0.29 [–]

Lnac 5.1 [m]

Dnac 3.7 [m]

Fig. 5 Impression of the
engine location

Fig. 6 Aerodynamic model of the airframe-engine integration

3.3 Aerodynamic Design and Flight Mechanics Analysis

The design presented in the previous section is analyzed with VSAERO at various
flight conditions to generate an aerodynamic dataset for the flight mechanics tool-
box. An impression of the aerodynamic model is presented below (Fig. 6). Note
that the drag prediction is done separately with empirical methods [31, 33, 34].
VSAERO is used to calculate the lift distribution and the stability and control deriva-
tives.

With the aerodynamic results, a virtual mission is flown with the flight mechan-
ics toolbox. This mission is consists of: (1) take-off, (2) climb, (3) 11 000 km cruise
flight at 11-km altitude and Mach 0.85, (4) descent, (5) 30-minute hold at 2-km
altitude, (6) 370-km deviation to an alternate airport at 3-km altitude, and (7) ap-
proach and landing. The mission simulation is performed by trimming the full air-
craft model at a large set of points throughout the mission (Fig. 7).

Halfway through the cruise phase, a step climb is performed to improve the cruise
performance. The total amount of fuel required for the complete equals 97 500 kg.
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Fig. 7 Mission simulation

This number should only be used as reference when design changes are analyzed
with the tools and methods presented in this paper. It should not be used for com-
parison with other aircraft of which data is available, either from calculations or
flight tests, since a critical factor in the result is the drag prediction, which is not
the focus of the current study. Drag predictions were made with empirical relations
(see previous sections). For the current design, part of the fuel needs to be stored
in the fuselage due to the fact that the wing volume is much lower than that of a
conventional aircraft. If two aircrafts are considered, a PrandtlPlane and a conven-
tional aircraft that have the same wing span, the same wing area, and that use similar
airfoil with the same thickness over chord ratio, then the PrandtlPlane wing system
has approximately half of the volume of the wing of a conventional aircraft (the
thickness reduces, the chord reduces, and the number of wings increases). This is
a disadvantage of the PrandtlPlane configuration. Additionally, when fuel is stored
in the wing, it is located at a relatively large distance from the cg-position. The
fuel system design should take this into account to make sure that there is no large
cg-shift during flight. This concludes the propulsion system design. It is a recom-
mendation for future work to analyze other engine configurations in combination
with the baseline aircraft design.

4 Flight Control System Design

4.1 Control Surface Sizing

The general layout of the primary control surfaces of the PrandtlPlane, in terms
of number, size, and location, was determined in a conceptual/preliminary design
study [17]. In this study, use was made of VSAERO for the aerodynamic analysis.
The aerodynamic results were implemented in the flight mechanics toolbox to ana-
lyze the overall behavior of the aircraft. An optimization study was done to minimize
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Table 2 Handling qualities requirements for control surface sizing

Requirement Take-off rotation
speed (sea level)

Approach speed
(sea level)

Cruise speed
(10 500 m)

No cross
wind

Cross
wind

No cross
wind

Cross
wind

No cross
wind

Cross
wind

Aircraft trim X X X X X X

Take-off rotation
(7 deg/s)

X X

Push pull manoeuvre
(0.5 to 2.0 “g”)

X X X X

Minimum time to bank
(2.3 s to 30 deg)

X X

One engine in-operative
(trimmed flight)

X X

Steady turn X X

the total control surface area, whilst keeping an adequate level of control power in
all axes. The handling qualities requirements which had to be met are summarized
in Table 2.

These requirements were taken from Coleman and Chuboda [9], MIL-F 8785C
[2], and CS-25 [5]. The overall design process is presented in Fig. 8.

After performing the aerodynamic analysis, a control allocation scheme has to be
derived, describing the relationship between the three pilot inputs and the deflection
of the control surfaces. The direct allocation method [12, 19] was used during the
sizing study. More details on the topic of control allocation are given in Sect. 4.3.
The resulting architecture is presented in Fig. 9. It can be observed that control sur-
faces are present on both the front and rear wings. The inboard controls are mainly
intended for longitudinal control and the outboard controls for lateral control. Each
control however can have multiple functionalities.

4.2 Inherent Flying Qualities

The inherent flying qualities of the PrandtlPlane are analyzed at a single flight con-
dition: 150 m/s, sea level conditions, the normal cg position, and maximum takeoff
weight. In future work, the flying qualities should be analyzed throughout the flight
envelope for all possible cg and weight combinations. First, the nonlinear aircraft
model is trimmed in the specified flight condition, and subsequently, a linear aircraft
model is obtained by numerical perturbation of the nonlinear aircraft model. This
linear aircraft model is used for handling quality analysis. First, the longitudinal
handling qualities are assessed. The phugoid mode has a natural frequency ωph of
0.095 rad/s, and a damping ratio ζph of 0.034. The corresponding handling quali-
ties are of level 2. The damping ratio should be increased to 0.04 to achieve level 1
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Fig. 9 Control surface architecture (top) and dimensions (bottom)

handling qualities. The short period handling qualities for category B flight phases,
such as climb, cruise, loiter, and descent, are represented in Figs. 10 and 11. The
frequency requirements are in the level 1 region and the damping requirements are
in the level 2 region, close to level 1.

The lateral directional handling qualities are analyzed at the same flight condi-
tion. Three distinct modes are identified; the roll mode, the spiral, and the Dutch roll
mode. The spiral mode has a time to double of 332 s, which is well into the level 1
region. The roll mode has a time constant of 3.7 s, which is of level 3. Finally, the
Dutch roll mode has a frequency ωd of 0.18 rad/s and a negative damping ratio ζd

of −0.2352. So, in fact, the Dutch roll is unstable. In summary, the main issues with
respect to the inherent flying qualities are the roll mode and the Dutch roll. In the
future, a design study should be conducted to determine the optimal aircraft shape
with respect to the inherent flying qualities.
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Fig. 10 Short-period frequency requirements; 150 m/s, normal cg position, sea level conditions

Fig. 11 Short-period damping requirements; 150 m/s, normal cg position, sea level conditions
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4.3 Control Allocation

Many theories and allocation methods for managing multiple, redundant control
effectors exist. The general control allocation problem can be defined with Eq. (1):

md = Bδ (1)

Here md is the desired moment vector, B is the aerodynamic effectiveness of
the controls, and δ is the control deflection vector. The control deflection limits are
assumed to be 30 deg for all controls. So, in fact this is a constrained control alloca-
tion problem. For the current application, there is an infinite amount of solutions to
this equation. In this study, it is merely the objective to create a simple and constant
gearing ratio between the pilot inputs and the control deflections. Various objectives
can be defined for the control allocation problem. Typically, the objective is to max-
imize control power. The control usage and remaining control power however can
and should also be included in the problem. For example, if the pilot commands a
very large pitch moment, and all control surfaces are deflected to their limits, then
there is no control power left to generate a rolling moment. Another objective of
a control allocation problem can be to minimize trim drag. For the PrandtlPlane,
it could be useful to use different control allocation schemes throughout the flight
envelope. In the cruise phase it is beneficial to minimize trim drag, whilst at lower
velocities it is beneficial to maximize control power. During approach and landing,
a direct lift control allocation scheme can be beneficial. More details on direct lift
will be presented in the next section. A number of the most widely used control
allocation techniques are listed below.

• Daisy chain
• Direct allocation [12, 19]
• Linear programming
• Fixed point iteration
• Weighted pseudo-inverse [7]
• Weighted least squares [21, 29]
• Cascaded generalized inverse [7]

Finally, it is possible to make the control allocation scheme an integral part
of a multivariable control system, also known as multi-input multi-output control
(MIMO). All these techniques are implemented in the flight mechanics toolbox and
can be used when needed. For the current study, a simple daisy chain control alloca-
tion system has been selected. Finding the best control allocation system is not the
objective of this research study. However, a control allocation scheme is required to
perform simulations and for the flight control law design (Sect. 4.5). In the Daisy
chain method, each control effecter is assigned to one or more control functions with
a constant gearing. The Daisy chain method is chosen because it is very simple; it
can even be implemented mechanically.

So, a differential deflection of the inboard controls on the front and rear wings is
used for pitch control. The outboard controls of the left and right wings are deflected
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differentially for roll control. Yaw control is achieved with the rudders in the vertical
tails. Finally, direct lift control can be commanded by deflecting all the inboard
control surfaces in the same direction.

4.4 Direct Lift Control

The control surface configuration of the PrandtlPlane with primary flight controls
on both the front wing and rear wings makes it possible to use direct lift control in a
straightforward manner. If both the front and rear wing controls are deflected in the
same direction, then this results in a vertical force without a significant change in
pitching moment. There should be a slight gearing ratio between the front and rear
deflections to achieve a zero moment change since a deflection not only changes the
lift coefficient but also the moment coefficient of the wing. The main advantages of
using direct lift control are the following:

• Better precision in flight path control during approach and landing (improved
handling qualities).

• Improved response to atmospheric turbulence (gust load alleviation).
• Precise flight path control for aerial refuelling (handling qualities).

Several research studies have shown that the precision of flight path control im-
proves. Drake [10] reports altitude error improvements of 15%. Especially for large
aircrafts that tend to have sluggish pitch control, direct lift control shows great bene-
fits [10, 36]. A direct lift control system was implemented on the L-1011 Tristar, and
this aircraft had “superior landing characteristics and touchdown accuracy” [41]. On
conventional aircraft, direct lift control can be achieved by using the spoilers or flaps
[20]. On the Tristar, four of the six spoilers on each wing were used. The downside
of using flaps for example is that higher actuation rates and greater actuator power
are required. Furthermore, part of the lift potential of the flap is sacrificed for the
direct lift control function, and thus the approach speed may increase slightly. On
the PrandtlPlane, a direct lift system can be easily implemented by making use of
the mechanical control system.

4.5 Automatic Flight Control System Design

The control architecture described in the previous sections provides two clear oppor-
tunities: (1) a pure moment can be generated by deflecting the front- and rear-wing
controls in a differential manner; (2) direct lift control can be applied by deflect-
ing the surfaces on front- and rear-wing simultaneously in one direction. A mix
of these two distinct control strategies can also be applied. These two opportuni-
ties are exploited in a novel automatic control law for the PrandtlPlane. The basic
method used is model-based inversion flight control, as described by Yomchinda
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and Horn [45], who successfully applied this technique to the design of a tilt rotor
flight control system. There are several advantages to this technique [39]. First, it
is possible to specify the desired response. Second, the controllers can be devel-
oped without having to tune gains. This is a clear advantage in the conceptual and
preliminary design phase when typically many aircraft configurations are analyzed.
To obtain the best handling and stability characteristics, tuning should be applied.
However, this can be done in the detailed design phase. Third, gain scheduling is not
a large task anymore. Altogether, this control technique can be applied in an auto-
matic design environment, which makes it perfectly suitable for this research study.
Model-based inversion flight control is used in this study to provide a rate command
(RC) response type in the longitudinal, lateral, and directional axes. An additional
outer loop is designed to provide direct lift control (DLC). This additional loop is
designed using classical techniques. The overall schematic of the control system is
presented in Figs. 12 and 13.

Two main control loops can be observed in the longitudinal control system. One
is designed to create a pitch rate command response type by applying a differential
deflection of the front and rear control surfaces. The other (vertical) control loop is
used to control the height or height rate by applying a combined deflection. If this
second control loop is active, then the commanded pitch rate is set equal to zero. The
height control system consists of an inner loop, controlling the height rate, and an
outer loop which controls the height and creates a height-rate command. The height-
rate command signal is limited in the height control loop to prevent excessive control
usage. Both loops (height and height-rate) are designed with classical techniques.
The lateral directional control system consists of two control loops. The inputs to the
lateral directional control system are a commanded roll rate and a commanded yaw
rate. The roll and yaw rates are measured and used as feedback variables. Addition-
ally, a turn coordination system is present. During a coordinated turn, the aircraft
has a constant pitch rate and a constant yaw rate, which are functions of pitch atti-
tude and roll attitude [26]. These rates are added to the pilot command such that the
pilot does not have to apply longitudinal or directional inputs during a turn.

Automatic flight control system design is done for only one flight condition.
A linear aircraft model was obtained by numerical perturbation of the full nonlinear
aircraft model at 150 m/s and sea level. The linear aircraft model consists of nine
rigid body states, 11 inputs, and one output. The inputs are the 10 control surface
deflections and the throttle position. The altitude is included as output because it
will be used as feedback for the direct lift control loop.

ẋ = Ax + Bu, (2)

y = Cx + Du, (3)

x = [
φ θ ψ p q r u v w

]
, (4)

u = [
δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δthrottle

]
, (5)

y = [h]. (6)
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After the control system is designed with the methods described in detail by Yom-
chinda and Horn [45], it is implemented on the full nonlinear aircraft model. Aircraft
responses and the control usage as a result of a pilot input are presented in Figs. 14,
15, and 16. Three different pilot commands are given; a pitch rate command, a roll
rate command, and a height command with the direct lift system engaged. All sim-
ulations are performed with the full nonlinear aircraft model. Pilot inputs start at
t = 1 s, and hence the trim condition can be observed from 0 to 1 s.

It can be observed that pitch rate tracking (Fig. 14) is accurate and fast. The rise
time (to 90% of the desired value) is 1.53 s, settling time to within 5% of the final
value is 2.34 s, and the overshoot is 0%. A maximum deflection change of approx-
imately 3 deg is required from the pitch control surfaces to achieve this response.
Similar observations can be made for the roll response to a lateral step input. The rise
time is 0.49 s, settling time is 0.66 s, and the overshoot is 0%. The control activity re-
quired for this fast response is relatively large. Approximately 15 deg of control sur-
face deflection is required. Finally, the direct lift capability is demonstrated. A height
change of 1 m is commanded. A very precise tracking of the height can be observed.
Rise time is 1.27 s, settling time is 1.44 s, and the overshoot is 0%. These time do-
main results show the potential of the control configuration of the PrandtlPlane. A
future investigation should include detailed stability analysis, control law design for
the complete flight envelope, and robustness analysis for cg and weight variations.
Furthermore, piloted simulator trials should be conducted to investigate the flying
qualities of both the control law and the bare airframe. The aim of the current study
is merely to demonstrate the potential of the PrandtlPlane configuration, including
the direct lift capabilities, and to show the advantage of using the model-based in-
version control technique in the conceptual and preliminary design phase.

5 Conclusions and Recommendations

The propulsion system and flight control system design is conducted for a 300-
passenger box-wing configuration, designated the PrandtlPlane. The best propulsion
system configuration for this size aircraft consists of two more electric turbofans at
the tail of the aircraft. A larger size PrandtlPlane might benefit from large open-
rotor systems underneath the rear wing. The box-wing configuration places some
constraints on the fuel system design due to the lower volume compared to a con-
ventional wing system. Analysis of the inherent flying qualities demonstrates that
the roll mode and the Dutch roll mode are inadequate. The aircraft shape and mass
distribution should be redesigned in a future study to provide good flying qualities
in the lateral directional axes. The longitudinal flying qualities are considered to
be good, although small improvements could be obtained with respect to the short
period damping ratio. A novel flight control law was developed using model-based
inversion control techniques to prove the potential of the control configuration of the
PrandtlPlane. The aircraft has primary control surfaces on the front and rear wing.
Thus, a pure moment can be created by differential deflection of the controls, and
a direct lift control can be applied by a combined deflection. This makes precision
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Fig. 14 Longitudinal aircraft response to a pitch rate command (top) and control activity (bottom)
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Fig. 15 Lateral aircraft response to a roll rate command (top) and control activity (bottom)
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Fig. 16 Longitudinal aircraft response to a height command with direct lift (top) and control
activity (bottom)
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control of the flight path much easier than that of conventional aircraft. The model-
based inversion control technique proves to be very useful in the conceptual and
preliminary design phase because it does not require tuning of the gains. During
all design efforts, the use is made of a flight mechanics toolbox. This Matlab-based
toolbox can automatically construct flight mechanics models, which makes it highly
suitable in a conceptual/preliminary design environment.
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