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Foreword 

Space Vehicle Dynamics and Control by Bong Wie is a comprehensive textbook 
that incorporates the latest methods used for the analysis of spacecraft orbital 
dynamics and control, spacecraft attitude dynamics and control, and spacecraft 
structural dynamics and control. In addition, the necessary mathematical tools are 
provided for modeling, analysis, and control of dynamic systems. The text is a 
companion volume to the previously published AIAA Education Series text, An 
Introduction to the Mathematics and Methods of Astrodynamics, by Richard H. 
Battin. The author's extensive knowledge of the subject and his experience as a 
professor while teaching the subject matter at Arizona State University, Tempe, 
Arizona, are reflected in this volume. 

In this text spacecraft dynamics is treated as a dynamic system with emphasis 
on practical applications, typical examples of which are the analysis and redesign 
of the pointing control system of the Hubble Space Telescope and the analysis of 
an active vibrations control for the COFS (Control of Flexible Structures) Mast 
Flight System. The material is organized into four major areas: 1) Dynamic Systems 
Modeling, Analysis, and Control, 2) Orbital Dynamics and Control, 3) Attitude 
Dynamics and Control, and 4) Structural Dynamics and Control. Thus all the 
important aspects of spacecraft control are covered. Another important feature is 
the inclusion of exercise problems that form integral parts of the text. 

The Education Series of textbooks and monographs, published by the American 
Institute of Aeronautics and Astronautics, embraces a broad spectrum of theory 
and applications of different disciplines in aeronautics and astronautics, including 
aerospace design practice. The series also includes texts on defense science, engine- 
ering, and management. The complete list of textbooks published in the series 
(over 50 titles) can be found on the end pages of this volume. The series includes 
teaching texts as well as reference materials for practicing engineers, scientists, 
and managers. 

J. S. Przemieniecki 
Editor-in-Chief 
AIAA Education Series 



Preface 

This textbook is intended to provide the reader with a coherent and unified flame- 
work for mathematical modeling, analysis, and control of space vehicles. Space- 
craft dynamics and control problems of practical and/or theoretical interest are 
treated from a dynamic systems point of view. 

To cover a variety of dynamics and control problems of orbital, rotational, and 
structural motions of space vehicles, this textbook is organized into four separate 
parts. 

Part 1 (Chapters 1 and 2) provides a comprehensive introduction to dynamic 
systems modeling, analysis, and control; it provides the necessary background 
material for the rest of the text. Chapter 1 is intended as a summary of many of 
the useful results in classical mechanics and dynamic systems theory. Chapter 2, 
which is somewhat independent of the rest of the text, is concerned with dynamic 
systems control. In particular, emphasis is placed on both classical and modern 
robust control of uncertain dynamic systems. 

Part 2 (Chapters 3 and 4) is concerned with orbital dynamics and control of 
space vehicles. Chapter 3 deals with the fundamental problems of orbital me- 
chanics, such as the two-body and restricted three-body problems. Chapter 4 is 
concerned with orbital maneuvering and control problems. The problems of orbital 
transfer, rendezvous, and orbit control are treated with special emphasis on a halo 
orbit determination and control problem. 

Part 3 (Chapters 5-7) deals with attitude dynamics and control of rigid space- 
craft. Chapters 5 and 6 are concerned with the rotational kinematics and attitude 
dynamics of rigid spacecraft, respectively. Chapter 7 deals with rotational ma- 
neuvering and attitude control problems of rigid spacecraft under the influence of 
reaction jet firings, internal energy dissipation, or momentum transfer via reaction 
wheels or control moment gyros. 

Part 4 (Chapters 8-10) is concerned with structural dynamics and control of 
flexible spacecraft. Chapter 8 provides basic physical concepts and mathemati- 
cal tools necessary for the modeling, analysis, and control of structural dynamic 
systems in space. Chapter 9 is mainly concerned with the analysis and design of at- 
titude control systems for spacecraft in the presence of structural flexibility and/or 
propellant sloshing. Active structural vibration control problems are also treated 
in Chapter 9. Chapter 10 deals with robust fuel- and time-optimal maneuvering 
control problems of flexible spacecraft and robotic manipulators in the presence 
of structural modeling uncertainties. 

Because of the limited scope of the book, many other important topics, such 
as orbit and attitude determination, stability of multispin satellites, optimal or- 
bit transfer, and multiflexible body dynamics, are not treated in detail. However, 
such interesting topics are discussed briefly at appropriate places throughout the 
text. 

xi 



xii 

This textbook is intended for use in a variety of undergraduate or graduate 
courses in dynamics, dynamic systems and control, dynamics and vibration, space- 
flight dynamics, astrodynamics, spacecraft dynamics and control, and structural 
vibration control, with proper combinations of the material from the book. 

For example, Chapters 1, 3, 5, and 6 are suitable for a one-semester course in 
dynamics with emphasis on applications of dynamic systems theory. Chapters 1 
and 2 contain enough material for a one-semester course in dynamic systems and 
control at the senior or graduate level. Chapters 3-7 are suitable for a one-semester 
course in spacecraft dynamics and control at the senior or graduate level; however, 
control-related topics in these chapters may be omitted for a junior-level course 
in spacecraft dynamics. Chapters 7-10 (also Secs. 2.6, 2.7, and 4.7) are intended 
mainly for either a graduate level course or self-study by practicing engineers 
and researchers who are involved in dynamics and control problems of complex 
spacecraft. 

Prerequisite to reading this text is a thorough knowledge of vector and matrix 
algebra, calculus, ordinary differential equations, linear system dynamics, and en- 
gineering mechanics. Chapter 1 provides a summary of such necessary background 
material. Some familiarity with structural dynamics and partial differential equa- 
tions is presumed for studying Chapter 8 on flexible spacecraft dynamics. The 
reader is also presumed to have some acquaintance with feedback control for 
studying Chapter 2 on dynamic systems control. 

The exercise problems, which appear at appropriate places throughout the text, 
form an integral part of the text, and they extend the subject matter covered. Hence, 
the problems should be worked out prior to studying the following sections. Certain 
problems may require the use of computer software such as MATLAB TM for the 
analysis, control design, and numerical simulation. This book assumes that the 
reader has access to computational software such as MATLAB on a personal 
computer. 

References cited in the text are listed at the end of each chapter. A bibliography 
is provided at the end of the book for those readers who wish to pursue further 
research in dynamics and control of space vehicles. No attempt was made to 
provide a complete bibliography nor to provide the original sources of the subject 
matter. The citation of more of my own technical papers, mostly coauthored with 
my former graduate students and published in the Journal of Guidance, Control, 
and Dynamics, does not indicate any measure of their relative importance to the 
subject; they are frequently cited in this book simply because numerous sections 
of this book are, in fact, based on those papers. 

I am indebted to many persons without whose previous work this text would 
not have been possible. In particular, special thanks go to my former graduate 
students: Wayne Warren, Tobin Anthony, Marcelo Gonzalez, Evan Wedell, Kuk- 
Whan Byun, Ravi Sinha, Qiang Liu, David Cielaszyk, and Jianbo Lu for their 
hardworking, creative research efforts. Their contributions to numerous sections 
of this text are gratefully acknowledged. 

I would like to thank many of my professional colleagues, including Carl Ples- 
cia, John Lehner, Nobi Furumoto, Peter Barba, Arun Banerjee, and Peter Chu (at 
Ford Aerospace and Communications Corporation, Palo Alto, California); Jason 
Speyer, David Hull, Roger Broucke, and Heim Weiss (at the University of Texas at 
Austin); David Schmidt, Karl Bilimoria, and Rafael Livneh (formerly at Arizona 



xiii 

State University); Christopher Heiberg and David Bailey (Honeywell Space Sys- 
tems, Glendale, Arizona); and Srinivas R. Vadali and John Junkins (Texas A & M 
University) for their direct and indirect contributions to this book. In addition, I 
would like to thank the many students in my classes at Arizona State University 
over the past several years. They have patiently read through many drafts of this 
book and have made numerous corrections. 

I am also indebted to John Sunkel, David Geller, Kenneth Cox, Frank Bauer, 
Harold Frisch, Stanley Carroll, Rudeen Smith-Taylor, and Jerry Newsom at NASA 
for their support through various research projects. Certainly, this book would not 
have been possible without such support from NASA. Special thanks also go to the 
Department of Control Engineering and the Department of Aerospace Engineering 
at Seoul National University for providing me an opportunity to use my draft text 
in two graduate courses in dynamics and control during my sabbatical leave in 
1995. The effort of writing this book has been in part supported by the Korea 
Science and Engineering Foundation. 

Finally, I wish to thank my parents, my wife Sang, and my two sons Brian and 
Chris, for their support and sacrifice. In particular, my sincere thanks go to my 
father (Professor Emeritus S.-K. Wie of Aerospace Engineering at Seoul National 
University) and Professor Emeritus Arthur E. Bryson, Jr., at Stanford University for 
their advice and guidance throughout the course of my education and professional 
career. This textbook is therefore dedicated to my parents and family and Arthur 
Bryson for their inspiration and support. 

Bong Wie 
May 1998 
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Dynamic Systems Modeling, 

Analysis, and Control 



1 
Dynamic Systems Modeling and Analysis 

This chapter provides mathematical tools and physical concepts that play essen- 
tial roles in the modeling and analysis of  dynamic systems. Fundamental concepts 
in classical mechanics essential to developing mathematical models of  dynamic 
systems are emphasized. A set of  differential or difference equations used to de- 
scribe a physical system is referred to as the mathematical model of  the system; 
however, no mathematical model of  a physical system is exact. This chapter will 
also acquaint the reader with some of  the basic definitions and general results in 
dynamic systems theory, which are applicable to any dynamic systems that are 
described by ordinary differential equations. This chapter provides a summary of  
many of the useful results in classical mechanics and dynamic systems theory. 

1.1 Matrix and Vector Analysis 

1.1.1 Introduction 

It is assumed that the reader has a basic working knowledge of  linear algebra as 
well as vector analysis. This section provides a summary of  the basic definitions 
and fundamental concepts in matrix and vector analysis.* 

Scalar and v e c t o r .  A quantity that is characterized by magnitude only is 
called a scalar; that is, a scalar is simply a single, real number. Typical examples 
of scalar quantities in dynamic problems are mass, energy, and time. A quantity 
having both direction and magnitude is called a vector, t Typical vector quantities 
are velocity, acceleration, force, and moment. 

M a t r i x .  A rectangular array of  elements, which may be real numbers, complex 
numbers, or functions, is called a matrix. A matrix A of dimension rn x n is denoted 
by 

r 
ail at2 .. - a l n  

021 022 . . .  a2n 
A = [ a i j ]  :-- . . 

L a m  I a m 2  " " " a m n  

where aij denotes the i j t h  element of  the matrix A; this matrix has m rows and 
n columns. If m = n, the matrix A is called a s q u a r e  m a t r i x  and n is called its 

*Matrix algebra, presently of fundamental importance in various fields of engineering and science, 
was first introduced by Arthur Cayley (1821-1895), whereas three-dimensional vector algebra was 
developed by John Gibbs (1839-1903). 

t The terms "scalar" and "vector" are attributable to William Hamilton (1805-1865). 
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a) 

3 h b, z 1 
k 

'31 a2 2 l J y 

Fig. 1.1 Rectangular Cartesian reference frame with orthogonai basis vectors 
{al, ~'2, ~'3} or { i ,  i X } .  

order. The direction cosine matrix and the inertia matrix are examples of  3 x 3 
square matrices. A rectangular matrix of  dimension n x 1 is called a column matrix, 
whereas a rectangular matrix of  dimension 1 x n is called a row matrix. 

Three-dimensional vector space and basis vectors. A reference flame, 
also called a coordinate system, with a right-hand set of three mutually orthogonal 
unit vectors, represented in set notation by {El, a2, a3 }, is illustrated in Fig. 1. l a. 
Such a set of orthogonal unit vectors forms a rectangular (orthogonal) Cartesian 
coordinate system of a three-dimensional vector space. The three mutually per- 
pendicular lines shown in Fig. 1.1 a are called, respectively, the first, second, and 
third axes of  the rectangular Cartesian coordinate system. 

A symbol with an overhead arrow indicates a vector in this book, although most 
books use a boldface symbol to indicate such a vector quantity. (An overbar or 
underbar is also commonly used to distinguish vector quantities in hand-written 
material or at the blackboard.) In the literature, a set of  unit vectors {i, j ,  k}, 
associated with the x, y, and z axes, is often employed to represent a rectangular 
Cartesian coordinate system of a three-dimensional vector space, as illustrated in 
Fig. 1.lb. 

In general, sets of  vectors {El, a2, a3} or {i, j ,  k}, whether the vectors are 
orthogonal to each other or not, are called basis vectors or simply bases of  a three- 
dimensional vector space, if they are linearly independent and any vector can be 
uniquely expressed as a linear combination of  El, a2, and a3. That is, basis vec- 
tors are not necessarily of  unit magnitude or mutually orthogonal. Consequently, 
a nonorthogonal Cartesian coordinate system consists of  straight-line axes that 
are not perpendicular to each other. The most familiar examples of  non-Cartesian 
(curvilinear) coordinate systems are the cylindrical and spherical coordinate sys- 
tems consisting of  orthogonal basis vectors. Throughout this text we shall employ 
a right-hand set of  three mutually orthogonal unit vectors as bases of  the three- 
dimensional vector space, unless otherwise stated. 

Representation of a vector. Consider an arbitrary vector £, which is ex- 
pressed as a linear combination of  the basis vectors El, E2, and E3; i.e., let 

3 

£ = xl 61 + x2 62 + x3 63 -= ~ xi 6i 
i = l  

(1.1) 
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where the scalar coefficients xl, x2, and x3 are called the components of the vector 
£. For notational convenience, the summation sign in Eq. (1.1) is sometimes omit- 
ted when one adopts the so-called summation convention traditionally used in 
tensor analysis, in which scalars, vectors, and matrices are often classified as 
zero-order tensors, first-order tensors, and second-order tensors, respectively. The 
summation convention and the more general but less familiar tensor notation will 
not be used in this book, however. 

Using matrix notation, we can rewrite Eq. (1.1) as 

ix] .1~ = [al a2 a3] x2 (1.2) 
x3 

in which we have a somewhat unconventional matrix of  the form 

[al a2 a3] 

with vectors as its elements. Such a special matrix with vectors as its elements is 
sometimes called a vectrix as suggested in Hughes. 1 Although we may simply call 
a rectangular array of  any elements a matrix, such a vectrix should be distinguished 
from a standard matrix. 

The column matrix in Eq. (1.2) denoted by 

X ~ X 2 
X3 

is referred to as the representation of the vector ~ with respect to the basis vectors 
{al, a2, a3}. The column matrix x is also frequently referred to as a "column 
vector," or simply a "vector," in the literature, in which such a column vector is 
often said to be a tensor of  first order. Although a column vector x should be 
distinguished from the vector E itself, it is also called a vector in this book, though 
the meaning should be clear from the context and in general we must be clear 
on what is meant by a vector. Throughout this text, a lowercase boldface symbol 
indicates a column vector and an uppercase boldface symbol indicates a matrix, 
unless otherwise stated. 

Throughout this text a column vector will also be denoted by 

X = (Xl, X2, X3) 

The transpose of  a matrix is denoted by the superscript T, and the transpose of  a 
column vector x becomes a "row vector" denoted by 

X T = [X 1 X2 X3 ] 

Similarly, other vectors ~ and ~ can be expressed in terms of  basis vectors 
{a], a2, a3} as follows: 

' I'l IYl 
Y = Z y i a i = [ Y l  Y2 Y31 a2 = [ a l  a2 a3] Y2 

i=1 a3 Y3 

, [,11 [z, 1 z = Z z i a i =  [zl z2 z3] a2 ---- [al a2 a3] z2 
i=l ~3 z3 
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Y = ( Y l ,  Y2, Y3) = [Yl 

z = ( z ~ ,  z2, z3) = [zt 

[Y'] 
Y2 y3] T = Y2 

Y3 

[z l 22 23] T = Z2 

Z3 

1.1.2 Matrix Analysis 
Matrix addition and multiplication. Let A = [aq]m×, and B = [bij]mxn be 

m x n matrices with ijth elements of  aij and bij, respectively. Then we have 

A 4- B = [aij i bij] 

For A = [aij]p× q and B = [bij]q×r, we have AB = C = [cij]p×r where 

q 

Cij = ~ aikbkj 
k=l 

If  AB = BA, then A and B are said to commute. In general, AB # BA. 

Transpose of a matrix. The transpose of  a matrix A = [aij] is denoted by 
A T and A T = [aji]. We also have 

( A 4 - B )  r = A  T + B  y 

(AB) y = B r A  y 

Squaromatrix. A matrix with the same number of  columns and rows is called 
a square matrix. A square matrix is often called a matrix of order n, where n is the 
number of  columns (or rows). A diagonal matrix A of  order n is often denoted by 

A = diag ( a l l ,  a22 . . . . .  ann) 

An identity or unit matrix is denoted by 

I = diag (1 . . . . .  1) = [~ij] 

where ~ij is called the Kronecker delta defined as 

1 i f / = j  
Sij = 0 if i % j 

In the study of  dynamics it is often useful to use both vector and matrix notation to 
represent complex mathematical or physical expressions. Some basic mathematical 
facts in vector and matrix analysis, which will be used frequently in this text, are 
summarized as follows. 
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Symmetric matrix. A matrix A is said to be symmetric if A = A r.  A matrix 
A is said to be antisymmetric or skew-symmetric if A = - A  T. To be precise, we 
have to state that a matrix A is said to be symmetric if and only if A = A T. That 
is, mathematical definitions should be understood to be if and only if statements, 
even though it is customary in mathematics to omit the words "and only if" from 
definitions. Mathematical theorems are not always if and only if statements, and 
such brevity is never used for theorems. 

Determinant of a matrix. Let A - - - -  [aij] be an n x n square matrix with the 
ijth element of  aij. Then the determinant of  the matrix A, expressed in terms of  
the cofactors of  each element of  the ith row, is given by 

n 

]A[ = ~f'~ a i j c i j  = ai lCi l  -'}-ai2ci2 Jc- . . . -~ -a inCin  (1.3) 
j=l  

where cq is the ijth cofactor of A defined as 

Cij = ( - -1 ) i  + J M i j  

and Mij, called the ijth minor, is the determinant of  the reduced matrix formed by 
omitting the ith row and the j th  column of  A. For example, we have 

~i 2 X3 
Yl Y2 Y3 = x l (Y2Z3 - Y3Z2) - x2(Y lZ3  - Y3Zl) -t- x3(Y lZ2  - Y2Zl)  

z2 z3 

Similarly, the determinant of  A may be expressed in terms of the elements of  the 
j th  column, as follows: 

tl 

]AI = y ~  a i j c i j  = a l j C l j  + a 2 j c 2 j  -I- . .  . --}- anjCnj (1.4) 
i=1 

A square matrix A is said to be singular if IAI = 0 and nonsingular if IAI ~ 0. 
The rank of  a matrix is defined as the maximum number of linearly independent 
columns or rows. An n x n square matrix with rank less than n is a singular matrix. 
Note that IAI = IArl and IABI = IAI IBI i fA  and B are square matrices. Also note 
that I - A I  = ( -  1)" [AI where n is the order of  the matrix A. 

Principal minors of a square matrix. The principal minors of, for example, 
a 3 x 3 matrix A are 

a a2] a a31 Fo22 a23 
a l l '  a22' a33' a21 a22 ' a31 a33 ' a32 a33 ' 

a l l  a12 a13 
a21 a22 a23 
a31 a32 a33 

and the leading principal minors of a 3 x 3 matrix A, denoted by Ai(A), are 

al  I ] a12 a13 
AI ~ a l l '  A2 ~ a121 A3 = :1211 a22 a23 

021 022 ' 031 a32 a33 
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Trace of a matrix. T h e t r a c e o f a s q u a r e m a t r i x A  = [ aij ] of order n is defined 
to be the sum of the elements of  the main diagonal of A; i.e., 

I t  

tr (A) = E aii (1.5) 
i=1 

Inverse of a matrix. 
by A - l  , is defined as 

A _  1 = adj A if IAI =/= 0 
IAI 

where the adjoint matrix of  A, denoted by adj A, is defined as 

a d j A  = [cij] r = [(-1)i+J Mij] r 

where cij and Mij are, respectively, the i j th cofactor and minor of  A. 
I f  A and B are nonsingular matrices, then 

( A B )  - I  = B - 1 A - t  

By definition, we have 

A - I A  = A A  - l  = I 

where I is an identity matrix. Also,  we have 

( A t )  -1 = ( A - I )  r = A - r  

The inverse of  a nonsingular square matrix A, denoted 

(1.6) 

Orthonormal matrix. A square matrix A is called an orthogonal matrix if 
A A  r is a diagonal matrix, and it is called an orthonormal matrix if A A  r is an 
identity matrix. For an orthonormal matrix A, we have A -1 = A T and IAI = + l .  
Note that i f A A  r is a diagonal matrix, then A A  r = A r A .  

Cramer's rule. Given Ax  ---- b where, for example, 

to,, a,2 a,31 Ex,] Ebl 
A=la21 a22 a 2 3 [ ,  x =  x2 , b =  b2 

La31 a32 a 3 3 /  x3 b3 

and if  IAI =~ 0, a unique solution for x can be obtained as 

x I ~--- 
bbl3 a12 a¿3 

b2 a22 a23 

a32 033 

IAI 
X 2 

a l l  bl a13 
a21 b2 a23 
a31 b3 a33 

IAI 

where 

a l l  

IAI = a21 

a31 

a12 a13 

a22 a23 

a32 a33 

x 3 

al l  a12 bl 
a21 a22 b2 
a31 a32 b3 

IAI 
(1.7) 
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Inner product. Given two column vectors x = (x l ,  x2, x3) and y = (Yl, Y2, 
Y3), the inner or scalar product of  x and y is defined as 

as  

[ y' ] ± 
x T y  = [XI X2 X3] Y2 = XlYl +x2Y2 +x3Y3 = xiYi (1.8) 

Y3 i=1 

Outer  product.  The outer product of  two column vectors x and y is defined 

Exll rXyl x y2 x y3] 
xY r =  X2 [Yl Y2 Y 3 ] = I x 2 Y l  x2Y2 xzy3 (1.9) 

x3 Lx3yl x3Y2 x3Y3 

Cross  product.  The cross product of  two column vectors x and y is defined 
as  

[0--X3 XzI[yl ] Fx2Y3--x3Y2] 
x x y =-- x3 0 - x l  Yz = [x3yl  - xly3 (1.10) 

- x 2  xl 0 Y3 kx ly2  -- x2Yl 

The cross product of  two column vectors is defined only for the three-dimensional 
vector space, although the inner or outer product of  two column vectors is defined 
in general for the n-dimensional  vector space. 

Eigenvalues and eigenvectors. Let A be an n x n square matrix. Then a 
scalar ~. is called an eigenvalue of  A if  there exists a nonzero n x 1 column vector 
e such that 

[ k I -  A ]  e = 0 ( 1 . 1 1 )  

where I is an identity matrix of  order n. The eigenvalues are the roots of  the 
nth-order characteristic polynomial  equation: 

J~.I - AI = ~.'* + al~. n-I q- " ' "  -1"- an-l~. + an = 0 ( 1 . 1 2 )  

where al  . . . . .  a .  are scalar coefficients. Any nonzero vector ei satisfying 

[)~iI - -  A] ei = 0 

is called the ith eigenvector of A associated with the ith eigenvalue ~.i. Note that 
~.i(A T) = ~.i(A) and 

1 
~.i(A -1 ) --  

~.i(A) 

Given an n-dimensional  vector x, the Euclidean norm of  Norm of a vector. 
x is defined as 

I l x l l -  - -  + + Xn 

which is also called the two-norm or the spectral norm of  x. 
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Sign-definiteness of a scalar function of a vector. A scalar function of  a 
vector, f (x) ,  is said to be l) positive definite if f (x )  > 0 for all nonzero x and 
f (0 )  = 0, 2) positive semidefinite if f (x )  _> 0 for all nonzero x and f (0 )  = 0, 
3) negative definite if f (x )  < 0 for all nonzero x and f ( 0 )  = 0, and 4) negative 
semidefinite if f (x )  < 0 for all nonzero x and f ( 0 )  ---- 0. Otherwise, it is said to 
be indefinite. The sign-definiteness of  f (x )  can also be defined, in general, for all 
x ~ x* such that f (x*)  = 0 where x* is a nonzero constant. 

Sign-definiteness of a matrix. An n x n square matrix A is said to be 1) 
positive definite if f (x )  = x r A x  > 0 for all nonzero x, 2) positive semidefinite if 
f (x )  = x r A x  _> 0 for all nonzero x, 3) negative definite if f (x )  = x r A x  < 0 for 
all nonzero x, and 4) negative semidefinite if f (x )  = xTAx _< 0 for all nonzero x. 
Otherwise, it is said to be indefinite. 

The scalar function 

n n 

f (x)  = xT Ax = ~-'~ ~"~ aijxixj 
i = 1  j = l  

is called a quadratic form of A. Because any square matrix A can be decomposed 
into 

' [ A - A  r ]  A =  ½ [ A + A T ] + 7  
J • • 

symmetric  ant isymmetr ic  

(1.13) 

and x r B x  = 0 for any antisymmetric matrix B, the definiteness of  a matrix is the 
same as that of  its symmetric part. 

All of  the eigenvalues of  a symmetric matrix are real, and the definiteness of  a 
symmetric matrix A can be tested by checking the signs of  the eigenvalues ~.i(A) 
or the signs of  the leading principal minors Ai(A); i.e., an n x n symmetric matrix 
A is said to be 1) positive definite if all ~-i > 0 or if all Ai > 0; 2) positive 
semidefinite if all Li >- 0 or if A 1 > 0,  A2  >_ 0 . . . . .  A n _  l ~ 0 ,  A n = 0 ;  3) 
negative definite if all ~-i < 0 or if A1 < 0, A2 > 0, A3 < 0 . . . . .  ( -1)nAn > 0; 
and 4) negative semidefinite if all )~i _< 0 or if A1 < 0, A 2 > 0, A 3 < 0 . . . . .  
A, ----0. 

Differentiation of matrices. 
is defined as 

and we have 

The time derivative of  a matrix A(t) - [aij(t)] 

d A ( t ) =  [daij(t)] 

d 
~-~[A(t)B(t)] = dA(t)dt B(t) + A(t)dB(t---~)dt 
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Differentiation of a scalar function of a vector. I f  f ( x )  is a scalar function 
of a vector x, which is itself a function of  time t, then we write t 

d f  Of dx 
- -  ( 1 . 1 4 )  

dt Ox dt 

For example, if x = (xl, X2, X3), then 

d f  Of dx I Of dx2 Of dx3 
- -  _ _ _ _ + _ _ _ _ + ~  

dt Ox~ dt Oxz dt Ox3 dt 

= [Of/Oxl Of/Ox2 Of/Ox3] JC2 
Jc3 

where Jci - dxi/dt. That is, we have 

of 
[Of/OxI Of/Ox2 Of/Ox3] 

OX 

dx i l] ~X~-- 3~ 2 
dt ~t3 

The row vector Of/Ox is called the gradient vector of the scalar function f(x) .  If  
the gradient vector is defined to be a column vector, then we write 

where Of/Ox = (Of/Oxl, O flax2, O flax3). 

Taylor series expansion of a scalar function of a vector. The Taylor series 
expansion of f ( x )  about x* is given by 

~x0f x* 1 --x*]T ~02f x- f(X) = f(X*) + [X-- X*] + ~[X [X-- X*] + . . .  

where 

(1.15) 

0x2 - 0 x  L 0 x J  -= 

is called the Hessian matrix. All the partial derivatives in Eq. (1.15) are to be 
evaluated at x = x*. 

tThroughout this book, most functions are assumed to be differentiable, unless otherwise stated. 
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Differentiation of a vector function. I f  f i x )  is a vector function of a vector 
x, which is itself a function of t, then we have 

(1.16) 
df Of dx 

dt Ox dt 

where Of/Ox denotes a matrix with the i j th  element of Ofi/Oxj; that is, 

o, 

= L a x s j  

which is called the Jacobian matrix. For example, i f f  = ( f l ,  f2, f3) and x = (xl, 
x2, x3), then we have 

Ei l  o ,ox o ,oxo ,ox [  1 = I °i l°x' Oi lO.  of21Ox31 
3 L Of 3/OXl Of 3/OX2 Of3/OX3 J J¢3 

D ive rgence  of  a vec tor  function. The divergence of f(x) is defined as 

t r [ O f l  div fix) ----- L~xx j (1.17) 

For example, if f(x) = ( f l ,  f2, f3) and x = (xl, x2, x3), then we have 

[ O f ] O f l O f 2 O f 3  
d i v f ( x ) ~ t r  ~xx = ~ x l  + ~ x 2  + ~ x 3  

Consider a vector differential equation of the form 

---- f(x) (1.18) 

where x = (xl . . . . .  x , )  and f = ( f l  . . . . .  f , ) .  The vectors x and fa re  often called a 
state vector and a vector field, respectively. The n-dimensional vector space is also 
called a state space, and the change in a small volume element in the n-dimensional 
state space is given by 

- ~ ( A x l A x z . . .  Ax, )  = Axl . - .  Ax,  - - A x l  + - . .  + 
Ax, dt ~ x n  d'7 / 

= Axl . . .  Ax,  { A~I A~t, [ 
Ax~ + " "  + S~x. I 

= Ax l  . . . A x ,  ~ + " " + Ox, I as Axi  ~ O 

= Axl . . .  Ax,{div i}  

= AXl . . -  Ax,  {div f} (1.19) 

Thus, the volume of a set of points in the n-dimensional state space is said to be 
preserved or conserved if the divergence of its vector field is zero, i.e., if div f = 0. 



DYNAMIC SYSTEMS MODELING AND ANALYSIS 13 

In fluid mechanics, a fluid is said to be incompressible if the divergence of  the 
velocity vector field is zero, i.e., if the volume of  every element of  the fluid is a 
constant for all times. This statement is often referred to as the Liouville theorem 
in dynamic systems theory. 

l°l ,  
companion form: 

A =  0 1 
0 0 
0 0 

Problem 

(a) Find the eigenvalues and eigenvectors of the following matrix in so-called 

(b) Given a scalar function f (xl , x2) = X 2 -JI- 2axlx2 + x 2, show that f (xl, x2) 
is positive semidefinite if [a[ = 1, positive definite if lal < 1, and indefinite if 
l a l >  1. 

(c) Show that the matrix ATA is positive semidefinite for any rectangular ma- 
trix A. 

Hint: Define a scalar function f ( x )  of  the form: f ( x )  = x r A r A x .  
(d) Given a scalar function f ( x )  = x r A x  where A is a square matrix, show that 

Of x r (A  + AT ) 
0x 

02 f  = (A + A r )  
0x 2 

Hint." 

(xTy) = yr ,  (xTy) = X r ,  ~x(AX) = A 

1.1.3 Vector Analysis 
Addition and subtraction of vectors. Given two vectors expressed as £ = 

XI t~l -'l- X2t~2 + x 3 a  3 and 7 = Yl ~71 + y2~Tz + y3a3, we have 

.~ -4- 7 = (Xl q- yl)t~l + (X2 -k- y2)a2 + (x3 -4- y3)t~3 (1.20) 

Dot product. The dot product of two vectors £ and Y, denoted by £ .  Y, is a 
scalar quantity defined as 

£"  7 = 1£1171cos0 (1.21) 

where I£1 and 171 denote the magnitudes of £ and Y, respectively, and 0 is the 
angle between these two vectors. Consequently, we have 

£"  £ = I£12 , Y ' 7  = 1712 (1.22) 

The dot product of two vectors £ and 7 can be considered either as the product 
of l£1 and the orthogonal projection of 7 along £, i.e., 171 cos 0, or as the product 
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of  I)1 and the orthogonal projection of E along Y, i.e., I.~l cosO; we have the 
distributive property for the dot product 

E .  (Y + ~ )  = E - Y  + E ' ~  (1.23) 

For a right-hand set of  orthogonal unit vectors { all, a2, gi3 }, we have 

1 if i = j (1.24) 
E i • a j  = ~ij  = 0 if i ¢ j 

and we further define the following vectrix operation: 

["1 I a2 • [El a2 a3] ~ a2"  a l  a2"  a2 a 2 .  a31  = 1 = [&ij] 

¢~3 a3"  a l  t~3" a2 a3"  (~3 .J 0 
(1.25) 

where Sij is the Kronecker delta. Furthermore, we have 

3~ = X 1 a l  q- X202 + x3¢~3 

= (E .  E,)E,  + (E .  a2)Ez + (E .  E3)E3 (1.26) 

and IEI 2 = x 2 + x  2 + x  2. 
Given two vectors E = xl ~7~ +x2  E2 +x3 ~73 and ~ = Yl ti1 + Y2 a2 + Y3 E3, which 

are expressed in terms of a right-hand set of  orthogonal unit vectors { El, E2, if3 }, 
we have 

3~" .Y = (X1 t~l Jr" X2 a2 + x3 t23)" (Yl El + Y2 a2 Jr" Y3 a3) 

= XlYl(EI " a l )  '~ x lY2(al  • a2)  "}- x lY3(a l  • ¢~3) 

+ x2Yl(a2 • a l )  + x2Y2(a2 • E2) + x2Y3(a2 • a3) 

+ x3Yl(a3 • a l )  -+- x3Y2(t~3 • t~2) q- x3Y3(a3 • a3) [yl] 
= xly l  + x2y2 +x3Y3 = [xl x2 x3] Y2 = x r y  (1.27) 

Y3 

because di • dj = 8ij. 

C r o s s  product .  The cross product of  two vectors ~ and Y, denoted by E x Y, 
is a vector defined as 

x ~ = IZII~I sinO~ = - Y  x ~ (1.28) 

where 0 is the smallest angle between these two vectors and ~ is a unit vector 
perpendicular to both .~ and ~ such that {E, Y, fi} form a right-hand coordinate 
system. Furthermore, the cross product has the distributive property 

E x (Y + z )  = ~ x .~ + E x ~ (1.29) 

For a right-hand set of orthogonal unit vectors { all, a2, a3 }, we have 

a I X a2 ~--- t~3, a 2 X (~3 = a l ,  a3 X a l  = t~2 
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and `71 X `71 = `72 X `72 = 
vectrix operation 

`72 x [`71 `72 `73] =-- `72 x `71 

,73 `73 x `71 

= - `73  0 `71 

`72 --`71 0 

`73 x `73 = 0, and we further define the following 

`71 X `72 `71 X `73q 

`72 X t~ 2 `72 X `73 ] 
`73 x `72 `73 x `73 

(1.30) 

Given two vectors £ = xl `71 + X2 ̀ 72 -I-X3 ̀ 73 and ~ = Yl `71 + Y2 ̀72 "~ Y3 ̀ 73, which 
are expressed in terms of a right-hand set of orthogonal unit vectors { a j, a2, a3 }, 
we obtain 

£ X ; = (XI`71 -'~-X2`72"~-X3`73) X (Y1`71 +Y2`72+Y3`73)  

=(x2Y3 -- x3Y2)`71"l-(X3Yl -- XlY3)`72-}-(xlY2--X2Yl)`73 (1.31) 

The cross product of £ and ~ is ofienwritten in determinant formasfol lows:  

`71 `72 `73 
£ X 7 =  Xl X 2 X 3 (1.32) 

Yl Y2 Y3 

which can also be written as 

3~ X y ~- [`71 `72 

= [`71 `72 

rx2y3 --x3Y2 ] 
`73] ]x3yl xly3 I 

kxly2 x2yl J 

[0 _x3 x2][y,] 
`73] X3 0 --Xl Y2 

--X2 X1 0 Y3 

cross product of x and y 

Scalar triple product. Given three vectors £, Y, and ~, which are expressed in 
terms of a set of orthogonal unit vectors { a l, a2, a3 } as x = y~ xi ai, ~: = Y~ Yi ai, 
and ~ = y~ zi `7i, the scalar triple product becomes 

i i  X2 X3 
"(7 X Z ) =  Yl Y2 Y3 

Z2 Z3 
(1.33) 

The absolute value of the scalar triple product, I£" (Y x z)l, represents the volume 
of a parallelepiped having £, Y, and ~ as edges. We also have 

£.  (~ x ~) = ~.  (~ x £) = ~ - ( £  x ~') (1.34) 



• ~x ol 13odsoa ql.t~ ~ jo 0A.IleA.I.10p Ie!laed oql solouop ~.x~/q)~ oaoq~a 

ere Zx e txo~xe = CP 
(+lr'I) +xp --~ + zxp ~ + , ¢e 

se p+u!elqo oq ue3 (+x 'zx 'tz)~ = ~JO Ie!luza+jj.tp IelOl +ql pue 

(~;t7"I) C#+xp + zozxp + ~0 txp = x p 

sotuoooq xp luommou! uol.ll.sod le.lluoaojjip oql uoq,L "otulzaj oouo.lojoJ 
ue!solae D aeln~uel3oa e jo S.IOI3OA l!un [euo~oqlao ooaqlJo los 13 s[ { go 'zo' t~} oaoqax 

(I#'I) C~gx + zpzx + ~ptx = x 

se possoadxo oq z aO130A uo!l!sod oql 1~'-I 

(017"I) (~)¢ = ~' 

ttuoj zql jo x aOIOZA uo!l!sod 
jo (uo!lounj ao) pl~tl Xele3S e a~p!suo D "Pla!l l~leO$ e 1o IOIOOA lue!pel 9 

(q6c I) 

(e6C I) 

(oSE'I) 

(q8~t) 

(e8£:t) 

(,;) ,o x x x+ zx xx+(zx d) x xp =[(2x£)x x ] 

.,) (';) _ x .x+ zx .x+(zxd). sp xp = [(~ x ~).x] 

Ip lp 
--xr+~'x =(Xx 

Ip tp Ip 
--.x+X.--=(x.r) 
£p - xp p 

lp sp _~ 7: sp = (x :F 

pue 

aAeq a~ pue 

1V o*-~v IV o,--tv lp 
(LCI) m!l =-- m!! =-- 

(z)~ - (iv + t)~ ~v rp 
se pouyop s! 'lp/xp £q polouop 'x jo OAl.ll~A.t.IOp Ottl.ll oq, L "(1)~ = 

"o'! '.atu!l JO uo!launj e s! leql x .IOI3;~A 1~ aap!suo D "SlOIOOA 10 uo!leflue, tott!O 

(9~'I) 
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x(x. z) - x(x .z) = z x (x x r) 
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The gradient vector, or simply gradient, of  the scalar field ~, denoted by grad 
or V~, is in general defined as 

V~b. d.~ = d~b (1.44) 

and the gradient vector is simply expressed in a rectangular Cartesian reference 
frame as 

grad4~ --- V4~ = O~b . Oq~ _ 3xl al + 3~b d2 + - -  (1.45) 
OX2 OX 3 a3 

Thus, the components of  the gradient vector of  a scalar function of  position are 
simply the partial derivatives of  the function with respect to distances along the 
three orthogonal basis vectors. 

Equation (1.45) may be rewritten as 

Vd, b = a,-~x 1 + a23x---- ~ + a3 

and in vector analysis we introduce the nabla vector, V, defined as 

0 0 0 
V ~- al-~x 1 -~ a20x2 q- a30x3 (1.46) 

which is often called the del vector. 

Divergence and curl of n vector field. Consider a vector field fi, which is a 
function of position vector .~, and let fi and E be expressed as 

= U 1 t~l + u202 + u3a3 

-~" = Xlal  q- x2a2 -I'- x3t~3 

where { al ,  a2, '~3 } is a set of  three orthogonal unit vectors and u i = u i(xl, x2, x3). 
The divergence and curl of  a vector u(xl, x2, x3) are then defined as 

div~ = V - fi = Oul OU2 OU3 (1.47a) 
ax--S + + Ox3 

di ~2 ~3 
curl fi -- V x ~ = O/Oxl O/OX 2 O/OX 3 

Ul U2 U3 

(On3 Ou2]  (Ou, O n 3 ) ( O u 2  O u , ) ~  3 (1.47b) 
-- ~X 2 OX 3 ] al '1- ~,,OX 3 ~ a2 + k OXl Ox2 

Note that V - ~ becomes a scalar function whereas ~ - V is a scalar operator; i.e., 
V .  fi ~: fi. V. The curl of  a vector vanishes if and only if the vector is the gradient 
of  a scalar function; i.e., V × fi = 0 if and only iffi = Vq~. Such a vector field fi is 
said to be irrotational or conservative, and ¢ is often called the potential function. 
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The dot product of the del vector with itself becomes a scalar operator, called 
the Laplacian denoted in rectangular Cartesian coordinates Xl, x2, and x3 by 

02 32 /)2 

V . V  -- V a =  3 x-'-~ + ~ + 3 x---~3 

The divergence of the gradient of a scalar function 4Kxl, x2, x3) becomes the 
Laplacian of 4ffxl, x2, x3); i.e, we have 

32~ 32~ a2~ 

V . V q~ = V 2 ep = 3 x---~l + 3 x---~2 + O x---~3 (1.48) 

and V2~b = 0 is called Laplace's equation• 
The following vector identities can be easily verified: 

V . £ = 3  

V . ( £ / x  3) = 0 wherex  = 1£1 

V x £ = 0  

v . ( V x ~ ) = o  

(V x V) x ~ = 0 

P r o b l e m s  

1.2. (a) Given two vectors £ and Y, show that 

1£4-712 = 1£12 + 1~12 ±21£11~1cos0 

where 0 denotes the angle between the vectors £ and Y. This relationship is called 
the cosine law of trigonometry. 

Hint: I £+~12  = ( £ +  Y )  (£ + y). 
(b) Given a vector t5 expressed as (5 = 0)i 6~ + 0)2 b2 + 0)3 63 where { b l, b2, b3 } 

is a set of orthogonal unit vectors, verify that 

[!x, 1 [0 X 62 = -  0) 3 0 --(.O 1 62 
X 63 --0)2 0)1 0 63 

(c) Given a vector £ that is a function of time, show that 

d£  dx 

dt dt 

where x = 121 denotes the magnitude of the vector 2. 
Hint: £ .  £ = x 2. 
(d) Given a vector £ expressed as .,? = xl 51 + x2 52 + x3 £3 where { J j ,  d2, 53 } 

is a set of any three nonzero, noncoplanar vectors, show that 

.,7. (52 x 53) £ .  (53 x & )  £ .  (51 x 52) 
XI - -  51 (a2 X a3) x 2 -  _ x3 -- . 

• " ' a2" (53 x t~l)' a 3 - ( 5 1  X a2) 
Note: J l "  (52 × 5 3 ) =  52-(E3 x 51) = a3" (El x 52). 
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1.3. Given a reference frame A with a set of  nonorthogonal basis vectors { all, a2, 
a3}, a position vector ~ is expressed as 

.1~ = X 1 al n t- x202 + x3a3 

and the differential position increment dE becomes 

d.~ = dXl al + dx21~2 -I" dx3a3 

The total differential of  a scalar function 4, = 4,(E) = 4,(x~, x2, x3) is also given 
by 

04, d4, = 04, dXl n t- 34, dx2 n t- dx3 
Oxl Ox2 

where 84,/8xi  denotes the partial derivative of  4, with respect to xi.  
Show that the gradient vector of  the scalar function 4, can be defined as 

84, V4, = 04, 61 "t- ~ 6 2  "t- 63 
Ox--? ox2 

such that 

V4,. d ;  = d4, 

and {bl, b2, b3} is a new set of  nonorthogonal basis vectors, defined as 

l~ 2 X a3 62 _ a3 X al  63 = al  X a2 
61 = a l .  (a2 x a3) '  a2-( i f3 x a l ) '  a3 .  (tll x ~12) 

Note: The basis vectors {all, a2, a3} and {6j, 62, 63} are called the covariant 
and contravariant basis vectors, respectively.* They are said to be reciprocal to 
one another, and we have di - D i = 8ii and 

1 
61"(62 x 63)- -  al "(a2 x a3) 

1.4. Consider a vector field fi that depends not only on the position vector )~ but 
also explicitly on the time t, i.e., ~ = ~(E, t). Let fi = u jd l  + u2~2 + u3d3 and 
E = Xlal  +X2d2 +x3a3 where {al, a2, a3} is a set of  three orthogonal unit vectors 
of a rectangular Cartesian coordinate system that is assumed to be inertially fixed; 
i.e., {8i} are constant basis vectors. The time derivative of  9~ is simply given as: 
d ; / d t  = ft. 

(a) Show that the time derivative of  ~ can be expressed in vector notation as 

d~ 0~ 
- + ( ~ .  v ) ~  

dt Ot 

Hint: ui = u i (x l ,  x2, x3, t) and dx i /d t  = ui. 
(b) Verify the following vector identities: 

(fi • V)fi i 2 = T V u  - f i x ( V x f i )  

*T . . . . .  he terms covanant, contravanant, and mvanant were introduced by James Sylvester ( 1814-1897). 
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where u = I~1 
V2U = V ( V .  f i ) - -  V X (V X U) 

where V 2 = V . V .  
(c) Show that V x fi = 0 if and only if fi = V4~ where 4~ is a scalar function. 
Note: The vectors fi and Y of this problem, in fact, represent the velocity and 

position vectors of  a fluid particle, respectively. In fluid mechanics, the curl of  the 
velocity vector is defined as the vorticity (or rotation) vector ~ ;  i.e., f2 _= V x ft. A 
fluid is said to be irrotational if ~ - V x ~ = 0 and is said to be incompressible if 
V • fi = 0. The various vector expressions considered in this problem actually can 
be seen in the Navier-Stokes equations of a compressible viscous fluid, described 
by 

d~ 0fi _v 
dt =- at + (fi" V)fi = - 1 V p  + 1)V2fi + 3 V ( V "  fi) 

P 

where ,o denotes the density, p the pressure, v = # / p  the kinematic viscosity, and 
the constant viscosity coefficient of a Newtonian fluid. 

1.2 Classical Mechanics 

In this section, dynamics of a particle and a system of particles are treated from a 
dynamic systems point of  view. A special emphasis is placed on a kinematic prob- 
lem in which a vector is expressed in a rotating reference frame but differentiated 
in an inertial reference frame that is fixed in space or is translating with a con- 
stant velocity. This section also introduces the principles of  analytical dynamics, 
including Lagrange's  equations of  motion and Hamilton's  canonical equations of  
motion. A thorough understanding of the fundamental concepts of  analytical dy- 
namics will provide a solid foundation to developing dynamic systems theory. As 
an introduction to spacecraft dynamics problems of practical concern, a dynamic 
modeling and computer simulation problem associated with the deployment of  
solar panel arrays on actual spacecraft is also treated in this section. However, this 
section is mainly intended as a summary of  many of the fundamental concepts in 
classical mechanics. 

We begin the subject of  classical mechanics with Kepler 's three empirical laws 
of planetary motion. 

1.2.1 Kepler's Laws of Planetary Motion 
Using the painstaking observational data of  Tycho Brahe,* Kepler was able to 

discover some regularities in the motions of  the planet Mars. The regularities were 
then summarized into what are known as Kepler 's three laws of planetary motiont: 

1) The orbit of  each planet around the sun is an ellipse, with the sun at one focus 
(the law of orbits). 

*Tycho Brahe (1546-1601) was the greatest astronomical observer before the introduction of the 
telescope. 

t Johannes Kepler (1571-1630), who was a contemporary of Galileo Galilei (1564-1642), was the 
first astronomer to uphold openly the heliocentric theory of Nicholas Copernicus (1473-1543). 
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2) The radius vector from the sun to a planet sweeps out equal areas in equal 
time intervals (the law of areas). 

3) The square of the orbital period of a planet is proportional to the cube of its 
mean distance from the sun (the law of periods). (The semimajor axis of an ellipse 
is often called the mean distance, although it is not the average length of the radius 
vector with respect to time.) 

These three empirical laws, with the first two laws published in 1609 and the 
third law in 1619, were used later by Isaac Newton (1642-1727) to deduce his 
law of gravity. In 1666, Newton began to think of gravity, and later, in 1687, he 
published his law of gravity and three laws of motion in his Principia. 

Kepler's three laws of planetary motion describe the motion of planets around 
the sun, which is considered to be inertially fixed. In Chapter 3, we shall derive 
these laws of planetary motion by applying Newton's laws of motion and his law of 
gravity to the general two-body problem in which the primary body is not assumed 
to be inertially fixed. 

1.2.2 Newton's Laws of Motion and Law of Gravity 

In Principia, Newton published his three laws of motion, which are valid for 
a particle whose motion is observed in a reference frame that is fixed in space 
or is translating with a constant velocity. Such a nonrotating and nonaccelerating 
reference frame as postulated by Newton is frequently referred to as an inertial 
or Newtonian reference frame. It was, however, Galileo who first introduced the 
concept of absolute acceleration with respect to an inertial reference frame and 
first stated the principle of inertia: a body not subject to external forces moves with 
constant velocity. The principle of inertia is, in fact, Newton's first law, which is a 
special case of his second law. 

Newton's three laws of motion. Classical mechanics, which is primarily 
based on Newton's three laws of motion and his law of gravity, provides the 
framework for the study of orbital and attitude motions of space vehicles. 

Newton's three laws of motion are stated as follows: 
1) A particle remains in its state of rest or uniform, straight-line motion unless 

it is acted upon by forces to change that state; this is the law of inertia. (Note that 
the term "particle" is a mathematical abstraction of a relatively small body and it 
is used interchangeably with the term "point mass.") 

2) The force acting on a particle equals the mass of the particle times its inertial 
acceleration. 

3) For every applied force, there is an equal and opposite reaction force; this is 
the law of action and reaction. 

In vector notation, the second law takes the standard form 

f = mt7 (1.49) 

where f  is the force acting on the particle, m is its constant mass, and t7 is its iner- 
tial acceleration. Force, mass, and acceleration are dimensional quantities whose 
magnitude is defined with respect to a set of the SI units, [Newtons (N), kilograms 
(kg), meters (m), and seconds (s)], or the U.S. customary units, [pounds (lb), slugs 
(slug), feet (ft), and seconds (s)]. (See Table 1.1.) The inertial acceleration is related 
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Table I .I  Conversion of  units  of  measure 

Units Equivalents 

N kg.m]s 2 
lb slug-ftls 2 
1 ft 0.3048 m 
1 slug 14.5939 kg 
1 lb 4.4482 N 

to the inertial velocity fi and the inertial position 7, as follows: 

d~ d27 
a _ _ - -  ( 1 . 5 0 )  

dt dt 2 

In formulating the equation of  motion of a particle translating in an inertial 
reference frame, Newton's  second law, force equals mass times acceleration, is 
often rearranged as mass times acceleration equals force, or acceleration equals 
force divided by mass; i.e., we write the equation of motion of a particle as 

mr7 = j7 or ~ = _J7 (1.51) 
m 

Furthermore, integrating Eq. (1.51) for f = 0, we obtain the inertial velocity as 

d 7  
fi = - -  = constant vector 

dt 

Thus, it is said that Newton's  first law is a simple consequence of his second law. 
In vector notation, the third law for a system of N particles takes the form 

J~j = --f~'i (i, j = 1 . . . . .  N)  (1.52) 

where ~,~i denotes the force acting on the ith particle by the j t h  particle and, 
conversely, f j i  d e n o t e s  the force acting on the j th  particle by the ith particle. Note 
that the interaction forces between any two particles are assumed to be collinear 
and f/i = 0 because there are no interacting forces between a particle and itself. 
Consequently, the internal action and reaction forces of  a system of N particles 
satisfy the following relationships: 

N N 

E L = 0 (1.53) 
i=1 j = l  

and 

N N 1 N N 

~ 7 i  X fiij = "~ t~l Z(7i  --7j) X f ' j  = 0  
i=l j=l = j=l 

(1.54) 

because f j  is collinear with the relative position vector, 7 i - -  r j, between two 
particles. 
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Newton's law of gravity. Another important physical law in classical me- 
chanics is Newton's law of  gravity. According to Newton's law of  gravity, two 
particles of  masses ml and m2, separated by a distance r, attract each other with a 
force of  magnitude 

Gmjm2 
f -- r2 (1.55) 

where G = 6.67259 x 10 -11 N.m2/kg 2 is the universal gravitational constant.* 
Newton's law of  gravity is stated in vector form as 

~ = Gmlm2~ 
r------T---r (1.56) 

where f is the gravity force acting on m2 by m l, 7 is the position vector of  m2 
relative to m l, and r is the magnitude of  7. 

The gravitational acceleration of a point mass near the surface of a nonrotating, 
spherical model of  the Earth, which is commonly denoted by g, is given by 

GMe ~ 9.8m/s 2 (=  32.2 ft/s 2) 
g - -  R~ 

where M e (=  5.9737 x 1024 kg) and R e ( =  6378 km) are the astronomical symbols 
for the mass and mean equatorial radius of  the Earth, respectively. The product 
of G and M e, often denoted as # e ,  is called the gravitational parameter of the 
Earth; i.e., we have/z e = GM e = 398,601 km3/s 2. 

Because the gravity force f is a function of  the position vector 7 only, the grav- 
itational force field is said to be conservative, and we introduce a scalar function 

such that 

- d7 dq~ ( 1 . 5 7 )  
3 7-d~ = dq~ or f "  d t  = d t  

where d-~/dt is the time derivative of  7 in an inertial reference frame and ~ is called 
the gravitational potential. The gravity force is then simply the gradient vector of  
the gravitational potential q~; i.e., we have 

f = vg, (1.58) 

Such a conservative force field is also sometimes called irrotational because 

curl f--= V × f = V x V~ = 0 

Substituting Eq. (1.56) into Eq. (1.57) and integrating the resulting equation, 
we obtain 

Gm]m2 
~b = - -  + C (1.59) 

r 

*In Principia, Newton made no attempt to provide a physical explanation of gravitation, and the 
nature of gravitation still remains mysterious today. 
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where C is a constant of  integration. In orbital mechanics, the constant of  integra- 
tion C is often chosen as zero such that ~b = 0 at r = cx~, and the negative of  the 
gravitational potential is called the potential energy V; i.e., 

Gmlm2 
V -= ~ - (1.60) 

/- 

W e  often call V a potential energy, rather than the potential energy because an 
arbitrary constant can be added to V. 

Newton's three laws of  motion and his law of  gravity provide the fundamental 
framework for classical mechanics, and they are of  fundamental importance in 
formulating equations of  motion of  space vehicles for the study of  their orbital and 
attitude motions. 

Problem 

1.5. Show that the gravitational force F between a particle of  mass m and a solid 
sphere of  radius a and constant mass density p is given by 

GM m 
F = - -  

r 2 

where M = 4zrpa3/3 is the total mass of  the sphere and r is a distance to the 
particle from the center of  the sphere. That is, a uniformly dense spherical body 
attracts an external point mass as if all its mass were concentrated at its center. 

Note: This problem was not an easy one even for Newton, but eventually it was 
solved by Newton in 1685 by proving that a homogeneous spherical shell attracts 
an external particle as if all its mass were concentrated at its center. 

1.2.3 Kinematics of a Particle 

Kinematics is mainly concerned with the geometry of  motion. The subject of  
kinematics is somewhat mathematical in nature and does not involve any forces 
associated with the motion. A thorough working knowledge of  kinematics is a 
prerequisite to the successful formulation of  the equations of  motion of  particles 
and rigid bodies, however. We shall consider here the kinematics of  a particle, 
whereas the rotational kinematics of  a rigid body is treated in Chapter 5. 

Angular velocity vector of a rotating reference frame. Consider a refer- 
ence frame A with a set of  three orthogonal unit vectors {~l, d2, t13 } and a refer- 
ence frame B with a set of three orthogonal unit vectors {bl, b2, b3}, as shown in 
Fig. 1.2. 

The angular velocity vector of a reference frame B with respect to a reference 
frame A is denoted by ff;s/a. For brevity, the symbol Eo B/A is to be read as the an- 
gular velocity of  B with respect to A. The terms "with respect to" and "relative to" 
are often used interchangeably in the literature. The angular velocity vector Eo B/A 
lies along the instantaneous axis of  rotation of the reference frame B, and it usu- 
ally changes both its direction and magnitude continuously with time. We can also 
consider the angular velocity of A with respect to B, denoted by Eo a/8, and we have 

CO A/ B ~- --CO B/ A (1.61) 
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b3 = 

U A ~ a2 / 

al  

Fig. 1.2 Reference frames A and B. 

The angular velocity of  B with respect to A can also be expressed as 

~_oB / A = ~oB / A, _~ ~_.)AI/ A2 .~_ ~oA2/ A3 ..~ . . . . .~  ~oAn/ A (1.62) 

where A1 . . . . .  A, are the nauxiliary reference frames. 
Because the unit vectors bi fixed in the reference frame B rotate with an angular 

velocity fro B/A with respect to A, the rate of  change of  6 i is caused only by ~o 8/A 
and it must be normal to both b i and ~o 8/a.  Thus, the time derivatives of  the unit 
vectors bi measured in A are given by 

{ d b l /  = ~oB/A X 61 (1.63a) 
--~--/A 

{ O b 2 } = ~ o B / A  62 (1.63b) a X 

{ d63 } = ~ B / A × b  3 (1.63C) 
dt A 

If a reference frame A is inertially fixed, it is called an inertial or Newtonian 
reference frame. In that case, a reference frame B is in motion relative to A and 
becomes a rotating reference frame with an angular velocity of  Eo a/a. For brevity, 
we write simply ff~ for ff~B/a ; that is, 

~o ~ ~o B/A 

Also let an overdot* denote time differentiation in A. Then Eqs. (1.63) are often 
written as 

bl = if) × hi (1.64a) 

b2 = w × /~2 (1.64b) 

b3 = if) × 63 (1.64c) 

*An overdot often denotes the time derivative measured in an inertial or Newtonian reference frame. 
It is called the Newtonian "dot" notation. 
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P • ~ - ¢3n/a 

A ~ b2 

/ E l  1 

Fig. 1.3 Particle in a rotating and translating reference frame. 

and the angular velocity vector ~ can also be expressed as 

~) = (01 bl '~ (02 b2 + (03 b3 

= (b2- b3)bl + (b3 • 61)62 + (bl • b2)b3 

Furthermore, Eqs. (1.64) can also be combined as 

E:l E° 3 2 F'1 = -  (03 o 

--O92 (01 0 63 
3 

(1.65) 

Particle kinematics. Consider now a particle P that is in motion relative to a 
reference frame B, which is itself in motion relative to an inertial reference frame 
A, as shown in Fig. 1.3. The angular velocity of  B relative to A is denoted by 

= ~8/A. The position vector of  the particle from the origin of A is denoted by 
R and the position vector of  P from point O of  B is denoted by 7. 

Suppose that the position vector 7 is expressed in terms of basis vectors of  B as 
follows: 

7 -- rl 61 + r2 b2 31- 1"3 b3 

Then the time derivative of  7 measured in A, or as seen from A, becomes 

7 = /'1 61 -F/'2 b2 -F/'3 63 + rl bl + r2 b2 q- r3 b3 (1.66) / d t /  A 
Defining the time derivative of  ~ measured in B as 

{ ) --=/'1/~J + i2 62 +/'3 63 (1.67) 

and using Eqs. (1.64) and (1.67), we obtain 

= + r l ( G  X 61)-{- r2(m x 62)-F r3(~ x 63) 

= + ~ x ~  
B 
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Note that {dT/dt}A is, in fact, the velocity of the particle P with respect to the 
origin of B measured in A (or as seen from A) and that {dT/dt}a is the velocity of 
the particle P with respect to the origin of B measured in B. 

We now summarize this important result for an arbitrary vector 7 as follows: 

= + x ~ (1.68) Ya 
Because ~o a/a = -go A/a, we also have 

Equations (1.68) and (1.69) apply to any vector quantity and are of fundamental 
importance to dynamic problems in which a rotating reference frame is involved. 

Problem 
1.6. Consider a particle P that is in motion relative to a reference frame B, which 
is itself in motion relative to an inertial reference frame A, as shown in Fig. 1.3. 
The angular velocity of B relative to A is denoted by ff~ = Co B/A. The position 
vector of P from the origin of A is given as 

+ ;  

where/~o is the position vector of point O of B from the origin of A, and 7 is the 
position vector of P from point O of B. 

Suppose that A is inertially fixed and that 7 is expressed in terms of basis vectors 
of B as follows: 

7 = r  l/~l +r2b2+r3/~3 
The velocity and acceleration of the particle P with respect to the origin of B 
measured in B are defined, respectively, as 

{~-~}B-~-= /'1/~1-~/'2~92 -'t- /'3 b3 

dt2 J a 

(a) Show that the angular acceleration of B with respect to A measured in A is 
the same as the angular acceleration of B with respect to A measured in B; i.e, 

(b) Show that the velocity and acceleration of the particle P with respect to the 
origin of A measured in A can be obtained as 

/ 
--~-}a = { dl Ja-]-{~t}a 

[ dt Ia + d-~ a + ~ x ~  
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{d2  /d2 ol /d27 
" ~  } A = I ' - ~  l A -~t- , d,2 } A 

= + ~ x T + c S x ( ~ x T ) + 2 ~ x  ~ -  B 
[ dt2 /A "q- ~ B 

where ~o ---- {d~o/dt}a = {d~/dt}B is the angular acceleration of B with respect to 
A measured in A or B. 

Note: The term {dR/dt}A is called the inertial velocity, {d2R/dt2}a the inertial 
acceleration, ~ × (~ × 7) the centripetal acceleration, - t 5  x (ff~ x 7) the centrifugal 
acceleration, and 2~ × {dT/dt }B the Coriolis acceleration.* The centripetal accel- 
eration vector t5 x (~ × 7) is orthogonal to both ~ and ~ x 7 and it is directed 
toward the instantaneous axis of  rotation. 

1.2.4 Dynamics of a Particle 

In formulating the equations of  motion of a particle (or of  a system of particles), 
it is extremely important to correctly take into account all forces, both reactive and 
externally applied, that act on the particle (or on the system of particles). This vital 
step in formulating the equations of  motion is called isolating the system or sketch- 
ing its free-body diagram. It is assumed that the reader is familiar with the concept 
of  drawing free-body diagrams through previous study of statics or mechanics. 

Formulation of equations of motion. Consider a particle P of  constant mass 
m moving in an inertial reference frame A, as shown in Fig. 1.3. Let F be the 
resultant of all forces acting on P,  including constraint or reaction forces. Then 
the equation of  motion of the particle P of mass m is simply written as 

m R = /~ (1.70) 

where/~ is the inertial position vector of  P and R is the inertial acceleration of P;  

i.e.,/~ = {d2R/dt2}A. Note that/~ = /~o  + 7 and/~ = / ~ o  + 7. 
If  the inertial position vector/~ of P and the resultant of  all forces/~ acting on 

P are expressed in terms of a set of  basis vectors {,~1, a2, d3} fixed in an inertial 
reference frame A, as 

/~ = RI al + Rza2 + R3t~3 

ff = FI t~l + F2 a2 'F F3 t~3 

then the vector differential equation (1.70) can be resolved into its three component 
equations as 

a l :  m/~l = Fi (1.71a) 

a2: mR2 = F2 (1.71b) 

a3: mJ~3 = F3 (1.71c) 

*The term "Coriolis acceleration" was named after the French military engineer G. Coriolis ( 1792- 
1843), who first disclosed its existence. 
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These three equations of  motion become independent only if the coordinates R1, 
R2, and R3 are independent. 

If  the motion of a particle is subject to possible constraints, then a set of  a 
minimum number of  independent coordinates necessary for describing the motion 
of a particle with constraints is often employed in formulating the equations of  
motion. Such independent coordinates are called the generalized coordinates. The 
number of  independent generalized coordinates corresponds to the degrees of  
freedom of the system. 

The equation of motion in the form of Eq. (1.70) can be rewritten as 

P - m R  = 0 (1.72) 

which is known as D'Alembert 'sprinciple.  The term - m  R is often called an inertial 
force; however, such a fictitious force must be distinguished from an actual force F 
acting on the particle. In formulating the equation of motion of  a particle, it is quite 
often convenient to apply the dynamic equilibrium condition (1.72) to a free-body 
diagram of a particle. However, considerable care must be taken in formulating 
the equation of motion by employing D'Alember t ' s  principle. 

The equation of motion of a particle also can be rewritten as 

d -~ 
- ~ ( m R )  = P 

_% _; 2, 

where R is the inertial velocity of  P;  i.e., R =-- {dR/dt}a and m R  is called the 
linear momentum vector of a particle of  constant mass m. I f  the resultant of  all 
forces acting on the particle P is zero; i.e.,/~ = 0, then 

m R  = constant vector 

which is known as the principle o f  conservation o f  linear momentum, and we have 

/?(t) =/?(0) +/~(0)t 
.-k 

The constant vectors/~(0) and R(0), which denote the inertial position and velocity 
vectors of the particle at t = 0, respectively, represent six constant integrals of  the 
equation of motion. 

Angular momentum. We now consider the angular momentum (or the mo- 
ment of  momentum) of a particle about an arbitrary point O, which is itself in mo- 
tion relative to an inertial reference frame A, as shown in Fig. 1.3. 

The moment  about an arbitrary point O of the momentum m R  of a particle 
P of mass m is 

~Io = ~ × m R  (1.73) 

where F is the position vector of  P from point O of B and R is the inertial velocity 
of P.  The moment  of momentum, Ho, is often called the absolute angular momen- 

-k 

tum due to the absolute momentum m R  used in defining/~o. 
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Differentiating/to with respect to time, we obtain the angular momentum equa- 
tion as 

which can be rewritten as 

2* • ...k "'. 

Ho=T x m R  +T x m R  
• z ,  

= -~ x m(Ro-I-~')-I--r x f 

=m)  xRo + F x F  

• L.  .L. • 

Ho + Ro x m7 = Mo (1.74) 

where Mo = 7 x f denotes the moment of the resultant force f about point 
OofB.  

Similarly, for the relative angular momentum of a particle about an arbitrary 
point O, which is defined as 

ho = 7 x m r  (1.75) 

we also obtain the angular momentum equation of the form 

..;, L ;  

ho +-~ x mRo =Mo (1.76) 

The term "relative angular momentum" for ho here is simply due to the relative 
momentum mF used in defining ho. 

If point O is inertially fixed, the distinction between ~/o and ho disappears, and 
the angular momentum equation becomes 

2 ,  

/to = Mo or ho =/14o (1.77) 

Furthermore, if the external moment h4o is zero, then the angular momentum 
vector becomes a constant vector; that is, the angular momentum of the particle is 
conserved. This is known as the principle of conservation of angular momentum. 

Kinetic and potential energy. The kinetic energy T oftheparticle P of mass 
m is defined as 

T = lm/~ ./~ (1.78) 

where R is the inertial velocity of P. 
If a given force F depends only on the position vector R, then a scalar function 

V, which is called the potential energy, is defined such that 

F .  d/~ = - d V  or F .  R = - ~ '  (1.79) 

Such a force field is said to be conservative, and a conservative force f is often 
expressed as the gradient vector of the potential energy V, as follows: 

f = - V V  
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and V x / ~  = 0. For a particle acted upon only by a conservative force, we have 
the principle of conservation of energy described by 

d 
--:-(T + V) = 0 or T + V = E = const (1.80) 
a t  

where the constant of integration E is called the total energy. 

Problems 

1.7. Consider various mass-spring-damper systems shown in Fig. 1.4, assuming 
a frictionless horizontal line. 

(a) By sketching a free-body diagram and applying Newton's second law of 
motion, verify that the equation of motion of the single-degree-of-freedom system 

a) 

b) 

c) 
I k 1 ~ - ~  c k 2 

d) 

////////////////////////. 

e) 

" / / / / / / / / / / / / / / / / / / / / / / / /  

f)  
~ - - ' - ~  C 1 C 2 

r l / / / / / / / / / / / / / / / / / / / / / / / / / / /  

Fig. 1.4 Mass-spring-damper systems. 
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shown in in Fig. 1.4a is simply given as 

mYc + ck + kx = O 

where x represents the position of the cart from the unstretched spring position, 
m the mass of  the cart, k the linear spring stiffness, and c the viscous damping 
coefficient of a dashpot.* 

Note: This system is referred to as a second-order dynamic system described by 
a second-order ordinary differential equation with constant coefficients. 

(b) Derive the equation of motion of the system shown in Fig. 1.4b as 

emd3x d2x ( k l ) d X  
k---~dt----T+m-d-~+c 1+~-~2 "~"+klX=0 

Note: The junction between the spring k2 and the dashpot e is massless. Con- 
sequently, this system is referred to as a third-order dynamic system with one and 
one-half degrees of  freedom, z 

(c) Derive the third-order differential equation for the system shown in Fig. 1.4c. 
(d) Derive the equation of motion of the system, with two springs connected in 

series, shown in Fig. 1.4d as follows: 

klk2 
m)~ + ~ x  = 0 

(e) Derive the equation of  motion of the mass-spr ing system, with three springs 
connected in series, shown in Fig. 1.4e as follows: 

klk2k3 
m)~ + x = 0 

klk2 + k2k3 + klk3 

(f) Obtain the equation of motion of the mass-spr ing-damper  system shown in 
Fig. 1.4f using the result in (d). 

1.8. Consider a particle P of mass m that is in motion relative to a reference 
frame B, which is itself in motion relative to an inertial reference frame A (as was 
shown in Fig. 1.3), and let F be the resultant of all forces acting on P. 

Assume that the reference frame B has a known translational motion Ro(t) and 
a known rotational motion ~(t) .  Also assume that the position of the particle with 
respect to the origin of  B is expressed as 

= rl/~1 + r2/~2 + r3 b3 

and 

/ 
-- e, g, + e2 g2 + ~ ~ 

dt 2 / B 

*A dashpot, also called a viscous damper, is a device that provides viscous friction or damping, it 
consists of a piston and oil-filled cylinder. Any relative motion between the cylinder and the piston is 
resisted by the oil, and the resulting damping force is proportional to the relative velocity between the 
cylinder and the piston. Consequently, the energy is dissipated as heat. 
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(a) Show that the equation of motion of P can be written as 

= + f  

The term - m ~  x (~ x ;)  is known as the centrifugal force and 2mff~ x {dF/dt}B 
as the Coriolis force. However, such fictitious forces must be distinguished from 
an actual force/~ acting on the particle. 

(b) Show that the kinetic energy defined as T = ½m/~./~, where/~ is the inertial 
velocity of P, can be written as 

where 

T = T2 + T~ + To 

1 I d~ 2 
T2-- 

TI = m( Ro + ~O X T) " 
B 

To=l i~o+c5x;12 gm 

Notice that T2 is a quadratic function of (/'t, i2, i3), 7"1 is a linear function of 
(/'1, i2,/'3), and To is a nonnegative function of only (rl, r2, r3) and time. 

1.9. Consider a simple pendulum of mass m and constant length e, connected 
by a massless rod to the inertially fixed, hinged support point O, as shown in 
Fig. 1.5a in which 0 denotes the angular position of the pendulum from the verti- 
cal line. The system is constrained to move in a vertical plane. This well-known 
pendulum problem with one degree of freedom can be formulated and solved 
without employing vector notation. However, as an exercise problem of vecto- 
rial mechanics, a vectorial approach, which is often referred to as the Newton- 
Euler formulation of the equations of motion, is to be employed here. 

As illustrated in Fig. 1.5a, let {al, a2, ¢~3} and {bl, b2, b3} be two sets of 
right-hand, orthogonal unit vectors of two reference frames A and B fixed at the 
support point O and the pendulum, respectively. Then the position vector of the 

a) b) 
0 ~2 X2 "///////// 

mg 

~ t) 

mg l \  ~ , 

c) u(t~. I y(t) 

Fig. 1.5 Simple pendulum problems. 
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pendulum mass from the point O can be expressed as: ? = x I E l --it-x2 a2 or F = e/~l. 
Because the rectangular coordinates xl and x2 are related to 0 as: xx = ~ cos 0 
and x2 = e sin0, xl and x2 are not independent but constrained by: x~ + x 2 = £2, 
and 0 is the generalized coordinate of  the system. The angular velocity of  B with 
respect to A is ff)B/a = 0/~3- 

(a) Find the absolute acceleration of  the pendulum mass as 

; = -e02~1 + e0[,2 

(b) Derive the equation of  motion of  the simple pendulum as 

meO = - m g  sin 0 + u 

where g is the gravitational acceleration and u is the applied force along t h e  b2 
direction. Also determine the tension, T, in the rod as 

T = meO 2 + mg cosO 

Hint." Sketch a free-body diagram of the pendulum mass, and then apply New- 
ton's second law: m7 = F where F = mgffl + ub2 - Tbl. 

(c) Let the angular momentum.vector be defined as ho = 7 × mT. Then, using 

the angular momentum equation ho = Mo, derive the equation of  motion as 

me20 = - m g e  sin 0 + ue 

which is, in fact, the same as the equation of motion derived in (b). 
(d) Obtain the linearized equation of  motion for small angle of 0 and solve for 

O(t) for a constant u and initial conditions of  0(0) and 0(0). 
Hint." Assume that the solution is of  the form 

0 ( t ) =  Acos~ /~ t  + B s i n ~ t  + C  

and then determine constants A, B, and C in terms of  constants u, 0(0), and 0(0). 
(e) For this conservative dynamic system without the applied force, i.e., u = 0, 

verify that 

d ~(T+ V)=O 

where T = ½m~-~ = ½m(eO) 2 and V = - m g e  cos0.  

130.  Consider the pendulum shown in Fig. 1.5b in which the hinged support 
point is allowed to move with a horizontal displacement z(t) along a frictionless 
horizontal line and is acted upon by an external force u. The system is constrained 
to move in a vertical plane. As illustrated in Fig. 1.5b, {Ej, if2, 63} is a set of 
basis vectors fixed in an inertial reference frame A and {/~l,/~z,/~3} is a set of  basis 
vectors of  a rotating reference frame B fixed at the pendulum. The absolute position 
vector of  the pendulum mass is then expressed as/~ = /~o + 7 where/~o = za2 
and 7 = ebl. For this single particle system with two degrees of  freedom, the 
coordinates 0 and z are selected as the generalized coordinates• 
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(a) Derive the equations of  motion of the system as 

a2 : m~ + mg.O cos 0 - meO 2 sin 0 = u 

62: m e O + m ~ c o s O + m g s i n O = O  

Note that the constraint forces, such as the tension in the rod and the normal force 
acting on the hinged support point, do not appear in this set of  two independent 
equations. 

(b) Obtain the second equation derived in (a) using the relative angular momen-  

tum equation: ho + 7 x mRo =/14o where ho = 7 × m~. 
(c) Also obtain the secon.d equation derived in (a) using the absolute angular 

momentum equation/4o + /~o  x rnT" = / ~ o ,  where/4o = 7 x m/~. 

1.11. Consider the pendulum shown in Fig. 1.5c in which the hinged support 
point is allowed to move with a vertical displacement y(t) along a frictionless 
vertical line and is acted upon by an external force u. As illustrated in Fig. 1.5c, 
{~1, ~2, ~3} is a set of  basis vectors fixed in an inertial reference frame a and 
{bl, b2, b3} is a set of  basis vectors of  a rotating reference frame B fixed at the 
pendulum. The absolute position vector of  the pendulum mass is then expressed 
as R = Ro + ~ where/~o = - y a l  and 7 = e/~l. 

(a) Derive the equations of  motion as 

~71 : my + me0 sin O + me0 2 cos 0 = u - mg 

62" meO + my sin 0 + mg sin 0 = 0 

(b) Obtain the second equation derived in (a) using the relative angular mo- 

mentum equation ho + ~ x mRo = ,(/o where ho = 7 x roT. 
(c) Also obtain the second equation derived in (a) using the absolute angular 

momentum equation/]o + Ro x m# = ,~o where /]o = 7 × m/~. 
Note: If  the vertical motion of the hinged support point is prescribed as y(t) = 

A cos tot, then for the small angular motion of the pendulum, we have the so-called 
Mathieu equation: 

( g a w 2  ) 
+ e coswt  0 = 0 

1.12. A particle of mass m is constrained to move on a smooth circular hoop of 
radius e under the action of gravity, as illustrated in Fig. 1.6. It is assumed that the 
circular hoop rotates with constant angular velocity of  Q about the vertical line. 
Like the simple pendulum problem, this dynamic problem can also be formulated 
and solved without employing vector notation. However, as an exercise problem 
of three-dimensional vectorial mechanics, a vectorial approach to the formulation 
of the equations of  motion is to be employed. 

As illustrated in Fig. 1.6, {all, t~2, t~3} is a set of basis vectors fixed in an inertial 
reference frame A with the origin O and {bl, b2, b3} is a set of  basis vectors of  a 
rotating reference frame B fixed at the particle. The position vector of the particle 
from the inertially fixed point O is then expressed as: 7 = ebl. The angular velocity 
of  B with respect to A is ~0 B/A = - -~ '2a  I + O b3. 
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~o e' 7 
E3 

A 

Fig. 1.7 System of particles. 

Generalized form of Newton's socond law of motion. Consider a system 
of N particles P~ . . . . .  PN of masses m~ . . . . .  mN that are in motion relative to a 
reference frame B with the origin O, which is itself in motion relative to an inertial 
reference frame A, as shown in Fig. 1.7. 

The equation of motion of  the ith particle can be written as 

N L; 

miRi = fi -t- ff-~fij, i = 1,2 . . . . .  N (1.81) 
j = l  

where .~ is the external force acting on Pi, fly is the internal force acting on Pi 
due to Pj ( f i i  = 0 by the definition of aninternal force),/~i is the position vector 
of Pi from the inertial origin of A, and R i is the inertial acceleration of the ith 
particle Pi. 

By summing these N equations, we obtain 

N N 

~'-~mi~i = ~-'-~ 3~ (1.82) 

since 

i=l i=l 

N N 

~ ~ .~.j = 0  (1.83) 
i=1 j = l  

by Newton's third law ~j = --J~i" 
Introducing the center of mass of the system, as illustrated in Fig. 1.7, such that 

N N 

Ri  =gc + Pi,  ~--~miTi =mFc, ~_miPi = 0  (1.84) 
i=1 i=1 

where m = ~-~=1 m i  denotes the total mass and Fc denotes the position vector of  
the center of mass from the origin O of B, we rewrite Eq. (1.82) as 

mRc = / ~  (1.85) 
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where 
N 

i=1  

z; 

denotes the resultant of  all external forces acting on the system and Rc is the inertial 
acceleration of the center of  mass. 

Equation (1.85) is often referred to as the generalized form of Newton's second 
law of motion for a system of particles of total mass m. This translational equation 
of  motion of  the system indicates that the center of  mass of  the system moves as if 
the total mass were concentrated at the center of  mass and the resultant of  all the 
external forces on the system acted at that point. 

Furthermore, if the resultant of  all forces acting on the system is zero; i.e.,/~ = O, 
then 

m gc = constant vector 

which is known as the principle of  conservation of  linear momentum for a system 
of particles. 

Angular momentum equations. The angular momentum (also called the 
moment of  momentum), which is one of  the fundamental concepts in classical 
mechanics, is now considered for a system of particles as follows. 

The absolute angular momentum of  a system of  particles about an arbitrary 
point O, which is itself in motion relative to an inertial reference frame, is defined 
a s  

N 

~Io = E T i  x m, Ri (1.86) 
i=1  

Differentiating /to with respect to time, we obtain 

N N 

~Io = E : r ,  x mi~i + E-~i xmi~ i  
i=1  i=1  

--~ E T i  xmi(Roat-~i)-q- E T i  x + E f i j  
i=l i=l j=l 

N N N N 
= E m i ~ ,  × ~ o + E - r i  × L + E E - r ,  × f j  

Noting that ~ miTi = mTc and 

N N 1 N N 

i=1  j = l  "= j = l  

= 0 (as ~j  is collinear with ri - ~j) 
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we obtain the angular momentum equation of the form 
2 .  2 ,  . 

Ho + Ro x m~c = 1(Io 

where 

N 

(1.87) 

i=1  

is the moment of the external forces about the point O. The fact that the internal 
forces do not appear in Mo is a reason that angular momentum is a useful concept 
for a system of particles. 

Similarly, defining the relative angular momentum about an arbitrary point O 
a s  

N 

ho = E - r i  x mini (1.89) 
i = !  

we also obtain the angular momentum equation of the form 
2* :;  

ho + ~c x mRo = /~o (1.90) 

Similar tO14o and ho, the absolute angular momentum/4c and the relative angular 
momentum hc about the center of mass can be defined as 

N 2, 

Pl c = Z p  i X m i R  i ( l . 9 1 a )  

i = 1  

N 

he = E~gi  x miPi (1.91b) 
i = 1  

Because ~ mipi = 0 by the definition of the center of mass, the absolute and 
relative angular momenta about the center of mass are in fact identical; i.e., 

~lc -- hc 

and also we have the following relationships: 
2. 

~Io = ~Ic + 7c x mRc (1.92a) 

ho = hc + ~c x m~c (1.92b) 

Consequently, the angular momentum equation (1.87) can be rewritten as 

Hc + "~c x mRc = Mo (1.93) 

If the reference point O is either inertially fixed or at the moving center of 
mass of the system, the distinction between /4o and ho disappears and the angular 
momentum equation (1.87) simply becomes 

/to = )14o or /4c = /~c (1.94) 

rio = × L (1.88) 
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where 

N N 

/~o = ~-'~ ~i X f i  and ,Qc = Y'~P~ x f i  
i=1 i=1 

For this reason, an inertially fixed point or the moving center of  mass is often 
selected as a reference point O. Furthermore, if the external moment is zero, then 
the angular momentum about an inertially fixed point or the center of  mass becomes 
a constant vector; that is, the angular momentum of the system is conserved. This 
is known as the principle of conservation of  angular momentum. 

However, there are many cases in which a reference point is selected to be 
neither inertially fixed nor the center of mass of  the system. 

A system of particles in which the distance between any two particles is constant 
is called a rigid body. Because a rigid body is a special case of  a system of particles, 
all of the preceding results developed for a system of particles are also valid for 
rigid bodies. Rotational kinematics and attitude dynamics of  more general rigid 
bodies will be studied further in Chapters 5 and 6. For a more detailed treatment of  
classical dynamics, the reader is referred to other standard textbooks on dynamics; 
e.g., see Greenwood. 3 

Problems 
1.13. Consider a system of N particles PI . . . . .  PN of masses ml . . . . .  mN, as 
shown in Fig. 1.7. Suppose that there are no external forces and that the internal 
forces .~. are only due to the gravity forces among the particles. The equation of  
motion ~or the ith particle can then be written as 

miei = --~=1 Gmi..__mj-.. (i # R3j RO J) 

L; 

where R i is the inertial acceleration of  the ith particle Pi and Rij =-- I Rijl where 
Rij = e i  - -  R j is the position vector of  Pi from Pj. 

(a) Verify that for such a conservative dynamic system, we have the principle 
of  conservation of  energy: 

d 
T + V = const or - : -(T + V) = 0 

(It 

where 

1 N 
T = kinetic energy = ~ y ~  mi(Ri " Ri) 

/ | " =  

l ~ - ~ G m i m j  ( i # j )  
V = potential energy = - ~  i=l j = l  Rij 

2. 

Hint." Take the dot product of  Eq. (1.81) with Ri and sum the resulting N 
equations of  all particles. Then show that whether the resulting equation is the 
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same as ?" + f '  = 0. Also note that 

N N N N N N 

i=1 j = l  i=1 j = l  i=1 j = l  

N N 1 N N 

S.  iJ 
i=1 j = l  i=1 j = l  

1 N N . N N 

" :  j : l  i=1 ] : 1  

(b) Show that the kinetic energy T can also be expressed as 

T = mlRc l  2 4- ~ mil~gi] 2 
i=1 

where m is the total mass of  the system,/~c is the position vector of  the composite 
center of  mass from the origin of  an inertial reference frame A, and Pi is the 
position vector of  the ith particle from the composite center of  mass. 

Hint: 
N N 

Ri = ec  "q- Pi, ~"~.miPi : O, m = ~ ~  mi 
i= l  i=1 

N 

miri  = rnTc, ~i " ~i = I~il 2 
i=1 

and ;c is the position vector of  the composite center of  mass from point O. 
(c) Show that this dynamic system of 3N degrees of freedom (or 6N states) has 

10 constants of integration (or integrals of the motion). 
Note: In 1846, Urbain J. LeVerrier in France and John C. Adams in England were 

able to discover the planet Neptune by considering Eq. (1.81) for the motion of 
Uranus and comparing the computational results to the observed motion of Uranus. 

1.14. Consider a thin uniform bar of  mass m and length ~ hinged at an inertially 
fixed point O, as shown in Fig. 1.8a, in which 0 denotes the angular position of the 
bar from the vertical line, u the external force, and g the gravitational acceleration. 
The system is constrained to move in a vertical plane. 

(a) Considering the thin uniform bar as a system of  particles of an infinitesimal 
mass element dm, show that the angular momentum vector about the hinge point 
O can be expressed as 

ho = _{mg2{}/~3 

Hint." Use the definition of the angular momentum vector of  a rigid body about 
a fixed point O, h,, = f 7 × ; dm, and let 7 = r/~l be the position vector of  an 
infinitesimal mass element dm from the point O and dm = (m/e)dr. 
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a) 
0 ~ ' / / / / / / / / z  

b) ,,,////////////////////////~ c) u ( ~ . l  y ( t )  

Fig. 1.8 Compound pendulum problems of a thin uniform bar. 

(b) Using the angular momentum equation, ho = Alo, derive the equation of  
motion of  the compound pendulum shown in Fig. 1.8a as 

lme20 + ½mg£ sin 0 = ug 

Note: The angular momenta, ho and hc, of the system can then be expressed as 
ho = I,, 0 and hc = lc O, where Io = me2/3 denotes the moment of  inertia of  the 
thin uniform bar about the hinge point O and lc = m£2/12 denotes the moment 
of  inertia of  the thin uniform bar about its center of  mass. Note that Io and Ic are 
related to each other by the parallel-axis theorem: Io = Ic + md 2 where d is the 
distance between the hinge point O and the center of mass. The thin uniform bar is 
a simple example of  a rigid body. The three-dimensional, rotational kinematics and 
dynamics of  more general rigid bodies will be treated in detail in Chapters 5 and 6. 

(c) Also derive the equation of  motion derived in (b) using the angular momen- 
tum equation about the center of  mass and the translational equation of motion of  
the center of  mass. 

1.15. Derive the equations of  motion of the pendulum shown in Fig. 1.8b. 

Hint." mRc = if, hc = l~lc, hc = hcb3,  hc = Ic0, Ic = m£2/12, ~o+  

-:c x mRo = Mo, ho = hob3, ho = Io0, Io = me2/3. 

1.16. Derive the equations of  motion of the pendulum shown in Fig. 1.8c. 

1.17. Consider a cart of  mass M with a) an inverted, point-mass pendulum or b) 
an inverted, thin uniform bar, on a frictionless horizontal line, as illustrated in Fig. 
1.9. Let z(t) be the horizontal position of the cart, O(t) the angle of  the pendulum 
or the thin bar measured from the vertical position, u(t) the control input force 
acting on the cart, and g the gravitational acceleration. The system is constrained 
to move in a vertical plane. 

(a) Derive the equations of  motion of  the system shown in Fig. 1.9a as 

(M + m)~ + me0 cos 0 - me0 2 sin 0 = u 

m£(~ + m~ cos 0 - mg sin 0 = 0 
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a) b) 

~ ,. rag "~ i ~  

---: 1 ~ g 

0 /lm 

U ~ U 

Fig. 1.9 Inverted pendulum problems. 

(b) Derive the equations of motion of the system shown in Fig. 1.9b as 

me me'o 2 sin 0 = u (M +m)~ +-~-OcosO- 2 
m g  

2m£ .. 
- - O + m ~ c o s 0 - m g s i n 0 = 0  

3 

(c) Also derive the equations of motion of the system shown in Fig. 1.9b with 
an additional tip mass mo. 

1.18. Consider a two-link manipulator that is modeled as a double pendulum 
consisting of two massless rods of lengths el and e2 and point masses ml and m2, as 
illustrated in Figs. 1.10a and 1.10b. The first link is pinned to a fixed point O and the 
second link is also pinned to the first link. Let u l and u2 be the shoulder and elbow 
joint control torques, respectively, and let g denote the gravitational acceleration. 
As illustrated in Fig. 1.10a, {al, a2, a3}, {bl, b2, b3} and {?l, ~2, C3} are three 
sets of orthogonal unit vectors fixed at the point O, the first link, and the second 
link, respectively. 

(a) Derive the equations of motion of the double pendulum shown in Fig. 1.10a 
in which {01,02} are chosen as a set of the generalized coordinates of the system 

a) 0 b) 0 c) 

i ~  -~a2 i Ul 
El 1 i Ii 

c I 

0 

ul i II 
! 

!". 12 

Fig. I.I0 Double pendulum problems. 
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as follows: 

(m| + m2)e~01 + m2ele2 cos(02 - 01)02 

= u l  - u2 + m2ele20~ sin(02 - 01) - (ml + m2)gel sin01 

m2e,e2 cos(02 - 01)01 + m2e~02 

= u2 - m2el e202 sin(02 - 01) - m2ge2 sin 02 

(b) Derive the equations of motion for the double pendulum shown in Fig. 1.10b 
in which {~bl, ~b2} are chosen as a set of the generalized coordinates of the system. 

1.19. For a double pendulum consisting of two uniform slender bars as shown 
in Fig. 1.10c, derive the equations of motion in terms of {01,02} as 

(½mle 2 + m2e2)01 + ½m2ele2cos(02--0,)02 

' e202 sin(02 -- 01) ½mlge, sin0, -- m2ge, sin0, = U l  - u 2 +  ~m2el 
1 2"" ½m2£1£2 cos(02 - 0,)01 + ~m2£202 

1 "2 sin(02 - 0 1 ) -  ½m2ge2sin02 = u2 - ~m2e,e201 

Note." In terms of {c.bl, $2}, these equations can be rewritten as 

, 2 m2e2 1 ' c o s ~ & 2  (gm,e, + + ~m2ele2cose~2)~, + ~m2ele2 

= u ,  - u2 + ½m2ele2(~l + ~2) 2 sin 4'2 - ½mlge, sin 4~, - m2gel sin q~l 

1 2 I 2""  (.~m2e 2 + 1 un2e,e2 cos 4~2)~, + gm2e2¢2 

= u2 - ½m2ele2~k~ sin ~b2 - ½m2ge2 sin(,p, + 4'2) 

And we can also obtain the following equivalent set of equations of  motion: 

(~mlell 2 + ~m2e 2 + m2e2 + m2e,e2cosck2)~, + (~m2e2 + ~m2ele2cose~2)~ 2 , 

= U l  "~ ½m2e,e2(2~162 + ~2)sin q~2 - ½mlge, sin q~l 

- m2gel s ine ,  - ½m2ge2 sin(el + 4~2) 

1 2 "" 1 2""  (~m2£2 + ½m2ele2COSe~2)¢l + ~m2e2~b2 
1 " 2  

= U 2  - -  7m2£,£z~b, sin ~b2 - -  ½m2ge2 sin(~bl + ~ 2 )  

This set of equations of motion can also be obtained somewhat directly using the 
so-called Lagrange method, which will be treated in the next section. 

1.2.6 Lagrange's Equations of Motion 
Classical mechanics is primarily based on Newton's three laws of motion and his 

law of gravity. However, more theoretical developments of analytical dynamics are 
possible by introducing the concepts of  virtual displacements and virtual work. We 



DYNAMIC SYSTEMS MODELING AND ANALYSIS 45 

shall also introduce some fundamental concepts of analytical dynamics,* including 
the principle of  virtual work, Hamilton's  principle, Lagrange's  equations of  motion, 
and Hamilton's  canonical equations of  motion. However, no attempt is made here 
to cover the details of  advanced analytical dynamics. For a more detailed treatment 
of analytical dynamics, the reader is referred to Greenwood 3 or Meirovitch. 4 

Principle of virtual work. Consider a system of N particles subject to possi- 
ble constraints. A system is said to be holonomic  if the constraints can be expressed 
as functions of  coordinates and/or time; otherwise, it is said to be nonholonomic .  
A set of  a minimum number of  independent coordinates necessary for describing 
the motion of a dynamic system with constraints is called the generalized coordi- 
nates, often denoted by {ql, q2 . . . . .  q,  }. The number n of  independent generalized 
coordinates corresponds to the degrees of  freedom of the system. However, many 
different sets of generalized coordinates are possible in a given problem. 

As an example of a single-degree-of-freedom system with a holonomic con- 
straint, consider a simple pendulum of mass m and length £, connected by a mass- 
less rod to the hinged support point O, as was shown in Fig. 1.5a. The position 
vector of  the pendulum mass can be expressed as -~ = x l a l  + x2E2 or F = £bl .  
The rectangular coordinates xl and x2 are related to the generalized coordinate O 
as xt -- e cos 0 and x2 = e sin 0. The holonomic constraint is then simply given 
by Xl 2 + x~ = £2. The equation of motion in vector form is 

m r  = m g a l  + ub2 - Tb l  

where mg is the gravitational force, u is the applied force, and T is the tension in 
the massless rod known as a nonworking constraint force. 

In general, the equation of motion of the ith particle of  mass m i for a system of 
N particles is written as 

miFi = f i  + f ~ ,  i = 1 . . . . .  N (1.95) 

where )~ is an applied force acting on the ith particle, )~ is a constraint force acting 
on the ith particle, and 7i is the inertial position vector of the ith particle. 

According to the principle  o f  virtual  work,  the virtual work done by all constraint 
forces is zero; i.e., we have 

N 

3~'" ~7i = 0 (1.96) 
i=1 

where $7i is called the virtual displacement associated with the ith particle. The 
virtual displacement t ~  i is different from the actual displacement dri ,  but it must 
be compatible with the constraints irrespective of time. 

*Leonhard Euler (1707-1783), who introduced such mathematical symbols as rr, e, ~-~., e x, logx,  
sin x, cos x, and f (x) ,  established the foundations for mathematical physics and analytical dynamics. 
Later, Jean D'Alembert (1717-1783), Joseph Lagrange (1736-1813), and William Hamilton (1805- 
1865) further developed the theory of analytical dynamics, and Henri Poincar6 (1854-1912) further 
established the foundations for a theory of dynamic systems. 
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Hamilton's principle. The principle of  virtual work and D'Alember t ' s  prin- 
ciple provide the following equation of motion for a system of N particles: 

N 

Z ( f i  - mi~i) " aTi = 0 (1.97) 
i=1 

which is rewritten as 
N 

Z mi:ri " 6;i = 8W (1.98) 
i=1 

where the virtual work done by all of  the applied forces, denoted by a W, is defined 
a s  

N 

a W = Z J~" aTi (1.99) 
i=1 

Equation (1.98) can also be written as 

u d - 
Z mi ~7(7i" ari) : aT  -~- a W  (1.100) 
i=1 

where 
N 

aT  -~ Z mi~ri" a}i 
i=1 

and T, called the kinetic energy of the system, is defined as 

T = - ) m i r i  • r i 
2 

If  we consider times tl and t2 at which aTi = O, then Eq. (1.100) can be integrated 
a s  

mi d---7(ri • aTi)dt = (aT + aW)d/ (1.101) 

Because aTi = 0 at tl and t 2, we have 

f,l '= 0 = (aT + aW)d t  (1.102) 

which, in fact, represents Hamilton's  princip~. 
In many dynamic systems, i fa  given force f depends only on the position vector 

7, then we introduce a scalar function V(7) such that 

37. d7 = - d V  or 37 = - V V  (1.103) 

where V is called the potential energy. If  the force 37 depends not only on 7 but 
also explicitly on the time t, then f can also be expressed as the gradient vector of  
a scalar function V(7, t). Such a force field is said to he irrotational or lamellar, 
and it becomes a conservative field if f does not depend explicitly on the time t. 
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If all the applied forces in Eq. (1.99) can be expressed as the gradient of a scalar 
function V, then we have ~ W = - 3  V. For such a dynamic system, Hamilton's 
principle becomes 

0 = (~T  - ~ V ) d t  = ~ ( r  - U ) d t  (1.104) 

and it may be written as 

f,,,2 6 (T - V)dt = 0 

when the system is holonomic. 

Lagrange's form of D'Alembert'sprinciple. Forasystem of N particles with 
holonomic constraints, the inertial position vector of the ith particle, denoted by 
7i, is expressed in terms of the n independent generalized coordinates, as follows: 

-~i = Fi(ql . . . . .  q , ,  t ) ,  i = 1 . . . . .  U (1.105) 

Given 7i as expressed in Eq. (1.105), we obtain the virtual displacement 3ri as 

~-ri = ~ - - o q j  
j=l Oqj 

(1.106) 

Substituting Eq. (1.106) into Eq. (1.97), we obtain 

E (fi -- miTi)"  - -  ~qj "= 0 (1.107) 
j=l i=l Oq) 

Because the virtual generalized displacements {3ql . . . . .  3q, } are independent, the 
coefficients of 3qj in Eq. (1.107) must be zero; thus, we have 

N 07 i 
E ( f i -  mi:~i)" = O, j = 1 . . . . .  n (1.108) 
i=l Oqj 

Note that nonworking constraint forces do not appear in these n equations. The n 
equations of motion of the form of Eq. (1.108) are known as Lagrange's form of 
D'Alembert 's principle. 

Lagrange's equations of motion for holonomic systems. Consider again 
a system of N particles with holonomic constraints. The inertial position vector of 
the ith particle is expressed in terms of the n independent generalized coordinates 
as 

-ri = T i ( q ,  . . . . .  q n , t ) ,  i = 1 . . . . .  U 

The velocity vector of the ith particle becomes 

~; = / _ . ,  --qJ + - -  j=] Oqj Ot 
(1.109) 
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and the kinetic energy T can be expressed as 

1 N . . 

T = -~y~miTi "ri  = T2-k-TI +To 

where 

T2 = ~ i ~  1 mi - -  • oq/lj?lk 
= j= l  k=l aqj  

N n O-~i O-~i " 
r, = Z m, Z ""~-qJ 

i=1 j= l  Oqj 

1 N O-~i 07 i 
To = ~ i~lmi-~ - ~  

(1.110) 

T = T(ql . . . . .  qn, ill . . . . .  On, t) (1.111) 

The variation 8 T with t fixed can then be obtained as 

~ OT n OT 
6 T =  - -  " + Z - -  "" 

j=l Oqj 3qj j = l  OitJ 3qj 
(1.112) 

and 

3 T d t =  - -  . d t +  - -  . d t  
j=l Oqj 3qj j= l  O~]j Sq~ 

= 8qj dt - - - - - ~ q j  dt 
j=~ ~ j=~ dt ~Oj 

= - ': ~ OOj j= l  

0 T ~ ~qJ dt 
Oqj l 

as it is assumed that ~qj = 0 at tl and t2. 
Because the virtual displacement ~7i can be expressed as 

¢~i = --¢~qj  
j= l  Oqj 

Note that T2 is a quadratic function in the generalized velocities {t)l . . . . .  ~¢n}, T1 
is a linear function in the generalized velocities, and To is a nonnegative function 
of  only the generalized coordinates {ql . . . . .  qn } and time. 

Consequently, the kinetic energy T becomes a function of  q j, ?l j, and t, and it 
is expressed as 
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the virtual work 3 W as defined in Eq. (1.99) becomes 

3W = ~~f i  "~Fi = E l i "  - -6q1  = fi" 0-~'--2- 
i=1 i=1 j=l Oqj j=l i=1 Oqj ~qJ (1.113) 

Furthermore, we express the virtual work as 

3W = ~ Qj3qj (1.114) 
j = l  

where Q j, called the generalized force associated with qj, is defined as 

U 07 i 
e j  = Y~J~ . . . .  (1.115) 

i=] aqj 

Note that Qj~qj is the work done by all of  the applied forces when qj alone is 
changed by a virtual displacement ~qy (time and all other coordinates held fixed). 

Finally, Hamilton's  equation (1.102) becomes 

~t: ~--~ft'2ld OT OT Qj}Sqjdt  (1.116) 0 = (~T + 3W) dt = - ~ Oily Oqj 
j = l  

Because {ql . . . . .  q,  } are independent, the coefficients of ~qj in Eq. (1.116) must 
be zero; thus, Lagrange's  equation for the holonomic system is given by 

-~ Oqj QJ' j = 1 . . . . .  n (1.117) 

If  some of the applied forces acting on a system of particles are derivable from 
a potential energy V(ql . . . . .  qn, t) whereas other forces are nonpotential forces, 
then Lagrange's  equations of  motion of the system are of the form 

d (O__~j) O L - Q  J, j = l  . ,n (1.118) ~~ 0q-"-~. , . -  

where 

L = T - V = Lagrangian 

T = T(ql . . . . .  qn, ql . . . . .  qn, t) = kinetic energy 

V = V(ql . . . .  q, ,  t) = potential energy 

and Qj is the j th  generalized force associated with the nonpotential forces in the 
system. Lagrange's  equations of  motion of the form of Eq. (1.118) represent a set 
of n second-order differential equations in terms of the independent generalized 
coordinates {ql . . . . .  q,}. If  the potential energy V does not depend explicitly 
on time, then Qj represent the nonconservative forces, including nonholonomic 
constraint forces to be discussed next. 
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Lagrange's equations of motion for nonholonomic systems. 
system of particles subject to m nonhoionomic constraints of the form 

n 

~-'~aij dqj + ai dt = O, i = 1 . . . . .  m 
j = l  

o r  

Consider a 

(1.119) 

i=1 

then qj can be considered independent. Consequently, we have Lagrange's equa- 
tions of motion of the form 

d ( 0 . ~ j )  __OL - ~ - ~ ) ~ i a i j + Q j ,  j =  1 . . . .  . n (1.126) 
-~ °qqJ i=l 

m 

Cj = ~ ~iaij (1.125) 

~-~aijilj + ai = 0, i = 1 . . . . .  m (1.120) 
j = l  

where aij and ai are, in general, functions of n coordinates qj and time. Because 
the nonholonomic constraints are not integrable, the system cannot be described 
in terms of (n - m) independent generalized coordinates; i.e., more coordinates 
than there are degrees of freedom are needed. Note that this system has (n - m) 
degrees of freedom. 

Let Cj be the j th generalized constraint force associated with q j, then, according 
to the principle of virtual work, the virtual work done by all constraint forces is 
zero; i.e., we have 

~'~Cj3qj = 0 (1.121) 
j = l  

where Sqj  is the virtual displacement, which is different from the actual displace- 
ment dqj,  but which must be compatible with the constraints irrespective of time; 
i.e., 

~-~aij3qj = O, i = 1 . . . . .  m (1.122) 
j = l  

Multiplying this equation by an arbitrary factor ki, known as a Lagrange multiplier, 
and adding the resulting m equations, we obtain 

) ~.i aq~qj = 0 (1.123) 
i=1 

Combining Eqs. (1.121) and (1.123), we obtain 

~-~(CJ-~-~'iaij) i=1 (1.124) 

If we select the Lagrange multipliers ~.i such that 
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where L = T - V. Note that the right-hand side simply consists of the non- 
holonomic constraint force Cj and other generalized force Qj. Equations (1.120) 
and (1.126) constitute a set of (m 4- n) simultaneous differential equations in the 
unknown functions ~.j and q j .  

Hamilton's canonical equations of  motion. Let the j th generalized mo- 
mentum p j  be defined as 

~L aT 
- -  - -  - -  ( 1 . 1 2 7 )  

PJ -- 04j a~lj 

where L = T - V, then Lagrange's equations of motion of the form of Eq. (I. I 18) 
can be rewritten as 

~L 
= m + Qj (1.128) PJ Oqj 

The generalized momenta pj are, in general, linear functions of the generalized 
velocities qj. For example, if T = T2 with TI = To = 0, then T can be expressed 
as 

T = ~ ~ a i f f I i ~ l j  

= j = l  

(1.129) 

where a i j  = aji are constants or functions of {ql . . . . .  %}, and we obtain 

n L a n l  • " " ann  Eil (1.130) 

In the formulation of Hamilton's canonical equations of motion, the generalized 
velocities ~tj need to be expressed in terms of p j, as follows: 

E IF l 
ql a l l  " • " a l n  

L a n l  • . . a n n  

el  

Pn 

(1.131) 

The Hamiltonianfunction, or simply the Hamiltonian, is defined as 

H =  - - "  - L = pjdlj - L 
j=l ()qJ qj j=l 

(1.132) 

Taking the variation of H, we obtain 

~H = 3 P j i l j  + p j 3 i l j  . . . . .  " 
j =  I OqJ 3qj Oil j  3 q j  
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which becomes 

j=l -- Oq---J 3qj 
(1.133) 

since pjSqj = (OL/Oglj)3glj. 
Substituting Eq. (1.131) for the generalized velocities qj in Eq. (1.132), we 

obtain the Hamiltonian of the form 

H = H(ql . . . . .  q., Pl . . . .  p . ,  t) 

Taking the variation of H of this form, we obtain 

6H ~ 3H 
Oqj 3qj Opj r~pj (1.134) 

Comparing Eqs. (1.133) and (1.134) and using Lagrange's equations of motion 
of the form (1.128), we obtain a set of 2n first-order differential equations of the 
form 

aH 
[tj -- Opj' j = 1 . . . . .  n (1.135a) 

OH 
pj = - - -  + Q j, j = 1 . . . . .  n (1.135b) 

Oqj 

where Qj is the j th generalized force associated with the nonpotentiai forces in the 
system, and Eqs. (1.135) are known as Hamilton's canonical equations of motion. 

Differentiating the Hamiltonian H = H(ql . . . . .  q, ,  Pl . . . . .  p , ,  t) of a holo- 
nomic system in an irrotational field, we obtain 

dH 

dt 

~--~ aH ~--, OH . 
= - - q j  + 2_,  7 o , P J  + - -  

j=l Oqj j=l PJ 

OH OH OH OH + 

j=l Oqj Opj j=l Opj Oqj Ot 

OH 
= 

Ot 

OL 

3t 

OH 

Ot 

Consequently, for a conservative holonomic system in which the Hamiltonian does 
not depend explicitly on time, we have 

H = const 
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When the kinetic energy T is expressed as Eq. (1.110), the Hamiltonian function 
defined as Eq. (1.132) becomes 

x-L, ~ L .  
H = ~ Oil-----f.qj- L 

= 2T2 + Tl -- (T2 + TI + T o - V )  

= T2 - To + V (1.136) 

Furthermore, if T = T2 with Tl = To = 0, then the Hamiltonian simply becomes 

H = T + V (1.137) 

which indicates that the Hamiltonian is simply the total energy of the system. Fi- 
nally, the principle of  conservation of energy for a conservative holonomic system 
can be described as 

H = T + V = const 

Using Hamilton's  canonical equations of  motion, we describe the motion or 
trajectory of  a dynamic system in the 2n-dimensional state space or phase space by 
the set of  2n state variables {ql . . . . .  q,  } and {Pl . . . . .  p ,  }. In Lagrange's  equations 
of  motion, a set of  2n coordinates {ql . . . . .  q~} and {ql . . . . .  qn} can be regarded 
as the state variables of  the system. The concepts of  state variables and state space 
will be studied further in the next section. 

Example 1.1 
Consider again a particle of  mass m that is constrained to move on a massless, 

circular hoop of radius e under the action of gravity, as was illustrated in Fig. 
1.6. The circular hoop is also allowed to rotate freely about the vertical line. This 
dynamic system with two degrees of  freedom is equivalent to a spherical pendulum 
of mass m and length £ with the generalized coordinates Oandq~. 

As illustrated in Fig. 1.6, let {al, a2, a3} and {bt, b2, b3} be two sets of  
orthogonal unit vectors of two reference frames A and B, fixed at point O and 
the pendulum mass, respectively. The angular velocity of  B with respect to A is: 
~o B/A = - ~  E1 + 0/~3 and Ex = cos O/~l - sinO/~2. The position vector of  the 
pendulum mass from point 0 is given by F = £ bl,  and the velocity vector can be 

obtained as F = ~o s/a x F = £0 b2 - £~ sin 0/~3. 
The Lagrangian then becomes 

L = T -  V = ½m(£202+ e2q~Esin20)- rage(1 - c o s O )  

and Lagrange's  equations of  motion of  a spherical pendulum can be found as 

d ( 8 _ ~ )  OL O=¢ ,m£20_mg2~2s inOcosO+mg£s inO= 0 
dt O0 

-~ ~-~ = 0 =:~ me2sin2Odp + 2me2~O sin 0 cos 0 = 0 
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which can be rewritten as 

0 [ m e 2 ~  2 sin 0 cos 0 - mge  sin 0 ] 

[ r ~  2 me2s in20]  [ : ]  = l - 2 m e Z O ~ s i n O c o s O  J 

or as a set of first-order nonlinear differential equations of  the form 

XI = X 3  

.lf 2 = X 4 

-t3 = x4 2 sin xl cos xl - (g / e )  sin xl 

.t4 ---- -2x3x4 cos xl / sin xt 

where (Xl, x2, x3, x4) = (0, q~, 0, $). 
Furthermore, the generalized momenta associated with the generalized coordi- 

nates 0 and ~b are related to 0 and $ as 

3L Po 
PO = --'-':- = m e 2 0  :=~ 0 = 

O0 m e  2 

OL = meZ~sinZ 0 =~ ~ _ P4, 
p¢, = ---~ me2sinZ0 

and we obtain Hamiltonian as 

1 2 1 2 + m g e ( 1  - cos0) 
H = poO + p,~dp - L -- ~ - - -~Po + 2meZsin20 PO 

Finally, we obtain Hamilton's canonical equations of  motion as 

0 = po / (m£  2) 

(b = p¢,/(mg.Zsin20) 

P0 = P~ cos O/(meZsin30) -- mg l  sin 0 

p~ = 0 

Problems 

1.20. Consider a system of N particles of  tree-topology connected by massless 
rods, such as a double pendulum. Lagrange's form of D'Alembert 's  principle for 
such a system is given by 

N "" OFi 
~__fl L" -- m i -r i ) " = O, j = 1 . . . . .  n 
i=1 Oqj  

where j~ is an applied force acting on the ith particle (excluding nonworking 
constraint forces), Fi is the inertial position vector of the ith particle represented 
as 

-ri = -ri(ql . . . . .  qn, t), i = 1 . . . . .  N 

and {ql . . . . .  qn } are the n independent generalized coordinates. 
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(a) Show that 

O-ri ~ i  
Oqj O{lj 

Hint: Eq. (1.109). 
(b) Let the generalized force Q j  and the kinetic energy T be defined as 

N N O~ i 
o, = U , i ,  . oTi = ZL . 

i=1 Oqj /=1 

1 N 
T = - m i r i  • r i  

2 .= 

then derive Lagrange's equation of motion of the form 

- 

d-t 0q---~ 
j = l , . . . , n  

(c) Also show that the generalized force Q j  can also be expressed as 

N O~i--1 N ~O)i 

i=l O?lj ,= ~ O~lj 
moment 

where Pi ~ 7i - ~i-i is the position vector of the ith particle with respect to the 
(i - 1)th particle, and ~i is the angular velocity vector of the ith particle with 
respect to the (i - 1)th particle. 

1.21. For the simple pendulum problems illustrated earlier in Fig. 1.5, derive 
both Lagrange's and Hamilton's equations of motion. 

1.22. For the compound pendulum problems illustrated earlier in Fig. 1.8, derive 
both Lagrange's and Hamilton's equations of motion. 

1.23. For the inverted pendulum problems illustrated earlier in Fig. 1.9, derive 
both Lagrange's and Hamilton's equations of motion. 

1.24. Consider a two-link manipulator that is modeled as the double pendulum 
consisting of two massless rods of lengths el and £2 and point masses ml and m2, 
as illustrated earlier in Fig. 1.10a. 

(a) Find the kinetic energy T as 

T I "2 = g(aliO, + 2ai20102 + a2202) 

where al, = (ml + m 2 ) e ~ ,  a 1 2  ---- a21  ---- m2£1£2 cos(02 - -  01), and a22 = mz£ 2. 
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(b) Derive Lagrange's equations of motion for the double pendulum in terms of 
the generalized coordinates 01 and 02, as follows: 

[a, a ][O,]=rm' O sin'Oa O' 'm,+m2',' sinOl+U, 
a21 a22 02 [ --m2£le20?sin(O2--O1)--m2gg.2sinO2+u2 

Note." The double pendulum with the shoulder and elbow joint control torques 
U l and uz is equivalent to a double pendulum with 

= u ,  g 2  - - u 2 .  J~ ~'1 ~1 ~2 c2 

U2 .  

(c) Express 01 and 02 in terms of the generalized momenta Pl = OT/30~ and 
p2 = 3T/302, as follows: 

Ol = a22Pl -- a12P2 

a I I a22 -- a22 

02 = al lp2-  al2pt 
al  I a22 -- a~2 

and then obtain the kinetic energy as 

T = a22p2 - 2aI2PlP2 Jr allP 2 
2 ( a l i a 2 2 -  a122) 

(d) Derive Hamilton's canonical equations of motion in terms of 01,02, Pl, and 
P2. 

1.25. Consider again the double pendulum shown earlier in Fig. 1.10b with 
{q~l, 4~2} as a set of the generalized coordinates of the system. 

(a) Derive Lagrange's equations of motion in terms of the generalized coordi- 
nates q~l and q~2, as follows: 

[(ml +m2)g'2 +m2£22 + 2m2elg.2cosdP2 m2e2 Wm2gle2coscb2] [qbl ] 
m2£ 2 + m2el e2 COS ~2 m2£22 ~2 

= r m2e,e2 sin ¢2(24,62 + 62)--(m,+m2)ge~ sin ~,-m2g~2 sin (4', + ~2)+u, ] 
k --m2~1~2~ sin 4~2 - m2gg.2 sin(4h + q~2) + u2 .] 

(b) Also derive Hamilton's canonical equations of motion in terms of 4h, 4~2, 
Pl, and P2 where Pi = OT/O~)i. 

1.26. For the double pendulum consisting of two uniform slender bars shown ear- 
lier in Fig. 1.10c, derive Lagrange's equations of motion in terms of the generalized 
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coordinates q~l and ~2, as follows: 

I I 2 1 2 m2e~ m2ele2 cos ~ml~l + ~m2~ 2 + + ~2 
1 2 1 -~m2e 2 + 7m2ele2 cosq~2 

57 

] jm2e2 + ~l 
1 2 ~m2~2 .] ~2 

I "2 1 ] lm2£1e2(2~l~2 + ~b2)$2 - l m,ggq S, - m2gel Sl ~m2gg.2S12 + ltl 
1 "2  1 --Tm2.el.~2~l $2 -- + U2 -~m2ge2Sl2 

where $1 = sin 4h, $2 = s i n ~ ,  and S12 -- sin(4h + ~2). 

1.2. 7 Applications to Spacecraft Deployment Dynamics 
Thus far in this section we have presented the fundamentals of classical me- 

chanics and analytical dynamics. This is a textbook about spacecraft dynamics 
and control. Hence, as an introduction to dynamic problems of practical concern, 
we consider in this section, based on Wie et al., 5 the dynamic modeling and com- 
puter simulation problems associated with the deployment of solar panel arrays 
on INTELSAT V and INSAT spacecraft. Each spacecraft is characterized by very 
distinct mechanisms for its solar array deployment. 

As spacecraft become larger and more complex, the need to stow the space- 
craft within the dimensions of launch vehicle fairing becomes a serious design 
constraint. For this reason, spacecraft are being built that are stowed in one con- 
figuration, then deployed into another configuration once in orbit. INTELSAT V 
and INSAT spacecraft, shown in Figs. 1.11 and 1.12, respectively, are examples 
of such spacecraft, with solar panel arrays that must be deployed for the normal 
on-orbit configuration. 

The arrays on INTELSAT V are in a topological tree configuration, whereas the 
INSAT solar panel array is in a closed-loop configuration because of the four-bar 
linkage deployment mechanism. The closed-loop multibody configuration poses 
a unique dynamic problem in formulating the equations of motion. However, the 
kinematic control rod on the INSAT spacecraft has a synchronizing function very 
similar to that of the closed cable loop on the INTELSAT V spacecraft. 

Such complex deployment mechanisms, to be discussed hereafter, present two 
major issues that often arise in the modeling and computer simulation of complex 
dynamic systems: how one can formulate analytically the complex equations of 
motion, and to what extent one can utilize a multibody computer code for the 
computerized generation of symbolic equations of motion. 

INTELSAT V solar array deployment. INTELSAT V, shown in Fig. 1.11, 
has two symmetric solar panel arrays that deploy simultaneously in an accordion 
manner. Each array consists of a yoke and three panels. A schematic of the deploy- 
ment mechanism consisting of torsion springs and closed cable loops is shown in 
Fig. 1.13. The solar pane] itself is assumed to be rigid. It can also be assumed 
that the solar arrays are attached to the fixed base for the deployment analysis, 
because the two symmetric arrays deploy simultaneously. To prevent large distur- 
bance torques to the mechanism, the attitude control system is disabled during the 
approximately 20-s deployment period. 
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Fig. 1.11 INTELSAT V on-orbit deployed configuration. (Courtesy of Ford Aero- 
space and Communications Corp., Palo Alto, CA.) 
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Fig. 1.12 INSAT on-orbit deployed configuration. (Courtesy of Ford Aerospace and 
Communications Corp., Palo Alto, CA.) 
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Fig. 1.13 INTELSAT V solar array showing closed cable loops. 

The preloaded torsion springs located at each hinge provide the energy to deploy 
the panels, whereas the closed cable loops restrain the deployment by synchroniz- 
ing the deployment angles. The first cable connects the first panel and the spacecraft 
main body, the second cable connects the second panel and the yoke, and the third 
cable connects the third and first panels. These cables synchronize the deployment 
angles of each panel by applying a passive control torque that is proportional to 
the angle difference. The cables also serve to slow down the deployment rate to 
a point below the structural failure rate. Figure 1.14 illustrates a simplified planar 
model with equivalent cable torques on each body, which, during the deployment, 
can be simply modeled as 

7"1 = k ( 2 0 j  - 02) (1.138a) 

7"2 = k ( O z  - 03) (1.138b) 

T3 = k ( 0 3  - 04)  (1.138c) 

where Oi is the ith hinge angle in rad, T/is the ith cable torque in N.m, k = 4500r 2 
is the equivalent cable torsional stiffness in N-m/rad, and r = 0.01835 m is the 
cable-pulley radius at the panel hinges. The pulley radius at yoke hinge is 2r, 
because the fully deployed yoke hinge angle 01 is only 90 deg whereas the fully 
deployed first hinge angle 02 becomes 180 deg. 

The most critical parameter in the deployment is the hinge friction level, which 
is temperature dependent and can be a source of premature partial deployment. 
The nominal friction levels are given in Table 1.2 with other parameter values. In 
Table 1.2, the inertia value of each body is the moment-of-inertia value of each 
body about its center of mass. The moment of inertia of a thin uniform bar of 
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Table 1.2 INTELSAT V solar array deployment parameters 

Hinge spring 

Length, M a s s ,  Inertia, Fr ic t ion ,  Stiffness,  Pretorque, 
m kg kg.m 2 N.m N.m/rad N.m 

Yoke 1.090 2.222 0.2798 0.66 0.1273 1.70 
Panel 1 1.965 12.637 4.2009 0.64 0.1305 0.85 
Panel 2 1.965 9.982 3.8773 0.69 0.1305 0.85 
Panel 3 1.936 8.920 2.9316 0.70 0.1305 0.85 

mass m and length e about its center of mass is lc = m£2/12 ,  and its moment 
of inertia about one end is: Io = lc + m ( e / 2 )  2 = me2 /3 .  As in the case of a 
double-pendulum model, one can derive analytically the equations of motion of 
the planar, four-body model shown in Fig. 1.14 using the Lagrangian approach. 
Figure 1.15 shows the computer simulation results for such a deployment model 
of INTELSAT V. As can be seen in this figure, after the yoke initially deploys the 
deployment occurs fairly evenly due to deployment synchronization by the closed 
cable loops. At the end of the deployment, the hinges latch into the full deployment 
position. As latch-up occurs, the locking lever slides into a slot. In the computer 

T 2 

k2((~ ~ I 03 

T 3 

CABLE TORQUES 
T 1 = k(201-02) 
T 2 = k (02 - 03) 

T 3 = k (03 - 04) 

T 1 

02 (~ ' ~  ~klT2 

S/C MAIN BODY 

Fig. 1.14 INTELSAT V solar array deployment analysis model. 
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Fig. 1.15 Simulation results for INTELSAT V solar array deployment. 

simulation, it is adequate to model the latch-up by hinges restrained by very stiff 
hinges; however, this requires a smaller integration time step near the end of the 
deployment in the computer simulation. 

In practice, extensive computer simulations and ground experiments are often 
needed to investigate, in particular, the effects of the hinge friction and pretorque 
level on the overall deployment dynamics. As a result of such efforts the following 
changes were made in the INTELSAT V case to avoid any premature partial 
deployment: 1) special application of a dry lubricant to all moving parts in the 
hinges to reduce the hinge friction level, 2) increase of torsion spring pretorque 
level, and 3) increase of bearing tolerance to allow greater variation in temperature. 

INSAT solar array deployment. The INSAT spacecraft shown in Fig. 1.12 
has a solar array deployment sequence and mechanism quite different from that of 
the INTELSAT V spacecraft. Figure 1.16 illustrates the deployment sequence for 
the solar array and other appendages on the INSAT spacecraft, which occurs in 
five separate steps, each controlled by pyrotechnic devices. As in the INTELSAT 
V case, the attitude control system is disabled during each deployment, except 
the solar-sail deployment. In the fully deployed configuration, the solar array is 
extended from the south side of the satellite, where it is oriented to the sun by the 
solar array drive assembly. When stowed for launch, panel 1 and the yoke are held 
parallel with the south wall of the satellite. Panels 2 and 4 are also folded on the 
south face, whereas panels 3 and 5 are folded against the Earth face. Two hinge 
assemblies are used at each of the four lines to join the panels together. 

The final stage solar array deployment is discussed here in detail because of the 
unique dynamic characteristics of the four-bar linkage deployment mechanism. 
A schematic of this four-bar linkage for the final stage deployment is shown in 
Fig. 1.17. To prevent possible interference between the array and the spacecraft 
main body, the control link synchronizes the deployment of the solar panels with 
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i~  ~ 

Fig. 1.16 INSAT spacecraft deployment sequence. 
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Fig. 1.17 INSAT solar array deployment mechanism (four-bar linkage). 
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Fig. 1.18 INSAT solar array deployment analysis model. 

the motion of the yoke. In fact, the kinematic control rod on the INSAT has 
a synchronizing function very similar to that of the closed cable loops on the 
INTELSAT V. 

The analytical modeling of the INSAT final stage deployment is not as straight- 
forward as the INTELSAT V case. The four-bar linkage results in a closed-loop 
configuration, which requires a special consideration in formulating the equations 
of motion. A schematic of a planar model of the INSAT final-stage deployment is 
shown in Fig. 1.18. We consider here a simple case with a fixed base. The space- 
craft main body is assumed to be fixed in space, and the rotational motion of the 
linkage and solar panel is assumed to occur about a single axis. 

For the Lagrangian formulation of the equations of motion of the model in Fig. 
1.18, but with a fixed base, the following kinetic and potential energy terms can 
be defined as 

1(11 + mlr~ + m2d2)O 2 -}- 1(12 + m2r2)(Oi + 02) 2 T = I  

+ m2dl r201 (01 -~ 02) cos  02 

V 1 1 7kl (OiF -- 01)2 + ~ k 2 ( 0 2  F _ 02)2 

(1.139a) 

(1.139b) 
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Table 1.3 INSAT solar array deployment parameters 

Parameters Values 

Spacecraft main body yaw inertia lz, kg-m 2 
Yoke hinge location with respect to main body 

center of mass, m 
Distance do from yoke hinge to control rod, m 
Yoke length di, m 
Distance d2 from yoke/panel hinge to control rod, m 
Control rod length d3, m 
Distance r~ from yoke hinge to yoke c.m., m 
Distance r2 from yoke/panel hinge to panel c.m., m 
Yoke mass m l, kg 
Panel mass m2, kg 
Yoke inertia li about its c.m., kg-m z 
Panel inertia 12 about its c.m., kg.m 2 
Yoke spring constant kl, N.m 
Yoke spring zero-torque angle 01r, deg 
Simulation data 

k2 = -0.776 N.m/rad for 5 deg < 02 < 172.8 deg 
k2 = -40.1 N.m/rad for - 3  deg < 02 < 5 deg 
OZF = 298 deg for 5 deg < 02 < 172.8 deg 
02r = 12.7 deg for - 3  deg < 0: < 5 deg 

Initial angles 01,02, 03, deg 
Deployed yoke/body spring constant, N.m/rad 
Deployed panel/yoke spring constant, N-m/rad 
Deployed modal damping ratio 
Fully deployed fixed-base frequencies, Hz 

360.3 
(Xo, Yo) = (--0.2171,0.7409) 

0.15225 
1.32588 
0.08024 
(min, max) = (1.3939,1.4165) 
0.8915 
1.8288 
8.899 
36.891 
0.9369 
43.527 
0.6114 
240 

0.294, 172.817, 7.283 
1582.3 
28523.5 
0.02 
0.5,2.74 

where O~F and OZF are the hinge angles when the hinge springs are unstressed. 
The hinge angles Oi and the geometric parameters used in the preceding equa- 
tions are defined in Fig. 1.18. The INSAT solar-array deployment parameters are 
summarized in Table 1.3. 

Note that the two hinge angles, 01 and 02, used in Eq. (1.139) are not independent 
variables. Because the four-bar linkage system has only one degree of  freedom, a 
single coordinate, such as the angle 02, suffices for the description of  all admissible 
configurations. The kinetic energy cannot be expressed readily in terms of  only 02 
and 02, however, because of  the transcendental character of  the relationship among 
the three hinge angles. Thus, the third angle 03 is introduced, and the angles 01 
and 03 are selected as extraneous coordinates, which must satisfy the following 
geometrical constraints: 

do+dl cOSOl +d2cos(Ol +02)-t-d3cos(O1 + 0 2  -'1"-03) = 0 (1.140a) 

dl sinO1 + d2 sin(01 +02)+d3sin(Ol +Oz+03)=O (1.140b) 

The selection of  02 as an independent coordinate here is, however, arbitrary. 
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Because it is impractical to express 01 and 03 in terms of the independent 
coordinate 02, these holonomic-constraint equations are differentiated with respect 
to time and treated as nonholonomic constraints, and the dependent variables are 
eliminated by the method of Lagrange multipliers. Differentiating Eqs. (1.140), 
we obtain the following nonholonomic constraints: 

a)101 + a1202 + a1303 = 0 (1.141a) 

a2101 + a2202 + a2303 = 0 (1.141b) 

where the coefficients ai) are functions of 01,02, and 03. These equations are linear 
in 01 and 03, and they can be easily solved for these quantities in terms of 02, as 
follows: 

01 = fl(02, aij) (1.142a) 

03 = f3(02, aq) (1.142b) 

The equations of motion are then derived using the Lagrange multiplier method, 
as follows: 

d 3L 3L 

dt 301 001 

d OL 3L 

dt 002 002 

d 3L OL 

dt 303 303 

where L = T - V is the Lagrangian 

- -  -- Zlall + X2a21 (1.143a) 

- -  -- Xlal2 + ~.2a22 (1.143b) 

- -  -- Xlal3 q- ~.2a23 (1.143c) 

function and M and ~2 are the Lagrange 
multipliers. 

Differentiating Eq. (1.142), substituting the resulting 01 and 03 into Eq. (1.43), 
and then eliminating the Lagrange multipliers, one can obtain a differential equa- 
tion of the form 

02 = f2(0i, 0i) (1.144) 

where the right-hand side is somewhat complicated. Equations (1.142) and (1.144) 
constitute a set of three simultaneous differential equations in the unknown func- 
tions 01,02, and 03. 

The results of the computer simulation using these analytically derived equations 
with parameter values given in Table 1.3 are shown in Fig. 1.19. The complete 
deployment takes about 10.5 s, which closely matches the actual flight-observed 
deployment of 11 s. 

Figure 1.20 shows the computer simulation results using a more complex model 
with slotted link and coupled to the free motion of the spacecraft main body. The 
array vibration after lock-up is modeled by two springs, at the yoke/body and 
array/yoke hinges. Spring and damping constants are tuned to give the first two 
fixed-base bending mode frequencies and a modal damping ratio of 0.02. The 
overall response characteristics between Figs. 1.19 and 1.20 are in good agreement, 
with the exception of the initial yoke response. The yoke angle plot clearly shows 
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Fig. 1.19 Simulation results for INSAT solar array deployment (fixed base and no 
slot). 

the impact of the slotted link. The yoke also locks up slightly before the array does. 
The spacecraft yaw offset is about 16 deg, with peak yaw rates up to 10 deg/s. 
After the yoke initially deployed, the overall deployment occurs fairly evenly. By 
comparing this with the INTELSAT V yoke response in Fig. 1.15, it can be seen that 
the kinematic control rod on the INSAT has a synchronizing function very similar 
to that of the closed cable loop on the INTELSAT V. A peak compressive force of 
about 220 N (50 lb) is carried by the link. This is well within the designed capacity 
of the link. The link effectively pushes up the panel to expedite its clearance from 
the spacecraft main body. 
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Fig. 1.20 Simulation results for INSAT solar array deployment (free base and slotted 
link). 

It is possible to derive analytically the equations of motion of a more complex 
model of a three-axis coupled system; see, e.g., Kane and Levinson. 6 However, a 
multibody computer code needs to be employed for the automatic generation of 
symbolic equations of motion for such a complex model. Such computer programs 
will eliminate the time-consuming part of the analytic formulation and will also au- 
tomatically generate symbolic equations for more efficient computer simulations, 
as is discussed in Schaecther and Levinson. 7 

Problems 

1.27. Derive the equations of motion for the planar, four-body model of the solar 
array deployment dynamics of the INTELSAT V spacecraft, shown in Fig. 1.14, 
and verify the computer simulation results shown in Fig. 1.15. (Assume that the 
center of mass of each body is located at the middle of each body.) Also perform 
computer simulations to investigate the effects of the hinge friction and pretorque 
level on the overall deployment dynamics, with particular emphasis on premature 
partial deployment. 

1.28. Complete the derivation of the equations of motion (1.142) and (1.144), in 
detail for a planar model of the INSAT solar array deployment dynamics, shown 
in Fig. 1.18 (but with fixed base and no slot), and verify the computer simulation 
results shown in Fig. 1.19. Using a multibody computer code (see, e.g., Refs. 7 
and 8), verify the computer simulation results shown in Fig. 1.20 for the planar 
model with free base andslotted link. 
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1.3 Dynamic Systems Analysis 
This section introduces some fundamental concepts in dynamic systems theory, 

and it is mainly concerned with the stability analysis of  dynamic systems. A solid 
background in dynamic systems theory is essential to understanding the stability 
and control problems of  space vehicles treated in this book. In particular, the subject 
of  linear system dynamics is important for a wide range of  dynamics and control 
problems of  practical interest; however, this section is only intended to serve as a 
brief summary of  the subject matter. 

We begin the subject of  dynamic systems analysis with a brief introduction of  
the theory of  dynamic systems, including Lyapunov's stability theorems.* 

1.3.1 Introduction to Dynamic Systems Theory 
Consider a dynamic system described by a set of  first-order nonlinear differential 

equations of  the following form: 

Jet = f l ( x l  . . . . .  x , ;  Ul . . . . .  Up; t )  

Jc2 = f 2 ( x t  . . . . .  xn; ul . . . . .  Up; t )  

Jc. = f n ( x l  . . . . .  xn; ul  . . . . .  Up; t )  

where x i ( t )  are state variables and u i ( t)  are control input variables or control param- 
eters. The state of  a system at time to is the amount of information at to that, together 
with the input, uniquely determines the behavior of  the system for all t >_ to. 

In vector notation, the state-variable description of nonlinear dynamic systems 
becomes 

:~ = f(x, u, t) (1.145) 

where x is the state vector and u the control input vector defined as 

[i I [i x =  , u =  , f =  

n U p  

If  the equations of  motion do not explicitly depend on the time, then the system is 
said to be autonomous; otherwise, it is said to be nonautonomous. 

An equilibrium point, or a critical point (also called fixed point, stationary point, 
singular point, and steady-state point in the literature), of a nonlinear dynamic 
system corresponding to a known constant input or parameter vector u* can be 
found by solving the steady-state equation f(x, u, t) = 0. That is, we have the 

*The Russian mathematician Aleksandr Lyapunov (1857-1918) established the foundations for 
the stability theory of dynamic systems. Lyapunov was a contemporary of the French mathematician 
Henri Poincar6 (1854-1912), who established the foundations for a theory of dynamic systems. Later, 
George David Birkhoff (1884-1944) further developed the theory of dynamic systems and published 
a monograph entitled Dynamical Systems in 1926. 
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equilibrium condition 

f(x*, u* , t )  = 0 for allt  > to (1.146) 

where x* denotes the state vector at an equilibrium point for a known constant 
input or parameter vector u*. 

A sudden change in the dynamic character of  a system when a constant parameter 
is changed from below to above some critical value is called a bifurcation in 
dynamic systems theory. In particular, bifurcation theory is concerned with how 
the number and character of  equilibrium points depends on parameters. 

Example 1.2 
Consider the simple pendulum of mass m and length £, connected by a massless 

rod to the hinged support point O, as shown in Fig. 1.5a. The nonlinear differential 
equation of  motion of  this system is given by 

m e g  = - r a g  sin 0 + u 

where 0 is the generalized coordinate of  the pendulum from the vertical line, g is 
the gravitational acceleration, and u(t)  is the input force. The natural equilibrium 
points of  this system with u = 0 can be directly found by solving the equilibrium 
condition sin 0 = 0. Thus, the equilibrium points are 0 = 0, +Jr . . . . .  Note that 
the equilibrium points 0 = 0, -I-2Jr . . . .  and 0 = +Jr, -I-37r . . . .  correspond to the 
vertical down and up positions, respectively. 

If  we choose xl = 0 and x2 = 0 as the state variables, then the state-variable 
description of  this nonlinear system becomes 

3~ I ~--- X 2 

g . 1 
jC 2 m _  ----  slnxl + - - u  

£ m£ 

Example 1.3 
Consider Hamilton's canonical equations of  motion described by 

OH 
i]i = Opi'  i = 1 . . . . .  n (1.147a) 

OH 
Pi -- + ui,  i = 1 . . . . .  n (1.147b) 

8qi 

where H = H(q l  . . . . .  qn, pl . . . . .  P . ,  t)  and ui denotes the ith generalized force 
associated with the nonpotential forces in the system. Defining q = (ql . . . . .  qn), 
P = (Pa . . . . .  Pn), and u = (uz . . . . .  un), we obtain Hamilton's equations of  
motion in matrix form, as follows: 

<,q r .l 
~ = L a p J  

r,- l '  
d--7 = -  L aq j + u  
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where 

8H [ OH] 
Op Opi Op. 

8H [ SH OH] 
8q Oqi 8qn 

Finally, Hamilton's equations of  motion are rewritten in state-vector form as 

= f(x, u, t) 

where 

(1.148) 

[dPlT dq [dqlr dp OH 
=-L~- j ~-+L~-Tj ~7--I- ~ 

OH 
at 

Thus, for an autonomous Hamiltonian system with H = H(q,  p), we have H = 0; 
i.e, H is constant. 

In dynamic systems theory, a nonlinear system described by ~ = f(x, t) with 
div f = 0 is called a volume-preserving, nondissipative or conservative system; 
hence, the Hamiltonian system is said to be a conservative system. A system with 
div f < 0 is called a dissipative system, and stable, persistent motion in the 2n- 
dimensional dissipative system remains on an attractor that has dimension less 
than 2n. It should be emphasized that the dissipativeness or conservativeness here 
is concerned with whether the volume of  a set of  points in state space of a particular 
set of  state variables is preserved (conserved) or not. 

Furthermore, if div f of  a dynamic system described by k = f(x, t) is not identi- 
cally zero or does not change sign, then periodic solutions (or closed orbits) are not 

[q] r ] x = , f=  [-(OH/aq) r + u  

A dynamic system described by Hamilton's canonical equations of  the form 
(1.147) or (1.148) with u = 0 is often called a Hamiltonian dynamic system. For 
such a Hamiltonian system, we have 

r fl 
div~ = d i r t  = tr L0x l  i=i Tqi i=l ~ 0 

Consequently, it is often said that a Hamiltonian system preserves the volume of  a 
set of  points in the 2n-dimensional state or phase space o fx  = (ql . . . . .  qn, pl . . . . .  
Pn), whether or not H depends explicitly on t. This statement is often referred to 
as the Liouville theorem in dynamic systems theory. 

Given H = H(q,  p, t), we obtain 

dH OH dq OH dp OH 
d t  - at + 7 p  -d-; + o-T 
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possible for the system. This statement is called Bendixon's criterion in dynamic 
systems theory. 

Problem 
1.29. Consider a cart of  mass M with an inverted pendulum on a frictionless 
horizontal surface, as was shown in Fig. 1.9a. The inverted pendulum, consisting 
of  a massless rod of  length ~ and a point mass m, is hinged on top of  the cart. Let 
z( t)  be the horizontal position of  the cart, O(t) the angle of  the pendulum measured 
from the vertical position, u(t) the control input force acting on the cart, and g the 
gravitational acceleration. 

The nonlinear equations of  motion for this system can be derived as 

( M  + m)~ + meO cos0  - me02 sin0 = u 

m£20 + me~ cos 0 - mge sin 0 = 0 

(a) Defining x = (xl ,  x2, x3, x4) = (z, 0, ~, 0) as a state vector, obtain the state- 
variable description of  the form i = f(x, u). Then show that div ~: of  this system 
with u = 0 is neither identically zero nor sign definite. 

(b) Defining x = (xl ,  x2, x3, x4) = (z, O, Pz, Po) as a state vector, where Pz and 
Po are the generalized momenta associated with the generalized coordinates z and 
0, obtain Hamilton's canonical equations of  the form :t = f(x, u), and then show 
that div :~ of  this system with u = 0 is identically zero. 

Note: It is important to point out that the divergence of  the vector field of a 
dynamic system of the form i = f(x, t) depends on the selection of  a particular 
state vector x. 

1.3.2 Nonlinear System Stability 
Consider a nonlinear dynamic system described by 

= f (x ,  t )  (1.149) 

where x = (xl . . . . .  Xn) is the state vector. An equilibrium point of  this dynamic 
system is a point x* such that 

fix*, t) = 0 for all t (1.150) 

Definition 1.1 Lyapunov Stability 
An isolated equilibrium point x* of  the system described by Eq. (1.149) is said 

to be Lyapunov stable, or simply called stable, if for any e > 0 there exists a real 
positive number 8(E, to) such that 

Ilx(t0) - x* II _ ,~ =~ IIx(t) - x* 11 _< E for all t > to 

where Ilxll denotes the Euclidean norm of a vector x; i.e., 

Ilxll - 
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Note that the real number 8 depends on E and, in general, also depends on to. If  
8 does not depend on to, then it is said to be uniformly Lyapunov stable. 

Definition 1.2 Local Asymptotic Stability 
An isolated equilibrium point x* is said to be locally asymptotically stable, or 

simply asymptotically stable, if it is Lyapunov stable and 

IIx(to) - x* II < 8 =¢,. x(t) --+ x* as t ~ oo 

Definition 1.3 Global Asymptotic Stability 
An equilibrium point x* is said to be globally asymptotically stable or asymp- 

totically stable in the large if it is Lyapunov stable and x(t) --* x* as t --* cx~ for 
any initial conditions x(t0). 

Definition 1.4 Instability 
An equilibrium point is simply said to be unstable if it is not stable; i.e., if it is 

neither Lyapunov stable nor asymptotically stable. 

A necessary condition for an equilibrium point to be locally asymptotically 
stable is that it be isolated. A necessary condition for an equilibrium point to be 
globally asymptotically stable is that it be the only equilibrium point. 

In the stability theory of  dynamic systems described by 

= f(x, t), fix*, t) = 0 for all t (1.151) 

where x* is an equilibrium point, we often introduce the following transformation 

X ~ X * - J c Z  

where the perturbation z from an equilibrium point x* is, in general, not necessarily 
small. A new set of  nonlinear differential equations is then obtained as 

i = f(x* -t-z, t) (1.152) 

with the origin z = 0 as an equilibrium point. 
Assuming that the perturbation z is small, we further obtain a set of  linearized 

equations about an equilibrium point x*, as follows: 

~. = Az (1.153) 

w h ~ e  

[-] -ro l 
A - -  ~x ,. LaXj jx ,  

is the Jacobian matrix to be evaluated at the equilibrium point x*. 

Definition 1.5 Linear System Stability 
The origin z = 0 of  a linearized system described by Eq. (1.153) is said to 

be infinitesimally asymptotically stable, or simply called asymptotically stable if 



DYNAMIC SYSTEMS MODELING AND ANALYSIS 73 

all the eigenvalues of A have negative real parts. A linear system is said to be 
Lyapunov stable if none of its eigenvalues has a positive real part and if it has no 
repeated eigenvalues on the imaginary axis. It is said to be unstable if any one 
of its eigenvalues has a positive real part or if it has repeated eigenvalues on the 
imaginary axis. (The stability of a dynamic system linearized about an equilibrium 
point is defined here although linear system dynamics will be studied in detail later 
in this chapter.) 

Note that 

[0 0] 
A = 0 does not have repeated eigenvalues 

A = [  0 0 ]  has repeated eigenvalues 

The following very important stability theorem for determining the stability 
of an equilibrium point of a nonlinear system from the stability of its linearized 
system was first established by Lyapunov (see Ref. 9). 

Theorem 1.1 Lyapunov's First Stability Theorem 
This theorem is often referred to as the indirect (or first) method of Lyapunov 

in the literature, and can be described as follows: 
1) If the origin z = 0 of a linearized system described by Eq. (1.153) is asymp- 

totically stable, then the equilibrium point x* of the nonlinear system described by 
either Eq. (1.151) or Eq. (1.152) is also asymptotically stable. 

2) If the origin z = 0 of a linearized system is unstable, then the equilibrium 
point x* of the nonlinear system is also unstable. 

It is important to note, however, that the Lyapunov stability of the equilibrium 
point at the origin z = 0 of a linearized system does not guarantee the Lyapunov 
stability of the equilibrium point x* of the nonlinear system. As an example, 
consider a system described by 

X l  = X2 "-~ bxl (X~ + X~) (1.154a) 

Jc2 = --x, + bx2(x 2 + x 2) (1.154b) 

where b is a constant parameter. It can be easily shown that the origin ofa  linearized 
system is Lyapunov stable for any value of b. However, using Lyapunov's second 
stability theorem (to be presented next), one can show that the origin of the non- 
linear system described by Eq. (1.54) is unstable for any b > 0 and asymptotically 
stable for any b < 0. 

Theorem 1.2 Lyapunov's Second Stability Theorem 
This theorem is often referred to as the direct (or second) method of Lyapunov 

in the literature; however, it is not of the original form of Lyapunov's theorem. 
In fact, the theorem presented here is an extended version of Lyapunov's second 
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stability theorem by many other researchers. Consider an autonomous nonlinear 
dynamic system described by 

/~ = f (x ) ,  f (x* )  = 0 ( 1 . 1 5 5 )  

where x* is an isolated equilibrium point. 
If  there exists in some finite neighborhood D of the equilibrium point x* a 

positive-definite scalar function E(x)  with continuous first partial derivatives with 
respect to x and t such that the following conditions exist: 

1) E(x) > 0 for all x :# x* in D, E(x*) = 0 for all t 
2) ~;(x) < 0 for all x # x* in D and t 

then the equilibrium point x* is Lyapunov stable. 
If, in addition, 
3)/~(x) is not identically zero along any solution x of  Eq. (1.155) other than x* 

then the equilibrium point x* is locally asymptotically stable. 
If, in addition, 
4) there exists in the entire state space a positive-definite function E(x)  which 

is radially unbounded; i.e., E(x) --+ o0 as Ilxll ~ oc 
then the equilibrium point x* is globally asymptotically stable; i.e., x(t) ~ x* as 
t --+ o0 for any initial conditions x(t0). 

If  instead condition 2 is 
2 ' ) /~(x)  > 0 for all x # x* and t, and/~(x*) = 0 for all t 

then the equilibrium point x* is unstable. Such a positive-definite function E(x)  is 
called a Lyapunov function. 

This theorem provides only sufficient conditions for checking the stability of  an 
equilibrium point of  a nonlinear dynamic system, and does not provide a method 
for determining a positive-definite Lyapunov function E(x) for a given nonlinear 
system. A Lyapunov function may be considered as a generalized energy function; 
however, the total energy or the Hamiltonian of the system may be used as a 
Lyapunov function. 

For example, consider a case in which the total energy of a given dynamic system 
is chosen as a Lyapunov function, as follows: 

E = T + V  
where the kinetic energy T is of  the general form 

T = T: + T 1 +  To 

and T2 is a quadratic function in the generalized velocities, 7"1 is a linear function in 
the generalized velocities, and To is a nonnegative function of only the generalized 
coordinates and time. In this case, it may become difficult to determine the positive 
definiteness of  the chosen Lyapunov function E = T + V. In a case where T = 
T2 with Tl = To = 0, and where V is a quadratic function of the generalized 
coordinates, however, the total energy E becomes positive definite and it can be 
used as a Lyapunov function. 

Because the Hamiltonian is defined as 

~--~ OL 
H =  Tq q, -- L = T2 -- To + V 

i=1 
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it is also difficult to determine the positive definiteness of  the Hamiltonian function 
unless To = 0. Thus, only for dynamic systems with T = / ' 2  and T1 = To = 0, we 
often choose the total energy or the Hamiltonian as the Lyapunov function, and 
then determine the sign definiteness of  

n 

F., : ~ qiui 
i = 1  

where ui is the ith generalized nonconservative force associated with the ith gen- 
eralized coordinate qi of  the system. 

Given a dynamic system of the form 

= f ( x )  + u 

the system is called norm-invariant if the solution x(t) of the homogeneous system 
(u = 0) satisfies the following condition: 

d 
d t  Ilxll = 0 

where Ilxll - J x r x ;  i.e., if Ilxll is constant for all t. Note that 

d xT~ 

Ilxll = Ilxll 

Given a control problem of dynamic 

= fix, u) and 

where u is the control input vector to 
Lyapunov function E(x), and obtain 

E ( x )  - 

systems described by 

fix*, 0) = 0 for all t 

be determined, we may select a suitable 
as 

3E dx 

3x dt 

OE 
= Ox f(x, u) 

Then it may be possible to find a globally asymptotically stabilizing control input 
u = u(x), which guarantees/? _< 0 for all x ~: x* and t and E(x*) = O. 

Example 1.4 
Consider again the simple pendulum described by 

3f I ~ X 2 

1 
~t2 = - g  sinxl + - - u  

e me 

where u is the applied input force of  the form u = -cx2 ,  where c is a positive 
constant. The stability of  an equilibrium point at the origin x* = (0, 0) is to be 
investigated using Lyapunov's second stability theorem. 
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The total mechanical energy of  the system is chosen as a Lyapunov function: 

E ( x ) = T + V =  1 ~2 2 $ m t  x 2 + mge(1 - cosxl )  

since E(x*) = 0 and E(x) > 0 for all x ~: x*. We then, obtain 

F. = m e 2 x 2 x 2  of- mgg.(sin X 1 )-~1 

c) 
= meZx2 - sinxl - ~ x 2  + m g e ( s i n x l ) x 2  

= - c e x  2 < 0 

Because E satisfies condition 3, but not condition 4, of  Lyapunov's second stability 
theorem (Theorem 1.2), the equilibrium point x* = (0, 0) is said to be asymptot- 
ically stable. Intuitively, we also know that the vertical down position of the pen- 
dulum with rate damping is asymptotically stable and that the vertical up position 
is unstable. 

Problems 
1.30. Consider a system described by 

JCl = a x l  + x2 + bXl(X 2 + x22) 

)¢2 = --Xl - -ax2 "1- bx2(x 2 + x 2) 

where a and b are constant parameters. 
(a) Show that the origin of  a linearized system is Lyapunov stable for lal < 1 

and unstable for lal > 1. 
(b) Show that the origin of  the nonlinear system is asymptotically stable for 

lal < 1 and b < O, and unstable for lal < 1 and b > O. 
Hint." Use E = x 2 + 2axlx2 + x~, which is positive definite if lal < 1. 

1.31. Consider the rotational motion of  a rigid spacecraft described by Euler's 
equations of  motion 

J i l l  : ( J2  - J3)o92o93 -+- ttl  

J2~b2 = (J3 - J1)o.r30ol + U2 

J3693 = (J1 - -  J2)o)1o92 -k- tt3 

where Ji are principal moments of inertia of  the spacecraft with J l  > J2 > J3, wi 
are the angular velocity components along principal axes, and ui are the control 
torque inputs about principal axes. 

(a) For a torque-free (u = 0), rigid body, show that there exist two constants of 
integration such as 

J,w~ + J2w 2 + J3w~ = const 

J2w~ + J~w 2 + J~w~ = const 
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and that, consequently, we have 

J l ( J l  - J3)co 2 + J2(J2 - J3)¢02 = const 

J 2 ( J J  - J2)0922 + J 3 ( J J  - J3) 602 = const 

J l ( J 1  - -  J2)co 2 - J3(J2 - J3)co 2 = const 

(b) For a torque-free, rigid body, show that the equilibrium points (f2, 0, O) and 
(0, O, f2), where f2 is an arbitrary constant spin rate, are both Lyapunov stable; 
i.e., a pure spinning motion about the major or minor axis is Lyapunov stable. Also 
show that the equilibrium point (0, Q, O) is unstable; i.e., a pure spinning motion 
about the intermediate axis is unstable. 

H i n t :  One can show that (0, f2, 0) is an unstable equilibrium point by showing 
that the linearized system about (0, f2, O) is unstable. But note that the Lyapunov 
stability of  the linearized system about (Q, 0, O) or (0, O, f2) does not guarantee 
the Lyapunov stability of  those equilibrium points of the nonlinear system. 

(c) For a case of  three-axis rate damping control with ui  = - c i o ) i ,  where ci  

are all positive constants, show that the origin (0, O, O) is globally asymptotically 
stable for any positive constants c i .  

(d) Show that the origin (0, 0, O) is not asymptotically stable (but Lyapunov 
stable) for a spacecraft with only two control inputs of the form ul = -clc01, 
u2 ---- -c2c02, and u3 -- 0 where Cl and c2 are positive constants. 

(e) For a spin-up maneuver control with ul = -cl(c01 - Q), u2 = -c2c02, 
and u3 = -c3093, where Q is the desired spin rate about the first principal axis, 
show that the equilibrium point (f2, 0, O) is globally asymptotically stable for any 
positive constants c i .  

1.32. Defining x i = Ji(.oi,  we rewrite Euler 's equations of  motion described in 
the preceding problem as 

• I 2 -  J3 
J(I = "X2X3 + Ul 

J2J3 

J3 - J1 
3C 2 = X3X 1 "-~ U 2 

J 3 J l  

J1 - J2 
-~3 -'~ X l X 2  + U3 

J l  J2 

(a) Show that this dynamic system is norm-invariant. 
(b) If  this dynamic system is subject to a control input constraint of  the form 

the time-optimal control inputs are given by 

Xi 
ui  -- i = 1 ,2 ,3  

Ilxll' 
Show that the origin (0, O, O) of the system with such time-optimal control inputs 
is globally asymptotically stable. 
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1.33. Euler 's  equations of  motion for an axisymmetric body with J1 = 2 and 
J2 = J3 = 1 are 

2691 = Ul 

(J)2 = --O-)30-)1 ~ U2 

(J)3 = O910)2 "l- U 3 

For a given linear feedback control logic of  the form 

ul = -2000)1 + 2000)2 

U 2 ~ - - 0 )  2 -}- t o )  1 

u3 = -b0)3 

where 00, r ,  and b are real positive constant parameters, the closed-loop system is 
described by 

(J)l --~ --O°0)1 Jr- 0"092 

(J-k2 = --0)30)1 - -  0)2 "]- f 0 ) l  

tb3 = 0)1 o92 - bob 

These equations are, in fact, the so-called Lorenz equations 1° that are commonly 
described in x, y, and z coordinates, as follows: 

i = -00x + cry 

j l  = - z x  - y + r x  

~. = x y  - b z  

A dynamic system of  the preceding mathematical form is often referred to as the 
Lorenz system. 

(a) Find the equilibrium points of  the Lorenz system as follows: 

F o r r  < 1, ( 0 , 0 , 0 )  

F o r r  > 1, ( 0 , 0 , 0 )  and C + = ( + x / b ( r - 1 ) ,  -1- b x / ~ - l ) ,  r - l )  

where r is the bifurcation parameter  of  the system. 
(b) Show that the origin of  the Lorenz system is globally asymptotically stable 

when r < 1, stable when r = 1, and unstable when r > 1. 
H i n t :  E = 1 2 ~(X -{'- c r y  2 q'- 00Z2). 

(c) Show that the equilibrium points C + = (-I-7.5542, 4-7.5542, 21.4) of  the 
Lorenz system with 00 = 10, b = 8/3,  and r = 22.4 are both asymptotical ly 
stable. Performing a computer simulation of  this case, verify that the trajectory 
starting from ( - 1 0 ,  - 1 0 ,  30) ends up at C + and that the trajectory starting from 
( - 1 2 ,  - 1 2 ,  30) ends up at C - .  

(d) Show that, for the Lorenz system with 00 --- 10, b = 8/3,  and r = 28, 
the equilibrium points C ~: = (4-8.4852, 4-8.4852, 27) are both unstable. Also 
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perform a computer simulation of this case with an initial condition (0, 1, 0) to 
observe the turbulent or chaotic dynamic behavior of  the system, known as a strange 
attractor. 

(e) Show that the Lorenz system is dissipative and that there exists a solid 
ellipsoid 

E = {(x, y, z) : r x  2 + 0-y2 + 0- (Z  - -  2r) 2 < C < cx~} 

o r  

g = {(x, y, z) : x 2 + y2 -k- 0-(z - r - 0-)2 < C < 00} 

such that all solutions of the Lorenz system enter E within finite time and thereafter 
remain in E. 

Hint: Show that E < 0 as (x 2 + yZ + zZ)l/z ~ 00. 

1.34. Consider a rigid body with a spherical, dissipative fuel slug. Such a sim- 
plified model of  a rigid body with internal energy dissipation is described 
by 

(Jl - J)tbl = (Jz - -  J 3 ) c o 2 C O 3  -k- #0-1 

( J 2  - J ) t b 2  = ( J 3  - Jl)W3Wl + ]1"0"2 

( J 3  - -  J ) 6 9 3  ----- ( J l  - J 2 ) c o l c o 2  -at-//,0-'3 

/z 
61 ~-- - - (J) l  - -  7 0 " 1  - -  0)20"3 "t- 0)30-2 

/z 
0"2 ~--- --(J)2 - -  7 0 " 2  - -  0)30"1 + 0)10-3 

/z 
0"3 = --(J)3 "70-3 - -  0910"2 + 0920-1 

d 

where (J l ,  ./2, ./3) are the principal moments of  inertia of the spacecraft including 
the spherical, dissipative fuel slug of inertia J ;  (COl, w2, CO3) are the body rates 
about the principal axes; (0-1,0-2, 0-3) are the relative rates between the rigid body 
and the fuel slug about the principal axes; and p. is the viscous damping coefficient 
of the fuel slug. It is assumed that Jl > J2 > ,/3 without loss of generality. 

(a) Show that a necessary condition for the equilibrium points is 0-12 +0-2 +0-2 = 
0; i.e., 0-1 =0-2 = 0-3 = 0 .  

(b) Show that an equilibrium point (COl, CO2,093, 0-1,0-2, 0-3) = (f2, 0, 0, 0, 0, 0) 
is stable; i.e., a pure spinning motion about the major axis is stable. 

(c) Show that an equilibrium point (0, 0, ~ ,  0, 0, 0) is unstable; i.e., a pure 
spinning motion about the minor axis is unstable whereas it is Lyapunov stable for 
a rigid body without energy dissipation. 

(d) Show that an equilibrium point (0, ~ ,  0, 0, 0, 0) is also unstable. 
(e) Consider a spacecraft with the following numerical values: (Jj ,  J2, ./3, J )  = 

(2000, 1500, 1000, 18) kg-m 2 and/z = 30 N-m.s. Performing computer simulation, 
verify that the trajectory starting from an initial condition (0.1224, 0, 2.99, 0, 0, 0) 
rad/s ends up at ( - 1 . 5 ,  0, 0, 0, 0, 0) rad/s. 
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Note: The  kinetic energy T and the angular momentum H of the system are 
defined as 

H 2 = (J l tOl  + J0-1) 2 + (J2o92 + J0-2) 2 + (J30)3 + J0-3) 2 

2 T  = (Jl -- J ) w  2 + (J2 - J)w~ + (J3 - J)w~ 

+ J {(tOl + 0-1) 2 + (0.)2 + 0-2) 2 + (O93 + 0"3) 2 } 

During computer simulation of this case, the angular momentum H needs to be 
checked whether or not it is maintained at a constant value of 3000 N.m.s. 

(f) Also perform a computer simulation with a slightly different initial condition 
(0.125, O, 2.99, 0, 0, 0) and verify that the trajectory ends up at (+1.5, 0, 0, 0, 0, 0). 

Note: For such a spinning spacecraft with energy dissipation, a small change 
in initial conditions can lead to a change in the final spin polarity for wl. Such 
sensitive dependence on initial conditions is the property characterizing a chaotic 
dynamic system. 

1.35. Consider the rotational equations of motion of a rigid spacecraft described 
by 

2ql = tolq4 --  o~q3 + 093q2 

2q2 = to lq  3 + to2q4 - -  093q I 

2q3 = - - t o l q  2 + to2ql + 093q4 

2q4 = -- tOlql  - -  092q2 --  0)3q3 

Jlt-bl = (J2 - ,]3)0-)2093 + Ul 

J26~  = (J3 - J1 )w3tol + u2 

./36-)3 = (Jl - Jz)tolW2 + u3 

where qi are the attitude quaternions constrained by 

q 2 + q 2 + q 2 + q 2 =  1 

and where (.0 i are the body angular rates, Ji are the principal moments of inertia 
of the spacecraft, and ui are the control torque inputs. 

The stability of the equilibrium point 

x * =  (ql, q2, q3, q4, (DI, 0-)2, 0)3) 

= (0, 0, 0, +1 ,  0, 0, 0) 

is to be determined for different control inputs. [In fact, there exists another equili- 
brium point (0, 0, 0, - 1, 0, 0, 0); however, both equilibrium points correspond 
to the physically identical orientation.] 

(a) For a case of rate damping control with ui = -c io) i  where ci are positive 
constants, determine the stability of the equilibrium point x*. 
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(b) Given the control torque inputs ui of the form 

Ul ~ - k q l  - Cl(-Ol 

u2 = - k q 2  - -  c2(.02 

u3 = - kq3  - c30.)3 

where k and ci are positive constants, show that the equilibrium point x* is globally 
asymptotically stable for any positive values of k and ci. 

Hint: Select E = (J lw 2 + J2 w2 + J3w23)/2 + k[q 2 + q2 + q2 + (q4 - -  1) 2] as a 
Lyapunov function. 

(c) Given the control torque inputs ui of the form 

Ul = - k l q l  - ClO)l  

u2 = - k 2 q 2  - c20-)2 

U 3 ~--- - - k 3 q  3 - -  c 3 0 )  3 

where k i and ci are positive constants, determine whether or not the equilibrium 
point x* is globally asymptotically stable for any positive values ofki  and ci. (This 
is a much harder unsolved problem!) 

1.3.3 Linearization and State-Space Equations 
Consider a nonlinear dynamic system described by 

~ti = ./](xl . . . . .  x, ;  ul . . . . .  up; t), i = 1 . . . . .  n (1.156a) 

yj  = g j ( x l  . . . . .  xn; ul . . . . .  up; t), j = 1 . . . . .  q (1.156b) 

where x i ( t  ) are  called state variables, u i ( t  ) control input variables, and y i ( t )  output 
variables. 

In vector notation, Eqs. (1.156) become 

= fix, u, t) (1.157a) 

y = g(x, u, t) (1.157b) 

where x is the state vector, u the control input or parameter vector, and y the output 
vector of  the dynamic system, defined as x = (xl . . . . .  x,), f = (fl  . . . . .  f , ) ,  
U - - - -  ( U l  . . . . .  Up), y = (Yl  . . . . .  yq) ,  and g = (gl . . . . .  gq) .  

An equilibrium point x* is determined from 

f(x*, u*, t) = 0 for all t > t o  (1.158) 

for a known constant input or parameter vector u*. 
Expanding the right-hand side of  Eqs. (1.157) in a first-order Taylor series 

expansion in terms of  small perturbations 

~ X  = X - -  X* 

~ U  ---- U - -  U* 
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we obtain the linearized equations about the equilibrium point as follows: 

8 i  = ASx + BSu (1.159a) 

8y = C S x + D ~ u  (1.159b) 

where Sy = y - y* and A, B, C, and D are constant matrices defined as 

Of af  
A = ~ x x . '  B = O--uu . (1.160a) 

0g 0g 
C = ~ x , '  O = ~u , (1.160b) 

The partial derivatives in Eqs. (1.160) are evaluated at the equilibrium point x = x* 
and u = u*. Note that 0f/0x, 0f /0u,  etc., in Eqs. (1.160) denote the matrices with 
the ijth elements of Of,./Oxj, Of,./Ouj, etc., respectively. 

For notational simplicity, the linear time-invariant systems are often described 
by 

= A x +  Bu (1.161) 

y = Cx + Du (1.162) 

where x, u, and y denote the small perturbed state, input, and output vectors, 
respectively. Equations (1.161) and (1.162) are called the state-space equation and 
output equation of  the linear time-invariant system, respectively. 

E x a m p l e  1 .5  

Consider the simple pendulum of mass m and length t ,  connected by a massless 
rod to the hinged support point O, as shown earlier in Fig. 1.5a. Choosing xl = 0 
and x2 = 0 as the state variables, the state-space equation of  this system iinearized 
about an equilibrium point x* = (0, 0) can be obtained as 

[:,2]__[0 Xl ].  ° 
1~me 

If  we consider Xl -- 0 as an output variable y, then the output equation becomes 

[x,] 
y = [ 1 O] x2 

Problem 

1.36. For a cart with an inverted pendulum on a frictionless horizontal surface, 
which was shown previously in Fig. 1.9a, the nonlinear equations of  motion can 
be obtained as 

(M + m)~ + me0 cos 0 - me02 sin 0 = u 

me20 --I- me ,  cos0 -- mgesinO = 0 
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(a) Directly iinearize these equations of motion for the small angular motion of 
the pendulum about 0 = 0. Defining x = (xi,  x2, x3, x4) = (z, 0, ~, 0) as a state 
vector, obtain the linear state-space equation of the form (1.161). 

(b) Also obtain the same linear state-space equation derived in (a) by linearizing 
the state-variable description of the nonlinear system of the form ~ = f(x, u) where 
X = (XI, X2, X3, X4) = (Z, 0, Z, ~)). 

1.3.4 Laplace Transformation 
The method of Laplace transformation is a mathematical tool particularly useful 

for characterizing and analyzing linear dynamic systems. Thus, the basic defini- 
tions and results in the theory of Laplace transformation are briefly introduced 
here. 

A complex variable s has a real component ~r and an imaginary component joJ; 
i.e., 

s = a + j o J  

where j = .4'-L'] ". A complex function G(s)  has a real part, Re[G(s)], and an 
imaginary part, Im[G(s)]; i.e., 

G(s) = Re[G(s)] -t- j Im[G(s)] 

and the complex conjugate of G(s)  is defined as 

G*(s) = Re[G(s)} - j Im[G(s)] 

The Laplace transform of a function f ( t )  is defined as 

E /2{f(t)} = F(s)  = f ( t ) e - ' t  dt (1.163) 

where the symbol/Z denotes the Laplace transform of a function and s is called 
the Laplace transform variable, which is in fact a complex variable. The inverse 
Laplace transform of F(s)  is denoted by 

f ( t )  = 12-XlF(s)} 

For example, the Laplace transform of a unit impulse function, denoted by 3(t), 
is given as 

/2{3(t)} = 1 (1.164) 

where 3(t), often called the Dirac delta function, is defined such that 

{o i f , + 0  
~(t) = if t = 0 

f_ ~ ~(t) = dt 1 
o~ 

f_ ~ f ( t )3 ( t  - t o ) =  f ( to)  dt 
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Similarly, the Laplace transform of a unit step function, denoted by Us(t), can 
be found as 

I 
C{u,(t)} = - ( 1 . 1 6 5 )  

S 

where the unit step function is defined as 

{01 if tiff >< 00 (1.166) U s ( l )  

The unit impulse function is the derivative of the unit step function; i.e., we have 

d 
3(t) = --~Us(t) 

The following Laplace transform pairs also exist: 

/2{e-"'} = 1/(s + a) 

/ 2 { 1  - -  e -a t  } = a / s ( s  + a )  

/2{te -"t} = 1/(s + a) 2 

/2{t} = 1/s 2 

/2{t2} = 2/S 3 

/2{sin wt} = w / ( s  2 + 002) 

/ 2 { C O S 0 ) / ' }  = $ / ( S  2 "Jr 0)  2 )  

/2{e-" sin 0)t} = 0)/[(s  + a) 2 + 0)2] 

/2{e -"'  cos 0)t} = (s + a ) / [ ( s  + a) 2 + 0)2] 

Some useful properties of the Laplace transformation are summarized as follows. 

D i f f e r e n t i a t i o n  t h e o r e m .  

/2{f(t)} = s F ( s )  - f (O)  (1 .167a)  

/2{f( t )}  = s2F(s)  - sf(O) - f (O) (1.167b) 

/2{f(n)(t)} = sn F(s)  - sn-l  f (O) - sn-2 f(1)(O) . . . . .  f(n-l)(0) (1.167c) 

where F(s)  = / 2 { f ( t ) }  and f(")(t)  denotes the nth time derivative of f ( t ) .  

Final value theorem.  If all poles of s F(s)  lie in the left-half s plane, 

f((x)) = lim f ( t )  = lim sF(s )  (1.168) 
t ---~ O0 s--~O 

But if sF(s )  has poles on the imaginary axis or in the right-half s plane, f ( ~ )  
does not exist. 
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Convolution integral The convolution integral of two functions f l  (t) and 
f2(t), denoted by f l U )  * f2(t), are defined as 

f~(t)  * f2(t)  = f l ( t  - r ) f 2 ( r )  dr  

= f l ( t ) f 2 ( t  - r ) d r  (1.169) 

The Laplace transform changes the convolution integral in the time domain into 
an algebraic equation in the s domain; i.e., 

£ { f l ( t )  * f2(t)} = Fl(s)F2(s) (1.170) 

where Ft(s)  = E{f l ( t ) }  and F2(s) = E{fz(t)} .  

T ime delay. A delayed function of f ( t )  by a time T is denoted by f ( t  - T), 
and its Laplace transform becomes 

E { f ( t  - T)} = F(s)e  -Ts (1.171) 

where F(s)  is the Laplace transform of  f ( t ) .  For example, we have 

/2{8(t - T)} = e - r s  

E{Us(t - T)} = (1/s)e  - r s  

Periodic [unctions. If  a function f ( t )  is periodic with period T, then f ( t )  = 
f ( t  + T) and its Laplace transform is 

F(s)  = F ( s ) [ I / ( l  - e-rS)] (1.172) 

where F(s)  is the Laplace transform of  

f ( t ) =  { f ( t )  fort>f°r0<t<TT 

Problem 
Show that the Laplace transforms of various pulse functions shown in Fig. 

Fl(s) = (I -- e-aS)/s 

F2(s) = (1 - e-aS)/s( l  - e - r s )  

F3(s) = (1 - e-aS)/s( l  + e -as) 

1.3.5 Transfer Function 
Single-input single-output system. As an example of the single-input single- 

output (SISO) system, consider the mass-spr ing-damper  system of  mass m, linear 
spring stiffness k, and viscous damping coefficient c, as shown in Fig. 1.22. 
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ft(t) 

a 

f2 (t) 

r, 
T T+ a 2T 

-1 

f3(t) 

3a 

Fig. 1.21 Pulse functions. 

The mathematical model of this system is described by the ordinary differential 
equation 

m y ( t )  + c:y(t) + ky ( t )  = u(t)  (1.173) 

where y is the displacement output of the mass and u is the input force acting on 
the mass. Taking the Laplace transform of this differential equation, we obtain 

m[s2Y(s )  - sy(O) - 3:(0)] + c[ sY( s )  - y(0)] + k Y ( s )  = U(s )  (1.174) 

where Y(s)  = £{y ( t ) }  and U(s)  = £{u( t ) } .  Rearranging Eq. (1.174) yields 

1 my(O)s + my(O) + cy(O) 
Y(s)  -- U(s )  + (1.175) 

m s  2 + cs + k ms  2 + cs + k 
Y 

zero-state response zero-input response 

The transfer function of a linear dynamic system is, in general, defined as the 
ratio of the Laplace transform of the output to the Laplace transform of the input, 

l y(t) 

~ - ~ ' 0  O Input I I Output Z] 
/ / / / / / / / /  Transfer Function 

Fig. 1.22 Mass-spring--damper system. 
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assuming all initial conditions are zero. Customarily, we use u(s) and y(s), instead 
of U(s)  and Y(s),  to denote the Laplace transforms of  u(t) and y(t) ,  respectively, 
though the meaning should be clear from the context. Consequently, the mass-  
spring-damper system can be described in transfer function form as 

y(s)  = G(s)u(s )  (1.176) 

where u(s) and y(s)  are called the input and output of  the system, respectively, 
and G(s)  is the transfer function given by 

1 
G(s)  -- (1.177) 

ms 2 + cs + k 

A block diagram representation of  this SISO system is also given in Fig. 1.22. 
If we choose x~ = y and x2 = j' as the state variables, this system can also be 

represented in state-space form, as follows: 

where 

[ ]  I ° xl A = - k / m  X ~ X2 , 

It can be easily verified that 

x = A x + B u  

y = C x  

: , ]  B__[ 0 ] 
- m 1 / m  ' C =  [1 0] 

y(s)  = G(s)  = C [ s I -  A ] - I B  -- 1 
u(s) ms 2 + cs + k 

Poles and zeros. In general, the transfer function G(s) is given as a ratio of  
polynomials in s, as follows: 

N ( s )  bo S m +  bl sin-1 + "'" + b i n - i s  + b m  
G(s)  = - -  = (1.178) 

D(s)  aos n + a ls  "-1 + . . .  + a , - l s  + an 

where N(s )  is called the numerator polynomial and D(s) the denominator polyno- 
mial. The roots of  N(s )  and D(s)  are called, respectively, the zeros and poles of  the 
transfer function, and the transfer function in pole-zero form is often represented 
as 

k l - I ( s / z i  - 1) 
G(s)  = (1.179) 

S e l - I ( s / p i  - 1) 

where k is called the steady-state (or D.C.) gain of  the system. A system with £ 
poles at the origin is called the type e system. If  all of  the poles and zeros of  a 
transfer function lie in the left-half s plane, then it is called the minimum-phase 
transfer function. If  a transfer function has at least one pole or zero in the right- 
half s plane, then it is called the nonminimum-phase transfer function. (The term 
nonminimum-phase comes from the phase shift characteristics of such a system 
when subjected to sinusoidal inputs.) 
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A ratio of  polynomials is, in general, called a rational function. Consider a 
rational function G(s) = N(s)/D(s), where N(s) is the numerator polynomial, 
D(s) the denominator polynomial, and s the complex variable. A rational function 
G(s) is said to be strictly proper if 

lim G(s) = 0 
S "-'~ OO 

and it is said to be proper if l i m s ~  G(s) is a finite (zero or nonzero) constant. 
A number k (real or complex) is said to be a pole of  a proper rational function 

G(s) if IG(~.)I = cx~. It is said to be a zero of  G(s) if IGO.)I = 0. If  a proper 
rational function is irreducible (relatively prime or coprime; that is, there is no 
common factor between its numerator polynomial and denominator polynomial), 
then every root of  the denominator of  G(s) is a pole of G(s) and every root of  the 
numerator of  G(s) is a zero of  G(s). 

A rational function G(s) is said to be positive real if G(s) is real when s is real 
and Re[G(s)] > 0 when Re[s] > 0. For example, the following transfer functions 
are positive real: 

S2 + Z 2 
G(s) = s ($2  "F p2)' 0 < Z < p 

S+Z 
G(S)= s(s + p), O < z < p 

(S -F- Z) 2 

G(s) = s(s + pl)(s + P2)'  0 < z < pl _< P2 

Transfer function matrix. Consider a linear, time-invariant system described 
as 

~k = A x  + B u  (I .  180a) 

y = Cx + Du (1.180b) 

where x, u, and y denote the state, input, and output vectors, respectively. This 
multi-input multi-output (MIMO) system can also be represented as 

y(s) = G(s)u(s) (1.181) 

where y(s) = £{y(t)}, u(s) = E{u(t)}, and G(s), called the transfer function 
matrix, is defined as 

G(s) = C[s I  - A ] - l B  + D (1.182) 

and I is an identity matrix. The matrix D is zero for most dynamic systems. 
The characteristic polynomial of  a proper rational matrix G(s), denoted by D(s), 

is defined to be the least common denominator of all minors of G(s). The degree 
of  G(s) is defined to be the degree of  the characteristic polynomial of  G(s). The 
characteristic polynomial of G(s), is, in general, different from the denominator 
of  the determinant of  G(s) if G(s) is a square matrix. It is also different from the 
least common denominator of  all the entries of  G(s). 
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Example 1.6 

x,,s+l,], I: '] 
G ( s ) =  1 / ( s + l )  1 / ( s + l )  s + l  1 ~. D ( s ) = s + l  

r 2 / ( s + l )  1 / ( s + l ) ]  
G ( s ) =  L 1 / ( s + l )  1 / ( s + l )  

1 r2(s + 1) s + l ]  
- -  (S + 1) 2 L s + 1 s + 1 ~. D(s )  = (s + 1) 2 

For a square MIMO system with n inputs and n outputs described by 

1 
y(s) = G(s)u(s) = D(s)N(s)u(s) (1.183) 

we have 

I N ( s ) ]  _ det[N(s)] Dn-l(s)N(s) N(s) (1.184) 
detG(s) = det L ' ~ J  ~ - D"(s) D(s) 

where N(s) is called the coupling numerator polynomial as described in Ref. 11. 
The roots of N(s) = 0 are defined to be the transmission zeros of the MIMO 
system described by Eq. (1.183). 

Problems 
1.38. Given the linearized equations of motion of a cart with an inverted pendu- 
lum about an equilibrium point of 0 = 0 (see Problem 1.36), obtain the transfer 
functions from u to z and 0, as follows: 

Z(S) s z - g/g. 
u(s) sZ{Ms 2 - (M + m)g/e} 

O(s) - s2 /e  

u(s) s2{Ms z - (M + m)g/e} 

Note: There are pole-zero cancellations ofs  2 in the transfer function O/u, which 
indicate a lack of controllability by u and/or observability by 0. (The concept of 
controllability and observability will be introduced in Chapter 2. The system is, in 
fact, controllable by u and observable by z because there are no pole-zero cancella- 
tions in the transfer function z(s)/u(s). Consequently, the pole-zero cancellations 
in the transfer function O(s)/u(s) indicate that the system is unobservable by 0.) 

1 .39 .  (a) Consider a transfer function of the form 

y(s) N(s) 
= G(s) = 

u(s) (s - pl)3(s - p2)(s - P3) 

K)1 K12 K]3 K2 K3 - - + - - + - - + - - + -  
( s - p 1 )  3 ( s - p l )  2 ( s - p l )  ( s - p 2 )  ( s - p 3 )  
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where Pi are the poles, N(s) the numerator polynomial, and Kq and K i are  called 
the residues of the transfer function. 

Show that the residues of this transfer function can be determined as 

KI1 = {(s -- pl)3G(S)}s=p, 

K12= { d ( s - p l ) 3 G ( s ) l  
nS=pl  

K13 = -~s2(S -- p l )3G(s )  
, = p ,  

K2 = {(s - pz)G(s)},= m 

K3 = {(s - p3)G(s)I,=e3 

Hint: For the determination of Kll, K12, and K13 of the preceding form, notice 
that 

( s -  pl)3G(s) = K l l q - K I 2 ( s - p 1 ) + K 1 3 ( s - p l ) 2 - ~  K2(s - pl)3 -1- K3(s - pl)3 
(s - P2) (s - P3) 

Also show that this transfer function can be realized into a so-called Jordan canon- 
ical form, as follows: 

Pl 1 
0 Pl 

~ =  0 0 
0 0 
0 0 

00 1 i] 0 x +  u 
P2 
0 P3 / 

0 
1 

Pl 
0 
0 

KI2 y = [Kll KI3 K2 K3]x 

(b) Find the state-space representation of the following transfer function using 
its partial fraction expansion: 

y(s) s 2 + l  

u(s) s 3 + 6 s 2 + 1 2 s + 8  

1.40. Consider a transfer function of the form 

y(s) b ls2+b2s+b3 
= G ( s ) =  

u(s) s3Wals2Wa2s-q-a3 

where ai and b i a r e  real constants, or the equivalent differential equation 

d2y dy dZu b du d3y +al + + a 3 y = b l ~ +  +b3u 
dt"-- ~ ~ a2 -d7 2 -~  

Verify that this system with the input u and the output y can be represented by the 
following equivalent state-space equations l2: 
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or 

(a) Observer canonical form [Z °-a ll x'] 
J¢2 = 0 --a2 x2 + b2 u 
x3 1 - a l  x3 bl 

Ix, 1 y = [ O  0 1] x2 
X3 

E ,I E-a'' Z3Ex'I Eb'J 
J¢2 = --a2 0 x2 -k- b2 u 
-~3 --a3 0 x3 b3 [x,] 

y =  [1 0 O] X 2 

X3 

(b) Controller canonical form 

E I ° ' °llx'l Iil Jc2 = 0 x z  + u 

)f3 --a3 --a2 --al x3 [x,] 
y = [b3 b2 bl]  x2 

x3 

or 

where 

] Ei] J¢2 = 0 0 x z  + u 
.it3 1 0 x3 [x,] 

y = [bj b2 b3] x2 
x3 

(c) Observability canonical form 

71 I ° ' °llx'] I h'] -~2 = 0 1 x2 + h2 u 
-~3 - a 3  - a 2  - a l  x3 h3 

y =  [1 0 O] x2 
X3 

Eh'l I' ° !l-'Eb'l 
h2 = al 1 b2 
h3 a2 al b3 
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where 

(d) Controllability canonical form 

E E°° a']EXll Eil -~2 ~--- 1 0 --a2 x2 "-I- u 
3~3 0 1 --al x3 

Ix, l y = [hi h2 h3] X2 

X3 

[hi h2 h3] = [bl 
I i  al a2] -1 

b2 b3] 1 al 
0 1 

1.41. Consider a proper rational function of  the form 

b o s n + b l s n - l + . . . + b n  
G(s )  = 

s n + a l S n - l + . . . + a n  

where ai and bi are real constants• 
Show that G(s )  can be expanded into an infinite power series of  descending 

power of  s, as follows: 

G(s)  = ho + his -1 + h2 s-2 -+- h3 s-3 -~- ' ' '  

where the coefficients hi, called the Markov parameters, can be obtained recur- 
sively, as 

ho = bo 

h~ = - a l h o + b l  

h2 = - a l h l  -- a2ho + b2 

hn = - a ~ h . - i  - a2hn-2 . . . . .  anho + bn 

Hint." Let bosn + bls  n-1 + . . .  + b.  = (s n + a l s  n-I + . . .  + an)(ho + h i s  - t  + 
h2 s-2 + h3 s-2 + .. .) .  

1.42. Given a SISO system described by 

~ = A x + B u  

y = C x  

show that its transfer function 

y(s )  
= G(s )  = C[sI  - A ] - I B  

u(s) 
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can be expanded as 

G(s)  = hi s-1 + hE s -2  a t- h3 s -3  + . . .  

where the Markov parameters hi are expressed as 

hi = CAi - IB ,  i = l, 2 . . . .  

Hint: [I - s - l A ] - I  = ~]]k=O(°~ s _ l A ) k .  

1.3.6 Linear System Stability 
Charac ter i s t i c  equa t ion .  Consider a linear dynamic system described by the 

state-space equation 

= A x  -t- B u  

Taking the Laplace transform of this equation and ignoring the initial conditions 
and u, we obtain 

[sI - A]x = 0 (1.185) 

where I is an identity matrix and s is the Laplace transform variable. This set of  
equations has a solution for x other than the trivial one, x = 0, only if the matrix 
[sI - A] is singular. Consequently, the characteristic equation of a linear dynamic 
system is defined as 

IsI - AI = s n + al sn-I + ' ' '  + an-IS + an = 0 (1.186) 

where ai are scalar constants. The polynomial in Eq. (1.186) is called the char- 
acteristic polynomial. The roots of the characteristic equation are then called the 
characteristic roots or the eigenvalues of  the system. The concepts of  characteristic 
equation and eigenvalues play a very important role in the study of linear dynamic 
systems. 

Let ~.1 . . . . .  Z. be the eigenvalues of A. Then the ith eigenvector associated with 
the ith eigenvalue ~'i is defined to be a nonzero ei such that 

[~.iI - -  A ] e i  = 0 ( 1 . 1 8 7 )  

Furthermore, we have 

n 

IsI AI : (S - -  ~ . l ) (S  - -  ~ - 2 ) ' ' ' ( S  - -  ~-n) = 1 ~ (  s - -  ~-i) 
i=l  

IAI = ~.I~.2 "" "~-n = ]Y'I ~-i = (--1)nan 
i=1 

t r(A) = ~ Zi = - a l  
l 

i=1 

Linear dynamic systems are also often described by the second-order matrix 
differential equations of  the form 

MJi + (D + G)~ + Kx  = u (1.188) 
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where x and u are the generalized coordinate and input vectors, respectively. 
M = M T, D = D r ,  G = - G r ,  and K = K T are called, respectively, the mass ma- 
trix, damping matrix, gyroscopic coupling matrix, and stiffness matrix. For this 
case, the characteristic equation simply becomes 

IMs 2 + (D + G)s + KI = 0 (1.189) 

Because Eq. (1.188) can be transformed into a state-space equation of the form 

d[x] [ 0 I ][x] [0] 
dt  = - M - 1 K  - M - I ( D + G )  + u (1.190) 

we also have the characteristic equation of the form 

IsI - AI = 0 

where 

[ 0 i ] 
A =  _ M _ 1 K  _ M _ I ( D + G )  

Given a matrix 

Example 1.7 

1oo l 
A =  0 0 

0 0 

the characteristic equation can be found as 

IsI - AI = s 4 - 1 = ( s  2 - 1)(s 2 + 1) = 0 

Thus, the characteristic roots (or eigenvalues) are d= 1 and =t=j. The ith eigenvector 
of  A associated with the ith eigenvalue ~-i c a n  be found as ei = (1, ~-i, 3-2, )3). 

Linear stability. A linear time-invariant system or its equilibrium state is said 
to be asymptotically stable if all of its eigenvalues have negative real parts. A linear 
system is said to be stable in the sense of  Lyapunov (or Lyapunov stable) if none of 
its eigenvalues has a positive real part and if it has no repeated eigenvalues on the 
imaginary axis. It is said to be unstable if any one of  its eigenvalues has a positive 
real part or if it has repeated eigenvalues on the imaginary axis. In this book, a 
linear system that is Lyapunov stable is simply said to be stable and a linear system 
that is not Lyapunov stable is said to be unstable. 

A system is also said to be bounded-input bounded-output (BIBO) stable, if, for 
every bounded input, the output remains bounded for all time. In other words, a 
linear time-invariant system is BIBO stable provided all of  its eigenvalues lie in 
the left-half of  the s plane (not including the imaginary axis). The BIBO stability 
concept is applicable to nonlinear time-varying dynamic systems, whereas the 
asymptotic stability concept is applicable only to linear time-invariant systems. 
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Linear systems are characterized by the principle of superposition, and a sinu- 
soidal input to an asymptotically stable linear system results in a sinusoidal output 
of  the same frequency. 

Example 1.8 
Consider the mass-spring-damper system described by 

m~) + c3' + ky  = u 

where y is the output displacement of  the mass and u is the input force acting on 
the mass. The characteristic equation is given by 

m s  2 + cs + k  = 0 (1.191) 

OF 

2 = 0 (1.192) S 2 -J¢- 2 ( W . S  + O9. 

where o9. = ~ and ~ = c/~/--m-k are called the natural frequency and the 
damping ratio of the system, respectively. For nonzero positive values of  ¢ and k, 
this system is asymptotically stable, BIBO stable, and also Lyapunov stable. 

A mass-spring system with c = 0, often called a simple harmonic oscillator, is 
Lyapunov stable; however, it is neither asymptotically stable nor BIBO stable. A 
simple cart system with k --- c = 0, often called a double integrator plant, is not 
Lyapunov stable because of  its double pole at the origin, and it is simply said to 
be unstable. 

Problem 
1.43. (a) Consider a set of  differential equations, which describes the in-plane 
motion of  a spacecraft near the equilateral equilibrium point of  the Earth-moon 
system, given by 

)t - 23' 3 ~ x _  ~ 2 ( p  - ½)y = 0 

y "{- 23( -- ~ - ( p  - -  ½)X - 9 ~ y =  0 

where p is a constant parameter. Obtain the characteristic equation as 

S 4 "-{- S 2 + ~ p ( 1  -- p) = 0 

and discuss the stability of  this system with p = 0.01215. 
(b) Consider a set of  differential equations, which describes the in-plane motion 

of a spacecraft near the collinear equilibrium point of  the Earth-moon system, 
given by 

-~ - 23' - (2or + 1)x = 0 

y + 2~t +(or  - l)y = 0 

where ~r is a constant parameter. Obtain the characteristic equation as 

S 4 - -  (O" - -  2)s 2 -- (2or + 1)(o -- 1) = 0 

and discuss the stability of  this system with ~r = 3.19043. 
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1.3.7 Linear Stability Criteria 
Historical background. In 1868 the British physicist J. C. Maxwell proposed 

the mathematical problem of determining the number of roots of a real polynomial 
in the right-half plane, and in 1875 Routh discovered a solution to the problem. 
In 1893 Stodola, unaware of Routh's solution, again proposed the same problem, 
and in 1895 Hurwitz, on the basis of Hermite's paper published in 1856, gave 
another solution to the same problem (independent of Routh's). The equivalence 
of the solutions of Routh and Hurwitz was shown by Bompiani in 1911. The de- 
terminantal inequalities obtained by Hurwitz are nowadays called the inequalities 
of Routh-Hurwitz. The Routh-Hurwitz criterion provides an analytical way of 
determining if all roots of a polynomial have negative real parts. Thus, it provides 
an analytical way of checking whether or not a given linear time-invariant sys- 
tem is asymptotically stable. For a more detailed, historical, as well as technical 
treatment of this subject of linear stability criteria, the reader is referred to Refs. 9 
and 13. 

It is interesting to note, however, that in 1892, before Hurwitz's solution, the 
Russian mathematician Lyapunov had found that a linear time-invariant system 
described by :t = Ax is asymptotically stable if and only if for the matrix equation 

A r P  + PA = - Q  (1.193) 

there exists a positive definite matrix P for any positive definite matrix Q. 

Hermi te -Bie ler  theorem.  Consider a real polynomial of the form 

f ( s )  = S n "Jr al Sn-I + ' ' '  d- an-IS q- an 

= h(s 2) + sg(s  2) 

= hO~) + sg(~.), ~. = s 2 

where h(s 2) and sg(s 2) are the even and odd parts of f ( s ) ,  respectively. The 
polynomial f ( s )  has all its roots in the left-half s plane if and only if h(~.) and g(L) 
have simple real negative alternating roots and al > 0. The first root next to zero 
is of h(~.). Such polynomials h(~.) and g(~.) are called a positive pair, and for even 
n we have 

sg(s 2) sal(s  2 + w2)(s 2 + w42) "-. (s 2 +092_2) Ki 

h(s2---- ~ - (s 2 + c02)(s 2 + 093).. . (s 2 + W~_l ) = sal E s 2 + w~ (1.194) 
i=1,3 

where Wl < ~o2 < w3 < " "  < ¢on-i and Ki > 0 for all i. Such a function 
described by Eq. (1.194) is called a reactance function. 

R o u t h - H u t w i t z  criterion. All of the roots of the real polynomial 

f ( s )  = s n + als  n-I + . . .  + an- iS  + an (1.195) 

have negative real parts if and only if the following n inequalities are satisfied: 

A1 > 0, A2 > 0 . . . . .  An > 0 (1.196) 

where Ai, called the Hurwitz's determinants, are the leading principal minors of 
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the Hurwitz matrix H defined as 

- a l  
1 
0 

H =  0 

That is, we have 

A 1  = al  

A4  = 0 

a3 a5 a7 " "  0 

a2 a4 a6 . ' .  0 

al a3 a5 " ' '  0 
1 a2 a4 . . .  0 

• " "  0 

0 0 0 0 "'" an 

°3 L 
a2 

a3 a s  

a2 a4 

a l  a3 

a3 a5 

a2 a4 

al  a3 
1 a2 

a7 
a6 

as 
a4 

al  a3 
1 a2 
0 al 

A n =  0 1 

0 0 

as  a7 

a4 a6 

a3 as  

a2 a4 
• : 

0 0 

• • °  

. . •  

0 
0 
0 
0 = a n A n - I  

0 

an 

A real polynomial  whose coefficients satisfy the Routh-Hurwitz  criterion is 
often called a Hurwi tz  polynomial .  

Because f ( s )  can be expressed as 
n 

f ( s )  = (s - XI)(s -- X2)""  (s - ~-.) = I" I  (s - Xi) 
i = l  

where Xi are the roots of  f ( s ) ,  we have 
fl 

a]  = - - (X]  + ~-2 --1- " "" + ~-n) = - -  ~ Xi 
i=1 

n 

an = (--1)nXlX2 - ' ' x n  = (--1)  n 1 - Ix i  
i=1 

The necessary conditions for a polynomial  of  the form of  Eq. (1.195) to be a 
Hurwitz polynomial  are that all of  the coefficients are positive; that is, 

a] > 0, a2 > 0 . . . . .  an > 0 (1.197) 
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When these conditions hold, the Routh-Hurwitz inequalities are not independent. 
This fact was investigated by Li6nard and Chipart in 1914 and enabled them to de- 
velop a stability criterion different from the Routh-Hurwitz criterion. The Li6nard 
and Chipart criterion has a definite advantage over the Routh-Hurwitz criterion, 
because it involves only about half the number of determinantai inequalities. 

Li~nard  a n d  C h i p a r t  criterion.  The necessary and sufficient conditions for 
all of the roots of the polynomial f ( s )  = s n + a l s  n-I + . .  • + a n - i s  + an to have 
negative real parts can be given in any one of the following four forms: 

a n > O ,  a n - 2 > 0  . . . . .  A I > 0 ,  A 3 > 0  . . . .  

a n > O ,  a n - 2 > 0  . . . . .  A 2 > 0 ,  A 4 > 0  . . . .  

an > O ,  a n - i  > 0  , an-3 > 0  . . . . .  AI > 0 ,  A3 > 0 ,  

a n > O ,  a n - l > 0 ,  a n - 3 > 0  . . . . .  ~ 2 > 0 ,  A 4 > 0  , 

Example 1.9 
Given a characteristic polynomial 

f ( s )  = S 4 31- al s3 -k- a2 s2 -t- a3s + a4 

where all of the coefficients are positive numbers, the necessary and sufficient 
condition for stable roots is 

al a3 a5 
A 3 =  1 a2 a4 = a l ( a 2 a 3 - - a l a a ) - - a Z  > O (1.198) 

0 al  a3 

Kharitonov's theorem. The following stability criterion by Kharitonov, 14 
which is often called Kharitonov's theorem in the literature, is concerned with the 
stability problem of a so-called interval polynomial• Consider an interval polyno- 
mial 

f ( s )  = s n + a l s  n- l  + . . .  W a n _ i s  + a n  

with the coefficients ai in prescribed intervals 

ai <-- ai --< ai ,  i = 1 . . . . .  n 

The interval polynomial f ( s )  is a Hurwitz polynomial if and only if the four 
extreme polynomials (often called Kharitonov's polynomials): 

f l (S )  = fin -~ an- lS  + an_2 $2 "q- (In-3 $3 "]- •'" (1•199a) 

fz(s) = fin + a n - I s  + an_2s 2 + an_3s 3 + . . .  (1.199b) 

f3(s) = a n + fin-is + fin-zs 2 + a_n_3s 3 + " . .  (1.199c) 

f4(s) = a n + qn_l s + ~tn_zs z + ~,_3 s3 + . . .  (1.199d) 

are Hurwitz polynomials. 
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A proof of this theorem will be given in Chapter 2. According to Kharitonov's 
theorem, stability of an interval polynomial can be determined by examining only 
four members of the set of all of the polynomials obtained by restricting coefficients 
to the extreme corner (or vertex) points of their range of variations. This important 
result is limited, however, by an assumption of independent coefficient perturba- 
tions in the interval polynomial, which introduces conservative stability bounds 
if the coefficients are, in fact, functionally dependent. The subject of uncertainty 
modeling and stability robustness analysis will be further studied in Chapter 2. For 
more details of Kharitonov's theorem and the subject of uncertainty modeling and 
stability robustness analysis, the reader is referred to Refs. 15 and 16. 

Problems 
1.44. Consider a set of differential equations, which describes the linearized 
attitude motion of a spacecraft in a circular orbit, given by 

Ol + (kl - 1)nO3 + 4n2klO1 = 0 

02 -k- 3nZk202 = 0 

03 + (1 -- k3)nOi + nZk303 = 0 

where n is a constant orbital rate and k i are constant parameters. Find the necessary 
and sufficient conditions for the Lyapunov stability of the system. 

1.45. Consider a cubic polynomial 

f ( s )  = s 3 q- a l s  2 q- azs + a3 

with the coefficients ai in prescribed intervals 0 < a_i < ai < ai for all i. Show 
that f ( s )  is a Hurwitz polynomial if and only if Kharitonov's polynomial fl  (s) is 
a Hurwitz polynomial; i.e., 

a_la 2 > t] 3 

1.46. Consider a quartic polynomial 

f ( s )  = s 4 --]- al $3 q- a2 $2 q- a3s -k- a4 

with the coefficients ai in prescribed intervals: 0 < a i <_ ai <_ ai for all i. Show 
that f ( s )  is a Hurwitz polynomial if and only if Kharitonov's polynomials f l(s)  
and f2(s) are Hurwitz polynomials; i.e., 

t ] l a 2 a  3 > t]~a 4 + a_ 2 

a la2a3-  - > q~a4 +a23 

1.47. Consider a fifth-order polynomial of the form f ( s )  = s 5 + al S4 q- a2 S3 -k- 
a3 $2 -}- a4s %- a5 with the coefficients ai in prescribed intervals: 0 < a i < ai <_ {li 
for all i. Show that f ( s )  is a Hurwitz polynomial if and only if Kharitonov's 
polynomials f l  (s), f2(s) ,  and f3(s) are Hurwitz polynomials. 
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1.3.8 
First-order system. 

function form as 

Linear System Dynamics 
Consider a first-order system represented in transfer 

1 
y(s) -- - - u ( s )  (1.200) 

T s + l  

where u(s) is called the input, y(s) the output, T the time constant, and 1/T the 
bandwidth of  the system. The bandwidth of  a linear system is often defined as the 
frequency at which the magnitude of  its frequency-response function drops by a 
factor of  0.707 (3 dB) from its low-frequency gain. 

For the unit-impulse input u(s) = 1, the unit impulse response of  this first-order 
system can be obtained as 

Y ( t ) = £ - ~ {  1 } 1 ' ' r ~  = - f  e - /  (1.201) 

Similarly, the unit step response for u(s) = 1/s can be found as 

e'," (1.202) 

and its steady-state value becomes y(oo) = 1. The value of  the unit step response 
y(t) at t = T becomes 

y(T) = 1 - e -1 = 0.632 

That is, the unit step response at t ----- T reaches 63.2% of its steady-state value, 
and, for t > 4T, the unit-step response remains within 2% of its steady-state 
value. 

Second-order system. A second-order system is often represented in trans- 
fer function form as 

y(s) = s2 "1- 2(to.s + wA u(s) (1.203) 

where ( and wn are, respectively, the damping ratio and the natural frequency of  
this second-order system. The poles are 

- ( w .  4- jw.x/1 - ~ 2  

The unit impulse response of this system with 0 < ( < 1 is given as 

{ 2 } 
y(t) = 13 -~ wn ton e - ( w " t  sinwnx/1 - (2t 

s2 + 2 ? - J . s  + = , / 1  - 
(1.204) 
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and the unit step response can be found as 

wn = £-1  _ s + 2~'wn 
y( t )  = £ - '  s(s2 + 2 ~ w . s  + w~) s 2 + 2 g w . s  + w 2 

= j~--I { 1- S'Ji-~O)n _ _  (O)n } 
S (S "~ ~'O.)n) 2 -]- (0 2 (S + ~'O.)n) 2 "/I- 092 

= 1 - e -~'°"t coswat  - ( w ,  e_¢,o, t s inwat  (1.205) 
O) d 

where wa = w,v/i- - ~2 is called the damped natural frequency, and the steady- 
state value becomes y(o~) = 1. 

The time constant of  a second-order system is defined as 

T = 1/¢w. 

and o9. is often considered the bandwidth of  a second-order system with ( ~ 0.707. 
For t > 3T, the unit-step response remains within 5% of its steady-state value, 
whereas it remains within 2% of its steady-state value for t > 4T. Consequently, 
either ts = 3T or ts = 4T is called the settling time of  an underdamped second- 
order system, corresponding to the 5% or 2% criterion, respectively. 

Impulse response function. We now consider a general linear time-invariant 
dynamic system represented in transfer function form, as follows: 

y(s )  = G(s )u ( s )  (1.206) 

where u(s)  and y(s )  are called the input and output of  the system, respectively, 
and G(s)  is the transfer function of  the system. 

The input-output description in the time domain is then given by 

/0' /0 y( t )  = g( t  - r ) u ( r ) d r  = g ( r ) u ( t  - r ) d r  (1.207) 

where g(t) ,  called the impulse response funct ion  at time t due to an impulse input 
applied at time O, is defined as 

g( t )  = £ - l l G ( s ) }  or G(s)  = £{g( t ) }  (1.208) 

That is, the Laplace transform of the impulse response function is, in fact, the 
transfer function of  the system. 

Similarly, for a system described by a transfer function matrix of  the form 

we have 

y(s) = G(s)u(s) (1.209) 

f0' fo' y(t) = G(t - r )u ( r )  dr  = G(r)u( t  - r )  d r  (1.210) 
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where the impulse response matrix of  the system, denoted as G(t), is defined such 
that 

L G(s) = E{G(t)} = G( t )e - ' t  dt (1.211) 

That is, the transfer function matrix is simply the Laplace transform of the impulse 
response matrix. 

State  transition matrix. 
described by 

Consider a linear time-invariant dynamic system 

= Ax + Bu (1.212) 

y = Cx (1.213) 

where x is the state vector, u the control input vector, and y the output vector. Equa- 
tions (1.212) and (1.213) are called the state-space equation and output equation 
of  the linear time-invariant system, respectively. 

Taking the Laplace transform of Eq. (1.212), we obtain 

o r  

sx(s) - x(O) = Ax(s) + Bu(s) 

[sI - A]x(s) = x(0) + Bu(s) 

where x(0) denotes the state vector x(t) at t = 0. This equation can be rewritten as 

x(s) = [sI - A]- lx(0)  + [sI - A] - lBu(s )  (1.214) 

Taking the inverse Laplace transform of Eq. (1.214), we obtain the solution of 
Eq. (1.212) as 

x(t) = E -1 {[sI - A] -1 }x(0) + /Z  -1  {[sI - A]- lBu(s)}  (1.215) 

which is rewritten as 

where 

fo 
t 

x(t) = eAt x (0 )  + eA(t-r)BU(Z ") dr  

eAt ~ /~-1  {[sI - A ]  -1  } 

(1.216) 

(1.217) 

1 
- -  = I + At + - A 2 t  2 + • .. 

2 
(1.218) 

on Akt k 
e At = " ~  

Z....a k[ k=0 

and the matrix e A t  is called the state transition matrix. 
Using the infinite series expression of  e A t  , the state transition matrix e A t  c a n  

also be expressed as 
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Some interesting properties of e At are 

eA(tl-bt2) .~. eAq eAt2 

[eAt]-I = e - A t  

d eA t = AeAt eAtA dt 
and we also have 

e (A+B) t  ~-~ e A t e  Bt if and only ifAB = BA 

103 

Example 1.10 

A = [  0 1]  : : ¢ ' [ s I - A ] - '  = [Sol s-'S-2] ::~ eat = [1 t,] 

[ 0 1]  ' [ ~ ~] [ c o s t  s in t ]  
A = -1  =¢, [sI - A] -1 s 2 + 1 - = ~  eAt  : = - -  - s in t  cost 

[01 10] ! [ ~--,]::~eA t Fcosh/ s inh t ]  
A = ::~ [sI - A] -1 - -  s2----- ~ _ s = L sinh t cosh t 

Problems 
1.48. (a) Find the state transition matrix of the following matrix: 

o 
A =  1 

0 

(b) Given a matrix 

A = 

I O  l 1 0 0 0 
3.1 1 0 0 

L i 0 ~-i 0 0 0 0 k2 1 
0 0 0 )~2 

where ~-I and ~ 2  a r e  real numbers, show that 

[ s I -A]  -1 = 

(S - -  ~.1) - 1  (S - -  ~.1) - 2  

0 (S - -  ~.1) - 1  

0 0 
0 0 
0 0 

(s - k~) -3 
(S - -  ~.1) - 2  

(s - Zl) -1 
0 
0 

0 
0 
0 

(S - -  ~.2) - 1  

0 

o 

2 (s - x2)-  / 
(S - -  ~.2) - 1  1 
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and 

eAt ----- • - l  {[sI - A] -1 } = 

I eo~t teX~t t2eX~t /2 0 i ] 
e x~t te ~'~t 0 

L i 0 e xlt 0 
0 0 e x:t te  ~'2t 

0 0 0 e ~'2t J 
1.49. Consider a set of  differential equations, which describes the nutational 
motion of  a spinning rocket caused by a thrust vector misalignment, of  the form 

tbl -- ~.to2 = / z  

692 "l- ~.tO1 ~--- 0 

where tol and w2 are the angular velocity components and ~ and / t  are constants. 
Obtain the solution as 

ool(t) = ( o 1 ( 0 )  c o s  ~,t + w2(O) sin Zt + (/z/J~) sin ~.t 

tO2( t )  = 092(0 ) COS Xt -- tol(O) sin ~.t -- (/z/~.)(1 -- cos ~.t) 

1.50. Consider the following set of  differential equations, often called the Cloh- 
essy-Wiltshire equations in orbital mechanics, which describe the small relative 
motion of  a spacecraft with respect a circular target orbit: 

- 2n~ - 3nZx = 0 

+ 2n~ = 0 
~ d-n2z  = 0 

where n is a constant orbital rate. 
Obtain the solution of  this set of  differential equations as 

I 
x(t)7 F 4 -  3cosnt 0 sinnt/n 2(1-cosnt)/n Ixo 
y(t)| | 6 s i n n t -  6nt 1 2 ( - l + c o s n t ) / n  4sinnt /n-  3t Yo 
k ( t ) |  = | 3n sinnt  0 cosn t  2 s inn t  ko 
~(t)_J L 6 n ( - 1  + c o s n t )  0 - 2 s i n n t  - 3 + 4 c o s n t  yo 

where xo, Yo, 

~(t)J = L-nsinnt cosn t  .] 

Z0, -to, Y0, and z0 are initial conditions at t -- 0. 

1.3.9 Linear Oscillatory Systems 
In the analysis of  linear dynamic systems, the equations of  motion in physical 

coordinates are often transformed to decoupled modal equations by means of  a 
linear coordinate transformation known as the modal transformation or similarity 
transformation. The transformation matrix is often called the modal matrix, whose 
columns are the eigenvectors of  the system. 
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In linear system theory, these decoupled first-order equations are called the 
Jordan canonical equations and, in general, involve complex numbers. In lin- 
ear vibration analysis of mechanical systems, the modal equations are decoupled 
second-order equations and involve only real numbers. Whether the system to be 
studied is lumped parameter or distributed parameter, its modal form gives much 
physical insight into the system dynamics. 

Consider a conservative, nongyroscopic, lumped-parameter dynamic system 
described by 

M i  + Kx = u (1.219) 

where M is an n x n symmetric mass matrix, K an n x n symmetric stiffness 
matrix, x an n-dimensional generalized coordinate vector, and u an n-dimensional 
generalized input vector associated with x. 

The characteristic equation of the system is simply given as 

I i s  2 + KI = 0 

where s is the Laplace transform variable. The characteristic roots of such an 
undamped nongyroscopic system are pure imaginary numbers including zeros at 
the origin. Thus, letting s = +jw and u = 0, we formulate the modal analysis 
problem of undamped structural dynamic systems, as follows: 

[-Mo~/z + K I = 0 (1.220) 

[-Mw/2 + K] ~bi -- 0 (1.221) 

where wi is the ith modal frequency, q~i is the ith modal vector (or eigenvector), 
a n d / =  1 . . . . .  n. 

Equation (1.219) is then transformed into a set of decoupled equations, called 
modal equations, by the modal transformation 

x = ~ q  (1.222) 

where q is the n-dimensional modal coordinate vector and • is the n x n modal 
matrix defined as 

0 = [~)1 " ' "  (~n] (1.223) 

Note that the modal matrix ,I~ is an orthogonal matrix. Substituting Eq. (1.222) 
into Eq. (1.219) and premultiplying it by • r ,  we obtain 

OTM~I, ii + ~I, TKOq = O r u  (1.224) 

The modal matrix ,I~ is often normalized such that 

• T M ~  = I 

OTKO = N 2 

where I is an identity matrix and f~2 = diag{w2}. 
Finally, we obtain the modal equations in matrix form as 

Ci + ~-~2q = ~I~Tu (1.225) 
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~--..~. X 1 ~--~- X 2 

U l - - - - - - I ~ ~  U 2 

/ / / / / / / / / / / / / / / / / / ,  

Fig. 1.23 Two-mass-spring system. 

and the decoupled equation for the ith mode as 

~1i + w2qi = q~/Tu (1.226) 

Spacecraft dynamics and control problems can often be characterized or an- 
alyzed using a simple two- or three-mass-spring system, which provides much 
physical insights into the various spacecraft control problems. Therefore, we shall 
treat such simple dynamic systems here in preparation for real spacecraft control 
problems that are to be studied later in this book. 

Two-mass-spring system. Consider two carts of masses m~ and m2 on a 
frictionless horizontal surface, which are connected by a massless, linear spring 
of stiffness k, as illustrated in Fig. 1.23. External forces ul and u2 act on ml and 
rn2, respectively. 

The equations of motion can be derived as 

k ul 

where Xl and x2 are the generalized coordinates of ml and m2, respectively. It is 
assumed that the spring is unstressed when xl = x2. 

Taking the Laplace transform of Eq. (1.227) and ignoring the initial conditions, 
we obtain the Laplace transformed equations of motion as 

[mls2; k :k k][Xl(s)l=rul(s)l  (1.228) 
- m 2 s  + x2(s)j Lu2(s)J 

The transfer function matrix from ul and g2 to xl and x 2 can then be obtained as 

x2(s)j  = ~ mlS2+k Lug(s) 
where 

D(s) = sZ[mlm2 s2 + (ml + mz)k] 
denotes the characteristic polynomial of the system. The characteristic roots of the 
system are 

, . / ( m l  + mz)k o, o,  -JV 

where j = vc'Z-i ". Note that this system is said to be unstable because it has repeated 
characteristic roots on the imaginary axis, i.e., the double pole at the origin. 
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F.x2 F x3 
u l ------~ ~ 

" / / / / / / / / / / / / / / / / / / / / / / / / / / / / . .  

Fig. 1.24 Three-mass-spring system. 

Letting s = -t-jw and Ul = u 2  = O, we have 

where o)l = 0, co2 = ~/(rnl + mz)k/(mlm2) and (4hi, 4~2i) is the ith modal vector. 
For example, when ml = m2 = k = 1 with appropriate units, we have the 

modal equations in matrix form as 

+ ~ 2 q  = ~I~Tu (1.231) 

where q = (ql, q2), u = (ul, u2), f~2 ____ diag{co 2, co~}, o91 = 0, co2 = ~/-2, 
x = ff~q, and 

O--L~2, ~=2 = 1 / ~  - 1 / ~ J  
This system has two modes: a rigid-body mode ql with zero natural frequency, 
and a symmetric flexible mode q2 with the natural frequency of co2 = ~/'2. 

Three-mass-spring system. Consider three carts of masses ml, m2, and 
m3 on a frictionless horizontal surface, which are connected by massless, linear 
springs, as illustrated in Fig. 1.24. External forces Ul, u2, and u3 act on ml, m2, 
and m3, respectively. 

The equations of  motion can be derived as 

Eo°  I ! ,  :E u,] 0 JC2 + - I kl + k2 u2 (1.232) 
m3 23 -k2  k2 x3 u3 

where xl, x2, and x3 are the generalized coordinates of  ml, m2, and m 3, respec- 
tively. 

The Laplace transformed equations of  motion become 

I 
mlS2 + k, - k l  0 I Fxl(s)-] ~u,(s)- ] 

-~1 m2s2+(k,  +k2) -~2 /x2(s)/= lu2(s)l (1.233) 
-k2 m3 s2 + k2 Lx3(s).J ku3(s)3 

The characteristic equation is 

D(s) = sZ[mlm2m3 s4 -k- {(ml -k- mz)m3kl -F (m2 Jr m3)mlk2}s 2 

-k- klk2(ml -k- m2 q- m3)] = 0 
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Like the two-mass-spr ing system, consider a case in which ml = m2 = m3 = 
ks = k2 = 1 with appropriate units. The transfer function matrix from us, u2, and 
u3 to xl ,  xz, and x3 can then be obtained as Ex, s,1 ,Es4+3s2+,s2+, , lru, s l 

X3(s)jX2(S)[- D(s) s2 1 )2 s 2 + 1 (S 2 + 1 + 1 [U2(S) 
S 2 + 1 S 4 -+- 3S 2 "k- 1 L u3(s) 

where 

D(s)  = s2(s 2 + 1)(s 2 + 3) 

and the modal equations become 

+ [22q = @Tu 

(1.234) 

(1.235) 

whereq  = (q,,  q2, q3),u = (u, ,  u2, u3), f22 -= diag{o92, 092, w32},w, = 0,w2 = 1, 

w3 = v/3, x = ff~q, and 

[-0.3333 0.5 0.1667-] 
,I, = | 0.3333 0 - 0 . 3 3 3 3  | 

L0.3333 - 0 . 5  0.16673 

This system has a r igid-body mode and two flexible modes. 

Problem 

1.51. Consider two carts of  masses ml and m2 on a frictionless horizontal surface, 
which are connected by a massless, linear spring of  stiffness k, as was illustrated 
in Fig. 1.23. External forces ul and u2 act on ml and m2, respectively. 

Let new coordinates ql and qa be defined in terms of  the physical  coordinates 
Xl and x2 as 

m i x 1  q- m 2 x 2  q l - -  
ml + m2 

q2 = x2  --  X l 

where ql is the position of the system center of mass and q2 is the relative position 
of  m2 with respect to ml .  It is assumed that the spring is unstressed when xj = x2. 

(a) Derive the decoupled equations of  motion in terms of the modal coordinates 
ql and q2 as 

(ml + m2)/]l = Ul + u2 

(]2 -'1- k m l  -k- m 2 q 2  _ Ul + u2 

m l m 2  m l  m 2  

(b) Derive the equations of motion in terms of  the hybrid coordinates xl and q2 
as 

(ml + m2)21 + m2/12 = ul + u2 

m2~2 + kq2 + rn2-~l = u2 
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which can be rewritten as 

(ml Jr" m2)J¢l + x / ~ O 2  = Ul + U2 

2 U2 
~2 + wz 02 + C - ~ 1  = 

where 02 -= ~/-m'zq2 is called the normalized cantilever modal coordinate, o) z ---- 
the cantilever frequency, and ~ the coupling scalar of  this two-mass -  

spring system. Also show that the transfer function from u~ to Xl can be expressed 
as 

2 X1 (S) S 2 "t- 09 z 

Ul(S) M s 2 { ( l  - m 2 / M ) s  2 + w  2 } 

where M = ml + m2 is the total mass of  the system. 
(c) Assume that the system is initially at rest with x) = x 2  = 0  and that ml = 

m2 = m. For a case in which u) is a unit impulse force at t = 0 and u2 = 0, solve 
for xl ( t )  and xz(t) as 

where 

,ml( 1 ) xl = w--- t + - - s i n o ) , t  
(,On 

 m'(1 ) X2 = ~ ' -  t sinwnt 
(On 

,o. = V g g /  m 

1.3.10 Phase-Plane Analysis of Nonlinear Systems 
Both the linear and nonlinear stability concepts are further examined here via 

the phase-plane analysis of  nonlinear dynamic systems. 
Consider a nonlinear system described by 

= f(x, u)  

where x is the state vector and u the control input vector. An equilibrium point of  
a nonlinear dynamic system can be found by solving the equilibrium condition 

fix*, u*) = 0 for all t > to 

where x* denotes the state vector at an equilibrium point for a known constant 
input or parameter vector u*. 

The linearized equations about an equilibrium point can then be obtained as 

~ = A ~ x + B ~ u  (1.236) 

where gx ----- x - x*, gu = u - u*, and A and B are constant matrices defined as 

Of Of 
A = ~ x x . '  B = 0--uu. (1.237) 
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The partial derivatives in Eq. (1.237) are to be evaluated at the equilibrium 
point. 

If  none of the eigenvalues of A have zero real parts, then the equilibrium point 
is said to be a hyperbolic point. In the phase-plane analysis of dynamic systems, 
a hyperbolic equilibrium point is called a saddle if some of the eigenvalues have 
positive real parts and the rest of the eigenvalues have negative real parts. If  all of 
the eigenvalues have negative real parts, then the hyperbolic point is called a stable 
node or a stable focus. If all of the eigenvalues have positive real parts, then the 
hyperbolic point is called an unstable node or an unstable focus. If the eigenvalues 
are pure imaginary and nonzero, then the equilibrium point is said to be an elliptic 
point, and the elliptic equilibrium point is called a center. 

A stable node and a stable focus are attractors, and an unstable node and an 
unstable focus are repellers. A saddle point is neither an attractor nor a repeller. A 
center is not asymptotically stable and, therefore, is not an attractor. In dynamic 
systems theory, attractors and repellers are called invariant sets, and they occur only 
in dissipative dynamic systems. In a conservative system, all equilibrium points 
are either centers or saddle points, and attractors and repellers are not possible. 

As was discussed earlier, if an equilibrium point ofa  linearized system is asymp- 
totically stable, then the equilibrium point of the nonlinear system is asymptotically 
stable. However, the Lyapunov stability of the equilibrium point of a linearized 
system does not guarantee the Lyapunov stability of the equilibrium point of the 
nonlinear system. 

For further details of dynamic systems theory and its applications, the reader is 
referred to Refs. 17-21. 

Problems 
1.52. Consider a simple pendulum of mass m and length e, as described by 

meO + mg sin 0 = 0 

where 0 is the angular displacement of the pendulum from its vertical down posi- 
tion. The equilibrium points are 0 = 0, 4-rr . . . . .  

(a) Find the eigenvalues for each equilibrium point and discuss its stability. 
(b) Sketch the phase-plane trajectories in the 0, 0 plane and identify center 

manifolds and a separatrix. (A manifold is a generalization of a point, curve, or 
volume in the n-dimensional state space. The closed trajectory through saddle 
points is called a separatrix or a homoclinic orbit.) 

1.53. Consider an inverted pendulum of mass m and length ~. The equation of 
motion is simply given by 

me20 - mge sin 0 = u 

where 0 is the angular displacement of the pendulum from its vertical up position 
and u is a constant torque acting on the pendulum. This equation can be rewritten as 

0 = / z  + w  2sinO 

2 where tt = u/mf. 2 and to. = g/e. 
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2 2) I#1 2 and 3) I#zl < 2 For the following three cases: 1) I#1 > ~%, = o~ n, oJ,, 
(a) Find equilibrium points and discuss the stability of each equilibrium point. 
(b) Sketch the phase-plane trajectories. 

1.54. Consider a particle of mass m that is constrained to move on a smooth 
circular hoop of radius £ under the action of gravity, as was illustrated in Fig. 1.6. 
The equation of motion of the particle is given by 

me20 + mge sin0 = m e 2 ~  2 sin0 cos0 

where 0 denotes the angular position of the particle from the vertical line, g is the 
gravitational acceleration, and f2 is the constant angular velocity of the circular 
hoop. 

(a) Determine the equilibrium points as the dimensionless bifurcation parameter 
i, z = g . ~ Z / g  varies. 

(b) Discuss the stability of each equilibrium point. 
(c) Sketch the phase-plane trajectories. 

1.55. Consider an undamped Duffing oscillator described by 

) ~ - x + x 3  = 0  

The equilibrium points are (0, 0) and (4-1, 0). 
(a) Find the eigenvalues for each equilibrium point and discuss its stability. 
(b) Sketch the phase-plane trajectories and identify center manifolds and a sep- 

aratrix. 

1.56. Consider a damped Duffing oscillator described by 

X -~- # J( - -  X -'}- X 3 = 0 ,  # > 0 

The equilibrium points are (0, 0) and (4-1, 0). 
(a) Find the eigenvalues for each equilibrium point and discuss its stability. 
(b) Plot the phase-plane trajectories that illustrate stable manifolds as well as 

two domains or basins of attraction. 

1.57. Consider the van der Pol oscillator described by 

Jf "q- ] / . (X  2 - -  1)~ + x  = 0 

where/z is a constant parameter. 
(a) Show that for # > 0, the origin (x, .t) = (0, 0) is an unstable equilibrium 

point. Plot the phase-plane trajectories of the van der Pol oscillator for /z  = 1.0 
and verify the existence of a periodic solution, i.e., a closed curve in the phase 
plane, called a stable limit cycle. 

(b) Show that for/z < 0, the origin (x, .t) = (0, 0) is a stable equilibrium point. 
Plot the phase-plane trajectories of the van der Pol oscillator for # = - 1 . 0  and 
verify the existence of an unstable limit cycle. 

(c) Predict analytically the existence of such limit cycles for the van der Pol 
oscillator. 
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Note: In 1926, van der Pol derived this equation of  an electrical circuit with a 
vacuum tube, now called the van der Pol oscillator. 

1.58. Consider again the so-called Lorenz system described by 

,t = - c rx  + cry 

j~ = - z x  - y + rx  

= x y  - bz 

where cr, r, and b are positive constant parameters. The equilibrium points of 
the Lorenz system are given by the following: for r < 1, (0, 0, 0)and for r > 
1 , (0 ,0 ,0 )  and C + :  (-I-by/b-(} - -  1), --1-b~/b-~-1), r -  1). 

(a) For the Lorenz system with cr = 10 and b = 8/3, find the eigenvalues for 
each equilibrium point and discuss its stability as the bifurcation parameter r varies. 

(b) For the Lorenz system with cr = 10, b = 8/3, and r = 22.4, the equilibrium 
points C + = (-I-7.5542, +7.5542, 21.4) are both asymptotically stable. Perform 
computer simulation of  this case with various initial conditions and identify two 
basins of  attraction in the (x, y, z) state space. 

(c) For the Lorenz system with cr = 10, b = 8/3, and r = 28, the equilibrium 
points C + = (-I-8.4852, 4-8.4852, 27) are both unstable. Perform computer sim- 
ulation of  this case with various initial conditions and investigate the nonperiodic, 
turbulent (or chaotic) dynamic behavior of  the Lorenz system, known as a strange 
attractor. 
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2 
Dynamic Systems Control 

This chapter is concerned with the feedback control of linear dynamic sys- 
tems, with particular emphasis on robust control of uncertain dynamic systems. 
Classical control techniques, digital control, and modern state-space methods are 
introduced. Furthermore, the fundamental concepts of classical gain-phase stabi- 
lization, nonminimum-phase compensation, disturbance accommodating control, 
and uncertainty modeling are emphasized. The problems of designing robust H a  
compensators and of computing parameter margins for uncertain dynamic systems 
are also introduced. This chapter is mainly intended to summarize the fundamen- 
tal concepts and techniques in dynamic systems control, however, which will be 
essential in the analysis and design of spacecraft control systems. The reader is 
presumed to have access to computational software such as MATLAB TM, which 
will be essential in solving various control problems treated in this chapter and in 
the remainder of this textbook. For an introduction to feedback control analysis, 
design, and simulation using MATLAB, the reader is referred to Refs. 1 and 2. 

2.1 Feedback Control Systems 
Block diagram representations of a feedback control system are shown in 

Fig. 2.1. Figure 2.1a is called a functional block diagram representation. Phys- 
ical systems to be controlled are often referred to as plants. A set of differential or 
difference equations used to describe a physical system is called a mathematical 
model of the system. In the analysis and design of a feedback control system, 
we often deal with a mathematical model of the plant, not with the actual physi- 
cal plant. Consequently, special care must be taken regarding uncertainties in the 
mathematical model because no mathematical model of a physical system is exact. 

A closed-loop feedback control system maintains a specified relationship be- 
tween the actual output and the desired output (or the reference input) by using the 
difference of these outputs, called the error signal. A control system in which the 
output has no effect on the control decision is called an open-loop control system. 
In a feedback control system, a controller, also called a compensator or control 
logic, is designed to manipulate or process the error signal so that certain specifi- 
cations are satisfied in the presence of plant disturbances and sensor noise. In the 
analysis of control systems, we analyze the dynamic behavior or characteristics of 
the system under consideration. In the design or synthesis, we are concerned with 
designing a feedback control system that will achieve the desired system character- 
istics. A feedback control system can also be represented as it is in Fig. 2.1b, using 
transfer functions. In this figure, for simplicity, the actuator and sensor dynamics 
are neglected, and r(t) denotes the reference input, y(t) the plant output, G(s) the 
plant transfer function, K(s) the compensator, u(t) the control input, e(t) the error 
signal, w(t) the disturbance, d(t) the output disturbance, and n(t) a sensor noise. 
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a) 
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Fig. 2.1 Block diagram representations of a feedback control system. 

The output of this closed-loop system, neglecting the sensor noise n(t), can then 
be represented as 

K(s)G(s)  G(s) 1 
y(s) 1 + K(s)G(s)  'r(s) + 1 + K(s)G(s) w(s) + 1 + K(s)G(s) d(s) (2.1) 

where y(s) = /2[y(t)], r(s) =/2[r( t ) ] ,  w(s) = £[w(t)], and d(s) =/2[d(t)] .  In 
particular, the closed-loop transfer functions from d(s) and r(s) to y(s) are 

y(s) 1 

d(s) 1 + K(s)G(s) 

y(s) K(s)G(s) 

r(s) 1 + K(s)G(s) 

- -  S ( s )  (2.2) 

- -  T ( s )  (2.3) 

and S(s) and T(s) are called the sensitivity function and the complementary sensi- 
tivity function, respectively. Furthermore, we have the following relationship: 

S(s) + T(s) = 1 (2.4) 

The closed-loop characteristic equation is defined as 

1 + K(s)G(s) = 0 (2.5) 

and K (s)G(s) is called the loop (or open-loop) transfer function. The importance of 
the loop transfer function cannot be overemphasized because it is used extensively 
in the analysis and design of closed-loop systems. The roots of the closed-loop 
characteristic equation are called the closed-loop poles. 

The error signal, ignoring the sensor noise n(t), is defined as 

e(t) = r(t) - y(t) (2.6) 
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and the steady-state error can be found as 

e,..~. = lim e(t) = lim se(s) (2.7) 
t - -*oo s---~0 

where e(s) =/2[e(t)] ,  provided that e(t) has a final value. For the system shown 
in Fig. 2.1, ignoring w(s) and d(s), we have 

and 

Thus, it is required that 

1 
e(s) = r(s) (2.8) 

1 + K(s)G(s) 

sr(s) 
e,.,. = lim (2.9) 

.,.~0 1 + K(s)G(s) 

lim K(s)G(s) = oo (2.10) 
s---~0 

to have zero steady-state tracking error for a constant reference input command. 
A feedback control system is often characterized by its system type. The system 

type is defined as the number of poles of the loop transfer function K(s)G(s) at 
the origin. Therefore, a type 1 system has zero steady-state error for a constant 
reference input, a type 2 system has zero steady-state error for a constant or ramp 
reference input, and so forth. 

To reduce the effects of the disturbance, the magnitude of the loop transfer 
function K(s)G(s) must be large over the frequency band of the disturbance d(t). 
For good command following at any frequency, the steady-state or D.C. gain 
must be large. In general, a fast transient response, good tracking accuracy, good 
disturbance rejection, and good sensitivity require a high loop gain over a wide 
band of frequencies. Because the high loop gain may degrade the overall system 
stability margins, proper tradeoffs between performance and stability are always 
necessary in practical control designs. 

2.2 Classical Frequency-Domain Methods 

2.2.1 Root Locus Method 

One of the classical control analysis and design techniques is the root locus 
method developed by Evans 3 in 1950 (see also Ref. 4). In Evans's root locus 
method, the closed-loop characteristic equation is described by 

1 + KG(s) = 0 (2.11) 

where KG(s) denotes the loop transfer function, G(s) includes both the compen- 
sator transfer function and the plant transfer function, and K is called the overall 
loop gain. Note that the roots of the closed-loop characteristic equation are called 
the closed-loop poles. 

In Evans's root locus plot, the poles and zeros of the loop transfer function 
KG(s) are shown, where the poles are represented as crosses, x, and zeros as 
circles, o. A root locus is then simply a plot of the closed-loop poles as the overall 
loop gain K is usually varied from zero to infinity. 
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Using a root locus plot, one can easily determine a gain margin, which is one of 
the most important measures of the relative stability of a feedback control system. 
A gain margin indicates how much the loop gain K can be increased or decreased 
from its chosen nominal value until the closed-loop system becomes unstable. For 
example, if the loop gain K can be increased by a factor of two until a root locus 
crosses the imaginary axis toward the right-half s plane, then the gain margin 
becomes 20 log 2 ~ +6  dB. In some cases of an open-loop unstable system, the 
closed-loop system may become unstable if the loop gain is decreased from its 
chosen nominal value. For example, if the gain can be decreased by a factor of 
0.707 until the closed-loop system becomes unstable, then the (negative) gain 
margin is 20 log 0.707 ~ - 3  dB. 

The root locus method also allows the designer to properly select at least some 
of the closed-loop pole locations and thus control the transient response charac- 
teristics. 

Example 2.1 
Consider a simple example of root locus plot vs overall loop gain K as illustrated 

in Fig. 2.2. The closed-loop characteristic equation of this system is 

1 + K( s  + 1)/s  2 = 0 or s 2 + K s  + K = 0 

For this simple case, the closed-loop poles can be analytically determined as 

s = ½( -K  4- ~/K 2 - 4K) 

and they can be computed and plotted for different values of K, as shown in 
Fig. 2.2. Because this closed-loop system is asymptotically stable for any nonzero 
positive value of K, it is often said that this system has q - ~  dB gain omargins. 

Many useful properties of the root locus will aid in quick, rough sketching of 
root loci. Presently, however, computer programs are usually employed for plotting 

• Closed-loop poles at K = 2 
[] Closed-loop poles at K = 4 Im(s) 

K --> c~ 
O 

-~ ~ - 1  

j /  
Re(s) P 

Fig. 2.2 Root  locus vs overall loop gain K.  
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accurate root loci in practical design of complex control systems. As mentioned 
earlier, it is assumed that the reader has access to, and some acquaintance with, 
computer-aided control design software. 

The root locus method can also be employed for the analysis and design of 
multiloop feedback control systems. 5 Consider a plant with two inputs and two 
outputs described by 

[y,] 1 ] 
y2 = ~ LN21(S) N22(S) J u2 

where Yl and Y2 are the outputs, ul and u2 are the control inputs, D(s) is the 
characteristic polynomial, and Nq(s) are the numerator polynomials. A diagonal 
feedback control logic is assumed as 

ul = - K l  (s)yl (2.13a) 

U2 = - -  K 2 ( s ) y 2  (2.13b) 

where Kl (s) and Kz(s) are the diagonal feedback compensators. 
The closed-loop characteristic equation can be obtained as 

D 2 + (KI Nil + K2N22)D + KI Kz(NII N22 - N12N21) = 0 (2.14) 

which becomes 

because 

D + K1Nll + K2N22 + KlK2N = 0 (2.15) 

NIIN22 - N12N21 = D(s)N(s) (2.16) 

where N(s) is called the coupling numerator polynomial. 
The first-loop analysis or synthesis can be performed by considering a charac- 

teristic equation of the form 

1 + (K1NI~/D) = 0 (2.17) 

After synthesizing Kl (s) in the first-loop closure, the characteristic equation of the 
second loop can be found as 

Kz(N2z + KI N) 
1 + = 0 (2 .18)  

D + KlNll 

The second-loop compensator K2(s) can then be analyzed or synthesized in a 
manner similar to the method for the first-loop design; however, the zeros and the 
poles of the second-loop transfer function are changed by the first-loop closure. 
The new zeros are related to the coupling numerator. This property is useful in 
finding the new zeros for the second-loop closure in the root locus analysis. 

Classical stability analysis of multiloop feedback control systems, by breaking 
loops one at a time, is known to be an unreliable way of testing robustness or 
sensitivity to simultaneous perturbations of all of the loops. As can be learned 
from the following two problems, 6 however, the successive-loop-closure approach 
described earlier can be effectively used to predict a lack of robustness in the 
nominal designs and, furthermore, provides insights into how the design can be 
changed so as to be more robust. 
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Prob l ems  

2.1. Consider a system described by 

[ y , ]  = l [ s - 1 0 0  10(s l+l  ] [  ]Ul 
Y2 s 2 + 100 10(s + 1) .vv ) _ _ U 2 

where (Yl, Y2) are  the outputs and (ul, u2) are the control inputs. A constant-gain 
diagonal feedback control logic is given as 

ul = - - K l y l  

u2 = - K 2 y 2  

with the nominal gains of KI = K2 = 1. 
(a) Sketch root locus vs KI of the first-loop closure and indicate the closed-loop 

poles at K1 = 0.9, 1.0, and 1.1. 
(b) Show that, after the first-loop closure, the closed-loop characteristic eq!aation 

for the second-loop closure becomes 

{ s + ( 1 0 1 K , - 1 0 0 )  } 
1 + K2 s27q_-~lS-~-~  1 ---K1) = 0  

and that the coupling numerator polynomial N(s)  = 101. 
(c) After selecting the nominal gain (K1 = 1) for the first-loop closure, sketch 

root locus vs K2 of the second-loop closure and indicate the closed-loop poles at 
K2 = 0.5, 1.0, and 10. 

(d) According to the result in (c), one may conclude that the second-loop gain K2 
can be increased to infinity (but keeping KI = 1), without destabilizing the overall 
closed-loop system. Even so, discuss the effect of independent perturbations of 
loop gains Kl and K2 on the closed-loop stability by sketching root locus plots 
vs K2 of the second-loop closure with two different values of the nominal gains: 
K1 = 0.9 and 1.1. 

(e) Although this problem may not represent any particular physical system, 
show that a controller should be of the form 

Ul = +Kly2  

U2 = - - K 2 Y l  

where K1 and K 2 are  positive gains. 

2.2. Consider a system described by 

[yl ]  1 r47,+  ][u,] 
Y2 (S + 1)(s + 2) [ -42s  50s + 2 uz 

where (Yl, Y2) are the outputs and (Ul, u2) are the control inputs. A constant-gain 
diagonal feedback control logic is given as 

ul = - - K l y l  

u2 = -KEY2 

with the nominal gains of K1 = K2 = 1. 
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(a) Sketch root locus vs Kl of the first-loop closure and indicate the closed-loop 
poles at Kl = 0.064 and 1. 

(b) Show that, after the first-loop closure, the closed-loop characteristic equation 
for the second-loop closure becomes 

l + K 2 {  50s + 2(1 + K , ) } = 0  
s2 + ( 3 -  + K,) 

and that the coupling numerator polynomial N(s) = 2. 
(c) After selecting the nominal gain (KI = 1) for the first-loop closure, sketch 

root locus v s  K2 of the second-loop closure and indicate the closed-loop poles at 
K2 = 0.88 and 1. 

(d) According to the result in (c), one may conclude that the second loop has 
+oo- and only -1.1-dB gain margins. Similarly, by closing the K2 loop first, show 
that the KI loop has -oo-  and only + 1.0-dB gain margins. 

(e) Also show that the system has 4-c~-dB gain margins for simultaneous gain 
perturbations of K1 - -  K2. 

2.2.2 Frequency-Response Methods 
Frequency-response analysis and synthesis methods are among the most com- 

monly used techniques for feedback control system analysis and design, and they 
are based on the concept of frequency-response function. 

The frequency-response function is defined by the transfer function evaluated 
at s = jw; that is, the frequency response function of a transfer function G(s) is 
given by 

G(s)[,.=j~ = G(jw) = Re[G(jw)] + j Im[G(jw)] = IG(jw)le j6(°') (2.19) 

where IG(jw)l and ~b(w) denote, respectively, the magnitude and phase of G(jw) 
defined as 

IG(jw)[ = ~/{Re[G(jw)l} z + {Im[G(jw)]} 2 

4,(o)) = tan -11m[G(jw)] 
Re[G(jw)] 

For a given value of w, G(jw) is a complex number. Thus, the frequency- 
response function G(jw) is a complex function of w. Mathematically, the fre- 
quency-response function is a mapping from the s plane to the G(jw) plane. The 
upper-half of the jw axis, which is a straight line, is mapped into the complex 
plane via mapping G(jw). 

One common method of displaying the frequency-response function is a polar 
plot (also called a Nyquist plot) where the magnitude and phase angle of G(jco), 
or its real and imaginary parts, are plotted in a plane as the frequency co is varied. 
Another form of displaying G(jw) is to plot the magnitude of G(jw) vs co and to 
plot the phase angle of G(jco) vs co. In a Bode plot, the magnitude and phase angle 
are plotted with frequency on a logarithmic scale. Also, we often plot the magnitude 
of the frequency-resp0nse function in decibels; that is, we plot 20 log IG(jco)l. A 
plot of the logarithmic magnitude in decibels vs the phase angle for a frequency 
range of interest is called a Nichols plot. 
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For a feedback control system, as shown in Fig. 2. I, the loop transfer function 
K(s)G(s)  evaluated at s = jw is used extensively in the analysis and design of the 
system using frequency-response methods. The closed-loop frequency response 
functions defined as 

y(j¢o) 1 
- -  -- S( jw)  = (2.20) 
d(jog) 1 + K (jw)G(jog) 

y(jog) K (jog) G( jw)  
--  T(j~o)  = ( 2 . 2 1 )  

r( jw)  1 + K(jw)G(jog) 

are also used in classical frequency-domain control systems design. 
Among the most important measures of the relative stability of a feedback 

control system are the gain and phase margins as defined as follows. 

Gain margin. Given the loop transfer function K (s)G (s) of a feedback control 
system, the gain margin is defined as the reciprocal of the magnitude [K(jo~)G(jw)[ 
at the phase-crossover frequency at which the phase angle q~(w) is - 1 8 0  deg; that 
is, the gain margin, denoted by g,., is defined as 

1 
g m= (2.22) 

IK(jw~)G(jwc)[ 
or 

g,, = -201oglK(jwc)G(jwc)l  dB (2.23) 

where o9c is the phase-crossover frequency. For a stable minimum-phase system, 
the gain margin indicates how much the gain can be increased before the closed- 
loop system becomes unstable. 

Phase margin. The phase margin is the amount of additional phase lag at the 
gain-crossover frequency ~o¢ at which IK(jwc)G(j~oc)l = 1 required to make the 
system unstable; that is, 

~)m = qb[ K (jwc)G(jwc)] + 180 deg (2.24) 

Although the gain and phase margins may be obtained directly from a Nyquist 
plot, they can also be determined from a Bode plot or a Nichols plot of the loop 
transfer function K(jw)G(jo~). 

Problems 
2.3. Consider a feedback control system shown in Fig. 2.2 with the closed-loop 
characteristic equation 

1 + K ( s  + 1 ) / s  2 = 0 

with the nominal loop gain of K = 2. 
(a) Sketch the Bode, Nyquist, and Nichols plots of the loop transfer function 

with K = 2. Using these plots, determine the gain and phase margins of this 
feedback control system with the nominal loop gain of K = 2. 
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Compensator 

3630 (s - 2.43) [ u 
K 

(s - 36.26)(s + 78.26) ] 

Plant 

-1(s'2~'9) 1 1 

Fig.  2.3 S tab i l i za t ion  o f  an  uns tab le  plant .  

(b) Sketch the Bode plot of the closed-loop frequency response function with 
K = 2 from r to y, and determine the bandwidth of this closed-loop system, i.e., 
the frequency at which the magnitude of its frequency response function drops by 
3 dB from its low frequency gain. 

(c) Sketch the closed-loop transient response y(t)  when r(t)  is a unit step func- 
tion, for three different values of K = 1, 2, and 4. 

2.4. Consider a feedback control system illustrated in Fig. 2.3 with the nominal 
loop gain of K = 1. 

(a) Plot root locus vs the overall loop gain K from 0 to to. Indicate the nominal 
closed-loop poles at K = 1. (Note that the root locus plot must be symmetric 
about the real axis.) 

(b) Determine the gain and phase margins of this feedback control system. 
(c) Discuss the inherent sensitivity of this closed-loop system. 

2.2.3 Classical ProportionaMntegraI-Derivative Control Design 
The proportional-integral-derivative (PID) control logic is commonly used in 

most feedback controllers. To illustrate the basic concept of the PID control, con- 
sider a cart of mass m on a frictionless horizontal surface, as shown in Fig. 2.4a. 
This so-called double integrator plant is described by 

m~)(t) = u(t) + w(t)  (2.25) 

where y is the output displacement of the cart, u is the input force acting on the 
cart, and w is a disturbance force. This system with a rigid-body mode is unstable; 
thus the system needs to be stabilized and the desired output is assumed to be zero. 

Assuming that the position and velocity of the system can be directly measured, 
consider a direct velocity and position feedback control logic expressed as 

u(t ) = - k y ( t  ) - c~y(t ) (2.26) 

or 

u = - ( k  + cs)y 

where k and c are controller gains to be determined. The closed-loop system 
illustrated by Fig. 2.4b is then described by 

my( t )  + c~(t) + ky(t)  = w(t)  
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w 

a) Open-loop system 

m 

Y(O 

b) Closed-loop system with position and velocity feedback 

w(O 

y(O 

c) Equivalent closed-loop system representation 

Fig. 2.4 Control of a double integrator plant by direct velocity and position feedback. 

which is, in fact, a mathematical representation of a mass-spring-damper system 
forced by an external disturbance w(t), as illustrated in Fig. 2.4c. 

The closed-loop characteristic equation of the system shown in Fig. 2.4 is 

m s  2 + cs + k = 0 

The control design task is to tune the active damper and active spring to meet given 
performance/stability specifications of the closed-loop system. Let wn and ( be 
the desired natural frequency and damping ratio of the closed-loop poles. Then the 
desired closed-loop characteristic equation becomes 

2 =  0 S 2 + 2(to.s + to. 

and the controller gains c and k can be determined as 

c = 2 m ( w n  (2.27a) 

k = mw~ (2.27b) 

The damping ratio ( is often selected as 0.5 _< ¢ < 0.707, and the natural fre- 
quency co. is then considered the bandwidth of the proportional-derivative (PD) 
controller of a system with a rigid-body mode. For a unit-step disturbance, this 
closed-loop system with the PD controller results in a nonzero steady-state output 
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y(c¢)  = 1 /k .  The steady-state output error y(cx~) can be made small, however, by 
designing a high-bandwidth control system. 

To keep the cart at the desired position y = 0 at steady state in the presence of 
a constant disturbance, consider a PID controller of the form 

o r  

u(t)  = - K e y ( t )  - K1 f y( t )  dt - Kop( t )  (2.28) 

[ ] u(s) = - Kp + - -  + K o s  y(s)  
S 

In practical analog circuit implementation ofa PID controller when j~ is not directly 
measured, differentiation is always preceded by a low-pass filter to reduce noise 
effects. It can be shown that for a constant disturbance, the closed-loop system 
with the PID controller, in fact, results in a zero steady-state output y(oo) = 0. 

The closed-loop characteristic equation of the cart with the PID controller can 
be found as 

ms 3 + K o s  2 + K e s  + Kt  = 0 

and let the desired closed-loop characteristic equation be expressed as 

(s 2 + 2~'~o,s + w~)(s + l / T )  = 0 

where 09, and ~ denote, respectively, the natural frequency and damping ratio of 
the complex poles associated with the rigid-body mode, and T is the time constant 
of the real pole associated with integral control. 

The PID controller gains can then be determined as 

Kp = m(w2n + 2 ~ w n / T )  (2.29a) 

K,  = m ( w 2 / T )  (2.29b) 

Ko = m(2~'wn + 1 / T )  (2.29c) 

The time constant T of integral control is often selected as 

T ,~ lO/~wn 

A more detailed treatment of a classical approach to control logic design for 
high-order dynamic systems will be presented in the next section, followed by 
modern state-space methods. 

Problems 
2.5. Consider the control problem of a double integrator plant with measurement 
of position only. A common method of stabilizing the double integrator plant with 
noisy position measurement is to employ a phase-lead compensator of the form 

Tls + l 
u(s) = - K - -  y(s)  

T 2 s + I  

as illustrated in Fig. 2.5a. 
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a) Closed-loop system with a phase-lead compensator 

b) Equivalent closed-loop system representation using two springs and adamper 

Fig. 2.5 Control of a double integrator plant using a phase-lead compensator. 

Show that an equivalent closed-loop system can be represented using two springs 
and a damper as in Fig. 2.5b and that 

c(kl+k2)  c 
K = k ~ ,  7'1 -- , T 2 = - -  

klk2 k2 

Note: For further details of designing a passive three-parameter isolator known 
as the D-Struff M that can be modeled as Fig. 2.5b, see Davis et al. 7 Also see Ogata 
(Ref. 1, pp. 439-440) for other types of a mechanical lead network. 

2.6. Consider again the control problem of a double integrator plant employing 
a phase-lead compensator of the form 

u(s) = - K T l S  + 1 y(s) 

(a) Determine Tl, T2, and K such that the closed-loop plant poles be located 
near s = - 2  4- j 2  for the nominal plant with m = 1. 

Hint: One possible design is Tl = 1, 7"2 = 1/6, and K = 16/6. 
(b) Sketch root locus vs the overall loop gain K and indicate the closed-loop 

poles at the selected nominal gain of K. 
(c) Sketch the Bode, Nyquist, and Nichols plots of the loop transfer function 

with the selected nominal design. Using these plots, determine the gain and phase 
margins of the nominal closed-loop system. 

(d) Sketch the Bode plot of the closed-loop frequency-response function from 
wto  y. 

(e) Sketch (or determine analytically/numerically) the closed-loop time response 
of the position output y(t) to a unit-step disturbance w(t) = 1 for t > 0. 
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2.7. Consider the problem of designing a PID controller for the double integrator 
plant shown in Fig. 2.4a with m = 1. The PID control logic is represented as 

u(t) = - K p y ( t )  - Kt f y(t)dt  - Kop(t)  

in which the desired output is assumed to be zero. 
(a) Determine the PID controller gains such that the closed-loop poles are located 

at s = -0 .1  and s = - 1  4- j for the nominal plant with m = 1. (Answers: 
Ke = 2.2, KI = 0.2, and Ko = 2.1.) 

(b) Sketch root locus vs an overall loop gain K of the selected PID controller 
of the form 

u(s) = - K  {2.2 + 0.2/s + 2.1s} y(s) 

and indicate the closed-loop poles at the selected nominal loop gain of K ----- 1. 
(c) Find the gain and phase margins of the closed-loop system. 
(d) Sketch (or determine analytically/numerically) the closed-loop time response 

of the position output y(t) to a unit-step disturbance. 

2.8. Consider the two-mass spring system shown in Fig. 2.6. Two carts of masses 
ml and m2 on a frictionless horizontal surface are connected by a massless, linear 
spring of stiffness k. This unstable system is to be stabilized using a single control 
input force u acting on ml. The equations of motion of the system are 

m121 + k(xl - x2) = U 

m 2 x 2  q- k ( x 2  - Xl) = 0 

(a) Assume that only the position and velocity of ml are directly measured and 
are fed back to u, as follows: 

U = - K l X l  - Cl-~l 

where K1 and C1 are positive gains. For this so-called collocated actuator and 
sensor control problem, show that the closed-loop system is asymptotically stable 
for any positive values of ml, m2, k, KI, and Cl. 

Hint: See Fig. 2.7. 

[--~ X1 b ~ ' ~  X2 

U 

////////////////// 

Xl • X2 , X3 

k. ~ k ~-~ 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

Fig. 2.6 Control of mass-spring systems. 
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tq l ,xl l =x2 
• k 

C 1 " / / / / / / / / / / / / / / / / / /  

,, /G I --- 'xl ,. I --x2 ,. I x3  

C 1 / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

Fig. 2.7 Equivalent active spring and active damper representations of the collocated 
control logic u = - - K l x l  --  C l k l .  

(b) Assume that only the position and velocity of m2 are directly measured and 
are fed back to u, as follows: 

u = - K 2 x 2 - C 2 x 2  

where K2 and C2 are positive gains. For this so-called noncollocated actuator 
and sensor control problem, show that the closed-loop system is unstable for any 
positive values of  ml, m2, k, K2, and C2. 

Hint :  For a characteristic equation of the form ao s4 + a l  s 3 + a 2  s2 + a a s  + a 4  = 0, 
we have al = - Y~ ~'i where ~-i are the characteristic roots. 

(c) Assume that all of  the states of  the system are directly measured and are fed 
back to u, as follows: 

u = - - K l x l  -- C l x l  - K 2 x 2  - C2x2 

where Kl, C1, K2, and C2 are all real scalars. For the nominal system with ml = 
m2 = k = 1 with appropriate units, determine the full-state feedback controller 
gains such that the closed-loop poles be located at s = - 0 . 1  4- 0 .1j  and s = 
- 0 . 1  + 1.4j. (Answers: KI = 0.03, C1 = 0.4, K2 = 0.0094, and C2 = -0 .002 . )  

2.9. Consider the three-mass-spring system shown in Fig. 2.6. This unstable 
system is to be stabilized using a single control input force u acting on ml. The 
equations of  motion of  this system are 

ml)cl + kl(Xl - -x2 )  ~--- u 

m2J¢2 "-[- kl(X2 - Xl) -[- kE(X2 - x3) = 0 

m3)c3 + k2(x3 - x2) : 0 

(a) Assume that only the position and velocity of m 1 are directly measured and 
are fed back to u, as follows: 

U = - K l X l  - Cl.~l 

where Kl and Cl are positive gains. Show that the closed-loop system is asymp- 
totically stable for any positive values of  mi ,  ki ,  K 1 , and C1. 

Hint:  See Fig. 2.7. 
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(b) Assume that only the position and velocity of m2 are directly measured and 
are fed back to u, as follows: 

u = - -  K 2 x  2 - -  C2J7 2 

where K2 and C2 are positive scalars. Show that the closed-loop system is unstable 
for any positive values of mi, k i ,  K 2 ,  and C2. 

(c) Assume that only the position and velocity of m3 are directly measured and 
are fed back to u, as follows: 

U = - - g 3 x  3 - -  C3x3 

where/(3 and C3 are positive scalars. Show that the closed-loop system is unstable 
for any positive values of mi, ki, K3, and C3. 

2.3 Classical Gain-Phase Stabilization 

In the preceding sections we introduced the fundamentals of classical control. In 
this section, based on Refs. 8-10, we present a classical gain-phase stabilization 
approach to compensator design, in particular, for a structural dynamic system 
that has a rigid-body mode and lightly damped, oscillatory flexible modes. The 
approach allows the control designer to properly gain-phase stabilize each mode, 
one by one, resulting in a meaningful control design with physical insight. The 
use of nonminimum-phase compensation for a certain class of dynamic systems is 
emphasized. The classical gain-phase stabilization method is, however, primarily 
restricted to the single-input single-output (SISO) control problems. 

2.3.1 Introduction 

The classical concepts of gain-phase stabilization of a rigid body and flexible 
modes can be summarized briefly as follows. 

1) Gain stabilization of a flexible mode provides attenuation of the control loop 
gain at the desired frequency, to ensure stability regardless of the control loop 
phase uncertainty. A lightly damped, flexible mode is said to be gain stabilized if it 
is closed-loop stable for the selected loop gain, but it becomes unstable if the loop 
gain is raised or its passive damping reduced. Hence, a gain stabilized mode has a 
finite gain margin, but is closed-loop stable regardless of the phase uncertainty. 

2) Phase stabilization of a flexible mode provides the proper phase characteristics 
at the desired frequency to obtain a closed-loop damping that is greater than the 
passive damping of the mode. A lightly damped, flexible mode is said to be phase 
stabilized if it is closed-loop stable for arbitrarily small passive damping. Hence, a 
phase stabilized mode has a finite phase margin, but is closed-loop stable regardless 
of the loop gain uncertainty. 

3) A rigid body or flexible mode is said to be gain-phase stabilized if it is 
closed-loop stable with finite gain and phase margins. 

When an actuator and a sensor are collocated on flexible structures in space, 
the rigid-body mode and all of the flexible modes are said to be stably interacting 
with each other. For such a collocated case, position feedback with a phase-lead 
compensator or direct rate and position feedback can be used to stabilize all of 
the flexible and rigid-body modes. Because all of the modes are phase stabilized 



130 SPACE VEHICLE DYNAMICS AND CONTROL 

in this case, special care must be taken regarding the phase uncertainty from the 
control loop time delay and actuator/sensor dynamics. As frequency increases, the 
phase lag due to a time delay will eventually exceed the maximum phase lead of 
90 deg from the direct rate feedback. Thus, rolloff filtering, i.e., gain stabilization, 
of high-frequency modes is often needed to attenuate the control loop gain at 
frequencies above the control bandwidth. The selection of rolloff filter corner 
frequency depends on many factors. When a collocated actuator/sensor pair is 
used, the comer frequency is often selected between the primary flexible modes 
and the secondary flexible modes. An attempt to gain stabilize all of the flexible 
modes should be avoided, unless the spacecraft or structures are nearly rigid. In 
practice, the actual phase uncertainty of the control loop must be taken into account 
for the proper tradeoff between phase stabilization and gain stabilization. 

When an actuator and a sensor are not collocated, the rigid-body mode and some 
of the flexible modes are said to be unstably interacting with each other. Unless gain 
stabilization of all of the flexible modes is possible for a low-bandwidth control, a 
proper combination of gain-phase stabilization is unavoidable. Gain stabilization 
of an unstably interacting flexible mode can be achieved only if that mode has a 
certain amount of passive damping. The larger the passive damping at a particular 
mode, the more conveniently it can be gain stabilized. Usually, gain stabilization 
is applied to stabilize high-frequency modes that have no significant effects on the 
overall performance. In practice, a structure has always a certain amount of passive 
damping, which allows for the convenient gain stabilization of such flexible modes. 

Notch filtering is a conventional way of suppressing an unwanted oscillatory 
signal in the control loop, resulting in gain stabilization of a particular flexible 
mode. The use of notch filtering ensures that the specific mode is not destabilized 
by feedback control; however, it does not introduce any active damping, which 
often results in too much ringing that may not be acceptable in certain cases. In 
general, rolloff of the control loop gain at frequencies above the control bandwidth 
is always needed to avoid destabilizing unmodeled high-frequency modes and to 
attenuate high-frequency noise, and it is often simply achieved by using a double- 
pole low-pass filter. To sharply attenuate a signal at high frequencies while affecting 
the magnitude and phase of the signal at low frequencies as little as possible, various 
high-order low-pass filters such as Bessel, Butterworth, Chevyshev, or elliptical 
filters, are also used in feedback control systems, but mostly in open-loop signal 
processing. ~ The common characteristic of these conventional filters is that they 
are minimum-phase filters. 

2.3.2 Generalized Second-Order Filters 
Although the last several decades have brought major developments in advanced 

control theory, the most usual approach to the design of practical control systems 
has been repetitive, trial-and-error synthesis using the root locus method by Evans 
or the frequency-domain methods by Bode, Nyquist, and Nichols. Classical control 
designs employ primarily a PID-type controller with notch or rolloff filtering. Such 
classical control designs for a certain class of dynamic systems become difficult, 
however, especially if a high control bandwidth is required in the presence of many 
closely spaced, unstably interacting, lightly damped modes with a wide range of 
parameter variations. 
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In this section we introduce the concept of a generalized second-order filter so 
that the classical s-domain or frequency-domain methods can still be employed to 
solve such a difficult structural control problem. The concept is a natural extension 
of the classical notch and phase lead/lag filtering, and it is based on various po le -  
zero patterns that can be realized from a second-order filter of  the form 

s2/to  + 2 zsltOz + 1 
(2.30) 

s2/tO , + + 1 

where tOz, (z, tOm and (p are filter parameters to be properly selected. 
For different choices of the coefficients of  this second-order filter, several well- 

known filters such as notch, bandpass, low-pass, high-pass, phase-lead, and phase- 
lag filters can be realized. In addition to these minimum-phase filters, various 
nonminimum-phase filters can also be realized from this second-order filter; how- 
ever, we only consider here stable filters with poles in the left-half s plane. 

Pole-zero patterns of conventional filters, which are commonly employed in 
classical control systems design, are shown in Fig. 2.8. Some of the typical po le -  
zero patterns and the gain-phase characteristics of  various filters that can be realized 
from the generalized second-order filter are summarized in Figs. 2.9-2.13. These 
basic pole-zero patterns of  a second-order filter, especially the nonminimum-phase 
filters, are the essence of the generalized second-order filtering concept. Any other 
compensator pole-zero patterns are basically a combination of those basic filters 
shown in Figs. 2.9-2.13. 

Minimum-phase lead or lag filter. A phase-lead or phase-lag filter can be 
realized from the second-order filter of  the form of Eq. (2.30), as illustrated in 
Figs. 2.9a and 2.9b, in which (c --- (t, = (z > 0. The maximum phase lead or lag, 
denoted by ~bmax, is obtained at toc = ~x/r~z~p, as follows: 

= cos-, L(2Cc )= + (to,,/to= l)2j (2.31) 

The gain increase or decrease at high frequencies becomes 

Koo = 401Oglo(top/toz) dB (2.32) 

For a small (c, i.e., a case with the filter poles and zeros near the imaginary 
axis, the effective phase-lead or phase-lag region lies between toz and tOp and the 
maximum phase shift approaches 4-180 deg. For (~ = l, a conventional double- 
lead or double-lag filter with poles and zeros on the real axis can be realized. At 
tOc = ~v/'~z~p, one-half of  Koo is increased (lead filter) or attenuated (lag filter). 
In practice, (p is often selected to be greater than (z, i.e., the filter poles are placed 
sufficiently far to the left from the imaginary axis. For example, the control system 
of the OSO-8 spacecraft 12 employed a phase-lead filter with (p = 0.6, (z = 0.3, 
and Wp/tO z = 2. The use of  a phase-lead filter with a large tOp~to z ratio greater 
than two should be avoided from a practical viewpoint. 

Minimum-phase notch or bandpass filter. For top = toz, a notch (band- 
reject) or bandpass filter is obtained as shown in Figs. 2.10a and 2.10b. The 
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Fig. 2.8 Conventional phase-lead, phase-lag, low-pass, all-pass, and notch filters. 
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minimum or maximum gain of  the filter is obtained at ogc -- wp = wz as 

Kma~ = 201og10((z/(p ) dB (2.33) 

Both phase lead and lag appear near o9c. For the notch filter, the maximum-phase 
lag and lead occur at ogl and o92, respectively, where 

o91/o9c = / 2 ( z ( p  q- 1 - x/(2(z(p q- 1) 2 - 1 
(2.34) 

0)2/O9c = ~2(z (p  + 1 d- x/(2(z(p d- 1) 2 - 
i 

1 

Because ogl/ogc and o92/o9c depend only on (z (e, the filter damping ratios determine 
the effective notch region. Typical values for the damping ratios of  a notch filter 
are (e = l and (z = 0. 
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Fig. 2.9b Minimum-phase  lag filter. 
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Nonminimum-phase all-pass filter. For oJ~ = o~p = o h and G - ;p = 
I Czl (¢z < 0), a large phase lag can be obtained from the second-order filter, while 
the gain is being held constant, as shown in Fig. 2.11 as follows: 

[ 1  - -  ( ( . 0 / ( . 0 c ) 2 ]  2 - -  [2~c((.olO)c)] 2 } 
~b(w) = c°s-I [1 (W/Wc)2]---~[2~c(OJ/Ogc)] 2 (2.35) 

The phase varies from 0 deg to -360 deg. The slope of the phase change depends 
on ffc; a smaller ~c results in a steeper slope. A typical value for ~c might be between 
0.3 and 0.7 depending on the specific application. This nonminimum-phase filter 
is useful for stabilizing the unstably interacting, flexible modes that may need 
a 180-deg phase change (lead or lag). This filter, when used for flexible-mode 
stabilization, maintains the control loop gain at all frequency ranges and provides 
the proper phasing of the particular signals necessary to increase the closed-loop 
damping ratio of the flexible modes. 
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Fig. 2.10b Minimum-phase bandpass filter. 
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Fig. 2.11 Nonminimum-phase all-pass filter. 

Nonminimum-phase high-pass filter. For OJp>~O z and ¢ c = ( p = l ( z [  
((z < 0), a nonminimum-phase filter with a high-pass characteristic (a gain in- 
crease) is realized, as shown in Fig. 2.12a. The phase lag is continuous from 0 
to -360deg,  but the phase curve shows a flat region near -180deg  that is ac- 
companied by a gain increase. By adjusting the Wp/Wz ratio, a broad regional 
-180-deg phase change can be achieved. This filter, as opposed to the previous 
nonminimum-phase all-pass filter, provides a more robust phase shift to a flexible 
mode that needs a 180-deg phase change. Special care must be taken, however, 
regarding the gain increase at a higher frequency region. 

Nonminimum-phase low-pass filter. As shown in Fig. 2.12b, the nonmini- 
mum-phase low-pass filter has a different gain curve compared with the nonmini- 
mum-phase high-pass filter, even though the phase curve is very similar to that of 
the nonminimum-phase high-pass filter. If a less active damping is allowed, this 
filter can be used for stabilizing the unstably interacting, flexible mode because it 
provides gain attenuation with a proper phase shift. 

Nonminimum-phase notch filter. For cop = ~Oz and Cp > [~'zl (~'z < 0), 
a nonminimum-phase notch filter is realized, as shown in Fig. 2.13a. If passive 
damping (in an ideal case), does not exist, the conventional notch filter shown 
in Fig. 2.10a cannot be used for the stabilization of unstably interacting, flexible 
modes. On the other hand, this nonminimum-phase notch filter provides the desired 
phase shift along with sharp gain attenuation at a particular frequency. As the pole- 
zero pair of this nonminimum-phase notch filter is placed farther from the imagi- 
nary axis, the robustness of the closed-loop system is enhanced, while the nominal 
stability margins become smaller. 

Nonminimum-phase bandpass filter. As shown in Fig. 2.13b, this fi l ter has 
a gain characteristic that is the opposite of that of the nonminimum-phase notch 
filter. This filter can be used for a regional gain increase with a proper phasing to 
increase the active damping, but the overall stability margin may be decreased if 
the filter poles are placed too close to the imaginary axis. 
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2.3.3 Classical Compensator Synthesis 
An intuitively meaningful procedure for designing a compensator, using the 

concept of generalized structural filtering, is now presented. 
The basic idea of this approach is to synthesize a compensator for each mode, 

one by one. This successive-mode-stabilization method of synthesizing a compen- 
sator provides physical insight into how the design can become more robust and 
practical. This trial-and-error approach is difficult to use, especially for high-order 
systems, but the proper use of the basic filter patterns shown in Figs. 2.9-2.13 will 
result in a straightforward design with a few iterations. In particular, the use of 
the nonminimum-phase filtering concept significantly enhances the classical ap- 
proach; however, the usefulness of this design procedure depends on the familiarity 
of the designer with the classical control techniques. 

The design of a SISO feedback control system for a flexible structure can be 
carried out starting with the stabilization of the rigid-body mode and subsequent 
analysis and stabilization of unstably interacting flexible modes. Feedback control 
with a noncollocated actuator and sensor pair generally results in the presence 
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Fig. 2.12b Nonminimum-phase low-pass filter. 



DYNAMIC SYSTEMS CONTROL 137 

T I .re(s) 
. ~:z 

'- 

°:l 2o,o 1 11 

Re(s) 

. , , . I  

0 ,  
deg 

- 9 1 .  

- 1 8 1 .  

~' - 2 7 0 .  

- 3 6 0 .  

Fig. 2.13a Nonminimum-phase notch filter. 

of unstably interacting flexible modes. After the unstably interacting modes have 
been identified, proper filtering to phase or gain stabilize those modes is then 
introduced. Aided by the root locus method and/or Bode plots, as well as a certain 
amount of trial and error, a robust compensator design can be obtained. 

A procedure for SISO compensator synthesis for a system with a rigid-body 
mode and many flexible modes is now summarized as follows. 

Step I: control bandwidth selection. The control loop bandwidth is one 
of the key parameters in control design. Selection of the control bandwidth de- 
pends on many factors including performance, noise sensitivity, limited control 
authority, etc. The control bandwidth is closely related to the settling time, which 
is determined primarily by the closed-loop poles of the rigid-body mode. In many 
cases, it is specified a priori. 

Step 2: rigid-body mode compensation. Control of the rigid-body mode is 
simply achieved with proportional plus derivative (PD) type feedback. In practice, 
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Fig. 2.13b Nonminimum-phase bandpass filter. 
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a phase-lead filter or PD control with a rolloff filter is employed. That is, neglecting 
the flexible modes, determine the position and rate gains of an ideal PD control 
logic represented as u = - K ( 1  -t- Ts)y  or u = - (KI ,  + Kos)y ,  to achieve the 
desired control bandwidth. If direct rate feedback is not possible, synthesize a first- 
order phase-lead compensator, u = - K ( T l s  + 1)/(T2s + 1)y, with a lead ratio 
not much greater than 10. The selection of this ratio depends on the sensor noise, 
dominant flexible-mode frequency, and unmodeled high-frequency modes. The 
rigid-body mode should have reasonable damping for a satisfactory settling time, 
because the overall transient response is often dominated by the rigid-body mode. 

Step 3: flexible mode compensation. Examine the closed-loop stability of 
each flexible mode after closing the loop with the controller designed in step 2. 
The types and degrees of the closed-loop behavior of each flexible mode depends 
on the actuator/sensor location and the relative spectral separation of each mode. 
Examine whether gain stabilization of all of the flexible modes is possible or not. 
If not, then determine the necessary phase lead or lag angles for each destabilized 
mode. Synthesize an appropriate structural filter for each destabilized mode, one 
by one, using the various second-order filters shown in Figs. 2.9-2.13. In this step, 
some skill and intuition in the classical direct frequency-shaping approaches are 
needed, which may be the most significant shortcoming of the successive-mode- 
stabilization approach. 

Step 4: design iteration. Repeat the design process to compromise some 
interactions between each compensation. A few iterations using computer software 
packages will result in a quick and straightforward design with physical insight. 
When a trial design is completed, then perform the closed-loop stability analysis to 
ensure that the design has adequate robustness to a specified or assumed range of 
parameter variations. Checking the closed-loop stability for all possible situations 
is not a trivial problem. The closed-loop stability may be checked by a uniform 
increase or decrease of each flexible mode frequency. This provides a simple 
verification of the effect of stiffening or softening the structure on the overall 
closed-loop stability. 

Next, the classical gain-phase stabilization approach enhanced by the concept 
of generalized second-order structural filtering is applied to a flexible structure 
control problem. 

Example 2.2 
Consider the problem of controlling a two-mass-spring system, as illustrated 

in Fig. 2.14. A control force u acts on ml, and the position and velocity of mE are 
directly measured for feedback control. It is assumed that for the nominal system, 
m I = m 2 = 1 and k = 1 with appropriate units and time measured in seconds. 
For simplicity, only the spring constant k is assumed to be uncertain. The stability 
robustness of the control loop to the mass uncertainty is to be measured by the 
control-loop gain margin. A transfer function description of the system is given by 

y k 
- (2.36) 

u s2(s 2 + 2k) 
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Fig. 2.14 Two-mass--spring system and root locus vs overall loop gain of a PD con- 
troller u = --0.086 (1 + s/O.15)y where y = x2. 

The closed-loop poles of the rigid-body mode, with the natural frequency (band- 
width) of o~n = 0.2 rad/s and the closed-loop damping ratio of ~ = 0.7, are 
assumed to be specified. As a first attempt, a PD controller can be selected as 
u = -0.086(1 + s/O.15)y. It can be seen from Fig. 2.14 that the flexible mode 
becomes unstable due to the unstable interaction between the flexible mode and 
the rigid-body control logic. 

To properly stabilize the destabilized flexible mode, an approximately -4-180-deg 
phase shift is needed at the flexible mode frequency. The first approach to solving 
this problem is to provide a 180-deg phase lead at the flexible mode frequency 
by using the minimum-phase lead filter shown in Fig. 2.9a. In this case, the filter 
zeros with a frequency lower than the flexible mode frequency are placed near 
the imaginary axis. The filter poles associated with the zeros are then usually 
placed sufficiently far to the left of the imaginary axis. A similar design based 
on this approach can be found in various places where such phase-lead filtering is 
misleadingly called notch filtering.13 This approach with phase-lead compensation 
may not be acceptable if the o~r/~o z ratio is chosen to be too large, which would 
amplify any measurement noise intolerably. A typical value for this ratio would 
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Fig. 2.15 Root locus vs overall loop gain of a controller u =--0.086(1 + slO.15)y with 
nonminimum-phase all-pass filtering. 

be about two and some compromise between performance and noise sensitivity 
should be made in selecting this ratio. 

The second approach is to employ the conventional notch filter shown in 
Fig. 2.10a or the nonminimum-phase notch filter shown in Fig. 2.13a. The conven- 
tional notch filtering gain stabilizes the flexible mode without adding any active 
damping to the system. If more active structural damping is required, or if there is 
no natural passive damping in the flexible mode, the conventional notch filtering 
is not an appropriate solution. The passive vibration suppression for a case with 
no natural damping requires the use of nonminimum-phase notch filtering, which 
provides the proper gain and phase adjustments at the flexible mode frequency. 

The third approach is to employ the nonminimum-phase all-pass filter, shown 
in Fig. 2.11, which maintains the control loop gain and provides the proper phase 
lag of the flexible mode signals, resulting in an increased closed-loop damping 
ratio of the flexible mode, i.e., active damping. The filter poles and zeros are 
selected as top = toz = "v/~ (k = 1 for nominal case) and ~p = -~z = 0.5. 
Fig. 2.15 shows the root locus vs overall loop gain of the PD controller with this 
nonminimum-phase all-pass filter. 

For this particular design, the gain margin is 5 dB, and the rigid-body and flexible 
modes have phase margins of 37 and 64 deg, respectively. The flexible mode has 
a closed-loop damping ratio of 0.1 and the rigid-body mode has a 0.7 damping 
ratio. It can be verified that the closed-loop system is stable for 0.5 < k < 2.1. 
Responses of the nominal system to an impulse disturbance at ml are shown in 
Fig. 2.16; it can be seen that the closed-loop system has a settling time of about 20 s. 

Problems 

2.10. The preceding example design has a control bandwidth of to, ~ 0.2 rad/s. 
Assuming that only the position of m2 is measured, design a higher-bandwidth 
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controller with w, ~ 0.5 rad/s. The closed-loop system must have a gain margin 
> 3 dB and a phase margin > 25 deg, and it must be stable for 4-25% variations 
ofk.  

2.11. Consider the problem of stabilizing a high-order system with many closely 
spaced modal frequencies using a paired noncollocated actuator and sensor, as 
illustrated in Fig. 2.17. It is assumed that for the nominal system, ml = m2 = 
m3 = m4 -- 1 and k = 4. For simplicity, only the spring constant k is assumed to 
be uncertain. The natural frequencies of the flexible modes are 092 = (2 - ~r2)k, 
w~ = 2k, and w~ = (2 + ~/2)k. It is also assumed that each dashpot has a damping 
coefficient of 0.004. The flexible modes then have nominal passive damping ratios 
o f ( ]  = 0.0008, (z = 0.0014, and ¢3 = 0.0018. 

For this eighth-order flexible structure model, the locus of the closed-loop poles 
vs the overall loop gain ofa  noncollocated PD controller is also shown in Fig. 2.17. 
As can be seen in this figure, the first and third flexible modes are unstably in- 
teracting with the rigid-body mode control, whereas the second mode is stably 
interacting with the rigid-body mode control. Assuming that only position of m4 
is measured, design a stabilizing feedback compensator with a control bandwidth 
of o9, = 0.2 rad/s. The closed-loop system must have a gain margin > 3 dB and 
a phase margin > 25 deg, and it must be stable for +25% variations of the spring 
stiffness k from its nominal value of 4. 

2.3.4 Persistent Disturbance Rejection 
A classical approach to disturbance accommodating control of dynamic systems 

in the presence of persistent or quasiperiodic disturbances is presented here. The 
method exploits the so-called internal model principle for asymptotic disturbance 
rejection. The concept of a disturbance rejection dipole is introduced from a clas- 
sical control viewpoint. The method invariably makes use of disturbance rejection 
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Fig. 2.17 Four-mass--spring system and root locus vs overall loop gain of a PD con- 
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dipoles and nonminimum-phase compensation for a class of noncollocated control 
problems in the presence of persistent disturbances. 

After successful stabilization of the rigid-body mode, as well as any other un- 
stably interacting flexible modes, active disturbance rejection is simply achieved 
by introducing a model of the disturbance into the feedback loop. A block dia- 
gram representation of a persistent disturbance rejection control system is shown 
in Fig. 2.18a. 

It is assumed that a persistent (or quasi-periodic) disturbance is represented as 

w(t) = ~ Ai sin(27rjit + q~i) 
i=1 

with unknown magnitudes Ai and phases q~i, but known frequencies J}. Note that 
if, for example, j) = 2J) . . . . .  nf,, then w(t) becomes a periodic disturbance. 

In general, the disturbance w(t) can be described by a Laplace transformation 

N~(s) 
t o ( s )  - - -  

Dw(s) 
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Fig. 2.18 Persistent disturbance rejection control system. 

where Nw(s) is arbitrary as long as w(s) remains proper. The roots of  Dw(s) 
correspond to the frequencies at which the persistent excitation takes place. The 
inclusion of  the disturbance model 1/Dw inside the control loop is often referred to 
as the internal modeling of the disturbance. In classical design, the internal distur- 
bance model is regarded as being part of  the compensator as shown in Fig. 2.18a. 
The presence of  1/D~ in the control loop results in the effective cancellation of  
the poles of  w(s), provided that no root of Dw(s) is a zero of  the plant transfer 
function. This is shown in the following closed-loop transfer function: 

1/D(s) 
y(s) = w(s) 

1 + Nc(s)N(s)/Dc(s)Dw(s)D(s) 

Dc(s)Dw(s) Nw(s) 
= (2.37) 

Dto(s)Dc(s)D(s) + Nc(s)N(s) Dto(s) 

where we can see the cancellation of D~(s). 
The compensator can be viewed as a series of  individual first-order or second- 

order filters as follows: 

No(s) = ]7  Nc,(s) 
Dc(s) liL. Dc,(S) 

Each filter is designed to perform a specific task, like the stabilization of  a particular 
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mode. In the same manner, a disturbance rejection filter can be designed that has 
a proper transfer function and uses the internal disturbance model 1/D~o. Thus, a 
proper numerator is chosen in the compensator to go with the disturbance model 
as shown in Fig. 2.18b. The numerator is chosen to be of the same order as Dw so 
that there is a zero for each pole of the disturbance model 1/Dw. 

Although the asymptotic disturbance rejection based on the internal model prin- 
ciple has been well known, an interesting interpretation of the concept from a 
classical control viewpoint is presented here. Each pole-zero combination of the 
disturbance rejection filter 

s2/w 2 + 2(z,S/Ogz, + 1 H I Zi 
, sV,4,  + l  

can be called a dipole, where (z, is included for generality. The filter thus consists 
of as many dipoles as there are frequency components in the persistent distur- 
bance. The separation between the zero and the pole is generally referred to as 
the strength of the dipole. The strength of the dipole affects the settling time of 
the closed-loop system; in general, the larger the separation between the pole and 
zero of the filter the shorter the settling time is. This is caused by the position of 
the closed-loop eigenvalue corresponding to the filter dipole. As the strength of 
the dipole is increased, this eigenvalue is pushed farther to the left, speeding up 
the response time of the disturbance rejection. This separation influences the gain- 
phase characteristics of the system, however, because the dipole causes a certain 
amount of gain-phase changes in its neighborhood. Moreover, at frequencies higher 
than the dipole there is a net gain increase or reduction. The magnitude of this gain 
increases with the separation between pole and zero. Therefore, as the strength 
of the dipole is changed to meet a chosen settling time the compensation must be 
readjusted. A compromise has to be reached often between the settling time and 
the stability of the compensated system. 

Problems 

2.12. Consider the two-mass-spring system discussed earlier. The nominal val- 
ues of the system parameters are ml = m2 = 1 and k = 1 with appropriate 
units. A control force u acts on ml and the position of m2 is measured as y, re- 
sulting in a noncollocated control problem. Assume that a sinusoidal disturbance 
of w(t) = sin 0.5t, with unknown magnitude and phase, is exerted on ml and/or 
mE and that asymptotic disturbance rejection for the position of mE with a settling 
time of about 20 s is to be achieved. Design a controller for this problem using a 
classical approach and perform computer simulations of the closed-loop system. 

Note: Later in this chapter, a controller of this problem will be designed using 
modern state-space approaches. 

2.13. Consider the three-mass-spring system illustrated in Fig. 2.19. The nom- 
inal values of the system parameters are ml = m2 = m3 = 1 and kl = k2 = 1 with 
appropriate units. A control force u acts on m2 and the position of m3 is measured 
as y, resulting in a noncollocated control problem. Assume that a sinusoidal dis- 
turbance of w(t) = sin 0.5t, with unknown magnitude and phase, is acting on ml 
and rn3 simultaneously, as illustrated in Fig. 2.19 and that asymptotic disturbance 
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Fig. 2.19 Noncollocated control of a three-mass--spring system. 

rejection for the position of m3 with a settling time of about 20 s is to be achieved. 
Design a controller K(s)  for this problem. 

Note: This control problem of a three-mass-spring system represents the es- 
sential nature of the control redesign problem of the Hubble Space Telescope for 
reducing the effects of solar array vibrations on the telescope pointing jitter, which 
is to be studied in Chapter 9. 

2.4 Digital Control 

2.4.1 Discrete-Time Systems 

A system described by a difference equation is called a discrete-time system 
or sampled-data system. A signal within a discrete-time system is described by a 
number sequence. In digital control systems in which a digital computer is used as 
a controller, these number sequences are obtained by sampling a continuous-time 
or analog signal. An analog-to-digital (A/D) converter converts the analog signal 
into a binary form that a digital computer can process. A digital-to-analog (D/A) 
converter then changes the binary signal out of the computer to an analog signal 
to drive the actuator or the plant. 

The signal into the computer with the sampling period of T is described by the 
number sequence 

y(0), y(T), y(2T) . . . .  

which can be expressed by the notation {y(kT)}, or simply by {y(k)}. A digital 
control logic, also called a digital compensator or filter, can then be represented 
by a difference equation of the form 

u(k) = aoy(k) + aly(k  - 1) + . . .  + a ny (k  - n) 
(2.38) 

- - b l u ( k  - 1 )  - b2u(k - 2) . . . . .  bnu(k - n) 

where y(k) denotes the signal into the computer at the kth sampling and u(k) 
denotes the signal from the computer at the kth sampling. 

2.4.2 The z Transformation 

The z domain is used for a sampled-data or discrete-time system in much the 
same way that the s domain is used for a continuous-time system. The z and s 
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domains are simply related as follows: 

z = e rs or s = ( l / T )  ~ z  (2.39) 

where T is the sampling period. The z transform of a number sequence {y(k)} is 
defined as a power series in z -k with coefficients equal to the values of  y(k); i.e., 
we have 

o o  

y(z)  =-- Z[{y(k)}] = E Y(k ) z -k  = y(0) + y(1)z  -1 + y(2)z  -2 + ' "  
k = 0  

(2.40) 

Some interesting properties of  the z transform are summarized as follows. 

Translation theorem. 

o o  

Z[{y(k  - n)}] = E y(k - n) z -g = z -ny(z )  
k = 0  

(2.41) 

because y(k)  = 0 for k < 0. We also have 

Z[{y(k  + n)}] = E y(k + n ) z  - k  = Z n y(Z) -- y(k)z -~ 
k = 0  k = 0  

(2.42) 

Initial value theorem.  If  y(k)  has the z transform y(z) and lim y(z) exists as 
z --+ c~, then the initial value y(0) can be found as 

y(0) = lim y(z) (2.43) 
Z--~ OO 

Final value theorem.  If  y(k) has the z transform y(z), then we have 

lim y ( k ) =  l i m [ ( z -  1)y(z)] 
k---~ c~ Z 1 

(2.44) 

provided that the left-side limit exists. 

Using Eq. (2.41 ), we obtain the z-domain transfer function representation of the 
difference equation (2.38), as follows: 

u(z) ao + a l z  -1 + . . .  + a n z  -n 

y(z) 1 + blz -1 + b2z -2 + . . .  + b , z  -n 
(2.45) 

In digital signal processing, digital filters with both poles and zeros are called 
infinite impulse response (IIR) filters, whereas digital filters with only zeros are 
called finite impulse response (FIR) filters. The output of  a FIR filter becomes 
exactly zero in a finite amount of  time after the input is removed. The FIR filters 
are also called moving average filters, whereas the IIR filters are often called auto 
regressive moving average (ARMA) filters. 
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Fig. 2.20 Sampling and ZOH. 

2.4.3 Sampling and Zero-Order Hold 
In digital control systems, the number sequences {y (kT)}  are obtained by sam- 

piing a continuous-time signal. As shown in Fig. 2.20, the output of an ideal sampler 
with a sampling period T is a train of impulses. One of the most commonly used 
data holds is the zero-order hold (ZOH). The output of the ZOH is a staircase 
approximation of the input signal y(t) .  In Fig. 2.20, the sampled signal is denoted 
as y*(t)  and the output signal of the ZOH is denoted as ~(t). The corresponding 
Laplace transformed variables are denoted as y*(s)  and ~(s), respectively. 

The Laplace transform of ~(t) can be found as 

l, e'S / /e'S I = - + y ( r )  - + . . .  ~(s) y(0) s s s s 

Defining 

-- _ y ( k T ) e  -kr.' 
S k=O 

o o  

y*(s)  = ~ y ( k T ) e  -krs 

k = O  

(2.46) 

(2.47) 
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we have 

1 - -  e - T s  

~(s) = y*(s) (2.48) 
s 

Because the number sequence, {y(kT)} = y*(t), is obtained by sampling the 
signal y(t)  every T s, we have 

o o  

-- Z{y(k)}  = ~ y (kT)  y(z) Z-k 
k = O  

and 

y*(s) = Y(Z)lz=er, (2.49) 

The sampled signal y*(t) is a train of  impulse functions whose weights are equal 
to the values of the signal at the instants of sampling; i.e., we have 

o ~  

y*(t) = ~ y(kT)8(t  - kT)  (2.50) 
k=O 

where 8(0 denotes the unit impulse function occurring at t = 0. The sampled 
signal y*(t) can also be expressed as 

y*(t) = y(t)  ~ 8(t - kT )  = y(t)  C, exp( j27rnt /T)  (2.51) 
k ~ - - o o  n ~ - - o o  

where (:7. is the Fourier coefficient given by 

,f0 £ Cn = ~ 8(t - k T ) e x p ( - j 2 z r n t / T ) d t  = 
k=0 

Consequently, we have 

y*(t) = ~ y ( t )exp( jwsn t )  (2.52a) 
n ~  - - 0 0  

y*(s) = L[y*(t)] = -~ y(s - jw ,  n) (2.52b) 

1 o)~. 
~ ~ y ( s )  for 0 _< w < 2 (2.52c) 

where y(s) = /2[y(t)], w, = 2 ~ / T  is called the sampling frequency and o).,./2 
is called the Nyquist frequency. Note that an ideal sampler has an effective scale 
factor of  1 /T .  

The ideal sampler and the ZOH can then be approximated as 

1 - e - r '  
~(s) ~ - - y ( s )  (2.53) 

Ts 
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For the classical s-domain analysis and synthesis of  a digital control system, the 
sampler and ZOH can be further approximated as 

1 - -  e - T s  1 

Ts (Ts)Z/12 + T s / 2  + 1 
(2.54) 

Similarly, a pure computational time delay e -Td' inherent to any digital control 
systems can be approximated as 

( T a s ) 2 / 1 2 -  Tas/2 + 1 
e -r"'" ~ (2.55) 

(Tas)2/12 + Tas/2 + 1 

2.4.4 Digital Proportional-Integral-Derivative Controller 
Consider a continuous-time PID controller represented as 

= - K e y ( t )  - K! f y(t)  dt - KoP(t)  u ( t )  

Using Euler 's  approximation of differentiation 

1 - z  -1  z -  1 
s . . . .  (2.56) 

T Tz 

we obtain an equivalent digital PID controller represented in z-domain transfer 
function form as 

T . .  1 - z  - 1  } 
u = - Ke  + KI 1 - z ---------T + ^ o  ~ / y (2.57) 

This digital PID control logic can be implemented in a computer as follows: 

y(k) - y(k - 1) 
u(k) = - K e y ( k )  - Kjf~(k) - KD (2.58) 

T 

where 

fi(k) = fi(k - 1) + Ty(k)  

A single-axis block diagram representation of a digital control system of the 
Hubble Space Telescope is shown in Fig. 2.21. As can be seen in this figure, the 
baseline digital control system of the Hubble Space Telescope, with a sampling 
period T = 0.025 s and a computational delay of Td = 0.008 s, is in fact a digital 
PID controller with an FIR filter in the rate loop. A control redesign problem of 
the Hubble Space Telescope will be treated in Chapter 9. 

2.4.5 Discretization of Continuous-Time Systems 
Bi l inear  o r  Tustin t rans format ion .  For the digital PID control logic, repre- 

sented as Eq. (2.57), we simply used Euler's method to approximate the continuous- 
time integration or differentiation. Euler's approximation described by Eq. (2.56) 
is a simple method for converting functions of  s to functions of  z. If  we need a more 
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Fig. 2.21 Simplified block diagram of the pitch-axis pointing control system of the 
H u b b l e  Space  Telescope.  14 

accurate digital integration or differentiation, however, we may use the bilinear or 
Tustin transformation 

2(1 - z -1) 2(z - 1) 
s ~ --  (2.59) 

T(1 + z -1) T ( z  + 1) 

which is based on the Taylor series approximation for e T'' given as 

e r' /2 1 + T s / 2  
Z ..~_ e T s  - -  _ _  

e -r' '/2 1 - T s / 2  

If  the gain and phase of both functions in s domain and z domain are desired 
to be identical at a specified frequency, then the following bilinear transformation 
with prewarping can also be used 

090 1 - z -1 
s ~ (2.60) 

tan(woT/2)  1 + z - l  

where 090 is the prewarping frequency. 



DYNAMIC SYSTEMS CONTROL 151 

P o l e - z e r o  mapping .  In addition to the bilinear transformation, the pole-zero 
mapping method can be employed to convert functions ofs  to functions ofz.  Given 
an s-domain function that is a ratio of two polynomials, G(s) = N ( s ) / D ( s ) ,  this 
method substitutes z = e r'" in the zeros of  N(s )  and D(s)  to obtain N(z )  and D(z).  
The gain of  the digital filter is selected such that 

G(s)ls=o = G(z)lz=l 

and the zeros of  G(s)  at s = oo are mapped to the point z ---- - 1 of  the digital filter 
G(z).  

For example, consider a transfer function of the form 

a w ] 
G(s)  = 

s + a s2 -t- 2(  wns d- to 2 

Using the pole-zero mapping method, we obtain the equivalent z-domain transfer 
function, as follows: 

(1 - e-~r) (z  + 1) (1 - 2e ¢~"r coswd + e-Z¢°~"r)Z2 
G(z)  = 

2(z - e - " r )  z 2 - (2e¢ ~.r cos cod)z + e -2c°"r 

where Wd = Why~-( -- (2. A transfer function G(s) with zeros can also be similarly 
transformed to the z-domain transfer function using the pole-zero mapping method 
as was illustrated. 

S t a t e  transition matrix. Consider a linear time-invariant, continuous-time 
system described by 

/~ = Ax + Bu (2.61) 

where x is the state vector and u the control input vector. This continuous-time 
equation is discretized to a discrete-time equation as follows. Assume that the input 
u(t) is constant over the sampling interval between any two consecutive sampling 
instants; i.e., we assume that u(t) = u (kT)  for the kth sampling period. 

The solution of  Eq. (2.61) is, in general, given as 

x(t) = eAtx(0) + eA(t-~)Bu(r) dr  (2.62) 

where the matrix e At is called the state transition matrix and x(0) denotes the 
state vector at t = 0. Therefore, we have the following discrete-time equation for 
Eq. (2.61): 

x(k + 1) = eArx(k) + e At dt Bu(k) (2.63) 
0 

2.14. 

Problems 

Given the continuous-time state equation 

0 
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show that the equivalent discrete-time equation for u(t) = u(kT)  for the kth 
sampling period can be found as 

x,(k + 1) rx, k)] 

2.15. Given the continuous-time state equation 

[xX:] [ 0 0,][x]+[0]u 
show that the equivalent discrete-time equation for u(t) = u(kT)  for the kth 
sampling period can be found as 

X l ( k + l ) ]  [ cosT s i n T ] F x l ( k ) ]  [ 1 - c o s T ] u ( k  ) 
x 2 ( k + l )  = - s i n T  c o s T / L x 2 ( k ) j  + sinT 

2.16. Consider a preliminary control design problem of the X-ray Timing Ex- 
plorer (XTE) spacecraft, in which a slow sampling rate and an additional com- 
putational delay of a digital control system cause an unstable control-structure 
interaction for the spacecraft even with collocated actuator and sensor. A single- 
axis block diagram representation of a digital control system of the XTE is shown 
in Fig. 2.22. The nominal value of the spacecraft inertia is J = 2690 kg.m 2, and the 
nominal values of the modal frequencies and modal gains are given in Table 2.1. 

The control design specifications are co, = 0.5 rad/s (0.08 Hz), ( = 0.707, and 
r = 10 s where w, and ( are the natural frequency (bandwidth) and damping ratio 
of the closed-loop poles associated with the rigid-body mode, respectively, and 
r is the time constant of the integral control. The stability margin requirements 
are gain margin > 6 dB and phase margin > 30 deg. The control system is also 
required to maintain a pointing accuracy of 15 arcsec with respect to a disturbance 
d(t)  induced by periodic angular motions of payload instruments with a period of 
32 s. 

Design a digital PID controller of the form shown in Fig. 2.22. Also perform 
computer simulation of the closed-loop system, in particular, with the disturbance 
shown in Fig. 2.22. 

Table 2.1 Modal frequencies and gains 
of XTE spacecraft a 

Modes wi, rad/s K i 

1 5.0 0.4168 
2 21.1 0.0901 
3 26.3 0.1684 
4 32.3 0.0831 
5 93.3 0.0991 

alt is assumed that (i = 0.001 for all of the flexible 
modes. 
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Fig. 2.22 Digital control design for the XTE spacecraft. 

Hint: One of  the following continuous-time filters may be utilized for designing 
a digital filter D(z): 

1 
Cl(S) = 0.25s2 + 0.4s + 1'  C2(s) = 

0.04s 2 + 0.002s + 1 
C 3 ( s ) =  0.04s 2 + 0 . 4 s + 1  ' C 4 ( s ) =  

0.0625s 2 + 0.1s -t- 1 

0.0256s 2 + 0.08s + 1 

0.0494s 2 - 0.2222s + 1 

0.0494s 2 + 0.2222s + 1 

Other direct digital design techniques 15 may also be employed for this problem. 
Instead of  using one of  the preceding structural filters, an additional time delay 
may also be utilized to stabilize the closed-loop system. 

2.5 Modern State-Space Methods 
In this section we introduce modern state-space approaches to linear systems 

control. This somewhat mathematical subject is also of  practical importance for a 
wide range of  dynamics and control problems of  space vehicles. 
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2.5.1 Mathematical Preliminaries 
Some mathematical facts from advanced linear algebra are briefly summarized 

here. Familiarity with these concepts will be useful in studying advanced control 
techniques for complex dynamic systems. 

Set .  If x is a member of the set X, we write x 6 X. A set X is a subset of 
the set Y if every element of X is also an element of Y. In this case, we write 
X C Y. The set of all m x n matrices with coefficients in the field of real numbers 
is denoted as R m ×n. Similarly, the set of all m × n matrices with coefficients in the 
field of complex numbers is denoted as C m×n. The set of all n x 1 column vectors 
with coefficients in the field of real or complex numbers is often denoted as R n or 
C n, respectively. 

The least upper bound or supremum of a set X is denoted as 

supx or sup{x : x ~ X} 
xEX 

Similarly, the greatest lower bound or infimum of a set X is denoted as 

inf x or inf{x : x ~ X} 
xEX 

A set X in a linear vector space is said to be convex if, given xl,  x2 ~ X, all 
points of the form x = axl + (1 - a)x2 with 0 < a < 1 are in X. A point x in 
a convex set X is said to be an extreme point or comer of X if there are no two 
distinct points Xl and x2 in X such that x = axl + (1 - a)x2 with 0 < a < 1. Given 
an arbitrary set X in a linear vector space, the smallest convex set containing X is 
said to be the convex hull or convex cover of the set X. A closed bounded convex 
set is equal to the closed convex hull of its extreme points. 

Linear independence .  A set of vectors, {al . . . . .  a .  }, is said to be linearly 
dependent if and only if there exist scalars xl . . . . .  xn, not all zero, such that 

n X2 

~_.. x i a i  = x l a  l - - ~ - x 2 a 2 - - t - . - . - - t - x n a  n = [ a  I a 2  . . .  a n ]  = 0 (2.64) 
i=1 

n 

If the only set of xl . . . . .  xn for which Eq. (2.64) holds is xi = 0 ¥i, then the set 
of vectors {al . . . . .  an } is said to be linearly independent. 

The maximum number of linearly independent vectors is called the dimension 
of a linear vector space. A set of n linearly independent vectors is called a basis 
of an n-dimensional vector space. 

Linear algebraic equations. Consider a set of linear algebraic equations of 
the form 

Ax = b (2.65) 

where A E R re×n, x E R n, and b 6 R m. Let ai be the ith column of A; that is, 

A =  [a l  a2 . . .  an]  
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Then Eq. (2.65) can be written as 

Xlal -4- x2a2 4- . - .  -4- Xnan : b 

where x i is the ith component of  x. 
The range space of  a linear operator A, denoted by R(A), is defined to be the 

set of  all possible combinations of  the columns of A. The dimension of  the range 
space R(A) is called the rank of  A and is denoted by rank (A). The rank of  a matrix 
A is the maximum number of  linearly independent columns or rows of  A. The 
null space of a linear operator A, denoted by N(A), is defined to be the set of  all 
the elements x for which Ax = 0. The dimension of  the null space N(A) is called 
the nullity of A and is denoted by null(A). In other words, the number of linearly 
independent solutions of Ax = 0 is the nullity of  A. For A ~ R m×", we have 

rank (A) + null (A) = n (2.66) 

Therefore, the number of  linearly independent solutions of  Ax = 0 is equal to n -  
rank(A). 

Eigenvalues and eigenvectors. Let A be an n x n square matrix. Then a 
scalar 3. is called an eigenvalue of  A if there exists a nonzero n x 1 (column) vector 
q such that 

Aq  = 3.q or (3.I - A) q = 0 (2.67) 

where I is the identity matrix of  order n. Any nonzero vector satisfying Eq. (2.67) 
is called a right eigenvector, or simply called an eigenvector of  A, associated with 
the eigenvalue 3.. The eigenvalues are the roots of  the following characteristic 
polynomial equation: 

13.I - AI = 3." 4-a13.  n - I  a t - . . .  "4-an-13. -t-an = 0 (2.68) 

If  a nonzero n x 1 (column) vector p exists such that 

A r p  = 3.p or pT A = 3.pT (2.69) 

then p is called a left eigenvector of A associated with the eigenvalue 3.. Note that 
the eigenvalues of  A and A T are the same. 

Cayley-Hamil ton theorem. Let 3.n q_ a l)~n-I 4- . . .  4- a.-13. -F an = 0 be the 
characteristic polynomial equation of a matrix A. Then we have 

A n 4- a lA  n-I 4- - . .  4- an - lA  4- anI = 0 (2.70) 

This result is known as the Cayley-Hamilton theorem. 

Modal  decomposi t ion .  Consider an n x n square matrix A with n distinct 
eigenvalues 3.1,3.2 . . . . .  3.,. Let qj be a right eigenvector of  A associated with 3.j; 
that is, 

Aqj  = 3.jqj (2.71) 



AQ = Q A  or A = Q A Q  - l  

where 

A = d iag  (~-1 . . . . .  3 . . )  

Similarly, let Pi be a left eigenvector of  A associated with )L i ; i.e., 

p/r A = ~.ip/r 

Then the set {Pl . . . . .  p,} is linearly independent, and 

PTA = A P r  or A = P - r A P t  

where 

P =  [Pl P2 " "  p . ]  

Combining Eqs. (2.71) and (2.73), we obtain 

p T q j  = 0 
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Then the set {ql . . . . .  q ,  } is linearly independent and we define a matrix Q as 

Q = [ql q2 " "  q.]  

which is often called the modal matrix of A. Consequently, we have 

(2.72) 

(2.73) 

(2.74) 

because 3.i ¢ ~.j when i ~ j .  Furthermore, if Pi and qi are normalized such that 
pT_t i q" = 1 for all i, then we have 

pTqj = ~ij or p r Q  = I (2.75) 

Finally, a square matrix A with distinct eigenvalues can then be decomposed into 
the form 

A = Q A P  r (2.76) 

E IFp I A = [qt "'" q , ]  " .  " = 3.iqip T (2.77) 

Lp J = 

This result shows that a square matrix A can be expanded in terms of  its right and 
left eigenvectors. Consequently, we have 

eAt = QeAtQ -1 = QeAtp T = ~ eXa qipT (2.78) 

i 

The decomposition of  a square matrix A into a diagonal matrix A described by 

A = Q-1AQ (2.79) 

is called the modal (or spectral) decomposition of  the matrix A by a modal (or 
similarity) transformation. In general, two matrices A and A'  are said to be similar 
if there exists a nonsingular matrix Q such that A'  = Q-1AQ. 

which becomes 
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If  an n x n matrix A has repeated eigenvalues, it is not always possible to find n 
linearly independent eigenvectors. Consequently, it is not always possible to find 
a diagonal matrix representation of such a matrix with repeated eigenvalues. It is 
possible, however, to find a special set of basis vectors so that the new representation 
is almost a diagonal form, called a Jordan canonical form. The form has the 
eigenvalues of  A on the diagonal and either 0 or 1 on the superdiagonal. 

Consider a linear time-invariant dynamic system described as 

= Ax (2.80) 

where x is called the state vector. For simplicity, assume that all eigenvalues of  
A are distinct and real. The zero-input response of this system due to the initial 
condition x(0) can be written as 

x(s) = [ s I -  A]-lx(O) = Z q io f  x(O) (2.81) 
i S - - ~ i  

where q/rpj = ~ij = p/rqj.  In the time domain, the zero-input response becomes 

x(t)=eAtx(O) = ~ i  ex'tqipTx(O)=" ~--'~ pTx(0) e X ' t q i i  ~ (2.82) 

scalar 

From this equation, we notice that if the initial condition x(0) is chosen such that 

x(O) = cqj 

where c is a nonzero real constant, then 

x(t) = eXJtx(0) 

That is, only the j th  mode e x jr is excited by such initial condition x(0). 
If  ~-i is a complex eigenvalue with complex right and left eigenvectors qi and Pi, 

then ~-i is also an eigenvalue with complex right and left eigenvectors eli and Pi, 
where the overbar denotes the complex conjugate. Therefore, for a pair of  complex 
e i g e n v a l u e s  ~-i and ~-i, we have 

x(t) = pTx(O)eX'tqi -}- pTx(O)e~"t¢ti = 2 Re [ p/rx(0) eX'tqi] (2.83) 

scalar 

Complex matrix. The complex conjugate transpose of a matrix A • C m ×n is 
denoted by A*. Note that (A + B)* = A* 4- B* and (AB)* = B'A*.  I f  A = A*, 
then the matrix A is called a Hermitian matrix. If  A = - A * ,  then the matrix A is 
called a skew-Hermitian matrix. If  AA* is a diagonal matrix, then the matrix A is 
called a normal matrix. If  AA* is an identity matrix, then the matrix A is called a 
unitary matrix. For a unitary matrix A, we have A - l  = A*. ( I f A  is a real matrix, 
then A* -- A r . )  

Posit ive def in i teness o f  a comp lex  matrix. Let A = [ai j ]  • C "×" be a 
Hermitian matrix; i.e., A* = A and all the eigenvalues of A are real. 

A Hermitian matrix A is said to be positive definite (positive semidefinite) if 
x*Ax > 0 (x*Ax > 0) for all nonzero x. 
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A Hermitian matrix A is also said to be positive definite if and only if any one 
of  the following conditions holds: 

1) All of  the eigenvalues of  A are positive. 
2) All of  the leading principal minors of  A are positive. 
3) There exists a nonsingular matrix Q such that A = Q*Q. 
Similarly, a Hermitian matrix A is said to be positive semidefinite if and only if 

any one of the following conditions holds: 
1) All of  the eigenvalues of  A are nonnegative. 
2) All of  the leading principal minors of  A are nonnegative. 
3) There exists a singular matrix Q such that A = Q*Q. 
Furthermore, for a Hermitian matrix A ~ C nxn and any nonzero x ~ C", we 

have 

x* Ax 
)'-rain(A) < - -  < Xmax(A) (2.84) 

X*X 

Singular value decomposition. Consider an m x n complex matrix A of  
rank r; that is, let A ~ C m×n. Then there exist unitary matrices U ~ C m×m and 
V 6 C "x" such that U*U = I and V*V = I, and 

where 

A = U~V* (2.85) 

and S = diag (~r 1 . . . . .  trr) with cr i > 0 (i = 1 . . . . .  r). The numbers trl . . . . .  trr 
together with Crr+t . . . . .  an = 0 are called the singular values of A. 

From Eq. (2.85), we have 

(AA*)U = U ( ~ * )  or (AA*)ui = O'2Ui (2.86a) 

(A*A)V = V ( ~ * ~ )  or (A*A)vi = cr/2vi (2.86b) 

where 

U ~  [Ul 

V =  [vl 

• . . a m ]  

• . . Vrt ] 

Thus, A can be expanded in terms of the singular vectors, ui and vi, as follows: 

A ~  [Ul . - .  urn] [ s 0 ]  . ~ E ( T i u i v .  (2.87) 

v _l ; = '  

Consequently, U is the unitary modal matrix of AA*, whereas V is the unitary 
modal matrix of  A*A. The modal form of AA* is ~ * ,  whereas the modal form 
of A*A is ~ * ~ .  The columns of  U are called the left singular vectors of  A or 
the unitary eigenvectors of AA*. Similarly, the columns of V are called the right 
singular vectors of A or the unitary eigenvectors of  A*A. 
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The singular values of  A are thus defined to be the positive square roots of  the 
eigenvalues of  A ' A ;  that is, 

cri(A) = ~ (2.88) 

where ~.i(A*A) denotes the ith eigenvalue of  A ' A ,  and all ki(A*A) > 0. The 
largest and smallest singular values of  A, denoted by # (A) and q(A), respectively, 
are given by 

#(A)  = ~/),max(A*A) 

q(A) = ~/kmin(A*A) 

The choice of  A*A rather than AA* in the definition of  singular values is arbi- 
trary. Only the nonzero singular values are usually of  real interest and their number 
is the rank of  the matrix. The matrix A*A is a square matrix of  order n and is a 
positive semidefinite Hermitian matrix. Note that the eigenvalues of  a positive 
semidefinite, Hermitian matrix are all real. For a real matrix A, we know that 
the eigenvalues of  A and A r are the same. Similarly, for a complex matrix A, the 
nonzero singular values of A and A* are the same. I fA  = A*, then cri (A) = I~-i (A)I. 
We also have ~(A) = 1 /# (A- I ) .  

Vector and matrix norms. The concept o f  the norm o f  a vector  x e C n is a 
generalization of  the idea of length. The e.p vector norm of x is defined as 

Ilxllp = Ixil p , 1 < p < :x~ (2.89) 
i = 1  

and, for example, we have 

Ilxll~ = ~ Ixil (2.90) 
i = l  

i 

Ilxl12 = x ]  = ~ (2 .91)  

Ilxll~ = lira IXgl r = max IXgl (2.92) 
p - - ~  i 

i = 1  

The two-norm defined as Eq. (2.91) is called the Euclidean or spectral norm. 
The norm of a matrix A = [aij] ~- C nxn is defined as 

IIAxlL 
IIAII = s u p s =  sup IIAxll (2.93) 

x~0 Ilxll LtxLt=l 

where sup stands for supremum, the largest possible number of IIAxll or the least 
upper bound of  IIAxll. The norm of a matrix A is defined through the norm of a 
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vector x; thus it is called an induced norm. For different Ilxll, we have different 
IIAII; i.e., 

IIAII1 = m.ax (~-"~ l a i y l ) j  i=l (2.94a) 

IIAII2 = c~(A) = ~/~n~x(A*A) (2.94b) 

/ 
j= l  

where ~(A) denotes the largest singular value of  A. The two-norm of the inverse 
of  a nonsingular square matrix A is also defined such that 

1 -- inf IIAxlI-------G2 - inf IIAxll2 = q(A) = x/),mi,(A*A) (2.95) 
IIA -x 112 x~o Ilxl12 ilxn2=l 

where inf stands for infimum, the greatest lower bound, and _or(A) denotes the 
smallest singular value of A. 

We can also define directly the norm of a matrix as 

(£" 
IIAIIF = E laijl2 = 

i=1 j= l  

(2.96) 

which is called the Frobenius norm. 
The condition number of  a nonsingular matrix A is defined as 

c(A) = ~(A)  = IIAII2 IIA -1112 (2.97) 
q(A) 

The condition number is an indication of  the effect of  perturbation in A and/or b 
in the solution of  Ax = b. 

Problems 

2.17. Show that similar matrices have the same characteristic equation and the 
same eigenvalues. 

Hint: Given A'  = Q-1AQ where Q is a nonsingular matrix, show that IA'-~.II  = 
IA - XII = O. 

2.18. Show that the columns of  an m x n matrix A are linearly independent if 
and only if A r A  is a nonsingular matrix. 

Hint: Let Ax = 0 and rank(ArA) = n, then A r A x  = 0. Also let A r A x  = 0 
and rank(A) = n, then x r A r A x  = 0 which becomes Ax = 0. 

2.5.2 Controllability and Observability 
Controllability. Consider a linear time-invariant dynamic system described by 

the state equation 

= Ax + Bu (2.98) 
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where x e R" and u e R p. This system is said to be state controllable at time to, 
if there exists a finite tl > to such that for any X(to) and x(tl), there exists an input 
u(t) that will transfer the state X(to) to the state x(tt). Otherwise, the state equation 
is said to be uncontrollable at time X(to). This definition of state controllability 
requires that the input u(t) be capable of moving any state in the state space to any 
other state in a finite time; what trajectory the state should take is not specified. 
Furthermore, there is no constraint imposed on the control input; its magnitude 
can be as large as desired. 

A system described by the state equation (2.98) is said to be controllable if and 
only if any one of the following equivalent conditions is satisfied: 

1) All rows of a matrix eAt B are linearly independent or all rows of [sI  - A ] - I B  
are linearly independent. 

2) The controllability grammian 

fo t eAr BBT eAr r dr 

is nonsingular for any t > 0. 
3) The n x (np) controllability matrix 

[B AB A2B . . .  A"- lB]  

has rank n. 
4) For every eigenvalue 3. of  A, the n x (n + p) complex matrix [~I - A, B] has 

rank n. (This condition implies that [~.I - A] and B are left coprime.) 

Obsorvability. The concept of  observability is dual to that of controllability. 
Consider a linear time-invariant dynamic system described by 

= Ax + Bu (2.99a) 

y = Cx (2.99b) 

where x ~ R n, u C R p, and y 6 R q. The dynamic system is said to be state 
observable at to if there exists a finite tl > to such that for any state x(t0) at time to, 
the knowledge of the control input u(t)  and the output y(t) over the time interval 
to < t < tl suffices to determine the state x(to). Otherwise, the system is said to 
be unobservable at time to. 

A dynamic system described by Eqs. (2.99) is said to be observable by the 
following equivalent conditions is satisfied: 

1) All columns of a matrix C e  At are linearly independent or all columns of 
C[s I  - A] - l  are linearly independent. 

2) The observability grammian 

fo t eArrcTCe At dr 

is nonsingular for any t > 0. 
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3) The nq x n observability matrix 

[CCA 1 
CA "-I  J 

has rank n. 
4) For every eigenvalue ~. of A, the (n + p) x n complex matrix 

has rank n. (This condition implies that [~.I - A] and C are right coprime.) 

Polo--zero cancellation. If a dynamic system is controllable, all of the modes 
of the system can be excited by the control input u(t); if a dynamic system is 
observable, all of the modes can be observed by the output y(t). Consequently, a 
pole-zero cancellation in a transfer function y(s) /u(s)  indicates, in general, a lack 
of controllability by u and/or observability by y. 

Example 2.3 
Consider a cart with an inverted pendulum, as was illustrated in Fig. 1.9a. The 

linearized equations of motion are 

M~ + mgO = u 

m~ + m£O - mgO = 0 

Let z and 0 be the two outputs of the system; then the transfer functions from u to 
z and 0 can be found, respectively, as 

z(s) s 2 - g ig  

u(s) s2[Ms 2 - (M + m)g/e] 

O(S) --S2/e 
u(s) s2[Ms 2 - (M + m)g/e] 

There are pole-zero cancellations of s 2 in the transfer function from u to 0, which 
indicate, in general, a lack of controllability by u and/or observability by 0. The 
system is controllable by u and observable by z, however, because there are no 
pole-zero cancellations in z(s) /u  (s). Consequently, the pole-zero cancellations in 
O(s)/u(s) indicate that the system is unobservable by 0. Also we notice that the 
rigid-body mode of the system cannot be observed by measuring the pendulum 
deflection. 

Problems 
2.19. Consider a cart of mass M with two inverted pendulums of lengths £ 1, ~2 and 
tip masses ml, m2, as illustrated in Fig. 2.23. Let z be the horizontal distance of the 
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" ~ aall 

~ 2  

Fig. 2.23 Cart with two inverted pendulums. 

cart, 01 and 02 be the angles of  the pendulums measured from the vertical position, 
u the control input force acting on the cart, and g the gravitational acceleration. 

(a) Derive the linearized equations of  motion for small angles of  01 and 02 as 

M~ + mlgOl + mEg02 = u 

m l Z  + mlelOl - m l g O l  = 0 

m 2 z  + m 2 ~ 2 0 2  - -  m2g02 = 0 

(b) Show that the system with e I # ~Z is controllable by u and observable by z. 
(c) Show that the system with el -- £2 is uncontrollable by u and unobservable 

by z, even when ml 57/= m2. 
(d) Show that the system is unobservable by Ol and/or Oz for any values of m i  

and £i. 

2.20. Considera three-mass-spr ingsys tem(ml  = m 2 = m3 = 1; kl = k2 = 1) 
described by 

3)1 + Yl - Y2 = Ul 

3)2 + 2y2 -- Yl -- Y3 = U2 

3)3 + Y3 - Y2 = u3 

(a) Is the system controllable by Ul? 
(b) Is the system controllable by u2? 
(c) Is the system controllable by u3? 
(d) Is the system observable by Yl ? 
(e) Is the system observable by Y2? 
(f)  Is the system observable by Y3? 

2.21. Consider the translational motion of a satellite in circular orbit described by 

3)1 -- 2n~2 -- 3nZyl = u 1 

3)2 + 2npl = u 2 

3)3 + nZY3 = u3 
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where (Yl, Y2, Y3) are small perturbations from a nominal circular orbit with an 
orbital rate of  n, and (ul, u2, u3) are the control inputs. 

(a) Is the system controllable by ul and u3? 
(b) Is the system controllable by u2 and u3? 
(c) Is the system observable by Yl and y3? 
(d) Is the system observable by Y2 and Y3 ? 

2.5.3 State Feedback and State Estimation 

State  feedback  control Consider a linear time-invariant dynamic system 
described by 

= Ax + Bu (2.100) 

where x E R n and u ~ R p. In state feedback control, the state vector is multiplied 
by a gain matrix K and fed back into the control input; that is, 

u = - K x  (2.101) 

where K ~ R pxn. The closed-loop system is then described by 

= (A - BK)x (2.102) 

and the closed-loop characteristic equation becomes 

IsI - A + B K I  = 0 

If  the system is controllable, the eigenvalues of  the closed-loop system can be 
arbitrarily assigned, provided that the complex conjugate eigenvalues appear in 
pairs. 

State estimator. 
by 

Consider a linear time-invariant dynamic system described 

~k = Ax + Bu (2.103a) 

y = Cx (2.103b) 

where x 6 R n, u E Re, and y 6 R q. Because all state variables are not directly 
measured by the output y, we consider an asymptotic state estimator (or observer) 
of  the form: 

= A ~  + B u  + L ( y  - Ci)  

= (A - LC):~ + Bu + Ly (2.104) 

where ~ denotes an estimate of  x, and L denotes an n × q gain matrix. Note that 
the estimator is driven by the input u(t) as well as the output y(t) of  the system. 
The difference of  y and ~ = C~ is used as a correction term in Eq. (2.104). 

Let e be the error between the actual state and the estimated state; that is, 

e = x - ~ (2.105) 
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Then, we have the following estimate-error equation: 

6 = (A - LC)e (2.106) 

and the estimate-error characteristic equation is obtained as 

I s I -  A + L C I  = 0 

If the system is state observable by y, then all the eigenvalues of (A - LC) can 
be arbitrarily assigned and the behavior of the estimate error e can be arbitrarily 
controlled. 

Estimated-state feedback controller. If the actual state is not available for 
state feedback control, we use the estimated state ~ for feedback as follows: 

u = - K ~  ( 2 . 1 0 7 )  

Then the overall closed-loop system with the estimated-state feedback controller 
is described by the state equation 

:t = Ax+  Bu 

the output equation 

the regulator 

and the estimator 

y = C x  

U = - - K x  

/, 
x = A ~  + B u  + L ( y  - C ~ )  

where K is called the regulator gain matrix and L the estimator gain matrix. 
The composite dynamic system can then be described as 

[ ~ ] =  [LAC A -  BBK LC] Ix  ] 

which can be rewritten in terms of x and e, as follows: 

[ ~ ]  = [ A o B K  A B K c ]  [ : ]  

The closed-loop characteristic equation can then be found as 

sI - A + BK - B K  
0 s I - A + L C  = 0  

which becomes 

(2.108) 

(2.109) 

(2.110) 

[ s I - A  + BKI I s I - A + L C [  = 0  (2.111) 

Therefore, the closed-loop characteristic equation can be decomposed as 

I s I - A  +BK[ = 0  and I s I - A  + LCI = 0  (2.112) 
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This result shows that there is no difference in estimated-state or the actual-state 
feedback, as far as the closed-loop eigenvalues are concerned. Consequently, the 
design of state feedback controller (or regulator) and the design of state estimator 
(or observer) can be carried out independently. This property is often called the 
separation property.  We often choose the eigenvalues of the estimator to be two 
or three times faster than the eigenvalues of the state feedback controller. 

The state feedback controller and the estimator can be combined to yield a 
compensator ,  as follows: 

u(s )  = - - K [ s I  - A + B K  + L C ] - l L y ( s )  

Compensator 

(2.113) 

It is emphasized that the compensator poles are different from the regulator and 
estimate-error eigenvalues. 

P o l e - p l a c e m e n t  m e t h o d  for s e l e c t i n g  K a n d  L. The  pole-placement met- 
hod basically allows the designer to directly choose the closed-loop regulator and 
estimator eigenvalues to meet desired criteria. 

For simplicity, consider a SISO system described by the state-space equation 

= A x  + Bu 

y = C x  

The desired closed-loop regulator characteristic equation is assumed to be given 
by 

Sn'~-hlSn-1 -~-...-~-an_lS-~-a n = 0  (2.114) 

and the closed-loop regulator characteristic equation is given by 

IsI - A + BKI = 0 (2 .115)  

Thus, matching the coefficients of the characteristic polynomials in Eq. (2.114) 
and Eq. (2.115), we can determine the state feedback (regulator) gain matrix K. 

Similarly, the estimator gain matrix L can also be determined by matching the 
coefficients of the characteristic polynomial IsI - A + LCI with the coefficients 
of the desired estimate-error characteristic polynomial. 

In general, for a single-input system, we can employ the Bass-Gura method that 
computes the gain matrix K as 

K = [h - a] [CT] - I  (2.116) 

where a = [al . . . . .  a .]  is a row vector containing the coefficients of the charac- 
teristic polynomial of A: s ~ + a l s  ~-1 + . .  • + a . - l s  + a. ;  .~ = [&l . . . . .  &.] is a 
row vector containing the coefficients of the desired characteristic polynomial of 
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.~, = A - BK; ~r" is an upper-triangular Toeplitz matrix defined as 

T =  

If al a2 
1 al 
0 1 

0 0 

• . .  a n _  1 q 

and C is the controllability matrix defined as 

C =  [B AB A2B • • •  An-lB] 

The estimator gain matrix L can also be determined using duality, as follows: 

A --> A r,  B --~ C r,  K --> L 7" 

and 

L = [ T T o ] - I [ ~  -- a] T (2• 117) 

where a and h are row vectors containing the coefficients of the characteristic 
polynomials of A and A = A - LC, respectively; and (.9 is the observability 
matrix defined as 

(~ 
L CAn- 1 

Although the closed-loop eigenvalues can be arbitrarily chosen, not all selections 
result in good designs• Although the settling time of the compensated system 
depends on the real part of the regulator closed-loop eigenvalues, the real part of 
these eigenvalues cannot be arbitrarily large because a faster decay means a larger 
input signal. Also, this influence increases with the frequency of the eigenvalue, so 
that faster decay of high-frequency modes means even more control input effort• 

For a more general, multi-input multi-output (MIMO) system, other pole place- 
ment methods with robust eigenstructure assignment can be employed for selecting 
the gain matrices K and L; see, e.g., Junkins and Kim) 6 

Linear quadratic regulator~linear quadratic estimator method for selecting 
K a n d  L• The linear-quadratic-regulator (LQR) and linear-quadratic-estimator 
(LQE) methods are now briefly introduced for the selection of K and L. The 
combined LQR/LQE method is also referred to as the linear-quadratic-Gaussian 
(LQG) design method in the literature, and the resulting controller is called the LQG 
compensator. This LQR/LQE method is directly applicable to MIMO systems. 

The gain matrix K of the state feedback control logic u = - K x  can be deter- 
mined by minimizing the linear quadratic performance index 

l (xrQx + urRu)  dt (2.118) 
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where Q is the state weighting matrix and R is the control input weighting matrix. 
The gain matrix K is then obtained as 

K = R - I B r X  (2.119) 

by solving the algebraic Riccati equation 

0 = ArX + XA - X B R - I B r X  + Q (2.120) 

Certain conditions must be met for a unique positive-definite solution to the 
above Riccati equation to exist: 1) Q must be symmetric and positive semidefinite, 
i.e., Q = Q r  > 0; 2) R must be symmetric positive definite, i.e., R = R r > 0; 3) 
the (A, B) pair must be controllable (stabilizable); and 4) the (A, H) pair must be 
observable (detectable) where H r H  = Q and rank H = rank Q. For further details 
of LQR control theory and applications, the reader is referred to Refs. 16-18. 

To determine the estimator gain matrix L using the LQE method, we consider 
a plant described by the following state-space equation: 

= Ax + Bu + Gw (2.121a) 

y = Cx + v (2.121b) 

where w is the process noise and v is the measurement noise. Both w and v are 
assumed to be white noise processes with 

E[w(t)wT(r)] = WS(t - r)  

E[v(t)vr(r)]  = V3(t - r)  

where W and V are the corresponding spectral density matrices. 17 
The gain matrix L of the LQE is then selected such that the observation error 

e = x - - ~  

is minimized in the presence of noise, by solving the algebraic Riccati equation 

0 = AY + YA r - y c T v - I c Y  + G W G  z (2.122) 

where Y is the estimate-error covariance matrix, and L is computed as 

L = y c T v  -1 (2.123) 

A more detailed treatment of LQG control theory and applications to aerospace 
dynamic systems can be found in Bryson and Ho, 17 and Bryson. 18 

Problems 
2.22. Consider the LQR problem for a linear time-invariant system 

~ = A x + B u  

with a quadratic performance index 

lff 
J = ~ (xrQx + u rRu)d t  
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The optimal LQR solution is given as 

u(t)  = - R - I B T , ~ ( t )  

where ,~ satisfies the Euler-Lagrange equations 

given x(0) and ,~(e~) = 0. 
(a) By letting .X(t) = Xx(t), derive the following matrix Riccati equation: 

0 = A r X + X A -  X B R - I B T X +  Q 

(b) Defining the so-called Hamiltonian matrix H as 

and also defining 

where I is the identity matrix, show that 

. , - ' H .  = o 
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_ B R - ] B  T 1 
- ( A  - BK) r J 

where K is the LQR gain matrix defined as K = R-1BTX such that u = - K x .  
(c) Show that det[sI  - E - I H E ]  = det[aI - H] where s is the Laplace transform 

variable. 
Hint: ]A I = IA T] and ]A-]I = 1/IA]. 
(d) Using the result from (c), show that if si is an eigenvalue of H, - s i  is also 

an eigenvalue of H. 
Hint: The eigenvalues of  A are the same as the eigenvalues of  A T. 
(e) Show that the Hamiltonian matrix H satisfies j - I H T j  = - H  where 

[0 '0] J =  _ !  

Hint: j - I  = j r  = _ j .  
(f) Using the result from (e), show that if si is an eigenvalue of H, - s i  is also 

an eigenvalue of H. 
(g) Show that the state transition matrix, ~ ,  of the Euler-Lagrange equations 

satisfies the sympletic property: j-I ~ T j  = ~ - 1 .  
Hint: Differentiate j - l ~ r j  = ~ - l  and use cb = H ~  and J - ] H r J  = - H .  
(h) Using the result from (g), also show that if si is an eigenvalue of  ~ ,  1/si is 

also an eigenvalue of ,I~. 
(i) Show that ~ [ I +  G(joJ)] > 1 for all o~ where G(j~o) = K(jo~I - A ) - l B  with 

R = I .  
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(j) Show that the result from (i) implies that 

1 q[I + G-l(j~o)] >_ 

for all w. 
(k) For the single-input LQR design, show that a Nyquist plot of G(jw), as w 

varies from - ~  to cx~, remains outside a circle of center - 1  + j0  and radius 1. 
Also show that an inverse Nyquist plot for G-l(j~o), as ~o varies from --o<~ to o<~, 
always remains outside a circle of center - 1 + j0  and radius 1/2. 

Hint: Use the results from (i) and (j). 
(1) Show that the results in (k) imply that the single-input LQR design has - 6  

dB and +c~  gain margins and a phase margin of at least 60 deg. 

2.23. Consider a double integrator plant described by 

[xX"12] = [00 1] [;12] -~- [01 U 

0 [X]x  
(a) Determine the state-feedback gain matrix for u = - K x  such that the closed- 

loop regulator poles be located at s = - 1 4- j .  
(b) Determine the estimator gain matrix L such that the closed-loop estimator 

poles be located at s = - 2  + 2j.  
(c) Find the equivalent compensator from y to u. 
(d) Sketch root locus of the closed-loop system vs overall loop gain Ko of the 

preceding compensator with the nominal gain of Ko = 1, and find the gain and 
phase margins of the closed-loop system. 

(e) Also synthesize a compensator for this same problem (o)n ,-~ 1.4 rad/s) using 
the LQR/LQE method by trying a few different sets of weighting matrices: Q, R, 
W, and V. 

Note: Access to computer software such as MATLAB is needed to solve the 
algebraic Riccafi equation. 

2.24. Consider a dynamic system described in state-space form as 

5 - 3  xl [::]--[_4 
y =  [1 0 ] [  xl]12 

or in transfer function as 

y s - 6  

u (s - 2)(s - 9) 

(a) Determine the state-feedback gain matrix for u = - K x  such that the closed- 
loop regulator poles be located at s = - 2  and - 9 .  
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(b) Determine the estimator gain matrix L such that the closed-loop estimator 
poles be located at s = - 1 0  and -10 .  

(c) Obtain the equivalent compensator from y to u as 

3630(s - 2.43) 
u ( s )  = - (s  - 36.26)(s + 78.26) y ( s )  

(d) Plot root locus of the closed-loop system vs overall loop gain K o  of the 
preceding compensator with the nominal gain of K o = 1. Determine the gain and 
phase margins of the closed-loop system. 

(e) After trying a few different sets of closed-loop eigenvalues, discuss the 
inherent difficulty of controlling the system. 

(f) Also synthesize a compensator for this problem using the LQR/LQE method 
by trying a few different sets of weighting matrices: Q, R, W, and V. Any con- 
cluding remarks? 

2.25. Repeat Problem 2.10 using both the pole-placement and LQR/LQE meth- 
ods. In particular, determine the stability robustness of each controller with respect 
to the three uncertain parameters ml, m2, and k. 

2.26. Repeat Problem 2.11 using both the pole-placement and LQR/LQE meth- 
ods. In particular, determine the stability robustness of each controller with respect 
to the three uncertain parameters m, c, and k where m i  = m for all i. 

2.5.4 Persistent Disturbance Rejection 
The internal model principle for persistent disturbance rejection, which was 

considered in Sec. 2.3.4, is now incorporated with the standard state-space con- 
trol design problem. Active disturbance rejection for the measured output y is to 
be achieved by introducing a model of the disturbance inside the control loop, 
therefore using again the concept of internal modeling, as illustrated in Fig. 2.24. 

Xd = Ad Xd + Bd y 

+ 

w(t) d(0 

ip= %Xp + Bp U+GpW 

y = CpXp+ v +d 

Xp= (Ap-LCp) XAp +Bpu +Ly 

Fig. 2.24 Persistent disturbance rejection control system. 
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For example, consider a scalar disturbance d(t) with one or more frequency 
components represented as 

d(t) = E Ai sin(coit + q~i) 
i 

with unknown magnitudes Ai and phases ~Pi but known frequencies co/. The dis- 
turbance rejection filter is then described by 

g2 = AdXd + Bdy (2.124) 

where Xd is the state vector introduced by the disturbance model and, for example, 

A a =  -co~ 0 0 B d =  
0 0 0 
0 0 -o)22 

for a scalar output y(t) with d(t) of two frequency components. The disturbance 
rejection filter can include as many frequency components as the given disturbance, 
and is driven by the measured output y of the plant. This procedure is equivalent to 
the one used in the classical approach with the disturbance model now consisting 
of a state-space model. 

We now consider a plant described by the state-space equation 

~p = Apxp + Bpu + Gpw (2.125a) 

y = Cpxp + v + d (2.125b) 

where xp denotes the plant's state vector, u the control input vector, w the process 
noise, v the measurement noise, and d the output equivalent persistent disturbance. 
Both w and v are assumed to be white noise processes with 

E[W(t)wT(r)] = WS(t - r)  

E[V(t)vT('c)] = VS(t - 1") 

where W and V are the corresponding spectral density matrices. 
In general, a compensator designed for this plant will consist of a regulator 

and an estimator that will approximate the states Xp with estimated states ~p 
using the information from the measured output y. The estimator that attempts to 
asymptotically reduce the error term e = xp - ~p is given by 

~p = Apxp q- Bp u  -[- L(y  - Cpxp) 

= (A e - LCp)fl e + Beu + Ly (2.126) 

where the term ( y  - Cp~p) represents the error between the output of the plant and 
the estimated output and L is the estimator gain matrix to be determined. 

The disturbance filter model described by Eq. (2.124) is then augmented to a 
plant described by Eqs. (2.125) as follows: 

= Ax + Bu + Gw (2.127a) 

y = Cx + v + d (2.127b) 
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where 

x =  , A =  , B =  
xa BaC r Aa 

C =  [Cp 0], G = [  G p ]  
k U J  

An estimated state feedback controller is then given as 

u = - I ~  

^ T  T w h e r e , =  [ ~  x a ]  and the gain m a t r i x K =  [Kp 
for the augmented system described by Eqs. (2.127). 

Ka ] is to be determined 

- .~ ,~ [.~]y Aa .J [xX~] + (2.129a) 

Ka][xX p ] (2.129b) 
And the closed-loop system with w = v = d = 0 is described as 

FAr 
~p = LCp Ap - BpKp - LCp - B p K a  f~t' 
xa [ BaCp 0 Aa xa 

[ , : ]__[ ,~ B~K~ LC~ 0 

u = - [ K  t, 

which can be modified using the error term e = xp - ip, resulting in a partially 
decoupled system of equations, as follows: 

0 0 Ap - LC r _] 

The closed-loop characteristic equation can then be written as 

sI  - At, + BpKp BpK,t -BpKp  

- B a C p  sI - Aa 0 = 0 (2.130) 

0 0 sI - A t, + LC e 

The determinant in Eq. (2.130) is equal to the determinants of the diagonal subma- 
trices multiplied together, one giving the regulator eigenvalues for the augmented 
system including the internal model and the other giving the estimator eigenvalues 

As shown in Fig. 2.24, however, xd can be directly fed back as 

I x / ' ]  (2.128) u = - [ K p  Ka] xa 

because xa is directly available from Eq. (2.124). 
An active disturbance rejection controller in state-space form is then given by 
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for only the plant. Hence, we have shown that the separation principle for regula- 
tor and estimator holds for a closed-loop system even with an internal model for 
asymptotic disturbance rejection. 

Example 2.4 
Consider again the two-mass-spring problem considered in Problem 2.12 for 

the illustration of the state-space approaches to disturbance rejection control of 
a flexible spacecraft. 1° First, the LQR/LQE method is applied to the problem, 
followed by the pole-placement method. 

After trial and error using an LQR/LQE design code, an LQG compensator can 
be found as 

-0.355[(s/0.2375) + 1][(s/0.496) 2 + 2(0.204)(s/0.496) + 1] 
u ( s )  = 

[(s/2.545) 2 + 2(0.204)(s/2.545) + 1][(s/0.5) 2 + 1] 

[(s/1.41) 2 - 2(0.0546)(s/1.41) + 1] 
x y ( s )  

[(s/2.873) 2 + 2(0.859)(s/2.873) + I] 
(2.131) 

It can be seen that for persistent disturbance rejection, the compensator has poles 
at +0 .5 j  with the associated zeros near +0.5j .  Such a pole-zero pair is called a 
disturbance rejection filter dipole. 

The closed-loop system with this compensator has a relatively small gain margin 
of 1.8 dB, and is stable only for 0.9 < k < 1.16. The standard LQR/LQE control 
design is necessarily tuned closely to the plant model for high performance; hence 
it is not robust to plant parameter uncertainty. The responses to w2 = sin 0.5t 
show that the transient peak is, however, very small compared to the responses 
of other classical control designs with nonminimum-phase zeros. It is clear that 
for the LQR/LQE design, high performance (small transient peak and fast settling 
time) has been achieved at the expense of a small stability robustness margin with 
respect to parameter uncertainty. Hence, some tradeoffs between performance and 
parameter robustness must be considered in practical control design. 

The regulator gain matrix K can also be determined for the augmented system, 
including the internal model, for given desired closed-loop eigenvalues. The esti- 
mator gain matrix L is computed using only the plant system matrix, because only 
the plant states are to be estimated. The regulator eigenvalues are tentatively cho- 
sen to be similar to the closed-loop eigenvalues resulting from a classical design 
as follows: 

-0 .2  + 0.2j, -0 .1  + 0.4j, -0 .5  + 1.45j 

The estimator eigenvalues (only for the plant) are then chosen to be twice as far 
as the regulator eigenvalues. The resulting compensator is 

-0.0354[(s/0.0942) + 1][-(s/0.544) + 1][(s/4.617) + 1] 
u ( s )  = 

[(s/0.5) 2 + I][(s/1.672) 2 + 2(0.815)(s/1.672) + 1] 

[(s/0.467) 2 - 2(0.073)(s/0.467) + 1] 
x y ( s )  

[(s/2.849) 2 + 2(0.29)(s/2.849) + 1] 
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It can be seen that for asymptotic disturbance rejection, the compensator has poles 
at -I-0.5j with the associated zeros near them. 

Again, the rigid-body mode is stabilized by a PD-type compensator with a 
second-order rolloff filter and the flexible mode is stabilized with a nonminimum- 
phase filter. Also, note that the pole-placement design also introduces a dipole 
for disturbance rejection. It also introduces a real, positive zero to go with the 
complex pair of poles for the stabilization of the unstably interacting flexible 
mode. The placement of the eigenvalue corresponding to the disturbance rejection 
filter determines the location of this zero. The real part of the eigenvalue influences 
the settling time whereas the imaginary part affects the magnitude of the response. 
The smaller the imaginary component of the eigenvalue the larger the magnitude 
of the overshoot in the response of the system, as well as in the control input signal. 
The settling time determined by the real component of the eigenvalue is not altered 
by the overshoot. 

The closed-loop system is stable for 0.57 < k < 3.55, and has a 2.48-dB 
gain margin. The controller designed here using the pole-placement technique 
has a parameter robustness margin larger than that of the LQR/LQE design, but 
it has very large transient peak. It is again evident that some tradeoffs between 
performance and robustness are needed even for this simple example problem. 

Problem 

2.27. For the preceding example problem, perform a standard LQR/LQE control 
design so that the closed-loop system has a gain margin >3 dB and a phase margin 
> 30 deg. Perform computer simulation of the closed-loop system to verify whether 
or not asymptotic disturbance rejection for the position of m2 with a settling time 
of about 20 has been achieved. Also determine the stability robustness of the 
closed-loop system with respect to the three uncertain parameters ml, m2, and k. 

2.5.5 Classical vs Modern Control Issues 

State-space approaches to control design are currently emphasized in the lit- 
erature and more widely explored than classical methods. This arises from the 
convenience of obtaining a compensator for the whole system given one set of de- 
sign parameters, e.g., given Q, R, W, and V, or desired closed-loop eigenvalues. 
In classical design, on the other hand, a compensator must be constructed piece 
by piece, or mode by mode. However, both classical and state-space methods have 
their drawbacks as well as advantages. All these methods require, nevertheless, a 
certain amount of trial and error. 

As discussed in this section, both state-space techniques (pole-placement and 
LQR/LQE) introduce nonminimum-phase filtering of the unstably interacting flex- 
ible mode of the two-mass-spring problem. The LQR/LQE technique offers an 
optimal compensator design in the presence of random disturbances given certain 
weighting parameters for the states and the control inputs, and certain parameters 
describing the random disturbances. The question remains of how to choose these 
parameters and what choice provides the best optimal design. The designer must 
find an acceptable set of parameters for a good optimal design. The use of state- 
space methods for control design usually results in a compensator of the same 
order as the system to be controlled. This means that for systems having several 
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flexible modes, the compensator adds compensation even to modes that are stable 
and need no compensation. This may result in a complicated compensator design. 

The classical design is particularly convenient for the control of dynamic sys- 
tems with well-separated modes. The concept of nonminimum-phase compensa- 
tion also provides an extremely convenient way of stabilizing unstably interacting 
flexible modes. The resulting compensator is usually of a lower order than the 
system to be controlled because not all flexible modes in a structure tend to be 
destabilized by a reduced-order controller. A helpful characteristic of most flexi- 
ble space structures is their inherent passive damping. This gives the designer the 
opportunity of phase stabilizing significant modes and to gain stabilize all other 
higher frequency modes that have less influence on the structure. On the other 
hand, successive-mode stabilization presents problems of its own, and a retuning 
of the compensated system becomes necessary. It is also noticed that reducing 
the damping in a frequency shaping filter reduces its influence on neighboring fre- 
quencies, and it also reduces the phase lag at lower frequencies; however, reducing 
the damping of the filters increases the sensitivity of the phase stabilized modes to 
plant parameter uncertainties. 

Active disturbance rejection is achieved in both the classical methods and state- 
space methods, with the introduction of an internal model of the disturbance into the 
feedback loop. The concept of internal modeling of the disturbance works as well 
with a classical transfer function description as with a state-space description. In the 
classical design, the internal modeling of the disturbance leads to the introduction 
of a disturbance rejection dipole, or filter, for each frequency component of the 
disturbance. In the state-space design the introduction of the internal model results 
in the addition of two states for each frequency component of the disturbance. 

2.6 Stability Robustness Analysis 
This section, based on Refs. 19 and 20, is concerned with the problem of comput- 

ing the structured singular values/z for uncertain dynamic systems. In particular, 
this section deals with the problem of computing cx~-norm real parameter mar- 
gins or real/z for structural dynamic systems with masses, stiffness constants, and 
damping constants as uncertain parameters. The real/z problem is essentially the 
same as the problem of determining the largest stable hypercube in the uncertain 
parameter space. In this section, the concepts of the critical gains, critical fre- 
quencies, and critical parameters are introduced for stabilized conservative plants. 
A concept of two real critical constraints is also introduced to solve the prob- 
lem of determining the largest stable hypercube in parameter space that touches 
the stability boundary on one of its corners. The concept is simply based on the 
idea of separating the real and imaginary parts of a characteristic polynomial 
equation. 

2.6.1 Stabilized Conservative Plants 
Conservative plants have special properties that aid in real parameter margin 

computations; i.e., the plant transfer function is real valued for all frequencies. 
This allows for the identification of compensator-dependent frequencies where 
the loop transfer function becomes real valued. If uncertain parameters appear 
multilinearly in the plant transfer function, real parameter margin computations 
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can be further reduced to checking system stability at only a few frequencies and 
at only the corners of a parameter space hypercube. 

Critical frequency and gain. Consider a single-input single-output (SISO) 
feedback control system with the closed-loop characteristic equation 

1 + G(s, p)K(s) = 0 (2.132) 

where G(s, p) is the transfer function of a conservative plant with an uncertain 
parameter vector p = (Pl . . . . .  pe), K(s) the compensator transfer function, and 
s the Laplace transform variable. Because the plant is conservative, G(s, p) is 
a function of even powers of s and is a real number for every s = jw, where 
j = ~-'Z]'; that is, G(jw, p) = G(w 2, p). Thus, for a conservative plant, we have 

1 + G(w 2, p)K(jw) = 0 (2.133) 

where G(w 2, p) is real. 
Let the compensator be expressed as 

K(jw) = Re[K(jw)] + j Im[g(jw)]  (2.134) 

Then Eq. (2.133) becomes 

{1 + G(o) 2, p) Re[K(jw)]} + jG(w 2, p)Im[g( jw)]  = 0 (2.135) 

Because the real and imaginary parts of Eq. (2.135) must be zero, we have the 
following two critical instability constraints: 

G(w 2, p) Im[K(jw)] = 0 (2.136) 

1 + G(w 2, p)Re[K(jw)] = 0 (2.137) 

Note that a solution o9 of G(w 2, p) = 0 cannot be a solution of Eqs. (2.136) and 
(2.137). Consequently, Eq. (2.136) simplifies to 

Im[K(jw)] = 0 

and it can be said that the closed-loop system with uncertain conservative plant 
becomes unstable only at frequencies that depend only on the compensator pa- 
rameters. Such a frequency, denoted by we, is called the critical frequency and the 
corresponding parameter vector Pc is called the critical parameter vector. 

Solving for Pc from Eq. (2.137) for each wc is quite numerically complicated. 
However, it is interesting to notice that G(w2c, pc) can be expressed as 

G(w~, pc) =KcG(w2c,O) (2.138) 

where 0 is the nominal parameter vector and tcc is a real scalar. Thus, Eq. (2.137) 
becomes 

1 + xcG(ogZ~, ~) Re[K(jwc)] = 0 (2.139) 

where Kc is referred to as the critical gain, which represents an overall gain change 
due to parameter variations. 
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A conventional root locus plot of the nominal closed-loop system vs overall 
loop gain may be used to identify the critical gains and frequencies where root loci 
cross the imaginary axis. The closed-loop system becomes unstable only at these 
critical frequencies, including w = 0, for all possible parameter variations. Thus, 
the classical gain margin concept may still be used as a measure of the overall 
parameter robustness for a system whose uncertain parameters do not necessarily 
appear multilinearly. The smallest critical gain corresponds to the conventional 
gain margin of a SISO closed-loop system. 

Criticalpolynomial equations. Because a SISO system composed of a fixed 
compensation and an uncertain conservative plant becomes unstable only at critical 
frequencies that depend on the compensator parameters alone, the computation of 
the ~o-norm parameter margin can be performed as follows. 

Let 

K ( j 0 ) )  - -  17(j0)).~ - -  /~/r (092) q- Jo)/Vi(0)2) (2.140) 
D(j0)) br(0) 2) + j0){)i(0) 2) 

and 

N(0)2' P) (2.141) 
G(j0), p) = G(0) 2, p) - D(0)2, P) 

Substituting Eqs. (2.140) and (2.14 I) into Eq. (2.133), we obtain the critical poly- 
nomial equations 

0)[]V/(0)2)/~r (0)2) --/Vr (0)2)j~)i (0)2)] = 0 (2.142) 

D(0) 2, p)Dr(0) 2) + N(0) 2, p)fi/r (0) 2) = 0 (2.143) 

For each critical frequency obtained by solving Eq. (2.142), we need to find the 
largest stable hypercube centered about 0 in parameter space. That is, the problem 
is to find Pc to minimize IlOll~, where 6 = (3l . . . . .  3e) may be actual perturba- 
tions as in Pi = Pi -I- ~i, or percentage variations as in Pi = pi(1 -t- ~i), subject 
to Eq. (2.143) for each critical frequency. Then the solution with the smallest 
magnitude becomes the c~-norm parameter margin. The computation of such a 
parameter margin for general cases is quite numerically complicated. The c~-norm 
parameter margin computation can be greatly simplified, however, by making use 
of the multilinear property of conservative dynamic systems, as is to be discussed 
next. 

Comer directions in parameter space. As first shown by Ghaoui and 
Bryson, 2] for a stabilized conservative system with multilinearly uncertain pa- 
rameters, one needs only to check for instability in the corner directions of the 
parameter space hypercube, at a finite number of critical frequencies. An alter- 
native geometric proof of such an elegant corner (or vertex) property using the 
mapping theorem is provided here as follows. 

For a SISO conservative system, the loop transfer function G(s, p)K(s) becomes 
real valued at critical frequencies. When the mapping theorem 22'23 is applied at 
critical frequencies to a SISO conservative system with multilinear parameters, 
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having fixed compensation and independent parameter perturbations, the convex 
hull of the G(j¢o, p )K( jw)-p lane  image of the parameter space hypercube col- 
lapses to a line segment on the real axis. Because the extreme points of the convex 
hull are defined by the vertices of the parameter space hypercube, the endpoints 
of this line segment correspond to one or more of these vertices. Therefore, it is 
sufficient to check system stability only in the comer directions of the parame- 
ter space hypercube for each critical frequency, and the largest stable hypercube 
touches the stability boundary on one of its comers. 

The parameter margin is then defined by the parameter changes that cause an 
endpoint of the line segment to touch the critical stability point. In addition, the 
overall change in gain for the plant transfer function due to parameter changes is 
equal to the associated critical gain. When parameter margin computations for each 
corner of a parameter space hypercube and each critical frequency are completed, 
the parameter margin of smallest magnitude becomes the overall parameter margin 
for the system. 

For a stabilized conservative plant with e independently uncertain parameters 
that appear multilinearly, there are 2 e hypercube corner directions that need to be 
checked in the oo-norm real parameter margin computation. These comers corre- 
spond to the 2 e possible combinations of parameter values, where the uncertain 
value may be an increase or a decrease in any particular parameter. 

R e a l  p a r a m e t e r  margin. Consider a closed-loop system described as in 
Fig. 2.25, where G(s) is the nominal plant, K(s) a stabilizing controller, A the 
structured uncertainty matrix, and M(s) ~ C e ×~ the stable, nominal transfer func- 
tion matrix from perturbation inputs d to perturbation outputs z. For this uncertain 
system, the real uncertain parameter vector p = (pl . . . . .  Pe) and the perturbation 
vector 6 = (81 . . . . .  ~e) are related as Pi = Pi(1 -q- 8i). 

The closed-loop characteristic equation is then obtained as 

det[I - M(s)A] ---- 0 (2.144) 

where M(s) may contain input and output scaling factors, I is an identity matrix, 
and 

A=diag(81 . . . . .  6e) (2.145) 

is the diagonal uncertainty matrix of independent parameter perturbations 8i ~ ~ .  

a) ~ b) 

u Y d 

Fig. 2.25 Block diagram representations of a closed-loop control system with uncer- 
tain plant parameters. 
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Note that det[I - M ( s ) A ]  is a polynomial of 8i, and is affine with respect to 
each 8i, and that the coefficients of  the characteristic polynomial of  the perturbed 
system are multilinear functions of  6i. 

A characteristic polynomial, which has coefficients affine with respect to each 
uncertain parameter 8i, is called a multilinearly uncertain polynomial. A dynamic 
system with such characteristic polynomial is called a multilinearly uncertain 
system or a system with multilinearly uncertain parameters. 

I f  a system is described by a closed-loop characteristic equation (2.144) and 
Eq. (2.145) with nonrepeated entries, then the system is simply called a multilin- 
early uncertain system; however, not all multilinearly uncertain polynomials can 
be expressed in the form of Eqs. (2.144) and (2.145) with nonrepeated entries. In 
many cases, we have A with repeated entries. 

Because only the corners of  a parameter space hypercube are to be checked in 
~ - n o r m  parameter margin computations for a conservative plant with multilinear 
parameters, A can be expressed as 

A = x E  (2.146) 

where x 6 [0, co) and 

E = {E : E = diag(ei), ei = 4-1 Vi} 

In this case, x represents the size of  the parameter space hypercube whereas the 
2 e possible sets of-4-1 in g define the 2 e corner directions. The task is to find x and 
the particular E matrix corresponding to the stable, parameter space hypercube 
and its particular corner that touches the stability boundary. 

For a conservative plant with real multilinear parameter variations, we may 
introduce the real parameter robustness measure x(w) and the real parameter 
margin to*, as follows: 

x(w) = inf{x : det[I - KM(jw)E]  = 0} 
E¢,f 

x* = infg(w) = infx(w) 
O)  OJ r 

(2.147) 

(2.148) 

where ~Oc denotes the critical frequencies defined earlier. Note that the real pa- 
rameter robustness measure x(~o) of  a conservative plant is discontinuous at each 
critical frequency. 

2.6.2 Stabilized Nonconservative Plants 

Some of the simplifications that are possible in real parameter margin com- 
putations for conservative plants are no longer valid for nonconservative plants. 
Consequently, a more general algorithm is needed for computing real parameter 
margins (or real/z).  

In practice, the damping constant is often the most uncertain parameter for 
structural dynamic systems. In that case, we may consider 1) a worst case with no 
damping, i.e., a conservative plant; 2) a case with fixed, nominal values of  passive 
damping; or 3) a case in which the damping constant is considered as one of the 
uncertain parameters. 
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A direct approach to the cases 2 and 3 is to define a parameter space hypercube, 
of dimension equal to the number of uncertain parameters and centered about the 
nominal parameter values, and then increase the size of the hypercube, always 
checking closed-loop stability for parameter values corresponding to points on the 
surface of the hypercube, until system instability occurs. Then the computation of 
the c~-norm parameter margin corresponds to finding the largest stable hypercube 
in the parameter space. An obvious advantage of this method is that it is applicable 
for systems whose uncertain parameters do not necessarily appear multilinearly; 
however, the amount of computation increases dramatically as the number of 
parameters increases. 

2.6.3 Two-Mass-Spring-Damper Example 
Structured parameter uncertainty modeling. Consider the two-mass- 

spring-damper system shown in Fig. 2.26, which is a generic model of an uncer- 
tain dynamic system with a rigid-body mode and one vibration mode. A control 
force acts on ml and the position of m2 is measured, resulting in a noncollocated 
control problem. 

This system can be described as 

ml-21 + c(.tl - x2) + k(Xl - x2) ----- U 

m2x2 -{- ¢(-~2 -- )el) n L k(x2 - xl) = 0 

y = x 2  

where xl and x2 are the positions ofml  and m2, respectively; u is the control input 
acting on m~; y is the measured output; k is the spring stiffness coefficient; c is 
the damping constant; and all parameters have the appropriate units and time is in 
seconds. 

The transfer function from the control input u to the measured output y is 

y(s)  cs + k 

u(s) s2{mlm2 s2 q- c(ml + mz)s  + k(ml + m2)} 

It can be seen that the uncertain parameters, ml, m2, k, and c, appear multilinearly 
in the numerator and denominator of the plant transfer function. 24 

~ . ~ X l  ~___~x2 

/ / / / / / / / / / / / / / / / / / / / ,  

Fig. 2.26 Two-mass-spring-damper system with multilinearly uncertain parame- 
ters. 
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The uncertain pa ramete r sa re thenmode led  as 

ml ~-=fftl(1-[-81) 

m2 =fi t2(1 -I-82) 

k = k ( l + 8 3 )  

c = c ( 1 - t - 8 4 )  

where thl, m2, k, and ~ are the nominal parameters, and 81,8z, 83, and 84 represent 
percentage variations in each parameten 

The plant equations may now be written as 

fftl(1-~81)X 1 =c(1 - ' J ' -84 ) (x2-~ l ) - '~ -k ( lq ' -S3) (x2  -Xl)-i-u 

tt/2(1-}-82)X2 = -~(1  - { - 8 4 ) ( x 2 - - X l ) - k ( 1 J f - 8 3 ) ( x 2 - x 1 )  

After rearranging terms, we obtain 

/~/IXI =C(XE--X1) 'q -k(x2  -- Xl)-l--U-dl-t-d3-l-d4 

r ~ 2 ~ 2 = - ~ ( ~ 2 - x l )  - k(x2 - x l )  - d 2 - d 3 - d 4  

where 

dl ~81Z l ,  Zl ~ ?r/1Xl 

d2 =82z2,  Z2 : f f /2X2  

d3 ~-~83Z3, z3 = k ( X E - X 1 )  

and di and zi are referred to as the fictitious inputs and outputs, respectively. 
This system is then described in state-space form with x3 = ~tl and x4 = -t2 as 

where 

= A x + B l d +  B2u 

z ---- ClX + Dl ld  + D12u 

y = C2x + D21d -Jr- D22u 

d = A z  

( 2 . 1 4 9 a )  

(2.149b) 

(2.149c) 

(2.149d) 

x = ( x l ,  x2 ,  x3 ,  x4 )  

d = ( d l ,  d2, d3, d4) 

Z = (Zl, Z2, Z3, Z4) 

A = diag(~l, ~2, ~3, $4) 
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and 

A = 

I 0 0 1 0 
0 0 0 1 

- k / , ~  k/a~ -e/r~j e/ ,~ 

I 0 0 0 ] 
0 0 0 0 

BI = -1 /rh~ 0 1/,'hi 1/rhl 
0 - - 1 / t n  2 --  1/fi'12 --  I / tn2_]  

B 2 =  [ 0  0 1 / th  I O] T 

E l  = 

-k  k - e  eq 
- i  ~ - 

- i  k o 
0 0 -~ 

C2= [0 1 0 o] 

Ol  I m_ 
0 -1 -1 - 
0 0 0 
0 0 0 

Dl2= [1 0 0 O] T 

D21 = [0 0 0 0] 

D22 = 0 

Given a controller in state-space form as 

Xc = Acxc + Bey 

u = C c x c  

the overall closed-loop system can be represented in state-space form as 

I A B2cc]Ixl+[ ]d 
~ = BcC2 Ac x~ B~D21 

Ix ] + Dnd z=[C1 Dl2Cc] x¢ 

or in transfer function form as 

z = M(s)  d 

and 

d = A z  
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Conservat ive  case.  Consider a case with zero damping. The two mass el- 
ements ml and m2 and the spring constant k are assumed to be uncertain. The 
parameter space hypercube is three dimensional, which has 23 = 8 corners of the 
cube centered about the assumed nominal parameter values (rh 1, rh2, k) = (1, 1, 1). 

The nominal system has open-loop eigenvalues of s = 0, 0, 4-~/~j on the 
imaginary axis. The closed-loop stability robustness is to be analyzed for a partic- 
ular controller given in state-space form as 

where 

Xc = Acxc + Bcy 

u = Ccxc 

I 0.1250 -0.2879 1.0587 0.0076-] 
-0 .1116 -0 .5530 -0.0524 0.99321 

Ac = -2.5747 1.8080 -2.1485 - 0 . 2 7 7 4 |  
1.0069 - 1.1966 0.0042 0.0005 J 

B c =  [0.1946 0.6791 -0.0359 0.2013] r 

Cc = [-1.5717 0.7722 -2 .1450 -0.2769] 

The nominal closed-loop system has eigenvalues at s = -0.2322 4- 0.1919j, 
-0.4591 4-0.3936j, -0.4251 4- 1.3177j, and -0.1717 4- 1.4312j. The nominal 
closed-loop system has a 6.1-dB gain margin and a 34-deg phase margin. Root loci 
vs overall loop gain cross the imaginary axis at o9 = 0.747801 rad/s (Kc = 2.0198) 
and 09 = 2.811543 rad/s (Kc = 247.8). As was discussed earlier, this system 
becomes unstable at these two critical frequencies for all possible variations of 
ml, m2, and k. 

The critical frequencies can also be identified by solving Eq. (2.136) or Eq. 
(2.142), and ~c(ogc) and the corresponding E can be found as 

o9~ = 0.747801, K(og~) = 0.459848, E = diag(1, 1, - 1 )  

ogc = 2.811534, x(og~) = 0.586918, E = diag(-1,  - 1 ,  1) 

Note that ogc = 0 is always a critical frequency, and the corresponding K(0) can be 
found as K(0) = 1 for this example. Thus, the oo-norm real parameter margin for 
the system becomes 

K* = infK(ogc) = 0.459848 
~0 c 

and the instability occurs at the critical corner at 

(81, 82, 83)= (0.459848, 0.459848, -0.459848) 

The corresponding critical parameter values are 

(rnl, m2, k ) =  (1.459848, 1.459848, 0.540152) 

The real parameter robustness measure K(og), which is discontinuous in fre- 
quency, is shown Fig. 2.27. Because the system becomes unstable only at the two 
nonzero critical frequencies for all possible real parameter variations, tc(og) = 1 at 
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Real Parameter Robustness Measure vs Frequency 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

K:*= 0.4599 
4 % =  0.7478 

0.5 I 1.5 2 2.5 

rad/s 

V 

Fig. 2.27 Real parameter robustness measure K(~o) for a conservative case (c = ~ = 0). 

all other frequencies. This corresponds to the trivial case where some or all of the 
parameter values become zero. 

Nonconservative case. To assess any practical significance of including 
passive damping, nonconservative cases have been studied in Ref. 19. The study 
results show that the critical instability occurs at one of the comers of the parameter 
space hypercube for cases in which the damping constant c is assumed to be a 
known nonzero constant. For cases in which the damping coefficient c is actually 
modeled as one of four uncertain parameters (~ = 4), the study results of Ref. 19 
also show that the critical instability occurs at one of the corners of the parameter 
space hypercube. For all these cases, real parameter margins are very close to the 
zero-damping case of 0.459848. Therefore, for a certain class of structural dynamic 
systems with small passive damping, the computational complexity of the real/z 
problem may be avoided by modeling the system as a conservative plant, without 
loss of any practical significance. 

Problem 
2.28. For the example problem considered in this section, generate l / /z plots 
using the ssv.m file of MATLAB Robust Control Toolbox for the following two 
cases"  

(a) A conservative plant with c = 0. 
(b) A nonconservative plant with ~ = 0.02. 

Discuss the results by comparing the 1//~ plots with the real parameter robustness 
measure ic(o9) shown in Fig. 2.27. 

2.6.4 Two Real Critical Constraints 

A concept of two real critical constraints is introduced here to solve the prob- 
lem of determining the largest stable hypercube in parameter space that touches 
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the stability boundary on one of  its corners. The concept is based on sufficient 
conditions for checking for critical instability only in the corner directions of  the 
parameter space hypercube. 2° 

Two real critical constraints. Consider a characteristic polynomial 4Ks; 6) 
with the real perturbation vector 6 ---- (31 . . . . .  3e). The nominal system with 6 = 0 
is assumed to be asymptotically stable. Then, there exists an n x n rational matrix 
M(s) and a diagonal matrix A ~ X such that 

~b(s; 6) = 4ffs; 0) det[I - M(s )A]  (2.150) 

and 

&' = {A : A = diag(6ili), i = 1 . . . . .  £} (2.151) 

where Ii denotes an mi × mi identity matrix and 
£ 

y ~ m  i ~ n  
i=1 

Consequently, the critical stability constraint equation 

dp(jw; 6) = 0 (2.152) 
can be rewritten as 

det[I - M ( j w ) A ]  = 0 (2.153) 

because 4~(jw; 0) # 0 for all w. 
The real parameter robustness measure r(w) and the real structured singular 

value measure/z(w) associated with the critical constraint equation (2.153) are 
then defined as 

x(w) =_ 1/#(w) 

= inf{K : d e t [ I - - M ( j w ) A ] = 0 , 6 ( A ) < x }  
Aft2( 

= sup{x : d e t [ I - - M ( j w ) A ] ¢ 0 , • ( A ) < x }  
A~2( 

where k '  is the set of  all repeated blocks defined as Eq. (2.151) and 6 (A)  denotes 
the largest singular value of A.  The real parameter margin x* and the associated 
real structured singular value/z* are defined as 

x* _= 1/#* = infx(w) (2.154) 
0)  

and the corresponding uncertain parameter vector is called the critical parameter 
vector and is denoted by 6". 

The critical stability constraint equation (2.152) or (2.153) is a complex con- 
straint. We now exploit the idea of  separating the real and imaginary parts of  the 
constraint equation (2.152), as follows: 

Re[~b(jw; 6)] = fl(w)dpl(w; 6) = 0 (2.155a) 

Im[~b(jw; 6)] = fz(w)4~z(w; 6) = 0 (2.155b) 

where fl  (co) and f2(co) are polynomials that are independent of  6 and ~bl (w; 0) ¢ 0 
and ~bz(w; 0) ~ 0 for all ~o > 0. 
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Because there exist real rational matrices M1 (to) and M2(to) such that 

(pi(to; 6) = ~bi(to; 0) det[I - Mi(to)Ai],  i = 1, 2 

we have the following two real critical constraints 

f i  (to) det[I - M1 (to)Ai] = 0 

f2(to) det[I - M2(to)A2] = 0 

with 

(2.156) 

(2.157a) 

(2.157b) 

t'~i "= {1~i : /%i -~" diag(Sijlij), ~ij E ~ ,  j = 1 . . . . .  e i}  (2.158) 

where {~ l j ,  j = 1 . . . . .  ~l} and {82j, j = 1 . . . . .  £2} are two subsets of  {8i, i ---- 
1 . . . . .  £}, and Iij is an mij x mq identity matrix with 

~-'~mij = ni, i = 1, 2 
j= l  

Because polynomials with coefficients linearly dependent on uncertain param- 
eters 8i can be expressed in a form with rank-one matrices Ml(to) and M2(to), 
the critical stability constraint (2.152) of an interval polynomial or a polytopic 
polynomial can be expressed as two real critical constraints of  the form of Eqs. 
(2.157) with rank-one matrices Ml(to) and M2(to). 

A frequency at which the two real critical constraints (2.157) reduce to a single 
constraint is called the degenerate frequency, and the real nonnegative roots of  the 
polynomials fl(to) and f2(to) of  Eqs. (2.157) are the degenerate frequencies that 
cause isolated discontinuities in/z(to). 

The two-constraint real /z  measure, associated with the two constraints (2.157), 
is defined as 

1 
= inf {#[diag(Al ,  A2)] : det[I - M I A I ]  = 0 

m2(to) ,,~x 

det[I - M 2 A 2 ]  = 0 }  (2.159) 

The single-constraint real ~ measures, /~l(to) and ~2(to), associated with each 
constraint in Eqs. (2.157), are defined as 

1 
= inf {~ (AI )  : det[I - M1A1] = 0} (2.160) 

~l(to) A,~x, 

1 
- inf {8(A2) : det[I - M 2 A 2 ]  = 0 }  (2.161) 

/*2(to) a2~x2 

The real ~ measure is related to the two-constraint rea l /*  measure and the 
single-constraint real /z  measures at each frequency to, as follows: 

{ /.tl2(to) if fl(to) ~6 0, f2(to) # 0 
~(to) = ~ ( t o )  if fl(to) # 0, f2(w) = 0 (2.162) 

>2(to) if fl(to) = 0, f2(to) # 0 

where fl(to) and f2(to) are the two polynomials defined as in Eqs. (2.155). 
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Let S = {t~i, i ----- 1 . . . . .  £}. Also let S] and ,92 be two subsets of  S, and 
Sl tO $2 = S. If  SI A ,92 # 0 we define the restricted parameter vector p in 
$1 f) $2, as follows: 

P = (P l  . . . . .  Pro), Pi • SI  I") $2 ,  i = 1 . . . . .  m (2.163) 

The restricted parameter vectors associated with #1 and/*2 are denoted by Ps, and 
P.,'2, respectively. 

If  SI A $2 = 0, the real/z* can be found as 

/z* = sup/zl2(w) = max { sup/xl(w), to sup/z2(w) } (2.164) 

If /zl  (Wc) = #2(we) at some critical frequencies we, and if the restricted param- 
eter vectors in Sl N $2, associated with/zl (Wc) and/z2(~o~), become p.,.~ = P.,'2, then 
the real/z* is 

/z* = sup/LI2(O.) ) = max Izl(Wc) = m a x / L 2 ( O ) c )  (2.165) 
tO toe tOc 

Sufficient conditions for corner property. If  the critical instability of  the 
constraint (2.153) with possible repeated entries in A occurs at one of  the corners 
of  the parameter space hypercube, then 

to(w) = { ma~p[M( jw)E]}  -I (2.166) 

where p (ME)  denotes the maximum real eigenvalue of  ME and it is defined to be 
zero if ME does not have real eigenvalues. Also, the corner matrix, denoted by E, 
is defined as 

E = {E : E = diag(ei|i), ei = +1 or - 1, i = 1 . . . . .  e} 

The real parameter margin x*, or real #% is then determined as 

K* --= 1/Iz* = infx(og) 
to 

The corresponding critical corner matrix E* and critical comer vector e* are, 
respectively, given by 

E* = diag(eTIi) (2.167) 

* .. e~) (2.168) e* = (e~', e 2 , .  , 

Furthermore, the critical parameter vector 6* can be determined as 

c5" = K ' e*  

Note that, if E c E, then - E  e E and X(ME) = - X ( - M E ) ,  where X(ME) 
denotes the eigenvalues of  ME. Thus, K (w) defined as Eq. (2.166) is always positive 
real. 

We now summarize the sufficient condition for the corner property of  a multi- 
linearly uncertain system, as follows. 
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Theorem 2.1 

If  a multilinearly uncertain polynomial q~(jog; 6) is always valued as real at 
some frequency o9, then the critical instability at that frequency occurs at one of 
the corners of the parameter space hypercube x ' D ,  where ~ ~ x ' D ,  or - x *  _< 
3i < to* (i = 1, 2 . . . . .  £). 

For a multilinearly uncertain system, the single-constraint real p. must attain 
their values at one of the corner of  the parameter space hypercube K*D. Also, 
at the degenerate frequencies, the critical instability of  a multilinearly uncer- 
tain system occurs at one of the comers of the parameter space hypercube. At 
o9 = 0, the critical instability occurs at one of the comers of  the parameter space 
hypercube. 

Theorem 2.2 

Consider the two real critical constraints (2.157) with multilinearly uncertain 
parameters. 

1) Case 1 ($1 N $2 = 0): The critical instability occurs at one of the corners of  
the parameter space hypercube. 

2) Case 2 ($1 N ,92 ~ 0): If /zl  (w) and #2(W) plots intersect at some frequencies 
o9c, and if the restricted parameters vectors subject to $1 N S2, associated with 
#1 (ogc) and #2(o9c), become p.,., = Ps2, then the critical instability occurs at one of 
the corners of  the parameter space hypercube. 

I n t e r v a l  p o l y n o m i a l .  As an application of the concept of  the two real critical 
constraints, consider a family of real polynomials 

~b(s,a) = s n + a l s  " -1  + . . .  + a , _ l s  + a ,  (2.169) 

where a denotes the uncertain parameter vector and each uncertain coefficient ai 

has a prescribed interval as 

a ~  < ai < a +, i = 1 . . . . .  n 

The nominal values of  ai are assumed as 

1 + 
?ti = -~(a i + a ~ ) ,  

An interval polynomial with the normalized uncertain parameters 3i will be used 
in the subsequent discussion. 

A polynomial of the form of Eq. (2.169) whose zeros lie on the open left-half 
s plane is called a Hurwitz polynomial. Kharitonov's theorem provides a simple 
way of checking whether a given polynomial whose coefficients have prescribed 
intervals is a Hurwitz polynomial; however, it is not directly applicable to de- 
termining the size of  the largest stable hypercube in the coefficient parameter 
space. Now we employ /z l (w)  and /z2(w) to determine the real parameter mar- 
gin x* of an uncertain dynamic system described by an interval characteristic 
polynomial. 
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An interval polynomial can be transformed into the two real constraints with 
the rank-one matrices MI and M2. If  n is an even integer, we have 

Mi(0))----- ai/~T(0)) i =  1, 2 
gi(0))  ' 

A l  = diag(82, 84 . . . . .  8.), A2 = diag(81,83 . . . . .  8.-1) 

c~1 = cz2 = [1, 1 . . . . .  1] T 

.~1 -~" J~2 = [ - -  0 ) n - 2 ,  0 ) n - 4  . . . . .  __0)2,  (_l)n/2]T 
gl(0)) = _ton + fi20)n-2 . . . . .  (__l)n/2~n 

- n--4 g2(0)) = ¢]1 o ) n - 2  - -  a30) + . . . .  ( -1 )n /2g l (n -1 )  

Similar results can be obtained for the case of  odd n. 
Because M1(0)) and M2(0)) are rank-one matrices, we obtain the following 

theorem. 

Theorem 2.3 

The/*l  (0)) and/*2(0)) of an interval polynomial of the form of Eq. (2.169) attain 
their values at one of the comers of the parameter space hypercube, and then can 
be expressed as 

ctTEi/~i(0)) i = 1, 2 (2.170) 
/*i(0)) - -  g i (0))  ' 

where 

Ei  = s g n ( g i ) d i a g { s g n ( ~ i l ) ,  sgn(fli2) . . . . .  1}, i = 1,2 (2.171) 

~i j  is the j t h  element of  the column vector f l i ,  and sgn(.) denotes the signum 
function. The real parameter margin is then obtained as 

1 / x  * -~ It* = sup/*12(0)) 
o) 

= s u p {  °~T Elf l l  ( 0 ) ) o j  gl (0)) , o ~  E2f12(0)) } g 2 ( 0 ) )  (2.172) 

Proof ' .  Because / . i  (0)) and/*2(0)) attain their values at one of the corners of  the 
parameter space hypercube, we have 

/,/(0)) = max p[Mi(j0))Ei] ,  i = 1, 2 Ei ~ £i 
Because 

OLi (0))J~T (0))Ei 1 ]~/T (0))Ei oLi (0)) 
det ~ . I -  ~ = ~ - 

= ~. --  ° t ~ ( w ) E i / ~ i ( w )  

gi (0))  
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we have 

Let 

Izi(°)):max{ OtT(Og)Eit~i(09) } E , ~ $ ,  gi(09) 

Ei = sgn(gi) diag{sgn(/~il), sgn(/~i2) . . . . .  1 } 

then/zi(to) will attain their maximum values. 

Kharitonov's theorem. An alternative proof of Kharitonov's theorem using 
the concept of/zl( to)  and/z2(oJ) and Theorem 2.3 is given here. Without loss of  
generality, we consider the case of  even n. 

The uncertain parameter sets corresponding to/zl and #2 of an interval polyno- 
mial are disjoint; i.e., S1 N $2 = 0, and these disjoint parameter sets should have 
the same bound K*. Consequently, from Theorem 2.3, we have either 

/Z*-- OtlTEI/~l(O)c)= iot~E2/~2(~oC)l I I (2.173) 
g1(O9c) I I g2(°9c) 

or 

/~*- ctTE2l~2(°)C)g2(09c) I ~lrEl~l(°gc) [ g l  (~oc) (2.174) 

where Ei are defined as Eq. (2.171). 
For the case of  Eq. (2.173), the possible critical parameters are 

(82, 84 . . . . .  8n) = K*[sgn(/~ll), sgn(~12) . . . . .  1] r sgn(gl) 

(81,83 . . . . .  8.-1) = -4-tc'[sgn(/~21), sgn(/~22) . . . . .  1] r sgn(g2) 

which become 

(82, 84 . . . . .  8.) = r*[1,  - 1 ,  1 . . . . .  ( -1)" /2]  r sgn(gl) 

(81,83 . . . . .  8._1) = +r* [1 ,  - 1 ,  1 . . . . .  (-1)n/2] T sgn(g2) 

For the case of Eq. (2.174), the possible critical parameters are 

(81,83 . . . . .  8.-1) = K*[sgn(/~21), sgn(/~22) . . . . .  1] T sgn(g2) 

( 8  2 ,  8 4 . . . . .  8n) = -4-K*[sgn(flll), sgn(fll2) . . . . .  1] 7̀  sgn(gl) 

which become 

(81,83 . . . . .  8 . - t )  = K*[1, - 1 ,  1 . . . . .  ( -1)"/2]  T sgn(g2) 

(82, 84 . . . . .  8n) = +K*[1, --1, 1 . . . . .  (--1)n/2] T sgn(gl) 

There are a total of 16 combinations of possible critical parameters, but only 
4 of  them are different from each other. The four corner vectors of the parameter 



192 SPACE VEHICLE DYNAMICS AND CONTROL 

space hypercube for possible critical instability at a comer are then obtained as 

6 0) = [1, - 1 ,  - 1 ,  1 . . . . .  ( - 1 )  "/2+1, (-1)"/2]  r 

6 (2) = [1, 1, - 1 ,  - 1  . . . . .  ( - 1 )  "/2, ( -1)"/2]  r 

6 (3) = [ - 1, 1, 1, - 1  . . . . .  ( - 1 )  "/2, (-1)"/2+1] r 

6 (4) = [ -  1 , - 1 ,  1, 1 . . . . .  ( - 1 )  "/2+5, (-1)"/2+1] r 

where 6 = (81,82, 53, 84 . . . . .  8 , -5 ,3 , ) .  These are, in fact, Kharitonov's four cor- 
ners for the case of  even n, corresponding to the four extreme polynomials of  
Kharitonov's theorem discussed in Section 1.3.7. 

Poly topic  po lynomia l .  Consider a polynomial whose coefficients depend lin- 
early on the normalized, perturbation parameter vector ~ ~ K*~D: 

~b(S; ~ )  = S" + y ~  a i (O)S "-i  (2.175) 
i=1 

where 

ai(~) = a i + ~..~aijSj 
j = l  

and where aij are constants. The critical constraints can be written as Eq. (2.157) 
with the rank-one matrices M1 (w) and M2(o~) such that 

Mi(w) = Oti(t°)l~T (w) i = 1, 2 
gi(09 ) ' 

where gi((o) is a scalar function of  w, and ezi and/~i a r e  column vectors that are 
functions of w. 

Because of  the rank-one property of  M1 and M2, we obtain the following result. 

Theorem 2.4 

The two single-constraint real/2 measures of  a polytopic polynomial of  the form 
of  Eq. (2.175) will attain their values at one of the corners of the parameter space 
hypercube and can be expressed as 

/2 i (0))  : o~/T(o))Ei/0i(O)) i = 1, 2 (2.176) 
gi((.O) ' 

where 

Ei = diag{ sgn(otil fill) . . . . .  sgn(otiei 1~i£, ) }sgn(gi)  

1,2, and olij and flij a r e ,  respectively, the j th  elements of  the column f o r /  = 
vectors o~ i and fli. If/21 and/x2 intersect at some frequencies ~Oc and if Ps~ = Ps2 
at these frequencies, then the critical instability occurs at one of  the corners of  the 
parameter space hypercube. 
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Multilinearly uncertain polynomial For a general case of  multilinearly un- 
certain polynomial, we know/zl  (w) and/z2(w) will attain their values at one of  the 
corners of  the parameter space hypercube D at any frequency w. Consequently, 
we have the following theorem. 

Theorem 2.5 

The two single-constraint real/z measures will attain their values at one of  the 
corners of  the parameter space hypercube and can be expressed as 

/ / , i ( 0 ) )  = max p[Mi(w)Ei] ,  i = I, 2 
Ei EEl 

where 

g i = { E i  : Ei = d i a g ( e j I j ) ,  ej = + l  or - 1 ¥ j }  

and p(.) denotes the maximum real eigenvalue of  a matrix. If /zl  and/x2 intersect 
at some frequencies Wc and if Ps~ = Ps2 at these frequencies, then, the critical 
instability occurs at one of  the corners of  the parameter space hypercube. 

For a more detailed treatment of  robustness analysis and robust control, see 
Refs. 25 and 26. 

Problems 

2.29. Consider a polynomial whose coefficients linearly dependent on uncertain 
parameters 81 and 82 as follows: 

~b(S; 81,82)  = s 4 + (82 q- 3)s  3 -k- (81 -k- 5 .5)s  2 

+ (81 -~- ¢~2 + 4.5)s + 3~1 - 82 @ 5.5 

(a) Show that the two real critical constraints can be found as 

Re[•(jw; 6)] = 0 --+ fl(w)det[I1 - Ml(w)A1]  = 0 

Im[~p(jw; 6)] = 0 --+ f2(w) det[I2 - M2(w)A/]  = 0 

where 

and 

with 

f l  (o9) = 1, f2(~o) = 09, /~1 = "~2 = diag(S1, ~2) 

M i ( c o ) -  O~i(CO)/~/T(W) 

gi(09) 

Ot I = O1~ 2 = ( l ,  1) 

fll = ( 3 -  co 2, - 1 )  

/~2---~ (1, l --O92 ) 

g l  (CO) = --O94 ~- 5.5092 --  5 .5  

g2(09) = 3092 --  4 .5  
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(b) Verify tha t / z l  and/z2  are 

~ l  (0)) = 

SPACE VEHICLE DYNAMICS AND CONTROL 

Pl  = 800(1 + 61) , 

P2 = 4 + 62, 

P3 = 6 + 63, 

The  c losed - loop  character is t ic  po lynomia l  is 

13 - 0)Zl + 1 

I - -  0)4 "1- 5 . 5 0 )  2 - -  5 . 5  I 

I1 - 0)21 + 1 
//'2(0)) = 

130) 2 - 4.51 

and that  the cri t ical  corner  matr ices  of  #1 (0)) and/z2(w)  are 

E1 = diag{sgn(3 - 0)2), _ 1 }sgn( -0)  4 + 5.50) 2 - 5.5) 

= diag{1, sgn(1 - 0)2)}sgn(3w2 - 4.5) 

(c) De te rmine  the real  pa ramete r  margin  K* as 

K* = 1///,12 = 1 / / Z l ( 0 ) c ) =  1/ /z2(0)c )=  0.75 

where  0)c = 1.4142 and also the cri t ical  parameter  values as 

(8~, 8~) = K'e* = r * ( 1 , - 1 )  = ( 0 . 7 5 , - 0 . 7 5 )  

2.30. Cons ide r  a f eedback  control  sys tem consis t ing of a p lant  t ransfer  funct ion 
G(s) and a compensa to r  K(s)  given by 

G(s) = Pl K(s)  = s + 2 
s(s + p2)(S + P 3 ) '  S + 10 

and where  the uncer ta in  parameters  are descr ibed  by 22 

1611 _< 0.1 

1621 _< 0.2 

1631 _< 0.3 

where  

~ ( s ; 6 1 , 6 2 ,  63)=s4+als3+a2s2+a3s+a4 

a l  = 2 0 + E 2 + E 3  

a2 = 124 + 1662 + 1463 + 6263 

a3 = 1040 + 80061 + 606z + 4063 + 106263 

a4 = 1600(1 + 61) 

The  uncer ta in  parameters  are normal ized  as 

81 = 61/0.1,  82 = 62/0.2, 83 = 63/0.3 

(a) Show that the two real cri t ical  constraints  can be obta ined as 

Re[~b(j0); 6)] = 0 ~ f l (0 ) )de t [ I i  -- M I ( 0 ) ) A I ]  = 0 

Im[q~(j0); 6)] = 0 --* f2(0)) det[I2 - Mz(0) )A2]  = 0 
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where 

and 

fl(09) ---- 1, f2(09) ---- o9 

A l = A 2 = A = diag(Sl, 32, 33) 

Mi(09) = -R i (09 )A~ l (09 )L i ( to ) ,  i = 1, 2 

R1(09)= - 3  o9 2 

[ 1 o] 
R2(09) = 12 - 0.2o9 2 - 1  

1 0 

160 1 -4.209 2]  
L1(09) = 0 0 0.0609 2 J 

o 1 
L2(o9) = 0 0.6 

A11(09) = [ (1600 - 124092 + 094)-I 0 0 ]  

A21 (o))= [ (1040 O20(o2)-I 0] 

(b) Verify the plots of  1//Zl (09) and 1/#2(09) as shown in Fig. 2.28. Also show 
that the critical comer  matrices are 

E~ = E~ = d i a g ( 1 , - 1 , - 1 )  

and the real parameter margin is 

x* = 1//z* = 1//Zl(09c) = 1//~2(tOc) = 3.4174 

where 09c = 8.2282. 

2.7 Robust Control of Uncertain Dynamic Systems 
In this section, which is based on Refs. 27-29, a design method is introduced 

that is particularly useful for uncertain structural dynamic systems with uncertain- 
ties in inertia, damping, and stiffness matrices. The method is based on the recent 
advances in the state-space solution to a standard Hoo control problem. By defining 
the structured parameter variations in terms of fictitious inputs and outputs for an 
internal feedback loop, the state-space solution to a standard Hoo control prob- 
lem is easily utilized. In this section, the concept of  the internal feedback loop, 
originally developed for uncertain systems described by first-order state-space 
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12 

1( 

Two Single Constraint Real p. Measures 

~ ~ ~ ~ l l / ~ t  2 • 

~ ¢~ = 8.2282 / 
X ~ K'= 3.4174 / 

2 4 rad/s 6 8 10 

Fig. 2.28 Plots of 1//~1 (to) and 1//~z (w). 

equations, is extended to uncertain dynamic systems described by second-order 
matrix differential equations. 

2. 7.1 Standard H~ Control Problem Formulation 

Consider a linear, time-invariant system described by 

i( t)  = Ax(t) + Bid(t) + B2u(t) 

z(t) = C,x(t) + Dlld(t) + D1Eltl(t) (2.177) 

y(t) = C2x(t) + D21d(t) + D22u(t) 

T~", d ~ T~ m~, u ~ ~m2, z ~ ~P~, and y ~ 7~m are, respectively, 

z,s,1 rP.,s, lrd,s,1 
y(s)j = Le2,(s) P2 (s)j Lu(s)J 

rol, Ol l rdu)l 

where Pij(s) are real-rational transfer function matrices and P(s) - [Pij(s)] is 
called the generalized plant, which may include the internal feedback loop model 
and frequency-dependent weightings, as will be discussed later in this section. 

For a linear system described by Eq. (2.177) or Eq. (2.178) with a feedback 
control logic of the form 

u(s) = -K(s)y(s)  (2.179) 

where x E 
the state, disturbance input, control input, controlled output, and measured output 
vectors. 

The transfer function representation of this system is given by 
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the closed-loop transfer function from d to z can be derived as 

Tzd(P, K) = Pll + P1zK[I - P22K]-lp21 (2.180) 

where K(s) is a compensator transfer function matrix to be synthesized. 
The Hoo-norm of a real-rational transfer function matrix T(s) is defined as 

IIT(s)llo~ : supO[T(jw)] (2.181) 
(O 

where 6[T(jw)] denotes the largest singular value of T(jw) for a given w. The 
H ~  space consists of functions that are stable and bounded. 

The design objective of standard H~o control problem is then to find K(s) 
such that the closed-loop system is stable and IITzd(P, K)lloo is minimized. An 
H ~  suboptimal control problem is to find a stabilizing controller K(s) such that 
IITzd(P, K)l[oo < y for some prespecified y ~ ~ .  

Using the input-output decomposition of structured plant parameter variations 
in terms of the fictitious inputs and outputs of an internal uncertainty loop to be 
discussed next, the state-space solution to the standard H~  control problem will 
be utilized to design parameter-insensitive controllers. 

2.7.2 Modeling of Structured Parameter Uncertainty 
Uncertainty modeling of linear systems. Consider an uncertain linear dy- 

namic system described by 

E~ = Fx + Gad + G , u  (2.182) 

where x, d, and u are the state, external disturbance, and control input vectors, 
respectively; Gd is the disturbance distribution matrix; G,  is the control input 
distribution matrix; and the matrices E and F are subject to structured parameter 
variations. 

Suppose that there are e independent, uncertain parameter variables 8i and as- 
sume that the perturbed matrices E and F in Eq. (2.182) can be linearly decomposed 
as follows: 

E = Eo + AE (2.183a) 

F = Fo + AF (2.183b) 

where Eo and F0 are the nominal matrices and AE and AF are the perturbation 
matrices defined as 

£ £ 

A E  E AEi(~i = Z l~ldl'(i)'~'l ]K]'(i) (2.184a) = "'~E v ~ r i ' ' E  = M E E E N E  
i=1 i=1 

£ e 

AF = Z AFiSi = E M(i)8'IF t u,N ~i)F : MFEFNF (2.184b) 
i=1 i=! 

where xi is the rank of AEi, vi the rank of zXFi, and CE and EF are diagonal 
matrices with Si as their diagonal elements. If xi = vi = 1 for i = 1 . . .  ~, i.e., a 
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special case of rank-one dependency, M (/) and M~ ) become column vectors and 
N~ ) and N~ ) become row vectors. In thiscase, there are no repeated elements ~i 
in £e and EF. 

Let 

£ ~ diag{Ee, EF} (2.185a) 

=_ =[N xJ (2.185b) 

tl =a _ g~ (2.185c) 

where a is called the fictitious disturbance input, i the fictitious output, and g the 
gain matrix of a fictitious internal uncertainty loop, which is caused by uncertainty 
in the matrices E and F. Then, substituting Eqs. (2.183) into Eq. (2.182), we 
obtain 

Eo~ = Fox + Gad + Gad + Gun (2.186) 

where G~, the fictitious disturbance distribution matrix, is defined as 

G a =  [Me  --MF] 

Defining the controlled output vector as 

z 

and introducing new variables 

we obtain a modified state-space representation of the system as follows: 

~ = Ax + Bid + B2u (2.187a) 

= CIX + DIll] -k- D12H (2.187b) 

where 

A = EolFo, B1 = EoI[G3 Gd], B2 = EolGu 

- NEEolFo" [God Gd 

NF , Dll = NEEo 1 0 
CI = Cll o L ° °  o 

F NEEo IGu 

DI2 = [ i 

Note that Dll = 0 if there is no uncertainty in E. 
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Uncertainty modeling of structural dynamic systems. Consider an uncer- 
tain structural dynamic system described by 

M/i + D/I + Kq = Gad + G,u (2.188) 

where q is the generalized displacement vector, M the mass matrix, D the damping 
matrix, K the stiffness matrix, Gd the disturbance distribution matrix, G, the 
control input distribution matrix, d the external disturbance vector, and u the 
control input vector. 

Suppose that matrices M, D, and K are subject to £ independent parameter vari- 
ations represented by 8i, i = 1 . . . . .  £. Then the perturbed matrices in Eq. (2.188) 
can be linearly decomposed as 

M = Mo + LMAMRM 
D = Do + LD~DRD (2.189) 
K = Ko + L K A K R K  

where AM, AD, and A K are diagonal matrices with independent parameter varia- 
tions 8i as diagonal elements. The first matrices in the right-hand side of Eq. (2.189) 
are the nominal matrices and the second ones are the perturbation matrices, which 
are linearly decomposed. 

Define 

A = diag{A M, /~O, AK} (2.190a) 

~= % - [ R o q l  (2.190b) 
i r  L Rrq ] 

a = A i  (2.190c) 

where a is the fictitious input, i the fictitious output, and A the gain matrix of 
internal uncertainty loop. Substituting Eq. (2.189) into Eq. (2.188), we obtain 

M0q + Do/l + K0q = G~a + Gad + G,u (2.191) 

where G~, called the fictitious disturbance distribution matrix, is defined as 

G3 = [--LM, --LD, -LK] (2.192) 

Let the state vector and controlled output vector be defined as 

X= [.qq] (2.193a) 

z = [ C ~  ' C~z] [~. ] + [ O ] u  (2.193b) 

Then the parametric variations are incorporated into the standard state-space for- 
mulation by introducing new variables 

a = [ ~ ] ,  i = [ : ]  (2.194) 
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The resulting, modified state-space representation is then given by 

i(t) = Ax(t) + Bid(t) + B2u(t) 

i(t) = ClX(t) + Dlld(t) + Dl2U(t) 

y(t) = CEX(t) + DEld(t) + DE2U(t) 

where 

0 
A = _MolKo 

BI = [Mo0G3 Mo0Gd ] ' 

[ RMMo'Ko 

- RM M o I G~ 

0 
Dll = 0 

0 
0 

-RMMolGu 
0 

O12 --~ 0 

0 
I 

_.Ioloo] 

-RMMo 1D0 ] 

? J  
RMMoIGd 

0 
0 
0 
0 

If there is no uncertainty in the mass matrix M, then Du = 0. 

2.7.3 Robust H~ Compensator Design 
Consider an uncertain linear system described by 

[~(s)l rP,,(~) P,~(s)IFa(s) l 
y(s)J = LP=,(s) P2z(s)J Lu(s).] 

where 

D,21 ra(,)l 

(2.195) 

(2.196) 
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--]1~ 

~[ G n G12 GI3 
d i G21 {322 GZ3 =z 

,, -] G31 G32 G33 

Fig. 2.29 Overall closed-loop system with internal uncertainty loop. 

and x ~ R", a 6 "]'~rnl, U E ~'~m2, ~ E Z~ pl , and y 6 Z~ p2 are, respectively, the 
state, augmented disturbance input, control input, augmented controlled output, 
and measured output vectors. Furthermore, the fictitious disturbance input (] and 
the fictitious output i are defined as 

d = A i  

where A is the gain matrix of the internal uncertainty loop. 
This uncertain system to be controlled can also be described by 

= /G21 G23 / 
L G31 G33 J 

(2.197a) 

where K(s) is a feedback compensator to be designed. The overall system described 
by Eqs. (2.197) is visualized in Fig. 2.29. 

After closing the control loop with a stabilizing controller K(s), we obtain the 
following representation of the closed-loop system (but with the internal uncer- 
tainty loop broken): 

where 

i = T~¢] (2.198) 

[T~a T~a] FTll T]2] 
T~;t = k Tz3 Tzd ~ LT21 T22J 

TII = Gl] - GI3K(I + G33K)-lG31 

T12 = GI2 - G13K(I + G33K)-IG32 

T21 = G2] - G23K(I + G33K)-IG31 

T22 = G22 - G23K(I + G33K)-IG32 

(2.199a) 

(2.199b) 

(2.199c) 

(2.199d) 

(2.199e) 

a = A i  (2.197b) 

u = -K(s )y  (2.197c) 
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The actual closed-loop transfer function matrix from d to z under plant pertur- 
bations becomes 

Tzd = T22 + T21A(I  -- T I I A ) - I T I 2  (2.200) 

The following two theorems provide sufficient conditions for stability/perfor- 
mance robustness. 29'3° 

Theorem 2.6 Stability R o b u s t n e s s  

I f  IITll(s)lloo < y,  then Tzd(S, aA)Vot  E [0, 1] is stable for IIAII _ y -1 .  

Theorem 2.7 Performance Robustness 

I f  IITzalloo < Y, then Tzd(S , o~A) VtX E [0, 1] is stable and IITzd(S, o~A)lloo < × 
Vo~ ~ [0, 1] with IIAII _< y- l .  

Because T11 can be represented as 

Tll : o [T, [I] ' 
we have IITll I1~ -< IITeall~. Consequently, if the condition in Theorem 2.7 is 
satisfied, i.e., IIT~ [l~ < Y, both stability and performance robustness will be 
achieved with respect to bounded uncertainty IIAII _< y-~. 

Theorem 2.8 Ho~-Suboptimal Controller 
This theorem from Ref. 29 provides a robust Ho,-suboptimal controller, which 

satisfies the condition in Theorem 2.7. 
Consider a linear system described by Eq. (2.196). Assume the following: 
1) (A, B2) is stabilizable and (C2, A) is detectable. 
2) DIT2[cI DIE ] = [0 I ] .  
3) 

4) The rank of  PI2(jco ) and P21(jco) is m 2 and P2, respectively, for all co. 
5) Dll = 0 and D22 = 0. 
There exists an internally stabilizing controller such that IIT~,~ 11oo < F, if and 

only if the following Riccati equations 

0 = A T x  + XA - X(B2B2 r - v -aB1BT)X + CITC1 (2.202) 

0 = AY + YA r - Y(C~'C2 - y-2CITC1)Y + B1B~" (2.203) 

have solutions X and Y. An Hoo-suboptimal controller that satisfies IIT£,~ Iloo < Y, 
where y is a design tradeoff variable specifying an upper hound of the perturbed 
closed-loop transfer matrix T£a, is then obtained as 

= Ac:~ + Ly (2.204a) 

u = - K i  (2.204b) 
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where 

K = B2rX (2.205) 

L = ( I -  y - 2 y x ) - I Y C ~  (2.206) 

Ac = A + y-2BlBlrX - B2K - LC2 (2.207) 

and ~ represents the controller state vector. 

The closed-loop system (neglecting all of the external inputs) is then described 
a s  

Note that the Hot controller has a structure similar to a conventional state-space 
controller, consisting of an estimator and a regulator, but is designed for a plant 
system matrix 

A + y-2B1BirX 

Consequently, the separation principle of the conventional LQG technique does 
not hold here. 

Relaxing the assumptions in Theorem 2.8, especially Dll = 0, will significantly 
complicate the formulas. 3° 

2. 7.4 Benchmark Problems for Robust Control Design 
Simple, yet meaningful, control problems used to highlight issues in robust 

control design and to provide a forum for the application of a variety of robust 
control design methodologies were formulated by Wie and Bernstein 31 in 1990. 
These problems were then refined and addressed as benchmark problems for ro- 
bust control design, and various solutions to these problems were presented at 
the American Control Conferences in 1990-1992. The original three problems 
are concerned with a disturbance rejection control problem in the presence of 
parametric uncertainty. These problems were later augmented with a command 
tracking control problem in the presence of plant modeling uncertainty. 31 For this 
fast tracking problem, the control input saturation limit is specified explicitly. 

A special section of the Journal of Guidance, Control, and Dynamics (Vol. 15, 
No. 5, 1992) was devoted to the 11 different control designs for the original three 
benchmark problems. 31 See Thompson 32 for further discussion of these various 
solutions to benchmark problems. 

It is emphasized that in the statement of problems, certain aspects, such as 
parameter uncertainty with given nominal parameter values and nominal desired 
performance, are specified concretely, whereas other aspects, such as the sensor 
noise model, definition of settling time, measure of control effort, controller com- 
plexity, bandwidth, etc., are deliberately left vague. Each designer is thus given the 
opportunity to emphasize additional design tradeoffs for a realistic control design 
as desired. 
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Contr°ller d 1 ~.~ d2 ~-~ 

Fig. 2.30 Noncollocated control of the two-mass-spring system. 

Problem 
2.31. Consider the two-mass-spring system shown in Fig. 2.30. It is assumed 
that for the nominal system, m l = rn2 ---- 1 and k = 1, with appropriate units 
and time in seconds. A control force acts on body 1 and the position of  body 2 is 
measured, resulting in a noncollocated control problem. 

This system can be represented in state-space form as 

E IF o l°lEx 1 Jr2 = 0 0 0 1 X 2 
Jc3 - k / m l  k/ml 0 0 x3 
J¢4 L k/m2 -k /m2  0 0 x4 

io70 o] (U + dl ) + 0 d2 
+ 1/oral 1/m2 

y = x 2 q-- noise 

Z : X 2  

where xl and x2 are the positions of body 1 and body 2, respectively; x3 and x4 
are the velocities of  body 1 and body 2, respectively; u is the control input acting 
on body 1; y is the measured output; dl and d2 are the plant disturbances acting 
on body 1 and body 2, respectively; and z is the output to be controlled. 

The transfer function description of  the plant is 

k 
y(s) 

s2[mlm2s 2 + k(ml + m2)] u(s) 

Constant-gain linear feedback controllers are to be designed for the following 
four different problems: 

(a) For a unit impulse disturbance exerted on body 1 and/or body 2, the controlled 
output (z = x2) must have a settling time of about 15 s for the nominal system with 
ml = m2 = k = 1. The closed-loop system should be stable for 0.5 < k < 2.0 and 
ml = m2 = 1. The sensor noise, actuator saturation, and high-frequency rolloff 
must be considered to reflect practical control design tradeoffs. 

(b) Maximize a stability robustness measure with respect to the three uncertain 
parameters ml, m2, and k whose nominal values are ml = m2 = k = 1. For a unit 
impulse disturbance exerted on body 1 and/or body 2, the controlled output must 
have a settling time of  about 15 s for the nominal system with ml = m2 = k = 1. 
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(c) There is a sinusoidal disturbance with known frequency of  0.5 rad/s acting 
on body 1 and/or body 2, but whose amplitude and phase, although constant, are 
not available to the designer. The closed-loop system must achieve asymptotic 
disturbance rejection for the controlled output with a 20-s settling time for ml = 
m 2 =  l a n d 0 . 5 < k < 2 . 0 .  

(d) Design a feedback/feedforward controller for a unit-step output command 
tracking problem for the controlled output, z, with the following properties: 1) the 
control input is limited as l ul _< 1; 2) settling time and overshoot are both to be 
minimized; 3) performance robustness and stability robustness with respect to the 
three uncertain parameters ml, m2, and k (with the nominal values of rnl = m2 = 
k = 1) are both to be maximized; and 4) if there are conflicts between properties 
2 and 3, then performance vs robustness tradeoffs must be considered. 
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Part 2 
Orbital Dynamics and Control 



3 
Orbital Dynamics 

Orbital dynamics* is concerned with the orbital motion of space vehicles under 
the influence of gravitational and other external forces. It is founded on the basic 
physical principles of  celestial mechanics, t which is concerned with the natural 
motion of planets or celestial bodies. Newton's  laws of motion and law of grav- 
ity, as well as Kepler 's three laws of planetary motion, provide the fundamental 
framework of both disciplines and were discussed in Chapter 1. 

This chapter is primarily concerned with the orbital motion of a particle in a 
gravitational field. Fundamental problems of orbital mechanics, such as the two- 
body and restricted three-body problems, are treated. This chapter also provides 
the foundation for the further study of orbital maneuvering problems, interplan- 
etary mission analysis, and halo orbit control problems to be treated in the next 
chapter. 

3.1 Two-Body Problem 
In this section, we consider the simplest problem in orbital mechanics, that 

is, the dynamic problem of two point masses under the influence of their mutual 
gravitational attraction. Such a problem is called the two-body problem in celestial 
mechanics. Using Newton's  laws of motion and law of gravity, we will formulate 
the two-body problem and verify Kepler 's three empirical laws of  planetary motion, 
which are stated as follows: 

1) The orbit of  each planet around the sun is an ellipse, with the sun at one focus 
(the law of orbits). 

2) The radius vector from the sun to a planet sweeps out equal areas in equal 
time intervals (the law of areas). 

3) The square of the orbital period of a planet is proportional to the cube of its 
mean distance from the sun (the law of periods). 

These three empirical laws, with the first two laws published in 1609 and the 
third law in 1619, were used later by Newton to deduce his law of gravity. 

Kepler 's  three laws of planetary motion describe the motion of planets around 
the sun, which is considered to be inertially fixed. In this chapter, we shall derive 
these laws of planetary motion by applying both Newton's  laws of motion and 
law of gravity to the general two-body problem in which the primary body is not 
assumed to be inertially fixed. 

* The terms "orbital dynamics," "astrodynamics," "orbital mechanics," "spaceflight dynamics," and 
"astronautics" are often used interchangeably in the literature. 

tThe term "celestial mechanics" was introduced by Pierre-Simon de Laplace (1749-1827). He 
showed that the secular variation of Jupiter and Saturn, which was observed by Edmond Halley (1656- 
1742) in 1695, was actually periodic, with Jupiter and Saturn returning to their initial positions every 
929 years. 

209 
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I 
Inertial / / ~ , ~  ra, 

/ - 

Fig. 3.1 Two-body problem. 

3.1.1 Equation of Relative Motion 

Consider two particles of masses ml and m2 with position vectors /~1 and /~2, 
respectively, in an inertial reference frame, as shown in Fig. 3.1. 

Applying Newton's  second law and his law of gravity to each mass, we write 
the equations of  motion as 

"" Gmlm2 
m l R l  = - t - ~ - -  F (3.1) 

:~ Gmlm2  
m2R2 = - - r  (3.2) 

1.3 

where 7 = /~2 - / ~ 1  is the position vector ofm2 from ml,  r = [F],/~i = d z R i / d t  z 
is the inertial acceleration of the ith body, and G = 6.6695 × 10 -11 N .  mZ/kg 2 is 
the universal gravitational constant. 

This nonlinear dynamic system with six degrees of  freedom can also be described 
by two decoupled sets of equations of motion as follows. By adding Eqs. (3.1) and 
(3.2), we obtain 

z.; z; 
ml R1 + m2Rz = 0 (3.3) 

Defining the position vector /~c to the system center of  mass as 

/~c = ml/~1 + m2 R2 (3.4) 
ml + m2 

we obtain 

Rc = 0 (3.5) 

which can be integrated as 

Rc(t)  = Rc(O) = constant vector (3.6) 

Rc(t) = Rc(O) + Rc(O)t (3.7) 

where /~c(0) and Rc(O) are the position and inertial velocity of  the system center 
of  mass at t = 0. Thus, one-half of  the 12 states of  this dynamic system have 
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been solved. The remaining 6 states of the system can be solved by considering 
the relative motion of  the two masses. 

Subtracting Eq. (3.1) times m2 from Eq. (3.2) times m l, we obtain 

:: F 
r + /zT~ 3 = 0 (3.8) 

where ~ = d 2 F/dt 2 is the inertial acceleration of  m2 with respect to ml, r = IF[, 
and/z = G(ml + m2) is called the gravitationalparameter of the two-body system 
under consideration. Equation (3.8) describes the motion of m2 relative to ml in 
an inertial reference frame, and it is the fundamental equation in the two-body 
problem. 

In most practical cases of  interest in orbital mechanics, the mass of the primary 
body is much greater than that of the secondary body, i.e., ml >> m2, which results 
in/~ ~ Gml. For example, for a sun-planet system, we have/z ~ /z 0 --= GM o, 
where/z 0 denotes the gravitational parameter of  the sun and M 0 denotes the mass 
of  the sun. Also, for an Earth-satellite system, we have/z ~ / z ~  -- GM~, where 
/z~ denotes the gravitational parameter of the Earth and M e denotes the mass of  
the Earth. It is worth emphasizing that the primary body is not inertially fixed in the 
two-body problem. The two-body problem must be distinguished from a so-called 
restricted two-body problem in which the primary body of  mass m l is assumed 
to be inertially fixed. Such a restricted two-body problem is often described by 
central force motion of a particle of mass m2 around the inertially fixed primary 
body of  mass ml. 

3.1.2 Conservation of Energy 
From our basic knowledge of  dynamics, we know that the two-body system 

is a conservative system. That is, the mechanical energy of the system, which 
is the sum of kinetic and potential energy, remains constant. Such a principle of  
conservation of  energy for the two-body system can be derived as follows. 

Taking the dot product of  Eq. (3.8) with 7 yields 

which can be written as 

; -  ; -F ( /z/r3)7 • ; = 0 (3.9) 

l d ( ~ .  ~) + ~3r/. = 0 
2 dt 

This equation can be rewritten as 

d = 0 or . . . .  const (3.10) 
dt 2 r 

where v m I ~1 = I~1 = ~ • ~. Finally we obtain the energy equation 

u 2 /z 
- -  E ( 3 . 1 1 )  

2 r 

where the constant E is called the total mechanical energy per unit mass or the 
specific mechanical energy, v2/2 is the kinetic energy per unit mass, and - ~  / r is 
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a potential energy per  unit mass. This equation represents the law of conservation 
of energy for the two-body system. 

Given the specific (mechanical) energy g, the orbital velocity v can be expressed 
a s  

v = x/21z/r + 2E (3.12) 

The magnitude of a velocity vector is often called the "speed" The term 
"velocity" is, however, used loosely in the same sense throughout this book. 

3.1.3 Conservation of Angular Momentum 
From our basic knowledge of dynamics, we also know that the angular momen- 

tum of the two-body system must be conserved because the gravitational force is 
an intemal force and there is no external force acting on the two-body system. 
Such a principle of conservation of angular momentum for the two-body system 
can be derived as follows. 

Taking the cross product of Eq. (3.8) with F, we have 

F 
r x r + r x/z~-~ = 0 (3.13) 

which can be written as 

d (F x ) )  = 0 (3.14) 
dt 

Defining the angular momentum per  unit mass or the specific angular momentum 
a s  

fi= Fx Fx (3.15) 
we obtain 

aft 
- -  = 0 or h = constant vector (3.16) 
dt 

Thus we have the law of conservation of angular momentum for the two-body 
system. Because h is the vector cross product of F and ~, itis always perpendicular 
to the plane containing F and ~. Furthermore, because h is a constant vector, F 
and ~ always remain in the same plane, called an orbital plane. Therefore, we 
conclude that the orbital plane is fixed in space and the angular momentum vector 
/~ is perpendicular to the orbital plane. 

3.1.40rbitEquation 
Thus far we have found two constants of the two-body system: the specific 

energy constant £ and the specific angular momentum constant h. Kepler's first 
law can now be verified by deriving the equation of a conic section as a partial 
solution to the equation of relative motion, as follows. 

Taking the post-cross product of Eq. (3.8) with/~, we have 
.. ~* 

x /~+/Zr-~3 x /~----0 (3.17) 
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which can be written as 

d • 
d t  [7 x /~ - ( /z / r )F]  = 0 

because 

(3.18) 

F x h = F x (F x F) = (F. F )F -  (F. F)F (3.19) 

Integrating Eq. (3.18) gives 

ar x fz - ( I z / r ) f  = constant vector = / z E  (3.20) 

where a constant vector # E is introduced and E is called the eccentricity vector. 
Note that the constant vector/z E can also be written as 

/zE= Fx /~-/zF- = ~ x ( F x  ~)--r/Z* 
r r 

= Iv 2 -- ( / z / r ) ]7 - -  (F .  ~)~  

Taking the dot product of  Eq. (3.20) with F gives 

F. F x h -  F. ( Iz /r )F = F. IzE (3.21) 

Because F. ~ x /~ = (F x ~ ) . /~  = h 2, Eq. (3.21) becomes 

h 2 - lzr = lzre cos 0 (3.22) 

where h ~ I/~1, e ~- I el, and 0 is the angle between F and E. The angle 0 is called 
the true anomaly (the classical term "anomaly" is interchangeable with the term 
"angle"), and e is called the eccentricity of the orbit. 

3.1.5 Kepler's First Law 
Equation (3.22) can be further transformed into the orbit equation of the 

form 

h2/# 
r -- (3.23) 

1 + e c o s 0  

which can be rewritten as 

P r - (3.24) 
1 + ecos0  

where p, called the parameter, is defined as 

p = h 2 / l z  (3.25) 

Equation (3.24) is the equation of a conic section, written in terms of  polar 
coordinates r and 0 with the origin located at a focus, whereas 0 is measured from 
the point on the conic nearest the focus. This equation is, in fact, a statement of  
Kepler's first law: the orbit of each planet around the sun is an ellipse, with the 
sun at one focus. The size and shape of  the orbit depends on the parameter p and 
the eccentricity e, respectively. 
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Problems 
3.1. Consider the total kinetic energy of  the two-body system shown in Fig. 3.1, 
defined by 

T =  1 / ~ 1 " / ~ 1 +  I -~ $ml 7m2R2" R2 

Show that this total kinetic energy can be written as 

1 1 ( mlm2 ~: .  :. 
. . . . .  ~ r .  r T = -~(ml + mz)Rc Rc + 

k, ml + m 2 ,] 

where /~c is the inertial position vector of  the system center of  mass and F = 
R 2 -  R1. 

Note: The first term on the right-hand side of  the preceding equation is the 
translational kinetic energy of the center of  mass of the two-body system• The 
second term is the rotational kinetic energy of  the two-body system about the 
system center of  mass. Because a potential energy of the two-body system is given 
by - G m l m 2 / r ,  we write the energy equation of  the two-body system (without 
including the translational kinetic energy of  the center of  mass of  the two-body 
system), as follows: 

l ( m~m2 ~O 2 Gm,m2 
- -- const 
2 \ m  I -{-m2.] r 

where v 2 --= I~l 2 = ¢ .  ¢. We can also rewrite the equation of relative motion, 
given by Eq. (3.8), as 

m l m 2  :; G m l m 2  
- - r + - - r = 0  
ml + m2 r 3 

where mlm2/(ml + m2) is called the reduced mass of  the system• 

3.2. Consider the two-body system described by the equation of  relative motion, 
7 + ( /z/r3)F = 0; the energy equation, v2/2 - Iz/r = g = const; and the angular 
momentum equation, h = F × ~ = constant vector, where/z  = G(ml + m2), 

r = IYl, and v = Ivl = I~1. 
(a) Using the fact that the orbital motion is confined to the plane containing F 

and ~, show that the equation of  relative motion can be written in terms of polar 
coordinates (r, 0), as follows: 

&: ~ -- rO 2 = --lz/r 2 

go: rO +2i'0 = 0 

Hint: As illustrated in Fig. 3.2, let gr and E0 be unit vectors along the radial 
vector direction and the transverse orbit direction, respectively, such that F = r Er, 
}r = 0 E0, and e0 = --0 er. 

(b) Show that the specific angular momentum, denoted by h = I/~1, can be found 
as 

h = r20  

Also verify that h is, in fact, constant. 
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• Local Vertical 

e ,  
~ ............ Local Horizontal 

Y 

Fig. 3.2 Orbital motion. 

(c) Show that the specific angular momentum can also be expressed as 

h = r v c o s y  

where ~/denotes theflight-path angle as shown in Fig. 3.2. 
(d) By eliminating the independent variable t of  the equation of motion using 

the result in (b), obtain 

1 d2r 2 ( d r ' ~ 2  1 # 

- r-S dO ----5 + -~ \ d O }  + -r = h --5 

which can be rewritten as 

dO 2 + -r -- h - 7  

Hint." From the equation in (b), we have 

d h d 

a-7() - 7 a 7 (  ) 
(e) The solution of the equation in (d) is, in general, given as 

1 /z 
7 = ~- + c cos (o + Oo) 

By measuring 0 from a point of  minimum distance from the origin of F, the 
constant 00 can be made to be zero. Determine the constant C as 

C = ~22~/1 -k- (2£h2//z 2) 

Hint: To determine the constant C in (e), use the energy equation for a special 
case of  0 = 0 and h = rp pp. 
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Also note that 

(f) Let p = h2/ l  z and also let e be defined as 

e = ~/1 + (2£h2/1~ 2) = ~/1 + (2£p/1~) 

then obtain the orbit equation of the form 

r = p / ( 1  + ecos0 )  

which is, in fact, the orbit equation derived in Sec. (3.1.4), whereas e is the eccen- 
tricity and p is the parameter introduced in Sec. (3.1.4). 

(g) Show that 

0 = x/c-~-p 3 (1 4- e cos0) 2 

f = ~ es in0  

t a n ) / =  e sin0/(1 + ecos0 )  

3.2 Geometry of Conic Sections 
This section is concerned with the geometric characteristics of conic sections, 

established by Apollonius,* that are important in orbital mechanics. The geomet- 
rical characteristics of  the conic sections are illustrated in Fig. 3.3. 

The equation of  a general conic section in terms of polar coordinates (r, 0) is 
given by 

r = p / ( 1  + ecos0 )  (3.26) 

where p is the parameter or semi la tus  rec tum and e is the eccentricity. The size of  
the conic section is determined by p and its shape is determined by the eccentricity 
e. Note that p is the radial distance r to a point on a conic section when 0 = 4-90 
deg. 

3.2.1 Ellipse 
For any point on the ellipse, the sum of its distance to two fixed points, called 

f o c i ,  is defined to be a constant 2a. One of  the foci is occupied by the primary 
attracting body and is called the true focus, whereas the other is called the empty 
focus. An ellipse can also be defined as the locus of  points whose distance from 
a focus is equal to its distance, multiplied by e, from a straight line known as the 
directr ix .  

*Apollonius, known as "the Great Geometer," was born in about 262 B.C. In his masterpiece, 
Conics, he showed that conic sections, such as ellipses, parabolas, and hyperbolas could be generated 
by taking sections of a circular cone by varying the inclination of the cutting plane. 
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a) Ellipse Parabola 
O < e < l  ~ a  = c =oo . . 

a 2 =  b 2 c  2 ~ , , , , ~ = I  Dlrecmx  r'e 1 
rp 

a(1- 

b) Hyperbola Asympt~: = I b I 
e > l  / j  ~- \ 

~ a , b ,  c < O  2 2 2 2 2 / , ~  K 

.... "'° +~ "° :-~/I- ......... '" 

i -b *"'""*" 

i - a  "'"... 

,. -a "" -a ~ \ \ . .  

I" a(1- e 

Asymptote 

Fig. 3.3 Geometric characteristics of the conic sections. 
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The eccentricity e of  the ellipse is defined as 

e = c /a  (3.27) 

where a is the semimajor axis and c is the distance from the center of  the ellipse to 
either focus, as shown in Fig. 3.3a. The ellipse is a conic section with 0 < e < 1. 
The circle is considered as a special case of an ellipse with e = 0. 

The semiminor axis b of the ellipse is expressed in terms of  a and e as follows: 

b = ax/1 - e 2 (3.28) 

because a,  b, and c of  the ell ipse are related as follows: 

a 2 = b 2 + c 2 

If  a line is drawn perpendicular to the major axis at the true focus, it will intersect 
any conic section at two points. The distance between these two points, denoted 
by 2p,  is called latus rectum, and p is called semilatus rectum or parameter. The 
parameter  p of  the ell ipse can be expressed in terms of a and e as 

p = a(1 - e 2) (3.29) 

because, for any point on the ellipse, the sum of its distance to two foci is defined 
as a constant 2a. 

Finally, the equation of  the ellipse can be expressed as 

a(1 - e 2 )  
r --  (3.30) 

1 + e c o s 0  

which is in terms of  the geometric constants a and e. (The specific energy £ and 
the specific angular momentum h are often referred to as the dynamic constants, 
whereas a and e are called the geometric constants.) 

The points in an orbit closest to and farthest from the focus of  gravitational 
attraction are called apsides. The point of the orbit nearest to the primary attracting 
body is called the periapsis and the point farthest from the primary body is called 
the apoapsis. The closest point of  the orbit to the Earth (sun) is called the perigee 
(perihelion), whereas the farthest point from the Earth (sun) is called the apogee 
(aphelion). The periapsis distance rp and the apoapsis distance ra of the ell ipse 
can be found as 

rp = a(1 - e) (3.31a) 

ra = a(1 + e) (3.31b) 

which are combined to give 

a = (rp + ra)/2 (3.32a) 

e = (ra - rp)/(ra + rp) (3.32b) 

3.2.2 Parabola 

A parabola is the locus of  points whose distance from a focus is equal to the 
distance from the directrix. The parabola is a conic section with a = c = oo 
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and e = 1; i.e., 

r = p / ( 1  + cos0)  

The parameter p of a parabola is equal to twice the periapsis distance; i.e., p = 2rp. 

3.2.3 Hyperbola 
The hyperbola is defined as the locus of  points such that the difference of  their 

distances from two fixed foci is a constant length - 2 a  (a < 0). For the hyperbola 
it is convenient to consider the semimajor axis a (also b and c) to be negative, 
as shown in Fig. 3.3b. The hyperbola has two branches that are separated by a 
distance - 2 c  (c < 0); only one branch is shown in Fig. 3.3b. 

As in the case of  ellipse, the eccentricity e of  the hyperbola is also defined as 

e = c / a  

and the hyperbola is a conic section with e > 1. 
The semiminor axis b of  the hyperbola can also be expressed in terms of the 

semimajor axis a and the eccentricity e as 

b = ax/~e 2 - 1 (3.33) 

because a, b, and c of  the hyperbola, taken as negative, are related as 

C 2 = a 2 + b 2 

Note that the asymptote distance, denoted as d in Fig. 3.3b, is, in fact, identical to 
the absolute value of  the semiminor axis b of the hyperbola. The hyperbola is also 
characterized by the asymptote angle 0~ and the deflection angle 3 as illustrated 
in Fig. 3.3b. Also shown in this figure is the hyperbolic excess velocity, denoted 
by voo, which will be discussed later in this section. 

The parameter p and the periapsis distance rp of the hyperbola can be expressed 
in terms of  a and e as follows: 

p = a( l  - e 2) (3.34) 

rp = a(1 - e) (3.35) 

Consequently, the equation of  the hyperbola can also be written as 

a(1 - e 2 )  p 
r - -  

1 + e c o s 0  1 + e c o s 0  

wherea  < 0 ,  e >  1, a n d p > 0 .  

3.2.4 Kepler's Second and Third Laws 
The orbital area AA, swept out by the radius vector F as it moves through a 

small angle A0 in a time interval At, is given as 

A A  = ½r(rAO) 
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Then the areal velocity of  the orbit, denoted by d A / d t ,  can be shown to be constant, 
as follows: 

dA lim AA 1 2A0 1 l_ . . . .  lim - r  = r20 = h = const 
dt At---~0 At At--~0 2 At 2 

(3.36) 

which is a statement of  Kepler's second law: the radius vector from the sun to a 
planet sweeps out equal areas in equal time intervals. 

The period of  an elliptical orbit can be found by dividing the total orbital area 
by the areal velocity, as follows: 

A ~ a b  z r a 2 ~ / T -  e 2 a/a 3 
w---- 

P -- dA/d-----t - h/----2 - x/ixa(1 - e2)/2 = 2Jr ~/-~- (3.37) 

This can be rewritten as 

p2 ----- (4:rr2/ix)a 3 

which is, in fact, a statement of  Kepler's third law: the square of  the orbital period 
of  a planet is proportional to the cube of the semimajor axis of the ellipse. Note 
that the ratio p 2 / a 3  is not constant for all planets because Ix = G ( M  0 + m2), 
where M 0 is the mass of  the sun and m2 is the mass of the planet. Therefore, the 
ratio differs slightly for each planet. 

3.3 Vis-Viva Equation 
The energy equation at periapsis and apoapsis is expressed as 

2 2 
g _  Vp tx _ v~ Ix (3.38) 

2 rp 2 r a 

Because the velocity vector at periapsis or apoapsis of any orbit is directed horizon- 
tally and the flight-path angle y is zero, we have the angular momentum equation 
simply expressed as 

h = rpVp = raVa (3.39) 

where h = ~/'~-~, p = a(1 - e2), rp = a(1 - e), and r, = a(1 + e). 
Combining Eqs. (3.38) and (3.39) for either periapsis or apoapsis yields 

IX 
e = - - -  (3.40) 

2a 

That is, the total specific energy depends only on the semimajor axis and is in- 
dependent of eccentricity. Note that an elliptical orbit (with a > 0) has g < 0, a 
parabolic orbit (with a = oo) has g = 0, and a hyperbolic orbit (with a < 0) has 
g > 0 .  

Consequently, we have the energy equation expressed as 

1) 2 IX IX 
g = -- (3.41) 

2 r 2a 



ORBITAL DYNAMICS 221 

and the velocity equation 

can be rewritten as 

v = ~ / 2 u / r  + 2g  

v = (3.42) 
a 

which is known as the vis-viva equation. In classical mechanics, vis viva and vis 
mor tua  mean living and dead forces, respectively. 

The orbital velocity, denoted as Vc, of a circular orbit with the constant radius 
r = a is simply given as 

Vc = v/--~/r (3.43) 

which is often called the circular velocity.  
For a parabolic orbit with a = oe and g = 0, we have 

v = ~  
Consequently, we define the escape velocity Ve as 

1) e = V / - ~ /  r = ~v/2Vc (3.44) 

for any given orbital position r. As an example, the escape velocity of an object from 
the surface of the Earth (/z e = G M  e = 398,601 km3/s 2 and R e = 6,378 kin) 
can be estimated as 

ve = ~ = 11.18 km/s (3.45) 

which is about 36,679 ft/s or 25,000 mph.* 
The energy equation for a hyperbolic orbit as r --+ ~ ,  becomes 

£ = v 2 / 2  = - l z / 2 a  (3.46) 

where v~,  called the hyperbol ic  excess velocity,  (This will also be called the hyper- 
bolic escape or approach velocity in Chapter 4.) is the velocity v as r --+ c~, and 

- - a  

Problem 
3.3. Consider a hyperbolic orbit illustrated in Fig. 3.3b. 

(a) Show that the asymptote angle 0~ and the deflection angle 8 are related to 
the eccentricity e, as follows: 

1 8 1 
cos 0~  = - -  and s i n -  -- - 

e 2 e 

Hint: O~ = zr/2 + 8/2 .  

* 1 ft /s  = 0 .3048  m / s  and  1 m p h  = 0 .44704  m/s .  
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(b) Show that the specific angular momentum h is simply given by 

h = v ~ d  

where v~  is the hyperbolic excess velocity and d is the asymptote distance, as 
defined in Fig. 3.3b. 

Hin t :h  = Ihl = I F x  ~1. 
(c) Show that the eccentricity of  the hyperbolic orbit can be expressed as 

e = 1 + ( v ~ d / # )  or e = 1 + ( r p v ~ / l ~ )  

where rp is the periapsis distance. 
Hint: g - v2/2 - I~/r = v ~ / 2  = - # / ( 2 a ) ,  h -- ~ - ~ ,  p = a(1 - e2), and 

rp = a(1 - e). 

3.4 Kepler's Time Equation 
In this section we introduce a geometric parameter known as the eccentric 

anomaly to find the position in an orbit as a function of time or vice versa. 
Consider an auxiliary circle, which was first introduced by Kepler, as shown in 

Fig. 3.4. From Fig. 3.4, we have 

a cos E + r cos (zr - 0) = ae (3.47) 

where E is the eccentric anomaly and 0 is the true anomaly. Using the orbit 
equation 

p a(1 - e 2) 

r - -  l + e c o s 0  l + e c o s 0  (3.48) 

we rewrite Eq. (3.47) as 

e + cos 0 
cos E = (3.49) 

1 + e c o s 0  

i l i a r y ~  

Fig. 3.4 Eccentric anomaly E of an elliptic orbit. 



ORBITAL DYNAMICS 223 

Using the fact that all lines parallel to the minor axis of  an ellipse have a 
foreshortening factor of  b/a  with respect to a circle with a radius of a, we obtain 

r sin 0 = (b/a)(a sin E)  = av/-i - - e 2 sin E (3.50) 

Combining this with the orbit equation, we obtain 

- e 2 sin 0 
sin E --  (3.51 ) 

1 + e c o s 0  

Furthermore, we have 

tan 
E sin E ] -1  - e 0 

- = ~/1 tan - (3.52) 
2 1 + c o s E  + e  2 

from which E or 0 can be determined without quadrant ambiguity. 
Equation (3.47) can be rewritten as 

r cos 0 = a(cos E - e) (3.53) 

Thus, squaring Eqs. (3.50) and (3.53) and adding them, we obtain 

r = a(1 - e cos E)  (3.54) 

which is the orbit equation in terms of the eccentric anomaly E and its geometric 
constants a and e. 

The area swept out by the position vector F is 

.ab /--; 
(t - tp)A = (t - tp ) - ~  ~[ -~_ (3.55) 

where t e is the perigee passage time, (t - t e) is the elapsed time since perigee 
passage, and A is the constant areal velocity given by Kepler 's  third law, 

_ Jrab _ 7tab a b / ~  3 (3.56) A 
P 2rrv / -~ t z  2 

This area o f  the ellipse is the same as the area of the auxiliary circle swept out by 
the vector R, multiplied by the factor b/a.  Thus, we have 

which becomes 

ab I-i f"  b ( l a 2 E  a e a s i n E )  
T V -~-{t -- tp) = a 2 

ab 
= --z-(E - e sin E)  (3.57) 

2 

~x/-~--~3(t - t p )  = E - e sin E (3.58) 

where E is in radians. 
Defining the mean anomaly M and the orbital mean motion n, as follows: 

M = n(t - tp) (3.59a) 

n = v/~-/a 3 (3.59b) 
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we obtain 

M = E - e sin E (3.60) 

which is known as Kepler's time equation for relating time to position in orbit. 
The time required to travel between any two points in an elliptical orbit can be 

computed simply by first determining the eccentric anomaly E corresponding to 
a given true anomaly 0, and then using Kepler 's  time equation. 

However, Kepler 's  time equation (3.60) does not provide time values (t - te) 
greater than one-half  of  the orbit period, but it gives the elapsed time since perigee 
passage in the shortest direction. Thus, for 0 > Jr, the result obtained from Eq. 
(3.60) must be subtracted from the orbit period to obtain the correct time since 
perigee passage. 

3.4. 

Problems 

Show that the area in the ellipse swept out by the position vector F is 

l fo0 a2 fo° - r2dO ----- - -  (1 - e c o s E ) Z d O  
2 2 

ab fo e 2 (1 e cos E)  dE  

and that 

which becomes 

Hint: 

ab tiff-, ab 
--~-~/-~3 (t - tp) = --~-(E - e sin E)  

M = E - es in  E 

~/1 - e 2 sin E cos E - e 
sin 0 --  , cos 0 --  

1 - e c o s E  1 - ecos  E 

3.5. The auxiliary circle of  an elliptic orbit is often described by 

(x2/a 2) q- (y2/a2) = 1 

where x = a cos E and y = a sin E (since cos2E q- sin2E = 1), and E is 
the eccentric anomaly. Similarly, an equilateral hyperbola with a 45-deg branch 
angle, i.e., e = v ~ ,  a = b, p = - a ,  can be introduced for a hyperbola such that 

(x2/a 2) -- (y2/a2) = 1 

where x = - a  cosh H and y = - a  sinh H (since c o s h 2 H  - sinh2H = 1), and H 
is called the hyperbolic eccentric anomaly. 
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Derive the following relationships for the hyperbolic form of Kepler's time 
equation: 

1 sin 0 
sinh H -- 

1 + ecos0  

e + cos 0 
cosh H = 

1 + e c o s 0  

~ / ~ - 1  0 
tanh H = ~ e 2 tan - 

r = a ( 1  - e c o s h H )  

lfoO O fo o - r2dO = - -  (1 -ecoshH)2dO 
2 2 

ab f0" = -~- (ecosh H - 1) dH  

ab ~ "t ab -'2-V ~ - ~ (  -- tp) = --~-(e sinh H - H)  

N = e s i n h H -  H 

where N corresponds to the mean anomaly M of an elliptic orbit. 
Note: The hyperbolic form of Kepler's time equation can also be obtained from 

Kepler's time equation by substituting E = - j H  and M = j N  where j = ~-£T. 
The following hyperbolic relations are also useful in solving for time, 

H = fi~(cosh H + ~/cosh2H - 1) 

sinh H = ½[exp (H) - exp ( - H ) ]  

3.5 Orbital Position and Velocity 
In this section we consider the motion of a satellite that is revolving (or orbiting) 

around the Earth. 

3.5.1 Orbital Elements 

In general, the two-body dynamic system characterized by the equation of  rel- 
ative motion of the form 

F + (# / r3 )F  = 0 (3.61) 

has three degrees of  freedom, and the orbit is uniquely determined if the six initial 
conditions F and g - F are specified. In orbital mechanics, the constants of  
integration or integrals of  the motion are also referred to as orbital elements and 
such initial conditions can be considered as six possible orbital elements. 
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Vernal Equinox 

Perigee 

Fig. 3.5 Orbit orientation with respect to the geocentric-equatorial reference frame. 
(A near circular orbit is shown in this figure.) 

To describe a satellite orbit about the Earth, we often employ six other scalars, 
called the six classical orbital elements. Three of these scalars specify the orienta- 
tion of the orbit plane with respect to the geocentric-equatorial reference frame, 
which has its origin at the center of the Earth. This geocentric-equatorial refer- 
ence frame has an inclination of 23.45 deg with respect to the heliocentric-ecliptic 
reference frame that has its origin at the center of the sun. A set of orthogonal 
unit vectors {I, J ,  K} is selected as basis vectors of the geocentric-equatorial 
reference frame with (X, Y, Z) coordinates, as shown in Fig. 3.5. 

Note that this reference frame is not fixed to the Earth and is not rotating with 
it; rather the Earth rotates around it. The (X, Y) plane of the geocentric-equatorial 
reference frame is the Earth's equatorial plane, simply called the equator. The Z 
axis is along the Earth's polar axis of rotation. The X axis is pointing toward the 
vernal equinox, the point in the sky where the sun crosses the equator from south 
to north on the first day of spring. The vernal equinox direction is often denoted 
by the symbol T.  

The six classical orbital elements consist of five independent quantities, which 
are sufficient to completely describe the size, shape, and orientation of an orbit, 
and one quantity required to pinpoint the position of a satellite along the orbit at 
any particular time. The six classical orbital elements are: 

a = semimajor axis 
e = eccentricity 
tp = time of perigee passage 
f2 = right ascension longitude of the ascending node 
i = inclination of the orbit plane 
co = argument of the perigee 

The elements a and e determine the size and shape of the elliptic orbit, re- 
spectively, and tp relates position in orbit to time. The angles f2 and i specify the 
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orientation of  the orbit plane with respect to the geocentric-equatorial reference 
frame. The angle w specifies the orientation of the orbit in its plane. Orbits with 
i < 90 deg are called prograde orbits, whereas orbits with i > 90 deg are called 
retrograde orbits. The term prograde means easterly direction in which the sun, 
Earth, and most of the planets and their moons rotate on their axes. The term ret- 
rograde means westerly direction, which is simply the opposite of  prograde. An 
orbit whose inclination is near 90 deg is called a polar orbit. An equatorial orbit 
has zero inclination. 

3.5.2 Orbit Determination 

Consider the problem of determining the six classical orbital elements of  a satel- 
lite using its known position and velocity vectors a.t a specified time to. We assume 
that the position and velocity vectors ? and ~ - 7 at to are expressed in terms of 
the basis vectors { I ,  J ,  K } of  the geocentric-equatorial reference frame; i.e., 

7 = X I + Y J + Z /~  (3.62a) 

= 8 1 + I;" J + 2 / ~  (3.62b) 

whose six components (X, Y, Z, X, ~', Z) are known constants at to. 
Because F and ~ are known at to, the specific angular momentum vector is first 

determined as 

= 7 × ~ (3.63) 

and the eccentricity e = I EI is determined from the eccentricity vector given as 

IXE = ~ x h - ( ix /r)F = [1 )  2 - ( ix / r ) ]7  - (7 .  ~)~ (3.64) 

Since r --= 171 and v ~ I v[ are known at to, the specific energy can be found as 

E = (1)2/2) - (Ix~r) (3.65) 

and the semimajor axis a is determined as 

a = - I x / 2 E  (3.66) 

T[je right ascension of the ascending node, ~2, can be determined from a unit vec- 
tor I toward the ascending node, given by 

I '  = cos ~ [ + sin f2 f  (3.67) 

which is perpendicular to both/~ and /~; i.e., 

-[' = K x ( h / h )  (3.68) 

The inclination angle i is obtained from 

c o s / =  K • ( h / h )  (3.69) 

and the argument of  the perigee, w, is also obtained as 

f' 
cosw = • (g /e)  (3.70) 

where a proper quadrant correction must be made for g .  /~ < 0. 
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The time of perigee passage, tp ,  is determined by first computing the true 
anomaly 0 at to, from 

cos 0 = - -  (3.71) 
r e  

where a proper quadrant correction must be made when i .  ~ > 0. The eccentric 
anomaly E at to is then obtained from 

E ~ / ~ - e  0 
tan - -  = - tan - (3.72) 

2 ~ e  2 

and then Kepler's time equation 

M = q / - ~ / a 3 ( t o  - t v )  = E - e sin E (3.73) 

is used to obtain the perigee passage time tp. The mean anomaly M or the true 
anomaly 0 at a particular time to, called the e p o c h ,  often replaces tp in a set of  
modified classical orbital elements. 

The inverse problem of determining the position and velocity vectors at any 
other time t, given the six classical orbital elements, begins with solving Kepler 's 
time equation 

M = ~ ( t  - tp )  = E - e sin E (3.74) 

for the eccentric anomaly E. 
After solving such a transcendental equation by using a numerical method, we 

obtain the true anomaly 0 from 

0 ~ / l + e  E 
= tan - -  (3.75) tan ~ 1 - e 2 

and the radial position is then obtained using the orbit equation 

a(1 - e 2) 
r = (3.76) 

1 + e c o s 0  

or directly using the orbit equation expressed in terms of the eccentric anomaly 

r = a(1 - e cos E)  (3.77) 

To determine the position and velocity vectors for given r and 0 at a speci- 
fied time t, we introduce a so-called p e r i f o c a l  reference frame with (x, y, z) coor- 
dinates and with a set of  basis vectors { i, j ,  k}, as shown in Fig. 3.6. This reference 
frame is fixed to the orbit plane. The x axis points toward the perigee of the orbit, 
the y axis is in the orbit plane, and the z axis is out of  the orbit p laneand  com- 
pletes a right-handed reference frame. Note that E = ei  and h = h k .  Because 
the perifocal reference frame does not have a relative motion with respect to the 
geocentric-equatorial reference frame, which is considered to be inertially fixed in 
space, the perifocal reference frame is also an inertial reference frame. 

In terms of basis vectors of  the perifocal reference frame, the position and 
velocity vectors are expressed as 

F = x i ' +  y j  + z/~ (3.78a) 

= J¢ i" + y j + ~/~ (3.78b) 
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Fig. 3.6 Perifocal reference frame. 
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whose six components (x, y, z, x, Y, z) are to be determined from the radial posi- 
tion r and the true anomaly 0 at a given time t. 

As shown in Fig. 3.6, let Er and E0 be unit vectors along the radial vector 
direction and the transverse orbit direction, respectively. Then the position vector 
Y and the velocity vector ~ = F can be expressed as 

= r e  r = r (cos0i '+  sin0j) (3.79) 

= i'~r + rOEo =/'(cos 0 i '+  sin0j) + r O ( - s i n O t +  cos0]) (3.80) 

Using the relationship h = ~ = r20 and the orbit equation (3.76), we repre- 
sent the transverse velocity component, denoted by vo, as follows: 

Vo - r 0  = v / - ~ ( 1  + ecos0) (3.81) 

Also the radial velocity component, denoted by Or, can be obtained by differenti- 
ating Eq. (3.76), as follows: 

= a(1 - e2)esin00 
(1 + e c o s 0 )  2 = esin0 (3.82) LI r 

The velocity vector expressed as Eq. (3.80) then becomes 

= x / - ~ { - s i n 0 i ' +  (e + cos0)]} (3.83) 

Finally, we have the results in matrix notation, as follows: 

I i l  [ r c ° i O ]  [ i l  [ - ~ / ~ p s i n 0  1 = r s  0 and = ~/ l~ /p (e+cosO)  (3.84) 
0 
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Problem 

3.6. (a) Given Kepler's time equation ~ ( t  - tp) = E - e sin E, show that 
we simply obtain/~ as 

/ ~ =  V/~-/a 3 

1 - ecosE  

(b) Given the position vector F expressed as 

F --- a(cos E - e) i '+  b sin E ]  

where i" and j are unit vectors of the perifocal reference frame, show that 

z ~ 3 { - a s i n E  .-. bcosE ~} 
~-- r =  1 - e c o s E  t +  1 - e c o s E  

where b = a~/1 - e 2. 

3.5.3 Coordinate Transformation 

Given the geocentric-equatorial (X, Y, Z) reference frame with basis vectors 
{ I, J,  K } and a perifocal (x, y, z) reference frame with basis vectors { i', j ,  /~}, 
the position vector is represented as 

F = X i  + YJ + Z/~ = x i '+  y j  + z/~ (3.85) 

The position vector F can also be expressed as 

; = X ' [ ' + Y ' J ' + Z ' K ' = X " [ " + Y " j " + Z " K "  (3.86) 

where (X', Y', Z') and (X", Y", Z") are the components of the position vector F in 
two mterme&ate reference frames with basis vectors { I ,  J ,  K } and { I , J , K }, 
respectively. 

The perifocal reference frame is then related to the geocentric-equatorial refer- 
ence frame through three successive rotations as follows: 

[ i ' l  [ c ° s g 2 / ~ '  O sing2 i l  [ 2  1 j l  ~ --S in f2 cos f2 (3.87a) 
0 

Ei l E0 1L 1 0 0 I' 
J " /  = cosi sini j '  
/~/'J -s in  i cos i_] ~,  

= -sin0 o9 cos0 o9 /~"J 

(3.87b) 

(3.87c) 
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The orbital elements f2, i, and co are, in fact, the Euler angles of  the so-called 
C3(o)) ~-- C1 (i) ~-- C3(f2) rotational sequence to be treated in Chapter 5. 

By combining the preceding sequence of rotations, we obtain 

which becomes 

where 

i 

J 
7¢ 

LorC°S  sin  il[i o 01 - - - - , - s i n ~  c o s ~  cos/  sin/ 
0 - s i n i  c o s i j  

X 

cosf2 sin~2 
- s i n  f2 cos f2 

0 0 !1 
i!] c2 c31Li ] = 1C21 C22 C231 

LC31 C32 C33J 

C l l  = c o s  Q c o s o )  - -  s i n  f2 s i n w c o s i  

Cl2 = sin g2 cos w + cos f2 sin o) cos i 
C13 = sinw sini 
C21 = - c o s  f2 sin o) - sin f2 cos o) cos i 
C22 = - s i n  f2 sin o) + cos f2 cos o) cos i 
C23 = cos o) sin i 
C31 = sin f2 sin i 
C32 = - c o s  f2 sin i 
C33 = c o s  i 

(3.88) 

The matrix [Cij ] is called the direction cosine matrix, which describes the ori- 
entation of  the perifocal reference frame with respect to the geocentric-equatorial 
reference frame. 

The components (x, y, z) of  the position vector in the perifocal reference frame 
are then related to the components (X, Y, Z) of  the position vector in the geocentric- 
equatorial reference frame via the same direction cosine matrix [Cq] as 

= |C21 C22 C23| 
1_c31 C32 C33J 

(3.89) 

Because the direction cosine matrix [Cij ] is an orthonormal matrix, i.e., [Cij ]-1 = 
[Cij] r, we also have 

=/C12 C2z c32| 
kCl3 C23 C33_] 

(3.90) 
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The components of  the velocity vector represented as 

are also related as 

or 

= 1C21 C22 C23/ 
LC31 C32 C33J 

[XI rCll C21 C311 [ i l  }" ~.~ /C12 C22 C32 / 

(3.91) 

(3.92) 

(3.93) 

3.5.4 Earth Satellite Applications 
Orbit inclination. The orbit inclination of  a satellite launched from a launch 

site at latitude ~b, and with a launch azimuth A z measured clockwise from north, 
can be determined from spherical trigonometry as 

cos i = sin A z cos ~ (3.94) 

assuming a nonrotating Earth. 
For launch sites in the Northern Hemisphere with 0 < q~ < 90 deg, a prograde 

orbit with 0 < i < 90 deg requires a launch azimuth with an easterly component 
and a retrograde orbit with 90 < i < 180 deg requires a launch azimuth with a 
westerly component. Equation (3.94) implies that the minimum inclination that 
can be achieved from a launch site at latitude ~ is equal to the latitude of the launch 
site. Therefore, a satellite cannot be injected directly into an equatorial orbit (i = 0 
deg) from a launch site that is not on the equator. (The launch site of  the European 
Space Agency is on the equator and the Cape Canaveral launch site is located at 
4~ = 28.5 deg.) 

Ground track. The orbit of  an Earth satellite always lies in a plane passing 
through the Earth center. The track of  this plane, called a ground track (or trace), on 
the surface of  a nonrotating Earth is a great circle. The maximum latitude north or 
south of  the equator over which the satellite passes is equal to the orbit inclination 
i (deg) for a prograde orbit (180 - i for a retrograde orbit) and the ground track 
often looks nearly sinusoidal for a low-altitude circular orbit. Because the Earth 
rotates about the polar axis easterly at a rate of  360 deg per one siderial day the 
ground track is displaced westward on each successive revolution of  the satellite 
by the number of  degrees the Earth turns during one orbital period. (A siderial day 
is defined as the period required for one rotation of  the Earth about its polar axis 
relative to an inertially fixed reference frame. One siderial day is 23 h 56 min 4 s, 
whereas one solar day is 24 h.) 

Geosynchronous orbits. If  the period of a satellite in a circular prograde 
equatorial orbit is exactly one siderial day, it will appear to hover motionlessly 
over a point on the equator. Such a satellite, located at 42,164 km (~  6 .6R , )  from 
the Earth center (or at an altitude of  35,786 km), is called a geostationary satellite. 
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A satellite with the orbital period of one siderial day but with a nonzero inclina- 
tion is called a geosynchronous satellite. Its ground track is often characterized 
by a figure-eight curve. Note that regardless of the sateUite's orbital inclination, 
geosynchronous satellites still take 23 h 56 min 4 s to make one complete revolution 
around the Earth. 

3.6 Orbital Perturbations 

Thus far in this chapter, we have considered an ideal Keplerian orbit of the 
two-body problem in which the primary body has a spherically symmetric mass 
distribution and its orbital plane is fixed in space. In general, however, we should 
consider a non-Keplerian orbit whose orbital plane is not fixed in space due to the 
asphericity of the primary body. The small deviations from the ideal Keplerian 
orbital motion are called orbital perturbations. In this section, we consider the 
effects of the Earth's oblateness on the orbital motions of near-Earth satellites. 

3.6.1 Earth's Oblateness Effects 

The Earth is not a perfect sphere but it is an oblate spheroid of revolution; that 
is, the Earth is flattened at the poles to produce geoid or ellipsoid of revolution. 
There are also minor harmonics of the Earth's shape that produce a pear shape. The 
pear shape is not significant for most cases and so we will focus on perturbations 
due to the polar flattening. The equatorial bulge caused by the polar flattening 
is only about 21 km. However, this bulge distorts the path of a satellite each 
time it passes either the ascending node or descending node. The attractive force 
from the bulge shifts the satellite path northward as the satellite approaches the 
equatorial plane from the south. As the satellite leaves the equatorial plane, it is 
shifted southward. The net result is the ascending node having shifted or regressed 
opposite the direction of satellite motion. The Earth's oblateness causes motion of 
the orbital plane and also affects the position of satellites within the orbital plane. 
In this section, we analyze the effects of the Earth's oblateness on the precession of 
the node line and the regression of the apsidal line of near-Earth satellites' orbits. 
When the major axis is used as a reference line for measuring the true anomaly, it 
is called the line of apsides or the apsidal line. 

Consider the equation of motion of a satellite about the Earth described by 

-q- ( /Z / r3 )~  = .f (3.95) 

where F is the position vector of the satellite from the center of the Earth,/z ~ / z~ ,  
and )7, which is the sum of all of the perturbing forces per unit mass, is called 
the perturbing acceleration acting on the satellite. The position of a satellite acted 
upon. by the perturbing acceleration is often referred to as a plane containing F 
and F, called the osculating orbital plane. 

Taking the dot product of Eq. (3.95) with ~ yields 

~. ~ + 0z/r3)F • ~ = j~. 

which is rewritten as 

dt 

(3.96) 

(3.97) 
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Substituting the specific energy g defined as 

1)  2 g = _ _  /z 

2 r 

into Eq. (3.97), we obtain 

/z 

2a 

a = (2a21u ) )7  • ) (3.98) 

Note that e is not a constant unless )7 = 0 or )7. ~ = 0. 
Taking the cross product of Eq. (3.95) with F, we have 

. x ] 
r x r = F x  (3.99) 

Differentiating the specific angular momentum defined as 

]~ ---- F x 7" (3.100) 

we obtain 
2 ,  . .  

h =  F x  ~ =  F x  )7 (3.101) 

Note that/~ is not a constant vector unless )7 = 0 or F x )7 = 0. 
Taking the post-cross product of Eq. (3.95) with/~, we have 

~ x  /Tt + (/z/r3)F x /~= )7 x /~ (3.102) 

which is rewritten as 

d ( ~ x / ~ - / x F ) = ~ ; ' x / ~ + ) T x / - ~  (3.103) - -  I 

dt r 

Substituting the eccentricity vector E defined as 

Izg = ~ x h - ( Ix/r)F (3.104) 

and Eq. (3.101) into Eq. (3.103), we obtain 

 x(Zx )7)+ )7× 1; (3.1o5) 
Here, E is not a constant vector unless the right-hand side of Eq. (3.105) is zero. 

Let g~, E0, and E z be unit vectors along the radial vector direction, the transverse 
orbit direction, and the direction normal to the orbit plane, respectively, such that 
Er × e0 = ez- Then the perturbing acceleration )7 and the velocity vector ~ - 
are represented in terms of the unit vectors {E r, E0, Ez }, as follows: 

) 7 =  frer  + foeont- f zez  

= 1)rer "~ 1)oeo '31- V z e  z 

From Sec. (3.5), we have 

Vr =- f = q/-~-/ p e sin 0 

Vo = rO = ~ - ~ p ( 1  + e c o s 0 )  

(3 .106)  

(3.107) 

(3.108a) 

(3.108b) 
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and.v z = 0 due to the assumptions of the osculating orbit. Consequently, the term 
f • F in Eq. (3.98) becomes 

and we obtain 

37. Zr = frVr + fovo (3.109) 

2a 2 
= ~/_~{f~e sin 0 + fo(1 + ecos0)} (3.110) 

Differentiating the specific angular momentum vector expressed as 

= 4 ' - ~ k  (3.111) 

where/~ (=  ~z) is a unit vector normal to the orbit plane, we obtain 

= ½~ / -~p f¢  + ~ / - ~ k  (3.112) 

Furthermore, we have 

k = + i7 '  + x # 

= ~2 s i n i i "  - ~ J "  (3.113) 

where I"' is a unit vector toward the ascending node and J"  is orthogonal to I"  
(see Figs. 3.5 and 3.6). Thus, we have 

h = ½ ~ T p p / ~ +  vrfl--fi(f2siniI - i J " )  (3.114) 

The term F x 37 in Eq. (3.101) is also written as 

F x 37 = r fok  - rfzeo (3.115) 

In terms of unit vectors I , J , and k, this equation becomes 

Fx 3 7 = r f o k - r f z [ - s i n ( w + O ) l " + c o s ( w + O ) J " ]  (3.116) 

Because h = F x 37, equating the coefficients of Eqs. (3.1 14)  and  (3.1 16) gives 

p = 2~/p/lzrfo (3.117) 

~2 sini -- rfz s in ( co+0)  (3.118) 

~= rfz c o s ( c o + 0 )  (3.119) J-u-F 

Differentiating the relation, p = a ( 1  - eZ), gives 

gt(1 -- e 2) -- p 
-- (3.120) 

2ea 
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Fig. 3.7 Two-dimensional view of the oblate Earth. 

Combining this equation with Eqs. (3.110) and (3.117) and using the following 
relationships: 

p = a ( 1  - e  2) 

r = a ( 1 - e c o s E )  

we obtain 

= ~/p/ lz{f~ sin0 + fo(cosO + cos E)} (3.121) 

The effects of  the Earth's oblateness on the precession of the node line and the 
regression of the apsidal line of near-Earth satellites' orbits can now be analyzed 
considering the gravitational potential of  the oblate Earth given by 

Us(r,  ~b) = /~r 1 + --~-r2 (1 - 3 sin24~) - 7 ( 5  sin34~ - 3 sin40 . . . .  

(3.122) 

where r is the geocentric distance, q~ is the geocentric latitude, R e ( =  6,378 
km) is the mean equatorial radius of  the Earth,/z ~ / z ~  = 398,601 km3/s 2, and 
Jz = 1082.64 ×10 -6 and J3 = - 2 . 5 6  × 10 -6 are the harmonic constants of  
the Earth due to its oblateness. As illustrated in Fig. 3.7, the angle between the 
equatorial plane and the radius from the geocenter is called geocentric latitude, 
whereas the angle between the equatorial plane and the normal to the surface of 
the ellipsoid is called geodetic latitude. The commonly used geodetic altitude is 
also illustrated in Fig. 3.7. 

Ignoring higher-order terms, the perturbing gravitational potential due to J2, 
denoted by U, is then defined as 

U = U s I,Z IzJ2R~ 
r -- 2r 3 (1 - 3 sin2q~) (3.123) 
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Because the geocentric latitude ~b is related to the orbital elements as 

Z r sin (co + 0) sin i 
sin~b - -- = sin(co + 0) sini (3.124) 

F F 

Eq. (3.123) is rewritten as 

#JzR~3 { 1 3 sin2 / sin2(co + 0) } (3.125) 
U = 2 r 3 r 3 

Since F = rEr, and dz = r sin (co + 0)di,  the perturbing acceleration due to J2 is 
described by 

= V U  = OU ~ I OU . 1 OU . 
O---~-er + r ' ~ e o  + ez (3.126) 

r sin (co + 0) Oi 

Taking the partial derivatives of U with respect to r, 0, and i, and substituting them 
into Eq. (3.126), we obtain the radial, transverse, and normal components of f ,  
as follows: 

3us2R  
fr - ~ r  4 {1 - 3sin2i sin2(co+0)} (3.127) 

fo = 31zJ2R~ sin2i sin2(co + 0) (3.128) 
2r 4 

f z  - 3 t t J 2 R 2  sin 2i sin (co + 0) (3.129) 
2r 4 

where sin 2i = 2 sin i cos i. 
Substituting Eq. (3.129) into Eq. (3.118), we obtain the precession of the node 

line as 

(2 = 3 1 z j z R 2  cosi sin2(co + 0) (3.130) 
r 3 x/~- fi 

Integrating this equation over an entire orbit of period P yields 

3 # J 2 R ~  _re sin2(co + 0) 
Ag2-- x/-fi-fi cos / -v  r3 dt (3.131) 

where Af2 denotes the change of f2 over an entire orbit, assuming that changes in 
other orbital elements are second-order terms. (Note that the average rate of change 
of i over the orbital period is zero.) 

Because the angular momentum h ---- I/~1 can be expressed as 

h = 4~- f i~  r2((2cosi + 6 ) + 0 )  (3.132) 

we have 

rb + 0 ~ ~v / -~ / r  2 (3.133) 
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in which the second-order term ~2 cos i is further neglected. This equation is used 
to change the independent variable t into (o9 + 0), as follows: 

d@o + 0) = • r ~ 2  p dt 

Thus, Eq. (3.131) can be rewritten as 

f0 
2rt sin2(w + 0) 

Af2--  3J2R~ cos/ - d(og+0) 
p r 

3J2R 2 f2,r 1 - cos 2(w + 0) 
- - -  cos i d(w + 0) 

P Jo 2r 

Performing the integration after a substitution of  r = p/(1 + e cos 0) yields 

Aft  3yr J2 R~ -- - -  cosi + higher-order terms (3.134) p2 

Dividing this by the average orbital period P = 2zr/n, where n = v/-#-/a 3 is the 
orbital mean motion, we obtain the average rate of  change of  S2, as follows: 

(2 ~ 3J2R~ ncosi (3.135) 
2p 2 

Similarly, assuming that the eccentricity and the semimajor axis of  the orbit 
remain unperturbed by the oblateness of the Earth to a first-order approximation, 
we can obtain the average rate of  change of w, as follows: 

3J2R~ / 5  sin2 i 2) 
60~ ~ p 2 n ~  2 (3.136) 

Problem 
3.7. Consider the perturbing gravitational potential U of the Earth due to its J2 
term expressed as 

tzJ2R 2 /zJ2R~ ( 1  3Z 2)  
U - -  ~ ( 1 - 3 s i n  2 ~ ) -  ~ ~ r5 

where r = ~/X 2 + y2 + Z 2 and (X, Y, Z) are the coordinates of  the radial position 
vector in the geocentric-equatorial reference frame. 

(a) Show that the perturbing acceleration due to ./2 can be expressed as 

 =vu= o u3_7 z + -52a u 

where er is a unit vector along the radial vector direction and /~ is a unit vector 
perpendicular to the Earth's equator. (Note that Er and K are not orthogonal to 
each other.) 
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Hint: Let U = U(r, Z) where r = r(X, Y, Z), then 

aui+ u au = u  __ri+au 
V U  = J + z - f i r  z j + " "  

(b) Show that f then becomes 

5- .J2R  (3 
2 r4 

(c) Verify that 

15Z2~ er r6 ] I~J2R2 ( 6 Z ) 2  --~- g 

Z = r sin (co + 0) sin i 

/~ = sin (co + 0) sin iEr + cos (co + 0) sin iEo + cos ie-'z 

(d) Finally, show that the radial, transverse, and normal components of )7 can 
then be obtained as Eqs. (3.127), (3.128), and (3.129), respectively. 

3.6.2 Earth Satellite Applications 
The nodal regression rate (2 and the apsidal line rotation rate & are of primary 

importance for near-Earth satellites. Some practical applications of the effects of 
the Earth's oblateness are briefly described here. 

Sun-synchronous orbits. The Earth revolves around the sun in a nearly 
circular orbit (e -- 0.016726) with a period of 365.24 solar days. The Earth also 
rotates about its own axis with a period of one siderial day (23 h 56 min 4.09 s). The 
sun-synchronized (or sun-synchronous) orbit has a nodal regression rate equal to 
the Earth's mean rate of revolution around the sun, i.e., 360 deg in 365.24 solar days 
or 0.985 deg/day. This regression must be in the direction of the Earth's rotation 
because the Earth rotates about its axis in the same direction that it revolves around 
the sun. Therefore, a sun-synchronous satellite must have a retrograde orbit so that 
its nodal regression can be prograde. Also, the satellite must have a combination 
of altitude and inclination that produces 0.985 deg/day regression. 

The sun-synchronous orbits maintain their initial orientation relative to sun. 
These orbits are retrograde and lie between inclination angles of 95.7 deg and 180 
deg at altitudes up to 5970 kin. For certain mission requirements, a noon-midnight 
sun-synchronous orbit (with a 12:00 crossing time) can be selected, which provides 
good photography for about one-half of every revolution. Conversely, twilight or 
sunrise-sunset orbits (with a 6:00 crossing time) could be established in which the 
satellite is never in shadow, relieving the need for power storage if solar power 
is used. In practice, a sun-synchronized orbit with a 9:30 crossing time is often 
selected; however, this requires a solar-array cant angle of 37.5 deg. 

Critical inclination. From Eq. (3.136), two critical inclinations (63.4 deg and 
116.6 deg) can be found that cause the apsidal line rotational rate to be zero. 
Such critical inclination angles are very important for some missions where the 
position of apogee must remain fixed in space. The former Soviet Union's Molniya 
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communications satellites with an eccentricity of 0.73 and a period of 12 h have 
an inclination of 63.4 deg so that their apogee remains fixed in space. 

Triaxiality. As discussed in the preceding section, a polar cross section of the 
Earth is not circular; it has an approximately 21-km bulge along the equator, which 
produces two perturbations into the ideal Keplerian orbit. In fact, an equatorial 
cross section of the Earth is also not circular and it is nearly elliptical, with a 65-m 
deviation from circular. This ellipse introduces two more axes into the Earth's 
shape, called the triaxiality. The second tesseral harmonic J22 of the Earth gravity 
harmonics is related to the ellipticity of the Earth's equatorial plane. 

There are four equilibrium points separated by approximately 90 deg along the 
equator: two stable points and two unstable points. The effect of the triaxiality is 
to cause geosynchronous satellites to oscillate about the nearest stable point on the 
minor axis. These two stable points, at 75 ° E longitude and 255 ° E longitude, are 
called gravitational valleys. A geosynchronous satellite at the bottom of a gravita- 
tional valley is in stable equilibrium. Satellites placed at other longitudes will drift 
with a five-year period of oscillation; thus, they require east-west stationkeeping 
maneuvers to maintain their orbital positions. The stable equilibrium points are 
used among other things as a junkyard for deactivated geosynchronous satellites. 

Orbital decay. Another very important perturbation for low-altitude satel- 
lites is atmospheric drag. Lifetimes of satellites in low Earth orbits are affected 
by atmospheric drag, although the Earth's atmosphere is only 81 km thick. The 
exact effect of atmospheric drag is difficult to predict due to uncertainties in the 
dynamics of the upper atmosphere. Air density is constantly changing in this re- 
gion; there are diurnal variations because the sun heats up the air on the daylight 
side of the Earth, causing the air to expand. This heating increases the number 
of air molecules encountered by near-Earth satellites. There is a similar seasonal 
variation between summer and winter. There is also a 27-day cycle in atmospheric 
density, as well as an 11-year cycle. Magnetic storms can heat the atmosphere 
as can solar flares. Major solar events emit charged particles that heat the outer 
atmosphere and produce significant changes in satellite orbits. 

Because the atmosphere drops off so rapidly with altitude, most drag is expe- 
rienced at perigee. The less time the satellite spends at near-perigee altitudes, the 
less total mechanical energy the satellite dissipates by air drag. A reduction in 
total energy produces a corresponding reduction in the length of the semimajor 
axis. Also, air friction causes the eccentricity of the orbit to diminish toward zero, 
making orbit more circular. Thus, the apogee drops faster than perigee in elliptical 
orbits. Air density drops off so rapidly with increasing height that high-altitude 
satellites can essentially ignore air drag. 

For more details of orbital mechanics and orbital applications, the reader is 
referred to other textbooks.l-l° 

3.7 Circular Restricted Three-Body Problem 

3.7.1 Introduction 

The classic restricted three-body problem is concerned with the motion of an 
infinitesimal body in the gravitational field of two massive primary bodies. In this 
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Fig. 3.8 Lunar far-side communications. 

section, we consider the circular restricted three-bodyproblem in which the motion 
of the two primary bodies is constrained to circular orbits about their barycenter. 
If the motion of the two primary bodies is constrained to elliptic orbits about their 
barycenter, we have the elliptic restricted three-bodyproblem in which the distance 
between the two primary bodies varies periodically. This case will be studied in 
Sec. 3.8. 

Both the circular and elliptic restricted three-body problems are treated in this 
text for the purpose of introducing future space missions that involve the stationing 
spacecraft around the collinear equilibrium points of the Earth-moon system or 
the sun-Mars system. The same face of the moon always faces the Earth; there- 
fore, communications with the far side of the moon is impossible without a relay 
network. One method of providing this communications network involves the use 
of two or more relay satellites in a lunar polar orbit. Another method, introduced 
by Farquhar 11 in 1968, would be to position one communications satellite in a halo 
orbit about the translunar L2 libration point, as illustrated in Fig. 3.8. In addition, 
if a communications satellite was located at the cislunar L1 libration point, there 
could be continuous communications coverage between the Earth and most of the 
lunar surface. 

In fact, a spacecraft called International Sun-Earth Explorer (ISEE-3) was 
placed in a halo orbit around the interior sun-Earth equilibrium point in November 
1978, and it remained in the halo orbit until June 1982. A mission objective of 
the ISEE-3 spacecraft was to continuously monitor the characteristics of the solar 
wind and other solar induced phenomena, such as solar flares, about an hour before 
they could disturb the space environment near the Earth. 12 

3.7.2 Problem Formulation 

The circular restricted three-body problem was originally formulated by Euler 
in 1772 for the sun-Earth-moon system to study the motion of the moon about 
the Earth, but perturbed by the sun. In this section, we consider the Earth-moon- 
spacecraft system, illustrated in Figs. 3.8 and 3.9, as an example of the circular 
restricted three-body problem without loss of generality. It is assumed that the 
spacecraft mass is insignificant compared to the masses of the two primary bodies. 
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Fig. 3.9 Circular restricted three-body problem. 

Hence, the orbital motion of the two primary bodies is not affected by the space- 
craft; that is, it is simply described by the two-body problem in which the two 
primary bodies rotate about their composite center of mass (barycenter). 

It can be further assumed that the two primary bodies rotate about their barycen- 
ter in circular orbits. That is, it is assumed that the Earth-moon system rotates with 
a constant angular velocity 

n = ~ /G(MI  + M 2 ) / D  3 (3.137) 

where M1 and M2 are the masses of the Earth and moon, respectively, and D is 
the constant distance between them. For the Earth-moon system, we have 

[d.1 : G M I  = 398,601 km3/s 2 

Iz2 = GM2 = 4887 km31s z 

M1 = 81.3045M2 

D = 384,748 km 

D1 = 0.01215D = 4674 km 

D2 = 0.98785D = 380,073 km 

n = 2.661699 × 10 -6  rad/s 

where DI is the distance between MI and the barycenter, D2 is the distance between 
M2 and the barycenter, and D = D1 + D2. Note that the period of the moon's orbit 
is 27.3 days. 

The position vector of the spacecraft relative to the barycenter is expressed in 
terms of basis vectors {i', ] ,  k} of a rotating reference frame with an angular 
velocity of n/~ and with its origin at the barycenter, as follows: 

/} = X i ' +  Y ]  + Z/~ (3.138) 

2,  . 2, 2, 

Noting that i = n j ,  j = -n- i ,  and k = 0, the inertial acceleration of the spacecraft 
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can be found as 

= (Y( - 2n}" - n 2 X ) i +  (f~ + 2n~( - n 2 y ) ]  + Z k  (3.139) 

The equation of motion of the spacecraft is then simply given by 

G M j m  ~ G M 2 m  
m R  = r~- -  r, r T  r2 (3.140) 

where m is the mass of  the spacecraft, rl = I F1 l, r2 = I Fzl, and 

F, = - o l  i +  = ( x  - D , ) ? +  Y-I+ 
72 = 0 2 ? +  /~ = (X + O 2 ) i +  Yf-f-  Z k  

Equation (3.140) is rewritten as 

R = - ( / z l / r ~ )  r" 1 - ( /xa/r3) r'2 (3.141) 

where tq  = GM1 and/z2 = GM2. Equating the components of  the inertial accel- 
eration and the gravitational acceleration in Eq. (3.141), we obtain the equations 
of  motion, as follows: 

Y~ - 2 n Y  - n2X = /d.l(X -- D1) / / ' 2 (X + D2) (3.142) 

~, + 2 n ~ ( _ n 2  Y _  Iz lY lz2Y 
r~ r 3 (3.143) 

- -  / '£1Z /L2Z (3.144) 
r? r? 

The terms 2n];" and 2n~" are the Coriolis accelerations, and n2X and n 2 y  are 
centrifugal acceleration terms. 

Adding Eqs. (3.142), (3.143), and (3.144) after multiplying them by .~, ~', and 
Z, respectively, we obtain 

~2Y( + f'f" + 2 Z  - n2X/(  - n 2 y f  " = - ( t t l / r ~ ) [ ( X  - O,)J(  + Y}" + Z Z ]  

--(lz2/r32)[(X q- D2)X + Y1 ? + ZZ]  (3.145) 

which, after integration, becomes 

l ( x 2  21 - ]~2 jr_ Z 2 )  - -  1. 2,"t,'2 i n  ~.~ + y2) _ ( # l / r j )  - (/z2/r2) = C (3.146) 

where C is a constant called Jacobi 's  integral." 
The equations of motion, given by Eqs. (3.142), (3.143), and (3.144), for the 

restricted three-body problem can also be expressed in terms of a pseudopotential 

* Carl Gustav Jacob Jacobi (1804-185 I), who was a great admirer of Euler and a contemporary of 
Gauss and Bessel, is remembered for his contributions to mathematics and mechanics. 
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U = U(X, Y, Z) as follows: 

OU 
2 - 2nl ;"  = - -  ( 3 . 1 4 7 )  

0X 

0U 
+ 2nX = - -  (3.148) 

OY 

OU 
2 = - -  (3.149) 

OZ 

where the pseudopotential U, which is, in fact, the centrifugal plus gravitational 
force potential, is defined as 

U = ½n2(X 2 + y2) + (tzl /rl)  + (/zz/r2) (3.150) 

where /Zl = GMI, #2 = GM2, rl = ~ / ( X -  D1) 2 + Y2 + Z 2, r2 = 
~/(X + D2) 2 + y2 + Z 2, and Jacobi's integral is simply given by 

C =  1 "2 ~'2 7(X + + 22 ) -  U (3.151) 

3.7.3 Lagrangian Points 
Equilibrium points. Introducing the mass ratio p of the Earth-moon system 

as 

M2/(MI + M2) = p = 0.01215 

M1/(M1 + M2) = 1 - p = 0.98785 

we rewrite the equations of motion in nondimensional form, as follows: 

where 

(1 - p ) ( X  - p )  
2 - 2 } ' - X  = 

( 1  - p)Y 
] 2 + 2 2  - y -- 

2 -  ( 1 -  p)Z pZ  
r 3 

,o(X + 1 - p) 

4 
pY  

4 

(3.152) 

(3.153) 

(3.154) 

rl = x/(X - p)2 + y2 --b Z 2 

r2 = x/(X + 1 - p)2 + y2 q_ Z 2 

Time is in units of l /n ,  and X, Y, Z, rl, and r2 are in units of  D. 
Setting all derivatives in Eqs. (3.152-3.154) to zero, we can find equilibrium 

points of the Earth-moon system. At such equilibrium points, the gravitational 
forces and the centrifugal force acting on the spacecraft are balanced. Five equi- 
librium points of  the restricted three-body problem exist, as illustrated in Fig. 3.10 
for the Earth-moon system. Euler discovered three equilibrium points, called the 
collinear equilibrium points, on the Xaxis with Y = Z = 0. Lagrange found two 
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Fig. 3.10 Lagrangian points. 

other equilibrium points, called the equilateral equilibrium points with rl = r2. 
These five equilibrium points, denoted by L 1 through Ls, are called the Lagrangian 
or libration points of the restricted three-body problem. The locations of these five 
libration points are summarized in Table 3.1. 

For the Earth-moon system, L1 at X = -0.83692 is called the cislunar point, 
L2 at X = -1.15568 called the translunar point, and L3 at X = 1.00506 called 
the trans-Earth point. It will be shown that the three collinear points, Ll, L2, and 
L3, are unstable, whereas the two equilateral points, L4 and Ls, are stable. 

The libration points do appear in the natural solar system. The Trojan asteroids 
are situated at Jupiter's orbit on the vertices of equilateral triangles with the sun 
and Jupiter at the two other vertices. These positions are the triangular libration 
points in the circular restricted three-body problem of the sun-Jupiter-asteroid 
system. 

Linearized equations of motion. The linearized equations of motion about 
an equilibrium point are now derived for the linear stability analysis of the La- 
grangian points. Let 

X = Xo + x ,  Y = Yo + Y, Z = Zo + z  (3.155) 

Table 3.1 Earth-moon libration point locations 

Libration points X Y Z 

L1 -0.83692 0 0 
L2 -1.15568 0 0 
L 3 1.00506 0 0 
L4 -0.48785 ~/'3/2 0 
L5 -0.48785 -~/'3/2 0 
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where (Xo, Yo, Zo) are the coordinates of the equilibrium point with Zo = 0 and 
(x, y, z) are the components of the position vector of the spacecraft relative to the 
equilibrium point. 

In 1665 Newton established the general binomial theorem 

n(n-- ) n(n--1)(n (1 + X )  n = 1 + nx + l ' x2  -t- -- 2)'X3 + " "  
2! 3! 

where n is any real number. I fx  << 1, then (1 + x ) "  ~ 1 + nx. Assuming that x, y, 
and z are small, i.e., x 2 = y2 = z 2 ,~ 0, we approximate the terms 1/r~ and 1/r~ 
appearing in the nondimensionalized equations (3.152-3.154), using the general 
binomial theorem, as follows: 

r? 3 = [(Xo + x - p)2 + (Yo + y)2 + Z2] -3 

and 

R1-3{ 1 -- 3R{-z[(Xo - p)x -4- YoYl} (3.156) 

- { (1 -P)[ -~ -3Yg-~°~]+PI-~z -3Y-~]}Y  

- R---T-, + z 

(3.158b) 

(3.158c) 

r23 = [(Xo + x + 1 - p)2 + (I1o + y)2 + z2]-~ 

R23{1 - 3R22[(Xo + 1 - p)x + YoY]} (3.157) 

where R1 and R2, in units of D, are the distances to the equilibrium point from the 
Earth and moon, respectively; that is, 

R1 = ~/(Xo - p)2 + yo 2 

R2 = ~/(Xo -1- 1 - p)2 -b y2 

The nondimensional equations of motion given by Eqs. (3.152-3.154) then 
become 

{ 1 ~ - 2 y - x = -  ( l - p )  1 - 3  R-~ 

+P[~-~ -3(X°+I-p)2]-R~- j } x  

R~ y (3.158a) 

+ 2k - y = /3(1 - p)(Xo - P)Yo (Xo + 1 - P)Yo y 
R~ -I- 3p R25 x ! 
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These are the linearized equations of motion of the spacecraft with respect to the 
equilibrium point. Similar to the original nonlinear equations of motion, the Z 
axis out-of-plane equation is decoupled from the in-plane equations of motion. 
The out-of-plane motion is described by a simple harmonic oscillator and is said 
to be (Lyapunov) stable. 

Stability o f  the equilateral equilibrium points. Consider the equilateral 
equilibrium point L4, with R1 = R2 = 1, at Xo = p - 0.5 = - 0.48785 and Yo = 
~/3/2 = 0.86602. Substituting these values into Eqs. (3.158a) and (3.158b), we 
obtain the in-plane equations of motion, as follows: 

3 ,) 
. ~ - 2 9 - - x - - -  p -  y = O  (3.159) 

4 2 2 

y + 2 2  34"5(  1 )  9 
- T  p - 2  x - ~ y = 0  (3.160) 

The characteristic equation can then be found as 

~4 .q_ k2 ._[_ (27/4)p(1 -- p) = 0 

The characteristic roots are 

(3.161) 

• / - 1  4- ~/1 - 27p(1 - p) 
k = --t- 2 

For p < 0.03852 or 0.96148 < p, the four eigenvalues become pure imaginary 
numbers, and the in-plane motion is said to be stable. The L4 point of the Earth- 
moon system with p = 0.01215 is thus a stable equilibrium point. Because of 
the symmetry of the system, the Ls point of the Earth-moon system is also a sta- 
ble equilibrium point; however, the L4 and Ls points of the Earth-moon system 
can be found to be unstable if the gravitational effect of the sun is also included. 
The L4 and Ls points in the sun-Jupiter system with p = 9.5387 × 10 -4 are 
also stable points, and the Trojan asteriods are located at these stable libration 
points. 

Stability of the collinear equilibrium points. 
motion about the collinear equilibrium point can be described by 

- 29 - (2or + 1)x = 0 

+ 22 + (cr - 1)y = 0 

~+~rz  = 0  

The linearized equations of 

( 3 . 1 6 2 a )  

(3.162b) 

(3.162c) 

where 

(I - p) p 
o-- -~- 

IX,, - pl 3 IXo + 1 - pl 3 
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The characteristic equation of the in-plane motion can be found as 

~4 _ (or -- 2))v 2 -- (2or + 1)(a - 1) = 0 

For the L2 point with tr = 3.19043, for example, the in-plane characteristic equa- 
tion has two real and two imaginary roots: -I-2.15868 and +1 .86265j .  Thus, the 
in-plane motion has a divergent mode as well as an oscillatory mode, and the L2 
point is said to be an unstable equilibrium point. The out-of-plane motion is simple 
harmonic with a nondimensional frequency of V~- = 1.78618. 

Similarly, it can be shown that the other collinear points, L1 and L3, are unsta- 
ble equilibrium points for the Ear th-moon system. Although such collinear points 
are unstable in nature, the cislunar L1 and translunar L2 points are of  practical 
importance for future space missions involving the stationing of a communication 
platform or a lunar space station. The cislunar L1 point could serve as a trans- 
portation node for lunar transfer trajectories. The translunar L2 point would be an 
excellent orbital location to station a satellite to provide a communications link to 
the far side of  the moon. 

Problem 

3.8. Consider the nonlinear equations of  motion of the restricted three-body 
problem in nondimensional form, given by 

0U 
- 2 r "  = - -  

0X 

0U 
~" + 2 . ~  = - -  

OY 

OU 
2 =  

OZ 

where the pseudopotential U = U(X, Y, Z) in nondimensional form is defined as 

1 - p  p U = (X 2 +  y 2 ) +  + _ _  
rl r2 

and 

p = M2/(MI + M2) 

rl = v/(X - -  p ) 2  .+ y2 + Z 2 

r2 = ~ / ( X +  I - p ) 2 + Y 2 + Z  2 

By the definition of the equilibrium point, the partial derivatives evaluated at the 
equilibrium point (Xo, Yo, Zo) become zero; i.e., we have 

8U o 8U o OU o =%-F =o 
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(a) Show that the linearized equations of motion about an equilibrium point 
(Xo, Yo, Zo) can be written as 

82U x 82U o O2U o 
~ - 2 J ~ = ~ - ~  o + O-'-Y-~ Y +  O--Z-~ z 

82U 82U o O2U 
y + 2 , t  -- 8 X O Y ox + ~ Y + O-Z-~ o z 

02U o O2U o OZU 
Z = O X O-~ x + o--Y--~ Y + - ~  o z 

where x = X - Xo, y = Y - I1o, z = Z - Zo, and the partial derivatives are to be 
evaluated at the equilibrium point (Xo, Yo, Zo). 

Hint: Use a first-order Taylor series expansion of 8 U/8 X, 8 U/O Y, and 0 U/O Z 
about the equilibrium point (Xo, Yo, Zo). 

(b) Also show that the preceding equations become 

2 - 2y = Uxx x + Uxyy 

5' + 22 = Uxr x + Uyyy 

= Uzzz  

where the partial derivatives evaluated at the equilibrium point (Xo, Yo, Zo) can 
be found as 

02U { [ 1 _ 3 ( X o ~ p ) 2 -  Uxx-T o=l- 

+ P  R--~" R~ 

020 J [ 1 Y2o 7 [ 1 V2o T I 
Urr  - ~ o = 1 - / (1 - P) Lt~l/--fi'g - 3--~/R~j + /9 L R2/--~ - 3--~/R2]I} 

02U p) (Xo - P)Yo + 3p(Xo + 1 - P)Yo 
Uxr -- ~ o 3 ( 1 -  Rl 5 R~ 

o 2 v  ° {(l-p) p } 
V z z  - -2i  = -  R-) + 

where R1 = ~/(Xo - p)2 + y,2 and R2 = ~/(Xo + 1 - p)2 + yo 2. 
(c) For the collinear libration points of the restricted three-body system, show 

that 

Uxx =2cr  + 1 

Uvy = - ~  + 1 

U Z Z  ~--- - -0"  
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where 
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(1 - p )  p 

[Xo - pl 3 [Xo + 1 - pl 3 

(d) For the three collinear libration points of the restricted three-body system 
with 0 < p < 0.5,  show that 

U x x  > O, Urv  < O, U z z  < O, U x r  = 0 

In particular, find the numerical values of  U x x ,  U r r ,  and Uzz for the translunar 
L2 point in the Ear th-moon system. 

3.7.4 Quasi-periodic Orbits 
The nondimensional linearized equations of  motion of a spacecraft near the 

collinear libration point are given by 

- 2~y - U x x x  = 0 (3.163a) 

+ 2Jc - U r r Y  = 0 (3.163b) 

- U z z  z = 0 (3.163c) 

where the partial derivatives are evaluated at the collinear libration point. 
The in-plane characteristic equation can be obtained as 

3.4 + (4 - U x x  - Uyy)3.  2 At- f x x U y y  = 0 (3.164) 

and the in-plane eigenvalues can be expressed as 4 

3.1,2 = "-}-~/--/~1 -Jr- ~ -{-/~2 2 

3. 3 , 4 ---= -4- J ~ fl l "-[- ~-~l  -[- t~ 2 = -4- j Og x 

where 

~1 = 2 - ( U x x  + Ury) /2  

~ = - U x x U r r  > 0 

and Ogxy is called the nondimensional frequency of the in-plane oscillatory mode. 
The out-of-plane characteristic equation is 

3. 2 - U z z  = 0 (3.165) 

and the out-of-plane eigenvalues are 

3.5,6 = + j ~  = 4- jwz  (3.166) 

where w z is called the nondimensional frequency of the out-of-plane oscillatory 
mode. 



Uxx = 7.3809, 

and the eigenvalues are 
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For the translunar L2 point in the Ear th-moon system, we have 

Ury = -2 .1904 ,  Uzz = -3 .1904  
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where 

= Ax (3.167) 

Then, we have 

where 

Then, we have 

where 

i oo Oo 
x = , A = Uxx 0 0 

0 Ury - 2  

We now consider the modal decomposition of the state matrix A into a diagonal 
matrix A. (The modal decomposition of a square matrix was discussed in Chapter 
2; however, we shall briefly review the concept again here.) 

L e t  q j  be a right eigenvector of A associated with the j th  eigenvalue ) ' j ;  i.e., 

Aqj  = ) ' jq j  

A = Q A Q  - l  

Q = [q l  " ' "  q4]  

A = diag()-l . . . . .  )-4) 

Also let Pi be a left eigenvector of  A associated with )-i; i.e., 

p T A  = ) - ip  T 

A = P - r A P t  

P = [Pl  " "  P 4 ]  

)-1,2 = -t-2.15868 

)'3,4 = + j  1.86265 

)'5,6 = -Fj 1.78618 

Thus for the translunar L2 point, the in-plane motion has a divergent mode as 
well as an oscillatory mode with a nondimensional frequency Wxy = 1.86265. 
The out-of-plane motion is simple harmonic with a nondimensional frequency 
o) z = 1.78618. Note that the period of the in-plane oscillatory mode is 14.7 days 
and the period of the out-of-plane oscillatory mode is 15.3 days, compared to the 
moon's  orbital period of  27.3 days. 

The in-plane equations of  motion can be written in state-space form as 
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Consequently, we have the orthogonality conditions 

pirqj = 0 (because)~i ~ ~'j when i ~ j )  

Furthermore, ifqi  and Pi are normalized such that p T q i  = 1 for all i, then we have 

P~ qj = ~ij or pT Q = I 

Finally, the matrix A with distinct eigenvalues can then be decomposed into the 
form 

A = Q A Q  -I  = Q A P  r 

which becomes 

A = [q l  " ' "  q4]  "..  " = E )~iqipTi 
~'4 L pT i=1 

Consequently, the solution of  Eq. (3.167) can be obtained as 

4 

x(t) = eAtx(0) = E ex:qi PTx(0) (3.168) 

scalar 

This solution can be made to contain only the oscillatory modes with the proper 
choice of  initial conditions. Because )~3.4 = +jOJxy, the conditions to eliminate 
the exponential terms are 

p~x(0) = 0 (3.169a) 

p~"x(0) = 0 (3.169b) 

These conditions can be met if we choose 

k(O) = (O~xylk) y(O) 

y(0) = -kO-,xy x(O) 

where 

2 
k = wxy + Uxx 

2Ogxy 
For the L2 point of  the Earth-moon system, k = 2.91261. 

Substituting these conditions into Eq. (3.168), we obtain 

x(t) = x(0) cos Wxyt + (1/k)y(O) sin Ogxyt 

y(t) = y(0) cos COxyt - kx(O) sin Wxyt 

z(t) = z(0) cos wzt + [~(O)/w z] sin Wzt 

(3.170a) 

(3.170b) 

(3.171a) 

(3.171b) 

(3.171c) 
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F ig .  3 .11  L i s s a j o u s  r e f e r e n c e  t ra jec tory .  

In addition, if x(0) = z(0) = 0 and ~(0) = -y(0)COz, the solution further reduces 
to the following form: 

x ( t )  = ( I / k ) y ( O )  sin Wxyt 

y ( t )  = y(0) cos Wxyt 

z ( t )  = - y ( 0 )  sin Ogzt 

(3.172a) 

(3.172b) 

(3.172c) 

The difference between the in-plane and out-of-plane frequencies results in 
a quasi-periodic Lissajous  trajectory, shown in Fig. 3.11, for an example case of  
y (0) = - 0.00911, which corresponds to a maximum amplitude of  3500 km for the 
Earth-moon system. The y - z  projection is a view from the Earth toward the moon 
and the x - y  and x - z  projections are top and side views, respectively. The moon and 
Earth are in the positive x direction. The preceding initial conditions correspond to 
zero in the x direction, maximum amplitude in the negative y direction, and zero 
in the z direction. The motion is clockwise in the x - y  projection. Such a properly 
selected reference trajectory can also be described by 

Xr(t) = - -Ax  sin Ogxyt 

yr ( t ) = -- A y cos O)xyt 
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zr( t )  = A z s inwz t  

JCr(t ) ~- -Ax~oxy cos Ogxyt 

~Yr ( t ) = A yo)xy sin ¢Oxyt 

~r(t) = Azwz cOSWz t 

where Ax,  Ay  = k A x ,  and A z = Ay  denote the amplitudes of the reference 
trajectory for x, y, and z axis, respectively. 

Unless the frequency ratio is a rational number, the Lissajous trajectory does 
not close. For the case of rational frequency ratios, the trajectory becomes periodic 
and is called a halo orbit. For most cases, the solution of the linearized equations of 
motion is not periodic and some control effort is needed to achieve equal in-plane 
and out-of-plane frequencies. This is often called period or frequency control in the 
literature. The resulting periodic orbit due to frequency control will also be called 
a halo orbit in this book, although the term "halo orbit" in celestial mechanics 
usually means a larger, periodic orbit that is a solution of the nonlinear differential 
equations of motion. A halo orbit with such period control is shown in Fig. 3.12, 
which also shows the disk of the moon, which has a radius of 1738 km. 
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Fig. 3.12 Halo  reference orbit.  
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The Lissajous trajectory and halo orbit are the results of the linear analysis of the 
restricted three-body problem. The actual motions of a spacecraft are governed by 
the nonlinear equations of motion, and the spacecraft will not follow the Lissajous 
trajectory or halo orbit naturally. The Lissajous trajectory and halo orbit can be 
used as reference trajectories for a spacecraft control problem described briefly as 
follows. 

Consider the problem of stationing a communications satellite at the translunar 
libration point, and assume that the communications satellite is placed into a quasi- 
periodic Lissajous trajectory, shown in Fig. 3.11, around the L2 libration point. 
Because the moon, with a radius of 1738 km, is centered at the origin of Fig. 3.11, 
the satellite will spend some fraction of time obscured by the moon. Consequently, 
halo orbit control is needed to adjust the frequency of the z-axis motion to keep the 
communications satellite visible from the Earth at all times, as illustrated in Fig. 
3.12. Such halo orbit control is also possible if the amplitudes of the in-plane and 
out-of-plane motions are of sufficient magnitude that the nonlinear contributions 
to the system result in an identical z-axis and y-axis frequency. Such halo orbit 
determination and control problems will be treated in detail in Chapter 4. 

It should be noted that when a spacecraft is actively controlled to follow a 
periodic halo orbit, the orbit will, in general, not close due to tracking error. 
Therefore, when discussing orbits about the libration points, both halo orbits and 
Lissajous trajectories will be called quasi-periodic orbits. When particular orbits 
are being discussed, they will be referred to as halo orbits or Lissajous trajectories. 
The basic shape of the motion will determine the classification of either halo orbit 
or Lissajous trajectory. 

3.9. 

Problem 

Given the in-plane equations of motion written in state-space form as 

~ = A x  

where 

o l o  
x =  A =  0 0 0 1 

' Uxx 0 0 2 
0 Ury - 2  0 

(a) Find the right eigenvector qi and the left eigenvector Pi associated with the 
ith eigenvalue ~-i, as follows: 

V 2ki 

I )~2-Uxx 
qi = I 2L:) 

(b) Verify that if we choose 

F 2~.i Uxx 1 
= | IUxx - 

Pi I 2Li 

L (Uxx - L~)xi 

~c(O) = (O~.y/k) y(O) 

y(O) = -ko~.~ x(O) 
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where 

then we have 
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k --  O)2y -~ UXX 

2Ogxy 

prx(0 )  = o 

p x(0) = 0 

3.8 Elliptic Restricted Three-Body Problem 
The effects of the eccentricity of the moon's orbit (e = 0.05490) are in fact, 

larger than the nonlinear effects for a spacecraft in a typical 3500-km quasi-periodic 
orbit about the translunar libration point. For this reason, the circular restricted 
three-body model treated in the preceding section is not an accurate model for the 
analysis of quasi-periodic orbits in the Earth-moon system. The effects of the sun's 
gravitational field and radiation pressure are smaller than the effects of eccentricity 
and nonlinearities for a spacecraft in a typical 3500-kin quasi-periodic orbit. In 
this section, the elliptic restricted three-body problem is considered as the next 
step in complexity for the halo orbit determination and control problem. 

Consider the system of three bodies shown in Fig. 3.13. The masses of the two 
primary bodies are denoted by M1 and M2, respectively, whereas the infinitesimal 
mass of the third body (a spacecraft) is denoted by m. The point O in Fig. 3.13 is 
assumed to be inertially fixed. 

The equation of motion of the spacecraft is 

:4 

mR3 = -(GMlm/r~)F, - (GM2m/r~)F2 (3.173) 

L; 
and the inertial acceleration of the spacecraft, R3, simply becomes 

R 3 : -(G M1/r~) F 1 - -  (G M2/r 3) 7 2 (3.174) 

o 

m 

M1 

Fig. 3.13 Three-body system. 
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Fig. 3.14 Elliptic restricted three-body problem. 

Defining F21 as the position vector from M1 to M2 such that 

F21 = /~2-  /~l (3.175) 

we also obtain the inertial acceleration of mass M1 as 

R, = (GM2/r31)F21 + (Gm/r3)F1 (3.176) 

The relative motion of m with respect to Ml can then be described by 

"" r '  { ~2 ~21 } ~  r3-- T (3.177) 
= - C ( M l  +m)rTl - C M 2  + 

since rl = R3 - R1. 
Similarly, the relative motion of m with respect to M2 can also be described 

by 

" ~'2 -- GMI { ~'t r'-~- r231 ~211 (3.178) = - c ( M 2  + re)r- 

Consider now theelfiptic restricted three-body problem as illustrated in Fig. 3.14. 
The basis vectors { i, j ,  k} define a rotating reference frame with its origin at the 
barycenter. The angular velocity of this rotating reference frame is not constant be- 
cause M2 rotates about MI in an elliptic orbit. In Fig. 3.14, £2 denotes the distance 
between M2 and L2, and e 1 denotes the distance between M2 and L1. 

Because the distance D between Ml and M2 is not constant, el and ez are not 
constant, and L1 and L2 denote the instantaneous libration points; however, the 
ratio of g2 and the instantaneous distance D is a constant and is denoted as 

e2/D = × = const (3.179) 

There is a similar constant corresponding to el and the instantaneous distance D. 
Equation (3.177) can be used to describe the motion of the spacecraft about 

one of the collinear libration points by defining the position of the spacecraft with 
respect to a collinear libration point as 

F = x t +  y j  + z/~ (3.180) 
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Referring to Fig. 3.14, we obtain 

k'21 = -Oi-" (3.181) 

F, = [ - (1  + y ) O + x ] t + y j + z l ¢  (3.182) 

7 2 : ( - y D  + x ) [+  y j  + z~: (3.183) 

Noting that the distance, D, between M1 and M2 and the angular velocity 0 of 
the rotating reference frame are not constant, we obtain the second derivative of 
F1, as follows: 

71 = {--(1 + y )D + 5~ -- 0y - 20j~ - 02[-(1 + y)D + x]}t  

+ { ~ - -  0(1 + y ) D -  20(1 + y)i)  + Ox +202 - 02y}j + ~k (3.184) 

Introducing the mass ratio/9 of the three-body system as 

p = ME/(M1 + ME) 

1 - -  p = M 1 / ( M 1  + M2) 

and by equating components of Eqs. (3.177) and (3.184), we obtain the nondimen- 
sional equations of motion for the spacecraft as follows: 

where 

)~ - 2 0 y  - O y  - 02[ - (1  + y ) D  + x ]  = (1 + y)D 

(1 - p ) [ - (1  + y)D +x] p ( - y D  + x) 
P (3.185) 

+ 0 [ - (1  + y)D + x] - 02y = - 2 0 [ - ( 1  + y )D + ~t] 

(1 - p)y py 

r31 r32 

(1 - p ) z  pz ~ =  

(3.186) 

(3.187) 

rl = x/[-(1 + y)D + x] 2 a t- y2 -k- z 2 

r 2 -~- ~/ ( - yD  + x) 2 + y2 + Z 2 

In these nondimensionalized e.quations, the distances x, y, z, rl, r2, and D are in 
units of the semimajor axis a; 0 is in units of the mean angular rate n; and time is 
in units of 1In. 

The motion of the two primary bodies is a solution of the two-body problem. 
The distance between the two primaries, D, and the angular rate 0 are written in 
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nondimensional form as a series in eccentricity as 13 
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D = l + le2 + ( - e  + ~ e3 - 1925 eS + & e T )  c°s M 

+ ( - l e 2  + ~e4- -~e6)  cos2M 

( 3 4 5 e 5 5 6 7 e 7  ~ 
+ - e3 + 128 ~ ,] cos3M 

( 3 2  ) ( _ 1 2 5 e 5 4 3 7 5 e 7  ~ 
+ - e 4 + e 6 cos4M + \ 384 + 9216 , /cos5M 

16807 e7 
~70e6cos6M 46080 c o s 7 M + . . .  (3.188) 

= 1 + (2e - le3 107 e7 ~ 4 + 5 e 5  +4608 , ]c°sM 

+ 2 ( 5 e  2 l l e 4 1 7 e 6 "  ~ 
-2-4 + 192 ] c ° s 2 M  

[13 ~ 43e5 95e7" ~ 
+ 3 ~ e - - ~ - - ~  + 5 1 2  ] c o s 3 M  

4(103e4451e6"~  ( 1 0 9 7 e 5 5 9 5 7  ) 
+ \ 9 6  - 4 8 0  / c ° s 4 M + 5 \ 9 6 0  -460-----~e 7 cos5M 

612236 + 7 ~ e T c o s 7 M  + + 9---ff6-e cos6M -.. (3.189) 

where M is the nondimensional mean anomaly defined as M = t - tp and tp is 
the time of perigee passage. It can be simply assumed that tp  = O. This means 
that the spacecraft begins its quasi-periodic orbit when M2 is at its closest position 
to M~. 

It is noted that these series converge for small eccentricity and are divergent when 
e > 0.6627. Most two-body systems in the solar system follow near circular orbits, 
therefore, the preceding series describe most of the two-body systems encountered 
in the solar system. As a measure of the accuracy of the series, it is noted that the 
last term in the series for D represents about 21 cm for the Earth-moon system 
and the last term in the series for 0 represents about 5.86 × 10 -15 rad/s. 

It is also possible to obtain the equations of motion without the use of a series 
expansion. This derivation makes use of the conic equation for motion between 
two bodies by changing the independent variable to the true anomaly. 

Although the equations of motion have been derived with respect to the L2 
point, they can also be used to describe the motion relative to the L1 point. For the 
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Ear th-moon system the constants in the equations of  motion are 

p = 0.01215 

a = 384,748 km 

e = 0.05490 

n = 2.661699 x 10 -6 rad/s 

y = -0 .150935  for LI 

y = 0 . 1 6 7 8 3 3  forL2  

The elliptic restricted three-body model derived in this section will be further 
utilized in Chapter 4 when we study the halo orbit determination and control 
problem.14'15 
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4 
Orbital Maneuvers and Control 

Fundamental problems in orbital mechanics, such as the two-body and restricted 
three-body problems, were treated in Chapter 3. This chapter is concerned with 
orbital maneuvering and control problems of spacecraft under the influence of 
rocket firings. This chapter also briefly introduces the practical problems of ana- 
lyzing launch vehicle trajectories and placing a satellite into an orbit. The problems 
of orbital transfer, rendezvous, and orbit control, which are of fundamental im- 
portance to space missions, are covered. In particular, the halo orbit determination 
and control problem is introduced in this chapter. 

4.1 Launch Vehicle Trajectories 
In this section, we briefly introduce basic physical concepts and terminologies 

that are often encountered when we deal with rocket propulsion and launch ve- 
hicles, and then we discuss the basic trajectory equations during various launch 
phases: 1) vertical ascent, 2) turn-over flight, and 3) gravity turn maneuver. 

The subject of launch vehicle guidance and control is beyond the scope of 
this book; however, the material briefly discussed in this section will provide the 
foundations for studying the orbit injection and orbital maneuvering problems of 
spacecraft under the influence of rocket firings. 

4.1.1 Rocket Propulsion 
Rocket thrust. At a specified position in space, a launch vehicle achieves the 

velocity required to place a payload spacecraft into a desired orbit. Most launch 
vehicles are propelled by liquid-propellant rockets and/or solid-propellant rockets. 
Customarily, a liquid-propellant rocket is called a liquid rocket engine and a solid- 
propellant rocket is called a solid rocket motor. Propellants are working substances 
used in rockets to produce thrust. These substances can be liquids, solids, or gases. 
Thrust that is developed by a rocket is a direct result of a chemical reaction between 
the fuel and the oxidizer in a propellant. This reaction takes place in the rocket's 
combustion chamber and produces gas at a higher temperature. This gas is then 
exhausted out the rocket nozzle at a high velocity, thereby imparting a pushing 
force on the rocket. The nozzle is a part of the rocket thrust chamber assembly in 
which the gases are accelerated to high velocities. 

The rocket thrust T is expressed as 1,2 

dm 
T = -Ve--~- + (pe - po)Ae (4.1) 

where Ve is called the exit velocity of a rocket, Pe is the nozzle exit pressure, Po 
is the local atmospheric pressure, and A e is the nozzle exit area. The rocket thrust 
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consists of the momentum thrust, - Vedm/dt, and the pressure thrust, (Pc - po)Ae. 
Note that the mass flow rate dm/dt is negative because the rocket is losing mass. 

The pressure thrust term in Eq. (4.1) normally accounts for only a small part of 
the total thrust and vanishes when the exit pressure is exactly matched to the local 
atmospheric pressure. The exit (or exhaust) velocity Ve is often expressed as 

V e = golsp (4.2) 

where go = 9.8 m/s 2 is the gravitational acceleration at sea level and Isp is called 
the specific impulse. The specific impulse, with units of seconds, is a measure 
of propellant quality; that is, it is a measure of rocket thrust obtained per unit of 
propellant weight flow. 

Propellants. Liquid propellants are commonly classified as monopropellants 
and bipropellants. A monopropellant contains a fuel and oxidizer combined into 
one substance. A bipropellant is a combination of two propellants, a fuel and an 
oxidizer. The chemicals are not mixed until after they have been injected into the 
combustion chamber. Liquid propellants are also commonly classified as being 
either cryogenic or storable propellants. A cryogenic propellant is an oxidizer or 
fuel that has a very low boiling point and must be kept at a very low temperature. 
A storable propellant is an oxidizer and fuel that is a liquid at normal temperatures 
and pressures. 

Solid propellants burn on their exposed surfaces producing hot gases that provide 
the propulsive force for a solid rocket motor. A solid propellant, often called 
a grain, contains all of the substances needed to sustain chemical combustion; 
it consists of a fuel and an oxidizer that do not react chemically below some 
minimum temperature. Solid propellants are divided into two common classes: 
the composite (or heterogeneous) propellants and the homogeneous propellants. 
Composite propellants are a heterogeneous mixture of an oxidizer and an organic 
fuel binder. Small particles of oxidizer are dispersed throughout the fuel. The fuel 
is called a binder because the oxidizer has no mechanical strength. Homogeneous 
propellants contain chemical compounds that have the oxidizer and the fuel in a 
single molecule. 

Multistage rockets. A propulsion unit of a multistage launch vehicle is called 
a stage, and it is generally designated as either first, second, or third stage. The first 
stage contains the main engines, and the second and third stages provide additional 
thrust capability as required. An upper stage is often needed to inject a payload into 
a geosynchronous transfer orbit or into a heliocentric transfer orbit. Some of the 
currently used upper stages are the inertial upper stage (IUS), payload assist module 
(PAM), and Centaur upper stage. Some of the launch vehicles that have been used 
successfully on many space missions are the Jupiter, Atlas, Saturn, Scout, Titan, 
Delta, Space Shuttle, and Ariane. The launch systems that are currently available 
include: Delta II, Titan, Ariane, Proton, Long March, Space Shuttle, Pegasus, and 
Taurus. 3 

A typical launch vehicle trajectory is illustrated in Fig. 4.1. The trajectory be- 
gins with a brief initial period of vertical ascent, followed by first-stage powered 
flight, second-stage powered flight, coasting phase, third-stage powered flight, and 
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Fig. 4.1 Typical launch vehicle trajectory. 

orbit injection. The determination of the trajectory involves the solution of sets of 
differential equations describing the motion of the launch vehicle. 

4.1.2 Vertical Ascent 

Most launch vehicles usually ascend vertically (or near vertically) through the 
denser regions of the Earth's atmosphere before performing any turn-over ma- 
neuvers. Because of aerodynamic heating considerations a turn-over maneuver is 
usually not initiated until after the vehicle has ascended through the denser regions 
of the Earth's atmosphere. 

Consider a launch vehicle flying vertically during the early portion of its flight, 
immediately after liftoff from the launch pad. The equation of motion of the ver- 
tically ascending vehicle is simply given by 

dv 
m - ~  = T - D - mg  (4.3) 

where m is the vehicle mass, v is the vertical velocity, T is the rocket thrust, D is 
the aerodynamic drag, and g is the local gravitational acceleration. 

The rocket thrust T, neglecting the pressure thrust term in Eq. (4.1), is given by 

dm dm 
T = - V e - - ~  = -golsp--~-  (4.4) 

The aerodynamic drag D acting on a launch vehicle is, in general, expressed as 

D = Ipl )ZCDS (4.5) 

where Co is the coefficient of drag, p is the aerodynamic density, v is the velocity 
of the vehicle, and S is the reference area. The coefficient of drag, Co,  varies both 
with altitude and Mach number, which is defined as the ratio of the velocity of the 
vehicle to the local speed of sound. 
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The solution of  Eq. (4.3) can be obtained by numerical simulation on a digital 
computer; however, an approximate solution to Eq. (4.3) easily can be obtained by 
ignoring the aerodynamic drag term and assuming a constant thrust. For most rock- 
ets, the propellant flow rate th is nearly constant. The inclusion of  the aerodynamic 
drag in the calculation of a trajectory causes a decrease in rocket performance of 
about 10%. 

Neglecting the aerodynamic drag term and assuming the thrust remains constant, 
Eq. (4.3) becomes 

dv dm 
m - -  = -golsp  - mg  (4.6) 

dt -~- 
which is rewritten as 

dm 
dv = - g o l s p - -  - 

m 

Integrating this equation yields 

which becomes 

g d t  (4.7) 

fv  v fm 'ndm fo t -  dv = -goIsp  m g dt (4.8) 
o o 

m 

v(t)  = -golsp  L ~ - -  - gt  (4.9) mo 
where mo is the initial mass, m = m0 + tht, and the initial velocity vo is assumed 
to be zero. (The mass flow rate rn is negative because the rocket is losing mass.) 

Since v = d y / d t  and 

fo tm fo t fot l f :  f i~--  d t =  ~ m  d t -  fi,,m0 dt = - -  e,~m d m -  t ~m0 
m0 rn ,, 

I 
= --:-[m(g,,,m -- 1)]mm - t Z,.mo 

m 

Eq. (4.9) can be integrated further with respect to time to yield the altitude y at a 
specified time t, as follows: 

y( t )  = goIspt 1 ( t o o ~ m ) -  1 

where m = m o +  rht. Given the burning time of the rocket and its initial mass, the 
burnout velocity and the altitude at burnout can be estimated using Eqs. (4.9) and 
(4.10), respectively. 

4.1.3 Turn-Over Trajectory 
After a launch vehicle has ascended through the denser regions of  the Earth's 

atmosphere, a turn-over maneuver is initiated to achieve a predetermined horizontal 
velocity component. This can be obtained by launching the vehicle at a fixed 
inclined angle to the horizontal from the launch pad or by a turn-over maneuver 
during its ascent. 
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Fig. 4.2 Two-dimensional  motion of  a launch vehicle. 

Consider a launch vehicle in a planar, two-dimensional motion, as illustrated in 
Fig. 4.2. The translational equations of motion of  the vehicle's center of mass are 

t : m)~ = T c o s ( O + ~ ) - N s i n O - D c o s O  (4.11) 

7 
j : my = Tsin(0 + ~ ) + N c o s 0  - D s i n 0  - mg (4.12) 

where m is the vehicle mass; x and y are, respectively, the horizontal distance and 
altitude; T is the rocket thrust; N is the normal force acting through the center 
of  pressure of  the vehicle; D is the aerodynamic drag; g is the local gravitational 
acceleration; 0 is the pitch angle; and ~ is the thrust gimbal angle. 

The pitch angle is defined as 

0 = 2 /+  ot (4.13) 

where y is called the flight-path angle, which measures the angle between the 
local horizontal and the flight path, and ~ is called the angle of attack, which 
measures the angle between the flight path and the vehicle's roll axis, as illustrated 
in Fig. 4.2. Also shown in this figure are the thrust vector angle q~, measured from 
the horizontal, and the velocity vector angle ~ ,  measured from the vertical. These 
angles, instead of  y or 0, will be used later in this section. 

The aerodynamic forces N and D are often expressed as 

1 
N = 7 p V 2 C N S  (4.14a) 

D = .~pl V2CDS (4.14b) 
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where V 2 = j;2 _{_ 3'2. The aerodynamic coefficients CD and CN vary both with 
altitude and Mach number and are functions of  the angle of  attack. 

The rotational equation of motion of the vehicle about its center of mass is 

J O" = - T a  sing + N b  (4.15) 

where J is the pitch moment  of  inertia of the vehicle about its center of  mass, a is 
the distance between the center of mass and the rocket nozzle, and b is the distance 
between the center of  mass and the center of pressure. 

Now consider a launch vehicle performing a constant turn-over maneuver in 
which a constant negative pitch rate, i.e., 0 = a negative constant and 0 = 0, is 
maintained by having an offset gimbal angle ~. The offset gimbal angle needed for 
a constant turn-over maneuver can be determined from 

sing = N b / T a  (4.16) 

whereas the aerodynamic normal force N and the center of pressure distance b 
must be known as functions of  time. 

Because of the curvature of the Earth, the local horizontal along the flight path 
does not coincide with the horizontal at launch, except at liftoff. The angle between 
the flight path and the local horizontal can be obtained as 

fo x dx (4.17) F = Y 0 + 0 t +  R + y  

where Yo is the initial flight-path angle at t = 0 and R is the Earth's radius. 
The vehicle's desired angle of  attack for a constant turn-over maneuver can then 

be determined from 

sin(y + or) - 5' cos(y + or) 
sin ot = (4.18)  3'2 

No analytical solution to the preceding equations exists, but they may be solved 
using an iterative procedure. 

4.1.4 Gravity Turn Trajectory 
One of many trajectory optimization problems of launch vehicles is concerned 

with determining the thrust vector angle ~b(t), shown in Fig. 4.2, necessary to 
achieve maximum horizontal velocity at a specified altitude. The solution to this 
classical optimization problem, assuming no aerodynamic effects, can be found as 

tan 4~ = 1 - tan Yo (4.19) 

where Yo is the initial flight-path angle, tf  is the unspecified time at the specified 
altitude, and q~ varies from Yo to zero. 

This optimum thrust vector angle may demand large angle-of-attack changes, 
however, which is not practical due to aerodynamic heating considerations. In 
practice, a so-called gravity turn trajectory,  in which the thrust vector is always 
kept parallel to the velocity vector, is employed, and the angle of  attack is kept 
near zero in a gravity turn maneuver; i.e g = -oe = O. 
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Consider again a simplified two-dimensional model of  a launch vehicle as shown 
in Fig. 4.2. It is sometimes convenient to use the velocity vector angle $ in writing 
the equations of  motion in terms of  the tangential and normal components to the 
trajectory. The equations of  motion in terms of  the tangential acceleration 12 and 
the normal acceleration V~r are written as 

et : m~" = T c o s ( ¢ 5 + o t ) - m g c o s $  - D c o s u + N s i n o t  (4.20a) 

en:  m V ~ = - T s i n ( 8 + o O + m g s i n ~ p  + D s i n o t - N c o s o t  (4.20b) 

where Et and Jn are unit vectors along the tangential and normal directions of the 
trajectory, as shown in Fig. 4.2. 

For a gravity turn maneuver (3 = -or  = 0, and thus N = D = 0), these 
equations of  motion can be simplified as 

~z = ( T / m )  - g cos ~r 

~r = ( g / V )  sin 

and we have 

(4.21a) 

(4.21b) 

= V sin ~O (4.22a) 

= V cos ~ (4.22b) 

For even the most practical cases, in which T. is constant and m = mo -t- rnt, these 
equations are still nonlinear and no analytical solution exists. But these equations 
can be numerically integrated to determine the gravity turn trajectory for given 
initial conditions: x(0) = 0, y(0) = Y0, V(0) = V0, and ~(0) = Or0. A case in 
which the thrust-to-weight ratio T / m g  is a constant is also of  practical interest and 
some analytical results can be found in Ref. 4. 

In general, the final burnout velocities required for most space flight missions 
cannot be easily achieved by a single-stage launch vehicle, because it has to carry 
its entire structural weight up to the final burnout point. Thus, a multistage launch 
vehicle is needed to inject a spacecraft into even a low Earth orbit. In a multistage 
launch vehicle, the first stage contains the main engines, and the second and third 
stages provide additional thrust capability as required. More details of  this impor- 
tant, classical subject of  performance analysis and configuration optimization of  
multistage launch vehicles can be found in the literature (see Refs. 4 and 5) and 
we shall not pursue this subject further in this text. 

In the next section, we shall study an orbit determination problem of a spacecraft 
given its orbital injection conditions at the final burnout point. 

4.2 Orbit Injection 
Consider a problem of determining an orbit of  a spacecraft when only its orbital 

injection conditions are known. Assume that a spacecraft is injected into an orbit 
with the following conditions at final burnout: 

r = r 0 ,  v = v o ,  y = Y 0  

where y is the flight-path angle measured from the local horizontal to the velocity 
vector as illustrated in Fig. 4.3. 
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Fig. 4.3 Orbit injection. 

First we will determine the eccentricity e and then the true anomaly 0o at the 
burnout point to locate the perigee of the resulting orbit. 

Because we know the values of  v and r at the burnout point, the specific energy 
£ can be found as 

£ = - ( / * / 2 a )  = (v2/2) - ( I z / r )  = (Vo2/2) - (Iz /ro)  (4.23) 

The specific angular momentum h of  the resulting orbit can also be determined as 

h = r20 = r~Oo = ro(roOo) = rovo cos }to (4.24) 

Once we know £ and h, we can determine the eccentricity e as 

e = ~/1 + (2£h2//z 2) (4.25) 

Furthermore, the semimajor axis a and the perigee distance rp c a n  be determined 
as follows: 

a = - ( / x / 2 £ )  (4.26a) 

rp = a(1 - e) (4.26b) 

hZ/Iz  
ro = (4.27) 

1 + e cos0o 

At  the burnout point, we have 
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and the true anomaly 0o can be determined from 

) cos 0o = - 1 (4.28) 
e 

Using Eq. (3.82), we express the radial velocity component, t: -= v sin V, at the 
burnout point, as follows: 

Vo sin Yo = (#/h)e sin 0o (4.29) 

which can be rewritten as 

sin 0o = (hvo/lze) sin Yo (4.30) 

Substituting Eqs. (4.23) and (4.24) into Eqs. (4.25), (4.28), and (4.30), and 
defining a new variable ~. as 

X - -  v°2 -- twice the ratio of  kinetic to potential energy at burnout (4.31) 
l* l ro 

we obtain 

and 

e 2 = ( X  - 1 ) 2 c o s 2 y o + s i n 2 y o  (4.32) 

)~ sin Yo cos Yo 
tan 0o = (4.33) 

~.COS2y0 --  1 

These equations indicate that an orbit for any burnout condition is uniquely estab- 
lished by two parameters, ~ and Y0. 

If  X=2, then e =  1 for any values of  Y0, which corresponds to an escape parabola 
as long as the orbital path does not intercept the Earth. If  L = I ,  then Yo must be 
zero to have a circular orbit, although the condition of )~=1 itself corresponds to 
the case of  the circular velocity: Vo = ~/-~/ro. 

As an application of Eqs. (4.32) and (4.33), consider an elliptical ballistic tra- 
jectory illustrated in Fig. 4.4. The point of maximum height corresponds to the 
apogee, and the perigee is inside the Earth. 

A problem of  practical interest is the determination of  the range Rq~ for given 
initial conditions: r0 = R, Vo, and Yo at launch site. First, the eccentricity is 
determined from Eq. (4.32) as 

e 2 = (X --  1)2cosZy0 + s in2yo 

where X = Rv~//z. Because 4,/2 = rr - 0o, the flight range angle ~ can be 
determined from 

q~ ~. sin Yo cos )to 
t a n -  = 

2 XcoS2yo - 1 

Note that the maximum height H can also be simply determined from 

r~ =a( l  + e ) =  H + R 

where the semimajor axis a is determined from Eq. (4.23). 
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Fig. 4.4 Suborbital flight. 

4.3 Single-Impulse Maneuvers 
In orbital dynamics, the term Av maneuver refers to an impulsive maneuver that 

is characterized by an instantaneous change in orbital velocity of a space vehicle. 
Rocket burn times (a few minutes at most) are short compared to typical orbital 
periods of  100 min or longer; thus, typical rocket firings for orbital maneuvers 
are considered to be impulsive. As a result, in orbital maneuvering problems, we 
frequently speak of Av as a measure of the velocity impulse needed for a space 
vehicle to enter a new orbit. 

As illustrated in Fig. 4.5 for an impulsive maneuver between intersecting copla- 
nar orbits, most basic single-impulse maneuvering problems can be analyzed by 

v2 Initial Orbit 

Fig. 4.5 Single-impulse orbital maneuver. 
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simply using the velocity vector equation 

v'2 = ~1 + AI~ (4.34) 

where ~l and V2 are the velocity vectors of  the initial and final target orbits, at the 
maneuvering point, respectively, and A ~ is the required velocity change needed 
to enter the target orbit. 

Using the law of cosines, we compute the magnitude of A~, as follows: 

Av = IA~I = ~/v~ + v~ -- 2VlVzCOSdp (4.35) 

where Vl = I vl 1, v2 = [ vzl, and ~b is the angle between Vl and Vz. 
Similarly, the velocity change required for an inclination change maneuver 

between two circular orbits with the same period is given by 

Av = 2vc s in(Ai/2)  (4.36) 

where Vc is the circular speed of both orbits and Ai is the inclination angle between 
them. The maneuver should occur at either the ascending or the descending node. 

The propellant mass needed for a given value of Av can be determined from 
the following relationship: 

A v  = --golsp fi~(m/mo) (4.37) 

where go is the gravitational acceleration at sea level, lsp is the propellant specific 
impulse, and m0 and m are the space vehicle mass before and after a Av maneuver, 
respectively. The mass of the propellant burned during the A v maneuver, denoted 
as IAml, is then expressed as 

[ A m l = m 0  1 - e x p  - (4.38) 

because m = m0 + Am and Am < 0. (Note that the mass flow rate th is defined 
to be negative because the rocket is losing mass.) 

4.4 Hohmann Transfer 

This section is concerned with an orbital transfer problem between two coplanar 
circular orbits, as illustrated in Fig. 4.6. The elliptic transfer orbit is tangent to both 
the inner and outer circular orbits at the perigee and apogee of the transfer orbit, 
respectively. This problem was first solved by Walter Hohmann 6 in 1925, and the 
associated orbital maneuver is called the Hohmann transfer. 

4.4.1 Two-Impulse Elliptic Transfer 
Consider an outward Hohmann transfer as illustrated in Fig. 4.6 without loss of 

generality. The velocity of a space vehicle orbiting along the inner circular orbit 
of  radius rl is given by 

vc, = Vr-~/rl (4.39) 
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Fig. 4.6 Hohmann transfer. 

The velocity required to leave the inner circular orbit and travel along the elliptic 
transfer orbit to reach the outer circular target orbit of  radius r 2 is 

131 = x/(2i t / r l )  - (I t /a)  (4.40) 

where 

1 
a = g ( r  I --}-r2) 

is the semimajor axis of  the elliptic transfer orbit whose eccentricity is given by 

e = (r2 - rl)/(r2 + rl)  (4.41) 

The velocity change required at the perigee of  the transfer orbit to transfer from 
the inner circular orbit is then given by 

AUI = 1)1 - -  1)c I = x/(2I t / r l )  - (It~a) - ~ (4.42) 

Similarly, the velocity change required at the apogee of the transfer orbit to enter 
the outer circular orbit of  radius r2 is given by 

Av2 = Vc2 -- v2 = ~ -- x/(ZIt/r2) -- (It~a) (4.43) 

The total velocity change required in the Hohmann transfer between two coplanar 
circular orbits is 

Av = Avl + Av2 (4.44) 

The transfer time, T, is half the period P of  the elliptic transfer orbit; that is, 

T = P / 2  = r r ~  (4.45) 

where a = (rl + r2)/2. 
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Problem 

4.1. A spacecraft initially in a 200-km circular parking orbit above the Earth 
( / ~  = 398,601 km3/s z and Re = 6,378 km) is injected into a Hohmann transfer 
orbit to reach a geosynchronous orbit with a period of 23 h 56 min 4 s. Find the 
radius of  the target orbit, r2, the eccentricity of the transfer orbit, e, the required 
velocity changes, Avl and 1v2, and the transfer time T. 

A n s w e r s :  r2 = 42,164 km, e = 0.73, Avl = 2.45 km/s, 11)2 = 1.48 km/s, and 
T = 5.26 h. 

4.4.20ptimafity of the Hohmann Transfer 
The fuel-optimality of  the Hohmann transfer among two-impulse maneuvers 

between two coplanar circular orbits can be verified as follows. 7'8 
Consider an elliptic transfer orbit with semimajor axis a, semilatus rectum p, 

and eccentricity e. It is assumed that this elliptic transfer orbit intersects the inner 
and outer circular orbits of radii rl and r2; that is, 

rp = p / ( 1  + e) < rt  (4.46a) 

r ,  = p / ( 1  --  e) > r 2 (4.46b) 

Note that the minimum value of  e corresponds to an elliptic orbit with rp = rl and 
r a = r 2 .  

The velocity changes 1v l  and 11)2 are given by the law of  cosines, as follows: 

(A1)D 2 = v~ + v 2 - 2VclV, cos ~l  = v~ + v 2 - 2vc, 4 ~ - p / r l  (4.47a) Cl Cl 

(Av2) 2 02 + v 2 --  2Vc21)2 cos q~2 = 1)~ -t- v 2 --  2 V c 2 4 ~ - p / r 2  (4.47b) C2 C2 

where 

and 

i) v~ = / z  - = / z  + (4.48a) 

(4.48b) ~,_ = u - = u 

P 

1) 2 = i~ / r l  (4.49a) Cl 

1)2 = # / r 2  (4.49b) C2 

The total velocity change, which represents the total fuel cost, is then 

Av = 11)1 + Av2 (4.50) 

and the partial derivative of A1) with respect to e, while keeping p constant, can 
be found as 

o11) _ p . [  
0e  (11)1) -1  q- ( 1 1 ) 2 ) - 1 ] )  0 (4.51) 
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Consequently, the minimum value of Av occurs at the minimum value of e, 
which corresponds to the Hohmann transfer; that is, the first impulse at r e = rl and 
the second impulse at r,, = rz. This proves that among two-impulse maneuvers, the 
Hohmann transfer is the minimum-fuel transfer between coplanar circular orbits; 
however, for values of r2/rl greater than approximately 11.94, a three-impulse 
bielliptic transfer can be shown to have a lower fuel cost than the two-impulse 
Hohmann transfer. For a more formal proof of the optimality of the Hohmann 
transfer, the reader is referred to Refs. 7 and 8. 

4.5 Interplanetary Flight 
A typical interplanetary flight consists of three phases: Earth escape, heliocentric 

orbital transfer, and planet encounter. A simple method developed by Hohmann, 
which is very useful in preliminary mission design of such interplanetary flights, 
is presented here. The method is based on the concept of a sphere of influence and 
it is often referred to as the patched conic method. 

4.5.1 Sphere of Influence 

Consider the system of three bodies as shown in Fig. 3.13 of Sec. 3.8. The masses 
of the two primary bodies are denoted by Mr and M2, respectively, whereas the 
infinitesimal mass of the third body (a spacecraft) is denoted by m. 

As was derived in Sec. 3.8, the relative motion of m with respect to M1 can be 
described by 

FI+G(M,+m)  r T = - G M 2  ~ +  r31 / (4.52) 

where F1 and F2 are the position vectors ofm from MI and M2, respectively, and F21 
is the position vector of M2 from Ml. The right-hand side of this equation can be 
considered as the perturbing acceleration to the two-body problem of MI and m 
due to the presence of M2. 

Similarly, the relative motion of m with respect to/142 can be described by 

- r2+G(M2-Fm)~=-GM1 r-~l r3--~l 

The right-hand side of this equation can also be considered as the perturbing 
acceleration to the two-body problem of/142 and m due to the presence of M1. 

Now consider a spacecraft in orbit between two primary attracting bodies of 
masses Ml and/142, which are separated by a distance D. 

The radius of a sphere of influence, simply called the activity radius r of M2 
relative to M1 can be defined as (e.g., see Ref. 9) 

r/D ~ (Mz/M1)] (4.54) 

When the space vehicle is outside the activity sphere of M2, then its orbital 
motion is influenced mainly by M1 and is described by 

31 + G(M~ + m)(F1/r 3) ~ 0  
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Table 4.1 Activity radii of nine 
planets in our solar system 

Planet Activity radii, AU 

Mercury 0.00075 
Venus 0.00411 
Earth 0.00621 
Mars 0.00385 
Jupiter 0.32220 
Saturn 0.36400 
Uranus 0.34600 
Neptune 0.58000 
Pluto 0.00056 

If  a space vehicle is within the sphere of  influence of M2, the orbital motion of the 
vehicle is influenced mainly by M2 and is described by 

72 + G(M2 + m)(F2/r 3) ~ 0 

For the sun-Earth system, the Earth's activity radius r is given as 

r (M.~.~) ~ ( 3 2 8 , ~ )  ~ - -  ~ = = 0.00621 
D 

(4.55) 

where D = 1 AU = 1.4959789 x 108 km. That is, the Earth's activity radius relative 
to sun is only 0.00621 AU or 145 R e.  (See Table 4.1 for activity radii of  all planets 
in our solar system.) Note that the moon located at a distance of 60R e from the 
Earth is certainly inside the Earth's activity sphere. 

For the Ear th-moon system, the moon's  activity radius r is given as 

(4.56) 

2 2 

r (Mmoon "~ ~ (8_~.56) 5 -~ "~ = = 0 . 1 7  
\ M e  ] 

where D = 384,748 km. Therefore, the moon's  activity radius relative to Earth is 
approximately the same as the distance from the moon to the L~ point. 

4.5.2 Patched Conic Method 

Consider a spacecraft departing from its low-altitude circular parking orbit above 
the Earth for an interplanetary trip to an outer planet. A minimum Av Hohmann 
heliocentric transfer orbit is selected here for such an outer-planet mission, al- 
though it is not the minimum-time path. It is assumed that the motion of the planet 
and the spacecraft lie in the ecliptic plane. Such a simplified interplanetary flight 
mission is analyzed here using the method of patched conics. 

As illustrated in Fig. 4.7, the spacecraft departs the Earth at a proper time, 
called the launch window, so that it can encounter the target planet at aphelion of 
the heliocentric transfer orbit. In this figure, r e denotes the radius of  the Earth's 
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Fig. 4.7 Hohmann transfer from the Earth to an outer planet. 

orbit about the sun and r® denotes the orbital radius of the target planet about the 
sun.* 

The transfer time is simply half the period P of the transfer orbit; that is, 

T = P / 2  = zr v / - ~ o  (4.57) 

where a = (r e + r®)/2 is the semimajor axis of the elliptic transfer orbit and/z o 
is the gravitational parameter of the sun. 

*In this chapter, the symbol ® is used to denote a target planet, although such a symbol is not one 
of the astronomical symbols such as (3 and ~. 
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The velocity required to leave the Earth's orbit and travel along a heliocentric 
transfer orbit to reach the target planet's orbit is 

v. = I,/2.o 2/zo 

V re r e 4- r® 
(4.58) 

which is called the perihelion velocity of the Hohmann transfer orbit. 
Because the Earth's activity sphere is very small compared to the distance from 

the Earth to the sun, the velocity of the space vehicle relative to the Earth when it 
leaves the Earth's activity sphere can be determined as 

Voole = Vp - V e = , /21z°  2 # o  IZ~[-~-o (4.59) 
V re re + r® V re  

where V e is the circular velocity of the Earth about the sun and Vp > Ve. The 
symbol voo/e denotes the hyperbolic escape velocity of the spacecraft with re- 
spect to the Earth. Note that the velocity relationship (4.59) is obtained from the 
corresponding vector equation 

l)p = v~/e  + Ve (4.60) 

where l)p is, in fact, the inertial velocity vector of the spacecraft with respect to 
the sun when it leaves the Earth's activity sphere. 

Assume that an actual A v maneuver occurs at perigee of the escape (or departure) 
hyperbola. The energy equation for a hyperbolic orbit about the Earth is given by 

2 2 
g _  ix e _ vp IZe -- --V°°le (4.61) 

2a 2 rp 2 

where rp is the perigee distance, vp is the perigee velocity, and a is the semimajor 
axis of the escape hyperbola. The perigee velocity required for the escape hyperbola 
is then determined as 

/ 
2 Vp = ~/voo/e + (21ze/rp) (4.62) 

This perigee velocity is achieved by an impulsive Av maneuver, as follows: 

vp = Vc + A v e  (4.63) 

where Vc ---- ~ is the circular velocity of a parking orbit about the Earth. 
Finally, the velocity change Av e required at perigee is computed as 

Av e ~/ z = voo/e + (21ze/rp) - ~ (4.64) 

The semimajor axis a and the eccentricity e of the escape hyperbola can be 
determined as 

a = - ( /xe /Zg)  = - ( i Z e / V ~ / e )  (4.65a) 

2 e = I + (rpVoo/e/tZe) (4.65b) 
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The parameter p and the specific angular momentum h of the escape hyperbola 
can be determined as 

p = a(1 - e 2) (4.66a) 

h = ~ (4.66b) 

Furthermore, the distance d between the Earth and the asymptote of the escape 
hyperbola can be found from the relationship h = v~od. Note that the outgoing 
asymptote of the escape hyperbola with the asymptote angle 

0oo = cos - l ( - 1 / e )  (4.67) 

is aligned with the Earth's velocity vector, as a Hohmann transfer orbit is consid- 
ered. 

Similarly, when the spacecraft approaches the activity sphere of the target planet 
along a heliocentric Hohmann transfer orbit, we have 

17. = ~oo/e + 17e (4.68) 

where 17~ is the inertial velocity vector of the spacecraft with respect to the sun, 
called the aphelion velocity of the Hohmann transfer orbit, V® is the circular 
velocity vector of the target planet with respect to the sun, and ~oo/e is the 
hyperbolic approach velocity vector of the space vehicle relative to the target planet. 

Because V e > V., we have 

v o o / e =  V e -  V. = / ' t .  # / - ~ - 7 - J  2#e  2 # e  (4.69) 
V r e  " V re re + re 

Consequently, the direction of ~oo/e is the opposite of the direction of Ve, as 
illustrated in Fig. 4.7. That is, during the encounter with the outer planet, the 
spacecraft approaches the target planet from a point ahead of the planet, relative 
to the view of an observer on the target planet. Also note that the spacecraft could 
approach the target planet on either the sunlit side or the dark side with the same 
voo/e. 

The energy equation of an approach hyperbola is 

E = -( /z®/2a) = (v2/2) - (Iz®/rp)  = 0 2 / ® / 2  (4.70) 

where a, rp, and v e are, respectively, the semimajor axis, the periapsis distance, 
and the periapsis velocity of the approach hyperbola about the target planet, and 
where/z e is the gravitational parameter of the target planet. 

If the spacecraft approaches the target planet with the hyperbolic approach 
velocity voo/® and the asymptote distance d, the eccentricity of the hyperbolic 
orbit can be found as 

e = 1 + (Voo/®d/lz®) (4.71) 

and the periapsis distance of the hyperbolic orbit about the target planet can be 
determined from 

2 e = 1 + (rpVoo/®/tze)  (4.72) 
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The periapsis velocity is then found as 

/ 2 vp = ~]vc,z/e + (2tz®/rp) (4.73) 

Neglecting the atmospheric drag effect and the rotational motion of  the target 
planet, we can estimate the retro velocity required for a "soft landing" on the 
target planet's surface, i.e., r e = R®, as follows: 

A1)® ~/ 2 = v~ /e  + (2t~e/R®) (4.74) 

where R e is the equatorial radius of  the target planet. 

Problems 

4.2. A spacecraft initially in a 200-km circular parking orbit above the Earth 
(R e = 6378 km) is injected into a Hohmann heliocentric transfer orbit to the outer 
planet Mars. It is assumed that the motion of  Mars and the spacecraft lie in the 
ecliptic plane. The radius of  the Earth's orbit about the sun is r e = 1.496 x 108 km 
(=  1 AU) and the radius of  the orbit of Mars about the sun is r e = 1.523691 AU. 
The gravitational parameters of the sun and Earth are:/z o = 1.32715 x 1011 km3/s 2 
and/x e = 3.98601 x 105 km3/s 2. 

(a) Estimate the trip time T from the Earth to Mars along the Hohmann transfer 
orbit. 

(b) Compute the perihelion velocity Vp of the Hohmann heliocentric transfer 
orbit, the Earth's velocity V e, the hyperbolic escape velocity V~/e, and Av e 
required at perigee. Also sketch the escape hyperbola by showing 0~, d, Vp, V e, 
V~/e, Av e, vp, Vc, and rp. 

(c) Compute the aphelion velocity V~ of the Hohmann heliocentric transfer orbit, 
the velocity of the target planet Mars, denoted as V®, and the hyperbolic approach 
velocity v~/e .  

(d) Compute Av e required for a soft landing on the target planet Mars. The 
gravitational parameter of  Mars is/z e = 43,058 km3/s 2 and the equatorial radius 
of  Mars is R e = 3,379 km. 

(e) Assuming that the spacecraft is required to approach the target planet on the 
sunlit side, sketch the approach hyperbola for a soft landing mission by showing 
0~, d, V,, V e, V~le, Av e, and R e. 

Answers: T = 259 days, Vp = 32.729 km/s, V e = 29.784 km/s, v~/e  = 2.945 
km/s, vp = 11.395 km/s, Vc = 7.784 km/s, Av e = 3.612 km/s, V e = 24.13 
km/s, V, = 21.48 km/s, v~/~ = 2.648 km/s, and Av e = 5.70 km/s. The total Av 
requirement for a soft landing mission to Mars is about 9.3 km/s. 

4.3. A spacecraft initially in a 200-km circular parking orbit above the Earth 
(R e = 6378 km) is injected into a Hohmann heliocentric transfer orbit to the inner 
planet Venus (R e = 6200 km and/z e = 3.257 x 105 km3/s2). It is assumed that the 
motion of Venus and the spacecraft lie in the ecliptic plane. The radius of the Earth's 
orbit about the sun is re  = 1.496 x 108 km (=  1 AU) and the radius of the orbit 
of Venus about the sun is r® = 0.723332 AU. The gravitational parameters of  the 
sun and Earth are:/z o = 1.32715 x 1011 km3]s 2 and/z e = 3.98601 x 105 km3/s 2. 
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(a) Estimate the trip time T from the Earth to Venus along the Hohmann transfer 
orbit. 

(b) Compute the aphelion velocity V. of the Hohmann heliocentric transfer orbit, 
the Earth's velocity V e, the hyperbolic escape velocity v~o/e, and A v e required at 
perigee. Also sketch the escape hyperbola by showing 0<~, d, V,,, V e, v,,o/e, Ave, 
vt,, Vc, and rt,. 

(c) Compute the perihelion velocity Vp of the Hohmann heliocentric transfer 
orbit, the velocity of the target planet Venus V®, and the hyperbolic approach 
velocity v~/®. 

(d) Compute Av® required for a soft landing on the target planet Venus. 
(e) Assuming that the spacecraft is required to approach the target planet on the 

dark side, sketch the approach hyperbola for a soft landing mission by showing 
0~, d, Vp, V®, voo/®, Av®, and R®. 

(f) Assuming that the spacecraft is required to approach the target planet on the 
sunlit side, sketch the approach hyperbola for a soft landing mission by showing 
0~, d, Vp, V®, v~/®, Av®, and R e. 

Note: For a Hohmann heliocentric transfer orbit to the inner planet Venus, we 
have 

where I)~ is the inertial velocity vector of the spacecraft at aphelion of the helio- 
centric transfer orbit and V e > V,. 

Answers: T = 146 days, V~ = 27.30 kin/s, V e = 29.78 km/s, voo/e = 2.48 
km/s, Vp = 11.28 kin/s, Av e = 3.49 km/s, the escape hyperbola (e = 1.10, 0oo = 
155.38 deg, ~ -- 130.4 deg), Vp -- 37.71 kin/s, V® = 35.0 km/s, voo/~ ---- 2.71 
krn/s, Av® = 10.6 km/s. 

4.5.3 Planetary Flyby 
Thus far in this section, a Hohmann transfer orbit, which is tangential both to 

the Earth's orbit and the target planet's orbit, was considered for an interplanetary 
flight mission. The trip time to Mars along a Hohmann heliocentric transfer orbit, 
for example, can be estimated as 259 days and the total Av required for a soft land- 
ing mission on Mars from a 200-km parking orbit can be estimated as 9.3 km/s. In 
certain missions, a non-Hohmann transfer orbit is used to shorten the trip time at 
the expense of the increased A v requirements. Some interplanetary missions also 
utilize a planetary flyby to increase or decrease the energy of the spacecraft with re- 
spect to the sun so that other planets can also be encountered by the same spacecraft. 

A spacecraft after its planetary flyby (or swingby) may gain or lose its energy 
depending on whether it passes behind or ahead of the planet. The gain or loss of 
energy is caused by the rotation of the spacecraft's velocity vector with respect to 
the planet, as illustrated in Fig. 4.8. In this figure, v~ and v + denote the hyperbolic 
excess velocity relative to the target planet before and after the planetary flyby, 
respectively; V -  and V + denote the inertial velocity of the spacecraft with respect 
to the sun before and after the planetary flyby, respectively; and V, is the inertial 
velocity of the target planet. In a trailing-side flyby of a planet as shown in Fig. 4.8a, 
the spacecraft's inertial velocity is increased. On the other hand, the spacecraft's 
inertial velocity is decreased in a leading-side flyby, as shown in Fig. 4.8b. Note 
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Fig. 4.8 Planetary flybys: a) trailing-side flyby and b) leading-side flyby. 

that the magnitude of relative velocity before and after the planetary flyby is the 
same; only its direction is changed by the flyby. 

Such a planetary flyby maneuver is often called a gravity-assist or gravitational 
slingshot maneuver. One of the most recent space exploration missions that utilized 
such a gravity-assist maneuver to reach a target planet is the Galileo spacecraft that 
was sent to Jupiter. In October 1989, after a three-year delay, the Galileo spacecraft 
was launched from a Space Shuttle parking orbit toward Jupiter, using an inertial 
upper stage (IUS). Changing from the originally planned use of a liquid Centaur 
upper stage to a less powerful solid IUS (because of a safety concern after the 
Shuttle Challenger accident) has resulted in a new trajectory. The Galileo spacecraft 
took about six years of travel time to reach Jupiter after performing one gravity- 
assist maneuver at Venus and two such maneuvers at Earth. 

4.5.4 Planetary Capture 
Some interplanetary missions require a circularization about the target planet, 

instead of a soft landing or a flyby. If  such a planetary capture maneuver is per- 
formed at periapsis, then the required retro velocity is simply determined as 

= ~ v  2 + (2/z®/rp) - Av (4.75) 

where/z® is the gravitational parameter of the target planet, rp is the periapsis 
distance, and v~  is the hyperbolic approach velocity of  a spacecraft relative to the 
target planet. 

If  the final circular orbit radius is not specified and the required Av, i.e., amount 
of propellant, is to be minimized, then the minimum value of A v and the associated 
rp c a n  be found as follows. Taking the partial derivative of Eq. (4.75) with respect 
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to rp and setting it equal to zero, we obtain 

rp = 2tz®/v 2 (4.76) 

and the minimum value of A v 

A1)min -~- 1)oo/ ~/2 (4.77) 

Note that a soft landing requires the maximum value of Av. 
For further details of space mission design and orbital applications, the reader 

is referred to Refs. 10-12. 

4.6 Orbital Rendezvous 

Consider a problem of describing the relative motion of a chase vehicle with 
respect to a target vehicle that is in a circular orbit. Such a rendezvous or prox- 
imity operation problem of two space vehicles is of primary importance to many 
current and planned space missions. The linearized equations of motion of a chase 
vehicle that is in close proximity to a target vehicle are derived in this section. 
Such equations are sometimes called the Clohessy-Wiltshire equations or Hill's 
equations. These relative motion equations were first studied by Hill in 1878 for a 
somewhat different purpose, and further investigated by Clohessy and Wiltshire 13 
in 1960 for practical purposes. 

As illustrated in Fig. 4.9, a target vehicle is in a circular orbit of radius Ro with 
an orbital rate of n ~ / ~ l R 3 o  . A reference frame with (x, y, z) coordinates and 
with basis vectors {i, j ,  k} is fixed at the center of mass of the target vehicle and 
rotates with an angular velocity of E) = nk with respect to an inertial reference 
frame. The x axis is along the radial direction, the y axis is along the flight direction 
of the target orbit, and the z axis is out of the orbit plane and completes a right- 
handed reference frame. 

The position vector of the target vehicle from the center of the Earth is expressed 
a s  

f?o = Ro -[ (4.78) 

and the relative position vector of the chase vehicle from the target vehicle is also 
expressed as 

F = xi" + y j  + z/~ (4.79) 

The position vector of the chase vehicle from the center of the Earth is then given 
by 

= Ro + Y = (Ro + x ) t +  y j +  d (4.80) 

and the inertial acceleration of the chase vehicle can be found as 

= [2 -2n j ; -n2 (Ro+x)] - [+(~q-2nJ¢  -n2y)] -b~ fc  (4.81) 

The gravitational acceleration of the chase vehicle is 

~, = I~. ~ = tz,[(Ro +x)-[+ y j +  zfc] (4.82) 
R3 [(Ro + x )  2 + y2 + z21~ - 
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Fig. 4.9 Relative motion between chase and target vehicles. 

The equation of motion of the chase vehicle is then simply given by Newton's 
second law 

:.; L; 
mR = m~, or R = ~ (4.83) 

where m is the mass of the chase vehicle. 
For small relative motion with x 2 + y2 + z 2 ~ 0, the denominator of Eq. (4.82) 

becomes 

[ ( R o + x ) 2 + y 2 + z 2 ] ~  ~ [ R ~ + 2 R o x ]  3 = R 3 [ l + ( 2 x / R o ) ] ~  (4.84) 

As a result, the gravitational acceleration given by Eq. (4.82) becomes 

~ -(/z./Ro3)(1 + 2x/Ro)-~ [(Ro + x)-[+ y j  + zkl (4.85) 

which can be further approximated, using the generalized binomial theorem, as 
follows: 

"~ -(/z~/Ro3)[1 - (3x/Ro)][(Ro + x)-[+ y ] + zk] (4.86) 

Again neglecting the second-order terms such as x 2, xy, and xz for small relative 
motion, we have 

~, ~ -n2[(Ro - 2 x ) i +  y ] +  z/~] (4.87) 

where n = ~ .  
Finally, a set of linear differential equations, often called the Clohessy-Wiltshire 

equations, which describe the small relative motion of the chase vehicle with 
respect the target vehicle, can be found as 

5~ - 2np - 3n2x = 0 

+2n~t = 0 

"£ + n2z = 0 

(4.88) 

(4.89) 

(4.90) 
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Note that for these equations, the y-axis displacement does not have to be small if 
it is measured circumferentially, as follows: 

y = RoO (4.91) 

The out-of-plane equation (4.90) is decoupled from the in-plane equations (4.88) 
and (4.89), and its solution is given by 

z( t ) ]  [ cosnt  sinnt/n]Ezo] (4.92) 
2(t)]  = - n s i n n t  cosnt  zo 

where Zo and z0 are initial conditions at t = 0. 
Equation (4.89) is integrated to yield 

p(t) = -2nx(t) + 2nxo + Yo (4.93) 

where xo and Yo are initial conditions at t -- 0. Substituting this equation into 
Eq. (4.88), we obtain 

£ + n2x = 4n2x0 + 2npo (4.94) 

and its solution can be found as 

x ( t ) = -  o + 3 x 0  c o s n t + - - s i n n t +  4Xo+ (4.95) 
n n 

The complete solution of the in-plane motion is then represented in matrix form, 
as follows: 

l 
x(t)7 r 4 - 3 cosnt  0 
y ( t ) |  | 6 s inn t  - 6nt 1 
k ( t ) |  = [ 3ns inn t  0 
p ( t ) /  L 6 n ( - 1  + c o s n t )  0 

sinntln cosn Jnl IXo 1 
2 ( - l + c o s n t ) / n  4 s i n n t / n - 3 t |  Y0 

cosnt  2s inn t  | % 
- 2  sinnt - 3  + 4 c o s n t  J Yo 

(4.96) 

These solutions, as well as the solution of the out-of-plane motion, can be used for 
many practical applications, such as orbital rendezvous and proximity operations 
of  two space vehicles. Given the initial position and velocity components of  the 
chase vehicle, one can easily determine the position and velocity components of 
the chase vehicle relative to the target vehicle at a specified time t from these 
equations. 

If  the chase vehicle with initial position components x o , Yo, and z o relative to 
the target vehicle is required to rendezvous with the target vehicle at a specified 
time t, then Eqs. (4.92) and (4.96) can be used to determine a proper set of  initial 
velocity components :t +, ~+, and ~+ for a Av maneuver at /  = O. (The superscripts 
- and + denote just before and after an impulsive maneuver at t = O, respectively.) 

For example, consider a two-impulse rendezvous maneuver where the first im- 
pulse maneuver provides a proper initial velocity vector to rendezvous with the 
target vehicle at a specified time t and the second impulse maneuver is needed to 
stop the chase vehicle at the target. Given the initial position components x o , Yo, 
z o and the desired final position x = y = z = 0 at a specified time t, the required 
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velocity components at t = 0 + can be found as 

jc + = Xon(4  s i nn t  - 3nt  cosnt )  - 2yon(1 - cosnt )  (4.97a) 

3nt  sin nt - 8(1 - cos nt)  

29+ = - X o n [ 6 n t  sin nt - 14(1 - cos nt)] + yo  n sin nt (4.97b) 
3nt  sinnt  - 8(1 - cos nt)  

~+ -- - z ° n  (4.97c) 
tan nt  

The velocity change Avl required for the first impulse maneuver is then given by 

Aft, = (:t+ -- :~o) i ' +  (290+ -- 29o) j + (~0+ -- ~o)/~ (4.98) 

where :t o ,  290, and Zo are the actual initial velocity components of  the chase vehicle 
relative to the target vehicle at t = 0 - ,  i.e., just before the impulsive maneuver, 
and we have 

Avl --= IAfl l  = ~/(:t0 + -- :to) 2 4- (29++ -- 290) 2 -~- (~- -- ~o) 2 (4.99) 

The second velocity change A f2 needed to stop the chase vehicle at a specified 
time t is also given by 

Af2 = - - : t ( t ) t - -  ~ ( t ) ]  -- ~(t)/~ (4.100) 

and 

Av2  - IAf21 = ~/:tz(t) + 292(t) + gz(t) (4.101) 

where :t(t), 29(t), and g(t) are the velocity components of the target vehicle at 
a specified time t resulting from the initial position and velocity components: 
x+ = Xo, Y+ = Yo, z+ = Zo, :t+, 29+, and ~+, just after the impulsive maneuver 
Avl at t = 0. 

There exists a s tandof f  posi t ion that does not require continuous thrusting to 
maintain the relative position. Such a situation is possible if the chase vehicle has 
zero radial and cross-track (out-of-plane) position components and zero relative 
velocity, in other words, if the chase vehicle is in the target orbit, but with a nonzero 
value of the in-track position y(t) .  

A chase vehicle located at such a standoff position in a target orbit with a 
nonzero value of the in-track position Yo will move along a trajectory about the 
target vehicle if a radial velocity impulse :t+ is imparted to the chase vehicle. The 
resulting el l ipt ical f lyaround trajectory is described as follows: 

x ( t )  = (Jc+ / n )  sin nt (4.102a) 

y( t )  = Yo - (2: t+/n)(  1 - cos nt)  (4.102b) 

which can be combined to yield 

x 2 + ~  Y - Y o +  = (4.103) 

Note that the target vehicle is located at the origin: x = y = z = 0. 
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4.7 Halo Orbit Determination and Control 

The circular and elliptic restricted three-body problems were studied in Sees. 3.7 
and 3.8, respectively. An interesting feature of the circular restricted three-body 
problem is the existence of equilibrium points, called libration or Lagrangian 
points. These are points where the gravitational and centrifugal forces acting on 
the third body cancel each other. 

The existence of periodic orbits about the libration points has been known 
for many years. In the late 1960s and early 1970s, Farquhar 14'15 proposed the 
use of lunar libration points and orbits about libration points for lunar far-side 
communications. As illustrated in Fig. 4.10, it may be desirable to maintain a 
3500-km halo orbit about the translunar L2 point. A spacecraft following this tra- 
jectory will always lie within the 11.1-deg beamwidth of a fixed lunar-surface an- 
tenna even when the latitudinal and longitudinal oscillations of the moon are taken 
into account. If the halo orbit amplitude is increased to 3700 km, the spacecraft 
would also be visible from the cislunar L1 point. Therefore, if another spacecraft 
were stationed at the L 1 point there could be continuous communications between 
the Earth and most of the lunar surface. 

In this section, which is based on Refs. 16 and 17, such a halo orbit determina- 
tion and control problem is considered first for the circular restricted Earth-moon 
system. Later in this section, the effects of lunar orbital eccentricity are also consid- 
ered. Solar gravitation and radiation effects could be included in a more accurate 
model; however, these effects are smaller than the elliptic and nonlinear effects for 
a spacecraft in a 3500-km orbit about the translunar libration point. 

For the purpose of preliminary mission analyses, it is assumed that all of the states 
can be measured for feedback control and that proportional control accelerations 
can be produced by pulse-modulated thrusters. The stationkeeping control problem 
of practical concern, including the effects of tracking and propulsion errors, is not 
considered here. Other practical issues regarding the use of constant low-thrust jets 
are also not considered. We are mainly concerned here with the computation of a 
fuel-efficient trajectory about a libration point using a disturbance accommodating 
control approach. 

4.7.1 Linear State-Feedback Control 

Defining Ux, Uy, and Uz as the control acceleration components along the X, Y, 
and Z axes, respectively, we can obtain nondimensionalized, nonlinear equations 

I 

Halo Orbit Plane [ 
Z 

~ L 2  / ~ n  /.._ ~ L Moon t Earth 

3500 k 2 m ~ ~  
' 

Spacecraft 

X 

Fig. 4.10 Halo orbit control problem of the Earth-moon-spacecraft system. 
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of motion of the spacecraft as 

2 -2}"  - X  = 
( 1  - p ) ( X  - p )  p ( X  + 1 - p)  

3 
r~ r 2 

-~- U x (4.104a) 

] ? + 2 X - Y -  ( 1 - p ) Y  pY 
r~ r-- T + uy (4.104b) 

2 -- (1 - p)Z p___ZZ + Uz (4.104c) 

4 
where 

X = X o + x ,  Y = Y o + Y ;  Z = Z o + z  

rl = ~/(X - p)2 -k- y2 nt_ Z 2 

r2 = x / ( X  d- 1 - p ) 2  + y2 d- Z 2 

(Xo, Yo, Zo) are the coordinates of  the libration point, and (x, y, z) are the com- 
ponents of  the position vector of the spacecraft relative to the libration point. 
(See Sec. 3.7 for a detailed description of the circular restricted three-body model.) 

The nondimensional linearized equations of  motion in terms of x, y, and z can 
be derived in state space form as 

= Ax + Bu (4.105) 

where x = (x, y, z, 2, y, ~), u = (Ux, u~,, uz), and 

i00o 0i] [i°;l 0 0 0 0 1 0 0 0 

0 0 0 0 0 B = 0 0 (4.106) 
A = Uxx Uxr 0 0 2 ' 0 

LU~x Urr  0 - 2  0 I 
0 Uzz 0 0 0 

For the translunar L2 libration point in the Earth-moon system with 

Uxx = 7.3809, Uyr = -2 .1904,  Uzz = -3 .1904  

the eigenvalues can be found as 

~-1.2 = -t-2.15868 

~3,4 = -t-jwxy = 4-j 1.86265 

)~5,6 = ±jWz = ± j l . 7 8 6 1 8  

As discussed in Sec. 3.7, a Lissajous reference trajectory is a force-free solution 
to the linearized equations of motion with a proper set of initial conditions and is 
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described by 

Xr(t) = --Ax sin O)xyt 

yr(t) = - A y  cos O)xyt 

Zr(t) = A z sin COzt 

JCr(t ) -= - Axogxy cos O)xyt 

yr(t) = Aywxy sin Wxyt 

2r(t) = Azco z cos Wzt 

where Ax, Ay, and Az denote the amplitudes of the reference trajectory for the x, 
y, and z axes, respectively. 

Given a linear model of the system described by Eq. (4.105), we can consider a 
linear state-feedback controller of the form 

u = - K ( x  - x r )  

where K is the gain matrix to be properly determined; i.e., we have 

(4.107) 

FX - - X r l  

Uy = -- Ky x Kyy Ky z K~,~ Kyz (4.108) 
U z gzx Kz r g zz K ~  gri' /x-)tr/ gz~, gzz /:f_Nr | 

LZ-ZrJ 
Using the LQR method described in Chapter 2, one may find the following gain 
matrix: 

F39.016 -7 .154 0 9.876 0.122 0 7 
K-- k 7.329 28.69 0 0.122 8.823 0 J 0 28.593 0 0 8.786 

Notice the decoupled nature of the z-axis control from the coupled x- and y-axes 
control. 

Nonlinear simulation results for the control acceleration components needed to 
maintain a 3500-km Lissajous reference trajectory are given in Fig. 4.11, in which 
the circular restricted three-body system with a linear state-feedback controller, 
along with the preceding gain matrix, is used for closed-loop nonlinear simulation. 
It is important to note that such a cyclic nature of the control inputs is a result of the 
nonlinear dynamic effects neglected in the derivation of the Lissajous reference 
trajectory. The actual trajectory is very close to the commanded reference trajectory 
shown in Fig. 3.11 of Sec. 3.7, and thus not included here. 

In orbital mechanics, A V is often used as a criteria to evaluate the performance 
of orbit control. The fuel needed for orbit control cannot be determined unless 
the mass of a spacecraft is known. Therefore, it is common practice to use the 
total velocity change A V as a measure of performance. The A V can be found by 
integrating the control acceleration inputs with respect to time. The units of A V to 
be used here are meters per second (m/s). A spacecraft would require approximately 
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Fig. 4.11 Control acceleration inputs needed for maintaining a 3500-km Lissajous 
reference trajectory. 
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285 (m/s)/year to maintain the 3500-km Lissajous trajectory, and it would require 
approximately 375 (m/s)/year to maintain a 3500-km halo reference orbit shown in 
Fig. 3.12 of Sec. 3.7. This increase in A V for the halo orbit is attributed to period 
control, which is required to produce equal in-plane and out-of-plane frequencies. 
The average A V for a geosynchronous satellite is about 50 (m/s)/year. 

4.7.2 Disturbance Accommodating Control 

The accuracy of the reference trajectory is critical in reducing the A V needed 
to maintain a quasiperiodic orbit in the restricted three-body problem. An impor- 
tant area of research pertaining to the restricted three-body problem involves the 
determination of reference trajectories that are closer to a periodic solution of the 
nonlinear equations of motion. For example, a third-order analytic solution for 
a quasiperiodic Lissajous trajectory has been derived by Farquhar and KamelJ 8 
This solution takes into account nonlinearities, lunar orbital eccentricity, and ef- 
fects from solar gravitation and radiation. 

The persistent disturbance-rejection (or disturbance-accommodation) technique, 
described in Chapter 2, is another method that can be employed to reduce the A V 
for the halo orbit control problem. As first demonstrated by Hoffman,19 disturbance 
accommodation can be used to eliminate the control acceleration that results from 
forcing the spacecraft to follow the reference trajectory derived with the linearized 
equations of motion. The elimination of this control acceleration allows the space- 
craft to follow a trajectory that is closer to a periodic solution of the nonlinear 
equations of motion. 

The A V required to maintain the reference quasiperiodic orbit is large as a result 
of the neglected nonlinear terms in the equations of motion. Such nonlinear effects 
can be considered constant and periodic persistent disturbances, which are func- 
tions of the position, velocity, and acceleration of the spacecraft to be controlled. 
They are therefore termed trajectory-dependent disturbances. An iterative method 
for designing a disturbance-accommodating controller is briefly introduced here. 
The method allows the spacecraft to deviate from the reference trajectory and fol- 
low a trajectory that requires substantially less A V. The resulting deviation from 
the reference trajectory is, however, relatively small compared to the size of the 
orbit itself. 

The analytic series solutions of Farquhar and Kame118 contain bias, sine, and co- 
sine terms with frequencies similar to those included in the disturbance-accommo- 
dating controller. This should be expected because the disturbance-accommodating 
controller allows the spacecraft to follow a trajectory that is closer to a periodic 
solution of the nonlinear equations of motion. Therefore, the iterative design of 
a disturbance-accommodating controller and an analytic solution should produce 
similar results. 

The libration points are at fixed positions in the rotating reference frame because 
it is assumed that the primaries move in circular orbits. Therefore, the position of 
the spacecraft following a reference trajectory can be written as 

Xr = Xo ~- Xr, Yr = Yo + Yr, Z r = Zo-~  Zr (4.109) 

where Xo, Yo, and Zo are the coordinates of a libration point in the rotating 
reference frame. The control acceleration needed to maintain a reference trajectory 
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is determined by solving the nondimensional equations of  motion for the control 
acceleration, as follows: 

where 

Ux = X r  - 2£r - X,- + 
( 1  - -  p ) ( X r  - p )  p(Xr -1- 1 - p )  

+ (4.1 lOa) 

Uy = L - k -  2J~r - Yr + - -  
(1--p)Yr PYr 

+ - -  (4.110b) 
r 3 r 3 

(1 - p ) Z r  p Z r  
UZ ~ Z r  -~- -Jr- - -  (4.110C) 

r~ r~ 

rl = x / (Xr  - p)2 + yr 2 + Zr 2 

r 2 ~- ~ ( X  r --~ 1 - p ) 2  _.[.. y 2  .q_ Z 2 

This is an exact expression for the control acceleration needed to maintain a refer- 
ence trajectory about one of the libration points. If  the reference trajectory is a pe- 
riodic solution of  the nonlinear equations of  motion with a proper set of  initial con- 
ditions, then the control acceleration components (Ux, Uy, uz) will be equal to zero. 

For the collinear libration points with Yo = Zo = 0, Eqs. (4.110) become 

Ux = 2 r  - 2~Yr -- (Xo + X r ) ' [ - ( 1  - -  p ) ( g  o + x r - -  P ) r l  3 

+ p (Xo  + x~ + 1 - p ) r~  3 (4.111a) 

Uy = Yr A¢_ 2JC~ -- Yr + (1 -- p ) y r r l  3 q- py r r~  3 (4.11 lb) 

Uz = Zr -[- (1 - -  p ) Z r r l  3 -}- p Z r r 2  3 (4.11 lc) 

where 

r ~  3 = [ (Xo  + x ,  - p)2 + yr 2 + Zr2]--~ 

3 

r 2  3 ~__ [ ( X o  ..1.. Xr _.[_ ] _ 19)2 + y2  Jr- Zr2] - ~  

and the reference trajectory is described by 

xr(t)  = - A =  sin Wxyt 

yr(t)  = - A y  cos Ogxyt 

Zr(t) = A z sin Wzt 

JCr(t ) = - -  Axogxy  c o s  O)xyt 

yr(t)  = Ayogxy sin O~xyt 

Zr(t ) -~ Azwz cos Wzt 

Using Eqs. (4.111), one can determine numerically the spectral components 
of  the control acceleration needed to maintain a given reference trajectory. The 
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spectral components represent the nonlinear effects neglected in the derivation of 
the reference trajectory. 

After determining the spectral components of the control acceleration, one can 
design the periodic-disturbance accommodation filters of the form 

Ol i -~- (O.)xi)20[i = U x 

"~i -]- (O')yi)21~i = Uy 

~)i "~ (O)zi )2yi = tlz 

where wxi,  O.)yi, and wzi are the ith frequency components in each axis. The 
constant-disturbance accommodation filters can also be included as 

"~x = Ux 

"Ey ~ Uy 

~z ~ Uz 

where rx, ry, and rz are the filter states necessary to eliminate any bias components 
of the control acceleration inputs (Ux, u s, uz).  

The disturbance filter can include as many frequencies as the given persis- 
tent disturbance model and is driven by the control inputs. The disturbance- 
accommodation filter is then described in state-space form as 

Xd = A d X d  q- BdU (4.112) 

where Xd is the disturbance filter state vector. The disturbance filter described by 
Eq. (4.112) can then be augmented to the plant described by Eq. (4.105), as follows: 

£ 0 x 

The standard linear quadratic regulator (LQR) design technique can be similarly 
applied to the augmented system described by Eq. (4.113) for the design of a linear 
state-feedback controller of the form 

u = - K  x 
Xd 

One can obtain a disturbance-accommodating controller that gives a considerable 
reduction in the control acceleration components, which results in a A V of about 
10 (m/s)/year, as demonstrated by Cielaszyk and Wie 16 and Hoffman. 19 

4.7.3 Large Lissajous Trajectory 
As discussed in Sec. 3.7, period control may be needed to guarantee no periods of 

lunar occultation, at the expense of a large A V needed to maintain a halo reference 
orbit. If  this constraint is relaxed, and small periods of lunar occultation are allowed, 
a Lissajous trajectory may be used to provide a lunar far-side communications. With 
a Lissajous trajectory, the percentage of time the spacecraft is visible from Earth in- 
creases with an increase in orbit size. As the size of the orbit is increased, however, 
the amount of lunar surface visible to the spacecraft decreases. There is, therefore, 
a tradeoff between visibility of the lunar surface and visibility to an Earth observer. 
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A Lissajous reference trajectory with an amplitude of 30,000 km, studied by 
Howell and Pernicka, 2° is considered here to illustrate the use of disturbance 
accommodation as a method of determining a trajectory that is a solution of the 
nonlinear equations of motion. 

The large orbit size results in the spacecraft being far away from the linear do- 
main about the libration point; however, the solution of the linearized equations of 
motion can be still used as a starting point for the determination of a trajectory that 
is closer to a solution of the nonlinear equations of motion. As a result of the space- 
craft being far away from the linear domain, there is a large number of disturbance 
frequencies required to accommodate the nonlinear effects. This application of dis- 
turbance accommodation is not meant to provide an implementable control logic; 
it demonstrates that disturbance accommodation can be used as a simple method 
of numerically determining a quasi-periodic solution of the nonlinear equations of 
motion. 

The results of an iterative application of disturbance accommodation are pre- 
sented in Table 4.2. The resulting 30,000-km Lissajous trajectory is also shown in 
Fig. 4.12. 

Table 4.2 Design iterations for fuel-efficient, large Lissajous trajectory 

Iteration x axis y axis z axis A V, (m/s)/year 

0 

1 0 0 0 
2 2oJ z 

2t-Oxy 

3 2Wz + Ogxy 2co z Wxy + ~oz 
3O)xy 

4 O)xy 2O9z -- Wxy 2Wxy - Wz 
2oJxy + 2Wz 2o9z + O,)xy 2Ogxy q- w z 

4Ogxy 

5 2Ogxy -- 2o9 z 2Ogxy - 2o) z Ogxy -- o9 z 

2O)z - O)xy 2Ogxy + 2Wz 3coz + Wxy 
6 4o~ z -~- O)xy 

2o9z + 3t-Oxy 

7 4oJz -- 2Wxr 2O~xy o9 z 

4wz -- Wxy 4o~z + wxy 3w~ - Wxy 

4~Oz 2~Oz + 3wxr 3Ogxy - o9 z 

3Wz 
8 3Ogxy 

9 2COz "1- 409xy 40)xy -- 2WZ 3WZ -1- 2~xy 
10 3wxr -- 2Wz OJxy 3Wz -- 2Ogxy 

3Ogxy - 2wz 

4Ogxy 
2Wz + 4Wxy 

11 409xy -- 2wz 
12 4COz - Wxy 

4o) z 

18,517 
14,652 
9,010 

3,036 

2,233 

1,427 

1,267 

466 

362 

293 
162 

152 
143 
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Fig. 4.12 Fuel-efficient,  large Lissajous trajectory obtained after 12 design iterations. 

A trajectory similar to that shown in Fig. 4.12 was found by Howell and 
Pernicka, 2° and they used a third-order analytic solution to identify target po- 
sitions at specified intervals along the trajectory. A path with velocity discontinu- 
ities is located passing through the target points. The velocity discontinuities are 
simultaneously reduced in an iterative process by allowing the continuous path to 
deviate from the target positions. The A V after this iterative process is essentially 
zero. The A V associated with the disturbance-accommodation trajectories is much 
larger than the A V quoted by Howell and Pernicka. 2° One obvious reason is that 
with disturbance-accommodation the control is continuous; therefore, control ac- 
celeration is being applied constantly as opposed to only at selected target points. 
Despite the difference in AV, the iterative design method is supported by the fact 
that linear state-feedback with a disturbance-accommodation filter can be used 
to determine a trajectory with such a unique shape and similarity to trajectories 
determined by Howell and Pernicka. 2° 

4.7.4 Elliptic Restricted Three-Body Problem 
It is important to note that the effects from eccentricity are much larger than the 

effects from nonlinearities for a typical 3500-km halo orbit. There are considerably 
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Table  4 .3  D e s i g n  i terat ions  for a fuel-eff icient ha l o  orbi t  

295 

Iteration x axis y axis z axis A V, (m/s)/year 

0 548 
1 0 0 0 401.4 
2 Ogxy - 1 Wxy - 1 O)xy - 1 196.7 

Wxy + 1 O)xy + 1 O)xy + 1 

3 20)xy 2Wxr 20)xy 160 

more periodic disturbances affecting the spacecraft when the elliptic restricted 
three-body model is used. The accommodation of nonlinear and eccentric ef- 
fects results in a large number of frequencies being required in the disturbance- 
accommodation filter. 

Table 4.3 contains the results of a halo orbit design and the A V associated with 
each iteration step. Therefore, the halo orbit requires considerably more A V than 
the Lissajous trajectory even after disturbance accommodation has been applied. 
A halo orbit after three iterations is shown in Fig. 4.13. The control acceleration 
components needed to maintain such a halo orbit are also shown in Fig. 4.14. It 
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Fig. 4.15 ISEE-3 mission. 

can be seen that the z-axis control acceleration u z has a frequency component of 
O)xy for period control needed to maintain a halo orbit, whereas the x- and y-axes 
control accelerations become near zero at steady state as a result of  disturbance- 
accommodating control. 

4.7.5 International Sun-Earth Explorer-3 Spacecraft 
We now apply the disturbance-accommodation approach to the halo orbit control 

problem of the International Sun-Earth Explorer-3 (ISEE-3) spacecraft discussed 
in Refs. 21 and 22. This problem is of  interest for a couple of  reasons. First, this 
mission was actually flown in the late 1970s and early 1980s, and there is actual 
flight information available for comparison. Second, this represents what is known 
as a large halo orbit in the literature. This type of halo orbit utilizes the nonlinear 
effects to naturally create equal in-plane and out-of-plane frequencies. Thus, the 
large cost for period control found for the small halo orbit about the translunar 
libration point is absent. Such a halo orbit control problem about the L l point of  the 
sun-Earth-moon elliptic restricted three-body system is illustrated in Fig. 4.15. 

To use the sun-Earth restricted three-body system as a model for the ISEE-3 
mission, the moon's  gravitational effect would need to be neglected. It has been 
known that it is more accurate to combine the mass of  the moon with that of  
the Earth. This results in the collinear libration points being located on a line 
connecting the sun and the barycenter of  the Earth and moon. The gravitational 
perturbations due to the orbit of  the moon about the Earth are neglected in this 
model. In addition, solar radiation pressure and planetary perturbations are of small 
significance and are neglected. 

The equations of  motion derived in Sec. 3.8 can also be used to represent motion 
relative to the L 1 point of  the sun-Earth-moon elliptic restricted three-body system. 
As in Sec. 3.8, the time of perihelion passage of the Earth-moon barycenter is 
assumed to be zero. The math model describing the motion of  the ISEE-3 spacecraft 
about the L 1 point in the sun-Earth-moon system has the following characteristics: 

p = 3.040357143 x 10 -6 

a = 1 AU = 1.495978714 x 108 km 

e = 0.01673 

n = 1.990986606 x 10 -7  rad/s 

y = -0 .0100109 
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The reference trajectories derived using the linearized equations of motion are 
no longer accurate for an orbit with the amplitude of  the ISEE-3 spacecraft. There 
were actually two reference orbits derived for this mission including an analytical 
solution and a differentially corrected solution. A standard Lissajous trajectory 
is unacceptable because the spacecraft will pass close to the Ll point and the 
downlink telemetry will be overwhelmed by the intense solar noise background. 
In the planning for the ISEE-3 mission, it was found that a slight fuel savings could 
be made by following the numerically generated path. It should be noted that both 
reference orbits were derived with the use of the circular restricted three-body 
model, whereas closed-loop simulations need to be performed with the elliptic 
restricted three-body model. 

The third-order analytic reference trajectory derived for the ISEE-3 mission by 
Richardson 22 is provided here, 

Xr = a21a2x -+- a22A2z - ax  cos(Zr + ~b) + (a23Ax 2 - az4Az 2) cos 2()vr + ~b) 

+ (a31A2 - a ,2Ax A 2) cos 3(kr + 40 (4. l14a) 

Yr = ay  sin(Jkr + 4)) + (b21 a2x - b22A2z) sin 2(Zr + ~b) 

+ (b31A 3 - b32Axa2z) sin 3(~.r + q~) (4.1 lab) 

Zr = -3d21AxAz + Az cos(Lr + ~b) + d21AxAz cos 2(Xr + ~b) 

+ (d32Az A2 - d31a2) cos 3(Zr -t- q~) (4.114c) 

where ~. denotes the nondimensional in-plane frequency coxy; Ax, A y  ~-- kAx ,  and 
Az are the amplitudes of  the orbit in units of the distance between the Earth-moon 
barycenter and the L1 libration point (Iyal = 1.49761 x 106 km); the phase angle 
~b determines the initial position in the orbit; r is a new independent variable with 
a frequency correction co such that 

=co t  

co = ! - 0.8246605235A 2 + 0.1210986087A 2 

time t is in units of 1/n;  and the remaining constants in this third-order reference 
orbit are given as 

= 2.086453455, 

a21 = 2.092695581, 

a22 = 2.482976703 × 10 -1, 

a23 = -9 .059647954 × 10 - l ,  

a24 = -1 .044641164 × 10 -1, 

a31 = 7.938201951 × 10 - l ,  

a32 = 8.268538529 × 10 -2, 

k = 3.2292680962 

b21 = -4.924458751 × 10 -1 

b22 = 6.074646717 × 10 -2 

b31 = 8.857007762 × 10 -1 

b32 = 3.980954252 × 10 -1 

d21 = -3.468654605 × 10 -1 

d~l = 1.904387005 × 10 -2 

d32 = 3.980954252 × 10 -1 
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Fig. 4.16 ISEE-3 halo reference orbit. 

Figure 4.16 shows a third-order halo reference orbit of  a period of 177.73 days 
with the following amplitudes: 

Ax = 206,000 km 

Ay = 665,000 k m  

A z = 110,000 km 

The y - z  projection is a view from the sun toward the Earth-moon barycenter. The 
x - y  and x - z  projections are top and side views, respectively. The Earth is in the 
negative x direction nearly 1,500,000 km from the origin of  these plots. Initial 
conditions approximating the halo orbit injection conditions can be found by us- 
ing 4~ = Jr and time equal to zero. The initial conditions correspond to maximum 
amplitude in the negative x direction, zero in the y direction, and maximum am- 
plitude in the negative z direction. The direction of the orbit is counterclockwise 
in the y - z  projection and clockwise in the x - y  projection. 

The linearized equations of  motion about the collinear libration points contain 
a positive real eigenvalue and are unstable. Therefore, orbit control is required to 
maintain the orbit about the L l libration point in the sun-Earth-moon system. To 
illustrate the application of the iterative disturbance accommodating method to 
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the ISEE-3 mission, it is assumed that the motion of the Earth-moon barycenter 
around the sun is circular. The location of the L l libration point is given as Xo = 
-0 .9900266.  This position is nearly 1,500,000 km away from the Earth. For the 
L1 point in the sun-Earth-moon system, the elements in the state matrix have the 
following values: 

U x x  = 9.12214, Uyv = -3 .06107,  

U z z  = -4 .06107,  Uxv  = U r x  = 0 

Furthermore, the control acceleration is assumed to be continuous to allow the 
design of  a linear state-feedback controller. The nondimensionalized natural fre- 
quencies of  the sun-Earth-moon system are: tOxy = 2.08645 (period = 174.3 
days) and Wz = 2.01521 (period = 180.4 days). 

A linear state-feedback controller without disturbance accommodation for 
the halo reference orbit of  Fig. 4.16 results in A V of approximately 146 (m/s)/year. 
It was estimated that the ISEE-3 mission would require approximately 10-15 (m/s)/ 
year by loosely controlling the spacecraft about the reference halo orbit. Conse- 
quently, the iterative method for disturbance accommodation can be used to deter- 
mine a trajectory that is close to a solution of the nonlinear equations of  motion, 
regardless of  the assumptions required for the formulation of a spacecraft control 
problem. 

The large size of  the reference orbit results in many disturbances being in- 
cluded in the disturbance accommodation filter. Table 4.4 contains the results of  
a disturbance-accommodating control design for the ISEE-3 halo orbit. Notice 
that when constant disturbance accommodation is included in iteration 1, the A V 
actually increases. This is attributed to the dependence of  the disturbances on the 

Table 4.4 Design iterations for a fuel-efficient halo orbit of  ISEE-3 

Iteration x axis y axis z axis A V, (m/s)/year 

0 

1 0 0 0 

2 Wxy wxy - 1 
4wxy Wxy + 1 

3 wxy - 1 4wxy Wxy - 1 
2wxy + 1 Wxy + 1 

4 Wxr + 1 2Wxy + 1 4Wxy 

5 2O)xy 2Ogxy 

6 3Ogxy + 1 3Ogxy -k- 1 
5O9~y 5O~xy 

7 3COxy 3OJxy 

8 2t-Oxy - 1 4Ogxy + 1 2Wxy + 1 
4Ogxy -J¢- 1 

9 6Ogxy 6Ogxy 

10 5wxr + 1 2¢.Oxy 

146.6 

158.4 

148.6 

94.3 

70.8 

58.0 

30.8 

22.2 

12.8 

9.8 

8.3 
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trajectory. In other words, the trajectory that the spacecraft maintained after dis- 
turbance accommodation required an increase in A V because magnitudes of some 
disturbances increased. 

The closed-loop trajectory is very close to the reference trajectory shown in 
Fig. 4.16, and thus is not shown in this text. Figure 4.17 shows the control ac- 
celeration needed to maintain such a fuel-efficient halo orbit. Note that the z-axis 
control acceleration u z does not contain a frequency component of  tOxy for period 
control. The A V per year can be estimated to be approximately 8.3 (m/s)/year. 

These results demonstrate the application of disturbance accommodation as a 
method of  determining trajectories that are closer to solutions of  the nonlinear 
equations of  motion. They also show that a solution of  a simplified model, such as 
the circular restricted three-body model, along with disturbance accommodation, 
can be used to determine a halo orbit for a more complex model such as the 
elliptic restricted three-body model. The results also demonstrate that disturbance 
accommodation can be used to determine a trajectory for the interesting case of  
naturally equal in-plane and out-of-plane frequencies. 
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Part 3 
Attitude Dynamics and Control 



5 
Rotational Kinematics 

The formulation of spacecraft attitude dynamics and control problems involves 
considerations of kinematics. This chapter is concerned with rotational kinematics 
of a rigid body. In kinematics, we are primarily interested in describing the orien- 
tation of a body that is in rotational motion. The subject of rotational kinematics 
is somewhat mathematical in nature because it does not involve any forces asso- 
ciated with motion. Throughout this chapter, we will speak of the orientation of a 
reference frame fixed in a body to describe the orientation of the body itself. 

5.1 Direction Cosine Matrix 

Consider a reference frame A with a right-hand set of three orthogonal unit vec- 
tors {al, az, a3} and a reference frame B with another right-hand set of three or- 
thogonal unit vectors { bl, b2, b3 }, as shown in Fig. 5.1. Basis vectors { 61, 62, b3 } 
of B are expressed in terms of basis vectors {al, a2, a3} of A as follows: 

bl = Cl la l  --[- C12a2 --t- C13a3 (5.1a) 

b2 = C21 al --I- C22a2 -{- C23a3 (5.1b) 

b3 = C31 al + C3202 -t- C33a3 (5.1c) 

where Cq = bi . a j  is the cosine of the angle between 6 i and aj ,  and Cq is 
simply called the direction cosine. 

For convenience, we write Eqs. (5.1) in matrix (or vectrix) notation, as follows: 

b2 = /C21 C22 C23 / a2 = c B / A  a2 (5.2) 

63 kC31 C32 C33_] as as 

where C B/A - [Cij] is called the direction cosine matrix, which describes the 
orientation of B relative to A and which can be written as 

cs/a= 62.al 62.a2 6l a3 - b2 .[aj a2 a3] (5.3) 
6 3 ' a I 6 3 " a 2 b3 a3 b3 

The direction cosine matrix C B/A is also called the rotation matrix or coordinate 
transformation matrix to B from A. Such a coordinate transformation is symboli- 
cally represented as 

C B/A : B *--A 

307 
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A? 
a2 ,,1 

Fig. 5.1 Two reference frames A and B. 

For brevity, we often use C for C B/A. Because each set of  basis vectors of  A 
and B consists of  orthogonal unit vectors, the direction cosine matrix C is an 
orthonormal matrix; thus, we have 

C -1 = C T (5.4) 

which is equivalent to 

CC T = I = CTC (5.5) 

In general, a square matrix A is called an orthogonal matrix if A A  T is a diagonal 
matrix, and it is called an orthonormal matrix if A A  T is an identity matrix. For an 
orthonormal matrix A, we have A -1 = A T and IA[ = +1.  

We also use C A/B to denote a coordinate transformation matrix to A from B or 
a direction cosine matrix of  A relative to B; i.e., we have 

cA/"= ~2"1;, ~2.1;~ ~2 ~3 =-- ~2 "[I;l g~ ~'3] 
a3" b, a3" b2 a3 b3 a3 

Consequently, we have the following intimate relationships between C A/B and 
cB/A:  

[cA/B]i  j = ai " b j  

[cB/A]i  j = bi " a j  

[cA/B]  -1 = [cA~B] T ~. cB /A  

[ c , / a ] - l=  [c,/~]T = CA/B 

Given the two sets of reference frames A and B, an arbitrary vector /4 can be 
expressed in terms of basis vectors of A and B, as follows: 

/4 = H1 El + H2 a2 a t-//3 a3 

= n; /~,  + H~/~2 + U~/~3 (5.6) 
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and we have 

H; ~ 61 - /~ = 61 • (HIO 1 -~- n2a2-  ~- n3a3) 

H~ -- 62" ~I = 62. (Hlax + H2a2+ H.ta3) 

t t '  b3 ~1 6 s . (H l~ l . -b  n 2 ~ 2 +  na~3) 3 ~ " ~ 

which can be written in matrix form, as follows: 

[H'l '1 '1'3]E"11 ["11 s~ i = ~ ~, ~ ~ ~ ~ ~ = C  B/A H 2 

H~ J 63 al 63 a2 ~93 a3 1-1-3 1-13 

(5.7a) 

(5.7b) 

(5.7c) 

(5.8) 

Thus, the components of a vector /4 are also transformed to B from A using the 
direction cosine matrix C s/A, which was defined in Eq. (5.2) for the transformation 
of orthogonal basis vectors. 

Three elementary rotations respectively about the first, second, and third axes 
of the reference frame A are described by the following rotation matrices: 

I 
1 0 

C1 (01) = 0 cos01 
0 - s i n  01 

-cos 02 0 
C2(02) = 0 

sin 02 

cos 03 
C3(03) = -sin03 

0 

o] 
sin Ol 
COS 01 

--sin 02 1 
I 0 
0 cos 02 

sin 03 i l  
cos 03 

0 

(5.9a) 

(5.9b) 

(5.9c) 

where C i (0 i) denotes the direction cosine matrix C of an elementary rotation about 
the ith axis of A with an angle Oi. 

Problem 

5.1. Consider the direction cosine matrix, C -- [Cij],, b~ween two sets of right- 
hand orthogonal unit vectors {al, a2, a3} and {bl, bz, b3}, defined as [,] c2 c13][,1] 

62 = /C21 C22 C23 a2 

63 L C31 C32 C33 t~3 

(a) Show that the direction cosine matrix C is an orthonormal matrix; i.e., 
CC r = I = CrC.  
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Hint." [51 52 53] = [1~ 1 a2 (~3] CT and 

['7 5: • [i,, 5: 5: 5, 5:. 5: 5:. 53 = v 
b3 b3 bl 53 • 52 53 .  b3 0 

(b) Show that the ijth element of the direction cosine matrix C is equal to the i j th  
cofactor of C; i.e., Cij_.= (-zl)i+J Mij or adj C ---- [ ( - l ) i+J  Mij] T = [Cij] T = C T. 

Hint: Using bl = b2 x b3, show that 

Cll  = C22C33 - -  C23C32 

C12 = C23C31 I C21C33 

C13 = C21C32 - C22C31 

(c) Show that If[  = 1. 
Hint: C -1 =- adj C/ICI. 
(d) Find six independent equations for Cij using the row-orthonormality condi- 

tion, CC r = I. 
(e) Find six independent equations for Cij using the column-orthonormality 

condition, CTC ---- I. Are these six equations independent of those of part (d)? 
(f) Finally, show that only three of the nine direction cosines are independent. 
Note: Three direction cosines, however, do not uniquely define the orientation 

of two reference frames. 

5.2 Euler Angles 
One scheme for orienting a rigid body to a desired attitude is called a body-axis 

rotation; it involves successively rotating three times about the axes of the rotated, 
body-fixed reference frame. The first rotation is about any axis. The second rotation 
is about either of the two axes not used for the first rotation. The third rotation 
is then about either of the two axes not used for the second rotation. There are 
12 sets of Euler angles for such successive rotations about the axes fixed in the 
body.* 

It is also possible to bring a rigid body into an arbitrary orientation by perform- 
ing three successive rotations that involve the axes fixed in an inertial reference 
frame. This scheme will then provide another 12 sets of Euler angles for the so- 
called space-axis rotations. 1 Because the coordinate transformation matrices for 
the body-axis rotation and the space-axis rotation are intimately related to each 
other, we often only consider the 12 sets of body-axis rotations. 

Consider three successive body-axis rotations that describe the orientation of a 
reference frame B relative to a reference frame A. A particular sequence chosen 

*Leonard Euler (1707-1783), who was the leading mathematician and theoretical physicist of the 
18th century, first introduced the concept of three successive rotations to describe the orientation of an 
orbit plane using the three angles ~2, i, and o9. 
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here is symbolically represented as 

C3(03) : A' +- A (5.10a) 

C2(02) : A" ~-- A' (5.10b) 

C1(01) : B +-- A" (5.10c) 

where each rotation is described as 

[ cos03 s n° 1 
= -sin03 cos 03 0 52 =C3(03)  52 (5.11a) /I,2/ o o 1 53 53 

L a 3 d  [5'/ rcos00s 0 - s i n 0 2 ]  I ~ i l  r~i] 
5~ = 1 0 = C2(02) (5.11b) 
5~ Lsin02 o coso2 / I,~/ /17/ La3_l L a3 d 

[]  [ ° 1[ bl 1 0 0 al al 
b2 = cos 01 sin01 d~ =C1(01) a 2~'' (5.11c) 
b3 - s i n  01 cos 01 5~ 5 ;  

and A' and A" are two intermediate reference frames with basis vectors {d' l , a2, " 5' 3 } 
and {51, 5~, 5~}, respectively. The three angles 01, 02, and 03 are called Euler 
angles. 

By combining the preceding sequence of rotations, we obtain 

62 m ~ C l ( 0 1 ) = C 1 ( 0 1 ) C 2 ( 0 2 ) ~ t l  ~C1(01)C2(02)C3(03)52 

b3 a3 a 3 ..] 53 
(5.12) 

The rotation matrix to B from A, or the direction cosine matrix of B relative to A, 
is then defined as 

cB/A ~ C 1(01)C2(02)C3(03) 

r c~c3 c2s3 -s~ ] 
= / s l s 2 c 3 - c l s 3  s l s2s3+c~c3  s l c 2 [  (5.13) 

kCl s2 c3 q-- Sl s3 Cl S2S3 -- S1 C3 ClC2d 

where ci =-- cos Oi and si -- sin Oi. 
The preceding sequence of rotations to B from A is also symbolically denoted 

by* 

C1(01) +- C2(02) <--- C3(03) 

*The notation Cl(01) +-- C2(02) +-- C 3 ( 0 3 ) ,  which, in fact, denotes the same rotational sequence 
as denoted by the notation C3(03) --+ C2(02) --+ Cl(01), is introduced in this book to emphasize the 
resulting structure of the total rotation matrix C B/A = C 1 ( 0 1 ) C 2 ( 0 2 ) C 3 ( 0 3 ) .  
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where Ci(Oi) indicates a rotation about the ith axis of the body-fixed frame with 
an angle Oi, or by 

01 ~7'1 ' +- 02 a 2 <--- 03 ~73 

in which, for example, 03 ff3 denotes a rotation about the ~3 axis with an angle 03. 
In general, there are 12 sets of Euler angles, each resulting in a different form 

for the rotation matrix C B/A. For example, we may consider the sequence of 
C 1 (01 ) "6-- C3(03) -(---- C2(02) to B from A. For this case, the rotation matrix becomes 

c B / a  ~ C1(01)C3(03)C2(02) 

F c2 c3 s3 -s2 c3 1 
= | - c l  c2s3 +Sl s2 ClC3 cl s2s3 +Sl c2 (5.14) 

L s l c2s3+c l s2  - s i c3  - s l s 2 s 3 + c l c 2  

Note that for small (infinitesimal) Euler angles of 01, 02, and 03, the direction 
cosine matrices in Eqs. (5.13) and (5.14) become 

C ,-~ -03 1 1 (5.15) 

02 --01 

That is, the rotation sequence of Euler angles becomes unimportant for infinitesimal 
rotations, whereas rotation sequence is important for finite rotations. 

For other sequences, such as a classical "3 +- 1 ~-- 3" rotational sequence in 
which the third axis is used twice, we use the following notational convention: 
C3(~O) +-- C1(0) +- C3(~) to B from A, in which, for example, C3(q~) indicates a 
rotation about the third axis with an angle 4). Thus, for such a classical C3(~) +- 
C1(0) +- C3(~b) rotational sequence, the rotation matrix to B from A becomes 

C B/A ~ C3(1//)C1(0)C3(~) 

[ 4 ~ c ~ - s 4 ~ c 0 s ~  s q ~ c ~ + c 4 ) c 0 s ~ p  s 0 s ~ ]  
= - ~ q ~ s ~ - s 4 ~ c 0 c ~  - s 4 ) s ~ + c 4 ) c 0 c T ~  s 0 c ~  

s4)s0 -c4>s0 cO 

where c ~b -= cos ~b, s 4) --= sin ~b, etc. 
In general, Euler angles have an advantage over direction cosines in that three 

Euler angles determine a unique orientation, although there is no unique set of 
Euler angles for a given orientation. 

5.3 Euler's Eigenaxis Rotation 
In this section, we consider rotation of a rigid body (or a reference frame) about 

an arbitrary axis that is fixed to the body and stationary in an inertial reference 
frame. An intimate relationship between the body-axis and space-axis rotations 
is derived. Such a relationship provides insights into the understanding of Euler's 
eigenaxis rotation and the space-axis rotation. 

5.3.1 Euler's Eigenaxis Rotation Theorem 
Euler's eigenaxis rotation theorem states that by rotating a rigid body about 

an axis that is fixed to the body and stationary in an inertial reference frame, the 
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rigid-body attitude can be changed from any given orientation to any other ori- 
entation. Such an axis of rotation, whose orientation relative to both an inertial 
reference frame and the body remains unchanged throughout the motion, is called 
t h e  E u l e r  a x i s  or e i g e n a x i s .  

Various different approaches can be used to develop several different parame- 
terizations of the direction cosine matrix of the Euler axis rotation. Almost every 
formula can be derived in a variety of ways; however, the approach to be taken 
here is simple and it will provide insights into the understanding of the intimate 
relationship between the body-axis and space-axis rotations. 

Suppose unit vectors Ei and bi (i = 1, 2, 3) are fixed in reference frames A and 
B, respectively. The orientation of B with respect to A is characterized by a unit 
vector ~ along the Euler axis and the rotation angle 0 about that axis, as follows: 

= ela 1 + e2t~2 + e3a3 

= el/~1 + e2b2 + e3/~3 (5.16) 

where e i are  the direction cosines of the Euler axis 
e ~ + e  2 + e  2 = 1. L e t C  B/A = C = [Cij]  be the 
relative to A, then Euler's eigenaxis rotation is also characterized by 

relative to both A and B and 
direction cosine matrix of B 

Eel I c,, c2 c31Eel l e2 = C21 C22 C23 / e2 
e3 C31 C3z C33_J e3 

(5.17) 

To parameterize the direction cosine matrix C in terms of ei and 0, a sequence 
of Euler's successive rotations is used as follows: 

1) Rotate the reference frame A, using a rotation matrix R, to align the ffl axis 
of A with the chosen direction ~. Let A' be the new reference frame after this 
rotation and also let A remain the original frame with basis vectors {all, d2, ~73} 
before this rotation; i.e., we have 

I el e2 e3 1 
C a ' / a  = R = R21 R22 R23 

[_ g31 R32 R33 
(5.18) 

2) Rotate both frames A and A' as a rigid body around direction ~ through an 
angle 0. After this eigenaxis rotation, the frame A will be aligned with the reference 
frame B with basis vectors {bl, b2, b3}, and A' will become another reference 
frame A" via the rotation matrix 

Ei 0 01 C A'/A' = CI(0 ) = cos0 sin0 
- s i n 0  cos0 

(5.19) 

The orientation of B relative to A is described by the direction cosine matrix C B/A . 

It is important to notice that the relative orientation of A" and B is the same as that 
of A ~ and A; i.e., C A ' / B  = C A ' /A  = R .  

3) Rotate A" through an inverse matrix R - l  = R T, then the frame A" will be 
aligned with B since C B/A'' = R -1 . 
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These three successive rotations can be combined as 

I"l b2 = cB/A a2 

1'3 d3 
where 

(5.20) 

C B/A = cB/A"cA ' /A 'c  A'/A = cA/A'cI(O)C A'/A = R r c I ( 0 ) R  (5.21) 

If the E2 or E3 axis, instead of ~1 axis, is aligned with the chosen direction ~ for 
the first rotation, then the rotation matrix C1 (0) in Eq. (5.21) is replaced by C2(0) 
or C3(0), respectively, and the rotation matrix R is replaced, respectively, by 

 131 el e2 e3 or R21 R22 R23 
R31 R32 R33 el e2 e3 

Substituting Eqs. (5.18) and (5.19) into Eq. (5.21) and defining C = [Cij] = 
C 8/A, we obtain 

Cll = e~ + (R~I + R21) cos0 

C12 = ele2 + (R21R22 + R31R32)cosO + (R21R32 - R22R31)sinO 

C13 -~- ele3 + (R21 R23 + R31R33)cosO + (R21 R33 - R23R31)sinO 

C33 e 2 g 2 g~3 ) cos 0 -- = 3 + (  23+ 

The column-orthonormality condition of the rotation matrix gives 

e2+R21+R231 = 1 

e~ + R22 + R232 = 1 

e 2 R 2 R 2 = 1 
3 + 23 + 33 

ele2 + R21R22 + R31R32 = 0 

e2e3 + R22R23 + R32R33 = 0 

ele3 + R21R23 + R31R33 = 0 

Because each element of the rotation matrix R of Eq. (5.18) is equal to its cofactor, 
we also have 

el = R22R33 - R23R32 

e2 = R23R31 - R21R33 

e 3 = R21R32 - R22R31 
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Using these relationships, we obtain C = RrCl (0)R as 

c 0  + el2(1 - c O )  ele2(1 - c0)  + e3 s0  

C =  e2el(1 - c 0 ) -  e3 s0 c0  +e2(1  - c0 )  

e 3 e l ( 1 - - c 0 ) W e 2 s 0  e 3 e 2 ( 1 - - c 0 ) - - e l s 0  

ele3(1 - cO) - -  e2  SO 1 

eze3(l -- cO) + e l  sO / 

c0  +e~(1 - c0 )  _] 

(5.22) 

where c 0 = cos 0 and s 0 = sin 0. This is the parameterization of  the direction 
cosine matrix C in terms of ei and 0. Note that el, e2, and e3 are not independent 
of each other, but constrained by the relationship e~ + e 2 + e 23= 1. 

By defining 

Eel [0e3 e = e2 and E = e3 0 - (5.23) 
e3 - -e2  el  

we can also express the direction cosine matrix C in Eq. (5.22) as 

C = cos 0I  + (1 - cos 0)ee r - sin 0E (5.24) 

where I is the identity matrix; i.e, Cq = ~i j  COS0 + (1 - -  cosO)eie j -- sinOEij. 
Given a direction cosine matrix C = [Cij], 0 can be found from 

COS0 = l ( C l l  + C22 -~- C33 - 1) (5.25) 

From Eq. (5.24), we obtain 

E -- 2 s i ~ l  0 (Cr  - C) if O ~ 0, +Jr, +2zr, ... (5.26) 

from which the eigenaxis e can be found as 

e ~ e2 - -  
e3 2 s i n 0  L C I 2  C21 

Problems 

5.2. Verify that bi can be expressed as 

bi : a i  c o s 0  @ e ( a i  " ~)(1 - cos0)  - t~ i x e sin0 

=aiW-e×(-e×ai ) (1 - -cosO)- -a i×es inO,  i = 1 ,2 ,3  

Hint: ~ = elal  + ez t~2  + e3a3 and bi = Cilal + Ciza2 + Ci3~t3 where Cii are 
given by Eq. (5.22). 

5.3. Consider two successive eigenaxls rotations to A" from A represented by 

C(el, 01) : A' +-- A 

C(e2 ,  02) : A" +- A' 
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C ( e l ,  0 , )  = [ c o s  01I  + (1 - c o s  0 1 ) e l e l  r - sin01E1] 

C(e2, 02) = [cos 0zI + (1 - cos 02)e2e~" - sin 02E2] 

and el and e2 are the eigenaxes associated with the first and second eigenaxis 
rotations, respectively. 

These successive rotations are also represented by an equivalent single eigenaxis 
rotation to A" directly from A, as follows: 

where 

C ( e ,  0 )  " A" + -  A 

C(e, 0) = [cos0I  + (1 - cos 0)ee T - sin 0E] 

and we have C(e, 0) = C(ez, 02)C(el, 01). 
(a) Show that the equivalent eigenangle 0 can be determined as 

cos0  = ½(tr C -  1) 

and 

tr C = cos  01 --~ cos  02 -~- cos 01 cos 02 

+ (1 - cos 01)(1 - cos 02)c0s2~ - 2 sin 01 sin 02 COS )/ 

and y is the angle between the two eigenaxes el and e2; i.e., cos y = e~e2. 
(b) Show that cos 0 obtained in (a) can be expressed in terms of  half-angles: 

0 01 02 01 02 
c os  = cos  2 cos  7 - sin sin 7 cos  × 

Hint: sin2(0/2) = (1 - cos 0 ) /2  and cos2(0/2) = (1 + cos 0) /2.  
(c) Show that the equivalent eigenaxis of  rotation e can be found as 

2 s i n 0  e = el{sin01(1 + cos 02) - sin 02(1 - cos01)cos  y} 

+ ez{sin 02(1 + cos 01) - sin 01(1 - cos02) cos y} 

+ ( e l  × ez){sin01 sin02 - (1 - cos01)(1 - cos02)cos ~} 

which can be rewritten as 

0 01 02 02 01 01 
e sin ~ = el sin --2 cos --2 + e2 sin --2 cos ~- + (el x e2) sin --2 sin 022 

where el x e 2 ~ E l e  2. 
Note: See Ref. 2 for additional information pertaining to Problem 5.3. 
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5.3.2 Space-Axis Rotation 
The space-axis and body-axis rotations are defined as a successive rotation about 

the space-fixed axes and body-fixed axes, respectively. An interesting relationship 
between these different schemes of successive rotations exists. 1,3,4 

Consider a space-axis rotation in the sequence of 03t~3 +-- 02a2 +'- 01t~l, in 
which Oia i m e a n s  an ~7i axis rotation through an angle Oi. Its total rotation matrix 
is defined as 

C B/A ~-- cB /A"cA" /A ' c  a'/m (5.28) 

in which the first rotation matrix is simply 

C A'/A = C I  (01)  (5.29) 

Next, to construct a matrix C A'/A' that characterizes the a 2  axis rotation with 
an angle 02, we use the approach discussed in the preceding section, as follows: 

ca"~ a' = cA" /a" ' cA" /AcA /A  ' 

= c a ' / a c 2 ( o 2 ) C  A/A' (5.30) 

Combining Eqs. (5.29) and (5.30), we obtain 

cA"~ a = cA"/A 'cA ' /A  

= cA' /Ac2(Oz)CA/A 'c  A'/A 

= C 1 ( 0 1 ) C 2 ( 0 2 )  

Similarly, for the if3 axis rotation through an angle 03, we have 

c B / A  " ~a"/at~ i.~ ~t~a/a" (5.31) = ~_, ~_.3 I,t.,31~.. 

Finally, the total rotation matrix becomes 

cB/A = cB/A"cA"/A 

= cA"/Ac3(o3)cA/A"cA"/A 

= C 1 ( 0 1 ) C 2 ( 0 2 ) C 3 ( 0 3 )  ( 5 . 3 2 )  

Thus, the total rotation matrix for the space-axis rotation of 03a 3 <-- 02a2 +-- 
01ffl is identical to the total rotation matrix for the body-axis rotation of 01d 1 +- 
02fi~ +-- 0323, which has been denoted by Cl (01) +-- C2(02) +-- Ca (03) in preceding 
sections. 

Although the total rotation matrix for the space-axis rotation has a simple form 
as Eq. (5.32), each intermediate rotation matrix is rather complicated as can be 
seen from Eqs. (5.30) and (5.31); however, the approach used here does not require 
an explicit determination of these intermediate matrices to find the total rotation 
matrix. Indeed, an intimate relationship between the two different rotation schemes 
has been obtained directly. 4 
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5.4 Quaternions 

5.4.1 Euler Parameters or Quaternions 

Consider again Euler's eigenaxis rotation about an arbitrary axis fixed both in a 
body-fixed reference frame B and in an inertial reference frame A. In Sec. 5.3, a 
unit vector ~ along the Euler axis was defined as 

~' = e] d] + e2t~2 ~- e3a3 

= el/~ 1 + e2/~2 + e3/~3 

where ei are the direction cosines of  the Euler axis relative to both A and B, and 
e 2 + e22 + e 2 = 1. 

Then we define the four Euler parameters as follows: 

ql = el sin(0/2) (5.33a) 

q2 = e2 sin(0/2) (5.33b) 

q3 = e3 sin(0/2) (5.33c) 

q4 = cos(0/2) (5.33d) 

where 0 is the rotation angle about the Euler axis. Like the eigenaxis vector e = 
(el, e2, e3), we define a vector q = (ql, q2, q3) such that 

q = e sin(0/2) (5.34) 

Note that the Euler parameters are not independent of each other, but constrained 
by the relationship 

qTq + q2 q? + q 2  + q 2  = 3 + q2 = 1 (5.35) 

becausee 2 + e  2 + e  2 =  1. 
The Euler parameters are also called quaternions. Hamilton invented quater- 

nions as a result of searching for hypercomplex numbers that could be repre- 
sented by points in three-dimensional space.* Although the historical importance 
of  quaternions is significant, we will not discuss quaternion algebra here. Instead, 
we simply use the terms quaternions and Eulerparameters interchangeably. 

The direction cosine matrix parameterized as Eq. (5.22) can also be parameter- 
ized in terms of quaternions, as follows: 

F1 _ 2(q2 + q 2 )  2(qlq2+q3q4) 2(qlq3__q2q4)l 
C B / A  = C(q, q4) = /2(q2ql -- q3q4) 1 -- 2(q 2 + q~) 2(q2q3 + q lq4) [  

L2(q3ql + q2q4) 2(q3q2 - qlq4) 1 - 2(ql 2 + q2)j 
(5.36) 

where (ql, q2, q3, q4) is the quaternion associated with the direction cosine matrix 
C n/a. Note that sin 0 = 2 sin(0/2) cos(0/2) and cos 0 = cos2(0/2) - sin2(0/2) = 
2cos2(0/2)  - 1 = 1 - 2 sin2(0/2). 

*William Hamilton (1805-1865) regarded his discovery of quaternions as his greatest achievement, 
whereas we may consider his contributions to analytical dynamics as his greatest achievement. 



ROTATIONAL KINEMATICS 319 

In terms of the quaternion vector q and a skew-symmetric matrix Q defined, 
respectively, as 

[eli E° q = q2 , Q = q3 
q3 -q2 

the direction cosine matrix (5.36) becomes 

--q3 q21 0 --ql 

ql 

(5.37) 

and 

rq',l  0, q,, = =e sin0  q' = / q~ / = el sin -~-, q" -~- 

kq;J L 3 J 

C = (q42 - q rq ) I  + 2qq r - 2q4Q (5.38) 

Given a direction cosine matrix C, we can determine q4 and q as follows: 

q4 = (1 + CII + C22 + C33)½ for 0 < 0 < Jr (5.39) 

1 [ C 2 3  - -  C32 

- -  L C31 - C13 if q4 7 ~ 0 (5.40) 

q = 4q4 C12 - C21 

Consider two successive rotations to A" from A represented by 

C(q', q~) : A' +-- A (5.41a) 

C(q' ,  q~') : A" +- A' (5.41b) 

where (q', q~) is the quaternion associated with the coordinate transformation 
A'  +-- A ,  and (q", q~') is the quaternion associated with the coordinate transforma- 
tion A" +- A' .  These successive rotations are also represented by a single rotation 
to A" directly from A, as follows: 

C(q, q4) : A" +-- A (5.42) 

where (q, q4) is the quaternion associated with the coordinate transformation A" +-- 
A, and we have 

C(q, q4) m C(q',  qa')C(q', q;) (5.43) 

Note that Eq. (5.43) can also be represented as 

C(e, 0) = C(e2, 02)C(el, 01) 

where (el, 01) and (e2, 02) are the eigenaxes and angles associated with the first 
and second eigenaxis rotations, respectively, and (e, 0) are the eigenaxis and angle 
associated with the equivalent single eigenaxis rotation (see Problem 5.3). 

Using the result of Problem 5.3(c), and defining 

01 02 
I / !  - -  

q4 = c o s  -~-, q4 = c o s  2 
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we obtain 

, , , ,, q' q" 
q = q 4 q  + q 4 q  + × (5.44) 

, ,, _ ( q , ) r q .  q4 = q4q4 (5.45) 

These equations can be combined as 

iq] q  q qlLql I q" " " q2[ q2 = -- 3 q4 ql 
q3 q2' -q'l' q'4' q_~ ~ q3 J 
q4 L --q'( --q" " 2 --q3 q4' q'4 

(5.46) 

which is known as the quaternion multiplication rule in matrix form. The 4 x 4 
orthonormal matrix in Eq. (5.46) is called the quaternion matrix. Equation (5.46) 
can also be written as 

ql 

q2 

q3 

q4 

-q,~ 

-q~ 

- q '  ' I [q 'l 3 q2 q'l 

q ; - q ' l  q" 

q'l q~ q . ~ J ~  3 J  - q ;  -q~ q~ q~' 

(5.47) 

The 4 x 4 matrix in Eq. (5.47) is also orthonormal and is called the quaternion 
transmuted matrix. 5 

5.4.2 Gibbs Parameters 

The direction cosine matrix can also be parameterized in terms of the Gibbs 
vector, which is defined as 

I g l l  [q l /q4]  0 
g = g2 = |qz /q4  = e t a n -  (5.48) 

g3 Lq3/q4 2 

The components of the Gibbs vector, called the Gibbs parameters, are also referred 
to as the Rodrigues parameters in the literature, and the direction cosine matrix 
can be parameterized in terms of them as follows: 

1 
C =  

l + g ~  + g ~  +g23 

1 + 8 ,2  - - 

x 2(g2gl -- g3) 

2(g3gl + g2) 

which can be rewritten as 

2(g lg2+g3)  2(gig3 - g2) 1 
1 - g ~ + g 2  _ g2 2 (gzg3+gl )  J 2 3 

2(g3g2 - gl)  1 - g~ - g~ + g~ 

(1 - g rg) I  + 2gg r - 2G 

(5.49) 

C = - [I - G][I + G] -1 (5.50) 
1 + g T g  
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where 

G =  g3 0 - l 

-g2  gl 

For a given direction cosine matrix C, the Gibbs vector can be determined as 

1 E g = g 2  = 
g3 1 -{- Cll  .+ C22 --}- C33 

C23 - C32 "] 
C31 C13 { 
C12 C21 ..l 

(5.51) 

Problems 

5.4. Show that 

hi = ai  -}-2{q4q × tii + ~ × (~ × di)}, i = 1 , 2 , 3  

where ~ = ~ sin(0/2). 

5.5. Consider the body-fixed rotational sequence to B from A: C1(01) +-- C2(02) 
+-  C3(03). 

(a) Show that the three Euler angles of this rotational sequence are related to 
quaternions, as follows: 

iql is c2c3 ClS2S3 q2 = Cl $2 c3 '1- Sl c2 $3 
q3 Cl C2 $3 -- SI $2 C3 
q4 Cl C2 C3 -'1- SI $2 $3 

where si = sin(Oi/2), ci = cos(Oi/2),  and (ql, q2, q3, q4) is the quaternion associ- 
ated with the coordinate transformation B +- A. 

Hint: Use Eq. (5.46). The quaternions associated with Cz(01) +- C2(02) +-- 
C3(03) are represented as 

I sin(0~/2) 

cos(il /2) 

<-.- 

cos(02/2) J [_ cos(03/2) ] 

(b) Also verify that, for small (infinitesimal) rotational angles of 01, 0z, and 03, 
we simply have 

ql ~ 01/2 

q2 ~ 02/2 

q3 ~ 03/2 

q4 ~ 1 
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5.5 Kinematic Differential Equations 
In preceding sections, we have studied the problem of describing the orientation 

of a reference frame (or a rigid body) in terms of the direction cosine matrix, Euler 
angles, and quaternions. In this section, we treat kinematics in which the relative 
orientation between two reference frames is time dependent. The time-dependent 
relationship between two reference frames is described by the so-called kinematic 
differential equations. In this section, we derive the kinematic differential equations 
for the direction cosine matrix, Euler angles, and quatemions. 

5.5.1 Direction Cosine Matrix 

Consider two reference frames A and B, shown in Fig. 5.1, which are moving 
relative to each other. The angular velocity vector of a reference frame B with 
respect to a reference frame A is denoted by ~ - Eo B/A, and it is expressed in 
terms of basis vectors of B as follows: 

~) = O)1 bl "-F 092 192 --F 093 ~73 (5.52) 

where the angular velocity vector ~ is time dependent. 
In Sec. 5.1, we have defined the direction cosine matrix C - C n/A such that 

{'3 
which can be rewritten as 

t~ 2 = C -1 

~73 

= C  I 
dl 

a2 

d3 

(5.53) 

~2 = C T (5.54) 

Because the two reference frames are rotating relative to each other, the direction 
cosine matrix and its elements Cij are functions of time. Taking the time derivative 
of Eq. (5.54) in A and denoting it by an overdot, we obtain E'I 0 = c T  b2 q - c T  /~2 

 ,11 _ c r  b2 + Cr - -  × b z  

E,11  2]i,11 = O r  b2 - Cr  oJ3 0 - i b= 

g3 -o~2 co, ~'3 

(5.55) 
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where 

C11 C12 C13 1 

C31 C32 C33J 
/ 

By defining the skew-symmetric matrix in Eq. (5.55) as 

--0)2 0)1 

we obtain 

from which we obtain 

[ C  - C r f l ]  b2 = 

(5.56) 

(5.57) 

= 0)3C22 --  0)2C32 

0)3C23 --  0)2C33 

= o)1C31 - 0)3C11 

= o)i C32 - o.)3C12 

= 0)1 C33 - 0)3CI3 

= 0)2C11 - 0)1C21 

---~ 0)2C12 - 0)1 C22 

= o)2C13 - 0)1C23 

If col, m2, and 0)3 are known as functions of time, then the orientation of B relative 
to A as a function of time can be determined by solving Eq. (5.59). In general, it 
is difficult to solve Eq. (5.59) analytically in closed form except in special cases; 
hence, in most cases, Eq. (5.59) is integrated numerically using a digital computer. 
It can be shown that the orthonormality condition CC r = I = C r C  is a constant 
integral of Eq. (5.59); that is, if the orthonormality condition is satisfied at t = 0, 
then any (exact) solution of Eq. (5.59) automatically satisfies the orthonormality 
condition of C for all t > 0. However, the orthonormality condition is often used 
to check the accuracy of numerical integration on a digital computer. 

C12 

C13 

C21 

C22 

C23 

C31 

C32 

C33 

(~r _ Crf~ = 0 (5.58) 

Taking the transpose of Eq. (5.58) and using the relationship f~T = _f~, we obtain 

+ f~C = 0 (5.59) 

which is called the kinematic differential equation for the direction cosine matrix 
C. Differential equations for each element of C can be written as 

Cl l  = w3C21 - 0)2C31 
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5.6. 

Problem 

Given the kinematic differential equation (5.59), show that 

0)1 = C21C31 + (~22C32 --t- C23C33 

02 = C31C11 n t- C32C12 -1- (~33C13 

0)3 = Cl1C21 -t- C12C22 -t-- C13C23 

5.5.2 Euler Angles 
Like the kinematic differential equation for the direction cosine matrix C, the 

orientation of  a reference frame B relative to a reference frame A can also be 
described by introducing the time dependence of  Euler angles. 

Consider the rotational sequence of CI(01) +--- C2(02) <"-- C3(03) to B from A, 
which is symbolically represented as 

C3(03) : A' +-- A (5.60a) 

C2(02) : A" +-- A' (5.60b) 

C1(01) : B +-- A" (5.60c) 

The time derivatives of  Euler angles, called Euler rates, are denoted by 03, 02, and 
01. These successive rotations are also represented as 

j ) a ' / a  : A' +-  A (5.61a) 

~-oa"/a': A" +--A'  (5.61b) 

~08/A" : B +--A" (5.61c) 

and the angular velocity vectors Co A'/A, ~o A ' /A ' ,  and Fo ~/a" are expressed as 

~0 A'/A -~- 03 d3 = 03a3. 4, (5.62a) 

~OA"/A'  " - t  " - .  = 02a 2 = 02 a 2 (5.62b) 

~_oB / A" " - i t  = 01 a I = 01/~1 (5.62c) 

The angular velocity vector ~o B/A then becomes 

~__0)B/A ..~ = O l ~ l  + 0 2 a 2  + O 3 a  3 ~0 B/A ~ " --~ ~1) a ' / a '  6~ A'/A . . . . .  ' (5.63) 

which can be rewritten as 

4 1 I  411 4 1  4 1  4 1  

~ o B / A = [ ] ) I  /~2 /~3] "t-[t~; a 2 a 3 ] + [ a  1 a 2 a 3] 

(5.64) 
and we have 
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Because the angular velocity vector 6~ = ~_0 B/A can also be represented as 

~*O = 0)1 /~1 "l t- 0)2/'92 "~- 0)3/~3 = [/~1 b2 b3] 0)2 (5 .65)  
0)3 

we obtain 

L] (.01 

0) 2 

0)3 
LGI [°01 ~- Cl (Ol )  -1-- C1(01)C2(02) 

03 

o sino21[0 
= cos 01 sin 01 cos 02 02 

- s in  01 cos  01 cos  [92 03 

(5.66) 

Note that the 3 x 3 matrix in Eq. (5.66) is not an orthogonal matrix because /~1, 
a2, and a 3 do not constitute a set of orthogonal unit vectors. The inverse relation- 
ship can be found by inverting the 3 × 3 nonorthogonal matrix in Eq. (5.66), as 
follows: [0] 1 [co 02 

02 --  COS02 
03 

sin,sin02 cos0sin02][ ] 
cos 01 cos 02 - s in  01 cos 02 w2 

sin 01 cos 01 0)3 

(5.67) 

which is the kinematic differential equation for the sequence of C1 (01) +-- C2(02) 
*-- C3(03). 

If 0)1, 0)2, and 093 are known as functions of time, then the orientation of B rela- 
tive to A as a function of time can be determined by solving Eq. (5.67). Numerical 
integration of Eq. (5.67), however, involves the computation of trigonometric func- 
tions of the angles. Also note that Eq. (5.67) becomes singular when 02 = zr/2. 
Such a mathematical singularity problem for a certain orientation angle can be 
avoided by selecting a different set of Euler angles, but it is an inherent property 
of all different sets of Euler angles. 

Similarly, for the sequence of C3(¢) +-- Cl (0) +-- C3(q~), we have 

~t) ~ ~1) B/A = 0)1bl -F 0)2b2--F 0)3b3 

= 7z/~3 + Od'[ + ~d  3 (5.68) 

[il Ell [il 0)2 = "t- C3(1/-r) + C3(lP)C1 (0)  

0)3 

F s i n 0 s i n ¢  cos¢  ! 1  I ~ ]  
= | s i n 0 c o s ¢  - s i n e  

L cos0 0 
(5.69) 
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and 

-- sinO cos~OsinO - s in~s inO o92 

-s in  ~O cosO -cos  ~0 cosO sinO w3 

(5.70) 

which is the kinematic differential equation for the C30P) +-- C1 (0) +-- C3(~b) se- 
quence. 

Problems 
5.7. For the sequence of Cl(01) +-C3(03) +--C2(02), derive the following kine- 
matic differential equation: 

01 
02 
03 

1 

COS 03 

-cos03 -cos01 sin03 sin01 sin03 t 1 I 091 

0 cos 01 -s in  01 1 0)2 

0 sinOlcos03 cosOlcosO~l w3 

5.8. For the sequence of C3(03) 4 -  C2(02) +" CI(01),  derive the following kine- 
matic differential equation: 

El E os03 sin03 01E  O1 1 cos  0 2 sin 03 cos 0 2 cos  0 3 0 09 2 
0 2 --  COSO 2 
03 -s in  02 COS 03 sin 02 sin 03 cos 02 co3 

5.5.3 Quaternions 
Substituting Cij of Eq. (5.36) into the equations derived in Problem 5.6, we 

obtain 

Wl =2(//lq4+q2q3 -//3q2 - 04ql) 

o92=2(//2q4+//3ql - qlq3 - 04q2) 

o93 =2(//3q4+//lqZ--//2ql --04q3) 

(5.71 a) 

(5.71b) 

(5.71c) 

Differentiating Eq. (5.35) gives 

0 = 2(//1ql + q2q2 -f-//3q3 + / / 4 q 4 )  (5.72) 

These four equations can be combined into matrix form, as follows: 

O92 
= 2  qllE 1 

q4 q3 --q2 i/1 
-q3 q4 ql -q2 q2 

q2 -q l  q4 -q3 //3 
ql q2 q3 q4 q4 

(5.73) 
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Because the 4 x 4 matrix in this equation is orthonormal, we simply obtain the 
kinematic differential equation for quaternions, as follows: 

L F q4.q3 q ql[;] 1)2 1 q3 q4 --ql q2 0)2 
1)3 = "2 --q2 ql q4 q3 . 
1)4 --ql  --q2 --q3 q4 

which can be rewritten as 

[,] io 1)2 1 --093 0 0)1 

1)3 = 2 0)2 --0)1 0 

1)4 --0)1 --0)2 --0)3 

In terms of q and w defined as 

I ql ] 
q = q2 , 

q3 
~.1 ~ 0) 2 

0)3 

 ]Fql o92 q2 
3 q3 

q4 

(5.74) 

(5.75) 

w x q -  033 0 - 1 q2 
--032 0)1 q3 

It is historically interesting to note that Eq. (5.75) was first published by Robinson 6 
in 1958 and derived independently by Harding, 7 Mortenson, 8 and Margulies (see 
Ref. 9) in the mid-1960s. 

In s trapdown inertial  reference sys tems of aerospace vehicles, the body rates, 
wl, 0)2, and w3 are measured by rate gyros that are "strapped down" to the ve- 
hicles. The kinematic differential equation (5.75) is then integrated numerically 
using an onboard flight computer to determine the orientation of the vehicles in 
terms of quaternions. Quaternions have no inherent geometric singularity as do 
Euler angles. Moreover, quaternions are well suited for onboard real-time compu- 
tation because only products and no trigonometric relations exist in the quaternion 
kinematic differential equations. Thus, spacecraft orientation is now commonly 
described in terms of quaternions. 

There are a number of numerical methods available for solving Eq. (5.75). 
Methods that can be applied to the strapdown attitude algorithms include Taylor 
series expansion, the rotation vector concept, Runge-Kutta algorithms, and the 
state transition matrix. Of these methods, the Taylor series expansion lends itself 
well to the use of an incremental angle output from the digital rate integrating gyros. 
A tradeoff between algorithm complexity vs algorithm truncation and roundoff 
errors is generally required (see, e.g., Ref. 10). 

where 

we can rewrite the kinematic differential equation (5.75) as follows: 

i t = l ( q 4 w  -- w x q) (5.76a) 

1)4 -~- - - l  wT q (5.76b) 
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For further details of rotational kinematics and spacecraft attitude determination, 
the reader is referred to Refs. 11-15. 

Currently, spacecraft attitude determination using the Global Positioning Sys- 
tem (GPS) is also being considered for near-Earth satellites. The GPS, consisting 
of a constellation of 24 satellites and a ground monitoring and control network, 
is widely used for positioning vehicles near the surface of the Earth and for orbit 
determination of near-Earth satellites. 16 The GPS is also capable of providing vehi- 
cle attitude using L-band carrier phase interferometry between multiple antennas. 
Consequently, GPS-based attitude determination is of current research interest for 
near-Earth satellites because of the potential for reducing the number of onboard 
navigation and attitude sensors. 17 

Problems 
5.9. Show that the constraint ql 2 + q22 + q2 3 + q~ = 1 is a constant integral 
of Eq. (5.75). If this constraint is satisfied at t = 0, then any exact solution 
of Eq. (5.75) automatically satisfies the constraint for all t > 0; however, this 
constraint is often used to check the accuracy of numerical integration on a digital 
computer. 

5.10. Consider the Gibbs vector defined as 

0 
g = e tan - 

2 

where g = (gl, g2, g3), e = (el, e2, e3) is Euler's eigenaxis vector, and 0 is the 
angle associated with Euler's eigenaxis rotation. 

(a) Show that the kinematic differential equation for the Gibbs vector can be 
found as 

E ll l g,2 = ~ l g 2 g l + g  3 l + g  2 g2gg--gl I 092 
g,3 Lg3gl -- gz g3g2 + gl 1 + g~ ] o93 

o r  

where 

----- 1160 _ 60 × g + (60Tg)g]  = ½[I + G + ggrlw 

G = 
I 0 -g3 g2]  

g3 0 - g l  
-g2  gl 0 

(b) Also show that for infinitesimal rotations, we have 

1 
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6 
Rigid-Body Dynamics 

The motion of a rigid body in space consists of the translational motion of its 
center of mass and the rotational motion of the body about its center of mass; 
thus, a rigid body in space is a dynamic system with six degrees of freedom. The 
translational motion of a rigid body in space was treated in Part II. This chapter 
is concerned with the rotational motion of a rigid vehicle with or without the 
influence of gravitational and other external forces. Rotational maneuvering and 
attitude control problems of rigid space vehicles will be covered in Chapter 7. 

6.1 Angular Momentum of a Rigid Body 
Consider a rigid body that is in motion relative to a Newtonian inertial reference 

frame N, as shown in Fig. 6.1. The rotational equation of motion of the rigid body 
about an arbitrary point O is given as 

F x Rdm = Mo (6.1) 

where 7 is the position vector of a small (infinitesimal) mass element dm relative 
to point O, R is the position vector of dm from an inertial origin of N, R is the 
inertial acceleration of din, and Mo is the total external moment (or torque) about 
point O. 

Let 7c be the position vector of the center of mass relative to point O and also 
let ~ be the position vector of dm relative to the center of mass. Then we have 

f 7  = (6.2a) dm m ~  c 

f ~  = (6.2b) dm 0 

where m denotes the mass of the rigid body. 
Because/~ = Ro + -r, we can rewrite Eq. (6.1) as 

ho + mFc x Ro = Mo (6.3) 

where ho, called the relative angular momentum about point O, is defined as 

h , , = f T x ~ d m  (6.4) 

Note that the time derivative is taken with respect to an inertial reference frame. 

331 
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Fig. 6.1 

NT Newtonian 
Reference 
Frame / n2 

n! 

Rigid body in motion relative to a Newtonian reference frame. 

Like the relative angular momentum defined as Eq. (6.4), the absolute angular 
momentum about point O is defined as 

f 2, /4o = 7 x R dm (6.5) 

Combining Eqs. (6.1) and (6.5), we obtain 

2, 2. 
Ho + mRo x rc = / f / o  (6.6) 

If  the reference point O is either inerfially fixed or at the center of  mass of  
the rigid body, the distinction between H, and ho disappears and the angular 
momentum equation simply becomes 

Ho=&lo or ~ o = M o  (6.7) 

Furthermore, if the moment  of  forces 11)o is zero, then the angular momentum 
vector becomes a constant vector, that is, the angular momentum of the rigid body 
is conserved. This is known as the principle of conservation of angular momentum. 
For this reason, the center of mass is often selected as a reference point O of the 
rigid body. 

6.2 Inertia Matrix and Inertia Dyadic 
Consider a rigid body with a body-fixed reference frame B with its origin 

at the center of mass of  the rigid body, as shown in Fig. 6.2. In this figure, /5 
denotes the position vector of a small mass element dm from the center of  mass, 
/}c is the position vector of the center of  mass from an inertial origin of N, and/}  
is the position vector of dm from an inertial origin of  N. 

Let o3 ---- g;~/U be the angular velocity vector of the rigid body in an inertial 
reference frame N. The angular momentum vector H of a rigid body about its 
center of  mass is then defined as 

<68  
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Fig. 6.2 
of mass. 

fi 

NewtoniN l 
RefeFram~nCe I / ~ . . . ~ . _ _ . - ~ - / r -  R ] 

Rigid body with a body-fixed reference frame B with its origin at the center 

as R = Rc + P, f ~ d m  = 0,/~ -= {d/~/dt}u, and 

~ ~ N = ~ B + ~ s / N  ×/3 (6.9) 

Note that {d/3/dt}8 = 0 for a rigid body. 
Let fi and ~ be expressed as 

,o = Plbl + P2b2 + P3b3 (6.10a) 

(-0 = (-01191 Jr- 0.)2/92 -{'- 0.)3193 (6.lOb) 

where {bl, [72, [73} is a set of three orthogonal unit vectors, called basis vectors, 
of a body-fixed reference frame B. The angular momentum vector described by 
Eq. (6.8) can then be written as 

/~ = (Jl1091 --I- J120)2 -~- J130)3)bl -{- (J210)l -~- J220)2 -~- J23(.03)[92 

-]- (J31Wl -~- J32092 + J33w3)[73 (6.11) 

where Jll ,  ./22, and J33 are the moments of inertia defined as* 

= f (.; + dm (6.12a) 

J22 = f (p2 + p~) dm (6.12b) 

(6.12c) 
d 

*The term "moments of inertia" is attributed to Euler. 
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and Jq (i ~ j )  are the products  o f  inertia defined as 

J,2 = J2, = -f 
J,3 ~ J3, = - - f  

J23 = J32 = -f 
Expressing the angular momentum vector as 

we obtain 

Pl P2 dm 

191 P3 dm 

P2P3 dm 

/~ = H,~9, "-~ a 2 b  2 --]- n3b  3 

Hi = Jll0) ,  -~- J120)2 -~- J130)3 

92 = J2,0)1 -~- J220)2 -1- J230)3 

/-/.3 = .].3,0), -{- .]320)2 --]- J330)3 

which can be rewritten in matrix form, as follows: 

i 1] r 11,12,3jE  1 H= : / & '  "]22 J23 0)2 

L J3, J32 A3 0)3 

(6.13a) 

(6.13b) 

(6.13c) 

(6.14) 

(6.15a) 

(6.15b) 

(6.15c) 

(6.16) 

or 

H = Jw (6.17)  

where 

H =  H2 , J =  J21 J22 J23 / , o..l= 0) 2 
I-/3_1 s,, J32 J3,_l 0)3 

and J is called the inertia matrix  of a rigid body about a body-fixed reference frame 
B with its origin at the center of  mass.* Note that the inertia matrix is a symmetr ic  
matrix; i.e., J = j r .  

To introduce the inertia dyadic  of a rigid body, we  consider a pair of  vectors 
with neither a dot nor a cross between them, such a s  bibj. Such a pair of  vectors 
is called a dyadic with the following properties: 

(bib j )  • bk = bi(bj  • bk) (6.18a) 

bi " (~)j~)k) : (bi " bj)bk (6.18b) 

*In most textbooks on dynamics, the symbol I is commonly used to denote an inertia matrix; 
however, throughout this book, the symbol J indicates an inertia matrix and the symbol I indicates an 
identity matrix. 
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The unit dyadic, denoted as i,  is defined as 

i = b l b l + b 2 b 2 + b 3 b 3 = [ b ,  b2 b3] b2 (6.19) 

and we have i -  (5 = o3. 
Using the vector identity 

x (~ x ~) = (~ .  ~)~ - ~(~.  ~) 

and employing dyadic notation, we express the angular momentum vector /4 as 

-- f ~  ~ ~ 
fi) dm 

f [p2o3 _ fi(fi, o3)1 dm, P = I~1 

f [(p2 i . o3 - (tiff). o3]dm 

= J .  o3 (6.20) 

where J is the inertia dyadic defined as 

(6.21) 

The inertia dyadic is related to the inertia matrix by 

3 3  1 "] = ~--~-~.Ji jbibj  ~-- [bl 192 193] [g12:J22 J23 / b2 (6.22) 

Consequently, the ijth element of the inertia matrix is related to the inertia dyadic 
by 

Ju = ~,i. 1 .  g~ 

Like the inertia dyadic described as Eq. (6.22), the unit dyadic that is related to 
the unit (or identity) matrix can also be expressed as follows: 

33 0 1 
= ~ - ~ ( ~ i j b i b j  = [bl b2 b3] 1 b2 (6.23) 

i=l j=l 0 193 

where ~ij is the Kronecker delta. 
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Note that Eq. (6.20) is a concise mathematical expression of the relationship 
between the angular velocity vector and angular momentum vector using the inertia 
dyadic J.  The equivalent relationship in matrix notation is given as Eq. (6.17), and 
the angular momentum vector of Eq. (6.20) can also be expressed as 

["1 1 / I = [ b l  b2 b3] /-/2 = [ b l  b2 b31|J2~ J22 J23 0)2 (6.24) 
L J31 J32 J33 093 

The rotational kinetic energy of a rigid body is defined as 

which can be written as 

l f . dm T=-~ 

T = -~ p .  (~ x ~)dm 

= 

= . fi 
2 

2 

In matrix notation, the rotational kinetic energy of a rigid body is written as 

= = = Jijo)io) j T I ° j T H I o j T J o J ' ~ i = I j =  l 

(6.25) 

6,1, 
of the body relative to its center of mass; i.e., 

= [ ( p 2 i  - 3 ¢3/3) dm 

where/3 is the position vector of dm relative to the center of mass and p = 1/31. 
Also let ,7' be the inertia dyadic of the body relative to an arbitrary point O; i.e., 

s' = f ( r q -  77)dm 

where 7 is the position vector ofdm relative to point O and r = 171. The position 
vector of the center of mass from point O is denoted by 7c and 7 = 7c +/3. 

(a) Verify the parallel-axis theorem, 

3 ' = 3 + m [ r 2 c l - T c T c ]  

where m is the mass of the body and rc =- 17cl. 

Problem 

Consider a rigid body as illustrated in Fig. 6.1. Let J be the inertia dyadic 

(6.26) 
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(b) Let {bl, b2, b3} be a set of basis vectors of a body-fixed reference frame 
with its or ig inat  the center of  mass and let 7c = £1bl + g2b2 + £3b3. Also let 
Jq  = bi • J • bj  and Ji'j = bi • 3 '  • b j .  Then show that the parallel-axis theorem 
can also be represented as 

Ji'j = Jij + m[(£  2 + £~ + e2)aij - -  e ie j ]  

where ~ i j  is the Kronecker delta. 

6.3 Principal Axes 

Consider two body-fixed reference frames B and B' with basis vectors {bl, b2, b3} 
and {b' 1 , b' 2, b~}, respectively, as shown in Fig. 6.3. The angular momentum vector 
and angular velocity vector of  a rigid body are expressed in terms of these basis 
vectors, as follows: 

[-1 /4 = [bl b2 b3] H2 = [ b ' l  /9; 3 

m LH j 

= wl = . 4, ~,]  / w l /  (6.27b) @ [i,1 i,2 o92 [b', b2 3 
o9t o93 L 3 /  

The components of  the angular momentum and angular velocity vectors are related 
to each other by 

I-I = Jw (6.28a) 

H '  = J 'w '  (6.28b) 

where H = (HI, HE, H3), H '  = (H~, H~, H~), w = (o91, w2, (03), w '  = (co' 1, 
! 

o92, o9~), J is the inertia matrix about the reference frame B, and J '  is the inertia 
matrix about the reference frame B'. 

Given a direction cosine matrix C --- C B'/B of  B' relative to B, we have the 
following transformation relationships: 

H '  = C H ,  w'  = Cw (6.29) 

Combining Eqs. (6.28) and (6.29), we obtain 

J '  = CJC  r or J = C r J ' C  (6.30) 

because C -1 = C r.  
For any shape of  a rigid body, there exists a set of  axes for which the products 

of  inertia are all zero. Such axes are called principal  axes  and the corresponding 
moments of  inertia are called the principal  moments  o f  inertia.* The  principal 

* In 1750 Euler discovered the existence of principal axes and principal moments of inertia of a rigid 
body. 
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Fig. 6.3 Rigid body with two body-fixed reference frames B and B'. 

axes with the smallest, intermediate, and largest inertia are often called the minor, 
intermediate, and major axes, respectively. 

Given an inertia matrix J about a reference frame B with basis vectors {b l, b2, b3}, 
the principal moments of inertia and the corresponding set of principal axes 
B' with basis vectors {b 1, b 2, b3} can be found by solving the following eigen- 
value/eigenvector problem: 

[XI - J]e = 0 (6.31) 

where I is a 3 x 3 identity matrix, and ~. and e are the eigenvalue and eigenvector, 
respectively, to be determined. The eigenvalues become the principal moments 
of  inertia, whereas the eigenvectors provide the orientation of the corresponding 
principal axes relative to a reference frame B. 

The eigenvalues are simply the roots of the characteristic equation 

I•I - JI = 0 (6.32) 

After determining the three eigenvalues Zl, ~-2, and ~3, which are the principal 
moments of inertia, we also find the corresponding eigenvectors el, e2, and e3 by 
solving the following equations: 

[XiI - J]ei = 0, i = 1, 2, 3 (6.33) 

w h e r e  e i = (eil, el2, ei3), o r  

---]21 .~i - J22 -,]23 el2 ] = , 

-J31 -J32 ~-i - .].33 J ei3 ._1 

i = 1 , 2 , 3  

If each eigenvector ei is normalized such that 

e/21 +e~2 +e/23 = 1, i =  1 ,2 ,3  

then {b' 1 , b~, b~} of the principal-axis reference frame B' are written as 

b/1 ~ el = e11191 + e12b2 + e13b3 

b~ ~ e2 = e21bl + e22b2 + e23b3 

b '  e3 = e31bl  '}- e32/92 + e33/93 3 ~ 

(6.34a) 

(6.34b) 

(6.34c) 
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Because eij is, in fact, the direction cosine between bl and bj, the direction cosine 
matrix of  B'  relative to B is defined as 

,ell 
C = C  B'IB = |e21 

L e31 

Furthermore, we have 

el2 el3 ] 
e22 e23 
e32 e33 

(6.35) 

C J C  r = J '  = diag(Jl ,  J2, -/.3) (6.36) 

where Ji = )~i denote the principal moments of inertia. The corresponding inertia 
dyadic about the principal axes is 

= J l b l b  I + J2b2b 2 + J3b3b 3 (6.37) 

As an example, consider a rigid body with the following inertia matrix 

[ , oo o 1 
J = 0 2700 kg.m a 

- 1000 0 3000 J 

about a body-fixed reference frame B with its origin at the center of  mass. 
The three eigenvalues of  the inertia matrix J can be obtained as 1000, 2700, and 

3500. Letting (~-l,).2, )~3) = (1000, 2700, 3500), we find the inertia matrix about 
the principal axes as J '  = diag(1000, 2700, 3500). Furthermore, the direction 
cosine matrix of  the corresponding principal axes B' relative to B can be obtained 
as 

F-el, el2 el3 1 [ 2 / 0 ~  0 ' /O~l  
C --  C B'/8 = ] e21 e22 e231 = 1 

Le31 e32 e33A L-1/4  0 2/~/5.~ 

One can also verify that C J C  r = J '  = diag(lO00, 2700, 3500). 

6.2. 

P r o b l e m  

Consider an inertia matrix of  the form 

[Jll  J12 J13] 
J = /J21 J22 J23 

L J31 J32 J33 

which is symmetric and positive definite. (All of  the eigenvalues of a symmet- 
ric matrix are real. A symmetric matrix is said to be positive definite if all its 
eigenvalues or all its leading principal minors are positive.) 

(a) Show that the moments of  inertia are interrelated by 

Jll  + J22 > J33, Jzz + J33 > Jl l ,  J33 + Jll > J22 

which are called the triangle inequalities.  
Hint:  Use Eqs. (6.12). 
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(b) Show that 

J l l  > 0, J22 > 0, J33 > 0 

J l l  J22 - J?2 > 0, J22J3~ _ j 2  j 2  +- 23 > 0, J33J l l  --  31 > 0 

J l l J22J33  q--2J12J23J31 -- J l l J  2 --  J22J21 -- J33J?2 > 0 

Jll > 21J231, J22 > 21J31 l, J33 > 21J121 

Hint: Use the definition as well as the positive definiteness of the inertia matrix. 
(c) Let J1, ./2, and J3 be the principal moments of inertia. Then show that 

J l l  + J22 -I- J33 = J l  -'}- J2 -~- J3 

J l l  J22 -4- J22J33 -~- J33J l l  - J?2 - j223 - j231 - -  J1J2 "~ J2J3 + J 3 J l  

Jl lJ22~3 -4-2J12J23J31 - Jll J~  - J22J~l - J33 J122 = J1J2J3 

Hint: IkI - JI = (• - J~)(k - J2)@ - J3). 

6.4 Euler's Rotational Equations of Motion 
As discussed in Sec. 6.1, the angular momentum equation of a rigid body about 

its center of mass is simply given as 

= n (6.38) 

w h e r e / t  is the angular momentum vector of a rigid body about its mass center, 
M is the external moment acting on the body about its mass center, and we have 

-;~- ~ - } N  d/4 ] + O5B/N X (6.39) 

where /4  = J • O5e/N. 
The rotational equation of motion of a rigid body about its center of mass is 

then written as 

/ ~ =  {d/4} +~/N/~x (6.40) 

For notational convenience, let o3 -= OSB/N, then Eq. (6.40) becomes 

O5) +O5 x3.o5 
B 

{ } dJ  { d ~ }  
.O5+3. -g[ +O5x3.O5 (6.4l) 

~ "~-  B B 

where {dJ/dt}8 = 0 and {do5/dt}B = {dos/dtIu = ~). Finally, we obtain 

= 3 . 3  + o3 x 3 .  o3 (6.42) 

which is called Euler's rotational equation of motion in vector/dyadic form. 
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Let M, H,  and 03 be expressed in terms of body-fixed basis vectors {bl, b2, b3}, 
as follows: 

/~ = M,/h + M2/~2 + M3/~3 

Substituting these into Eq. (6.40), we also obtain the rotational equation of motion 
in matrix form, as follows: E"IE ° : JE]"l 

M2 = /:/2 + c03 0 - H2 
M3 IS/3 --0.) 2 O) 1 /-/.3 

Because 

//2 = J21 J22 J231 co2 
//3 J31 J32 J33J 093 

we obtain 

(6.43) 

E 11 M2 = J21 J22 J23 | 6)2 
M3 J31 J32 J33 J 6)3 

0 --0) 3 092 Jll J12 J13 1 
- 092 + o93 0 J21 J22 J23 | (6.44) 

--o)2 Wl J31 J32 J33 _] 0)3 

Defining a skew-symmetric matrix 

= 093 0 -col (6.45) 
-w2 col 0 

we rewrite Eq. (6.44) concisely as 

Jw + ~ J w  = M (6.46) 

where 

J =  J21 Jz2 J 2 3 | ,  60= o92 , M =  M2 
J31 J32 J33 .] 093 M3 

Using cross product notation of two column vectors, w and Jw, defined as 

w × Jw =- f~Jw 

we often write Eq. (6.46) as 

J~O + w x Jw = M (6.47) 
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which must be distinguished from the vector/dyadic form of Euler 's rotational 
equation of motion 

3.o~+o3 x 3.o3 =,~ 

For a principal-axis reference frame with a set of basis vectors {bl, b2, b3}, 
Euler 's  rotational equations of  motion of a rigid body become 

Jl°)l -- (J2 - ,]3)0)20)3 = Ml (6.48a) 

J2o)2 -- (J3 - Jl )093091 ~--" M2 (6.48b) 

J3t-b3 - (Jl - Jz)WlW2 = M3 (6.48c) 

where Jl ,  J2, and J~ are the principal moments of inertia, Mi = ~ I .  [h wi 
o) • b i .  These are three coupled, nonlinear ordinary differential equations for state 
variables o91, o92, and w3 of a rigid body. These dynamical equations and the 
kinematic differential equations of  the preceding chapter completely describe the 
rotational motions of  a rigid body with three rotational degrees of  freedom (i.e., 
six state variables). 

Problems 
6.3. Consider Euler 's equations of motion of a rigid spacecraft given by Eqs. 
(6.48). 

~(a) Show that the rotational kinetic energy T and the angular momentum H = 
I H[ are simply given by 

(b) Show that 

2 r  = + + 

H 2 = (JlWl) 2 + (J2w2) 2 + (~w3)  2 

= w l M l  + wzM2 + 093M3 

1:1 = J l w l M l  + J2092M2 + J3o)3M3 

H 

6.4. Consider Euler 's equations of  motion at steady state of  the form 

0 = (J2 - J3)0)20)3 -t- M1 

0 = (J3 - J1)o93o91 + M2 

0 = (J1 - J2)o91o92 -t- M3 

where M1, /142, and M3 are constant body-fixed torque components. Show that 
equilibrium points exist if and only if M1MzM3 > 0 (only if M 1 M 2 M 3  > 0). 

6.5. Consider again Euler 's equations of a rigid body described by Eqs. (6.48) 
which can be rewritten as 

691 - klw2W3 = M 1 / J l  

692 + k2o93o91 = M2/J2  

693 -- k3WlW 2 = M3 /  J 3 
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where (J)i -~ d o ) i / d t  and 

J2 -- J3 Yl - J3 Jl -- J2 
kl = - - ,  k2 = ~ ,  k3 - - -  

J1 J2 J3 

It is assumed that Jl > J2 > J3 and ki > 0, without loss of generality. 
(a) Show that Euler's equations of motion can also be written as 

dxl 
_ _  _ _  X 2 X  3 = ]1 ,1  

dr 

dx2 
_ _  -~- x 3 x  I : 11,2 
dr  

dx3 
_ _  _ x 1 x  2 ~ id,3 
dr  

where r = t ~/tqtc2k3, and 

o)1 o)2 o)3 
X l -  ~ 1 '  x 2 -  ~ 2 '  x3 = ~ 3  

and 

M1 M2 M3 

/ Z l -  J lk l  k r~2k3, /1"2-- J2k2 kq/-~3kl, l z 3 -  J 3 k 3 ~  

(b) For a special case of  constant M1 > 0 and M2 = M3 = 0, show that Euler's 
equations of  motion can be written in nondimensional form as 

dxl 
- -  - -  X 2 X  3 ~ 1 
dr  

dx2 
- -  + x3xl = 0 
dr  

dx3 
- -  - X l X  2 ~ 0 
dr  

where r = t ~ / # k l k z k 3 ,  and 

M1 wl o)2 o)3 
~ - -  J l k l  k.v/~2k~, Xl  - -  ~ / - ~ 1 '  X2 - -  ~ / - ~ '  X3 = ~ / ~ k 3  

6.5 Torque-Free Motion of an Axisymmetric Rigid Body 
Most spin-stabilized spacecraft are nearly axisymmetric, and they rotate about 

one of  their principal axes. The stability of  torque-free rotational motion of  such 
spin-stabilized spacecraft is of practical importance. The term "torque-free motion" 
commonly employed in spacecraft attitude dynamics refers to the rotational motion 
of  a rigid body in the presence of  no external torques. 

Consider a torque-free, axisyrnmet_ric rigid body with a body-fixed reference 
frame B, which has basis vectors {bl, b2, b3 }, and which has its origin at the center 
of mass, as illustrated in Fig. 6.4. The reference frame B coincides with a set of  
principal axes, and the b3 axis is the axis of  symmetry; thus, J1 = J2. 



344 SPACE VEHICLE DYNAMICS AND CONTROL 

r ,73 ~'2 

/" q/ n2 

"~ 1 :: $ 

Fig. 6.4 Torque-free motion of an axisymmetric rigid body. 

Euler 's rotational equations of motion of a torque-free, axisymmetric spacecraft 
w i t h  J1 = J2  = J b e c o m e  

JCbl - ( J  - -  J3)0)30) 2 = 0 (6.49) 

J(J)2 + ( J  - J3)6o3(,Ol = 0 (6.50) 

J3&3 = 0 (6.51) 

where wi =-- b i  • O) are the body-fixed components of  the angular velocity of  the 
spacecraft. 

From Eq. (6.51), we have 

w3 = const = n (6.52) 

where the constant n is called the spin rate of the spacecraft about its symmetry 
axis b3. 

Defining the relative spin rate k as 

(J  - J3)n 

J 

we rewrite Eqs. (6.49) and (6.50) as 

6h - )~w2 = 0 (6.53) 

(J)2 -~- ~'0-)1 = 0 (6.54) 

Adding Eqs. (6.53) and (6.54) after multiplying by Wl and w2, respectively, we 
obtain 

O)l(J91 + (026) 2 = 0 (6.55) 

which, after integration, leads to 

w 2 + w~ = const = w~2 (6.56) 

where w12 is called the constant transverse angular velocity. 
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Consequently, we find that the magnitude of  the angular velocity vector ~ is 
constant; i.e., 

1031 = ~0)12 +0)~ + 0)23= ~ + n 2 =  const (6.57) 

Note that the angular velocity vector o3 itself is not a constant vector as 0)1 and 0)2 
are not constant and they are, in fact, the solutions of Eqs. (6.53) and (6.54) given 
by 

0) l( t )  = wl (0) cos kt + 0)2(0) sin kt (6.58a) 

0)2(0 = 0)2(0) cos )~t - 0)1(0) sin )~t (6.58b) 

where 0)I (0) --= -6~z(0)/k and 0)2(0) = 6~1 (0)/~ are the initial conditions at t = 0. 
Because no external torque is acting on the spacecraft, the angular momentum 

vector H of the spacecraft is constant and it is inertially fixed in space; i.e., 

H = )14 = 0 or /4 = constant vector (6.59) 

The constant angular momentum vector is expressed in terms of  basis vectors 
{31,32, 33} of  a rotating reference frame B, as follows: 

/4 = H131 + Hzb2 + H333 

= Jl0)lbl  + J20)2172 + J30)31"73 

= J(0)lbl  -~- 0)232) + J3nb3 
and 

n ~ I/~1 = ~ / n  2 + n ff + HE3 = ~/( J0)12)2 + ( ~n)2  = const (6.60) 

The angle 0 between/4 and the axis of  symmetry (33 axis) is called the nutation 
angle, and it can be determined as 

kI . b3 J3n 
cos 0 - - -  - = const (6.61) 

H ~/(J0)12)2 + (J3n)2 

or 

V/••1+ H~ J0)12 
tan 0 = -- - -  (6.62) 

H3 ~ n  

The angle y between b3 and 03 can also be determined as 

1 2 - • -  0)2 0)12 = const tan y = = - -  (6.63) 
0)3 n 

The angles 0 and y are related to each other by 

tan 0 = ( J /~ )  tan y (6.64) 
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For a disk-shaped (oblate) body with ./3 > J ,  we have y > 0. For a rod-shaped 
(prolate) body with J3 < J ,  we have y < 0. The three vectors/4,  o3, and b3 are 
coplanar at all times, and this plane rotates abou t / t .  

To describe the rotational motion of a spinning spacecraft as seen from an inertial 
reference frame, we consider the body-fixed rotational sequence of  C3(7t) +-- 
CI(0)  +-- C3(~O) treated in Chapter 5. The three Euler angles ~b, 0, and ~p of  this 
rotational sequence are shown in Fig. 6.4, and we have 

091 = ~ sin 0 sin ~0 + 0 cos ~ (6.65a) 

092 = ~ sin 0 cos ~0 - 0 sin ~ (6.65b) 

093 = ~k + ~b cos 0 (6.65c) 

Because both the nutation angle 0 and 093 are constant, we have 

o91 = ~b sin 0 sin ~ (6.66a) 

w2 = ~ sin 0 cos ~ (6.66b) 

o93 = n = ~ + q~ cos 0 (6.66c) 

Furthermore, both q~ and 7t become constant as 092 + 092z = const. 
Substituting Eqs. (6.66) into Eq. (6.49), we obtain 

J~b sin0 cos ~ b  - (J  - J3)~b sin0 cos ~0n = 0 (6.67) 

which can be rewritten as 

_ ( J  - J 3 ) n  _ ~. (6.68) 
J 

Consequently, ~b is also called the relative spin rate, whereas q~ is called the 
precession rate or coning speed. 

Using the relationship 093 = n = ~ + ~ cos 0, we can also express the preces- 
sion rate q~ as 

q~ = (n - ~t)/cos 0 = J3n/J  cos0 (6.69) 

or 

(p = J3~tl(J - J3)cos0  (6.70) 

If  J > J3, the right-hand side of  this equation becomes positive and we have a 
direct precession; this is a situation in which the spin and precession are in the same 
direction. On the other hand, if J < J3, the right-hand side of  this equation becomes 
negative and we have a retrograde precession, where the spin and precession are 
in opposite directions. 

Because/43 = H cos 0 = Jan, we also have 

H = J3n/cosO = J ~ p  (6.71) 

The coning motion, or precession, of a spinning axisymmetric body described 
here has an elegant geometrical interpretation using the so-called body and space 
cones. However, this classic material, which can be found in most textbooks on 
rigid-body dynamics, is not further pursued here. 
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6.6 General Torque-Free Motion 
Consider the general case of an unsymmetrical, or asymmetrical, rigid body in 

torque-free motion, described by 

JlO)l = (J2 - J3)092093 

J26J2 = (J3 - J1)co3~oi 

J36~3 = (J1 - J2)wio~2 

(6.72a) 

(6.72b) 

(6.72c) 

where Jl ,  J2, and J3 are the principal moments of  inertia. We assume that J1 > 
J2 > J3 without loss of generality. 

Let the angular momentum vector and angular velocity vector be represented 
as  

/4 = Hlb~ + H2b2 + H3b3 (6.73a) 

(~ = 0)1~91 + 0)2b2 -t- 093~73 (6.73b) 

where {bi, b2, b3} is a set of  basis vectors for principal axes. The angular momen-  
tum vector of a rigid body is constant for a torque-free motion; i.e., 

/4 = constant vector (6.74) 

and 

H 2 ~_ 1/412 = (J lO) l )  2 71- (J2092) 2 -~- (J30)3) 2 = const (6.75) 

The conservation of rotational kinetic energy implies that 

2T = o3-/4 = oglHl +w2H2  + o93H3 

= J1 w2 Jr- J20)22 -~- J30J 2 = const 

Equations (6.75) and (6.76) can be rewritten, respectively, as 

092 

(H/J1)  2 (H/J2)  2 ( H / ~ )  2 

- - +  - - +  - -  

(2T/J1) (2T/J2) (2T/J~)  

- - 1  

= 1  

(6.76) 

(6.77) 

(6.78) 

j .  ~_ __H z = (JlO)l) 2 7 t- (J2o92) 2 -I- (J3o)3) 2 (6.79) 

2T Jlco 2 + Jzw~ + J3w~ 

Geometrically, it can be said that the angular velocity vector must lie on the surface 
of the angular momentum ellipsoid, Eq. (6.77), and at the same time it must lie 
on the surface of the kinetic energy ellipsoid, Eq. (6.78). The curve in which these 
ellipsoids intersect is the path of the angular velocity vector as seen from the 
body-fixed reference frame, called a polhode. 

Let a constant parameter J* be defined as 
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which has the dimensions of  a moment of inertia. Then, combining Eqs. (6.77) 
and (6.78), we obtain the polhode equation 

j l ( j  I _ j , ) 0 9 ~  + j 2 ( j  2 _ j . ) 0 9 2  _~_ j 3 ( j  3 _ j ,)0932 = 0 (6.80) 

Because all of the coefficients of the left-hand side of  this equation must not have 
the same sign and J1  > J2 > -].3, the constant parameter J* must be between J1 
and ./_3; i .e. ,  

Jl > J * > ~  

For an ideal rigid body without internal energy dissipation, H,  T, and J* are 
constant and the polhode is a closed path. 

Eliminating o93 from Eqs. (6.77) and (6.78), we obtain rile polhode projection 
onto the (091,092) plane normal to the minor axis, as follows: 

Jl(gl  - J3)09~ + J2(J2 - ~)09~ = 2T(J*  - ~ )  (6.81) 

which represents an ellipse because Jl > J2 > J3, and the right-hand side of  this 
equation is positive. Similarly, for the polhode projection onto the (092,093) plane 
normal to the major axis, we have 

J2(J1 - J2)09 2 -t- J3(Jl - ~)092 = 2T(J1 - J*)  (6.82) 

which also represents an ellipse. However, the polhode projection onto the (09i, 
w3) plane that is normal to the intermediate axis becomes 

Jl(J1 - -  J 2 ) 0 9 ~  - -  J3(J2 - ~)092 = 2T(J*  - ,/2) (6.83) 

which represents a hyperbola. Note that the right-hand side can be either positive 
or negative. 

Boundaries between the polhode paths about the major and minor axes are called 
the separatrices. If  J* = J2, then Eq. (6.83) becomes 

Jl(J1 - J2)09 2 - J3(J2 - ./.3)0) 2 = 0 (6.84) 

This is, in fact, the projection of the separatrices onto the (o91,093) plane normal to 
the intermediate axis. The slopes of  the separatrices are 

09__2~ = ± / ~ ( J, - J2) (6.85) 
o91 V J3(J2 J3) 

which are independent of  H and T. 
The preceding results regarding the polhode projections are, in fact, closely 

related to the stability problem of a rigid body spinning about one of its principal 
axes, to be discussed in the next section. 

There exists the analytical closed-form solution to the torque-free motion of 
an asymmetric rigid body in terms of Jacobi elliptic functions, and the reader is 
referred to Leimanis 1 or Hughes. 2 
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6.6. 
motion described by Eqs. (6.72). 

(a) Show that 

~)1 = J 2 -  J3J-~ { Jl - J2o)2-'[- J 3 -  - ~ 2  " ] 

~92 = J3-- J1 { J1 - J'~ J 2 -  J3o)21 o ) 2 J ,  

i.b3_ J1 - J2 { J 3 -  Jlo)2..[_. J 2 -  J3o)2} 
J---T--3 J2 J1 o) 3 

(b) Show that the equations derived in (a) can be rewritten as 

691 + Alo) l  + Blo)sl = 0 

~t)2 -'F A2o)2 + B2o)23 = 0 

693 + A3o)3 + B3o) 3 = 0 

where the constant coefficients A i and B i are defined as 

(J ,  - J 2 ) ( 2 J s T  - H 2) + (J3 - J , ) ( H  2 - 2J2T) 
A1 = 

J1J2 J3 

(,/2 -- J3)(2J1T - H 2) + (gl - J2)( H2 - 2J3T) 
A2 = 

J1J2 J3 

(,/3 -- J 1 ) ( Z J 2 T  - H 2) + (J2 - J3)( H2 - 2 J I T )  

Problems 

Consider Euler's equations of  an asymmetrical rigid body in torque-free 

glJ :~  

2(J~ - J2)(J~ - J3) 
B1 = 

J2J3 

2(J2 - J l ) (J2  - J3) 
B2 = 

J~J3 

2(J] - J3)(J2 - J3) 
B3 

Jl J2 

Note that each of  these uncoupled equations is a homogeneous, undamped Duffing 
equation with constant coefficients. 3 

Hint :  Combine Eqs. (6.77) and (6.78) to solve for the squares of  any two o)i as 
a function of the third, e.g., 

2 J 3 T  - H 2 J l (J3  - J l ) w 2  o) 2 1 
J2(J3 - J2) J2(J3 - J2) 

o)2 2 J 2 T  - H 2 J l ( J z  - J l )  
3 - ~ -_ J3) J3(J2 - J3) 0)~ 

A 3 
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6.7. As shown in Problem 6.5, Euler 's  rotational equations of  an asymmetric 
rigid body with J1 > J2 > J3 in torque-free motion can be written as 

k l  - -  x2x3 = 0 

Jc2 + x 3 x i  = 0 

J¢3 - - X l X 2  = 0 

where 2i  =- d x i / d z ,  r = t ~ ,  and 

0) 1 602 0)3 
X l -  ~ 1 '  X 2 -  ~ 2 '  X3 = 

(a) Show that there exist two constants of integration such as 

x 2 + x  2 = const = A 3 

x~ + x  2 = const = B 

(Consequently, we have x 2 - x 2 B - A and x 2 + 2x 2 + x 2 = a + B.) 
(b) Show that 

~l  + (x~ - x~)x, = o 

~2 + (x? + x~)x2 = o 

~ + (x~, - x~)x3 = o 

and then derive the following decoupled equations: 

21 + (A - 2B)Xl + 2 x ~  = 0 

)~2 "{- ( A  + B ) x 2  - 2x~ = 0 

x3 + (B - 2A)x3 + 2x~ = 0 

where A and B are the two constants defined in (a). 

6.7 Stability of Torque-Free Motion About Principal Axes 
Consider  a rigid body that is rotating about one of its principal axes. If  there 

are no external torques acting on the body and if, for example, the rotation was 
initially about the third axis, then the rigid body will continue to spin about the 
third axis; i.e., 0)3 = const and 0)1 = 0)2 = 0. On the other hand, if a small 
impulsive disturbance torque is applied to the body, then the body will no longer 
rotate purely about the third axis. 

For  linear stability analysis, we assume that the perturbation terms 0)1 and 0)2 
are much smaller in magnitude than 0)3. Neglecting the products of  the small 
perturbation terms, we obtain the linearized rotational equations of motion, as 
follows: 

Jlr~l -- (J2 - J3)n0)2 = 0 (6.86a) 

J2&2 -- (J3 -- J l )nwl  = 0 (6.86b) 
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where n is the constant spin rate about the third axis. Combining these equations, 
we obtain 

631 + n 2(J2 - J3)(J1 - J3)o91 = 0 (6.87) 
Jr J2 

The characteristic equation is 

S 2 q._ n 2 ( J 2  - -  J 3 ) ( J l  - J3 )  = 0 (6.88) 
J I  J2 

and the characteristic roots are 
/ 

_4_jn[(J2 -- J3)(Jl - ~ )  
S V 

(6.89) 

where j = ~fZT. 
If the spin axis (the third axis) is either the major axis (Jl < J3, J2 < J3) or 

minor axis (J1 > ~ ,  -/2 > ~) ,  then the characteristic roots become pure imaginary 
numbers and the rotational motion is said to be (Lyapunov) stable, though not 
asymptotically stable. If the spin axis is the intermediate axis, then one of the 
characteristic roots is positive real number and the motion is said to be unstable. 

Similar conclusions about the stability of a rigid body spinning about one of its 
principal axes can also be made using the polhode projection equations derived 
in the preceding section. The hyperbolic nature of the polhode projection onto 
a plane normal to the intermediate axis indicates the instability of a rigid body 
spinning about its intermediate axis. The elliptic nature of the polhode projection 
onto a plane normal to either the major or minor axis indicates the stability of a 
rigid body spinning about its major or minor axis. 

Similar to the term "particle" (or "point mass"), which is a mathematical ab- 
straction of a relatively small body, a rigid body is also a mathematical abstraction 
of a relatively rigid body. Space vehicles are never perfect rigid bodies; most space 
vehicles have flexible appendages, e.g., solar panel arrays or antennas, and propel- 
lant tanks with sloshing fluid. It has been observed that such semirigid spacecraft 
with internal energy dissipation caused by fuel slosh or structural vibration is stable 
only when spinning about its major axis. 

For a semirigid body with internal energy dissipation, the kinetic energy de- 
creases and the energy ellipsoid becomes smaller with time. This results in an 
open polhode path that spirals outward from the minor axis, crosses the separatrix, 
and approaches the major axis. Consequently, a spacecraft spinning about its minor 
axis in the presence of energy dissipation is unstable; that is, the spacecraft will 
eventually reorient and rotate about its major axis with either a positive or negative 
spin rate. A classic example of the minor-axis instability phenomenon is the first 
U.S. satellite, Explorer I, launched in 1958. 4 

Problem 

6.8. Consider a rigid body with a spherical, dissipative fuel slug. Such a simplified 
model of a rigid body with internal energy dissipation is described by 5 

(Jl - J)691 = (J2 - J3)wz~O3 +/z~q 

(J2 - J)692 = (J3 - J1)o93o91 +/z~r2 
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( ~  - J)(O3 = ( J l  - J z ) w l w 2  + #0"3 

(r] = - ( 0 1  - ( I Z / J ) c q  - w20"3 + w30"2 

02 = - - ( O 2  - -  (/z/J)0"2 - o93o'1 + Wl0"3 

O'3 = --(O3 -- (/z/J)0-3 - °91°'2 + °)20"1 

where (J1, J2, J3) are the principal moments of inertia of the spacecraft including 
the spherical, dissipative fuel slug of inertia J ;  (0)1,0)2, 0)3) are the body rates 
about the principal axes; (0-1,0-2, a3) are the relative rates between the rigid body 
and the fuel slug about the principal axes; and/z is the viscous damping coefficient 
of  the fuel slug. It is assumed that J1 > J2 > J3 without loss of generality. 

(a) Show that a necessary condition for the equilibrium points is 0-2 + 0"22 + 
0"~ = 0, i.e., ax : 0 " 2  =0"3 = 0 .  

(b) Show that an equilibrium point (0)1, ¢02, 0)3, 0"1,0"2, 0"3) = (f2, 0, 0, 0, 0, 0) 
is stable; i.e., a pure spinning motion about the major axis is stable. 

(c) Show that an equilibrium point (0, 0, f2, 0, 0, 0) is unstable; i.e., a pure 
spinning motion about the minor axis is unstable, whereas it is Lyapunov stable 
for a rigid body without energy dissipation. 

(d) Show that an equilibrium point (0, f2, 0, 0, 0, 0) is also unstable. 
(e) Consider a spacecraft with the following numerical values: (J1, J2, J3, J )  = 

(2000, 1500, 1000, 18) kg-m 2 and # = 30 N.m-s. Performing computer simulation, 
verify that the trajectory starting from an initial condition (0.1224, 0, 2.99, 0, 0, 0) 
rad/s ends up at ( -  1.5, 0, 0, 0, 0, 0) rad/s. 

N o t e :  The kinetic energy T and the angular momentum H of the system are 

H 2 = (Jl0)l + J0"l) 2 + (J20)2 + J0"2) 2 + (,]30)3 + J0"3) 2 

27" = ( s ,  - s)0)~ + (s2 - s)0)~ + (J3 - s)0)~ 

+ J{(0)l  + 0"1) 2 + (0)2 + 0"2) 2 + (0)3 + 0"3) 2 } 

During computer simulation of this case, the angular momentum H needs to be 
checked to see whether or not it is maintained at a constant value of 3000 N.m.s. 

(f) Also perform computer simulation with a slightly different initial condition 
(0.125, 0, 2.99, 0, 0, 0) and verify that the trajectory ends up at (+1.5, 0, 0, 0, 0, 0). 

N o t e :  For such a spinning spacecraft with energy dissipation, a small change 
in initial conditions can lead to a change in the final spin polarity for 0)1. Such 
sensitive dependence on initial conditions is the property characterizing a chaotic 
dynamic system. 

6.8 Spinning Axisymmetric Body with Constant 
Body-Fixed Torque 

A simple solution to the problem of maintaining a desired orientation of a 
space vehicle during thrusting maneuvers is to spin the vehicle in the fashion of a 
football or a spinning rocket about its longitudinal axis. A thrust vector misalign- 
ment with the longitudinal axis will cause the vehicle to tumble in the absence of 
spinning. A spinning axisymmetric body possesses a gyroscopic stiffness to ex- 
ternal disturbances, however, and its motion under the influence of disturbances is 
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characterized by the precession and nutation of tile longitudinal axis about the 
desired direction of the longitudinal axis. 

Consider an axisymmetric rigid body possessing a body-fixed reference frame 
B with basis vectors {bl, b2, b3} and with its origin at the center of  mass. The 
reference frame B coincides with principal axes. It is assumed that the first and 
second axes are the transverse axes and that the third axis is the axis of  symmetry. 
A longitudinal thrust vector is nominally aligned along b3 through the center of  
mass of  the spacecraft. 

Euler 's rotational equations of  motion of an axisymmetric spacecraft with Jl = 
J 2 =  J a r e  

J691 - ( J  - J 3 ) 0 ) 3 0 ) 2  = M1 (6.90) 

J692 + ( J  - J3)0)30)1 = 0 (6.91) 

,/36)3 = 0 (6.92) 

where 0)i ~ bi • w are the body-fixed components of  the angular velocity of the 
spacecraft in an inertial reference frame and M1 is the transverse torque component 
due to misalignment of  the thrust vector. 

From Eq. (6.92), we have 

0)3 = const = n (6.93) 

where the constant n is called the spin rate of the spacecraft about its symmetry 
axis b3. Equations (6.90) and (6.91) then become 

(J)l = ~-0)2 "nt- ]/" 

where 
(J)2 ~ --~'0)1 

(6.94) 

(6.95) 

( J - J3)n 

J 

and tx = M l / J  denotes the constant disturbance acceleration resulting from mis- 
alignment of  the thrust vector. Note that ~. can be either positive or negative de- 
pending on whether the third axis is the minor or major axis. 

To describe the rotational motion of the spinning spacecraft as seen from 
an inertial reference frame, we consider the body-fixed rotational sequence of 
C 3 ( 0 3 )  <--- C2(02) <--- E l ( 0 1 ) .  For this rotational sequence, we have the following 
kinematic differential equations: 

01 = (0)1 COS 03 - -  0) 2 sin 03)/cos 02 

02 = 0)1 sin 03 + 0)1 cos 03 

03 = (-0)1 cos 03 + 0)2 sin 03) tan 02 + 0)3 

For small 02, the kinematic differential equations become 

01 = 0)1 cos 03 - 0)2 sin 03 

02 = 0)1 sin 03 + 0)2 cos 03 

03 = -0z0~ + 0)3 

(6.96a) 

(6.96b) 

(6.96c) 

(6.97a) 

(6.97b) 

(6.97c) 
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Assuming 0201 << 093, we can further approximate 03 as 

03 ~ 0) 3 = n = const  

and 03 ~ nt. Finally,  we have a set of  l inearized equat ions of  mot ion 

691 ~--- XtO 2 "-1- /z (6.98) 

(J)2 : --XtOl (6.99) 

01 = COl cos nt - 002 sin nt (6.100) 

02 = 0)1 sin nt + o92 cos nt (6.101) 

The solut ions of  Eqs. (6.98) and (6.99) for a cons tan t /z  can be found as 

(6.102a) 

(6.102b) 

o)1 (t) = 0)1 (0) cos Xt + o92(0) sin At + ( /z /h)  sin At 

to2(t) = 092(0) cos At - o91 (0) sin At - (/z/X)(1 - cos At) 

For  a case with 0)1(0) = to2(0) = 0, Eqs. (6.100) and (6.101) become 

= /z-~ I ~ n t  + sinnt  } 01 [ - s i n  

0 2 = ~ -  cos n t - c o s n t  

(6.103a) 

(6.103b) 

because  s in(A + B) = sin A cos B -4- cos A sin B and cos(A 4- B) = cos A cos B q: 
sin A sin B. Integrat ing these equat ions with respect to t ime for the initial condi-  
t ions 01(0) = 02(0) = 0, we obtain 

01(t) = - A p ( 1  - cos topt) q- An( l  -- cos tont) 

02(0 = Ap sintOpt - An sintOnt 

(6.104a) 

(6.104b) 

where  

/zJ  
Ap -- XnJ3 - -  - -  precessional  ampli tude 

/z 
An -- Ln - -  nutational  ampli tude 

J 3 n  
tOp-- j - -  --  precessional frequency 

tOn ----- n = nutat ional  frequency 

The path of  the tip of  the axis o f  symmetry  in space is an epicycloid formed 
by a point  on a circle of radius An roll ing on the outside of a circle of  radius A p ,  

centered at 01 = - A p  and 02 = 0, when J > J3. 
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Problem 
6.9. Consider a spinning axisymmetric rocket with misaligned longitudinal thrust 
described by a set of differential equations of  the form 

&l = ZCo2 + # 

(-J)2 = -- )~Col 

01 = (Col cos 03 - Co2 sin 03)/cos 02 

02 = 091 sin 03 + 092 cos 03 

03 = (-col cos 03 + co2 sin 03) tan 02 + n 

in which the kinematic differential equations are not linearized yet. 
(a) For the following parameter values and initial conditions: 

J 3 / J  = 0.05, n = 15 rad/s 

)~ = n ( J  - ~ ) / J  = 14.25 rad/s 

Iz = M 1 / J  = 0.1875 rad/s 2 

col (0) = Co2(0) = 0 rad/s 

01(0) = 02(0) = 03(0) = 0 

perform computer simulations of  both the nonlinear and linear models. In par- 
ticular, plot the paths of  the tip of the axis of symmetry in the (01, 02) plane. 
Compare the computer simulation results with the linear analysis results given by 
Eqs. (6.104). 

(b) For the same parameter values and initial conditions as given in (a), but 
with 092(0) = 0.025 rad/s, perform computer simulations of  both the nonlinear 
and linear models, and compare the results in terms of the numerical values of Ap ,  
An,  cop, and con. 

Note:  In Jarmolow 6 and Kolk, 7 con was modified as 

Co n ~ n ( J  - J 3 ) / J  

based on their computer simulation results. The discrepancy was attributed to the 
linearizing assumption: 0201 << co3. On the contrary, however, the nonlinear and 
linear simulation results agree very well, as is verified in this problem. 

6.9 Asymmetric Rigid Body with Constant Body-Fixed Torques 
In the preceding section, we studied the problem of a spinning axisymmetric 

body under the influence of  a constant torque along one of  the transverse axes. 
The rotational motion of  such an axisymmetric body was characterized by the 
precession and nutation of  the longitudinal axis. 

In this section, based on Refs. 8 and 9, we consider the general motion of  an 
asymmetric rigid body under the influence of  constant body-fixed torques. 



356 SPACE VEHICLE DYNAMICS AND CONTROL 

6.9.1 Linear Stability of Equilibrium Points 
Euler 's rotational equations of  motion are given by 

J1691 = (J2 - J3)w2w3 + M1 

J2692 = (J3 - J1)tO3Wl d- M2 

J36~3 = (Jl - J2)(01092 d- M3 

where Ji are the principal moments of inertia and Mi are  the constant torque 
components along the body-fixed principal axes. It is assumed that J1 > J2 > J3 
without loss of  generality. The equations of  motion at steady state become 

- ( J 2  - ~)f22f23 = M1 

+(J1 - J3)f23f21 = M2 

--(Jl  --  J 2 ) ~ l  ~ 2  = M3 

where (f21, f22, S23) is an equilibrium point. Combining these equations, we obtain 

(J2 J3 ) ( J l  J-a)(J1 2 2 2 --  . - -  . - -  J2)~1~22~'23 = M1MzM3 (6.105) 

which indicates that equilibrium points exist if and only if M1 MzM3 > 0 (only if 
M1MzM3 > 0). 

Given a constant torque vector (M1, M2, M3) with M1MzM3 > 0, eight equi- 
librium points (q-f21, -4-f22, -4-f23) exist where 

•/ J2 - -  J3 M2M3 
~ l  = (J, --J2-~71 - J3) M1 

J l  - J3 M3M1 
~"22 = (J1 - J2)(J2  - -].3) ME 

•/ Jl - ,/2 M1 M2 

n3 = ( j ,  - - ~ 3 " ~ f 2 -  J3) 7143 

Equilibrium points associated with a torque vector (Ml, M2, M3) with M1M2M3 = 
0 are 

(Ml,  0, 0) =¢, {(0, ~22, f23) : - ( J 2  - J3)~2~"23 = Mi} 

(0, M2, 0) ::~ {(~"21,0, ~ 3 )  : -[-(J1 - J3)~3~"21 = M2} 

(0, 0, M3) =¢' {(~1,  Q2, 0) : - ( J l  - J 2 ) ~ 1 ~ 2  = M3} 

(0, 0, O) ~ {(0, O, 0), (~'21,0, 0),  (0, ~'22, 0), (0, O, ~'23) } 

where M i and ~'2 i a r e  nonzero constants. For other cases of(O, M2, M3), (M1,  O, M3), 
and (M1,  M2, 0), no equilibrium points exist. 
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Table 6.1 Linear stability of equilibrium points 
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Equilibrium points Characteristic equations Stability 

(0, O, O) s 3 = 0 Unstable 

(~1, O, O) s(s 2 + k2k3f22) = 0 Stable 

(0, f22, O) s(s 2 - klk3f~ 2) = 0 Unstable 

(0, O, f23) s(s 2 + klk2a~) = 0 Stable 

(0, ~'~2, a3) S(S  2 - -  k l k 3 f 2 ~  -1- klk2a 2) = 0 Stable for k3 a2 < k2a~ 
(f2i, 0, S23) s(s 2 + k2kaf2~ + klk2f22) = 0 Stable 

(f21, f22, 0) s(s 2 -I- k2k3f22 - klk3f2~) = 0 Stable for k2f22 > kl f2~ 

(~21, f22, f23) Eq. (6.108) Unstable 

Let (f21, f22, f23) be such an equilibrium point of  a rigid body with Ml M2 M3 > 0 
and also let 

O) 1 = ~'21 + AO)1 

~o2 = f22 + Aoo2 

O93 ~--" ~'~3 + m°)3 

then the linearized equations of  motion can be obtained as 

[ A~,-] 0 k]~3 kl~2-] [-Aco]] 
0 (6.106  

A693 J k3~2 k3~21 O J L Ao)3 

where ki are all positive constants defined as 

J2 - J3 J1 - ~ J~ - J2 
k l -- - - ,  k2 -- - - ,  k3 -- - -  (6.107) 

J1 J2 J3 

The characteristic equation is then obtained as 

s 3 + (k2k3~2~ - k l k 3 ~  + k l k 2 ~ ) s  + 2klkzk3f21~2f23 = 0 (6.108) 

and the linear stability of  different types of  equilibrium points can be summarized 
as in Table 6.1, where f2i y~ 0. 

As discussed in Chapter 1, however, the Lyapunov stability of  a dynamic system 
linearized about an equilibrium point does not guarantee the Lyapunov stability 
of  the equilibrium point of  the nonlinear system. Furthermore, the linear stabil- 
ity analysis does not provide any information about the domains of attraction. 
Consequently, a nonlinear analysis is needed and will be discussed next. 

6.9.2 Constant Torque About the Major or Minor Axis 
Consider a case in which a constant body-fixed torque acts along the major axis; 

i.e., M1 ¢ 0 and/142 = M3 = 0. For such a case, the equations of  motion are 
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simply given by 

dogl 
- -  - k l  o 9 2 o 9 3  = M I /  J l  (6.109a) 
dt 

do92 
- -  + k2o93o91 = 0 (6.109b) 
dt 

do93 
- -  - k3o91o92 = 0 (6.109c) 
dt 

For the convenience of  mathematical derivations, we will employ the equations 
of  motion in nondimensional form in the subsequent analysis and consider only 
the positive torque case (M1 > 0) without loss of  generality. 

The equations of  motion in nondimensional form for constant M1 > 0 can be 
obtained as 

dxl 
- -  - x 2 x 3  = 1 (6.110a) 
dr  

dx2 
- -  + X 3 X l  = 0 (6.110b) 
dr  

dx3 
- -  - x l x 2  = 0 (6.110c) 
dr  

where r = t ~ / ' I z k l k 2 k 3 ,  and 

M1 091 o)2 o)3 
t z -  J1/¢1 k4k-~2~3' xl = u4~-~-~' x 2 -  4-fi-kS' x 3 -  41zk3 

Equilibrium curves (or manifolds) are then described by 

{(0, X2, X3) : - - X 2 X  3 = 1} 

From linear stability analysis, it has been shown that the equilibrium manifold is 
Lyapunov stable when x 2 < x 2 and unstable when x 2 > x32. A stability diagram of 
equilibrium manifolds in the (x2, x3) plane is illustrated in Fig. 6.5. Also shown in 
this figure is a circle that touches the equilibrium manifolds at (1, - 1) and ( -  1, 1). 

Introducing a new variable 01 such that 

d01 
- -  = xl (6.111) 
dr  

and 01 (0) = 0, we rewrite Eqs. (6.110b) and (6.110c) as 

dx2 
- -  + x 3  = 0 (6.112a) 
d01 

dx3 
- -  - x2 = 0 (6.112b) 
d01 

The solution of  these equations is simply given by 

x2 = x2(0) cos 01 - x3(0) sin 01 

X 3 = X2(0  ) sin 01 + x3(0) cos 01 

(6.113a) 

(6.113b) 



Fig. 6.5 
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Linear stability diagram of equilibrium manifolds in the (x2,xs) plane 

which can be rewritten as 

x2 = A cos(01 + 40 (6.114a) 

x3 = A sin(01 + ~b) (6.114b) 

where 

A = ¢x22(0)+ x~(O) 

/ 
q~ = tan-l [ x2(0) ] 

and we have 

X 2 + X  2 A 2 for all r > 0 (6.115) 3 = 

That is, the projection of the tip of the nondimensional angular velocity vector 
onto the (x2, x3) plane normal to the major axis is a complete circle or a portion 
of a circle, although the body is acted upon by a constant torque along the major 
axis. Consequently, the endpoint of the angular velocity vector always lies on the 
surface of a circular cylinder defined by Eq. (6.1 1 5). Note that the end point of the 
angular velocity vector 03 actually lies on the surface of an elliptic cylinder. 

Substituting Eqs. (6.1 14) into Eq. (6.1 10a), we obtain 

d201 A 2 
sin2(0~ +40  = 1 (6.116) 

d/: 2 2 

which can be rewritten as 

d20 
- -  - A2 sin0 = 2 (6.117) 
dr e 
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where 0 = 2(01 q- q~). Note that Eq. (6.1 17) is similar to the equation of motion of  
an inverted pendulum with a constant external torque, but with a specified initial 
condition of  {x3 0,j 

0(0) = 24~ = 2tan -1 x - ~  

and 

-2z r  < 0(0) < 2zr 

because we define the arctangent function such that 

/x3 0 / 
- J r  < tan -z [ x2(0) J < rr 

For the phase-plane analysis, Eq. (6.1 17) is rewritten as 

dO 
- -  ~ X  

dr  

dx 
- -  = A 2 sin 0 + 2 
dr  

which can be combined as 

(6.118a) 

(6.1 1 8b) 

Noting that 

where 

2x2(0) + A 2 cos 24~ - 4q~ = E 

A = ~/x22(0)+ x2(0) 

q~ = tan-1 [ x2(0) ] 

1 - tan 2 ~b x22(0) - x2(O) 
cos 2~b -- 

1 + tan 2 4' x2(O) + x32(0) 

one can rewrite the trajectory equation (6.121) at r = 0 as 

2x~(0) + x~(0)--  x~(0)-- 4tan -1 x - ~  = E 

(6.121) 

(6.122) 

dx A 2 sin 0 + 2 
- -  ( 6 . 1 1 9 )  

dO x 

Integrating this equation after separation of  variables, we obtain the trajectory 
equation in the (x, 0) plane for given initial conditions x2(0) and x3(0), as follows: 

1 2 A 2 7x + cos0 - 20 = E (6.120) 

where E is the constant integral of  the system. 
Because x = 2xl, 0 = 2(01 + ~b), and 01 (0) = 0, the trajectory equation (6.120) 

at r = 0 becomes 
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Finally, we obtain the general trajectory equation in the (xl, x2, x3) space, as 
follows: 

2x~ + x ~ - x  2 - 4 t a n  -1 {x~} 3 = E (6.123) 

The rotational motion of an asymmetric rigid body when a constant body- 
fixed torque acts along its major axis can now be analyzed using the phase-plane 
method as follows. The equilibrium points of Eq. (6.117) or Eqs. (6.118) are first 
determined by the equation 

A 2 sin0 + 2 = 0 (6.124) 

and we shall consider the following three cases. 
1) If A < ~/'2, then there exist no equilibrium points and all trajectories in the 

(x, 0) plane approach infinity. This corresponds to a case in which x2(0) and x3(0) 
lie inside the circle shown in Fig. 6.5. 

2) If A = ~/2, then there exists an equilibrium point that is unstable and all 
trajectories in the (x, 0) plane approach infinity. This corresponds to a case in 
which x2(0) and x3(0) lie on the circle shown in Fig. 6.5. 

3) If A > ~/2, then there exists an infinite number of stable and unstable equi- 
librium points along the 0 axis. This corresponds to a case in which Xz(0) and 
x3(0) lie outside the circle shown in Fig. 6.5. Furthermore, a stable periodic mo- 
tion does exist (i.e., x is bounded and does not approach infinity) for certain initial 
conditions, as illustrated in Fig. 6.6. The separatrix that passes through an unstable 
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Fig. 6.6 Phase.plane trajectories in the (x, 0) plane. 
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equilibrium point 0* is described by 

1 2 A 2 E*  i x  + cos0 - 20 = (6.125) 

where 
E* = A 2 cos 0* - 20* 

A 2 = x~(0) + x2(0) 

0* = sin-I (-~-~) -4- 2nrr, n = 0 , 1 , 2  . . . .  

and the arcsine function is defined as - z r / 2  < sin-l(.)  < Jr/2. Such separatrices, 
which separate the stable and unstable domains in the (x, 0) plane, are indicated 
by solid lines in Fig. 6.6 for the case of x2(0) = 0, x3(0) = 3, 0(0) = 2~b = rr, and 
O* = - 0 . 2 2 4  -t- 2nrr. 

Using the general trajectory equation (6.123), we can also find the equation of 
the separatrix  surface in the (xl, x2, x3) space of the form: 

212 + x ~ - x 2 -  4tan-I {/x-~2} E* 3 = (6.126) 

Such separatrix surfaces, which separate the stable and unstable domains in the 
(Xl, x2, x3) space, are shown in Fig. 6.7. Further details of  such separatrix surfaces 
can be found in Refs. 8 and 9. 

If  a constant body-fixed torque acts along the minor axis, the resulting motion is 
also characterized as similar to the preceding case of  a constant body-fixed torque 
along the major axis. If  a constant body-fixed torque acts along the intermediate 
axis, however, the resulting motion is quite different from the preceding case, as 
will be discussed next. 

6.9.3 Constant Torque About the Intermediate Axis 
Consider a case in which a constant body-fixed torque acts along the intermediate 

axis; i.e., M2 7 ~ 0 and Ml = M3 = 0. For such a case, Euler's rotational equations 
are given by 

dwl 
- -  - klo92o93 = 0 
dt 

do) 2 
- -  -t- k2o93(.Ol = M2/J2  
dt 

dto3 
- -  - k3o91o92 = 0 
dt 

Similar to the preceding case, we will employ the following equations of  motion 
in nondimensional form for Mz > 0 in the subsequent analysis 

dXl 
- XzX3 = 0 (6.127a) 

dr  

dx2 
+ X3Xl = 1 (6.127b) 

dr  

dx3 
- -  - x lx2  = 0 (6.127c) 
d r  
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Fig. 6.7 Separatrix surfaces in the (xl,  x2, x3) space. 

where  r = t~/lzklk2k3, and 

M2 091 092 o93 
] 1, - -  J2kz kl-~l~lk~, Xl - ~ ~ 1 '  x 2 -  ~ / - ~ 2 '  x 3 -  ~/[zk3 

M u c h  like the new variable 01 introduced earlier, define a new variable 02 such 
that 

d02 
- -  = x2 (6.128) 
d r  

and 02(0) = 0, then we  rewrite Eqs. (6.127a) and (6.127c) as 

dxl  
- -  - x3 = 0 (6.129a) 
d02 

dx3 
- -  - xl = 0 (6.129b) 
d02 

The  solut ion of  these equat ions  is g iven by 

xl = xl (0) cosh 02 + x3(0) sinh 02 

x3 = xl(O) sinh 0 2 -[- x3(O ) cosh 02 

(6.130a) 

(6.130b) 
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where Xl(0) and x3(0) are initial conditions at r = 0. Note that coshx = (e x 4- 
e - X ) ~ 2 ,  sinhx = (e x - e - X ) ~ 2 ,  and cosh2x - sinh2x = 1. And we have 

Xl 2 - x23 = const = x~(O) - x2(O), for all r >_ 0 (6.131) 

That is, the projection of  the tip of  the nondimensional angular velocity vector 
onto the (Xl, x3) plane normal to the intermediate axis is a hyperbola, although the 
body is acted upon by a constant torque along the intermediate axis. Consequently, 
the end point of  the nondimensional angular velocity vector always lies on the 
surface of  one of  the hyperbolic cylinders defined by Eq. (6.131). For particular 
initial conditions such that Ixl(0)l = Ix3(0)l, the resulting motion is along the 
separatrices described by 

X 3 = "J-X, 

Substituting Eqs. (6.130) into Eq. (6.127b), and using the relationships sinh 2 x = 
(cosh2x - 1)/2, cosh2x = (cosh2x + 1)/2, and sinh2x = 2s inhx  coshx,  we 
obtain 

where 

d202 

dr  2 
-- 1 -- A sinh 202 - B cosh 202 (6.132) 

' 
A = ~{x~(O)+ 

B =XI(0)X3(0 ) 

B when Ix1(0)1 ~ [x3(0)l, Eq. (6.132) can be rewritten using Because A > 
sinh(x 4- y) = sinh x cosh y -4- cosh x sinh y, as follows: 

d202 
= 1 - ~ - B 2 sinh(202 + ¢)  (6.133) 

dr  2 

where ¢ = tanh -1(B/A) .  
Defining 0 = 202 q- q~, we rewrite Eq. (6.133) as 

dO 
- -  = x (6.134a) 
dr  

dx = - 2 x / ' ~  - B 2 sinh0 + 2 (6.134b) 
dr  

which can be combined as 

dx -2~/ 'A -7 - B 2 sinh 0 + 2 
(6.135) 

dO x 

Integrating this equation after separation of  variables, we obtain the trajectory 
equation on the (x, 0) plane, as follows: 

ixl 2+2V/ -  ~ - B2cosh0 - 20 = E (6.136) 

where E is the integral constant. 
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It can be shown that all the equilibrium points of Eq. (6.133) or Eqs. (6.134) are 
stable. Consequently, x is bounded and does not approach infinity for any values 
of  the constant torque along the intermediate axis if Ix1 (0)1 ~ Ix3(0)l. However, 
for certain particular initial conditions such that x l (0) = x3 (0), x approaches - o o  
if /z  < 0 but it is bounded for/z > 0. When xl (0) = -x3(0) ,  x approaches + 0 o  if 
/z > 0 but it is bounded for /z  < 0. 

Like the preceding case of a constant torque about the major axis, the general 
trajectory equation in the (xl, x2, x3) space can be found as 

12gig31 x~+2x2+x~-2tanh-1/x~ e (6.137) 

For a more detailed treatment of  this subject, the reader is referred to Leimanis 1 
and Livneh and Wie. 8'9 

6.10 Rigid Body in a Circular Orbit 

The solution of most spacecraft dynamics and control problems requires a con- 
sideration of gravitational forces and moments. When a body is in a uniform 
gravitational field, its center of  mass becomes the center of gravity and the gravita- 
tional torque about its center of  mass is zero. The gravitational field is not uniform 
over a body in space, however, and a gravitational torque exists about the body's  
center of  mass. This effect was first considered by D'Alember t  and Euler in 1749. 
Later, in 1780, Lagrange used it to explain why the moon always has the same 
face toward the Earth. In this section, we derive the equations of  motion of a rigid 
spacecraft in a circular orbit and study its stability. 

6.10.1 Equations of Motion 
Consider a rigid body in a circular orbit. A local vertical and local horizontal 

(LVLH) reference frame A with its origin at the center of mass of an orbiting 
spacecraft has a set of  unit vectors {hi, fiE, fi3}, with al along the orbit direction, a2 
perpendicular to the orbit plane, and fi3 toward the Earth, as illustrated in Fig. 6.8. 
The angular velocity of  A with respect to N is 

~alN = --na2 (6.138) 

where n is the constant orbital rate. The angular velocity of the body-fixed reference 
frame B with basis vectors {bl, b2, b3} is then given by 

~)B/N = ~)B/A -t- ~)A/N = ~)B/A __ n a 2  (6.139) 

where ~B/A is the angular velocity of B relative to A. 
The orientation of the body-fixed reference frame B with respect to the LVLH 

reference frame A is in general described by the direction cosine matrix C = C B/A 
such that 

b2 = C21 C22 C23 | az (6.140) 
b3 C31 C32 C33 _J a3 
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Orbital P ~  ~ -  

Fig. 6.8 Rigid body in a circular orbit. 

or 

a2 = /C12 C22 C32 ~92 (6.141) 
fi3 L C13 c23 C33 /93 

The gravitational force acting on a small mass element dm is given by 

d f -  / z / ~ d m _  /z(/~c+~)dm (6.142) 
1~13 [/~c + ~13 

where/z is the gravitational parameter of the Earth,/~ and ~ are the position vectors 
of dm from the Earth's center and the spacecraft's mass center, respectively, and 
Rc is the position vector of the spacecraft's mass center from the Earth's center. 

The gravity-gradient torque about the spacecraft's mass center is then expressed 
as 

f f z×~ ~i= ~×df=-, I,~c+~l 3 
and we have the following approximation: 

- -  dm (6.143) 

2(,~c. ~) p2 }-~- 
[/~c + P1-3 = R~ -3 1 + R------~ + ~2 

=Rc3{ 1 3(~c~) ] R - ~  + higher-order terms (6.144) 

(6.145) 
3/./. r 

~l = -~c J (Rc " P) (p x Rc)dm 

where Rc = I/~cl and p = I~1. Because f~dm = 0, the gravity-gradient torque 
neglecting the higher-order terms can be written as 
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This equation is further manipulated as follows: 

~4 = _3~ kc × f ~(~. L)dm 
R ' c  

_ 3"~c×f~dm.i~c R'c 

-- 31~Rcx[ f  pz ldm- . ]] .R  

f 3#[¢cX.7.~ c _ 31Z~c c p21drn'Rc+R---~c 

R~ 

because ]  = f(p2i - fifi)dm and /~c × i - / ~ c  = / ~ c  × /?c  = 0. 
Finally, the gravity-gradient torque is expressed in vector/dyadic form as 

= 3n2fi3 × ,1 • fi3 (6.146) 

where n = ~ is the orbital rate and fi3 = - Rc/R~. 
The rotational equation of motion of a rigid body with an angular momentum 

/4 = ] • o3 B/N in a circular orbit is then given by 

which can be written as 

] . ~ + ( s x  J . ( 5 = 3 n 2 f i 3  x J .  fi3 (6.147) 

where (5 - (58/N. 
Because (5 and a3 can be expressed in terms of basis vectors of the body-fixed 

reference frame B as 

(5 m. 0)1~*) 1 + 0)2b 2 --~ 0)31"73 

fi3 = C13~)1 + C23192 3 !- C33b3 

the equation of motion in matrix form becomes 

(6.148a) 

(6.148b) 

J21 -/22 J23 692 't- 0)3 0 - J21 J22 J23 0)2 
J31 J32 J33 ~3 -0)2 0)1 ~1 J32 J33 0)3 

= 3n 2 C33 0 -- 3 J21 
--C23 C13 J31 

 3 Ec131 J22 J23 / C23 
J32 J33 J C33 

(6.149) 
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To describe the orientation of the body-fixed reference frame B with respect 
to the LVLH reference frame A in terms of three Euler angles Oi (i = 1, 2, 3), 
consider the rotational sequence of C1 (01) +- C2(02) +-- C3(03) to B from A. For 
this sequence, we have 

E'I re1 c2 c3jE, 1 
b2 = | Czl C22 C23 h2 
b3 L C31 C32 C33 fi3 

= S01 S02C03 --'C01 S03 S01 S02S03 -~-C01 C03 S01 C02/ a2 
Lc01 s02 c 4 -{- s01 s03 c01 s02s03 - s01 c03 c01 c021 a3 

where c Oi - cos Oi and s Oi - sin Oi . 
Also, for the sequence of Cl(01) <-- C2(02) +-- C3(03), the angular velocity of 

B relative to A is represented as 

o3B/A t " , " 
= w l b  1 + w2b2 + w'3b3 

where 

iio w ; /  = COl SOl c02 02 (6.150) 
L 3JOf --SO1 cO1 c02 03 

Because 

O3 ~ O3B/N = O3B/A _}_ O3A/N = O3B/A __ n~t2 

where o3 = COlbl + co2b2 + o)3b3 and 

a2 = C12~91 -[- C22b2 -1- C32/93 

= c02s03~91 + (s01 s02s03 +c01c03)b  2--]-(c01 s02s03 - s O  l c03)b 3 

we have 

w2 = 0 c01 s01c02 02 - n  s01s0zs03+c01c03  (6.151) 
093 0 -s01 c01c02 03 l_c0t s 0 2 s 0 3 - s 0 z c 0 3  

Finally, the kinematic differential equations of an orbiting rigid body can be found 
as 

o2 = co, co2 -so, c02//o 2/+ o2co3/ (6.152) 

03 s01 c01 _1Lw3 _1 o2 sO3 _l 

The dynamic equations of motion about body-fixed principal axes become 

J16Jl - (J2 - J3)w2w3 = -3n2(j2 - J3)C23C33 (6.153a) 

J2°)2 --(J3 - J1)°)3091 = --3n2(~ -- J 1 ) C 3 3 C 1 3  (6.153b) 

J3693 -- (J1 - J2)w1092 = - 3 n 2 ( j 1  - J2)Cx3C23 (6.153c) 
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where C13 = - sin 02, C23 = sin 01 cos  02, and C33 = cos  01 COS 02 for the sequence 
of Cl(01) +-- C2(02) +-- C3(03). Furthermore, for small angles (sin0i ~ Oi and 
cos Oi ~, 1), these dynamic equations become 

J1691 - ( J 2  - J3)w2w3 = - 3 n 2 ( j 2 -  ~)01 (6.154a) 

J2°92 - (J3 - -  Jl)O)3O)l = 3n2(J3 - J l )02 (6 .154b)  

J36~3 - (J1 - J2)wlw2 = 0 (6.154c) 

Also, for small Oi and 0i, Eq. (6.151) can be linearized as 

Wl = O l  - -  nO3 (6.155a) 

O) 2 = 02 - -  n (6 .155b)  

o93 = 03 + nOl (6.155c) 

Substituting Eqs. (6.155) into Eqs. (6.154), we obtain the linearized equations 
of motion of a rigid body in a circular orbit, as follows, for roll, pitch, and yaw, 
respectively: 

JlO1 - -  n ( J l  - -  J2 "k- J3)03 + 4n2(J2  --  J3)01 = 0 (6.156) 

J202 + 3n2(Jl -- J3)02 = 0 (6.157) 

J303 + n ( J l  - J2 + J3)01 + nZ(Jz  - J1)03 = 0 (6 .158)  

where 01, 02, and 03 are often called, respectively, the roll, pitch, and yaw attitude 
angles of the spacecraft relative to the LVLH reference frame A. 

For these small angles 01, 02, and 03, the body-fixed reference frame B is, in 
fact, related to the LVLH flame A by 

E,11 E 1 o3o 1E,11 b2 ~ -03 1 fi2 

b3 0z -01 fi3 

or 

E'l E 1 o3 o211,1 l fi2 ~ 03 1 -01 b2 
a3 --02 01 1 b3 

(6.159) 

(6.160) 

The angular velocity of B in N for this case of small relative angles of B with 
respect to A is also given by 

~) ~ ~)B/N = 0)1~91 _1._ 0)2~92 + 0)3~ 3 

(01 -- n03)bl + (02 --  n)b2 + (03 + nO1)b3 (6.161) 

6.10.2 Linear Stability Analysis 
Because the pitch-axis equation (6.157) is decoupled from the rolUyaw equations 

(6.156) and (6.158), consider first the characteristic equation of the pitch axis 
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given by 

s2 + [3n2(J1 -- ~ ) / J 2 ]  = 0 (6.162) 

I f  Jl > J3, then the characteristic roots are pure imaginary numbers and it is said 
to be (Lyapunov) stable. If  J 1  < J 3 ,  then one of the characteristic roots is a positive 
real number and it is said to be unstable. Therefore, the necessary and sufficient 
condition for pitch stability is 

Jl > J3 (6.163) 

For the roll/yaw stability analysis, the roll/yaw equations (6.156) and (6.158) 
are rewritten as 

01 + (kl - 1)n03 + 4nZklOi = 0 (6.164a) 

03 + (1 - k3)nO 1 + nZk303 = 0 (6.164b) 

where 

kl = (J2 - J3)/J1, k3 = (.12 - J1)/J3 (6.165) 

Because of the physical properties of  the moments of  inertia (J1 + J2 > ~ ,  J2 + 
J3 > J1, and Jl + J3 > J2), kl and k3 are, in fact, bounded as 

]kl] < 1, ]k31 < 1 (6.166) 

The roll/yaw characteristic equation can then be found as 

S 4 "-[- (1 + 3k1 + k]k3)nZs 2 -k- 4klk3n 4 = 0 (6.167) 

The roll/yaw characteristic roots become pure imaginary numbers if and only if 

klk3 > 0 (6.168a) 

1 + 3kl + klk3 > 0 (6.168b) 

(1 + 3kl + klk3) 2 - 16klk3 > 0 (6.168c) 

which are the necessary and sufficient conditions for roll/yaw stability. 
The preceding results for linear stability of  a rigid body in a circular orbit can 

be summarized using a stability diagram in the (kl, k3) plane, as shown in Fig. 6.9. 
For a further treatment of this subject, see Hughes. 2 

Problems 
6.10. Consider the sequence of Cl(01) ~-- C3(03) +--- C2(02) from the LVLH 
reference frame A to a body-fixed reference frame B for a rigid spacecraft in a 
circular orbit. 

(a) Verify the following relationship: 

[ " I E  c,c, so3 
b2 = - c 0 1 c 0 2 s 0 3 + s 0 1 s 0 2  c01c03 

~93 S01 C02 S 03 -t'- c01 S02 --S01 c03 

where c Oi = cos Oi and s Oi = sin Oi. 

s,c03 
c01 sO2s03 +SOlCO ~2 

--SO 1 $02S03-t'- CO 1 C02..] fi3 
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-1 

Fig. 6.9 Gravity.gradient stability plot. 

(b) Derive the following kinematic differential equation: 

I011 1 I cos 03 -cos 01sin 03 sin 01sin 031 IO~l 1 [ i  1 
02 -- - 0 cosOl -sin 01 | w2 + 
03 cos 0~ 0 sin 01 cos 03 cos 01 cos 03 ] 093 

(c) For small attitude deviations from LVLH orientation, show that the linearized 
dynamic equations of motion, including the products of inertia, can be written as 

[ 1 J21 J22 J23 ~2 = n --J32 0 JI2 o~2 
J31 ,]32 .].33 (J)3 J22 - Jll -2J12 -J13 0) 3 

+ 3  n2 | ' J l 2  J33-J , l  02 + n  2 | 3 J13 |  
L -J,~ -J:~--' ~JLJ03 L-,,;J 

(d) Verify that the linearized equations of motion can also be written in terms 
of Euler angles, as follows: 

[,,1 , 31 1 J21 J22 ,/23 02 
J31 J32 J33 03 

I 0 2J32 
= n -2J32 0 

-J11 + J22 -- J33 -2J12 

['4(J33 - J22) 3J21 
+ n  2 | 4J12 3(J33 - Jll) 

L -4J13 -3J23 

,,1- 2+ 31Eo, 12,12o o o2 
-J31 
J32 

J l l  - J22  

01 -4  J23 
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(e) For large, pitch-axis angular motion but with small roll/yaw angles, derive 
the following equations of motion about principal axes: 

JlO1 q- (l -k- 3 cosZOz)nZ(J 2 - J3)01 - n(J1 -- J2 q- J3)03 

-I- 3(J2 - J3)nZ(sin 02 COS 02)03 = 0 

J202 -t- 3 n 2 ( J l  - ~ )  sin02 cos02 ----- 0 

~03 -t- (1 -k-3sinZOz)nZ(J2 - J1)03 Jr n(Jl - J2 q- J3)01 

+ 3(J2 - J1)n2(sin 02 cos 02)01 = 0 

Note: See Ref. 10 for additional information pertaining to Problem 6.10. 

6.11. Consider a rigid body in a circular orbit possessing a body-fixed reference 
frame B with basis vectors {bl, b2, b3}. The LVLH reference frame A with its 
origin at the center of mass of an orbiting spacecraft has a set of unit vectors 
{i l l ,  fi2, fi3 }, with fil along the orbit direction, fi2 perpendicular to the orbit plane, 
and fi3 toward the Earth, as illustrated in Fig. 6.8. 

Basis vectors {bl,/92, b3} of B and basis vectors {ill, fi2, fi3} of A are related to 
each other by 

~72 I 
1 - 2 (q~  + q 2 )  

= 2(ql q2 - q3q4) 

2(qlq3 + q2q4) 

2(qlq2 -t- q3q4) 
1 - 2 (q l  2 + q~) 

2(q2q3 - ql q4) 

2(qlq3 -- q2q4) 

2(q2q3 + qlq4) 
1 -- 2 (q~  + q22) 

al 

a2 
fi3 

where ql, q2, q3, and q4 are quaternions that describe the orientation of B relative 
to A. 

(a) Verify that the three Euler angles of the C l (01) +-- C3 (03) +-- C2(02) sequence 
from the LVLH reference frame A to a body-fixed reference frame B for a rigid 
spacecraft in a circular orbit are related to quaternions by 

I q' ] FC(Ol/2)s(Oz/2)s(O3/2)+s(O1/2)c(O2/2)c(03/2)] 
q2 = / c(O1/2) S(02/2) C(03/2) + S(Ol/2) C(02/2) S(O 3/2) 

q3 IC(01/2) C(02/2)S(03/2) -- s(OI/2) S(02/2)C(03/2) 
q4 [_C(01/2)C(02/2)C(03/2) - s(O1/2)s(O2/2)s(03/2) 

where c(Oi/2) = cos(0i/2) and s(Oi/2) = sin(0//2). 
(b) Derive the following inverse relationships: 

I 2(qlq4- q2q3) } 
01 = tan-I [ ~ _-- ~qlT-- 2--~32 

2(q2q4 - qlq3) } 
02 = tan -1 ~ --~qqf--2--~_2 

03 = sin -1 {2(qlq2+q3q4)} 
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(c) Derive the following kinematic differential equation for a rigid spacecraft in 
a circular orbit: 

Ii/ll I 0 093--0)2 + n °)1 ] Iql 1 02 1 -093 0 o) 1 092 + n q2 
03 = 2 0) 2 -- n --o91 0 o93 q3 
//4 --wl --O92 -- n --w3 0 q4 

(d) Derive the following equations of motion for principal axes: 

J16~l - (J2 - ~)wzw3 + 6nZ(J2 - J3)(qlq4 + qzq3)(1 - 2q~ - 2q22) = 0 

J2692 - (J3 - Jl)w,w3 + 6nZ(J3 - J1)(q~q3 - qzq4)(1 - 2q~ - 2q22) = 0 

J36~3 - (J1 - J2)colco2 + 12nZ(Jl - J2)(qlq3 - qzq4)(qlq4 + qzq3) = 0 

Note: See Ref. 11 for additional information pertaining to Problem 6.11. 

6.12. Let the x, y, and z axes of the LVLH reference flame A with a set of  basis 
vectors {fix, fly, az } be the roll, pitch, and yaw axes, respectively. The origin of  
the LVLH reference frame is fixed at the mass center, with the x axis in the flight 
direction, the y axis perpendicular to the orbit plane, and the z axis toward the 
Earth. 

(a) Show that the equation of motion of  a rigid body in a circular orbit can be 
written as 

where /~ = .] • o3 B/N and M is the gravity-gradient torque vector. 
(b) Show that the equation of  motion can be expressed in the LVLH frame A 

and written in matrix form, as follows: 

H + wa/N x H = M 

where H = (Hx, Hy, Hz) is the angular momentum vector of  the spacecraft ex- 
pressed in the LVLH reference flame; H = (/:/x, i /y , / : /z)  is the rate of  change 
of  H as measured in the LVLH flame; w A/N = (COx, o~ r, wz) = (0, - n ,  0) is the 
angular velocity vector of the LVLH frame that rotates with the orbital rate n; M 
is the gravity-gradient torque vector expressed in the LVLH frame; and wA/N X H 
denotes the cross product of two column vectors wA/N and H. 

Hint: Let /4 = Hxfix + Hy~ly + Hz~tz, ~)A/N = O)x~ x _~_ O)yay + O)z~lz, and 
31 = Mxfix + Myfiy + Mz~z. 

(c) Assuming that the orientation of the vehicle's principal axes with respect 
to the LVLH frame is described by small angles of  0x, 0y, and Oz, show that, for 
small attitude deviations from the LVLH frame, the gravity-gradient torque can be 
approximated as 

[.F (J3 -- J2)Ox 1 
M = 3n 2 | (J3 Jl)0y 

0 
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where Jl, J2, and J3 are the principal moments of inertia of the vehicle about the 
body-fixed, principal-axis reference frame B; i.e., ] = Jlblbl + J2b2b2 -4- J3b3b3. 

(d) Finally, show that the equations of motion expressed in the LVLH frame 
become 

E,xl E°°n 1 ISly = 0 0 0 
1:1 z - n  0 0 

E-xl I E xl 
Hy -F 3n 2 (J3 Jl)Oy -'{- Ty 
Hz 0 Tz 

where 

E.xl '>° 1 Hy = | . J2(0 r - n )  
Hz L J3Oz + n(J3 - Jz)Ox 

and Tx, Ty, and T z are the components of any other external torque expressed in 
the LVLH frame. 

Note: See Ref. 12 for additional information pertaining to Problem 6.12. 

6.11 Gyrostat in a Circular Orbit 

There are basically two different types of spacecraft: 1) a three-axis stabilized 
spacecraft and 2) a dual-spin stabilized spacecraft. 

A three-axis stabilized spacecraft with a bias-momentum wheel is often called a 
bias-momentum stabilized spacecraft. INTELSAT V and INTELSAT VII satellites 
are typical examples of a bias-momentum stabilized spacecraft. In this kind of 
spacecraft configuration, a wheel is spun up to maintain a certain level of gyroscopic 
stiffness and the wheel is aligned along the pitch axis, nominally parallel to orbit 
normal. 

A spacecraft with a large external rotor is called a dual-spinner or dual-spin 
stabilized spacecraft. INTELSAT IV and INTELSAT VI satellites are typical ex- 
amples of a dual-spin stabilized spacecraft. The angular momentum, typically 
2000 N-m.s, of a dual-spin stabilized spacecraft is much larger than that of a bias- 
momentum stabilized spacecraft. For example, INTELSAT V, a bias-momentum 
stabilized satellite, has an angular momentum of 35 N-m.s. 

In this section we formulate the equations of motion of an Earth-pointing space- 
craft equipped with reaction wheels. A rigid body, consisting of a main platform 
and spinning wheels, is often referred to as a gyrostat. 

Consider a generic model of a gyrostat equipped with two reaction wheels 
aligned along roll and yaw axes and a pitch momentum wheel, as illustrated in 
Fig. 6.10. The pitch momentum wheel is nominally spun up along the negative 
pitch axis. Like Fig. 6.8 of the preceding section, a LVLH reference frame A with 
its origin at the center of mass of an orbiting gyrostat has a set of unit vectors 
{ill, fi2, fi3}, with fil along the orbit direction, fi2 perpendicular to the orbit plane, 
and fi3 toward the Earth. Let {bl, b2, b3} be a set of basis vectors of a body-fixed 
reference frame B, which is assumed to be aligned with principal axes of the 
gyrostat. 
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;1 - R° 
n2 

Earth 

Fig. 6.10 Gyrostat in a circular orbit. 

The total angular momentum vector of the spacecraft is then expressed as 

/ ]  = (Jlogl -1- hl)lgl q- (J2o92 - Ho -t- h2){92 q- (J3o93 -t- h3)193 (6.169) 

where J1, -/2, and J3 are the principal moments of inertia of the gyrostat space- 
craft; o91, o92, and o93 are the body_Tfixed components of the angular velocity of the 
spacecraft, i.e., 03 B/N --= o3 = oglbl + o92b2 + o93b3; hi, -Ho  + h2, and h3 are the 
body-fixed components of the angular momentum of the three wheels; and Ho is 
the nominal pitch bias momentum along the negative pitch axis. 

The rotational equation of motion is then simply given by 

-; [ d / 4 ]  ~5~/N /~ h ~ (6.170) 
H =  --~-- B +  × = 

where M is the gravity-gradient torque acting on the vehicle. For the principal-axis 
frame B, the equations of motion can be written as 

J1691 - (-/2 - J3)o92o93 ~- h i  '[- o92h3 - O93(-H0 q- h2) = Ml  

J2692 - ( ~  - J1)W3Wl + h2 -~- W3hl - COlh3 = M2 

,]_36)3 - ( J l  - J2)o91o92 -1- h3 -[- 091(-/-/0 q- h2) - W2hl = M3 

where Mi = l~l . bi. 
For small relative angles between B and A, we have 

091 = 0 1  --nO3 

0)2 = 02 -- n 

w3 = 03 + nOl 

and 

Ml = -3n2(J2 - J3)01 

M2 = 3n2(~ - J1)02 

M 3 = 0  

(6.171a) 

(6.171b) 

(6.171c) 

(6.172a) 

(6.172b) 

(6.172c) 

(6.173a) 

(6.173b) 

(6.173c) 
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where n is the orbital rate and 01, 02, and 03 are called the roll, pitch, and yaw 
attitude angles of the spacecraft relative to the LVLH reference frame A. 

The linearized equations of motion of a gyrostat spacecraft in a circular orbit in 
terms of small roll, pitch, and yaw angles can be obtained as 

JlO1 + [4n2(J2 -- J3) + nHo]Ol 

+ [ -n ( J t  - J2 + J3) + Ho]03 + h] - nh3 = 0 (6.174) 

• 1202 + 3n2(J1 - ~)02 + h2 = 0 (6.175) 

J303 "t- [n2(J2 -- J1)-k-nHo]03 

- [-n(J1 - J2 + J3) + Ho]Ol + h3 + nhl = 0 (6.176) 

These linearized equations of motion will be used in Chapter 7 when we design 
attitude control systems of a bias-momentum stabilized spacecraft. 

6.12 Dual-Spinner with a Platform Damper 
A dual-spin spacecraft consisting of an external, axisymmetric rotor and a plat- 

form with a mass-spring-damper model is illustrated in Fig. 6.11. The so-called 
"despun platform" of dual-spin stabilized, geosynchronous communications satel- 
lites maintains continuous Earth-pointing, and thus it is actually spinning at orbital 
rate. The large external rotor with a much higher spin rate provides gyroscopic 
stiffness for attitude stability. 

Most dual spinners such as INTELSAT III, launched in the early 1960s, had 
their rotor spin axis aligned with the major principal axis of the spacecraft. That 
is, the early, small dual spinners were disk shaped because of the major-axis 
stability condition of a spinning body with energy dissipation. In the mid-1960s, 

Fig. 6.11 Dual-spinner with a despun platform damper. 
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however, larger communications satellites had to be designed and dual spinners 
were no longer limited to the oblate (disk-shaped) configuration because of fairing 
constraints of launch vehicles. Consequently, some stability criteria for a prolate 
(rod-shaped) dual spinner were developed independently. 13 It was argued that the 
addition of energy dissipating devices on the despun platform would offset the 
destabilizing effect of energy dissipation in the rotor of a prolate dual spinner. 
Although such arguments were not rigorous at that time, an experimental prolate 
dual spinner, called the tactical communications satellite (TACSAT) was launched 
in 1969. Its successful mission led to many theoretical analysis results 14-16 and, 
furthermore, resulted in many prolate dual spinners such as the INTELSAT IV 
series starting in 1971. 

In this section, we formulate the equations of motion of a dual-spin space- 
craft with a despun platform damper, illustrated in Fig. 6.11. The problem of a 
rigid spacecraft with internal moving mass was first investigated independently by 
Roberson 17 in 1958 and then by Grubin 18A9 in the early 1960s. For dynamic prob- 
lems with internal moving mass, we may choose the composite center of mass of 
the total system as a reference point for the equations of motion. This formulation 
leads to a time-varying inertia matrix of the main rigid body, because the reference 
point is not fixed at the main body as the internal mass moves relative to the main 
body. On the other hand, we may choose the center of mass of the main body as the 
reference point, which leads to a constant inertia matrix of the main body relative 
to the reference point. 

As illustrated in Fig. 6.11, a dual-spin spacecraft consists of an external rotor 
and a despun platform. The despun platform is considered to be the main body of 
the total system of mass M, and it has an internal moving part of mass m connected 
by a spring of stiffness k and a dashpot of damping coefficient c. The main body 
has a body-fixed reference frame B with basis vectors {bl, b2, b3 }. Thepoint mass 
m is located at a fixed distance £ from the reference point O along bl direction 
and has a relative displacement z along b3 direction. The reference point O of B 
is assumed to be the center of mass of the main body when z = 0. The reference 
frame B is also assumed to be aligned with principal axes of the main body when 
z = 0. The rotor has an angular momentum of J f2 relative to the main body. 

The angular momentum equation of an external torque-free, dual spinner with 
respect to the reference point O can be written as 

ho + M'~c × rio = 0 (6.177) 

where M is the total mass, 7c is the position vector of the composite center of mass 
from the reference point O, and 2o is the inertial acceleration of the point O:The 
relative angular momentum of the total system about point O, denoted by ho, is 
given by 

ho = 3 .  ~ + Jf2b3 - rne~bz (6.178) 

where o3 is the angular velocity vector of the main body and 

3 = [El 
r, omZ2 o m zlI' 

J2 + mz 2 0 b2 
b2 b3] [- - m e z  0 J3 b3 
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is the inertia dyadic of  the main body, including the damper mass, about the 
reference point O. 

From the geometry of the system, we find the position vector of the composite 
center of  mass from the reference point O, as follows: 

~c = ( m / M )  zb3 (6.179) 

The inertial acceleration of  the reference point O is related to the inertial acceler- 
ation of  the composite center of  mass as 

tic = ho + ~ rc (6.180) 

Because tic = 0 for dynamic systems with zero external force, we have 

rio = - r c  -- dt 2 zb3 (6.181) 

Expressing the angular velocity vector o3 as 

O~ = O)lb 1 + 0.)2/9 2 + 0)3~7 3 (6.182) 

we obtain 

m [(2o92~ + 692z + 0)20)3Z)~91 '1- (--2co1~ -- ZWl + zo-)20)3)b2 ~o=-~ 
+ ( ~ -  w ~ z -  co2z)b3] (6.183) 

and 

ho = [(J,  + mz2) oo, - mgoo3z]b, + [(J2 + mz2)oo2 - m++Jb2 

+ [ - -mgwlz  + J3w3 + Jg2]b3 (6.184) 

Finally, the rotational equations of  motion of the main body about the reference 
point O can be obtained as 

J16~1 - (J2 - ~)to2w3 + Jf2w2 + m(l - m/M)691z 2 - m(1 - m/M)w2to3z  2 

+ 2m(1 - m / M ) w l z ~  - me(o3z - mewl w2z  = 0 (6.185) 

J26~2 - (,/3 - J1)cO3Wl - J f2wl  + m(1 - m/M)(o2z  2 + m(1 - m/M)wlo93z  2 

+ 2m(1 - m / M ) w 2 z ~  - me~ + mew2z - mew~z = 0 (6.186) 

J3cb3 - (J1 - J2)wlw2 + J~2 + mew2co3z - 2 m e w ~  - meColz = 0 (6.187) 

The equation of motion for the rotor is given by 

J(~b3 + ~)  = T (6.188) 

where T is the rotor spin control torque. 
The dynamic equation of the internal moving mass itself can also be found by 

applying Newton's second law, as follows: 

mfi = Flbl + F2b2 - ( c z  -+- kz)b3 (6.189) 
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where FI and F2 are constraint forces, and fi is the inertial acceleration of the 
internal moving mass, which can be expressed as 

d2 " I t  (1 - ~ ) z b 3 }  (6.190) fi = fic + _ ~  l e bl + m - 

Because tic = 0, we have 

d2 {£bl + (1 M)Zb3} (6.191) ~=d-~ 
and the equation of motion of the damper mass along the b3 direction can be written 
as 

m(1 - m / M ) ~  + c~ + kz  - m ( 1  - m/M)(~o~ + o)~)z + meo)l~o3 - me~o2 = 0 

(6.192) 

The rigorous stability analysis of a dual-spin spacecraft with energy dissipation 
is beyond the scope of this book and will not be pursued further in this text. For 
a more detailed treatment of this subject, the reader is referred to Hughes 2 and 
Kaplan, a° and also Refs. 14-16, and 21-26. 
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7 
Rotational Maneuvers and Attitude Control 

Chapters 5 and 6 were concerned with the rotational kinematics and attitude 
dynamics of rigid spacecraft, respectively. This chapter deals with attitude control 
and stabilization problems of rigid spacecraft under the influence of reaction jet 
firings, internal energy dissipation, or momentum transfer via reaction wheels 
or control moment gyros (CMGs). A variety of control problems of spinning 
as well as three-axis stabilized spacecraft are treated. Emphasis is placed on a 
large-angle reorientation maneuver in which a spacecraft is required to maneuver 
about an inertially fixed axis as fast as possible, but within the saturation limits 
of rate gyros as well as reaction wheels. The attitude control and momentum 
management problem of a large space vehicle in low Earth orbit, such as the 
International Space Station, is also treated. Advanced spacecraft control problems 
of developing CMG steering logic and optimal jet selection logic are also treated. 
The attitude control problem of nonrigid spacecraft in the presence of propellant 
sloshing and/or structural flexibility will be covered in Chapter 9. 

7.1 Control of Spinning Spacecraft 

7.1.1 Introduction 

Although a spacecraft spinning about its minor axis is unstable in the presence of 
internal energy dissipation, spacecraft are often required to spin about their minor 
axis for several reasons. Fairing constraints of most launch vehicles require that 
the minor axis of payload spacecraft be aligned with the longitudinal axis of the 
launch vehicles. Furthermore, most launch vehicles spin about their longitudinal 
axis prior to payload separation, resulting in a minor axis spin of the spacecraft after 
separation. Some launch vehicles or upper stages do not have spin-up capability 
for payload spacecraft and spin up of the spacecraft is achieved after separation. 
Because of initial angular rates at separation, a typical spin-up maneuver usually 
results in a residual nutation angle and a spin-axis precession from the separation 
attitude. The spin rate selection depends on many factors, including the pointing 
accuracy requirement. 

Spacecraft spinning about their minor axis are often stabilized using an ac- 
tive nutation control system consisting of thrusters and accelerometers. Spinning 
spacecraft are also required to spin down or reorient their spin axis during the 
various phases of spacecraft operation.* For example, a spin-axis reorientation 
is required to align the spacecraft spin axis in the proper direction for apogee- 
kick motor firing. After apogee-kick motor burn, a spin-axis reorientation is also 
required to orient the spin axis to the orbit normal. During the operational life 

*The term "spin axis" is ambiguous; however, it is used in this chapter to denote the axis of symmetry 
of a spinning axisymmetric spacecraft. 
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Spin Axis 

T 

Fig. 7.1 Axisymmetric, spin-stabilized spacecraft with axial and spin thrusters. 

of spin-stabilized spacecraft, periodic spin-axis reorientation maneuvers are also 
required to compensate for the effects of  external disturbance torques, primarily 
caused by solar pressures. 

In this section we treat such various problems of controlling spin-stabilized 
spacecraft, including a spin-up maneuver, active nutation control, spin-axis reori- 
entation, fiat-spin recovery, and attitude acquisition by momentum transfer. 

7.1.2 Spin-Up Maneuver 
An axisymmetric, spin-stabilized spacecraft equipped with axial and spin 

thrusters is illustrated in Fig. 7.1. The axial thrusters are used during spin-axis 
reorientation maneuvers and the spin thrusters are used during spin-up (or spin- 
down) maneuvers as well as for spin rate control. 

Consider an axisyrnmetricrigid body possessing a body-fixed reference frame 
B with basis vectors {bl, b2, b3 } and with its origin at the center of  mass, as illus- 
trated in Fig. 7.1. The reference frame B coincides with principal axes. The first 
and second axes are called the transverse axes and the third is the axis of  symmetry. 

Euler 's rotational equations of  motion of  an axisymmetric spacecraft with J~ = 
J2 = J are 

JO)I - ( J  - J3)o93o92 = 0 (7.1) 

JO)2 + ( J - J3)o93o91 = 0 (7.2) 

• ]3 o)3 = M3 (7.3) 

where o9i ~ tYi " (~) are the body-fixed components of the angular velocity of  the 
spacecraft and M3 is the constant spin-up moment.  

From Eq. (7.3), we have 

o93 = (o3(0) 4- (M3/J3 ) t  (7.4) 

and Eqs. (7.1) and (7.2) are rewritten as 

o)1 - ~w2 = 0 

o)e + Zwl = 0 

(7.5) 

(7.6) 
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~ =  T o93(0)+ t 

To describe the rotational motion of the spacecraft during a spin-up maneuver 
as seen from an inertial reference frame, we consider the following kinematic 
differential equations: 

01 = (091 cos 03 - 092 sin 03)/cos 02 (7.7a) 

0 2 = 091 sin 03 + 092 cos 03 (7.7b) 

03 = (-091 cos03 + o91 sin 03) tan02 + 093 (7.7c) 

for the rotational sequence of C3(03) +-- C2(02) ~ C l ( 0 1 ) .  

For small angles of 01 and 02, which are often the cases of practical interest, 
these kinematic differential equations can be approximated as 

01 = 091 COS03 - -  092 sin03 (7.8a) 

02 = o91 sin 03 + w~z cos 03 (7.8b) 

03 = 093 (7.8c) 

Furthermore, if 093(0) = 0 and 03(0) = 0, then 

093(t) = (M3/J3)t and 03(t) = (M3/2J3)t 2 (7.9) 

For a special case of an inertially spherical body with J1 = J2 = J3, we have 

fot fot M3 t2 dt (7.10a) M3. t 2 dt - o92(0) sin 2J3 01 (t) = 09~ (0) cos 2J3 

I I' r Ms t2 dt + 09z(0) cos M3t2 dt (7.10b) Oz(t) = wl(0) sin 2"--~3 2J3 

In terms of the Fresnel integrals, these equations become 

0,(t)=09,(0) ~ - -~ -d0 -092(0 )  ~ ---~-d0 (7.11a) 

~ J3 fo°3SinO ~ J3 fo°3C°S0 02(t)=wl(O) ~3  --~-d0+092(0) ~ 3  - ~ - d 0  (7.11b) 

and 

01(~) = 091(0) ~33  - 092(0) V 2M3 V 2 (7.12a) 

02(~)=091(0) ~ +w2(0) V2M3V 2 (7.12b) 
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where 

For an axisymmetric body with Jl = J2 = J ~: J3, we have 

dO)l 
- -  - -  o . tw2  = 0 
dt 

do) 2 
- -  + o.twl = 0  
dt 

J - - /3  M3 
O ' - -  

J J3 

By changing the independent variable t to r as r = atz/2, we obtain 

dwl 
- - - - 0 9 2 = 0  
dr 

dw2 
- - + W l  = 0  
dr 

The solutions of Eqs. (7.13) are then simply found as 

o-12 0-12 
wl(t) = Wl (0) cos T + w2(0) sin 2 

o.t 2 o.t 2 
wz(t) = 092(0) cos - -  - wl (0) sin 

2 2 

Substituting these analytic solutions into Eq. (7.8a), we obtain 

crt2 o.t 2 | 
O1 O~l(O)cos-~- + -5- cos = 092(0 ) sin / 03 

o.t2 o-t 2 | 
-- w2(0) cos wl(0) sin --:- } sin 03 

2 z I  

M 3 t 2  o. t  2 M 3 t  2 o-t 2 } 
cos + sin sin - -  = o91(0) cos 2J3 T 2J3 2 

{ . . . .  M3t2 sin o.t2 sin M3t2 cos o.t2} 
+ 092(0) cos 2J3 2 2J3 T 

(7.13a) 

(7.13b) 

(7.14a) 

(7.14b) 

which, using the trigonometric relationships cos A cos B -t- sin A sin B = cos(A q: 
B) and sin A cos B + cos A sin B = sin(A -t- B), can be simplified as 

0 1 = O91(0) COS M 3 t 2  - -  092(0) sin M3 t2 (7.15) 
2J 2J 

This equation, after integration, is written in terms of the Fresnel integrals, as 
follows: 

~/~M~fo °3c°s0 ~ J fo °3sin0 Ol(t)=wl(O) ---~-- d0 - w2(0) ~ - -~ -  d0 (7.16) 
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Similarly, we obtain 

7 s0 03s,.0 s:cos0 02(t)=ogl(O) - -~-  d0 + o92(0) ~ --~--- d0 (7.17) 

Furthermore, the steady-state precession angle of the spin axis from an initial 
attitude can be found as 

O, (ex~) = o9, (0)~ 2--~--~333 ~f-2-~ - o92 (0)~2- J-J-3 V/~-~- ~ (7.18a) 

02(~) = o91(0) ~ 3  + o92(0) ~ 3  (7.18b) 

The Fresnel integrals, when plotted one against the other, describe a curve called 
a Cornu spiral or clothoid. 

Problems 
7.1. Consider a nearly axisymmetric spacecraft with (Jl, 12, ,]3) = (4223, 4133, 
768) kg.m 2, (M1, ME, M3) = (0, 0, 10) N.m, and (o91, o92, o93) = (0.0001, 0, 0) 
rad/s at t = 0. 

(a) Perform nonlinear simulation for a 100-s spin-up maneuver. In particular, 
plot 02 vs 01. 

(b) Compare the nonlinear simulation results with the analytical solutions Eqs. 
(7.16), (7.17), and (7.18) obtained for an axisymmetric body. 

(c) Discuss the rotational motion of the spacecraft after the spin-up maneuver 
in terms of a residual nutation angle and a spin-axis precession from the initial 
attitude. 

Note: The spin-up maneuvering time of this problem is somewhat long compared 
to the few seconds of burn time of solid-propellant spin motors. 

7.2. Repeat Problem 7.1(a) but with (Oil, 0)2, O93) = (0, 0, 0) at t = 0 and (Mi, 
M2, M3) = (1, 0, 10) N-m. Discuss the effect of nonzero Mi, which is caused by 
thruster misalignment. 

7.1.3 Flat-Spin Transition Maneuver 
One of the simplest rotational maneuvers is the reorientation of the spin axis of 

a spacecraft using internal energy dissipation. A semirigid spacecraft with internal 
energy dissipation is stable only when spinning about its major axis. A spacecraft 
spinning about its minor axis in the presence of energy dissipation is unstable; that 
is, the spacecraft will eventually reorient to spin about its major axis. Such a passive 
reorientation maneuver is called a flat-spin transition maneuver. The orientation of 
the spacecraft relative to the inertially fixed angular momentum vector at the end 
of the maneuver is, however, unpredictable; i.e., the spacecraft can end up with 
either a positive or a negative spin about the major axis. 

To study such a flat-spin transition maneuver, consider a rigid body with a 
spherical fuel slug of inertia J ,  which is surrounded by a viscous fluid layer/The 
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rigid body has body rates of  091, 0)2, and 093 about the major, intermediate, and 
minor principal axes, respectively. Let the relative rates between the rigid body 
and the fuel slug be 0-1, 0-2, and a3 about the principal axes. The total angular 
momentum H and kinetic energy T are then expressed as 

H 2 = (J10)l  + J a l )  2 + (J20)2 + Ja2)  2 + (~0)3 + J ° ' 3 )  2 (7.19) 

2T = (J,  - j)0)2 + (./2 - J)0)2 2 + ( J3  - J )0 )3  2 

+ J  {(0)1 +- 0"1) 2 '{'- (0)2 -t- 0"2) 2 -+- (0)3 +- 0"3) 2 } (7.20) 

where (Jl ,  J2, J3) are the principal moments of inertia of  the spacecraft including 
the slug. The rotational equations of  motion are written as 

(Jl - J )a) l  = ( J 2  - .]3)(,02093 -k- #0"1 "{- MI (7.21a) 

(J2  - J)rb2 = ( J3  - J1)0)30)1 + #0"2 -F- M2 (7.21b) 

(,/3 - J)o53 = (J1 - J2)0)10)2 + #0"3 + M3 (7.21c) 

O'l = - o ) l  - (#/J)0"1 - 0)20"3 + 0)30"2 (7.22a) 

6"2 = -o )2  -- (/z/J)0-2 - 0)30-1 + 0)10"3 (7.22b) 

6"3 = -o)3  - (/z/J)0"3 - 0)102 Jr- 0)20-1 (7.22c) 

where # is the the viscous damping coefficient of the fuel slug and (Ml,  M2, M3) 
are the control torques about the principal axes. 

When (MI, M2, M3) = (0, 0, 0), the following can be shown. 
1) A necessary condition for the equilibrium points is 0-? + 0"2 z + 0"2 = 0; i.e., 

0"1 = 0 " 2 = 0 " 3  = 0 .  
2) An equilibrium point (0)1, w2, 0)3, 0"1,0-2, 0-3) = (72, 0, 0, 0, 0, 0) is asymp- 

totically stable; i.e., a pure spinning motion about the major axis is asymptotically 
stable. 

3) An equilibrium point (0, 0, f2, 0, 0, 0) is unstable; i.e., a pure spinning motion 
about the minor axis is unstable whereas it is Lyapunov stable for a rigid body 
without energy dissipation. 

4) An equilibrium point (0, 72, 0, 0, 0, 0) is also unstable. 
As discussed in Chapter 6, the angular velocity vector ~ lies on the surface of 

the momentum ellipsoid and at the same time it lies on the surface of the energy 
ellipsoid. The curve in which these ellipsoids intersect is the path of  the angu- 
lar velocity vector as seen from a body-fixed reference frame, and it is called a 
polhode. 

I f  there is no energy dissipation, H and T are constant and the polhode is a 
closed path. If there is energy dissipation, T decreases and the energy ellipsoid 
shrinks with time while H is kept constant. This results in an open polhode path 
that spirals outward from the minor axis toward the major axis by crossing a 
separatrix. The exact point at which the polhode crosses the separatrix is very 
sensitively dependent on the initial conditions and the energy dissipation rate of  the 
spacecraft. Consequently, the orientation of the spacecraft relative to the inertially 
fixed angular momentum vector at the end of the flat-spin transition maneuver is 
unpredictable from a practical point of  view. 
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The passive, fiat-spin transition maneuver, when augmented by few thruster 
firings based on rate gyro signals, can, however, provide a predetermined, final 
spin polarity. For example, a control logic studied by Rahn and Barba 1 utilizes 
angular rate sign changes to determine when a separatrix has been crossed and 
when thrusters must be fired. The sizing of the thruster firings is, however, based 
on estimates of the energy dissipation in the spacecraft. 

Problem 

7.3. Consider a spacecraft with the following numerical values: (J1, J2, ,]3, J)  = 
(2000, 1500, 1000, 18) kg.m 2,/x = 30 N.m.s, and IMil = 20N.m (i = 1, 2, 3). 

(a) Perform computer simulation to verify that the trajectory starting from an 
initial condition (0.1224, 0, 2.99, 0, 0, 0) rad/s ends up at ( -  1.5, 0, 0, 0, 0, 0) rad/s. 
In particular, plot w3 vs w~ to show the separatrix crossing. 

Note: During computer simulation of this case, the angular momentum H needs 
to be checked regardless of whether or not it is maintained at a constant value of 
3000 N.m.s. 

(b) Also perform computer simulation with a slightly different initial condition 
(0.125, 0, 2.99, 0, 0, 0) to verify that the trajectory ends up at (+1.5, 0, 0, 0, 0, 0). 
In particular, plot 093 vs w I to show the separatrix crossing. 

(c) Develop a thruster firing logic that provides a predetermined, final spin 
polarity using only the sign information of angular rates ml, WE, and w3. The 
control logic must be robust with respect to system modeling uncertainty, and the 
total thrust impulse needs to be minimized. 

7.1.4 Active Nutation Control 

An active nutation control (ANC) system of a spacecraft spinning about its minor 
axis usually consists of a pair of thrusters and a nutation sensor that measures the 
spacecraft acceleration associated with the nutational motion. The nutation sensor 
(accelerometer) is mounted with its sensitive axis aligned parallel to the spacecraft 
spin axis. The amplitude of sinusoidal acceleration output of the nutation sensor 
is proportional to the nutational angle. The ANC system generates a thruster pulse 
command with a proper timing when the nutation angle exceeds a certain threshold 
level. 

Consider an axisymmetric rigid body spinning about its minor axis. As was illus- 
tratedjn F i g J .  1, the spacecraft has a body-fixed reference frame B with basis vec- 
tors {bl, b2, b3 } and with its origin at the center of mass. Euler's rotational equations 
of motion of such an axisymmetric spacecraft with Jl = J2 = J > -/3 become 

Jo)l - (J  - J3)w3w2 = Ml (7.23) 

Jo)2 + ( J  - J3 )w3wl  = M2 (7.24) 

J3 o)3 = 0 (7 .25)  

where w i ~ /9 i • (~) are the body-fixed components of the angular velocity of the 
spacecraft; and Ml and M2 are the control torques along the transverse axes. 

From Eq. (7.25), we have 

w3 = const ---- n (7.26) 
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where the constant n is called the spin rate of  the spacecraft about its symmetry 
axis. Equations (7.23) and (7.24) then become 

d91 = ~.W2 + M I / J  (7.27a) 

d92 = -)~.o91 + M z /  J (7.27b) 

where 

~. = n ( J  - J 3 ) / J  > 0 

For a case in which MI = 0 and M2 is a pulse applied at t = q,  Eqs. (7.27) 
become 

¢-bl = ~-O92 (7.28a) 

(J.)2 = --)~'O91 "Jr- ( M / J ) { u s ( t  - t))  - Us(t - tl - T)} (7.28b) 

where M is the constant thrust magnitude, Us(t) denotes the unit-step function, 
and T denotes the pulse width. 

For t > tl + T, the solution Wl(t) can be found as 

o91 (t) = wl (0) cos ~.t + O92(0) sin ~.t 

+ ( M / ) , J ) { -  cos)~(t - tl) -4- cos ~.(t - tl - T)} 

which can be rewritten as 

o91 (t)  = [o91 (0) + ( M / ) J ) { c o s  k t l  + cos ~.(tl + T)}] cos Zt 

+ [ o g 2 ( O ) + ( M / > , J ) { - s i n ~ . t l  + sinL(q + T)}] sin~.t (7.29) 

Without loss of  generality, let t = 0 be the initial time such that og~(t) is at its 
positive peak value and o92(0) = 0. Then we have 

ogl (t) = [ogl (0) + ( M / X J ) { c o s ) ~ t l  -4- cos ~.(tl + T)}] cos)~t 

-4- [ ( M / ~ . J ) { -  sin ktl + sin ~.(tl + T)}] sin kt (7.30) 

and o92(t), for t > tl -4- T, also becomes 

wz(t )  = [o91(0) q- (M/)~J){cos)~t l  + cos Z(tl + T)}] sin ~.t 

- [ ( M / ~ . J ) { -  sin ~.tl -4- sin ~.(q + T)}] cos~.t (7.31) 

The transverse angular rate oglz = (o9~ + o9~)1/2 after one thrust firing can be 
obtained as 

- 2 cos ~T 

I 

2M }~ 
+ -~--)- [cos k(tl + T) - cos ktl]ogl(0) (7.32) 

Taking the time derivative of  Eq. (7.32) and setting the derivative equal to zero, we 
obtain the necessary condition for selecting tt to minimize the transverse angular 
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rate o912 , as follows: 
zr XT 

~.tl - (7.33) 
2 2 

This condition indicates that the thrust pulse should be centered over the negative 
peak of w2, because it is assumed that w2(0) = 0. 

The transverse angular rate reduced after one thrust pulse is then found as 

2M XT 
AWl2 = )~j sin T 

Because the nutation angle 0 is defined as 

tan 0 = ~ H22 = Jwl2 

1t3 Y3n 

(7.34) 

where  0912 = (0) 2 --{- (02) 1/2, the nutation angle is approximated as 

Jo912 

Jan 

and the nutation angle reduced after one thrust pulse becomes 

JAwl2  2M XT 
AO ~ - -  = - -  sin - -  (7.35) 

J3n XJ3n 2 

This result indicates that A0 is maximized when the pulse width T is one-half of  
the nutation period, i.e., when T = zr/X. 

The divergent nutation dynamics of  a spacecraft spinning about its minor axis 
due to energy dissipation is often modeled as 

O(t) = O o ( e  t / r  - -  1) (7.36) 

where 00 is the initial nutation angle and r is called the divergent time constant of  
the spacecraft due to energy dissipation. The nutation angle reduction, Eq. (7.35), 
must be greater than the nutation angle increased by energy dissipation during one 
thrust cycle. 

The spin-axis precession due to one thruster pulse can also be determined as 

fr /2  M cosnt dt 2M nT 
A(~ = J-T~2 -- - -  s i n -  (7.37) 

J3n J3n 2 2 

Thus, it should be noted that an active nutation control also results in a spin-axis 
precession. In practice, the thruster pulse width T is selected such that A4~ per 
thruster firing does not exceed a specified value of the spin-axis precession angle. 

7.1.5 Reorientation of a Gyrostat  

Consider the reorientation of  the spin axis of  an axisymmetric gyrostat or a dual- 
spin satellite using an axial thruster located on the despun platform as illustrated in 
Fig. 7.2. The main body (d~pun  platform) has a body-fixed principal-axis frame B 
with basis vectors {bl, b2, b3}. Consequently, the b3 axis is the spin or symmetry 
axis of  the spacecraft. 
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Rotor 

b'2 

• Axial Thrusters 
Despun Platform 

Fig. 7.2 Gyrostat with despun platform thrusters. 

It is assumed that the rotor has a constant angular momentum of  Ho relative to 
the main body and that the angular momentum vector of the spacecraft (platform 
plus rotor) is simply H = Hob3 before a reorientation maneuver. It is also assumed 
that a reorientation of the spin axis about the b2 axis is required without loss of  
generality. From the following momentum vector consideration 

A fl  l At = ~4 

an axial thruster located on the despun platform as shown in Fig. 7.2, which 
generates a body-fi&ed torque about the bl  axis, is to be used to reorient the 
spacecraft about the b2 axis. 

The linearized equations of  motion of  an axisymmetric gyrostat (J1 = Jz = J) 
with a control torque M~ about the bl  axis are 

o)l + kw2 = # (7.38a) 

o)2 - J~wl = 0 (7.38b) 

01 = 0)1 (7.38c) 

0 2 = 0) 2 (7.38d) 

where Z = Ho/J is called thenutat ion frequency;/z  = M l / J  is the rotational 
control acceleration about the bl axis; Wl and 0)2are the body-fixed components 
of  the angular velocity of the spacecraft along thebl  and b2 axes, respectively; and 
01 and 02 are the small orientation angles of  the b3 axis relative to inertial space. 

For continuous thrusting with constant # and with zero initial conditions, we 

wl(t) = # sin ~.t (7.39a) 

0)2(t)  = -~(1 --  COS ~.t) (7.39b) 

01 (t) = ~22(1 - cos M) (7.39c) 

02(0 = -~(Lt - sin M) (7.39d) 

have 
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The motion with constant thrusting about the bl axis consists ofa£recession of  the 
angular momentum vector about the b2 axis and a nutation of the b3 axis about the 
angular momentum vector at the nutation frequency ~.. The path of the tip of  the 
symmetry axis is a cycloid in an inertial frame; i.e., it is the path traced by a point 
on a circle of  radius #/~.2 that is rolling on the bottom side of the 02 axis with 
angular velocity ~. 

Another simple maneuvering scheme pulses the thruster at twice the nutation 
frequency ~. for the reorientation of an axisymmetric gyrostat. The s~utions to 
Eqs. (7.38) with zero initial conditions but an impulsive torque about the bi axis are 
given by 

~oi (t) = ~ol (0 +) cos Xt (7.40a) 

~o2(t) = oJl (0 +) sin Xt (7.40b) 

01 (t) -- o~l (0+_____) sin ~.t (7.40c) 

02(0 = °Jl(0+)(1 cos)~t) (7.40d) 

where toi (0 +) is due to an impulsiverotational acceleration/L at t = 0. The resulting 
motion is simply a nutation of the b 3 axis about the angular momentum vector at 
frequency ~.. The resulting path of  the tip of the symmetry axis is a circle centered 
at 01 = 0 and 02 = 2o91(0+)//z. 

If  a second impulse equal in magnitude to the first impulse is applied at the half 
of the nutation cycle, however, then the resulting path of  the tip of the symmetry 
axis is a semicircle. And if the thrust is pulsed repeatedly at twice the nutation 
frequency, then the semicircle will be repeated while the b3 axis is stationary 
for half a nutation cycle between semicircles. For a given reorientation maneuver 
angle, the same thrust impulse is required for both maneuvers as shown in Bryson. 2 

7.1.6 Attitude Acquisition by Momentum Transfer 
A transition from a spinning mode to a bias-momentum stabilized mode of  a 

three-axis stabilized spacecraft is often achieved by applying a constant torque to a 
wheel that is initially orthogonal to the spacecraft momentum vector, thus causing 
angular momentum transfer from the spinning spacecraft to the wheel. Such an 
attitude acquisition maneuver by momentum transfer simultaneously achieves final 
despin of a spinning spacecraft, wheel spin up, and a proper reorientation of the 
spacecraft. A similar procedure is also applicable to the recovery of dual-spin 
stabilized spacecraft, which is known as the fiat-spin recovery maneuver. 

More details of this subject can be found in Kaplan 3 and Barba and Aubrun. 4 

Problems 

7.4. For a dual-spin spacecraft considered in Chapter 6, Sec. 6.12, but with no 
damper, i.e., m = 0, the equations of motion can be simplified as 

Jl dgi = (.12 - ,]3)(-02093 - J f2to2 

• ]20)2 = ( J3  - -  J1)oJ30Jl  + J Q ° 9 1  

J3°33 = (J1 - J2)°91°92 - J ~ 2  
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and the rotor equation can be approximated as J ~2 = T because J << J3 and 
093 << ~2. Consider an attitude acquisition and wheel spin-up maneuver of  a satellite 
with (Jl ,  J2, ,/3) = (706, 645,543) kg.m 2 and J = 0.08 kg.m 2. 

(a) Perform computer simulation for the following case: 091 (0) = 0.0581 rad/s, 
092(0) = 093(0) = ~ ( 0 )  = 0, and T = -0 .01  N.m for 0 _< t < 2000 s. In 
particular, obtain the time history of the nutation angle  0 between b3 and the 
constant angular momentum vector H = J1091bl -1- J2092b2 q- (J3093 -k- Jf2)b3. 

Note: The nutation angle 0 starts at 90 deg and approaches a steady-state value 
of approximately 23 deg, but not 0 deg as desired. 

. (b) Discuss the simulation results noting that the total angular momentum vector 
H is a constant vector. 

Note." See Ref. 3 for additional information pertaining to this problem. 

7.5. Consider a satellite attitude acquisition maneuver by momentum transfer. 
The equations of  motion of a spacecraft equipped with a pitch wheel are given by 

Jlthl = (J2 - J 3 ) 0 9 2 0 9 3  "t- h093 

J2o)2 = (.]3 - J1)093091 - h 

J3o)3 = (Jl - J2)091092 -- h091 

where (Jl ,  J2, ./3) = (86.24, 85.07, 113.59) slug-ft 2 (1 slug-ft z = 1.356 kg-m 2 
and 1 ft-lb = 1.356 N.m). 

(a) Perform computer simulation for the following case: 093(0) = 0.1761 rad/s, 
o91(0) = 092(0) = 0, and a constant motor torque h = T = 0.005 f t - lbfor  0 < t < 
4000 s with h(0) = 0. In particular, obtain the time history of the nutation angle 0 
between b2 and the total angular momentum vector H = Jl 091 bl + (J2092 + h)b2 + 
J3093b3 . 

Note: The nutation angle 0 starts at 90 deg and approaches a steady-state value 
of approximately 7.7 deg, but not 0 deg as desired. In fact, as shown by Barba and 
Aubrun,4 the residual nutation angle is a function of  (increases with) the magnitude 
of the motor torque T. The attitude acquisition time decreases as T is increased. 

(b) Is there any simple explanation of the simulation results? 

7.2 Time-Optimal Reorientation Maneuvers 
Time-optimal control of dynamic systems is a class of  optimization problems of 

interest in many different research areas. In particular, spacecraft, including robot 
manipulators and optical pointing systems in space, are sometimes required to 
reorient or reposition as quickly as possible within the physical limits of actuators. 
Consequently, the problem of spacecraft time-optimal slew maneuvers has been 
the subject of extensive research (e.g., see Ref. 5). 

In this section, we present the mathematical foundation of a time-optimal control 
problem and then apply the optimal control theory to the spacecraft time-optimal 
control problem. In particular, the time-optimal maneuvering control problem of a 
rigid spacecraft is examined by considering a simple case of  an inertially symmetric 
rigid body. The so-called eigenaxis rotation, which provides the minimum angular 
path between two orientations, has often been considered as a natural approach to a 
time-optimal rotational maneuver. An eigenaxis rotation about one of the principal 
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axes of  even such a simple spherical body is not time optimal, however, as first 
shown by Bilimoria and Wie. 6'7 

7.2.1 Introduction to Time-Optimal Control 

Consider a nonlinear dynamic system described by 

= f(x, u, t) (7.41) 

where x = (xl . . . . .  x,)  is the state vector and u = (ul . . . . .  u,,) is the control 
input vector. The problem is to determine the optimal control input u to transfer the 
system from its given initial state x(0) to a specified final state x(/f)  in minimum 
time; i.e., the final time t /  is to be minimized. For such a time-optimal control 
problem, the control inputs are often constrained by 

[ui[ < 1, i = 1 . . . . .  m 

which is, in fact, equivalent to the hypercube in m-dimensional space described by 
! 

Ilul/~ - lim u ¢ = max lUll < 1 
(---* oo i = 1  i 

Similarly, the control inputs may also be constrained by the hypershere in m- 
dimensional space 

Ilull2 -- u 2 < 1 

The performance index or cost function to be minimized is, in general, of  the 
form 

J = L(x, u, t) dt (7.42) 

and L = 1 for the time-optimal control problem. Adjoining Eq. (7.41) to the 
performance index J with the so-called Lagrange multiplier ,X(t), we obtain 

f0" J = {L + , ~ r ( f _  :~)} dt (7.43) 

where .X = ()-I . . . . .  ~.,) is also referred to as the adjoint or costate vector. 
Defining a scalar function H, called the Hamiltonian, as 

H = L + )~rf(x, u, t) (7.44) 

we rewrite the performance index as 

f0" J = {H - Ar~} dt (7.45) 

Taking the differential of  J with respect to dtf, •x, •u, and 3:~, we obtain 

fotI I S H , x  8 H , u - ) ~ r , ~ } d t  (7.46) dJ = L dt f + I Ox + Ou 
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which, after the integration by parts of Xr3i, becomes 

L [ O H ' f  OH ~r~x]  = L dty - [XTSX]~ + --~-X 3X + --~-U 3U + dt (7.47) dJ  

Using the relationship dx(tf) ---- 3x( t f )+~( t s )  dt f  (Ref. 8, page 72) and 3x(O) = 0, 
we obtain 

dJ  = {L + xT(tf) ~(tf)} dts - Xr(ts) dx(/f) 

L t f [ {  OH + ,,~T ] 3 x +  OH3u]  dt (7.48, 
+ -fix an J 

Note that dx(tf) ---- 0 because x(tf) is specified. Furthermore, choosing A to make 
the coefficients of dt¢ and 8x vanish, we obtain the transversality condition 

n ( t f )  = 0 (7.49) 

and the costate equation 
, 

L Ox j (7.50) 

Consequently, dJ is simplified to 

L 
ts OH 

dJ = - - 3 u  dt 
Ou 

For a stationary value of J,  dJ  must be zero and, thus, we obtain the following 
necessary condition for optimality: 

OH 
= 0 ( 7 . 5 1 )  

0u 

In summary, the optimal control input must satisfy the following set of necessary 
conditions: 

F0,,q 
= I 0A J = f(x, u, t), x(0) and x(t/) specified (7.52) 

_ 

A -- L 0x J LOxJ A' )~(0) and ,X(t/) free (7.53) 

with the optimality condition 

OH 
= 0  0u 

and the transversality condition 

(7.54) 

H( t f )  = 0 (7.55) 

Notice that the costate variables are "free," i.e., unspecified, at both the initial and 
final times because the corresponding state variables of the system are specified. 
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OH 
Ot 

= 0  

This set of differential equations with specified boundary conditions and with 
specified control input constraints provides the necessary conditions for the time- 
optimal control and forms a nonlinear two-point boundary-value problem (TPBVP) 
which is, in general, a difficult problem to solve. In general, the optimality condition 
(7.54) is used to determine the optimal control input and the transversality condition 
(7.55) determines the final time i f .  

A first integral of the TPBVP exists if fix, u) is not an explicit function of time 
t; i.e., we have 

OH OH OH OH x 

aH + {-Xr~ + ~TX} + ~i 
Ou 

and thus H is constant on the optimal trajectory. Because H(tf)  = 0 from the 
transversality condition, we have H = 0 for 0 < t < tf .  

Consider the time-optimal control problem of a dynamic system described by 

i = f(x, t) + B(x, t)u (7.56) 

or, equivalently, in component form as 

m._% 
-¢i = f/(x, t) + ~ Bij(x, t)uj, i = 1 . . . . .  n 

j = l  

where the control inputs are constrained by the hypercube in m-dimensional space 

lujl _< 1, j = 1 . . . . .  m 

Because the Hamiltonian is linear in the control input u for this particular case, the 
optimality condition (7.54) does not provide any information about the optimal 
control input. However, according to Pontryagin's minimum principle, the optimal 
control input must minimize the Hamiltonian 

H = 1 + Arf(x, t) + ArB(x, t)u 

= 1"-~ )~ifi"~-~-~)~i Bijuj 
i i=1 j = l  

and minimization of the Hamiltonian function subject to the preceding constraints 
requires that 

u j = - s g n { S j } = - s g n { O ~ u j }  = - s g n  { ~ '  BijXi} , i : 1  j = l  . . . . .  m 

(7.57) 
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where Sj is the switching function associated with the j th  control input uj and the 
signum function is defined as 

= { +1 if Sj > 0 (7.58) sgn{Sj} 
- 1  if Sj < 0 

and it becomes singular ( - 1  < uj < ÷ l )  if Sj = 0. In vector form, the optimal 
control input is expressed as 

u(t) = - sgn{BrA(t)} 

Problems 

7.6. Consider a double-integrator plant described by 

-~1 = X 2  

x2 = u(t) 

subject to lul _< 1. The optimal control input that transfers the system from an initial 
state x(0) # 0 to the final state x( t f )  = (0, 0) in minimum time is to be determined. 

(a) Show that the optimal control input changes sign, at most, once; i.e., 

u(t) = - sgn{~.z} = - sgn{~.z(0) - kl(0)t} 

(b) Show that the optimal control input can also be expressed in nonlinear 
feedback control form as 

u(t) = - s g n  {x, ÷ lx21x2t } 

(c) Sketch typical time-optimal trajectories in the (xl, x2) phase plane, including 
the switching curve, which is made up of two parabolas. 

Hint: See, e.g., Bryson and Ho (Ref. 8, pages 1 I0-1 13). 

7.7. Consider a linear system described by 

XI = O)nX2 

3C2 = --O)nXl "l" U 

where wn is the natural frequency of this undamped oscillator system, and the 
control input is subject to lul _< 1. The optimal control input that transfers the 
system from an initial state x(0) :# 0 to the final state x( t f )  = (0, 0) in minimum 
time is to be determined. 

(a) Show that the optimal control input u(t) changes sign with period zr/w, ; i.e., 

u(t) = - sgn{~.2} = - sgn{kl (0) sin w, t  + k2(0) cos ~ont} 

(b) Find the trajectory equation in the (xl, x2) phase plane, as follows: 

[wnxl (t) - u] 2 ÷ [09nx2(t)] 2 = [09nX 1 (0) - -  u] 2 ÷ [o)nx2(0)] 2 

where u = +1.  
(c) Sketch typical time-optimal trajectories in the (xl, x2) phase plane, including 

the terminal arcs and switching curve. 
Hint: See Chapter 7 of Athans and Falb. 9 
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7.8. Consider a spinning axisymmetric body described by 

f f l  ~ O)nX2 -'}- bll 

Jr2 = --O-)nXl 4- U2 

where w, is the nutation frequency observed in a rotating reference frame, and 
the control inputs are subject to lUll < 1. The optimal control input vector that 
transfers the system from an initial state x(0) -¢- 0 to the final state x( t f )  = (0, 0) 
in minimum time is to be determined. 

(a) Show that the time-optimal, rate damping control inputs ui change sign with 
period rr/w,. 

(b) Find the trajectory equation in the (xl, x2) phase plane, as follows: 

[wnxl( t )  - -  u2] 2 4- [WnX2(t) 4- Ul] 2 = [W, Xl(O) -- u2] 2 4- [w, x2(O) 4- ul] 2 

where ui = +1.  
(c) Sketch typical time-optimal trajectories in the (xl, x2) phase plane, including 

the terminal arcs and switching curve. 

7.9. Consider a dynamic system described by 

= f(x, t) 4- B(t)u 

where the control input vector is constrained by the hypersphere 

Ilull ~ Cu l  2 4- u~ -F - - -4 -  U2m < 1 

Show that the time-optimal control input vector is of the form 

u(t) = Br)~(t) if IIBr)~ll 4 :0  
IIBr,~ll 

Hint: See Chapter 10 of Athans and Falb. 9 

7.10. Defining xi = Jiwi,  we rewrite Euler's equations of motion of a rigid 
spacecraft about principal axes, as follows: 

J2-J3 
f f l  = 'X2X3 4- Ul 

J2J3  

J3 - J l  
2~2 - -  - - ' X 3 X 1  "31- U2 

J 3 J l  

Jl - J2 
Jr3 = XIX2 4- R3 

J1 J2 

which is said to be a norm-invariant system. 
Show that the time-optimal, rate damping control input vector is of the form 

x(t) 
u(t) - if [[x[[ # 0 

IIxH 
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if the spacecraft is subject to a control input constraint of the form 

7.2.2 Time-Optimal Control of an Inertially Symmetric Body 
Consider the time-optimal reorientation problem of an inertially symmetric, 

e.g., spherical or cubical, rigid body. Although most real spacecraft are not iner- 
tially symmetric, the study of this simple case is likely lead to more fundamental 
understanding of the time-optimal control problem of complex spacecraft. 

It is assumed that the control axes are aligned with principal axes with the 
principal moment of inertia Jo and that the control torque inputs are bounded as 
-Fro for each axis. 

The nondimensionalized equations of motion of an inertially symmetric body 
are simply given by 

wl = ul (7.59a) 

~ 2  = uz  (7.59b) 

~3 = u3 (7.59c) 

where o) i are the angular velocity components in units of v"~-o/ro, ui are  the 
control torque inputs in units of to, and time is in units of qt~-o/ro. The kinematic 
differential equations in terms of quaternions are also given by 

ql = (-k-wlq4 -- to2q3 -1- to3q2)/2 (7.60a) 

q2 = (+wlq3 + o92q4 -- w 3 q l ) / 2  (7.60b) 

q3 = (--091q2 -'l'- 092ql -'F w3q4)/2 (7.60c) 

q4 = ( - - w l q l  -- ~2q2 -- ~3q3)/2  (7.60d) 

Equations (7.59) and (7.60) are, in fact, the state equations of the system with the 
state variables ~Ol, 092, to3, ql, q2, q3, and q4. 

The time-optimal, rest-to-rest reorientation problem is then to determine the 
optimal control inputs (Ul, u2, u3) that drive the dynamic system described by 
Eqs. (7.59) and (7.60) from rest at its initial orientation (ql, q2, q3, q4)0 to rest at 
its final orientation (ql, q2, q3, q 4 ) f ,  while minimizing the cost function 

f0 t/ J = d t  = ty (7.61) 

subject to the control input constraints 

- 1  < ui < +1, i = 1,2,3 (7.62) 

The Hamiltonian is formed by adjoining the state equations (7.59) and (7.60) 
with the appropriate adjoint variables ~.~o,, ko~, ~-,o3, ~-q,, ~-q2, ~'q3' and kq,, and 
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H = 1 + ~.~olul --I- ~.a~U2 -'1- ~.to3U3 

"1- ~'ql ("l-tO1 q4 -- to2q3 "['- waq2)/2 

-1- ~.q2(--l--oglq3 --I- o92q4 - o~3ql)/2 

--I-~.q3(-tolq2 -F to2q] + oy3q4)/2 

h-~.q4(-oglql - o92q2 - to3q3)/2 

where H denotes the Hamiltonian, which is constant along an optimal trajectory 
of the time-optimal control problem under consideration. From the transversality 
condition its value along an optimal trajectory is given by 

H -- H ( t f )  = 0 

The costate equations are then obtained in the standard fashion by differentiating 
the negative of the Hamiltonian with respect to the states and are given by 

J.w, -= -(q'-~.qlq4 -}- ~.q2q3 - ~-q3q2 - ~.q4ql ) / 2  (7.63a) 

~o~ = --(--)"qlq3 "]- ~'q2q4 "-I- ~'q3ql -- ~'q4q2)/2 (7.63b) 

~,o3 = - ( + k q ,  q2 - ~'q2ql + )~q3q4 -- ~q, q 3 ) / 2  (7.63c) 

~.q, = -(-~.q:CO3 + ~.q3CO2 -- ~.q, tOl)/2 (7.63d) 

,~q: = --(-']'-~.qlO.)3 -- ~.q30)l --  ~.q, O92)/2  (7.63e) 

'~'q3 = --(--~ 'ql  O)2 "t- ~.q20)l -- ~-q4093)/2 (7.63t3 

/~q4 = --(-[-~'qlO')l "]- ~'q20)2 "dr- ~ 'q30)3)/2 (7.63g) 

The adjoint variables are free, i.e., unspecified, at both the initial and final times 
because the corresponding state variables of the system are specified. The set of 
quaternion adjoint variables (~ql, kq2, ,kq3, ~'q4) is not unique, however, because of 
the following relationship: 

q ~ + q 2 + q 2 + q 2 =  1 

Hence, any one of the quaternion adjoint variables can be normalized to unity at 
the initial (or final) time. 

The set of differential equations consisting of Eqs. (7.59), (7.60), and (7.63) 
with specified boundary conditions provides the necessary conditions for the time- 
optimal control, and forms a nonlinear TPBVP that is, in general, a difficult problem 
to solve. 

According to Pontryagin's minimum principle, the optimal control inputs that 
minimize the Hamiltonian subject to the constraints (7.62) are given by 

ui ( t )  = - s g n  = -sgn{)~o,(t)}, i = 1, 2, 3 (7.64) 
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It can be shown that for this problem, at least one control component must be 
saturated at any given instant of time. In geometric terms, the control input con- 
straints given by Eq. (7.62) may be visualized as a unit cube in three-dimensional 
space. Such constraints require that an admissible control vector lie inside or on 
the surface of this cube. The optimal control input vector cannot lie inside the 
cube, however, because this would imply that all three components of the control 
input vector are simultaneously singular. Consequently, the optimal control vector 
must lie on the cubical constraint surface. 

For further details of this subject, the reader is referred to Li and Bainum, z° 
Bilimoria and Wie, 6"7"11 Byers and Vadali, 12 and Seywald and Kumar. 13 

P r o b l e m s  

7.11. Given the time-optimal reorientation problem of an inertially symmetric 
rigid body, as formulated by Eqs. (7.59), (7.60), and (7.62), consider the following 
rest-to-rest maneuver boundary conditions: 

o.,~(0) = oJ2(O) = o.,3(0) = 0 

ql(0) = q2(0) ---- q3(0) = 0, q4(0) = 1 

O ) l ( t f )  = O.)2(tf) = O)3( t f )  = 0 

0 0 
ql( t f )  = qz(tf) = 0, q3(tr) = sin -~, q4(tf) = cos -~ 

where 0 = 180 deg is the required rotation angle about the eigenaxis. For these 
boundary conditions, the eigenaxis rotation is simply a bang-bang maneuver about 
the third principal axis of the body, resulting in t f  = 3•5449• 

(a) Verify that by performing computer simulation for the control inputs given 
in Fig. 7.3, an eigenaxis rotation about one of the principal axes of even such a 
simple body is not time optimal• In particular, plot three angles ~,/3, and y defined 
as  

ot = cos-l(fil 

/3 = C O S - I ( o 2  

~' = COS-1(2  3 

• b , ) =  cos - '  (1 - 2q 2 - 2q32) 

• b 2 ) =  cos- '  ( 1 -  2q 2 - 2q 2) 

• b 3 )  = c o  s - 1  (1  - 2 q ~  - 2q 2) 

These angles represent relative orientations of the body axes with respect to an 
inertially fixed reference frame. 

Note: The resulting time-optimal maneuver has a significant nutational compo- 
nent of three-axis rotational motion, as can be seen in the time histories of or,/3, 
and y. The time-optimal motion with its significant nutational component is able 
to provide more torque along the eigenaxis and can therefore complete the desired 
maneuver in less time. It must be emphasized, however, that a marginal decrease 
in maneuver time is achieved at the expense of a substantial use of control energy• 

(b) Show that the optimal control switching pattern to the time-optimal control 
problem under consideration is not unique. That is, let the optimal control switching 
pattern shown in Fig. 7.3 be represented by {U1, U2, U3}, then show that for time- 
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Fig. 7.3 Time-optimal control inputs for 0 = 180 deg. 

optimal maneuvers involving five control switches and reorientation angles less 
than 180 deg, there are in fact four possible switching patterns 

{+u~, +u2, +u3} 

{-u~, -u2 ,  +u3} 

{-u2, +u~, +u3} 

{+u2, -u~,  +u3} 

Hint: Notice that the selection of the first and second axes for this problem is 
not unique. 

(c) For the special case of 0 = 180 deg, show that there are eight possible switch- 
ing patterns, i.e., the four switching patterns described in Problem 7.1 l(b) plus 
{+U1, -U2,  -U3}, {-U1, +(-/2, -U3}, {+U2, +Ul,  -U3}, and {-U2, - U l ,  -U3}. 

7.12. Consider again the time-optimal reorientation problem of an inertially sym- 
metric rigid body described by Eqs. (7.59), (7.60), and (7.62), but with the following 
control input constraints: 

1 

Ilu112¢ = {lull z¢ + [u2l 2( -t-lu312¢} ~ = 1 

Note that with ( -- 1, the control constraint surface is a sphere and with ( ~ ~ the 
surface approaches a cube. Minimizing the Hamiltonian subject to the preceding 
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constraint, obtain the optimal control inputs as 

-sgn{k~,,(t)} Ik,o, (t)l ~-~-' 
U i ~ 

Hint: See Bilimoria and Wie. 6"7 

i = 1 ,2 ,3  

7.3 Quaternion-Feedback Reorientation Maneuvers 

Most three-axis stabilized spacecraft utilize a sequence of  rotational maneuvers 
about each control axis. Many spacecraft also perform rotational maneuvers about 
an inertially fixed axis during an acquisition mode, e.g., sun acquisition or Earth 
acquisition, so that a particular sensor will pick up a particular target. 

Spacecraft are sometimes required to maneuver as fast as possible within the 
physical limits of  actuators and sensors. The X-ray Timing Explorer (XTE) space- 
craft launched in 1996 is one of  such spacecraft, and it is required to maneuver 
about an inertially fixed axis as fast as possible within the saturation limit of  rate 
gyros. 14 The XTE spacecraft is controlled by a set of  skewed reaction wheels; 
thus, the maximum available control torque also needs to be considered in such a 
near-minimum-time eigenaxis maneuver. As was studied in the preceding section, 
however, the eigenaxis rotation is, in general, not time optimal. 

In this section we introduce a feedback control logic for three-axis, large-angle 
reorientation maneuvers, and we further extend such a simple feedback control 
logic to a case in which the spacecraft is required to maneuver about an inertially 
fixed axis as fast as possible within the saturation limits of  rate gyros as well as 
reaction wheels. (This section is based on Refs. 15-17.) 

7.3.1 Quaternion Feedback Control 

Consider the attitude dynamics of  a rigid spacecraft described by Euler's rota- 
tional equation of  motion 

J~b + ~v x J~v. = u (7.65) 

where J is the inertia matrix, w = (0)1,0)2, 0)3) the angular velocity vector, and 
u = (ul, u2, u3) the control torque input vector. The cross product of  two vectors 
is represented in matrix notation as 

~v x h -- w3 0 -0)1 h2 
--0)2 0)1 0 h 3 

where h = Jw  is the angular momentum vector. It is assumed that the angular 
velocity vector components 0)i along the body-fixed control axes are measured by 
rate gyros. 

Euler's rotational theorem states that the rigid-body attitude can be changed from 
any given orientation to any other orientation by rotating the body about an axis, 
called the Euler axis, that is fixed to the rigid body and stationary in inertial space. 
Such a rigid-body rotation about an Euler axis is often called the eigenaxis rotation. 

Let a unit vector along the Euler axis be denoted by e = (el, e2, e3) where el, 
e2, and e3 are the direction cosines of  the Euler axis relative to either an inertial 
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reference frame or the body-fixed control axes. The four elements of quaternions 
are then defined as 

ql = el s in(0/2)  

q2 = e2 sin(O/2) 

q3 : e3 sin(0/2)  

q4 = cos(0/2)  

where 0 denotes the rotation angle about the Euler axis, and we have 

q Z + q 2  z + q z + q 2 =  1 

The quaternion kinematic differential equations are given by 

I'l I °  l]Iql q2 1 -o)3 0 wl 092 q2 
q3 = 2 092 -09x 0 o93 q3 
¢]4 --091 --092 --0)'3 0 q4  

(7.66) 

Like the Euler-axis vector e = (el ,  e2, e3), defining a quaternion vector q = (ql,  
q2, q3) as 

0 
q = e sin - 

2 

we rewrite Eq. (7.66) as 

2 q = q4w - -  W × q (7.67a) 

2 q 4  : - w r q  (7.67b) 

where 

w x q = c03 0 - q2 
--602 o91 q3 

Because quaternions are well suited for onboard real-t ime computation, space- 
craft orientation is nowadays commonly described in terms of  the quaternions, 
and a linear state feedback controller of  the following form can be considered for 
real-time implementation: 

u = - K q e  - Coa (7.68) 

where qe = (qle, q2e, q3e) is the attitude error quaternion vector and K and C 
are controller gain matrices to be properly determined. The attitude error quater- 
nions (qle, q2e, q3e, qae) a r e  computed using the desired or commanded attitude 
quaternions (qlc, q2c, q3c, qac) and the current attitude quaternions (ql,  q2, q3, q4), 
as follows: 

Eqej r qac q3c q2c qclEq 1 q2e = [--q3c q4c qlc --q2c | q2 
q3e [ qzc --qlc q4c --q3c [ q3 
q4e L qlc q2~ q3c q~ I q4 

(7.69) 
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If  the commanded attitude quaternion vector is simply the origin defined as 

(qlc, q2c, q3c, q4c) = (0,  0, 0,  + l )  

then the control logic (7.68) becomes 

u = - K q  - Cw (7.70) 

On the other hand, if the origin is chosen as (0, 0, 0, - 1), then the control logic 
(7.68) becomes 

u = + K q  - Cw ( 7 . 7 1 )  

Note, however, that both quaternions (0, 0, 0, + 1) and (0, 0, 0, - 1) correspond to 
the physically identical orientation. 

Without loss of  generality, we consider here the control logic of  the form (7.70). 
As shown by Wie and Barba 15 and Wie et al., 16 the origin, either (0, 0, 0, +1)  or 
(0, 0, 0, - 1), of  the closed-loop nonlinear systems of a rigid spacecraft with such 
control logic is globally asymptotically stable for the following gain selections. 

Controller 1 : 

K = kI, C = diag(cl, c2, c3) (7.72a) 

Controller 2: 

Controller 3: 

Controller 4: 

k 
K =  -~3I, C = d i a g ( c l ,  C2, C3) (7.72b) 

q4 

K = k  sgn(q4)I, C = d i a g ( c l ,  C2, C3) (7.72c) 

K = [cO + /3 I ]  -1 , K - I C  > 0 (7.72d) 

where k and ci are positive scalar constants, I is a 3 × 3 identity matrix, sgn(.) 
denotes the signum function, and ot and/3 are nonnegative scalars. 

Note that controller 1 is a special case of controller 4 with u ---- 0, and that/3 
can also be simply selected as zero when ot :~ 0. Controllers 2 and 3 approach the 
origin, either (0, 0, 0, + 1) or (0, 0, 0, - l ) ,  by taking a shorter angular path. 

Problems 

7.13. Consider the rotational equations of motion of a rigid spacecraft about 
principal axes described by 

2ql  = wlq4 - c02q3 --I- 093q2 

2 0  2 = w l q3  q- 092q4 --  w3ql  

2 4 3  = --o91q2 --I'- ¢02ql -k- w3q4 

2 0  4 = - -0 ) l q l  - -  092q2 - -  w3q3 

J l ° ) l  = (J2 - -  J3)0920)3 --I- Ul 

J2052 = (J3 - Jl)~o3o~l + u2 

J30)3 = (J1 - J2)~1092 -q'- u3 
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The stability of the origin defined as 

x* = (ql, q2, q3, q4, Wl, 0)2, O93) 

= (0 ,  0 ,  0 ,  + l ,  0 ,  0 ,  0)  

is to be studied for the control torque inputs ui of the form 

Ul -= - k l q l  - ClO)l 

u 2 : - k 2 q  2 - c20) 2 

u3 = - k 3 q 3  - c30)3 

where k i  and ci are positive constants. 
(a) Show that for any positive constants ci, the equilibrium point x* is globally 

asymptotically stable if k i  a r e  selected such that 

J2 - J3 J3 - JI Jl - J2 - - + - - +  - -  
kl k2 k3 

- - 0  

Hint." Choose the following positive-definite function 

E = J'~°2 Jzw2 J3w~ q2 
2k, + ~ + ~ + q2 + q22 + 3 + (q4 - 1) z 

as a Lyapunov function. 
(b) Also determine whether or not the equilibrium point x* is globally asymp- 

totically stable for any positive values ofki and ci. (This is a much harder unsolved 
problem.) 

7.14. Consider a rigid spacecraft with 

1200 100 - 2 0 0 -  
J = 100 2200 300 

-200  300 3100 
kg.m 2 

It is assumed that (ql, q2, q3, q4) = (0.5, 0.5, 0.5, --0.5) and (O)1, 0)2, 0)3) : 
(0, 0, 0) at t = 0 and that the spacecraft needs to be reoriented within approxi- 
mately 500 s to the origin (qlc, q2c, q3c, q4c)  = (0, 0, 0, q-l).  This given initial 
orientation corresponds to an eigenangle-to-go of 240 deg or 120 deg depending 
on the direction of reorientation. 

Neglecting the products of inertia of the spacecraft, synthesize quaternion feed- 
back control logic of the form 

u = - K q  - C w  

with the four different types of gain matrices given by Eqs. (7.72) 
For each controller, perform computer simulation of the closed-loop system in- 

cluding the products of inertia. In particular, plot the time history of the eigenangle 
0 and also plot qi vs qj (i, j = 1,2, 3). 
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7.3.2 Eigenaxis Rotational Maneuvers 
The gyroscopic term of Euler's rotational equation of  motion is not significant for 

most practical rotational maneuvers. In some cases, however, it may be desirable 
to directly counteract the term by control torque, as follows: 

u = - K q  - Cco + co × Jco (7.73) 

The origin of the closed-loop system with the controller (7.73) is globally asymp- 
totically stable if the matrix K - I c  is positive definiteJ 6 A natural selection of  K 
and C for guaranteeing such condition is K = kJ and C = cJ where k and c are 
positive scalar constants to be properly selected. Furthermore, a rigid spacecraft 
with a controller of the form 

u = - k J q  - cJw + co x Jco (7.74) 

performs a rest-to-rest reorientation maneuver about an eigenaxis along the initial 
quaternion vector, q(0). 

Euler's rotational theorem is only concerned with the kinematics of  the eigenaxis 
rotation, and it does not deal with the dynamics of  the eigenaxis rotation; how- 
ever, the following eigenaxis rotation theorems describe the complete closed-loop 
rotational dynamics of  a rigid spacecraft.17 

Theorem 7.1 

The closed-loop rotational motion of  a rigid spacecraft with the quaternion 
feedback control logic (7.74) is described by 

= - k q  - cco 

2 q = q4co  - co x q 

244 = _corq 

(7.75a) 

(7.75b) 

(7.75c) 

If  co(0) and q(0) are collinear at t = 0, then the resulting rotational motion is an 
eigenaxis rotation about q(0), and the solution co(t) and q(t) of  the closed-loop 
system dynamics described by Eqs. (7.75) will become collinear with q(0) for all 
t > 0, i.e., co × q = 0 for all t > 0. 

Proof." If w(0) and q(0) are collinear at t = 0, then Eq. (7.75a) indicates that 
co(t) and q(t) are collinear for all t > 0; i.e., co x q = 0 for all t > 0. Also, 
Eq. (7.75b), with co × q = 0, indicates that co(t) and q(t) are collinear for all 
t > 0. Consequently, the resulting rotational motion is an eigenaxis rotation about 
q(O). 

Theorem 7.2 

If  the angular velocity vector co(t) lies along the direction of  q(0), i.e., 

co(t) = a(t)q(0) 

where a(t) is a scalar function with a(0) = 0, then q(t) of  Eqs. (7.75) will remain 
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along the same direction of  q(0), i.e., the resulting motion is an eigenaxis rotation 
about q(0). 

Proof." This is a special case of  Theorem 7.1 with to(0) = 0. 

Problems 

7.15. Show that the closed-loop equation for a rest-to-rest reorientation maneuver 
about an eigenaxis using a control logic of  the form 

u = - k J q  - cJto + to x Jto 

simply becomes 

0 
0"+ cO + k sin-~ = 0  

Note: For a specified maneuver time (,~ 4/(co.) ,  the controller gain constants k 
and c can be determined approximately from the following relationship: 

k 
O +cO + 70 = 0"+ 2(w.O +oJZ.O = 0 

7.16. Repeat Problem 7.14 using a control logic of  the form 

u = - k J q  - eJto + to x Jw 

Note: A rest-to-rest eigenaxis rotation is characterized by a straight line in qi vs 
qj plots (i, j = 1, 2, 3). 

7.3.3 Cascade-Saturation Control Logic 
Consider the rotational equations of motion of  a rigid spacecraft described by 

2~1 = f(q, w) = q-~/1 - Ilqll z to - w × q (7.76a) 

tb = g(to, u) = J - I ( - w  x Jw + u) (7.76b) 

where J is the inertia matrix, q = (ql, q2, q3) is the quaternion vector, to = 
(o91, co2, o93) is the angular velocity vector, u = (ui, u2, u3) is the control input 
vector, and 

ilqll 2 = q r q  = q2 + q2 + q23 

The state vector of  the system, denoted by x, is then defined as 

x f: ]  
A dynamic system described by a set of  differential equations of the form of 

Eqs. (7.76) is called a cascaded system because q does not appear in Eq. (7.76b). A 
cascade-saturation controller is introduced here for such a cascaded system, based 
on Ref. 17. 

Saturation functions to be employed for the cascade-saturation controller are 
first defined as follows. 
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Definition 7.1 

A saturation func t ion  of an n-dimensional  vector x = (xl . . . . .  x , )  is defined as 

where 

satl(Xl) 
sat2(x2) 

s a t ( x ) =  

satn(xn) 

x if xi > x + 

= xi if x 7 < xi < xi + (7.77) 
sat(x/)  x Z  i f x i  < x 7 

The normalized lower and upper bounds can be assumed as 4-1 for all i, without 
loss of  generality. 

Similarly, a s ignumfunc t i on  of an n-dimensional vector x is defined as 

sgn ( x l ) ]  
sgn (x2) / 

sgn (x) = . 

Lsgn ( x . ) J  

where 

+1 i f  xi > 0 
sgn (xi) = 0 if xi = 0 

--1 if  xi < 0 
(7.78) 

Definition 7.2 

A normal ized saturation function of  an n-dimensional vector x is defined as 

sat(x) = [ x if ~r(x) < 1 
x / t r (x)  i f t r (x)  _> 1 (7.79) 

/ 

where tr(x) is a positive scalar function of  x, which characterizes the largeness of  
the vector x. 

Because the largeness of  a vector x is often characterized by its norms, we 
may choose or(x) = Ilxl12 = ~ or ~(x) = Ilxll~ = maxi Ixil. Note that the 
normalized saturation of  a vector x as defined here has the same direction of  the 
vector x itself before saturation; i.e., it maintains the direction of the vector. 

Definition 7.3 

A state feedback controller of the following form is called the m-layer  cascade- 
saturation controller: 

U = Qm sat(Pmx + . . .  + Q2 sat[P2x + Ql sat(Plx)])  (7.80) 
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where Pi and Qi are the controller gain matrices to be properly determined. If 
Qi and Pi are diagonal matrices, then we have an m-layer decentralized cascade- 
saturation controller. 

The control logic described by Eq. (7.80) is a generalized form of a saturation 
controller. A cascade-relay or poly-relay control algorithm similar to Eq. (7.80) 
has also been suggested in the literature using the signum function instead of the 
saturation function. The simplest form of a two-layer cascade-saturation control 
logic for a rigid spacecraft can be expressed as 

u = Q2 sat[P2w + Q1 sat(Pj q)] (7.81) 
O" 

A typical rest-to-rest eigenaxis maneuver with slew rate constraint is now con- 
sidered, which will be called a constrained rest-to-rest maneuver. The maneuver 
consists of the following three phases: 1) acceleration, 2) coast, and 3) deceleration. 
In the spin-up acceleration phase, the spacecraft will accelerate about the eigenaxis. 
In the coast phase, it rotates about the eigenaxis at a constant slew rate. In this 
coast phase, the control input and the body rates are kept in a quasi-steady mode. 
The following iemma guarantees the existence of such a quasi-steady coast phase. 

Lemma 7.1 

If a dynamic system described by Eqs. (7.76) is exponentially stabilized by the 
two-layer saturation control logic (7.81) in a constrained rest-to-rest maneuver 
problem, and if there exists a sufficiently large time instant t* such that for t < t*, 
I(Plq)il > 1 Vi, then there exists a time interval [t, t*] in which the angular 
velocity vector w is in a quasi-steady mode. 

Proof" As t approaches to t*, the closed-loop system becomes 

= f(q, w) (7.82a) 

6a = g(w, Q2 sat[e2w + Q1 sgn(e,q)]) (7.82b) 

For t 6 (t*, ~ )  the closed-loop system becomes 

c] = f(q, w) (7.83a) 

~b = g(w, Q2 sat[P2w + Q, sat(Pnq)]) (7.83b) 

Because the closed-loop system in a constrained rest-to-rest maneuver problem 
is assumed to be exponentially stabilized, both Eqs. (7.82) and (7.83) should be 
exponentially stable. As a result, along the trajectory of Eqs. (7.82) the slew rate 
IIw(t)ll should increase. If t* is sufficiently large, IIw(t)ll will become a constant 
slew rate IIw*tt whereas w* satisfies 

g(~*,  Q2 sat[P2w* + On sgn (Pvq)]) = 0  (7.84) 

which is in fact an algebraic equation for w*. If the settling time ts is smaller 
than t*, then during the time interval [ts, t*], w is very close to w*, i.e., w is in a 
quasi-steady mode; i.e., 6J ,~, 0. 
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Lemma 7.2 

I f  a dynamic system described by Eqs. (7.76) is exponentially stabilized by 
Eq. (7.81) in a constrained rest-to-rest maneuver problem, and if the following 
conditions are satisfied: 

COTg(CO, Q2 sat[P2co + Ql sgn (P, q)])  _> 0, if o(Pl q) >_ 1 
\ a / 

coTg( co, Qz sat(P2co + Q1P]q))  < 0, if cr(P]q) < 1 

then the slew rate Ilco(t)ll will never exceed its upper bound Ilco* II. 
i T Lyapunov function, and considering the Proof." By defining V = ~co co as a 

time derivative along the closed-loop trajectory and Lemma 7.1, we can obtain the 
proof of  this lemma. 

7.3.4 Eigenaxis Rotation Under Slew Rate Constraint 

Consider a rigid spacecraft that is required to maneuver about an inertially fixed 
axis as fast as possible, but not exceeding the specified maximum slew rate about 
that eigenaxis. It will be shown that the following saturation control logic provides 
such a rest-to-rest eigenaxis rotation under slew rate constraint: 

u = - K  sat(Pq) - Cco + co × Jco (7.85) 

where 

K = d i a g ( k l ,  k2, k3) J 

P = d i a g ( p l ,  P2, P3) 

C = c J  

and ki, Pi, and c are all positive scalar constants that are the control design pa- 
rameters to be properly determined. Notice the similarity between this saturation 
control logic and the eigenaxis slew control logic (7.74). 

The closed-loop attitude dynamics of  a rigid spacecraft employing the saturation 
control logic of  Eq. (7.85) are then described by 

J ~  = - K  sat(Pq) - Cw 

2 q = q4co - co × q 

244 = _COTq 

(7.86a) 

(7.86b) 

(7.86c) 

The following lemma and theorem characterize the rotational motion of  a rigid 
spacecraft described by Eqs. (7.86). 

Lemma 7.3 

Let Oma x be the maximum slew rate about an eigenaxis allowed by saturating 
rate gyros; i.e., I O(t)l < Omax, and nonzero qi(O) are specified with w(O) = 0 for 
a rest-to-rest maneuver. It is assumed that t* is a time instant at which there exists 
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at least one axis such that Ipiqi(t*)l = 1, and qi(O)qi(t) > 0 for all i and for all 
t 6 [0, t*]. I f  we choose 

Iqi(0)l 0max (7.87a) ki = c ~  

KP = kJ (7.87b) 

where k ---- k i p  i is a positive scalar constant, then we have the following results 
for all t E [0, t*]: 

1) The rotational motion described by Eq. (7.86) is an eigenaxis rotation about 
q(O). 

2) The actual slew rate about the eigenaxis is bounded as 

IIw(/)ll < 0ma~ 

and it increases monotonically. 
3) The attitude error [Iq(t)ll decreases monotonically. 
4) At time t*, we have 

[piqi(t*)] = 1 for all i = 1, 2, 3 

Proof" 1) Substituting Eqs. (7.87) into Eqs. (7.86), we obtain 

C0max 
= ~ 1  q ( 0 )  - cw (7.88) 

The solution of  Eq. (7.88) can be expressed as 

f0 t to(t) = e-Ctw(O) - e_C(t_r) COmax [Iq(0)ll q(0) d r  (7.89) 

Because we are concerned with a rest-to-rest maneuver, i.e., w(0) = 0, Eq. (7.89) 
is rewritten as 

w(t) = - f (t)q(0) (7.90) 

where 

(1 - -  e-ct)Omax 
f ( t )  = > 0 (7.91) 

IIq(O)ll 

Because w(t)  lies along q(0), Theorem 7.2 implies that q(t) also lies entirely along 
q(0), i.e., there exists a scalar function g(t) such that 

q(/) = g(t)q(O) (7.92) 

for all t > 0. This means that the resulting motion is an eigenaxis rotation. 
2) From Eqs. (7.90) and (7.91), we obtain 

IIw(t)l] ~ (1 -ct • = = - e )0max 

which is obviously less than 0max and Ilw(t)ll increases monotonically. 
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3) Substituting Eqs. (7.90) and (7.92) into the quaternion kinematic differential 
equations, we obtain 

g(t)  (7.93) = --½q4f(t) 

The solution of Eq. (7.93) can be expressed as 

g(t) = 1 - ~ q 4 ( r ) f ( r )  d r  (7.94) 

From Eqs. (7.91) and (7.93), we obtain 

g(t)  < 0 

and IIq(t)ll decreases monotonically. 
4) Because k i P i  = k for i = 1,2, 3, we have 

kllq(0)ll 
Pi = 

clqi(O)lOma~ 

and 

IPiqi(t)l - k Iio,, ._,(0)lJ Ig(t)l 
C0max 

Furthermore, there exists a time instant t* satisfying 

C0max 
Ig(t*)[ - - -  

kllq(0) ll 

such that IPiqi(t*)l = 1 for of  all i, i.e., all of  the elements of  q(t) depart the 
coasting phase at the same time. 

The preceding lemma characterizes the properties of  the closed-loop system 
described by Eqs. (7.86) for t E [0, t*]. The following theorem characterizes the 
closed-loop system described by Eq. (7.86) in the entire time interval 0 < t < oo. 

Theorem 7.3 

The closed-loop system described by Eqs. (7.86) has the following properties: 
1) The entire time interval [0, oo] consists of  the three motion phases, called the 

acceleration, coast, and deceleration phases, with the time intervals [0, t~], [ts, t*] 
and [t*, c~), respectively, whereas ts and t* can be approximated as 

4 
t s ~ -  

¢ 

• tan-  i 
t* ~ ts + 0max | qa(ts) 

2) The resulting rotational motion is an eigenaxis rotation for all t 6 [0, cx~). 
3) The quaternion vector q(t) and the angular velocity vector w(t)  become zero 

as t approaches (x~. 
4) The slew rate is bounded by 0max for a properly chosen c. 
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Proof." 1) From part 2 of  Lemma 7.3, we have the three motion phases: the 
acceleration, coast and deceleration phases. Because the angular velocity has the 
form (7.90) and the slew rate approaches Ùmax with the time constant l / c ,  the 
settling time for this acceleration phase can be approximated as ts. For t < 5, 
Ilw(t)ll increases quickly and the acceleration phase is [0, ts]. 

Because 1 - e -Ct ~ 1 for t > ts, w is in a quasi-steady mode for t > t~. Hence, 
the coast phase starts from t = t~. 

Assuming that the coast phase ends at t = t*, we can estimate t* as follows. 
During the coast phase, w is very slowly changing and we can approximate it as 

0max 
co(t) ~ - - - q ( O )  = w* 

IIq(0)ll 

Substituting w* into the quaternion kinematic differential equations of the follow- 
ing form: 

where q = ( q l ,  q2, q3, q4) and 

~1 = f(~], w) (7.95) 

f(~, w) = F(w)~ 

1 --0)3 0 0)t w2 
F(w) = ~ O9 2 - -O)  1 0 

--0)1 --0)2 --0)3 

and simplifying the resulting equations, we obtain the following equation: 

ti = v(, , ,*)~ 

= F(w*)F(w*),~ = - [ 0 m a x / 2 ] 2 ~  

Because the motion is an eigenaxis rotation at t = ts, we have 

1 Omaxq4(ts) 
q( ts)  = -~q4(ts)CO* --  211q(0)ll q(0) 

For ts < t < t*, we have 

q(t) = , /1 + q~(t~___._~) s in[0max( / -  ts)/2 - ~]q(0) 
V IIq(0)ll 2 

where 

4~ = t an- '  [ I[q(O)ll ] 
[ q4(ts) J 

At the end of the coast phase, q(t) becomes nearly zero and we have 

24, 
t * ' ~ 5  + -  

max 

For t _> t*, we have the deceleration phase. 

(7.96) 

(7.97) 
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2) From Lemma 7.3, we know that all of  the components of  q(t) reach the linear 
range of the saturation function at the same time, i.e., the closed-loop equations for 
t > t* are the same as Eqs. (7.75). At t = t*, q(t*) and w(t*) lie along the vector 
q(0). From Theorem 7.1, the rotational motion is an eigenaxis rotation. Also part 
1 o f L e m m a  3 leads to the following conclusion: the closed-loop rotational motion 
is, in fact, an eigenaxis rotation for all t 6 [0, oo). 

3) For the deceleration phase, consider the closed-loop system described by 
Eqs. (7.75) and a positive definite function of the form 

V = (1/k)V`0 + Vq 

where the quaternion Lyapunov function Vq and the angular velocity Lyapunov 
function Vo~ are defined as follows: 

Vq = q~ + q2 + q2 + (1 - q 4 )  2 (7.98) 

v w =  l 2 ~(~o 1 + o92 + w 2) (7.99) 

The time derivative of  V along the closed-loop trajectory described by Eqs. (7.75) 
becomes 

9 = - ( c / k ) w r w  < 0 

This means that the closed-loop system is asymptotically stable, and q(t) and w(t) 
will become zero. 

For t > t*, however, we have 

9`0 = - c w r  w - kqr w 

If  l)q < 0, then it is possible to have 9,0 > 0, i.e., it is possible for the rate 
limitation to be violated. In the following statement, it will be shown that this 
situation can be avoided by properly choosing c. 

4) The closed-loop stability is guaranteed by part 3 of  this theorem during the 
deceleration phase, but the rate constraint is not necessarily guaranteed as discussed 
earlier. Because the maneuver is an eigenaxis rotation, Eq. (7.75) becomes 

O ' + c O + k s i n ( O / 2 ) = O  f o r t > t *  (7.100) 

with the following initial condition 

O(t*) = 2sin -1 [g(t*)] 

where 0 is the rotational angle about the eigenaxis. 
At the end of the coast phase, it is reasonable to assume that 0 is small. Conse- 

quently, we have 

/, ° O + c O +  = 0  f o r t > t *  
2 

Then we can properly choose k and c as follows: 

k = 2w~ 

c = 2 (w.  
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where ~" and w, are the desired damping ratio and the natural frequency, which 
characterize the second-order dynamics of  the desired slew rate during the decel- 
eration phase. It is clear that the slew rate will not exceed 0m~ for all t ~ [0, o0) 
if we do not choose a small ~. 

7.3.5 Slew Rate and Control Constraints 

We now consider a rigid spacecraft that is required to maneuver about an in- 
ertially fixed axis as fast as possible, but within the saturation limits of  reaction 
wheels as well as rate gyros. 

Let ri denote the torque generated by the ith reaction wheel, and also assume 
that 

Iril _ ~;, i --  1 . . . . .  £ (7.101) 

where e is the number of  the reaction wheels and "Ei is the maximum torque of the 
ith reaction wheel. Usually, £ > 3 to allow the failure of  at most e - 3 reaction 
wheels. 

The control torque inputs ul ,  u2, and u3 along the body-fixed control axes are 
generated by reaction wheels, and in general the control input vector u can be 
expressed as 

u = a l r l  + a2r2 + • • • + atre  

where ai E 7~. 3 is the torque distribution vector of  the ith reaction wheel and 
aTai = 1 for all i. The torque distribution matrix is defined as 

A = [ a l  a2 . - ,  ae ]  

and u = AT-. At  least three column vectors of  A must be linearly independent or 
(AAT) - l  must exist for independent three-axis control. 

For the commanded control input vector uc, the reaction wheel torque command 
is determined as 

T c  = A+uc 

where A + = AT(AAT) -1 is the pseudoinverse transformation matrix.* For  an 
ideal case without actuator dynamics and saturation, the reaction wheel torque 
vector ~- = ~-c is then physically redistributed as u = AT, and the spacecraft will 
be acted on by the control input vector u, which is the same as the the commanded 
control input vector Uc. If  a torque saturation occurs in one of  reaction wheels, 
however, then u ~ Uc and "1" :f- r e .  

Now we consider a control logic that accommodates  possible torque saturation 
of the reaction wheels, but that still provides an eigenaxis rotation under slew rate 
constraint. 

The commanded control input vector Uc that accommodates  the slew rate con- 
straint is given as 

Uc = - K  sat(Pq) - Co¢ 

*A + is also called the Moore-Penrose inverse of A, or a generalized inverse of A. 
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and, furthermore, we choose 

P = d iag(p l ,  P2, P3) 

K = diag(kl,  kz, k3) J 

C = cJ  

Iqi(0)l 
k i = c ~  ffmax (7.102a) 

IIq(0)ll 

K P  = kJ  (7.102b) 

where k is a positive scalar and it is assumed that qi(O) yA 0 for all i. 
The reaction wheel torque command rc for the commanded control torque Uc 

is then determined as 

7-c = A+uc 

To keep the reaction wheel torque vector 7- even in the presence of  saturation lie 
in the same direction as 7-c, we use the maximum value of  the components of  7-c 
to normalize it. Thus, we choose the following criterion: 

or(q, w) = IITrc I1~ = max I(Trc)il (7.103) 
i 

where 

T = d iag(1 /? l ,  1 / ~  2 . . . . .  1/?e) 

The actual reaction wheel torque vector acting on the spacecraft then becomes 

r c  i f t r (q ,  aJ) < 1 
7- =sat ( rc)o  = r c / ~ ( q , w )  i f c r ( q , w )  > 1 

The control input vector u acting on the spacecraft, which is generated by the 
saturated torque vector r ,  becomes 

u = A r  = A sat(7-c) = A sat(A+uc) 
¢7 O" 

and, thus, we have 

u = sat(uc) 

Finally, we have the following equivalent expression of  the saturation control logic: 

u = - s a t [ K  sat(Pq) + Cw] (7.104) 
o" 

Case of negligible gyroscopic coupfing, The gyroscopic term is not sig- 
nificant during most practical rotational maneuvers, and the term can be neglected 
without much impact on performance and stability. For such a case, let 

I if ~(q, w) _< I 
#(q'~)-- a(q,w) if a(q,w)> I 
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Then the closed-loop dynamics of  a rigid spacecraft during the acceleration and 
coast phases can be described by 

C~max 
/z(q, co)g, = - - - q ( 0 )  - c ~  (7.105a) 

IIq(0)ll 

2ci = q4 w - w × q (7.105b) 

2c]4 = _ ~ r q  (7.105c) 

From the definition of ~r(.), we have 

/z(q, co) = a + b r  w 

where a is a scalar constant and b is a 3 × 1 column vector. If  or(q, w) < 1, then 
a = 1 and b = (0, 0, 0); otherwise there are no limitations on a and b. 

The solution ~( t )  of  the homogeneous differential equation of  Eq. (7.105a) 
during the acceleration phase satisfies 

(a + b r ~ )  do = - c ~  

or it satisfies the following iteration form: 

~ ( t )  = exp - ~(0)  = f ( t )Co(O)  
a +  

Hence, the solution of Eqs. (7.105) can be expressed as 

f t C~ma x 
~o(t) = f ( t )~o(O)  - Jo f ( t  - r ) ~ q ( 0 ) d r  

If  w(0) = 0, we obtain 

w(t) = f ( t )q(0)  

From Theorem 7.2 we have 

q(t) ---- ~(t)q(O) 

i.e., the maneuver during the acceleration and coast phases is still an eigenaxis 
rotation even in the presence of  control torque saturation. 

During the deceleration phase, the closed-loop system is described by 

kt(q, ~)~b = - k q  - c w  (7.106a) 

2q  = q4~ - w × q (7.106b) 

2c]4 = - - w T q  (7.106C) 

and the resulting motion is still an eigenaxis rotation. Furthermore, we have 

0 ' + - - 0 + - - s i n  = 0  
/z /z 

This equation is the same as Eq. (7.100) except the positive factor/z. Hence, we 
have a similar result to Theorem 7.3, i.e., the maneuver in the deceleration phase 
is an eigenaxis rotation, q and w will be regulated to zero, and the magnitude of  
the angular velocity will never exceed /gmax for a properly chosen c. 
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Case of significant gyroscopic coupling. The closed-loop system including 
the gyroscopic coupling term is described by 

J& = -oa × Jw - sat[K sat(Pq) + Cw] (7.107a) 

2¢] = q4ta - ~ X q (7.107b) 

2 q4 : --wrq (7.107C) 

During the acceleration and coast phases, we have 

/z(q, w)& = -# (q ,  w ) J - l w  X Jw --COmax q(O) - cw 
IIq(0) ll 

and 

I sat(Pq)il = 1 (7.108) 

C/~max 
I/z(q, w)(J-~w x Jw)iJ < ~ q ; ( 0 )  (7.109) 

where subscript i denotes the ith component of a vector (.). This implies that 

sgn(o3i) = -sgn(qi), i = 1, 2, 3 

The time derivatives of Vq and Vo~ along the closed-loop trajectory described by 
Eqs. (7.107) satisfy 

f'q < 0 and f',o > 0 

and during the acceleration phase, the slew rate increases and the quaternion de- 
creases. 

During the coast phase, the angular velocity vector becomes w* satisfying 

w* x Joa* + sat[Ksgn(Pq) + Coa*] = 0 (7.110) 

These are algebraic equations independent of q. During this period, the control u 
is near constant and we have 

u *  = - to*  x Jw* 

Problem 

7.17. Consider the near-minimum-time eigenaxis reorientation problem of the 
XTE spacecraft subject to slew rate and control torque constraints. The XTE 
spacecraft with the inertia matrix 

16292 0 0 ] 
J = 0 5477 0 kg • m 2 

0 0 2687 
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is equipped with four skewed reaction wheels. The torque distribution matrix from 
the reaction wheel torque vector'7- to the spacecraft control input vector u is given as 

I- cos - c o s  # cos - c o s  t3-] 
A = / s i n f l  0 - s i n  fl u / 

k o  - s i n  fl 0 sin fl J 

where the skew angle fl is chosen as 45 deg. The maximum torque level of  each 
reaction wheel is given as ('i = 0.3 N.m, and the maximum slew rate is given as 
0max = 0.2 deg/s,  which is about 90% of the low-rate gyro measurement capability. 

The initial quaternions for a specific reorientation maneuver are given as 

t)(0) = (0.2652, 0.2652, -0 .6930 ,  0.6157) 

which corresponds to a 104-deg slew angle about the eigenaxis q(0) = (0.2652, 
0.2652, -0 .6930) .  The slew should ideally be completed in 8.7 min. 

(a) Synthesize a saturation control logic of the form 

u~ = - K  sat(Pq) - Cw 

7-c = A+uc where A + = AT(AAT) - I  

7 " =  sat(7"c) 
O" 

u = A T "  

Hint: If we choose ~" = 0.707 and ton = 0.1 rad/s, then we have 

C = diag(889, 774, 380) 

K P  = diag(126, 110, 54) 

K = diag(kn, k2, k3)J = diag(1.0452, 0.9098, 1.1667) 

P = k K - I J  = diag(120, 120, 46) 

(b) Perform computer simulation of the closed-loop system, and verify that a 
near bang-off-bang, eigenaxis maneuver is, in fact, achieved under the slew rate 
and control torque constraints. 

Note: See Ref. 17 for additional information pertaining to this problem. 

7.4  A t t i t u d e  Contro l  a n d  M o m e n t u m  M a n a g e m e n t  

This section, based on Refs. 18-20, is concerned with the attitude control and 
momentum management problem of  a large space vehicle in low Earth orbit, such 
as the International Space Station, as shown in Fig. 7.4. 

7.4.1 Introduction 

Large space vehicles, such as Skylab of the 1970s, the Mir space station, and 
the International Space Station, employ control moment  gyros (CMGs) as primary 
actuating devices during normal flight mode operation. Because the CMGs are mo- 
mentum exchange devices, external control torques must be used to desaturate the 
CMGs, that is, bring the momentum back to its nominal value. Some methods for 
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Fig. 7.4 Large space vehicle in low Earth orbit. 

unloading CMG momentum include the use of magnetic torques, reaction jets, 
and gravity-gradient torque. For a large spacecraft in low Earth orbit, such as the 
International Space Station, the gravity-gradient torque approach is preferred be- 
cause it requires no consumables or additional hardware. One approach to CMG 
momentum management is to integrate the momentum management and attitude 
control design. In this continuous, closed-loop control of both the CMG momen- 
tum and vehicle attitude, the design objective is to establish a proper tradeoff 
between spacecraft pointing and CMG momentum management, while satisfying 
the specific mission requirements. 

The International Space Station will be controlled by four parallel mounted 
double-gimbal CMGs. A CMG of the International Space Station consists of a 
large wheel rotating at a constant speed (6600 rpm) and producing an angular 
momentum of 3500 ft-lb-s about its spin axis. This rotating wheel is mounted in 
a two-degree-of-freedom gimbai system that can point the spin axis (momentum 
vector) of the wheel in any direction, i.e., the tip of the angular momentum vector 
can be placed anywhere on a sphere of radius 3500 ft-lb-s. The CMG generates an 
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output reaction torque that is applied to the Space Station by inertiaily changing 
the direction of its wheel momentum (spin axis). The CMG output torque has two 
components, one proportional to the rate of change of the CMG gimbals and a 
second proportional to the inertial body rate of the Space Station as sensed at the 
CMG base. Because the momentum along the direction of the spin axis is fixed 
(constant wheel speed), the output torque is constrained to lie in the plane of the 
wheel. As a result, one CMG is insufficient to provide the three-axis torque needed 
to control the attitude of the Space Station. To provide attitude control at least two 
CMGs are required. 

The Space Station CMG assembly consists of four parallel mounted double- 
gimbal CMGs with two of the four CMGs mounted antiparallel with the other 
two. The four CMGs have a spherical momentum storage capability of 14,000 
ft-lb-s, the scalar sum of the individual CMG wheel momentum. The momentum 
stored in the CMG system at any given time equals the vector sum of the individual 
CMG momentum vectors. To maintain the desired attitude, the CMG system must 
cancel, or absorb, the momentum generated by the disturbance torques acting on 
the Space Station. If the average disturbance torque is nonzero, the resulting CMG 
output torque will also be nonzero and momentum will build up in the CMG sys- 
tem. Once the CMG system saturates, i.e., all of the CMGs' momentum vectors 
have become parallel and controllability about the parallel line is lost, it is unable 
to generate the torque required to cancel the disturbance torque and loss of attitude 
control results. To prevent the CMG system from saturating, a continuous gravity- 
gradient momentum management system will be employed for the Space Station. 

In this section the CMGs are assumed as ideal torquers, i.e., the CMG gimbal 
dynamics and CMG steering logic are ignored. The attitude control and momen- 
tum management technique to be presented in this section is, however, applicable 
to any CMG-equipped spacecraft. A brief overview of the CMG steering logic 
design problem associated with different CMG configurations will be presented 
later in Sec. 7.5. 

Most large spacecraft are, in fact, flexible multibody vehicles with time-varying 
inertias, as can be seen in Fig. 7.4; however, they can be considered single rigid 
bodies for the practical design of a low-bandwidth, integrated attitude/momentum 
controller. All states of the rigid vehicle are usually available for feedback control 
from the strapdown inertial reference system of the vehicle. 

7. 4.2 Mathematical Models for Control Design 
Consider a rigid spacecraft in low-Earth circular orbit, which is expected to 

maintain local-vertical and local-horizontal (LVLH) orientation during normal 
mode operation. As discussed in the preceding chapter, the nonlinear equations 
of motion of a rigid body in circular orbit can be written, in terms of components 
along the body-fixed control axes, as follows. 

Attitude kinematics for the Cl (01) + -  C3(03) + -  C2(02) sequence: 

, co.o3o cososi.O3co.o , + [i] 
03 cos03 0 sin01 cos03 cos01 cos03_] w3 

(7.111) 
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Rigid-body dynamics: 

E..2,31E  1 E 0 ., .,lr. ,2.31E.l J21 J22 J23 / 0)2 = - -  093 0 --09 /J2, J22 / 092 
J31 ,]32 J33_j 0)3 --092 091 O 1 L J31 J32 J33.J 093 

I 0 - C 1 3  0 .J CI2q rJll J12 J13] rCll 1 [-Ul+d,] 
+ 3 n  2 C13 0 -C11 / /J21 J22 J23[ [C12 / -q- -u2+d2  

L-CI2 Cll L J31 J32 J33.J LCI3.J --U 3 + d3 

(7.112) 

where 

Ctx = - s in  Oz cos 03 

C12 = cos 01 sin Oz sin 03 -4- sin 01 cos 0 2 

C13 = -sin01 sin02 sin03 + cos01 cos02 

CMG momentum dynamics: 

E'I E ° "21Ehl Eul it 2 "t- 093 0 -091 h2 = u2 
h3 -092 091 0 h3 u 3 

(7.113) 

where subscripts 1,2, 3 denote the roll, pitch, and yaw control axes whose origin is 
fixed at the mass center, with the roll axis in the flight direction, the pitch axis per- 
pendicular to the orbit plane, and the yaw axis toward the Earth; (01,02, 03) are the 
roll, pitch, and yaw Euler angles of the body-fixed control axes with respect to the 
LVLH axes that rotate with the orbital angular velocity n; (091,092, 093) are the 
body-axis components of the absolute angular velocity of the vehicle; (Jll, J22, 
,/33) are the moments of inertia; Jij (i # j) are the products of inertia; (hi, h2, 
h3) are the body-axis components of the CMG momentum; (ul, u2, u3) are the 
body-axis components of the control torque caused by CMG momentum change; 
(dl, d2, d3) are the body-axis components of the external disturbance torque; and 
n is the orbital rate. 

Without loss of generality, we consider in this section a large space vehicle 
shown in Fig. 7.4 with the following inertia matrix: 

[Jll J12 J13 1 [ 5 0 . 2 8  -0 .39  0.16q 
J21 J22 J23 = -0 .39  10.80 0.16 / x 106 slug-ft ~ 

J31 ,]32 J33 0.16 0.16 58.57_] 

The uncontrolled vehicle is in an unstable equilibrium when 01 = 02 = 03 = 0. 
The external disturbance torque mainly consists of aerodynamic drag torque that 
can be modeled as bias plus cyclic terms in the body-fixed control axes; i.e., di in 
foot-pound are modeled as 

d l =  1 + sin(nt) + 0.5 sin(2nt) 

d2 = 4 + 2 sin(nt) + 0.5 sin(2nt) 

d3 = 1 + sin(nt) + 0.5 sin(2nt) 
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where n = 0.0011 rad/s, and magnitudes and phases are unknown for control 
design. The cyclic component at orbital rate is due to the effect of the Earth's 
diurnal bulge, whereas the cyclic torque at twice the orbital rate is caused by the 
rotating solar panels. 

For small attitude deviations from LVLH orientation, the linearized equations 
of motion can be obtained as follows. 

Attitude kinematics: 

Rigid-body dynamics: 

Jll J12 J13 1 
J21 J22 J23[ 
J31 J32 J33_J 

01 - nO3 = 0)1 (7.114a) 

02 -- n = 0)  2 (7.114b) 

03 ']- nOl = 0)3 (7.114c) 

r  221E 11 052 = n / -J32 0 J'2 / 0)~ 
053 L J22 - Jll - 2 J l z  -J13 J 093 

J33 -- Jll 02 -1- n2 / 3Jl3/  + --uz + dz 

-J23 03 L - J12J  -u3  + d3 
(7.115) 

F J33 - J22 
+ 3 n  2 [ J12 

L -J13 

CMG momentum dynamics: 

hi -- nh3 = U l  (7.116a) 

h 2 = U 2 (7.116b) 

h3 + nhl = u3 (7.116c) 

Combining Eqs. (7.114) and (7.115), we obtain the linearized equations of 
motion as 

J2  131E,1] 
J21 J22 J23 0"2 
J31 J32 J33 03 

I 0 2J32 Jll -- J22 + ,]33 
= n -2J32 0 2J12 

- J l l  + J22 - J33 -2J12 0 lEiil 
q.-rt 2 

3J2  lEoll 
4J12 3(.]33 - Jl l)  J32 02 

--4J13 -3J23 Jll -- J22 03 

E4 31 1 Ul+ l 
-F n 2 3J13 + -u2  + d2 

Jl2 - u3  + d3 

(7.1 17) 
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Note that the products of  inertia cause three-axis coupling as well as a bias torque 
in each axis. Fortunately, most practical situations of  interest with small products 
of  inertia permit further simplification in such a way that pitch motion is uncoupled 
from roll/yaw motion. Otherwise, Eq. (7.117) should be used for three-axis coupled 
stability analysis and control design. 

For most practical cases in which the control axes are nearly aligned with the 
principal axes, i.e., Jl = Jll ,  J2 = J22, and .]3 = -/33, and attitude deviations from 
the desired LVLH orientation are small, we have the following set of  linearized 
equations of  motion for control design: 

J1 (-hi + n ( J 2  - ,/3)o23 + 3n2(J2 - J3)01 = -Ul  + d l  (7.118a) 

J2o)2 "q'- 3nZ(JI -- J3)02 = - u 2  + d2 (7.118b) 

J3 d)3 -- n(J2 - Jl)wl = - u 3  + d3 (7.118c) 

Ol -- nO3 = o91 (7.118d) 

02 - n = w2 (7.118e) 

03 + nO1 = 0)3 (7.118f) 

hi - nh3 = ul (7.118g) 

]~2 = U2 (7.118h) 

1~3 + nh l  = u3 (7.118i) 

A set of  linearized equations of  motion in terms of  Oi and h i can also be obtained as 

Jl O'l + 4n2(Jz - J3)O1 - n(J l  - J2 + J3)03 = - u l  + d l  (7.119a) 

JzOz + 3n2(J1 - J3)02 = - u 2  + d2 (7.119b) 

J 3 0 " 3 + n Z ( J z - - J l ) O 3 W n ( J 1 - J z W J 3 ) 0 1  = - u 3  + d 3  (7.119c) 

hi - nh3 = ul (7.119d) 

h2 = u2 (7.119e) 

h3 + nhl  = u3 (7.119f) 

Certain assembly configurations of  the large space vehicle shown in Fig. 7.4 may 
need a large torque equilibrium attitude (TEA) in the pitch axis because of  the small 
gravity-gradient torque available in the pitch axis. In such cases, Eqs. (7.111) and 
(7.112) with small roll/yaw attitude errors and small products of  inertia become 

J1 0"1 q- (1 + 3 cos 2 O2)n2(J2  - J3)01 - n ( J l  - J2 + J3)03 

+ 3(J2 - J3)nZ(sin 02 cos 02)03 = - u l  + d~ (7.120a) 

J2 0"2 Jr- 3nZ(J1 -- J3) sin 02 cos 02 = - u z  + d2 (7.120b) 

,/3 ~/3 + (1 + 3 sin 2 0 2 ) n 2 ( J 2  - -  JI)03 -k-n(Jl - ,12 + J3)01 

+ 3(J2 - Jl )nZ(sin 02 cos 0z)01 = - u 3  + d3 (7.120c) 
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Fig. 7.5 Pitch-axis attitude and CMG momentum control system. 

It is evident from this set of equations that roll/yaw motion is affected by pitch 
motion. If pitch attitude is held constant with respect to the pitch TEA, the roll/yaw 
equations can be considered time invariant. These equations are also useful for 
roll/yaw controller design for the large space vehicle shown in Fig. 7.4 with a 
large pitch TEA. 

7. 4.3 Pitch Control Design 
Equation (7.119b), which is uncoupled from the roll/yaw equations, is used as 

the basis for pitch control analysis and design. A block diagram of the pitch-axis 
momentum/attitude control system is shown in Fig. 7.5. First we consider a control 
design that does not include the indicated cyclic- or periodic-disturbance rejection 
filter R2(s) followed by a control design that includes the filter. 

Pitch control without periodic-disturbance rejection. The pitch-axis con- 
troller consists of a single control input u2 and four states: 02, 6a, ha, and fh2. 
The pitch control logic is then given by 

U2 = K2p02 + K2D02 + K2H h2 + K21 f h2 (7.121) 

where the pitch-axis CMG momentum and its integral are included to prevent 
momentum buildup. 

Various methods may be employed for the selection of the four gains of Eq. 
(7.121). A pole placement technique may be used to place the closed-loop eigen- 
values at any desired location. The practical problem with this approach is that it is 
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not always clear where to place the eigenvalues for satisfactory performance and 
robustness. 

Pitch control design by iterative successive loop closures is possible, but quite 
tedious. The pitch controller can also be synthesized using an equivalent compen- 
sator. This approach provides physical insight into the proper tradeoff between the 
attitude control and the momentum management. Combining Eqs. (7.118h) and 
(7.121) to eliminate h2 gives an equivalent compensator of the form 

sZ(K2e + sK2o) 
02 (7.122) 

U 2 = S 2 _  K 2 H S - -  K21 

The integrated momentum/attitude controller can be interpreted as a second- 
order compensator with four parameters. The momentum controller consists of 
double zeros at the origin and complex poles. The attitude controller consists of 
one zero on the real axis, which is a conventional proportional-derivative controller. 
An unstable compensator is needed to stabilize the unstable system. It can be easily 
shown that h2(s)/d2(s) of the closed-loop system has a zero at s = 0. Thus, h2(t) 
has zero steady-state value for a constant disturbance. 

LQR synthesis of the pitch control with full-state feedback can be quickly 
accomplished using a computer code. The LQR technique makes use of a quadratic 
performance index to synthesize state-feedback gains that minimize the index, as 
was discussed in Chapter 2. It is especially useful for multivariable systems; all 
loops are closed simultaneously instead of successively as in classical frequency- 
domain methods. The problem with this approach, however, is that the proper 
selection of the weighting matrices is not obvious. It is not always possible to 
predict the effects of given weighting matrices on the closed-loop behavior. 

A practical approach to the pitch-axis controller design would be to find the 
control gains and closed-loop poles that result from a wide range of weighting 
matrices, and to simulate the corresponding closed-loop system. The gain matrix 
that produces the closed-loop responses satisfying the various requirements would 
become the final selection. 

Pitch control with periodic-disturbance rejection. Depending on the cir- 
cumstances, either pitch attitude or CMG momentum oscillation, caused by the 
aerodynamic disturbance torque, may be undesirable. In such cases, a periodic- 
disturbance rejection filter can be employed as was illustrated in Fig. 7.5. 

The periodic-disturbance rejection filter is represented as 

Nz(s) 
R 2 ( s )  = (7.123) 

[s 2 + n2][s 2 + (2n) 2] 

The filter poles will appear in the numerator of the closed-loop transfer function 
02(s)/d2(s) or h2(s)/d2(s), depending on mode selection. This results in a distur- 
bance rejection at frequencies o fn  and 2n for either 02 or h2. The filter numerator 
N2(s) should be properly designed to stabilize the overall control system. 

The disturbance rejection filter for 02 can also be represented as 

a 2 q'- ( n )20/2 = 02 (7.124a) 

fi2 + (2n)2/32 = 02 (7.124b) 
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where initial conditions for 0/2, f12, ~2, and/~2 can be arbitrarily selected (usually 
zero initial conditions). These filter equations are integrated in the onboard com- 
puter. Each filter equation passes the filter states that carry undesired frequency 
components of 02. For example, 0/2 and Ot 2 carry the frequency component of 02 
at the orbital frequency n. The undesired component is rejected by feeding back 
the filter states. 

The pitch control logic, with additional disturbance rejection filter states, can 
then be expressed as 

= K2p02 + K2DO2 + K2Hh2 + K2,fh2 U2 

+ K2a0/2 + K2aot2 + Kz~f12 + K2/~/~2 (7.125) 

It is also possible to provide periodic-disturbance rejection for the pitch-axis 
CMG momentum. For this case, 02 of Eqs. (7.124) is replaced by h2. Proper gains 
of Eq. (7.125) are then selected. Depending on the specific mission requirements, 
either pitch attitude or CMG momentum can be held constant by employing the 
pitch controller illustrated in Fig. 7.5. 

Problems 
7.18. Consider the pitch-axis control design of the large space vehicle shown in 
Fig. 7.4. 

(a) Given the desired closed-loop eigenvalues -1 .5n,  -1 .0n,  and ( -1 .5  4- 
1.5j)n, determine a set of four gains of the pitch-axis control logic (7.121). 

Note: If an LQR code, instead of the pole-placement technique, is to be em- 
ployed, then determine a set of four gains for a control bandwidth of approxi- 
mately 1.5n. 

(b) Obtain the closed-loop, frequency-response magnitude plots of 

02(s) h2(s) 
and 

d2(s) d2(s) 

(c) Perform computer simulation of the closed-loop system (only pitch axis) 
subject to the aerodynamic disturbance d2 and initial conditions 02(0) = 1 deg and 
02(0) = 0.001 deg/s. 

Note: The periodic aerodynamic torque will cause the periodic responses of 
both pitch attitude and pitch-axis CMG momentum. The CMG momentum h2 will 
be bounded with zero mean value, whereas 02 is oscillating with respect to a -7 .5-  
deg pitch TEA. 

7.19. Consider the periodic-disturbance rejection control design for the pitch- 
axis of the large space vehicle shown in Fig. 7.4. 

(a) Determine a set of eight gains of the pitch-axis control logic (7.125) to 
achieve the desired closed-loop eigenvalues listed in Table 7.1. 

Note: If an LQR code, instead of the pole-placement technique, is to be em- 
ployed, then design a controller for a control bandwidth of approximately 1.5n 
and for an asymptotic disturbance rejection within three orbits. 
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Table 7.1 Closed-loop eigenvalues in units of  orbital rate, n = 0.0011 rad/s 

Momentum/attitude Disturbance filter 

Pitch -1.0, -1.5 -1.5 4- 1.5j -0.3 -I- 1.0j -0.3 =1: 2.0j 

Roll/yaw -0.23, -0.68 -0.66 4- 1.51j -0.23 4- 0.92j -0.20 4- 2.02j 

-1.02 4- 0.29j -1.50 4- 0.84j -0.26 4- 1.04j -0.62 4- 2.29j 

(b) Obtain the closed-loop, frequency-response magnitude plots of 

02(s) h2(s) 
and 

d2(s) d2(s) 

(c) Perform computer simulation of the closed-loop system with the pitch-axis 
aerodynamic disturbance and initial conditions of 02(0) = 1 deg and 02(0) = 0.001 
deg/s. 

Note: Because a disturbance rejection filter is used here for pitch attitude, an 
asymptotic disturbance rejection of a periodic disturbance of frequencies n and 
2n will be achieved for the pitch attitude. The CMG momentum will be bounded 
with zero mean value, while the pitch attitude is held constant at a -7 .5-deg pitch 
TEA after approximately two orbits. 

7.4.4 Roll~Yaw Control Design 

Similar to the pitch-axis control design, we consider here roll/yaw control design. 
Two cases are considered: the first without periodic-disturbance rejection filters 
and the second with the filters. 

Roll~yaw control without periodic-disturbance rejection. The first case of 
roll/yaw control design consists of two inputs ul and u3, and eight states, in- 
cluding two integral states for the CMG momentum. The eight states are the 
roll-axis 01, Wl, h 1, and f h I ; and the yaw-axis 03, w3, h3, and f h3. Note that body 
rates o~ and 093, instead of 0j and 03, are used as state variables. 

The roll/yaw full-state feedback controller can be designed, iteratively, using the 
linear quadratic regulator (LQR) or pole-placement techniques. The multi-input 
characteristics of the roll/yaw axes, however, provide for the calculation of various 
gain matrices that yield the same closed-loop eigenvalues. Although the gain matrix 
can be completely specified by assigning not only the closed-loop eigenvalues but 
also an allowable set of closed-loop eigenvectors, the conventional LQR technique 
can be employed to find a closed-loop system satisfying various requirements. 

Roll~yaw control with periodic-disturbance rejection. For the reduction of 
the steady-state oscillation of roll/yaw attitude and CMG momentum, periodic- 
disturbance rejection filtering for a multivariable system is described here. 
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Combining Eqs. (7.119a), (7.119c), (7.119d), and (7.119f), we obtain the trans- 
fer function matrix description of  the coupled roll/yaw dynamics as 

03(s)J = X G31 G33 [u3(s)  dg(s) 

, [  
hs(s )J  = s 2 + n z --n, u3(s)J (7.127) 

where 

A = JlJ3(s 2 -k n2)[s 4 -Jr- (1 + 3kl + klk3)n2s 2 -k 4klk3n 4] 

GI1 = - [ J 3 s  2 + (J2 --  J l ) n 2 ] (  s2 Jr- n 2) 

G13 = - ( J l  - J2 Jr- J3)ns(s 2 Jr n 2) = -G31 

G33 = - [ J i s  2 -q- 4(,/2 - J3)n2](s 2 -k- n 2) 

kl = (J2 - J3)/Jl and k3 = (J2 - J1)/J3 

It is apparent that --I-nj are transmission zeros of Eq. (7.126). In other words, a 
periodic disturbance at orbital rate cannot be rejected for both roll and yaw attitude. 
In addition, it can be seen in Eq. (7.127) that resonance of CMG momentum can 
happen for sinusoidal control inputs of  frequency n. For this case, where the CMG 
momentum dynamics are described by Eq. (7.116), it is not evident why a periodic 
disturbance at orbital rate can be rejected for the yaw attitude and not for the roll 
attitude. 

To investigate such inherent characteristics of  the coupled roll/yaw dynamics, the 
following CMG momentum dynamics, with a proper modification of  the equations 
of  motion of the vehicle, are considered: 

hi = ul (7.128a) 

h3 = u3 (7.128b) 

For this case, the following transfer function matrix description can be obtained 

o,(s)l 1Fc,, 
O3(s) l = S L C,?,, c,3., L u (s) j 

-t--~ - ( J I  - J2 -t- J3)ns Jls 2 + 4 ( J 2  - J3)nZJ d3(s)J 

h3(s)J = s L .3(s )J  

as: 

(7.129) 

(7.130) 
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where 

A = J1J3s2[s 4 + (1 + 3kt -t- klk3)n2s 2 + 4klk3n 4] 

Gll = -J3s2(s 2 + n 2) 

G13 = (J2 - Ji)ns(s 2 + n 2) 

G31 = (./3 - J2)ns[s 2 + (2n) 2] 

G33 = -s2[Jls  2 + (Jl + 3J2 - 3J3)n 2] 

kl = (-/2 - J3)/J1 and k3 = (J2 - JI)/J3 

It can be shown that +nj are transmission zeros of the transfer function matrix 
from (ul, u3) to (01,03). The zero at s = +nj appears in both the 01(s)/ul(s) 
and 01 (s)/u3(s) transfer functions, but not in yaw attitude channels. Therefore, a 
periodic-disturbance rejection at the orbital rate is not possible for roll attitude, 
whereas it is possible for yaw attitude. Furthermore, it can be shown that +nj 
are not transmission zeros of the transfer function matrix from (U l, U3) to (hi,  03). 
Consequently, a periodic-disturbance rejection for the roll-axis CMG momentum 
and yaw attitude can be achieved by employing roll/yaw periodic-disturbance 
rejection filters of  the form 

6il q- ( n )2oq = hi (7.131a) 

/~l + (2n)2/~1 = hi (7.131b) 

6/3 + ( n )2a 3 = 03 (7.131c) 

/~3 -t-- (2n)2/~3 = 03 (7.131d) 

Problems 

7.20. Consider the large space vehicle shown in Fig. 7.4, which is unstable in 
roll/yaw and has open-loop poles of  (4-1.05 4- 0 .7j)n,  +nj. The roll/yaw control 
logic is described by 

where Kij are 1 x 4  gain matrices and 

xl = 01 o91 hi h~ 

X3 = 03 093 h3 h3 

(a) Determine a 2×8  gain matrix of  the roll/yaw control logic for the fol- 
lowing desired closed-loop poles: ( - 1 . 0 5  ± 0.68j)n,  ( - 1 . 0 4  -t- 0 .72j)n,  
( - 1 . 4 2  4- 1.38j)n, and ( - 1 . 4 2  4- 1.38j)n. 



ROTATIONAL MANEUVERS AND ATTITUDE CONTROL 431 

Note: If an LQR code, instead of the eigenstructure assignment technique, is to 
be employed, then design a controller for a control bandwidth of approximately 
1.5n. 

(b) Obtain the closed-loop, frequency-response magnitude plots of 

01(S) hi(s) 03(s) h3(s) 
and 

dl(S)' dl(s) '  d3(s)' d3(s) 

(c) Perform computer simulation of the closed-loop system subject to roll/yaw 
aerodynamic disturbances and initial conditions 01 (0) = 03 (0)= 1 deg and 0)1 (0) = 
0)3(0) = 0.001 deg/s. 

7.21. Consider the large space vehicle of the preceding problem but with the 
roll/yaw control logic, employing the periodic-disturbance filters described by 
Eqs. (7.131), of the form 

u3 ----- K31 K33J x3 

where Kij are 1 × 8 gain matrices and 

[ / IT xl = 0, 0)1 hi hi or, t~l fll /~l 

X3 = 03 0)3 h3 h3 0/3 0~3 f13 ~3 

(a) Determine a 2× 16 gain matrix for the desired closed-loop eigenvalues as 
listed in Table 7.1. 

Note: If an LQR code, instead of the eigenstructure assignment technique, is to 
be employed, then design a controller for a control bandwidth of approximately 
1.5n and for an asymptotic disturbance rejection within three orbits. 

(b) Obtain the closed-loop, frequency-response magnitude plots of 

01(S) hi(s) 03(s) h3(s) 
and 

dl(S)' dl(S)' d3(s)' d3(s) 

(c) Show that +nj are "blocking zeros" of the closed-loop transfer function 
matrix from (dl, d3) to (hi, 03). 

(d) Perform computer simulation of the closed-loop system subject to roll/yaw 
aerodynamic disturbances and initial conditions 01 (0) = 03(0) = 1 deg and 0)1 (0) = 
0)3(0) = 0.001 deg/s. 

Note: The roll-axis CMG momentum will approach zero steady-state value, 
whereas roll attitude oscillates at the orbital rate. The yaw attitude will approach a 
constant steady-state value, whereas the yaw-axis CMG momentum oscillates at 
the orbital rate. As a result, the overall attitude and CMG momentum oscillations 
are minimized. 

7.22. Consider the large space vehicle of the preceding problems but with the 
roll/pitch/yaw control logic employing the periodic-disturbance rejection filters 
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of the form 

d/l d- ( n )Zotl = hi 

fll + (2n)Zfll = hi 

6i2 Jr" ( n )2t~ 2 = h2 

/~2 -]- (2n)2f12 = hz 

15/3 -Jl- ( n )2a3 = h3 

f13 + (2n)2f13 = h3 

(a) Design such a controller that will provide an asymptotic disturbance rejection 
for CMGs. 

(b) Perform computer simulation of the closed-loop system subject to roll/pitch/ 
yaw aerodynamic disturbances and initial conditions 01(0) = 02(0) = 03(0) = 1 
deg, o91 (0) = o93(0) = 0.001 deg/s, and 0 2 ( 0  ) = 0.001 deg/s. 

7.4.5 Robust Control Design 
We now consider a robust control design problem of the large space vehicle 

shown in Fig. 7.4. The objective is to design a constant-gain controller that may 
yield the largest stable hypercube in uncertain parameter space, subject to the nom- 
inal performance requirements. However, the robust control design does not deal 
with the problem of controlling the large space vehicle in the presence of significant 
changes of  inertias during the assembly sequence and space shuttle docking. 

Robust H~ controldesign. As discussed in Chapter 2, structured uncertainty 
modeling of dynamic systems with uncertain inertia matrices results in an uncertain 
plant model with Dll -~ 0, where Dll is the matrix that relates the disturbance 
input and the output. In Ref. 19, the robust stabilization of the large space vehicle 
in the face of inertia matrix uncertainty is formulated as a robust H ~  full-state 
feedback control problem with Dll ~ 0, and the significance of  employing an 
uncertain model with the nonzero Dll term is demonstrated. 

The nominal closed-loop eigenvalues of  the pitch axis with this new control 
design are listed in Table 7.2. These closed-loop poles are comparable to those 
of  previous designs, as can be seen in Table 7.3 in which the various previous 

Table 7.2 Closed-loop eigenvalues in units of orbital rate 

Pitch 

Roll/yaw 

Momentum and Disturbance 
attitude control rejection 

- 1.27, --2.43 -0.30 -4- 1.40j 
-0.23 + 0.25j - 1.40 4- 2.65j 
-0.65, - 1.77 -0.10 4- 1.00j 
-0.44 4- 0.05j -0.30 -F 1.09j 
-0.10 4- 1.10j -0.17 4- 2.00j 
--1.26 4- 0.97j -0.72 4- 2.38j 
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Table 7.3 Comparison of fastest 
closed-loop poles 

Control designs Fastest poles 

No.1 Wie et al. Z8 -1.50 
No.2 Byun et al. 2° -8.29 
No.3 Rhee and Speyer 21 -4.77 
No.4 Balas et al. 22 -5.43 
No.5 Wie et al. 19 -2.43 

designs 18-22 are compared in terms of their fastest closed-loop poles. Note that a 
typical H~ control design often achieves the desired robustness by having a high 
bandwidth controller. The new design with the consideration of the nonzero D~1 
term, however, has a remarkable stability robustness margin with nearly the same 
bandwidth as the conventional LQR design, as will be discussed next. 

Stability robustness analysis. Consider the effects of the moments-of-inertia 
variations on the closed-loop stability of the large space vehicle. 

From the definition of the moments of inertia, we have the following physical 
constraints for possible inertia variations in the three-dimensional parameter space 
(JI, J2, .I3): 

J1 + J2 > J3, J1 + -/3 > -/2, J2 + J3 > Jl (7.132) 

A control designer may unknowingly consider inertia variations that result in 
inertia values that violate these physical constraints. In such a case, stability of the 
closed-loop control system is being tested for physically impossible inertia values. 

When gravity-gradient torque is used in the control of an orbiting spacecraft, 
additional inertia constraints are also required as follows: 

Jl ~ J2, Jl ~;~ J3, J2 ~ -/3 (7.133) 

Roll-axis gravity-gradient and gyroscopic coupling torques become zero if J2 = 
J3, pitch-axis gravity-gradient torque becomes zero if J1 = J3, and yaw-axis 
gyroscopic coupling torque becomes zero if Jl = J2. For the large space vehicle 
considered in this section, the physical constraints given by Eqs. (7.132) and (7.133) 
can be combined into the following constraints: 

J1 + J2 > J3, Jl ~- -/2, J1 ~ J3 (7.134) 

Table 7.4 summarizes the physical inertia bounds along the various directions 
of inertia variation for the particular configuration with Jl = 50.28 x 106, J2 ----- 
10.80× 10 6, and J3 = 58.57 × 10 6 slug-ft 2. In Table 7.4, ~ represents the amounts 
of directional parameter variations with respect to the nominal inertias Jl ~, J~, 
and J3 °. It is evident in Table 7.4 that there exist physical bounds for 6 due to the 
inherent physical properties of the gravity-gradient stabilization and the moments 
of inertia itself. In particular, the As-inertia variation is physically caused by the 
translational motion of a large payload along the pitch axis. 
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Table 7.4 Physical bounds for inertia variations 

Variation type Lower bound Upper bound 
Ai = [A J] A J2 A J3] ~,% ~, % 

Al ---- S[J~ 0 J~] -78.5 a oo 
A2 = ~[J~ J2 ~ -/3] -100.0b oo 
A 3 = ~[J{ 0 -J3 ~] -2.3 c +7.6 a 
A4 = ~[J~ --/2 0] -6 .4  c +16.4 a 
A5 = ~[J{ J2 ~ -J3 ~] -2.1 c +7.6 a 

aDue to roll/yaw open-loop characteristic. 
bDue to pitch open-loop characteristic. 
CDue to triangle inequalities for the moments of inertia. 

In Tables 7.5 and 7.6, stability margins of  a new design (No. 5) presented in 
Ref. 19 are compared to those of  the previous designs (Nos. 1 and 2), and one can 
notice that the new design has better stability margins for all A i-inertia variations. 
A significant margin of  77% for the AE-inertia variation was achieved for the 
pitch axis, compared to the 34% margin of  the LQR design (No. l) in Ref. 18. A 
significant margin of  77% for the AE-inertia variation was also achieved for the 
roll/yaw axes, compared to the 43% margin of  the standard LQR design. 

Compared to the LQR design in Ref. 18, the overall stability robustness with 
respect to inertia variations has been significantly improved while meeting the 
nominal performance requirements. That is, the method with the consideration of  
the nonzero DI i term has resulted in a remarkable stability robustness margin with 
nearly the same bandwidth as the conventional LQR design. 

A hypercube in the space of  the plant parameters, centered at a nominal point, 
is often used as a stability robustness measure in the presence of  parametric un- 
certainty, as discussed in Chapter 2. To determine the largest hypercube that will 
fit within the existing, but unknown, region of  closed-loop stability in the plant's 
parameter space, consider the open-loop characteristic equations for the pitch axis: 

JES 2 + 3(J1 - J3) = 0 (7.135) 

Table 7.5 Pitch-axis stability robustness comparison 

No. 1 No. 2 No. 5 

AL --99 o~ --99 oo --99 
A2 --89 34 --99 70 --99 77 
A3 --17 7.6 --27 7.6 --40 7.6 
A4 -19  16 --40 16 --45 16 
As -30  7.6 -31 7.6 --44 7.6 

Percent ~ $ ~_ ~ ~_ 
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Table 7.6 Roll/yaw stability robustness comparison 

No. 1 No. 2 No. 5 

Percent ~_ ~ ~_ 3 ~_ 

Ai --78 44 --78 73 --78 76 
A2 -99  43 -99  71 -98 77 
A3 -61 80 -58 77 -79 79 
A4 -64  64 -64  99 -64  99 
A5 -51 68 -49  66 -74  67 

and for the roll/yaw axes: 

1113 S4 -'1"- (--1112 + 2J113 "4- 122 "1-" 21213 - 3J32)s 2 

+ 4 ( - J l J 2  + JIJ3 + J22 -- J2J3) = 0 (7.136) 

Equation (7.135) represents a characteristic equation of a conservative plant with 
multilinearly uncertain parameters. For such a system, the oo-norm real parameter 
margin of the closed-loop system can be found simply by checking for instability 
in the corner directions of the parameter space hypercube, at a finite number of 
critical frequencies. The oo-norm parameter margin for the pitch-axis controller 
can be found as 0.076 at a critical comer with 

(61,82, 83) = (0.076, 0.076, -0.076) 

This corresponds to a critical comer with zero pitch-axis gravity-gradient control 
torque. Notice that this largest stable hypercube includes physically impossible 
inertia variations, however, and that it is too conservative because the controller has 
a 77% margin for the most physically possible A2-inertia variation. The important 
point is that the control designer should consider only inertia variations that do not 
violate the physical constraints. 

The roll/yaw characteristic equation (7.136) represents a plant that is conser- 
vative, but not multilinear with respect to the uncertain parameters (J~, J2, -/3). 
Because there is no guarantee that the roll/yaw closed-loop instability with respect 
to inertia variations occurs at one of the comers of the parameter space hypercube, 
the real parameter margin computation is not as simple as the case of pitch axis. 
The inertia boundaries may be computed by iteratively varying the inertia values 
until a physical bound is reached or the closed-loop system becomes unstable. 

7.5 Steering Logic for Control Moment Gyros 
In the preceding section, CMGs, also called control moment gyroscopes, were 

considered as ideal torque-generating actuators; i.e., CMG gimbal torquer dynam- 
ics and CMG steering logic were not considered in developing an attitude control 
and momentum management system of a large space vehicle, such as the Inter- 
national Space Station. Because CMG steering logic is, in fact, one of the most 
critical components of any CMG-based attitude control system of space vehicles, 
an overview of the CMG steering logic design problem is presented in this section. 
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Any reader who wishes to pursue further research in the development of ad- 
vanced CMG control systems for space vehicles is referred to Refs. 23-51. No 
attempt is made to provide a complete bibliography for the CMGs; however, 
these references cover a wide variety of dynamics and control problems of CMG- 
equipped space vehicles, including agile spacecraft, the MIR space station and the 
International Space Station. 

7.5.1 Introduction 

During the past three decades, CMGs as applied to spacecraft attitude con- 
trol and momentum management have been studied extensively, and they have 
been successfully employed for a wide variety of space missions. However, there 
still exist various practical as well as theoretical issues inherent to CMGs. They 
include: system-level tradeoffs, e.g., reaction wheels vs CMGs, single-gimbal vs 
double-gimbal, etc.; optimal arrangements of CMG arrays, e.g., parallel vs skewed 
or orthogonal mounting, etc.; optimal CMG steering logic design, e.g., local vs 
global methods for singularity avoidance; and computational issues for real-time 
implementation. 

Reaction wheels vs control moment gyros. A reaction wheel consists of 
a spinning rotor whose spin rate is nominally zero. Its spin axis is fixed to the 
spacecraft and its speed is increased or decreased to generate reaction torque 
about the spin axis. Reaction wheels are conventionally used to control three- 
axis stabilized spacecraft and smaller satellites. They are the simplest and least 
expensive of all momentum-exchange actuators; however, they have much smaller 
control torque capability than CMGs. 

A CMG contains a spinning rotor with large, constant angular momentum, but 
whose angular momentum vector (direction) can be changed with respect to the 
spacecraft by gimbaling the spinning rotor. The spinning rotor is mounted on a 
gimbal (or a set of gimbals), and torquing the gimbal results in a precessional, 
gyroscopic reaction torque orthogonal to both the rotor spin and gimbal axes. 
The CMG is a torque amplification device because a small gimbal torque input 
produces a large control torque output on the spacecraft. Because the CMGs are 
capable of generating large control torques and storing large angular momentum 
over long periods of time, they are often favored for precision pointing and tracking 
control of agile spacecraft in low Earth orbit and momentum management of large 
spacecraft. 

Single-gimbal vs double-gimbal CMGs. In general, CMGs are character- 
ized by their gimbaling arrangements and their configurations for the redundancy 
management and failure accommodation. 

There are two basic types of control moment gyros: 1) single-gimbal control mo- 
ment gyros (SGCMGs) and 2) double-gimbal control moment gyros (DGCMGs). 
For SGCMGs, the spinning rotor is constrained to rotate on a circle in a plane nor- 
mal to the gimbal axis. For DGCMGs, the rotor is suspended inside two gimbals, 
and consequently the rotor momentum can be oriented on a sphere along any direc- 
tion provided there are no restrictive gimbal stops. The SGCMGs are considerably 
simpler than DGCMGs from the hardware viewpoint. They offer significant cost, 
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power, weight, and reliability advantages over DGCMGs. However, the gimbal 
steering problem is much simpler for DGCMGs because of the extra degree of 
freedom per device. 

For the purposes of optimal redundancy management and failure accommoda- 
tion, many different arrangements of CMGs have been developed in the past. They 
include: four SGCMGs of pyramid configuration, six parallel mounted SGCMGs, 
three orthogonally mounted DGCMGs, and four parallel mounted DGCMGs. The 
three orthogonally mounted DGCMGs were used in NASA's Skylab 24"29 and six 
parallel mounted SGCMGs have been successfully installed on the MIR space sta- 
tion. The International Space Station will be controlled by four parallel mounted 
DGCMGs with two of the four CMGs mounted antiparallel with the other two. 48 
Control moment gyros have never been used in commercial satellites, although 
SGCMGs have been employed in agile spacecraft with classified missions. Re- 
cently, smaller SGCMGs have been developed by Space Systems, Honeywell, Inc., 
for small space vehicles where more agility is required than reaction wheels can 
provide. For such mini-CMGs, a high-speed rotor design is employed to achieve 
low weight and substantial output torque. 

The use of CMGs necessitates the development of CMG steering logic, which 
generates the CMG gimbal rate commands for the commanded spacecraft control 
torques. The optimal steering logic is one for which the CMG-generated torques 
are equal to the commanded spacecraft control torques. One of the principal diffi- 
culties in using CMGs for spacecraft attitude control is the geometric singularity 
problem in which no control torque is generated for the commanded gimbal rates. 
Therefore, the development of an optimal CMG steering logic should also con- 
sider the avoidance of the singularities. SGCMG systems are more prone to lock 
up in singular configurations because of the reduced degrees of freedom; however, 
reaction wheel systems do not have such a geometric singularity problem inherent 
to any CMG system. 

7.5.2 Mathematical Modeling of Spacecraft with Control 
Moment Gyros 

The fundamental principles of control moment gyros are briefly described here, 
as applied to the attitude control of a rigid spacecraft. The goal here is to present 
a simple mathematical model for developing CMG steering and attitude control 
logic. 

The rotational equation of motion of a rigid spacecraft equipped with momentum- 
exchange actuators such as control moment gyros is, in general, given by 

I:ls + w x Hs = Tex~ (7.137) 

where Hs is the angular momentum vector of the total system expressed in the 
spacecraft body-fixed control axes and Text is the external torque vector, including 
the gravity-gradient, solar pressure and aerodynamic torques, expressed in the 
same body axes. The total angular momentum vector consists of the spacecraft 
main body angular momentum and the CMG angular momentum; i.e., we have 

Hs = Jw + h (7.138) 

where J is the inertia matrix of the spacecraft including CMGs, w = (091, 092, 093) 
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is the spacecraft angular velocity vector, and h = (hi, h2, h3) is the total CMG 
momentum vector, all expressed in the spacecraft body-fixed control axes. 

Combining Eq. (7.137) and Eq. (7.138), we simply obtain 

( J~  + h + w x (Jw + h) = T e x  t (7.139) 

Furthermore, by introducing the internal control torque vector generated by CMGs, 
denoted as u = (ul, u2, u3), we rewrite Eq. (7.139) as 

J ~  + w x Jw = u + Text (7.140a) 

h + to x h = - u  (7.140b) 

Using this set of equations of motion, with an additional set of kinematic differential 
equations of spacecraft attitude variables such as quaternions or Euler angles, one 
can design an attitude control and CMG momentum management system, as was 
described in the preceding section. Consequently, the spacecraft control torque 
input u can be assumed to be known for the subsequent steering logic design and 
the desired CMG momentum rate is often selected as 

h = - u - w  x h (7.141) 

The CMG angular momentum vector h is in general a function of CMG gimbal 
angles/5 = (Sl . . . . .  8,); i.e., we have 

h = h(6) (7.142) 

One approach to the CMG steering logic design is simply to find an inversion of 
Eq. (7.142). In this inverse kinematic problem, the task is to determine optimal 
gimbal angle trajectories that generate the commanded h trajectory while meeting 
the various hardware constraints, such as the gimbal rate limits and gimbal stops, 
and also avoiding singularities. 

The second approach involves the differential relationship between gimbal an- 
gles and the CMG momentum vector. For such local inversion or tangent methods, 
the time derivative of h is obtained as 

where 

h = A(6)~ (7.143) 

Oh [ Ohi ] 

is the 3 x n Jacobian matrix. Equation (7.143) can also be written as 

h = A $  

: [ a  I . . .  

/I  

= Z a i ~ i  
i = 1  

an 

r l  

(7.144) 
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Fig. 7.6 Pyramid mounting arrangement of four SGCMGs. 

where ai denotes the ith column of the Jacobian matrix A. The CMG steering logic 
design is then to find an inversion of A6 = la, i.e., to determine the gimbal rates that 
can generate the commanded h while meeting the various hardware constraints, 
such as the gimbal rate limits and gimbal stops, and also avoiding singularities. 

Note that in this CMG steering problem formulation, the gimbal torquer dy- 
namics has been ignored because the gimbal torque input is often much smaller 
than the control torque output generated by CMGs. 

7.5.3 Steering Logic for Single-Gimbal Control Moment Gyros 
SGCMG arrays. Consider a typical pyramid mounting arrangement of four 

SGCMGs as shown in Fig. 7.6, in which four CMGs are constrained to gimbal on 
the faces of a pyramid and the gimbal axes are orthogonal to the pyramid faces. 
Each face is inclined with a skew angle of fl from the horizontal, resulting in 
gimbal axes with a (90 -/3)-deg inclination from the horizontal. When each CMG 
has the same angular momentum about its spin-rotor axis and the skew angle is 
chosen as fl = 54.73 deg, the momentum envelope becomes nearly spherical. 
This minimally redundant, four CMG configuration with/3 = 54.73 deg has been 
extensively studied in the literature (see Refs. 38-41, 43-47, 49, and 50), and it 
presents a significant challenge for developing singularity-robust steering laws. 

From a momentum storage point of view, however, the optimal skew angle 
has been found to be fl = 90 deg, which results in a box configuration of four 
CMGs. 51 Mounting arrangements of SGCMGs, other than the pyramid mount, 
are also possible. For example, the six parallel mounted SGCMGs have been 
successfully used to control the MIR space station. 

Pseudoinverse steering logic. For the conventional pyramid mount of four 
SGCMGs, the total CMG angular momentum vector h = (hi, h2, h3) is expressed 
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in spacecraft reference flame as 

4 

h = E  Hi (3i) 
i=l 

[ ' -cfl  sin 31- [ " -cos~2  "] ['c/5 sin $3"] [" cos84 ] 
=/ cos , + l-c/5sinSz/+/-c°s83| + ]c/Ssin84[ (7.145) 

L s/5 sin 81 L s/5 sin 82 _l Lsfl sin 83_1 Lsfl sin 84..] 

where Hi is the angular momentum vector of the ith CMG expressed in spacecraft 
reference frame,/3 is the pyramid skew angle, cfl = cos/5, sfl - sin/5, 8 i are  the 
gimbai angles, and constant unit momentum magnitudes are assumed without loss 
of generality. 

One way of determining gimbal angle trajectories that generate the commanded 
h trajectory is to solve a constrained optimization problem by minimizing a suitable 
performance index J(6) subject to the nonlinear constraints (7.145); however, this 
approach is not suitable for real-time implementation. 

A more practical approach to solving the inverse kinematic problem is to utilize 
the differential relationship between gimbal angles and CMG momentum vector. 
For such local inversion or tangent methods, the time derivative of the CMG angular 
momentum vector, Eq. (7.145), can be obtained as 

4 4 

h : E I~li = E ai (8i) ~i ~-- A 6 (7.146) 
i=l i=1 

where 6 = (81,82, J3, 84) is the gimbal angle vector, ai is the ith column of A, and 

V -c f l  cos 81 sin 82 c/5 cos 83 -sin84 -] 
A = / -sinSl -c/5c0s82 sin83 c/5cos84 / 

1 Sfl COS 81 S/5 COS 8 2 S/5 COS 8 3 S/5 COS 8 4 _] 

For the commanded control torque input u, the CMG momentum rate command 
h is chosen as 

i l =  - - u - - w  x h  

and the gimbal rate command 6 is then obtained as 

= A+h = Ar(AAr) - l  h (7.147) 

which is often referred to as the pseudoinverse steering logic. Most CMG steering 
laws determine the gimbal rate commands with some variant of pseudoinverse. 

Singular states. If rank(A) < 3 for certain sets of gimbal angles, or, equiv- 
alently, rank(AA r) < 3, the pseudoinverse does not exist and the pseudoinverse 
steering logic encounters singular states. This singular situation occurs when all 
individual CMG torque output vectors ai are perpendicular to the commanded 
torque direction. Equivalently, the singular situation occurs when all individual 
CMG momentum vectors have extremal projections onto the commanded torque 
vector direction. 
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In general, the singularity condition 

det(AA r)  = 0 

defines a set of surfaces in 6-space, or, equivalently, in h-space. The simplest 
singular state is the momentum saturation singularity characterized by the so- 
called momentum envelope, which is a three-dimensional surface representing the 
maximum available angular momentum of CMGs along any given direction. Any 
singular state for which the total CMG momentum vector is inside the momentum 
envelope is called internal. For any system ofn CMGs, there exist 2" sets of gimbal 
angles for which no control torque can be generated along any arbitrary direction. 
Consequently, for the set of all directions, all of the internal singular states form 
closed surfaces both in h-space and in 6-space, and the number of singular surfaces 
is equal to 2 n. 

There are two types of internal singular states: "hyperbolic" states and "elliptic" 
states. 32"4° Because the pseudoinverse A + = Ar(AAT) -1 is the minimum two- 
norm solution of gimbal rates subject to Eq. (7.146), the pseudoinverse steering 
logic tends to leave inefficiently positioned CMGs alone, causing the gimbal an- 
gles to eventually hang-up in singular antiparallel arrangements. That is, it tends 
to steer the gimbals toward singular states. An approach to avoiding singular states 
is to introduce null motion into the CMG steering logic. Null motion is a motion 
of the gimbals that produces no net control torque on the spacecraft; however, the 
elliptic singular states cannot be escaped through null motion, whereas the hyper- 
bolic singular states can be escaped through null motion. 32"4° For the pyramid-type 
system of four CMGs, for example, 6 = ( -90 ,  0, 90, 0) deg is an elliptic singular- 
ity with the singular direction along the first-axis and 6 = (90, 180, -90 ,  0) deg 
is a hyperbolic singularity with the singular direction also along the first-axis. 

The "impassable" elliptic singular states pose a major difficulty with SGCMG 
systems because they are not escapable without torquing the spacecraft. The im- 
passability is defined locally in 6-space. An impassable surface in h-space is not 
always impassable because it depends on 6, as discussed in Ref. 46. The size of 
spherical momentum space without impassable singular states is reduced to about 
half of the maximum momentum space of the standard pyramid type system. To 
fully utilize the available momentum space in the presence of impassable sin- 
gular states, an intelligent steering algorithm needs to be developed that avoids 
the impassable singular states whenever possible, or rapidly transits unavoidable 
singularities, while minimizing their effects on the spacecraft attitude control. 

Singularity-avoidance stoorin 9 logic. Equation (7.147) can be considered 
as a particular solution to Eq. (7.146). The corresponding homogeneous solution 
is then obtained through null motion such that 

A n = 0  

where n denotes the null vector spanning the null space of A. The general solution 
to Eq. (7.146) is then given by 

= Ar(AAr)  -l  h + yn  (7.148) 

where y represents the amount of null motion to be properly added. 
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The amount of  null motion may be chosen as39: 

m fo rm > 1 
Y = m -6 for m < 1 

where 

m = singularity measure, also called CMG gain, 
n = Jacobian null vector, (Cl, C2, C3, Ca) 
Ci = order 3 Jacobian cofactor, ( -  1) i+! Mi 
Mi = order 3 Jacobian minor, det(Ai) 
A i  = A with ith column removed 

This choice of  scaling factor y arises from the representation of  m as a measure 
of  distance from singularity, as well as the fact that 

4 

det(AAr)  = E Mi ---- n r n  (7.149) 
i=1 

This nondirectional null-motion approach introduces substantial null motion 
even when the system is far from being singular and tries to prevent the gimbal 
angles from settling into locally optimal configurations, which may eventually 
result in a singularity. This approach does not guarantee singularity avoidance, 
however, and has few potential shortcomings, as discussed in Ref. 39. 

Although the null vector can be obtained through a variety of  ways, e.g., using 
singular value decomposition, a projection operator, or the generalized cross or 
wedge product, it is often expressed as 

n = [I - A+A]d  (7.150) 

where A + = A r ( A A r )  -1, I is an identity matrix, and [I - A+A] is a projection 
matrix* and d is an arbitrary n-dimensional nonzero vector. 

A variety of  analytic and heuristic approaches have been developed in the past 
to determine a proper null motion for singularity avoidance, i.e., to properly select 
the scalar y and the n-dimensional vector d. In a gradient-based method, a scalar 
function f(6) is defined such that its gradient vector points toward the singular 
directions. The vector d is then chosen as 

081 ' 

and the scalar function is often selected as the inverse of  the square of  the singularity 
measure; i.e., 

1 
f ( 6 )  -- det(AA r)  

and the scalar y is determined by minimizing f ( 6 )  in the null vector direction. 
This gradient-based method does not always work in directly avoiding inter- 

nal singularities. Thus, an indirect singularity-avoidance steering law of feedback 

*A symmetric matrix P is called a projection matrix ifP 2 = P. 
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control form, which adds null motion to steer toward a set of desired gimbal angles, 
may be employed as33: 

= A+h + y[l - A+A](6 * - 6) (7.151) 

where 6* denotes a set of desired gimbal angles and y is a positive scale factor. 
A further heuristic modification of the pseudoinverse-based steering logic is to 

employ a singularity robust inverse algorithm of the form52: 

A # = Ar(AA r + ~.I) - I  (7.152) 

where I is an identity matrix and X is a positive scale factor that may be automati- 
cally adjusted as 

{ ~.o(1 - m/mo) 2 for m < mo 
~ ' =  0 form > m o  

where m = ~ and ~-0 and mo are small positive constants to be properly 
selected. However, a small positive constant of the order of 0.01 may be simply 
selected for ~.. 

Most existing pseudoinverse-based, local inversion or tangent methods do not 
always guarantee singularity avoidance and often unnecessarily constrain the op- 
erational momentum envelope of SGCMG systems. To guarantee successful sin- 
gularity avoidance throughout the operational envelope of SGCMGs, the optimal 
steering algorithm needs to be "global" in nature, as suggested by Paradiso. 44 
Any global method requires extensive computations, however, which may not be 
practical for real-time implementation. 

Attitude control and CMG stoorin 9 logic. For large-angle (possibly, near- 
minimum-time eigenaxis) reorientation maneuvers of agile spacecraft in the pres- 
ence of slew rate and gimbal rate limits, we may integrate the steering logic based 
on the singularity robust inverse A # and the attitude control logic based on quater- 
nion feedback, presented in Sec. 7.3, as follows: 

u = - s a t [ K  sat(Pqe) + Cw] (7.153a) 

A # = AT(AA r + ~.I) - l  (7.153b) 

6c = A#( -u  - ~ x h) + y[ I  - A#A](6 * - 6) (7.153c) 

= sat(6c) (7.153d) 
O 

where qe = (qle, q2e, q3e) is the attitude error quaternion vector. Furthermore, we 
have iq4  q3 -q c-q,  io, 1 q2e I = --q3c q4c qlc -q2c | q2 (7.154) 

q3e | q2~ -q lc  q4c --q3c | q3 
q4~ J qlc q2c q3c qac _1 q4 

L'I E °  2 llq t~2 1 --093 0 091 602 q2 
q3 = 2 602 - w l  0 w3 q3 
q4 --(.O 1 --092 --093 0 q4 

(7.155) 
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where (qlc, q2c, q3c, q4~) are the desired or commanded attitude quaternions and 
(ql, q2, q3, q4) the current attitude quaternions. (Further details of the quaternion- 
feedback control logic can be found in Sec. 7.3.) 

7.5.4 Steering Logic for Double-Gimbal Control Moment Gyros 
The singularity problem for DGCMGs is less severe than for SGCMGs because 

of the extra degree of freedom per device. 
For DGCMGs, the rotor is suspended inside two gimbals and, consequently, the 

rotor momentum can be oriented on a sphere along any direction provided there are 
no restrictive gimbal stops. For the different purposes of redundancy management 
and failure accommodation, several different arrangements of DGCMGs have been 
developed, such as three orthogonally mounted DGCMGs used in the Skylab 24"29 
and four parallel mounted DGCMGs to be employed for the International Space 
Station .48 

As shown by Kennel, 34 the mounting of DGCMGs of unlimited outer gimbal 
angle freedom, with all their outer gimbal axes parallel, allows drastic simplifica- 
tion of the CMG steering law development in the redundancy management, failure 
accommodation, and in the mounting hardware. 

Consider such a parallel mounting arrangement of n DGCMGs with the inner 
and outer gimbal angles og i and fli of the ith CMG as defined in Fig. 7.7. The total 
CMG angular momentum vector h = (hi, h2, h3) is expressed in the CMG axes 
as 

[ h = Hi  = Hi cos  of i cos  ~i / 

i=1 Hi cos oti sinfli _] 
(7.156) 

where Hi is the angular momentum vector of the ith CMG and Hi = IIHi II. 

1 
Outer Gimbal Axis 
(~ axis, a=O) 

Rotor Axis 
(a=#=o) "" 

CMG Angular 
Momentum 
Vector 

3 

Inner Gimbal Axis 
(-a  axis, ~ = O) 

Fig. 7.7 Inner gimbai angle c~i and outer gimbai angle/3/of  the i th DGCMG. 



ROTATIONAL MANEUVERS AND ATTITUDE CONTROL 445 

The time derivative of h becomes 

h = h2 = Y~(-Hi sino~i cos¢lio?i - Hi cosoei sinE/~i) (7.157) 

h3 ~ ( - H i  sinai sin ~i o?i + Hi cos~i cos ¢1i ~i) 

where all Hi are assumed to be constant without loss of generality. The CMG 
steering logic design is then to find a set of gimbal rate commands Oil and /~i, 
which deliver the commanded h while utilizing the excess degrees of freedom 
to distribute the gimbal angles, such that certain hardware constraints are met 
and singular states are avoided. The n DGCMGs have 2n degrees of freedom. 
Three are needed for the independent, three-axis attitude control of spacecraft. 
The excess (2n - 3) degrees of freedom are utilized to achieve a desirable gimbal 
angle distribution. 

For the parallel mounting arrangement with gimbal angles as defined in Fig. 7.7, 
it can be seen that h I is not a function of the outer gimbal motions. In particular, 
Kennel's CMG steering law distributes the CMG angular momentum vectors such 
that all inner gimbal angles are equal, which reduces the rate requirements on the 
outer gimbals; that is, 

hi 
6ti -- ~ Hi cos~i + K(~* - oti) (7.158) 

where K is called the inner gimbal angle distribution gain and or* is the desired 
inner gimbal angle for all CMGs chosen as 

Or* = Y~.( Hi coso~i)oti 
S, Hi c o s  ~, 

For DGCMGs, a singular condition inside the total CMG momentum envelope 
can occur when some of the CMG momentum vectors are antiparallel and the rest 
parallel to their resultant total CMG momentum vector. Therefore, maintaining 
more or less equal spacing between the CMG momentum vectors will eliminate the 
possibility of singular states. Consequently, Kennel's steering law spreads the outer 
gimbals, which ensures avoidance of singularities internal to the CMG momentum 
envelope. For further details of Kennel's steering law and its implementation to 
the International Space Station, the reader is referred to Refs. 34, 35, and 48. 

7.6 Optimal Jet Selection Logic 
In this section, a brief introduction to the Space Shuttle on-orbit reaction control 

system is followed by a description of the optimal jet selection problem of advanced 
space vehicles with strongly three-axis coupled, redundant sets of thrusters for both 
translation and rotation control. 

7.6.1 Space Shuttle On-Orbit Reaction Control System 

The Space Shuttle has two orbital maneuvering system (OMS) engines, each 
producing about 26,700 N (6000 lb) of thrust. They are bipropellant rockets with a 
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specific impulse of 313 s, and used mainly for large orbit-change A V maneuvers. 
Each OMS engine has redundant two-axis gimbal capability. 

The Space Shuttle on-orbit reaction control system (RCS) consists of 38 primary 
jets, each producing about 3870 N (870 Ib) of thrust, and 6 vernier jets, each 
producing about 107 N (24 lb) of thrust. All thrusters using the same bipropellant as 
the OMS have 80-ms minimum pulse granularity. The thrusters are located in three 
pods: forward, left aft, and right aft. The primary jets are divided into 14 clusters 
around the vehicle with both translational and rotational control capabilities and 
with multiple failure tolerance. The vernier jets, however, each fire in a different 
direction, only control rotation, and have no failure tolerance if any one of four 
of the thrusters malfunctions. Figure 7.8 illustrates thruster locations and plume 
directions with an explanation of the thruster identification nomenclature. 53-55 

THRUSTERIDCODEFORMAT 

THRUSTER LOCATION ~ I 

F = FWD MODULE X X X 
L " AFT LEFT 

! R " AFT RIGHT 
PROPELLANT MANIFOLD 

NUMBERS (1 through 5) 

DIRECTION OF 
THRUSTER PLUME 

A = AFT (+X THRUST} 
F - FORE (-X THRUST) 
L = LEFT (+Y THRUST) 
R =, RIGHT (-Y THRUST} 
U = UP (+Z THRUST) 
D = DOWN (-ZTHRUS'r) 

AFT RIGHT 3 2  

~.~," / l IP+YAW ~l~l,~.._.~t.,L.. 
=/.,,.c" " .  

• ,,. ~ !,:,~ 

FORWARD ~ r ~  F 

+YAW, "1" "~..;~ I DIRECTION OF 
~ 0  | THRUSTER PLUME 

~ -  YAW ~- YAW t DIRECTION OF 
- PITCH VEHICLE MOTION 

G = GROUP NO. 

Fig. 7.8 Space Shuttle thruster locations and plume directions. 
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$9 

Fig. 7.9 Phase-plane logic for the Space Shuttle RCS. 

The Space Shuttle RCS processor with a 12.5-Hz sampling rate consists of 
phase-plane and jet selection logic. The phase-plane logic in general performs on-  
off modulation of jet torque commands as required to maintain vehicle attitude and 
rate errors within the specified deadbands. In addition, desired angular rate change 
is also computed to facilitate computation of jet burn times. The phase plane of 
angular rate vs attitude angle, per each axis, consists of a set of switch lines for 
specified attitude deadbands, angular rate limits, and expected RCS accelerations. 
As illustrated in Fig. 7.9, the phase plane is divided into nine regions defined by 
numbered boundaries. At any time, for each axis, the rigid vehicle state is defined 
by an attitude and rate error point that must lie in one of the defined regions 
because the regions cover the entire plane. The decision concerning whether to 
send a rotation command is made on the basis of logic unique to each region. 
Regions 1 and 5 always command jets. For primary jets, regions 2, 3, 6, and 7 
always permit coast with no jet commands. Region 9 never causes commands to 
be generated, but a preference for vernier jet selection is computed. Regions 4 and 
8 have hysteresis. If the phase point is in either region 4 or 8 and a jet firing is 
taking place, then the firing will continue until the phase point crosses the S13 
switch curve. 53 

The jet selection logic identifies specific jets to be used. For primary jets it uses 
a table lookup scheme with selection details dependent on flight phase, selected 
modes, and recognized jet failure status. For vernier jets it utilizes a dot-product 
algorithm. The principle of the dot-product algorithm is to take the dot product 
of each jet's rotational velocity increment vector with a vector from the rotation 
commands and then select the jets with the biggest dot-product values. The baseline 
RCS processor excludes mixed operations of primary and vernier jets. 
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During the early Shuttle program, a new autopilot concept was developed by 
Bergmann et ai. 56 at the Charles Stark Draper Laboratory, which promised certain 
advantages over the conventional phase-plane logic based on a table lookup scheme 
for jet selection. The new autopilot concept incorporated a six-dimensional "phase 
space" control logic and a linear programming algorithm for jet selection. The 
unique features of this new autopilot scheme include: fuel-optimal jet selection, 
a high degree of adaptability to configuration changes and jet failures, combined 
primary and vernier jet usage, and closed-loop translation control. Flight tests of 
this advanced autopilot system were successfully performed on STS missions 51G 
(June 1985) and 61B (November 1985). 

7.6.2 Optimal Jet Selection Logic 
The rotational equation of motion of a rigid spacecraft equipped with n jets can 

be approximated, neglecting the gyroscopic coupling terms, as 

J6; = u =~ JAto = ~ - ~ a j A t j  (7.159) 
j= l  

where J is the inertia matrix of the spacecraft, to = (wt, 092,093) is the spacecraft 
angular velocity vector, Ato = (Awl, Aw2, Aw3), u = (Ul, u2, u3) is the control 
torque vector, and aj is the torque vector of the j th jet with on-time At j ,  all 
expressed in the spacecraft body-fixed control axes. 

Equation (7.159) can be rewritten as 

b = A x  (7 .160)  

where b = JAto, x = (At~ . . . . .  Atn), and A = [aij] = [al . . . . .  an]. That is, aij 
is the ith-axis torque caused by the j th jet firing with on-time x j .  It is assumed 
that n > 3 and rank(A) = 3. 

The translational equations of motion of a rigid spacecraft can be easily aug- 
mented to Eq. (7.160), resulting in an m x n torque/force distribution matrix A 
with m _< 6 and rank (A) = m < n. The optimal jet selection problem is then 
to determine, in a fuel-optimal manner, a proper set of jets for the commanded 
angular/translational rate change in each axis. In general, a set of three jets are 
needed for the independent three-axis attitude control. 

Consider an optimal jet selection logic concept that utilizes a linear programming 
approach for the minimum fuel problem formulated as 

min ~ cyxj  = cTx (7.161) 
xj  j= l  

where cj is the j th jet flow rate, subject to the constraints 

Ax = b (7.162) 

x > 0 (7.163) 

Several important definitions and theorems often encountered in a linear pro- 
gramming problem with an m × n constant matrix A are summarized as follows. 57 
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Definition 7.4 

1) A feasible solution to the linear programming problem is a vector x = 
(Xl . . . . .  x , )  that satisfies the constraints (7.162) and (7.163). 

2) A basis matrix is an m x m nonsingular matrix formed from some m columns 
of the constraint matrix A. 

3) A basic solution to the linear programming problem is the unique vector x 
determined by choosing a basis matrix, letting the n - m variables associated with 
columns of  A not in the basis matrix equal zero. 

4) A basic feasible solution is a basic solution in which all variables have 
nonnegative values. 

5) A nondegenerate basic feasible solution is a basic feasible solution with 
exactly m positive xj .  

6) An optimal solution is a feasible solution that also minimizes the performance 
index (objective function) J = cTx in Eq. (7.161). 

Theorem 7.4 

The objective function J = c r x  assumes its minimum at an extreme point of  
the constraint set (7.162) and (7.163). If  it assumes its minimum at more than one 
extreme point, then it takes on the same value at every point of  the line segment 
joining any two optimal extreme points. 

Theorem 7.5 

A vector x is an extreme point of the constraint set of  a linear programming prob- 
lem if and only if x is a basic feasible solution of  the constraints (7.162) and (7.163). 

These theorems imply that, in searching for an optimal solution, one needs only 
consider extreme points, i.e., only basic feasible solutions. An upper bound to the 
number of  basic feasible solutions is given by 

n! n(n - 1)(n - 2 ) . . . ( n  - m + 1) 

(n - m)!m! m! 

Consider an optimal jet selection problem of minimizing the objective function 
J = c r x  with the constraint set (7.162) and (7.163). Although such an optimal 
jet selection problem has been studied previously in terms of an iterative linear 
programming approach, 56.57 a new approach developed by Glandorf 58 and Kubiak 
and Johnson 59 appears to be more analytic and relatively concise. The algorithm 
developed in Refs. 58 and 59 is briefly described herein to introduce the reader to the 
essential feature of  an optimal jet selection logic that can be executed recursively. 

Let the constraint equation (7.162) be rewritten as 

[A A] = b (7.164) 

and the objective function as 

J=[U ~r](~]=Ui+U~ (7.165) 
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where ~ > 0, ~ = 0, and ,~ is a nonsingular m x m matrix. Then a basic feasible 
solution is simply obtained as 

= A,-~b (7.166) 

At this point, A, is not unique, and it represents a nonsingular m x m acceleration 
matrix corresponding to any combination of  jets taken m at a time as long as they 
are linearly independent. To determine which of  these combinations of  jets are 
potentially optimal, one can assume there is a more efficient solution by allowing 
alternate jets to be turned on for a differential time, dx. That is, let 

:~' = ~ + d ~  

~' = ~ + d~  = d ~  >_ 0 

J '  = J + d J  

the constraint equation (7.162) then becomes 

• ~ d i  + ti, d~ = 0 or d~ = - .~-l .~,  d~ (7.167) 

Using the objective function J '  = J + d J ,  one can obtain 

d J  = ¢:r d:~ + ~r d~ (7.168) 

Combining Eqs. (7.167) and (7.168), one can obtain the cost differential caused 
by d~ as 

d J  = ¢:r[-A,-IA, d~] + (:r d~ 

= [~T _ ¢:TA-1A, ] d~ (7.169) 

Defining 

,X r = ~r  ~ - l  

where )~ is called the optimality vector associated with ~, and also defining fii = 
the ith column of  i ,  i.e., "~i are the acceleration vectors for the jets not in the 
original selection, one can rewrite Eq. (7.169) as 

d J = ~ r d ~ - A r A d ~  

° - m  

i = l  i = l  

n - - m  

i = l  

Assuming that all of  the elements of  c are unity without loss of  generality, we 
obtain 

t l - - m  

dJ  = ~ [1 - )tTEli] dx i (7.170) 
, = 1  
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This equation is the key to determining whether the original selection of jets, i.e., 
~,, is optimal or not. Therefore, if,,Xr'ai > 1 for any jet not in the original selection, 
the original selection is not optimal and should be discarded. On the other hand, if 
,,~rii < 1 for all of the jets not in the original selection, then the original selection 
is potentially optimal and should be saved. These remaining k combinations or 
groups are referred to as candidate optimal groups (COGs) in Refs. 58 and 59. 

The key properties of the optimality vector A and COGs can be summarized as 
follows59: 

1) For each COG, A is perpendicular to the hyperplane in m-dimensional space 
formed by the end points of the m vectors {ill . . . . .  fi,, } where ii  is defined as the 
ith column of.~,. 

2) The tips of the ai for a given COG define a surface segment of a hyperplane 
and all other surfaces or vertices for other COGs lie at or below this surface (closer 
to the origin than the surface). 

3) The optimal COG is the COG with a maximum dot product of b and A. 
4) After finding the optimal COGs, the jet on times are computed as ~ = .~-lb 

and ~ = 0. 
A more detailed description of the optimal jet select algorithm originally devel- 

oped by Glandorf and Kubiak can be found in Refs. 58 and 59. 

7.7 Pulse-Modulated Attitude Control 
In the preceding section, the Space Shuttle on-orbit reaction control system was 

briefly described and the optimal jet selection problem of advanced space vehicles 
were introduced. The phase-plane logic described in the preceding section was 
used successfully for the Apollo and the Space Shuttle and may well continue as a 
basic architecture for future space vehicles. The phase-plane logic can have a great 
level of sophistication when implemented on a digital flight computer; however, it 
can be easily replaced by a simple Schmitt trigger for certain applications. In this 
section, conventional pulse modulation techniques, including the Schmitt trigger, 
as applied to the single-axis, on-off attitude control systems are described. 

7.7.1 Introduction 

Pulse modulation represents the common control logic behind most reaction- 
jet control systems of various spacecraft. Unlike other actuators, such as reaction 
wheels or control moment gyros, thruster output consists of two values: on or off. 
Proportional thrusters, whose fuel valves open a distance proportional to the com- 
manded thrust level, are not employed much in practice. Mechanical considerations 
prohibit proportional valve operation largely because of dirt particles that prevent 
complete closure for small valve openings; fuel leakage through the valves con- 
sequently produces opposing thruster firings. Pulse modulation techniques have 
been developed that fully open and close the fuel valves, while producing a nearly 
linear duty cycle. In general, pulse modulators produce a pulse command sequence 
to the thruster valves by adjusting the pulse width and/or pulse frequency. 

Several commonly used, flight-proven pulse modulators are briefly described in 
this section. Static characteristics are summarized for each modulator. The pulse 
frequency of these modulators are usually fast compared to the spacecraft attitude 
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Fig. 7.10 Single-axis reaction control system. 

control bandwidth, and the static characteristics are often used for the modulator 
design. We consider here a simplified single-axis reaction control system for a 
rigid spacecraft as illustrated in Fig. 7.10. 

7.7.2 Schmitt Trigger 
Strictly speaking, this device, which is often called a relay with deadband/hyster- 

esis, shown in Fig. 7.11, is not a pulse modulator. The advantage of this device, 
as opposed to other pulse modulators, is its simplicity. A disadvantage of the 
Schmitt trigger is the dependence of its static characteristics on the spacecraft 
inertia. 

If the pulse modulator in Fig. 7.10 is replaced by the Schmitt trigger, then the 
spacecraft dynamics can be described as 

where 

JO = Tcu (7.171) 

J = spacecraft inertia 
0 = spacecraft attitude 
u = Schmitt trigger output (0 or 4- 1) 
Tc = control torque level 

and the input to the Schmitt trigger is determined by the linear switching logic 
(1 + rs ) (Oc  - 0) .  

v m 

1 

- H o n  4-  

4- - t  L 

Uo. - Uo# j -  

Fig. 7.11 Schmitt trigger. 
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Fig. 7.12 PWPF modulator. 

The rigid-body limit cycling characteristics of this closed-loop system can be 
predicted, as follows: 

minimum pulse width = 
Jh 

(7.172a) 
rTc 

limit cycle amplitude = 
Tc (Uon -F Uoff) J2h2 

+ - -  (7.172b) 
2 8r 

limit cycle period = 4r  (Uon+Uoff  J h )  h + ~5r2 (7.172c) 

where h -= Uon - Uoff and r = the linear switching line slope. 
Note that the minimum pulse width is a function of spacecraft parameters: the 

spacecraft inertia and thrust level. These parameters tend to change over time; as 
a result, the minimum pulse width will vary as well. Knowledge of the spacecraft 
properties is therefore required to estimate the thruster minimum pulse width. 

7. 7.3 Pulse-Width Pulse-Frequency Modulator 
The pulse-width pulse-frequency (PWPF) modulator has been used in the con- 

trol systems of such spacecraft as the Agena satellite, INTELSAT V, INSAT, and 
ARABSAT. The device, as illustrated in Fig. 7.12, mainly comprises two compo- 
nents: a first-order lag filter and a Schmitt trigger inside a feedback loop. With a 
constant input, the PWPF modulator drives the thruster valve with an on-off pulse 
sequence having a nearly linear duty cycle with the input amplitude. The duty cycle 
or modulation factor is defined as the average output of the modulator. 

The static characteristics of the PWPF modulator for a constant input E are 
summarized as follows for the thruster pulse width 

T o , = _ T m e , { ( l - h ) E d - ( e - 1 ) }  
Ea ~ (/~ -- i )  (7.173a) 
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the thruster off time 

Ed - E } 
ro f f  : - r  m ~rv (1 - h - ) E s - -  E (7.173b) 

the pulse frequency 

f = 1/(Ton -t- Toff) (7.173c) 

and the minimum pulse width 

h ) hTm 
= ~ (7.173d) A -Tmfi~. 1 Km Km 

where E = constant input magnitude, Ed = U o n / K m  = equivalent internal 
deadband, and h = Uon - Uoff. The duty cycle is given by fTon and it will be 
further discussed in Chapter 9. 

In contrast to the Schmitt trigger, the static characteristics of the PWPF modu- 
lator are independent of the spacecraft inertia because of the feedback loop within 
the device. The presence of the filter and the feedback loop, however, inhibits lin- 
ear analysis of the device's dynamic characteristics. The problem of designing a 
reaction jet control system employing the PWPF modulator will be further studied 
in Chapter 9. 

7.7.4 Derived-Rate Modulator 

The derived-rate and PWPF modulators are similar in format, as seen in Fig. 7.13, 
except that the first-order filter now compensates the Schmitt trigger output in the 
feedback path. The device is used much in the same way that the PWPF modulator 
is used, except that the derived-rate modulator introduces phase lead into a system 
as opposed to the PWPF modulator, which is a phase-lag device. 

I 

-Uo. -Uol 

UoH Uo. 

- 1  

g m  

~ s + l  I~ 

Fig. 7.13 Derived-rate modulator. 
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Pulse-width modulator. 

The static characteristics are similar to the PWPF modulator for the thruster pulse 
width 

{ h } (7.174a) 
To. = -Tm ~ 1 - K m  - -  (E  - Uon) 

the thruster off time 

the pulse frequency 

and the minimum pulse width 

Toff = Tm ~ 1 + ~ _ .  (7.174b) 
E 

f = (7.174c) 
Ton +Toff 

hTm 
A ~ - -  (7.174d) 

K m  

where E is the static input magnitude and the duty cycle is given by fTon. 
The derived-rate modulator is as difficult as the PWPF modulator to analyze 

in a limit cycling situation. In that case, the describing function method may be 
employed to characterize the modulator in terms of its gain and phase. This subject 
will be studied in detail in Chapter 9. 

7.7.5 Pulse-Width Modulator 

The pulse-width modulator (PWM) differs from the modulators discussed earlier 
in that it is essentially a discrete-time device; the PWPF and derived-rate mod- 
ulators can be digitally implemented but are often analyzed as continuous-time 
systems. 

The output of this particular device is not a thruster firing state as in the aforemen- 
tioned devices; instead, the PWM output is thruster pulse width. A zero-order-hold 
(ZOH) device transmits that signal to the thrusters. The value dl represents the 
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minimum pulse width of the system; this deadzone is directly proportional to the 
attitude deadband. The value d2 represents the maximum pulse width of the RCS; 
it is equivalent to the microprocessor sampling period. As a result, the pulse fre- 
quency and the minimum pulse width of the modulator are fixed; a thruster firing 
command is given during every microprocessor sampling period even if the pulse 
is of zero width. 

The delay in the feedback loop introduces damping to the system; maximum 
damping occurs when the feedback signal is smaller than the PWM input. If 
the input signal is not greater than the feedback signal, the modulator may limit 
the cycle itself. This criterion enables the designer to determine the feedback 
gain Ky. The feedforward gain Kd is selected as result of the minimum pulse 
criterion. 

For more details of pulse modulation techniques as applied to spacecraft attitude 
control systems design, the reader is referred to Chapter 9, or Refs. 60---64. 
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Structural Dynamics and Control 



8 
Structural Dynamics 

This chapter, which is based on Refs. 1--6, introduces physical concepts and 
mathematical tools that are useful for structural dynamic modeling and control of 
flexible spacecraft. Particular emphasis is placed on developing mathematical mod- 
els of flexible structures for control analysis and design. Various generic models 
of flexible structures, which are simple enough to treat analytically, yet compli- 
cated enough to demonstrate the practicality of pole-zero modeling of structural 
dynamic systems, are treated in this chapter. 

8.1 Introduction 

Simple structural elements such as bars, beams, and plates are often treated as 
distributed parameter systems that are described by partial differential equations. 
Most spacecraft, including the INTELSAT V spacecraft shown in Fig. 8.1 and the 
International Space Station illustrated in Fig. 8.2, often consist of many lumped and 
beam- or trusslike subsystems with fairly complex interconnections. In practice, 
such complex structures are usually modeled as lumped parameter systems using 
finite element methods. In certain cases, distributed parameter modeling of beam- 
and trusslike structures is more effective than conventional lumped- or discrete- 
parameter modeling using finite element methods. Consequently, the modeling and 
control of hybrid or flexible multibody systems with complex interconnections of 
lumped and distributed parameter subsystems is of practical interest. 

In this chapter, we consider generic models of flexible structures from the 
discrete-spectrum viewpoint of distributed parameter systems. The models are 
simple enough to treat analytically, yet complicated enough to demonstrate the 
practical usefulness of transcendental-transfer-function modeling for the purposes 
of control analysis and design. 1-6 Transfer functions of the various generic mod- 
els are derived analytically, and their pole-zero patterns are studied. The generic 
models to be studied in this chapter will also provide physical insights into the 
dynamics and control of more complex structures. Although controlling flexible 
structures using many actuators and sensors is of much current research interest, 
we focus on the fundamental issue of controlling a flexible spacecraft using a single 
pair of actuator and sensor in each axis. 

8.2 Uniform Bars 

In this section we consider a uniform free-free bar as a generic model of barlike 
structures with longitudinal vibrations. Basic concepts of modal analysis and modal 
truncation for distributed parameter systems are discussed using such a simple 
model. Transcendental transfer functions of a uniform free-free bar are derived, 
and the effects of actuator and sensor locations on the transfer function zeros are 
also discussed in this section. 

463 
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Fig. 8.1 INTELSAT V spacecraft. (Courtesy of Ford Aerospace and Communications 
Corp., Palo Alto, CA.) 

8.2.1 Modal Analysis 
Consider a uniform free-free bar of  length e with a longitudinal control force 

u(t) applied at the end x = 0, as illustrated in Fig. 8.3. The equation of motion is 
given by the wave equation in dimensionless form 

y"(x, t) - ~(x, t) = 0 (8.1) 

where y" =_ OZy / Ox 2, ~ - 02y / Ot 2, y(x, t) is the longitudinal displacement at the 
location x and at time t, x and y are in units of  £, time is in units of  ~x/r~"~/EA, 
EA denotes the axial stiffness, and a denotes the mass per unit length. 

The boundary conditions are given by 

y'(1, t) = 0 (8.2a) 

- y ' ( 0 ,  t) = u(t) (8.2b) 

where u(t) is in units of  EA. 
Let the displacement y(x, t) be expressed as 

oo 

y(x, t) = Z qbi(x)qi(t) (8.3) 
i = 0  

where dpi(x) is the ith normal mode shape and qi(t) is the ith modal coordinate. 
Substituting Eq. (8.3) into Eq. (8.1) and using the boundary conditions (8.2), we 
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Fig. 8.2 International Space Station. (Courtesy of John Frassanito and Associates.) 

obtain the modal  equations 

~i(t) + og~qi(t) = j6(t),  i = 0 . . . . .  ~ (8.4) 

where toi is the ith modal  frequency in units of  ~v/~-~/EA and fi(t) is the i th 
generalized force in units of  EA. We also have 

O.) i ~ -  iYr ,  

dpi(x) = {v r~cos i z rx ,  

lu(t), 
f 6 t )  = e~i(O)u(t) = / ~ / ~ u ( t )  ' 

i = 0 . . . . .  cx~ (8.5a) 

i = 0  
(8.5b) 

i = 1  . . . . .  

i = 0  
(8.5c) 

i = 1  . . . . .  c~ 

The transfer function from control force to structural displacement at the location 
x can then be written as 

y(x ,  s) _ ~:0 a i (x)  
u(s)  = s 2 + ~0 2 

ao ~ ai(x) 
- -  = ~ ' +  i=l s2 + ~°/2 

(8.6) 
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y(x, t) 
u(t) EA a 1 

x = 0  

Fig. 8.3 Uniform free-free bar with longitudinal vibration. 

where ai (x)  ~ ~i(O)~i(x)  is the residue of the ith mode, a0 = 1, and u(s) and 
y(x, s) are the Laplace transforms of u(t) and y(x, t), respectively. The first term 
in Eq. (8.6) is called the rigid-body mode. 

Because all structures dissipate energy during elastic deformations, we introduce 
the modal damping ratio (i so that Eq. (8.6) is modified to 

y(x, s) _ ao ~ ai(x) (8.7) 
U(S-----~ S 2 "}- ~.= S 2 Jr- 2(iO)iS -'1- 092 

The transfer functions (8.6) and (8.7) are said to be expressed as partial fraction 
expansion with exact poles and residues. 

Controllability and observability. The residue ai of the ith mode can be 
considered the product of the controllability coefficient Ci and the observability 
coefficient (-Qi such that 

ai ~ CiOi ( 8 . 8 )  

If either coefficient is zero, then the ith mode does not appear in the transfer 
function, which corresponds to the pole-zero cancellation in the transfer function 
expressed in product expansion. 

For a uniform free-free bar with control force at the end x = 0, we have 

C i = ~ ) i ( O ) =  {1~2 ' 

{', 
Oi = ~)i(X) = ~/2cosirrx,  

i = 0  
(8.9a) 

i = 1  . . . . .  oo 

i = 0  
(8.9b) 

i = 1  . . . . .  cx~ 

Thus, all of the vibration modes, plus the rigid-body mode, are controllable by 
the control force applied at the boundary. This is intuitively trivial because the 
boundary cannot be a nodal point of any mode shape. The rigid-body mode is 
always observable for any sensor location, but observability of a vibration mode 
depends on the sensor location. This is also obvious because, if the sensor is located 
at the nodal point of the ith mode, we cannot observe the ith mode with that sensor. 
(See Chapter 2 for the more rigorous definitions of controllability and observability 
of linear dynamic systems.) 

Modal truncation. The transfer functions (8.6) and (8.7) include an infinite 
number of modes. In practice, they are truncated to a finite-dimensional model. 
One of the simplest methods of reducing the order of dynamic systems is modal 
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truncation. Modal truncation criteria can be obtained by considering the impulse 
response of Eq. (8.7) with zero initial conditions, given by 

oo 

y ( x , t ) = a o t  + Z ai(x) e_~,oJ~t sin~/l  _(2ogi t (8.10) 
i=l Wi ~/ l - r, i 2 

The modal gain gi(x, t) of the ith flexible mode at the location x and time t is 
defined as 

gi(x, t) - ai(x) e_¢,o,,t (8.11) 

o) i ~ / 1 -  ( i 2 

Note that the modal gain gi as defined here is, in fact, the amplitude of the ith 
mode, and that it is inversely proportional to the modal frequency wi. Also note that 
the exponential term in Eq. (8.11) determines the so-called slow and fast modes. 
Consequently, the high-frequency modes are often neglected in designing control 
logic for flexible structures if they have adequate natural damping. The residue ai, 
however, is the most important factor to be considered in selecting the dominant 
modes for the given actuator and sensor locations. The residue ai might be zero 
or almost zero for a certain actuator and sensor location, which corresponds to the 
exact pole-zero cancellation or near pole-zero cancellation, respectively. 

From the foregoing discussion, we can conclude that infinite-dimensional mod- 
els can be well approximated by finite-dimensional models by neglecting modes 
with frequencies that are much higher than the control system bandwidth, as well 
as modes with small residues. This simplifies control design by eliminating the 
modes that are nearly uncontrollable and/or unobservable for the given actuator 
and sensor pair. Also, order reduction by modal truncation may be regarded as 
minimizing the mean square error between the exact and an approximate impulse 
response of the system. 

Collocated actuator and sensor. If a displacement sensor is located at the 
end x = 0, then Eq. (8.6) becomes 

y(0, s) 1 ~-~ 2 
U(S) - -  S 2 "~- Z..., S 2 + W2 (8.12) 

i = 1  

Note that all residues in Eq. (8.12) have the same sign. In general, if an actuator 
and a compatible output sensor are placed at the same location on an undamped 
elastic body, the resulting transfer function will have alternating poles and zeros 
on the imaginary axis. This can be proved by using the fact that the residues ai all 
have the same sign when the actuator and sensor are collocated. Thus, the transfer 
function represented by Eq. (8.12) will have alternating poles and zeros on the 
imaginary axis because all of the residues in Eq. (8.12) have the same sign. 

A reduced-order model of Eq. (8.12) is obtained by simply taking a finite number 
of modes, as follows: 

y(O,s) _ 1 ~ 2 (8.13) 
U ( S )  S 2 "q- -~.= S 2 At- 092 
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For N = 1, we have 

For N = 2 ,  we obtain 

y(0, s) 

y(O, s) 3[s 2 -t- (1.813) 2] 
- -  = ( 8 . 1 4 )  u(s) s2(s2 + o,2,) 

5[S 2 --1- (1.708)2][S 2 + (5.166) 2] 
- -  = ( 8 . 1 5 )  

u(s) s2(s2 + 4)(s2 + ,4) 

where Wl = zr and 092 = 2zr. These transfer functions are finite dimensional, 
reduced-order models with exact residues of  the model given by Eq. (8.6). The 
zeros are not identical to the exact zeros, which will be found later, and they 
depend on the number of  modes retained. These approximate zeros are still on 
the imaginary axis, however, and they approach the exact zeros as the number of  
modes increases. 

Separated actuator and sensor. When actuator and sensor are separated 
on flexible structures, there are no simple properties of  the pole-zero patterns. To 
investigate the pole-zero patterns for the case of  a separated actuator and sensor 
pair, consider a bar with actuator and sensor located at opposite ends ("boundary 
control and boundary observation"). 

If  a displacement sensor is located at the right end x = 1, Eq. (8.6) with a finite 
number of  modes becomes 

y ( 1 , s ) _  1 ~-~ 2 ( - 1 )  i 
u(s----~ s 2 + "'-" s2---- ~ w.--~2. (8.16) 

i=1 

The residues in this transfer function do not have the same sign for all of  the modes. 
Thus, the transfer function with a separated actuator and sensor pair does not have 
alternating poles and zeros along the imaginary axis. For example, when N = 1, 
we have 

y(1, s) - ( s  "~ O)I)(S - -  091) 
- -  - -  ( 8 . 1 7 )  u(s) s2(s2 + o.q) 

which has real zeros. For N = 2, we have 

y(1, s) (s 4- 4.7123) 2 4- (0.2054) 2 
- -  - -  ( 8 . 1 8 )  
u(s) s2(s2 + og)(,2 + 04) 

which has complex zeros. These transfer functions (8.17) and (8.18) have nonmini- 
mum-phase zeros (right-half s-plane zeros). It will be shown later that the transfer 
function y(1, s)/u(s) with an infinite number of  modes has no zeros (except at infin- 
ity). Thus, the zeros in Eq. (8.17) and Eq. (8.18) are clearly due to modal truncation. 

8.2.2 Finite Element Models 
One of  the methods of  determining the vibration modes of  a flexible structure is 

the finite element method. It is the most practical method for analyzing complex 
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structures. The first step in the finite element modeling of an elastic structure is 
to divide it into several elements. Points where the elements are connected are 
called the "nodal" points. Unfortunately, the same terminology is also used in the 
discussion of mode shapes, but the difference is usually clear from the context. 
The displacements of these nodal points then become the generalized coordinates 
of the structure. 

By evaluating the physical properties, such as stiffness and mass matrices, of 
the individual finite elements and combining them appropriately, we can find the 
equations of motion of the complete structure. The stiffness matrix of a single 
finite element can be derived by defining the so-called interpolation function and 
using the principle of virtual displacement. 

The stiffness matrix of the complete structure can then be determined by adding 
the element stiffness coefficients, which is known as the direct stiffness method. 
Before the element stiffness coefficients are added, they must be expressed in 
global coordinates. The stiffness matrix of the complete structure is all that is 
needed for static analysis. For dynamic analysis the mass matrix of the structure 
must also be found. Two types of mass matrices are used in the finite element 
method: a lumped-mass matrix and a consistent-mass matrix. 

Lumped-mass matrix. The simplest way of defining the mass properties of a 
finite element model is to lump the element masses at the nodal points. The lumped- 
mass matrix is then a diagonal matrix. For example, the equations of motion of 
a uniform free-free bar consisting of two finite elements, as shown in Fig. 8.4a, 

Y] Y2 

u(t) = ~ [ ~ ~  
al m = - -  k= EA 
4 l 

a) Lumped-mass matrix 

u(O 
• ~ [  I I 

l l 
eA ,r T e3  ,r 5- 

b) Consistent-mass matrix 

Fig. 8.4 Finite element models of a uniform free-free bar with two elements. 
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is given by 

E i'  °IEYl [il 1 0 2 Y2 + 2  - 2 1 y2 ( 8 . 1 9 )  

4 0 0 Y3 - 1 1 y3 

where yl, y2, and Y3 are the nodal displacements in units of~, u is the control force 
in units of EA applied at the left end, and time is in units of ~ .  

Taking the Laplace transforms of Eq. (8.19), we obtain 

y,(s)] 1 F 4[s2 + (1"530)2][sZ + (3"695)2] 1 
y3(s)Y2(S) = ~-~ L[ 16[s2 +128(2"828)2] J/u(s) (8.20) 

where 

A(S) = $2[S 2 -Jr- (2.828)2][s 2 -k- (4.0) z] 

The poles and zeros of these transfer functions are not the same as exact poles and 
zeros. Obviously, the accuracy increases as the number of elements increases. The 
exact pole-zero cancellation of the first mode in y2(s)/u(s) m e a n s  that the first 
mode is unobservable with a sensor located at the middle of the bar. 

Consistent-mass matrix. The consistent-mass matrix is found using the 
same interpolation functions that are used for evaluating the stiffness matrix of a fi- 
nite element. It has an off-diagonal term leading to mass coupling, so that dynamic 
analysis with a consistent-mass matrix generally requires more computational time 
than with a lumped-mass matrix. However, a consistent-mass model produces more 
accurate natural frequencies and mode shapes than a lumped-mass model. 

For example, the equations of motion of a uniform free-free bar consisting of 
two finite elements, as shown in Fig. 8.4b, is given by 

'Ei'il[ l I ' '  Y][Yl [i] i 2  4 Y2 + 2  - 1  2 - Y2 = (8.21) 
1 Y3 0 - 1 Y3 

where Yl, Y2, and Y3 are the nodal displacements in units of~, u is the control force 
in units of EA applied at the left end, and time is in units of ~/-~~-/EA. 

Taking the Laplace transforms of Eq. (8.21), we obtain 

] [ 7[s2+(l'611)z][s2+(5"629)2]l ~yl(s) 1 
| yz ( s )  - -  - 2 [ s  2 + (3.464)2][s + 4.898] [ u(s) (8.22) 

L y3(s) ~ (s 4- 4.898) 2 J 

where 

A(s) = se[s 2 + (3.464)2][s 2 4- (6.928) 2] 

It is clear that the consistent-mass model produces more accurate poles than the 
lumped-mass model; however, the consistent-mass model produces a nonmini- 
mum-phase transfer function for the case of separated actuator and sensor. Such 
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approximate zeros come from minimizing the error between the exact and approx- 
imate impulse responses of  the system. 

For more details of  the finite element method as applied to structural dynamics, 
the reader is referred to Refs. 7-10. 

8.2.3 Transcendental Transfer Functions 
In the preceding sections we have studied pole-zero patterns of  reduced-order 

models by modal truncation or by the finite element method. For a simple structure 
such as the uniform bar, we can derive exact transcendental transfer functions with 
exact poles and zeros. 

Taking the Laplace transforms of Eqs. (8.1) and (8.2), we obtain 

y " ( x , s )  - s 2 y ( x , s ) = O  

y ' ( 1 , s ) = O  

- y ' ( O ,  s ) = u ( s )  

(8.23) 

(8.24) 

(8.25) 

and we can find the transcendental transfer function as 

y ( x ,  s)  cosh s(l  - x) 

u(s)  s sinh s 
(8.26) 

which can be expanded into infinite product form 

y ( x ,  s)  _ 1 ~-] (S /Z i )  2 "Jy 1 

U(S) S 2 (S/O)i) 2 + 1 
i : 1  

(8.27) 

where 

wi = ire 

i - 0.5 
Zi = ~r, (x ~ 1) 

1 - - x  

Thus, when the actuator and sensor are collocated at the end x = 0, the transfer 
function (8.27) has alternating poles wi = i:r and zeros zi = (i - 0.5)n along 
the imaginary axis. When the sensor is located at the middle of  the bar (x = 0.5), 
all of the zeros zi = (2i - 1)Jr are canceled by poles; these poles correspond to 
the symmetric vibration modes, which are unobservable with a sensor at x = 0.5. 
When the sensor is located at the opposite end (x = 1), there are no zeros in 
Eq. (8.27). 

We can obtain reduced-order models with exact poles and zeros by truncating the 
infinite product expansion Eq. (8.27). Where to truncate depends on the bandwidth 
of  the control system and on other factors such as near pole-zero cancellations 
and damping in the system. For control design purposes, it is not evident which 
finite-dimensional model (exact residues or exact zeros) is better. It is probably 
better to use the model with exact residues for low-gain control and the model with 
exact zeros for high-gain control because the closed-loop poles with high gain are 
close to the open-loop zeros. 
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When the actuator and sensor are collocated at x = 0, Eq. (8.26) becomes 

y(0, s) cosh s 

u ( s )  s sinh s 

which can be written as 

y(0, s) 
u(s) 

(8.28) 

e s -t- e - s  1 e -2s 
+ (8.29) 

s ( e  s - e - s )  s(1 - e -2~) s(1 - e -2s) 

For  the case of  a sensor located at the right end x --  1, we have 

y ( 1 , s )  1 
- -  --  - -  (8.30) 

u ( s )  s sinh s 

y(1, s) 2 2e -s 

u ( s )  s ( e  s - e - s )  s(1 - e -2~) 

which becomes 

(8.31) 

Problems 

8.1. For a uniform free-free bar with both actuator and sensor collocated at 
x = 0, sketch the exact impulse response y(0, t) to a unit impulse control force, 
i.e., u ( s )  = 1. Then compare the exact impulse response and the impulse responses 
of  reduced-order models  given by Eqs. (8.14) and (8.15). 

8.2. For a uniform free-free bar with actuator and sensor located at opposite ends 
(actuator at x = 0 and sensor at x = 1), sketch the exact impulse response y(1, t) 
to a unit impulse control force, i.e., u ( s )  = 1. Then compare the exact impulse 
response and the impulse responses of  reduced-order models given by Eqs. (8.17) 
and (8.18). 

8.3 Uniform Beams 

In this section we consider a uniform free-free beam as a generic model  of a 
beamlike space structure with transverse bending vibrations. Simple beams have 
been often used as generic models of  flexible launch vehicles in connection with 
preliminary control analysis and design. 

We shall discuss the characteristics of  beam vibrations in terms of  transfer 
function poles and zeros. We shall review modal analysis of a uniform free-free 
beam and study the effects of actuator and sensor locations and modal  truncation 
on transfer function zeros. Transfer functions from finite element models are also 
compared with transcendental transfer functions. In particular, nonminimum-phase 
characteristics of  beamlike structures are discussed. 

8.3.1 Modal Analysis 
For a uniform free-flee beam as shown in Fig. 8.5, the Bernoul l i -Euler  model, 

neglecting shear distortion and rotary inertia, is given in dimensionless form as 

y ' ' ( x ,  t )  + y(x,  t) = 0 (8.32) 
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E /  f 

x = 0  

Fig. 8.5 Uniform free-free beam with transverse vibration. 

where y"' --  c34y/tgx4; y = O2y/Ot2; y(x, t) is the transverse displacement at the 
location x and at time t; x and y are in units of  g; time is in units of  ~x/-~-~-/El; and 
El, ~, and g denote the bending stiffness, the mass density per unit length, and the 
total length of  the beam, respectively. 

For the case with a control force at one end, e.g., a flexible rocket, the boundary 
conditions are given by 

y"(O, t) = y"(1, t) = 0 (8.33a) 

y"' (O, t) = u(t ) (8.33b) 

y ' ( 1 ,  t) = 0 (8.33c) 

where u(t) denotes transverse control force (in units of  EIIg 2) applied at the left 
end x = 0. 

Let the displacement y(x, t) be expressed as 

y(x, t) = ~ (bi(x)qi(t) (8.34) 
i=0  

where (hi(x) is the ith normal mode shape and qi(t) is the ith modal coordinate. 
Substituting Eq. (8.34) into Eq. (8.32) and using the boundary conditions (8.33), 
we obtain the modal equations 

gli(t) + to2qi(t)  = j~(t), i = 0 . . . . .  oo (8.35) 

where o)i is the ith modal frequency in units of  v / ~ / t r e  4 and fi( t)  is the ith 
generalized force in units of  El/e 2. We also have 

to/2 = ~4, i = 0 . . . . .  cx~ (8.36a) 

~0(x) = 2 - 3x (8.36b) 

qbi(x ) = c o s ) . i x  + c o s h ~ . i x  c o s ~ . i  - c o s h ~ i  . - sinki ~ (smkix +sinh~.ix) (8.36c) 

fi(t) = dPi(O)u(t) = 2u(t), i = 0 . . . . .  oe (8.36d) 

where ki can be obtained from the characteristic equation 

COS ~'i c o s h  ~'i - -  1 = 0 

For example, we have k0 = 0, Xl = 1.506~r, and ~-2 = 2.5zr. 
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The transfer function from control force u to structural displacement at the 
location x can then be written as 

y(x,s)  _ ~.o ai(x) ao ~-~ ai(x) (8.37) 
U(S) S 2"Jr-092 -- S 2 Jr- S2 +092 

"= i=1  

where a0 = 4; ai(x) -- qSi(O)ePi(x) is the residue of the ith mode; and O9o = 0, 
wl = 22.373, o92 = 61.672, and o93 = 120.903, etc. 

Because all structures dissipate energy during elastic deformations, we introduce 
the modal damping ratio ~'i so that Eq. (8.37) is modified to 

y(x, s) ao ~ ai(x) (8.38) 
U(S) = S ''~ + ~ 1  + 2(iO)iS + 092 

Controllability and observability. The residue ai of  the ith mode is the prod- 
uct of  the controllability coefficient Ci and the observability coefficient Oi such 
that 

where 

a i = CiO i (8.39) 

C / =  ~bi ( 0 )  = 2 ,  i = 0 . . . . .  o ~  (8.40a) 

Oi = 1~' i = 0  (8.40b) i(x), i = 1 . . . . .  oc 

Hence, all of  the vibration modes plus the rigid-body mode are controllable by the 
control force applied at one end. The rigid-body mode is always observable for any 
sensor location, but the observability of  vibration modes depends on the sensor 
location. There are two rigid-body modes: a translational mode and a rotational 
mode. By using a single control force at one end, we can control only linear 
combination of the two rigid-body modes. Similarly, we can observe only a linear 
combination of those rigid-body modes by using a single sensor. Thus, strictly 
speaking, a beam with transverse vibration is not completely controllable and 
observable using a single control force and a single sensor. This is a special case of  
the repeated-eigenvalue problem encountered in controlling symmetric structures. 
At least two controls and two sensors are needed to control and observe these 
two rigid-body modes independently; however, all of  the vibration modes are 
controllable and observable with single control force and single sensor at one end. 

Collocated actuator and sensor. If a displacement sensor is located at the 
end x = 0, then Eq. (8.37) becomes 

y(0, s) _ 4 ~ 4 
U(S) S 2 "[- .=  S 2 -I- o~ 2 ( 8 . 4 1 )  

It is seen that the residues are all equal for all of  the modes. Consequently, Eq. (8.41 ) 
will have alternating poles and zeros on the imaginary axis. A reduced-order model 
of  Eq. (8.41) can be obtained by simply taking a finite number of modes, as was 
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done for a uniform bar in the preceding section. A reduced-order model with exact 
residues will also have alternating poles and zeros on the imaginary axis. Hence, 
there are no serious modeling errors in the location of zeros for the case with a col- 
located actuator and sensor; this is not the case with a separated actuator and sensor. 

Separated actuator and sensor. When actuator and sensor are separated 
on flexible structures, there are no simple properties of  the pole-zero patterns. For 
the special case with a displacement sensor at the right end x = 1, Eq. (8.37) 
becomes 

y(1, s) 2 ~ 4(--1) i+1 

U(S) = S ''~" "1- ~ S 2 + 0) 2 
(8.42) 

i=1 

The residues in this transfer function do not have the same sign for all of the 
modes. Thus, this transfer function will not have alternating poles and zeros along 
the imaginary axis. 

A reduced-order model with exact residues is then obtained by taking a finite 
number of modes. For example, we have 

y(1, s) - 2 ( s  + 0)1 )(s - 0)1) 
= (8.43) 

.(s) s2(s2 + 
or  

y(1, s) - 2 [ ( s  + 35.572) 2 4- (10.698) 2] 
- -  = (8.44) 

u(s) ,2(s2 + 0) )(s2 + 

These transfer functions (8.43) and (8.44) have nonminimum-phase zeros. Clearly 
the zero locations depend on the number of  modes chosen in modal truncation. 
It will be shown later that the exact transfer function y(1, s)/u(s) with an infinite 
number of  modes has right-half plane real zeros. 

8.3.2 Finite Element Models 

Before we derive an exact transfer function, consider here transfer functions 
obtained with finite element modeling. The equations of motion of a uniform free- 
free beam (see Fig. 8.6) using a one-element model with a consistent-mass matrix 
are given by 

1 

420 

156 54 22 - 1 3  
54 156 13 - 2 2  
22 13 4 - 3  

- 1 3  - 2 2  - 3  4 E ] ~2 
~3 
Y4 

I6 6 3 31EYll Eil + 2  - 6  6 - 3  - 3  Y2 = 

3 - 3  2 1 Y3 
3 - 3  1 2 Y4 

(8.45) 

where Yl and Y2 are the nodal transverse displacements in units of  e, Y3 and Y4 are 
the nodal bending slopes, u is the control force in units ofEl/£ 2 applied at the left 
end, and time is units of  ax/-~--~/El. 
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Fig. 8.6 
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Y] Y2 

Finite e lement model  of  a uniform free-free beam with one element.  

Taking the Laplace transforms of  Eq. (8.45), we obtain 

where 

yl(S-----2) .---- 1---~-6 [s2 + (17.544)2][s 2 + (70.087) 2] (8.46) 
u(s) A(s) 

yz(s) - 4  
-- A(s)[S + 62.496][s 4- 27.825] 

u ( s )  

A ( $ )  = $2[S 2 --[- (26.832)2][S 2 + (91.651) 2] 

(8.47) 

The poles and zeros of  these transfer functions are not the same as exact poles and 
zeros. Obviously, the accuracy increases as the number of  element increases. 

8.3.3 Transcendental Transfer Function 

For a uniform free-free beam we can find the exact zeros by using a transcen- 
dental transfer function. Taking the Laplace transforms of Eqs. (8.32) and (8.33), 
we obtain 

y"' (x, s) - )~4 y ( x ,  s )  = 0 (8.48) 

where ~4 = _ s  2, the Laplace transform variable s is in units of  v/-~-/~e 4, and 

y"(0, s) = y"(1, s) = 0 (8.49a) 

y'"(0, s) = u(s) (8.49b) 

y" (1 ,  s) = 0 (8.49c) 

The solution of  Eq. (8.48) is given by 

y(x, s) = A I sin )~x + A 2 c o s  ~.X + A3 sinh ~.x + A4 cosh kx (8.50) 

Using the boundary conditions (8.49), we obtain the transcendental transfer func- 
tion from the control force u(s) to transverse displacement y(x, s) at the location 
x, as follows: 

y(x, s) 1 
u(s) = A(s)  [(sinh k cos ~. - cosh ~ cos k)(cosh ~x + cos ~.x) 

+ sinh k sin ~.(sinh ~.x + sin ~x) + (1 - cosh ~.)(sinh Xx - sin ,kx)] 

(8.51) 
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where 

A(s)  ----- 243(1 - cos 4 cosh 4) 

Similarly, we can obtain the transfer function from control force u(s) to slope 
O(x, s) =- y'(x,  s) at the location x, as follows: 

O(x, s) 1 
u(s) = A(s)  [(sinh 4 cos 4 - cosh 4 cos 4)(sinh 4x + sin 4x)  

+ sinh 4 sin 4(cosh 4x + cos 4x) + (1 - cosh 4)(cosh 4x - cos 4x)] 
(8.52) 

In particular, for control and observation (measurement) at the ends of  the beam, 
we have 

y(0, s) sinh 4 cos 4 - cosh 4 sin 4 

u(s) 43(1 -- COS 4 cosh 4) 

0(0, s) sinh 4 sin 4 

u(s) 42(1 - cos 4cosh  4) 

y(1, s) sinh 4 - sin 4 

u(s) 43(1 - cos 4 cosh 4) 

0(1, s) cosh 4 - cos ~. 

u(s) 42(1 - cos 4cosh  4) 

(8.53a) 

(8.53b) 

(8.53c) 

(8.53d) 

These transfer functions may be expressed as infinite products: 

y(0, s) - 4  ~ 1 - (4 /y i )  4 (8.54a) 

U ( S )  = U . . =  1 - -  ( 4 / f l i )  4 

0(0, s) 6 f i  1 - (~./iTr) 4 
u(s) = 4 -~  i x  1 - -  ( Z / f l i )  4 (8.54b) 

i = l  

y(1, s) 6 r ~  l - (4/x/2oq) 4 
(8.54c) 

- F I I  1 - 
i=1  

0(1, s) 6 ~ 1 - (4/x/2iTr)  4 
(8.54d) 

u(s) = ~ 1 1  1 - - (4 / f l i )  4 
i=1  

where tan ot i = tanh oti; cos fli cosh fli = 1 ; cos Yi sinh Yi = sin Yi cosh Yi; and tzi, 
/5i, and Yi are all positive real numbers. 

Because 44 = - s  2 (see Fig. 8.7), the transfer functions y(0, s ) /u (s )  and 0(0, s) /  
u(s) have alternating poles and zeros on the imaginary axis of  the s plane. Their 
lowest poles and zeros are shown in Fig. 8.8. The transfer functions y( 1, s ) /u  (s) and 
0 (1, s ) /u  (s) have an infinite number of  zeros on the real axis of  the s plane. Their 
lowest poles and zeros are shown in Fig. 8.9. Thus, the exact transfer function 
for a beam with separated actuator and sensor can be nonminimum phase with 
real zeros (no complex zeros), whereas the exact transfer function for a bar with 
separated actuator and sensor is minimum phase. 
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Fig. 8.7 Complex m a p p i n g  between s p lane  and  A plane:  A 4 = - -s  2. 
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Fig. 8.8 Exact  poles and  zeros of y(0,  s)/u(s) a nd  0(0, s)/u(s). 
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Fig. 8.9 Exact poles and zeros ofy(1,s)/u(s) and O(1,s)/u(s). 

When the sensor is located at an arbitrary point (other than one of  the bound- 
aries), then, in general, the transfer function will have some sequence of  nonal- 
teruating poles and zeros on the imaginary axis, along with zeros on the real axis. 
Also, some of  the poles may be canceled by zeros, which means that those modes 
are unobservable by the sensor. 

8.3.4 Physical Interpretation of Transfer Function Zeros 
Transfer function poles are the natural frequencies of the structure with the actu- 

ator boundary condition equal to zero. Transfer function zeros are the eigenvalues 
of  the structures with the sensor boundary condition equal to zero. For example, the 
numerator of  y(0, s) /u(s)  in Eq. (8.53a) is the characteristic equation of a uniform 
beam with boundary conditions 

y(0, t) = y"(0, t) = 0 (8.55a) 

y"(1, t) = y"'(1, t) = 0 (8.55b) 
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Thus, the zeros of y (0, s)/u (s) are the natural frequencies of a uniform pinned-free 
beam. The numerator of y(1, s)/u(s) in Eq. (8.53c) is the characteristic equation 
of a uniform beam with boundary conditions 

y"(0, t) = 0 (8.56a) 

y(1, t) = y"(1, t) = y " ( l ,  t) = 0 (8.56b) 

The preceding boundary conditions indicate that the sensor boundary condition is 
zero whereas the actuator boundary condition is not zero. 

Using this simple concept, we can make direct calculations of the exact zeros of 
the transfer function for a uniform free-free beam. This concept can be extended to 
the direct calculation of accurate transfer function zeros of complicated structures 
using the finite element method. 

8.3.5 Natural Damping Models 
In our earlier discussions we ignored energy dissipation mechanisms during 

elastic deformation. Structural damping mechanisms are still poorly understood, 
and appear to be quite complicated. Thus, there are many empirical damping 
models proposed in the literature. Here we discuss several of these models as they 
relate to reduced-order beam vibration models. 

The equation of motion of a uniform beam with several rate-dependent damping 
terms may be written in dimensionless form, as follows: 

y'm(x, t) q- D I S "  -k- D2Y' q- D3Y h- D4y + y = f ( x ,  t) (8.57) 

where Dr j / "  is called structural damping, D2y' is called square-root damping, 
D3y' is called strain-rate damping, Day is called external viscous damping, and 
f (x, t) represents external forces applied to the beam. All the damping coefficients 
are positive constants. 

Structural damping. Structural damping can be motivated by assuming a 
viscous resistance to straining of the beam material, as follows: 

(y" + Dr ' ) "  + ~ = f ( x ,  t) (8.58) 

where D j / '  is a bending moment proportional to the normal strain rate. 
The modal equations associated with Eq. (8.58) can be found as 

Oh(t) -F Dco2gh(t) h- og~qi(t) = fi(t), i = 0 . . . . .  oo (8.59) 

which indicate that the modal damping ratio is proportional to the modal frequency. 
This implies that the energy dissipated per cycle of oscillation is proportional to 
the square of the amplitude and to the first power of excitation frequency. It has 
been experimentally observed, however, that the energy dissipated per cycle of 
oscillation is proportional to the square of the amplitude and independent of the 
frequency for a large variety of materials. 
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Equation (8.58) can be empirically modified to fit the experiment data (for nearly 
simple harmonic motion) as follows: 

y" + ~" + ~ = F ( x ) e  j~' (8.60) 

where j -- ~ and to is the excitation frequency. Then the modal equations can 
be written as 

~li(t) + Dtoiili(t) + to2qi(t) = f i  ej°~t (8.61) 

which has the same damping ratio for each vibration mode. This type of damping 
mechanism is often called structural hysteric damping, wherein the higher fre- 
quency modes damp out more quickly than the lower frequency modes. It is this 
behavior that makes it possible to use truncated models for control design. 

Equations (8.60) and (8.61) are often expressed as 

(1 + j D ) y ' '  + ~ = F ( x ) e  m' (8.62) 

Eli + (1 + jO)to2qi = f ie  jwt (8.63) 

where D is called the structural damping factor. These equations are also known 
as the "complex stiffness" model. 

External viscous damping. This damping model represents an external vis- 
cous resistance to transverse displacement of the beam. The modal equations are 
then simply given by 

Eli(t) -t- DEli(t) + to2iqi(t) = f/(t) (8.64) 

which indicate the same damping coefficient for each mode, i.e., the same real part. 
This model is often used for the analysis of a damped beam; however, it should be 
noted that it does not represent an internal energy dissipation mechanism. 

Strain-rate damping. One may interpret the strain-damping term D) '  as an 
external viscous resistance to the time rate of change of the slope (strainrate) of 
the beam. This term must be a transverse force per unit length, however, and it 
does not seem physically logical to have a force proportional to the time rate of 
change of the slope. 

Square-root damping. This type of damping mechanism has often been used 
for analysis of flexible structures. Because the damping term is proportional to the 
square root of structural stiffness, we call this model square-root damping. 

8.4 Rigid Body with Beamlike Appendages 
In this section we consider a rigid body connected with uniform Bernoulli-Euler 

beams, as shown in Fig. 8.10, as a generic model of a spacecraft with symmetric 
flexible appendages. A planar single-axis rotation with small elastic deformation, 
but with possible large-angle rigid-body rotation, is considered. 
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Fig. 8.10 Rigid body with beamlike appendages. 

8.4.1 Equations of Motion 
In formulating the equations of motion of a flexible spacecraft with large rigid- 

body rotation, a "floating reference frame" is often employed. There are many 
different choices of a floating reference frame; however, we choose here a reference 
frame attached to the central rigid body as shown in Fig. 8.10. 

From the theory of linear mechanical vibration, it is known that an orthogonality 
relationship exists between the rigid-body mode and the elastic vibration modes. 
Physically, such a relationship means zero net angular (or translational) momentum 
of the elastic modes. Such orthogonality relationship is mathematically identical 
to the constraints of the linearized Tisserand reference frame or Buckens frame. 
Without going into details of floating reference frames, we simply derive the exact 
equations of motion of the simple model with large rigid-body rotation using 
Hamilton's principle, which is one of the systematic ways of deriving the equation 
of motion of elastic bodies, 

f t2 f/it2 (T - V ) d t  + ~W dt = 0 (8.65) 
d l  1 

where 

T = total kinetic energy 
V = potential energy 
W = work done by nonconservative forces 

= variation taken during indicated time interval 

For simplicity's sake we assume that the appendages are simple uniform beams 
(symmetric) and that the central rigid body has a spherical shape. Then, for the 
idealized model shown in Fig. 8.10, we have 

1 "2 fo e T = ~JO + ~r[(Rq-x)Oq- i l ]2dx  (8.66a) 

'fo' V = -~ El[o"(x,  t)l 2 dx (8.66b) 

a W = u(t)~O (8.66c) 

where O(t) is the arbitrarily large rotational angle of the central rigid body with 
respect to an inertial reference frame, rRx, t) is the small elastic deformation of 
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the appendages with respect to the reference flame attached to the central rigid 
body, u(t) is the control torque applied to the central rigid body, E1 is the bending 
stiffness of the appendage, tr is the mass density per unit length of the appendage, 
e is the length of the single appendage, J = 2MR2/5 is the rotational inertia of the 
central spherical rigid body, and R is the radius of the central rigid body. 

Using Hamilton's principle, we obtain the rotational equation of motion, as 
follows: 

[Elo"(x, t)]" + ,7[(R + x)O(t) + fl(x, t)] = 0 (8.67) 

and the boundary conditions are given by 

JO(t) = u(t) - 2REhl'"(O, t) + 2EIo"(O, t) (8.68a) 

O(0, t) = 0'(0, t) = 0 (8.68b) 

0"(£, t) = rl"(£, t) = 0 (8.68c) 

where the prime and dot denote partial differentiation with respect to x and t, 
respectively. 

Equation (8.67) has a variable coefficient, but if we define a new coordinate 
y(x, t) as 

y(x, t) ----- (R + x)O(t) + q(x, t) (8.69) 

then we have a simple uniform beam equation (with constant coefficient) 

E l y ' ( x ,  t) + iTS(x, t) -- 0 (8.70) 

and the boundary conditions in terms of the new coordinate y(x, t) become 

JO(t) = u(t) - 2REIy'"(O, t) + 2Ely"(O, t) (8.71a) 

O(t) = y'(O, t) (8.71b) 

y(O, t) = Ry'(O, t) (8.71c) 

y ' (e ,  t) = y ' ( e ,  t) = 0 (8.71d) 

Note that Eq. (8.69) can also be expressed as 

oo 

y(x, t) = (R + x)O(t) + Z cbi(x)qi(t) (8.72) 
i = 1  

where dpi(x) is called the ith "cantilever" or "appendage" mode shape and qi(t) is 
the ith appendage modal coordinate. In this expression O(t) is not the rigid-body 
modal coordinate but the rotational angle of the central rigid body. The slope of 
the appendage mode shape ~i(x) at x = 0 is always zero for the cantilever modes. 

8.4.2 Transcendental Transfer Function 
Taking the Laplace transforms of Eqs. (8.70) and (8.71), we obtain the tran- 

scendental transfer function from control torque u(s) to attitude angle O(s) of the 
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central rigid body, as follows: 

O(s) - ( 1  + cos ) . cosh~)  
= (8.73) 

u(s) A(s) 

where 

A(s) = 2~.[(1 + P,~2) cosh ~. sin ~. + (p,~.2 _ 1) sinh~.cos~. 

+ 2P,)~ sinh ~. sin ~. + ~ P2 P2~.3(1 + cos ~. cosh ~.)] 

and k 4 -  - s 2, with s in units o f  v ~ / O ' e  4 and u(s) in units of  EI/e. The dimen- 
sionless structural parameters P1 and P2 are defined as 

R 
P! = - - =  

e 

radius of  spherical central body 

length of  single appendage 

mass of central rigid body 

total mass of  two appendages 

M 
P 2 =  

2ae  

The vanishing of the numerator polynomial of  Eq. (8.73) is identical to the 
characteristic equation of  a cantilevered beam of length ~. Thus, the zeros of  the 
transfer function (8.73) are identical to the natural frequencies of  a cantilevered 
beam of length e. 

For the special case without the central body, Eq. (8.73) becomes 

O(s) 1 + cos ~. cosh ~. 
(8.74) 

u(s) 2,k(sinh ~. cos k - cosh ~. sin ~.) 

which corresponds to the transfer function of a free-free beam of length 2£ with 
control torquer and rotational angle sensor at the center of  the beam. 

The pole-zero patterns of  Eq. (8.73) for different values of  P1 and ,°2 are shown 
in Fig. 8.11. As expected, the poles and zeros alternate along the imaginary axis, 
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Fig.  8.11 E x a c t  poles and zeros of O(s)I u(s) for different values of structural param- 
eters Pl and/)2. 
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and the pole-zero pairs of each vibration mode depend on the structural parameters 
P1 and ,°2. For a flee-flee beam without the central rigid body each pole has an 
associated zero of higher frequency than the pole, and the lowest zeros are very 
close to the origin. As we increase the inertia of the central rigid body, the poles 
become associated with a zero of lower frequency, and the vibration modes become 
nearly uncontrollable (undisturbable) and unobservable by the control torquer and 
the attitude angle sensor at the central rigid body. 

8.5 Rigid/Flexible Frame with a Pretensioned Membrane 

In this section we consider a simplified model of a membrane-type solar array. 
We shall treat a flexible frame as well as a rigid frame with a pretensioned mem- 
brane to study the effect of membrane tension on the pole-zero pairs of vibration 
modes. 

8.5.1 Rigid Frame with a Pretensioned Membrane 

Consider a simplified model of a rigid frame with a membrane-type solar array 
shown in Fig. 8.12. The solar array (or blanket) is pretensioned in one direction 
and may be described by the wave equation 

z"  (x ,  t)  - (p / T )~(x, t)  = 0 (8.75) 

where z (x ,  t) is transverse displacement of the membrane, p is mass density per 
unit area of the membrane, and T is tension per unit length. 

The boundary conditions for pure rotational motion are 

z(e,  t) = eO(t) (8.76a) 

z(0, t) = 0 (8.76b) 

where O(t) is the rotational angle of the rigid frame and 2e is total length of the 
frame. 

Rigid Frame Direction of Tension Forces 

\ / 
' 

Rigid Shaft I 
Rigid Frame x 

Solar Blanket 

Fig. 8.12 Rigid frame with a pretensioned membrane .  
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The equation of motion of the rigid frame is 

JO = 2aT[z'(£,  t) + o(t)]e + u(t) (8.77) 

where J is rotational inertia of  the rigid frame, u(t) is the control torque applied 
to the frame through the rigid shaft, and a is width of the frame. The rotational 
inertia of  the rigid shaft is omitted for simplicity. 

Taking the Laplace transform of Eq. (8.75), we obtain 

Z'(X, S) q- ~.2Z(X, S) = 0 (8.78) 

where X 2 -- - s  2, with s in units of  v/~--pe 2 and z and x in units of  £. The solution 
of  this Laplace transformed equation of motion is given by 

z(x,  s) = Ai sinXx + A2 coskx  (8.79) 

Using the boundary conditions (8.76), we obtain 

O(s) 
z(x, s) = - -  sin ~.x (8.80) 

sin 

Combining Eqs. (8.77) and (8.80), we obtain the transcendental transfer function 
from control torque u(s) to rotational angle O(s) as follows: 

O(s) sin ~. 
= (8.81) 

u(s) a Te[(3 /2)rk  2 sin ~. - 2(sin ~. + X cos X)] 

where 

J moment of  inertia of  rigid frame 

2apg.3 moment of  inertia of  solar blanket 

As X ~ 0, Eq. (8.81) becomes 

O(s) 1 
(8.82) 

u(s) (J  + 2apf.3)s2 

which is identical to the transfer function of  a rigid frame with a rigid solar blanket. 
The numerator of  Eq. (8.81) is identical to the characteristic equation of a 

vibrating string of length e. The pole-zero patterns of Eq. (8.81) are shown in 
Fig. 8.13 for different values of  inertia ratio r. As r -+ ~ ,  we have near pole-  
zero cancellations of vibration modes, which means that the membrane vibration 
becomes negligible and the entire system behaves as a rigid body. 

8.5.2 Flexible Frame with a Pretensioned Membrane 

Consider a simple model of  a flexible frame with a pretensioned membrane, as 
shown in Fig. 8.14. The equation of  motion for the solar blanket is 

z ' ( x ,  t) -- (p /T )~ (x ,  t) = 0 (8.83) 

with boundary conditions for pure rotational motion 

z(0, t) = 0 (8.84a) 

z(e, t) = y(e, t) (8.84b) 
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Fig. 8.13 Exact poles and zeros of O(s)I u(s) for different values of r .  

where z(x, t) is the transverse displacement of solar blanket, y(x, t) is the trans- 
verse displacement of the support boom, p is mass density per unit area of the 
membrane, and T is tension per unit length. 

Because the support booms are compressed due to the tension in the solar 
blanket, they are described by the beam-column equation 

Ely" ' ( x ,  t) + ( a T / 2 ) y " ( x ,  t) + cry(x, t) = 0 (8.85) 

with boundary conditions 

4Ely"(O, t) = u(t) (8.86a) 

y(O, t) = y"(e, t) = 0 (8.86b) 

Beam Column Direction of Tension Forces 

Tip Rigid Bar 

~ _  Beam Column 

D 

u(t) 

Solar Blanket 

Fig. 8.14 Flexible frame with a pretensioned membrane. 
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where E1 is the bending stiffness of  support booms, ~r is the mass per unit length 
of  booms, and u(t) is the control torque applied through the rigid shaft. 

For the tip rigid bar, we have 

my(e, t) - 2Ely"(e, t) - aTy'(e, t) + aTz'(e, t) = 0 (8.87) 

where m is mass of  the tip rigid bar. 
The dimensionless structural parameters m, or, and/"  are defined as 

m mass of  tip rigid bar 
rh -- - -  -- (8.88a) 

ape. mass of  solar blanket (one side) 

2ere mass of support booms (one side) 
6 -- - -  -- (8.88b) 

ape mass of  solar blanket (one side) 

i" - aTe-----~2 - zr 2 compressive load (aT~2) (8.88c) 
2El buckling load (EI/jr2e 2) 

The Laplace transformed equations of  motion can then be written in dimension- 
less form as follows. 

Solar blanket: 

z"(x, s) + ~.2z(x, s) = 0 (8.89) 

Beam column: 

y"'(x, s) + Ty"(x, s) - 6 7 " k 2 y ( x ,  s )  = 0 (8.90) 

Tip rigid bar: 

-rh~.Zy(1, s) - 7"-ly'"(1, s) - y'(1, s) + z ' ( l ,  s) = 0 (8.91) 

with the boundary conditions 

z(0, s) = 0 (8.92) 

z(1, s) = y(1, s) (8.93) 

y(0, s) = 0 (8.94) 

y"(1, s) = 0 (8.95) 

4y"(O, s) = u(s) (8.96) 

where L 2 -- - s  2 with s in units of  T / ~ - ~ ;  x, y, and z are in units of e; and u(s) 
is in units of EI/£. 

The solution of  Eq. (8.89) is given by 

z(x, s) = A1 sin Lx + A2 cos ~.x (8.97) 

Substituting this into the boundary conditions (8.92) and (8.93), we obtain 

y(1, s) 
z(x, s) = sin kx (8.98) 

sin~. 

The solution of  Eq. (8.90) is given by 

y(x, s) = B1 sinh ax  + B2 cosh otx + B3 sin fix + B4 cos fix (8.99) 
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where 

~/ _ ~ '  nt_ ~/~'2 nt_ 4 ~  ~').2 
0/=  2 

/3= 2 

Combining Eqs. (8.94) and (8.95), we have 

B2 = - B4 (8.100) 

and 

B10/2 sinh0/+ B2(0/2 cosh0/+/32 cos /3 )  --  B3/32 sin/3 = 0 (8.101) 

From Eq. (8.91), we have 

0 = B1 rnX2+ s i ' - ~ ]  s inh0/ -  7"-10/3 cosh  0/ - -  otcosh0/ 

[ ( _  ~ .cos~\  
+ BZ ~X 2 + - ~ )  (cosh at - cos/3) 

_ ~/--1 (0/3 sinh 0/- /33 sin/5) - (0/sinh 0/+/3 sin/3)] 

q-B3 @~-2 + si-~Tn--~-- j sin/3 + cos/3 --/3 cos/3 (8.102) 

From Eq. (8.96), we have 

u(s) 
B2 = (8.103) 

4(0/2 +/32) 

Using Eq. (8.103), we can combine Eqs. (8.101) and (8.102) as 

Ol o12][.1] 
a21 a22 B3 = b2 

where 

all = ot2(o/2 Jr- flZ)sinh0/ 

a12 ~-- _/32(0/2 .}_ f12) sin fl 

a21 ---- (0/2 _{_ f l2 ) [ (_# l~ .2  sin X + X cos X) sinh 0 / -  (i#-lot3 cosh 0 / -  0/cosh 0/) sin ;.] 

a22 = (0/2 -F fl2)[(--t~t).2 sin ;L + )~ cos ~.) sin/3 + (T-l/33 cos/3 --/3 cos/3) sin Z] 

b I = --1(0/2 cosh  0/Jr-/32 cos /3)  

bz = ¼[-(-fil;L 2 sink + ;~ cos Z)(cosh 0 / -  cos/3) 

+ 1"-1 (0/3 sinh 0/- /33 sin/3) sin ~ + (0/sinh 0/+/3 sin/3) sin X] 
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Ira(s) Ira(s) Irn(s) Im(s) Im(s) 
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6.7 
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9.7 9.7 

6.8 6.8 
6.7 6.7 

4.1 3.9 
3.8 3.8 

1.9 
1.4 

9.88 
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6.8 
6.7 6.7 
6.5 

3.87 
3.8 I 3.84 
3.7 
3.8 

1.4 
0.7 O.l 

=o.1 ~ =1.o ~ =z.o ~ =s.o ~ =9.5 

Fig. 8.15 Exact  poles  and zeros of  O(s)lu(s) for different values of  i" (th = ~ = 0.2).  

Finally the transcendental transfer function from control torque u(s) to angle 
O(s) - y'(O, s) can then be found as 

O(s) ot(bla22 -- b2a12) + fl(b2all - bla21) 
= (8.105) 

U(S) al 1a22 -- a12a21 

The exact_pole-zero patterns of  Eq. (8.105) are shown in Fig. 8.15 for different 
values of  T. The nominal values are assumed as rh = 0.2, 6 = 0.2, and 7" = 2.0. 
The lowest poles and zeros approach the origin as ~/" ~ zr2; i.e., aT~2 --+ buckling 
load (El/zr2e2). For the nominal value of 7" = 2.0, each pole has an associated 
zero of  higher frequency than the pole with near cancellation. The lowest zeros 
are quite close to the origin. Thus the reduced-order models obtained from the 
product expansion of transcendental transfer function will have the same number 
of  poles and zeros, whereas the reduced-order models obtained by modal analysis 
always have more poles than zeros. Most physical systems are "strictly proper" 
systems, which have more poles than zeros in the transfer functions; however, 
some dynamic systems, such as the generic examples considered in this chapter, 
behave as "proper" systems with direct transmission. 

To further illustrate such a direct transmission property of  a certain class of  struc- 
tural dynamic systems, consider again a two-mass-spring system. The equations 
of  motion of this system are 

m l ~ ] + k ( x l  -- x 2 ) = u  (8.106a) 

m 2 ~ 2 + k ( x  2 - x l ) = O  (8.106b) 

For the case of  ml <~ m2, we obtain the transfer function from u(s) to xl(s)  as 
follows: 

Xl(S) m 2 s 2 + k  1 1 
. . . .  + - -  (8.107) 
U(S) m2ks 2 k m2 s2 
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which has the same number of poles and zeros and the direct transmission term 
1/k. The zero of this transfer function is the natural frequency of the system when 
xl is constrained equal to zero. The pole-zero pattern of this transfer function is 
similar to the reduced-order transfer function of the flexible frame when we neglect 
all the near pole-zero cancellations as well as high-frequency poles and zeros. The 
flexible frame then behaves as the simple two-mass-spring system with ml << m2 
for the low-frequency range. 

8.6 Flexible Toroidal Structures 
In this section we are concerned with the modeling of a flexible toroidal structure 

for attitude and structural control studies. We shall consider a two-dimensional 
model that can be analyzed somewhat easily and still be realistic. The models are 
simple enough to treat analytically, yet complicated enough to demonstrate the 
dynamic characteristics of future space structures with toroidal configurations. It 
will be shown that for such structures, the coupling between two elastic systems 
results in a transfer function expressed as a combination of an infinite product 
expansion and an infinite partial fraction expansion. 

Because the coupling of bending and torsion is a basic property of the flexible 
toroid, we briefly discuss the attitude motion of a flexible toroid itself. We then 
consider the modeling of a flexible toroid, as well as a rigid toroid, with a pre- 
tensioned membrane in terms of the transfer functions. These models may be of 
academic interest without any practical relevance to future space structures, which 
will consist of many lumped and trusslike subsystems with fairly complex inter- 
connections. It is, however, emphasized that these models will provide physical 
insights into the dynamic characteristics of complex space structures. 

8.6.1 Flexible Toroid 

Consider the modeling and control of the flexible toroid shown in Fig. 8.16. Roll 
attitude control could be obtained by two identical torquers, e.g., reaction wheels, 
located at points A and B. Pitch control could be obtained by two identical torquers 
located at points C and D. Obviously, pitch and roll controls are decoupled and are 
identical, so we consider only roll attitude control. 

The equations of motion of a flexible inextensional toroid for out-of-plane vi- 
bration can be written as follows. 

C 

Roll Axis 

A ///~ ul 
Y(~, 0 

Pitch 
Axis 

Fig. 8.16 Flexible toroid with bending-torsion coupling. 
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Toroid bending: 

EIFI ,. , ] GJ[ RY 1 ,,] _ 
- L-Ry +o" o"-  ] =o 

Toroid torsion: 

F1 ,, -I GJFo" 1 "'1 EII-RYL + 0 J - J 0 = 0  m [  
where 

0( ) . 0( ) ( ) ' -  ( )_= 
0~, ' 0 t  

(8 .108)  

(8.109) 

and where 

y(~0, t) = out-of-plane bending displacement 
0(~,, t) = torsional displacement 

E1 = uniform bending stiffness 
GJ = uniform torsional stiffness 

tr --- mass per unit length 
] = polar moment of inertia per unit length 
R = radius of toroid 

The boundary conditions for pure roll motion at ~O = 0 and Jr are 

y (~ ,  t) = 0 

0(~,  t) = 0 

4El F 1 ,, 
u ( t ) =  (~',t)+O(~,t)] 

(8.1 lOa) 

(8.1 lOb) 

(8.110c) 

nR 
= - 1 ,  l lu(s)  (8.112) 

4El[(  ) - 

where roll control torque u(t) is defined as u/2 = ul = u2. 
The transfer function from roll control torque to elastic deformations at various 

points on the flexible toroid can be obtained using the Laplace transform (t --+ s) 
and the finite sine transform (~O ~ n) because of the periodicity in ~O. The finite 
sine transform is defined as 

y(n,t) = y(O,t)sinn~/ dO (8.111a) 

2 ~ 
- -  Z y(n, t) sin n ~  

y(~O, t ) =  Jr n=] 
(8.1 1 lb) 

The transformed equations of motion with the boundary conditions incorporated 
can be written as 

[ GJn2E1 crR4s2] 1 E l  I R - -  ( GJ'~n20(ns)E1] n 4 - - I  - --F --y(n,s)-  1 -F , 
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and 

GJ\n2 1 n - - (1 + /zl J (1 + -~- )  -~y ( , s )  GJn2"~O(n,s)=O (8.113) 

where the torsional inertia of the thin toroid is neglected. 
Finally, the transfer functions from u(s) to y(n, s) and O(n, s) can be found as 

where 

y(n, s) R 2 [1 4- (GJ/E1)n2]n/2 
u(s) E1 A(n, s) 

O(n, s) R [1 + (GJ/EI)]n3/2 
u(s) E1 A(n, s) 

(8.114) 

(8.115) 

Gj~2n4_ (n4_{_ GJ 2 °'R4s2"~(1..i - GJn2 ~ 
A ( n , s ) =  (1W--E-i] -~n  + E1 ] E1 ] 

By the definition of the finite sine transform, we have 

y(~,s___..~) = 2R__._2. 2 ~ [1 +(GJ/El)n2]n/2sinn~O (8.116) 
u(s) zrEl A(n, s) 

n = 1 , 3  

O(~,s) _ 2R ~ [1 +(GJ/E1)]n3/2sinn~ (8.117) 
u(s) zrEl n=z"~.3 A(n, s) 

The transfer function from roll control torque u(s) to roll angle 4Ks) = - y '  
(0, s)/R can be written as 

~b(s) 1 , ~  n 2 
u(s----)- J ~ s2+w 2 (8.118) 

n=1,3 

where J ~ crzrR 3 is roll moment of inertia of the rigid toroid. The natural fre- 
quencies Wn are defined as 

1 

o)n = n4 + E1 1 +(GJ/EI)n 2 (8.119) 

where o)1 = 0 represents the rigid-body mode. 
It can be seen that the residues or modal gains in Eq. (8.118) have the same 

sign. Thus, Eq. (8.118) will have alternating poles and zeros along the imaginary 
axis, which is a direct consequence of collocated actuator and sensor. For this 
case, attitude stabilization can be simply achieved using angle and rate feedback 
or attitude angle feedback with lead compensation. 

8.6.2 Rigid Toroid with a Pretensioned Membrane 
A simple model for roll attitude control of a rigid toroid with a pretensioned 

membrane is shown in Fig. 8.17. This can be considered as an approximate model 



494 SPACE VEHICLE DYNAMICS AND CONTROL 

Rigid Toroid 

Fig. 8.17 

Roll Axis 

Rigid toroid with a pretensioned membrane. 

for a space reflector (mirror) with a reflector surface stretched across a rigid toroidal 
frame. 

The equation of motion for a circular membrane in polar coordinates (r, ¢ )  is 

Zrr + (1/r)Zr + (1/r2)z~¢~ - (1/c2)~ (r, ~,, t) = 0 (8.120) 

where ( ) ,  = 0( )/Or, ( )¢, = O( ) / 0 ¢ ,  z(r, ~/, t) is the transverse displacement of 
the uniform membrane, c = J " ~ ,  T is the tension per unit length, and p is the 
mass per unit area of the membrane. 

The boundary conditions for pure roll motion are 

z(r, 0, t) = 0 (8.121) 

z(r, ~, t) = - ( R  sin ~)~b(t) (8.122) 

z~(r, 7r/2, t) = 0 (8.123) 

f~12 u(t)=J~-4jo TR[zr(r ,~O, t )+q~sin~p]Rsin~d~ (8.124) 

where u(t) is roll control torque applied to the rigid toroid (u/2 = uj = u2), 4~(t) 
is roll attitude angle of the rigid toroid, and J = crzr R 3 is moment of inertia of the 
rigid toroid. 

For a steady-state sinusoidal input, let 

u(t) = u(w) sin wt (8.125a) 

~b(t) = 4~(o~) sin cot (8.125b) 

Using the boundary conditions (8.121) and (8.123), we obtain 

z(r, ~, t) = z(r, co)sin ~0 sin cot (8.126) 

Substituting Eq. (8.126) into Eq. (8.120), we obtain 

zrr + rZr + -~ z(r, co) = 0 (8.127) 
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4,(s) 

u(s)  

where 

The solution of Eq. (8.127) is given by 

z(r, og)= AJ,(W-~-f)+BY,(W--rc) (8.128) 

where Jl(ogr/c) denotes the Bessel function of the first kind of order one and 
Yl(o9r/c) denotes the Bessel function of the second kind of order one. 

Because z(0, o9) is finite, we have B = O. From the boundary condition (8.121), 
we have 

. . . .  Jt (ogr/c) 
z(r, o9) = -t~q3tog) ~ (8.129) 

Substituting Eq. (8.129) into Eq. (8.124), we obtain the transfer function from roll 
control torque u(s) to roll attitude angle 4>(s) as follows: 

J103 
= (8.130) 

- z rTR  2 [/z~-2Jt(X)/4 + J, O0 - kJ~(k)] 

# -- 
J 

zrpR4/4 

C 
s = j o 9 = j ~ ) ~  

moment of inertia of rigid toroid 

J~(k) -- - -  

As ~. --+ 0, Eq. (8.130) becomes 

4~(s) 

moment of inertia of rigid membrane 

dJt(~) 

d~. 

1 
(8.131) 

u(s) [J + ]rpR4/4]s 2 

which is the transfer function of the rigid toroid with rigid membrane. 
Pole-zero patterns for different values of/z are shown in Fig. 8.18. As ~. --* ~ ,  

we have near pole-zero cancellations of all the vibration modes that correspond 
to the case of a rigid toroid with negligible effects of membrane vibration. 

The numerator of Eq. (8.130) is identical to the characteristic equation of a 
circular membrane with a fixed boundary and nodal line at the roll control axis. 
Thus, the zeros in Eq. (8.130) are independent of/z. 

8.6.3 Flexible Toroid with Pretensioned Membrane 

In this section we derive the equations of motion of the flexible toroid with a 
pretensioned membrane. The tension for out-of-plane buckling of the toroid and 
membrane will also be determined. Finally, the roll transfer function will be derived 
for the case of a collocated actuator and sensor. 

Equations of motion. Consider a flexible toroid with a pretensioned mem- 
brane as shown in Fig. 8.19. 
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Fig.  8 .18  
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E x a c t  po le s  a nd  zeros  o f  a r ig id  toro id  wi th  a p r e t e n s i o n e d  m e m b r a n e .  

The membrane equation is the same as Eq. (8.120), 

Zrr + (1/r)Zr + (1/r2)z¢¢~ -- (l/cZ)~ (r, ~, t) = 0 

The equations of motion of a flexible inextensional toroid with a pretensioned 
membrane for out-of-plane vibration can be found as follows. 

Toroid bending: 

E l i 1  ,,,, ] G J r , ,  1 ,,] r ,, 
- ~ L - ~ y  +0".~ + - ~ L  0 ---~y ]+-Ry + c r ~ = - r z r ( R , O , t )  (8.132) 

Toroid torsion: 

G Jr  ,, 1 ,,'] ElF1 ,, ] _.. 
-~L  0 ---~y J - - - ~ L - ~ y  + O j - a T O -  JO = - a T z r ( R , O , t  ) (8.133) 

where 2a is thickness of the toroid and other variables have been defined in the 
preceding sections. 

Flexible Toroid 

"~ !~ ~ i ~  ~ ~ 

/ 

Roll Axis 

ui'2~ z(r,~',O 

o(~, O 

Fig.  8 .19  F lex ib le  toroid wi th  a p r e t e n s i o n e d  m e m b r a n e .  
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The boundary conditions for pure roll motion are 

z(r, O, t) = z'(r, rr/2, t) = 0 

y(O, t) = y'(Tr/2, t) = 0 

0(0, t) = 0'(Jr/2, t) = 0 

z(R,  ff/, t) = YOP, t) - aO(~#, t) 

IF1 "0, ] 4 E I L ~ y  ( t )  u(t) = 

where u(t) is the roll control torque defined as u /2  = ul = u2. 
The equations of  motion in dimensionless form can be written as follows. 
Toroid bending: 

y "  + 0" + kl[O" -- y"] + kzy" + ~ = -k2Zr(1, ~0, t) 

Toroid torsion: 

kl [0" -- y"] -- [y" + 0] -- k2k50 - k 4 0  = -k2kszr(1,  ~,  t) 

Membrane: 

where 

GJ 

1 l z .  k3 .. 
Zrr -~- 7 Zr "F r2 -- ~2 z = 0 

(8.134a) 

(8.134b) 

(8.134c) 

(8.134d) 

(8.134e) 

T R  3 p R  J a 
kl = - ~ ,  k 2 -  E1 ' k3 =- - ,or  k4=--~rR2, kS=--R 

y, z, and r are in units of  R, and time in units of  ~v/-~-~-/El. 
The boundary conditions in dimensionless forms are 

z(r, O, t) = z'(r, rr/2, t) = 0 (8.138a) 

y(O, t) = y'(zr/2, t) = 0 (8.138b) 

0(0, t) = 0 '(rr /2,  t) = 0 (8.138c) 

z(1, ~p, t) = y(~p, t) - ksO( ~,  t) (8.138d) 

u(t) = 4y"(0, t) (8.138e) 

where u(t) is in units of E l /R .  
The equations of motion for a thin toroid (k4 << 1 and k5 << 1) are as follows. 
Toroid bending: 

y"" + (k2 - k l )y"  + (1 + kl)0" + ~ = -kzzr (1 ,  ~,  t) (8.139) 

Toroid torsion: 

- ( 1  + kl)y"  + klO" - 0 = 0 (8.140) 

(8.136) 

(8.137) 

(8.135) 
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The membrane equation is the same as Eq. (8.137), and the boundary conditions 
are the same as Eq. (8.138) except that 

z(1, ~p, t) = y(~ ,  t) (8.141) 

Static buckling analysis. The critical tension (static buckling load) can be 
determined assuming the buckled shape as 

y ( ¢ )  = A sin2~p (8.142a) 

O(~) = B sin 2 ¢  (8.142b) 

z(r, lp ) = z(r) sin 21p (8.142c) 

Substituting Eqs. (8.142) into the static membrane equation, we find 

z(r) = Ar E (8.143) 

which represents parabolic deflection of  the membrane when the toroid buckles. 
Using Eqs. (8.142) and (8.143), and from the toroid bending and torsion equations 
of  a thin toroid (static case), we can obtain the condition for the static out-of-plane 
buckling as 

k2 = 18k~/(4kl -t- 1) (8.144) 

Because kl = GJ/EI and k2 = TR3/EI, the critical tension is expressed as 

3El 6 
Tc = - -  (8.145) 

R 3 4 + EI/GJ 

It is interesting to compare this result to other known values of critical loads for 
the different external loading conditions: 1) flexible ring (toroid) with externally 
applied constant uniform pressure (always in the same direction) and 2) flexible 
ring with externally applied load (uniformly distributed), which always points to 
the center of  the ring. 

For case 1, Eqs. (8.139) and (8.140) can be modified to 

y"" + (k2 - kl)y" + (1 + kl)O" = 0 (8.146a) 

- ( 1  + kl)y" + k~O" - O = 0 (8.146b) 

where there is no transverse component of  external pressure in this case. By assum- 
ing the buckled shape, y = A sin 2~p and O = B sin 2~p, we obtain the following 
critical value of  external pressure: 

3El 3 
Tc = - -  (8.147) 

R3 4 + E1/GJ 

which is exactly the same as the critical pressure obtained by Timoshenko and 
Gere 11 in 1923. 

For case 2, Eqs. (8.139) and (8.140) can be modified to 

y " '  + (k2 - k~ )y" + (1 + kl )0" = -k2y  (8.148a) 

- ( 1  + kl)y" + klO" - 0 = 0 (8.148b) 
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Similarly, we obtain the critical load for this case as follows: 

3E/ 4 
Tc = - -  (8.149) 

R 3 4 + EI/GJ 

which is identical to the critical load obtained by Hencky (see Ref. 11) in 1921. 

Transfer functions. The transfer functions from roll control torque to struc- 
tural displacements, at various points on the flexible thin toroid with a pretensioned 
membrane, can be obtained by taking the Fourier transform (t--+09) and the finite 
sine transform (~0 --* n) of  the coupled partial differential equations and the 
boundary conditions) 2 

The transformed equation of motion of the membrane becomes 

[.2  092] 
1 - 7 ~  k2 j Zrr + -Zr + + z(r, n, o)) = 0 (8.150) 
r 

Using the boundary conditions, we obtain the solution of  Eq. (8.150) as 

y(n, 09)J,O~r) 
z(r, n, o9) = (8.151) 

J.(x) 

where ~. = 09~v/'k-3/k2 and J,(X) is the Bessel function of the first kind of order n. 
The toroid bending equation (8.1 39) after transformations becomes 

nay(n, o)) + n [ ( -  1)"+ly"(Jr, t) + y"(0, t)] - n 3 [ ( -  1)"+ly(rr, t) + y(0, t)] 

+ (k2 - kl){-nZy(n, o)) + n[(--  l)"+ly(zr, t) + y(0, t)]} 

-k- (1 + kl){--nZO(n, co) + n[(--  l)n+10(Jr, t) + 0(0, t)]} -- wZy(n, w) 

y(n, 09)XJ" (X ) 
= - k  2 (8.152) 

J.(X) 

where 

dJ ,  O.) 

J;(x) = dX 

Rearranging Eq. (8.152) and using y(3r, t) = y(0, t) = OUr, t) = 0(0, t) = 0 and 
y"(O, 09) = y"(rr, 09) = u(09)/4, we get 

k2xJ.'(x)-I , ,  n a + (kl -- kz)n 2 - o) 2 -k- ~ j y t  w) - (1 + kl)nZO(n, w) 

n 
= ~ [ ( - 1 ) "  - llu(o~) (8.153) 

Similarly, the toroid torsion equation (8.1 40) becomes 

(1 + kl)nZy(n, co) -- (1 + klnZ)O(n, 09) = 0 (8.154) 
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Combining Eqs. (8.153), (8.154), and (8.151), we obtain 

y(n, to) 
u(to) 

O(n, to) 
u(to) 

z(r, n, o)) 

{(1 + k,nZ)n/2}J.O.) 
A(n, to) 

{(1 + 
A(n, to) 

1(1 4- k,nZ)n/2}J.()~r) 
u(to) A(n, to) 

(8.155) 

(8.156) 

(8.157) 

where 

A(n, to) = -[n 4 j.(~.) -b (kl - -  k2)n2 Jn()Q - t o 2 J n ( ~ - )  

+ kzXJ'O.)](1 + k,n 2) + (1 + kl)Zn4j.O.) 

By using the definition of the finite sine transform, we obtain 

y(~,to) 2 ~ {(1+kln2)n/2}J.(~) 
u(to--'---)- Jr A(n, to) sin nip 

.=1.3 

0(~,to) = _2 ~ {(1 +k[)n/2}J,(~.) sinn~ 
u(to) Jr A(n, to) 

n=1.3 

(8.158a) 

(8.158b) 

z(r, ~l/,to) _ 2 ~ {(l +k,n2)n/2}J,O.r) 
u(to) zr A(n, to) sin n~O (8.158c) 

n=l.3 

which are the transfer functions from the roll control torque to the displacements 
at various points on the toroid and membrane. 

In particular, the transfer function from the roll control torque to the collocated 
roll angle sensor, which measures the bending slope ¢(to) = y'(0, to), can be 
written as 

¢(to) 1 ~ n2(1 4- kln2)Jn(~.) 
u(to) -- Jr A(n, to) (8.159) 

n=l,3 

Using the Laplace transform variable s, the roll transfer function (8.159) can be 
rewritten as (in dimensional form) 

¢(s) 1__ ~ ~ i  l + (s/Znm) 2 
u(s-'-)) -- Js 2 + a. (8.160) ,=1.3 m=].2 1 + (S/tonm) 2 

where J denotes total moment of inertia of rigid toroid and rigid membrane, to.m is 
the ruth root of the characteristic equation A(n, to), Znm is the ruth root of Jn (~-) = 0, 
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and an is defined as 

al = (1 + k j ) / J  

n2(1 + k i n  z) 

an = j{  _ [n4  4- (kl - k2)n 2 -k- k2](1 + kl n2) 4- (1 4- kl)2n 4} 

(8.161a) 

(8.161b) 

fo rn  = 3 ,5  . . . . .  cx~. 
The transfer function (8.160) is not as simple as other transfer functions because 

of the combination of infinite product and infinite partial fraction expansions. This 
additional complexity is due to the coupling between two elastic systems, a flexible 
toroid and a membrane. 

Because Eq. (8.160) is the transfer function between the collocated actuator and 
sensor, it has alternating poles and zeros along the imaginary axis. Unfortunately, 
we did not find the exact zeros, but Eq. (8.160) can be used to determine the 
reduced-order transfer function for the finite dimensional controller design. 

8.7 Summary 
In this chapter we have considered the pole-zero modeling of some generic mod- 

els of  flexible structures. In particular, we determined the exact transfer functions 
from applied torques to attitude angles at the points where the control torquers are 
located. Although analytical frequency-domain modeling of some hybrid systems 
was possible, the derivation of exact transfer functions involved a fair amount of  
effort. Perhaps a more logical next step will be the development of  a computer- 
aided approach to the frequency-domain modeling of hybrid systems with complex 
interconnections of  lumped and beam- or trusslike lattice substructures. Conse- 
quently, various algorithms and techniques for numerical or symbolic manipula- 
tion of frequency-domain continuum models are under development. The various 
hybrid models considered in this chapter will, therefore, be useful for checking 
or validating the computer-aided techniques so that the practical use of  these 
techniques can be made with confidence where future large space structures are 
concerned. 
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9 
Attitude and Structural Control 

This chapter is primarily concerned with the analysis and design of attitude 
control systems for space vehicles in the presence of propellant sloshing and/or 
structural flexibility. Active structural vibration control problems are also treated; 
however, many theoretical aspects of flexible structure controls are not elaborated 
upon. This chapter is mainly intended to provide the reader with various practi- 
cal examples of attitude and structural control designs for space vehicles having 
flexible solar arrays and/or flexible appendages. 

9.1 Thrust Vector Control Design for a Spacecraft 
with Propellant Sloshing 

In this section a preliminary thrust vector control design for a spacecraft in the 
presence of propellant sloshing is presented. The intent here is not to present the 
final control system design in detail, but rather to describe mission requirements, 
dynamic modeling of propellant slosh, and thrust vector control design during the 
early phases of developing a liquid upper stage.l 

9.1.1 Introduction 
Future spacecraft missions will require more efficient, low-cost orbital transfer 

from low Earth orbit to geosynchronous orbit. This requirement has resulted in the 
development of various new upper stages, including transfer orbit stage (TOS). 
The TOS is a three-axis stabilized perigee stage with the same solid propellant, 
first-stage motor that is used in the inertial upper stage (IUS); however, an inte- 
grated liquid upper stage that performs both the transfer and geosynchronous orbit 
injections may be more cost effective for some missions. 

An integrated liquid-propellant stage for use as a reusable orbital transfer ve- 
hicle for a future geostationary platform has been extensively studied by NASA 
in the past. A feasibility study for the development of a new upper stage to min- 
imize the cost of launching communications satellites into geosynchronous orbit 
via the Space Shuttle has also been studied. 1 One of the several systems studied 
is the integrated liquid upper stage that employs a nonspinning deployment from 
the Space Shuttle in conjunction with three-axis stabilization of the upper stage 
during perigee and apogee maneuvers. Figure 9.1 illustrates a mission scenario 
for deploying a geosynchronous communications satellite using this upper stage. 
As can be seen in this figure, this liquid-bipropellant (MMH/NTO) upper stage 
consists of separate perigee and apogee tanks with a single gimbaled main engine. 

During the early phases of this new upper stage development, the large amount 
of liquid propellant has posed a major concern regarding propellant sloshing 
and thrust vector control design in the presence of significant center-of-mass 
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Fig. 9.1 Mission sequence for deploying a geosynchronous communications satellite. 
(Courtesy of Ford Aerospace and Communications Corp., Palo Alto, CA.) 

uncertainties. The dynamic interactions of propellant sloshing with attitude con- 
trol systems have been one of the major concerns in control systems design for 
various aerospace vehicles; see, e.g., Greensite 2 and Bryson. 3 There has also been 
a considerable amount of analytical and experimental work done in the past to 
account for the effects of propellant sloshing (e.g., see Ref. 4). 

In this section we consider the problem of designing a thrust vector control 
(TVC) system for a liquid-bipropellant upper stage spacecraft. The objective here 
is not to present the final control system design in detail, but rather to describe an 
analytical design procedure, as well as a systematic way of specifying the overall 
system requirements, during the early phases of the new upper stage development. 
Mission requirements, dynamic modeling of propellant slosh, and a preliminary 
TVC design are described in this section. A simple model with a single slosh 
pendulum is introduced and an implicit "gravity turn" guidance scheme, often 
called tangential steering, is considered for TVC design. Overall system design 
requirements such as AV pointing error, spacecraft gain factor, center-of-mass 
uncertainty, gimbal angle and rate limit, gyro saturation limit, and slosh charac- 
teristics are discussed. 

9.1.2 Mission Requirements 
For a satellite mass range of 750-1400 kg, a 3750-1b thrust engine with a specific 

impulse of 328 s is selected for the preliminary mission analysis. 
Approximately 8-14 min perigee burn times are required to achieve a AV of 

2450 m/s. The long burn time is due to the relatively low-thrust level of 3750 lb, 
compared to the PAM-D thrust level of 14,000 lb, the Centaur thrust level of 
30,000 lb, or the IUS thrust level of 50,000 lb. Because of the long burn time, a 
powered flight with a 35-60 deg burn arc is required, as illustrated in Fig. 9.2. 
Although it is most efficient to perform some orbital plane change at perigee, we 
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Fig. 9.2 Perigee maneuver with a 35-60-deg burn arc. 

consider here only a planar perigee injection maneuver. The apogee burn requires 
2 -4  min to achieve a A V  of  178 m/s. 

The total burn time may be completed in one burn or divided into several short 
burns. A single perigee firing and two apogee firings are selected as a baseline. 
The duration of  each burn determines the efficiency of  the A V maneuver. The 
difference between the actual A V and the equivalent impulsive A V is termed 
gravity loss; it is a measure of  the burn efficiency. The efficiency of  the firing 
determines the amount of  propellant mass needed to achieve the desired transfer 
orbit. The efficiency of  the A V maneuver also depends on the thrust-vector steering 
logic. A summary of the mission requirements is given in Table 9.1, which lists 

Table 9.1 Summary of the mission requirements 

Mission description Minimum Maximum 

Satellite mass (BOLa), kg 750 1400 
PF b AV, m/s 2450 2458 

Burn time, s 480 840 
Burn arc, deg 35 60 
AV pointing error, e deg 2 2 

AFI c AV, m/s 1700 (900) f 1700 (900) 
Burn time, s 150 (80) 250 (130) 
Burn arc, deg 0.5 (0.3) 1 (0.8) 
A V pointing error, deg 0.5 0.5 

AF2 d AV, m/s 100 (900) 100 (900) 
Bum time, s 5 (80) 18 (130) 
Burn arc, deg 0.01 (0.3) 0.6 (0.8) 
A V pointing error, deg 0.5 0.5 

aBeginning of life. bPerigee firing. CFirst apogee firing, aSecond apogee 
firing, epointing error budget for TVC due to center-of-mass uncertainty; 
total pointing error requirements: 3 deg (perigee) and 1 deg (apogee). f95- 
5% (50-50%) split for AFI and AF2. 
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Table 9.2 Summary of spacecraft (upper stage and satellite) parameters 

Minimum mission Maximum mission 

Description PF" AF1 b AF2 c PF AF1 AF2 

Total mass, kg 4900 1950 1100 7800 3150 1800 
Acceleration, 0.34 0.87 1.55 0.22 0.54 0.94 

g = 9.8 m/s 2 
Inertia, kg-m 2 

Roll 10000 2143 1000 29000 5600 2000 
Pitch 10000 2676 1000 24000 6100 2200 
Yaw 10000 1576 1000 20000 500 2000 

Center-of-mass 0.2 0.5 1.0 0.3 0.6 1.3 
distance, m 

Gain factor, s -2 
Pitch 0.3 5.3 16 0.25 2.2 10 
Yaw 0.3 3.1 16 0.25 1.7 I0 

Propellant, kg 2500 790 (400) 40 (400) 4200 1270 (660) 65 (660) 

aperigee firing, bFirst apogee firing. CSecond apogee firing. 

the A V requirements, burn time, and burn arc for each mission. The spacecraft 
parameters for each mission are also summarized in Table 9.2. 

The implicit gravity turn guidance, often called tangential steering, is considered 
assuming that the actual flight trajectory is very close to the expected nominal 
trajectory. The gravity turn is defined as the trajectory that results from simply 
keeping the thrust vector always parallel to the velocity vector. It is known that an 
optimal thrust vector steering other than the simple tangential steering increases 
the fuel efficiency of any finite thrust maneuver; however, the burn efficiency of the 
tangential steering even with a 60-deg burn arc for the mission under consideration 
is still better than 98.5% because of the relatively higher acceleration level than 
the g level considered in most low-thrust maneuver studies. 5 Note that the 1.5% 
efficiency loss will only require approximately 50 kg of additional propellant. An 
explicit cross-product steering guidance 6 could also be employed to improve the 
fuel efficiency. Tradeoffs between fuel efficiency and implementation simplicity 
are needed in practice. 

9.1.3 Spacecraft Dynamics with Propellant Sloshing 
Maintaining the thrust vector pointing of the spacecraft in the presence of signif- 

icant propellant sloshing is of practical interest. If  the propellant tanks are always 
100% full, then there will be no sloshing problems. In practice, however, tanks 
sized for the maximum propellant requirement will also be used for some missions 
with a lower propellant requirement. As summarized in Table 9.1, the minimum 
payload mission needs only 60% of the propellant required for the maximum mis- 
sion. This is the case in which special considerations of the propellant sloshing in 
liquid upper stage designs are required. 
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The propellant slosh motions are generally characterized as lateral, vertical, 
rotational (swirl motion), vortex formation, surface spray, dome impact, and low- 
gravity phenomena. Of these, lateral sloshing has the most significant effect on 
spacecraft attitude dynamics during thrusting maneuvers. Exact formulation and 
solution of propellant sloshing problems in various tanks with/without compart- 
ments and baffles are, in general, very complex. Thus, dynamically equivalent 
mechanical models have been used to represent the gross effects of propellant 
sloshing in various tanks. 

A flat doughnut-shaped tank, as shown in Fig. 9.1, has been selected because of 
its high volume efficiency (shorter length); however, there are no theoretical anal- 
yses available for predicting the behavior of liquids in compartmented toroidal 
tanks. This is because liquid motions in such toroidal tanks are more nonlinear 
than those in cylindrical or spherical tanks. For a preliminary thrust vector control 
design, an ideal model with a single slosh pendulum, as illustrated in Fig. 9.3, 
can be used. This simple model makes it possible to perform a preliminary TVC 
design and to generate various system level requirements during the early phases 
of the new upper stage development. The tank fill ratio determines the parame- 
ters of an equivalent mechanical model. For example, in a spherical tank with a 
50% fill ratio, the effective slosh mass is about 35% of the total propellant and 
the pendulum length is about 60% of the tank radius (pivoted at the center of 
tank). 

Because it is a common practice to consider a decoupled single-axis control 
design, we consider here only the pitch-axis TVC design. For such a single-axis 
control design, the nonlinear equations of motion of the simple planar model with 
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Fig. 9.3 Simple model with a single slosh pendulum. 



508 SPACE VEHICLE DYNAMICS AND CONTROL 

a single slosh pendulum, as shown in Fig. 9.3 can be derived as 

moax = F cos 8 - m[ax + £(0 + ~)sin ce + bO 2 + £(0 q- ~)2 COS Or] (9.1a) 

moaz = F sin 8 -- m[az + bO + ~(0 + 60 cos ot - £(O + 60 2 sin or] (9. lb) 

JoO = Feo sin S - mb[az + bO + e(o + 60 cos ot - E(O + 60 2 sin or] (9.1 c) 

m[az cosot + ax sin~ + bO cosot +/~(0 + 67) + bO z sin or] + ce& = 0 (9.1d) 

where ax and az are respectively the longitudinal and lateral accelerations of the 
main body center of mass; 0 and ot are the pitch angle and pendulum deflection 
angle, respectively; mo and Jo are the mass and pitch inertia of the main body 
excluding the slosh pendulum, respectively; F is the thrust magnitude; eo is the 
distance from the gimbal pivot point to the main body center of mass; m and e are 
the mass and length of the slosh pendulum, respectively; c is the slosh damping 
coefficient; and b is the distance between the center of mass of the main body and 
the pendulum pivot point. 

The engine inertia effect that results in a so-called tail-wags-dog zero is not 
included in Eqs. (9.1) because of the relatively small engine inertia. Also no- 
tice that the preceding equations of motion have been written with respect to 
the center of mass of the main body, not to the composite center of mass. For 
a relatively small sloshing mass, it can be assumed that the composite center 
of mass is coincident with the main body center of mass. For a relatively large 
sloshing mass, however, the effects of a moving composite center of mass on 
the TVC design is likely to mislead the TVC designer. For example, the effects 
of initial propellant asymmetry may be considered additional thrust vector mis- 
alignment if the equations of motion are written with respect to the composite 
center of mass, which is, in fact, moving relative to the main body center of 
mass as the propellant sloshes. However, the initial propellant asymmetry must 
be distinguished from the thrust vector misalignment arising from the constant 
center-of-mass offset. Thus, the effects of large slosh initial conditions become 
clear if the equations are written by separating the main body and the slosh pen- 
dulum. The gyros sense not the motion of the composite center of mass, but the 
motion of the main body to which the gyros are attached. The thrust vector control 
system uses the main body attitude changes measured by the gyros for feedback 
controls. 

For a preliminary TVC system design, Eqs. (9.1) can be iinearized for small 0 
and ~, and the following transfer function from the gimbal deflection angle 3 to 
the pitch attitude 0 can be used: 

0 _ ao(S 2+o~ 2) 
(9.2) 

where ao = Feo/Jo is often called the gain factor of the vehicle excluding pro- 
pellant sloshing mass. The engine inertia effect, known as a tail-wags-dog zero, is 
not shown here because of the relatively small engine inertia. The pole and zero 
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of the slosh mode are given by 

2 2 { 1 + m  mb(b+f.)} - -  + (9.3a) 
(.Op = O) s mo Jo 

2 2 21 mb mb(b+e)} (9.3b) 
O)z = O)P - -  ('Os ~ o ~  + Jo 

where cos denotes the slosh frequency defined as 

~o~ = x/F/(mo + m)e (9.4) 

The slosh mode pole-zero separation represents the magnitude of propellant 
sloshing. If the slosh pendulum is pivoted below the composite center of mass, 
then the slosh mode zero will always be lower than the pole. This results in a 
stable interaction of the slosh mode and the rigid-body mode. Thus, the problem 
of controlling a spacecraft with propellant sloshing is very similar to the problem 
of controlling a spacecraft with flexible solar arrays; however, the TVC designer 
has little direct control over propellant sloshing. His approach is to note its effect 
and, if objectionable, to specify a greater amount of mechanical passive damping. 

Several passive methods can be employed to minimize the effects of propellant 
sloshing. Baffles of various configurations usually add passive damping ratios up 
to 5% and mainly affect the magnitude of the slosh forces and the amplitude of 
the slosh motion. The penalty of baffles is, obviously, more weight and, hence, 
less payload (or more launch cost). However, a significant weight saving can be 
realized without the loss of damping effectiveness by using perforated (usually 
30%) baffles. 

Compartmentation, or subdivision, of the tank has a very marked effect in in- 
creasing the fundamental slosh frequency. This is an ideal method of avoiding 
slosh coupling with rigid-body control by using spectral separation. Compartmen- 
tation also has the effect of lowering the second slosh frequency so that these two 
frequencies are not widely separated. Thus, integration of the tank and TVC design 
is needed during the early phases of the liquid upper stage development. 

9.1.4 Thrust Vector Control Design 
Consider a preliminary TVC design for the pitch-axis TVC system shown in 

Fig. 9.4. This pitch-axis thrust vector control system, which receives the gyro 
output and gimbal angle readout and feeds them to the gimbal servo, consists of 
an inner attitude control loop and an outer guidance loop. As mentioned earlier, 
a gravity turn is assumed so that the thrust vector of the upper stage spacecraft is 
nominally pointing along the velocity vector and only small deviations from the 
nominal trajectory are considered. 

Although all of the spacecraft parameters are actually time varying (mass flow 
rate ~ 5.19 kg/s), they are held fixed for analysis purposes because the variations are 
slow when compared to the attitude control dynamics. However, gain scheduling 
may be needed to compensate for the large variation that occurs in spacecraft mass 
and inertia properties as propellant are depleted and the stage is jettisoned. 
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Fig. 9.4 Pitch-axis thrust vector control system. 

Because the center-of-mass offset results in a constant disturbance torque, a 
steady-state attitude error is necessary to produce the gimbal deflection to coun- 
teract the disturbance. Thus, an attitude pointing error develops that must be either 
lessened by increasing the loop gain or eliminated by means of integral control. 
Integral trim is provided from the outer guidance loop as can be seen in Fig. 9.4. 
For guidance purposes, attitude or attitude rate is not the primary variable of interest 
in the TVC design. The guidance loop commands an attitude change to control the 
lateral velocity ~ of the spacecraft. Thus, control of the spacecraft velocity vector is 
a prime requirement in the TVC design. Control of the orbit injection velocity vec- 
tor at main engine cutoff is most critical. Because the ultimate goal of thrust vector 
control is to control the lateral velocity error, the outer guidance loop generates 
an appropriate attitude angle command for the inner attitude control loop. Integral 
gain K2 in the guidance loop eliminates the steady-state lateral velocity error due 
to the center-of-mass offset or thrust vector misalignment. The preprogrammed 
thrust vector steering command (0 - ~)c is approximately a "ramp" signal for a 
simple gravity turn maneuver. The TVC system shown in Fig. 9.4 will then have 
a steady-state lateral velocity error for a ramp command. This error is inversely 
proportional to the integral gain K2. 

The type of slosh filter (notch, phase lead, or rolloff) in the inner attitude control 
loop depends on the degree of passive control afforded by baffles and compartmen- 
tation. If the slosh mode frequency is widely separated from the control bandwidth, 
a gain stabilization of the slosh mode is preferred using a roll-off filter. If not, the 
slosh mode should be phase stabilized by carefully considering the additional phase 
lag from the actuator/sensor dynamics and control loop time delay. 

If the outer guidance loop response time is kept an order of magnitude slower 
than the response time of the inner attitude control loop, then an equivalent control 
logic for the TVC system in terms of a single measurement of the pitch attitude 
can be represented as 

~ c = - K ( I + K R s )  1 + - - +  0 (9.5) 
s 

where K is the attitude control loop gain, KR the rate gain, and KI and K2 are the 
guidance loop parameters. This equivalent single-loop control logic representation 
of the multiloop system allows a classical control design using the root locus 
method and/or frequency response methods. 
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Furthermore, neglecting the slosh mode, we can obtain the following approxi- 
mate closed-loop relations for a parametric study of the TVC system: 

tol = attitude control bandwidth, 
(l = attitude control damping, 0.SKkx/'h--K 
w2 = guidance loop bandwidth, 4 ~ 2  
(2 = guidance loop damping, 0.SKi q ~ 2  
0max = attitude peak rate, E x/rh-TK exp [ -  D -  l tan-1 D] 
8ss = gimbal steady-state angle, - E  
~max = gimbal peak rate, -KKRaE 

where a is the rigidized spacecraft gain factor, E is the center-of-mass offset angle, 
and D = ~/1 - (~/(1. 

These approximate relationships among the TVC system parameters have been 
very useful in the early phases of the upper stage development, because they have 
provided high confidence in specifying requirements on the overall system without 
the need for extensive digital simulations. 1 

During the early phases of the upper stage development, the TVC designer 
is often asked to specify the capabilities of the gimbal servo for system level 
tradeoffs in selecting the type of gimbal servo. An electrohydraulic servo can be 
selected because of its performance superiority to any other type of servo, such 
as electromechanical or pneumatic servos. Large inertia and torque loads can be 
handled with high accuracy and very rapid response. The electrohydraulic servo 
used to gimbal large rocket engines is a highly nonlinear device. For preliminary 
analysis purposes, however, the servo transfer function from the gimbal angle 
command 3c to gimbal angle output 8 can be simply modeled as 

a o,2. 
R 

ac (Ts + 1)(s 2 + 2(w.s  + co 2) 
(9.6) 

where T is the servo time constant and o9, and ( are the hydraulic natural frequency 
and damping ratio, respectively. The servo bandwidth (1 /T)  is usually limited to 
20-40% of the hydraulic natural frequency. Thus, a fast servo requires higher hy- 
draulic natural frequency and large damping ratio. Both of these quantities are 
fixed once the power element is selected. Significant nonlinearities may occur in 
the servo valve and in the gimbal bearing friction. There is a saturation limit for 
hydraulic flow rate, which limits the slew rate for the gimbal actuator. 

A preliminary TVC design for the specific mission requirements given in Ta- 
ble 9.1 has been conducted. 1 Such a preliminary design can best be performed 
using a root locus plot, illustrated in Fig. 9.5. This figure shows a root locus plot 
vs the attitude control loop gain K for a minimum payload mission at first apogee: 
ao = 5.0, K1 = 0.1, K2 = 0.01, KR = 2.0, and nominal K = 0.7. A servo time 
constant of 0.1 s and a slosh mode with 5% damping, w z = 4 tad/s, and Wp = 5 
rad/s have been assumed. 

One of the difficult tasks in the preliminary TVC design and analysis is to specify 
requirements on slosh mode frequency and passive damping to ensure satisfactory 
TVC performance and stability. If the slosh mode characteristics are given to 
the TVC designer, then it may be straightforward to include the slosh mode in the 
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Fig. 9.5 Root locus plot for the pitch-axis TVC system. 

TVC design. In general, tradeoffs between passive and active controls in terms of 
cost, complexity, and reliability are needed in a system level study. 

A classical control design of the TVC system using the root locus method has 
been verified by computer simulations. Figure 9.6 shows the pitch-axis responses 
for a maximum mission at perigee. The center-of-mass offset of 4 deg and thrust 
vector steering command of 0.1 deg/s are assumed for the perigee maneuver. The 
peak attitude rate and peak lateral velocity error are relatively small because of the 
large inertia of vehicle at perigee. The peak lateral velocity error during the initial 
transient is well within the A V pointing requirement. The steady-state lateral 
velocity error of 0.4 m/s comes from the thrust vector steering ramp command 
of 0.1 deg/s. The lateral velocity error can be further reduced, if necessary, by 
increasing the guidance loop bandwidth or adding another integral control term. 
Note that the 0.4-m/s steady-state error was negligible; however, navigation error 
analysis and simulation in terms of actual orbital parameters should be performed 
as the system design becomes mature. 

Also, the effect of large slosh initial conditions (up to 45 deg) has been studied 
using the nonlinear equations. Not surprisingly, the overall performance and sta- 
bility are not changed much from the simulations using the linearized equations 
of motion. For a 45-deg initial slosh angle, both linear and nonlinear simulations 
closely predicted a spacecraft peak rate of about 8 deg/s at the first apogee firing 
with a 2-deg center-of-mass offset. Therefore, it can be concluded that the linear 
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Fig. 9.6 Simulation results for a perigee maneuver with a 4-deg center-of-mass offset 
and O.l-deg/s TVC command. 
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transfer function analysis is still valid in the presence of a time-varying composite 
center of mass. Because a large initial propellant asymmetry can result in an atti- 
tude peak rate of 8 deg/s, the propellant settling bums, often called "ullage" bums, 
may be needed to provide propellant settling prior to the main engine firings if the 
gyro has a saturation limit of about 10 deg/s. 

9.2 Attitude Control Design for a Bias-Momentum 
Stabilized Spacecraft 

In this section, which is based on Ref. 7, we consider an attitude control design 
problem of a bias-momentum stabilized geosynchronous communications satellite 
having flexible solar arrays. 

9.2.1 Introduction 

Three-axis bias-momentum stabilization has been employed for many geosyn- 
chronous communications satellites. 7-n° The unique feature of the bias-momentum 
stabilization for satellites in geosynchronous orbit is the ability to control yaw-axis 
pointing error passively without a direct yaw measurement. The bias momentum 
provides gyroscopic stiffness to the environmental disturbances, primarily to the 
solar radiation pressure torque. 

The increased demand of electrical power for communications and/or direct 
TV broadcasting leads to large flexible solar panel arrays for three-axis stabilized 
spacecraft. Consequently, the structural flexibility of the solar arrays has been one 
of the primary concerns in the design of attitude control systems for a certain class 
of three-axis stabilized spacecraft. For most cases of practical concern, however, 
the structural flexibility of the solar arrays does not strongly interact with attitude 
control systems, and thus all of the structural modes are often gain stabilized by 
the steep rolloff at a frequency well below the first structural frequency. In this 
section we consider such a case in which the structural modes do not strongly 
interact with an attitude control system but need to be considered in the control 
design process to avoid a possible closed-loop instability of the structural modes. 

Figure 9.7 shows a three-axis stabilized, geosynchronous communications satel- 
lite with large, flexible solar arrays. The antenna reflectors are rigidly mounted 
(after deployment) to the main body. 

9.2.2 Attitude Control System Description 
Figure 9.8 shows an attitude control system configuration that consists of two 

momentum wheels skewed with respect to the pitch axis, a smaller yaw reaction 
wheel for backup mode, redundant two-axis Earth sensors to measure roll and 
pitch attitude references, and thrusters to provide wheel momentum desaturation 
torques. Other thrusters for stationkeeping maneuvers are not shown here. The x 
axis is nominally in the flight direction, the y axis is normal to the orbit plane, and 
the z axis is directed toward the Earth. Such roll, pitch, and yaw control axes are 
nearly cOincident with the principal axes of the spacecraft. 

For the spacecraft shown in Fig. 9.7, the principal moments of inertia are given by 

(Jx, Jr', Jz) = (3026, 440, 3164) kg.m 2 

and two skewed momentum wheels with a 2.5-deg skew angle provide pitch bias 
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• SIC mass 1500 kg (BOL) 

• Main body 1.5 x 1.7 x 2.2 m 

• Solar arrays 20 m (tip-to-tip) 

• Array power 1.5 kW 

• Pitch bias momentum 91.4 Nms 

• Liquid bi-propellant N204/MMH 

Fig. 9.7 Three-axis stabilized, geosynchronous communications satellite. 

momentum of 91.4 N.m.s with +2.5-N.m.s momentum modulation capability. 
The yaw reaction wheel has momentum modulation capability of -t-0.65 N.m-s. 

A functional block diagram representation of the on-orbit normal mode con- 
trol system employing the skewed bias-momentum wheel configuration is also 
illustrated in Fig. 9.9. As can be seen in this figure, the on-orbit normal mode 
control system consists of the attitude control loops and wheel momentum desat- 
uration loops. 
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Fig. 9.8 Attitude control system configuration. 



516 
S

P
A

C
E

 V
E

H
IC

LE
 D

Y
N

A
M

IC
S

 A
N

D
 C

O
N

TR
O

L 

o
 

o
 

--I 
Z

 
9 I- 

l- 

uJ 

Z
 

.J 
u

,I 
w

 
"r 

~
z

 

z o
~

 

i 
i 

i~
l r~- 

w
n

,- 
=

i~
 

"P
 i.u 

E
~

 

d ~
-, 

d ~- 
z 

z 
i 

;;I 
-~o 

~
o

 
~

1
,- 

L
I- 

,-0
 

r~
O

 
m

O
 

d:~ 
d:~ 

d:E
 I 

z 
z 

z 

i 
~T 

r' 
m

 

i 
i 

| 

z f 
=

 

°~
 

o 

=
 

3 

E
E

 £ u 



ATTITUDE AND STRUCTURAL CONTROL 517 

During the on-orbit normal mode operations of this control system, the yaw 
attitude error is neither measured nor estimated. The yaw error in a limit cycle at 
orbit rate is controlled indirectly by the yaw momentum desaturation loop with 
the measurement of wheel yaw momentum. The yaw momentum control loop pro- 
vides active roll but passive yaw control with secularly increasing yaw error due 
to external disturbances. The roll/yaw secular momentum resulting from external 
disturbances is stored either as yaw attitude error or in wheel momentum, until a 
desaturation torque is applied to the spacecraft. The gyros provide yaw attitude 
reference and three-axis body rates during the stationkeeping mode operations, 
and are turned off after the transition mode operations. (The attitude stabiliza- 
tion problem of the spacecraft during stationkeeping maneuvers will be treated in 
Sec. 9.3.) 

This control system has three redundant modes: 1) the primary mode (MW 1 and 
2), 2) backup mode 1 (MW 1 and RW), and 3) backup mode 2 (MW 2 and RW). 
For the primary mode, the pitch axis is controlled by modulating the pitch bias 
momentum Hy of the two momentum wheels about their nominal bias momentum 
11o in response to the error signal 0 from the pitch channel of the Earth sensor. 
The roll/yaw axes are controlled by differentially modulating the yaw angular 
momentum H z of the two momentum wheels in response to the error signal ~b 
from the roll channel of the Earth sensor, as illustrated in Fig. 9.9. 

The momentum command distribution matrix is used to convert the pitch and 
yaw momentum commands Hyc and Hzc to the wheel momentum commands Hie, 
H2c, and H3~. Similarly, the momentum measurement distribution matrix is used 
to convert the angular momentum of each wheel, as measured by its tachometer 
(Him, H2m, and H3,,), to the angular momentum in the control axes (Hym and 
nzm). 

9.2.3 Flexible Spacecraft Model 
Hybrid-coordinate model The hybrid-coordinate modeling is very useful 

for the control analysis and design of a spacecraft having a main rigid body and 
flexible solar arrays. 11 A single solar array flexibility model referenced to the 
spacecraft center of mass is given in Table 9.3. The orientation of the solar arrays 
with respect to the spacecraft main body depends on orbital position and, thus, 
on orbital time. Solar array orientation at 6 a.m. will be considered as a nominal 
configuration for the subsequent analysis and design. Orbit time of 6 a.m. or 6 p.m. 
yields out-of-plane bending modes in the yaw axis and in-plane bending modes in 
the roll axis. (Low-frequency characteristics of the first in-plane bending mode is 
caused by array yoke deformation.) 

During on-orbit normal mode operations, both solar arrays are always pointing 
toward the sun, whereas the main body is pointing toward the Earth. This results 
in very slowly changing modal frequencies and mode shapes. For control design 
purposes, however, the spacecraft model will be treated as a time-invariant system 
with a known range of modal characteristics. 

Including a single dominant cantilever mode in each axis, the linearized equa- 
tions of motion of the bias-momentum stabilized spacecraft in circular orbit can 
be written in terms of the hybrid coordinates as follows. 
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where 

Table 9.3 Single solar array flexibility model at 6 a.m. 

Coupling scalars, v/-~.m 2 
Cantilever Cantilever 
mode frequency Roll Pitch Yaw 
description a or, rad/s ~x 8y 8 z 

OP- 1 0.885 0 0 35.372 
OP-2 6.852 0 0 4.772 
OP-3 16.658 0 0 2.347 
OP-4 33.326 0 0 0.548 
T-1 5.534 0 2.532 0 
T-2 17.668 0 0.864 0 
T-3 33.805 0 0.381 0 
IP-1 1.112 35.865 0 0 
IP-2 36.362 2.768 0 0 

aop is out-of-plane, T is torsion, and IP is in-plane. 

Rigid main body: 

Jx~ + (a + nHo)eP + (b + Ho)~ - nHz + 4"28xfix = Mx (9.7a) 

JvO + dO + l:ty + 4"28yfiy = My (9.7b) 

Jz~ + (c + nHo)~ - (b + Ho)~ + l:tz + q/2azfiz = Mz (9.7c) 

Two solar arrays: 

fix + cr2qx + x/~ax~ = 0 (9.8a) 

fly -'~ o')2qy + ~tr2t~yO = 0 (9.8b) 

fix + cr2qx + x/'28ziD = 0 (9.8c) 

Wheel /motor  dynamics:  

Tm l:ty + Hy = Hyc (9.9a) 

Tm l:tz + Hz = Hzc (9.9b) 

a ---- 4n2(Jy - Jz) 

b = - n ( J x  - Jy + Jz) 

C = n2(Jv - Jx) 

d = 3n2(Jx - Jz) 

and (~b, 0, ~ )  are small roll, pitch, and yaw attitude errors of the spacecraft with 
respect to the local vertical and local horizontal (LVLH) reference frame, n is 
the orbital rate; Ho is the nominal pitch bias momentum; (.Ix, Jr, Jz) are the 
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spacecraft principal moments of inertia; (qx, qy, qz) are the cantilever modal co- 
ordinates, (trx, try, trz) are the cantilever modal frequencies; (Sx, 3y, 3z) are the 
rigid-elastic coupling scalars of a single solar array; (H),, Hz) are the angular mo- 
mentum components of  the wheels; (Hyc, Hzc) are the wheel angular momentum 
commands;  (Mx, My, Mz) are the external torques; and Tm the motor time constant, 
which is chosen as 4 s for the spacecraft under consideration. 

It is apparent that the pitch-axis dynamics are decoupled from the roll/yaw 
dynamics. Furthermore, for the spacecraft in geosynchronous orbit the constants 
(a, b, c, and d) can be neglected compared to the relatively large value of pitch 
bias momentum. 

Nutation dynamics. The open-loop characteristics of the spacecraft nutation 
dynamics can be easily examined using the following roll/yaw responses to the 
initial conditions, neglecting the effects of  orbit rate and solar array flexibility: 

q~(t) = ~b(O) + q~(O___)) sin ~.t Jz~(O-------~) (1 - cos )~t) (9.10) 
x no 

s inkt  + J ~ ( O ) ( 1  - cos ;~t) (9.11) ~p(t) = ~t(O) + ~. 1-1o 

where 3~ is the nutation frequency defined as 

m/,/ZxJz 
These equations indicate that a positive initial roll rate produces a positive yaw 
response with a steady-state offset, and that the positive initial yaw rate produces 
a negative roll response with a steady-state offset. From these equations, the max- 
imum roll/yaw errors due to a single roll/yaw thruster firing with a small pulse 
width can be easily estimated. 

Transfer function. The roll/yaw control analysis and design can be accom- 
plished using the classical transfer function approach. The cross-axis transfer func- 
tion from the wheel yaw momentum command u -- Hzc to the roll attitude error 
output ~b can be obtained as 

= (s:lz  + l)(s:lz  + l) (9.12) 
u(s) Ho(sZ/). 2 -I- 1)(s2 /p l  z -t- 1) (s2/p2 z -t- 1)(rmS + 1) 

where 

Zl = az = 0.885 rad/s 

z2 = ax = 1.112 rad/s 

(3r z 
Pl ~ -- 1.93 rad/s 

, / 1  - 2  z/Jz 

~x 
P2 ~ = 2.87 rad/s 

` /1  - 2  /Jx 

T m = 4 S  
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and (trx, 8x) and (tr z, 3z) are, respectively, the cantilever frequencies and coupling 
scalars of the dominant in-plane and out-of-plane bending cantilever modes of 
a single array given in Table 9.3. The approximate values of the poles as given 
here agree very closely with the values obtained for the flexible spacecraft model 
including all of the cantilever modes given in Table 9.3. 

The pole and zero associated with the orbit rate mode are not included in 
Eq. (9.12) because they are of the same order of magnitude as the orbit rate n. 
However, their exact values can be determined from the equations of motion in- 
cluding the constants a, b, and c. The relative location determines the closed-loop 
stability of the orbit rate mode, and it depends on the pitch bias momentum di- 
rection. For a spacecraft with Jz > Jr, the pitch bias momentum vector is chosen 
along the negative pitch axis for a stable interaction between the nutation and orbit 
rate modes. 

It is interesting to note that the structural mode poles and zeros of the cross-axis 
transfer function (9.12) are not alternating along the imaginary axis. Consequently, 
a control logic designed to stabilize the nutation mode neglecting the structural 
modes could destabilize the structural modes, because they are not stably interact- 
ing. 

9.2.4 Roll~Yaw Control Design 
The roll/yaw attitude control design problem with u =-- Hzc as a control input 

and q~ as a sensor output is discussed here. 

Low-bandwidth  controller. Consider a nonminimum-phase control logic of 
the form 

K(1 - Tzs) 
u(s) -- ¢(s) (9.13) 

s (Ts  + 1) 

where K is the positive loop gain, Tz the time constant of the nonminimum-phase 
zero, and T the time constant of the first-order low-pass filter pole. Referring to 
the conventional PID controller, we have Ke = - K T z ,  Kt = K, and KD = O. 

It is emphasized that this somewhat unconventional, nonminimum-phase control 
logic, which was originally proposed by Terasak02 in 1967, has been actually im- 
plemented for many geosynchronous communications satellites, including INSAT 
and ARABSAT spacecraft. 

Neglecting the solar array flexible modes, the closed-loop roll transfer function 
from the spacecraft initial conditions can be found as 

ok(s) = [(sZ + 3"2)~b(0) + sq~(0) - ~t(O)Ho/Jx](S + 1 /T )  (9.14) 
S 4 "q-s3/T q-3-2s 2 -k-s(Ho - KTz))~2/Ho T + KL2/Ho T 

in which the wheel motor dynamics with a time constant of 4 s has also been 
neglected. Without a feedback control, Eq. (9.14) simply becomes the open-loop 
roll transfer function from the initial conditions 

dp(O) ¢b(O) Ho~(O)/Jx 
q~(s) = + - -  (9.15) 

S S 2 + ~2 S(S 2 .q_ ~.2) 

which corresponds to Eq. (9.10) in time domain. 
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The practical significance of Eq. (9.14) is that it shows individual, as well as 
combined effects of the initial conditions on the closed-loop roll transient response. 
For example, one can notice that the roll responses to the initial roll and yaw rates 
have a 90-deg phase difference. Such property is independent of the control logic 
used. However, the yaw responses to the initial conditions do not have such a 
property. 

The denominator of Eq. (9.14), which is in fact the closed-loop characteristic 
polynomial, can be factored into two pairs of roots with natural frequencies and 
damping ratios given approximately by 

091 "~" ~', (1 = co~Tz (9.16a) 
2to~ 

•/ K Ho - KTz (9 .16b) 
092 ~ HoT'  ( 2  - -  2w2HoT 

Using the practical design rules given by Dougherty et al) 3 as 

(10)1 ~ (20)2, (1 ~ 0.175, (2 ~ 0.707 (9.17) 

we obtain the following approximate gain formula: 

1 1 
T = 0.7~.' Tz -- 0.175~.' K = 0.0875Ho~. (9.18) 

or 

Kp = -0.5Ho, KI = 0.0875Ho~, Ko = 0 (9.19) 

A root locus plot vs the overall loop gain K is shown in Fig. 9.10. Note that the 
nutation mode has a small active damping ratio of 0.175 for the selected nominal 
gain. Only the lower frequency region is shown because the poles of the structural 
modes do not move significantly. Such an insignificant structural mode interaction 
can be seen in a Bode plot shown in Fig. 9.11, in which a passive structural damping 
ratio of 0.002 is assumed for all of the structural modes. All of the structural modes 
are gain stabilized with an 80-dB gain margin by the passive damping ratio of 0.002 
and the steep rolloff of the control loop at a frequency well below the first structural 
mode frequency. As indicated in Fig. 9.11, the low-frequency control mode has a 
5-dB gain margin and a 50-deg phase margin. Such a relatively small gain margin 
is due to the use of the nonminimum-phase control logic. However, the gain margin 
for the low-frequency control mode is independent of the spacecraft inertia, but 
dependent on the pitch bias momentum, which is measured quite accurately by the 
wheel tachometers; thus, the 5-dB gain margin of the control loop is acceptable in 
practice. 

During on-orbit normal mode operations, the environment is very quiet except 
for the solar radiation pressure torques. Thus, the roll/yaw normal mode controller 
even with such a small active nutation damping ratio of 0.175 provides accept- 
able performance and stability margins. Figure 9.12 shows the results of digital 
simulation, where the initial conditions q~(0) = ~0(0) = -0.05 deg are chosen 
from a steady-state limit cycling at the end of a stationkeeping maneuver. The 
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Fig. 9.10 Root locus plot for the roll/yaw low-bandwidth controller. 

wheel torque demand is well below the saturation limit and the structural modes 
are almost unexcited. However, the nonminimum-phase nature of the controller 
has resulted in a large transient peak for the roll attitude error, which may not be 
acceptable for certain cases. 

High-bandwidth controller. Consider the design of a high-bandwidth transi- 
tion controller for improving the transient performance during the transition period 
from a stationkeeping maneuver to the on-orbit normal mode operations. 

The roll/yaw transient performance can be improved by employing a minimum- 
phase, PID-type nutation controller. 14'15 Figure 9.13 shows a roll/yaw transition 
controller, which utilizes the direct roll rate measurement from the gyros and the 
roll attitude error measurement from the Earth sensor. 

For the control design purpose, the roll/yaw control logic, shown in Fig. 9.13, 
can be described as 

KDS 2 -q- Kes + K1 
u(s) = ~b(s) (9.20) 

s(Ts + 1) 
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Fig. 9.12 Transient responses of the roll/yaw low-bandwidth controller. 
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Fig. 9.13 Roll/yaw high-bandwidth controller. 

Similar to Eq. (9.14), the closed-loop roll transfer function from the spacecraft's 
initial conditions neglecting the solar array flexibility can be obtained as 

¢ ( s )  = 
[(s 2 + X2)~O(O) -t- sq~(O) - ~(O)Ho/Jx](s + l / T )  

s 4 Jr- s3/T -t- s2(1 jr_ KD/HoT)• 2 -k- s(Ho -k- Kp))~2/HoT -t- K/)~2/HoT 

(9.21) 

For the chosen closed-loop poles, the following approximate gain formula can 
be used for the selection of controller parameters: 

T = (Sl  + s2  -I- 2(o9) -1 (9.22a) 

Kp = o92(s  I Jr- s2)HoT /~. 2 -- no (9.22b) 

Kt = SlS2o92 HoT /)~, 2 (9.22c) 

Ko = [O9 2 -'{- 2(og(Sl + S2)  - -  X2]HoT/X 2 (9.22d) 

where sl and s 2 are negative real roots and o9 and ( are closed-loop nutation 
frequency and damping ratio, respectively. 

Figure 9.14 shows a root locus plot vs overall loop gain of the preceding PID 
controller. Figure 9.15 also shows a B ode plot, which indicates a 10-dB gain margin 
for the structural modes, and a 20-dB gain margin and a 50-deg phase margin for 
the nutation mode. Figure 9.16 shows digital simulation results with the same 
initial conditions as Fig. 9.12. It can be seen that the roll transient performance 
has been improved, but at the expense of initial torque saturation due to the high- 
bandwidth control. (The different positive and negative torque saturation limits 
shown in Fig. 9.16 are the result of the different effects of drag on the wheel with 
a biased speed: less drag effect for slowing down.) 
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Fig. 9.16 Transient responses of the roll/yaw high-bandwidth controller. 

A possible structural mode instability can be easily demonstrated without the 
use of the rolloff filter. The in-plane bending mode (P2 = 2.87 rad/s) in the roll 
axis is destabilized in this case, which also validates the analytic prediction of the 
10-dB gain margin for the structural modes. However, a passive damping ratio of 
0.01 could make it stable even without the rolloff filter. Thus, it is emphasized that 
the so-called control and observation spiliover problem should not be exaggerated 
without considering the degree of instability, which might be naturally avoided by 
reasonable passive damping or by a simple first-order roll-off filter. 

In the next section, we shall consider a spacecraft attitude control problem in 
the presence of significant control-structure interactions. 

9.3 Stationkeeping Attitude Control of a Flexible Spacecraft 
In this section, as discussed in Ref. 16, we describe the problem of designing 

a reaction jet attitude control system for a spacecraft having flexible solar arrays 
during translational thrusting (stationkeeping) maneuvers. 

9.3.1 Introduction 

Many three-axis stabilized spacecraft have large solar panel arrays with sig- 
nificant structural flexibility. For most cases of practical concern, however, the 
structural flexibility of the solar arrays does not strongly interact with attitude con- 
trol systems, and thus all of the structural modes are often simply gain stabilized 
by the steep rolloff at a frequency well below the first structural frequency. This is 
the case considered in the preceding section. However, in this section we examine 
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a different case in which the structural modes strongly interact with an attitude 
control system. 

In the presence of large disturbance torques during translational thrusting (sta- 
tionkeeping) maneuvers, a high-bandwidth attitude controller is often needed to 
maintain accurate body pointing. During stationkeeping mode operations of three- 
axis stabilized spacecraft, reaction jets (thrusters) are used to stabilize the attitude 
motion of spacecraft. Unlike other actuators, such as reaction wheels, thruster out- 
put consists of two values: on or off. Furthermore, most on-off reaction jet control 
systems are, in practice, pulse modulated, as was discussed in Chapter 7. The 
solar array flexibility interacts strongly with such nonlinear control systems, and 
structural mode instability in the high-bandwidth nonlinear control system often 
manifests as a limit cycle. 

In this section we consider the problem of designing a stationkeeping atti- 
tude control system for the same spacecraft model considered in the preceding 
section. 

9.3.2 Stationkeeping Attitude Control System 
To maintain the spacecraft position in geosynchronous orbit to within 4-0.1 deg, 

the spacecraft shown in Fig. 9.7, requires about six north/south stationkeeping 
maneuvers per year, each with a duration of maximum 2 min. East/west orbital 
corrections are made at approximately 12-day intervals with a duration of only 
a few seconds. The reaction jet attitude control system with 22-N thrusters must 
counteract disturbance torques due to thruster misalignment, plume impingement, 
and mismatch between pairs of thrusters used to impart velocity changes during 
these stationkeeping maneuvers. 

It is assumed that the disturbance torques of +2.0 N.m can be prebiased leaving a 
residual uncertainty of 4-0.5 N-m to be controlled by the feedback control system. 
Attitude pointing requirements are to maintain short-term attitude errors within 
4-0.06 deg in roll/pitch and -F0.1 deg in yaw. 

Figure 9.17 shows a block diagram representation of the stationkeeping attitude 
control system. The Earth sensor provides roll/pitch attitude references, whereas 
the gyros provide yaw attitude reference as well as three-axis body rates during 
the stationkeeping mode operations. The control logic for direct attitude and rate 
feedback, structural filtering, and pulse-width pulse-frequency (PWPF) modula- 
tion is implemented in the microprocessor with a 64-ms sampling period. There is 
no cross-axis feedback control as can be seen in Fig. 9.17. The sun sensor in the 
yaw channel provides yaw attitude reference in case of gyro failure. The rate loop 
has a high-pass filter to wash out any residual drift rate bias (up to 1 deg/h) of the 
gyros. 

The signal after structural filtering is then passed through the loop deadband, 
the loop gain, and the PWPF modulator, which in turn activates the thruster valves. 
The PWPF modulator causes a pulse command on the average by adjusting the 
pulse width and pulse frequency. Because the roll thrusters are utilized in pairs 
for north/south stationkeeping maneuvers, they will be off-modulated to be used 
for roll attitude control while pitch and yaw thrusters are on-modulated. Similarly, 
when the pitch and yaw thrusters are used for east/west maneuvers, they provide 
the spacecraft velocity changes and are off-modulated for attitude control. 
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9.3.3 Flexible Spacecraft Model 
In the preceding section, the hybrid-coordinate modeling has been shown to be 

very useful for the control analysis and design of a spacecraft having a main rigid 
body and flexible solar arrays. Consider the same spacecraft model with the solar 
array configuration at 6 a.m. During the north/south or east/west stationkeeping 
maneuvers at 6 a.m., both arrays are pointing to the sun. Because the nutation 
frequency ~. = Ho/JVCY-~xJ~ = 0.02 rad/s, is well below the controller bandwidth 
of about 1.0 rad/s, we can neglect both orbital and nutation dynamics in deriving 
the equations of motion for the stationkeeping attitude control design. 

Including a single dominant cantilever mode in each axis, the linearized equa- 
tions of motion of the spacecraft can be written in terms of the hybrid coordinates 
as follows. 

Rigid main body: 

Two solar arrays: 

Jx~ + 4~8~;(lx = Ux (9.23a) 

JyO "It- ~l'~y~]y = Uy (9.23b) 

Jz(P + ~,~zglz = uz (9.23c) 

iilx + 0.2xq x + VC23x~ = 0 (9.24a) 

2 ~tt23),0 0 (9.24b) !ty + ay qy + = 

Ox + aZxqx + ~ z ~  ) = 0 (9.24c) 

where (q~, 0, ~p) are small roll, pitch, yaw attitude errors of the spacecraft with 
respect to the LVLH reference frame; (.Ix, .Iv, Jz) are the spacecraft principal 
moments of inertia; (qx, qy, qz) are the cantilever modal coordinates; (ax, ay, 0.z) 
are the cantilever modal frequencies; (Sx, 6y, 8z) are the rigid-elastic coupling 
scalars of a single solar array; and (ux, uy, uz) are the control torques. 

Because the roll, pitch, and yaw axes are decoupled, the following single-axis 
transfer function can be used for control design 

S 2 --I- 0 .2 

G(s) = j s 2 [ ( 1  _ 232/j)s2 + o r 2 ]  (9.25) 

where 0. and 3 are the cantilever modal frequency and the rigid-elastic coupling 
scalar of the dominant mode of a single array given in Table 9.3. Table 9.4 summa- 
rizes the spacecraft nominal parameters for control design. The alternating pole-  
zero pattern of the structural modes clearly indicates that we have a collocated 
actuator and sensor problem here. 

During the north/south stationkeeping maneuvers, the south array may need 
to be oriented to minimize the thermal effects of thruster firings on the solar 
cell. Because there are usually no thruster firings from the spacecraft north face, 
the north array is always pointing to the sun. If  two arrays are perpendicular to 
each other during the north/south stationkeeping maneuvers at noon, the following 
transfer function with two structural modes can be used for control analysis and 
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Table 9.4 Spacecraft nominal parameters at 6 a.m. 

Parameters Roll Pitch Yaw 

Spacecraft inertia, kg.m 2 3026 440 3164 
Control torque, N.m 10 10 10 
Residual disturbance, N.m 0.5 0.5 0.5 
Pointing requirement, deg 0.06 0.06 0.1 
Structural mode zero, rad/s 1. I 1 5.53 0.88 
Structural mode pole, rad/s 2.87 5.61 1.93 

design: 

(s ~ + ,,?) (sZ + og) 
G ( s )  = 

js2{[1 + + -8 og/J + 

(9.26) 

where (crl, dil ) and (cr2, 32) correspond to the dominant out-of-plane and in-plane 
bending modes of a single array given in Table 9.3. 

9.3.4 Pulse-Width Pulse-Frequency Modulator 
Analysis and Design 

A unique feature of the control system shown in Fig. 9.17 is the PWPF mod- 
ulator, which activates the thruster valves by adjusting the pulse width and pulse 
frequency. Several different on-off pulse modulation techniques for reaction jet 
control systems have been briefly introduced in Chapter 7. The PWPF modula- 
tor shown in Fig. 9.18 is one of such pulse-modulation techniques, and it mainly 
comprises two components: a first-order lag filter and a Schmitt trigger inside a 
feedback loop. 

The PWPF modulator produces a pulse command sequence to the thruster valves 
by adjusting the pulse width and pulse frequency. In the linear range, the average 
output produced equals the commanded input. With a constant input, the PWPF 
modulator drives the thruster valve with an on-off pulse sequence having a nearly 
linear duty cycle with the input amplitude. The duty cycle or modulation factor is 
defined as the average output of the modulator. 

The static characteristics of the PWPF modulator for a constant input E can be 
summarized as follows. 

Thruster on time: 

Ton = -T, ,  

Thruster off time: 

(1 - h)Ea - ( E -  

E d  - -  E } 
ro~ = - r m  ~ (1 --#)-E~--- e 

(9.27a) 

(9.27b) 



ATTITUDE AND STRUCTURAL CONTROL 531 

r,,,s+l "~ 

I- 
1.0 

0.5 

Fig. 9.18 

- ~ .  -Uo~ 

-1 

0.0 

DC 

Ea Ea + Es Es 

E 

PWPF modulator and its duty cycle vs constant input E. 

Duty cycle: 

Toll 
D C  = 

Ton + Ton 

Minimum pulse width: 

( A = - - T m ~  1 - -  ~ Km 

where the equivalent internal deadband is 

Uon 
Ed = 

Km 

and the hysteresis width is 

h = Won - -  Wolf 

(9.27c) 

(9.27d) 
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The duty cycle can be obtained as 

fi~[1 + a / ( 1  - x)] / -1 ! 
D C  

= I a / ; i  I 
where the normalized hysteresis width is 

h 
o - -  

K, , (E~ - Ea) 

the normalized input is 

and the saturation level is 

E - Ea 
X ~  

E~ - Ea 

(9.28) 

Uoff 
E s = I + - -  

K,, 

A typical plot of the duty cycle, which is nearly linear over the range above 
deadband Ed and below saturation Es is also shown in Fig. 9.18. A linearized duty 
cycle can be obtained by Taylor series approximation of Eq. (9.28) about x = 0.5 
as follows: 

2a(x  - 0.5) 
D C  ,~ 0.5 + (9.29) 

(1 + 2a) ~(1 + 2a) 

which is not valid near x = 0 and x ---- 1. From this linearized duty cycle expres- 
sion, an effective deadband of about E d / 2  for Es = 1.0 can be obtained. 

9.3.5 Control Analysis and Design 
The roll-axis control loop of the spacecraft under consideration is shown in 

Fig. 9.19. Other axes employ the same control architecture. As can be seen in 
Fig. 9.19, the PWPF modulator implemented in a microprocessor receives an 
input signal every 64 ms and causes pulse command updates every 16 ms with 
pulse-width quantization of 16 ms. The microprocessor sampling period of 64 ms 
is relatively fast compared to the control bandwidth of 0.5 rad/s and also to the 
dominant flexible mode frequency of about 3.0 rad/s. This makes it possible to 
employ the classical s-domain control design approach to digital control systems 
design, which was discussed in Chapter 2. 

The combined effect of the microprocessor sampling period of 64 ms and pure 
computation delay of 48 ms can be approximated as a 80-ms pure time delay for 
control design here. The loop gain K determines the steady-state pointing accuracy 
for a constant disturbance torque during the stationkeeping maneuvers. The rate- 
to-position gain ratio KR determines the closed-loop damping. The amplitude and 
rate of the rigid-body limit cycle are determined by the deadband and the PWPF 
modulator. The controller parameters obtained using the classical control design 
technique are also given in Fig. 9.19. Further details of this control system design 
and digital simulation results can be found in Wie and Plescia. 16 
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As mentioned earlier, this control loop has a collocated actuator and sensor 
pair, and thus all of the flexible modes are stably interacting with the rigid-body 
mode control. However, a structural filter that provides additional gain and phase 
margins for the structural mode is needed to compensate for the dynamic effect of 
the modulator. This subject will be treated further in the next section. 

9.4 Nonlinear Pulse-Modulated Control Analysis and Design 
In this section, which is based on Ref. 17, we examine the describing func- 

tion method for the nonlinear control analysis and design of a flexible spacecraft 
equipped with pulse-modulated reaction jets. The method provides a means of 
characterizing the pulse modulator in terms of its gain and phase for the analysis 
of the structural mode limit cycle. Although the describing function method is 
inherently inexact, a new way of utilizing the method for practical control design 
problems is described. The approximations inherent in the method is accounted 
for as a modeling uncertainty for the nonlinear control robustness analysis. 

9.4.1 Introduction 

The nonlinear control instability in reaction jet control systems appears in the 
form of a structural mode limit cycle caused by thruster chatterings at the structural 
mode frequency. Although considerable attention has been directed toward the 
control-structure interaction problems of flexible structures in space, the nonlinear 
control interaction with flexible modes has not been studied much. 

In this section, a frequency-domain approach is described for the design of a 
pulse-modulated nonlinear control system of a flexible spacecraft. The approach 
involves the use of the well-known describing function method, which is basically 
a frequency-response technique primarily used to predict the limit cycling of non- 
linear systems. Many researchers have attempted, within the last several decades, to 
improve the accuracy of the describing function method by establishing new crite- 
ria to approximate the output of a nonlinear device; despite their efforts, the results 
obtained by researchers are not used much in practice. The reason is partly that the 
describing function method is inherently inexact and represents only a first-order 
approximation of the gain and phase characteristics of a nonlinear device. 

This section, however, introduces a new way of utilizing the describing function 
method for designing nonlinear control systems. Analogs to the classical concept of 
gain/phase margins are applied to nonlinear systems to designate nonlinear stability 
margins; these margins give the designer a means of measuring the limit cycling 
tendency of a control system. The approximations inherent in the method are 
accounted for as the modeling uncertainty for designating the nonlinear stability 
margins. The describing function method is not employed here as a means of 
accurately predicting limit cycling information; instead, it is used as a method for 
characterizing a nonlinear component in terms of its gain and phase. In most cases, 
the control designer is more interested in determining whether or not the system 
will limit cycle as opposed to accurately identifying the oscillation characteristics, 
e.g., limit cycle frequency and amplitude. 

Once the pulse modulator is adequately characterized by the describing func- 
tion, one can iteratively synthesize a linear compensator and/or a pulse modulator 
such that the margins with respect to limit cycling condition are maximized. The 
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methodology shall be applied to the design example of the INTELSAT V space- 
craft controlled by a reaction jet attitude control system. The interaction of the 
spacecraft's flexible solar arrays with the pulse modulator was a major concern 
during the development of the spacecraft in the mid-1970s. Such interaction ap- 
pears in the form of structural mode limit cycling. Control design example of the 
INTELSAT V spacecraft shall be studied to illustrate the concept and methodology 
in avoiding the structural mode limit cycling. 

9. 4.2 Describing Function Analysis 
A proper selection of the modulator parameters, based on its static characteris- 

tics, does not guarantee the closed-loop stability of the control system. The pulse 
modulator, being a nonlinear device, cannot be adequately analyzed through ap- 
plication of linear analysis techniques. Still, the designer must be concerned about 
linear compensator design, linear/nonlinear stability margins, and structural mode 
limit cycle. These problems can be approached by using the describing function 
method to characterize the pulse modulator in terms of its gain and phase. 

In the describing function analysis, it is assumed that the fundamental harmonic 
component of the output is significant when the input to a nonlinear element is 
sinusoidal. The describing function of a nonlinear element is then defined to be the 
complex ratio of the fundamental harmonic component of the output to the input; 
that is, we have 

N ( X ,  to) = ( Y I /  X ) e  j4' (9.30) 

where 

N ---- describing function 
X = sinusoidal input amplitude 
to = frequency of input sinusoid 
Y1 = amplitude of the fundamental harmonic 

Y I / X  = describing function gain 
~b = describing function phase 

Calculation of the describing function involves a conventional Fourier series 
analysis to obtain the fundamental component of the output, and Yl and 4~ may 
then be expressed as 

YI = 9F~12 + B 2 

where 

~p = t a n - l ( A l / B l )  

(9.31) 

(9.32) 

lfo2  A1 = --  y ( t )  cos to t  dwt  (9.33) 
7r 

1 fo  2~r B1 = --  y ( t )  sin tot dtot (9.34) 

and y( t )  is the output of the nonlinear device. 
If the nonlinear element can be adequately characterized by the describing func- 

tion N ( X ,  w), the loop transfer function of a negative feedback control system is 
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simply given by N(X, o9) G(jw), where G(jw) is the frequency-response func- 
tion of the linear components of the loop. Thus, the study of limit cycle stability 
involves an equation of the form 

or 
1 + N(X, w)G(jw) = 0 (9.35) 

1 
G(jog) -- (9.36) 

N(X, w) 

Equation (9.36) is often called the harmonic balance equation. The main advantage 
of the describing function analysis using Eq. (9.36) is its simplicity. For example, 
we simply plot the - 1 I N  locus and the G(jw) locus. If two loci intersect, then 
the system exhibits a limit cycle, which is characterized by the amplitude X and 
frequency w. Note that the amplitude and frequency of the limit cycle indicated by 
the intersection of the - 1 / N  locus and the G(jw) locus are approximate values. 
Furthermore, if they intersect tangentially, then the system may not actually exhibit 
a limit cycle. 

In this section, the term "DF (describing function) plot" designates a gain-phase 
plot of - 1 / N ( X ,  w). Figure 9.20 shows a DF plot for a PWPF modulator in the 
gain-phase plane. Because the PWPF modulator's describing function is dependent 
on o9, a limit cycle will only occur if the frequencies of the two curves are equivalent 
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Fig. 9.20 Describing function plot of a PWPF modulator. 
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at the intersection point. The DF plot in Fig. 9.20 was generated by using the INCA 
computer program developed by Bauer and Downing. 18 The INCA program has 
been enhanced to allow the calculation of describing functions as well as inclusion 
of the DF plots in the frequency domain. To calculate describing functions for 
devices such as the PWPF modulator, for which the describing function cannot be 
expressed analytically, the INCA program solves Eqs. (9.33) and (9.34) for steady- 
state output. All of the describing function plots in this section were constructed 
using the enhanced INCA software. 

The modulator DF plot is made up of two components, the minimum-amplitude 
line, that is, the vertical line on the right side of the curve set, and the roughly 
horizontal lines that comprise the DF curves for different values of frequency. The 
constant-frequency lines are a function of amplitude X. In the INCA program, these 
curves are only calculated as long as the modulator output contains just two pulses 
per cycle with amplitudes of 1 and - 1; increasing the input amplitude causes the 
modulator to produce multiple pulses per cycle. It is difficult to accurately approx- 
imate such an irregular signal with a sinusoid. The sinusoidal approximation of 
the modulator output depends on the criteria used to equate the two functions. The 
approximation of such a discontinuous function with a single harmonic curve does 
not provide meaningful expression of the modulator gain and phase; as a result, all 
discussions of PWPF modulator describing functions refer to single-pulse output. 

The challenge presented by the describing function method is to obtain the most 
realistic sinusoidal model of the pulse output to determine gain and phase change 
from the input signal. It is difficult to determine a criterion that best represents 
the pulse output in sinusoidal form. A popular representation is the fundamen- 
tal harmonic of a Fourier series; however, the fundamental Fourier harmonic is 
only the first term of an infinite-order series. Despite the increased accuracy of 
the approximation, the extra computational effort necessitates exclusion of the 
extra harmonics from the describing function analysis. A common misperception 
is that the fundamental harmonic is, therefore, the best first-order sinusoidal ap- 
proximation of that function. It is difficult to consider the fundamental Fourier 
harmonic the best approximation without acknowledging the contribution of the 
higher harmonics. 

The gain and phase characteristics of a describing function depend on the method 
defined to approximate the periodic nonlinear output with a sinusoid of the same 
frequency. Several other types of describing function methods have been proposed 
in the literature. A method that is treated in this section involves approximating 
the modulator pulse signal with a sine curve of equal area. The first integral of 
torque with respect to time is total angular momentum; therefore, two torque 
profiles of equal area will impart an identical impulse to a linear plant. In an 
ideally limit cycling system, substitution of the nonlinear output with the sinusoidal 
approximation should exhibit no change in the system output. 

Calculation of the area-matching describing function for the PWPF modulator 
is computationally simple. The area of a modulator pulse, integrated from 0 to 
~r/w, is simply the modulator output pulse width A. The area of a sine curve over 
the same period is 2Ys/oJ where Ys is the area-matching sinusoid amplitude and 
~o is the frequency of both the sinusoid and the pulse signal. Equating these two 
relations yields 

Ys = ~oA/2 (9.37) 
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Fig. 9.21 Region of uncertainty for the PWPF modulator. 

The amplitude of the Fourier fundamental harmonic Yl can be found by solving 
Eqs. (9.33) and (9.34) and substituting into Eq. (9.31) 

Y1 = (4/7r) sin(wA/2) = (4/70 sin Ys (9.38) 

Equation (9.38) states that for small values of Ys, YI differs from Ys by a factor of 
2.1 dB as shown in Fig. 9.21. This value can be interpreted as the uncertainty of 
the actual modulator gain. The modulator gain obviously depends on the criteria 
used to treat the output signal. As a result, the designer can utilize a region of gain 
uncertainty, instead of a single DF curve, to evaluate limit cycling tendency. 

Another approximation method also involves sinusoidal input to the nonlinear 
device. Similar to the area-matching technique, the root-mean-square (rms) de- 
scribing function method expresses the gain of a pulse-modulating device as a 
function of the pulse area. It has been used in evaluation of systems that contain 
odd-valued nonlinear devices. 

In this procedure, the curve-approximating criterion specifies the sinusoidal 
output to have the same rms value as the actual modulator output. This is similar 
to Eqs. (9.31-9.34) in that the describing function gain IN(X, tO)rms I is defined as 

[y(t)] 2 dwt 
IN(X, tO)rms I = f02~r [ fx  sin (wt)] 2 dwt 

(9.39) 
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For a pulsed output, the amplitude of the DF sinusoid is 

Yrms = 2~/~'~/7t" (9.40) 

Note that the rms output sinusoidal amplitude is greater than that of the area match- 
ing and the fundamental harmonic DF evaluations; the reason is that Yrms > Y1 for 
o)A < 1. In fact, for small values of o)A, such that sin (o)A) ~ o)A, YI = Y~s. In 
the DF plots, however, we are plotting - 1/N(X, o9); as a result, the rms describing 
function gain is less than the two earlier types of DFs. 

For nonpulse-modulated systems, it can be difficult to evaluate the numerator 
of the right-hand side of Eq. (9.39). If y(t) is assumed to be the superposition of 
an infinite number of harmonics, the evaluation of the equation is formidable. For 
example, Eq. (9.39) would be evaluated as 

CY? 4- Y3 2 + Y~ + " "  + Y~n-, + " "  
IN(X, O))rmsl = (9.41) 

X 
or  

Yrms = CY• + Y32 + Y52 + " " +  Y22,_1 + " "  (9.42) 

where Y2n-l represents amplitude of the odd Fourier harmonics. As a result, some 
authors have employed a corrected rms describing function method, which is based 
on the rms DF theory. In this technique, only the first two odd harmonics are used in 
evaluation of describing function. As a result, the corrected rms DF is expressed as 

IN(X,o))c-~msl = ~/-~21 + Y321X (9.43) 

where 

Y1 = (4/zr) sin (o)A/2) 

}'3 = (4/3rr) sin (3o9A/2) 

From inspection of Eq. (9.43), it is obvious that Yc-rms < Yrms. As a result, the 
corrected rms method yields the greater describing function gain when viewed in 
a gain-phase plot. 

As mentioned earlier, evaluation of the pulse-modulator gain is not accom- 
plished accurately using the describing function method. Table 9.5 summarizes 
the different gain approximations of a pulse-modulator limit cycle output. There 
are valid physical justifications for use of each of the different modeling methods. 
The fundamental flaw in each procedure, however, is the necessity of approxi- 
mating a discontinuous pulse signal with a single-harmonic sine wave. This is 
the feature of describing function theory that inhibits its usefulness in accurately 
predicting limit cycle behavior. 

Figure 9.21 represents an evaluation of the preceding modeling methods for a 
PWPF modulator. As displayed in the figure, the disparity in location of the curves 
is evidence of the disagreement of the methods outlined in Table 9.5. What is im- 
portant to realize is that the methods are in relative agreement; they all lie within 
a few decibels of one another. By assuming the validity of the phase information 
of the describing functions, the different values of gain describe a region on the 
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Table 9.5 Describing function amplitude comparison 

Describing function method Sinusoidal amplitude 

Conventional 

Area matching 

Root mean square (rms) 

Corrected rms 

4 (_~_)  
Yl = - sin 

71" 

oJA 
Y,= 

2 

Nichols plot, which is shaded in Fig. 9.21. By acknowledging that the approxi- 
mation methods in Table 9.5 have some physical justification, the shaded area can 
be referred to as a region of describing function uncertainty. This region can be 
defined on the Nichols plot, which loosely designates the modulator's DF plot, 
-1/N(X, to). Instead of using this information to predict limit cycle behavior, the 
designer can use this plot to measure a control system's tendency to limit cycle. 
In practical cases, avoidance of the limit cycle is more important than predicting 
its oscillation characteristics. 

A system whose G(jog) locus passes through this region has a greater chance 
of exhibiting a sustained oscillation. It is apparent that the actual boundaries of 
the region depend on the parameters of the pulse modulator. The DF uncertainty 
region is only an approximation in itself; uncertainties in modeling the pulse 
modulator prevent any confidence in the gain boundaries. Therefore, a system 
whose frequency response is horizontal in the vicinity of the DF region has a 
smaller chance of actually passing through the region; these systems tend not 
to experience limit cycles. Conversely, frequency-response curves that are nearly 
vertical in the vicinity of the gain uncertainty region tend to experience limit cycle 
oscillation. This case is shown in Fig. 9.21. 

As a result, the describing function uncertainty region can be used as a useful tool 
in robust compensation design for pulse-modulated control systems. A designer can 
synthesize linear compensation such that the G(joJ) locus avoids the uncertainty 
region of - 1 I N  locus as much as possible. 

9.4.3 Nonlinear Control Design Methodology 
The design methodology described here employs the describing function method 

to characterize a nonlinear element in terms of its gain and phase. The conventional 
describing function analysis emphasizes an accurate prediction of the limit cycle 
amplitude and frequency. The control system designer, however, is more concerned 
with the avoidance of the limit cycle rather than the accurate analysis of the limit 
cycle. A methodology or guideline is described here to aid the control designer 
in avoiding repetitive computer simulation while designing a pulse-modulated 
control system. 
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The following six steps can be used as a guideline for on-off control system 
design for flexible spacecraft: 

1) The first step is rigid-body mode stabilization. The type of compensation 
for rigid-body mode control depends on the control bandwidth or settling time 
requirement. In general, a phase-lead filter is used when direct rate feedback is not 
possible. 

2) The second step is pulse-modulator synthesis. Usually, the type of pulse 
modulator is fixed as a result of previous spacecraft design. Certain factors that 
must be considered in the modulator design include ease of hardware/software 
implementation, stabilization requirements of flexible modes, and the modulator 
static characteristics, i.e., minimum pulse width, duty cycle, etc. 

3) The third step is linear analysis and structural mode stabilization. By neglect- 
ing the nonlinearity of the modulator, linear analysis methods such as root locus 
and frequency response will enable the control designer to investigate the stability 
of the flexible modes. Higher-order filters may be necessary, in addition to the 
rigid-body mode controller, to compensate for unstable flexible modes. 

4) The fourth step is describing function analysis. Gain and phase characteristics 
of the nonlinear controller, as approximated in a linear sense, can be obtained 
through the describing function method. Investigate the - 1/N locus and the G(joo) 
locus in the frequency domain. 

5) The fifth step is nonlinear simulation. The results in step 4 can be verified by 
a numerical simulation. The existence a structural mode limit cycle can be verified 
in this step, as can the approximate nonlinear stability margins. 

6) The sixth step is linear analysis iteration. If the designer is not satisfied with 
nonlinear stability margins or the possibility of limit cycling, the design process 
can be repeated from step 3 by altering or adding to the linear compensation. If 
needed, the pulse modulator itself can be modified to further increase the nonlinear 
stability margins. 

9.4.4 Example: INTELSAT V Spacecraft 
A generic example of a nonlinear control system of flexible spacecraft is exam- 

ined here. The control system consists of three elements: the flexible spacecraft, 
the attitude sensor, and the controller, as illustrated in Fig. 9.22. The sensor is 
modeled as a sample and ZOH device, which introduces phase lag into the con- 
trol loop. The controller comprises linear compensation and a pulse-modulation 
logic. The linear compensation consists of a phase-lead filter for rigid-body mode 
stabilization and a structural filter for flexible mode compensation. 

Except for the structural filter and digital control implementation, the control sys- 
tem parameters are derived from the yaw-axis control system of the INTELSAT V 
spacecraft, which has a collocated actuator and sensor; however, most spacecraft 
with digital control systems can be represented in this format. A nonlinear insta- 
bility that can arise from the interaction of the pulse modulation with the flexible 
structural modes was of primary concern for the INTELSAT V control system 
design; however, it will be shown that a robust nonlinear control system can be 
synthesized through use of classical linear compensation techniques. 

Four different compensation schemes, consisting of different combinations of 
the phase-lead filters and structural filters are given in Table 9.6. In case l, the 
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Table 9.6 Controller parameters 

Rigid-body controller Structural filter 

Case 1 Tl = 2 

T2 = 0 . 2  

Case 2 T~ = 2 z = 3 .0  ~z = 0 .3  

T2 = 0 .2  p = 4 .0  ~'p = 0 .3  

Case 3 Tl = 2 z = 3 .4  ~z = 0 . 0 0 2  

T2 = 0 .2  p = 3 .4  ~'p = 1 

Case 4 TI = 2 z = 3 .6  ~'z = 0 . 0 0 2  

T2 = 0 .2  p = 3 .6  ~'p = 1 

linear compensation consists of  a phase-lead filter without any structural filtering. 
The filter has the effect of phase stabilizing the rigid-body mode and the structural 
modes. Figure 9.23 contains several gain-phase (Nichols) plots; the leftmost plot 
shows the G(jog) locus and the - 1 / N ( X ,  09) locus. The spacecraft's three flexible 
modes are visible with portions of the G(j~o) locus in the vicinity of  the - I / N  
locus. The frequencies of  the upper and lower curves on the - 1 / N  locus are 3 
and 4 rad/s, respectively, which correspond to the frequency range of the dominant 
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Fig. 9.23 Case 1 describing function analysis. 
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mode. The phase separation between the second mode and the minimum amplitude 
line of the - 1 / N  locus is less than 15 deg. 

A time delay is used to evaluate the phase margin of the control loop. By 
combining the time-delay model with the compensation, the G(jog) locus can be 
shifted to the left, creating an intersection with the - 1 / N  locus of the PWPF 
modulator. A second-order Padd approximation of a pure delay is used, where the 
delay time T is found by the relation 

T = dpm/57.3w (9.44) 

where w (tad/s) is the frequency of the point of the G (jw) locus close to the - 1 / N  
locus and q~m is the phase margin in degrees. The smallest value of ¢~m that causes 
an intersection is defined as the nonlinear phase margin. A similar procedure can 
be followed for the nonlinear gain margin. The lower right-hand plot depicts the 
introduction of a 100-ms delay at 3.5 tad/s; the corresponding phase lag, according 
to Eq. (9.44), is 20.1 deg. Note that the second mode now crosses the - 1 / N  locus. 
The frequency of the G(jw) locus near the describing function plot is close to 
4 rad/s making a limit cycle at that frequency possible. Note the nearly orthogonal 
crossing of the G(jw) locus with the - 1 / N  locus, which, as mentioned earlier, 
increases the accuracy of the describing function analysis. 

Figure 9.24 shows the results of a nonlinear simulation of the case 1 compen- 
sation with the additional I00-ms delay. As predicted, a limit cycle is evident in 
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Fig. 9.24 Case I simulation results. 
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Fig. 9.25 Case 2 describing function analysis. 

all four states displayed in Fig. 9.24. The rigid-body mode is sufficiently damped 
but the second flexible mode is limit cycling. 

The nonlinear phase margin of the system with case 1 compensation is less than 
15 deg, which may not prove sufficient; increasing the nonlinear phase margin will 
further decrease the chance of structural limit cycling. This can be accomplished 
by introducing phase lead into the system. As a result, the case 2 compensation 
contains a phase-lead structural filter in addition to the lead filter for the rigid-body 
mode stabilization. A filter that would introduce significant phase lead between the 
frequencies of 3 and 4 rad/s is desired; the generalized structural filtering approach, 
described in Chapter 2, can be employed to select the minimum-phase lead filter. 
Figure 9.25 details the G(jw) and - 1 / N  locus for case 2. It can be seen that the 
nonlinear phase margin has roughly doubled from case 1 to 30 deg. The addition 
of the 100-ms delay does not result in an intersection between the curves; there 
is still a 10-deg phase difference between the -1/N locus and the G(jw) locus. 
Therefore, no limit cycle is predicted from describing function analysis. 

From Fig. 9.26, it can be seen that there is indeed no limit cycle; the yaw angle 
output contains gradually decreasing flexible mode excitation. No high-frequency 
thruster firings are evident; the low-frequency steady-state firings that are visible 
are rigid-body mode limit cycle firings. The case 2 compensation represents a 
method of phase stabilization of the nonlinear system; an alternative method of 
stabilization is gain stabilization. 

Along with the rigid-body controller from case 1, case 3 contains a notch filter. 
This notch filter provides a sharp gain attenuation at 3.4 rad/s. As in the earlier 
cases, it can be shown that, for case 3, there is a wide separation between the 
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Fig. 9.26 Case 2 simulation results. 

- I /N  locus and the 3.5 rad/s point on the G(jw) locus; as a result, the system 
has a large nonlinear phase margin. The utility of the case 3 compensation is, 
however, misleading because of the wide phase margin apparent in the system. 
The disparaging phase characteristics of the notch filter undermine its suitability 
as a gain-stabilizing device. The case 4 compensation resembles the filters used 
in case 3 except that the notch filter pole and zero lie on the opposite side of the 
3.5 rad/s mode. This demonstrates the effect of structural mode uncertainty on a 
control system. The notch filter is not an example of robust compensation because 
of the linear instability that could arise from structural pole or zero uncertainty; 
case 4 could represent an analogous situation in the nonlinear sense. As a result of 
the notch frequency mismatching, the - 1 / N  and G(jw) loci intersect. 

9.4.5 Summary 
A computer-aided design methodology based on the describing function method 

for a pulse-modulated control system has been described in this section. A brief 
discussion of the describing function method and the inherent modeling uncertainty 
of the method was also given. It was shown that if - 1 / N  locus and G(jw) locus 
intersect almost perpendicularly, the modeling uncertainty for the pulse modulators 
does not significantly affect the accuracy of the describing function analysis. The 
INTELSAT V spacecraft was used as an example. 

1 0 0  
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9.5 Attitude Control Redesign for the Hubble Space Telescope 
In this section, as discussed in Ref. 19, we consider a control redesign problem of 

the Hubble Space Telescope (HST) for reducing the effects of solar array vibrations 
on telescope pointing jitter. The HST is a real example of a flexible spacecraft with 
noncollocated actuator and sensor pairs. 

9.5.1 Introduction 

The Hubble Space Telescope (HST) shown in Fig. 9.27, is a 13-ton free-flying 
telescope in space with a precision pointing stability requirement of 0.007 arcsec 
over a 24-h period, which is the most stringent pointing requirement imposed on any 
spacecraft to date. Following the successful deployment of the HST from the Space 
Shuttle Orbiter in April 1990, the HST experienced a pointing jitter problem caused 
by unexpected, solar-array-induced disturbances. (This pointing jitter problem was 
later solved by replacing the problematic arrays with new, improved solar arrays in 
an HST repair mission.) Flight results associated with the pointing jitter problem 
indicate that there appear to be two types of thermal flutter of the 20-ft-long solar 
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ASSEMBLIES (4) ,, - .  I SIESON~RY MIRROR 

FINE GUIDANCE 
SENSORS (3) • 

LIGHT SHIELD 

AFT SHROVD 
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/ 
/ 

SCIENTIFIC " 
INSTRUMENTS 

FIXED HEAD ' 
STAR TRACKERS (3) 
PATE GYROS (6} 

SOLAR ARRAY 

Fig. 9.27 Hubble Space Telescope. 
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arrays: 1) an end-to-end bending oscillation at 0.12 Hz when the spacecraft passes 
between sunlight and shadow and 2) a sideways bending oscillation at 0.66 Hz 
that occurs on the day side of the Earth. Under the worst conditions, the tips of 
the two 20-ft arrays could deflect as much as 3 ft. The effect of such solar-array 
oscillations is that the telescope moves 0.00022 in., enough to make the planned 
long observations of as much as 25 min not worthwhile. 

In this section we consider the control redesign problem for reducing the ef- 
fects of both 0.12- and 0.66-Hz solar array oscillations on jitter. Both classical and 
modem control design methodologies presented in Chapter 2 will be employed 
for precision line-of-sight pointing control of the HST in the presence of signifi- 
cant structural vibrations. It will be shown that two disturbance rejection dipoles 
effectively reduce the effects of the solar-array-induced disturbances at 0.12 and 
0.66 Hz on pointing jitter. 

9.5.2 Problem Statement for Control Redesign 

The pointing control system of the HST consists of fine-guidance sensors, star 
trackers, rate gyros, reaction wheels, magnetic torquers, and a digital computer. 2°'21 
The rate gyro assembly comprises six rate-integrating gyros and provides rate and 
attitude information that is supplemented by attitude data from star trackers and 
fine-guidance sensors. Magnetic torquers are used for momentum management. 
Control torques are provided by the four skewed reaction wheels, which are not 
collocated with the rate gyro assembly. The rate gyros are located with the star 
tracker on an equipment shelf on the back side of the optical telescope assembly, 
and the reaction wheels are located at the midsection of the main body, as can be 
seen in Fig. 9.27. As a result, the primary bending modes of the optical telescope 
assembly have large negative modal gains (see Table 9.7) and they are interact- 
ing unstably with the rigid-body pointing control system. The pointing control 
problem of the HST is thus an excellent practical example of the noncollocated 
control problem of flexible structures. 

We consider here only the pitch-axis control design problem, which has most 
significant interaction with the solar arrays. The roll, pitch, and yaw control axes 
of the HST, illustrated in Fig. 9.27, are nearly aligned with the principal axes of 

Table 9.7 HST structural modes for the pitch axis 

Mode Modal gain 
number wi ,  Hz Ki Description 

1 0.110 0.018 Solar array 
2 0.432 0.012 High-gain antenna 
3 0.912 0.057 Aperture door 
4 10.834 0.024 Telescope structure 
5 12.133 0.155 Telescope structure 
6 13.201 - 1.341 Telescope structure 
7 14.068 - 1.387 Telescope structure 
8 14.285 -0.806 Telescope structure 
9 t 5.264 -0.134 Telescope structure 
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the vehicle. The pitch-axis transfer function of the HST is given by 

0 1 ~ K i / J  (9.45) 
U j s  2 "t" ~'= $2 + 2~°9is + °92 

where 0 is the pitch-axis pointing error output, u the pitch axis reaction wheel 
control torque input, s the Laplace transform variable, J = 77,076 kg.m 2 the 
spacecraft pitch-axis moment of inertia, Ki the ith flexible modal gain in the pitch 
axis, wi the ith flexible mode frequency in rad/s, and ( the passive damping ratio 
assumed to be 0.005. 

Table 9.7 lists the pitch-axis modal data of the HST, and the corresponding 
transfer function zeros in rad/s are 

-0.0034 4- 0.6850j, 

-0.0272 4- 5.5805j, 

-0 .3790 -t- 75.818j, 

-0.4464 4- 89.286j, 

-58.678, 

-0.0134 + 2.6983j 

-0.3397 4- 67.945j 

-0.4255 4- 85.079j 

-0.4780 4- 95.589j 

+59.069 

The transfer function with nonalternating poles and zeros has a nonminimum- 
phase zero at s = 59.069 because the rate gyros are not collocated with the 
reaction wheels. 

Figure 9.28 shows a simplified pitch-axis block diagram of the HST pointing 
control system. The outer loop with the fine-guidance sensor and a command 
generator for the feedforward path are not shown here. Other axes of the HST 
employ the same control architecture. 

The original controller on board the HST, which is basically a digital PID 
controller without the disturbance rejection filter, utilizes a finite impulse response 
(FIR) filter in the rate path to attenuate the high-frequency, main-body (optical 
telescope assembly) bending modes. 

The solar-array-induced disturbances are modeled as 

d(t) = A1 sin(pit + ~1)+ A2 sin(p2t + ~b2) (9.46) 

where the frequencies are known as 

Pl = 2zr(0.12) rad/s 
(9.47) 

P2 = 2rr(0.66) rad/s 

The magnitudes A i and phases 4~i are unknown for control design, whereas the 
nominal magnitudes can be estimated as A1 = A2 = 0.2 N.m, from flight results. 

The Bode magnitude plot of the loop transfer function of the original controller 
on board the HST is shown in Fig. 9.29. As can be seen in Fig. 9.29, the pitch-axis 
pointing control system with the original controller has a 1.03-Hz gain crossover 
frequency. The FIR filter in the rate path provides 2.3-dB gain suppression of 
the 13.2-Hz bending mode. The solar-array-induced disturbances for this con- 
troller lead to pointing jitter of 0.1-arcsec peak, which significantly exceeds the 
0.007-arcsec pointing accuracy requirement. 

Thus, a new digital control logic is to be designed to most effectively attenuate the 
effects of the solar array oscillations at 0.12 and 0.66 Hz. An integral compensation 
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Fig. 9.28 Simplified block diagram of the HST pitch-axis pointing control system. 

is also needed to attenuate a low-frequency gravity gradient and aerodynamic 
disturbances. 

The control redesign requirements and/or goals can be stated as follows: 
1) Maintain at least 5-dB gain margin and 20-deg phase margin. 
2) Provide at least 6-dB gain suppression (rolloff) of the high-frequency tele- 

scope structural modes at 14 Hz. 
3) Provide at least 20-dB additional disturbance attenuation at both 0.12 and 

0.66 Hz with respect to the original design. 
4) Maintain the bandwidth (the open-loop gain crossover frequency) close to 

1.5 Hz. 
Next we consider a classical control redesign for the HST, followed by a modern 

state-space control redesign, to reduce the effects of solar array vibrations on 
telescope pointing jitter. Both designs will be compared to the original controller 
onboard the HST, and some practical usefulness of a modern design technique that 
deals with both structured and unstructured uncertainties will also be demonstrated. 
Theoretical aspects of robust control design will not be elaborated, although some 
detailed discussion on both the classical and robust H~ design techniques can be 
found in Chapter 2 or elsewhere. 
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Fig. 9.29 Bode magnitude plot of the loop transfer function of the original HST 
control design. 

9.5.3 Classical Control Design 
For the classical s -domain synthesis of  digital control logic, the computational 

delay and the sample/ZOH delay, shown in Fig. 9.28, are first approximated as 

(0.008s)2/12 - 0 .008s /2  + 1 
e -°'°°Ss -~ (9.48) 

(0.008s)2/12 + 0 .008s /2  + 1 

1 - e -0'025s 1 
(9.49) 

0.025s (0.025s)2/12 + 0 .025s /2  + 1 

Following a classical design guideline described in Chapter  2, a new controller 
can be designed to accommodate  the disturbances at 0.12 and 0.66 Hz. After a 
trial-and-error iteration, a PID controller for the control logic architecture shown 
in Fig. 9.28 can be found as Ke  = 7.720, KI = 3.798, and Ko = 7.318. This 
controller utilizes the same FIR filter as in the original controller and employs a 
periodic-disturbance rejection filter of the form 

( S / Z l )  2 -~" 2~z~s/zl + 1 (S/Z2) 2 -+- 2~z2S/Z2 + 1 
R(s) = ( 9 . 5 0 )  

( s / p l )  2 + 1 (s /p2)  2 -{- 1 

where 

zl = 2Jr(0.124), (z~ = 0.364, Pl = 27r(0.120) 

z2 = 2Jr(0.612), (z2 = 0.127, Pz = 2rr(0.660) 

This new PID controller with two dipoles satisfies the 1.5-Hz gain crossover fre- 
quency requirement, as well as the gain and phase margin requirements. However, 
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the FIR filter in the rate path does not provide enough gain attenuation for the 
high-frequency bending modes. The high-frequency structural modes near 14 Hz 
are, in fact, phase stabilized by the phase lag effects of the control system. Conse- 
quently, the second requirement of gain stabilizing the primary structural bending 
modes at 14 Hz has not been met, whereas all other design requirements and goals 
have been satisfied. 

A new PID controller with notch filtering of the significantly interacting modes 
at 14 Hz can also be synthesized as 

K(s) = (7.72 + 3.798/s + 7.318s) R(s) H(s) (9.51) 

where R(s) is the same periodic-disturbance rejection filter as given in Eq. (9.50) 
and H(s), which denotes the structural notch filter, is given by 

(s/87) 2 + 2(0.001)s/87 + 1 
H(s) = (9.52) 

(s/45) 2 + 2(0.70)s/45 + 1 

As can be seen in the Bode magnitude plot of the loop transfer function shown in 
Fig. 9.30, the controller given by Eq. (9.51) has a 1.5-Hz gain crossover frequency. 
The closed-loop system with this controller has a phase margin of 38 deg and a 
gain margin of 7.1 dB. The notch filter gain stabilizes the primary bending modes 
at 14 Hz with about 12-dB gain suppression. This new controller with two dipoles 
provides 40 dB more gain attenuation at both 0.12 and 0.66 Hz, which can be 
verified from the closed-loop frequency magnitude response from the solar array 
disturbance input d to the pitch attitude output 0. 

As described here for the HST control redesign problem, a simple classical ap- 
proach based on a dipole concept is a very effective means of achieving precision 
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Fig. 9.30 Bode magnitude plot of the loop transfer function of a classical control 
redesign. 



ATI'ITUDE AND STRUCTURAL CONTROL 553 

line-of-sight pointing control in the presence of significant structural vibrations 
or persistent external disturbances. The classical approach, however, requires a 
significant amount of trial-and-error iterations to satisfy the 1.5-Hz bandwidth 
requirement and the stability requirements of the two dipoles and the rigid-body 
mode. Next we will employ a modern state-space design technique based on H~ 
control theory to overcome some drawbacks of a classical approach. It is, how- 
ever, emphasized that even for such a modern systematic approach, trial-and-error 
iterations for selecting proper weightings are necessary. 

9.5.4 Robust Control Design 

A robust H~ control design methodology, which is essentially based on state- 
space solutions of standard Hoo control problems, was briefly described in Chap- 
ter 2, with a special emphasis on modeling of both structured parametric uncer- 
tainty and unmodeled dynamics. Many theoretical aspects of robust control are not 
elaborated here. Instead, we emphasize a proper formulation of the HST pointing 
control redesign problem for the robust Hoo control design in terms of structured 
and unstructured uncertainties. 

The pole-zero pattern of the HST pitch-axis transfer function indicates that 
the pitch-axis dynamics can be approximated by a rigid-body mode and several 
dominant bending modes at 14 Hz. Because the control redesign requires gain 
stabilization of those bending modes with at least 6-dB gain suppression, the high- 
frequency bending modes are considered as unmodeled dynamics. 

The pitch-axis dynamics of HST with only a rigid-body mode can then be 
described as 

O 

y = O + v  

where 0 is the pitch attitude error, d is the external disturbance torque induced by 
solar arrays, v is the sensor noise, u is the pitch-axis control torque generated by 
reaction wheels, and ~ represents a percentage variation of the overall loop gain 
perturbed mainly by vehicle inertia uncertainty, i.e., 8 is a structured uncertain 
parameter. 

As was discussed in Chapter 2, a fictitious input d and a fictitious output ~ can 
be introduced as follows: 

d = gu 

where £ is called the gain of a fictitious internal feedback loop. 
Disturbance rejection filters are represented as 

a = y  

/~l + P2¢31 = Y 

fJ2 "-F p22/32 = y 

(9.53a) 

(9.53b) 

(9.53c) 
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where Pl = 2zr(0.12) rad/s and p2 = 2rr(0.66) rad/s are the frequencies of solar- 
array-induced disturbances. Note that a constant-disturbance rejection filter is also 
included, because an integral compensation is needed to attenuate low-frequency 
disturbances. 

The disturbance filters can then be represented in state-space form as 

where 

~d = AdXa + Bay (9.54) 

0 0 0 0 
0 0 1 0 

Ad = 0 --pl 2 0 0 

0 0 0 0 

0 0 0 --p~ 

n d = 

1 

, Xd = 

01 
31 

& 

Finally, the state-space plant 
the fictitious internal feedback loop can be described as 

~(t) = Ax(t) + Bid(t) + B2u(t) 

i(t) = Clx(t) + Dlld(t) + Dl2u(t) 

y(t) = C2x(t) + D21d(t) + D22u(t) 

where 

x = [ 0  

d = [3 

-0 
0 
1 0 

A =  0 0 
1 0 
0 0 
1 0 

-0  0 
1 1 
0 0 

B1 = 0 0 
0 0 
0 0 
0 0 

model augmented by the disturbance filters and 

/~1 f12 

i = [ ~  

0 0 
0 0 
0 0 
1 0 
0 0 
0 0 
0 - p ~  

B 2  : -  

z] r d v] r, 

1 0 0 
0 0 0 

0 0 
0 0 
0 - p ~  
0 0 
0 0 

0 
0 
1 
0 W~, 
1 
0 
1 

(9.55) 

0 
0 
0 
0 
0 
1 
O_ 

- 0 - - I  

1 
0 
0 
0 

_o°J 
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[10 0 w,, w~, w~ w~ w ~ ]  
C1 = 0 0 0 0 0 0 

C 2 = [ 1  0 0 0 0 0 0] 

n12 = [ 0 ] ,  O21 = [0 0 t ]W d 

and Dll = 0 and D22 = 0; W d is the diagonal weighting matrix ford; and w,~, 
w~,, w~, wt~.2 and w-~ are. weighting factors for ~,/~,/~l /~2 andS ,  respectively. 

The selecuon of a design bound y and various weighting factors requires a trial- 
and-error iteration for proper tradeoffs between performance and robustness. The 
weighting factors on the disturbance rejection filter states are related to the separa- 
tion between corresponding pole and zero of a dipole. Such separation represents 
the strength of the dipole, which in turn affects the settling time of the closed-loop 
system. 

Because all of the structural modes are treated as unmodeled dynamics in the 
design process, we select the following weighting function: 

0.532(s/30 + 1) 2 
W(s) = (9.56) 

[s/(2rr • 13.8)] 2 + 2(0.004)s/(2zr • 13.8) + 1 

to meet the frequency domain robustness requirement with respect to unstructured 
uncertainty. After a certain amount of trial and error using a computer code, one 
may select the following 

y = 4.39 

W d = diag(0.05, 3.10, 0.002) 

wa = 0.3, w#~ = 2.0, w#~ = 1.8 

w~2 = 0.5, w#2 = 20 

and find a compensator of the form 

K(s) = (5.945 + 0.374/s + 10s) R(s) H(s) (9.57) 

(s/0.946) 2 + 2(0.283)s/0.946 + 1 (s/3.746) 2 + 2(0.021)s/3.746 + 1 

(s/0.754) 2 + 1 (s/4.147) 2 + 1 

(s/86.71) 2 + 2(0.004)s/86.71 + 1 1 
H ( s )  = 

(s/58.40) 2 + 2(0.862)s/58.40 + 1 (s/42.76) 2 + 2(0.454)s/42.76 + 1 

For an effective rejection of the sinusoidal disturbances, the disturbance rejection 
filter R(s) has poles at -¢-2zr(0.12)j and -¢-2rr(0.66)j with the associated zeros at 
-0 .267 4- 0.907j and -0 .079 4- 3.745j, respectively. 

The Bode magnitude plot of the loop transfer function with this new controller 
is shown in Fig. 9.31. As can be seen in this figure, this new controller has met the 
bandwidth requirement of 1.5-Hz gain crossover frequency. It has a 5.1-dB gain 
margin and a 37-deg phase margin. The notch zeros at 13.8 Hz provide effective 
gain stabilization of the primary bending modes at 14 Hz with about 21-dB gain 

where 

R ( s )  = 
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Fig. 9.31 
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suppression. As can be verified from the closed-loop frequency magnitude response 
of this new controller from the solar array disturbance input d to the pitch attitude 
output 0, this new controller provides additional 40-dB disturbance attenuation at 
both 0.12 and 0.66 Hz with respect to the original controller. 

9.5.5 Summary 
Both classical and robust H~ control synthesis techniques were applied to 

the control redesign problem of the HST in this section. It was demonstrated 
that the proposed controllers with two disturbance rejection dipoles effectively 
accommodate the solar-array-induced disturbances at 0.12 and 0.66 Hz, resulting 
in a significant pointing performance improvement over the original controller 
on-board the HST. Some practical usefulness of a modern, but somewhat esoteric, 
robust H~ control design methodology has been also demonstrated, although trial- 
and-error iterations for selecting proper weightings were necessary. 

Problem 

9.1. Compare the Bode magnitude plots of the closed-loop transfer function 
O(s)/d(s) of three different controllers: 

(a) The baseline controller. 
(b) The classical redesign. 
(c) The H~ control redesign. 
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9.6 Active Structural Vibration Control 

9.6.1 Introduction 

Thus far in this chapter, we have considered attitude control problems of various 
spacecraft in the presence of propellant sloshing and/or structural flexibility, with 
emphasis on practical aspects of attitude control systems design. As discussed in 
the preceding sections, most attitude control problems of practical concern do not 
require an active damping control of the structural or sloshing modes. The flexible 
modes in such problems are often naturally phase stabilized as a result of the 
collocated control, or gain stabilized in most cases by simply employing rolloff or 
notch filters. 

In this section, however, we consider active structural vibration control prob- 
lems in which the flexible modes need to be actively damped; however, many 
theoretical aspects of flexible structure controls will not be elaborated. Some fun- 
damental concepts, as well as advanced control theory for the active structural 
control problem, were introduced in Chapter 2. This section is intended to provide 
the reader with some practical examples of structural control designs and ground 
experimental results. 

9.6.2 Active Vibration Control of the Mast Flight System 
The active structural vibration control problem of the control of flexible struc- 

tures (COFS) Mast flight system is discussed here, and is based on Ref. 22. 

Mast flight s y s t em description. The COFS Mast flight system illustrated in 
Fig. 9.32 was once envisioned by NASA in the mid-1980s as a means of exper- 
imenting with active structural control technologies in space. The basic element 
of this system is a 60-m-long, triangular-cross-sectional truss beam with a 275-kg 
distributed mass, including the 93-kg distributed mass of control hardware. A 180- 
kg tip mass includes primary actuators and sensors. A summary of the distributed 
actuator/sensor locations and the material properties of the truss beam are also 
provided in Fig. 9.32. 

The proof-mass actuator was selected as the primary actuating device for the 
COFS Mast flight system. The proof-mass actuator can be considered the trans- 
lational equivalent to the reaction wheel that is one of the primary actuating de- 
vices for the attitude control of spacecraft. The proof-mass actuator applies force, 
whereas the reaction wheel applies torque. Although the proof-mass actuator dy- 
namics are inherently nonlinear and complex, the low-frequency characteristics of 
the proof-mass actuator can be modeled as a high-pass filter, similar to those of 
the reaction wheel. The transfer function from the actuator input command to the 
actual force output can be approximated as* 

u m s  
-- (9.58) 

uc Ts + 1 

*The proof-mass force actuator was developed mainly through the active control of space structures 
(ACOSS) project in the late 1970s. For example, see "ACOSS Five Phase l A," Final Technical Report 
RADC-TR-82-21, Lockheed Missiles & Space Co., March 1982. 
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Fig. 9.32 COFS Mast flight system. 

where m is the mass of the proof-mass, T = m/K, K is the velocity-controlled 
actuator servo gain, and 1 / T becomes the actuator high-pass break frequency. 

The proof-mass actuator selected for the COFS experiment has a high-pass break 
frequency of 1 Hz. This frequency must be distinguished from the 110-Hz actuator 
servo bandwidth. The first bending mode of 0.18 Hz is within the high-pass break 
frequency and the second bending mode of 1.98 Hz is near the high-pass break 
frequency. Therefore, special care should be taken with the high-pass filtering char- 
acteristics of the proof-mass actuator dynamics. Furthermore, the actuator stroke 
and force limits should be included in the detailed control design and simulation. 

Because this truss beam with significant tip mass is cantilevered to the Orbiter, 
the overall transient responses are dominated by the first flexible mode in each 
axis. Because of the symmetric nature of the system, we consider here only the in- 
plane transverse bending vibration of the truss beam. The 1.98-Hz second bending 
mode is widely separated from the 0.18-Hz first bending mode and has an order of 
magnitude less modal contribution than the first mode. Consequently, the COFS 
Mast flight system does not have the closely spaced modal characteristics expected 
for flexible structures in space. On the other hand, this system represents a typi- 
cal control-structure interaction problem in which controlling the primary modes 
always requires consideration of the control interactions with the secondary modes. 

As discussed earlier in this book, when using a collocated actuator/sensor pair, 
a stable interaction exists; however, special consideration must be given to the 
unstable interaction when the actuator and sensor are not collocated. For the COFS 
Mast flight system, the first bending mode can be considered as a primary mode 
to be actively damped. The second and higher bending modes are considered the 
secondary modes that are not to be destabilized by the primary-mode controller. 

Pole-zero modeling. Consider the problem of controlling the COFS Mast 
flight system using the tip-mounted proof-mass actuator. As mentioned earlier, we 
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consider here only the in-plane transverse bending vibration of the truss beam. 
An analytical transfer function from the control input force acting at the tip to 
the deflections at various points on the truss beam can be determined using the 
analytical approach introduced in Chapter 8. The additional lumped mass at bays 
17, 24, 33, and 44 is neglected for the preliminary analytical modeling herein. 
This analytical modeling provides a qualitative representation of the actual truss 
beam. It also provides physical insights to the modeling and control problems of  
the COFS Mast flight system. 

For a uniform cantilevered beam with a tip mass M, the equation of motion is 
given by 

E l y " ( x ,  t) + a~ (x ,  t) = 0 (9.59) 

where 
04y 02y 

y,,,, __ 3) _= OX 4' 3t 2 

and y(x ,  t) denotes the transverse deflection at the location x and time t; El, ~,  and 
e are the bending stiffness, mass density, and total length of the beam, respectively. 

The boundary conditions are 

y(0, t) = y'(0, t) = 0 (9.60a) 

y"(e, t) = 0 (9.60b) 

My(e ,  t) - Ely '" ' (& t) = u(t) (9.60c) 

where M is the tip mass and u the proof-mass actuator control force. 
Taking the Laplace transforms of Eqs. (9.59) and (9.60), we obtain 

y'"'(x, s) - X4y(x, s) = 0 (9.61) 

where X 4 = - s  2, with s in units of ~E-7/cr e 4, and 

y(0, s) = y'(0, s) = 0 (9.62a) 

y ' (1 ,  s) = 0 (9.62b) 

-pX4y(1 ,  s) - y " ( 1 ,  s) = u(s) (9.62c) 

where p = M/cre,  and x and y are in units of e, and u(s) is in units of EI /e  2. 
The solution of Eq. (9.61) is given by 

y(x ,  s) = A1 sinXx + A2 cos Xx + A3 sinh Lx + A4 cosh Xx (9.63) 

Combining Eqs. (9.62) and (9.63) we obtain the transcendental transfer function 
from the control input force u(s) to the beam deflection y(x ,  s) and to the beam 
slope y'(x ,  s) at location x as follows: 

y(x,  s) (cA + chX)(sXx - sh)tx) - (sX + shX)(c)~x - chXx) 
-- (9.64) 

u(s) 

y'(x, s) 

2X3(1 + cXchX) + 2pk4(cXshX - sXchX) 

L(cX + chk)(cXx - chXx) + X(sX + shX)(sXx + shXx)  
(9.65) 

u(s) 2X3(1 + cXch~) + 2pX4(cXshX - sXchX) 

where s( ) = s i n ( ) ,  sh( ) = s inh ( ) ,  etc., for brevity. 
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In particular, the transfer functions from the tip-mounted primary actuator to 
the tip deflection and to the tip slope become 

y(1, s) s~.chk - c k s h k  

u(s) ~.3(1 + c).ch3.) + p).4(c~.sh)~ - s~.ch~.) 
(9.66) 

y'(1, s) )~skshk 
- -  -- (9.67) 

u(s) ~.3(1 -4- c)~chX) -k- p)O(c~.shX - -  s)~ch)~) 

By determining the roots of the numerator and denominator of these transfer 
functions for given tip-mass ratio p, these transcendental transfer functions can be 
represented as products of poles and zeros. 

Because the control of tip deflection is the primary consideration, Eq. (9.66) is 
further discussed here. It is observed that the transfer function zeros are independent 
of the tip-mass ratio p, whereas the poles (natural frequencies) are dependent on 
the mass ratio. The zeros of Eq. (9.66) are the natural frequencies of a clamped- 
hinged beam. The poles and zeros of Eq. (9.66) for different values o fp  are shown 
in Fig. 9.33. As can be observed in this figure, when p increases, the poles and 
zeros associated with the second and higher bending modes become closely spaced 
and the first mode becomes a single dominant mode of the cantilevered beam with 
a tip mass. 

The frequencies in Fig. 9.33 are in units of v"~- /a  e 4 and they should be multi- 
plied by 0.76 to become frequencies in units of radians per second. For the case of 
p = 1, the lowest four natural frequencies become 0.18, 1.96, 6.14, and 12.7 Hz, 
which are in close agreement with the finite element modal data. 

Figure 9.34 also shows the poles and zeros of transfer functions from the tip- 
mounted actuator force to the beam deflection at various locations. Because the 
actuator and the sensor are not collocated in this case, the poles and zeros are not 
alternating along the imaginary axis. The zero locations are sensitive to the actual 
mode shapes. The transfer function to the deflection at the bay 17 (x = 0.313) has 

N o r m a l i z e d  f r e q u e n c y  in u n i t s  o f ~ G / 4  
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Fig. 9.33 Poles and zeros of  the col located transfer function, y (1 ,  s)/u(s), for different 
values of  the t ip-mass ratio p = M/~rg. 
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Fig. 9.34 Poles and zeros of the transfer functions, y(x,s)lu(s), at various sensor 
locations. 

no zeros associated with the lowest four modes. A case of controlling the beam 
vibration using the tip-mounted actuator and the sensor at bay 33 has been selected 
because the second mode has a maximum deflection at bay 33. 

Collocated and noncollocated controls. A simplified diagram of a control 
system proposed for the COFS experiment is shown in Fig. 9.35. The proposed 
control system consists of the collocated control loop and the noncollocated control 

r(1,s) Rat. [ IGyro y'cl'SI 

COLLOCATED CONTROL O" ~ ( 1 , S ) ~ A c c e l e r - [ ~  y( l ,S)  

PROPORTIONAL 
INTEGRAL 
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-mS [ _ [co  
~Dyn, 

T=0.16 sec 

ics 

+ +1 [ (0 z Acce le r -  [ ~  y(x,s) 
S ometer  [ ~  

-'~p + 2 ~ S  "1" 1 
~" NONCOLLOCATED CONTROL LOOP 

STRUCTURAL FILTER 

Fig. 9.35 Control system proposed for the COFS Mast flight system. 
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loop. A detailed discussion of the control design for this system, which can be 
found in Ref. 22, is omitted here because a similar control design problem will be 
considered in detail in the next section. 

9.6.3 Active Structural Control Experiment for the 
Mini-Mast System 

The COFS project, which was originally envisioned for the Mast flight sys- 
tem experiment in space, was later replaced by a ground experiment project for 
the Mini-Mast system located at the NASA Langley Research Center. Detailed 
control system designs and ground experiments have been performed by many 
control researchers for the Mini-Mast system, under the NASA Control Structure 
Interaction (CSI) Guest Investigator Program in the late 1980s. 

In particular, the simplicity and practicality of a classical control approach, 
enhanced by the concepts of nonminimum-phase filtering and active rejection 
of persistent disturbances, have been demonstrated for the Mini-Mast system by 
Wie et al. 23 The intent here is to briefly describe such experimental results, with 
emphasis on the practical significance of the classical control concepts introduced 
in Chapter 2. 

Mini-Mast system description. The Mini-Mast system consists primarily of 
a 20-m-long, triangular-cross-sectional, joint-dominated truss structure, which is 
deployed vertically inside a high-bay tower, cantilevered from its base on a rigid- 
ground foundation. It represents future deployable trusses to be used in space. The 
overall system configuration and the actuator/sensor locations are illustrated in 
Fig. 9.36. 

An approximately 160-kg tip mass includes three torque wheel actuators (TWAs) 
mounted on a tip plate at bay 18; the total mass of the system is about 300 kg. The 
three TWAs generate orthogonal control torques along the global X, Y, and Z axes. 
The origin of the global control axes is located at the base of the truss and at the 
centroid of the triangular cross section, as illustrated in Fig. 9.37. For disturbance 
input to the structure, three shakers at bay 9 can be utilized. These shakers are 
oriented normal to the faces of the truss at each of the three vertices. Displacement 
sensors used for control experiments are located on the platforms at the tip (bay 
18) and near the midpoint of the truss (bay 10). These sensors are positioned to 
measure deflections normal to the face of the sensor, which are mounted parallel 
to the flat face on the corner joints on the truss, as shown in Fig. 9.37. Because 
the sensor axes are not aligned with the torque wheel axes, i.e., the global X, Y, 
and Z axes, a coordinate transformation of the sensor outputs is needed for the 
classical decoupled control design. Such a coordinate transformation or sensor 
output decoupling matrix is given in Fig. 9.37. 

Experimental, open-loop responses of the Mini-Mast excited by the shaker A 
with a pulse of 100 ms duration and 50 N magnitude are shown in Fig. 9.38 for 
the displacement sensor outputs (A, B, and C), and in Fig. 9.39 for the decoupled 
outputs (X, Y, and 0). It is evident from Fig. 9.38 that the overall transient responses 
at the tip are dominated by the first flexible mode in each axis. The 6-Hz second 
bending mode, which can be seen at bay l0 responses, is widely separated from the 
0.8-Hz first bending mode, and has an order-of-magnitude less modal contribution 
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Fig. 9.36 Schematic representalion of the Mini-Mast control experiments. 

than the first mode. Although there are a cluster of local modes and additional global 
bending, torsion, and axial modes up to 100 Hz, they are not visible in Fig. 9.38. The 
unsymmetric behavior of the Mini-Mast truss structure is also evident in this figure. 
This effect is probably due to the joint nonlinearity of the truss structure. Despite 
such a joint nonlinearity problem, the decoupled outputs shown in Fig. 9.39 clearly 
indicate the effectiveness of the sensor decoupling concept illustrated in Fig. 9.37. 

A simplified transfer function representation of the actuator dynamics used for 
control design is given as 

u(s)  s 
(9.68) 

Uc(S) = (s/pl  + 1)(s/p2 + 1) 

where u(s) is the control torque in units of N.m, uc(s) is the torque wheel angular 
momentum command in units of N.m.s, and pl and p2 are the actuator poles. 
The following numerical values are used for control design: pl = 25 s -l  and 
p2 = 300s -1. 
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Schematic diagram of the cross section of the Mini-Mast truss beam. 

Mathematical modeling for control design. A finite element model of the 
Mini-Mast truss structure consists of 355 joints and 490 beam elements. Rigid 
plates are positioned at bays 18 and 10, with appropriate masses for the control 
hardware. 

A summary of the modal frequencies and modal damping ratios for the first five 
modes identified by modal tests is provided in Table 9.8. Modal damping ratios 
for the higher frequency modes are assumed to be 1%. There are five modes below 
l0 Hz. The first two, at approximately 0.8 Hz, are first bending modes oriented 
nearly in the global X and Y axes. Next is the first torsion mode at 4.4 Hz. It 
is slightly coupled with bending. The fourth and fifth modes are second bending 
modes. Unlike the first bending modes, however, the direction of motion for second 
bending has rotated 45 deg from the global X and Y axes. This phenomenon results 
in the coupled second bending modes. Following the second bending modes, there 
are a cluster of 108 "local" modes. These modes involve mainly the bending of the 
diagonal truss members. Following this cluster of local modes, there are additional 
global bending, torsion, and axial modes up to 100 Hz. In the control design, the 
first five modes are considered the primary modes to be actively damped. The 
sixth and higher modes are considered the secondary modes, which are not to be 
destabilized by the primary-mode controller. 
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Fig. 9.38 Open-loop impulse responses for displacement sensors A, B, and C at bay 
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Table 9.8 Mini-Mast modal data 

Mode Frequency, Hz Damping ratio, % 

First X bending 0.801 1.964 
First Y bending 0.801 1.964 
First torsion 4.364 1.660 
Second X Y bending 6.104 1.194 
Second Y X bending 6.156 1.194 

Control experiment objectives. Because this beam structure with significant 
tip mass is cantilevered to the ground, the overall transient responses are dominated 
by the first flexible mode in each axis. The 6-Hz second bending mode is widely 
separated from the 0.8-Hz first bending mode and has an order-of-magnitude less 
modal contribution than the first mode. Consequently, the Mini-Mast represents a 
typical control-structure interaction problem, where controlling the primary modes 
always requires consideration of the control interactions with the secondary modes. 
Even for a collocated actuator and sensor pair, special consideration must be given 
to the effect of the actuator and sensor dynamics and the phase lag caused by 
computational delay and prefiltering. In the preliminary control design, the first 
and second modes in each axis (except the second torsion mode) are considered 
as the primary modes to be actively damped. The third and higher modes in each 
axis are considered as the secondary modes, which are not to be destabilized by 
the primary-mode controller. 

State-space methods for control design of flexible space structures have been 
emphasized in the literature and more widely explored than classical methods. 
There has also been a growing research interest in robust Ho~ control and robustness 
analysis applied to the control problems of flexible space structures. The classical 
control approach was employed in Ref. 23 for Mini-Mast control experiments, 
however, and the objective was to investigate the fundamental nature of control- 
structure interaction problems and to further understand the practical effects of 
many simplifying assumptions on a realistic space truss structure such as the 
Mini-Mast. 

In particular, a new concept of generalized structural filtering for flexible-mode 
stabilization and a periodic disturbance rejection concept were to be validated by 
Mini-Mast control experiments. The simplicity and practicality of the classical 
control approach were to be demonstrated for the Mini-Mast. The practicality 
of a sensor decoupling approach was also to be demonstrated for the inherent 
multivariable control problem of the Mini-Mast. 

The control objectives of Mini-Mast experiments described in Wie et al. 23 are: 
1) a rapid transient vibration control of the tip deflection to an impulsive disturbance 
and 2) a steady-state vibration suppression to periodic disturbances. Control design 
and tests were performed for two different generic cases: 1) a collocated control 
using the tip-mounted actuator and sensor pairs at bay 18 and 2) a noncollocated 
control using the tip-mounted actuators at bay 18 and noncollocated sensors at 
bay 10. The external disturbances were generated by shakers at bay 9. In fact, 
there exists a multivariable control issue for both cases, because the sensor axes 
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Fig. 9.40 Collocated control system with periodic disturbance rejection for X and Y 
at bay 18. 

are not aligned with the control input axes. A sensor decoupling approach was, 
however, used to simplify the control design, which allows the use of a classical 
single-input single-output (SISO) control method. 

Collocated control experiment. A simplified control system block diagram 
is shown in Fig. 9.40 for collocated control experiments using the tip-mounted 
actuators and displacement sensors A, B, and C at bay 18. The sensor outputs are 
low-pass filtered by an analog, three-pole Bessel filter with a corner frequency of 
50 Hz in each axis. (Although a 50-Hz filter was used in the control design, it was 
found during the final stages of testing that a 20-Hz filter was mistakenly selected. 
The resulting effect was significant and will be discussed later.) 

The global X- and Y-axes bending and Z-axis torsional displacements at bay 
18 are generated by using the output decoupling matrix given in Fig. 9.37. The 
Y/u] transfer function has alternating poles and zeros along the imaginary axis. 
The X/u2 and O/u3 transfer functions also have such a collocated actuator- 
sensor property. As a result, a SISO collocated control design is possible, where 
the TWAs at the tip provide the control inputs and the global displacements of 
the tip (bay 18) are fed back with proportional gains. Thus, direct feedback of 
the decoupled displacement outputs (X, Y, 0) is the basic element of the collo- 
cated control experiments for the Mini-Mast using the torque wheel actuators. 

A proportional-and-derivative (PD) control was needed, however, to effectively 
compensate the actuator dynamics at near its high-pass break frequency. The PD 
compensator zero can be chosen near the actuator pole at s = -25 .  A mismatching 
of the actuator pole by the PD compensation zero is not significant. An effective 
control loop delay of 15 ms from digital control implementation with a sampling 
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Fig. 9.41 Root locus vs overall loop gain of the collocated X-axis controller. 

rate of 66.6 Hz was assumed. Such a time delay causes approximately 33-deg 
phase lag at the second bending mode frequency of 38 rad/s (6.1 Hz). 

To validate the concept of active disturbance rejection for flexible space struc- 
tures, a case with a sinusoidal disturbance with known frequency of 15 rad/s and 
unknown magnitude of 5 N was considered. Such a sinusoidal disturbance was 
generated by shaker A at bay 9, and disturbance rejection for the X- and Y-axes 
bending at the tip was considered. The compensator for this case, given in Fig. 9.40, 
includes a dipole for periodic disturbance rejection with the pole at s = -4-j 15 and 
the zero at s = -l-jl0, so that the zero lies between two consecutive poles of 
the loop transfer function. Figure 9.41 shows the locus of closed-loop poles vs 
the overall loop gain for the X-axis control loop with the periodic disturbance 
rejection filter dipole. 

The first test of this collocated controller was to investigate the closed-loop be- 
havior to an impulsive disturbance. Figure 9.42 shows the closed-loop tip response 
of this controller for the same impulse disturbance as for Figs. 9.38 and 9.39. A 
20% active damping ratio for the first mode in each axis has been achieved, as 
predicted by design. An undesirable phenomenon is evident in Fig. 9.42, however, 
that is, the second bending modes become less stable. This anomaly, which was 
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Fig. 9.42 Closed-loop impulse responses of the collocated control system. 

not predicted by design, was found to be caused probably by the mistakenly se- 
lected analog prefilter of 20-Hz (instead of 50-Hz) corner frequency. Additional 
test results with a 50-Hz filter indicate less destabilization of the second bending 
modes, but the second bending modes were still gain stabilized. The late discovery 
of this problem prevented a redesign of the collocated controller. 

The test cycle proceeded with the sinusoidal disturbance. It was demonstrated 
that a periodic disturbance rejection can be achieved for the outputs X and Y at 



ATTITUDE AND STRUCTURAL CONTROL 571 

B A Y  10 
D I S P L A C E M E N T  i 
S E N S O R S  I 50  l i z  

I 
i 

! 
! 
I 

! 
I 
I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , 

OUTPUT 

DECOUPLING 

MATRIX 

C O M P E N S A T O R S  I 
A C T U A T O R S  

! 

Y [ " ' - " - 1  U lc  I I u l  

I 
! 

! m 
! 
I 

TWAZ ~ 

I I ! 

! . . . . . . .  I 

Kl(s ) = - K ( s )  = 
2 

- 6000(s/25 + 1)[(s/20) 2 + 1][(s/4.9) 2 - 1.4s/4.9 + 1] 

[(s/15) 2 + 1][(s/4.9) 2 + 1.4s/4.9 + 1] 

K(s) = - 800(s/25+ 1) 

Fig. 9.43 Noncollocated control system with periodic disturbance rejection for X and 
Y at bay 10. 

bay 18. In this case, the control inputs u~ and u2 present a steady-state oscillation 
caused by the dipole, which counteracts the periodic disturbance applied on the 
system. 

Noncollocated control design and experiments. A case of further interest 
is the case where the controller uses displacement sensors that are not located at 
the tip but at the midsection (bay 10), resulting in a noncollocated control config- 
uration. Figure 9.43 shows a control system block diagram for this noncollocated 
case, with nonminimum-phase compensation and with periodic-disturbance rejec- 
tion filtering for X and Y at bay 10. 

Like the collocated case, the sensor outputs are low-pass filtered by an analog, 
three-pole Bessel filter with a corner frequency of 50 Hz in each axis. Then, the 
global X- and Y-axes bending and Z-axis torsional displacements at bay 10 are gen- 
erated by using the output decoupling matrix. The Y/ul transfer function has non- 
alternating poles and zeros along the imaginary axis. The X/u2 and O/u3 transfer 
functions also have such a noncollocated actuator-sensor property. A SISO control 
design, however, was still possible, where the TWAs at the tip provide the control in- 
puts and the global displacements at bay 10 are fed back with proper compensation. 

The test results, for a case where the Mini-Mast is excited by the shaker A with a 
pulse of  100-ms duration and 50-N magnitude, show that the noncollocated control 
system, shown in Fig. 9.43, without the disturbance rejection filter dipole, has a 
15% damping ratio for the first mode in each axis. 

To validate the concept of  periodic disturbance rejection for flexible space struc- 
tures even for the noncollocated case, a case with a sinusoidal disturbance with a 
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known frequency of 15 rad/s and disturbance rejection for the X- and Y-axes bend- 
ing at bay 10 was considered. The compensator for this case, given in Fig. 9.43, 
includes a dipole for periodic disturbance rejection with the pole at s = + j  15. The 
zero corresponding to the dipole is placed at s = + j20 ,  between the consecutive 
poles of the dipole and the second bending mode. 

Figure 9.44 shows the locus of closed-loop poles vs overall loop gain for the 
X-axis control loop with both nonminimum-phase compensation and the periodic- 
disturbance rejection filter dipole. Test results shown in Fig. 9.45 demonstrate that 
a periodic-disturbance rejection can be achieved for the outputs X and Y at bay 10. 
The shaker A is turned on at t = 5 s and turned off at t -- 20 s. The closed-loop 
system is stable and the control inputs ul and u2 (at bay 18) present a steady- 
state oscillation caused by the dipole, which counteracts the periodic disturbance 
applied on the system (at bay 9). 

In the preliminary control design for the Mini-Mast, the first and second modes in 
each axis (except the second torsion mode) were considered as the primary modes 
to be actively damped. The third and higher modes in each axis were considered 
as the secondary modes, which are not to be destabilized by the primary-mode 
controller. During the test cycle it became clear, however, that active control, i.e., 
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phase stabilization, of the second bending modes was not practical in the presence 
of significant phase lag caused by the analog prefilter and computational time 
delay. Consequently, the second bending mode in each axis were gain stabilized, 
which undoubtedly caused some transient performance degradation at bay 10, 
as can be seen in Fig. 9.42. An approach to actively control the second bending 
modes is to employ a complex phase lead filter; however, test constraints and 
unmodeled high-frequency dynamics prevented further refinement of the simple 
classical collocated controller shown in Fig. 9.40. 

In summary, despite the second bending mode anomaly, the concept of nonmini- 
mum-phase compensation for the noncollocated control problem and the periodic- 
disturbance rejection filter concept were successfully demonstrated for the Mini- 
Mast. The effectiveness of the sensor decoupling concept was also successfully 
validated in Ref. 23. 
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9.6.4 Pointing and Vibration Control Experiment for the Advanced 
Control Evaluation for Structures Testbed 

The effectiveness of a disturbance accommodating control concept for line- 
of-sight control of a pointing system mounted on a flexible structure has been 
demonstrated by Wie 24 for the advanced control evaluation for structures (ACES) 
testbed at the NASA Marshall Space Flight Center, under the NASA CSI Guest 
Investigator Program. Such experimental results, which demonstrate the simplic- 
ity and practicality of a classical "single-loop-at-a-time" approach to the active 
structural control design for a complex structure such as the ACES testbed, are 
described here. 

ACES testbed description. The basic configuration of the ACES test fa- 
cility is shown in Fig. 9.46. The basic component is a 2.27-kg, 13-m deployable 
Astromast, which served as the flight backup magnetometer boom for the Voyager 
spacecraft. It is a symmetric beam that is triangular in cross section. The Astro- 
mast has the equivalent continuous beam parameter of E1 = 2.3 x l0 s N.m 2. 
Appendages are attached to the Astromast to emulate the closely spaced modal 
frequencies characteristic of large space structures. The appendages consist of 
an antenna and two counterbalance legs. The overall system has 43 structural 
modes under 8 Hz. Table 9.9 lists some of the dominant modes of the ACES 
structure. 

1. Base Excitation Table 
2. 3 Axis Base Accelerometers 
3. 3 Axis Gimbal System 
4. 3 Axis Base Rate Gyros 
5. 3 Axis Tip Accelerometers 
6. 3 Axis Tip Rate Gyros (~  
7. Optical Detector 
8. Mirrors 
9. Laser 

10.2 Axis Pointing Gimbal System 

®I . 0 
Light P a t h ~  ~ a s t  

= Meto, Anteon= 

Fig. 9.46 ACES ground test facility. 
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Table 9.9 ACES structural mode description 

Mode, Hz Description 

0.14 
0.15 
0.63 
0.75 
0.82 
1.04 
1.41 
1.51 
2.35 
2.49 
2.73 

First Astromast X bending 
First Astromast Y bending 
Second Astromast Y bending 
Second Astromast X bending 
Third Astromast Y bending 
Third Astromast X bending 
Antenna torsion 
IMC a gimbals 
Antenna torsion + astromast bending 
Antenna torsion + astromast bending 
Astromast bending 

almage motion compensation. 

The base excitation table (BET) is hydraulically driven to provide two-axis trans- 
lational disturbances at the point where the Astromast is attached to the overhead 
structure of the building. Several disturbances, representative of an actual space 
environment, can be provided by the BET. Two of these disturbances utilized in 
the experiment will be referred to as 1) the BET pulse (thruster firings) and 2) the 
BET step (crew motion disturbance). 

The advanced gimbal system (AGS) is a precision, two-axis gimbal system 
designed for high-accuracy pointing applications, augmented by a third gimbal 
with a torquer and air-bearing system for azimuth control. The AGS provides 
torque actuation at the base mounting plate of the Astromast in response to voltage 
command over the range of 4-10 V. The AGS torquers operate over i 3 0  deg, 
saturate at 50 N-m of torque, and have bandwidths in excess of 50 Hz. Rate gyros 
are provided at the base and tip of the Astromast, and they measure three-axis 
angular rates at each location. The AGS and the rate gyros at the base become 
collocated actuator/sensor pairs. 

The linear momentum exchange devices (LMED) are proof-mass actuators, 
which produce translational forces in two axes at each location, as shown in 
Fig. 9.46. Each LMED has a collocated accelerometer and a proof-mass posi- 
tion transducer. The moving mass of 0.75 kg contains permanent magnets that 
can move 4-3 cm over a voice coil actuator driven by a constant current source 
amplifier. Each LMED can deliver a peak force of 90 N; however, over the + I0 -V  
range of the control input, a maximum continuous force of 18 N is available. The 
force applied to the proof mass appears as a reaction force to the structure. 

An optical system is provided to measure two-axis angular displacement of the 
antenna frame and thus monitor the line-of-sight pointing performance. The system 
consists of a laser source, two mirrors, and a two-axis optical detector. One of the 
mirrors is mounted on a two-axis pointing gimbal so that the system can be used 
as a closed-loop image motion compensation (IMC) controller in addition to an 
optical performance sensor. The objective of this setup is to test an IMC controller 
that will minimize the laser-beam pointing error; this setup is representative of a 
secondary-mirror pointing control system of a large telescope. 
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A digital computer with a sampling rate of 50 Hz is provided to implement 
digital controllers and to store and postprocess test results. 

ACES control objectives. State-space methods for control design of flexi- 
ble space structures have been emphasized in the literature and have been more 
widely explored than a classical method, as evidenced by all of the prior control 
experiments conducted for the ACES testbed. 25-27 

The primary goals of control design for the ACES testbed were: 1) to reduce the 
IMC line-of-sight error, i.e., to point the laser beam in the center of the detector, in 
the presence of two representative disturbances; 2) to ensure that the controller has a 
practical size; and 3) to ensure that the controller is tolerant of model uncertainties. 

The performance measures employed to evaluate the controller effectiveness 
include the detector response, the base rate gyro response, and the controller com- 
plexity. The primary performance criterion was the IMC line-of-sight pointing 
accuracy. 

During the previous experiments conducted by other researchers for the ACES, 
several problems were encountered. One of such problems was described as fol- 
lows 27: 

An unmodeled mode appeared as the dominant mode at the detector. Because 
the detector error was intended to be the evaluation parameter, the appearance 
of the unmodeled mode was disastrous to the original evaluation plan. The 
mode (0.15 Hz) did not destabilize any of the controllers; on the other hand, 
no controller attenuated the mode. 

This 0.15-Hz mode problem, however, was not encountered by other CSI guest 
investigators because their controllers were not tested for the so-called BET step 
disturbance, which is one of three representative disturbances available for the 
ACES. 

One of the major contributions of Ref. 24 was to show that such a control 
problem encountered during the previous experiments was actually caused by the 
"nearly uncontrollable" but "significantly disturbable" 0.15-Hz mode. The mode 
is nearly uncontrollable by the AGS torque input and completely uncontrollable 
by the IMC gimbals; however, it can be excited or disturbed significantly by the 
BET step disturbance and can be observed by the IMC detector. 

It will be shown later in this section that a simple IMC controller utilizing 
the dipole concept can easily rectify such an uncontrollable but disturbable mode 
problem. 

Classical control design. The first step in any control system design is to 
obtain a mathematical model of the physical system to be controlled. The math 
model of the ACES provided by the NASA Marshall Space Flight Center includes 
the modal frequencies and mode shapes of the lowest 43 modes, and transfer 
function models of the ACES were used for classical control design. 

Figure 9.47 illustrates a classical control system architecture selected for the 
ACES. Basically, the control system consists of six actuators and six sensors 
without cross feedback. The control inputs are the X- and Y-axes torques of the 
AGS gimbals, the X- and Y-axes forces of LMED located at the lower section of 
the Astromast, and the X- and Y-axes torques of the IMC gimbals. The sensor 
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Fig. 9.47 Classical control system for the ACES testbed. 

measurements consist of  the X- and Y-axes base rate gyros (BGYRO), the X- and 
Y-axes accelerometer (ACC) outputs of  the LMED, and the X- and Y-axes detector 
(DET) position outputs. 

The classical single-loop-at-a-time control designs for the ACES are briefly 
described as: 

1) The AGS-X-BGYRO-X (also the AGS-Y-BGYRO-Y) loop basically consists 
of a collocated torque actuator and angular rate sensor pair. Although the effect 
of  phase lag at high frequencies, caused by actuator/sensor dynamics and control 
loop time delay, must be considered in practical control design, a collocated direct 
rate feedback controller, as shown in Fig. 9.47, was chosen for testing. Because 
of relatively weak cross-axis coupling, it was not necessary to cross feedback the 
BGYRO outputs to the AGS gimbals. 

2) The IMC-X-DET-Y (also the IMC-Y-DET-X) transfer function plot includes 
a few flexible modes near 1.5 Hz. As a result, a classical PID controller, as shown 
in Fig. 2, was chosen for each IMC loop. Similar to the AGS loops, it was not 
necessary to cross feedback the DET outputs to the IMC gimbals. 
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Fig. 9.48 BGYRO-X responses to BET-Y pulse: a) open-loop, b) AGS closed-loop 
with nominal gain, and c) AGS closed-loop with high gain. 

3) As can be seen in Fig. 9.47, a direct acceleration feedback with first-order 
rolloff filtering was chosen for each collocated LMED and AGS control loop. 

Experimental results. Some of the experimental results are presented here, 
which support the effectiveness of a simple classical controller, shown in Fig. 9.47, 
for achieving an excellent closed-loop performance. 

Figure 9.48 shows a direct comparison of the open-loop and AGS closed-loop 
responses of BGYRO-X to a BET-Y pulse disturbance. Figure 9.48a shows the 
BGYRO-X open-loop response dominated by a 2.3-Hz mode. It can be seen in 
Fig. 9.48b that the 2.3-Hz mode is actively damped by the AGS controller (with 
nominal gain). However, an undesirable phenomenon of high-frequency instability 
is evident in Fig. 9.48c when the AGS rate gain is increased by a factor of two for 
more active damping of the 2.3-Hz mode. This experimental result confirms that 
there is no such case as a perfect collocated rate feedback control with an infinity 
gain margin. Consequently, the AGS controller with nominal gain has a 6-dB gain 
margin. 

Figure 9.49 shows a direct comparison of the open-loop and AGS closed-loop 
responses of DET-X to a BET-X pulse disturbance. Figure 9.49a shows the open- 
loop response of the detector output, dominated by two structural modes at 0.75 Hz 
and 2.3 Hz. As can be seen in Fig. 9.49b, significant performance improvement is 
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Fig. 9.49 DEToX responses to BEToX pulse: a) open-loop and b) AGS closed-loop 
with nominal gain. 

achieved by the AGS controller (with nominal gain). Both the 0.75-Hz and 2.3-Hz 
modes are effectively damped out by the collocated rate feedback controller in the 
detector response. 

Figure 9.50 shows the closed-loop responses of DET-X to a BET-X pulse dis- 
turbance. Figure 9.50a demonstrates the effectiveness of controlling the 2.3-Hz 
mode (but not the 0.75-Hz mode) by the LMED. As can be seen in Fig. 9.50b, very 
significant performance improvement in both the line-of-sight error and vibration 
suppression is achieved by the integrated AGS and IMC controller, as compared 
to the open-loop response shown in Fig. 9.49a. 

The complete controller, i.e., AGS + IMC + LMED, has also been tested, 
resulting in responses similar to those of the integrated AGS + IMC controller. 
Because the AGS controller does provide sufficient active damping to structural 
modes, it is unnecessary, from the practical viewpoint, to use both the LMED and 
AGS controllers simultaneously. 

Based on the experimental results summarized as in Figs. 9.48-9.50, it can 
be said that an excellent closed-loop performance has been achieved by a rather 
simple classical controller shown in Fig. 9.47. 

A case of further interest, however, is the case with the BET step disturbance. 
Figure 9.51 compares the open-loop and closed-loop responses of DET-X to a BET- 
X step disturbance. Figure 9.5 la shows the open-loop response, dominated by a 
0.15-Hz mode and other lower frequency modes. Figure 9.51 b shows the baseline 
integrated IMC -t- AGS closed-loop response, which is undoubtedly unacceptable. 
The reason for such unacceptable (also unpredicted) closed-loop performance is 
due to the presence of the 0.15-Hz mode, which can be seen in both Figs. 9.51a 
and 9.51 b. 
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Fig. 9.50 DET-X responses to BET-X pulse: a) LMED closed-loop and b) AGS + IMC 
closed-loop with nominal gain. 

Several prior ACES experiments had been hampered by the uncontrolled 0.15- 
Hz mode. It is important to note that such a low-frequency mode is nearly un- 
controllable by the AGS torque input, nearly unobservable by the base rate gyros, 
and completely uncontrollable by the IMC gimbals. However, it can be excited 
or disturbed significantly by a BET step disturbance and can be observed by the 
IMC detector, which is not collocated with the AGS and the rate gyros at the 
base. 

For the purpose of IMC controller redesign, the 0.15-Hz mode excitation can 
be simply considered as a persistent external disturbance. To isolate such an unde- 
sirable disturbance, a new IMC controller shown in Fig. 9.52 was designed. The 
new controller simply includes a dipole for disturbance rejection with the pole 
at s = + j0 .9 .  The zero corresponding to the dipole is placed at s = -4-j0.1. A 
detailed treatment of  this dipole concept can be found in Chapter 2. 

The closed-loop test result shown in Fig. 9.51c clearly demonstrates the effec- 
tiveness of the redesigned IMC controller for rejecting the 0.15-Hz mode in the 
detector output. 

9.7 Summary 

In this chapter we have considered various practical examples of  attitude and 
structural control designs for space vehicles having flexible solar arrays and/or 
flexible appendages. 

State-space methods for control design of flexible space vehicles have been 
emphasized by many control researchers and more widely explored than classical 
methods. This arises from the convenience of obtaining a compensator for the 
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Fig. 9.51 DET-X responses to BET-X step: a) open-loop, b) AGS + IMC closed-loop, 
and c) AGS + IMC with periodic disturbance rejection. 

whole system given one set of  weighting parameters. The fundamental question 
remains, however, of  how to choose these parameters and what choice provides 
the best optimal design. The designer must find an acceptable set of parameters 
for a good optimal design. The use of  state-space methods for control design 
usually results in a compensator of the same order as the system to be controlled. 
This means that for systems having several flexible modes, the compensator adds 
compensation even to modes that are stable and need no compensation. This may 
result in a high-order compensator design. 

I V+(°.,)']I I i,c.x _~ 

Fig. 9.52 IMC controller with periodic disturbance accommodating filters. 
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In classical design, on the other hand, a compensator must be constructed piece 
by piece, or mode by mode. As shown in this chapter, the classical design is partic- 
ularly convenient for the control of flexible space vehicles with properly selected 
collocated actuator/sensor pairs. The concept of  nonminimum-phase compensa- 
tion also provides an extremely convenient way of  stabilizing unstably interacting 
flexible modes for the case in which actuators and sensors are not collocated. 
The resulting compensator is usually of  a lower order than the system to be con- 
trolled because not all flexible modes in a structure tend to be destabilized by a 
reduced-order controller. 

A helpful characteristic of  most flexible space structures is their inherent passive 
damping. This gives the designer the opportunity to phase stabilize significant 
modes and to gain stabilize all other higher frequency modes, which have less 
influence on the structure, as discussed in this chapter. 
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10 
Robust Optimal Maneuvers 

This chapter is concerned with the robust optimal maneuvering control problem 
of flexible space structures in the presence of dynamic modeling uncertainties, 
and is based on Refs. 1-6. In particular, the problems of determining open-loop, 
time/fuel-optimal control inputs for flexible structures in the face of modeling 
uncertainties are treated. One of the primary motivations for the use of closed- 
loop, rather than open-loop, control systems in practice is to cope with unexpected 
disturbances, which any open-loop controller cannot do. Thus, the problem of 
designing a robustified feedforward and feedback control system for uncertain 
flexible spacecraft is also treated. 

10.1 Time-Optimal Control 
Flexible spacecraft, including robotic manipulators and optical pointing systems 

in space, are sometimes required to reorient or reposition as quickly as possible 
with minimum structural vibrations. The control task for such systems becomes 
more difficult if they have many structural modes within the rigid-body control 
bandwidth. 

For a linear, time-invariant, controllable system with bounded control inputs, 
the time-optimal control solution to a typical two-point boundary value problem 
is a bang-bang function with a finite number of switches. A detailed discussion on 
the existence and uniqueness of optimal solutions is omitted here, although it has 
been known that each component of time-optimal, bang-bang control inputs for 
an ruth-order system having all real, nonpositive eigenvalues can switch at most 
(m - 1) times. 

Because an undamped flexible system has pure imaginary eigenvalues, the time- 
optimal, bang-bang control inputs, which in most cases switch (m - 1) times for 
a rest-to-rest maneuver, may switch more than (m - 1) times for an ruth-order 
system with more than one flexible mode. For example, the optimal control input 
for a three-mass spring model has an odd number of switches that must occur 
symmetrically about the middle switch. 

The time-optimal solutions are usually obtained using numerical methods that 
are generally computationally extensive. Furthermore, the open-loop responses to 
these time-optimal control inputs are very sensitive to the perturbations in flexi- 
ble mode frequencies. In this section, an approach is described to transform the 
standard, time-optimal control problem for flexible systems into a constrained pa- 
rameter optimization problem. The major advantage of this approach, compared 
to other direct numerical optimization approaches for the time-optimal control 
problem, is that robustness constraints with respect to plant parameter uncertainty 
can be easily augmented. 

585 
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10.1.1 Time-Optimal Rest-to-Rest Maneuver 
Problem formulation. Consider a structural dynamic system described by 

Mti + Kq = Gu (10.1) 

where q is a generalized displacement vector, M a mass matrix, K a stiffness 
matrix, G a control input distribution matrix, and u a control input vector. 

In this section, we consider a case with a scalar control input u(t )  bounded as 

- 1  < u < 1 (10.2) 

This simple case, however, represents a typical single-axis control problem of  most 
flexible spacecraft controlled by reaction jets. 

Equation (10.1) is transformed into the decoupled modal equations 

Yl + w2yl = 4'1 u 

Y2 + w2y2 = 4'2u 
(10.3) 

~. + C y .  = 4'nu 

where Yi is the ith modal coordinate, wi is the ith modal frequency, 4'i is ith modal 
gain, and n is the number of modes considered in control design. 

The problem is to find the control input that minimizes the performance index 

J = dt = t I 

subject to Eqs. (10.2) and (10.3), and the given boundary conditions. 
For an undamped dynamic system of n degrees of freedom described by 

Eq. (10.3), the time-optimal solution for a rest-to-rest maneuver has, in most cases, 
(2n - 1) switches, and the solution is symmetric about t f / 2 .  That is, for a case 
with (2n - 1) switches, we have 

t j = t2n - t2n- j , j = l . . . . .  n 

where t2n is the maneuver time t f  and tj  for j = 1 . . . . .  n represents the switching 
time. 

A bang-bang input with (2n - 1) switches can then be represented as 

2n 

u(t)  = Z B j u s ( t  - t j )  (10.4) 
j=0  

where Bj  is the magnitude of  a unit step function Us(t) at tj.  This function can be 
characterized by its switch pattern as 

B = {Bo, Bl, B2 . . . . .  B2,} (10.5a) 

T = {to, q ,  t2 . . . . .  tzn} (10.5b) 
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where B represents a set of  Bj with Bo = B2n = "]- 1 and Bj = 4-2 for j = 1 . . . . .  
2n - 1; T represents a set of  switching times (tl . . . . .  t2,-l)  and the initial and 
final times (to = 0 and t f  = t2n). 

Rest - to-res t  m a n e u v e r  constraints. Consider the rigid-body mode equation 
with ~ol = 0 

Yl = ¢lU (10.6) 

with the rest-to-rest maneuvering boundary conditions 

yl(O) = O, y l ( t f )  ~ 0 
(10.7) 

y l ( 0 )  = 0 ,  Pl(tf)  = 0 

Substituting Eq. (10.4) into Eq. (10.6) and solving for the time response of the 
rigid-body mode, we obtain 

2n 

~Pl Z (tf  - t j )2Bj  (10.8) yl( t  > t f )  = -~- j=0 

The rest-to-rest maneuvering constraint for the rigid-body mode can then be written 
as  

2n 

Z (tf  - tj)2Bj - y l ( t f )  = 0 (10.9) 
2 j=O 

Next consider the structural modes described by 

Yi -t- o)2yi = qbiu, i = 2 . . . . .  n (10.10) 

with the corresponding boundary conditions for the rest-to-rest maneuver 

yi(O) = O, yi(ty) = 0 
(10.11) 

~i(0)  = 0,  :~;(t I )  = 0 

for each flexible mode. 
Substituting Eq. (10.4) into the i th structural mode equation and solving for the 

time response for t > t f ,  we obtain 

2n 

Z Bj c o s  09i(t - -  tj) Yi (t) = -- (.oq j=o 

= -- q~--2-/ coswi(t  - tn) Z Bj COSO)i(t j -- tn) 
092 j =0 

+ sin o)i(t - t . ) ~ ,  Bj sin wi(tj - t .) (10.12) 
]=0  
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It can be shown that the following constraint equation for each mode 

2n 

~_~ By sinwi(tj - tn) = 0 (10.13) 
j=O 

is always satisfied for any bang-bang input that is symmetric about the midmaneu- 
ver time tn. Consequently, we have the following flexible mode constraints for no 
residual structural vibration, i.e., yi(t)  = 0 f o r  t > t f ,  

2n 

y ~  Bj  cos ogi(t j -- tn) = 0 (10.14) 
j=0  

for each flexible mode. 

Parameter  optimization problem. For an undamped structural dynamic sys- 
tem of n degrees of freedom, the time-optimal solution represented by Eq. (10.4) 
has the (2n - 1) unknown switching times and the final time t f  to be determined. 
The time-optimal control problem can now be formulated as a constrained param- 
eter optimization problem as follows. 

Determine a control input of the form given by Eq. (10.4), which minimizes the 
performance index 

J = t f  (10.15) 

subject to 

2n 

ok-L1 ~'-~(t f - tj)2 Bj - yl(t f ) = 0 (10.16a) 
2 

j = 0  

2n 

E Bj cosogi(tj - t,) = 0, i = 2 . . . . .  n (10.16b) 
j=0  

tj > O, j = 1 . . . . .  2n 

where ty = t2n. 
Standard numerical optimization packages, e.g., International Mathematical and 

Statistical Library (IMSL) subroutines or MATLAB optimization toolbox, can be 
used to obtain the solution of the preceding optimization problem. The major 
advantage of this approach, compared to other direct numerical optimization ap- 
proaches for the time-optimal control problem, is that robustness constraints with 
respect to plant parameter uncertainty can be easily augmented. This subject will 
be discussed in detail later in this chapter. 

10.1.2 Sufficient Condition for Optimafity 
Equations (10.16) are only necessary conditions for the time-optimal control 

problem, and sufficient conditions for optimality are derived here. 
Equation (10.3) with wl = 0 can be expressed in state-space form as 

/~ = Ax + Bu (10.17) 
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where 

X = ( Y l ,  

"0 
0 

A =  

Yl ,  0)2Y2, Y2 . . . . .  0)/1Y,, Y/1) 

1 
0 

0 
--0)2 

B = (0, 4~1, O, 

0)2 
0 

0 0)/1 
--0)/i 0 

Because the system described by Eq. (10.17) is linear, time invariant, and con- 
trollable, the optimal control input does not contain any singular or undetermined 
intervals. Using Pontryagin's minimum principle to characterize the optimal solu- 
tion, we define the Hamiltonian as 

where 

H =  I + A T ( A x + B u )  (10.18) 

solution are 

= - A  7")~ (10.20a) 

u = - sgn{S(t)} (10.20b) 

H( t f )  = 0 (10.20c) 

where t 6 [0, tf], the signum function sgn(S) and switching function S( t )  are 
defined as 

+1,  S > 0  
sgn(S) = (10.21a) 

- 1 ,  S < 0  

S( t )  = BrA(t )  (10.21b) 

The costate equations corresponding to Eq. (10.17) can be obtained from 
Eq. (10.20) as 

p l ( t )  = 0 (10.22a) 

q~ (t) = - Pz (t) (10.22b) 

p i ( t )  = w i q i ( t )  (10.22c) 

iti( t ) = - coi Pi(  t ) (10.22d) 

for /  = 2 , 3  . . . . .  n. 

A = (pl,  ql . . . . .  p/l, q/l) (10.19) 

is the costate vector. 
For a rest-to-rest maneuver, the necessary and sufficient conditions for optimal 
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It can be shown that at midmaneuver, we have 

)~(t.) = [pl(tn), 0, p2(t.), 0 . . . . .  pn(tn) ,  0] r (10.23) 

Thus, the costate vector can be solved from Eq. (10.22) as 

p l ( t )  = p l ( t . )  (10.24a) 

q l ( t )  = - ( t  - t . ) p l ( t . )  (10.24b) 

p i ( t )  = p i ( t . )  cos wi ( t  - t . )  (10.24c) 

q i ( t )  = - p i ( t . )  sin wi ( t  - t . )  (10.24d) 

for each flexible mode. 
Assume that a solution obtained from the constrained parameter optimization 

problem satisfies 

0 < tl < t2 < . . .  < t2n-I < t f  (10.25) 

Then the costate vector at midmaneuver, as described by Eq. (10.23), can be found 
from the following n linear equations: 

n 

1 + c~lpl(tn)tn + Z q b i P i ( t n ) s i n o ) i t n  = 0 (10.26) 
i = 2  

n 

- t . )  + Z e p i P i ( t . ) s i n c o i ( t j  - t.) = 0 (10.27) d~lPl( tn)( t j  
i = 2  

where j = n + 1 . . . . .  2n - 1. Note that Eqs. (10.26) and (10.27) correspond to 
t t ( t f )  = 0 and S( t i )  = 0, respectively. 

Once the costates are obtained as in Eqs. (10.24), we can determine a control 
input 

u( t )  = - s g n  {Br,~) (10.28) 

which brings the system to the desired target set. 
I f  the switching function 

S( t )  = Br)~, t ~ [0, t f ]  (10.29) 

only vanishes at ti in Eq. (10.25), then )~ and u satisfy all of the necessary and 
sufficient conditions in Eq. (10.20) and are, therefore, the optimal costate vector 
and control input. 

Consequently, we have the following theorem. 

Theorem 10.1 Sufficient Condition 

The solution obtained by minimizing ty  subject to Eq. (10.16) becomes time 
optimal provided that 

S( t )  = - - q ) l p l ( t n ) ( t  -- tn) -- ~--~ (b iP i ( tn ) s in to i ( t  - tn) ~ 0 (10.30) 
i = 2  

for t E (tn,t2n) and t ~ t j ,  j = n + 1 . . . . .  2n.  
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10.1.3 Properties of Time-Optimal Solution 
Some important properties of the time-optimal solution are briefly summarized 

here. 
The time-optimal bang-bang solution for a rest-to-rest maneuver has an odd 

number of  switches and is symmetric about t f / 2 .  For the case of a rigid-body 
mode and one flexible mode, the time-optimal bang-bang solution has at most three 
switches. If  modal frequencies are integer multiples of the fundamental frequency 
co2 and 

! 

2 e r r / .  4h £ = 1, 2 . . . .  (10.31) O9 2 
V y l ( t f ) '  

then the time-optimal solution has only one switch and is equivalent to the solution 
of a rigidized case. 

Consider a system with one rigid-body mode and one flexible-body mode de- 
scribed by 

3)1 = q h u  

3)2 q- o022y2 = ~2 u 

The time-optimal solution for the rigidized model can be obtained as 

2 ,I=V  
u( t )  = Us(t)  - 2Us[t -- ( ty  /2)]  + us( t  -- t f  ) 

where the optimal control input has only one switch. 
For the flexible-body mode, we can obtain 

(10.32a) 

(10.32b) 

(10.33a) 

(10.33b) 

~2)2 2 
O02Y2 - -  + Y 2 = _  ~b-~2_ i f u = l  (10.34a) 

co2/ \ w 2 /  

(o0222nt_ ~2)2 2 -{- Y2-~" (~2~ if u = - 1  (10.34b) 
o02/ \ oo2 /  

which correspond to two circles on the (o02Y2 ,  5~2) plane, as shown in Fig. 10.1. 
The travel time along a full circle is 2 7 r / o 0 2 .  Therefore, if the control input has only 
one switch, we must have 

4£rr 
tf - -  , £ = 1, 2 . . . .  (10.35) 

O)2 

for a rest-to-rest maneuver. 
Combining Eqs. (10.33a) and (10.35), we obtain Eq. (10.31). In this case, the 

solution given by Eq. (10.33) is also the optimal solution for the system described 
by Eqs. (10.32). 

For the case of more than one flexible mode, i fEq.  (10.31) is satisfied and 

o0i = gio02, i = 3, 4 . . . .  (10.36) 
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c02Y 2 

Fig. 10.1 Phase-plane trajectory. 

where Ni > 1 is any integer, then the optimal phase-plane trajectory for each 
flexible mode is similar to the one shown in Fig. 10.1. Therefore, the time-optimal 
solution is equivalent to the solution of rigidized case as given in Eq. (10.33). 

The rigid-body optimal, phase-plane trajectory in the (Yl, Jq) plane is symmetric 
about the line Yl = Yl (t f)~2, and the i th flexible-body mode phase-plane trajectory 
in the (o)iYi, J~i) plane is symmetric about the line wiy i = 0. It comes directly 
from the symmetry property of  time-optimal bang-bang solution for a rest-to-rest 
maneuver. The time-optimal control input is independent of actuator location for 
a system described by Eq. (10.3) with a scalar input. 

Note that ~bi (i = 2 . . . . .  n) do not appear in Eq. (10.16) due to the zero boundary 
conditions for the flexible modes; that is, the optimal solution to this problem is 
independent of the flexible mode shapes. 

10.1.4 Example: Two-Mass-Spring System 
Consider a simple example, shown in Fig. 10.2, which is a generic representation 

of  a flexible spacecraft with a rigid-body mode and one flexible mode. It is assumed 
that the nominal parameters are ml -- m2 -- k = 1 with appropriate units, and 
time is in seconds. A control input force u, which is bounded as lul _< 1, is applied 
on body 1. 

Rigid-body time-optimal control For a rigidized model of the nominal sys- 
tem shown in Fig. 10.2, the equation of motion is simply 

(m I n t- m2)y = u (10.37) 

The rest-to-rest, time-optimal solution for y(0) = 0 and y(t f )  = 1 can be found as 

u*(t) = us(t) - 2u., [t - (tf/2)] + us(t - t f)  (10.38) 

where t f  = 2~/(ml + m2)y(tf)  = 2.828 s. 
If  this time-optimal input force is exerted on the nominal system with a flexible 

mode, a significant residual structural vibration occurs, as shown in Fig. 10.3. 



[--~.X 1 ~-~-X 2 

/ / / / / / / / / / / / / / / / / / ,  

Fig. 10.2 Two-mass-spring example. 

m15¢1 + k(Xl - x2) = u 

m2-~2 - k(Xl - x2) ~-~ 0 

Flex ib lo -body  t i m e - o p t i m a l  control .  Consider a time-optimal control prob- 
lem for the flexible-body model shown in Fig. 10.2. The equations of motion 
are 

where Xl and x2 are the positions of  body 1 and body 2, respectively. 
The boundary conditions for a rest-to-rest maneuver are given as 

xI(O):x2(O)=O, 

i1(0)=i2(0)=0, 

The modal equations are 

x l ( t f )  = x 2 ( t f )  = 1 

Xl( t f )  = i 2 ( t f )  = 0 

~1 = u / 2  

Y2 "q- w2y2 = U/2 

Y 

(10.39a) 

(10.39b) 

(10.40) 

(10.41a) 

(10.41b) 
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Fig. 10.3 Responses to rigid-body, time-optimal control input. 
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where o) = a/~ rad/s is the nominal flexible mode frequency. The corresponding 
boundary conditions for modal coordinates are 

yl(O) = y2(O) = O, y l ( t f )  = 1, y z ( t f )  = 0 
(10.42) 

y l ( 0 )  = y2(0) = 0, y l ( t f )  = y2( t f )  = 0 

Because there are three switches, the time-optimal switch pattern for the given 
boundary conditions is represented as 

B = {B0, Oa, B2, B3, B4} 

= {1, - 2 ,  2, - 2 ,  1} 

T = {to, t l ,  t2, t3, t4} 

with the symmetry conditions 

t4 = 2t2 

t3 = 2t2 --  tl 

The time-optimal control problem is then formulated as the following con- 
strained minimization problem: 

min J = 2t2 (10.43) 

subject to 

2 + 2 t ~  + t 2 - 4 h t 2  = 0 (10.44a) 

1 - 2cos o)(t2 - q)  + cos wt2 = 0 (I0.44b) 

h ,  t2 > 0 (10.44c) 

One can obtain a solution as tl --- 1.003 and t2 = 2.109. Substituting this solution 
into Eqs. (10.26) and (10.27), the costate vector at midmaneuver can be solved as 

)k(t2) = [p l ( t2) ,  ql( t2) ,  p2(t2), qz(t2)] T 

= [-1 .0342,  0, 1.1438, 0] r (10.45) 

The switching function is then obtained from Eq. (10.30) as 

S ( t )  = - 0.5171(t - t2) - 0.5719 sin w(t - 2.109) (10.46) 

which is shown in Fig. 10.4. 
The computed solution satisfies the optimality conditions (10.30); i.e., the 

switching function vanishes only at t = h,  t2 and t3, as shown in Fig. 10.4. Thus, 
the solution is indeed time-optimal, and it can be expressed as 

u ( t )  = U s ( t )  - -  2 u s ( t  - -  1.003) + 2u,(t -- 2.109) 

- -  2 U s ( t  - -  3.215) + u s ( t  - -  4.218) (10.47) 

It is noted that, for a different initial guess of  the solution, it is also possible to 
find other solutions (for example, h = 1.737, t2 = 5.481), which also satisfy the 
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constraints given in Eq. (10.44), but fail to meet the sufficient condition described 
by Theorem 10.1. 

The maneuver time and switch pattern are plotted as functions of spring stiff- 
ness k and maneuver distance yl(t:) in Fig. 10.5. In general, the maneuver time 
decreases as k increases and eventually converges to the rigid-body solution; how- 
ever, it does not decrease monotonically. It is also observed that, at certain points 
satisfying Eq. (10.31), the flexible-body optimal solution coincides with the rigid- 
body solution. 

The time responses of x2 to the time-optimal control input (10.47) are shown in 
Fig. 10.6 for four different values of k. It can be seen that the resulting responses 
are very sensitive to variations in model parameter k. 

In this section an approach has been described to transform the standard, time- 
optimal control problem for flexible systems into a constrained parameter opti- 
mization problem. It has also been shown that the ideal time-optimal solutions are 
very sensitive to model parameter variations. In the next section, robustness con- 
straints are augmented into the problem to generate robust time-optimal control 
inputs for flexible system subject to model parameter uncertainties. 

10.2 Robust Time-Optimal Control 
As shown in the preceding section, the standard, time-optimal control problem 

of flexible spacecraft requires an accurate mathematical model, and thus the re- 
sulting solution is often sensitive to variations in model parameters. Consequently, 
the development of a "robustified" open-loop approach is of practical interest; 
however, most open-loop approaches attempt to find a smooth, continuous forc- 
ing function, e.g., a versine function, that begins and ends with zero slope. The 
basic idea behind such approaches is that a smooth control input without sharp 
transitions is less likely to excite structural modes during maneuvers. Such an in- 
put function, however, does not fully utilize the available maximum maneuvering 
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force and results in a slower response time as well as residual structural vibrations 
even for a nominal system. 

In this section, a new approach, expanding on the approach introduced in the 
preceding section, is described for generating robust time-optimal control inputs 
for the single-axis, rest-to-rest maneuvering problem of flexible spacecraft in the 
presence of structural frequency uncertainty. 2 A parameter optimization problem, 
where the objective function to be minimized is the maneuvering time, is formu- 
lated with additional constraints for robustness with respect to structural frequency 
uncertainty. The resulting robustified, time-optimal solution is a multiswitch bang- 
bang control that can be implemented for spacecraft equipped with on-offreact ion 
jets. 
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where the second restraint is called the first-order robustness constraint, because 
it limits the amplitude of residual structural vibrations caused by mismodeling of 
p to be second-order or higher in the modeling error (p - p°). 

By taking the derivative of Eq. (10.12) with respect to wi, we obtain 

dyi(t___~) 4 ) i c o s o ) i ( t _ t _ ~ ) ~ - - ~ ( t j _ ~ ) B j s i n o ) ~ ( t j _ ~ )  (10.51) 
d°gi m2 j =o 

for each flexible mode. Letting dyi(t)/do)i = 0 for all t >__ t f ,  we have 

Z - -  Bj s i n  wi t j  . , tj - = 0 ,  i = 2 ,  .. n (10.52) 
j=o 

which is called the first-order robustness constraint. 
Similarly, taking the derivative of Eq. (10.12) r i times with respect to o9i results 

in the rith-order robustness constraints for each flexible mode, as follows: 

2n 

) ~ = o ( t j - t - ~ ) m B j s i n o ) i ( t j - - ~ )  = 0  

2n 

j ~=o( t J - -~ )mBjcoso ) i ( t j -~ )  =0  

for m = l, 3, . . . <_ ri 

(10.53a) 

for m ----- 2,4 . . . .  < r i  

(10.53b) 

There are totally r robustness constraints for (n - 1) flexible modes, where 

r = ~ ri (10.54) 
i=2  

If  these robustness constraints are included in the constrained minimization 
problem formulation described by Eq. (10.16), the number of switches in the 
bang-bang control input, in most cases, must be increased to match the number 
of the constraint equations. Because of the symmetric nature of the rest-to-rest 
maneuvering problem, adding one robustness constraint will require, at the very 
least, two more switches. 

10.2.2 Robust Time-Optimal Control 
If  r robustness constraints are considered for a flexible system of n modes, the 

corresponding robust bang-bang control input becomes 

2(n+r) 

u(t)  = Z Bjus ( t  - t j )  (10.55) 
j = 0  

which has 2(n + r) unknown switching times. Because of the symmetry property 
of the optimal solution for the rest-to-rest maneuvering problem, we have 

tj = t2(n+r) - -  t2(n+r)-j , j = 1 . . . . .  n + r (10.56) 
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Therefore, there are only (n + r )  unknowns to be determined in Eq. (10.55). These 
unknowns can be determined by minimizing tf subject to the (n + r)  constraint 
equations: one positioning constraint for the rigid-body mode, (n - 1) no-vibration 
constraints, and r robustness constraints. 

Although many theoretical issues, e.g., the uniqueness of the optimal solution, 
need to be discussed, a solution can be obtained by solving the following con- 
strained parameter optimization problem: 

subject to 

2(n+r) 

min J = tf = t2(n+r) (10.57) 

t~ 1 2(n+r) 
- ~  Y ~  (t2(n+r) -- t j ) 2 n j  - y l ( t f )  = 0 

j=0 

2(n+r) 
y~ By COStOi(t j -- tn+r) -~ 0 
j=0 

Z (t j  -- tn+r)mBj s in to i ( t j  - tn+r) = O, 
j=0 

2(n+r) 
(t j  -- tn+r)m B j  coso) i ( t  j -- tn+r) --~ 0, 

j=0 
tj  > 0 ,  

f o r m  = 1,3 . . . .  <ri 

f o r m  = 2 , 4  . . . .  < ri 

j = 1 . . . . .  2 ( n + r )  

for each flexible mode. The resulting bang-bang control input, which has 2r more 
switches than the time-optimal bang-bang solution of the preceding section, will 
be called a robust (or robustified) time-optimal solution throughout this chapter. 

10.2.3 Example: Two-Mass-Spring System 
For the generic model of  a flexible spacecraft shown in Fig. 10.2, the time- 

optimal control is a three-switch bang-bang function, but the resulting response was 
shown to be very sensitive to variations in model parameter k. A robustified, time- 
optimal solution of the same problem is now developed as follows. The switching 
pattern for a case with the first-order robustness constraint is assumed as 

B = {B0, BI, B2, B3, B4, Bs, B6} 

= {1, - 2 ,  2, - 2 ,  2, - 2 ,  1} (10.58a) 

T = {to, tl, tz, t3, t4, ts, t6} (10.58b) 

with the symmetry conditions 

t4 = 2t3 - t2 

t5 = 2t3 - tl (10.59) 

t6 = 2t3 
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The  constra ined opt imizat ion  p rob lem with the first-order robustness constraint  
can be formula ted  as 

subject  to 

min J = 2t3 (10.60) 

2 + 2t~ - 2t~ - t z - 4h t3  + 4tzt3 = 0 (10.61a) 3 

cos wt3 - 2cosw( t3  - h )  + 2 cos w(t3 - t2) - 1 = 0 (10.61b) 

t3 sinwt3 - 2(t3 - t l ) s i n w ( t 3  - t l )  + 2(t3 - t z ) s i n w ( t 3  - t2) = 0 (10.61c) 

t l ,  t2, t3 > O 

A robust  t ime-opt imal  solut ion with five switches can be found as 

tl = 0.7124, t2 = 1.6563 

t3 = 2.9330, t4 = 4.2097 

t5 = 5.1536, t6 = 5.8660 

The  t ime responses  o f  xz to this robust, t ime-opt imal  control  input are shown in 
Fig. 10.7 for four  different  values o f  k. It can be seen that the result ing response  
is less sensi t ive to parameter  variations compared  to the responses to the ideal, 
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Fig. 10.7 Responses to robust time-optimal control input with first-order robustness 
constraint. 
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time-optimal control input as shown in Fig. 10.6. The performance robustness 
has been increased at the expense of the increased maneuvering time of 5.866 s, 
compared to the ideal minimum time of 4.218 s. It is, however, emphasized that 
simply prolonging the maneuver time does not help to reduce residual structural 
vibrations caused by modeling uncertainty. 

If the second-order robustness constraint is included in the parameter optimiza- 
tion problem, a solution for robust bang-bang control can be obtained as 

tl = 0.5383, t2 = 1.4019 

t3 = 2.6459, t4 = 3.8010 

t5 = 4.9561, t6 = 6.2000 

t7 = 7.0636, t8 = 7.6019 

Parameter robustness with respect to spring constant variations is compared in 
Fig. 10.8 for ideal time-optimal and robustified time-optimal control schemes. It 
is evident that the robustness has been improved by the robustness constraints, 
resulting in a zero slope for the dashed and dotted curves at a nominal value of k. 
Comparing with other robustified feedforward approaches, the approach described 
here provides a faster and more robust maneuver in the presence of model parameter 
uncertainty. Also, unlike other approaches, the resulting solution of this approach 
is a multiswitch bang-bang control, which can be implemented for spacecraft with 
on--off reaction jets. 
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10.3 Robust Time-Optimal Control Using 
One-Sided Control Inputs 

In this section we consider a case, illustrated in Fig. 10.9, with two one-sided 
control inputs bounded as 

0 < ul < +1 (10.62a) 

- 1  _< u2 _< 0 (10.62b) 

10.3.1 Problem Formulation 
Because the control inputs are one sided, each control input for the time-optimal 

solution need not be an odd function about the midmaneuver time. Thus, the prob- 
lem with one-sided control inputs becomes much more difficult to solve than the 
standard problem with two-sided control inputs, and many theoretical issues, e.g., 
the uniqueness and structure of time-optimal solutions, need further consideration. 

The modal equations of the system with nominal parameter values are obtained 
as 

~1 + u2) = ½(u, 

1 Y2 + to2y2 = ~(Ul - u2) 

(10.63a) 

(10.63b) 

where to = ~ rad/s is the nominal flexible mode frequency. 
For the control input constraint given by Eq. (10.62), the control inputs can be 

expressed as 

N-1 

ul = Z [us(t - t j )  - u s ( t  - t j  - A j ) ]  (10.64a) 
j=0,2,4 .... 

N 

u2 = - ~ [us(t - t j )  - u s ( t  - t j  - -  mj) ]  
j=1,3,5 .... 

(10.64b) 

which is in the form of one-sided pulse sequences as shown in Fig. 10.10. The 
j th  pulse starts at t j  and ends a t  ( t j  -I- A j ) .  Because of the symmetric nature of 
the rest-to-rest maneuvering problem, we assume that ul and u2 have the same 
number of pulses, (N + 1)/2, where N is defined as in Fig. 10.10. 

}---~ 3~ I }--~X 2 

U 1 - - - - - I ~ ~  U 2 

/ / / / / / / / / / / / / / / / / / .  

O-<U 1 - 1; -1 --- u 2 S o  

Fig. 10.9 Two-mass-spring example with two, one-sided control inputs. 
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Fig. 10.10 Pulse sequences .  

Substituting Eq. (10.64) into Eq. (10.63) and solving for the time response of 
the rigid-body mode, we obtain 

1 N 
y l ( t  > t f )  = ~ E (--1)J[ 2 t A j  -- 2 t j A j  -- A~] (10.65) 

j :0 "~ 

For the desired boundary condition, Yl (t > t f )  = 1, the following constraint must 
hold: 

N 

Z (--1)JAJ = 0 (10.66) 
j=0  

The positioning constraint for the rigid-body mode then becomes 
N 

Z ( - - 1 ) J [ 2 t j A j  + A~] + 4 = 0 (10.67) 
j=0  

Substituting Eq. (10.64) into Eq. (10.63b) and solving for the time response of 
the flexible mode, we obtain 

1 U 
y2(t) = --~ cOS wt E [COS o)tj -- COS o)(tj + A j)] 

j=0  

1 N 
- - sinwt E [sinwtj - sinw(tj + A j)] (10.68) 

4 
j=0  

for t > tf. 
Also, rest-to-rest maneuvering requires that y2(t) = 0 for t > t f ;  i.e., we have 

N 

E [cos wtj  - cos o)(tj + A j)] = 0 (10.69a) 
j=0  

N 

E [sin wtj - sin w(tj  + A j)] = 0 (10.69b) 
j=0  
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which become the no-vibration constraints for the rest-to-rest maneuvering 
problem. 

10.3.2 Time-Optimal Control 
Let the time-optimal control inputs for the rest-to-rest maneuver problem be of 

the form 

ut = u~.(t)-- Us(t -- A) 

U2 = --Us(t -- q )  + us( t  -- tl -- A) 

where each input has a single pulse with the same pulse width of  A, tl is defined 
as shown in Fig. 10.10, and the maneuver time ty = tl + A. 

The rest-to-rest maneuver constraints can be obtained from Eqs. (10.67) and 
(10.69) as 

t f  - (2 /A)  -- A = 0 (10.70a) 

sin cotf ( ~ )  2 + sinco A -- = 0 (10.70b) 

which can be combined as 

coA co 
sin - -  cos - -  = 0 (10.71) 

2 2A 

The time-optimal solution can then be obtained by solving the constrained min- 
imization problem 

rain J = t I = (2/A)  + A (10.72) 

subject to the constraint given by Eq. (10.71). The solution of this problem can be 
found as A = 0.9003 and t I = 3.1218. 

The time responses of  x2 to the time-optimal control inputs are shown in 
Fig. 10.11 for four different values of  k. The maneuver time and control on-time 
are, respectively, 3.12 and 1.8 s. As expected, the resulting solution is sensitive to 
parameter variations. 

10.3.3 Robust Time-Optimal Control 
We now consider the robustification of the time-optimal solution obtained ear- 

lier. 
Letting the derivative of Eq. (10.68), with respect to co, be zero, we have 

N 
dy~ _ 1 sincot E [ t j c o s c o t  j - - ( t j  + Aj)cosco(t j  + Aj)]  
do) 4 j=o 

1 U 
+ ~ cos cot Z [tj sin cotj -- ( t j  + A j) sin co(tj + A j ) ]  = 0 (10.73) 

j=0 
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Fig. 10.11 Responses to time-optimal, one-sided control inputs. 

For  this der ivat ive to be zero for arbitrary t > t f ,  we must  have 

N 

E [tj Coswt) -- (tj -4- Aj)COSO)(tj q- A j)]  = 0 (10.74a) 
j=0 

N 

E [tj sin ogtj -- (tj -b Aj)sinco(tj q- A j ) ]  = 0 (10.74b) 
j =0 

which  are cal led the first-order robustness constraints.  
Taking the derivat ive of  Eq. (10.68) r t imes with respect  to w, we obtain the 

r th -order  robustness constraint  equat ions for input pulse sequences,  as fol lows:  

N 

E [ (tj)m cos wtj -- (tj + A j) m cos co(tj + A j)]  = 0 (10.75) 
j=0 

N 

E [ (tj)m sin ogtj -- (tj -[- mj) m sin og(tj + A j ) ]  = 0 (10.76) 

j=0 

f o r m  = 1 ,2  . . . . .  r .  
As  an example ,  we  consider  the first-order robustness constraint,  incorporated 

with the rest- to-rest  maneuver  constraints,  to construct  robust t ime-opt imal  pulse  
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sequences. Assuming that each input has two pulses, we can represent the control 
inputs as follows: 

ul = us(t) - Us(t - A0) + us(t -- t2) -- us(t -- t2 -- &2) (10.77a) 

U2 = - - U s ( t  - -  t l )  + us(t - t l  - A I )  - -  U s ( t  - -  t3) + us(t - t3 - A 3 )  

(10.77b) 

in which we have seven unknowns to be determined, and where t j  and A j  are 
de fned  as shown in Fig. 10.10. 

The robust t ime-optimal solution can then be obtained by solving the constrained 
parameter optimization problem: 

min J = t3 + A3 (10.78) 

subject to 

A 0 - -  A 1 n t- A 2 - -  A 3 -'~ A 4 = 0 

3 

y ~  ( - - 1 ) J [ 2 t j A j  + A ~ ]  + 4 = 0 

j = o  

3 

~_~ [coswtj - c o s  co(tj + A j ) ]  = 0 

j = o  

3 

~ [sin e)t] - s inw(t j  + A j)]  = 0 
j = 0  

3 

~_~ [tj cos cotj -- (tj + Aj)cosco(tj + Aj) ]  = 0 
j=o 

3 

Z [tj s inwtj  -- (tj + Aj)sinw(tj + A j)] = 0 
j=o 

Aj  > 0 ;  j = 0 , 1 , 2 , 3  

t l ,  t2, t3 > 0 

The solution to this problem can be obtained as 

to = 0.0, Ao = 0.4274 

tl = 2.3357, Al  = 0.4329 

t2 = 2.1132, A2 = 0.4329 

t3 = 4.4544, A 3 = 0.4274 

(10.79) 

(10.80) 

The time responses of  x2 to the robustified, t ime-optimal control inputs are 
shown in Fig. 10.12 for four different values of  k. It can be seen that the robustness 
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Fig. 10.12 Responses to robust time-optimal one-sided control inputs. 

has been increased at the expense of the increased maneuvering time of 4.882 s, 
compared with the ideal minimum time of 3.122 s. Note, however, that the control 
on-time is only 1.721 s, compared to the control on-time of 1.8 s of the ideal, 
time-optimal solution. 

A most interesting feature of the optimal solutions for noncollocated jets is that 
the overall input shape shown in Figs. 10.11 and 10.12 is ofa"bang-off-bang" type, 
resulting in the control on-time being significantly smaller than the maneuver time. 
For the case of collocated reaction jets, the maneuver time and jet on-time are the 
same, which is clearly undesirable from the viewpoint of fuel consumption (jet on- 
time). Therefore, the actuator configuration with noncollocated jets is considered 
to be optimal in the sense that it minimizes both the maneuver time and fuel 
consumption. 3'4 Furthermore, the results also indicate that properly coordinated, 
on-off  pulse sequences can achieve a fast maneuvering time with a minimum of 
structural residual vibrations, even in the face of plant modeling uncertainty. 

10.4 Robust Fuel- and Time-Optimal Control 

In the preceding sections, the problem of computing robustified, open-loop, 
time-optimal control inputs for uncertain flexible spacecraft has been considered. 
The primary control objective in such a robust time-optimal control problem is 
to achieve a fast maneuvering time with minimum structural vibrations during 
and/or after a maneuver in the face of modeling uncertainty. Two different cases, as 
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Fig. 10.13 Case 1. 

summarized in Figs. 10.13 and 10.14, were considered to address such a challeng- 
ing control problem. For case 1 (Fig. 10.13), both positive and negative jets are 
placed on body 1, which represents a typical situation in which two opposing jets 
are collocated. For case 2 (Fig. 10.14), a positive jet is placed on body 1 and a 
negative jet on body 2; that is, two opposing jets are not collocated. This two- 
mass-spr ing model represents a generic model of  spacecraft with one rigid-body 
mode and one dominant structural mode for the single-axis attitude control design. 

For a certain case of  noncollocated positive and negative jets, as shown in 
Fig. 10.14, the robustified time-optimal control inputs are of  a bang-off-bang type, 
resulting in a control on-time that is much smaller than the total maneuver time. On 
the other hand, the robustified time-optimal control inputs for a case of collocated 
positive and negative jets are of a bang-bang type, resulting in a control on-time 
that is the same as the total maneuver time. Although a significant desensitization 
with respect to model uncertainty is possible, as demonstrated in the preceding 
sections, such bang-bang type solutions may not be acceptable from the practical 
viewpoint of fuel consumption. 

In this section, as was covered in Ref. 5, we further study the feasibility of finding 
open-loop, on-o f f  pulse control sequences for a robust time-optimal maneuver 
with less use of fuel. The ideal, fuel- and time-optimal control problem of flexible 
spacecraft without modeling uncertainty is first reviewed. 

10.4.1 Fuel- and Time-Optimal Control 

Problem formulation. Consider a flexible space structure described by the 
modal equation 

+ [-~2y = ~ u  (10.81) 

where y = (Yl . . . . .  Yn) is the modal coordinate vector, f~2 = diag(oJ~), coi is the 
ith modal frequency, ,I, is the modal input distribution matrix, and u is the control 
input vector. 

~--~X 1 ~-a~X 2 

U + - - - - - ~ ~  U- 

1 / 1 1 1 1 1 1 1 1 1 1 / / 1 1 1 / ,  

0 < u + -< 1 and -1 < u -  < 0 

Fig. 10.14 Case 2. 
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Fig. 10.15 Case 3. 

Because we are interested in a typical, single-axis, rest-to-rest maneuvering 
control problem of flexible spacecraft, we consider a flexible spacecraft model with 
one rigid-body mode and a few dominant flexible modes in the corresponding axis. 
The boundary conditions of such a rest-to-rest maneuver problem are assumed to 
be of the form 

y l ( 0 ) = 0 ,  y l ( t f ) =  1 

p l ( 0 ) = 0 ,  p l ( t f ) = 0  

y i ( 0 ) = 0 ,  y i ( t f ) = O  

~ i ( 0 ) = 0 ,  ~ i ( t f )  = 0  

(10.82) 

for i = 2 . . . . .  n, and n is the number of modes• 
It is also assumed that we are given a positive jet u + and a negative jet u -  

0 < u + < +1 (10.83a) 

- 1  < u -  < 0 (10.83b) 

For case 1, shown in Fig. 10.13, both u + and u -  are acting on body 1, resulting in 
a typical case with a two-sided control input u with lul _< 1. For case 2, shown 
in Fig. 10.14, u + is placed on body 1 and u -  is placed on body 2. Case 3, shown 
in Fig. 10.15 is similar to case 1, in which both the positive and negative jets are 
acting on body 1. 

Pulse sequences for the control inputs u + and u - ,  shown in Fig. 10.16 can be 
expressed as a combination of unit-step function us(t) as 

N - I  

u + ( t )  = E [Us(t - t j )  - u.,.(t - t j  - Aj)] (10.84a) 
j=0,2 

N 

u - ( t )  = E [ - u s ( t  - tj) + u,.(t - t j  - A j)] (10.84b) 
j=1,3 

The j th  pulse starts at t j  and ends at ( t j  + A j). The j th  pulse duration is denoted 
by Aj.  Because of  the symmetric nature of the rest-to-rest maneuvering problem, 
we assume that u + and u -  have the same number of pulses, (N + 1)/2, where N 
is defined as in Fig. 10.16. 

For a fuel- and time-optimal control problem, the objective function to be min- 
imized is, in general, a weighted sum of the maneuvering time and the consumed 
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Fig. 10.16 Pulse sequences. 

fuel. We assume that the mass of  the consumed fuel is small compared with the 
mass of  the spacecraft, and that the consumed fuel is proportional to the jet on- 
time. We further assume that the structural flexibility and mass distribution of  the 
vehicle are more uncertain than the total mass of  the system. Consequently, we 
focus on the robust control problem of flexible spacecraft in the face of modal 
frequency uncertainty. 

Consider the following objective function, which is simply a sum of the ma- 
neuvering time and the product of  the weighting parameter ot and the total jet 
on-time: 

J = {1 + o~(lu+l + lu - I ) Id t  (10.85) 

The problem is then to find the control inputs that minimize the performance index 
J subject to the equations of motion. In the next section we study the preceding 
problem, but with additional robustness constraints with respect to plant modeling 
uncertainty. 

Rigid-body fuel- and time-optimal control First consider a rigidized model 
of  case 1 and case 2. The nominal parameters are assumed as ml = m2 = 1 with 
appropriate units, and time is in seconds. The equation of motion is simply given by 

22 = u (10.86) 

where x is the rigid-body displacement and the control input is bounded as lul _< 1. 
Given the fuel- and time-optimal control performance index 

J = {1 +t~lul}dt  

the bang-off-bang type solution for a rest-to-rest maneuver with x(tf) = 1 can be 
found as 

A = ~/2/(2~ + 1) 

tf = 2A(ot + 1) 

where A is the pulse width. 
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Fig. 10.17 Flexible body responses to the fuel- and time-optimal control inputs of  
rigidized case 1 with c~ = 10. 

When a bang-off-bang solution with A = 0.816 s and tf  = 3.27 s (for ot = 1) is 
applied to the actual flexible model of  case 1, significant excitation of the flexible 
mode can be noticed. Even for a case with a shorter pulse width of A = 0.308 s 
and a prolonged maneuver time of tf  = 7.35 s for ~ = 10, significant excitation of 
the flexible mode can be seen as shown in Fig. 10.17. Thus, simply prolonging the 
maneuver time and using short pulses does not help to reduce structural vibrations; 
a flexible-body model must be used in determining fuel- and time-optimal control 
inputs. 

Flexible-body fuel- and time-optimal control. Substituting Eq. (10.84) into 
Eq. (10.81) and incorporating the boundary conditions (10.82), we obtain the time 
response of the rigid-body mode as 

1 I N-1 yl(t > tf) = ~ ¢~11 E (2tAy -- 2tjAj  -- A~) 
j=0,2 

- 4 h 2  E ( 2 t A j - - 2 t j A j - - A ~ )  
j= l , 3  

(10.87) 

where ¢~il and ~i2 denote the elements of the modal input distribution matrix 
for the positive jet u + and the negative jet u - ,  respectively. For a given boundary 
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condition, yl(t _> tf)  = 1, we have the following constraint: 

N - l  N 

z j- ,2 = o (10.88) 
j=0,2 j= l ,3  

The rest-to-rest constraint for the rigid-body mode then becomes 

N - l  N 

2- fb , ,  Z [2tjAj-A~l+dP,2 E [2tjAj--A.~]=O (10.89) 
j=0,2 j=1,3 

Substituting Eq. (10.84) into Eq. (10.81) and solving for the time response of 
the ith flexible mode, we obtain 

yi(t) = .--5 cos(wit) -q~il Z cij + d~i2 Z cij 
('Oi j=0.2 j=1,3 

4- co/2 sin(wit) (~il E Sij -- (~i2 E Sij (10.90) 
j=0,2 j=l ,3 / 

where 

Cij = COS ((.oitj) -- COS [O)i(t j "~- A j ) ]  

sij = sin (witj) - sin [wi( t  j -{- A j ) ]  

for t > t f .  
Also, rest-to-rest maneuvering requires yi(t) -: 0 for t > tf;  i.e., we have the 

following flexible mode constraints for no-residual structural vibration: 

N-I  N 

-- (~il E cij -~- ~i2 Z Cij = 0 (10.91a) 
j=0,2 j=1,3 

N-1 N 

gPil E sq -cPi2 __  E Sq = 0 (10.91b) 
j=0,2 j=l,3 

for each flexible mode. 
The fuel- and time-optimal control problem can then be formulated as a con- 

strained parameter optimization problem as follows: 

N 

min J = tf + ot Z A j  (10.92) 
j=0,1,2 

subject to the constraints given by Eqs. (10.88), (10.89), and (10.91). 

Case 1. Consider case 1, in which two control inputs u + and u -  are both 
acting on body 1. The nominal parameters are ml = m 2  ~--- k = 1 with appropriate 
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units, and time is in seconds. The corresponding matrices f~2 and • in Eq. (10.81) 
a r e  

The control inputs are assumed to have one pulse per jet  with the same pulse 
width A. The maneuver time is ty = tl + A, where tl is defined as in Fig. 10.16. 
The constraint equations for a rest-to-rest maneuver with y l ( t f )  = 1 are 

t f  - A -- 2 / A  = 0 (10.93a) 

cos ( w t f / 2 )  --  cos [ w ( t f f 2  --  A)] = 0 (10.93b) 

where co = ~ rad/s (period = 4.44288 s). 
The fuel- and t ime-optimal solution for o~ = 1 can be obtained by solving the 

constrained minimization problem 

min J = tf -k- 2A 

subject to the constraints. A solution to this problem can be obtained as 

A = 0.45016 

tl = 4.44288 

t f  = 4.89304 

The time responses of  x2 (the position of body 2) to the bang-off-bang-type, 
fuel- and t ime-optimal control inputs are shown in Fig. 10.18 for four different 
values of  spring stiffness k. For the nominal case with k = 1, the flexible mode 
is perfectly controlled and the jet  on-time is now significantly reduced by 79%, 
whereas the maneuvering time is increased by only 18%, compared to the time- 
optimal control solution of  this case. (The time-optimal solution for case 1 has both 
the maneuvering time and control on-time of 4.128 s.) It can be seen in Fig. 10.18, 
however, that the responses are quite sensitive to variations in the model parameter 
k. Significant residual structural vibrations caused by model uncertainty can be 
seen in this figure. 

In an attempt to achieve a maneuver with less excitation of the structural mode, 
consider a case with a longer maneuver time by increasing the weighting parameter 
ot in the performance index 

min J = ty + 2otA 

The solution of  this problem for ~ = 10 can be obtained as 

A = 0.225 

tl = 8.880 

t f  = 9.105 

The time responses of x2 (the position of body 2) to the fuel- and t ime-optimal 
control inputs of  a longer maneuver time of 9.11 s and a short pulse of  0.225 s are 
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Fig. 10.18 Fuel- and t ime-optimal control of  case 1 with t~ = 1. 

shown in Fig. 10.19 for four different values of spring stiffness k. The residual 
vibrations due to uncertain parameter variations are still significant; that is, simply 
prolonging the maneuver time and employing short pulses does not help to reduce 
residual structural mode vibration. 

C a s e  2. To explore the effects of  using a pair of  noncollocated, one-sided jets 
on the maneuver time and the fuel consumption, consider case 2 shown in Fig. 10.14 
with two control inputs u + and u -  acting on body 1 and body 2, respectively. 
The control inputs are assumed to have one pulse per jet and the maneuver time 
ty = tl -~- A. The corresponding matrices f~2 and • for this case are 

_1 o2__Io o I o--2E  
The constraint equations are 

t f  - 2 / A  - A = 0 

sin (ogtf / 2 )  + sin [og(A - t f /2)] = 0 

The fuel- and time-optimal solution for ot = I is obtained by solving the constrained 
minimization problem 

min J = tf -I- 2A 

subject to the preceding constraints. 
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Fig. 10.19 Fuel- and time-optimal control of case I with ct = 10. 

A solution is obtained as 

A = 0.9003 

tl = 2.2215 

tf = 3.1218 

The time responses of x2 to this solution are shown in Fig. 10.20 for four different 
values of spring stiffness k. Compared to the time-optimal solution of case 1, the 
jet on-time is now significantly reduced by 56%, whereas the maneuvering time is 
also reduced by 24%. This result indicates some important effect of jet placement 
in the fuel- and time-optimal control problem. As expected, however, significant 
residual structural vibrations can be still seen in Fig. 10.20 due to variations in the 
uncertain parameter k. 

10.4.2 Robust Fuel- and Time-Optimal Control 

Problem formulation. As illustrated in Figs. 10.19 and 10.20, a standard op- 
timal control approach requires an accurate plant model, and, thus, the resulting 
solution is not robust to plant modeling uncertainty. To obtain robust, open-loop, 
fuel- and time-optimal control inputs for flexible spacecraft, we formulate a pa- 
rameter optimization problem, where the objective function to be minimized is a 
weighted sum of the consumed fuel and the maneuvering time, with additional 
constraints for robustness with respect to structural frequency uncertainty. 

To attenuate residual vibrations of the flexible modes, the energy of the residual 
vibrations should be minimized, where the residual vibration energy is proportional 
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Fig. 10.20 Fuel- and t ime-optimal control of  case 2 with c~ = 1. 

to the square of  the amplitude. Thus, Eq. (10.90) can be written as 

yi( t  >__ ty)  = A sin (o)it) + B cos (wi t )  

= C sin (wi t  + phase) (10.94) 

where A and B are functions of  o9i and ~bij and 

C 2 = A 2 + B 2 (10.95a) 

dC 2 ~ dC 2 dcok 
(10.95b) 

dpi dwk dpi 

w h e r e  Pi is t he  i t h  u n c e r t a i n  p a r a m e t e r .  F o r  t h e s e  de r iva t i ve s  to be  ze ro  (t > t f )  
w h e n  ~oi t h e m s e l v e s  are  u n c e r t a i n  p a r a m e t e r s ,  w e  ob ta in  

N- I  N 

-- C/)il Z gij -I- (Pi2 Z gij = 0 (10.96a) 
j=0,2 j=1,3 

N - I  N 

~bil ~ h i j -  ¢)i2 ~ hij = 0 ( 1 0 . 9 6 b )  
j=o,2 j=l .3 

where 

gi] = tj cos (coitj) - (tj + A j )cos  [coi(tj + A j)] 

hij = tj s in(oai t j )  - (tj + Aj)s in  [toi(tj + A j)] 

(10.97a) 

(10.97b) 
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Equations (10.96) are called the first-order robustness constraints. Similarly, the 
rth order robustness constraints can be expressed as 

gij = (t j)  m cos (wit j )  - (tj + A j )  m cos [wi(tj + A j)] (10.98a) 

hq = ( t i ) "  sin (o)itj) - (t i + A j ) "  sin [wi(tj + Aj)] (10.98b) 

f o r m  = 1,2 . . . . .  r. 
These robustness constraints are incorporated in the constrained parameter opti- 

mization problem formulation. Consequently, the number of pulses for each control 
input is changed to match the increased number of constraints. As an example, 
we consider the first-order robustness constraint, incorporated with the rest-to-rest 
maneuver constraints, to determine robust fuel- and time-optimal pulse sequences. 

Case 1. The control inputs are assumed to have two pulses per jet, as defined 
in Fig. 10.16. The robust fuel- and time-optimal solution can then be obtained by 
solving the constrained parameter optimization problem 

min J = t3 q- A3 '~ o/(Ao + AI -~ A2 + A3) (10.99) 

subject to 

A 0 - -  A 1 + A 2 - -  A 3 = 0 

3 

(-1),[2t, A, + + 4  = 0  
j = 0  

3 

( -  1)J [cos wtj  - cos o)(tj + A j)] = 0 
j = 0  

3 

( - 1 ) J [ s i n w t j  - sinw(tj + A j)] = 0 
j = 0  

3 

y ~ ( - 1 ) J [ t j  cos o)tj - (tj + A j ) coso ) ( t j  + A j)] = 0 
j = 0  

3 

~--~(-1)J[tj  sincotj - (tj + A j ) s i n w ( t j  + Aj)] = 0 
j = 0  

Aj > 0 ;  j = 0 , 1 , 2 , 3  

t l ,  t2,  t3 > 0 

A solution to this problem for ot = 1 is obtained as 

to = 0.0, A o = 0.2379 

t~ = 4.1575, Al = 0.2489 

t2 = 2.3732, A 2 = 0.2489 

t3 = 6.5418, A3 = 0.2379 

(10.100) 

The time responses of  x2 to this robust fuel- and time-optimal control solution are 
shown in Fig. 10.21 for four different values ofk.  It can be seen that the robustness 



618 SPACE VEHICLE DYNAMICS AND CONTROL 

x 2  
1 .4  

1.2 

1 

0.8 

0.6 

0 .4  

0 .2  

0 
0 

,.5~.'~. ~¢~.$7, . . . . . .  ,~:~i .... ~'~f:~%;'" - '~ :Z~. - . '  "~"':" .... 
- . . , . .  

" -  ~ k = l . 0  
. . . .  k = 0 . 9  
. . . . . . . . . . . .  k = 0 . 8  
. . . . . . .  k = 0 . 7  

H Y U 
, , , , , , ,  

0 1 2 3 4 5 6 7 8  

1'0 ' 5 15 20 

Time (s) 

Fig. 10.21 Robust  fuel- and t ime-optimal control of  case 1 with ~ = 1. 

with respect to the uncertain parameter variations has been significantly increased 
and the jet on-time is only 0.97 s compared to the maneuver time of  6.7797 s. 

Case 2. For case 2, we also assume that the control inputs have two pulses 
per jet. The problem is to minimize the following objective function: 

m i n  J = t3 + A 3 -4- o / ( A  0 -4- A 1 --[- m 2 -4- A 3 )  (lO.lOl) 

A so lut ion  to this problem for o~ --- 1 is obtained as 

to = 0.0, A0 = 0.3762 

tl = 2.5918, A1 = 0.4238 

t2 = 1.9151, A2 = 0.4238 
(10.102) 

t3 = 4.5545, A3 = 0.3762 

The time responses of x2 to this robust fuel- and time-optimal control solution 
are shown in Fig. 10.22 for four different values ofk .  From Fig. 10.22, we notice 
that a robust fuel- and time-optimal performance has been achieved, compared 
with Fig. 10.20. Because of the properly coordinated pulse sequences, the flexible 
modes are not significantly excited during maneuvers and the residual responses 
after the maneuvers are well desensitized. 
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Fig. 10.22 Robust  fuel- and t ime-optimal  control of  case 2 with ~ = 1. 

10.4.3 Summary 
The robust fuel- and time-optimal control problem of flexible spacecraft in the 

face of  modeling uncertainty has been presented in this section. It was shown that 
it is possible to generate a bang-off-bang type pulse sequence for the case of  col- 
located jets, resulting in less use of  fuel with robust time-optimal performance. 
Contrary to a common notion, the results further confirm the possible existence 
of on-of f  pulse sequences for robust fuel- and time-optimal maneuvering of flex- 
ible spacecraft. It is emphasized that simply prolonging the maneuver time and 
employing short pulses does not help to achieve robust performance; a proper co- 
ordination of pulse sequences satisfying the robustness constraints is necessary as 
demonstrated in this section. 

Problem 

10.1. Consider the three-mass-spring model illustrated in Fig. 10.15 (case 3). 
The nominal parameter values are assumed as ml = m2 = m3 = kl = k2 = 1 with 
appropriate units, and time is in seconds. The modal equations for this case are 

3)1 = 0.3333( u+ + u - )  

3)2 "Jr- 0)2y2 = 0.5(U + -k- U-) 

3)3 + w~y3 = 0.1667(U + + U-) 

w h e r e  0) 2 ~-  1 and 0)3 = 4 r~- 
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Fig. 10.23 Flexible body responses to the fuel- and time-optimal control inputs of  
rigidized case 3 with ~ = 1. 

(a) Verify the time responses shown in Fig. 10.23 of the fuel- and time-optimal 
control solution for a rigidized case with ot = 1. 

(b) Find a fuel- and time-optimal control solution of the flexible model for ot = 1 
a s  

tl = 4.536, Ao = 0.400 

t 2 = 2.582, A1 = 0.135 

t3 = 6.854, A 2 = 0.135 

tf = 7.251, A3 = 0.400 

Also verify the time responses of x3 shown in Fig. 10.24 for four different values 
o f k = k l  =k2 .  

(c) In an attempt to achieve a maneuver with less excitation of structural modes, 
consider a case with a longer maneuver time by increasing the weight ot on the 
fuel in the cost function. Find a solution of this problem for ot = 14 as 

tl = 11.762, A0 = 0.153 

t2 = 2.152, A~ = 0.092 

t3 = 13.854, A2 = 0.092 

tf = 14.007, A3 = 0.153 

with the total jet on-time of 0.49 s. 
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Fig. 10.24 Fuel- and t ime-optimal control o f  case 3 with ~ = 1. 

Also verify the time responses of x3 shown in Fig. 10.25 to the fuel and time- 
optimal control inputs. Note that the residual vibrations are still significant and are 
not reduced by simply increasing the maneuver time. 

(d) Find a robust fuel- and time-optimal solution for ot = 1 as 

tl = 6.6158 

tz = 2.3022 

t3 = 9.0502 

t4 = 4.7973 

t5 = 11.433 

tf = 11.554 

A0 = 0.1209 

A 1 = 0.1411 

A 2 = 0.2018 

A 3 = 0.2018 

A 4 = 0.1411 

A5 = 0.1209 

Note that the jet  on-time is only 0.9276 s, compared to the maneuvering time of 
11.554 s. 

Also verify the time responses of  x3 shown in Fig. 10.26 to the robust fuel- and 
t ime-optimal control inputs for four different values of  k = kl = k2. 

Note: Because of the properly coordinated pulse sequences, the flexible modes 
are not significantly excited during maneuvers and the residual responses after the 
maneuvers are well desensitized. It should be noted that the preceding solution 
to case 3 with the switching times truncated to two decimal places also provides 
robust fuel- and time-optimal responses very similar to those of Fig. 10.26. Re- 
sponses similar to those of  Fig. 10.26 can also be observed for arbitrarily combined 
variations ofki and mi, but with the total mass kept constant (ml + m2 + m3 = 3). 
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Fig.  10.26 R o b u s t  fuel -  a n d  t i m e - o p t i m a l  con t r o l  o f  case  3 w i th  ct = 1. 
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10.5 Robustified Feedforward and Feedback Control 

One of the difficult control design objectives of flexible spacecraft is to achieve a 
fast settling time with minimum structural mode vibrations in the presence of lim- 
ited actuator capability and plant modeling uncertainty. In the preceding sections, 
a method was described to precompute the robustified time-optimal, bang-bang 
control logic for flexible spacecraft subject to plant modeling uncertainties. It is, 
however, emphasized that one of the primary motivations for the use of closed- 
loop rather than open-loop control systems in practice is to cope with unexpected 
disturbances, which an open-loop controller cannot do. 

In this section we study a preshaped feedforward command generator and a 
robustified feedback controller with nonzero set-point command for a reference- 
input tracking problem. We then consider an alternative approach of control de- 
sign, which attempts to combine the advantages of the robust H~ feedback control 
technique presented in Chapter 2 and the robust time-optimal, feedforward control 
approach presented in the preceding sections. The approach taken here is to de- 
sign a controller that uses robustified open-loop control for fast maneuvering and 
vibration suppression, followed by robustified feedback control for damping and 
disturbance rejection. The simple two-mass-spring model shown in Fig. 10.2 is 
again used to illustrate the control concepts and methodologies developed in Ref. 6. 

10.5.1 Preshaped Time-Optimal Control 
The so-called impulse-sequence preshaping technique developed by Singer and 

Seering 7 is briefly described here. It will be shown that the preshaping technique 
simply utilizes a tapped-delay filter with proper weightings and time delays. 

Consider a sequence of m impulses expressed in time domain as 

f ( t )  = ~ ai~(t  - ti) (10.103) 
i=1 

with the following normalization: 

~ Ai = 1 (10.104) 
i = l  

where A i is the magnitude of the ith impulse at t = t i and the last impulse occurs 
at t = tm. 

A bang-bang function with (n - 2) switches can be represented as 

u(t) = ~ Bjus(t  - t j)  (10.105) 
j = l  

where B j  is the magnitude of a step function at t = t j .  This bang-bang function 
ends at t = tn. 

The convolution of u(t) and f ( t )  will result in a new multiswitch, multilevel, 
bang-bang function 

flU) = Z Ai Bju.,.(t - ti - t j)  (10.106) 
i=1 j = l  

This function has (mn - 2) switching times and ends at t = (tin + t,). 
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A proper sequence of  impulses, whose power spectrum has a notch at a structural 
resonant frequency, can be found as follows. If  a sequence of m impulses in 
Eq. (10.103) is applied to an undamped second-order system with natural frequency 
of  co, the system response for t > tm can be represented as 

m 

Aicosinco(t - ti) = A sin(cot - 40 (10.107) 
i=1 

where 

A =  ~-'~ Aicocoswti -1- y ~  Aiwsinwt i  
\ i=1 / \ i=1 

~_,i~=l A i c o s  cot i 

I f  Ai and ti are chosen such that A = 0, i.e., 

A l cos wtl + A2 cos cot2 + . . .  + Am cos cotm = 0 (10.108a) 

A1 sincoq +A2s inco t z+ ' . .+Amsinco tm = 0  (10.108b) 

then the residual vibration will not occur after t = tin. 
Taking derivatives of the preceding two equations for (m - 2) times with respect 

to w, we obtain the following 2(m - 2) robustness constraint equations: 

Al(tl) j sinwtl + A2(t2) j sinot2 + -.-  + Am(tin) j sincotm = 0 (10.109a) 

A l ( q )  j c o s w t l  + A2(t2) j c o s w t 2  + . . .  + Am(tin) j COSWtm = 0 (10.109b) 

where j = 1 . . . . .  m - 2. For an m-impulse sequence with tl = 0, we now have 
(2m - 1) equations for (2m - 1) unknowns. 

Figure 10.27 illustrates three different impulse-sequences with proper A i and the 
time-delay interval of  AT = zr/co, where w is the natural frequency of  the flexible 
mode under consideration. Note that the magnitudes of Ai a re  independent of co. 

The frequency response characteristics of this impulse-sequence shaping tech- 
nique can be analyzed simply by taking the Laplace transform of an m-impulse 
sequence as follows: 

£ [ f ( t ) ]  = ~ ai e-t~s 
i=1 

= ~ Aie -zxr(i-l)'` (10.110) 
i=1 

which can be interpreted as a tapped-delay filter as illustrated in Fig. 10.28. The 
frequency responses of this tapped-delay filter for m = 2, 3, 4 and co = V~ rad/s 
are shown in Fig. 10.29. It can be seen that the frequency component around 
the resonant frequency is notched out. The wider notch width indicates more 
robustness to frequency uncertainty, but a longer response time. 
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Fig. 10.27 Impulse-sequence shaping. 

For example,  the f lexible-body t ime-opt imal  input  of  the two-mass - spr ing  model  
(Fig. 10.2) is preshaped using a tapped-delay filter with m = 3, result ing in the 
preshaped control input  co mman d  

flU) = 0 . 2 5 u , . ( t )  - 0.5u,.(t - 1.003) + 0.5u,.(t - 2.109) 

+ 0.5us(t  - 2.221) - 0.5us(t  - 3.215) 

- u , . ( t  - 3.224) + 0 . 2 5 U s ( t  - 4.218) 

+ u , . ( t  - 4.330) + 0.25u,.(t - 4.442) 

- u , . ( t  - 5.436) - 0.5us(t  - 5.445) 

+ 0 . 5 u s ( t  - 6.439) + 0 . 5 u , . ( t  - 6.551) 

- -  0 . 5 u s ( t  - 7.657) + 0.25u,.(t - 8.660) 

- - - - - - ~  A1 a " 

u(t) 

(10.111) 

Fig. 10.28 Tapped-delay filter. 



626 SPACE VEHICLE DYNAMICS AND CONTROL 

Log Magnitude 

, . . . . . . . . . .  o . ,  , . , . ,  I/7 !ii i  
. . . . . . .  : ' "  \ \ 1  " f j  it 

tl i l l  

i~  i l l  
t I i 

J 
4 , , i i , i , i i l t l i  , i.,'ili 

0.1 Normalized frequency 1.0 4.0 

Fig. 10.29 Frequency responses of tapped-delay filters with m = 2, 3, 4. 

This preshaped input takes values of 4-0.25, 4-0.5, and 4-0.75, as illustrated in 
Fig. 10.30. The time responses of the system to this preshaped input are shown in 
Fig. 10.31 for four different values ofk. It is evident that the performance robustness 
with respect to flexible mode frequency variations has been significantly increased, 
but at the expense of increased maneuver time of 8.66 s, compared with the ideal 
minimum time of 4.218 s. 

The performance robustness with respect to model parameter variations for the 
preshaped inputs are also very comparable to that of robustified, time-optimal 
inputs. However, the preshaped inputs take some intermediate values and switch 
more times. For more recent advances in this subject, see Refs. 8-15. 

10.5.2 Robust Nonzero Set-Point Control 

As discussed in Chapter 2, a nonminimum-phase compensation is particularly 
useful for practical tradeoffs between performance and robustness for a certain 
class of noncollocated structural control problems. It is, however, often criticized 
because of its sluggish response and its loop gain limitation. In this section, a robust 
Ho~ feedback compensator design is discussed with special emphasis on a proper 
implementation of a nonminimum-phase compensator, incorporating a nonzero 
set-point control scheme. It is shown that a properly designed feedback controller 
with a nonzero set-point command performs well compared with a time-optimal, 
open-loop controller with special preshaping for robustness. 

Consider a single-input single-output (SISO) control system as illustrated 
in Fig. 10.32, which is the most commonly used configuration for a two- 
degree-of-freedom controller. The plant and compensator transfer functions are 
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Fig. 10.31 Responses to the three-impulse preshaped control input. 
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Y * ~ - ~ _  

Compensator Plant 

Fig. 10.32 Conventional feedforward/feedback control system configuration. 

represented as 

Nc(s) 
K(s) -- (10.112a) 

Dc(s) 

N(s) 
G(s) - (10.112b) 

D(s) 

where Nc(s), Dc(s), N(s), and D(s) are polynomials of the Laplace transform vari- 
able s. The closed-loop transfer function from the desired output command y* to 
the actual output y is then 

y(s) K(s)G(s) 
F(s) 

y*(s) 1 + K(s)G(s) 

NcN 
- -  F ( s )  (10.113) 

DcD + NcN 

Thus, for the conventional feedback control system of Fig. 10.32, the zeros of 
the closed-loop transfer function are identical with the zeros of the loop transfer 
function K(s)G(s). These zeros sometimes cause an excessive, transient peak over- 
shoot even when the closed-loop poles are properly selected. In this case, a prefilter 
F(s) is often used for the cancellation of the undesirable zeros of the closed-loop 
transfer function. (Of course, the nonminimum-phase zeros cannot be canceled.) 

If the compensator is placed in the feedback path, the closed-loop transfer func- 
tion becomes 

y(s) G(s) 
- -  F ( s )  

y*(s) 1 + K(s)G(s) 

DcN 
- -  F ( s )  (10.114) 

DcD +NcN 

where the compensator zeros do not appear as zeros of the closed-loop transfer 
function and a prefilter F(s) must be properly designed for the generation of a 
control input command. 

Next, we show a proper way of implementing a compensator to minimize such 
excessive, transient peak overshoot caused by the compensator zeros. A nonzero 
set-point control scheme for an Ho~-based controller will be presented, followed 
by an example design. 

The separation principle of the conventional linear-quadratic-Gaussian (LQG) 
technique does not hold for an Ho~ controller. Consequently, the nonzero set-point 
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-[C(A - BK)IB] 1 u ~I ~=Ax+Bu+wl y 
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Fig. 10.33 Control system configuration with LQG type controller. 

control scheme, which has been well established for LQG control synthesis, needs 
some minor modification, as is discussed next. 

A block diagram representation of a SISO closed-loop system for a conventional 
LQG type controller with a nonzero set-point command is illustrated in Fig. 10.33. 
For this configuration, the control input command u* corresponding to the desired 
(constant) output command y* is simply given as 

u* = - [ C ( A  - B K ) - I B ] - I y  * (10.115) 

which is independent of the estimator gain matrix L. In this case, it can be shown 
that for dynamic systems having a rigid-body mode, u* depends only on the regu- 
lator parameters (not on the plant parameters such as ml, m2, and k of the example 
model shown in Fig. 10.2). Hence, the nonzero set-point control scheme is inher- 
ently robust to plant parameter uncertainty for a certain class of dynamic systems 
with at least one pole at the origin, i.e., a type one system. 

Now consider a closed-loop control system with an H~  controller as shown in 
Fig. 10.34, which is described in state-space form as 

E:I=EL   
ix] y = [C2 O] Xc 

An H ~  suboptimal controller that satisfies IlTzwll~ < ?', where g is a design 
variable specifying an upper bound of the perturbed closed-loop performance 

- ~  "[~ ~t'l~ ]'1 
x = Ax + BIw + B2u 

z = ClX + DllW + D12u 
y = C2x + D21w + D22u 

Z 

- -  -----------4~ 
y 

~ U 

Fig. 10.34 Control system configuration with H~type controller. 
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Tzw, can be obtained as 

or  

where 

u(s) = - K [ s I  - Ac]-lLy(s) (10.117) 

Xc = A~x~ + Ly (10.118a) 

u = - K x c  (10.118b) 

K = B~'X 

L = ( I -  1 -1 ~--~ YX)  YC r 

1 
Ac = A + ~-~BlB 1 X - B2K - LC2 

The input command u* corresponding to the desired output y* can be simply 
f o u n d  as  

where 

(lO.119a) 

(10.119b) 

(10.119c) 

u* : --[t~.~-l]3]-ly * (10.120) 

"2K1 ["21 LC2 Ac ] I~ = 
' B2 (10.121) 

= [ c 2  0] 

Similar to the LQG case, it can be shown that for dynamic systems having a rigid- 
body mode, u* for an Hoo controller depends only on the controller parameters 
(not on the plant parameters such as ml, m2, and k of the example model shown 
in Fig. 10.2). However, u* now depends on both the gain matrices K and L, not 
just on the regulator gain matrix K as it does for the LQG case. 

We now consider the two-mass-spring model shown in Fig. 10.2 with nominal 
values ofml = m2 = k = 1. A control input force u acts on body 1 and the position 
of body 2 is measured as y. The output command is y* = 1 and the control input 
is bounded as l ul ___ 1. 

A robust Hoo controller with the following gain matrices K and L are considered 
here 

K = [1.506 -0 .494 1.738 0.932] (10.122a) 

L = [ 0 . 7 2 0  2.973 -3 .370  4.419] r (10.122b) 

which result in a nonminimum-phase compensator. 
The time response of the closed-loop system implemented as in Fig. 10.32, for 

F(s) = 1 and y* = 1, is shown in Fig. 10.35. A nonminimum-phase behavior of 
the closed-loop system is evident and the nominal system has a peak overshoot 
of about 80% and a settling time of 15 s. When compared with the response of a 
feedforward controller, shown in Fig. 10.31, the overall response is not acceptable. 
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Fig. 10.35 Time responses of conventional control system configuration. 

It can be shown that the excessive overshoot is due to the compensator zero at 
s = -0.145.  This zero may be canceled by a prefilter F(s), but the resulting 
slower settling time may not be desirable. 

Figure 10.36 shows the closed-loop responses for four different values of k to an 
output command of y* = 1 (consequently, u* = 0.9959), when the same controller 
is implemented as in Fig. 10.34. Clearly, the responses no longer have excessive 
overshoot and the settling time is quite short, as compared with the response in 
Fig. 10.35. The overall responses are also comparable with those of a three-impulse 
preshaped feedforward controller, shown in Fig. 10.31. The control input u(t) is 
always within the saturation limit of one. 

It may be concluded that a feedback controller, when implemented properly, 
could achieve good performance and robustness, for both command following 
as well as disturbance rejection problems. The feedforward/feedback control ap- 
proach described in this section is robust for a certain class of uncertain dynamic 
systems, because the control input command computed for a given desired output 
does not depend on the plant parameters. 

10.5.3 Summary 
In this section, both feedforward and feedback control approaches for rapid ma- 

neuvering control of uncertain flexible spacecraft have been presented and com- 
pared. It was shown that a time-optimal control input, preshaped using a tapped- 
delay filter, provides a rapid maneuver and robust suppression of residual structural 
vibrations. A proper implementation of a nonminimum-phase compensator with 
a nonzero set-point control command was discussed. It was demonstrated that a 
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Fig. 10.36 Time responses of nonzero set-point control configuration. 

properly implemented feedback controller performs well, when compared with a 
time-optimal, open-loop controller with special preshaping for performance ro- 
bustness. To achieve a fast settling time for a constant output command and robust 
performance with respect to plant modeling uncertainty, a robustified feedfor- 
ward/feedback control approach has been presented. 
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Gain stabilization, 129 
Galileo spacecraft, 281 
General binomial theorem, 246, 283 
Generalized coordinates, 29, 45, 110 
Generalized force, 49 
Generalized form of Newton's second law 

of motion, 37 
Generalized momentum, 51 
Generalized second-order filters, 130-131 
Generalized velocities, 110 
Geocentric distance, 236 
Geocentric-equatorial reference frame, 226 
Geocentric latitude, 236 
Geometric constants, 218 
Geostationary satellite, 232 
Geosynchronous communications satellite, 

514-515 
Geosynchronous orbit, 232 
Geosynchronous satellite, 233 
Gibbs 

parameters, 320 
vector, 320, 328 

Gimbal angle, 266 
Global asymptotic stability, 72 
Global Positioning System (GPS), 328 
GPS-based attitude determination, 328 
Gradient, 17 
Gradient vector, 11 

of a scalar field, 16-17 
Grain, 262 
Gravitational force field, 23 
Gravitational parameter, 23, 211 
Gravitational potential, 23 
Gravitational slingshot maneuver, 281 
Gravity 

assist maneuver, 281 
force, 23 
loss, 505 
turn maneuver, 266-267 
turn trajectory, 266-267,504 

Gravity-gradient 
stability plot, 371 
torque, 366-367 

in vector/dyadic form, 367 
Greatest lower bound, 154 
Ground track, 232 
Gyroscopic coupling matrix, 94 
Gyrostat, 374 

reorientation of, 389-391 

Halo orbit, 254 
determination and control, 286-302 

Hamiltonian, 51,393 
function, 51 



656 INDEX 

Hamiltonian (cont.)  
matrix, 169 
system, 70 

autonomous, 70 
Hamilton's canonical equations of motion, 

51, 69 
Hamilton's principle, 46, 482 
Harmonic balance equation, 536 
Heliocentric-ecliptic reference frame, 226 
Heliocentric (Hohmann) transfer orbit, 

277-278 
Hermite-Bieler theorem, 96 
Hermitian matrix, 157 
Hessian matrix, 11 
Hill's equations, 282 
Hoc suboptimal controller, 202 
Hohmann transfer, 271-274 

optimality of, 273 
orbit, 277-278 

Holonomic system, 46 
Homogeneous propellants, 262 
Homogeneous system, 75 
Hubble Space Telescope (HST), 547 
Hurwitz 

matrix, 97 
polynomial, 97 
determinants, 96 

Hybrid coordinate model, 517-518 
Hybrid coordinates, 108 
Hyperbola, 219 
Hyperbolic eccentric anomaly, 224 
Hyperbolic excess velocity, 221 
Hyperbolic point, 110 
Hypersphere, 397 

IIR filter, see  Infinite impulse response filter 
Image motion compensation (IMC), 575 
Impulse 

response function, 101 
response matrix, 102 

Impulse-sequence shaping, 625 
In-plane characteristic equation, 250 
Inclination of the orbital plane, 226 
Independent generalized coordinates, 54 
Inertia 

dyadic, 332-336 
matrix, 332-336 

Inertial acceleration, 21 
Inertial position, 22 
Inertial reference frame, 21, 22, 25 
Inertial upper stage (IUS), 262, 281 
Inertial velocity, 22 
Ine~ally symmetric body, 398 
Infimum, 154 
Infinite impulse response filter (IIR), 146 
INSAT 

spacecraft, 57-58, 520 
solar array deployment, 61~7 

Instability, 72 
Integral control, 125 

time constant of, 125 

Integrals of motion, 41 
INTELSAT III spacecraft, 376 
INTELSAT IV spacecraft, 374 
INTELSAT V 

spacecraft, 57-58, 374, 463-464, 541 
solar array deployment, 57--61 

INTELSAT VI spacecraft, 374 
INTELSAT VII spacecraft, 374 
Intermediate axis, 338, 348 

constant torque about, 362-365 
Internal energy dissipation, 79, 385 
Internal force, 37 
Internal model principle, 141 
Internal uncertainty loop, 201 
International Space Station, 419-420, 465 
International Sun-Earth Explorer-3 spacecraft 

(ISEE), 241,297-302 
Interval ploynomial, 98, 189 
Irrotational (or lamellar) vector field, 17, 

23, 46 
IUS, see  Inertial upper stage 

Jacobian matrix, 12, 72, 438 
Jacobi's integral, 243 
Jordan canonical form, 90, 157 

Kepler's first law, 213 
Kepler's laws of planetary motion, 20-21,209 
Kepler's second and third laws, 219-220 
Kepler's time equation, 222-224 

hyperbolic form of, 225 
Kharitonov's polynomials, 98, 99 
Kharitonov's theorem, 98, 191 
Kinematic differential equations, 322-328 
Kinematics, 24, 322-328 

particle, 26 
rotational, 307 

Kinetic energy, 30, 33, 40, 46, 48-49, 211,214 
Kinetic energy ellipsoid, 347 
Kronecker delta, 6 

Lagrange multiplier, 50, 65, 393 
Lagrange's equations of motion, 44-51 

for holonomic systems, 47-49 
for nonholonomic systems, 50 

Lagrange's form of D'Alembert principle, 47 
Lagrangian function, 49, 65 
Lagrangian points, 244-248 
Lamellar force field, 46 
Laplacian, 18 
Laplace transformation, 83-85 

differentiation theorem of, 84 
final value theorem of, 84 

Laplace's equation, 18 
Latitude, 232 
Latus rectum, 218 
Launch azimuth, 232 
Law of cosines, 18, 271 
Leading-side flyby, 280-281 
Least common denominator, 88 
Least upper bound, 154 



INDEX 657 

Libration points, 245 
Lienard and Chipart criterion, 98 
Limit cycle, 536, 545 
Limit cycle stability, 536 
Line of apsides, 233 
Linear algebraic equations, 154 
Linear independence, 154 
Linear momentum, 29 

principle of conservation of, 29 
Linear momentum exchange devices 

(LMED), 575 
Linear oscillatory systems, 104 
Linear programming problem, 448451 

basic feasible solution to, 449 
basic solution to, 449 
feasible solution to, 449 
optimal solution to, 449 

Linear-quadratic-estimator (LQE) method, 
167-168 

Linear-quadratic-Gaussian (LQG) 
compensator, 167-168 

Linear-quadratic-regulator (LQR) method, 
167-168 

Linear stability diagram, 359 
Linear system, 100-109 

stability, 72 
uncertainty modeling of, 197 

Linear time-invariant system, 82 
linear stability of, 94 

Linear vector space 
dimension of, 154 

Linearization, 81 
Linearized equations, 82, 109 
Linearized system 

equilibrium point of, 72, 110 
infinitesimally asymptotically stable, 72 

Liquid-bipropellant (MMH/NTO) upper 
stage, 503 

Liquid propellants, 262 
Liquid rocket engine, 261 
Liouville theorem, 13 
Lissajous trajectory, 253 

large, 292-294 
LMED, s e e  Linear momentum exchange 

devices 
Local asymptotic stability, 72 
Local vertical and local horizontal reference 

frame (LVLH), 365,421 
Loop transfer function, 116, 117 

poles and zeros of, 117 
Lorenz 

equations, 78, 112 
system, 78, 112 

LQE method, s e e  Linear-quadratic-estimator 
method 

LQG compensator, s e e  Linear-quadratic- 
Gaussian compensator 

LQR method, s e e  Linear-quadratic-regulator 
method 

LQR/LQE method, 167 
Lumped-mass matrix, 469 

Lumped-parameter system, 105,463 
LVLH reference frame, s e e  Local vertical and 

local horizontal reference frame 
Lyapunov, 96 

direct (or second) method of, 73-74 
function, 74 
indirect (or first) method of, 73 
matrix equation of, 96 
stability, 71 

Lyapunov's first stability theorem, 73 
Lyapunov's second stability theorem, 73-74 
Lyapunov's theorem, 73-74 

Macb number, 263 
Major axis, 338,348, 351 

constant torque about, 357-362 
Manifold, 110, 358 

equilibrium, 358 
Mapping, 121 
Markov parameters, 92, 93 
Mass matrix, 94, 105 
Mass-spring~lamper systems, 31, 85, 95 
Mathieu equation, 35 
Matrix, 3-8, 10-11 

adjoint, 8 
cofactor of, 7 
column, 4 
complex conjugate transpose of, 157 
determinant of, 7 
Hermitian, 157 
Hessian, 11 
identity, 8 
inverse of, 8 
Jacobian, 12 
orthogonal, 8 
orthonormal, 8 
quadratic form of, 10 
row, 4 
minor of, 7 
normal, 157 
sign-definiteness of, 10 
skew-symmetric, 319, 341 
skew-Hermitian, 157 
square, 3, 6 
symmetric, 7 
trace of, 8 
transpose of, 545 
unitary, 157 

Matrix addition and multiplication, 6 
Matrix Riccati equation, 169,202 
Mean anomaly, 223 
Mean motion, 223 
MIMO system, s e e  Multi-input multi-output 

system 
square, 89 

Mini-Mast system, 562-563 
Minimum-phase lead or lag filter, 131 
Minimum-phase notch or bandpass filter, 131 
Minor axis, 338, 348, 351 

constant torque about, 357-362 
Mir space station, 419,437 
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Modal analysis, 464-466, 472-474 
Modal coordinates, 105 
Modal decomposition, 155 
Modal equations, 104-105 
Modal frequency, 105 
Modal matrix, 105, 156 

unitary, 158 
Modal transformation, 104-105, 156 
Modal truncation, 466--467 
Modal vector, 105 
Molniya communications satellite, 239-240 
Moment of external forces, 39 
Moment of momentum, 38 
Moments of inertia, 42, 333 
Momentum transfer, 391 
Monopropellants, 262 
Multi-input multi-output (MIMO) system, 88 
Multilinearly uncertain polynomial, 180, 193 
Multistage rockets, 262 

n-dimensional vector space, 12 
Nabla vector, 17 
Navier-Stokes equations, 20 
Newton-Euler formulation, 36 
Newtonian reference frame, 21, 25 
Newton's laws of gravity, 23 
Newton's second law of motion, 22 

generalized form of, 37 
Newton's three laws of motion, 21-22 
Nichols plot, 121 
Nodal regression rate, 239 
Node line 

precession of, 236 
Nonholonomic system, 45 
Non-Keplerian orbit, 233 
Nonlinear (dynamic) system, 68, 71, 81 

autonomous, 68, 74 
control input variables of, 68 
control input vector of, 68 
equilibrium point of, 68, 71,109 
nonautonomous, 68 
phase-plane analysis of, 109 
state variables of, 68 
state vector of, 68 

Nonlinear system stability, 71-75 
Nonlinear phase margin, 544 
Nonminimum-phase all-pass filter, 134 
Nonminimum-phase bandpass filter, 135 
Nonminimum-phase high-pass filter, 135 
Nonminimum-phase low-pass filter, 135 
Nonminimum-phase notch filter, 135 
Norm 

Euclidean, 9, 71,159 
Frobenius, 160 
induced, 160 
spectral, 9,159 
two-, 9, 159 

Norm-invariant system, 75, 77, 397 
Notch (or bandreject) filter, 131-133 
Nullity, 155 
Null motion, 441 

Null space, 155,441 
Null vector, 441 
Nutation, 391 

angle, 345, 389 
dynamics, 519 

Nutational amplitude, 354 
Nutational frequency, 354 
Nyquist plot, 121 

Oblate body, 346, 377 
Oblate Earth 

gravitational potential of, 236 
Observability, 161,466, 474 
Observability grammian, 161 
Observability matrix, 162, 167 
Observer, 164 
Optimal LQR solution, 169 
Optimality condition, 394 
Orbit 

equation, 212-213 
inclination, 232 
injection, 267-269 

Orbital decay, 240 
Orbital elements, 225-226 

modified classical, 228 
six classical, 226 

Orbital period, 220 
Orbital perturbations, 233 
Orbital plane, 212 
Orbital rendezvous, 282-283 
Orthogonal unit vectors, 4, 14 
Osculating orbital plane, 233 
OSO-8 spacecraft, 131 
Out-of-plane characteristic equation, 250 
Overall loop gain, 117 

Parabola, 218 
Parallel-axis theorem, 42, 336 
Parameter, 213,218 

margin, 179 
optimization problem, 588 

Partial fraction expansion, 466 
Particle, 21,351 
Patched conic method, 275-279 
Payload assist module, 262 
PD control, s e e  Proportional-derivative control 
Pendulum, 33 

compound, 42 
double, 43-44 
inverted, 43, 82, 89 
simple, 33, 69, 75, 82 

Performance robustness, 202 
Periapsis, 218 
Perifocal reference frame, 228 
Perigee, 218 
Perigee passage time, 228 
Perihelion, 218 
Periodic functions, 85 
Persistent (or quasi-periodic) disturbance, 142 
Persistent disturbance rejection, 141-144, 

171-174 
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Perturbing acceleration, 233 
Phase-crossover frequency, 122 
Phase-lag filter, 131 
Phase-lead 

compensator, 125 
filter, 131 

Phase margin, 122 
Phase-plane 

analysis, 109 
trajectories, 361 

Phase stabilization, 129 
PID control, see Proportional-integral- 

derivative control 
Planetary capture, 281 
Planetary flyby, 280-281 
Plant transfer function, 115 
Point mass, 21,351 
Polar coordinates, 216 
Polar flattening, 233 
Polar plot, 121 
Pole-placement method, 166 
Pole-zero 

cancellation, 89, 162 
mapping, 151 
modeling, 558--561 

Poles and zeros, 87, 117 
Polhode, 347 

equation, 348 
projection, 348 

Polytopic polynomial, 192 
Pontryagin's minimum principle, 395 
Potential energy, 24, 30, 40, 46, 49, 211 
Potential function, 17 
Precession, 391 
Precession rate, 346 
Precessional amplitude, 354 
Precessional frequency, 354 
Preshaped time-optimal control, 623 
Preshaping technique, 623 
Pretensioned membrane, 485-491 
Prewarping frequency, 150 
Principal axes, 337 
Principal minors, 7 

leading, 7, 96, 339 
Principal moments of inertia, 337 
Principia, 21 
Principle 

of conservation of angular momentum, 30, 
40, 332 

of conservation of linear momentum, 38 
of conservation of energy, 31, 53 
of inertia, 21 

Product, 9 
cross, 9, 14-15 
dot, 13 
inner or scalar, 9 
of inertia, 334 
outer, 9 
scalar triple, 15 
vector tripe, 16 

Prograde orbit, 227 

Projection matrix, 442 
Prolate body, 346, 377 
Propellant sloshing, 506-509 
Proportional-derivative (PD) control, 124 
Proportional-integral-derivative (PID) control, 

123-125 
Pseudoinverse steering logic, 439--440 
Pseudoinverse transformation matrix, 415 
Pulse functions, 85 
Pulse-width modulator, 455-456 
Pulse-width pulse-frequency (PWPF) 

modulator, 453-454, 530-532 
duty cycle of, 454, 531-532 
minimum pulse width of, 454, 531 
pulse frequency of, 454 
pulse width of, 453, 530 

Pyramid mounting arrangement, 439 

Quadratic performance index, 167-168 
Quasi-periodic orbits, 250 
Quaternion kinematic differential equation, 

326-328,403 
Quaternion Lyapunov function, 414 
Quaternion matrix, 320 
Quaternion multiplication rule, 320 
Quaternion transmuted matrix, 320 
Quaternion vector, 319,407 
Quaternions, 318-320, 326-328 

Range space, 155 
Rank, 155 
Rational function, 88 
Reactance function, 96 
Reaction control system (RCS), 446 
Reaction wheels, 436 
Real critical constraints, 186-187 
Real/z measure, 187 
Real parameter margin, 179-180 
Real parameter robustness measure, 180, 186 
Real structured singular value measure, 186 
Rectangular (orthogonal) Cartesian coordinate 

system, 4 
Reduced mass, 214 
Reference frame, 4 
Regulator, 165 
Regulator gain matrix, 165 
Relative motion 

equation of, 210-211 
Relative spin rate, 344, 346 
Repeated eigenvalues, 73, 157 
Repeller, 110 
Restricted three-body problem 

circular, 240-255 
elliptic, 256-260, 294-297 

Retrograde orbit, 227 
Retrograde precession, 346 
Riccati equation, 168, 202 
Rigid body, 40, 331,351 
Robust eigenstructure assignment, 167 
Robust H a  control, 200-203,432, 553-556 
Robust nonzero set-point control, 626-631 
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Robustified feedforward and feedback 
control, 623 

Rocket thrust, 261 
Rod-shaped body, 346, 377 
Rodrigues parameters, 320 
Root locus method 

Evans's, 117 
Rotating circular hoop, 36 
Rotating reference frame, 24 
Rotation matrix, 307 
Rotational kinetic energy, 336, 342 
Routh-Hurwitz criterion, 96 
Row-orthonormality condition, 3 l0 

Saddle, 110 
Sampled-data system, 145 
Sampling and zero-order hold, 147-149 
Sampling period, 145 
Saturation function, 408 

normalized, 408 
Scalar, 3 
Scalar operator, 17 
Schmitt trigger, 452-453 

limit cycle amplitude of, 453 
limit cycle period of, 453 
minimum pulse width of, 453 

Second-order filter, 131 
Second-order matrix differential equation, 93 
Second-order ordinary differential equation, 32 
Second-order system, 32, 100 

bandwidth of, 101 
damped natural frequency of, 101 
damping ratio of, 100 
natural frequency of, 100 
time constant of, 101 
underdamped, 101 

Second-order tensor, 5 
Semilatus rectum, 216, 218 
Semimajor axis, 218 
Semiminor axis, 218 
Sensitivity function, 116 
Separation property, 166 
Separatrix, 110, 348 
Separatrix surface, 362-363 
Set, 154 
Settling time, 101 
SI units, 21-22 
Siderial day, 232 
Signum function, 396, 408 
Similarity transformation, 104, 156 
Single-axis reaction control system, 452 
Single-degree-of-freedom system, 3 l, 45 
Single-gimbal CMGs, 436-437 
Single-impulse maneuvers, 270 
Single-input single-output (SISO) system, 85 
Singular point, 68 
Singular states, 440-441 
Singular value decomposition, 158 
Singular values, 158, 159 
Singular vectors, 158 
Singularity measure, 442 
Singularity robust inverse algorithm, 443 

SISO conservative system, 178 
SISO control, 129 
SISO system, s e e  Single-input single-output 

system 
Skew-symmetric matrix, 319, 341 
Skylab, 419,437 
Slew rate constraint, 415 
Soft landing, 279 
Solid propellants, 262 
Solid rocket motor, 261 
Solid sphere, 24 
Space-axis rotation, 310, 317 
Space Shuttle RCS, 445-448 

phase-plane logic of, 447 
Specific angular momentum, 212 
Specific energy, 211 
Specific impulse, 262 
Spectral decomposition, 156 
Spectral density matrix, 168 
Speed, 212 
Sphere of influence, 274-275 
Spherical fuel slug, 385 
Spin axis, 381 

precession, 389 
Spin rate, 344 
Spin-up maneuver, 382-385 
Square-root damping, 481 
Stability robustness, 202 
Stabilized conservative plants, 176--180 
Stabilized nonconservative plants, 180-181 
Stable focus, 110 
Stable node, 110 
Standard Hoo control, 196--197 
Standoff position, 285 
State estimator, 164 

asymptotic, 164 
State feedback control, 164 
State space, 12 

equations, 81-82 
State transition matrix, 102, 151 
State vector, 12 
Static buckling, 498 
Stationary point, 68 
Stationkeeping attitude control, 526-534 
Steady state 

error, 117 
gain, 87 
point, 68 

Stiffness matrix, 94, 105 
Storable propellant, 262 
Strange attractor, 112 
Strapdown inertial reference system, 327 
Strain-rate damping, 481 
Structural damping, 480 
Structural dynamic system 

uncertainty modeling of, 199 
Structured singular values/z, 176 
Summation convention, 5 
Suborbital flight, 270 
Sun-Earth system, 275 
Sun-Earth-moon system, 300 
Sun-planet system, 211 
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Sun-synchronous orbit, 239 
Supremum, 154 
Sympletic property, 169 
System of particles, 37 
System type, 117 

Tangential steering, 504 
Tapped-delay filter, 624-625 

frequency responses of, 626 
Taylor series expansion, 11 
TEA, s e e  Torque equilibrium attitude 
Tensor of first order, 5 
Thin uniform bar, 43 
Third-order dynamic system, 32 
Three-dimensional vector space, 5 
Three-mass-spring system, 107, 128, 163, 

144-145, 619 
Thrust vector 

angle, 265 
control (TVC) design, 509-513 

Time 
constant, 100-101 
delay, 85 

Toeplitz matrix, 167 
Torque equilibrium attitude (TEA), 424 
Torque-free motion, 343 

general, 347-348 
Torque wheel actuators (TWA), 562 
TOS, s e e  Transfer orbit stage 
TPBVP, s e e  Two-point boundary-value 

problem 
Trailing-side flyby, 280-281 
Trajectory-dependent disturbances, 290 
Trans-Earth L 3 point, 245 
Transcendental transfer function, 471-472, 

476-479, 483-484 
Transfer function, 85-87 

closed-loop, 116 
matrix, 88 
minimum-phase, 87 
nonminimum-phase, 87 
open-loop, 116 
residues of, 90 
zeros, physical interpretation of, 479 

Transfer orbit stage (TOS), 503 
Transfer time, 276 
Translunar L2 point, 245, 286 
Transmission zeros, 89, 429-430 
Transversality condition, 394 
Transverse angular rate, 388-389 
Transverse angular velocity, 344, 
Transverse axes, 382 
Triangle inequalities, 339 
Triaxiality, 240 
True anomaly, 213 
Turn-over trajectory, 264-266 
Tustin transformation, 149 
TVC design, s e e  Thrust vector control design 
TWAs, s e e  Torque wheel actuators 
Two-body problem, 209-216 
Two-impulse elliptic transfer, 271-272 
Two-link manipulator, 43, 55 

Two-mass-spring-damper system, 181 
Two-mass-spring system, 106, 127, 138, 144, 

174, 204, 592, 599, 602 
Two-point boundary-value problem 

(TPBVP), 395 
Type l system, 117 
Type 2 system, 117 

U.S. customary units, 21-22 
Uniform free-free bar, 8-9 
Uniform free-free beam, 472-483 
Unit 

dyadic, 335 
impulse function, 83 
impulse response, 100 
step function, 84 
step response, 100-101 

Universal gravitational constant, 23 

van der Pol oscillator, I 11-112 
Vector, 3 

addition and subtraction of, 13 
column, 5 
components of, 5 
del, 17 
differentiation of, 16 
gradient, 1 l, 16 
nabla, 17 
norm of, 9 
representation of, 4-5 
row, 5 

Vector and matrix norms, 159-160 
Vector differential equation, 12 
Vector field, 12 

curl of, 17 
divergence of, 17 

Vector function, 12 
curl of, 17 
differentiation of, 12 
divergence of, 12, 17 

Vector space, 4 
Vectrix, 5 
Vectrix operation, 15 
Velocity, 212 
Velocity vector angle, 265 
Vernal equinox, 226 
Vertical ascent, 263-264 
Virtual displacement, 45 
Virtual work, 45 

principle of, 45 
Vis-viva equation, 220-221 

White noise processes, 168 

X-ray Timing Explorer (XTE) spacecraft, 152, 
402, 418 

z transformation, 145-146 
theorems of, 146 

Zero-input response, 86, 157 
Zero-order hold (ZOH), 147 
Zero-order tensor, 5 
Zero-state response, 86 
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