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Foreword

Robotics is undergoing a major transformation in scope and dimension. From
a largely dominant industrial focus, robotics is rapidly expanding into human
environments and vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will in-
creasingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across di-
verse research areas and scientific disciplines, such as: biomechanics, haptics,
neurosciences, virtual simulation, animation, surgery, and sensor networks
among others. In return, the challenges of the new emerging areas are prov-
ing an abundant source of stimulation and insights for the field of robotics.
It is indeed at the intersection of disciplines that the most striking advances
happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing
to the research community the latest advances in the robotics field on the basis
of their significance and quality. Through a wide and timely dissemination
of critical research developments in robotics, our objective with this series is
to promote more exchanges and collaborations among the researchers in the
community and contribute to further advancements in this rapidly growing
field.

The Ninth edition of Field and Service Robotics edited by Luis Mejias, Pe-
ter Corke and Jonathan Roberts offers in its ten-part volume a collection of a
broad range of topics ranging from fundamental concepts such as control, vi-
sion, mapping and recognition to advanced applications such as autonomous
underwater vehicles, unmanned aerial vehicles, space robots, outdoor driving,
search and rescue robots, humanoids and agriculture robots. The contents of
the thirty-six contributions represent a cross-section of the current state of
robotics research from one particular aspect: field and service applications,
and how they reflect on the theoretical basis of subsequent developments. Pur-
suing technologies aimed at non-factory robots, typically mobile, that must
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operate in complex and dynamic environments is the big challenge running
throughout this focused collection.

Rich by topics and authoritative contributors, FSR culminates with this
unique reference on the current developments and new directions in field and
service robotics. A fine addition to the series!

Naples, Italy Bruno Siciliano
March 2014 STAR Editor



Preface

The Field and Service Robotics (FSR) conference is a single track conference
with a specific focus on field and service applications of robotics technology.
The goal of FSR is to report and encourage the development of field and
service robotics. These are non-factory robots, typically mobile, that must
operate in complex and dynamic environments. Typical field robotics appli-
cations include mining, agriculture, building and construction, forestry, cargo
handling and so on. Field robots may operate on the ground (of Earth or plan-
ets), under the ground, underwater, in the air or in space. Service robots are
those that work closely with humans, importantly the elderly and sick, to
help them with their lives.

The first FSR conference was held in Canberra, Australia, in 1997. Since
then the meeting has been held every 2 years in Asia, America, Europe and
Australia. It has been held in Canberra, Australia (1997), Pittsburgh, USA
(1999), Helsinki, Finland (2001), Mount Fuji, Japan (2003), Port Douglas,
Australia (2005), Chamonix, France (2007), Cambridge, USA (2009), Sendai,
Japan (2012) and most recently in Brisbane, Australia (2013).

This year we had 54 submissions of which 36 were selected for oral presen-
tation. The organisers would like to thank the international committee for
their invaluable contribution in the review process ensuring the overall quality
of contributions. The organising committee would also like to thank Ben Up-
croft, Felipe Gonzalez and Aaron McFadyen for helping with the organisation
and proceedings.

The conference was sponsored by the Australian Robotics and Automation
Association (ARAA), CSIRO, Queensland University of Technology (QUT),
Defence Science and Technology Organisation Australia (DSTO) and the Rio
Tinto Centre for Mine Automation, University of Sydney.

January 14 Luis Mejias (QUT)
Peter Corke (QUT)

Jonathan Roberts (CSIRO)
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Part VI: Mapping and Recognition

Localization and Place Recognition Using an Ultra-Wide
Band (UWB) Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Eijiro Takeuchi, Alberto Elfes, Jonathan Roberts

Laser-Radar Data Fusion with Gaussian Process Implicit
Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Marcos P. Gerardo-Castro, Thierry Peynot, Fabio Ramos

Cluster-Based SJPDAFs for Classification and Tracking of
Multiple Moving Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Naotaka Hatao, Satoshi Kagami

GPmap: A Unified Framework for Robotic Mapping Based
on Sparse Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Soohwan Kim, Jonghyuk Kim

Part VII: Vision

Purposive Sample Consensus: A Paradigm for Model
Fitting with Application to Visual Odometry . . . . . . . . . . . . . . . . 335
Jianguo Wang, Xiang Luo

Cooperative Targeting: Detection and Tracking of Small
Objects with a Dual Camera System . . . . . . . . . . . . . . . . . . . . . . . . . 351
Moein Shakeri, Hong Zhang

Experiments on Stereo Visual Odometry in Feature-Less
Volcanic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Kyohei Otsu, Masatsugu Otsuki, Takashi Kubota

Eight Weeks of Episodic Visual Navigation Inside a
Non-stationary Environment Using Adaptive Spherical
Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Feras Dayoub, Grzegorz Cielniak, Tom Duckett



XIV Contents

Part VIII: Domestic Robots

Human Activity Recognition for Domestic Robots . . . . . . . . . . . 395
Lasitha Piyathilaka, Sarath Kodagoda

Building Environmental Maps of Human Activity for a
Mobile Service Robot at the “Miraikan”Museum . . . . . . . . . . . . 409
Ippei Samejima, Yuma Nihei, Naotaka Hatao, Satoshi Kagami,
Hiroshi Mizoguchi, Hiroshi Takemura, Akihiro Osaki

Part IX: Agriculture Robots

Accuracy and Performance Experiences of Four Wheel
Steered Autonomous Agricultural Tractor in Sowing
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Timo Oksanen

Robotics for Sustainable Broad-Acre Agriculture . . . . . . . . . . . . 439
David Ball, Patrick Ross, Andrew English, Tim Patten,
Ben Upcroft, Robert Fitch, Salah Sukkarieh, Gordon Wyeth,
Peter Corke

A Pipeline for Trunk Localisation Using LiDAR in Trellis
Structured Orchards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Suchet Bargoti, James P. Underwood, Juan I. Nieto,
Salah Sukkarieh

LiDAR Based Tree and Platform Localisation in Almond
Orchards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Gustav Jagbrant, James Patrick Underwood, Juan Nieto,
Salah Sukkarieh

A Feature Learning Based Approach for Automated Fruit
Yield Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Calvin Hung, James Underwood, Juan Nieto, Salah Sukkarieh

Part X: Search, Rescue Robots

Visual and Inertial Odometry for a Disaster Recovery
Humanoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Michael George, Jean-Philippe Tardif, Alonzo Kelly

Precise Velocity Estimation for Dog Using Its Gait . . . . . . . . . . 515
Naoki Sakaguchi, Kazunori Ohno, Eijiro Takeuchi, Satoshi Tadokoro

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529



 

 

 

 

 
 

 

 

 

Part I 

Autonomous Underwater Vehicles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Hierarchical Classification in AUV
Imagery

M.S. Bewley, N. Nourani-Vatani, D. Rao, B. Douillard,
O. Pizarro, and S.B. Williams

Abstract. In recent years, Autonomous Underwater Vehicles (AUVs) have
been used extensively to gather imagery and other environmental data for
ocean monitoring. Processing of this vast amount of collected imagery to label
content is difficult, expensive and time consuming. Because of this, typically
only a small subset of images are labelled, and only at a small number of
points. In order to make full use of the raw data returned from the AUV, this
labelling process needs to be automated. In this work the single species clas-
sification problem of [1] is extended to a multi-species classification problem
following a taxonomical hierarchy. We demonstrate the application of tech-
niques used in areas such as computer vision, text classification and medical
diagnosis to the supervised hierarchical classification of benthic images. After
making a comparison to flat multi-class classification, we also discuss critical
aspects such as training topology and various prediction and scoring method-
ologies. An interesting aspect of the presented work is that the ground truth
labels are sparse and incomplete, i.e. not all labels go to the leaf node, which
brings with it other interesting challenges. We find that the best classification
results are obtained using Local Binary Patterns (LBP), training a network of
binary classifiers with probabilistic output, and applying “one-vs-rest” clas-
sification at each level of the hierarchy for prediction. This work presents a
working solution that allows AUV images to be automatically labelled with
the most appropriate node in a hierarchy of 19 biological groupings and mor-
phologies. The result is that the output of the AUV system can include a
semantic map using the taxonomy prescribed by marine scientists. This has
the potential to not only reduce the manual labelling workload, but also to

M.S. Bewley · N. Nourani-Vatani · D. Rao · B. Douillard ·
O. Pizarro · S.B. Williams
Australian Centre for Field Robotics The University of Sydney,
NSW 2050, Australia
e-mail: m.bewley@acfr.usyd.edu.au

L. Mejias, P. Corke, and J. Roberts (eds.), Field and Service Robotics, 3
Springer Tracts in Advanced Robotics 105,
DOI: 10.1007/978-3-319-07488-7_1, c© Springer International Publishing Switzerland 2015
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reduce the current dependence that marine scientists have on extrapolating
information from a relatively small number of sparsely labelled points.

1 Introduction

Autonomous Underwater Vehicles (AUVs) have made a significant impact
on areas of marine science that require an understanding of the sea floor [2,
3, 4]. Common practice is shifting from using human divers with hand-held
cameras, to sending AUVs equipped with stereo cameras and other sensors
to capture benthic images. These AUVs are capable of capturing far more
data, both in the type (various sensor modalities) and volume (a several
hour mission can collect tens of thousands of spatially registered stereo image
pairs). In addition, the imagery is geo-referenced far more precisely, and data
can be gathered from beyond diver depths. While using an AUV improves
the raw data in many ways, the sheer volume of it introduces a new problem
for interpretation.

For marine scientists studying the location, distribution and coverage of
benthic organisms and morphology, the state of the art is to take a small
subset of images from an AUV survey, and manually label the content. For
the data set used in this paper [5], biological species and physical formations
under 50 randomly selected pixels from every 100th image were labelled.
The scientists then extrapolate from this subset, to make inferences about
the ecosystems and populations in the geographic area. Figure 5 shows an
example image from our data set (described in Section 3) where 50 randomly
selected pixels have been labelled using the CPCe labelling software [6].

Fig. 1 Example AUV image, with CPC point labels
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The ultimate goal of research in this field is to automate the labelling
process, such that the vehicle returns a semantic map of the environment,
rather than simply providing the raw visual and sensory data. From a robotics
perspective, this requires the robotic system to take on the translation and
communication effort with which the human users are currently burdened.
Recent work [1] describes a solution to a simplified problem of automatically
classifying a single species (Ecklonia Radiata commonly known as “Kelp”),
based on supervised learning algorithms applied to a large AUV dataset. In
this paper, we extend the problem to multiple species and physical morpholo-
gies, using the same data set.

2 Hierarchical Classification

In order to perform classification on a large set of benthic classes, a different
approach is required. Supervised machine learning is typically performed on
binary problems (such as presence/absence detection) [7, 3], or multi-class
problems where there are a set of strict alternatives [8, 9]. In this study, we
examine solutions to the more complex problem of predicting a hierarchy of
classes, which is the semantic output that is desired by the marine science
community that uses this data set (see Section 3 for details). The contribution
of this paper is to demonstrate and evaluate the techniques used in other
areas (computer vision, text classification and medical diagnosis) applied to
hierarchical classification in benthic images.

2.1 Classification

In a recent survey, Silla Jr and Freitas [10] extensively reviewed the problem
of supervised hierarchical classification and defined a range of methods of
dealing with the hierarchy of the data. They defined three main approaches:

1. Ignore the hierarchy and perform flat classification (Figure 2a)
2. Use a network of several local binary classifiers for various regions of the

hierarchy (Figure 2b)
3. Use a single classifier but encode the hierarchical structure somehow in

the data (Figure 2c).

From the list of methodologies presented, we employ the Local Classifier per
Node approach of Figure 2b. In this approach, which is by far the most
used in the literature [10], each node in the classification tree has a binary
classifier that is trained to distinguish that class from others. This approach
is relatively straightforward to implement, but has several advantages:

• It is possible to either output the single node in the hierarchy which rep-
resents the best prediction, or to query the probability of a given image
point being a member of any given node.
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(a) Flat classifier (b) Local classifiers (c) Global classifier

Fig. 2 Classification approaches for a hierarchical data set. The dashed lines show
the extent of each classifier. In the flat (2a) and global (2c) approaches a single
classifier is employed whereas in the local approach (2b) several classifiers are used;
the shown tree is the Local Classifier per Node approach. Figures taken from [10].

• It allows use of the full data set, including the points which have not been
labelled to a leaf node (e.g. as simply “biological”, or “algae” rather than
specific species).

• It allows different features, classification algorithms and even training sets
to be used for each classification sub-problem. Intuitively, it makes sense
that the features which distinguish between various species of algae would
differ from those that distinguish sand from rock.

2.2 Training Policies

In training a network of binary classifiers, it is necessary to decide which
examples to use as the training set for each node, and how feature extraction
is performed at each node. We compare the two policies described in [10] that
most naturally fit our problem: the inclusive and the sibling policies.

2.2.1 The Inclusive Policy

This policy includes as positive examples the entire subtree of the training
node. The nodes in the rest of the tree are used as negative examples, with the
exception of direct ancestors of the training node. The direct ancestors cannot
be used as either negative or positive examples as they contain instances of
both; e.g. if training a classifier for node 2.1 in Figure 2b, then nodes 2.1.1
and 2.1.2 are used as positive examples and all other nodes with the exception
of the ancestor nodes R and 2 are used as negative example (nodes 1, 1.1,
1.2, 2.2, 2.2.1 and 2.2.2 ).

2.2.2 The Sibling Policy

This alternative policy uses the same positive training examples, however,
the negative examples are restricted to siblings of the training node (and not
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siblings of the ancestor nodes). Using the example from before, the negative
training samples will come from nodes 2.2, 2.2.1 and 2.2.2 only.

The expected performance difference between these two policies is not
obvious, with no consistent winner found in [11]. On one hand, the inclusive
policy ensures that each node is as informed as possible, and should be able
to deal better with classifying instances that belong elsewhere in the tree
(as it has seen examples of all the data). On the other hand, the siblings
policy solves a much more specific problem (distinguishing a node’s class
from its siblings), and may give better discriminative performance between
these classes. Such nodes will, however, be less informed about instances that
belong elsewhere in the tree. An inherent advantage of the siblings approach
is that far less training data is required for nodes deeper in the tree, which
becomes significant when the tree is large.

2.3 Prediction

After training the network of classifiers, the decision remains of how to predict
the class of a given image point. As we require complete consistency in the
hierarchical labels (such that there is a single, unbroken chain of classifiers
predicting positive results from the root to the deepest node), the simplest
choice described in [10] is chosen, which we refer to as maximum probability
switching (MPS). An instance starts at the root node, and flows to the leaf
node with the highest prediction probability (akin to performing one-vs-rest
classification at each node). This technique forces prediction down to the
leaf node level. We can remove this constraint by stopping a prediction from
moving further down the tree when the maximum predicted probability falls
below some threshold (say 0.5 for the typical cut-off of a binary classifier).

We also test an alternative approach: the use of a simple probabilistic graphi-
calmodel (PGM).Here the class tree also represents the independence relations
in the PGM, and we assume the conditional probability of node membership
is given by the probabilistic predictions of the classifiers1. This allows exact
Bayesian inference to be performed trivially, by multiplying probabilities of a
node’s ancestors to obtain the net probability of membership.

2.4 Performance Measure

Lastly, a robust performance metric is needed; ideally a single number to
evaluate the performance on an entire tree. The closest performance measure
commonly used in the literature is the hierarchical f1-score [12]. Each instance
has multiple counts of true/false positives/negatives, as each node in the chain

1 This assumption is at least reasonable for the siblings training policy, as the train-
ing sets only include those instances which we know belong to the parent node. The
output of the classifiers therefore represents e.g. “the probability that this instance
is Algae, given we know it is an instance of Biota”.
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(a) True predic-
tion: (TP, TP,
TP)

(b) False predic-
tion: (TP, TP,
FP, FN)

(c) False pre-
diction due to
thresholding:
(TP, TP, FN)

(d) Modified
prediction: (TP,
TP)

Fig. 3 The hierarchical f1-score performance metric. The connected circles repre-
sent classifier nodes, with the root on the left, and leaf on the right. Grey circles are
ground truth, white circles are prediction. Figure 3a shows the case of the classifier
network correctly predicting a node of depth 3 in the hierarchy. Figure 3b repre-
sents the first two levels being predicted correctly, whereas the classifier network
incorrectly chooses a sibling of the true class at depth 3.

of true class nodes is compared to the chain of predicted nodes. Figures 3a
and 3b illustrate two scenarios. In the former case, the prediction down the
entire tree is accurate. In the latter case the last prediction is incorrect. This
results in a False Negative (FN) detection as the correct node was missed as
well as a False Positive (FP) detection for an incorrect node being detected.

When employing thresholded MPS it is possible that the prediction stops
earlier up in the tree than the ground truth. This occurs when the child
classifier prediction probability is below the set threshold. In such an instance,
the missed nodes are calculated as FNs. This is illustrated in Figure 3c.

Finally, there can be cases where the predicted class is more specific (lower
down the tree) than the ground truth class. This can occur when the ground
truth label is not at the leaf level. In such an instance the hierarchical f1-
score commonly used in the literature would penalise the prediction with
a FP. However, there are instances where this is not fair; e.g. the classifier
predicts “Labrador” while the label says “Dog”. “Labrador ” is of course a
breed of “Dog”, and may be a more accurate description. This is true for
our labels of the underwater species, where the labeller does not always label
the instance to the leaf-node level. This can occur due to poor image quality,
inability of the labeller to recognise the species or cost and effort constraints
if more detailed labels are not required for the given research project.

We therefore modify the metric such that if the predicted class is more
specific than the ground truth (Figure 3d), we do not reward or penalise any
results deeper than the deepest known class.

2.5 Descriptors

A subtlety of the Local Classifier per Node approach is in the selection of image
features. In flat multi-class classification (Figure 2a) and global classification
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(Figure 2c), the same image features are typically used for the nodes. With the
local classifiers (Figure 2b), we can select (either manually, or by feature learn-
ing techniques) features that are optimised per classifier node for the siblings
or inclusive training data sets. In this paper we employ various features that
both optimise for the local node or are constant across the nodes.

We analyse the performance of Principle Component Analysis (PCA), Lo-
cal Binary Patterns (LBP) texture descriptors, and feature learning (FL). In
all instances, the features are extracted from localised image patches around
the ground truth label.

As discussed in [1], the AUV travels at an approximately constant height
of 2m above the sea floor. We therefore use the same assumption of pixels
in the image representing a fixed scale. In the 1360× 1024 RGB images, 100
pixels corresponds to approximately 10 centimetres.

2.5.1 Principal Component Analysis

The PCA descriptors are calculated on each of 7, 15, 31, 63 and 95 pixel
square RGB image patches. The patches are whitened and empirical study
showed that keeping 60 components is sufficient.

2.5.2 Local Binary Patterns

We investigate two varieties of the popular LBP descriptors, namely the
rotation-invariant uniform descriptor [13] and the histogram Fourier trans-
form descriptor [14]. The descriptors are calculated from a 31×31 pixel patch
and normalised using various image normalisation methods.

2.5.3 Feature Learning

Feature learning uses K-means clustering to learn a dictionary of 1000 patches
for both 7 and 15 pixel square images. The CIFAR-10 Images Dataset [15]
was used to generate the features, instead of the Tasmanian AUV image data.
Compared to the AUV images, the CIFAR-10 data set has more variation
in the content, and is therefore able to produce a more diverse dictionary of
learned features. The features are encoded using the L2 distance to each patch
in the dictionary [16]. The centroids, or learned features, tend to resemble
Gabor-like edge or texture filters, as shown in Figure 4.

3 Data Set and Hierarchy

The Tasmania Coral Point Count data set is comprised of 14 separate dive
missions conducted by the AUV Sirius off the South-East coast of Tasmania,
Australia, in October 2008. From the data set containing over 100,000 stereo
pairs of images, marine scientists at the University of Tasmania [5] selected
every 100th colour image and used the CPCe software package [6] to label
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Fig. 4 A subset of the 1000 features learned from 7×7 pixel patches in the CIFAR-
10 Dataset

50 random points on each [17]. This has resulted in 62,900 labels from 1258
images. Figure 5 illustrates some images from the data set2, with original
and predicted labels.

A wide range of class labels were used, indicating biological species (in-
cluding types of sponge, coral, algae etc.), abiotic elements (types of sand,
gravel, rock, shells etc.), and types of unknown data (ambiguous species, poor
image quality, etc.). Precise details of the labelling methodology can be found
in [17].

Recently, a standardised tree structure for biological and physical classes
for underwater species was defined as part of the Catami project [18]. By map-
ping the data set to this classification hierarchy, a complex tree of 19 classes
was obtained (See Figure 7). Note that we have merged some of the labels un-
der their ancestor nodes. These labels corresponded to species with very few
instances, because they belonged to an unknown species or a mixture class.
Despite this consolidation, the class instances remain highly unbalanced; e.g.
the “SOFT” class has 6139 instances while the “BROWN” erect-branching
algae has only 10 instances.

4 Results and Discussion

4.1 Hierarchical Classification Approaches

We present results using logistic regression (LR) classifiers, with features
derived using PCA, LBP texture features, and feature learning (FL), and
compare the sibling and inclusive policies.

Performance is measured in terms of the modified hierarchical f1-score with
the same training and validation sets described in [1]. In brief, 2/3 of the
data is used for training and 1/3 used for testing. Three-fold cross validation
within the training set is used for estimation of the Logistic Regression cost
parameter, C, in the interval [0.125-128].

2 The data set is available from http://marine.acfr.usyd.edu.au/datasets

http://marine.acfr.usyd.edu.au/datasets
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Fig. 5 Example AUV images with both true and predicted CPC labels from the
validation set. In addition, the top level hierarchy choice has been evaluated at a
large number of points, to show where the algorithm predicts BIOTA (green) and
PHYSICAL (yellow). The predictions are based on the classifier network using PCA
on 63×63 image patches, with the inclusive training policy, and MPS prediction
with a threshold of 0.5.

In Figure 6, performance using the modified hierarchical f1-score is com-
pared for the two policies across a range of image descriptors and prediction
approaches.

As can be observed, there is a clear trend that for mandatory leaf node pre-
diction, the PGM is generally superior to MPS. This is promising for future
work, as the PGM is the more principled approach, and more sophisticated
models can be used. Also, the modification to permit the network to predict
only higher level classes when less confident (using thresholding) was highly
successful at improving the performance.

In terms of inclusive and sibling policies, we obtain the same finding on
underwater images as that found using text classification [11]—no clear win-
ner. Given the sibling policy has a significant advantage in reducing training
time, it is preferred in situations where the results are comparable.

The best result was accomplished using the LBP descriptor, the inclusive
training methodology and thresholded MPS prediction with a threshold of
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Fig. 6 Comparison of Siblings and Inclusive policies using the modified hierarchical
f1-score. Each marker represents both sibling and inclusive performance on a given
feature and prediction setup. Marker size is scaled by the image patch size used.

0.5. This resulted in a tree f1-score of 80.2%. The detailed performances are
shown in Figure 7. We notice that the performance at the highest level of the
hierarchy (differentiating between biological and physical) is in the mid 80’s.
The result is also satisfactory, compared to [1]. However, for nodes without
a significant number of training instances, performance was very poor.

4.2 Hierarchical vs Flat Multi-class Classification

In order to compare the approach of the hierarchical binary network and
traditional flat multi-class classification, it was necessary to restructure the
problem. For the hierarchical approach, MPS was used to force predictions
to leaf node level. The flat classifier was comprised of the 13 leaf nodes in
the tree (selected as per Figure 2a). The test set was reduced to contain
only data that had been labelled to leaf node (as higher level labels have
no defined assignment in a leaf node flat classifier). Rather than the tree f1-
score (which also makes little sense for a flat classifier), results were evaluated
using the mean f1 score across the leaf node classifiers. As the mean f1-score
weights nodes equally, the overall results were significantly lower than the
tree f1-score. On this metric, the hierarchical classifier’s performance was
marginally higher. This was largely due to superior performance on the most
poorly performing nodes (e.g. the f1-score on Cnidaria reduced from 0.09 to
0.00) with the flat multi-class case). Note that this comparison was performed
using the siblings policy, and the best performing descriptors (Fourier LBP).
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RootNode
Tree F1-Score: 80.2%

PHYSICAL
F1-Score: 84.5%

6354 901
996 5177

HARD
F1-Score: 0.0%

13394 0
34 0

SOFT
F1-Score: 84.5%

6395 894
991 5148

BIOTA
F1-Score: 86.3%

5227 1064
907 6230

SPONGES
F1-Score: 22.9%

12532 321
459 116

ECHINODERMS
F1-Score: 0.0%

13370 0
58 0

CNIDARIA
F1-Score: 6.3%

13029 78
308 13

BRYOZOA
F1-Score: 0.0%

13324 0
104 0

OTHER
F1-Score: 0.0%

13421 0
7 0

ALGAE
F1-Score: 68.2%

11727 406
415 880

CANOPY
F1-Score: 75.0%

12535 232
125 536

ECK
F1-Score: 74.7%

12585 210
130 503

OTHER
F1-Score: 0.0%

13400 0
28 0

ERECTBRANCHING
F1-Score: 0.0%

13399 0
29 0

BROWN
F1-Score: 0.0%

13418 0
10 0

RED
F1-Score: 0.0%

13409 0
19 0

CRUSTOSE
F1-Score: 7.3%

13190 53
176 9

ECOR
F1-Score: 5.1%

13313 0
112 3

SOND
F1-Score: 3.8%

13325 33
68 2

Fig. 7 Performance results on best classifier (HLNP with thresholding, LBP fea-
tures, inclusive training set). The grid of 4 numbers is the confusion matrix for
instances in the test set, which was used to compute both the local f1-scores for
each node (red bars), and the tree f1-score (given in the RootNode box, and calcu-
lated by computing the f1-score on the sum over the local node confusion matrices).
The thickness of the grey edges between nodes is proportional to the number of
instances from the test set that belong to a given node.

Table 1 Flat multi-class and hierarchical classification comparison, tested on the
reduced leaf-node only data set

Mean f1-score

Hierarchical (trained on leaf-node training data) 0.197

Hierarchical (trained on all training data) 0.182

Flat multi-class (trained on leaf-node training data) 0.178
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5 Conclusion

We have investigated various aspects of performing supervised hierarchical
classification on sparsely labelled benthic imagery for the purpose of species
recognition. The aim was to apply techniques used in the literature from
other fields, to construct an initial solution for the automated interpretation
of AUV images.

Results have shown over a range of feature descriptors and patch sizes,
that with the PGM prediction, better results were obtained than using sim-
ple MPS. This is promising for future directions as it is a more principled
approach. However, the best results were achieved employing thresholded
MPS.

We also compared two different classifier training approaches, namely the
local sibling policy against the global inclusive policy. It was demonstrated
that comparatively, the sibling and inclusive training policies exhibit similar
performance, with the sibling option holding the advantage due to reduced
training time.

In addition, the comparison with a flat multi-class approach on the reduced
data set confirms that basic performance at leaf-node level is at least as good
as the traditional approach, using our hierarchical classification scheme.

Future work will cover a number of areas. In terms of the hierarchical
classification, we will investigate potential improvements, such as the use
of PGMs with variable depth prediction. Because the classification scheme
permits different features to be used at different nodes, another challenging
area of research will be to find ways of incorporating other sensor modalities
from the AUV (such as dense stereo information) to enhance the ability of
the classifier to distinguish between various species and objects. Although
the automated semantic labelling described in this paper has been applied as
a post-processing step, eventual incorporation as a real time algorithm on-
board the robot would have further benefits. Communication with the AUV
through water is typically performed using an acoustic modem, which has far
lower bandwidth than what is necessary to transmit raw image and sensor
data. If the robot can “understand” what it sees by assigning automated
labels, it could use that information to either adapt its behaviour, or relay it
to the human operators for monitoring and intervention.
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Mapping 3D Underwater Environments
with Smoothed Submaps

Mark VanMiddlesworth, Michael Kaess, Franz Hover, and John J. Leonard

Abstract. This paper presents a technique for improved mapping of complex un-
derwater environments. Autonomous underwater vehicles (AUVs) are becoming
valuable tools for inspection of underwater infrastructure, and can create 3D maps
of their environment using high-frequency profiling sonar. However, the quality of
these maps is limited by the drift in the vehicle’s navigation system. We have devel-
oped a technique for simultaneous localization and mapping (SLAM) by aligning
point clouds gathered over a short time scale using the iterative closest point (ICP)
algorithm. To improve alignment, we have developed a system for smoothing these
“submaps” and removing outliers. We integrate the constraints from submap align-
ment into a 6-DOF pose graph, which is optimized to estimate the full vehicle tra-
jectory over the duration of the inspection task. We present real-world results using
the Bluefin Hovering AUV, as well as analysis of a synthetic data set.

1 Introduction

Inspection of underwater infrastructure is currently a costly, time-consuming, and
dangerous task performed manually by human divers. As autonomous underwater
vehicles become more sophisticated, it will be increasingly feasible and desirable to
automate these inspection tasks. However, there are many technical challenges that

Mark VanMiddlesworth · John J. Leonard
Computer Science and Artificial Intelligence Laboratory (CSAIL),
Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
e-mail: {mvanmidd,jleonard}@mit.edu
Michael Kaess
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: kaess@cmu.edu

Franz Hover
Department of Mechanical Engineering, MIT , Cambridge, MA 02139, USA
e-mail: hover@mit.edu

L. Mejias, P. Corke, and J. Roberts (eds.), Field and Service Robotics, 17
Springer Tracts in Advanced Robotics 105,
DOI: 10.1007/978-3-319-07488-7_2, c© Springer International Publishing Switzerland 2015



18 M. VanMiddlesworth et al.

must still be overcome, particularly in the domain of localization and navigation in
complex 3D environments.

Underwater localization is particularly difficult because globally-referenced satel-
lite navigation such as GPS is rapidly attenuated in water. Underwater vehicles
must therefore either rely on inertial measurements, observations of local features,
or acoustic communication with a globally-referenced transponder for localization.
Current AUVs, such as those used for seafloor photographic and bathymetric sur-
veys, generally use a combination of these techniques.

Inspection of harbors, platforms, and other underwater infrastructure poses unique
navigational challenges beyond those of a seafloor survey. Range-based acoustic lo-
calization such as LBL is subject to multi-path interference, which is exacerbated by
the shallow depths and hard, flat walls of harbor environments. Additionally, large
metallic objects such as ship hulls render magnetic compasses largely ineffective,
requiring that heading be estimated with drift-prone inertial sensors. Finally, while
seafloor surveys can often be performed using inertial navigation and corrected in
post-processing, the collision hazards posed by underwater infrastructure require ac-
curate navigation in real time.

2 Related Work

This paper builds upon a large body of prior research in underwater simultaneous
localization and mapping (SLAM), 3D mapping, and dense point cloud alignment.
The goal of SLAM is to correct for drift in the vehicle’s dead reckoning by using
repeated observations of static landmarks in the environment. There are two broad
families of approaches: filtering and smoothing. Both approaches generally assume
Gaussian process and measurement error models.

Filtering approaches track the robot’s current pose by incrementally adding dead
reckoning and loop closure constraints. Because constraints are added incremen-
tally, this approach is naturally suited to real-time operation. Barkby et al. [2] used a
particle filter along with a bathymetric sonar to produce a 2.5D map of the seafloor
in real time. The extended Kalman filter (EKF) has been applied to imaging sonar
data [16], and forward-looking sonar [11] collected by AUVs. The extended infor-
mation filter (EIF) [21], in which the normal distribution is parameterized in terms
of its information vector and information matrix rather than its mean and covari-
ance, has a sparse structure which enables efficient computation. Walter et al. [22]
used a filtering approach to survey an underwater structure using features manually
extracted from an imaging sonar.

A disadvantage of filtering approaches is that they estimate only the current vehi-
cle pose. Because information from loop closure constraints is not back-propagated
to correct previous pose estimates, these approaches do not provide an accurate es-
timate of the entire vehicle trajectory. This is particularly problematic when adding
constraints from large loop closures, which produces discontinuities in the estimated
vehicle path.
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Fig. 1 Bluefin Hovering Autonomous Underwater Vehicle (HAUV) with Soundmetrics DID-
SON sonar

Smoothing approaches also include all past poses into the optimization. Exploit-
ing the fact that the information matrix is exactly sparse in view-based SLAM, Eu-
stice et al. [9] applied the information filtering approach to camera data from the
RMS Titanic, producing a 6-DOF trajectory estimate. Dellaert and Kaess [7] formu-
late the SLAM problem as a bipartite factor graph, and provide an efficient solution
by smoothing and mapping (SAM). Incremental smoothing and mapping (iSAM)
[13] incrementalizes the matrix factorization to efficiently integrate new constraints
without re-factoring the information matrix.

In the underwater domain, pose graphs have been shown to produce more consis-
tent maps due to their ability to correct prior navigation error and re-linearize around
the corrected trajectory. Beall et al. [3] used an offline pose-graph based smoothing
approach to estimate a full 6-DOF trajectory in a large-scale underwater photo sur-
vey. Kunz and Singh [14] applied offline pose graph optimization to visual and sonar
data. Pose graphs have been used for real-time mapping of a locally planar complex
structures such as ship hulls [12].

We chose to use a pose graph formulation for the improved handling of nonlinear
error models and large loop closures, as we expect relatively large navigation drift
in the absence of a magnetic compass. Additionally, the ability to reconstruct the
full vehicle trajectory is particularly important for inspection tasks, to verify that
the target has been fully covered by the vehicle’s sensors.

In bathymetric and photomosaicing applications, a 2.5-dimensional representa-
tion of the environment (depth map) is sufficient, but complex environments require
a full 3D representation. Fairfield et al. [10] use evidence grids inside a particle filter
to perform real-time 3D mapping of a sinkhole with an imaging sonar.

Submap alignment requires generation of loop closure constraints, which, in vi-
sual SLAM, are commonly derived using viewpoint-invariant visual features such
as SIFT. However, bathymetric and profiling sonars generally do not produce easily
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identifiable viewpoint-invariant features. If the vehicle dead reckoning is accurate
over short time periods, as is the case with most IMU and DVL based systems, the
sonar data can be aggregated into “submaps” for improved matching. The aggre-
gated point cloud data is then treated as a single measurement. Point cloud-based
approaches such as [15] and [5], which use iterative closest point (ICP) to align
submaps, have been applied to scanning laser data. However, sonar data gener-
ally exhibits much higher noise than laser scanners, complicating registration. Prior
work in the underwater domain has demonstrated success at aligning bathymetric
(2.5D) submaps using cross-correlation [18] and ICP [17] to provide constraints for
an EKF-based SLAM system; these are perhaps the most closely related to the work
presented here. However, our work differs in a few key areas. Our contributions are
as follows:

• A full 3D representation of arbitrarily complex marine environments
• Reconstruction of the entire vehicle trajectory using a pose graph
• A method of smoothing submaps for improved alignment

3 Problem Statement

Our complex area inspection missions begin with a long-range survey, which is
used to construct a rough mesh of the inspection target. This mesh is used to plan an
inspection path that covers the entire inspection target while avoiding collision. We
use the sampling-based technique described in [8] for path generation.

Data for these experiments was collected on the Bluefin Hovering Autonomous
Underwater Vehicle (HAUV), a vehicle specifically designed for ship hull inspection
(see Fig. 1). Full details of the platform can be found in [12]; here we will briefly
summarize the relevant attributes.

3.1 Navigation Sensors

The HAUV is equipped with a Honeywell HG1700 IMU, an RDI 1200kHz DVL,
and a Keller pressure sensor. The DVL can be locked downward or rotated to point
at the ship hull; in our complex-area operations, we keep the DVL locked down-
ward. The DVL and IMU are combined to provide a position estimate. The x and
y position is estimated by integrating velocities from the DVL and IMU, and are
therefore subject to long-term drift. Because magnetic compasses are unreliable in
the presence of steel structures, we do not use a magnetic compass; therefore, head-
ing ψ is also subject to drift. Depth z, pitch θ , and roll φ are all measured directly,
so they are subject to measurement noise, but not to drift.

3.2 Sonar

We use the DIDSON profiling sonar, which has an aperture 22◦ wide and 1◦ tall.
There are 96 beams comprising the width of the sonar, each of which provides
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acoustic intensity in 512 bins representing range. To extract ranges from these inten-
sities, we perform a median filter to reduce noise, then threshold the intensity and
accept the first (shortest-range) return along each beam. This somewhat reduces the
effect of multipath interference, which often appears as an echo of close objects at a
longer range. The range extraction at time t produces 2-D polar points pl

t = (θ ,r) in
the sonar coordinate frame, which are transformed into Cartesian points pt =(x,y,z)
in the vehicle coordinate frame.

We generally operate the sonar with a minimum range of 1m and maximum range
of 6m for close inspection tasks, therefore each of the 512 range bins represents
approximately 1cm. In practice, however, the range resolution is more coarse. Even
in an ideal environment, measuring a hard, flat surface in a low-noise swimming
pool, we observe that the return is generally “smeared” along several bins.

Harbor environments further degrade the quality of sonar data. Reflections from
ship hulls, surface waves, and, surprisingly often, large fish lead to spurious returns
even with aggressive filtering. From our experience, the error is generally on the
order of 5cm, with occasional larger errors up to half a meter.

On the HAUV, the DIDSON is mounted to provide a horizontal “fan” of range
returns, and can be swept 90◦vertically. Due to the sonar’s narrow field of view, we
primarily use the fixed configuration for long-range surveys. Close range surveys
consist of a series of waypoints, with the vehicle holding station while the sonar is
swept vertically.

4 Pose Graph SLAM Using Submap Alignment

Fig. 3.2 shows the high-level architecture of our system. Our task is to estimate
the vehicle pose xt = [x,y,z,ψ ,θ ,φ ] over the entire trajectory of a complex inspec-
tion task, t = [1..n]. As the vehicle moves along the inspection path, it aggregates
sonar pings into submaps. The submaps are stored in the submap catalog, and are
smoothed and aligned to provide loop closure constraints.

Fig. 2 An unfiltered submap projected alongside the prior mesh using dead reckoning, illus-
trating the approximate scale of dead reckoning error and some characteristics of unfiltered
sonar data
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Fig. 3 Architecture of submap-based SLAM

4.1 Submap Formation

To form submaps, we assume that dead reckoning is accurate over a short time
scale, and use dead reckoning to aggregate groups of consecutive sonar pings into
submaps. Each submap is assigned an anchor time, in this case halfway between the
start and end time, and is treated as a single measurement taken at the anchor time.

Choosing submap size is a balance between the submaps being large enough to
align with one another, but not so large as to incorporate significant navigation drift.
With the DIDSON in the sweeping configuration, we simply define a submap as a
single vertical sweep. When the DIDSON is locked in the horizontal configuration,
we define a minimum number of points ksub and a maximum time window for the
submaps tsub; when either threshold is reached, a submap is created. For a list of
parameter values used in our experiments, see Table 1.

When the vehicle is actively scanning a target, the points threshold ksub generally
triggers submap formation well within the time window tsub. When sonar returns are
sparse (e.g. the vehicle is transiting between inspection waypoints), the time limit
tsub will trigger submap formation. In our experiments, these sparse submaps often
produce poor alignments and are therefore not used for loop closures.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 4 A submap as it progresses through the four steps of the smoothing process. This
submap consists of a vertical portion of the middle of the propeller and a segment of the
hull, viewed from the starboard aft side. From left to right: the raw submap, submap after
voxel filter 1, submap after outlier rejection, submap after voxel filter 2, and submap after
parametric surface modeling. (a-d) wide view showing outliers. (f-j) detail shows smoothing
of propeller blades. (k-o) illustrate the relative point density at each step.

4.2 Submap Smoothing

Before aligning the submaps, we perform a filtering and smoothing operation to
reduce the sonar artifacts described above. This serves two purposes: to eliminate
spurious returns caused by acoustic reflections, fish, etc., and to achieve a more uni-
form point density for better alignment. We rely primarily on the implementations
found in the freely-available Point Cloud Library [19].

The first step is a voxel filter, in which the submap is divided into cubes of size v1,
and if multiple points occupy the same cube, they are removed and replaced with
a single point at their centroid. We choose v1 to be 2cm, which is approximately
the spacing between DIDSON beams at medium range. Thus the first voxel filter
serves to remove “redundant” data without significantly reducing the resolution of
the submap.

Second, we perform k-nearest-neighbor outlier rejection, in which points are re-
jected if the average distance to their knn nearest neighbors is > σnn standard devia-
tions above the mean (for details and implementation, see [20]). This is effective at
removing artifacts caused by electrical noise, minor multipath reflections, and small
fish (we leave systematic multipath interference and large fish for future work).
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The third step is a larger voxel filter of size v2. The goal of this step is to produce
a cloud of roughly uniform density, as the parametric surface modeling in step 4 is
sensitive to variations in point density. Therefore, we choose v2 to be roughly the
distance covered between DIDSON frames (5-10 Hz) when the vehicle is moving at
speed (.5-1 m/s), giving us v2 ≈ 10cm. This step has the effect of combining adjacent
points from within DIDSON frames, so that their spacing more closely matches the
spacing between frames.

Finally, the resulting points are smoothed using a local parametric approxima-
tion as described in [1]. For each point, a polynomial surface is constructed which
minimizes the mean squared error to points within a radius r. The point normal is
estimated as the normal to the parametric surface, and the point is projected onto the
surface. The surface normal is also stored for each point, as it will be utilized in the
alignment step. 1

After smoothing, the smoothed submap and surface normals are stored in the
submap catalog and used for alignment, while the full-resolution unprocessed
submap is retained for reprojection into the final map. For an illustration of submaps
at each step of the smoothing process, see Fig. 4.

4.3 Submap Alignment

We align submaps using Iterative Closest Point [4], an algorithm for aligning a set of
measurement points (also called source points) to a target model by iteratively com-
puting rigid transformations that minimize the sum of squared distances between
the points and target model. Each measurement point is represented in Cartesian
coordinates as p = [x,y,z], and the target can be any model that allows computation
of distances to a point, such as a parametric surface, line, or another point cloud.
In our case, we have normal estimates for each submap, so we use point-to-plane
distances in computing the transform.

For measurement points p′i corresponding to target points pi with normals ni in
the target, ICP computes the rigid transform T that minimizes the sum of square
errors between the measurement set and the target set:

∑
i
||(p′i −T pi) ·ni||2 (1)

When a suitable alignment is found, we transform the anchor pose of the source
submap, and formulate a relative constraint between the source and target anchor
poses. This constraint is added as a factor in the pose graph.

1 While the previous steps were fairly well-grounded in sonar geometry and error character-
istics, it is not immediately obvious why step 4, parametric surface modeling, is appropri-
ate. In the general case, there is no reason to expect arbitrary input data to form a smooth
manifold. However, in the underwater inspection domain, we find this technique justified
for two reasons (beyond its empirical effectiveness). First, we make the general observa-
tion that the seafloor is, although not strictly polynomial, almost by definition a watertight
manifold. Second, many of our inspection targets are anthropogenic structures which do,
in fact, have a good polynomial approximation.
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ICP is known to be highly sensitive to initialization, due to the local minima
which are often present in the cost function. If not initialized close to the correct
solution, it will converge to the wrong local minimum. We address this issue in
two ways. First, we initialize ICP with the most recent estimate of the relative po-
sition of the source and target poses. This is equivalent to assuming that the dead
reckoning between the last correctly-aligned pose and the current pose is within the
region of attraction of the correct alignment. Second, we assign a fitness score to
each alignment that represents the normalized sum of squared distances between
corresponding points. Smaller fitness scores represent better alignments. If the fit-
ness score exceeds a threshold α , we reject the alignment and do not add a loop
closure constraint to the pose graph. This threshold is dependent on the scope of the
data set, point density, and noise levels; we found α = .1 to be a reasonable value
for our experiments.

For the purposes of this work, we assume data association is known; future work
will address the issue of determining which pairs of submaps from the catalog to
align.

4.4 Pose Graph Construction

We formulate the pose graph as a factor graph, in which nodes represent poses
and factors represent constraints between poses, following the formulation in [13].
Specifically, a factor graph G = (F ,Q,E ) is comprised of factor nodes fi ∈F and
variable nodes qi ∈Q. An edge ei j ∈ E exists if factor node fi depends on variable
node q j. Our goal is to find the maximizing variable assignment

Q∗ = argmax
Q

∏
i

fi(Qi), (2)

where Qi is the set of variables adjacent to the factor fi.
We construct a pose graph using constraints from dead reckoning and submap

alignments. Dead reckoning constraints are periodically added, with a conserva-
tive covariance based on our sensor properties. When we get a match between two
submaps, it is formulated as a relative constraint between the two corresponding
anchor poses.

We estimate the covariance of a submap alignment constraint using a conserva-
tive heuristic based on the normalized covariance of the points in the source submap.
While not exact, this provides an intuitively reasonable approximation. For example:
alignment of the Y-Z plane would have higher certainty along the surface normal (X
axis), and alignment of a uniform ball of points would be considered equally certain
in all directions.

As constraints are added, they are incorporated incrementally, without costly
variable re-ordering or redundant computation. The full batch optimization using
Gauss-Newton, including variable reordering, is performed asynchronously in the
background. This enables real-time operation, even for large pose graphs.
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Fig. 5 Planned path for inspecting the propeller of the USS Saratoga

5 Results

We tested our system in an underwater inspection scenario on the USS Saratoga,
a decommissioned aircraft carrier in Newport, RI. We performed a survey of the
running gear, including the approximately 7m diameter propeller and a section of
the hull above the propeller. The survey consisted of three vertical track lines from
5-6m range with the DIDSON in fixed mode, followed by 24 close-range waypoints
at which the DIDSON was swept vertically. The trajectory was generated by En-
glot and Hover’s sampling-based coverage planning [8]; the planned path is shown
in Fig. 5. The entire trajectory took approximately 1200 seconds to execute. For
a summary of the parameters used for our submap smoothing and alignment, see
Table 1.

We do not have ground truth for this data set, but we estimate that the navigation
drift was on the order of 30cm over the course of the survey. For an illustration of
the navigation drift, see Fig. 2.

A mesh generated from our inspection trajectory is show in Fig. 6(b). The raw
point cloud was denoised and smoothed using a variant of our submap smoothing

Table 1 Key parameters for submap formation, smoothing, and alignment

ksub 500 Submap formation: min. points per submap
tsub 25 sec Submap formation: max. time per submap
v1 2 cm Voxel filter 1: size
knn 50 Outlier rejection: # neighbors considered
σnn 2 Outlier rejection: std. dev. limit
v2 10 cm Voxel filter 2: size
r 0.3 m Polynomial surface modeling: radius
α .1 Submap alignment: fitness threshold
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algorithm described in Section 4.2. It was then meshed with a simple greedy trian-
gulation. The raw sonar returns, reprojected from the optimized vehicle trajectory,
can be seen in Fig. 6(a). Behind the propeller, the drive shaft is visible, along with a
support strut. Note the high number of spurious sonar returns. Because the ship was
not operational, it had a significant amount of growth on the propeller and shaft, and
had become a habitat for fish, oysters, and other marine life.

(a) (b)

Fig. 6 (a): The final point cloud from the propeller inspection trajectory. Raw submaps
have been reprojected according to the SLAM-corrected trajectory, and points are colored
by submap. (b): A smoothed mesh generated from the raw point cloud.

To isolate the effect of pose graph alignment, we also generated a partially syn-
thetic data set based on the actual vehicle trajectory. We corrupted the vehicle trajec-
tory with navigation drift, simulated by incrementally adding zero-mean Gaussian
noise to dead reckoning measurements of x, y, and ψ state variables. We used a stan-
dard deviation of .01m for x and y, and .00001 radian for ψ , accumulating at 20Hz.
We also added zero-mean Gaussian noise to the absolute measurements of z, θ , and
φ to simulate increased measurement noise without drift. We also added synthetic
sonar measurements created from the actual vehicle trajectory and a high-resolution
sonar map of the propeller gathered in a previous experiment. To simulate sonar
pings at each waypoint, we extracted points in the sonar field of view, downsampled
them to the sonar resolution, and added Gaussian noise with a standard deviation
of 5cm.

Fig. 7 shows the reprojected clouds from our synthetic data set, using the dead
reckoning (left) and SLAM (right) trajectories. As is apparent, the dead reckon-
ing error caused misalignment in the reprojection, which is corrected in our SLAM
framework. Fig. 8 shows the average per-pose trajectory error over time. At each
loop closure event, the SLAM error is reduced, while the dead reckoning error con-
tinues to accumulate. Note that, in the SLAM reprojection, the sonar noise domi-
nates the alignment error, even though the trajectory is estimated based on the noisy
sonar returns. We attribute this to our smoothing procedure detailed in Section 4.2.
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Fig. 7 Comparison of point clouds generated from dead reckoning (left) vs. SLAM (right)
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Fig. 8 Average per-pose error over time

6 Conclusion

We have presented a system for submap-based loop closure in 3D underwater map-
ping, and demonstrated its use on real and synthetic data sets. By smoothing the
submaps before alignment, we have reduced the effect of the spurious returns fre-
quently found in cluttered and heavily biofouled environments. By regularizing
point cloud density, our system is able to combine submaps of varying resolution,
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while retaining the full-resolution point clouds for reprojection into the final map.
Using a pose graph framework, we are able to reconstruct the entire vehicle trajec-
tory, which is necessary to ensure full coverage of the inspection target. Our system
runs in real time, and it is robust to moderate amounts of sonar noise and navigation
drift.

7 Future Work

This effort suggests many areas for future research. We have a simple threshold-
based system for outlier rejection, but a fully probabilistic solution could potentially
improve our results. We would also like to experiment with different alignment tech-
niques, such as multi-scale ICP or the normal distribution transform.

We could potentially further reduce error by using a volumetric, rather than point-
based, reconstruction. For example, the signed distance function [6] combines mul-
tiple measurements into a single implicit surface model. This has been used to great
effect with RGBD cameras, and we suspect it may help reduce the sonar noise still
present in our final models. A drawback of naive volumetric techniques is that mis-
alignments are incorporated into the final model and affect all subsequent align-
ments. Perhaps a hybrid system, which used our pose graph technique for initial
trajectory estimates and a volumetric reconstruction for further refinement, could
combine the benefits of volumetric techniques with the flexibility of pose graph
SLAM.
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Towards Autonomous Mobile Robots for the
Exploration of Steep Terrain

Braden Stenning, Lauren Bajin, Christine Robson, Valentin Peretroukhin,
Gordon R. Osinski, and Timothy D. Barfoot

Abstract. Steep, natural terrain offers excellent opportunities for scientific inves-
tigations into the composition and history of Mars and other planetary bodies. In
this paper, we present a prototype tethered robot, vScout (vertical scout), capable of
operating in steep, rugged terrain. The primary purpose of this vehicle is to support
field geologists conducting research on cliffs, in canyons, and on crater walls. How-
ever, the long-term vision is to develop a system suitable for planetary exploration
(and more diverse terrestrial applications). Unlike other systems for exploration in
steep terrain, vScout has demonstrated autonomous operation on steep surfaces by
making use of a network of reusable paths and visual teach & repeat. Here we de-
scribe the first vScout prototype and our experiences with it. We also outline some
challenges and the directions we intend to take with this research.

1 Introduction

In this paper, we present vScout1 (vertical scout), a prototype tethered mobile robot
with autonomous capabilities. It can operate in terrain ranging from flat to a sheer
vertical drop. Figure 1 shows a photo of the vScout prototype operating in steep,
rough terrain at the Canadian Space Agency’s Mars Emulation Terrain.

Long-range observations of steep, natural terrain (see Figure 2) have yielded fas-
cinating clues to the composition, history, and the current geological processes that
are active on Mars. The exposed strata are a glimpse at the subsurface without the
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Fig. 1 The vScout prototype operating in steep, rough terrain in the Mars Emulation Terrain
at the Canadian Space Agency in St. Hubert, Quebec, Canada, June 2013. Video from this
test is available at: http://youtu.be/z5ud7k9ozvQ

Fig. 2 Steep terrain on Mars. Left: gullies on the wall of Mariner Crater, image:
NASA/JPL/University of Arizona. Right: perspective view of Echus Chasma, credits:
ESA/DLR/ FU Berlin (G. Neukum)

http://youtu.be/z5ud7k9ozvQ
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Fig. 3 Steep terrain at the newly discovered site of one of the world’s largest meteorite
impact craters (Victoria Island, Northwest Territories, Canada). Development of the vScout is
aimed at allowing access to terrain that is scientifically important, but currently not practically
accessible

need for difficult excavation or deep drilling. Yet while we have learned much from
a distance, many important questions will remain unanswered while planetary sci-
entists are without detailed local terrain models, in situ measurements, and sam-
ples returned from these steep surfaces. To obtain these we must physically access
these areas. Unfortunately, steep, natural terrain is inaccessible to current planetary
rovers. It is for this very reason that the Mars Science Laboratory rover Curiosity
was landed inside Gale crater on Mars. There are only a small number of fielded
research systems capable of operating in steep terrain, and fewer capable of explor-
ing rugged, vertical cliffs [2, 6, 11]. To our knowledge, even though there has been
some development of theoretical approaches to autonomy, none of these capabilities
have been demonstrated in steep terrain. Autonomy is very desirable in space ex-
ploration where communications delays can make continuous, direct teleoperation
far too slow or even impossible.

The Axel rover [11], in particular, is a robot for steep terrain that has been devel-
oped for space exploration. With vScout we are taking a different approach. Instead
of directly targeting space exploration, we are looking to support field geologists do-
ing work in remote areas on Earth. For an example site, see Figure 3. Even on Earth,
access to steep terrain is at best difficult and time-consuming to do safely, and often
it is simply not feasible because of safety, logistics, or the available time. We be-
lieve that by using existing guidance, navigation, and control (GN&C) techniques
that leverage the expertise of a human operator, we can create a tool useful to sci-
entific investigations on Earth, and that the terrestrial benefits of such a system will
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make it natural and reasonable to demand and expect similar capabilities in plane-
tary exploration. This is certainly an ambitious proposal. In this paper we present the
first steps toward this goal and we show preliminary results. We also outline some
challenges we are working on and the directions of future research.

The remainder of this paper is as follows: Section 2 provides background in-
formation, Section 3 describes the vScout, Section 4 details the testing, the paper
finishes with challenges and future work (Section 5), and conclusions (Section 6).

2 Background

The background is divided into two parts: i) an overview of robots for use in steep
terrain, and ii) an overview of visual teach & repeat and a network of reusable paths,
a technology that is used for the autonomous operation of vScout.

2.1 Robots for Steep, Natural Terrain

Robots have excelled at operating in some environments too dangerous for humans.
This includes some types of steep areas. Although the discipline is small, the re-
search into vertical robots has developed several promising approaches to access
steep, natural terrain. Currently, none of these systems are available for regular use
either because their capabilities are too limited, their cost is too high, or the deploy-
ment and operations logistics are too burdensome.

Some research has been done on developing robots that climb like humans or
other more capable primates (e.g., Capuchin [16]). Similarly, other biologically in-
spired designs (e.g., RiSE [14]) can climb up from below with no rope (except
perhaps as a safety line); however, the prototypes are still quite slow, require spe-
cific types of surfaces, or significant advances are necessary before they can reliably
operate in natural environments. There are also systems that are designed for use
in specialized (usually human-made) environments. For example, there are systems
that have made use of magnets [5], suction [3], microspines [7], or adhesives [10].
However, the assumptions made about the surfaces and structures make general as-is
use of these systems unlikely in natural terrain.

One of the most studied techniques is to have the robot descend from above using
a tether. Notable examples are Dante II [2], TRESSA [6], and Axel [11]. These
systems have been field tested and they can all operate on vertical slopes.

The Dante II rover [2] was an 8-legged frame walking robot used to explore
Mt. Spurr, a remote Alaskan volcano, in 1994. This large robot (nearly 800 kg)
was teleoperated from a remote location using onboard television cameras and laser
rangefinders. The power and communications links were through the tether. Over
the course of more than five days, Dante II was used to successfully complete the
primary objectives of the mission. However, while it was returning to the lip of
the crater, it ended up tipping over. It was eventually recovered using a helicopter
and two people who hiked down to attached a sling. This experience highlights
two of the many significant challenges to operating in steep terrain: i) the need for
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situational awareness (Dante II’s laser rangefinder was inoperable at the time of
tip-over), and ii) the fact that recovery in the event of mishap may be dangerous,
expensive, or even impossible. If these robotic tools are to be used regularly they
should, on average, be much safer and less expensive that the alternatives.

As demonstrated in Dante II and the other systems, the tether can allow operation
on steep terrain, but it also makes significant lateral movement challenging. The
TRESSA [6] system attempts to improve the lateral mobility by having two mobile
robots at the top that are tethered to a single four-wheel Cliffbot on the steep surface.
This will work well in fairly smooth steep areas but in rougher terrain it may even
further complicate and limit the mobility.

The TRESSA system stores the tether at the top of the steep terrain. While this
approach does reduce the weight of the vehicle on the cliff, it will also increase
the wear on the tether and eventually limit the range of the tethered vehicle (once
the tether drag along the ground reaches the limit of what the vehicle can pull). An
alternative is the have the tether stowed on and deployed from the descent vehicle
(as done by Dante II [2] and Axel [11]).

The Axel rover [11] is a two-wheeled minimalist chassis that has undergone sev-
eral iterations. Unlike the other systems that have been mentioned, Axel can operate
even if it is flipped over. Its two wheels are on either end of the cylindrical body and
an arm extends from mid-width keeping the tether away from the main body. The
tether arm can be actively controlled for improved rover mobility and to keep the
tether off the ground. There has been some theoretical work done on path planning
for Axel [1], but our understanding is that it has yet to move beyond simulation.

Like Dante II, Axel’s power and communication links are through the tether.
There are strong reasons for using the tether for more than simply mechanical sup-
port. Onboard power is a significant challenge in mobile robotics. It can be heavy
and/or expensive, and the inclusion of heavy systems (such as onboard batteries
or gas generators) can lead to increased structure and actuator costs. Additionally,
these self-contained power systems have limited capacity and this limits the maxi-
mum mission duration (thus the vehicle cannot loiter for extended periods of time).

Similarly, a communications link integrated into the tether avoids the challenge
of reliable, high-speed wireless communications. Wireless communications become
difficult or impossible when there is no line-of-sight (over-the-edge). Long range an-
tennas can be bulky and will have pointing issues. Finally, wireless communications
can use a lot of power, thus exacerbating the challenges of onboard power.

2.2 Visual Teach & Repeat and a Network of Reusable Paths

We have some background experience with visual navigation and we believe it will
be appropriate for use on vScout. Visual teach & repeat (VT&R) [4, 9] allows a
robot to drive arbitrarily long distances, without the use of GPS, along previously
established routes. In these systems, a chain of small maps is attached along the
robot’s path (estimated using visual odometry [8]) during a teaching phase; to repeat
the path, the robot localizes against each small map in sequence as it drives. This
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Fig. 4 Stereo-camera-based visual teach & repeat onboard the vScout. When repeating a
taught route, localization against the map is interleaved with visual odometry (VO). The map
tracks show the keypoints that have been matched between the taught route and the current
stereo image pair. The VO tracks show the keypoint matches between the current stereo pair
and the previous pair.

Fig. 5 A network of reusable paths (NRP) makes use of visual teach & repeat (VT&R).
VT&R is a single chain of poses that the robot can repeat in either direction. NRP uses
VT&R and extends it to an arbitrary network, allowing the robot to return to any previously
visited pose. We use both VT&R and NRP on vScout.

local map approach works well regardless of the nature of the surface on which the
robot is driving. Figure 4 shows images from stereo-camera-based VT&R onboard
the vScout while repeating a path. The keypoints from the current image (right)
are matched against the keypoints from the taught image (left). Visual odometry
(center) is used to estimate the motion before attempting to match against the map.

The network of reusable paths (NRP) concept extends VT&R systems from us-
ing a simple chain of local maps, to an arbitrary network of local maps [15] (see
Figure 5). The robot can return to any point on the network at any time, and by
driving into new areas, the network can be extended.

On vScout, we currently use both VT&R and NRP to leverage human expertise
in terrain assessment and path planning. Once a path has been taught, vScout can
be entrusted to repeat it, in either direction, and the operator no longer needs to
directly control the vehicle, a tedious and difficult task. Eventually we would like
to have vScout autonomously teach new paths as well as repeat them. This means
incorporating suitable terrain assessment and path planning capabilities. We have
done this for other rovers [15] but not yet for systems in steep terrain.
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3 The vScout

This section describes the current vScout proof-of-concept prototype. Our philoso-
phy with this research has been that field experience will guide the design. There-
fore, our priority has been to develop an end-to-end system rapidly, even though it
is not always consistent with the long-term vision at a component level. At some
points in this text we note where the long-term vision differs from the prototype and
a more complete discussion of the differences is in Section 5. This section is divided
into four parts: i) a description of the use scenario (Section 3.1), ii) a description of
the hardware configuration (Section 3.2), iii) detail on the powered ascender mech-
anism (Section 3.3), and iv) an overview of the onboard GN&C (Section 3.4).

3.1 High-level Scenario

The vScout was developed with the goal of aiding field geologists. The ultimate goal
is simply to have a user press a button and have the robot autonomously descend,
map and document everything it can, and come back up, while carrying standard
geological instruments. This preliminary system is working toward that goal. The
following high-level scenario outlines how this first prototype is intended to be used.

1. Outfit the vScout with the desired measurement package.
2. Position the vScout near the top of the steep terrain and create a secure anchor.
3. As necessary:

• Move to get a better view to remote control the vScout.
This may be above, below, to the side, or even across from the cliff. Direct
observation is used to augment data from the onboard cameras and sensors.

• Manually drive the robot into new areas and add to the NRP.
• Automatically generate/update a 3D model of the terrain.
• Autonomously return to any previously visited point on the network.

4. When done at a site, command the vehicle to autonomously return to the start.

3.2 Hardware Overview

The vScout is a tethered robot designed to descend from an anchor near the top
of steep terrain. For this first version we retrofitted a Husky A200 from Clearpath
Robotics (see a schematic of the prototype system at the top of Figure 6). On the
back of the Husky is an ascender (described in detail in Section 3.3). The ascender
allows the robot to hang suspended by a 8 mm climbing rope (see Figure 7).

A Point Grey Bumblebee XB3 stereo camera is mounted on a mast facing the
front of the vehicle (away from the tether). We also tried mounting the camera near
the front and rear of the vehicle, as seen in photos of the vScout. There is an onboard
laptop computer used for navigation and data logging. There is also a wireless con-
nection used to connect the operator station to the vehicle. The system has a mass
of approximately 70 kg, and dimensions of approximately 130 cm long and 70 cm
wide. The highest point is approximately 95 cm off the ground.
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Fig. 6 Schematics of the current prototype (top) and the proposed next-generation vScout
(bottom). The current prototype uses VT&R/NRP with manually taught paths. The goal even-
tual system is to have the vScout, with the push of a button, autonomously descend, map, and
return to the top of the cliff. More details on the proposed system are available in Section 5.

Fig. 7 The vScout on vertical terrain (left). The ascender, on spring-loaded rails that pivot,
was attached to the back of a Clearpath Robotics Husky A200. The pivot angle could be
measured and the tension in the tether could be estimated based on the displacement of the
spring-loaded rails.
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Fig. 8 A model of the ascender mechanism (left) and a profile of the grooved top pulley
(right)

3.3 The Ascender Mechanism

The ascender assembly was mounted on the back of the Husky, as seen in Figure 7.
It was free to passively pivot from side to side, and it could also slide on spring-
loaded rails. The rails had the dual use of providing suspension to the system and,
by measuring the displacement, we could estimate the tension in the tether.

The main part of the ascender consists of three wheels (see Figure 8). The middle
wheel is grooved and attached to an electric motor. The other two wheels are idlers
that are connected to each other through a spring-loaded mechanical linkage. The
idlers slide in the x-direction and pinch the rope against the grooved pulley. The
following analysis shows that the tether will not slip if the coefficient of friction
between the aluminum and the tether is sufficiently high.

Assume that the tether cross-section is not deformable. Then the equivalent co-
efficient of friction for the groove, μv, as a function of the coefficient of friction
between the materials of the tether and the pulley, μ , is

μv = μ/sinβ , (1)

where β is the groove angle as shown in the right of Figure 8.
The capstan equation is a way to model the load that a tether wrapped around a

smooth cylinder can hold without slipping. The high-tension end of the tether has
a load of Thigh and the low-tension end of the tether has a load of Tlow. The angle
swept by the tether is φ . The capstan equation is

Thigh ≤ Tloweμφ . (2)

Considering the model of the ascender shown in the left of Figure 8, and using the
relations from (1) and (2), we can write the no-slip holding load of the ascender as,

T2 ≤ (μvP1 +T1)eμvφ , (3)
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where T2 and T1 are the high-tension and low-tension loads on the tether, and P1 is
the pinching force between the grooved pulley and the right idler wheel. In this anal-
ysis we conservatively assume T1 = 0. Due to the geometry of the pulleys and na-
ture of the spring-loaded bar connecting the idlers, when T2 is high, P1 = T2/cosθ1,
where θ1 is the angle of the pinching force, P1, as shown in Figure 8. This means
the equation (3), which governs the holding force of the ascender, simplifies to

μ
1

sinβ cosθ1
e

μ 1
sinβ φ ≥ 1. (4)

If the inequality in (4) is satisfied, the tether will not slip. 	

The threshold coefficient of friction, μthresh, beyond which slip will occur, can be

found by solving

μthresh
1

sinβ cosθ1
e

μthresh
1

sinβ φ
= 1. (5)

The geometry of the mechanism is such that: β = 21◦, θ1 = 55◦, and φ = 245◦, and
therefore, μthresh = 0.08. We have measured μ to be between 0.3 and 0.35 using an
inclined plane test. Since μ ≥ μthresh, the ascender on the vScout should not allow
the tether to slip. In practice, we have not had the rope slip while it is under tension.

3.4 The Onboard Guidance, Navigation & Control System

VT&R and NRP use the stereo camera in order to allow vScout to return to any
previous point. The paths are taught by an operator remote controlling the robot.
The path tracker is that same as in previous VT&R/NRP systems [9, 15]. It does
not consider the slope of the terrain. The tether controller was designed to keep the
tether tight while keeping the tether speed near the speed of the vehicle. The control
law governing the speed of the tether, vt , is

vt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1vr Tt ≥ Tthresh and vv ≤ 0

k2vr Tt ≥ Tthresh and vv > 0

k1vr + k3 Tt < Tthresh and vv ≤ 0

k4 Tt < Tthresh and vv > 0

, (6)

where, vv is the speed of the vehicle in the x-direction (i.e., vv > 0 is moving forward,
and vv < 0 is moving in reverse). The measured tether tension is Tt , and the threshold
tension defines the point below which the tether is considered slack. The gains, k1

and k2, are set close to 1, with k1 ≥ 1 and k2 ≤ 1. The gains k3 and k4 are used
when the tether is slack, in order to take up slack, they are set so that k3 ≤ 0 and
k4 ≤ 0. This approach worked well enough in these tests, but there is much room
for improvement. For instance, this approach leads to higher-than-necessary tether
loads, and therefore power usage. We anticipate that the path-tracking and tether
controllers (especially in the context of repeating a previous path) will be active
areas of future research.
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Fig. 9 A time-lapse view of the vScout operating on the Dome at UTIAS. The vScout used a
network of reusable paths. It was manually taught a path and then it was able to autonomously
repeat that path to return to any previously visited point.

4 Testing

The first two sets of testing we did were on a steep building (the Dome) near our
lab2, and at the Mars Emulation Terrain at the Canadian Space Agency3 (see Fig-
ure 1). Those first two sets of testing were entirely manually controlled. In later tests
on the Dome and the steep walls of a ravine, vScout demonstrated autonomous be-
havior that made use of visual teach & repeat and a network of reusable paths. The
operator manually taught the paths, using their skill and judgment to establish safe
routes, and the robot would autonomously repeat the paths.

In total, we conducted five tests that made use of VT&R on the ravine wall, four
tests of VT&R on the Dome, and five tests of NRP on the Dome. Figure 9 shows

2 A video of the first ascent of the Dome at UTIAS: http://youtu.be/o2hrGYYP9b8
3 A video of vScout at the CSA’s Mars Emulation Terrain:
http://youtu.be/z5ud7k9ozvQ

http://youtu.be/o2hrGYYP9b8
http://youtu.be/z5ud7k9ozvQ
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Fig. 10 The vScout in the ravine (left). A 3D model of the terrain from the first test using
VT&R on the ravine wall (right). The model was made using Mobile Scene Modeler (mSM)
from MDA.

the fourth test of NRP on the Dome4. In that test the vScout was first taught the path
on the far right of Figure 9. It then autonomously reversed the path until the human
operator took control and taught another branch in the network. This same process
was repeated for all five branches in this network.

The vScout repeated all paths and networks on the Dome, and it was able to lo-
calize relative to the taught path. The repetitive texture of the corrugated steel was
challenging for the localization system, but the discolorations created a unique, if
relatively sparse, constellation of distinctive features. Additionally, the localization
framerate (1̃0 Hz) was fast relative to the speed of the vehicle (≤ 0.25 m/s). How-
ever, the loose terrain of the ravine, combined with the orientation of the stereo
camera (pointing down in front of the vScout in order to collect imagery for map
building), meant that the appearance of the scene would change dramatically be-
tween teach and repeat phases (because the vScout would disturb the soil as it drove
over). This made it difficult for VT&R to localize against the map, and instead the
system had to use solely visual odometry to estimate its pose. A possible solution
is to use a stereo camera that is pointed to the side in order to minimize the chance
of driving over the visual features used for localization. However, this would mean
that another camera would be needed in order to see in front of the vScout.

After each test, we used the stereo camera imagery to construct a 3D model of
the terrain. This was done by MDA’s Mobile Scene Modeler (mSM) [13]. Figure 10
shows the model generated during the first test of VT&R on the ravine wall. Only
the outbound images (i.e., the images from teaching the path) were used to build the

4 A video of the fourth NRP test on the Dome is at: http://youtu.be/fAQiyHssJYM

http://youtu.be/fAQiyHssJYM


Towards Autonomous Mobile Robots for the Exploration of Steep Terrain 45

models in order to avoid the previously noted problem where the vehicle changes
the visual appearance of the scene.

5 Challenges and Future Works

Using this first prototype has led to many valuable lessons, these are listed below.

1. The configuration of the terrain directly under the vehicle was critical knowledge
for the operator when the vScout was in rough terrain.
- Later vScout designs will use more sensors and algorithms to give the remote

operator better awareness of the terrain under the vehicle. These will also
likely act as the foundation for terrain assessment and path planning capabil-
ities necessary for one-button autonomous descent, mapping, and return.

2. The ability to attach to or detach from the tether at mid length was particularly
useful (as opposed to having to thread the tether through the ascender). This gave
us the opportunity to quickly start the vScout from the bottom rather than the top.

3. The vehicle was more maneuverable in steep terrain with only two wheels on the
ground (like Axel). However, the four wheels helped when overcoming obstacles.

4. The vehicle spent a great deal of the time with its underside in contact with the
terrain. This reinforces the need for a good skid plate and adequate protection for
any cameras underneath the vehicle.
- We embraced the fact that this prototype would often scrape, bang, or high-

center during operation. In later prototypes we will modify the design to re-
duce the chance of the vehicle getting caught (e.g., streamline the ascender).

5. The tether was not only useful in steep areas, but also quite beneficial on flat, but
rough, terrain. The tether could be used to simply pull the vehicle off if the robot
got stuck, and it provided a great deal of stability that made a tip-over seem much
less likely when traversing hazards.

We have also experienced other challenges which we expect to address is the next
vScout. For instance, path tracking will become difficult as we begin to have the ve-
hicle move more laterally on steep terrain. However, our lab is currently developing
a learning path tracking controller [12], that, when combined with improved tether
control, may offer a solution.

Additionally, we are already testing the limits of our current version of VT&R
and NRP. Prior to vScout, we had only used VT&R in relatively flat terrain. This has
meant that the path was able to be reversed with the vehicle in the same orientation,
and consequently the rigidly mounted camera was also in the same orientation and it
saw the same scene regardless of whether the vehicle is traveling forward or reverse.
However, when a skid-steer vehicle is operating on steep slopes, it must turn into the
slope in order to track cross-slope paths. This means the vehicle orientation depends
on the direction of travel, and a rigidly mounted camera is no longer feasible. Some
possible solutions are to use cameras with a 360◦ field of view or a camera mounted
on a pan-tilt unit.
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Finally, in the next vScout, as in the bottom of Figure 6, there will be a tether
stowage system. The tether will also be used to transmit power and communications
to the vehicle. This should help avoid the risk of fouling the tether in the wheels,
improve communications, and reduce battery weight.

6 Conclusions

This paper presented a prototype tethered robot, called vScout, intended to help
field geologists in the exploration of steep terrain. The long-term objective is to de-
velop technologies to enable the exploration of vertical surfaces on other planets.
The system has been used at several sites where it operated under manual control
and at times autonomously, and built a three-dimensional model of the terrain. The
autonomous capabilities make use of VT&R and NRP to repeat previously trav-
eled routes. Later versions of the hardware, software, and operations scenarios will
build on our experiences with this first system, leading toward a vScout that will
autonomously descend, map, and return, all with the push of a button.
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Drivable Road Detection with 3D Point Clouds
Based on the MRF for Intelligent Vehicle

Jaemin Byun, Ki-in Na, Beom-su Seo, and Myungchan Roh

Abstract. In this paper, a reliable road/obstacle detection with 3D point cloud for
intelligent vehicle on a variety of challenging environments (undulated road and/or
uphill/ downhill) is handled. For robust detection of road we propose the followings:
1) correction of 3D point cloud distorted by the motion of vehicle (high speed and
heading up and down) incorporating vehicle posture information; 2) guideline for
the best selection of the proper features such as gradient value, height average of
neighboring node; 3) transformation of the road detection problem into a classifica-
tion problem of different features; and 4) inference algorithm based on MRF with
the loopy belief propagation for the area that the LIDAR does not cover. In experi-
ments, we use a publicly available dataset as well as numerous scans acquired by the
HDL-64E sensor mounted on experimental vehicle in inner city traffic scenes. The
results show that the proposed method is more robust and reliable than the conven-
tional approach based on the height value on the variety of challenging environment.

1 Introduction

The accurate perception of the environment is a very important step to drive au-
tonomously for an intelligent vehicle, namely the detection of road area and obsta-
cle. The road and obstacle detection are being nearly performed by using a various
kind of sensors. Many teams participating in the DARPA Urban Challenge have
nearly performed based on the data acquired by 2D range sensors for road region
and obstacle detection [17, 10, 1, 2] . However, these sensors scan the environment
along a plane within a limited viewing angle, thus the objects above or below this
plane cannot be detected. A number of approaches focused on the use of vision
exclusively have been studied for decades [18],[12]. The fusion of the range and
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vision data that allows a richer description of the world have been developed
[5],[14]. Recently, a three-dimensional range-scanner which provides 3D point
cloud instead of 2D slice of the environment have been commercially introduced.
Although there has been an overwhelming amount of work on perception in 2D and
2.5D, but the problem of perception in 3D has been addressed by comparatively
fewer researchers yet. One of its main reasons is the enormous amount of data pro-
vided by 3D sensors. The amount of data in a single scan of 3D sensor is usually
several times larger than that of a 2D scan. Therefore, how to build consistent and
efficient 2D representations out of 3D range data is important for the sensor data
processing as well as road/obstacle detection. Improving on earlier these work, the
main contribution of this paper is a method for efficient road detection based on
MRF with LBP(Loopy Belief Propagation). We also employ a cylindrical 2D grid
map with the different size of cell corresponding to the distance from vehicle. Be-
sides, our objective is to present a method that can detect accurately drivable road
and obstacle regions in a variety of challenging environment such as undulated road,
uphill/downhill, rolling /pitching of the host vehicle as shown in Fig. 1.

In our work, the 3D range data is acquired by a Velodyne HDL-64E sensor as
shown in the Fig.1-(b), which is mounted on the top of the vehicle, it is covering
a total vertical range of approximately 25 degrees. To obtain data from the whole
environment, the laser scanner rotates at a speed of 10 Hz. A data packet from
the LIDAR consists of the rotational angle of the scanner itself, the range and the
intensity measurement of each laser. From this data, a complete scan of the environ-
ment can be computed. By the way, the motion of vehicle itself would affect these
3D data information as the sensor is mounted moving on the vehicle. To remove
the distortion that is caused by the movement of the vehicle during one revolution,
the paper presents the strategy that involve in correction process through estimating
the posture of vehicle. The paper is organized as follows. In the next section we
give an outline of relevant works, followed by the detailed description of our ap-
proach. Experimental results are given in section 5. Section 6 concludes this paper
and provides a perspective for future research in this area.

Fig. 1 (a)Uphill road.(b) 3D point clouds acquired by Velodyne LIDAR.
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2 Previous Works

With range scanning devices becoming standard equipment in mobile robotics, the
task of 3D scan segmentation and classification is one of increasing practical rel-
evance. Typical algorithms for road and obstacle detection with 3D LIDAR are as
follows: One of the most widely used method is the projection of 3D point clouds
on the assumed or estimated ground plane and finds similar x-y coordinates whose
height exceeds a given threshold value. This is represented by a grid in which each
cell contains only one height by selection of the average, max, min height of the
sensor data located in each grid cell [16],[15]. One of the advantages is that the sev-
eral sensors can be fused easily and that mapping is straightforward. Many teams
participating in the DARPA Urban Challenge successfully applied this method.
However, the difficulty of road detection has still in sloped terrains or the situa-
tions with big rolling/pitch angle of the host vehicle. Both Leonard et al.[8] and
Himmelsbach et al.[7] describe a method that identifies points in the point clouds
that are likely to be on the ground, and then fit a ground model through those ground
points. And other points above the ground model are deal with as obstacle point.
Douillard et al.[3] proposes a strategy that utilizes ground models of non-constant
resolution either providing a continuous probabilistic surface or a terrain mesh built
from the structure of a range image. Moosmann et al.[11] proposes graph-based ap-
proach to segment ground and objects from 3D LIDAR scans using a novel unified,
generic criterion based on local convexity measures. Guo et al.[6] use a graph-based
approach for 2D road representation of 3D point clouds with respect to the road to-
pography. The method describes also the gradient cues of the road geometry to con-
struct a MRF and implements a belief propagation (BP) algorithm to classify the
road environment into four categories, i.e. the reachable region, the drivable region,
the obstacle region and the unknown region. However their method uses only gradi-
ent value for labeling so that it cant sometimes be distinguished the ground and the
roof of vehicle. Li and Li[9] proposes a method of Four Directions Scan Line Gradi-
ent Criterion (4DSG) that is calculated the gradient with neighboring points. These
features can not only reflect the flatness of pavement, but also reflect the distinguish-
ing feature of point cloud on curbs in four directions. Bohren et al.[1] addresses a
method that road points can also be detected based on the reflectivity of the ground
in the Velodyne scans. However, such approach can only work well under good con-
ditions so that their road/obstacle detection has to be supplemented by other sensor.
The outline of our work can be show in the Fig.2. The proposed approach differs
from previous related work. Main contributions that we propose are as follow

• Unlike most of the previous works, we focus on the correction of distorted 3D
point cloud occurred by motion of vehicle (high speed/ move up and down) in
practical road situation.

• We employ the approach that 3D point clouds are projected on the grid map in
the cylindrical coordination. We have considered the fact that the point cloud
by Velodyne sensor will be gradually sparse from near to far and the dramatic
change happens between adjacent beams can reveal the vertical change of the
environment along the circular direction as shown in Fig.2-(b).
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Fig. 2 Illustration of our method.(a) 3D point clouds aquired by Velodyne LIDAR. (b) cylin-
drical grid map. (c) extraction of feature values in each cell. (d) multi-labeling and classifica-
tion with LBP.

• We propose a robust method of road detection with 3D data in undulated road
such as down/uphill by the best selection of the proper features such as gradient
value, height average of neighboring node as shown in Fig.2-(c).

• We formulate the road detection problem based on MRF with the loopy belief
propagation to find the different regions with different classes as shown in Fig.2-
(d).

3 3D Points Representation and Grid Map Building

3.1 Correction of Distorted 3D Point Cloud by Considering
Vehicle Motion

As shown in Fig.3, the Velodyne LIDAR that is mounted on the top of the vehi-
cle uses 64 lasers, which cover in different vertical angle, and it can also provide
360 degrees field of view for surrounding environment with more than 1.3 mil-
lion points per second. The LIDAR returns deliver spherical point coordinates so
it needs to transformation that data into Cartesian space. To do the transformation,
we have to consider calibration parameters such as distance correction factor �r,
vertical/horizontal correction angle � /0v,�θ ,rotation angle ϕ ,measured distance r
and vertical/ horizontal offset rv,rh,
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The 3D point cloud computation in the cartesian coordinates is as below

p(x,y,z) =

⎛
⎝ (r+Δr) · cos(ϕ +Δθ ) · cos(Δφ)+ rh · cos(ϕ)

(r+Δr) · sin(ϕ +Δθ ) · cos(Δφ)+ rh · sin(ϕ)
d · sin(ϕ +Δθ )− rv

⎞
⎠

T

(1)

Here, we have to consider that the scanner takes a no negligible amount of time to
complete one rotation, so the observed 3D point clouds with LIDAR are distorted by
the motion of the vehicle. For instance, if the speed of vehicle runs as about 100km/h
(27.8 m/s) in the highway, it would be unfortunately given the distorted information
past 2.7 meter on the every scan due to the fact that the scanner is rotating with
a frequency of 10 Hz(0.1s). Furthermore, we should consider the situation that the
vehicle passes over speed bumper with big rolling/pitch angle and then the front road
is classified as obstacle due to the downward pitching of the vehicle. We are able to
solve these problems by using information about the ego-motion of the car. In other
word, the resulting frame is an approximation of how the environment would have
looked like if the car had not moved.

To correct the distorted laser measurement by the vehicle’s movement, we utilize
a GPS/INS unit that provides highly the accurate motion information of the vehicle.
Each laser measurement i during one revolution is referenced with respect to vehicle
position and orientation Ot+i from the start of a sensor revolution, and afterwards
transformed such that the coordinates are referenced with respect to Ot+Δ t at the end
of the revolution. For transformation with rotation R̃ and translation−→T for each data,
the undistorted coordinates pi

Ot+Δt
of a point pi

Ot
referenced with respect to Ot+Δ t as

shown in Fig.3 can be calculated as follow as

pi
Ot+Δt

= R̃(pi
Ot
−−→

T ) (2)

3.2 Grid Map Building

The 3D point clouds which obtained by Velodyne LIDAR need to expensive costs
to deal a large amount of data for real time processing, in our work we try to re-
duce it with using a 2.5D ego-centered cylindrical grid. Some relative works use
the rectangular grid map projected by 3D point cloud points. Others approaches use

Fig. 3 Correction of dis-
torted 3D point cloud by
estimation the motion of
vehicle
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a mesh-grid map which directly is decomposed of a neighborhood graph from a
scanner. Here, we focus on considering the manner a LIDAR scan, we know that
it can give a different density of point depend on distance from vehicle despite the
Velodyne sensor can take 3D scans of environment and provide millions of points
per second. The points cloud will be gradually sparse from the near to the far. So
we set two direction as direction and circular direction in cylindrical coordination.
We can know that the gradient value is dramatically changed at some place for ob-
ject/structure along the circular scan direction. Therefore, it is can be separated the
coverage area with more high resolution along the circular direction than radial di-
rection as shown in the Fig.4

4 Feature Extraction and Road Classification

4.1 Features(Gradient Value and Height) Extraction

We assume that the road surface is continuous and there is high correlation between
neighborhood data. Therefore, given the world coordinates of the 3D point clouds,
the gradient value at each node can be computed by using known neighboring nodes.
To get the gradient value at each node as shown in Fig. 4, we need to height of
neighboring nodes along the radial direction and circular direction. This gradient
value Gm (p) can reflect the geometrical character of roads. To obtain neighbor-
hood points, it searches for closest nodes that have height values in four directions
along the radial axis and circular axis respectively. We denote them as zc1

m ,zc2
m ,zr1

m ,zr2
m

,where c means circular direction and r is radial direction.
The gradient of radial direction can be computed as

Gr
m (p) =

zr1
m − zr2

m

‖Pr1 −Pr2‖ (3)

Next, the gradient of circular direction can also be computed as

Gc
m (p) =

zc1
m − zc2

m

‖Pc1 −Pc2‖ (4)

where p is referred in the cylindrical coordinate. The gradient value is described by

Gm (p)=
√

Gr
m (p)2 +Gc

m (p)2 (5)

The height average of neighborhood nodes can be described as follows

H (p)=
1
n
(∑

n
Zn ) (6)

where Zn is an average of height value on the neighborhood nodes surrounding
current node p. Finally, we describe a feature function as follow
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g(p)=αG∗
m (p) ·H (p)∗ (7)

The α is weight constant ane G∗
m (p) and H (p)∗ are normalized with Gm (p) and

H (p).

4.2 Classification Based on MRF

The goal of this step is to find the different regions with different classes and infer-
ence the area that the LIDAR does not cover. We take a graph-based approach for
classification. Let G = (V,E) be an undirected graph with nodes vi ∈ V , the set of
elements to be segmented, and edges (vi,v j) ∈ E in corresponds to pairs of neigh-
boring nodes. Each edge has a weight w(vi,v j) which is a non-negative measure of
the dissimilarity between neighboring elements vi and v j. We present the classifica-
tion problem as LBP approach for performing inference on MRF as formed by the
standard 4-connected neighborhood system since it models the spatial interactions
present in the scene so that the labels of the points are determined jointly.

Let P be a set of node in the cylindrical grid map and L be as set of labels. The
labels correspond to quantities that we want to estimate at the each node, such as
gradient value and height average of neighborhood. A labeling f assigns a label
f (vi) ∈ L to each node vi ∈V . We assume that the labels should vary slowly almost
everywhere but may change dramatically at some places such grids along object
boundaries. The quality of a labeling is given by an energy function,

E ( f )= ∑
(vi ,v j)∈E

V
(

f (vi ), f (v j )
)
+ ∑

(vi)∈V

D( f (vi )) (8)

Where E are the edges in the four-connected grid graph. V
(

f (vi ), f (v j )
)

is the

cost of assigning labels f (vi ) and f (v j ) to two neighboring nodes, and it is referred
to as the discontinuity cost. D( f (vi )) is the cost of assigning label f (vi ) to node
vi, which is referred to as the data cost.

Finding a labeling that minimizes this energy corresponds to the maximum a
posteriori (MAP) estimation for MRF in the form of Eq.8. Normally this algorithm
is defined in terms of probability distributions, but an equivalent computation can be

Fig. 4 The computation of
gradient with neighboring
nodes
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performed with negative log probabilities, where the max-product becomes a min-
sum. We use this formulation because it is less sensitive to numerical artifacts, and
it uses the energy function definition more directly.

The max-product BP Algorithm works by passing message around the graph
defined by the four-connected grid. Each message is a vector of dimension given
by the number of possible levels. Let mt

viv j
be the message that node vi sends to a

neighboring node v j at time t. When using negative log probabilities all entries in
m0

viv j
are initialized to zero, and at each iteration new messages are computed in the

following way,

mt
viv j

(
f (v j)

)
=min f (vi)

⎛
⎝V
(

f (vi), f (v j)
)
+D( f (vi))+ ∑

N(vi)v j

mt−1
viv j

(
f (v j)

)⎞⎠
(9)

Where N (vi)\v j denotes the neighbors of vi other than v j. After T iterations a
belief vector is computed for each node,

bvj

(
f (v j )

)
=Dvj ( f (vi ))+ ∑

p∈N(v j)

mT
viv j

(
f (v j )

)
(10)

Finally, the f ∗v j
label that minimizes bvj

(
f (v j )

)
individually at each node is se-

lected.
In the work, the labels correspond to different gradient value and height average

that should be assigned to grids in the map. Thus the data costs can be defined as

D( f (vi )) = min(‖|g(vi)|− f (vi)‖ ,τ) (11)

We use a truncated step function for the data cost, τ is a truncation value, g(vi) is
the feature of node vi.The truncation makes the data cost robust to abnormally large
feature values.

Another class of cost functions is based on the degree of difference between la-
bels. The cost of assigning a pair of labels to neighboring node is generally based on
the amount of difference between these quantities. In order to allow for discontinu-
ities, as the values are not smoothly changing everywhere, the cost function should
be robust, becoming constant as the difference become large. So it can be used the
truncated linear model, where the cost increases linearly based on the distance be-
tween the labels f (vi ) and f (v j ) up to some level,

V
(

f (vi ), f (v j )
)

= min
(

s
∥∥∥ f (vi )− f (v j )

∥∥∥ ,d) (12)

Where s is the rate of increase in the cost, and d controls when the cost stops
increasing.
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Fig. 5 An experimental
vehicle with 3D Velodyne
sensor

5 Experimental Result

We have evaluated the proposed algorithm using both a publicly available dataset[4],
[13] as well as numerous scans acquired by the HDL-64E sensor mounted on an
experimental vehicle(Hyun-dai Sorrento) in inner city traffic scenes as shown Fig.6.
As no ground truth information is available, a qualitative performance evaluation is
conducted.

For cylindrical grid map, we use Δθ = 0.5 andΔr = 0.2m(range : 0 ∼ 30m)
and Δr = 0.5m(range : 30 ∼ 60m) and Δr = 1m(outo f 60m)throughout all exper-
iments. For classification based on MRF, we set 10 as number of labels and the
truncation value were respectively fixed to τ = 5 and d = 3.

Since the classification of the 3D point clouds in normal road environment is well
demonstrated. So we focus on a variety of challenging environment. Fig.7 shows ex-
ample result of a slope road, an uphill road and a downhill road, which substantiated
that the proposed method is more robust and reliable than the conventional approach
based on the height.

As visible in the first column, though the road is able to show normally flat in
Fig7 (a), we can see that laser returns corresponding to the area are irregular as
Fig.7 (e). As shown in Fig.7 (i), the conventional approach based on the height can
give the wrong result that drivable space is as obstacle region, as indicated by the
red circle in the figure. Whereas the proposed approach successfully classify the
slope area as the drivable with feature values such as gradient and average height of
road space as shown in Fig.7 (m). Furthermore, the spatial interactions based on the
smoothness term in the MRF can also ensure the local consistency in such scenarios
so that all of the rough region will be classified into to same category, even when
some of the gradient are abnormal due to noise. Besides, we can see in the second
column, when our vehicle drives on the slope road which is more high right than
the left side, we can see that the result of the convention approach misrecognizes
partially some road and some vehicles as obstacles indicated by the red circle in the
Fig.7 (j). But our proposed method gives the robust result of detection according
to this height variance of road because of shown in the Fig.7 (n). Also we can see
that some area that the LIDAR does not cover is interpolated by inference algorithm
based on MRF with the loopy belief propagation through the comparison of area
indicated by the red circle in the Fig.7 (k) and in the Fig.7 (o). As shown in the
fourth column, it is caused misunderstanding that there is a big obstacle in front of
vehicle on the road by the conventional approach based on the height in the Fig.7
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Fig. 6 Classification result of a variety of environment(flat road, slope road, down hill ,up-
hill,), the pictures of environment(first row), the 3D point clouds by LIDAR , the result of
conventional approach (third row), the result of our proposed work(fourth row)
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(l). However the proposed approach successfully classified the road as the drivable
space since our feature values are in the drivable space for vehicle in the Fig.7 (p).

6 Conclusion

In this paper, we have presented a robust method of road detection with 3D point
clouds on the challenging road environments such as down/uphill, sloped road. Our
first contribution is correction of 3D point cloud distorted by the motion of vehicle
incorporating vehicle posture information. Our second contribution is guideline for
the best selection of the proper features such as gradient value, height average of
neighboring node. Our third contribution is transformation of the road detection
problem into a classification problem of different features. Our fourth contribution
is inference algorithm based on MRF with the loopy belief propagation for the area
that the LIDAR does not cover. In experiments, we use a publicly available dataset as
well as numerous scans acquired by the HDL-64E sensor mounted on experimental
vehicle in inner city traffic scenes. The results proved that the proposed method is
more robust and reliable than the conventional approach based on the height on the
variety of challenging environment. Our future work will focus on the detection of
dynamic road environment with the supervised/unsupervised learning approach and
the fusion of the LIDAR and vision data.
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Predicting Terrain Traversability from Thermal
Diffusivity

Chris Cunningham, Uland Wong,
Kevin M. Peterson, and William L. “Red” Whittaker

Abstract. This paper presents a method to predict soil traversability by estimat-
ing the thermal diffusivity of terrain using a moving, continuous-wave laser. This
method differentiates between different densities of the same material, which vision-
based methods alone cannot achieve. The bulk density of a granular material has a
significant effect on both its mechanical behavior and its thermal properties. This
approach fits the thermal response as effected by a laser to an analytical model that
is dependent on thermal diffusivity. Experimental soil strength measurements vali-
date that thermal diffusivity is a predictor of traversability for a given material.

1 Introduction

This paper presents a technique for determining terrain traversability from mea-
surements of thermal diffusivity. Classical perception approaches detect material
shape and appearance, but cannot measure the underlying properties that determine
traversability. The inability to characterize these non-geometric properties is a pri-
mary cause of robotic failure on Mars, the Moon, and Earth. Spirit ended its mission
mired in soft soil; Lunokhod was entrapped by loose soil while entering a crater [1].
Means to predict these conditions would transform how planetary rovers operate, in-
creasing both safety and efficiency.

This research seeks to predict the ability of a ground vehicle to traverse a granu-
lar soil by sensing its thermal properties. The mechanical response of a granular soil
to a wheel is primarily governed by particle size distribution, particle shape, bulk
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density, and relative density [2]. Shape and density distribution are principal pa-
rameters determining the range of soil strength while bulk and relative density mod-
ulate strength [3] [4]. Compact materials with higher bulk density are much stronger
than loose materials with low bulk density and are therefore more traversable by a
wheeled vehicle.

Bulk density and porosity of a soil also have a strong influence on the specific
heat, volumetric heat capacity, and thermal diffusivity of granular media [5]. Com-
pact soils with higher bulk density and lower void ratio conduct heat more easily be-
tween particles . Likewise, loose soils with lower bulk density and higher void ratio
have lower thermal conductivity and diffusivity [6] [7]. Therefore, because material
density influences both the mechanical and thermal properties of granular materials,
thermal diffusivity is correlated with the mechanical behavior and traversability of
a soil.

This paper presents a method for detecting the difference between traversable,
compact soil and loose, hazardous soil by remotely estimating thermal diffusivity of
terrain. A continuous-wave laser and a thermal camera are co-located, pointed at a
granular material, and translated with respect to that material. The laser introduces
a thermal transient as it moves across the terrain. The thermal camera observes the
resulting temperatures.

Section 2 discusses related work in non-geometric hazard detection and thermal
diffusivity estimation. Section 3 presents an analytical model to estimate thermal
diffusivity based on the transient temperature response of a granular material to
heat flux from a moving laser. Specifics of the experiments and their results are
presented in Section 4 and analyzed in Section 5. In Section 6, theoretical correla-
tions of diffusivity to bulk density and traversability are validated using soil strength
measurements. Section 7 discusses conclusions and directions for future research.

2 Related Work

Prior work on non-contact identification of non-geometric terrain hazards has pri-
marily focused on vision-based methods. These methods have shown promise but
are limited to sensing surface appearance, which is not necessarily correlated with
the bulk characteristics of a material. This research enables differentiation between
different preparations of the same soil, which can have very different interactions
with wheels though they may appear identical on the surface. It builds upon prior
research in photothermal radiometery to develop a method for diffusivity estimation
that is viable for integration into an autonomous vehicle.

Visual techniques have been demonstrated for traversability prediction in
planetary-like environments. Helimick, Angelova, and Matthies use color, texture,
and depth from stereo imagery to classify terrain and predict wheel slip. The classes
are determined by an encoding of domain knowledge [8]. Brooks and Iagnemma
also use visual cues to classify terrain but terrain classes are determined using self-
supervised learning [9]. These vision techniques operate on the principle that terrain
with similar appearance has a similar response. Terrain response (either by driving or
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soil testing) is measured and visual appearance in the area of those measurements is
recorded. Based on this information, learning techniques are used to map upcoming
appearance to likely terrain response.

Although vision-based predictive models progress towards alerting robotic sys-
tems to variation in terrain, they are fundamentally limited. The surface appearance
of a patch of terrain is not necessarily directly correlated with its bulk physical
characteristics. While appearance can be used to associate similar terrain, it cannot
measure important characteristics such as compaction, which is a critical factor in
determining shear strength. As a result, terrain patches with similar appearance, but
dissimilar compositions, and therefore traversability, have an ambiguous classifica-
tion when based on visual data alone.

In the applied physics community, the problem of estimating the thermal diffu-
sivity of a material is well researched. Photothermal radiometry is a widely used
technique for non-contact estimation of the thermal properties of thin films using an
infrared detector and a single laser flash [10] [11]. This method is most effective
with a thin film but has been applied to layered materials as well as powders where it
can detect a difference between loose and consolidated powders [12]. Though these
methods are effective in a laboratory environment, they require precisely-calibrated,
sensitive instruments that are not feasible to implement on mobile robots.

Multi-spectral imaging in visible and IR wavelengths has been used for terrain
classification with demonstrated success in identification of vegetation [13]. In ad-
dition, thermal imaging from a Mars orbiter has been used to estimate the thermal
inertia in order to estimate mechanical properties of soil in potential Mars Explo-
ration Rover landing sites [14]. Unfortunately, the resolution of thermal images
from orbiting satellites is too low for reliable application to rover mobility.

This research is distinct from the methods above in two important ways. First,
this approach probes deeper than vision-based methods alone that are limited to
prediction solely from observation of surface appearance. Second, this method for
thermal diffusivity measurement is viable for mobile robots. This method does not
require the highly calibrated experimental setups used in photothermal radiometry
for thin films. In addition, it provides high resolution at the scale of a robot that
satellite imagery cannot.

3 Thermal Diffusivity Estimation

The approach for thermal diffusivity estimation is macroscopic measurements of
the transient temperature response caused by a low-power, continuous-wave, semi-
conductor laser. The laser is pointed at the soil while a thermal camera measures
the temperature response of the terrain to the laser excitation. The camera and the
laser are translated linearly, parallel to the ground at a constant velocity. The ther-
mal diffusivity of the soil is estimated by fitting parameters of a known model to the
transient thermal response of the material to the laser.
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3.1 Analytical Model

The mathematical model of the thermal response is derived from the three-
dimensional heat diffusion equation, which governs heat flow.

∂θ
∂ t

= k

(
∂ 2θ
∂x2 +

∂ 2θ
∂y2 +

∂ 2θ
∂ z2

)
(1)

θ is the temperature at a point (x,y,z) in a Cartesian coordinate system, and k
is the thermal diffusivity of the material.The material under test is modeled as a
semi-infinite plane extending from z = 0 in the negative z direction. The diffusion
equation is subject to a Neumann boundary condition at z = 0.

∂θ
∂ z

= 0,z = 0 (2)

This boundary condition makes the assumption that there is no heat lost at the
sample surface[11]. The incident heat from the laser is modeled as a Gaussian in-
stead of a uniform distribution, which is more physically accurate and allows for
some helpful mathematical simplifications [15].

Q(x′,y′,z′, t ′) =
P

2πr2 exp

(
− (x′ − vt ′)2 + y′2

2r2

)
δ (z′) (3)

Q represents a Gaussian laser in the plane z = 0 moving along the x-axis at y = 0.
P is the total power from the laser absorbed by the material, v is the velocity of the
laser in the x direction, and r is the radius of the laser spot. Because this problem
is addressed macroscopically and the absorption depth of the laser is very shallow,
it is assumed that all of the power from the laser is absorbed at the surface of the
material [16]. The Green’s function for a point source in three-dimensions subject to
the boundary condition given above is used to find the equation for the temperature
at a point (x,y,z). This Green’s function is given by Carslaw and Jaeger [17] and
represents the temperature of a point (x,y,z, t) in reponse to a unit point source at
(x′,y′,z′, t ′).

G(x,y,z, t,x′,y′,z′, t ′) =
1

4(πk(t − t ′)
3
2

exp

(
− (x− x′)2 +(y− y′)2 +(z− z′)2

4k(t − t ′)

)
(4)

The equation for the heat flow from the laser is used in conjunction with the
Green’s function to find the temperature at any (x,y,z, t) due to the laser excitation.
An offset θ0 is added to represent the initial temperature before laser excitation.

θ (x,y,z, t) =
∫ t

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Q(x′,y′,z′, t ′)G(x,y,z, t,x′,y′,z′, t ′)dz′dy′dx′dt ′+θ0

(5)
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This solution is simplified using the recipricocity and translation properties of
Green’s functions and the fact that the integrals over x′ and y′ can be simplified to
gaussian forms, which result in known solutions. The final result is a formula for
the temperature at (x,y,z,0) [18].

θ (x,y,z,0) = P
∫ ∞

0

exp
(
− (x+vt′)2+y2

2r2+4kt′ − z2

4kt′
)

√
π3kt ′(2r2 + 4kt ′)

dt ′+θ0 (6)

Thus, the temperature at (x,y,z,0) is only a function of a few variables. θ0 can be
easily measured from a thermal camera before the laser excitation. In this paper, v is
experimentally controlled. r is estimated by calibrating the laser. The two unknown
variables are the thermal diffusivity of the material under test, k, and the amount
of power absorbed by the material, P, which is a function of both the laser and the
material.

3.2 Diffusivity Estimation

To estimate the thermal diffusivity constant of a material, data is extracted from
a thermal image to directly correspond to θx, which is the model (6) evaluated at
y = 0, z = 0, and t = 0.

θx(x ; xo f f ,P,k) = P
∫ ∞

0

exp

(
− (x+xo f f +vt′)2

2r2+4kt′

)
√

π3kt ′(2r2 + 4kt ′)
dt ′+θ0 (7)

An example thermal image is shown in Figure 1. The maximum temperature in
the y direction occurs along the x-axis at y = 0, so it is straightforward to extract the
maximum temperature in the y direction for every pixel column. These are (x,θx(x))
data points, where translational alignment of the x values with the model is still
ambiguous. To align the data points with the model, all x values are translated so
that x = 0 corresponds to the maximum θx value. Pixel distances are scaled to the
equivalent linear distance on the material.

Fig. 1 Thermal transient produced by a 100mW 532nm laser being translated at a constant
velocity on a loose preparation of JSC-1A. v shows the direction of the motion of the laser.
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Unfortunately, assuming that the maximum occurs at x = 0 is only an approxi-
mation. With low velocity, high diffusivity, and a small laser spot radius, the tem-
perature response is nearly symmetric about the y-axis with a maximum at x = 0.
However, as the quantity vr/k increases, the response becomes less symmetric,
and the maximum of the curve shifts towards more negative values of x. Thus
the maximum value in the x-direction is not easily predicted as it is dependent on
the velocity and radius of the laser as well as the diffusivity of the material under
test [19] [15] [20]. For the velocities, diffusivities, and radii considered in this paper,
the maximum occurs close enough to make the approximation that it is at x = 0. In
(7), xo f f is an offset value used to compensate for errors in x-alignment. First is the
error that occurs through the assumption that the position of the maximum temper-
ature corresponds to x = 0, when in fact it does not. Second is error that arises when
the resolution of the camera is not high enough to precisely capture the x value of
the maximum temperature of the thermal response.

The resulting (position,temperature) data points are used to fit (7). The three pa-
rameters are xo f f , P, and k. θ0 is estimated from the mean temperature of the sur-
rounding material. r is estimated before the experiment through analysis of a laser
pulse [21]. v is known as it is controlled by the experimental setup. An optimiza-
tion algorithm (e.g. Nelder Mead) is used to minimize the root mean square error
(RMSE) between the experimental data and (7) evaluated at estimates of xo f f , P,
and k.

(xo f f ,P,k) = argmin
xo f f ,P,k

(RMSE(θx(x ; xo f f ,P,k))) (8)

Thermal diffusivity, k, can then be used to detect when the material type or den-
sity of the terrain has changed. For a given material, a lower diffusivity corresponds
to a lower bulk density and therefore less traction. Likewise, a higher diffusivity
corresponds to a higher bulk density and therefore more traction. Thus, by measur-
ing the thermal response of terrain to a laser excitation, thermal diffusivity can be
estimated and used as a predictor of traversability.

4 Experimental Diffusivity Measurements

Several experiments were conducted to estimate thermal diffusivity using the method
presented in this paper. A thermal camera is used to capture the transient tempera-
ture response caused by a moving laser. Recorded thermal images are then analyzed
to produce estimates for thermal diffusivity on both loose and compact granular
materials.

Three lunar regolith simulants were used for these experiments, JSC-1A, BP-1,
and GRC-1. JSC-1A is the gold standard for lunar regolith simulants and is widely
available for research purposes [22]. BP-1 is a lunar regolith simulant that is very
similar in its major elements to JSC-1A. However, its minor elemental composition
precludes it from closely simulating lunar regolith chemical composition, which
has a large impact on thermal properties. It does, however, closely simulate the
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geotechnical properties including particle size and shape distribution [23]. GRC-1
is a lunar regolith simulant specifically developed to be an inexpensive simulant of
the mobility properties of lunar terrain and does not replicate all of the mechanical
properties nor the chemical composition. It does not have a wide range of com-
paction and has a low thermal diffusivity compared to the other two simulants [24].

All three simulants were used in both loose and compact preparations. Loose
preparation consisted of pouring the material into the sample container, hand agi-
tation with a shovel, and gentle leveling to create a flat surface. Compact prepara-
tion utilized a hydraulic press on a flat steel plate top until maximum pressure was
achieved as shown in Figure 2.

Fig. 2 Experimental setup for thermal diffusivity experiments (left). A 100mW 532nm
continuous-wave laser and a thermal camera are mounted to a linear actuator and translated
a constant velocity parallel to a soil sample below. A hyraulic press (left) and compressable
soil bin with lid are used to repeatably prepare compressed soil samples.

Data to validate thermal diffusivity estimation was collected using a controlled
setup shown in Figure 2. A thermal camera and a continuous-wave 100mW 532nm
laser were mounted to a linear mill and pointed down at a soil bin containing either
a loose or compact simulant. The thermal camera recorded images at 7hz. The mill
was driven at 2.5 mm/s, 3.8 mm/s, 5.1 mm/s, and 6.4 mm/s. The laser point was
translated .25 m, from one end of the soil bin to the other.

The experimental data was fit to the model (7) using the parameters k, P, and
xo f f . Example curves are shown in Figure 3. The blue points are the measured tem-
peratures and the red line is the analytical model.

Four runs at different velocities were averaged together provide estimated values
for k and P for loose and compact preparations of all three simulants. These values
are presented in Table 1 along with the average RMSE between the model and the
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Fig. 3 Comparison of experimentally measured temperatures and temperatures estimated
from the theoretical model for loose (left) and compact (right) preparations of JSC-1A at
a laser speed of 2.5mm/s.

Table 1 Estimated thermal diffusivity (k), absorbed power (P), and RMSE between model
and experimental data averaged over four laser velocities

Material k (m2/s) P (W ) RSME
JSC-1A Loose 2.77×10−7 5.78×10−5 243
JSC-1A Compact 6.32×10−7 9.60×10−5 418
BP-1 Loose 5.56×10−7 8.01×10−5 180
BP-1 Compact 7.83×10−7 8.40×10−5 523
GRC-1 Loose 4.49×10−8 3.70×10−6 86
GRC-1 Compact 6.91×10−8 3.90 ×10−6 73

experimental data. A bar graph showing a comparison between estimated diffusivity
values for loose and compact soil is shown in Figure 4 for each simulant. The x-
offset (xo f f ) averaged around 0.15 mm with a maximum of 0.4 mm. These low
values are to be expected given that a pixel is 0.34 mm wide, and xo f f compensates
for the combination of error from pixel resolution and error caused by the theoretical
maximum x value not being exactly 0.

5 Analysis

In all three simulants, this method produces a clear, quantifiable difference between
loose and compact preparations of the same material. There are 56%, 29%, and
35% measured differences in diffusivity from the compact preparation to the loose
preparation for JSC-1A, BP-1, and GRC-1, respectively. This data confirms the re-
sults expected from the theoretical model. At the speeds considered in this paper,
translational velocity had no significant effect on estimated diffusivity. For exam-
ple, for loose JSC-1A, (shown in Figure 5) there is only a 9.3× 10−9 (2.1%) differ-
ence between the maximum and minimum estimated values. This error is within an
expected range due to errors in measurement of velocity.
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Fig. 4 Estimated thermal diffusivities (k) of JSC-1A, BP-1, and GRC-1 averaged over four
laser velocities. Demonstrates a measurable difference between compact and loose granular
media.

Fig. 5 Comparison of thermal diffusivity estimates for a loose preparation of JSC-1A at four
different laser speeds (2.5mm/s, 3.8mm/s, 5.1mm/s, and 6.4mm/s)

As is evident in Table 1, there was some variation in P with the density of the ma-
terial. This is likely due to the preparation of the soil and surface roughness, which
can affect the amount of power absorbed. These results suggest that the absorbed
power must be a parameter in the transient thermal model since it is dependent on
properties of the material under test and difficult to predict with only a priori knowl-
edge. The cause of this effect requires further investigation.

While the thermal diffusivity estimation method achieved similar results in each
of the four trials for JSC-1A, there was slightly more variation in BP-1 and GRC-1.
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The variation in BP-1 was low and can be attributed to the fact that it was a non-
homogeneous material with small rocks littered throughout the soil, which causes
variation in its thermal properties. The variation in GRC-1 was higher. For two of the
four trials, the regression algorithm found a local minimum with an incorrect value
for the absorbed heat, P. When the algorithm was adjusted to limit the possible
values of P for GRC-1 to a smaller interval, the method performed consistently.
This error was likely caused by a lower signal to noise ratio in the signal since
the temperature change in GRC-1 was significantly lower than in the other two
materials. In addition, the effective spot size of the laser on GRC-1 was significantly
higher than on JSC-1A and BP-1, where the spot size was close to the a priori
estimated size. This is likely caused by more scattering of the light on the surface of
GRC-1 than on the other two materials.

6 Validation with Soil Strength Measurements

Correlation between diffusivity and traversability is validated with empirical testing
using a bevameter instrument to measure soil strength (shown in Figure 6), which
emulates a mobility archetype. Bevameter measurements are a well-known tech-
nique for predicting the response of terrain to a ground vehicle. A bevameter per-
forms two primary functions with high repeatability. Firstly, a sinkage test presses
a flat circular plate into a soil sample while recording ground pressure exerted and
linear displacement. Secondly, a shear test presses and rotates a toothed annulus
while recording pressure, torque, and displacement. The intent of these functions is
to mimic how a robot might sink or slip while negotiating a material [25]. As such,
the end effectors are sized to reproduce the ground contact area and traction of a
specific wheel (or track) design. The recording of force-displacement data produces
a curve that spans robot weights and predicts sink or slip given the wheel design.

This work focused on the pressure-sinkage aspect of bevameter testing. Sinkage
provides primary resistance against forward locomotion and was the primary mobil-
ity entrapment of the Spirit rover [26]. Testing here emulated the mobility system of
“Red Rover” a four-wheeled, solar-powered, lunar rover prototype (shown in Fig-
ure 6). The wheels of Red Rover are sized to 300mm in diameter and are 140mm
wide. Rigid aluminum construction means that the wheels do not deform to terrain
under normal loads. Rule of thumb estimates for the ground contact patch on loose
soil give an area of 1832mm2, which is equivalent to a 5 degree arc of the wheel.
This corresponds approximately to a circular bevameter plate of 50 mm in diame-
ter. The design mass of the vehicle is 100 kg, which results in a terrestrial ground
pressure of 134 kPa or a force of 245N on each wheel.

Four pressure-sinkage trials were conducted on each of three test materials (BP-
1, JSC-1A, GRC-1) under loose and compact preparation. In all tests, a sample
approximately 18cm deep was utilized; due to edge effects, results for very high
ground pressure vehicles (> 400kPa) may be skewed for some materials. Curves
for each of the parameters {soil type, compaction level} were fit from independent
trials using 2nd order polynomial regression.
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Fig. 6 A bevameter was used for measuring soil strength (right). The bevameter plate was
selected to emulate Red Rover, a differential-drive lunar rover prototype (right)

Fig. 7 Comparison of Pressure-Sinkage Curves. Curves generated for each material type and
compaction level are shown. Data for the GRC-1 material is only valid for pressures under
400kPa; values beyond this are extrapolated for illustrative purposes. Performance for the
rover archetype used in analysis is indicated by the vertical line at 135kPa.

Experimental data shows that the estimate of thermal diffusivity is a good pre-
dictor of material resistance to rover sinkage, which implies that it is also a good
predictor of a material’s traversability. Figure 7 shows the pressure-sinkage curves
for all materials and compaction levels tested. A lower curve indicates a stronger
material and easier mobility. Results generally have high certainty for pressures un-
der 400kPa. In this range, compact BP-1 is empirically the strongest material, while
both forms of GRC-1 were the weakest - resulting in greatest sinkage. The strength-
order of material combinations here correspond directly to the estimated diffusivity.
Results specific to the archetype rover examined in this paper are denoted with a
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vertical line in the graph above. It is noted that in these experiments, the sample size
for materials is small and the differences in compaction level extreme. The authors
do not make the leap to general applicability or existence of a linear diffusivity-
strength relationship. However, these promising results warrant further investigation
of the technique.

One point where bevameter data disagrees with diffusivity results is in the mag-
nitude of phenomena resulting from compaction. It is useful to calculate the percent
change in sinkage as a result of compaction, averaged over the entire range. This
analysis shows that a robot would sink 235% more in loose BP-1 than in compact,
71% in JSC-1A and 26% in GRC-1. The percent changes in sinkage for JSC-1A
and GRC-1 are similar to the percent changes in diffusivity. The percent change
in sinkage for BP-1, however, was significantly higher than the percent change in
diffusivity.

For both the measurements of the pressure-sinkage relationship and the estimates
of thermal diffusivity, there was significantly more variation between trials in the
loose preparations than the compact preparations. This is likely in part due to the
more repeatable preparation of the compact materials in comparison to the loose ma-
terials. However, it may also be because of more inherent variability in the behavior
of loose granular media [27].

7 Conclusions and Future Work

This research developed an approach to predict the traversability of terrain through
non-contact, photothermal radiometry. The method enables differentiation between
safe, compact and hazardous, loose preparations of the same soil, which vision-
based methods alone cannot reliably achieve. It transits a low-power, continuous-
wave laser and thermal camera across a terrain to effect a thermal transient on
terrain, measure that transient, and fit the results to an analytical model to solve for
an estimate of thermal diffusivity. For each of the three simulants tested (JSC-1A,
BP-1, and GRC-1), a higher measured thermal diffusivity correlated to a higher den-
sity and a more traversable granular material as validated by measuring the pressure-
sinkage relationship with a bevameter. Preliminary results measured a 56%, 29%,
and 35% difference in diffusivity from a compact preparation to a loose preparation
for JSC-1A, BP-1, and GRC-1, respectively. These correspond to sinkage increases
from compact to loose material of 71% for JSC-1A , 235% for BP-1, and 26% for
GRC-1. Thus, the diffusivity estimate produced by this method is a predictor of
traversability that probes beyond the visual appearance of terrain.

Future work will analyze the efficacy of this method on mobile robots. Relative
to lab instruments and conditions, robots present new challenges including the fact
that the robot’s velocity must be estimated in order to be able to use this method to
predict traversability. A robot’s motion will also not likely be precisely linear as it
was in the controlled setup used in this paper. Further work is required to adapt this
technique to account for variable velocities and nonlinear trajectories. Since both the
laser spot size and the temperature change induced by the laser are suspected to be
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influenced by terrain properties including reflectance and scattering, more research
must be conducted into aiding in the estimating of those two quantities. Possibilities
include using a camera to visually estimate the spot size and the magnitude of the
reflected light, which is related to the amount of power absorbed by the surface.
Finally, the effective depth and accuracy of this technique must be investigated in
order to determine how what amount of material is actually sensed and the accuracy
of the thermal diffusivity measurement.
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Modular Dynamic Simulation of Wheeled
Mobile Robots

Neal Seegmiller and Alonzo Kelly

Abstract. This paper presents a modular method for 3D dynamic simulation of
wheeled mobile robots (WMRs). Our method extends efficient dynamics algorithms
based on spatial vector algebra to accommodate any articulated WMR configura-
tion. In contrast to some alternatives, our method also supports complex, nonlinear
wheel-ground contact models. Instead of directly adding contact forces, we solve
for them in a novel differential algebraic equation (DAE) formulation. To make this
possible we resolve issues of nonlinearity and overconstraint. We demonstrate our
method’s flexibility and speed through simulations of two state-of-the-art WMR
platforms and wheel-ground contact models. Simulation accuracy is verified in a
physical experiment.

1 Introduction

This paper presents a modular method for 3D dynamic simulation of wheeled mo-
bile robots (WMRs). Here, “dynamic simulation” means a second-order physics-
based motion model is used, which accounts for inertia and applied forces. This is an
expansion on our previously published work on first-order velocity kinematic mo-
tion models [15]. “Modular” means that the method accommodates any articulated
WMR configuration and any wheel-ground contact model expressed as a function
with the specified inputs.

Our colleagues have recently made progress in model-predictive planning [10][16].
To perform well, these planners require accurate motion models that correctly ac-
count for wheel slip, rollover, actuator limits, etc. that can also be simulated much
faster than real time. Our method strikes a favorable balance between these opposing
criteria. We extend efficient dynamics algorithms originally developed for manipu-
lators to account for a non-fixed base and the enforcement of wheel-ground contact
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models. These models specify the nonlinear relationship between force and slip at
the wheel-ground interface. The simplest way to incorporate these models is to com-
pute contact forces once per time step based on current slip values, and directly add
them at each wheel [1][19][11]. Then the dynamics equations are simply a system of
ordinary differential equations; however, the system will be “stiff” requiring a solver
that takes very small or adaptive time steps [1]. In contrast, we enforce wheel-ground
contact models in a novel differential algebraic equation (DAE) formulation using
Lagrange multipliers (Section 3.4). This requires the resolution of nonlinearity and
overconstraint issues, but proves to be more stable and efficient.

While our contribution is theoretical, it has immediate practical applications. Us-
ing our method a wealth of literature on experimentally derived wheel-ground con-
tact models can be readily applied to full vehicle simulations for planning, control,
and estimation purposes. We demonstrate this through simulations of two state-of-
the-art WMR platforms and wheel-ground contact models in Section 4.

2 Related Work

Modeling wheel-ground contact is still an active research area. For example, in
robotics literature there are terramechanics-based models for rigid wheels in loose
soil [11][5][14]. In automotive literature there are models for pneumatic tires [3].
While the ultimate objective of these wheel-level contact models is to improve
vehicle-level simulations, few of these publications attempt to do so, perhaps be-
cause the available resources for simulation are unsuitable.

Some commercial resources exist for vehicle simulation such as Adams/Car and
CarSim. These use very detailed models to the level of small parts and subsystems
(e.g. engine mounts); as a result these require the knowledge of many parameters
and can be slow. More importantly model configurations are limited to on-road vehi-
cles like cars and trucks. JPL developed Rover Analysis, Modeling, and Simulation
(ROAMS) software to model the full dynamics of the Mars Exploration Rovers,
including wheel/soil slippage/sinkage interaction [13]. While ROAMS was helpful
for design evaluation, it was not feasible for use in motion planning.

Physics-based models that account for wheel slip, rollover, actuator limits, etc.
could greatly benefit WMR motion planning, but because implementation and com-
putation costs are high they are seldom used. Ishigami et al. proposed a rover plan-
ning algorithm that performs complete dynamic simulation candidate paths, but
cited computational cost issues; evaluating just 4 paths (that would each take the
rover about 3 minutes to execute) took 47 minutes [12]. Eathakota et al. approxi-
mate WMR dynamics in their RRT-like planner to ensure paths satisfy quasi-static
and friction cone constraints [7]. Muir and Tian et al. modeled WMR physics in 2D
for feedback control purposes [20][23].

Due to its ease of use, Open Dynamics Engine (ODE) is often used to simulate
WMRs [11][17][6][15], but it has limited options for wheel-ground contact model-
ing. ODE can only enforce a rudimentary contact model with Coulomb force limits
approximated by a friction pyramid and slip velocities linearly proportional to force.
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Our method supports a simulator with ODE’s ease of use, that also enforces nonlin-
ear wheel-ground contact models in an unprecedented DAE formulation. Further-
more, unlike ODE, our method is designed for efficiency specifically for WMRs.
This is evident in our use of joint space dynamics algorithms, a limited collision
engine, and inertia and bias force approximations as explained in Section 3.

Outside of the WMR application, there is relevant work on dynamic simulation.
Some have published on the simulation of dynamic systems with nonholonomic
constraints [18][25], of which wheel slip constraints are a type. Some have created
or proposed modular simulators for space applications, such as SpaceDyn [24] and
LRMAS [4]. Our method extends the spatial vector algorithms Featherstone orig-
inally developed for manipulator dynamics [8]. Orin applied these algorithms to a
multilegged vehicle [19], but to our knowledge none have applied them to WMRs.

3 Simulation Mathematics

This section explains the mathematics of our simulation method, throughout which
we use the following notational conventions:

• underline denotes a column vector of any dimension u
• overset harpoon denotes a 3D Cartesian coordinate vector ⇀u
• overset arrow denotes a 6D Plücker coordinate spatial vector →u
• cub

a indicates that the quantity u is of frame a with respect to frame b, expressed
in the coordinates associated with frame c. ub

a implies bub
a.

• Rb
a denotes the rotation of frame a relative to frame b. Matrix multiplication

is used to transform the coordinates that vectors are expressed in as follows:
b⇀u = Rb

a(
a⇀u). Homogeneous and Plücker transforms (T ,X) encode rotation and

translation and use the same script notation.
• [

⇀u]× denotes a 3×3 skew symmetric matrix formed from the elements of ⇀u. This

is used to represent cross products by matrix multiplication: ⇀a×⇀

b = [
⇀a]×

⇀

b
• u(i) denotes the ith element of the vector u. u(1 : n) denotes a subvector comprised

of elements 1 through n. A(i, j) denotes the element of matrix A at row i, column
j. A(i,∗) denotes the ith row, and A(∗, j) denotes the jth column of A.

3.1 Kinematic Model and State Space

First, a kinematic model of the WMR is constructed as a tree of frames. The root
is the body frame which has 6 degrees of freedom (DOF) with respect to the nav-
igation/world frame. Additional frames for steering, suspension, etc. are attached
via 1-DOF revolute or prismatic joints. All branches terminate with wheel frames,
which by convention are attached via revolute joints about their y-axes. Mass prop-
erties are also specified for each frame.

At each time step, a massless frame is also attached to each wheel in contact with
the terrain. The origin of the contact frame is the point on the circumference of the
wheel that most penetrates the terrain surface. This is computed by a limited collision
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Fig. 1 LandTamer frames diagram

Fig. 2 Rocky 7 frames diagram

Table 1 LandTamer frames table. Made by
PFM Manufacturing Inc.
i Frame Parent Type Act. x y z θx θy θz

1 body nav
2 FL body RY Y l w 0 0 0 0
3 FR body RY Y l -w 0 0 0 0
4 ML body RY Y 0 w 0 0 0 0
5 MR body RY Y 0 -w 0 0 0 0
6 BL body RY Y -l w 0 0 0 0
7 BR body RY Y -l -w 0 0 0 0
in inches: l=42, w=32.25, wheel radius=16.5, total mass
= 3225 lbm

Table 2 Rocky 7 frames table [22]
i Frame Parent Type Act. x y z θx θy θz

1 body nav
2 D1 body RY N k2 k3 k1 0 0 0
3 S1 D1 RZ Y k4 0 0 0 0 0
4 A1 S1 RY Y 0 0 -k5 0 0 0
5 B1 D1 RY N -k6x 0 -k6z 0 0 0
6 A3 B1 RY Y k7 0 -k8 0 0 0
7 A5 B1 RY Y -k7 0 -k8 0 0 0
8 D2 body RY N k2 -k3 k1 0 0 0
9 S2 D2 RZ Y k4 0 0 0 0 0
10 A2 S2 RY Y 0 0 -k5 0 0 0
11 B2 D2 RY N -k6x 0 -k6z 0 0 0
12 A4 B1 RY Y k7 0 -k8 0 0 0
13 A6 B1 RY Y -k7 0 -k8 0 0 0
in centimeters: k1=10.5, k2=12.075, k3=20, k4=28.8,
k5=12.5, k6x=16·sin(49◦), k6z=16·cos(49◦), k7=6.9,
k8=2, wheel radius=6.5, total mass = 11 kg

engine that intersects wheel and surface geometries. Wheels can be represented as 3D
circles (discretized into points) and surfaces can be bounded planes, elevation grids,
triangular meshes, etc. The contact frame z-axis is aligned with the surface normal
vector at the contact point. The x and y axes are aligned with the longitudinal and
lateral slip directions.

Frame information is stored in an ordered list such that the index of any frame is
greater than the index of its parent (i > p(i), i = 1 is the body frame). Frame data
for two example WMRs is provided in Tables 1 and 2. Joint types are revolute (R)
or prismatic (P) about one of the axes (X,Y,Z). Act. means Actuated. The last six
columns specify the pose of each frame with respect to its parent frame when joint
displacement is zero.

We chose to use generalized (or reduced) coordinates for our method. The first
elements of the state vector (q) are the pose of the body frame with respect to the
world frame (ρ). Orientation (o) may be expressed using either Euler angles or
quaternions. The subsequent elements of the state vector are joint displacements (θ )
in the same order as the frames list.

q =

[
ρ
θ

]
ρ =

[⇀
t
o

]
(1)
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Open Dynamics Engine and Baraff [2] use a different state space which contains
the 6-DOF pose of each frame. This necessitates numerous constraint equations for
lower pairs; each 1-DOF revolute or prismatic joint requires a 5-DOF constraint.
Big matrices must be inverted at every time step to solve for Lagrange multipliers,
but computational cost can be mitigated somewhat by exploiting sparsity.

Given the frames list data and state vector one can compute the forward kinemat-

ics, or the homogeneous transform between each frame and its parent frame (T p(i)
i )

or the world frame (T w
i ). Homogeneous transforms are 4×4 matrices that encode

rotation and translation:

T b
a =

[
Rb

a
⇀
t b

a
0T 1

]
(2)

3.2 Spatial Vector Algebra Dynamics Algorithms

We express WMR dynamics using spatial vector algebra as published by Feather-
stone [8][9]. This is compatible with our prior work on a vector algebra formulation
of WMR kinematics [15]. Spatial vectors are 6D and inhabit two vector spaces:
motion and force. Spatial velocity and acceleration (→v,→a) are motion vectors; they
contain 3D angular and linear components (on top and bottom respectively). Spatial

force (
→
f ) likewise contains 3D moment and linear force components.

→v =

[
⇀ω
⇀v

]
→a =

[
⇀α
⇀a

]
→
f =

[
⇀τ
⇀

f

]
(3)

The unconstrained dynamic equation is:

Mq̈
s
+ c(q, q̇

s
) = τ (4)

q̇
s

is equivalent to the first time derivative of state (q̇), except that the time deriva-

tive of pose (ρ̇) is replaced with the spatial velocity of the body frame (b→vw
b ). Like-

wise q̈
s

contains the spatial acceleration. τ is a vector of actuator torques/forces
applied at the joints.

We use the Recursive Newton-Euler Algorithm (RNEA) to compute the joint
space bias force c, which includes the Coriolis and centripetal force terms, as shown
in Algorithm 1. External wheel contact forces may be added directly on line 10 (as
do [1][19][11]). Instead, we include these forces via constraints as explained in Sec-
tion 3.3. Instead of adding gravitational force to each frame, we simply accelerate
the base (line 2). n f is the total number of frames, and nw is the number of wheel
frames. Xi

p(i) is a 6×6 Plücker transform that converts motion spatial vectors from
parent to child coordinates; its transpose converts force spatial vectors from child
to parent coordinates. Ii is the 6×6 spatial inertia of frame i (which encodes mass,
center of mass, moment of inertia). The function s(i) maps the joint type of frame i
to a spatial vector index (RX=1, RY=2, RZ=3, PX=4, PY=5, PZ=6).
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We use the Composite-Rigid-Body Algorithm (CRBA) to compute the joint
space inertia, as shown in Algorithm 2. Ic

i denotes the composite inertia of the sub-
tree rooted at frame i. Note that M is symmetric. Explanations of the original RNEA
and CRBA are available in [9]. Our Algorithms 1 and 2 are modified to account for
the special structure of WMR kinematics: a non-fixed base, only 1-DOF joints, and
nw contact frames at the list’s end which are massless and fixed with respect to their
parent wheel frames.

Algorithm 1. RNEA, joint space bias
force
1. →v1 = q̇

s
(1 : 6)

2. →a1 =
b→g

3. for i = 1 to n f do
4. if i > 1 then
5.

→
h = 0

6. if i ≤ (n f − nw) then
→
h(s(i)) =

q̇
s
(i+5)

7. →vi = Xi
p(i)

→vp(i) +
→
h

8. →ai = Xi
p(i)

→ap(i) +
→vi ×

→
h

9. end if
10.

→
f i = Ii

→ai +
→vi × Ii

→vi(+
→
f ext

i )
11. end for
12. for i = n f to 2 by -1 do
13. if i ≤ (n f − nw) then c(i + 5) =

→
f i(s(i))

14.
→
f p(i) =

→
f p(i) +(Xi

p(i))
T →

f i

15. end for
16. c(1 : 6) =

→
f 1

Algorithm 2. CRBA, joint space inertia
1. for i = 1 to (n f −nw) do Ic

i = Ii
2. for i = (n f −nw) to 2 by -1 do
3. Ic

p(i) = Ic
p(i) +(Xi

p(i))
T Ic

i (X
i
p(i))

4. end for
5. M = 0
6. M(1 : 6,1 : 6) = Ic

1
7. for i = 2 to (n f −nw) do

8.
→
f c = Ic

i (∗,s(i))
9. M(i+5, i+5) =

→
f c(s(i))

10. j = i
11. while j > 1 do

12.
→
f c = (Xi

p(i))
T

→
f c

13. j = p( j)
14. if j = 1 then

15. M(1 : 6, i+5) =
→
f c

16. M(i+5,1 : 6) = M(i+5,1 : 6)T

17. else
18. M( j+5, i+5) =

→
f c(s( j))

19. M(i+5, j+5) = M( j+5, i+5)
20. end if
21. end while
22. end for

3.3 Wheel-Ground Contact Constraints

Each wheel-ground contact frame has three constraints: one holonomic surface con-
tact constraint which restricts motion along its z-axis, and two nonholonomic slip
velocity constraints which restrict motion along its x and y axes. As in [25], holo-
nomic constraints are converted to velocity constraints by differentiation. For a sin-
gle wheel, the constraint equations are of the form:

Aq̇
s
=

⇀
vc (5)
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Algorithm 3. Wheel constraint matrix
1. c = contact frame index
2. i = p(c)
3. while i > 1 do
4. if s(i) ∈ {1,2,3} then

5. A(∗, i+5) = Rw
i (∗,s(i))× (

⇀
t w

c −⇀
t w

i )
6. else if s(i) ∈ {4,5,6} then
7. A(∗, i+5) = Rw

i (∗,s(i)−3)
8. end if
9. i = p(i)

10. end while
11. A(∗,1 : 3) = [

⇀
t w

c −⇀
t w

1 ]
T×Rw

1
12. A(∗,4 : 6) = Rw

1
13. A = Rc

wA

The matrix A is computed by Algo-
rithm 3, which works backwards along
the kinematic chain from contact to
body frame. On line 11, the identity
⇀ω × ⇀

t = −⇀
t × ⇀ω = [

⇀
t ]T×

⇀ω is used, as
q̇

s
contains the angular velocity of the

body frame. The right-hand side ⇀
vc is

short for c⇀vw
c : the velocity of the con-

tact frame with respect to the ground
expressed in contact coordinates. This
is not constant, but is solved for by op-
timization as explained in Section 3.4.

We express all wheel-ground contact
models as functions in a common for-
mat:

⇀

f c = f (⇀vc,Rω ,Δz) (6)

The forces exerted by the ground on the wheel (
⇀

f c) are dependent on ⇀vc, the product
of wheel radius and angular rate (Rω), and the displacement between the contact
point and terrain surface (Δz) due to sinkage or compression. Plots of longitudinal
force vs. slip ratio and angle for two example models are shown in Figure 3.
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Fig. 3 Normalized longitudinal force ( fx/ fz) vs. slip ratio and angle for two wheel-ground
contact models. (a) and (b) use equations and parameters in [3] and [11] respectively. These
plots are for fixed Δ z. Though not shown, these models also determine lateral and normal
force.

Constraints for all wheels are stacked into one matrix equation with 3nw rows.
Hereafter let A denote the stacked matrix and vc the stacked vector for all wheel
constraints. Additional constraints may be appended to account for mechanical
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restrictions on joint displacements (such as roll/pitch averaging) or to enforce de-
sired speeds for actuated joints.

3.4 Force-Balance Optimization

This section explains perhaps this paper’s most important theoretical contribution,
the enforcement of nonlinear wheel-ground contact models in a DAE formulation.
The dynamics equation (4) is modified to include constraints as follows:[

M AT

A C

][
q̈

s
λ

]
=

[
τ − c

b

]
(7)

where C is a matrix of zeros except for potentially non-zero “constraint force mix-
ing” values on the diagonal for appended holonomic constraints on joint displace-
ments. These are used just as in Open Dynamics Engine to introduce compliance.
(7) can be rearranged to solve for the vector of Lagrange multipliers (λ ) which rep-
resent constraint forces:

λ = [AM−1AT +C]−1(b−AM−1(τ − c)) (8)

Note that the constraints on state velocity (q̇
s
) have been converted to constraints

on state acceleration (q̈
s
) as follows:

Aq̇
s
[i+ 1] = vc[i+ 1] (9)

A(q̇
s
[i]+ q̈

s
Δ t) = vc[i+ 1] (10)

Aq̈
s
= (vc[i+ 1]−Aq̇

s
[i])/Δ t (11)

Aq̈
s
= (vc[i+ 1]− vc[i])/Δ t = b (12)

[i] and [i+ 1] denote the current and next time step. vc[i] is already computed in
Algorithm 1, whereas vc[i+ 1] must be computed by optimization:

argmin
vc[i+1]

‖λ(i|i ∈W )− f
c
‖ (13)

In short, contact point velocities are chosen such that constraint forces computed
by the dynamics equation (8) match those computed by the wheel-ground contact
model (6). f

c
denotes the stacked vector of contact model forces for all wheels. W

denotes the set of wheel constraint indices (excludes appended constraints).
This optimization can be performed efficiently using Newton’s method. Let x

denote the argument vc[i+ 1] and f (x) the objective function; then our guess for x
is updated as follows:

xn+1 = xn − γ[H f (xn)]
−1∇ f (xn), 0 ≤ γ ≤ 1 (14)
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Computing the Hessian (H f (xn)) and gradient (∇ f (xn)) requires the Jacobian of
the wheel-ground contact model output f

c
with respect to its inputs. The step size

γ is chosen such that the strong Wolfe conditions are satisfied, using a line search
algorithm like Algorithm 3.2 in [21].

WMRs have six DOF for motion of the body frame, plus one DOF for each
revolute/prismatic joint. They have three constraints for each wheel in contact, plus
any appended constraints. Many WMR configurations are overconstrained which
results in a rank-deficient A matrix. To address this we choose and enforce a linearly
independent subset of the constraints. A well-conditioned subset can be chosen by
QR decomposition of AT . The subset contains all appended constraints, but only
some of the wheel constraints. f

c
in the objective function (13) is replaced with P f

c
where P projects the full vector of contact forces onto the subset space.

Once q̈
s

is solved for, state velocity and state can be updated using symplectic
Euler integration as follows:

q̇
s
[i+ 1] = q̇

s
[i]+ q̈

s
Δ t (15)

q̇[i+ 1]← q̇
s
[i+ 1] (16)

q[i+ 1] = q[i]+ q̇[i+ 1]Δ t (17)

Note that (16) requires the conversion of angular velocity to either Euler angle or
quaternion rates. Higher-order integration methods such as Runge-Kutta are also
possible. Unlike the “stiff” ordinary differential equation method, our DAE method
is stable even for large time steps.

3.5 Recommendations for Computational Speed-up

No matter how fast your processor, a faster simulator can improve planning
performance by enabling more candidate trajectories to be evaluated. One can im-
prove computation time in several ways without compromising simulation accu-
racy. First, in the optimization initialize contact point velocities (vc[i+ 1]) to values
at the previous time step (vc[i]). WMRs frequently execute steady-state maneuvers
during which these change little. Specify a cost threshold below which optimiza-
tion via Newton’s method is not required. Next, precompute lookup tables for the
wheel-ground contact model and its Jacobian. This is particularly beneficial for the
terramechanics-based models in [11][14], which require the costly integration of
stress distributions along the wheel surface.

One can further speed up computation for reasonable compromises in accuracy.
First, changes in the joint space inertia matrix M may have negligible impact on
WMR motion within the predictive horizon. If so, only compute M and M−1 for the
first time step and reuse these values on subsequent steps. Additionally, the effect of
Coriolis and centripetal forces on internal articulations may be negligible. If so, the
joint space bias force c can be approximated by a vector of zeros except for:

c(1 : 6) = Ic
1(

b→
g)+

→
v1 × Ic

1
→
v1 (18)
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This considers the WMR to be a single rigid body (with all joints locked). Ic
1 is

the composite inertia of the WMR rooted at the body frame, which like M can be
computed only once.

4 Results

In this section we evaluate our simulation method in three tests. For the first test,
we simulate the LandTamer vehicle (Figure 1) with a Pacejka wheel-ground contact
model (Figure 3(a)) driving over a 20◦ ramp then turning to the left and right at 2
m/s (Figure 4). Figure 5 shows slip ratios and angles for two simulations of this tra-
jectory: one using our method of handling contact forces via constraints, the other
adding them directly. Using constraints eliminates jitter and reduces computation
time from 21.40s to 2.03s (implemented in MATLAB, using a 2.83 GHz proces-
sor). Both simulations benefit from our method’s reduced state space and use of
the RNEA/CRBA; this speed-up will be quantified in future work. Both simulations
use constraints to control wheel velocities, as PID torque controllers can make the
dynamics very stiff.

An adaptive integrator (MATLAB’s ode45) is required for the direct addition
method. Figure 6(a) shows that, to prevent jitter, the integrator takes very small
steps relative to the .04s steps taken by our method. If .04s steps were taken by the
direct addition method, jitter would become severe instability. Figure 6(b) shows
the number of Newton’s method iterations required for force-balance optimization
in our method (Section 3.4); zero iterations are required during steady-state periods.

We also validated our dynamic model of the LandTamer in a physical experiment
(the second test). We drove the LandTamer in various arcs (at up to 2.5 m/s and 0.5
rad/s) in a parking lot at the Taylor test site near Pittsburgh, PA. We tuned parameters
of the dynamic model (including tire model parameters and the center of mass) to
fit one portion of the dataset, then evaluated on the remainder (Figure 7). Table 3
compares the mean position and absolute yaw error for our tuned dynamic model
and a kinematic model that minimizes slip velocity at the six wheels, i.e. ||vc||.
For reasonable planning horizons of 5-20m our predicted position error is 1-2% of
distance traveled. Both position and yaw prediction errors using our dynamic model
are 88-93% less than using the kinematic model.

For the third test, we simulate the Rocky 7 rover (Figure 2) with a terramechanics-
based wheel-ground contact model (Figure 3(b)). The rover traverses uneven, ran-
dom terrain while making wide turns for 10 seconds at 0.5 m/s (Figure 8). Fig-

Fig. 4 LandTamer anima-
tion screenshot. The path of
the body frame is traced in
blue; the paths of wheel-
ground contact points are
traced in red.
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Fig. 5 Slip ratios and angles for
all wheels for two simulations of
the LandTamer executing the trajec-
tory shown in Figure 4. Our method
of handling contact forces via con-
straints (solid lines) reduces jit-
ter compared to the more common
method of adding contact forces di-
rectly (dashed lines). As expected,
the slip ratios are positive while as-
cending the ramp (4-6s) and neg-
ative while descending (7-9s) due
to gravity. The slip angles indicate
lateral slip away from the center of
curvature when turning (10-20s).
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Fig. 6 (a) Integration time step size for the direct addition method (compare to .04s for our
method). (b) Number of Newton’s method iterations required for our method.

ure 9(a) shows how computation time decreases exponentially with larger time step
size. Computation times are normalized by dividing by simulation time; values less
than one indicate faster than real time. Each of the approximations suggested in
Section 3.5 reduces computation time by approximately 10%. In Figure 9(b), er-
ror is the difference in predicted terminal pose with respect to the prediction using
no approximations and the minimum (.005s) time step size, for 5m of travel. Error
increases linearly (not exponentially) with time step size, and only modestly with
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Fig. 7 Evaluation path of the LandTamer at the Taylor parking lot (shipping containers seen
in aerial image were not present then). Lines represent: (solid) path measured via Real Time
Kinematic GPS, (short-dash) predicted via dynamic model, (long-dash) predicted via kine-
matic model. Accurate prediction over the entire path length is hard; prediction errors over
reasonable horizons are quantified in Table 3.

Table 3 LandTamer model prediction errors

Dynamic model Kinematic model
Horizon pos. |yaw| pos. |yaw|
5m 0.0669 0.0169 0.5442 0.2006
10m 0.1470 0.0292 1.8076 0.3818
20m 0.3839 0.0515 5.1336 0.6796

Position (m) and absolute yaw (rad) error values are averages over > 50 trials, equally spaced
over the 273m evaluation path. 10 and 20m trials overlapped.

Fig. 8 Rocky 7 rover
animation screenshot. The
path of the body frame is
traced in blue; the paths of
the wheel-ground contact
points are traced in red.

approximation. Modest errors may be an acceptable tradeoff for significant speed-up
in some planning applications.
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Fig. 9 Computation time and error vs. time step size for our dynamics method, with/without
approximation of the joint space inertia and bias force. Averaged over 30 trials. In (b) solid
lines are for 2D position error, dashed lines are for absolute yaw error.

5 Conclusions and Future Work

We presented a modular method for the simulation of wheeled mobile robots. In
contrast to existing resources such as Open Dynamics Engine, our method uses spa-
tial vector algebra dynamics algorithms which are particularly efficient for WMRs.
More importantly, in contrast to ODE, our method can accommodate complex, non-
linear wheel-ground contact models. Our enforcement of these models via con-
straints in a DAE formulation was demonstrated to be more stable and efficient than
the common method of directly adding contact forces in an ordinary differential
equation formulation (Section 4, first test).

More physical experiments will be presented in future work on the calibration of
3D WMR motion models. We plan to convert our MATLAB implementation of the
WMR simulator to C++; only then can we fairly compare computational speed with
alternatives (like ODE, CarSim, etc.). We also plan to make this software publicly
available. This will enable existing and future research on wheel-ground contact
models to be readily applied to the prediction of full vehicle mobility. The simulator
should be fast and accurate enough for improved model-predictive planning in many
challenging applications.
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Autonomous River Exploration

Sezal Jain, Stephen Nuske, Andrew Chambers, Luke Yoder, Hugh Cover,
Lyle Chamberlain, Sebastian Scherer, and Sanjiv Singh

Abstract. Mapping a rivers course and width provides valuable information to help
understand the ecology, topology and health of a particular environment. Such maps
can also be useful to determine whether specific surface vessels can traverse the
rivers. While rivers can be mapped from satellite imagery, the presence of vegeta-
tion, sometimes so thick that the canopy completely occludes the river, complicates
the process of mapping. Here we propose the use of a micro air vehicle flying under
the canopy to create accurate maps of the environment. We study and present a sys-
tem that can autonomously explore rivers without any prior information, and demon-
strate an algorithm that can guide the vehicle based upon local sensors mounted on
board the flying vehicle that can perceive the river, bank and obstacles. Our field
experiments demonstrate what we believe is the first autonomous exploration of
rivers by an autonomous vehicle. We show the 3D maps produced by our system
over runs of 100-450 meters in length and compare guidance decisions made by our
system to those made by a human piloting a boat carrying our system over multiple
kilometers.

1 Introduction

Riverine systems are an increasingly important focus for many applications like
mapping, monitoring and surveillance where it is desirable to use autonomous ex-
ploration to traverse the river and collect up to date information. A small lightweight
system that can travel below the tree line to sense the river width, the river direction
and canopy clearance is advantageous since this information is often not possible to
measure from satellite imagery because tree canopy cover occludes the river from
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above. Further, narrow, densely-forested, rivers are difficult to navigate by surface
craft because of submerged and semi-submerged obstacles and therefore we develop
a Micro Aerial Vehicle (MAV) that is small and nimble and able to traverse the dif-
ficult terrain.

(a) Micro Aerial Vehicle (MAV) autonomously navigating river environ-
ment.

(b) Close-up of vehicle exploring
river environment.

(c) Vehicle local sensing consists of a
lightweight spinning laser scanner and
stereo color camera pair.

Fig. 1 A Micro Aerial Vehicle is used to autonomously explore and map the river environ-
ment. The information of interest is the intersection between bank and river. The vehicle is
lightweight and agile and not suseptible to submerged and semi-submerged obstacles such as
would be hazardous to a surface vehicle. To avoid obstacles and to perceive the extent and
course of the river the vehicle is fitted with a spinning 3D laser scanner and color stereo pair.
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Existing applications for autonomous river operations focus on collecting infor-
mation from robotic boats navigating based on stored directions. These existing
works have used pre-determined GPS waypoints as a navigation guide. Often river-
ine systems are densely overgrown with vegetation and autonomous exploration
cannot depend on the irregular and erroneous GPS measurements in these surround-
ings. Due to their dense canopy, estimating an initial map of the waterways from
satellite images is also not a viable option. Further riverine environments are also
continuously evolving, and current information of the width and course is often
not available. For all of these reasons river environments must be explored without
relying on pre-determined maps or waypoints. To date, there has not been a truly au-
tonomous exploration system demonstrated in a river environment. We present what
we believe is the first such system that can explore a river solely from local sensing,
and in addition our vehicle is the first that can fly through river environments to
quickly explore while avoiding submerged and semi-submerged obstacles.

We build on our existing work in river environments for autonomous perception,
positioning, and obstacle avoidance work [1, 3, 4, 12, 11] and extend to add the
key capability of truly autonomous exploration. Our contribution here is to present
a new exploration algorithm based on a multi-variate cost function to maximize the
information collected in a river map given the fixed duration of a mission. We use
two sensor modailities which are different in range and accuracy, namely vision and
laser in local sensing for the proposed algorithm. We demonstrate that our method
is more adept than traditional exploration algorithms and can traverse the river to
gather more information during a mission.

2 Related Work

Much work has been placed in development of autonomous vehicles for navi-
gating waterways, using a variety of different types of crafts such as automated
catamarans [5, 9], small lightweight fanboats [15], kayaks [8] or small inflatable
craft [6]. Most of these existing waterway navigation works rely on predefined GPS-
waypoints, or a pre-defined map generated from satellite imagery [6]. In contrast our
work is focused on autonomous exploration, where the environment is perceived by
onboard sensors and the vehicle reacts by planning routes that navigate the vehicle
along the waterway and maps the direction and width of the river-bank.

We achieve this with a spinning 3D laser scanner, which has also been demon-
strated for local obstacle avoidance [5] and [6] to navigate around obstacles discov-
ered above the water surface. However, we do not use any prior information and
rely on intelligent path and goal planning based on the information received by our
local sensing. One somewhat related work is by [10] where rivers are detected and
tracked from aerial vehicles, although unlike our work these are higher flying ve-
hicles making them as unsuitable as satellite images, whereas our system operates
beneath the tree-line, close to the river surface.

In terms of exploration strategies, a common approach is to optimize the robot
pose accuracy and the accuracy of the resulting map, [2, 7]. In contrast we rely
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on separate positioning algorithms [11] for pose accuracy, and instead we focus
our exploration algorithm to maximize the length of riverbank discovered. In some
exploration strategies, information maximization is focused on reducing uncertainty
in pose and likelihood of map cells being an obstacle or free space, [2, 7]. Other
approaches more closely related to ours define exploration goals that select view-
points that are expected to yield the highest increase in entropy [14, 13] resulting
in the robot seeking out regions that have not yet been explored. Overall, these
strategies are closely related to the standard frontier exploration systems [16]. Our
method is similar in nature, although we introduce a multi-variate cost-map, which
finds trajectories that maximize the length of a river explored for a given mission
time.

3 Approach

The key aim of the work we present here is to plan goals for the vehicle to execute
trajectories to realize the following behaviors:

• Follow river, whilst maintaining stable flight and avoiding obstacles
• Maximize the information collected over the course of the river

3.1 Environment Modeling and Sensing

The riverine system is modeled as a planar grid (χ). Each cell χ i in the grid repre-
sents a cell in the world at location xi,yi , and the rivermap values of this cell in the
grid is as follows:

χ i
r = χxi,yi

r =

⎧⎪⎨
⎪⎩

1 if the cell is part of river

−1 if the cell is part of bank

0 if the cell has not been observed

(1)

Taking χ we form a function that defines the current information that we have
of the river. We define the intersection between river and bank as the pertinent in-
formation for mapping the width and course and use these cells as a measure of
information. To achieve this we form a new information map as follows to search
for discontinuities in the current river model:

I(xi,yi) =
u=xi+1

∑
u=xi−1

v=yi+1

∑
v=yi−1

(sign(χ (xi,yi)
r ) �= sign(χ (u,v)

r )) (2)

Our exploration algorithm seeks to extract desirable trajectories for the vehicle that
will maximize the entropy in I.

The above formulation is derived from data collected from local sensing mounted
onboard the vehicle, see Fig.1(c). The laser scanner and the camera onboard gen-
erate environment maps which are used for goal planning. We segment images
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Fig. 2 Pixels with probability greater than .5 after river segmentation are classified as river
and marked red [1]. They are then projected onto river plane to create an initial map of the
environment. This image is from a dataset taken from McCarthy river, Mississipi.

received through a camera and use the probabilities generated to create a river map
by projecting them onto the river surface using the method from [1] as shown in-
Fig.2.

We use a lightweight spinning laser range scanner to create a 3D scan of the en-
vironment (see Fig.1(c) and [12]). The maximum range of this scanner depends on
ambient illumination and reflectance characteristics of objects, but in typical out-
door environments we observe maximum ranges of approximately 15 meters. We
use this range to determine which laser missed returns are due to limited range and
which are due to water absorbtion (i.e. we can detect the river from these laser
misses). The laser range measurements are converted into a 3D point cloud in the
world frame using an accurate positioning system that operates in GPS denied en-
vironments ([12] and [11]). In addition to global positioning we measure the cur-
rent height above the river surface, which cannot be derived purely from the global
frame, since the height will vary according to current water level. To achieve this
we extract specular returns from the water surface in a tight cone directly below the
vehicle.

Once the global position and relative height above the surface is known, we can
then proceed to use the laser measurements to form our environment map. In partic-
ular the following rules are applied:

• All missed laser returns (those with the maximum laser range), that pass through
the river plane, are considered as river cells at the intersection of the ray and the
river plane {χ i

r = 1 }
• All laser hits less than maximum range are projected on the environment grid and

based on the density of these projected hits in a cell, the cell is classified as part
of the river bank. {χ i

r =−1 }

3.2 Goal Planning for River Following

The main task in autonomous exploration is to take local perception of the envi-
ronment and to extract goals for the vehicle to traverse towards. The goals are then
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fed in as input to the low-level motion planning algorithm. The low-level motion
planning we have developed in earlier in [4]. The exploration algorithm we present
here sets goals that seek to maximize the information gained during the mission.

To achieve desired behaviors we introduce multivariate cost maps, that respect
the characteristics of the sensing and extend the abilities of more simplistic tradi-
tional frontier exploration algorithms [16]. In particular the costs we derive enable
the vehicle to observe the maximum amount of the riverbank whilst following the
course of the river, and where possible avoid returning to unexplored portions of
the river that are behind the vehicle. Unexplored frontier that was not observed as
the vehicle passed by initially, may become larger in size than a narrow passage that
the vehicle encounters directly ahead, however, it is suboptimal to return to these
locations as little new information is collected on the journey back to previously
explored areas.

For one we develop a riverbank hugging behavior which uses a distance trans-
form based cost function, Cd(·) that aims to keep the vehicle away-from but near-

(a) Distance transform (b) Relative temporal differences be-
tween observations

(c) Range of the cell to the current ve-
hicle location

(d) Combined multi-variate cost
function

Fig. 3 Visualizations of the multi-variate cost functions. Obstacles are highlighted in red, the
cells observed as river are rendered a shade from white to blue, where deep blue represents
low cost to go. Cells with lowest cost in a map represent the next goal point for navigation.
For the combined cost functions we indicate the cluster of lowest cost cells in green.
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enough distance to the riverbank to both assist the 3D mapping of the bank and
ensure the local motion estimation is functional. This range is designed to result in
maximal information gain of the riverbank. To arrive at CD(i) we compute a dis-
tance transform fD(i) that returns the distance to the nearest obstacle (χ j

r < 0). We
very efficiently compute this distance cost as described in detail in [12]. After cal-
culating the distance transform we apply a function to penalize goals very close to
obstacles and also penalize goals far away from obstacles using a desired distance
κD as follows:

CD(i) = 1− exp(kD( fD(i)−κD)
2 +

1
fD(i)

) (3)

fD(i) = argmin
j=1:N
χ j

r <0

||(xi,yi)− (x j,y j)|| (4)

where kd is a tuning constant. The resulting functional is depicted in Fig. 3(a), where
the cost is high near the obstacles and descends to a minima at κD.

The next cost we introduce is designed to avoid retracing steps, in particular we
assign cells that have been observed more recently with lower cost than those behind
the vehicle, that were observed further in the past. We take the elapsed time since
the ith cell was last observed as χ i

t and use it to penalize retracing through cells seen
previously as follows:

CT (i) = t − χ i
t (5)

Fig. 3(b), visualizes this temporal observation cost. An important cost we introduce
is CR(i). The range the cell is from the current vehicle-location, which is designed
to maximize distance traversed along river:

CR(i) = ||(xi,yi)− (xt ,yt)|| (6)

where (xt ,yt) is the current position of the vehicle, see Fig. 3(c).
Next we introduce a cost to favor the vehicle continuing on its current course to

avoid the issue of isotropic sensor input that typically occurs at commencement of a
mission when no obstacles are within range and the aforementioned costs are at an
equilibrium and do not return stable goals.

CH(i) = expκH(θ v
z −Δθ ) (7)

Δθ = arctan((
xt − xi

yt − yi
)

2
) (8)

Where kH and κH are constants that are empirically determined to create a dip in
cost around zero heading to enable vehicle to maintain its course when the sensory
inputs do not provide stable goals, such as in open waters.

Finally an obstacle path cost CO(i) is derived from the set of cells (P) connecting
the vehicle position with cell i:
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CO(i) = argmax
p∈P

( fO(p)) (9)

fO(p) =

{
0 if χ p

r == 1

κO otherwise
(10)

Where κO is a suitably large constant to avoid obstacles. Individually these costs do
not produce desirable behavior, however when correctly fused together, the vehicle
maintains course. Therefore, the final objective of the goal planning algorithm is to
combine the costs and extract the resulting goal χG that is to be passed to the motion
planning algorithm.

Then to extract goals we compile a set Ψ that contains the cells with the lowest
n% cost, then find a weighted mean over this set:

G = argmin
ψ∈Ψ

( Σ
i=1:N

(||(xψ ,yψ )− (xi,yi)|| ·C(ψ))) (11)

4 Results

We validate our method in a set of experiments, beginning with controlled sim-
ulations executed within maps of real-world data, continuing with results from
autonomous flights over rivers and waterways and then we present open loop com-
parison with human operator on real-world data.

4.1 Simulated Exploration on Real-world Data

For simulation we use an environment model generated from data collected over a
section of McCarthy River in Mississippi, USA. A 3D point cloud registered in world
coordinates is generated from data collected through the sensor suite carried on a boat
traversing the river. From this point cloud we can simulate the laser measurements
given a particular pose of the robot and the known characteristics of our laser scanner.
This gives us the means to evaluate our autonomous exploration algorithm based on
multi-variate cost maps against a traditional frontier exploration algorithm.

We use planning cycles executed every 10 seconds and use a fixed number of
planning cycles to give a fair evaluation. Each algorithm is given the same initial
conditions and we measure the information gained at each time step during the sim-
ulated mission. In Fig. 4 the information gained with approach is plotted against
time, where clearly the more traditional frontier approach has difficulties maintain-
ing advantageous trajectories for mapping the riverbank. When narrow passages
appear in the river, the frontier algorithm oscillates between returning to explore
the earlier unexplored frontier segments and returning to the narrow passages. Our
method both maintains optimal distance from the riverbank to avoid suboptimal tra-
jectories and also selects trajectories with higher probability of maintaining course
along the river and avoid backtracking down the river to observe portions of the
bank.
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Fig. 4 Simulation of autonomous exploration comparing our method using multi-variate cost
maps against a more traditional frontier exploration algorithm [16]. The simulation is given
the same initial conditions within an environment model formed from real-data collected from
a section of McCarthy River in Mississippi, USA. The information gained using each algo-
rithm is compared. When presented with a narrow passage appears, the frontier algorithm
oscillates between returning to earlier unexplored segments of the river, whereas our algo-
rithm continues in the trajectory that is far greater probability of increasing the information
collected of the riverbank.

4.2 Autonomous Flights

After demonstrating in simulation that our exploration algorithm is more optimal at
returning favorable trajectories, we now proceed to evaluate our approach in real-
world truly autonomous flights over rivers and waterways. We manually bring our
system into a hover over a river and switch into autonomous mode and from there
let the vehicle explore the river autonomously at a velocity of 1 m/s with no further
human inputs.

The flights are on tight and densely vegetated sections of a river, and demonstrate
the complete system for planning trajectories that avoid overhanging tree obstacles
and maintaining course along the river. The algorithm is able to plan trajectories
which enable the system to stay in range of both riverbanks where possible resulting
in an optimal trajectory for maximizing information.

Fig. 5 shows an example of the cluttered river environment the robot is flying
through during an autonomous 100m flight. The canopy and the river/bank classifi-
cation map from this flight are shown in Fig. 6. This experiment demonstrates the
advantage of our algorithm against getting information from satellite images as we
are able to classify the areas lying underneath the canopy as river or bank.

Finally we demonstrate the ability of the system to navigate a river over long
distances. In the longest autonomous run on a river, the robot flew for about 450m
along the length of a narrow river. The limiting factor in the distance covered during
this test was the battery life of the vehicle.
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(a) (b)

Fig. 5 (a)Laser-point cloud collected from the autonomous flight through the densely-
forested river environment. The detected river extent is colored with blue cells and the bank
and overhanging trees are colored by height above river surface. (b) Environment where we
test the system’s ability to fly autonomously through a densely forested river.

Fig. 6 Map generated from autonomous flight through narrow and densely vegetated river-
segment. Top: Satellite view of river segment. Left: Map of river where green is the bank and
overhanging trees detected by the laser scanner. Right: Traversable river extent detected by
the laser scanner. Notice the overhanging trees in the middle of the segment are removed and
a clear and traversable path is discovered underneath by the flying vehicle. The traversable
river map, for example, could be used by a surface craft following the flying vehicle enabling
it to have knowledge of where it is safe to travel.
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Fig. 7 Autonomous flight: Top: Satellite image with overlaid flight trajectory and Bottom:
The river/bank map (blue) and canopy map (green) generated by the robot from data collected
in a 450m autonomous flight along a river

This experiment was conducted on a very shallow river about 10-15m in width
with dense vegetation on both banks. The robot localizes itself without any GPS
input and is able to classify the cluttered environment into river and obstacles to
explore and plan through it. There were some pauses in robot trajectory in some
sections of the river due to trees with branches hanging over the river blocking the
path for the robot. Shallow areas in the river made the problem harder as they would
be classified as obstacles due to large number of laser returns. Wind was also a
challenge as a slight drift from the trajectory would take the robot too close to an
obstacle. The final map of the bank and the trajectory of the vehicle during this
experiment is displayed in Fig. 7. The system operates without manual intervention
successfully exploring the river and turning according to the river direction.

4.3 Open Loop Comparison

Finally, we compare vision and laser sensors for navigation against a human op-
erator, whom we consider to make expert decisions on how to navigate along the
river. Human decisions are either left or right turn decisions which are measured
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Turn Command Comparison

Vision Requested Turn −"right"

Vision Requested Turn −"left"

Actual Turn−"right"

Actual Turn −"left"

Laser Requested Turn −"right"

Laser Requested Turn −"left"

(a)

50-200m full path
Vision 79.3% 77%
Laser 54% 66%

(b) (c)

Fig. 8 (a) Comparison of turn commands over time. Long range vision commands are more
stable and do not require the vehicle to change directions unnecessarily. Laser commands are
more jittery as they consider a much smaller environment while planning and react suddenly
to any changes. (b) % accuracy of vision and laser turn requests by comparing them to the
ground truth. Results from the 50-200m wide stretch show a larger difference in vision and
laser accuracies. (c)The 1.5 km path followed on McCarthy river.

from heading changes in pose estimate. We perform an open loop comparison of
the sensors and human operator on data collected by the robot platform fixed on a
boat driven along McCarthy river.

We compare the decisions made by the human operator against the turn decisions
made based on goal-points received from the multi-variate exploration algorithm
using laser as well as vision sensing.

Since the laser scanner has a short range, laser based navigation follows the con-
tours of a bank closely making more reactive decisions. The vehicle is able to look
further ahead using vision to make intelligent and time-efficient decisions. This dif-
ference is emphasized in a wide river, where vision will lead the vehicle down the
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river following its general course, but laser navigation will stick to the bank and
follow its contours which is time-inefficient and in contradiction to what a human
operator would do. After an initial 50m, the next 150m stretch is more than 25m
wide and vision performs much better than laser for this stretch, see Fig. 8(b), (c).

5 Conclusion

Our work demonstrates that autonomous autonomous exploration is possible in river
environments and that neither GPS waypoints nor prior maps are necessary. In ad-
dition we also demonstrate GPS denied flight with planning algorithms that can
robustly extract goal points in challenging unstructured terrain. While there is much
work in autonomous exploration for ground-vehicles, these algorithms do not di-
rectly translate to river environments. Our system is developed to respect the spe-
cific physical layout and properties of the river and bank and the behavior of the
sensors and perception algorithms in these environments.

In future work, we still see challenges to increase the operating velocity in a
safe manner. One avenue to explore is to predict ahead the course of the river with
more accuracy giving confidence of which directions are most likely to possess free-
space and when turns, dead-ends or forks are likely to appear. We also see persistent
monitoring a waterway as an important means to detect pertinent changes to the
environment. Further we see that small flying vehicles while fast and nimble, have
limited time of flight and must be combined with a supporting vehicle which is
larger and trails behind offering the ability for the flying vehicle to return for landing
and recharging. These non-homogenous teams of vehicles pose many interesting
research challenges, in both high fidelity localization and tracking and with relative
motion planning for high-speed take-offs and landings ,in addition to information
sharing to exploit the different sensing characteristics and viewing perspectives of
the vehicles.
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Outdoor Flight Testing of a Pole Inspection UAV
Incorporating High-speed Vision

Inkyu Sa, Stefan Hrabar, and Peter Corke

Abstract. We present a pole inspection system for outdoor environments compris-
ing a high-speed camera on a vertical take-off and landing (VTOL) aerial platform.
The pole inspection task requires a vehicle to fly close to a structure while maintain-
ing a fixed stand-off distance from it. Typical GPS errors make GPS-based naviga-
tion unsuitable for this task however. When flying outdoors a vehicle is also affected
by aerodynamics disturbances such as wind gusts, so the onboard controller must be
robust to these disturbances in order to maintain the stand-off distance. Two prob-
lems must therefor be addressed: fast and accurate state estimation without GPS, and
the design of a robust controller. We resolve these problems by a) performing visual
+ inertial relative state estimation and b) using a robust line tracker and a nested
controller design. Our state estimation exploits high-speed camera images (100Hz )
and 70Hz IMU data fused in an Extended Kalman Filter (EKF). We demonstrate
results from outdoor experiments for pole-relative hovering, and pole circumnavi-
gation where the operator provides only yaw commands. Lastly, we show results for
image-based 3D reconstruction and texture mapping of a pole to demonstrate the
usefulness for inspection tasks.

1 Introduction

Our work is motivated by the problem of inspecting vertical infrastructure such as
street lights or electrical distribution poles. There are more than 175 million street
lights in the world which need to be inspected periodically1. The options for in-
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(a) (b)

Fig. 1 (a) Our MikroKopter platform hovering relative to a pole in the foreground. (b) Tra-
ditional pole inspections can require lengthly setups and road blockages for vehicle access
which disrupts traffic.

specting these are limited. Ladders can be used up to a height of 10∼15m however
are quite dangerous: each year in the United States more than 160 people are killed
in ladder accidents and 242,000 are injured2. A ‘cherry picker’ can be used for taller
structures (Fig. 1(b)) however vehicle access is required and the setup time is sig-
nificant. In recent years we have seen significant advances in small vertical take-off
and landing (VTOL) platforms, in particular multirotors, driven by advances in inte-
grated circuit techniques and MEMS sensors. These systems are low-cost and have
sufficient payload and endurance for useful inspection missions of individual poles.
They are also low-weight which reduces the hazard due to their deployment. Such
platforms are however not trivial to fly, especially close to solid, unforgiving struc-
tures and beyond line-of-sight. It is particularly hard for an operator to judge the
stand-off distance to vertical infrastructure from his viewpoint on the ground.

To address the pole inspection task in outdoor environments we present the sys-
tem shown in Fig. 1(a) comprising a VTOL platform carrying a 100Hz front-facing
camera and a 70Hz inertial measurement unit (IMU). This builds on our previous
work [1][2] and makes the following new contributions:

• Estimation of the camera latency and inclusion of the latency in the control loop.
• Evaluation of state estimation and control for outdoor flight tests, using a laser

tracker for ground truth.
• Demonstration of a pole inspection scenario where the system maintains its pole-

relative pose leaving the operator free to control only yaw and height.
• Demonstration of the feasibility of image-based 3D reconstruction and surface

texturing of a pole using images captured during flight.

The remainder of the paper is structured as follows: Section 2 presents state-of-
the-art inspection systems using a VTOL platform and bio-inspired robots. Section
3 defines the coordinate systems used while Sections 4 and 5 describe the estimation

2 2011 National Electronic Injury Surveillance System Data Highlights.
http://www.cpsc.gov

http://www.cpsc.gov
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and controller design respectively. Section 6 describes how the user’s controllable
degrees of freedom (DOFs) are reduced. Experimental results are presented in Sec-
tion 7 and 3D pole reconstruction is discussed in Section 8. Conclusions are drawn
in Section 9.

2 Related Work

Considerable growth in sensor and integrated circuit technology has accelerated
small and light-weight flying robot development for inspections. Voigt et al.[3]
present an embedded stereo camera based egomotion estimation approach and
demonstrate its applicability to boiler inspections. Based on this work, Burri et al.[4]
and Kikolic et al.[8] show visual inspection of a thermal power plant boiler system
using a quadrotor. They develop an FPGA-based visual-inertial stereo Simultaneous
Localization and Mapping (SLAM) sensor and state updates at 10Hz. A Model Pre-
dictive Controller (MPC) is used for closed-loop flights in industrial boiler environ-
ments. Ortiz et al.[9] demonstrate autonomous vessel inspection using a quadrotor
platform. A laser scanner is utilized for horizontal SLAM and a downward-facing
camera holds the vehicle in its vertical axis. Vision-based relative state estimation
offers a weight and power consumption advantage over laser-based estimation, and
the image data is often more useful for inspection purposes.

High-update rate image sensing techniques in light-weight aerial robotics are
gaining momentum. These sensors allow quick response to disturbances and yield
robust, smooth maneuvers. Recent research has demonstrated the advantages of us-
ing these fast rate sensors [10][12]. Barry demonstrates a bird-inspired high-speed
(7m/s) aircraft system. The vehicle is able to fly through a vertical gap which is nar-
rower than its wingspan by rolling to vertical. He argues that high precision roll-rate
and velocity estimation are required and these are obtained by using a high-speed
camera and an IMU. In [2] we discuss the impact of high-update rate sensing by
demonstrating state estimation accuracy with different sample rates. Although high
measurement rates may improve overall quality [5], there is a trade-off between
computational power and flight time for aerial robots. To the best of our knowl-
edge, the ability to process QVGA images above 100Hz including Sobel masking,
RANSAC and line tracking onboard a small multi rotor is still a challenge given
state-of-the-art technology.

Climbing robots [6] [7] offer an alternative for pole inspections. They can po-
tentially carry larger payloads and allow for contact-based inspection techniques
however they are unable to offer vantage points of protruding hardware such as the
cross-arms of power distribution poles. They are also unable to bypass hardware
mounted part-way up the poles such as transformers.

3 Coordinate System Definition

Four right-handed coordinate frames are defined for this work as shown in Fig. 2:
the World {W}, Body {B}, Camera {C} and Laser Tracker {L} frames. Note that
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Fig. 2 Illustration of the coordinate systems used. We assume the transformation between
{B} and {C} is constant.

both {W} and {B} have downward-pointing z-axes while {C} has its z-axis (camera
optical axis) in the horizontal plane. We define the notation aRb which rotates a
vector defined with respect to {b} to a vector with respect to {a}. All measurements
and state estimation are transformed to {W}.

4 Vision and Inertial-Based State Estimation

This section summarizes the vision-based feature tracking [11] and state estimation
[2] used in this work. A camera tracks the two vertical edges of a pole and there
are two phases: bootstrapping and tracking. Initially the two edges are extracted
from a horizontal gradient (Sobel kernel) image using Canny edge detection and
Hough transforms. A line tracker performs line searching and line model fitting
using Random Sample Consensus (RANSAC) [19]. We implement an IMU-aided
line tracker to improve tracking performance (e.g., during aggressive motions). The
projection of the 3D pole edge into 2D image coordinates is predicted between
frames using a linear feature velocity model and the IMU data. In order to calculate
feature velocity, we compute an image Jacobian which describes how a line moves
on the image plane as a function of camera spatial velocity. These tracked lines are
fused in a 100Hz Extended Kalman Filter (EKF) together with IMU data to estimate
pole-relative vehicle horizontal states such as stand-off distance, lateral offset and
angular and linear rates (the Horizontal EKF). We assume the diameter of the pole
is known and use this to establish the unknown scale factor. This Horizontal EKF is
validated by using a MATLAB camera simulation framework [20].

Note there is an ambiguity for sideway motions (e.g., left and right) and yaw
motions as both result in the target appearing to move horizontally in the image.
It is a challenge to decouple these motions without using additional sensors hence
we omit heading angle estimation in the EKF states and assume it is controlled
independently.

Height (above ground) is estimated by a Kalman Filter (KF) which fuses data
from a downward-facing sonar with accelerometer rate estimates at 70Hz (the Ver-
tical KF) . Fig. 3 illustrates an input/output system diagram of the Vertical KF and
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L1, L2

Bam, φ̇, θ̇, φ, θ

BzmW ẑ,W ˆ̇z

W x̂,W ŷ,W ˆ̇x,W ˆ̇y

uφ, uθ, uT

⎡
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W ẋ∗
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Fig. 3 Input/output diagram for the Vertical KF and Horizontal EKF. L1 and L2 denote two
observed lines in the image plane. An IMU provides angular rates, θ̇ and φ̇ , angles, θ and φ ,
and acceleration measurements, Bam, in {B}. Bzm is a height measurement. The estimated fil-
ter outputs and the desired goals are denoted with a hat and a star superscription respectively.
uφ , uθ and uT are control outputs for pitch, roll and thrust. We fuse different sample rates
of data: the 100Hz line tracker (vision), a 70Hz IMU and a 20Hz sonar. The latest-updated
measurement is used for slow update rate sensors.

Horizontal EKF. We use two separate filters since the front camera line measure-
ment is nonlinear and needs to be linearized whereas the height measurement is
linear and observable. 70Hz is sufficient for height control considering its slower
dynamics compared to pitch/roll. Although pitch/roll/thrust dynamics are coupled,
we can treat them independently when assuming small attitude angles.

5 Vision-Based Control with Camera Latency Estimates

A quadrotor platform is an under-actuated dynamic system that is force actuated
and undamped. This makes it challenging to control as high-quality velocity signals
are required. Latencies in a system are a crucial dynamic characteristic and signif-
icantly effect control performance. For a machine vision camera-computer system
there is a pixel transport delay which accounts for the latency between an image
being exposed on the camera sensor and it being available in an image buffer on the
computer for processing (See Fig. 5). Our quadrotor controller design is presented in
[2] however this previous work did not account for the camera latency. We augment
the controller by estimating the latency as described in Section 5.1 and including it
in the control loop as shown in Figure 4.

5.1 Camera Latency Estimation

We estimate the pixel transport delay of our system by using an LED and an onboard
microprocessor (setup shown in Fig. 6). A command is sent from a computer to the
microprocessor which turns on/off an LED with micro-second latency and records
the timestamp at that moment. At the same time a high-speed camera captures im-
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x∗
ẍ

ẋ x

Fig. 4 x-axis position controller with outer proportional-integral position loop and inner pro-
portional velocity loop. Communication (8.3ms) and pixel transport delay (12ms) are in-
cluded along with zero-mean Gaussian, Nẍ ∼ (0,0.5m/s2) representing acceleration noise.

ages of this event at 100Hz together with timestamps. The images and timestamps
are analysed to measure the pixel transport delay for each event. The mean latency
for 24 trigger events was measured at 8.4ms with standard deviation 4.23ms. We
incorporated this latency in the control loop shown in Fig. 4.

6 Reduction of User-Controllable DOFs

Our proposed system is modelled on Sheridan’s “Supervisory Control” architecture
[23], specifically system 4, in which the control loop is closed through a computer
but there are still human interventions. This approach allows the robot to close the
high-bandwidth control loops while the on-demand “high level” commands from
the human are treated as requested goal states.

kt+1

Camera sample time

kt kt+2

Time

An event in the world.
(Turn on/off a LED)

Pixels exposed

Pixels transport

A frame is available 
in a framebuffer

kt kt+1

Camera sample time

Best case Worst case

tbest tworst

Fig. 5 The left and right figure illustrate the best and the worst scenarios. tbest and tworst

denote the corresponding latency between the time when an actual event happens and an
image is stored in a framebuffer. It is practically difficult to measure pixel transport delay,
however we can guarantee the delay has to be within tbest ∼ tworst . The measurement shows
that it lies within this range. We assume the pixel transport latency is shorter than the camera
sample time.
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Fig. 6 Experiment setup for measurement of pixel transport latency. The interface latency
between the computer and microprocessor is negligible compared to the pixel transport time.
We assume an actual event occurs at the same time as the microprocessor event.

A typical attitude-stabilised quadrotor has four user-controllable degrees of free-
dom (DOF), namely horizontal position (x,y), height (z), and heading (ψ). These are
usually controlled indirectly with joysticks where the stick positions are mapped to
rates (e.g. ‘throttle’ stick position is mapped to climb rate). Significant operator skill
is therefor required to control position in 3-dimensional Cartesian space. Even more
skill is required when flying close to structures as it is hard to judge the position
of the vehicle relative to the structure, and there is little room for error when cor-
recting for wind and turbulence. We propose reducing the operator’s cognitive load
and level of skill required by reducing the controllable DOFs and letting the system
control the remaining DOFs automatically. Additionally, some of the DOFs are con-
trolled in a more direct, intuitive manner rather than indirectly via rate commands.

The proposed concept is shown in Fig. 7(d) for a pole inspection task, where the
operator controls only 2 DOF: altitude of the vehicle and angle around the pole.
Given a position controller that keeps the pole centred in the field of view, and at
a constant stand-off distance, then Fig. 7(a) ∼ Fig. 7(c) illustrates how the vehicle
moves around the pole when a yaw command is given. This is sufficient for inspec-
tion of the entire pole area and easy to control.

7 Flight Experiments

In this section the experimental setup is described and we present results for pole-
relative hovering and user-controlled pole circumnavigation.

7.1 Experimental Setup

Our MikroKopter quadrotor platform carries a forward-facing camera for line de-
tection (75◦ field of view (FOV), 320×240 images at 100Hz). An ultrasonic sensor
provides height measurements at 20Hz. All processing is performed by an onboard
single board computer (SBC). Further details are provided in [2]. An actuated sur-
veying laser (Leica TS12) is used to track a reflective prism on the vehicle providing
ground truth position with millimeter accuracy at 5Hz.
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time = t

(c) (d)

Fig. 7 Changing yaw angle makes the quadcopter circle around the pole (red bar indicates the
front rotor). References for x,y position controllers are dx and 0 respectively. The robot hovers
by keeping dx distance at time= t. (b) An operator sends a yaw command and it introduces dy

distance at time= t+1. (c) The robot moves to the right to eliminate dy and keeps dx distance
at time = t +2. (d) Reduced controllable DOFs. The operator is only allowed to move along
the arrow directions which are sufficient for inspection purposes.
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Flight
Controller
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Fig. 8 Experimental setup showing the Leica laser tracker in the foreground and the UAV
and pole in the background (left) and a close-up view of the UAV (right)

Fig. 8 shows the vehicle and the experimental environment while Fig. 9 shows
the system diagram. Different colors in the figure denote different sampling rates
and arrows denote data flow at a given frequency. Each box is an individual Robot
Operating System (ROS) [26] node implemented using C++. Precision Time Pro-
tocol (PTP) is utilized for time synchronization between the onboard computer and
the ground station. The IMU on a flight control board provides [Φ,Φ̇ ,a] where Φ is
the roll-pitch-yaw angles [φ ,θ ,ψ ], Φ̇ the RPY angle rates and a the 3-axis accelera-
tion at 70Hz. u denotes computed pitch, roll and thrust commands from controllers,
[up,ur,uh] .
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Fig. 9 Software system diagram. Different colors denote corresponding sampling rates. All
software is implemented using ROS.

7.2 State Estimation Results

We performed 32 pole-relative hovering flights using the experimental setup de-
scribed in Section 7.1 and observed a success rate of 78% (25/32) where the system
was able to track the pole and maintain a hover position relative to it. An altitude
controller maintained a constant height allowing us to evaluate the horizontal con-
troller performance independently. The results for the period 10 ∼ 60s of a 70 sec-
ond flight are summarised in Table 1. The performance of the 100Hz horizontal
EKF and 70Hz vertical KF estimators for the flight are shown in Fig. 10. The es-
timated position and velocity are evaluated by down-sampling the filter estimation
result to 5Hz and computing the standard deviation of errors between this and the
laser tracker ground truth.

Table 1 Standard deviations of state estimation errors for the 100Hz horizontal EKF and
70Hz vertical KF

State variable Vertical KF Horizontal EKF units
x̂ — 0.055 m
ŷ — 0.05 m
ẑ 0.011 — m
ˆ̇x — 0.197 m/s
ˆ̇y — 0.092 m/s
ˆ̇z 0.065 — m/s

Interval 10∼60 10∼60 sec

The estimation results track the ground truth but appear noisier since the sample
rate of the estimators is up to 20 times higher than the ground truth measurement
and the quadrotor plant effectively behaves as a low-pass filter. We see a similar
effect on velocities as shown in Fig. 11.
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Fig. 10 Experimental results for position estimation while hovering. The first and second
rows show the 100Hz horizontal EKF estimation with the 5Hz ground truth whereas the
third is the 70Hz vertical KF estimation with the ground truth. -1m, 0m and 0.6m are the
desired position for Wx̂, Wŷ and Wẑ. Note that z-axis is inverted for visualization.

 

 

 

 

 

 

Fig. 11 Experimental results for velocity estimation, 100Hz W ˆ̇x, W ˆ̇y and 70Hz W ˆ̇z, with the
5Hz ground truth while hovering. The desired velocity is taken as the output of the position
controller as shown Fig. 4.

The spikes in the ground truth velocity data (e.g. at around 6, 18 and 29 seconds)
correspond to occasions where the laser tracker momentarily lost a fix on the reflec-
tive prism so did not produce data at a consistent rate (usually when the vehicle was
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(a) Top view (b) Side view (c) Perspective view

Fig. 12 Ground truth trajectory for a pole inspection flight. An operator only sends yaw
commands using the RC transmitter and the UAV keeps the desired distance, dx, dy, dz =[1, 0,
0.6] (m), from the pole. Black denotes the reference. Note that only the ground truth trajectory
is presented due to difficulty in estimating yaw angle with a low performance gyroscope.

moving too fast for the tracker). The corresponding video demonstration is available
on our YouTube channel3.

7.3 Pole Inspection Task

The envisioned mode of operation for a pole inspection is for the operator to place
the UAV on the ground with the camera facing the pole to be inspected and at the de-
sired stand-off distance for inspection. The operator will then command only height
and yaw to move the UAV around the pole at different heights while capturing in-
spection images. The system will keep the camera oriented towards the pole and
maintain the stand-off distance. We emulated this task with the experimental setup
described in Section 7.1 however the stand-off distance (dx) was pre-set to 1m. We
performed 12 flights and for five of these the vehicle was able to circumnavigate the
pole successfully. Failures occurred when the pole left the camera FOV and track-
ing was lost. Fig 12 displays different viewpoints of the trajectory for one of these
flights. At the time the average wind speed was 1.5m/s with gusts of up to 2.4m/s
(See the demonstration video). Note that the pole was successfully circumnavigated
for this experiment however ground truth is only available for part of the flight as
the laser tracker could not track the vehicle when it was occluded by the pole.

7.4 Discussion of Results and Limitations

Figs 10 and 11 show that vision + imu-based state estimation allows for pole-relative
hovering and Fig. 12 shows that a user can command the UAV to circumnavigate a
pole by providing only yaw commands. Failures did occur however and these were
primarily when the pole left the camera FOV and could no longer be tracked. The

3 YouTube channel, http://youtu.be/Bv55g6wTw0c

http://youtu.be/Bv55g6wTw0c
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top view of Fig. 12 shows that the initial stand-off distance was roughly maintained,
with the vehicle deviating up to approximately 70cm from the desired radius around
the pole.

A current limitation of the system is due to the poor yaw estimates produced by
the onboard IMU. Yaw control is based on this estimate so a drift in yaw estimation
causes a yaw rotation of the vehicle, which in turn yields a y-axis controller error (as
shown in Fig. 7). The vehicle therefore keeps rotating about the pole even without
operator input. Improving the yaw angle estimates by means of a magnetometer or
a visual compass is an area of future work.

Another limitation of the system is its susceptibility to the effects of direct sun-
light and shadows found in outdoor environments. Edges are weak under strong
sunlight due to the small intensity difference between the pole edges and the back-
ground. Shadows on the other hand can create an intensity gradient on the surface of
the pole and this may be falsely detected and tracked as the pole edge. To avoid these
challenges our experiments were conducted in the absence of direct sunlight (early
morning or late afternoon), and we will improve the robustness to these effects in
the future.

8 3D Pole Reconstruction

For inspection purposes it is important to record the quality of an asset over its
life-time. This is typically done with high resolution images however individual
images only offer discrete viewing angles. Computer vision techniques allow 3D
reconstruction of an object from multiple images, after which it can be viewed from
a variety of angles. To demonstrate the feasibility of reconstructing a pole in 3D and
the utility of having a texture-mapped 3D pole for inspection purposes, we utilised
two software tools on an image sequence in the workflow shown in Fig. 13. A GoPro
camera (170◦ FOV) was mounted to the vehicle and used to capture images at 240
FPS while flying around the pole. The high capture rate was used to reduce motion
blur, but the sequence was subsampled to 10Hz for processing. The undistorted
image sequence was first fed into a Structure from Motion (SfM) software tool to
obtain camera poses [24]. A texturisation software tool was then used to produce a
dense point cloud and a textured mesh of the scene [25]. The reconstruction results
are shown in Fig. 14. The software tools rely on point features and since the pole
surface is relatively textureless, the surface reconstruction is rather coarse. Once
texture-mapped it still however provides the user with a 3D view of the pole from a
variety of angles with sufficient clarity for inspection purposes.

More views are shown in the demonstration video4.

4 YouTube channel, http://youtu.be/Bv55g6wTw0c

http://youtu.be/Bv55g6wTw0c
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Fig. 13 Pole reconstruction workflow. Input for reconstruction is an undistorted image se-
quence which are recorded at 240Hz and sub-sampled to 10Hz. Full pairwise matching is
performed.

Fig. 14 3D pole reconstruction results. An original image (top left) and various views of
the texture-mapped surface (top row). SfM-based camera trajectory estimation (bottom row).
The scale of the trajectory is arbitrary, up-to-scale, since we use a monocular camera.

9 Conclusion and Future Work

We have presented a UAV-based pole inspection system using an onboard high-
speed camera and IMU for pole-relative navigation in outdoor environments. Pixel
transport latency for the system is measured and incorporated in the control loop.
Translational position and velocity estimation are evaluated through outdoor flight
tests with accurate ground truth data. By reducing the user-controllable DOFs we
show a user is easily able to fly the UAV around a pole at a fixed stand-off distance by
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only giving yaw commands. We also demonstrate the feasibility of reconstructing a
3D texture-mapped model of the pole and the utility of this for inspection purposes.

Our system has a number of limitations that will be addressed in the future. These
include using a visual compass from a downward-facing camera to improve yaw
estimates, and making the line tracking algorithm more robust in direct sunlight
conditions. Since the sonar only works reliably up to 2m, we plan to integrate visual
odometry along the vertical axis of the structure to estimate height.

Acknowledgements. We would like to thank Navinda Kottege from CSIRO for providing
the Leica ROS software and Edward Pepperell for supplying a GoPro3 camera.
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Inspection of Penstocks and Featureless
Tunnel-like Environments Using Micro UAVs

Tolga Özaslan, Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and Vijay Kumar

Abstract. Micro UAVs are receiving a great deal of attention in many diverse ap-
plications. In this paper, we are interested in a unique application, surveillance for
maintenance of large infrastructure assets such as dams and penstocks, where the
goal is to periodically inspect and map the structure to detect features that might
indicate the potential for failures. Availability of architecture drawings of these con-
structions makes the mapping problem easier. However large buildings with fea-
tureless geometries pose a significant problem since it is difficult to design a robust
localization algorithm for inspection operations. In this paper we show how a small
quadrotor equipped with minimal sensors can be used for inspection of tunnel-like
environments such as seen in dam penstocks. Penstocks in particular lack features
and do not provide adequate structure for robot localization, especially along the
tunnel axis. We develop a Rao-Blackwellized particle filter based localization al-
gorithm which uses a derivative of the ICP for integrating laser measurements and
IMU for short-to-medium range pose estimation. To our knowledge, this is the only
study in the literature focusing on localization and autonomous control of a UAV in
3-D, featureless tunnel-like environments. We show the success of our work with
results from real experiments.

1 Introduction

Recently, micro UAVs have attracted significant attention in a variety of civilian
applications due to their low cost and superior mobility. One possible application is
the use UAVs in inspection of large buildings such as dams and penstocks. Penstocks
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are constructions that require regular maintenance, and this in turn requires visual
inspection of the interior. However penstocks are dark, long and featureless tunnels
that slope steeply down hillsides. Because of this, it is hard for humans to climb
up penstocks and perform visual inspection. We propose, as an alternative, the use
of quadrotors equipped with minimal sensors that can fly through the tunnels and
collect data for remote inspection.

In order to reduce the operator workload, we require a high level of autonomy of
the quadrotor. This in turn requires that the robot is able to localize itself with respect
to features in the environment. In our case, we are given engineering drawings of the
penstock, which can be converted into a map of the environment. Hence we focus
on solving the problem of pose estimation (localization) and autonomous control in
penstocks (tunnel-like) buildings. This work allows us to build autonomous UAVs
that can collect imagery from inside penstocks for inspection with only high-level
user commands.

Fig. 1 A quadrotor flying inside a penstock
at Allatoona Dam, GA. Lighting is provided
by a portable spot light. The quadrotor is
equipped with a 1.6 GHz Atom Intel proces-
sor, Hokuyo [2] laser scanner and an IMU unit.
Note that the installation of lights for illumi-
nating the entire tunnel is impractical. There-
fore, we equip our quadrotor with LED lights
as shown in the figure.

Penstocks are almost perfectly cylin-
drical in cross section, and have two
long, non-parallel, straight portions as
shown in Fig. 2. In most penstocks, the
first portion is on a horizontal plane and
the second part slopes upwards. The
interior of the penstock is built with
rectangular shaped steel plates of ap-
proximately 6 square meters each bent
into a cylindrical geometry. Using the
given engineering drawings (the map),
IMU data and scanner readings, it is al-
ways possible to determine the orienta-
tion, height and lateral position of the
quadrotor. However the position along
the tunnel axis cannot be always de-
rived due to the special geometry of
the map and the available sensors. For
example, when the distance between
the robot and the junction of the tun-
nel is greater than the maximum mea-
surement range of the laser scanner, the
position along the tunnel cannot be de-
termined. However, during the transition between the horizontal and inclined por-
tions of the tunnel, scanner readings show significant differences which can help in
localizing the robot along the axis of the tunnel at that particular region.

We stress that it is difficult for ground robots to operate in the tunnel. While a
slope of 23 degrees (see Fig. 2) can be easily negotiated by tracked vehicles, the
tunnel is very slippery and smooth and it is difficult to use vehicles that require
traction in the tunnel. Furthermore, since the tunnel is not illuminated, inspection
of ceilings and walls can be difficult and may require auxiliary lighting equipment
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which can be heavy and require a lot of power. Fortunately, since our quadrotor can
fly close to the walls (and the ceiling) it can use energy efficient LED lights and
obtain illumination for collecting imagery. In addition to lights, the platform can be
equipped with different inspection sensors such as infrared cameras.

Fig. 2 Side view of a representative penstock
(exact diameter and slope from the Carter Dam
penstock)

As shown in Fig. 1, we customize a
Pelican quadrotor by Ascending Tech-
nologies [1]. The robot is equipped
with a 1.6 GHz Atom Intel processor, a
Hokuyo [2] laser scanner, an IMU unit
and LED lights (Fig. 3).

A hallmark reference [7] introduced
the framework of Monte Carlo Local-
ization (MCL). Variants of such lo-
calization algorithms can be seen for
museum guide robots [21] , human op-
erated backpack [16] and robot with 3-
D laser scans [15]. However, the highly symmetric and feature-less tunnel environ-
ment poses problems for existing localization algorithms. Furthermore, processing a
large amount of data using low power, light weight on-board computer proves to be
challenging. Also, algorithms relying on GPS are not practical for quadrotors flying
inside a tunnel.

Fig. 3 Our quadrotor prototype equipped with
a Hokuyo laser scanner, on-board IMU and
two flash lights. A 3-D printed laser mount
redirects some of the laser beams upward and
downward.

There is also extensive literature on
localization using cameras. [3] fuses
stereo vision, GPS, and IMU to per-
form outdoor localization. In another
outdoor localization study, [14] tests
image-based localization with wide an-
gle cameras. Scale-invariant features
are used in [19] to both localize and
build 3D maps of office environments.
However, it is hard to apply this method
in real-time due to the limited on-
board computation. Further, none of the
above approaches will work in a pen-
stock due to poor lighting conditions.
In our case, although we use lighting,
we need it only for detecting rust and
cracking in the interior surface and not
for localization.

The rest of the paper is organized as follows: We start by reviewing basic back-
ground in Section 2. We then present our system for localization of a quadrotor in
the penstock in Section 3. The key contributions in this paper are the novel mea-
surement models those are designed based on the unique geometry of the penstock
and semi-autonomous operation in featureless tunnels. These are both presented in
Section 3. Finally, field experimental results are presented in Section 4.
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2 Background

2.1 Quadrotor Dynamics

Fig. 4 Coordinate frame definitions of
quadrotor. Due to the manufacturer, gyroscope
and accelerometer has different orientations
which are shown with subscripts of gyro
and acc. And body frame is denoted by the
subscript quad. Dot in a circle means a vector
pointing out of the paper plane and an ×
means the opposite [17].

Quadrotors are basically helicopters
with four propellers located at corners
of a square shape. A schematic of a
quadrotor is given in Fig. 4. Each pro-
peller is located at equal distances from
the geometric center of the quadrotor.
Motors mounted on opposite sides ro-
tate in the same direction, while the
others in the opposite direction. Ideally,
while the quadrotor is stationary, mo-
ments due to the propellers rotating in
opposite directions cancel each other so
that the yaw is kept constant.

As the standard reference triad
(SRT) for inertial frame, we use
{x̂W , ŷW , ẑW} basis vectors. Then a
vector in this frame is represented by
the vector

[
xW , yW , zW

]T
. Whereas

SRT of the body frame is defined with
the basis vectors {x̂B, ŷB, ẑB} and a
vector in this frame is represented as[

xB, yB, zB
]T

. x̂B is the heading di-
rection of the quadrotor which can be
selected arbitrarily. ẑB is preferably se-
lected as the upwards direction when
the quadrotor is hovering and ẑW is selected to be pointing in the opposite direction
to the gravitation (see Fig. 4 and its caption for illustration). Rotation between these
two frames is carried through multiplication with a rotation matrix R ∈ SO(3) and
denoted by BRW . Subscript is the frame from which the vector will be transformed
and the pre-superscript is the goal frame.

We use Z −X −Y Euler angles to represent rotation from world to body frame
[18]. Yaw, pitch and roll angles are denoted as ψ , θ and φ respectively. Angular

velocity in the body frame is denoted by the vector
[

p, q, r
]B

We refer to the work by Mellinger [18] where detailed derivations of dynamic
equations are given. They also linearize about the hover state and present a linear
controller based on this model.
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2.2 Robot Localization

Robot localization, environment mapping and the merging of these two problems,
Simultaneous Localization and Mapping (SLAM), has been studied extensively
[4, 5, 8, 9, 20, 21]. Filtering based approaches are commonly used for solving the
localization problem. Two mostly used approaches are based on the Kalman filter
and the particle filter.

For systems that satisfy the Gaussian uncertainty model, the Kalman filter and
its nonlinear variants (referred to as KF from this point on) yield efficient and
robust results. We choose the Unscented Kalman Filter (instead of the standard
Kalman filter) due to its ability to approximate the propagation of Gaussian random
vectors through nonlinear functions via the propagation of stochastic linearization
points [20].

On the other hand, there are many systems with multi-modal, widely spread,
and other uncertainty models that are cannot be modeled as Gaussian distributions.
For such distributions, the nonparametric particle filter-based approach and variants
(referred to as PF from this point on), also known as Monte Carlo methods [7, 21],
provide approximate representations of arbitrary probabilistic distributions. They
are more powerful compared to the the parametric KF-based approaches. However,
for systems with relatively large number of degrees of freedom (such as quadrotors),
the number of particles that is required to accurately represent the distribution can
be prohibitively large.

The Rao-Blackwellized particle filter decomposes the configuration space in or-
der to reduce the dimension of the particle-based distribution approximation. The
main goal is to reduce the required particle count for the particle filter [8, 12] by
designing a hybrid filter achieved by merging the PF and the KF. That is, for some
of the parameters, estimation is done through KF and for others PF is used. In our
application, since a robot moves through a featureless tunnel, the localization uncer-
tainty for the position along the axis of the tunnel is high and it is hardly a proper
Gaussian distribution. However , the uncertainties in position for the other two di-
rections are small and they can be well approximated by Gaussian distributions. For
the former case, use of PF is meaningful and in the latter case KF is a reasonable
choice.

2.3 Controller Design

We use the linear controller design of [18]. Since our target application requires
mostly stable flight with minimum linear acceleration, linearization of dynamic
equations around the hover position can be justified. Our controller utilizes a back-
stepping architecture that consists of a position controller and an attitude controller.
The high level position controller generates desired orientations based on user spec-
ified way-points and the on-board localization feedback. The low level attitude con-
troller drives the robot to the desired orientation by adjusting motor RPMs.

As shown in Fig. 6, a trajectory generator is used to generate a trajectory from
the current pose to the goal pose. At this level we can also incorporate constraints
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such as closest distance to walls, maximum linear and rotational speeds, and other
constraints.

3 Methodology

3.1 Process and Observation Models

We define the process model with the equation

xt+Δ t = f (xt ,ut ,Δ t) (1)

where x is the state vector and u is the control input derived from IMU. Vectors x
and u are defined as:

xT = [x,y,z, ẋ, ẏ, ż,ψ ,θ ,φ ]W , (2)

uT = [ẍ, ÿ, z̈, p,q,r]B. (3)

The process model implements dynamics of a quadrotor which have detailed ex-
planations in [18]. As it is the case for MEMs sensors, our IMU has both bias and
random errors. Then the true IMU data becomes

u∗ = u−ubias−urnd (4)

where urnd is a random vector drawn from a normal distribution and ubias is the
bias error. The process noise in the x̂W direction is modeled by an additive random
disturbance which is distributed normally with known variance.

We are using a Hokuyo laser scanner [2] which can take measurements with a
180 degrees span in the xB − yB plane. A 3-D printed dual-mirror mount is fixed
on top of the laser scanner to reflect rays in upward (+ẑB) and downward (−ẑB)
directions [13] (Fig. 3). These measurements together with the orientation estimate
and the knowledge of the map are used to localize robot on the yW−zW plane of the
tunnel using a derivative of the ICP algorithm. This algorithm uses rays emanating
in the four directions ±ẑW and ±ŷW . Note that no rays might be exactly in these
directions due to the orientation of the robot, in case which we select the closest
rays. In following explanations we will call these vectors with uW ,dW ,rW and
lW which refer to laser beams closest to the upwards, downwards, rightwards and
leftwards directions in the world frame.

We do ray-casting to determine the intersections of the above four sets of vectors
(uW ,dW ,rW and lW ) with the map. We call these as uW

c ,dW
c ,rWc and lWc . Casting

is done against an occupancy grid map with resolution of 5 cm. After ray-casting,
we update robot yW , zW positions such that the discrepancy between the measured
rays and the casted rays reduces. A snapshot of this procedure is illustrated in Fig.
7. Also Algorithm 1 explains this method. Due to the convexity of the tunnel cross-
section, this algorithm is guaranteed to converge to the correct position.
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The on-board attitude estimator supplies roll and pitch data with drift correction;
but the yaw needs to be corrected using the laser because the IMU cannot measure
the global yaw angle. However, due to the metal interior of the tunnel, we cannot
use the magnetometer output as a global reference to the yaw angle. For this reason,
we estimate the yaw angle with respect to the tunnel using laser scans.We propose
a geometric solution to this problem using the fact that intersection of a cylinder
(tunnel) and a plane is always an ellipse. It is easy to see that the intersection of a
plane with a cylindrical tunnel can result in three different curves which are circle,
ellipse and two parallel lines. This curve is a circle only when x̂W and ẑB are aligned,
which is very unlikely to happen in our case. Other two cases are more likely to be
observed and both can be treated as an ellipse since two parallel lines correspond
to the special case of an ellipse with infinite major axis length. So we fit an ellipse
to scans and then orientation of the major axis gives negative of the yaw angle up
to π radians ambiguity. While we define ψ = 0 to be the case when +x̂W and +x̂B
are coincident, the source of ambiguity is due to the lack of any clues to distinguish
whether a scan is taken when robot’s heading is ψ =ψ0 or ψ =ψ0+π . In both cases
the curve due to the laser has the exact same shape. We choose the yaw measurement
that is closest to the current UKF yaw estimate for measurement update.

Fig. 5 A sample laser scan data. Ellipse
is fit using the method in [11]. In order
to eliminate outliers, we use RANSAC.
Outliers are due to operators moving to-
gether with the quadrotor, noise and laser
failures.

As seen in Fig. 5, laser data can be noisy
due to unmodeled obstacles in the environ-
ment, inherent noise in the laser scanner
and complete failures. A direct fit to such
data is very probable to give wrong esti-
mates which we experienced several times
during experiments in development stage
and caused crashes. In order to get rid of
this problem, we use RANSAC [10] which
obviously improves fit quality. Since we do
not make fast maneuvers, we make a rea-
sonable assumption that quadrotor is almost
in hover state, in other words φ ≈ 0 and
θ ≈ 0. Otherwise resultant ellipse fit would
also reflect the effect of non-zero φ and
θ angles and we would need to decouple
these effects to obtain the actual yaw angle.
We leave the details of ellipse fitting algo-
rithm to [11].

3.2 Rao-Blackwellized Particle Filter Design

In this model, we carry the well-known UKF prediction using the IMU output. Mea-
surement updates for positions and velocities in the yW − zW directions, as well as
the roll, pitch, and yaw orientation are performed within the UKF framework as
well.
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Fig. 6 The estimator based on the Rao Blackwell Filter and the PD controller for autonomous
flight in a tunnel of known cross section. A particle filter with N particles is used to model the
propagation of state estimates and the uncertainty in the x̂W direction, while a UKF is used
to estimate the remaining states.

A particle filter is used to estimate xW position of robot (Fig. 6) . That is, during
the prediction step of UKF we make use of gyroscope and accelerometer data and
in the measurement update stage we integrate information from the measurement
models above. The reason using orientation information from the IMU twice which
are the gyroscope data (angular velocity) and the on-board roll-pitch estimation, is
because of the computational constraints. IMU supplies estimates (roll and pitch) at
a rate of 100Hz which we know to be reliable due to the drift correction. But making
measurement updates at this rate consumes valuable CPU time. Instead we integrate
them at the same rate of laser scanner (30Hz) and carry the low-cost prediction
update at 100Hz using the gyroscope data (angular velocity). Note that running a
measurement update (UKF update) requires calculation of matrix square root which
is of complexity O(n3). With our current setup, we have chosen not to spend CPU
power with frequent measurement updates.

The overall system design is shown in Fig. 6. We run a particle filter for estimat-
ing the position and velocity along x̂W and an UKF common to all particles to es-
timate the remaining state variables which are yW , zW and their derivatives and the
three Euler angles, ψ ,θ ,φ . The inputs are data from the laser scanner, the IMU and
a grid map. Unless we are close to the junction region of the horizontal and inclined
portions of the tunnel, we don’t have measurements to estimate xW . This implies
that in such cases uncertainty along this direction can be in any form which may not
be have a closed-form representation. However for all the other states, including lat-
eral and vertical positions and orientation, we always have laser measurements. We
expect a unimodal uncertainty model for these states and use the UKF to estimate
them.
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Fig. 7 Starting from an initial pose, ICP iteratively refines yW − zW positions to reduce
discrepancy between laser data and robot pose. Red vectors are the error vectors to be min-
imized. Although in the horizontal region of the tunnel cross-section is circular, in inclined
region it will be an ellipse as seen by the robot.

When the robot is away from the junction region of the two portions of the pen-
stock, laser scanner cannot make any readings since the closest wall is farther than
the maximum range of the laser scanner. This invalidates the measurement model
explained for yW − zW estimation. Instead we use Algorithm 2 as the measurement
model to calculate the weight for each particle. When there are valid measurements,
particles consistent with them will be given more importance hence will survive
in the importance sampling. Otherwise all particles are given the same weight and
importance sampling favors them equally. As we get consecutive measurement fail-
ures, distribution of the particles spread out widely according to the IMU noise
model. Note the power in representing arbitrary distributions with particles is obvi-
ously not achievable with a Gaussian assumption.

In Algorithm 2, to find the weight of a particle, similar to what we do in Algo-
rithm 1, we define a set of vectors, fW , which are the closest laser beams to x̂W
direction. Then we cast these vectors against the grid map to obtain fWc . The weight
of a particle is the reciprocal of |(fW− fWc )x|2. In case we don’t have a valid reading,
we assign a non-significant weight.

Depending on the availability of valid laser measurements along the axis of the
tunnel, we constrain the regions to resample particles in. In case of valid measure-
ments, resamping is done only in the region close to the junction. Similarly, failure
of laser implies robot is away from the junction and particles close to the junction
are eliminated.
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Algorithm 1. [hyz,Σyz] =measurement model yz(laser,map)

iter ← 0

rW ← get beams in dir(−ŷW , laser) ; lW ← get beams in dir(+ŷW , laser)

uW ← get beams in dir(+ẑW , laser) ; dW ← get beams in dir(−ẑW , laser)

while (errx > thres∧ erry > thres)∨ iter < itermax do

uW
c ←raycast(uW ,map); dW

c ←raycast(dW ,map)

lWc ←raycast(lW ,map); rWc ←raycast(rW ,map)

erry ← (lWc,y − lWy )+ (rWc,y − rWy ) ; errz ← (uW
c,z −uW

z )+ (dW
c,z −dW

z )

pW
y ← pW

y + 1/2erry ; pW
z ← pW

z + 1/2errz

iter ← iter+ 1

end while

hyz = py,z

Σ = QT

[
err2

x 0

0 err2
y

]
Q

QT ΣQ transforms residual errors of ICP to its corresponding covariance matrix [6]

Algorithm 2. [wx] =measurement model x(laser,map)
if laser is not valid then

wx ← 1/σ2

else

fW ← get beams in dir(+x̂W , laser)

fWc ←raycast(fW ,map)

wx ← 1 / |fWc,x − fWx |2
end if

3.3 Control

The errors in localization exhibit anisotropy. They are significant in the position
coordinate along the axis of the tunnel but more constrained in the other directions.
Accordingly we advocate a semi-autonomous control scheme where the the operator
goals (or goals from a planner) prescribe the yaw angle, lateral and vertical positions
along the cross section of the tunnel, while the control along the axis of the tunnel
is performed by the operator by directly commanding the acceleration through a
joystick.
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4 Experimental Work

In this section we present and interpret results of our experimental work. Data for
the experimental work is collected in three different sites: the Carter Dam and the
Allatoona Dam, both in Georgia, and in a long building hallway at the University of
Pennsylvania.

In the visit to the Carter Dam, two datasets were collected. In the first flight the
quadrotor traversed along the horizontal part of the penstock. And in the second
dataset, it flew close to the junction region towards the inclined region. During these
tests, the quadrotor was controlled manually. The proposed localization algorithm
was run off-line using collected data sets.

(a) Experiment #1 in Allatoona Dam (b) Experiment #2 in Allatoona Dam

Fig. 8 These figures show estimation outputs for yW -zW positions together with covariances
as shaded regions. In these experiments quadrotor flew semi-autonomously. Due to reflective
surfaces, laser scanner failed to return readings along x̂W direction. So we cannot estimate
position along this direction. Failure was due to the distance to the junction region, wet sur-
face and oblique surface w.r.t. ray direction.

Two semi-autonomous flights were conducted in the Allatoona Dam. The operator
sets the desired yW , zW , and ψ through a radio controller. Then feedback control of
these parameters is carried out by our controller. The operator controls the accelera-
tion along the x̂W direction. We believe semi-autonomy proves accuracy and stability
of our estimator along the tunnel cross section. Otherwise, as opposed to a ground
robot, faults in controller or estimator would cause unrecoverable instabilities.

We conducted a third experiment in a building at the University of Pennsylvania,
along a 42 meters long corridor while the quadrotor flew semi-autonomously. In the
corridor experiment, although there are features, such as pillars and doors, the map
we are using is a featureless rectangular prism. So there is no feature in our map that
would help in estimating the xW position. Actually those features behave as noise
for yaw estimation which shows robustness of our estimator.
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In Fig. 8-9-10 we give results for our Allatoona Dam, Carter Dam and university
building experiments respectively. These experiments show quadrotors can be con-
sidered as a reasonable choice for inspection of tunnel-like environments. Only with
a laser scanner and an IMU, as a requirement for semi-autonomy, localization along
the cross-section of the tunnel can be achieved robustly. Also, when one end of the
tunnel is in the range of laser scanner, localization along the tunnel axis is achieved
as well.

In Fig. 8(b) at 40th seconds, increase in the covariance is due to a worker walking
near the quadrotor. However, we can handle such cases and estimated position is
not affected. In Fig. 9(a)-10(a), periods when the covariance gets larger is when the
robot is away from the end of the tunnel/corridor with the following exceptions.
In Fig. 9(a) around 160th seconds increase in uncertainty is due to failure of laser
scanner due to water drainage behaving as a mirror. And increase in variance in

(a) Experiment #1 in Carter Dam (b) Experiment #1 in Carter Dam

(c) Experiment #2 in Carter Dam (d) Experiment #2 in Carter Dam

Fig. 9 These figures show estimation outputs for xW -yW -zW positions together with covari-
ances as shaded regions. Opposed to Allatoona Dam tests (see Fig. 8), since the walls of the
penstock was not wet and reflective, we could get readings from the junction region of the
tunnel. In Fig. 9(a) we can see that during a period of the flight we are able to localize along
x̂W direction. In the second experiment we flew the quadrotor close to the junction region
and have less time periods without valid readings along x̂W direction. This is shown in Fig.
9(c). High covariance regions in Fig. 9(a) correspond to localization failures.

(a) Experiment in university building (b) Experiment in university building

Fig. 10 These figures show results for tests carried in a corridor of length 42 meters in a
building of University of Pennsylvania. Estimation outputs are given for xW -yW -zW posi-
tions together with covariances as shaded regions. Videos of this experiment can be found at:
http://mrsl.grasp.upenn.edu/tolga/FSR2013.mp4
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Fig. 10(a) around 100th − 120th and 160th seconds is because quadrotor was tilted
and laser scanner sees the floor. Since the floor is tiled with marble, it behaves as a
mirror and laser scanner fails.

5 Conclusion and Future Work

This work presented results of localization and semi-autonomous control of a
quadrotor flying in a dam penstock. We used a Rao-Blackwellized particle filter for
localization consisting of a standard particle filter for localization along the tunnel
axis and a UKF to represent estimates the other five directions. This way we can rep-
resent uncertainty along the tunnel axis, which is quite significant compared to the
other directions, using an non parametric distribution. Because of this anisotropy,
our experiments required the human operator to specify input (acceleration) along
the tunnel axis while the low-level control software provides for regulation and tra-
jectory tracking in the other five directions.

This work is significant because it can replace the tedious and expensive pro-
cess of manual inspection involving building scaffolds with human inspectors with
semi-autonomous quadrotors with cameras. We believe that with some training a
modestly skilled operator can fly a quadrotor through a tunnel while inspecting im-
ages from onboard cameras for defects along the tunnel walls. While our experi-
ments were performed in penstocks that are used in dams and hydroelectric power
plants, the same approach can be used for other tunnels such as those encountered
in transportation networks.

Our current work is directed toward addressing more complex (but known) ge-
ometries encountered in dams near turbines and to improve the estimation of local-
ization errors along the tunnel axis using onboard illumination sources and visual
odometry algorithms.
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Autonomous Aerial Water Sampling

John-Paul Ore, Sebastian Elbaum, Amy Burgin,
Baoliang Zhao, and Carrick Detweiler

Abstract. Obtaining spatially separated, high-frequency water samples from rivers
and lakes is critical to enhance our understanding and effective management of fresh
water resources. In this paper we present an aerial water sampler and verify the
system in field experiments. The aerial water sampler has the potential to vastly
increase the speed and range at which scientists obtain water samples while reducing
cost and effort. The water sampling system includes: 1) a mechanism to capture
three 20 ml samples per mission; 2) sensors and algorithms for safe navigation and
altitude approximation over water; and 3) software components that integrate and
analyze sensor data, control the vehicle, and drive the sampling mechanism. In this
paper we validate the system in the lab, characterize key sensors, and present results
of outdoor experiments. We compare water samples from local lakes obtained by our
system to samples obtained by traditional sampling techniques. We find that most
water properties are consistent between the two techniques. These experiments show
that despite the challenges associated with flying precisely over water, it is possible
to quickly obtain water samples with an Unmanned Aerial Vehicle (UAV).

1 Introduction

Water quality varies due to the spatial distribution of water transport pathways and
contaminant source areas. Characterizing this large-scale variability remains a crit-
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ical bottleneck that inhibits understanding of transport processes and the develop-
ment of effective management plans to address water quality issues. In the US, it
is estimated that human-induced degradation of fresh water sources annually costs
over $2.2 billion, but the full extent of the cost is poorly known due to insufficient
data [1]. World-wide, water borne diseases cause the death of 1.5 million under-five
children every year [2].

Current water sampling techniques are often based on grab sampling (e.g. dip-
ping a bottle off the side of a kayak) [3], statically deployed collection systems [4],
or using mobile sensors affixed to Autonomous Surface Vehicles (ASVs) [5] and
Autonomous Underwater Vehicles (AUVs) [6]. Most autonomous systems are used
on large, open water features such as seas, large lakes and rivers, and sample for
long duration, in deep or distant places, with high quality. All of these methods
are relatively slow, spatially restricted, costly, or difficult to deploy; none sample
quickly at multiple locations while overcoming barriers, such as dams or land.

Fig. 1 UAV-Based Water Sampling

In this paper, we tackle these lim-
itations through the development of
a UAV-based water sampling system
with a focus on enabling safe and reli-
able in-the-field water sampling. Fig. 1
shows the system collecting a water
sample. We designed the system based
on input from our limnologist collab-
orators who specified that the system
be carried and deployed by a single
person, collect multiple samples within
kilometer ranges, and acquire at least
20 ml per sample1.

Obtaining water samples from a
UAV, however, poses challenges that
must be addressed before these systems
can be deployed in the wild. The con-
tributions of this work include: 1) de-
veloping a UAV-based system that au-
tonomously obtains three 20 ml wa-
ter samples per flight; 2) integrating
and characterizing sensors on the UAV
to enable reliable, low-altitude flight
(1.0 m) over water; 3) testing the sys-
tem both indoors in a motion-capture
room as well as in the field at lakes and waterways; and 4) validating that key wa-
ter chemical properties are not biased by using a UAV-based mechanism. We also
identify a number of outstanding challenges to be addressed in future work, such as
determining the impact of waves, winds, and flowing water on altitude control.

1 The quantity, 20 ml, is enough to perform most standard water chemistry experiments.
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2 Related Work

Existing efforts relate to this work in one of two ways: either an autonomous vehicle
is used to take samples in aquatic environments or a UAV is controlled at low-
altitude. We treat first the former and then the latter.

Autonomous vehicles used in water sampling are either Autonomous Surface
Vehicles (ASVs) or Autonomous Underwater Vehicles (AUVs), both deployed in
water features such as oceans or large lakes. For example, Dunbabin et al.’s [5]
Lake Wivenhoe ASV is capable of navigating throughout complex inland water-
ways and measuring a range of water quality properties and greenhouse gas emis-
sions. Underwater, Cruz et al.’s [6] [7] MARES AUV dives up to 100 m deep to
monitor pollution, collect data, capture video, or follow the seabed. Other efforts
such as Rahimi et al.’s [8] NIMS system explore semi-mobile sensor networks pro-
viding adaptive sampling. These vehicles and systems are good for long-duration
sampling in deep or distant places. However, it is time-consuming and expensive to
frequently re-deploy these systems. In contrast, our system can be carried in a back-
pack and quickly deployed to sample multiple disconnected water features from
a single launch site. Further, in situ sampling cannot yet measure all desired wa-
ter properties, identified by Erickson et al. [4], such as the presence of suspended
solids, pathogens, and heavy metals.

Other UAV control systems related to our efforts include Merz et al. [9], who
show techniques for low-altitude flight in rural areas, whereas our focus is low-
altitude flight over water but does not include obstacle avoidance. Their system
states, like ours, contain events indicating an unsafe circumstance, and transition
to a state seeking safe recovery.

Other recent efforts for UAV height estimate include miniature radar altimeters
and optical flow altitude estimation as summarized by Kendoul [10]. The lightest
commercially available radar altimeters are still 375 g, heavy for a micro UAV, and
are accurate to only ± 0.5 m, below the requirements of our system. Optical methods
are easily perturbed by ambient light, so instead we chose ultrasonic rangers.

Our system flies with a small dangling pump. Although Sreenath et al. [11] ex-
plore the flight dynamics of cable-suspended loads, our system avoids this by hang-
ing a small mass, which incurs small forces relative to those generated by our UAV.

The Aquacopter [12] UAV lands in and takes off from calm water. We do not
adopt this platform or land in the water because: 1) fast-moving water or waves
might make it impossible to take off; 2) the sampling mechanism and battery en-
closure would be complete sealed, making removal difficult and decreasing the ef-
ficiency of swapping vials or batteries; and 3) radio strength attenuates near the
water’s surface and we want the UAV and base station in constant contact.

Our work most resembles the low-altitude UAV presented by Göktoğan et al. [13],
wherein the authors surveil and spray aquatic weeds at low altitude using a RUAV
(“rotary UAV”). This RUAV measures altitude with a laser altimeter, and like our
system, requires a human backup pilot. Our work similarly does not address global
planning and requires a human expert to decide where to perform tasks (weed experts
in Göktoğan’s case and lake experts in ours). Our work differs from this in that we
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use ultrasonic with pressure for altitude, since laser altimeters work poorly at short
range over clear water, and we retrieve a liquid rather than depositing it. In addition,
we focus on validating the utility of the system for water scientists.

3 Applications in Environmental Monitoring

Fig. 2 Sandpit Lakes - Fremont, Nebraska,
USA

Presently, limnologists and hydro-
chemists require water samples for lab
analysis. They measure chemical prop-
erties of surface water, including phos-
phate, total phosphorus, nitrate/nitrite,
nitrogen, and ammonia, as well as bio-
logical properties, such as the presence
of toxic microcystins. Other useful
properties can be measured in situ, but
require a literal boatload of equipment,
used to measure temperature, conduc-
tivity, pH, dissolved oxygen, light, tur-
bidity, and Secchi transparency. All of
these field measurements, along with
lab analysis, together present much of
the canonical data through which surface water phenomenon are understood [14].
By facilitating data collection, lightweight UAVs, together with our collaborators,
will improve, if not “revolutionize” spatial ecology [15]. We see applications of
UAV-based water sampling in two areas: 1) increasing the ease of capturing routine
small samples from disconnected water features; and 2) improving the quality of
event-based datasets by increasing spatial and temporal resolution.

For example, our collaborators study the Fremont Sandpit lakes (see Fig. 2).
Each numbered lake is groundwater connected, surface water disconnected, chemi-
cally distinct, and must be sampled separately. Currently, a team of three scientists
tow a boat to the lake, launch the boat, navigate to the sample location, collect sam-
ples and take measurements, return to dock, get the truck, put the boat back on the
trailer, and drive to the next lake. Each of 10-15 lakes are sampled in this manner
over a long 10-15 hour day. But in just two hours, one scientist with our UAV-
system could sample all these lakes, enabling the possibility of capturing data with
unprecedented spatiotemporal resolution.

4 Technical Approach

Through discussions with our hydrologist partners we derived a set of requirements
for the aerial water sampler. First, it must capture at least three 20 ml water samples
at predefined locations within 1 km. Second, it must be light and small enough to
be carried by a single scientist, and sample autonomously once target locations are
identified. Third, it must be reliable and safe to reduce cost and risk, since these are
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the primary barriers for adoption. Fourth, the new sampling system must not influ-
ence water properties. Additional requirements not addressed in the current work
include a simple user interface for scientists to use and endurance and robustness to
work in any climate. We chose to address first the core functionality of the system
and save secondary requirements for future work.

We now describe how we address these requirements through: 1) mechanical de-
sign, including the UAV and sampling mechanism; 2) sensors for near water flight;
and 3) the software system, including a discussion of the safety logic used to ensure
the vehicle stays out of the water.

4.1 Design of UAV Water Sampling Mechanism

The water sampler is built onto an Ascending Technologies Firefly [16], a hexrotor
with a maximum payload of 600 g. Total flight time is 15-20 minutes. The Firefly
comes equipped with GPS, 3-axis accelerometers and gyroscopes, compass and an
air pressure sensor. This UAV communicates with a human backup pilot using a
radio link, and has two 2.4 GHz 802.15.4 radios for remote autonomous control and
sensor feedback. To comply with local regulations regarding UAVs, we fly outdoors
with a passive string tether connected to the frame of the vehicle and wrangled by
a human operator. In practice, the tether limits the distance the UAV can travel but
does not otherwise impact its mobility.

Fig. 3 Flushing the sample system

The water sampling mechanism
consists of three spring-lidded cham-
bers. The chambers are constructed so
that a servo-rotated ‘needle’ lifts the lid
and directs the water flow into one of
three 20 ml glass vials (Fig. 3). Once
the needle rotates away from the vial,
it seals closed. The servo can also se-
lect an intermediate position to enable
flushing of the needle and tubing be-
tween samples (Fig. 3). The duration of
the flushing phase is configurable, de-
faulting to 20 s, three times the duration
required to fill a 20 ml vial2. The nee-
dle is connected to a 1.05 m plastic tube
hanging below the UAV with a micro submersible water pump [17] attached at the
end of the tube. The tube is mounted below the center of mass of the unloaded ve-
hicle, to minimize changes in flight dynamics while pumping. A break-away mech-
anism allows the pump and tube mechanism to release if subjected to a sufficient
force, as might happen if the pump becomes entangled in the environment, and the
UAV thrusts away from it.

2 Initial experiments show that 20 s flushing avoids cross-contamination. We plan to more
rigorously characterize this in future work.
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4.2 Sensors for Near Water Flight

The UAV includes an onboard pressure sensor. To improve height estimation, we
augment the UAV with ultrasonic rangers and water conductivity sensors. We use
two Maxbotix MB1240-EZ4 ultrasonic rangers [18] pointing straight down and
flanking the sampling mechanism 10 cm from the center to increase the likelihood
of an unobstructed path to the water’s surface, which might otherwise be blocked
by the swinging tube and pump.

Each ultrasonic ranger samples at 10 hz and we offset their sample time by 50 ms
to prevent interference. This also increases the rate that altitude information is ac-
quired to 20 hz. This rangefinder is well-suited to rotorcraft because of its resilience
to motor noise, ±1 cm accuracy, and reliability below 3 m.

Water conductivity sensors are placed every 10 cm from the bottom of the sample
tube, up to 50 cm, to ensure that the system knows when its too close to the water
and also to regulate the pump. The pump must be submerged and primed prior to
operation. An onboard controller turns on the pump only after being wet for more
than 400 ms which allows it, as experimentally determined, to prime.

4.3 Software

Fig. 4 Sampling States

The software system contains two
sub-systems: 1) code on a control
computer using the Robot Operating
System [19] which handles low-level
communication with the UAV, mis-
sion control, navigation, and high-
level sampling tasks; and 2) on-
board code on a custom built mi-
crocontroller mounted on the UAV
that manages the ‘needle’ servo, reg-
ulates the water pump, reads ultra-
sonic and water sensor data, and
broadcasts the water-sampling sub-
system’s state. Both sub-systems in-
corporate predicates to detect unsafe
water sampling or navigating condi-
tions based on the sensor readings,
and restart a mission. In total, the sys-
tem includes about 7K lines of C,
C++, and Python code.

The flow of water sampling activities is shown in Fig. 4, and follows a clock-
wise pattern. Overall, the system receives a mission, navigates to a sample location,
descends near to the water surface, waits for the water sensors to confirm that the
pump is wet, flushes, pumps, ascends, and navigates either to the next sample lo-
cation or returns to the landing location. The software coordinates these activities
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through: 1) waypoints, which are compared to the measured location of the UAV, so
that the UAV arrives at the desired sample location and descends to the target height;
2) timers, which track how long the pump has actually been pumping and infer that
the tube has been sufficiently flushed or that the vial is full; and 3) safety predicates
on sensor values which ensure the sampling altitude is safe. If the safety constraints
are violated, the UAV retreats to a safe altitude and the mission continues.

5 Altitude Estimation Over Water

We form an altitude estimation in two ways: 1) at low altitude with a Kalman Filter
of ultrasonic ranger and pressure sensor readings; and 2) at high altitudes with the
pressure sensor plus an offset from the low-altitude Kalman estimate. In this section
we characterize the ultrasonic sensors over water, discuss how the low altitude es-
timation is formed and then how the low and high altitude estimations are used to
form a final altitude estimate.

The ultrasonic rangers are necessary because the pressure sensor alone drifts over
time due to wind or changes in atmospheric pressure. We characterized the ultra-
sonic rangefinders over water by conducting indoor flight tests with ground truth
from a Vicon motion capture system [20]. We tested their performance while flying
over water. The results are show in Fig. 6, during which the UAV was over water,
and the ultrasonic readings are shown offset by 15 cm, the height of the water in the
fishtank. The data was gathered during autonomous flight, flying the UAV to 2 m
above the fish tank, then descending to 1.5 m and 1.25 m before returning to 2 m
and leaving the over water area. We placed acoustic foam over the fish tank (Fig. 5)
to absorb the ultrasound readings so that the edge of the tank is not detected.

As seen in Fig. 6, the ultrasonics closely follow Vicon ground truth, although
they lag slightly behind as the UAV descends. The lag is caused by the latency of the
ultrasonics, but the lag is less important for our system since we’re most concerned

Fig. 5 Indoor Testbed for Water
Sampling

Fig. 6 Ultrasonic and Vicon Altitude Over water
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with accurate readings when the UAV is hovering and since we limit the descent
velocity so that the system has more time to detect the water’s surface. In extreme
cases, the ultrasonics exhibit large spikes at longer ranges (+2 m), but this noise is
usually brief and rarely affects both sensors simultaneously, so having more than
one sensor is important to filter sporadic noisy readings. These experiments show
that the ultrasonic sensors perform well over water on a flying UAV, especially when
the UAV is hovering near the water’s surface.

5.1 Kalman Filter Low-altitude Estimation

At low altitude, we merge the pressure and ultrasonic readings using a Kalman Filter
and shown in Fig. 7. The ultrasonics must be pre-filtered before entering the Kalman
Filter since the swinging tube causes non-Gaussian noise. The current readings from
the two ultrasonic sensors are evaluated based on variance during the last second
and proximity to the current Kalman estimate. We choose the reading with least
variance, closest to the current Kalman estimate, giving preference to proximity. If
both or neither satisfy these conditions, we average them. While its rare to have
faulty readings from both sensors, experimentally we have determined that even if
there is continuous faulty data from the ultrasonics, the Kalman estimate quickly
converges to a good estimate once a single sensor yields accurate readings.

Fig. 7 Altitude Estimation Information Flow

5.2 Final Altitude Estimate

The final altitude estimate uses the Kalman estimate at low altitude and the pres-
sure sensor with an offset at high altitude as shown in Fig. 7. At low altitudes, the
Kalman estimate is accurate enough to assure vehicle safety, while at high altitude,
the pressure sensor is sufficient and if sensor drift forces the system below two me-
ters, the low-altitude controller will take over. Anytime the vehicle transitions from
low to high altitude, the pressure sensor is offset with the last best estimate from the
Kalman Filter. When descending, we limit velocity so that the UAV can stop before
coming within one meter of the water.
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We enforce additional safety checks with the water sensors on the tube. If the
water sensors indicate that the tube is too deep, then the UAV ascends to a safer alti-
tude. The water sensor data is not directly added to the Kalman Filter both because
they are slow (0.5 s) and also because occasional water droplets from the pump
cause false readings. In the next section we validate this approach with indoor and
field experiments.

6 Altitude Experiments while Sampling

We performed experiments indoors and outdoors to validate the altitude estimate
while sampling. The indoor experiments verified that the Kalman filter-based alti-
tude estimate closely tracked the Vicon ground truth. Outdoors, the location was a
human-made waterway along Antelope Creek in Lincoln, Nebraska, USA. The wa-
ter at this location is 1−2 m deep. For these outdoor tests we chose a calm day with
wind speeds measured at less than 0.27 ms−1 with a hand-held anemometer. Fig. 1
depicts the system operating outdoors.

Fig. 8 Vehicle Altitude and Pump Depth While Sampling Outdoors

We recorded the ultrasonic, pressure sensor, and Kalman-filtered height estimate,
as shown in Fig. 8. During this experiment the UAV always flew at low altitude. This
figure shows the UAV while it ‘approaches’ the sample destination and the critical
‘sample’ stage when the UAV descends and maintains altitude to pump water. Com-
pared with altitude tests indoors, the ultrasonic sensor readings had more spikes,
indicating additional noise3, but the dual ultrasonics still allowed for successful alti-
tude control. The figure also shows the depth of the pump, as detected by the water

3 The noise from Ultrasonic 1 in Fig. 8 is an extreme example, as there was faulty cabling.
However, the altitude estimate tracks in spite of this noise.
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sensors on the tube. Both the first and second water sensor are activated during
sampling, but never the ones above. We noticed that the water sensor skimmed the
surface as the UAV approached the sample location, which is reflected in Fig. 8.
During the outdoor altitude tests, we observed a larger variation in x and y during
sampling due to GPS inaccuracy, which impacts height as the UAV tilts as it tries to
adjust its location. These tests confirm that our filtered altitude estimate works well
at near proximity to water in calm conditions. Future tests will stress the system
with stronger winds and larger waves.

7 Water Sampler Effectiveness Experiments

We tested the water sampling system both indoors and outdoors. Indoors, we per-
form autonomous missions that launch the UAV to 2.0 m, fly over the fish tank
(Fig. 5), descend to the sampling height where the pump is submerged, take a sam-
ple, and then ascend back to 2.0 m. Each test consisted of three samples, and af-
terward the water sample vials were checked. Any amount less than the top of the
‘neck’ of the sample vial was recorded as less than full. We completed a total of 30
trials. Each trial took 4-5 minutes flying, with an additional 5-10 minutes to set up
the system, empty the vials, and periodically change batteries.

Table 1 summarizes the results. Overall, from the 90 consecutive collected sam-
ples indoors (30 trials with 3 samples each), 81 were full (90% success). To better
understand the relation between the success rate and the use of our ultrasound and
pressure altitude controller, half of the samples were collected using the altitude re-
ported by the Vicon motion capture system. The first and second rows of Table 1
show that the success rate is nearly the same for both Vicon and ultrasonic altitude,
which indicates that ultrasonic rangers are suitable for height estimation over water.

Of the indoor sample failures, six of nine were over half-full. Failures were
caused by the pump landing outside the fishtank or the pump failing to self-prime.

Likewise, we performed outdoor experiments to test the effectiveness of the sam-
pling system when controlled autonomously over water. We programmed the system
to navigate to GPS waypoints and obtain three samples. The results of this test are
shown in Table 1. The success rate for fully-filled vials was 69%, with 7 of 12
failures caused by a faulty lid mechanism which we have now fixed. Three of the

Table 1 Sampling Success Rate

Altitude Trials Samples Full > 1
2 < 1

2 % Full

Vicon 15 45 41 3 1 91.1
Ultrasonic 15 45 40 3 2 88.9
Total Indoor 30 90 81 6 3 90.0

Outdoor 13 39 27 4 8 69.2

Grand Total 43 129 108 10 11 83.7
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remaining five “failures to fill” occurred on the third vial when the backup pilot took
over control after perceiving that the UAV was trending too close to water, especially
as the wind increased during the experiment. We believe pilot aborts will occur less
frequently in the future as we improve hover stability in gusty conditions and as
safety pilot confidence increases. Thirteen total sample trials were conducted, until
all available batteries were discharged. Overall, within the wind and environmen-
tal constraints, the system demonstrated the ability to maintain altitude and retrieve
samples.

8 Sampling Technique Comparison: Hand vs. UAV-Mechanism

Fig. 9 Holmes Lake

We conducted an experiment to ensure
that water samples collected by the UAV-
mechanism exhibit similar water chemical
properties as samples obtained through tra-
ditional hand sampling methods. Potential
differences include those caused by pump-
ing, transit through the tube, agitation dur-
ing flight, and changes in water properties
during the delay between sample acquisi-
tion and sample measurement on land. The
UAV was not flown, but rather held by a hu-
man operator in a kayak to ensure that both the hand and UAV samples were taken
at the same time and place.

In order to verify the consistency between manual and UAV-based sampling, we
sampled at five locations on Holmes Lake, Lincoln, NE, USA. We collected two
samples near shore and three closer to the middle of the lake, as shown in Fig. 9. At
each location, we took three samples by hand and three with the UAV-mechanism
for a total of fifteen samples by each method. Overall it took approximately 2 hours
to collect this data due to the time to kayak, collect manual and UAV-mechanism
samples, and to perform some on-site analysis and filtering. We estimate that col-
lecting the samples with the UAV flying would take 20 minutes.

At each location we measured temperature, dissolved oxygen (DO)4, sulfate, and
chloride. By sampling both a dissolved gas and representative ions we can assess
the suitability of the UAV-mechanism for scientific water sampling. Temperature
and DO are measured at the sample location for the manual measurements and at
shore once the UAV returns, since these properties change rapidly. Chloride and
sulfate ions are measured in the lab using equipment5 which is not easily portable
and these properties don’t change rapidly after sampling and filtering. We mea-
sured DO as it is a key indicator of biological activity and because we suspected the
UAV-mechanism might bias the measurement through degassing during pumping

4 For DO and temperature a single reading was obtained with the hand sensor at the location,
but for the UAV-mechanism it was tested on each of the three samples.

5 Lab measurements use a Dionex Ion Chromatograph AS14A, made by ThermoFisher
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or continued photosynthesis during transit. Sulfate and chloride ions occur natu-
rally in most water and their ratio in freshwater can indicate proximity to a saltwater
source. But inland, chloride comes from many sources including lawn fertilizers and
road salt. High concentrations of chloride in organisms can induce osmotic stress,
reduced fitness, or mortality.

(a) Dissolved Oxygen (b) Sulfate

(c) Chloride (d) Temperature

Fig. 10 Water Chemistry measurements from Hand Sampling and UAV-mechanism. Points
represent the average of three replicate measurements, and error bars indicate ±1 standard
error of the mean.

We are primarily interested in verifying that the UAV-mechanism does not in-
duce a bias in the measurements. Fig. 10a shows the DO as measured by hand at
the location and with the UAV-mechanism. The values at the five sample locations
are close and show the same general trend in all five locations, implying that the
UAV-mechanism and delay (longer by kayak than by flying) has little impact on the
DO. Also visible in this figure is the general upward trend between the sample loca-
tions. This was probably caused by increased photosynthesis over the two hours of
data collection, although sample location may also play a role in this variation. For
instance, location 4 is probably higher than the general trend because it is closer to
an enclosed bay and therefore likely to have more plants near the surface. Obtaining
samples quickly by UAV could help to disambiguate these factors.

Sulfate and chloride concentrations shown in Fig. 10b-10c revealed some differ-
ences between hand methods and the UAV-mechanism. These differences, however,
can likely be attributed to typical sampling variation and neither indicates a strong
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bias induced by the UAV-mechanism. Further, the typical range for sulfate in lakes
is between 10− 60 mg/L [21] and for chloride varies seasonally but usually is be-
tween 10−100 mg/L [22], so the observed variation is minimal. We plan to perform
additional field and lab tests to verify that these measurements are unbiased.

In contrast to the other measurements, Fig. 10d, shows that the temperature mea-
sured by hand at the sample location is nearly constant, while the temperature mea-
sured in samples from the UAV-mechanism changed during transit, especially at lo-
cations two and three. Future versions of system should measure water temperature
at the sample location by mounting a temperature probe at the end of the pumping
tube.

These experiments show the UAV-mechanism can collect samples that replace
those collected be hand. The UAV system greatly reduces the effort and time to
collect samples. This permits water scientists to obtain more samples within a single
lake or river to develop a high-resolution map, for instance, after a rainstorm to
identify the source of the influx of chemical or biological contaminates. In addition,
reducing the collection time is critical since many water properties, such as DO,
fluctuate within hours and using our UAV system would reduce collection time by
nearly an order of magnitude.

9 Conclusions and Future Work

Water sampling has become a key activity in effectively managing our fresh water
resources and maintaining public health. Developing approaches and systems for
efficient and effective water monitoring will increase in importance over the com-
ing decades. In this paper, we have demonstrated a novel mechanism for sampling
water autonomously from a UAV that requires significantly less effort than exist-
ing techniques and is nearly an order of magnitude faster. The system can safely
fly close to water and collect three 20 ml samples per flight. We verified that the
water properties of the samples collected by the UAV match those collected through
traditional manual sampling techniques. This shows that this system can be used by
water scientists to improve the spatiotemporal resolution of water sampling.

Our future efforts include further operation and evolution of the system outdoors,
especially in the presence of varying wind speeds and wave sizes, as well as with
moving water. We are in the process of implementing and evaluating the usability of
a user interface for the limnologists and non-expert operators that balances manual
control with autonomous behavior with the goal of maintaining system and operator
safety. We also intend to explore how this platform might be used with adaptive sam-
pling, and in combination with other sensing and sampling mechanisms deployed
in bodies of water. We plan to examine the duration of the ‘flushing’ phase with our
collaborators to ensure clean samples. Further, we would like to push some water
analysis onto the platform to avoid collecting samples that do not meet required cri-
teria. In addition, we will explore a line of inquiry pertaining to operational safety,
as these systems are intended to be reliable tools in the hands of field scientists.
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Finally, we are pursing approval from the US Federal Aviation Administration to
conduct larger-scale outdoor tests at critical test sites identified by water scientists.
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Tightly-Coupled Model Aided Visual-Inertial
Fusion for Quadrotor Micro Air Vehicles

Dinuka Abeywardena and Gamini Dissanayake

Abstract. The main contribution of this paper is a tightly-coupled visual-inertial fu-
sion algorithm for simultaneous localisation and mapping (SLAM) for a quadrotor
micro aerial vehicle (MAV). Proposed algorithm is based on an extended Kalman
filter that uses a platform specific dynamic model to integrate information from
an inertial measurement unit (IMU) and a monocular camera on board the MAV.
MAV dynamic model exploits the unique characteristics of the quadrotor, making
it possible to generate relatively accurate motion predictions. This, together with
an undelayed feature initialisation strategy based on inverse depth parametrisation
enables more effective feature tracking and reliable visual SLAM with a small num-
ber of features even during rapid manoeuvres. Experimental results are presented to
demonstrate the effectiveness of the proposed algorithm.

1 Introduction

Quadrotor Micro Aerial Vehicles (MAV) are becoming an increasingly popular
aerial platform in the robotics community due to its simple construction. In the
simplest form, a quadrotor MAV consists of two counter-rotating fixed pitch pro-
peller pairs rigidly attached to a cross-like frame along with the electronics required
to control the speed of each propeller. Like most other MAVs, quadrotors are under-
actuated and exhibit non-linear, coupled dynamics that should be stabilized with a
control system, which in-turn requires fast and accurate state estimates.

All MAVs, inherently, have a limited payload capacity and power budget. These
limitations make the task of obtaining fast and accurate state estimates a difficult
one. Inertial Measurement Units (IMU) have been successfully used to obtain a
drift free estimate of the roll and pitch angles of quadrotor MAVs [1]. However,
if the aim is to make MAVs truly autonomous then other important states such as
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yaw angle, velocity and position need to be estimated. Though absolute positioning
systems such as GPS facilitate the estimation of these states, such sensing modalities
are not available in most of the environments that MAVs are expected to operate in.
Recent advances in sensing technology have resulted in three main alternatives to
absolute positioning systems. These, namely laser range finders [2], depth cameras
[3] and RGB cameras [4], have already been evaluated in the context of quadrotor
state estimation.

However, none of the above sensing modalities alone provide a suitable solution
for the MAV state estimation problem. In many cases, a combination of sensors
is required for a successful field deployment. The focus of this paper is on one
such combination that has emerged as promising possibility - the fusion of visual
information from a monocular camera and inertial information from a triad of body
mounted accelerometers and gyroscopes - for quadrotor MAV state estimation.

Two basic forms of Visual-Inertial Fusion (VIF) can be found in the robotics
literature. The most common is what is called the “loosely-coupled” formulation,
in which the algorithm processing the visual information is independent of the in-
ertial measurements. Typically, a sequence of images from a monocular camera is
processed using a Visual Simultaneous Localization and Mapping (VSLAM) algo-
rithm to produce estimates for position (up-to-a-scale) and orientation of a robotics
platform. Measurements from the inertial sensors are then fused together with the
estimated produced by VSLAM in a separate filter, typically an Extended Kalman
Filter (EKF). Techniques for VSLAM are well established but they are likely to pro-
duce inaccurate estimates in situations where the camera motion is fast and where
the number of distinctive environmental features tracked is small. Increasing the
number of features leads to higher computational costs and is not desirable for a
MAV with limited no-board computing. Furthermore, given the basic motion mod-
els that are employed by VSLAM algorithms, and fast dynamics of lightweight
MAV platforms, tracking features from one frame to another requires search over a
large image region, again leading to higher computational costs.

These shortcomings of loosely-coupled implementations can be overcome by
“tightly-coupling” visual and inertial measurements. In this form, the direct visual
measurements - pixel positions of tracked features - are combined with inertial mea-
surements within a single estimator, typically an EKF. Inertial aiding can increase
the robustness of the visual feature tracking while at the same time reducing com-
putational cost by making it possible to search only a small target region of the
image during feature extraction. Thus a tightly-coupled VIF has the potential to
outperform the loosely-coupled counterpart in most scenarios that involve fast ma-
noeuvring MAVs.

Despite the advantages, examples of tightly-coupled VIF estimators are rare in
the robotics literature, mainly due to their implementation complexities as compared
to the loosely-coupled versions. The key contribution of this paper is to present the
results of a tightly coupled VIF estimator for a quadrotor MAV flying aggressively
in an indoor environment with only a handful of tracked features. The formulation
in this paper also makes use of the special dynamic characteristics of the quadrotor
MAV to further improve the VIF algorithm. To the best of our knowledge, this is



Tightly-Coupled Model Aided Visual-Inertial Fusion 155

the first time where such a formulation, specifically designed for quadrotor MAVs,
has been presented and evaluated using experiments. Our algorithm also makes use
of the “Inverse-Depth” (ID) parametrization for environmental features. We high-
light the advantages of using ID parametrization in this context where accurate and
undelayed initialization is the key to a effective SLAM algorithm with smaller num-
ber of features. Challenges associated with incorporating the inertial measurements
and MAV dynamics to the ID parametrization of VSLAM are discussed and it is
demonstrated how these challenges can be overcome in practice.

2 Related Work

Loosely-coupled VIF has received a significant attention in the recent past with
the advent of “black-box” VSLAM algorithms such as PTAM [5]. In [6], images
from a camera were processed using a variation of PTAM and then combined with
accelerometer and gyroscope measurements in an EKF to estimate the pose of a
quadrotor MAV. A similar setup is presented in [7] but with the addition of an air
pressure sensor. Neither of the above approaches make use of the specific dynamic
characteristics of the quadrotor to aid the estimation process. The approach followed
by [8] is similar to the above in that it also makes use of a PTAM to estimate camera
pose. They however, make use of the quadrotor motion equations to derive met-
ric scale velocity estimates using inertial measurements, and then proceed to derive
the scale of the PTAM velocity estimates by employing a maximum likelihood es-
timator. The PTAM position estimates, in metric scale, are then fused again with
inertial measurements within an EKF. A similar approach is followed in [9], where
measurements from a downward facing sonar is combined with PTAM altitude es-
timates to derive metric scale motion estimates. In our previous work on loosely
coupled VIF [10], we unified this approach by estimating the scale within the same
EKF that fuses VSLAM estimates with inertial sensor measurements while also in-
corporating the quadrotor specific motion equations. Instead of PTAM, we made
use of a more generic bearing only SLAM formulation based on the inverse-depth
feature parametrization. While both [8] and [9] claim accuracies in the order of a
few centimetres, it is important to note that their experiments only consider a hover-
ing quadrotor MAV, which is the ideal operating scenario for PTAM. Instead, here
we analyse the estimation results for a flight sequence more closer to real indoor
flights with frequent linear accelerations on the order of a few gs and rotational
rates on the order of few tens of degrees per second. Indeed in section 6 we show
that PTAM like VSLAM algorithms which rely on constant velocity motion models
will fail catastrophically when attempting to produce pose estimate using the image
sequence used for the experiments detailed here.

As mentioned before, tightly-coupled VIF implementations are less common in
literature because of their increased complexity. In [11], an iterated EKF is used
to fuse visual and inertial measurements in an attempt to estimate the inter-sensor
calibration parameters and camera pose. A similar approach that makes use of an
unscented Kalman filter can be found in [12]. However, in both these approaches,
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the focus is on estimating the calibration parameters. Therefore, the motion of the
camera is restricted such that it observes a specific set of environmental features in
all images. A similar formulation can be found in [13], but with experimental results
that span long indoor and outdoor trajectories. However, there the algorithms were
not developed with the resource constraints of MAVs in mind. A tightly-coupled
VIF employing the ID parametrization for environmental features is presented in
[14]. In the experimental results included there, the camera motion is largely one
dimensional thus limiting the usefulness of the analysis. In addition, the lack of ac-
curate ground truth in the last two approaches mentioned above inhibits a thorough
evaluation of the estimation accuracy. In [4], a tightly-coupled implementation of
bearing only inertial SLAM is used to estimate the pose of fixed wing aerial vehicle
along with the position of a set of artificial landmarks placed on the ground. This
work is close in spirit to the work presented here although it uses delayed feature
initialisation.

The tightly-coupled VIF implementation presented here makes use of the ID fea-
ture parametrization for monocular SLAM, introduced in [15]. In this parametriza-
tion, the 3D position of environmental features are represented by a six parameter
vector as opposed to the more conventional three parameters. These six parameters
encode the feature location by a vector, originating from the camera optical centre
and terminating in the feature position. This vector is represented by the position of
the camera optical centre, the elevation and bearing to the feature and the inverse
of the length of the vector. The key idea here is that this parametrization reduces
the non-linearities in measurement equations of an EKF based monocular SLAM
algorithm and thus improves the consistency and accuracy of the filter. Another the
main advantage of this strategy is that information from tracked environmental fea-
tures can be exploited without waiting for a sufficient baseline. To conserve space,
we refrain from discussing the ID parametrization in detail here. More information
about an open source implementation of an EKF based monocular SLAM algorithm
using ID feature parametrization can be found in [16].

3 Visual-Inertial Fusion: Methodology

3.1 System Description

The platform under consideration is a quadrotor MAV affixed with an IMU (con-
sisting of a triad of orthogonal accelerometers and gyroscopes) and a monocular
camera. Without loss of generality, we assume that the IMU is located at the cen-
tre of mass of the quadrotor and that the camera and IMU coordinate frames are
aligned. We name this the body coordinate frame {B} and also define an earth fixed
inertial coordinate frame {E}, which is defined by the position and heading of {B}
at the start of the VSLAM estimator but with it’s vertical axis aligned with gravity
(see Fig. 1). Throughout the paper we use boldface letters to denote vectors and
leading superscripts to denote coordinate frame in which the vector is expressed. A
trailing subscript denotes individual components of the vector.
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Fig. 1 Quadrotor and the coordinate systems

3.2 Process Model

The states we wish to estimate are: the position of the origin of {B} expressed
in {E}, e ppp; velocity of the origin of {B} measured in {E}, but expressed in {B},
bvvv; orientation of {B} with respect to {E} expressed as a quaternion, qqq; angular
velocity of {B} with respect to {E}, expressed in {B}, bωωω ; gyroscope bias βββ ggg and
accelerometer bias βββ aaa. The states evolve according to:⎡
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baz (1)

where k1 is a positive constant specific to a given quadrotor MAV1, ggg is the
gravity vector in {E}, R is the rotation matrix that transforms a vector from {B}
to {E}, ⊗ denotes the quaternion multiplication and baaa = {bax,

b ay,
b az} are the

accelerometer measurements. Also, ηvx,ηvy,ηaz,ηηηω ,ηηηβ a and ηηηβ g are zero mean
White Gaussian Noise (WGN) terms denoting uncertainties in process equations.
The accelerometer measurement along bz axis is considered as a control input to
the system. The equation for bv̇vv of equation (1) which describes the relationship
between the orientation and the translational motion is unique to a quadrotor MAV.
More details on this equation along with experimental validation can be found in
[17].

In addition to the above mentioned ego-motion states, the VIF algorithm also
estimates the location of a number of environmental features. All features are ini-
tialized in the filter using the ID parametrization and later converted to Euclidean
when sufficient information about feature depth has been acquired through repeated
observations. A Euclidean feature is introduced to the filter by augmenting the state

1 In the current formulation k1 has to be estimated offline. Refer to [17] for details.
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vector with the 3-D position of the feature {E}.

xxxi =
[
Xi Yi Zi

]
(2)

In contrast, an ID feature is introduced by augmenting the state vector with a 6-D
vector:

yyyi =
[
xi yi zi θi φi ρi

]
(3)

which models a 3-D point located at
[
Xi Yi Zi

]
as:

xxxi =

⎡
⎣Xi

Yi

Zi

⎤
⎦=

⎡
⎣xi

yi

zi

⎤
⎦+ 1

ρ
mmm(θi,φi)

mmm(θi,φi) =
[
cosφi sinθi −sinφi cosφi cosθi

]T
(4)

where
[
xi yi zi

]T
is the location of the camera when the feature was first observed,

mmm(θi,φi) denotes the unit vector from that location to the feature and ρi is the inverse
of the depth to the feature along that unit vector. Further details on the ID feature
parametrization for monocular SLAM can be found in [15].

3.3 Measurement Model

Body mounted gyroscopes measure the instantaneous rotational rate of {B} with
respect to {E}. They are assumed to be corrupted by a slow-varying bias and zero-
mean WGN.

hhhg =
bωωω +βββ ggg +ηηηg (5)

Accelerometers measure a combination of static and dynamic acceleration pro-
jected onto their sensing axes and therefore their measurements depend on the dy-
namics of the platform to which they are attached. For the case of a quadrotor MAV,
accelerometer measurements can be easily derived from equation (1).

hhha =

[
bax
bay

]
=

[−k1
bvx +βax +ηax

−k1
bvy +βay +ηay

]
(6)

Measurements to the currently tracked set of features are made in each cam-
era image. To express these measurements mathematically, the position of the fea-
ture first needs to be expressed in {B}: hhhc =

[
hx hy hz

]
. For a Euclidean features at[

Xi Yi Zi
]
:

hhhc = RT

⎛
⎝
⎡
⎣Xi

Yi

Zi

⎤
⎦−e ppp

⎞
⎠ (7)

For ID features:
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hhhc = RT
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For both Euclidean and ID features, the actual measurements are the projection of
the features onto the image plane assuming a pin hole camera. After the application
of camera calibration, we arrive at:

hhh =

[
u
v

]
=

[
u0 − f hy

hx

v0 − f hz
hx

]
(9)

where f is the camera focal length and u0, v0 is the camera’s principal point.

4 Filter Implementation

The open source implementation of the EKF monocular SLAM with inverse depth
parametrization [16] was used as the basis for implementing the tightly coupled
VIF algorithm detailed in the previous section. The inclusion of quadrotor specific
dynamic model described by equation (1), the addition of accelerometer and gyro-
scope bias states and the incorporation of inertial measurement equations (5) and (6)
are the main contributions of the work proposed in this paper. This section discusses
some of the important aspects of that implementation.

In an EKF based monocular SLAM implementation, the initialization and re-
moval of features from the state vector needs special attention. Parameters involved
in these processes had to be tuned somewhat to achieve a proper balance between the
estimation accuracy and computational time. For the experiments presented here,
the filter attempts to track at least 10 environmental features in each image. A fea-
ture active in the filter is only deleted when it fails a certain number of data asso-
ciation attempts. An upper limit of thirty was placed on the total number of active
features in the filter at any point of time. For ease of implementation, when this
limit is exceeded, the features are deleted in a FIFO manner although more sophis-
ticated strategies exist. Also of importance is the method used for feature extraction
and matching. The original implementation of the ID monocular SLAM detailed in
[16] extracted FAST features [18] from each image along with a small image patch
around the feature location as the descriptor. For each feature, a Region of Inter-
est (RoI) is defined in each subsequent image based on the current best estimate
of the camera pose and feature location. A correlation based matching within that
RoI using the stored image patch establishes correspondences. While other more
sophisticated feature extraction algorithms such as SIFT [19] are attractive for their
robustness, we decided to proceed with FAST features and RoI based search for the
computational simplicity of that approach.

One major advantage of the ID parametrization for monocular SLAM is the abil-
ity to perform un-delayed initialization of environmental features. At the first obser-
vation, each feature is incorporated into the state vector using the 6 parameter vector
yi with an mean inverse depth of ρi0 and a variance in inverse depth σi0. Several rule
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of thumb guidelines on how to select values for both ρi0 and σi0 can be found in
[16]. The idea is to set ρi0 such that the range of depths from the minimum expected
depth to infinite depth is covered within the 2σi0 bound. While these rules gener-
ally provided good results for vision only experiments, some difficulties were faced
when fusion with inertial information was attempted. In that case, we observed that
the features that are considerably further away than the closest feature tend to end
up behind the camera after the first EKF update step, especially when the camera
is moving toward the features. Other authors have noted the same behaviour when
attempting to incorporate metric scale information to EKF based monocular SLAM
algorithms using ID parametrization [20]. To overcome this issue, we resorted to
initializing the features at approximately the mean depth of features in the image
rather than at the depth of the closest feature. With just a simple visual inspection
of the environment, we were able to set an approximate value to the initial feature
depth that would perform satisfactorily. We have also realized that, when consid-
ering the consistency of the filter, it is safer to initialize features further away than
close by.

Another difficulty faced during the implementation of the tightly-coupled VIF
algorithm was the tuning of filter noise parameters. The final EKF implementation
had nineteen states and three different types of measurements resulting in a total of
twenty two different noise parameters that had to be tuned. This proved an increas-
ingly difficult task, unless a methodical approach to filter tuning was followed. The
method followed in this work is to first focus on a reduced number of filter states
and measurements. In our previous work [17], we have shown that it is possible to
design a drift free velocity and attitude estimator for quadrotor MAVs using only
accelerometer and gyroscope measurements. With that experience, we initiated the
filter tuning process by turning off vision measurement updates and concentrating
on only obtaining drift free velocity and attitude estimates. For this however, we
had to provide the filter with an estimate of accelerometer biases, as it is not possi-
ble to estimate that using only inertial sensors. This tuning step involved only four
states and four measurements, and was rather easy to achieve. In the next step vi-
sion measurements was turned on and we focused on obtaining accelerometer bias
estimates and on reducing the drift in position estimates. Even though this still re-
quired a number of trial and error steps, it proved to be easier and more reliable than
attempting to tune all noise parameters at once.

5 Experiments

Experiments presented here were performed using a real world flight dataset con-
sisting rapid linear and angular manoeuvres, obtained with a quadrotor MAV flying
in a Vicon motion capture environment approximately of size 4× 4× 3(m). The
quadrotor platform used was the Parrot AR Drone I with a total flight weight of
420g (see Fig. 2). The AR Drone comes pre-equipped with one front facing and one
downward facing cameras, along with a triad of accelerometers and gyroscopes. The
front facing camera is equipped with a 930 wide-angle lens and has a resolution of



Tightly-Coupled Model Aided Visual-Inertial Fusion 161

(a)
(b)

Fig. 2 (a) AR Drone I, (b) Vicon motion capture environment. Inset - one of the Vicon IR
cameras.

320× 240 pixels. Images from this camera, captured at approximately 7Hz along
with accelerometer and gyroscope measurements (at 200Hz) were timestamped on-
board the MAV and wirelessly transmitted to a ground station computer. All esti-
mation tasks were performed off-board and off-line. Vicon real-time state estimates
captured at 120Hz were treated as ground truth in evaluating the VIF estimates.

5.1 Experimental Results

Position, velocity and orientation estimates along with ground truth for the collected
dataset are presented respectively in Fig. 3, Fig. 4 and Fig. 5. Note that the quater-
nion attitude estimate of the VIF was converted to the familiar Z-Y-X Euler angles
for the purpose of illustration.

These figures clearly illustrates that the filter is producing consistent, metric scale
estimates. Note how the errors in e pz axis for position and bvz axis for velocity are
considerably higher than the other axes. This increased error stems from the lack of
a dynamic relationship in the filter constraining the quadrotor motion in bvz axis, as
is the case for bvx and bvy axes. A similar trend can be seen in yaw angle estimate
when compared to the roll and pitch estimates. Thus it is reasonable to assume that
the position, velocity and attitude estimation errors would increase considerably, if
not for the incorporation of the quadrotor dynamic model in the VIF algorithm.

6 A Comparison

To highlight the importance of the tightly-coupled formulation detailed in this paper,
we compare its estimation accuracy and execution time with two other state estima-
tors using the same dataset. First is a vision only formulation and we consider two
variations of a typical VSLAM estimator; a vanilla ID based monocular SLAM for-
mulation that make use of a constant velocity motion model to track features across
images and an SIFT based extension of the same that does not rely on a motion
model for feature tracking. For ease of reference we name the first NID (native
ID) and the second SbID (SIFT based ID). The underlying filtering mechanics for
both these variations are detailed in [16]. Second type of estimator that we wish to
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Fig. 3 VIF position estimates: x - (a), y - (b), z - (c) and respective position estimation errors
(d) - (f)

compare against is a loosely-coupled VIF formulation where the loose coupling of
the vision and inertial information is the only difference between that and the present
work. Again for ease of reference we name the these as LC-VIF(loosely-coupled
VIF) and TC-VIF (tightly-coupled VIF). Note that the vision estimates required for
LC-VIF were derived from SbID. More details of LC-VIF can be found in [10].

6.1 Vision Only Estimation

Fast camera movements and the close proximity of features make the gathered
dataset an extremely difficult one for the conventional VSLAM algorithms that
are based on constant angular and linear velocity models. Attempts to process the
dataset using the open source implementation of the EKF based ID monocular
SLAM algorithm [16] failed repeatedly despite meticulous tuning of the filter noise
parameters, because of the inability of the process model to predict camera mo-
tion with sufficient accuracy that would enable successful feature tracking between
images. Thus, we conclude that NID estimators are unable to produce meaningful
results when the camera motion exhibits fast dynamics. We also remark that native
PTAM algorithms fall into the same category as the NID in the sense that they also
rely heavily on constant velocity motion model for feature tracking.
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Fig. 4 VIF velocity estimates: x - (a), y - (b), z - (c) and respective velocity estimation errors
(d) - (f)

It is possibly to forego the tracking step altogether by employing a high quality
feature descriptor. In such an implementation, salient features and their descriptors
are extracted throughout each new image and matched with the descriptors of the
features currently in the map to establish initial correspondences. We modified the
ID monocular SLAM implementation by Civera et al. so that it extracts SIFT fea-
tures in each image, descriptors of which were then used for data association. Again
due to the fast camera motions in the present dataset, we had to extract a large
number of SIFT features in each image to ensure sufficient feature overlap between
images. This (and the fact that the algorithms were implemented in Matlab) resulted
in extremely slow processing of images - about four seconds for each image. The
resulting VSLAM position estimation errors, calculated after manually scaling the
position estimates, are presented in Fig. 6a.

6.2 Loosely-Coupled VIF

As detailed in [10], the goal of the LC-VIF design was to produce metric scale
estimates by combining VSLAM estimates of arbitrary scale and biased inertial
measurements. To achieve this the SbID estimates were fused with the accelerom-
eter and gyroscope measurement in an EKF that was based on the dynamic motion



164 D. Abeywardena and G. Dissanayake

200 210 220 230 240 250 260 270
−10

−5

0

5

10

15

time (s)

an
gl

e 
(d

eg
re

es
)

VIF estimate
ground truth

(a)

200 210 220 230 240 250 260 270
−15

−10

−5

0

5

10

15

time (s)

an
gl

e 
(d

eg
re

es
)

VIF estimate
ground truth

(b)

200 210 220 230 240 250 260 270
−20

−10

0

10

20

30

40

time (s)

an
gl

e 
(d

eg
re

es
)

VIF estimate
ground truth

(c)

200 210 220 230 240 250 260 270
−10

−5

0

5

10

time (s)

an
gl

e 
er

ro
r 

(d
eg

re
es

)

(d)

200 210 220 230 240 250 260 270
−10

−5

0

5

10

time (s)

an
gl

e 
er

ro
r 

(d
eg

re
es

)
(e)

200 210 220 230 240 250 260 270
−10

−5

0

5

10

time (s)

an
gl

e 
er

ro
r 

(d
eg

re
es

)

(f)

Fig. 5 VIF attitude estimates: roll - (a), pitch - (b), yaw - (c) and respective attitude estimation
errors (d) - (f)
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Fig. 6 (a) VSLAM only position estimation error from SbID, (b) LC-VIF position estimation
error.

equations of the quadrotor MAV. Position estimation errors of the LC-VIF presented
in Fig. 6b. Comparing Fig.6b with Fig. 6a, it is possible to see that the even a loose
coupling of visual and inertial information help reduce the estimation errors. Also
note how the estimation errors in LC-VIF change in proportion to the errors in SbID
estimates. Thus we remark that the improvement of accuracy due to VIF is minimal
due to the presence of considerable errors in the SbID estimate.

A summary of the performance of each estimator is presented in Table 1. Note
the improvement brought about by the tightly-coupled VIF, both in accuracy and
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Table 1 Performance of different estimators

RMS position error(m/s) Execution time (s)

Structure x y z per image

NID NA NA NA NA
SbID 0.29 0.35 0.41 4
LC-VIF 0.24 0.24 0.30 4
TC-VIF 0.06 0.13 0.19 0.3

in execution time. This clearly illustrates the advantages of the filter formulation
presented here.

7 Conclusion

This paper presents the details on the implementation of a tightly-coupled VIF for
the state estimation of quadrotor MAVs that also makes use of the platform specific
dynamics to aid the estimation process. The experiments conducted clearly demon-
strate the ability of the proposed design to derive reasonably accurate state estimates
while attempting to minimize the computational expense by tracking only a handful
of environmental features. Even though the current implementation is off-line and
off-board, we believe it to be an important step toward real-time on-board MAV
state estimation. Future extensions of this work will attempt to bridge this gap by
further refining the proposed design.
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Enabling Aircraft Emergency Landings
Using Active Visual Site Detection

Michael Warren, Luis Mejias, Xilin Yang, Bilal Arain,
Felipe Gonzalez, and Ben Upcroft

Abstract. The ability to automate forced landings in an emergency such as engine
failure is an essential ability to improve the safety of Unmanned Aerial Vehicles
operating in General Aviation airspace. By using active vision to detect safe landing
zones below the aircraft, the reliability and safety of such systems is vastly improved
by gathering up-to-the-minute information about the ground environment. This pa-
per presents the Site Detection System, a methodology utilising a downward facing
camera to analyse the ground environment in both 2D and 3D, detect safe landing
sites and characterise them according to size, shape, slope and nearby obstacles.
A methodology is presented showing the fusion of landing site detection from 2D
imagery with a coarse Digital Elevation Map and dense 3D reconstructions using
INS-aided Structure-from-Motion to improve accuracy. Results are presented from
an experimental flight showing the precision/recall of landing sites in comparison
to a hand-classified ground truth, and improved performance with the integration of
3D analysis from visual Structure-from-Motion.

1 Introduction

Everyday operations of Unmanned Aerial Vehicles (UAVs) are fast becoming a re-
ality as automation technology improves and regulations change to allow civilian
applications in commercial airspace. However, there are a number of opportunities
to improve the safety of these vehicles from a regulatory and operational point of
view. Critical to these operations is the ability to perform a safe emergency landing
in the case of engine or control surface failure. While General Aviation (GA) air-
craft pilots are highly trained in the detection and safe navigation of an aircraft to
an emergency landing site, we automate this process for application in small, fixed-
wing UAVs, in addition to using the technology to assist pilots in full-size aircraft.
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Through the use of an on-board, self-contained system that uses a downward facing
camera, we apply visual classification and 3D reconstruction of the environment be-
low the aircraft to automatically detect suitable landing sites under the flight path.
Using this information, the system will plan suitable approach trajectories to land
the aircraft safely without significantly damaging the system, and more importantly,
not adversely impact on people or property on the ground.

Fig. 1 Overview of the Automated Emergency Landing System: 1) normal flight, 2) site
segmentation, 3) decision processing, 4) path planning, 5) landing

This paper presents an overview of the Automated Emergency Landing System
(AELS), the first iteration of a fully-automated landing site detection and navigation
system for fixed-wing aircraft (Fig. 1), but here we focus on the task of automated
landing site detection. The Site Detection System (SDS) uses a downward facing
camera and both 2D texture and 3D point clouds to analyse the suitability of sites
for a forced-landing. We present results showing the accuracy of the landing site
classification system to a mapped ground truth and compare both precision and
recall against this hand-classified data.

The rest of this paper is outlined as follows: Section 2 reviews related literature
on the topic of automated forced landings for Unmanned Aerial Vehicles. Section
3 gives an overview of the AELS, while Sections 4 and 5 details the implementa-
tion of the Site Detection System. Section 6 presents the experimental platform and
dataset used for this research and demonstrates results of the implementation on the
gathered data.

2 Related Work

The implementation of an automated landing site detection and navigation system
for unmanned aircraft is relatively recent in the literature. The first fully integrated
system for detecting, selecting and navigating to an unprepared site for a full-scale
helicopter is presented by Scherer et al. [15]. By utilising a nodding 3-D LiDAR
scanner, the system generates a high accuracy 3D point cloud of the terrain un-
derneath a full-scale Little Bird 2-seat helicopter. By fitting a simulated aircraft
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footprint at regular intervals in the 3D point map, obstacle-free and relatively smooth
sites are extracted as candidates for an automated landing.

This solution highlights the various challenges and design decisions for the im-
plementation of such a system. The use of a LiDAR-based system is well suited to
a GA aircraft due to their carrying capacity, relative cost of the platform and power
availability, but such systems are not suited to smaller Unmanned Aircraft for these
same reasons. Instead, we focus on the use of downward facing vision to perform 3D
reconstruction and classification. In this context, vision is not range limited (in nor-
mal Visual Meteorological Conditions [VMC]) and is suitably cheap and low-mass
for application in UAVs as small as 5kg. Since many of these low-mass UAVs are
restricted to the same VMC restrictions as many GA pilots, there is no significant
loss of ability in normal operations through the choice of a visual sensor. However,
the use of vision from such high altitudes presents a number of challenges, particu-
larly in terms of 3D reconstruction using Structure-from-Motion (SfM) and accurate
ground classification to assess suitability.

Johnson et al. [6] present an alternative implementation that uses SfM to recon-
struct the area under a small, unmanned rotorcraft to assess suitability and execute
a safe landing of the vehicle. Yu et al. perform a similar task [21]. However, the air-
craft in these experiments are flying at a relatively low altitude (a few tens of metres)
and only use image pairs for the reconstruction task. Use of this stereo triangulation
method is prone to degeneracy and unreliable at the high altitudes (500− 5000 ft
Above Ground Level [AGL]) at which we intend to operate the system due to pla-
narity of the ground and the extremely large temporal baseline required.

As the first stage of detection of potential landing sites, the SDS includes a
2D candidate identifier based on canny-edge detection, which forms a significant
component of a 2D binary landing site classifier already presented in the literature
[11, 10]. The use of texture analysis and contrast descriptors to identify suitable
landing areas has also been used by Garcia-Pardo et al. [4]. However, this approach
cannot enable decision making due to its inability to detect multiple landing sites.
Recently, a similar detection approach intended to aid pilots in decision making has
been proposed by Shen et al. [16]. This approach has limited applicability at this
point since it has only been tested using synthetic images from Google Earth®.

The lack of 3D information in these algorithms partially motivates the approach
developed here. We extend the previous 2D classification methodology to integrate
potentially noisy observations into a probabilistic representation of the ground DEM
and identify strong landing site candidates. This representation is then used as a
prior to trigger evaluation of the visual data in 3D (a potentially costly exercise).
This allows the system to corroborate or challenge the 2D classifier’s output as well
as gain a finer resolution that can determine obstacles such as trees and individual
buildings from high altitudes.

SfM is a well studied area of research, with a large sum of literature on the topic in
recent years [14, 3]. By tracking features between camera frames with overlapping
views, a 3D model of the scene structure and camera pose can be extracted. As
computational speed improves and algorithms become more efficient, near real-time
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implementations of SfM and Visual Odometry (VO) are now in the literature [7, 12]
and can perform online on commodity hardware for small workspaces.

Typically, SfM is applied on ground-vehicles as a form of VO [8, 2], and the point
clouds generated are often used in obstacle avoidance and navigation tasks [13]. VO
has also been applied in selected airborne applications[20]. More specialised, high
altitude applications of VO, however, presents additional challenges. Accurate VO
relies on triangulation from spatially separated cameras to achieve robust estimation
of 3D structure, meaning a reliance on aircraft movement to achieve accuracy, and
triangulation performance decreases quadratically with distance, a difficulty at the
altitudes in which we intend the system to operate. Additionally, degeneracies oc-
cur when looking at planar structure, an oft-encountered scenario when using vision
from high altitude. However, VO has been successfully applied in airborne applica-
tions [19, 18, 17] by taking into account many of these factors.

For the SDS, our interest is the mapping output of a VO system: a dense 3D
point cloud capable of discriminating obstacles and flat surfaces that are otherwise
ambiguous or indiscernible from a 2D image. While SfM provides a sparse 3D
cloud, at the altitude range we intend for the system to operate, we employ denser
mapping using high-resolution depth maps and the integration of this data into a 3D
mesh using Poisson reconstruction [5].

Fig. 2 An overview of the AELS and its components

3 System Overview

The AELS (Fig. 2) has four major components:

1. The Fault Detection System (FDS), an automated system for detection of in flight
failure modes.

2. The Site Detection System (SDS), a system for detecting and characterising fea-
sible landing sites below the aircraft, the focus of this paper.

3. The Multi-Criteria Decision Maker (MCDM), a continuous estimator that chooses
feasible landing sites based on certain criteria such as terrain ruggedness, slope
and obstacles as well as wind direction/speed in preparation for an emergency.

4. The Guidance Navigation and Control (GNC) system, for planning and navigat-
ing the aircraft to a safe aim point in preparation for a final landing manoeuvre.
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Each operates in a loose hierarchy between sensing a failure and navigating to a safe
landing location.

This paper focuses on the Site Detection System (SDS) as the primary method
of providing landing site candidates to the higher level decision making and guid-
ance algorithms. Using on-board sensing and prior information such as satellite and
DEM data, the SDS is required to detect landing sites on the ground that meet min-
imum criteria of size, slope, variance and proximity to obstacles such as trees and
buildings.

The SDS currently consists of three major components:

1. A binary classification algorithm that operates on purely 2D data, classifying
the pixels of each image into safe or not-safe based on derivative and intensity
measures, and

2. A world model that incorporates a terrain ruggedness prior and 2D image ob-
servations into a Bayesian model by projecting the observed classification of
safe/not-safe from the image onto the world plane, accounting for altitude differ-
ences in the terrain.

3. A dense 3D reconstruction algorithm that leverages Poisson reconstruction to as-
sess potential landing sites for suitability in relation to ground variance, obstacles
and slope.

The major components of the SDS can be seen in Figs. 4 and 6. The map is initially
split into small segments of 100m2 and the initial probability of safe established
from a-priori data. The 2D classifier detects candidate landing sites in the image
before projecting these observations into the world plane (Fig. 4). Once a contiguous
landing site is established that meets minimum size and probability requirements,
an SfM routine uses the imagery to construct a dense 3D surface model to refine
and check the estimate (Fig. 6). From this model, the surface normals are used to
determine relatively flat and non-flat areas and segment potential obstacles from the
world plane (Fig 11). We describe these modules in more detail in the following
sections.

4 2D Landing Site Pre-classifier

The 2D landing site classifier has already been described in the literature [11, 10].
It operates purely on 2D imagery, without any temporal information, to classify
the pixels in an image into a binary safe/not-safe classification by detecting Canny
Edges in the camera image and performing a dilation to expand the local unsafe
region. Forests, streets, buildings and cultivated land will all likely have a strong
response to the Canny edge detector with a high incidence of edges, while grassed
areas and water-bodies such as lakes and rivers will be highly uniform. The binary
classification process is repeated for each image as it is captured. An example of
this output is shown in Fig. 3
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(a) (b)

Fig. 3 a) Example image and, b) canny edge detection and expansion

4.1 Bayesian World Model

In order to determine contiguous classified landing sites, the 2D observations are
projected into a 3D world model (Fig. 4) using the known camera pose and the cam-
era intrinsics model. Camera poses are transformed from the data extracted from
a Novatel SPAN INS/GPS system that gives a highly accurate 6DOF pose of the
camera in the world frame, and the world is represented in a local Universal Trans-
verse Mercator (UTM) co-ordinate system. This world plane L is divided into a
large grid with 10× 10 metre segments Li, j that contain the necessary information
about the grid point, including altitude, relative classification probabilities, slope
and structure variance, where i, j represent the grid index in the world plane. In-
herently, each grid point has a corresponding probability of safe, P(S) (and inverse
not-safe P(NS) = 1−P(S)), depending on the properties of the site. We seek to de-
termine the true binary classification from the fusion of the noisy observations from
the 2D classifier, prior from a DEM and a 3D reconstruction from the on-board im-
agery and camera poses. For each image gathered by the on-board camera, the pixels

Fig. 4 An Overview of the 2D Pre-classifier Fusion
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xC =
[

u v 1
]T are warped from the image plane to the world plane xL =

[
x y 1

]T
(with local height extracted from the known DEM) via a plane-to-plane homogra-
phy:

xL = HK−1xC (1)

where K is the (known) camera intrinsics matrix. Each pixel from the 2D classified
image is then binned into the closest corresponding grid cell of the height-modified
world plane and a winner-takes-all strategy determines the winner observation zi

at each grid point from this set of most recent pixels, where z1 = safe and z2 =
not-safe. Due to the inherently noisy observations from the 2D classifier, due to
perspective change and shadowing of the aircraft, a pure integration of the positive
classification will yield poor results. To counteract this, a sensor model is derived
from the observations and fused into the map via a recursive Bayesian update for
the cell:

P(S)k+1 = αP(zi|x j)P(S)k (2)

P(NS)k+1 = α(1−P(zi|x j))P(NS)k (3)

where we define α as a normalising constant. Each grid-cell or site can be given a
uniform prior P(S) = 0.5 or, alternatively, a prior from an external set of data. Since
each grid-point that is observed is typically observed up to 20 times due to aircraft
speed, altitude and frame-rate, a close to uniform sensor model describing P(zi|x j) is
used to determine the probability of safe to counteract the potentially noisy output
of the 2D classifier. From empirical evaluation, we derive the sensor observation
model as P(z1|x1) = 0.52 and P(z2|x2) = 0.51. Once a grid-point leaves the set of
visible points, it can then be finally classified as binary safe/not-safe depending on
whether the probability exceeds an empirically chosen threshold (P(S) > T ). We
explore the selection of this minimum threshold in the results.

4.2 Terrain Ruggedness: Generating a Classification Prior

While a uniform prior may be suitable for the binary classification of the world
environment, a more representative prior can be generated from extensive a-priori
knowledge about the environment. In many areas, a DEM of varying resolution is
often available that allows the calculation of properties such as slope and terrain
ruggedness.

While slope is calculated in degrees from the plane, the Terrain Ruggedness Index
(TRI) is calculated as the mean difference in altitude from its neighbours:

TRI(Li, j) =
∑i+1

p=i−1 ∑ j+1
q= j−1 |Zp,q −Zi, j|

8
(4)

Using a hyperbolic function to map TRI (0 → ∞) to a probability (0 → 1), a prior
is established that helps to eliminate areas that may look uniform, but have a high
degree of terrain variance:
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Fig. 5 A section of the prior DEM, shaded according to slope, with the approximate region
flown highlighted in red

P(S)0 =
1

0.1TRI(Li, j)+ 1.8
(5)

The coefficients of the hyperbolic function are chosen empirically to meet a max-
imum safe probability P(S) ≈ 0.55 at a TRI = 0.0 (flat) and P(S) = 0.5 at a TRI
of 4.0, corresponding to a mean variation of 0.5m on a 25m resolution DEM. We
implement this prior to take into account that, in some cases, heavily forested areas
may look uniform from a 2D perspective but contain a high degree of ruggedness.
Alternatively, farmed land may also look uniform, but subject to a high degree of
slope. A non-uniform prior helps to down-weight these particular observations and
establish a better model of safe terrain.

In addition, knowledge of areas covered by water bodies is a useful output of
such a prior, and can be easily included in the world model. Given that coastlines
do not change significantly over long periods, this is an extremely strong prior that
assists where an on-board sensor will likely fail to successfully classify a site due to
the non-static nature of the scene. Hence, areas known to be water in the DEM are
given a safe classification with probability P(S) = 1.0.

However, despite the assistance of such a set of priors, many agricultural areas
can change: forests can be cleared and fields replanted with trees. While a DEM can
give broad scale knowledge of terrain, it does not give up-to-the-minute knowledge
about land-use changes that is available from using an on-board sensor. It is for
this reason we include an active sensor, in addition to it’s ability to increase model
precision.

5 3D Landing Site Classification

While the 2D classifier can infer the suitability of a landing site to a large degree, a
significant amount of fine information is lost, and many areas of land that are suitable
for a forced landing do not necessarily respond appropriately to a canny edge classi-
fier. By performing 3D analysis on a candidate site, local obstacles, terrain smooth-
ness and other data about the 3D environment can be better determined to a higher
resolution than both the DEM and 2D classifier. This, however, can come at high
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cost: a fully-featured SfM routine is computationally expensive on limited hardware
suited to deployment on a small UAV, particularly in relation to the dense 3D re-
constructions required for 3D analysis. For these reasons, we trigger the 3D analysis
only when certain criteria are met: the safe classification for a set of grid points must
exceed a minimum probability of 80%, and they must lie in a contiguous area of min-
imum size. While this area may vary depending on the aircraft, we set a minimum
contiguous area of 2000m2 to suit the test aircraft, a full-scale Cessna 172.

Fig. 6 The 3D Analysis pipeline

The 3D reconstruction routine follows a standard Structure-from-Motion pipeline,
with some modifications. Once a contiguous area is recognised from the 2D clas-
sifier, those camera frames that observe the candidate site are flagged for the SfM
pipeline (as poses and views are already known to a high degree of accuracy). To
reduce complexity, frames are subsampled from the incoming stream at about 5Hz.
Additionally, instead of a structure based pose update, poses are extracted directly
from the INS solution to give an accurate estimate of pose in the world frame with-
out requiring scale or other transforms to align the poses. SURF [1] features are
tracked between frames and initial structure triangulated between matched features.
To account for any triangulation and pose errors, a monocular bundle adjustment is
applied to the set of flagged frames.

From this optimised pose and scene structure, dense depth maps are generated
from those images that observe a potentially safe grid point, using a Semi-Local
Method for iterative refinement [9] in a GPU-based architecture to achieve depth-
map generation at about 2Hz on a consumer NVIDIA GPU. A Poisson mesh [5]
surface estimation is then applied to merge and filter out erroneous depths from the
dense maps.

5.1 3D Analysis

Once the meshed surface has been estimated, a local plane is fitted to the data cover-
ing the candidate region via a 3-point plane estimator, utilising RANSAC to remove
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(a) (b)

Fig. 7 (a) Reconstructed dense surface model generated from 83 images (b) Corresponding
cost-map of proximity to high-angle normals from a fitted ground-plane)

outliers that correspond to objects off the plane. From this plane, slope relative to
the world plane and variance of the structure are easily extracted as properties.

In order to find flat contiguous areas that correspond to safe landing zones, sur-
face normals are extracted at regular intervals by fitting local planes via Principle
Component Analysis (PCA) of the points in a 5m radius neighbourhood and de-
termining the corresponding normal. The angle between this normal and the corre-
sponding local ground plane is then determined linearly:

θ = arcsin
|n1u1 + n2u2 + n3n3|√

n2
1 + n2

2 + n2
3

√
u2

1 + u2
2 + u2

3

(6)

where u = [u1,u2,u3,1], n = [n1,n2,n3,1] correspond to the plane coefficients of
the local normal and fitted ground plane respectively, and θ is the relative angle
between the normal and the fitted ground plane.

The surface is then classified into safe and not-safe via the gathered properties:
if the surface point diverges from the plane by more than 5m or the surface normal
angle θ is less than 80◦, the point is considered as not corresponding to the local
plane and flagged as not-safe. From this analysis, contiguous regions classified as
safe are extracted by a nearest-neighbour search expansion. These contiguous areas
are then mapped into the 10× 10m world grid and classified as safe.

For fixed-wing aircraft, landing sites must meet certain minimum criteria related
to their width and breadth. In most cases, their length must far exceed their width.
For this reason, a 2 dimensional mask that corresponds to the minimum safe landing
footprint for the aircraft is applied to the classified world grid to find these zones.

In addition, for an upstream control algorithm, the planner must plan a path that
approaches the landing site with the maximal length. Principle Component Analysis
(PCA) is again used to determine the dominant angle from which to approach the
site by calculating the eigenvectors of the 2-variable covariance matrix correspond-
ing to X and Y directions. This is easily converted to a compass direction and passed
as an additional property of the site to the MCDM for path planning. Additionally,
the ratio of the eigenvalues can be used to determine the relative weight applied to
selection of a dominant final approach angle.
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Fig. 8 The data-gathering aircraft, fitted with a Novatel SPAN INS/GPS Navigation system
and downward facing camera for site detection

6 Experiments

A set of experiments was designed to test the efficacy and robustness of both the
2D and 3D site detection system, focusing on both recall ability and precision. Us-
ing ARCAA’s Airborne Systems Lab (ASL) (Fig. 8), a dataset was gathered from a
flight over the South-East region of Queensland, Australia. The imaging component
includes 10Hz imagery from a downward facing 1024× 768 pixels Flea2 camera
with 4mm lens. 200Hz 6DOF pose-estimates were also recorded from the on-board
Novatel SPAN INS/GPS system. The aircraft was flown for a distance of 67km at
altitudes from 100-1000ft AGL, covering a range of terrain types including water,
beach, townships, mangrove swamp, farmland, forest and crop. For this trajectory,
a high resolution satellite map was ground-truth classified into a broad set of cat-
egories including grass, trees, water, crop, road and buildings. The classifications
were then split into binary classes based on their suitability: safe or not-safe. Water,
roads, grass and crop-land were classified as safe due to their relatively flat surface
away from civilisation, while trees and buildings were classified as not-safe due to

(a) (b)

Fig. 9 (a) Overview of the flight path of the aircraft, showing overview satellite map and
trajectory (Map attribute: Nearmaps.com), grid at 1km resolution. (b) Corresponding binary
classification from Bayesian Fusion with 80% minimum classification threshold, with inset
highlights. (grey: unknown, black: unsafe, white: safe)
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the likelihood of interaction with persons or damage to the aircraft. These classifi-
cations could change depending on aircraft size and whether the vehicle is manned.
Each classification was binned into a world grid corresponding to the 2D Bayesian
world model derived from the observation data.

6.1 Results

Figure 10 shows the relative performance of the Bayesian pre-classifier, both with
and without a terrain ruggedness prior, and the 3D classifier in detecting and cor-
rectly classifying a safe landing site. For fairness in the 3D classification, and to
demonstrate accuracy of precision, we evaluate precision and recall for the 3D
classifier only over those grid points at which a 3D reconstruction was triggered,
but evaluate the 2D classifier over the whole set of observed grid points. For this
analysis, the minimum threshold probability required for the Bayesian classifica-
tion to successfully classify a site was varied from P(S) = 0.1 to P(S) = 0.999.
As can be seen, with an extremely strict minimum threshold probability of safe at
P(S) = 0.999, precision of the 2D classifier approaches 80%, at the expense of re-
call.
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Fig. 10 a) Precision/Recall for Bayesian fusion with (blue) a uniform prior and (cyan) a
terrain-ruggedness derived prior. b) ROC curve of the same data, showing similar improve-
ments.

Utilising a terrain ruggedness prior increases both recall and precision by ac-
counting for terrain that is not relatively smooth. Additionally, some of the gain in
precision is from successfully classifying water bodies such as lakes and ocean.

Using a minimum threshold of 80% from the TRI-derived classification, 3D anal-
ysis was triggered to cover approximately 32% of the covered area, significantly
reducing analysis time. Using the 3D classifier, precision and recall improve dra-
matically due to the inclusion of strong 3D information that is independent of the
2D classifier As there is no Bayesian probability associated with the 3D classifier,
only a single data point is available (Note the red circle in Fig. 10). For the 3D
classifier, checking of boundary points is dilated by 1 grid-point unit to account
for mis-registration caused by errors in the ground-truth map and projection of the
3D model. An example of the 3D classification and comparison to ground-truth is
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Example output classification from dataset covering an area of approximately
530×210m a) 3D Reconstruction, b) 3D Surface Analysis, c) Binary classified map (black:
not safe, white: safe, grey: unknown), d) Corresponding ground truth binary classified map,
e) Classes (orange: trees, red: farmland, light blue: road, green: structure), f) Corresponding
satellite map.

shown in Fig. 11. Here it must be noted that for a forced landing, precision has far
greater importance than recall, as the ability to land safely is the key requirement
rather than detecting all candidate sites. Also note that land-use changes between
the capturing of satellite data and the presented dataset account for some of the re-
duced precision. In these experiments, the 2D Canny edge detection and bayesian
integration work in online time, updating at the 10Hz rate of the incoming imagery.
For this paper, the 3D scene reconstruction and analysis remains an offline process,
operating in a batch scheme for a set of frames that takes approximately 50-60 sec-
onds per set of 30 frames. With algorithmic improvements, including the leverage
of a GPU and other hardware speed improvements, the speed of 3D reconstruction
will improve.
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7 Conclusion

An automated landing site detection system has been presented that is capable of
finding safe landing sites under a fixed-wing aircraft using purely visual data. The
algorithm leverages Structure-from-Motion and dense 3D point cloud analysis to de-
termine safe landing sites on a high resolution grid, incorporates a 2D pre-classifier
and Bayesian fusion in a world model to reduce the required 3D processing. Results
are presented showing the performance of both the 2D pre-classifier and the the per-
formance of the 3D surface analysis, showing a precision of 96% at a recall of 76%,
showing the method is capable of performing consistently on field-gathered data.

Future work includes improving performance of the algorithm to perform near-
online and incorporating the system into a demonstration aircraft capable of per-
forming an automated forced landing from failure to final approach.
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INS Assisted Monocular Visual Odometry
for Aerial Vehicles

Ji Zhang and Sanjiv Singh

Abstract. The requirement to operate aircrafts in GPS denied environments can be
met by use of visual odometry. We study the case that the height of the aircraft above
the ground can be measured by an altimeter. Even with a high quality INS that the
orientation drift is neglectable, random noise exists in the INS orientation. The noise
can lead to the error of position estimate, which accumulates over time. Here, we
solve the visual odometry problem by tightly coupling the INS and camera. During
state estimation, we virtually rotate the camera by reprojecting features with their
depth direction perpendicular to the ground. This allows us to partially eliminate
the error accumulation in state estimation, resulting in a slow position drift. The
method is tested with data collected on a full-scale helicopter for approximately
16km of travel. The estimation error is less than 1% of the flying distance.

1 Introduction

This paper addresses the problem of vision-based state estimation for an aerial vehi-
cle. Typically, vision-based method is useful in the cases where GPS is unavailable
or insufficiently accurate. On aerial vehicles, continuously accurate GPS positioning
can be hard to ensure, especially when the vehicle flies at a high speed. Visual odom-
etry [1, 2] becomes a supplemental method. Multiple cameras fixed on the aircraft
can be used to recover 6DOF motion, but this requires that the baseline between the
cameras to be at least a non-trivial fraction of the vehicle elevation above the ground.
That is, if a small baseline is used, the cameras reduce to a monocular camera when
the vehicle flies at a high altitude. If the cameras are separated significantly, camera
calibration becomes hard and accuracy can be uninsured.

This paper uses a monocular camera looking downward toward the ground. The
scale of translation is solved by the distance of the vehicle above the ground
measured by an altimeter. We model the imaged ground as a locally flat patch with
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(a) (b)

Fig. 1 Illustration of the proposed method. (a) shows the real position of the camera. Dur-
ing state estimation, features are reprojected with their depth direction perpendicular to the
ground. This equals to rotating the camera to a virtual position pointing perpendicularly to
the ground, as (b). We will show in this paper that using features associated with the vir-
tual camera for the state estimation can decelerate the accumulation of the motion estimation
error.

two rotation DOFs. The proposed method estimates the translation and the inclina-
tion angles of the ground patch concurrently.

To deal with the noise in INS orientation, we propose to reproject features with
their depth direction perpendicular to the ground patch. This equals to rotating the
camera virtually to be perpendicular to the ground, as shown in Fig. 1. By doing
this, we can partially eliminate the accumulation of translation estimation error–
the accumulated translation error introduced by roll and pitch angle noise from the
INS largely cancels itself overtime, especially when the vehicle flies at a constant
altitude. Also, we find that it is hard to prevent propagation of the yaw angle noise
and the altimeter noise in the state estimation, but we can only reduce the noise
amount from the error sources. Correspondingly, we implement a Kalman filter [3]
to reduce the yaw angle noise. We also adopt a high quality laser altimeter on the
aircraft to obtain accurate elevation measurement. The result is state estimation with
relative error less than 1% of the flying distance.

The rest of this paper is organized as follows. In section 2, we present related
work. In section 3, we define assumptions and coordinate systems. The method is
overviewed in Section 4, and solved in detail in Section 5. Analysis of error prop-
agation is given in Section 6. Experimental results are presented in Section 7 and
conclusion is made in Section 8.

2 Related Work

Vision based methods are now common for vehicle state estimation [4, 5]. Typi-
cally, the problem solves 6DOF camera motion in an arbitrary environment. When
stereo cameras are used [6], the relative poses of the two cameras function as a con-
straint that helps solve the motion estimation problem. For example, Konolige, at
al’s stereo visual odometry recovers the camera motion from bundle adjustment [7].
The method is integrated with an IMU which handles orientation drift of the vi-
sual odometry in long distance navigation. For a monocular camera, if the camera
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motion is unconstrained and no prior knowledge is assumed about the environment,
the scale ambiguity is generally unsolvable. Klein and Murray develop a visual
SLAM method by parallel tracking and mapping of monocular imagery [8]. The
method is improved by Weiss and modified to be visual odometry [9].

When using a monocular camera, if the camera motion follows certain constraint,
the scale ambiguity can be solved in constrained cases. On the other hand, if certain
a prior knowledge or constraint about the environment is available, it can also assist
to solve the motion estimation problem. For example, Artieda, et al’s visual SLAM
uses a front looking camera mounted on an aerial vehicle [10]. The scale ambiguity
is solved by assuming some of the feature points with known 3D coordinates. Conte
and Doherty’s visual navigation system works for flights at a relatively high altitude
such that the ground is considered as flat and level [11]. The vehicle motion is
solved by planar homography between images taken from the ground. The method
also uses geo-referenced aerial images to fix the visual odometry drift. Caballero,
et al’s visual odometry also assumes flat ground and uses planar homography [12].
However, the method does not require the ground to be level and online recovers its
orientation with respect to the vehicle. The scale is solved by the vehicle elevation
above the ground measured by a range sensor.

Our method is similar to [12] in the sense that both assume the imaged ground to
be locally flat but not necessary level. However, our method does not rely on planar
homography. The orientation readings from the INS are directly used in solving
the translation in a tightly coupled fashion. The result is that our method solves a
problem with less DOFs. Further, the method is designed to be insensitive to the
INS orientation errors, and therefore has a slow position drift.

3 Assumptions and Coordinate Systems

The visual odometry problem addressed in this paper is to estimate the state of an
aerial vehicle using a monocular vision system, an INS and an altimeter. We assume
that the camera is well modeled as a pinhole camera [13]. The camera intrinsic
parameters are known from pre-calibration, and the lens distortion is removed. As a
convention in this paper, we use left uppercase superscription to indicate coordinate
systems, and right superscription k, k ∈ Z+ to indicate image frames. We use I to
denote the set of feature points. We define two coordinate systems.

• Image coordinate system {I} is a 2D coordinate system with its origin at the left
upper corner of the image. The u- and v- axes in {I} are pointing to the right and
downward directions of the image. A point i, i ∈I , in {Ik} is denoted as Ixk

i .
• Camera coordinate system {C} is a 3D coordinate system. As shown in Fig. 2,

the origin of {C} is at the camera optical center with the z-axis coinciding with
the camera principal axis. The x− y plane is parallel to the camera image sensor
with the x-axis pointing to the forward direction of the vehicle. A point i, i ∈I ,
in {Ck} is denoted as CXk

i .
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Fig. 2 Illustration of the coordinate systems and ground model. {Ck} is the camera coordi-
nate system at frame k. {Pk} is a coordinate system with its x−y plane parallel to the ground
patch. A is the intersection of the z-axis of {Ck} with the ground. The distance from A to the
origin of {Ck}, hk , is measured by an altimeter. The ground patch is modeled with roll and
pitch DOFs around A.

We model the imaged ground as a locally flat patch, as shown in Fig. 2. Let A be
the intersection of the z-axis of {Ck} with the ground patch. The distance between
A and the origin of {Ck} is measured by an altimeter, denoted as hk. The ground
patch is modeled to have roll and pitch DOFs around A. Here, we define another
coordinate system.

• Parallel to ground coordinate system {P} is a 3D coordinate system. The origin
of {P} is coinciding with the origin of {C}, the x− y plane is parallel to the
ground with the x-axis pointing to the forward direction of the vehicle. The z-
axis is pointing downward perpendicularly to the ground patch. A point i, i ∈I ,
in {Pk} is denoted as PXk

i .

4 Software System Diagram

The system diagram of the visual odometry software is shown in Fig. 3. The system
takes the camera images, altimeter reading, orientation from the INS, and computes
the translation and inclination of the ground. We will show that the translation esti-
mation is insensitive to the noise in roll and pitch angles, but sensitive to yaw noise.
Hence the visual odometry is particulary designed to take only the roll and pitch

Fig. 3 Visual odometry software system diagram
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angles from the INS, and estimate the yaw angle by itself. Behind the visual odom-
etry block, we implement a Kalman filter that integrates the yaw angle. The Kalman
filter helps reduce the noise amount by taking the visual odometry estimate in the
prediction steps and the INS measurement in the update steps. The integrated yaw
angle can be used to register the translation in the world.

5 Visual Odometry Method

5.1 Method Intuition

Fig. 4 presents the key idea for the visual odometry method. We use two parallel
coordinate systems at frames k− 1 and k, respectively. Let {V k−1} be a coordinate
system with its origin coinciding with the origin of {Ck−1}, and {V k} a coordinate
system with its origin coinciding with that of {Ck}. Initially, {V k−1} and {V k} are
rotated to the horizontal position as shown in Fig. 4(a), using orientation from the
INS. Then, through nonlinear iterations, {V k−1} and {V k} are rotated to be parallel
to {Pk}, the coordinate system parallel to the ground patch at frame k, as shown in
Fig. 4(b). During the nonlinear iterations, {V k−1} and {V k} are kept parallel, and the
features at both frames are projected into {V k−1} and {V k}. The projected features
are used to compute the vehicle frame to frame motion.

5.2 Mathematical Derivation

In this section, we present the mathematical derivation of the proposed method.
The complete visual odometry algorithm is presented in the next section. From the
pin-hole camera model, we have the following relationship between {Il} and {Cl},
l ∈ {k− 1,k},

α IXl
i = K CXl

i , (1)

where α is a scale factor, and K is the camera intrinsic matrix, which is known from
pre-calibration [13].

Let C
V θ l and C

V ψ l , l ∈ {k− 1,k}, be the roll and pitch angles from {V l} to {Cl}.
The relationship between {Cl} and {V l} is expressed as

CXl
i = Rx(

C
V θ l)Ry(

C
V ψ l) V Xl

i , (2)

where Rx(·) and Ry(·) are rotation matrices around the x- and y- axes, respectively.

Let V X̃l
i , l ∈ {k− 1,k}, be the normalized term of V Xl

i , such that

V X̃l
i =

V X
l
i/

V zl
i , (3)

where V zl
i is the 3rd entry of V Xl

i .
V X̃l

i can be computed by substituting (2) into (1)
and scaling V Xl

i such that the 3rd entry becomes one.



188 J. Zhang and S. Singh

(a)

(b)

Fig. 4 Illustration of coordinate systems {Vk−1} and {Vk}. As indicated by the green colored
arrows, {Vk−1} (in the right column) and {Vk} (in the left column) are two parallel coordinate
systems at frames k−1 and k, respectively. {Vk−1} and {Vk} are initialized at the horizontal
position as illustrated in (a), using orientation from the INS. Then, through a nonlinear op-
timization, {Vk−1} and {Vk} are rotated to be parallel to {Pk}, as shown in (b). The figure
only represents a planar case, while {Vk−1} and {Vk} have roll and pitch DOFs with respect
to {Ck−1} and {Ck}.

Let Δ k
x , Δ k

y , and Δ k
z be the vehicle translation in the x-, y- and z- directions be-

tween frames k− 1 and k, and let Δ k
φ be the corresponding yaw rotation between

the two frames. From the vehicle motion, we can establish a relationship between
{V k−1} and {V k},

V Xk
i = Rz(Δ k

φ )(
V Xk−1

i −
[
Δ k

x , Δ k
y , Δ k

z

]T
), (4)

where Rz(·) is the rotation matrix around the z- axis.
Substituting (3) into (4) for both frames k−1 and k, and since Δ k

φ is a small angle
in practice, we perform linearization to obtain the following equations,

s V x̃k−1
i = V x̃k

i −V ỹk
i Δ k

φ +Δ k
x/

V zk
i , (5)

s V ỹk−1
i = V ỹk

i +
V x̃k

i Δ k
φ +Δ k

y/
V zk

i , (6)

s = 1−Δ k
z /

V zk
i , (7)

where V x̃l
i and V ỹl

i , l ∈ {k−1,k}, are the 1st and the 2nd entries of V X̃l
i , respectively,

V zk
i is the 3rd entry of V Xk

i , and s is a scale factor.
Recall that hk is the distance from the vehicle to the ground patch, and the ground

patch has roll and pitch DOFs round point A in Fig. 2. Let V
P θ k and V

Pψk be the
roll and pitch angles from {Pk} to {V k}. In (5)–(7), the feature depth V zk

i can be
computed from a simple geometry relationship,
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V zk
i = hk(1− (V x̃k

i −C
V ψk)VPψk − (V ỹk

i −C
V θ k)CV θ k). (8)

Combining (5), (6) and (8), we have,

aΔ k
x + bΔ k

y

c+ d V
P ψk + e V

P θ k
+ f Δ k

ψ + g = 0. (9)

where

a = V ỹk−1
i , b =−V x̃k−1

i , c = hk, d =−hk(V x̃k
i −C

V ψk), (10)

e =−hk(ỹ
V
(k,i)−C

V θ k), f =−V x̃k
i

V x̃k−1
i −V ỹk

i
V ỹk−1

i , (11)

g = V x̃k
i

V ỹk−1
i −V ỹk

i
V x̃k−1

i . (12)

In (9), we have totally five unknowns, Δ k
x , Δ k

y , Δ k
φ , V

Pθ k, V
Pψk. The function can

be solved using five or more feature points with a nonlinear method. However, in
certain cases, we can consider V

Pθ k and V
Pψk as known variables such that (9) can be

solved linearly with three or more feature points. Next, we will provide a linear and
a nonlinear way to solve the function. Both methods will be useful for the visual
odometry algorithm presented in the next section.

5.2.1 Linear Method

Set V
Pθ k and V

Pψk in (9) as known variables and treat Δ k
x , Δ k

y , Δ k
φ as unknowns. For m,

m ≥ 3, feature points, stack (9) for each feature. This will give us a linear function
in the form of

AXL = b, (13)

where A is a m× 3 matrix, b is a m× 1 vector, and XL contains the unknowns,
XL = [Δ k

x , Δ k
y , Δ k

φ ]
T . Solving (13) with the singular value decomposition method

[13], we can recover XL.

5.2.2 Nonlinear Method

For m, m ≥ 5, feature points, stack (9) for each feature and reorganize the function
into the following form,

f(XN) = b, (14)

where f is a nonlinear function with 5 inputs and m outputs. b is a m×1 vector, and
XN contains the unknowns, XN = [Δ k

x , Δ k
y , Δ k

φ ,
V
Pθ k, V

Pψk]T . Compute the Jacobian
matrix of f with respect to XN , denoted as J, where J = ∂ f/∂XN . (14) can be solved
through nonlinear iterations using the Levenberg-Marquardt method [13],

XN ← XN +(JT J+λ diag(JTJ))−1JT(b− f(XN)), (15)

where λ is a scale factor.
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5.3 Algorithm

Algorithm 1 presents the proposed visual odometry algorithm. The algorithm first
initializes using readings from the INS. Let θ k−1

INS and ψk−1
INS be the roll and pitch

angles of the vehicle at frame k− 1, measured by the INS, and let θ k
INS and ψk

INS be
the corresponding angles at frame k. On lines 4-5, we rotate {V k−1} and {V k} to
the horizontal position using the INS orientation, and we project the feature points
from {Ck−1} and {Ck} to {V k−1} and {V k}, respectively. From now, {V k−1} and
{V k} become parallel coordinate systems. Then, on line 6, we set V

Pθl ,
V
P ψl ← 0 and

compute Δ k
x , Δ k

y , Δ k
φ linearly. The result is used as initialization for the nonlinear

optimization between lines 7-20. The 5 unknowns Δ k
x , Δ k

y , Δ k
φ , C

V ψk, C
V θ k are up-

dated on line 10. On lines 11-12, {V k−1} and {V k} are rotated to the newly updated
orientation with the features reprojected into {V k−1} and {V k}. The iterations finish
if convergence is found or the maximum iteration number is met.

Algorithm 1. Translation Estimation

1 input : Ixk−1
i , Ixk

i , i ∈I , θ k−1
INS , ψk−1

INS , θ k
INS, ψk

INS, hk

2 output : Δ k
x , Δ k

y , Δ k
z

3 begin
4 Rotate {V l} to the horizontal position by C

V θ l ← θ l
INS, C

V ψ l ← ψ l
INS, l ∈ {k−1,k};

5 Compute V X̃k−1
i , V X̃k

i for i ∈I based on (1-3);
6 Use i ∈I to compute Δ k

x , Δ k
y , Δ k

φ linearly by setting V
P θ k,VP ψk ← 0 based on (13);

7 for a number of iterations do
8 Compute image reprojection error (IRE) for i ∈I , then compute a weight for

i ∈I using the IREs;
9 for a number of iterations do

10 Use i ∈I to update Δ k
x , Δ k

y , Δ k
φ , V

P θ k, V
P ψk for one iteration based on (15);

11 Rotate {V l} by C
V θ l ← C

V θ l +V
P θ k and C

V ψ l ← C
V ψ l +V

P ψk , l ∈ {k−1,k},
then V

P θ k,VP ψk ← 0;

12 Project V X̃k−1
i , V X̃k

i , i ∈I , Δ k
x , Δ k

y , Δ k
φ to the newly rotated {V k−1} and

{V k};
13 if the nonlinear optimization converges then
14 Break;
15 end
16 end
17 if the robust fitting converges then
18 Break;
19 end
20 end
21 Compute Δ k

z based on (7) as the weighted average of the features;
22 Return Δ k

x , Δ k
y , Δ k

z ;
23 end
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The algorithm is adapted to a robust fitting [14] to ensure robustness against fea-
tures with large tracking errors. The algorithm assigns a weight for each feature
(line 8), based on the image reprojection error (IRE). The features with larger IREs
are assigned with smaller weights, while features with the IREs larger than a thresh-
old are considered as outliers and assigned with zero weights. Note that the robust
fitting only solves the x- and y- translation of the vehicle, Δ k

x , Δ k
y . To obtain the z-

translation, Δ k
z , we use (7) with the selected inlier features from the robust fitting

(line 21). Δ k
z is computed as the weighted average of the inlier features using the

same weights generated by the robust fitting on line 8.

6 Analysis of Error Propagation

Here we show how the errors are propagated onto the vehicle motion estimation.
We care about how the errors accumulate in the horizontal position estimate because
vertical position drift can be largely corrected by reading of the altimeter. We will
derive the upper bound of the accumulated position drift.

We start with the INS roll and pitch angles. Recall that θ l
INS, ψ l

INS , l ∈ {k− 1,k}
are the roll and pitch inclination angles of the vehicle measured by the INS at fame
l. Let us define θ̂ l

INS and ψ̂ l
INS as their measurement values containing errors. Let el

θ
and el

ψ be the corresponding errors, we have el
θ = θ̂ l

INS−θ l
INS and el

ψ = ψ̂ l
INS−ψ l

INS.

By examining each step in Algorithm 1, we find that el
θ and el

ψ are introduced into
the algorithm at the initialization step (line 4). With the INS measurements, the
coordinate systems {V k−1} and {V k} are intended to be rotated to the horizontal
position. However, because of el

ψ and el
θ , {V k−1} and {V k} are not exactly aligned

with the horizontal position. The roll and pitch difference between {V k−1} and {V k}
are ek−1

θ − ek
θ and ek−1

ψ − ek
ψ , respectively. This angle difference is kept through the

algorithm since the two coordinate systems are rotated simultaneously by the same
angle. In the end, {V k} is rotated to be parallel to {Pk}, or the ground patch at
frame k, and {V k−1} keeps an angular error to {Pk}. Let C

V θ̂ k−1 and C
V ψ̂k−1 be the

measurement values of the roll and pitch angles from {V k−1} to {Ck−1}, C
V θ k−1 and

C
V ψk−1, we can compute

C
V θ̂ k−1 = C

V θ k−1 + ek−1
θ − ek

θ ,
C
V ψ̂k−1 = C

V ψk−1 + ek−1
ψ − ek

ψ . (16)

The errors in C
V θ̂ k−1 and C

V ψ̂k−1 propagate through (2). With the errors introduced,
we rewrite the equation as follows,

CXk−1
i = Rx(

C
V θ k−1 + ek−1

θ − ek
θ )Ry(

C
V ψk−1 + ek−1

ψ − ek
ψ)

V Xk−1
i . (17)

Correspondingly, we derive (9) again containing the errors,
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a(
Δ k

x

c+ d V
Pψk + e V

Pθ k
+ ek−1

ψ − ek
ψ)+ b(

Δ k
y

c+ d V
P ψk + e V

P θ k
+ ek−1

θ − ek
θ )

+ f Δ k
φ + g = 0, (18)

where a, b, c, d, e, f , and g are defined in (10)-(12).
Now, we compare (18) with (9). Note that after the nonlinear optimization in

Algorithm 1 converges, we have V
P ψk, tPV

k → 0. Under this condition, if we define
Δ̂ k

x = Δ k
x +(ek−1

ψ −ek
ψ)h

k and Δ̂ k
y = Δ k

y +(ek−1
θ −ek

θ )h
k, and substitute the terms into

(18), (18) becomes essentially the same as (9) except that Δ k
x and Δ k

y are replaced

by Δ̂ k
x and Δ̂ k

y . Examining the expressions of Δ̂ k
x and Δ̂ k

y , we find that the terms

are invariant with respect to different features. This indicates that if we use Δ̂ k
x and

Δ̂ k
y as the measurement values of Δ k

x and Δ k
y for the case that contains the errors,

(14) is satisfied for each of its m rows. Define ek
x and ek

y as the estimation errors
corresponding to Δ k

x and Δ k
y , we have

ek
x = Δ̂ k

x −Δ k
x = (ek−1

ψ − ek
ψ)h

k, ek
y = Δ̂ k

y −Δ k
y = (ek−1

θ − ek
θ )h

k. (19)

We want to analyze how the errors accumulate over time. Let us define ex and ey

as the accumulated errors of ek
x and ek

y respectively, from frames 1 to n, n ∈ Z
+,

ex =
n

∑
k=1

ek
x, ey =

n

∑
k=1

ek
y. (20)

We want to find the upper bounds of |ex| and |ey|. Let us define Eθ and Eψ as
the upper bounds of the roll and pitch errors from the INS, where |ek

θ | ≤ Eθ and
|ek

ψ | ≤ Eψ , k ∈ {1,2, ...,n}. Substituting (19) into (20), we can derive

ex =
n

∑
k=2

(ek−1
ψ − ek

ψ)h
k =

n

∑
k=2

(ek−1
ψ − ek

ψ)h
(2) +

n

∑
k=3

(ek−1
ψ − ek

ψ)(h
k − h(2))

=
n

∑
k=2

(ek−1
ψ − ek

ψ)h
(2) +

n

∑
j=3

n

∑
k= j

(ek−1
ψ − ek

ψ)(h
j − h j−1)

= (e1
ψ − en

ψ)h
(2) +

n

∑
j=3

(e j−1
ψ − en

ψ)(h
j − h j−1). (21)

Here, since |ep
j − ep

n | ≤ |ep
j |+ |ep

n | ≤ 2Eψ , j ∈ {1,2, ...,n}, we can find the upper
bound of |ex| as

|ex| ≤ 2Eψ(h
(2) +

n

∑
j=3

|h j − h j−1|). (22)

Similarly, we can derive the upper bound of |ey| as

|ey| ≤ 2Eθ (h
(2) +

n

∑
j=3

|h j − h j−1|). (23)
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Eq. (22) and (23) indicate that the accumulated translation error introduced by
the roll and pitch noise from the INS is only related to the altitude change of the
vehicle, regardless of the flying distance. In a special case that the vehicle keeps a
constant height above the ground during a flight, |ex| and |ey| are bounded by two
constants, |ex|< 2Eψh and |ey|< 2Eθ h, where h is the constant height of the flight.
In another case that the vehicle takes off from the ground, hk starts from zero. The
upper bounds of |ex| and |ey| are proportional to the accumulated altitude change
during the flight, |ex|< 2Eψ ∑n

j=3 |h j − h j−1| and |ey|< 2Eθ ∑n
j=3 |h j − h j−1|.

Further, we find that the upper bound of the position drift introduced by the yaw
angle and altimeter noise is proportional to the flying distance. For space issue, we
eliminate the proof. The conclusion can be explained intuitively that if the yaw angle
is off, the position estimate will constantly drift to the left or right side. Similarly,
noise in the altimeter reading will result in under or overly estimated translation
scale. Note that the proposed visual odometry also estimates the yaw angle of the
aircraft. This is particularly proposed and allows us to integrate the yaw angle from
the INS and visual odometry in a Kalman filter. The integrated yaw angle has a
lower amount of noise and is used to register the translation in the world. Also, we
use a high quality laser altimeter to reduce the drift in scale.

7 Experiments

We obtain image sequences from a downward pointing camera mounted to a full-
scale helicopter (Fig. 5(a)). The camera resolution is 612× 512 pixels with the hor-
izontal field of view of 75◦. The camera frame rate is set at 14Hz. The helicopter is
also equipped with a laser altimeter and a GPS/INS. The orientation measurement
from the GPS/INS is used by the visual odometry, while the position reading is used
as the ground truth for comparison purposes.

(a) (b)

Fig. 5 (a) Helicopter used in the visual odometry tests. A downward pointing camera is
mounted to the front of the helicopter. (b) Tracked features. A number of 450 feature points
are tracked between image frames. The red colored segments are outlier features assigned
with zero weights in Algorithm 1. The blue colored segments are inlier features used in the
motion estimation.
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Fig. 6 Visual odometry outputs (blue) compared to GPS/INS ground truth (red) for three
tests. The subfigures from left to right correspond to Test 1-3 in Table 1. The overall distance
of the three tests is 16km, and the average error at the end is 0.57% of the flying distance.

Table 1 Configuration and accuracy of the three tests in Fig. 6 (from left to right)

Test No. Flying Distance Altitude Flying Speed Accuracy

1 7800m 300m 30m/s 0.39%

2 3700m 150m 20m/s 0.73%

3 4500m 200m 20m/s 0.78%

The algorithm selects a number of 450 Harris corners [13] using the openCV
library, and tracks the feature points between image frames using the Kanade Lu-
cas Tomasi method [15]. To evenly distribute the feature points in the images, we
separate the images into 9 (3× 3) identical subregions. Each subregion provides
50 features. Fig. 5 shows an example of the tracked features. The red colored seg-
ments are outliers assigned with zero weights in Algorithm 1, and the blue colored
segments are inliers used in the motion estimation.

Fig. 6 shows results of the proposed method in three flight tests. The blue col-
ored curves are visual odometry outputs, the red colored curves are ground truth
provided by the GPS/INS, and the black colored dots are starting points. More de-
tailed configurations and accuracy comparison of the three tests are in Table 1. Tests
1-3 correspond to the subfigures in Fig. 6 from left to right. The overall flying dis-
tance is 16km, and the average error at the end is 0.57% of the flying distance.

Fig. 7 presents position and velocity errors for Test 1 (the left subfigure in Fig. 6).
Fig. 7(a) shows the accumulated position drift through the test. Fig. 7(b) gives the
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Fig. 7 (a) Accumulated position drift and (b) velocity errors in Test 1 (the left subfigure in
Fig. 6)

absolute velocity errors. Most of the velocity errors are smaller than 1m/s, while the
average speed of the helicopter is 30m/s during the test.

To inspect how sensor noise affects the motion estimation, we add artificial noise
to the INS and altimeter readings. In Fig. 8(a), σ = 3◦ Gaussian noise is added to
the roll and pitch angles from the INS. The corresponding visual odometry output
becomes locally noisy but little drift happens in global scale. This confirms to the
theory proposed in this paper that the motion estimation is insensitive to the roll
and pitch angle noise. Fig. 8(b) presents a more complete comparison with respect
to different add-in noise. Note that with roll and pitch angle noise, we only prove
upper bound of the position drift on horizontal plane but not in vertical direction.
The light blue colored bars indicate that position drift does accumulate in vertical
direction. A possible solution of fixing the drift is using elevation of the vehicle
measured by the altimeter. As expected, the position drift from yaw angle noise and
altimeter noise accumulates overtime (yellow and brown colored bars).
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Fig. 8 (a) Blue: visual odometry output with artificial add-in noise. The noise is added to
the roll and pitch angles from the INS. Red: GPS/INS ground truth (b) Relative errors with
respect to different add-in noise. The noise is added to the roll and pitch angles from the INS,
yaw angle, and altimeter reading, respectively. The angle noise follows σ = 3◦ Gaussian
distribution, and the noise for the altimeter is 3% (σ value) of the elevation with Gaussian
distribution.

8 Conclusion and Future Work

When using INS orientation readings in solving a visual odometry problem, the
noise contained in the INS measurements can affect the vehicle motion estimation,
causing the position estimate to drift. The proposed method reduces the accumu-
lation of the position estimation error in two ways. First, we assume the imaged
ground is locally flat and online estimate the inclination angles, and second, we re-
project features with their depth direction perpendicular to the ground. This way,
the translation error from the INS orientation noise cancels itself partially, resulting
in a slow position drift. The method is tested on a full-scale helicopter for 16km of
flying experiments. The results indicate a relative error of less then 1%.
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An Attitude Controller for Small Scale Rockets

Florian Kehl, Ankur M. Mehta�, and Kristofer S.J. Pister

Abstract. As technology has advanced, electronic components and systems have
become smaller and more powerful. A similar trend holds for space systems, and
satellites are no exception. As payloads become smaller, so too can the launch ve-
hicles designed to carry them into orbital trajectories. An energy analysis shows
that a rocket system with as low as tens of kg of fuel can be sufficient to deliver a
10g payload into orbit given a sufficiently low mass autonomous rocket flight con-
trol system. To develop this, the GINA board, a 2g sensor-laden wireless-enabled
microprocessor system, was mounted on a custom actuated rocket system and pro-
grammed for inertial flight control. Ground and flight tests demonstrated accurate
dead reckoning state estimation along with successful open loop actuator control.
Further experiments showed the capabilities of the control system at closed loop
feedback control. The results presented in this paper demonstrate the feasibility of
a sufficiently low mass flight controller, paving the way for a small scale rocket
system to deliver a 10g attosatellite into low Earth orbit (LEO).

1 Introduction

The environment above Earth’s atmosphere and beyond is primarily dominated
by large one-off spacecraft. Only recently has there been analysis of potential de-
ployments of distributed networks in space (such as in [1–3]). Distributed satellite
systems comprising femto- or attosatellites (10-100 grams and 1-10 grams respec-
tively [4]) can enable new atmospheric and astronomical scientific research [5] as
well as address wireless sensor network (WSN) research in the absence of notable
interference from ground based sources and physical obstacles. As the availability
and functionality of electronics go up and the cost goes down, the required hardware
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becomes smaller, cheaper, and more accessible. While previous small satellite re-
search has focused on systems on the order of kilograms, sensor nodes have shrunk
to where a 10 gram system is sufficiently powerful for many purposes.

This paper addresses the issue of deploying such sensor nodes into a low Earth
orbit (LEO) for applications in space-based WSNs. In particular, this paper begins
to examine a small scale rocket-based solution for delivering a 10 gram attosatellite
payload to a desired orbital trajectory. The additional difficulty in miniaturizing a
satellite deployment system is offset by the drastically lower cost and risk factors
compared to current large-scale launch options.

Ultimately, a launch vehicle (LV) should be of comparable scale and cost to the
payload mote being deployed [6]. A full launch solution will also require careful
rocket and propellant design; this paper focuses on miniaturizing a control system
as described in [7] to be used to guide the LV into a desired trajectory. The hard-
ware developed here is applicable as a final stage in orbital insertion – a rocket was
designed and built using low cost, off-the-shelf components to estimate and control
system attitude.

An overview of rocket systems and the difficulties in their miniaturization is pre-
sented in section 2. The specific hardware designed in this work in described in
section 3, with an explanation of the experimental setup and some testing results in
section 4. Finally, section 5 offers some conclusions and avenues for future research.

2 Background

2.1 Energy to Low Earth Orbit

Energy considerations drive the mechanical rocket design, constrained by physical
properties of available materials.

2.1.1 General Rocket Equations

A common metric quantifying the energy required to implement an orbital maneuver
is the scalar Δv or delta-vee. This energy must be provided by the propulsion system.
In the case of a LV moving from rest on the surface of the Earth to LEO, the required
Δvleo can be decomposed as follows [8, 9]:

Δvleo = vo +Δvd +Δvg +Δvc +Δvatm − vrot , (1)

where

• vo is the orbital velocity,
• Δvd represents the energy lost to drag,
• Δvg represents the additional gravitational potential energy,
• Δvc represents energy needed to effect trajectory control,
• Δvatm represents the energy lost due to engine inefficiency in atmosphere,
• vrot is the velocity of the launch platform due to earth’s rotation.
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The orbital velocity vo is the speed required to maintain the orbital trajectory. For
a circular orbit,

vo =

√
G ·Me

(Re + h)
, (2)

with gravitational constant G, earth’s mass Me and radius Re, and orbital altitude h.
For a satellite in LEO at an altitude of 200 km, this gives vo = 7.8 km/s. The other
Δv losses in equation 1 total 1.5 - 2 km/s, yielding a total Δvleo of 9.5 - 10 km/s for
a ground launched LV to reach LEO [8].

The total Δv generated by a propulsion system over the duration of a maneuver
can be calculated from the time history of its instantaneous thrust (|F|) and LV total
mass (m):

Δv =
∫

t

|F |
m

dt. (3)

Evaluating this integral for a basic combustion chamber rocket design yields the
ideal rocket equation

Δv = ve · ln
(

mi

m f

)
, (4)

where the exhaust velocity ve is a property of the specific fuel/rocket system.
For a given ve, then, the Δv of a rocket stage can simply be calculated from that

stage’s mass ratio mi/m f . In practice, the final mass m f after burnout consists of the
structural mass of the rocket along with the payload (which includes higher stages),
while the initial mass mi also includes the mass of the fuel. The total Δv of a multi-
stage rocket is the sum of of the Δv’s of each stage calculated independently.

2.1.2 Adaptation for Minirockets

The drag force experienced by a rocket moving through the atmosphere is given by:

Fd =
1
2

ρCdv2A, (5)

where ρ is the density of the surrounding air, Cd is the drag coefficient, v is the
velocity of the rocket relative to the air, and A is the rocket’s cross sectional area.
This results in a penalty:

Δvd =

∫
Fd

m
dt, (6)

that scales inversely with length.
As a result, small scale rockets must provide a higher total Δv. Given the ideal

rocket equation (4), this means that it is especially important to minimize the mass
of the LV, including the electronic flight controller. Thus, the primary specification
for the rocket system design becomes the weight metric [10].
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The designed rocket system itself need not deliver the total Δv required for orbit.
Though a minirocket must still be used to deliver the payload to the specific de-
sired orbital trajectory, some portion of the path can be achieved by bootstrapping
on existing aircraft launches. A conventional rocket LV, ultra-high altitude balloon
(UHAB), or gun launch system can be used to deploy a system at altitude in the
upper atmosphere [11, 12].

There is precedent for such piggyback style systems. The CubeSat program
[13] uses spare payload capacity between stages of large scale commercial rocket
launches to deploy academic 1 L, 1.33 kg “nano-satellites” into orbit. A UHAB sys-
tem has been demonstrated to lift a 690 kg payload to a peak altitude of 49.4 km [14],
and J.A. Van Allen had used balloons to launch rockets into the upper atmosphere
extensively during the 1950s [15].

There are a number of energy advantages for high-altitude launches:

• The gravitational potential energy Δvg need not be supplied by the rocket.
• The control effort Δvc is reduced for a shorter trajectory. Not needing to com-

pensate for the wind gusts present at lower altitudes further reduces Δvc.
• The air drag losses Δvd experienced by a LV launched above 98.5% of the atmo-

sphere are less than 3% that of a similar system launched from the ground [16].
• The engine operates at peak performance when exhausting into near vacuum,

reducing the Δvatm loss caused by to a lower ratio between combustion chamber
and ambient pressures [17].

2.1.3 Minirocket Design

The design of a complete miniature rocket LEO LV requires a complicated inter-
play of materials science, aerodynamics, and mechanical engineering [18] – it is a
significant undertaking, and beyond the scope of this work. Nonetheless, first order
analysis of such a system is necessary to establish the feasibility of such a system.

To keep costs, complexity and structural mass at a minimum, a solid propellant
seems to be favorable for a small-scale LV. The need for pipes, valves, tanks, and
insulation in liquid propellant engines would contribute to a high overall structural
mass. The main disadvantages of solid-fuel propellant are the lower specific impulse
Isp and the lack of active throttling, though the latter could potentially be overcome
by a combination of intelligent propellant grain design and control system tuning,
allowing specific thrust-time characteristics [19].

A solid fuel rocket is little more than an open-ended cylinder packed with fuel
(e.g. an ammonium perchlorate oxidizer in a hydroxy-terminated poly-butadiene
(HTPB) binder) forming the combustion chamber with a nozzle for exhaust emis-
sion, upon which the control system and actuators are mounted. To minimize struc-
tural weight, high tensile strength carbon fiber can be used to form the combustion
chamber. The physical characteristics of such a system are summarized in table 1.

An single stage to orbit (SSTO) rocket would require that at least 98% of the
mass of the rocket be fuel. With required structural mass going to the rocket body,
control actuators and electronics, and payload, this requirement proves impossible
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Table 1 Physical parameters of a proposed solid fuel minirocket system

Parameter Subsystem Value Units

Fuel exhaust velocity Fuel 2.6 km/s

Fuel density Fuel 1.763 g/cc

Chamber pressure Rocket body 100 atm

Carbon fiber tensile strength Rocket body 3 GPa

Carbon fiber density Rocket body 1.75 g/cc

Payload mass Payload 10 g

or infeasible to satisfy. Instead, staging can be used to distribute the total Δv = 10
km/s necessary to hit orbit between several stages. This requires a much smaller
mass fraction of fuel per stage, bringing the full system down to a manageable size.

2.2 Guidance Control System

A rocket LV requires active control for both stability and guidance in order to reach
LEO. A typical solid rocket motor is often dynamically unstable, as shown in fig-
ure 1. Above atmosphere, passive aerodynamic surfaces cannot provide restoring
moments, and so the flight controller must enforce stability. Furthermore, there is
no ballistic path to LEO (“what goes up must come down”), so active guidance is
necessary to steer the LV along a specified trajectory to reach LEO. Though the
lower stages of a multi-stage rocket can be replaced by an alternate carrier as de-
scribed above, the final, smallest, stage of the minirocket will still need to perform
the final orbital trajectory insertion. Thus, it is the design of this controller that is
critical to system performance.

Fig. 1 In the absence of aerodynamic forces, a bare solid rocket engine spins out of control.
A stabilizing controller is therefore necessary on a minirocket LV

A schematic of a rocket flight control system is diagrammed in figure 2. In order
to implement feedback control, the system must first calculate the state of the LV. In
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Fig. 2 A feedback control system can be used to stabilize flight and follow a trajectory. The
6DOF state is sensed by a 6 axis IMU and input to a microprocessor. The current heading
and trajectory error is calculated, and a control signal is output to an actuator. The actuator
positions a mass or aims the nozzle to induce the appropriate torque on the rocket.

principle, an inertial measurement unit (IMU) can measure body-referenced inertial
rates, which can be integrated to provide a six degree of freedom (6DOF) state
identifying the earth-referenced position and orientation [20]. In practice, additional
sensors must also be filtered in to give an accurate state estimate.

Given the state estimate, then, the controller can calculate the deviation from a
desired trajectory and command actuators to generate the appropriate corrections.
With the final orbital insertion needing to happen above earth’s atmosphere, aero-
dynamic control surfaces such as fins cannot be used. Instead, actuators must direct
the body-referenced rocket thrust. These could take the form of a gimbaled nozzle,
vanes in the exhaust stream, or an offset mass to generate the required torques for
attitude control.

3 Hardware Setup

3.1 Rocket

In order to test the guidance hardware designed for small scale LVs, a model rocket
based test system was developed. Miniaturization of this rocket wasn’t attempted,
as the focus was on the guidance subsystem comprising sensors and actuators.

Off-the-shelf model rocket components were used for the basic rocket structure,
namely cardboard tubes, polystyrene and balsa wood. As usual in model rocketry,
the rocket contained a parachute for recovery and held disposable off-the-shelf
solid-fuel engines. Depending on the experimental setup, different engines with
characteristic performances could be mounted. The rocket was designed to carry
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the sensors and controller in its body, and incorporated actuators for active control.
A camera was also mounted for in-flight video recording for post-flight analysis.

The dimension of the final rocket, shown in figure 3 was 1.25m with a diameter
of 0.06m and overall mass of 0.57kg.

Fig. 3 Final rocket: 1) gimbaled nozzle, 2) parachute bay, 3) camera, 4) IMU, motor and
payload section, 5) antenna

3.2 Actuators

To control the longitudinal roll axis (Fig. 4a) , the rocket body (1) contained two con-
centrically mounted discs (3), driven by two counter-rotating brushless DC motors
(2). Controlled acceleration and deceleration of these discs was used to counteract
external torques on the rocket’s roll axis by compensating angular momentum.

For yaw and pitch control, a gimbaled nozzle was developed to vector the thrust
along both axes (Fig. 4b) similar to existing large scale and sounding rockets. An
inner engine mount tube (4) was gimbaled on a spherical bearing (7), driven by two
high-torque servos (5,6). Controlling the position of the servos steered the rocket
engine to point in any direction within a ±4.5◦ cone.

Fig. 4 Control principles: a) spinning discs for roll, b) gimbaled nozzle for pitch and yaw

3.3 Sensors

An on-board inertial measurement unit (IMU) was used to measure the body refer-
enced 6DOF inertial rates. A MEMS accelerometer measured 3 axis linear motion
while MEMS gyros measure the 3 axis angular rates. These sensors can be inte-
grated to calculate the 6DOF position.
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However, the outputs of these sensors suffer from additive Gaussian noise as well
as zero bias drift. The additive noise often integrates out, but the random offset in the
rates integrates over time into nontrivial errors. Determining attitude from angular
rates requires one integration, and so diverges from true rather slowly; position how-
ever is the double integral of acceleration and can accumulate errors rather quickly.
To compensate for these errors, additional sensors would be necessary.

Though beyond the scope of this paper, sensors which directly measure position
and attitude can be filtered together with the measured rates to generate a more
accurate state estimate. Typically, magnetometers, GPS, and cameras complement
inertial sensors for localization of robotic systems [21–23]. In the case of minirock-
ets, however, weight is at a premium, and so a minimum of additional sensors are
desired. A camera looking at defined features such as the curvature of the earth or
celestial bodies can resolve a full 6DOF state estimate, so it may be a good addition
to the sensor suite [24].

3.4 Controller

The flight controller for the rocket was a custom designed circuit board for use in
small robotic applications, based on the WARPWING project [25]. The Guidance
and Inertial Navigation Assistant (GINA) board shown in figure 5 comprises the
MEMS inertial sensors, a microcontroller, a 2.4GHz wireless radio, and headers to
a daughter card to drive the actuators. The 2g system is the size of a US quarter at
half the mass.

Though the microcontroller is capable of implementing control laws itself, for
ease of development the system was set up to use a laptop as a command station. The
microcontroller polls the sensors and transmits the data wirelessly to a basestation
connected to the laptop, which processes the data to generate control outputs. The
control signals are send back over the wireless link to the GINA microcontroller,
which then drives the actuators via the daughter board. This introduces a slight delay
of 6ms in the feedback loop due to time-scheduled communications, as well as a
source of errors due to potential packet loss. This cost was tolerated to streamline
the development cycle; however a final implementation of an autonomous controller
would necessarily incorporate on-board processing to eliminate such problems.

Orbital trajectories are more robust to altitude errors than they are to attitude
errors, and so the focus of the controller was on attitude control. The basestation
received angular rates from the gyros on the GINA board and integrated them into
an attitude estimate. This estimate was demonstrated to track the actual orientation
of the rocket quite closely over several minutes, and so this state was fed into various
feedback loops to control the rocket’s roll, pitch, and yaw over the duration of a
flight. These loops generated the control signals which were relayed to the GINA
board to set the motor speeds and servo positions.
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Fig. 5 The 2g GINA controller board incorporates inertial sensing, processing, communica-
tions, and actuation. A MEMS accelerometer and gyros, a 2.4 GHz radio, and a connector to
an actuator driver board are visible; the processor is on the backside of the board.

4 Hardware Testing and Experimental Results

4.1 Sensor Validation

Fig. 6 Measured versus predicted flight profile

The body-referenced angular rates measured by the IMU can be integrated into
a full earth-referenced 6DOF state estimate. Using those measurements, the posi-
tion of a sample uncontrolled rocket flight can be calculated and compared with
theoretical predictions. This comparison is shown in figure 6.

The predictions account for aerodynamic drag and gravity and are based on
thrust-time data sheets from the National Association of Rocketry (NAR) for off-
the-shelf model rocket engines [26] given the dimensions of the rocket and its time
dependent mass. For the latter, we assumed the expelled mass to be proportional to
the thrust. Looking at the acceleration, we can clearly see the characteristic thrust-
time behavior of the engine (here a EstesT M E9-4), with a initial peak thrust due to
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the engines core burning for the lift-off boost, a subsequent steady burning followed
by the engines burnout and deceleration of the rocket during the coasting phase. Pre-
dicted and measured data match perfectly until the engine’s burnout. A significant
shorter burning time of the engine than predicted by the NAR (due to manufactur-
ing tolerances) led therefore to the deviations in velocity and altitude after this event.
Around T+2.5s, connection to the basestation was lost for a short period of time due
to unknown reason but occurred during a few flights. Tracking the rocket with the
antenna decreased the chance of losing data packets.

4.2 Open Loop Actuator Demonstration

4.2.1 Attitude

For safety reasons, the attitude (yaw + pitch) controller was first tested on the
ground. The rocket was fixed at its center of gravity, allowing free rotation about
the pitch axis (Fig. 7c). Commanding the servo to vector the engine to maximal de-
flection, +4.5◦, led to an angular acceleration of approximately 6rad/s2 during the
peak thrust of a EstesT M C6-0 engine. This matched quite well with the expected
behavior, as seen in figure 7a. The prediction was based on the NAR engine data
sheet [26], the thrusting angle and the measured moment of inertia of the rocket.
In Fig. 7b, the thrust vector was switched from one endpoint of +4.5◦ to the oppo-
site endpoint at -4.5◦ at the time indicated by the vertical dotted line. After about
a 0.2s delay caused by accumulated mechanical hysteresis and stiction, the nozzle
vectored its thrust in the opposite direction, decelerating the pitching of the rocket,
causing it to stop and reverse its rotation.

Fig. 7 Angular acceleration depending on thrusting vector ε
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For the actual open loop controlled flight with the vectored thrust, the rocket was
programmed to sinusoidally swing the nozzle in the pitch axis back and forth at a
3 Hz frequency, starting the wiggle when the rocket reached an altitude of 7m. The
goal was to directly control the rocket’s pitch and hence its trajectory by gimbal-
ing the nozzle. Figure 8b shows the resulting pitch angular velocity. Around T+1s,
when the controller’s state estimate indicated a 7m altitude, the nozzle started its si-
nusoidal movement which led to the same wave like pitch movement, revealed by its
angular velocity. As seen before, the rocket’s response was time shifted by around
0.2s due to stiction and hysteresis. The initial pitching of the rocket is visible on all
previous launches, and occurs due to unstable low-velocity behavior. As the relative
speed of the rocket increases, the fins add stability and the swinging disappears. For
this experiment, the rocket was powered by a EstesT ME9-4 engine with a 3s burning
time for additional time for thrust vectoring. An evidently wavelike trajectory can
be observed in the rocket’s smoke trail (Fig. 8a), visually supporting the measured
data.

4.2.2 Roll

For roll control, accelerating and decelerating the discs during the flight caused the
rocket to rotate back and forth along its longitudinal axis. One big advantage of this
system is that it is independent of thrust, being still capable to control during the
coasting phase. The major drawback is its tendency for saturation once the motors
are spinning at full speed, since the discs act just as a reservoir for angular momen-
tum but are not capable to get rid of it. Knowing expected torques on the rocket
body, appropriate disc and motor selection can help to overcome this problem, but
might also increase the overall mass.

4.3 Closed Loop Feedback

To keep a rocket on a desired trajectory, closed loop feedback control is necessary.
Since the rocket presented in this paper steers by vectoring its thrust in a particu-
lar direction, holding the roll axis constant is important to prevent a corkscrew like
flight path. Depending on the deviation from the initial roll angle at the launch pad,
a PID controller drives the rotation speed of the two discs, compensating any ex-
ternal torque, e.g. wind gusts or engine nonuniformities. For testing and simulation
purposes, the rocket was suspended by attaching a thread to its nose cone for unhin-
dered longitudinal rotation. Once the PID gains were manually tuned, two sets of
experiments were conducted: first, a fan blowing asymmetrically on the rocket fins
induced a constant torque; second, a table tennis ball hitting one of the fins gener-
ated a torque impulse. In both cases, the PID controller tried to hold the rocket in its
initial orientation.

As mentioned above, the actuator can only compensate for a certain amount of
angular momentum, limited by the motor speed and the combined moment of inertia
of the rotor and disc. Therefore, application of a constant torque will finally end in
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Fig. 8 a) The sinusoidal smoke trail is generated by thrust vectoring, b) Measured angular
velocity demonstrates the rocket’s response to pitch control. The oscillation immediately after
the take-off is due to unstable flight at low velocities

rotation, but it can be delayed by a significant amount of time as shown on the left
in figure 9 compared to the uncontrolled case.

In the case of an abrupt event like the table tennis ball hitting a fin (simulat-
ing a short duration gust or the like) the system reacts fast to stop the rotation. In
the uncontrolled case (Fig. 9a), the rocket keeps turning steadily after the impact,
slightly decelerated by the air resistance of the fins. By contrast, in the PID con-
trolled scenario, the rotation stops suddenly and the roll controller drives the rocket
back towards its initial position, as seen in figure 9b. The observed oscillations are
vibrations generated by off-center mounting of the reaction masses on the flywheels.
Tighter tolerances during manufacturing could improve the response.

Fig. 9 Roll control with spinning flywheels given constant torque (left) and an impulse (right)
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5 Conclusions and Future Work

The experiments presented in this paper demonstrated the validity of delivering
small scale satellites into low Earth orbit using minirockets. The extremely small
2g GINA controller was accurately able to estimate a portion of the state required
for trajectory control and command actuators to control that state. In the end, an ex-
tremely low cost, off the shelf rocket system was demonstrated with the capability
for attitude controlled flight.

However, attitude alone is insufficient for orbital insertion, and for longer du-
ration flights additional sensing and sensor fusion are required to compensate for
IMU sensor drift. For example, direct state estimates can be generated with a mil-
limeter/milligram scale horizon or star camera, measuring the relative position of
the sensor with respect to the earth and/or astronomical bodies. Future work will
address these concerns to develop a more robust controller to accurately guide the
rocket along longer and more precise trajectories.

Alternate actuation schemes must be also investigated. Though the system pre-
sented in this work was able to achieve full attitude control, the actuators and struc-
ture required to do so proved to be quite heavy. Reducing the mass of the controllers
directly lowers the final system size, and so more efficient ways of effecting stability
and guidance control will be necessary. Such actuation could include inserting con-
trollable vanes to deflect the exhaust stream or shifting the position of the payload
to adjust the relative thrust vector of the engine.

With a robust, lightweight, and accurate stability and guidance solution for small
rocket control, personal scale satellite launches become possible, opening up new
avenues of research for scientists and engineers across a wide range of fields.

Supplemental Media

A video showing key features of this work can be seen at:
http://people.csail.mit.edu/mehtank/minirocketry.mp4
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Posture Reconfiguration and Navigation
Maneuvers on a Wheel-Legged Hydraulic Robot

Christopher Yee Wong, Korhan Turker, Inna Sharf, and Blake Beckman

Abstract. Wheel-legged hybrid robots are known to be extremely capable in ne-
gotiating different types of terrain as they combine the efficiency of conventional
wheeled platforms and the rough terrain capabilities of legged platforms. The
Micro-Hydraulic Toolkit (MHT), developed by Defense Research and Development
Canada at the Suffield Research Centre, is one such quadruped hybrid robot. MHT’s
relatively small size, mobility, actuation and locomotion types fill a gap in mili-
tary unmanned ground vehicles (UGVs). Previously, a velocity-level closed loop
inverse kinematics controller had been developed and tested in simulation on a de-
tailed physics-based model of the MHT in LMS Virtual.Lab Motion. The controller
was employed to generate a variety of posture reconfiguration maneuvers, such as
achieving minimum or maximum chassis height at specific wheel separations. In this
paper, the aforementioned inverse kinematics controller was adapted to function on
the physical MHT. Several test maneuvers, including chassis height and pitch re-
configuration and uneven terrain navigation maneuvers, were implemented on the
MHT and the robot’s performance was evaluated.

1 Introduction

Unmanned ground vehicles (UGVs) are playing an increasingly large role in replac-
ing or aiding humans in a multitude of tasks, ranging from large-scale construction
[10], search and rescue missions [5], everyday housework [7], to extraterrestrial ex-
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ploration [13, 22]. The employment of such robots relieves human beings from the
risk and monotony associated with these tasks. Unfortunately, the mobility, dex-
terity, perception, and intelligence of human beings are removed from the task as
well. Thus, mobile robotics research attempts to bridge the gap between human and
robots.

The most important aspect of mobile robots, common to all types of mobile sys-
tems, is locomotion and mobility. A mobile robot without efficient and effective
locomotion cannot complete its mission. Particular locomotion types are advan-
tageous in certain terrains, but can be catastrophic in others, and there is often a
balance between efficiency and mobility. Typically, wheeled robots are known for
efficiently traversing long distances on continuous terrain, and legged robots excel
when negotiating rough terrain. Wheel-legged hybrid locomotion, a type of loco-
motion combining legs with wheel end-effectors, not only retains the advantages
native to both, but expands the robot’s capabilities with new locomotion modes
[15, 6, 16, 20], active suspension [3], improved stability [2] or new step negotia-
tion methods [21, 17, 12].

The focus of this paper is on UGVs under development by defense organizations
for reconnaissance or load-carrying purposes. These sorts of robots come in many
different sizes depending on the application, ranging from small throw-able surveil-
lance robots such as iRobot’s FirstLook [11], to larger robots such as Boston Dy-
namic’s BigDog [14] or the US Army’s car-sized Multi-Mission Unmanned Ground
Vehicle (previously known as Multifunctional Utility/Logistics and Equipment Ve-
hicle) [4].

The Micro-Hydraulic Toolkit (MHT) is an advanced prototype UGV developed
by DRDC at the Suffield Research Centre for the purposes of investigating new
mobility and control algorithm development. The Toolkit’s size and payload capac-
ity were designed to produce a platform capable of autonomously navigating urban
environments [1] while acting as a load-carrying mule for soldiers or as a reconnais-
sance vehicle. Within the author’s knowledge, there is a lack of military robots with
characteristics similar to the MHT in terms of its locomotion type, actuation method,
size and payload. Implementation and evaluation of controllers for robots such as
MHT is imperative. Thus, the MHT fills a gap in currently available service robots
and this paper contributes to the advancement of control algorithms developed for
electrically and hydraulically actuated ground vehicles.

2 Micro-Hydraulic Toolkit

The MHT is a quadruped with 12 controllable degrees of freedom. The chassis
houses the self-contained hydraulic system and connects to 4 identically structured
legs in a mirrored configuration (Fig. 1). Each leg assembly follows a biologically-
inspired nomenclature mimicking human anatomy: starting at the chassis from
proximal to distal end, the leg assembly is comprised of a hip joint assembly, a
0.315 m femur structural segment, a knee joint assembly, a 0.377 m tibia structural
segment, and a wheel end effector assembly with a wheel diameter of 0.254 m.
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The separation between the front and rear hip joints is 0.3 m. Both hip and knee
joints are powered using non-continuous hydraulic rotary actuators with a range
of motion of 100◦, and the average maximum angular velocities of the hip and
knee joints are 2.39 rad/s and 2.40 rad/s, respectively. The wheels are powered us-
ing geared continuous electric rotary motors, with a maximum unloaded rotational
speed of 3.86 rad/s. The robot has a mass of approximately 150 kg and occupies
approximately 1 m3. More details of MHT’s structure can be found in [23]. The hy-
draulic actuators are mounted such that when the femur is parallel to the chassis and
the tibia is perpendicular to the femur, the actuators are in their zero position, also
known as the home configuration (Fig. 2). The hip actuators allow motion of [-50◦,
50◦], whereas the knee actuator spans [-40◦, 60◦]. The positive direction for the hip
and knee joints is defined as up or extending away from the center of the robot.

Fig. 1 Breakdown of MHT’s anatomy

Fig. 2 MHT in home configuration, where all hip and knee joints of all legs are set to 0◦
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Despite having all electronics, including sensors (hip and knee joint potentiome-
ters, wheel encoders, and an inertial measurement unit) and Phytec’s phyCORE-
MPC565 Rapid Development Kit on the robot, MHT is currently not power
autonomous and is powered via an umbilical cord. Battery systems are currently be-
ing developed to render MHT fully autonomous. Although the system is estimated
to have a payload capacity of approximately 75 kg, no actual tests have been per-
formed on MHT yet, but each hydraulic actuator is capable of 412 N·m torque at the
standard operating hydraulic fluid pressure of 17237 kPa (2500 psi). Compared to
electric motors, especially with high torque requirements, hydraulic actuators have
excellent power to weight ratios.

With 12 controllable degrees of freedom, the MHT is a redundantly-actuated
robot. Thus, combined with MHT’s hybrid nature, the redundancy allows the robot
to readjust its posture to optimize certain criteria depending on the task at hand.
For example, in small corridors or areas with low ceilings, the MHT is able to mini-
mize its wheel separation or chassis height, effectively reducing the space occupied.
If high stability is required, the MHT can expand its wheel base. The reconfigurable
legs can be used as active suspension, maintaining a desired chassis pose. Examples
of these maneuvers will be shown in Section 5.

3 Control Scheme

An inverse kinematics controller originally proposed in [9] and implemented on
the HyLoS robot was adapted and implemented by Thomson [19] in a simulation
model of MHT in MATLAB/Simulink and LMS Virtual.Lab Motion. The under-
lying control architecture used on the Micro-Hydraulic Toolkit is that of velocity
control-based state machine. Fig. 3 shows the overall controller architecture.
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Fig. 3 Overview of MHT’s controller architecture
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The state machine block in Fig. 3 contains a limited set of possible states, as
the robot does not have full autonomous capabilities yet. The controller inputs are
separated into two types: desired posture inputs pd and desired trajectory inputs
ud . Complementing these inputs are the actual posture pa and trajectory ua. The
posture parameters are defined in (1) and trajectory parameters are defined in (2).
The chassis reference frame is shown in Fig. 4, and is located at the bottom center
of the chassis.

Fig. 4 MHT’s reference frame and posture variables definition

p =
[
φ ψ z x1 x2 x3 x4

]T
(1)

u =
[
x y θ

]T
(2)

In the above, φ is the body roll, ψ is the body pitch, xi and zi are the x- and z-
components of the position vector from the chassis center to the wheel joint centers
of leg i in the body-fixed reference frame where i = 1 . . .4, z is the distance from the
chassis to the contact surface as defined by (3), x and y are the x- and y-coordinates
of the chassis in the global frame and θ is the yaw angle of the robot. All posture
variables except for z are graphically illustrated in Fig. 4.

z =

4
∑

i=1
zi

4
(3)

The posture and trajectory errors, �u and �p respectively, are combined with
selection matrices Ct and Cp and subjected to a proportional control law which
transforms them into the desired parametrized platform velocity vector vp =Ct�u+

Cp�p =
[
ẋ ẏ ż φ̇ ψ̇ θ̇

]T
. The desired joint rates q̇di =

[
α̇di β̇di ωdi

]T
, where α̇di,

β̇di and ωdi are the joint angular velocities for the hip, knee and wheel, respectively,
for leg i, are then determined by (4):
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q̇di = J−1
i Livp, i = 1 . . .4 (4)

where, for leg i, J−1
i is the inverse of the modified Jacobian matrix, and Li is the

modified locomotion matrix. Expanding upon [9], Thomson modified the Jacobian
and locomotion matrices to include both the x- and z-positions of the wheels to allow
direct control of the wheel base and end-effector height during stepping maneuvers
[18]. The actual joint rates q̇ai, derived from the robot’s joint potentiometers and
encoders, are coupled with the desired joint rates to form the joint rate error �q̇.
The joint rate error �q̇ is used in a PID control law to determine the desired joint
voltage V , which drive the hip, knee and wheel actuators.

Controller performance is observed through the robot’s ability to reconfigure to
new desired postures or maintain current desired posture variables in response to
outside disturbances (such as terrain changes) while following a desired trajectory.

4 Workspace Analysis

The Toolkit’s feasible workspace can be determined by combining the minimum en-
ergy stability margin (ESM) [8] requirement and the kinematic analysis of MHT’s
workspace, for the given limited range of motion of the hip and knee joint actua-
tors. For example, some kinematically feasible postures position the robot’s center
of mass outside of the support polygon, rendering that posture statically unstable
and hence unfeasible. A static stability analysis was performed on MHT compar-
ing the lowest possible ESM values at different wheel separations (Fig. 5), and it
was discovered that for wheel separations larger than 0.69 m, all possible postures
are statically stable and hence feasible. Whereas with wheel separations below 0.69
m, there exist postures within the robot’s workspace that are not statically stable.
All test maneuvers (both shown and not shown) are restricted to the feasible set of
postures.

Fig. 5 Relationship be-
tween minimum ESM and
wheel separation. Note that
wheel separations can range
from [0.254, 1.500] m
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Furthermore, Figure 6 shows the minimum and maximum chassis height given
the wheel separation. Any chassis height located within the area bounded by the two
curves is feasible. The range of wheel separations is xws = [0.254, 1.580] m, which
represents the separation values where both wheels are touching and the outer limit
of the robot’s workspace.

Fig. 6 Relationship be-
tween maximum chassis
height z and wheel separa-
tion xws

Similarly, a relationship can be established between the maximum possible chas-
sis pitch and chassis height (Fig. 7). The same limitations exist when pitching in
both positive and negative directions, and thus only the positive direction is shown.
Furthermore, it is important to note that any point below the curve is also kinemati-
cally feasible, but not necessarily statically stable.

Fig. 7 Relationship be-
tween maximum chassis
pitch ψ and chassis height
z. Wheel separation xws is
not specified in this case to
allow unconstrained max-
imum chassis pitch within
joint limits.

Workspace analysis is important as it determines prior to testing which postures
are feasible or not without the possibility of damaging the robot. Only feasible pos-
tures are used to gauge controller performance in Section 5.1.
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5 Experimental Results

In order to test MHT’s capabilities as a hybrid vehicle, we devised a series of
maneuvers and obstacles for the robot to perform and overcome. The maneuvers
implemented and evaluated on MHT can be divided into two categories: posture
reconfiguration maneuvers and navigation maneuvers.

5.1 Posture Reconfiguration Maneuvers

Posture reconfiguration maneuvers involve changing the leg x− and z−positions to
achieve specific robot chassis poses. The desired pose can be used for optimizing
ground contact, maximizing stability, adjusting for ground or ceiling clearance, or
repositioning the chassis to various roll/pitch angles to orient a tool mounted on
the MHT. These posture reconfiguration maneuvers can be executed stationary or
combined with a rolling motion. All maneuvers begin in the home configuration.

The posture reconfiguration maneuver described here involves reconfiguring the
robot to a specified wheel separation xws = 0.350 m, while maintaining the current
chassis height z. Then, the MHT positions itself to the maximum chassis height
z = 0.575 m, as limited by the Toolkit’s workspace at the desired xws. The robot
will hold this position for several seconds before returning to the home configura-
tion, changing both xws and z simultaneously. These maneuvers are performed while
maintaining zero chassis pitch ψ and zero chassis roll φ . Snapshots of the maneuver
are shown in Fig. 8.

(a) t = 0 s (b) t = 6 s (c) t = 8 s (d) t = 12 s

(e) t = 15 s (f) t = 18 s (g) t = 19 s (h) t = 20 s

Fig. 8 Snapshots of the maximum chassis height posture reconfiguration maneuver with pa-
rameters xws = 0.350 m, φ = ψ = 0◦
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The tracking responses of certain key variables are shown in Fig. 9. Each leg
has been labelled according to its left (L)/right (R) and front (F)/rear (R) relative
positioning to the chassis. This maneuver is potentially unstable, given the narrow
wheel base and maximum chassis height—the oscillations in pitch tracking between
t = 15 and 20 s in Fig. 9(c) confirm visible swaying of the robot back and forth. Leg
positioning xi is fairly accurate, as the largest error is less than 0.02 m. Although
there is a slight lag in the chassis height z response, the robot achieves the maximum
desired chassis height of 0.575 m.

(a) Leg X-position xi tracking

(b) Chassis height z tracking (c) Chassis pitch ψ , roll φ tracking

Fig. 9 MHT’s tracking performance during a stationary maximum chassis height posture
reconfiguration maneuver at xws = 0.350 m

5.2 Navigation Maneuvers

Navigation maneuvers conducted to date investigate the controller’s ability to over-
come different continuous obstacles while maintaining the desired posture param-
eters. One of the main obstacles is created using different combinations of straight
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ramps. In all tests performed, the controller attempts to maintain zero chassis roll φ
and pitch ψ , a wheel separation of xws = 0.930 m and chassis height of z = 0.409
m—equivalent to the home configuration when on flat terrain. The MHT is capable
of maneuvering up ramps with a maximum slope of 20◦, but fails to climb a 22◦
ramp due to lack of wheel motor torque and loss of ground contact. Simulations
of the ramp climbing maneuvers lead to similar conclusions as the robot is able to
climb a slope of 20◦ but not 25◦ due to wheel slippage.

In the test maneuver presented here, MHT attempts to negotiate sagittally-
asymmetric continuous ramps of differing slopes. The left side encounters ramps
with slopes of 12◦ up and 15◦ down, whereas the right side maneuvers over ramps
with slopes of 10◦ up and 10◦ down. Fig. 10 shows the layout and dimensions of
this test ramp configuration. Figs. 11 and 12 show snapshots and parameter track-
ing respectively of the MHT negotiating sagittally-asymmetric offset ramps. The
maneuver was repeated 4 times since the maneuver outcome varied between trials.

Fig. 10 Sagittally-asymmetric ramps layout, Left (in front): 12◦/-15◦, Right: 10◦/-10◦

When the MHT negotiates sagittally-asymmetric terrain, the lack of ground con-
tact detection becomes a liability that may render the robot unstable. For example,
while the robot moves down the ramp in Fig. 11(e) to Fig. 11(g), the chassis will
tend to pitch down, so both rear legs will raise to maintain ψ = 0. Combined with
the difference in slope between the left and right sides, and the fact that the robot
is stable in this configuration with only three supporting legs, the left rear leg loses
ground contact, as can be seen in Fig. 13. The LR leg will mimic the RR leg mo-
tion and continue to rise to maintain ψ = 0◦ as the robot moves further down the
slope. If the robot’s center of gravity shifts and the system becomes unstable, the
MHT will fall towards the raised leg, causing sudden large errors in roll and pitch
tracking. Attempts to correct the large roll and pitch errors lead to overcompensat-
ing motions, causing large oscillations in the roll and pitch angles (t = 24 . . .28 s,
Fig. 12(c)), which leads to catastrophic failures in approximately 50% of the trials
attempted. The results presented in Fig. 12 constitute what is classified as a success-
ful trial. Although far from being a desirable response, the defining characteristic of
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(a) t = 0 s (b) t = 5 s (c) t = 10 s (d) t = 14 s

(e) t = 17 s (f) t = 20 s (g) t = 27 s (h) t = 30 s

Fig. 11 Snapshots of the MHT negotiating sagittally-asymmetric offset ramps (Left: 12◦/-
15◦, Right: 10◦/-10◦)

(a) Leg X-position xi tracking

(b) Chassis height z tracking

(c) Chassis pitch ψ and roll φ tracking

Fig. 12 Tracking performance when negotiating sagittally-asymmetric offset ramps (Left:
12◦/-15◦, Right: 10◦/-10◦)
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a successful trial is that the robot completes the maneuver without approaching the
tipping point even if the LR wheel loses ground contact and the robot undergoes os-
cillatory motions. An unsuccessful trial occurs when the operator deems the motion
becoming dangerously unstable (for example, leading to imminent tipping), or if the
robot in fact has tipped over and is prevented from rolling over by the supporting
gantry.

Fig. 13 LR wheel losing ground contact while descending the ramp

Reliable ground contact detection and instantaneous compensation control would
likely prevent this problem. Ground contact detection can be achieved by using pres-
sure sensors, or machine learning algorithms to detect loss of contact by relating
current wheel speed and the free spinning wheel speed at the current voltage input.
Furthermore, the employed posture control uses a simple proportional control law,
which was tuned using the simulation model and modified slightly for the real robot.
Introduction of integral and derivative terms into the control law may help prevent
such overshoot and oscillatory motion of the chassis resulting from loss of contact
with the ground.

6 Conclusions

The hybrid wheel-legged quadruped Micro-Hydraulic Toolkit platform was intro-
duced as a service UGV that fills the gap in military robots of that size and actuation
type. Several analyses were performed to determine MHT’s feasible workspace.
Finally, test maneuvers were implemented on the actual robot to gauge the perfor-
mance of the inverse kinematics controller previously developed in simulation for
posture reconfiguration and navigation maneuvers. Performance was found to be
very good for stationary posture reconfiguration maneuvers, but inadequate in un-
even terrain negotiation scenario. The latter was attributed to lack of ground contact
detection, thus pointing to the need for a higher-level event driven (state machine)
controller. While leader-follower behaviors are currently being implemented, future
work also includes implementing navigation systems to test the trajectory tracking
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performance of the controller. Furthermore, the MHT’s performance can be tested
in outdoor environments, or using different controlled terrain profiles.
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Roll Control of an Autonomous Underwater
Vehicle Using an Internal Rolling Mass

Eng You Hong and Mandar Chitre

Abstract. A stable autonomous underwater vehicle (AUV) is essential for under-
water survey activities. Previous studies have associated poor results in bathymetry
survey and side-scan imaging with the vehicle’s unwanted roll motion. The problem
is becoming more prominent as AUVs are smaller nowadays. This causes reduction
in the metacentric height of the AUVs which affects the inherent self-stabilization in
the roll-axis. In this paper, we demonstrate the use of an internal rolling mass (IRM)
mechanism to actively stabilize the roll motion of an AUV. We rotate the whole
electronics tray, which has an off-centric center of gravity, to produce the required
torque to stabilize the roll motion. The mechanical design of such mechanism and its
dynamics modeling are discussed in detail. A Proportional-Integral (PI) controller is
synthesized using the identified linear model. Results from tank tests and open-field
tests demonstrate the effectiveness of the mechanism in regulating the roll motion
of the AUV.

1 Introduction

A stable autonomous underwater vehicle (AUV) is essential for underwater surveys
such as seafloor imaging using side-scan sonar, bathymetric mapping using multi-
beam sonar, and photo mosaicking using underwater camera. As compared with
yaw and pitch, the roll of a torpedo-shape AUV has a smaller moment of inertia
and drag. So, the roll dynamics is oscillatory when the AUV is subjected to induced
propeller torque, unknown disturbances and banking motion during turns. Without
roll stabilization, the unwanted roll motion of an AUV can be problematic [7].
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Singh, et al. [9], stated in their bathymetry paper, the roll bias is the most dom-
inant error source as it directly affects the slope of the area being surveyed. Kirk-
wood, et al. [3] stated that the roll stability is critical to multibeam mapping and
it is of high priority. For a side-scan sonar application, the AUV roll motion may
cause layover to occur [10]; the affected samples are hard to interpret and need to
be discarded. The unwanted roll motion can also affect both diving and steering
performance of the AUV. This is due to the fact that most feedback controllers are
designed on the assumption that yaw and pitch motion are decoupled. When the roll
of the AUV is non-zero, the assumption is violated and thus the performance of a
decoupled controller may be affected [6].

The problem is becoming more prominent as AUVs are smaller nowadays.
Smaller AUVs are built in order to reduce manufacturing costs and ease deploy-
ment by one or two operators. Smaller AUVs pose constraints in placement of
internal components and cause reduction in the metacentric height of the AUVs.
This affects the inherent self-stabilization in the roll-axis. As a result, smaller AUVs
are vulnerable to oscillatory roll motion.

In this study, we investigate the use of an internal rolling mass mechanism to
actively stabilize the roll motion of an AUV. Internal actuators have few appealing
features. Firstly, they can be used at low speeds where fins lose their usefulness.
Secondly, they can be housed completely inside the vehicle and therefore are less
prone to damage due to impact or corrosion [11]. Thirdly, they do not create external
drag.

The use of an internal moving mass is not new in underwater vehicle applications.
It has been used in underwater gliders such as SLOCUM, the Spray glider and the
Seaglider [5]. The use of internal moving mass is also found in some AUVs. One
example is the hybrid AUV – eFolaga [1] where the battery is moved along the
longitudinal axis to provide pitch control. However, the use of an internal mass for
roll control is rare because of the limited lateral space available for any significant
linear motion. Furthermore, the use of linear motion requires a runway for the mov-
ing mass which is practically infeasible as the internal space already crowded with
the essential components. We got around this limitation by designing a rolling mass
mechanism that made use of the whole electronics tray (including batteries) as a
moving mass.

The moving mass is capable of rotating with respect to the longitudinal axis of the
AUV – hence we call it as an internal rolling mass (IRM) mechanism. The center of
gravity (CG) of the IRM is off-centric. By rotating the IRM, we effectively change
the CG of the AUV. By using the gravity force that acting through the CG, we can
therefore generate the required torque to stabilize the roll dynamics.

In this paper, we tackle the unwanted roll motion through active roll stabilization
by using the IRM mechanism. To the best of our knowledge, we are the first to re-
port on the use of internal moving mass to stabilize the roll of an underactuated, tail-
thrusted and fins-controlled AUV. We illustrate the design of the IRM mechanism by
implementation on the STARFISH AUV [4]. The STARFISH AUV is a streamlined
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AUV with a single thruster and four control surfaces at the tail. This is the most
widely used configuration for AUVs in both commercial and research communities.
Hence our discussion of the IRM mechanism is relevant and widely applicable to
many AUVs in-use today.

This paper is organized as follows: In section 2, we illustrate the mechanical de-
sign of the IRM mechanism. This is followed by the modeling of the roll dynamics
of the AUV which the IRM acts as an actuator in section 3. We present the results
of system identification where parameters of the model were identified in section 4.
In section 5, we show how controller was designed to regulate the roll motion. Ex-
perimental results are presented in section 6. Lastly, in section 7 we present the
conclusions.

2 Mechanical Design

2.1 STARFISH AUV

The STARFISH AUVs are torpedo-shaped with 200 mm diameter. They are de-
signed to be modular. The baseline STARFISH AUV consists of 3 basic sections -
a nose section, a command & control section and a tail section. The total length is
about 1.6 m and it weighs about 45 kg. Additional payload sections can be added
to the baseline STARFISH AUV depending on the application. We currently have a
Doppler Velocity Log (DVL) section, a side-scan sonar section and a chemical sen-
sor section in our collection of payloads. The interested reader may refer to [4] for
detailed discussions on the mechanical, electrical and software interfaces between
the sections of the STARFISH AUV.

Fig. 1 Mechanical design of the Internal Rolling Mass (IRM) mechanism. Pictures on the
right show the tail electronic tray which has a battery tray that attached to its bottom half.
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2.2 Design Requirements

We need a mechanism that able to shift the CG of the AUV in the sway axis such
that the roll equilibrium of the AUV can be changed by ±5◦. In order to shift the
CG, we need some form of moving mass. So, it can be either a linear moving mass
or a rotating mass. Our implementation using a rotating mass is illustrated in Fig. 1.

The actuation is provided by a servomotor mounted at the bottom end of the
tail section through a bracket. It has a maximum torque of 1.92 Nm and maximum
speed of 6.16 rad/s. Two timing belt pulleys are used for power transmission from
the servomotor to the central axis. The drive pulley ratio is 1:2, thus increasing the
output torque by a factor of two. Guide pins are used to guide the assembly of the
whole tail tray (nickel bright in the figure) into the hull. Two coupling pins are used
to transmit the torque from the central pulley to the tail tray. As the main mass of
the tail tray is contributed by the battery placed in the bottom half, we effectively
change the CG as the tail tray rolls inside the hull.

This design fulfills the following requirements :

2.2.1 Space Constraint

Constrained by the AUV diameter of 200 mm, there is no sufficient runway for
a linear moving mass to have an effective change in CG. In addition, the existing
components, such as electronics and battery, have already taken up most of the space
in the tail section. So, without affecting components in other AUV’s sections, we
consolidate all the existing components in the tail section onto a tail tray, and make
the tail tray as our moving mass. We were able to find space for a servomotor, two
pulleys and a timing belt without making changes to the existing tail section hull
(such as elongate it).

2.2.2 Energy Consumption

By having the mechanism at the tail section, we make use of the existing micro-
controller to control the servomotor. The same micro-controller is used for thruster
and fins control. Six ball transfer units are located on the outer ring of the tail tray.
This effectively uses the ring as a bearing and allows low friction rotational motion.
In order to provide the required torque and accuracy, we used a Futaba digital ser-
vomotor which consumes maximum 12 W. We use a timing belt drive system which
has a low power transmission loss.

2.2.3 Ease of Assembly

Ease of assembly is one of the important design criteria. We occasionally need to
disassemble the vehicle for routine maintenance and repairs. With the design, the
assembly and disassembly work can all be performed by a single engineer in our
laboratory within half an hour.
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2.2.4 Effective change of CG

The servomotor has a usable range of 80◦. After the pulley ratio, the range reduces
to 40◦. By placing the IRM at the center, we are able to roll the IRM to ±20◦; this
translates to an effective change of CG to give a roll of ±5◦1 at equilibrium.

3 Modeling

Fig. 2 (a) Coordinate Reference Frame (b) Free Body Diagram

In this section, we derive the dynamics model for the AUV’s roll under consider-
ation of CG shift due to the IRM. A six degree-of-freedom (DOF) dynamics model
of an AUV is commonly described by a set of nonlinear equations with respect to
two coordinate frames as indicated in Fig. 2(a). Detailed discussion on the model-
ing can be found in [2, 8]. However, for the purpose of this paper, we restrict our
analysis only on rolling motion and treat coupling torque induced by others DOFs
to be disturbances.

In Fig. 2(a), we have the body-fixed frame at the center of buoyancy (CB) of the
AUV. So the CB is located at zb = 0 and yb = 0 with respect to body-fixed frame.
The CG is located below the CB in order to provide righting moment. So the CG
location (yg,zg) has negative zg with respect to body-fixed frame.

From Newton’s Second Law of Motion (rotation), we can write the net total
torque as the product of the moment of inertia Ixx and roll angular acceleration φ̈ .

∑τ = Ixxφ̈ . (1)

The sum of the external torque consists of following components:

1 Depending on the vehicle payload configuration, this range might change.
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3.1 Hydrostatic Righting Moment

The hydrostatic righting moment is the combined effect of the vehicle’s weight W
and buoyancy B. The STARFISH AUV is slightly positively buoyant but as we put
the body-fixed frame at the CB, buoyancy does not play a role in the equation. The
roll torque due to hydrostatic righting moment is

τHydro =−ygW cosφ + zgW sinφ . (2)

The IRM is treated as a point mass with effective length l from the center. The
effective length l is the distance from the CB to the CG of the tail tray. Let α denote
the angular position of the point mass as illustrated in Fig. 2(b). When the point
mass is rolling in the AUV, it is effectively changing the CG of the AUV. The new
CG position (y′g,z′g) is described in following two equations:

y′g = yg +
m
M

l sin α (3)

z′g = zg − m
M

l cosα (4)

where m is the mass of tail tray and M is the mass of the whole AUV.
By substituting (3) and (4) into (2), the hydrostatic righting moment becomes

τHydro =−(yg +
m
M

l sinα)W cosφ +(zg − m
M

l cosα)W sinφ . (5)

It is useful to note that the hydrostatic moment stabilizes the roll motion as the
moment always acts against any deflection in roll. So the roll dynamics are self-
stabilized in this sense.

3.2 Rolling Drag

As a streamlined AUV, the main rolling drag of the STARFISH AUV comes from
the four fins that protrude out from the center axis. We model the drag as a quadratic
drag:

τDrag = Kpp p|p| (6)

where Kpp is the rolling quadratic drag coefficient and p is the angular velocity of
the roll. Since we restrict our discussion in roll axis only, we have p = φ̇ .

3.3 Rolling Added Mass

Added mass is a measure of the mass of the moving water when the vehicle accel-
erates. For a streamlined AUV, rolling added mass due to the AUV hull is small. So
the main rolling added mass is again due to the fins. We model the moment due to
the added mass as follows:

τAM = Kṗ ṗ (7)
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where Kṗ is the rolling added mass coefficient and ṗ is the angular acceleration of
roll. Similarly, we have ṗ = φ̈ .

3.4 Propeller Induced Torque

When the propeller rotates clockwise to provide the forward thrust, it also creates
an anti-clockwise torque acting on the AUV. This is commonly known as the torque
effect. The magnitude of the torque depends on the power output of the thruster, P
and propeller revolution, ω in the following equation:

τprop =
P
ω
. (8)

Power produced by the thruster is the product of thrust F , and speed of the AUV V .
However during steady state (constant velocity) AUV motion, thrust is equal to the
drag force, Fdrag, and therefore

P = FV = FdragV (9)

Fdrag =
1
2

ρACdV 2 (10)

where ρ is the sea water density; A is the frontal area; Cd is the drag coefficient.
So, by running different constant thrusts experiments, we plot the induced torque
against the propeller revolution in Fig. 3. The data best fit a quadratic equation
showing τprop ∝ ω2.

In our subsequent analysis, we omit the induced torque and treat it as a distur-
bance to the system. However, we pre-roll the AUV to +5◦ during weight trimming
to compensate for the thruster torque at nominal speed. When the AUV moves at its
nominal speed of 1.4 m/s with 1400 rpm, the induced torque will roll back the AUV
to zero roll position and thus leave sufficient room for IRM to compensate for the
rest of the variations.

By substituting (5), (6), (7) and (8) into (1) and rearranging the terms, we have

(Ixx −Kṗ)φ̈ = −(yg +
m
M

l sinα)W cosφ

+(zg − m
M

l cosα)W sinφ

+Kpp p|p|
+τprop. (11)

We obtain the transfer function of roll φ , as a function of α in (12) by first lin-
earizing (11) at the operating point φ = 0. At this point cosφ � 1 and sinφ � φ .
α can be assumed to be small. Therefore cosα � 1 and sinα � α . Next, we ap-
proximate the quadratic drag Kpp p|p| as linear drag Kp p. By trimming condition,
yg is close to zero and thus ignored. Lastly, τprop is treated as disturbance and is not
included in the equation.
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Fig. 3 Propeller induced torque versus propeller revolution

φ
α

=

−
[
( m

M )lW

Ixx −Kṗ

]

s2 −
[

Kp

Ixx −Kṗ

]
s−
[
(zg − ( m

M )l)W

lxx −Kṗ

] . (12)

By assigning the constant parameters k, a, and b to its corresponding coefficient
respectively, (12) becomes:

φ
α

=
k

s2 + as+ b
. (13)

4 System Identification

In this section, we estimate the three unknown parameters a, b and k of the linear
second-order roll-axis model presented in (13). We also identify Kṗ, Kpp, and l for
nonlinear equation (11). Others parameter such as Ixx, yg, zg, m, M, W can either be
measured directly or calculated through computer-aided design (CAD) softwares.
Numerical values for those parameters are tabulated in Table 1.

Generally, we need to perform open-loop testing by changing α using a step
function between ±20◦ and then record the roll response. Ideally, the test should be
carried out while the AUV is maintaining constant thrust, depth and heading. This
will minimize the coupling torque generated by those degrees of freedom. How-
ever, the open loop tests might pose danger to the operation of the AUV as we are
testing some unknown behavior of the roll dynamics. A more natural choice would
be to carry out the open-loop test while AUV is at rest in a water tank. This turns
out to be sufficient to obtain a nominal model for the roll dynamics for the fol-
lowing reasons. First, in our model, we treat the propeller induced torque as a dis-
turbance. So, whether the thruster is running or not, it is not included in the model.
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Table 1 Model parameters

Calculated Values Identified Values
Parameters Parameters

Ixx 0.474 kg m2 a 0.24
yg 0 mm b 5.21
zg -3.4 mm k -0.61
m 2.00 kg Kṗ -0.08 kg m2

M 61.41 kg Kpp -1.21 Nms2

W 602.5 N l 43.36 mm

Second, the roll dynamics model is derived under a decoupled assumption and there-
fore it is free from excitation from other axis. Third, the tank test underestimates the
drag coefficient as the conning tower and the top fin are not fully submerged in the
water. However it is better to underestimate the drag in our case, as higher drag will
make the roll dynamics more stable. It will also ensure that the designed controller
will also work properly when the vehicle is on the surface before it starts diving.

While the AUV is static in the tank, we command three step inputs of α (-20◦, 0◦
and 20◦) and observe how the roll responds to the step change of α . Sufficient time
was allowed for the roll response to decay before another step change. The results
are shown in Fig. 4. The simulated roll response is overlaid together with the exper-
imental measured roll response. The result shows a good match between the two.
The simulated roll is generated from the nonlinear model after the unknowns are
identified. The 3 unknown parameters were identified by numerically minimizing
the root mean square error φrms defined as:

Φrms =

√
∑n

i=1(φi − φ̂i)2

n
. (14)

where φ̂ is the simulated roll response and n is the number of samples. The Nelder-
Mead simplex method was used to search for the optimal parameters set in least
square sense.

It is important to note that the α is the command given to the servomotor. There
is no instrument to measure the position of the rolling mass. So, some latency is
expected between the commanded α and the actual α . We model the latency by a
first order system with a time constant τdelay. In order to identify the time constant,
we perform a dynamic test by commanding α randomly between ±20◦ to obtain the
response shown in Fig. 5. Similarly, the time constant is identified by minimizing
φrms. The resultant transfer function in (13) becomes:

φ
α

=

(
1

τdelays+ 1

)(
k

s2 + as+ b

)
(15)

with τdelay = 0.5 s.
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Fig. 4 Simulated and measured roll response under step input. The simulated roll response
matched closely with the measured roll response despite small differences in amplitude and
phase.

5 Controller Design

In this section, we design a Proportional-plus-Integral (PI) controller that stabilizes
the AUV’s roll motion. The PI controller is used to reduce the roll oscillation by
increasing the damping of the system and at the same time maintain zero steady
state error. The controller was synthesized base on root locus design (Fig. 6).
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Fig. 5 Simulated and measured roll response under random input
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Fig. 6 Root locus plot for compensated system

The open loop transfer function has a pair of complex-conjugate poles close
to the imaginary axis in the s-plane. This indicates the system is lightly damped
with a damping ratio of 0.07. Fig. 6 also shows that the system is only stable for
a small region of the root locus; it is stable for closed-loop gain range between
(0 < K p < 8.50). The portion that is stable appears to be lightly damped as well.
By increasing the gain, we bring the pair of complex-conjugate poles to a region of
higher damping. However, the third pole moves closer to the right-half plane as the
gain increases. As the poles are close to each other, we cannot analyze the system
purely based on a second-order approximation. Instead, we simulate the nonlinear
model and fine tune the controller gain using the simulation results. An ideal inte-
gral was added with a zero at 0.01. The fourth closed-loop pole is found at -0.0144,

Table 2 Open and Closed Loop Plants

Open loop Closed loop

Plant
K

(s+2)(s2 +0.24s+5.21)
K(s−0.01)

s(s+2)(s2 +0.24s+5.21)
K -1.22 -6.10
Kp - 5
Poles −0.12+2.2794i −0.617+2.0077i

−0.12+2.2794i −0.617+2.0077i
−2 −0.9609

−0.0144
Zeros - 0.01
System Type 0 1
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close enough to the zero to cause pole-zero cancellation. All poles and zero of the
open and closed-loop plant are tabulated in Table 2. Integrator windup is avoided by
preventing the integral term from accumulating above or below 20◦.

6 Result and Discussion

The performance of the internal rolling mass in controlling the roll was first studied
in a tank test and later at an open-field trial. For the tank test, we gave an impulse
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Fig. 7 Tank Test Result. The result shows that despite actuator saturation, the IRM mecha-
nism manages to damp down the oscillation faster.
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to the AUV by pushing AUV to roll to 25◦ and observed how the roll decays for
open-loop and closed-loop control respectively. The results are shown in Fig. 7. The
closed-loop response settle down within 4 seconds whereas the open-loop system
takes more than 10 seconds to settle down. Fig. 7 also shows how the α changes
with time in order to damp down the roll. For the open-loop test, α was kept at a
constant 0◦.

Fig. 8 shows the AUV’s roll response during a constant 2 m diving mission at
the speed of 1.4 m/s when traveling on a straight path. When the IRM mechanism
was turned off (open loop), the AUV’s roll response was oscillatory with standard
deviation of 1.02◦. On the contrary, when the IRM mechanism was turned on (closed
loop), the oscillatory roll motion was damped. The moving mass rolls to negative
alpha region to neutralize the induced propeller torque. The standard deviation of
roll reduced to 0.393◦. Table 3 summarizes the test results into two statistics: mean
and standard deviation. Looking at the mean value, the IRM mechanism also made
oscillation centered at zero angle. In short, the result shows that the IRM mechanism
suppressed the unwanted roll oscillation to a smaller amplitude with center around
zero.

Table 3 Open and Closed Loop Performance

Open loop Closed loop

Mean -2.808 ◦ 0.039 ◦
Standard Deviation 1.023 ◦ 0.393 ◦

7 Conclusions

We demonstrated the use of an internal rolling mass (IRM) mechanism for active roll
stabilization in a tail-thrusted and fin-controlled AUV. The mechanism was designed
and implemented in the STARFISH AUV. A nonlinear model was first developed to
describe the dynamics of the AUV’s roll. The model was later linearized to obtain
a transfer function for controller synthesis. The model’s parameters were identified
through open-loop testing in the water tank. A PI controller was then designed to
increase the overall system damping and remove the steady state error. The capa-
bility of IRM to stabilize the roll motion was demonstrated in a tank test as well as
through open-field tests.
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Human Biomechanical Model Based Optimal
Design of Assistive Shoulder Exoskeleton

Marc G. Carmichael and Dikai K. Liu

Abstract. Robotic exoskeletons are being developed to assist humans in tasks such
as robotic rehabilitation, assistive living, industrial and other service applications.
Exoskeletons for the upper limb are required to encompass the shoulder whilst
achieving a range of motion so as to not impede the wearer, avoid collisions with
the wearer, and avoid kinematic singularities during operation. However this is par-
ticularly challenging due to the large range of motion of the human shoulder. In
this paper a biomechanical model based optimisation is applied to the design of a
shoulder exoskeleton with the objective of maximising shoulder range of motion.
A biomechanical model defines the healthy range of motion of the human shoulder.
A genetic algorithm maximises the range of motion of the exoskeleton towards that
of the human, whilst taking into account collisions and kinematic singularities. It is
shown how the optimisation can increase the exoskeleton range of motion towards
that equivalent of the human, or towards a subset of human range of motion relevant
to specific applications.

1 Introduction

Exoskeletons are a type of robot worn by the operator to provide physical assis-
tance. These systems have the potential to significantly benefit numerous industrial
and service applications such as nursing [19], agriculture [18], rehabilitation [13],
and reduce fatigue or injury [6] in tasks like materials handling as depicted in Fig-
ure 1. Exoskeletons are commonly categorised into systems that assist either the up-
per or the lower limbs. Although applications exist which would benefit from both
types, most examples that have reached commercialisation are for the lower limb.
It is speculated that a factor contributing to this may be the additional challenges
associated with designing an exoskeleton for the human shoulder, which has a large
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range of motion and is described as the most complicated of the major articulations
in the human body [7]. Activities utilising the upper limb require a large amount of
dexterity, hence for an exoskeleton to be beneficial a design that does not impede
the wearer’s natural range of motion (ROM) is required. However designing an ex-
oskeleton that achieves a human equivalent ROM is challenging as it is required to
do so whilst encompassing the wearer, maintaining no collision with the wearer, and
be satisfactorily far from kinematic singularity throughout its operation.

Fig. 1 Depiction of robotic exoskeletons assisting the upper limb in materials handling
applications [8]. Copyright 2010 Raytheon Sarcos [17].

Robotic exoskeletons that encompass the shoulder exist in a number of kinematic
variations in the literature with ranging levels of complexity and sophistication [9,
16, 1, 14, 3, 10]. When designing the shoulder mechanism a common approach is
to focus on the location of the singularity and manually position it outside or at the
edge of the desired workspace to maximise the usable range of motion [9, 16, 1, 2].
In this work we design a shoulder exoskeleton using an optimisation process that
incorporates a biomechanical model of the human arm [12, 11]. With the human
shoulder ROM defined by the biomechanical model, the design parameters of an
exoskeleton are optimised using a genetic algorithm to maximise its ROM towards
that of the human, whilst accounting for singularity and collisions. Additionally the
optimisation is utilised with a subset of human ROM corresponding to workspace
regions relevant to different tasks. This demonstrates how the presented optimisation
is a useful tool for adapting new or existing exoskeleton designs to specific industrial
or service applications.

2 Human Shoulder Range of Motion (ROM)

Maximising exoskeleton ROM towards that equivalent of the human shoulder re-
quires that the ROM of the human shoulder first be defined. The human shoulder
ROM is defined as the region of 3D space the humerus can be located. With trans-
lation of the shoulder not considered, the ROM is represented simply by all the
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orientations the humerus can reach. Many sources in the literature describe shoulder
ROM, however these are often isolated to individual planar articulations. A general
model of shoulder ROM representing all reachable orientations not limited to dis-
tinct articulations is required.

The biomechanical model developed by [12] represents the upper limb, including
the shoulder complex, as a serial chain of rigid links connected by ideal joints. This
model was developed to determine the reachable workspace of the human wrist,
and includes equations describing the limits of each of the joints in the model.
This allows the orientation of the humerus to be tested whether or not it is located
within these limits, and hence is in a biomechanically reachable orientation. Al-
though this shoulder model consists of five joints representing clavicle, scapula and
humerus movement, only three coordinates are used to describe the orientation of
the humerus relative to the torso. These are φA for abduction/adduction, φF for flex-
ion/extension, and φR for medial/lateral rotation. Limits for these joints are shown
in (1) taken from [12], where φAm, φAM , φFm, φFM, φRm and φRM are constants based
on clinical measurements of the subject. These are intended to allow the reachable
workspace of patients with upper limb impairments to be calculated. In this work
we consider the person wearing the exoskeleton as not having an impairment and
hence use the healthy values shown in Table 1 taken from [11] and adapted for the
model [12].

φA =
(

φAm , φAM

)
φF = (φFm +

1
3

φA , φFM − 1
6

φA) (1)

φR = (φRm +
7
9

φA − 1
9

φF +
4

9π
φAφF , φRM +

4
9

φA − 5
9

φF +
10
9π

φAφF)

Table 1 Parameters used in the biomechanical model based on healthy human shoulder [11]

Abduction/Adduction Flexion/Extension Internal/External rotation
φAm φAM φFm φFM φRm φRM

−10◦ 170◦ −60◦ 170◦ −90◦ 60◦

Representation of the humerus ROM is made by generating a large set of orien-
tations the humerus can reach in the workspace. Later this set is used to evaluate
the ROM of the exoskeleton based on the number of orientations the exoskeleton
can also satisfactorily reach. One approach to generate this set is to recursively step
through the range of each joint in the biomechanical model to produce a set of feasi-
ble humerus rotations. A problem with this approach is the resulting set of rotations
are not evenly distributed which causes problems when quantifying the ROM that
the exoskeleton can reach. Consider the case where the exoskeleton is unable to
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reach a region in the human’s ROM. If this region so happens to contain a dense
distribution of rotations in the set, then this would skew the calculated exoskele-
ton ROM. Hence it is essential that an even distribution of rotations be used when
quantifying the ROM the exoskeleton can achieve.

To mitigate skewing of the ROM calculation a method that creates a more even
distribution is implemented. A set of randomly distributed 3D rotations is cre-
ated represented by unit quaternions. Since each quaternion contains four param-
eters with unit length, the set can be treated as points lying on the surface of
a 4-dimensional unit sphere. Points on the sphere were constrained to only one
hemisphere since points that are diametrically opposite from each other represent
identical rotations. Once the random set of quaternions is created, a routine is im-
plemented where the points on the sphere are repelled from each other. This is per-
formed recursively whilst constraining the points to the surface of the sphere until a
distribution considered as even is achieved. Figure 2 shows this process before and
after using a 3-dimensional sphere equivalent for visualisation purposes.

Fig. 2 Randomly generated
points on unit sphere. (a)
before the even distribution
procedure. (b) after the even
distribution procedure. The
same procedure is used
on a 4D sphere to evenly
distribute a set of quaternion
rotations.

(a) Before routine (b) After routine

A set ψ = {RH1,RH2, · · · ,RHn} containing 30,000 evenly distributed rotations
is made. Each element in this set represents the orientation of the human humerus
relative to the torso. A subset of ψ is created by utilising the biomechanical shoulder
model to determine if each individual rotation is reachable by the human humerus.
Inverse kinematics is performed to solve for the humerus abduction, flexion and
rotation angles of the shoulder model, as detailed in the Appendix. If these angles
are found to be within range according to (1) then we consider the rotation to be
biomechanically feasible. Collision between the humerus and torso is also checked
as this is not accounted for in the model [11]. The resulting subset ψH contains 5,227
humerus rotations which are determined as biomechanically feasible, and have on
average a rotation of 7.6◦ between neighboring rotations in the set.

3 Exoskeleton Design

The exoskeleton design optimised in this work has a configuration similar to some
described in the literature [9, 3]. It consists of three revolute joints interconnected
by angled links such that their axes of rotation intersect to produce a 3 degree of
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freedom (DOF) spherical joint. The centre of rotation is coincident with the wearer’s
glenohumeral joint as shown in Figure 3. When optimising this design it is assumed
the exoskeleton is worn by the user, hence link 0 is in a fixed location relative to
the torso. Likewise the end effector is attached to the upper arm, hence link 3 is
in a fixed location relative to the humerus. The human shoulder complex is not a
pure spherical joint as it translates as well as rotates, however the translation is
ignored as it is assumed differences in exoskeleton and human arm kinematics can
be accommodated by passive compliance between the robot and the wearer [9].
Lastly we assume the radii of the joints and links to the shoulder’s centre can be
designed after optimisation in such a way that exoskeleton self collision can be
avoided, therefore robot collision with itself is not considered during optimisation.
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Fig. 3 (a) Location of exoskeleton joint 1 with respect to the human torso frame RG, de-
termined by design parameters α0x and α0y. (b) Shoulder exoskeleton with links and joints
labelled. Coordinate frames for the human torso (RG), humerus (GRH), and link 3 (GR3) are
shown. (c) Relationship between the global torso frame RG and exoskeleton link frames GR0,
GR1, GR2, and GR3. The design parameters and joint angles shown in this subfigure are;
α0x = 90◦, α0y = 0◦, θ1 = 90◦, θ2 = 0◦, θ3 = 0◦

Since the mechanism forms a spherical joint the kinematics of the exoskeleton
can be expressed solely by rotations. Rotation matrix RG represents the global coor-
dinate frame and is assigned to the human torso with x-axis directed laterally, y-axis



250 M.G. Carmichael and D.K. Liu

anteriorly, and z-axis directed superiorly. Orientation of the human humerus is de-
fined by rotation matrix GRH , with the superscript denoting that it is represented
with respect to the global frame. The humerus frame has z-axis pointing from the
elbow to the shoulder, y-axis pointing from the elbow to the wrist (if the elbow is
bent at 90◦ right angle), and x-axis being their cross product to form a right-handed
coordinate system. The relative rotation between RH and the coordinate frame of
link 3 remains fixed as shown in Figure 3b. Orientation of link 0 is represented
by rotation matrix GR0 which is parameterised using two successive rotations, α0x

about the x-axis followed by α0y about the y-axis (2). The convention of defining
each joint axis as coinciding with the z-axis of the preceding link’s frame is used,
hence GR0 determines the location of joint 1.

GR0 =

⎡
⎣ cosα0y 0 sin α0y

sinα0x sinα0y cosα0x −sinα0x cosα0y

−cosα0x sinα0y sinα0x cosα0x cosα0y

⎤
⎦ (2)

The coordinate frame for link 1 is located at its distal end, and hence relative
to link 0 it is a rotation about its joint axis followed by another rotation due to the
curvature of the link. With the joint rotating θ1 degrees about the z-axis, followed by
the link bending α1 degrees about the x-axis, the frame of link 1 relative to link 0 is
represented by equation (3) where i = 1. Rotations for links 2 and 3 are represented
likewise with i = 2 and i = 3, respectively.

i−1Ri =

⎡
⎣cosθi −sinθi cosαi sinθi sinαi

sinθi cosθi cosαi −cosθi sinαi

0 sinαi cosαi

⎤
⎦ (3)

3.1 Design Parameters

As the human maneuvers their upper limb the exoskeleton is required to position
link 3 in the appropriate location relative to the humerus. This is achieved during
operation by controlling the joint angles θ1, θ2 and θ3. However from the previous
equations it is obvious that parameters α0x, α0y, α1, α2 and α3 also play an impor-
tant role. These are the design parameters which will be optimised to maximise the
exoskeleton ROM. Upper and lower bounds for these parameters can be set using
appropriate rationale based on the exoskeleton’s design. Parameters α0x and α0y de-
termine the location of joint 1 relative to the torso. We limit α0x to between −45◦
and 90◦ as outside these bounds joint 1 is likely to interfere with the torso or the arm
during anterior and posterior reaching motions, as shown in Figure 4a. Similarly we
limit α0y to between 0◦ and 45◦, as outside these bounds joint 1 is likely to interfere
with the neck or the arm during lateral reaching motions as shown in Figure 4b.

Parameters α1 and α2 define the bend arc angle in links 1 and 2. As these an-
gles approach 0◦ or 180◦ the joint axes become aligned and a kinematic singularity
occurs, as shown in Figure 4c. We limit these values to be between 20◦ and 160◦.
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Fig. 4 Exoskeleton design parameters. (a) α0x defines the anterior/posterior location of joint
1. (b) α0y defines the lateral/medial location of joint 1. (c) α1 and α2 define the arc angle of
links 1 and 2. (d) α3 defines the angle between joint 3 and the humerus.

We constrain joint 3 to be located medially to the humerus because if positioned
anteriorly it will collide with the torso during medial shoulder rotation. If located
posteriorly it will collide during lateral rotation, hence locating it laterally to the
humerus is the most practical. With joint 3 confined to this plane it is possible to
define an angle between it and the humerus, as is done by examples in the literature
[9, 3]. Parameter α3 defines the angle that joint 3 makes with the humerus which
we allow to be in the range −60◦ to 0◦ as shown in Figure 4d. All of the design
parameters are arranged into set DP = {α0x,α0y,α1,α2,α3} which are summarised
in Table 2 along with their upper and lower bounds.

Table 2 Summary of exoskeleton design parameters and their bounds used for optimisation

Symbol Description Lower bound Upper bound

α0x Link 0 x-axis rotation −45◦ 90◦
α0y Link 0 y-axis rotation 0◦ 45◦
α1 Link 1 bend arc angle 20◦ 160◦
α2 Link 2 bend arc angle 20◦ 160◦
α3 Link 3 bend arc angle −60◦ 0◦

3.2 Exoskeleton Range of Motion (ROM)

The human humerus cannot achieve every possible orientation in 3D space as it
is subject to its own physiological constraints, hence the exoskeleton is only re-
quired to reach the orientations within the ROM of the human. The ROM of the
exoskeleton is quantified by the percentage of the human ROM (i.e. ψH ) which it
can successfully reach. Three criteria determine whether or not the exoskeleton can
reach a humerus orientation for a given set of design parameters. Firstly we check
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if an inverse kinematic solution exists. If a solution does exist, we check if this so-
lution causes any collision between the exoskeleton and the wearer. Lastly we also
evaluate if the robot is considered too close to the singularity condition.

3.2.1 Inverse Kinematic Solution

For each humerus orientation in set ψH we solve for the exoskeleton joint angles
θ1, θ2, θ3. Because the position of joints 1 and 3 are defined by the exoskeleton de-
sign parameters and the humerus orientation, we can check if an inverse kinematic
solution exists by whether of not it is able to reach the angular distance required
between these two joints. The z-axis of GR0 is the axis of joint 1 which we define
as z0. Similarly the z-axis of GR2 is the axis of joint 3 which we define as z2. The
maximum angle the exoskeleton can produce between its first and third joint axes
is α1 +α2 when θ2 = 0. The minimum angle is |α1 −α2| when θ2 = π . From the
angle required (i.e. cos−1 (z0 · z2)) we use (4) and (5) to determine if the exoskele-
ton can reach a specific humerus orientation for a given set of exoskeleton design
parameters.

z0 =

⎡
⎣ sinα0y

−sinα0x cosα0y

cosα0x cosα0y

⎤
⎦ z2 = RH

⎡
⎣cosα3

0
sinα3

⎤
⎦ (4)

c1(RH ,DP) =

{
0, if |α1 −α2|< cos−1 (z0 · z2)< α1 +α2

1, otherwise
(5)

If a solution does exist, it can be solved using inverse kinematics methods. How-
ever we need to consider that when a solution does exist there are typically two
solutions, i.e ±θ2. To handle this we define the exoskeleton as operating in either
one of two modes. Mode 1 has θ2 in the range 0 < θ2 < π , and mode 2 the range
−π < θ2 < 0. As the robot transitions between these modes (θ2 = 0 or θ2 = π) the
exoskeleton becomes singular. During operation the robot should operate solely in
one mode. By specifying which mode the exoskeleton operates in allows kinematic
solutions that are consistent during operation to be analysed during optimisation.

3.2.2 Collision

Every inverse kinematic solution is checked for collisions between the exoskele-
ton and the human. If a collision is present, then we identify that the exoskeleton
is unable to reach the corresponding humerus orientation RH for the given design
parameters DP. This is formalised by equation (6).

c2(RH ,DP) =

{
0, if no collision present

1, if collision present
(6)
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To implement this requires a fast and efficient method for performing collision
checking between the exoskeleton and the wearer during the optimisation. Methods
that represent both the exoskeleton and human as solid meshes and then perform
mesh-mesh collision checking were found to be too computationally expensive. In-
stead a simpler method was used based on a sphere with its centre at the shoulder, as
seen in Figure 5. On this sphere two regions were defined where if the exoskeleton
was located it is likely to be colliding with the human. The first region represented
collision between the exoskeleton and the upper arm. A point was created where the
line connecting the shoulder and elbow intersect the sphere, hence this point varied
for different humerus orientations. Any points on the sphere what are within a de-
fined distance to this point are said to be within the region and hence colliding with
the humerus. The second region represented collision between the exoskeleton and
the torso. This region was defined using two points on the sphere which remained
static regardless of humerus orientation. Any point on the sphere within a defined
distance to either of these two points, or to the shortest arc joining them, were said
to be within this region and hence colliding with the torso. The joint axes of the
exoskeleton are projected onto the sphere surface, and if they are located within ei-
ther of these regions then the exoskeleton is deemed to be colliding. To account for
collisions of the links, mid points between each joint axis were also checked. This
method was efficient to calculate and hence feasible for use in the optimisation.

Fig. 5 Robot-human col-
lision model defines re-
gions on a sphere about the
shoulder in which if the
exoskeleton joints or links
were located, they are likely
to collide with the torso or
upper arm

3.2.3 Singularity

The exoskeleton enters a kinematic singularity when all the joint axes lay in a plane,
reducing the workspace degrees of freedom from three to two. For each inverse
kinematic solution the singularity condition is checked. Several singularity mea-
sures based on the manipulability of the robot have been developed, many related
to the Jacobian [15]. The 3×3 Jacobian matrix J relating joint velocity to angular
workspace velocity is calculated from the axis of rotation of each joint using (7).

J =

⎡
⎣ GR0

⎡
⎣0

0
1

⎤
⎦ GR0

0R1

⎡
⎣0

0
1

⎤
⎦ GR0

0R1
1R2

⎡
⎣0

0
1

⎤
⎦
⎤
⎦ (7)
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We define the eigenvalues of J as λ1, λ2 and λ3. The square root of the minimum
eigenvalue corresponds to the minimum workspace velocity that can be achieved by
a unit joint velocity vector, which at singular configurations reduces to zero [15].
The singularity of each inverse kinematic solution is analysed by comparing the
minimum eigenvalue square root with a threshold value ε . If it is less than this
threshold then it is considered as being too close to singularity and hence RH cannot
be reached for the given set of design parameters DP, formalised by equation (8).

c3(RH ,DP) =

{
0, if min

(√
λ1,

√
λ2,

√
λ3
)
> ε

1, if min
(√

λ1,
√

λ2,
√

λ3
)≤ ε

(8)

4 Optimisation Model and Results

To find the optimal design we create a fitness function to calculate how much of
the human ROM the exoskeleton design can reach. Each element in the humerus
orientation set ψH is tested for validity based on inverse kinematic solution (5),
collision (6), and singularity (8). Using (9) a subset ψE is created containing the
valid orientations the exoskeleton can reach with all three conditions satisfied. The
ROM of the exoskeleton with respect to the humerus is calculated by the number
of elements in ψE relative to ψH (10). A fitness function (11) is defined which
approaches zero as the exoskeleton ROM approaches 100%. Optimisation of the
fitness function was implemented in MATLAB using a genetic algorithm (GA) in
the Global Optimization Toolbox. A population size of 500 was used with the inputs
being the bounded design parameters detailed in Section 3.1.

ψE = {ψH
∣∣ c1(ψH ,DP) = 0, c2(ψH ,DP) = 0, c3(ψH ,DP) = 0} (9)

ROM = 100%× |ψE |
|ψH | (10)

Minimise f (DP), where f (DP) = |ψH |− |ψE | (11)

4.1 ROM Optimisation Results

Optimisation was performed with the singularity threshold ε set at 0, 0.1, 0.2 and
0.3. This was repeated with the inverse kinematic solution performed in both mode
1 and mode 2, as described in Section 3.2.1. Figure 6 shows the best ROM result
calculated in the population versus generation during optimisation. The correspond-
ing optimal design parameters are shown in Table 3. It is seen that the optimised
ROM result decreases as ε is increased, which is expected since a larger ε puts more
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stringent constraints on the singularity condition. Comparison of the results indicate
that mode 2 is the preferred kinematic solution, obtaining a greater ROM compared
to mode 1 across all ε values tested.
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Fig. 6 Optimisation results of the best ROM calculated by the GA versus generation. (a)
Inverse kinematic solution mode 1. (b) Inverse kinematic solution mode 2.

Table 3 Optimised design parameters and corresponding calculated ROM for both inverse
kinematic solution modes and the four singularity threshold (ε) values analysed

Kinematic solution ε α0x α0y α1 α2 α3 ROM

Mode 1 0.0 32.6◦ 26.9◦ 45.8◦ 39.8◦ 0.0◦ 83.13%
Mode 1 0.1 27.2◦ 21.8◦ 47.3◦ 39.8◦ 0.0◦ 81.08%
Mode 1 0.2 10.2◦ 13.2◦ 48.8◦ 49.2◦ 0.0◦ 75.32%
Mode 1 0.3 8.8◦ 19.4◦ 55.0◦ 69.3◦ −31.1◦ 70.04%

Mode 2 0.0 71.5◦ 32.3◦ 63.8◦ 71.1◦ −25.7◦ 86.42%
Mode 2 0.1 68.8◦ 32.2◦ 64.1◦ 72.0◦ −23.3◦ 85.12%
Mode 2 0.2 70.5◦ 33.6◦ 65.2◦ 75.1◦ −28.3◦ 81.86%
Mode 2 0.3 67.7◦ 35.7◦ 67.5◦ 80.0◦ −38.7◦ 77.02%

As a comparison an exhaustive method was implemented using a 10◦ step size to
search through design parameter combinations. This was done for kinematic mode 2
with ε = 0. This approach took around 15.5 hours to complete using an 8 core high
performance computer, much longer than the GA which took approximately 175
minutes using the same computer setup. The best result using the exhaustive search
was a ROM of 83.7%, less than the 86.42% result using the GA. This increases our
confidence that the GA found a solution close to the global optimum.
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4.2 Task-Specific Optimisation

In specific applications having an exoskeleton reach the entire human ROM may not
be necessary. For tasks that only require a small part of this workspace, it could be
beneficial to maximise the exoskeleton’s ROM in this smaller subspace relevant to
the task. This may allow a large percentage of the ROM subset to be reached, while
allowing the optimisation to achieve a design with better secondary characteristics,
for example more stringent singularity constraints. We demonstrate this by dividing
the frontal workspace into two areas as shown in Figure 7. We can imagine that these
two areas corresponds to two different tasks. Task A has the humerus between 0◦ and
70◦ in the anterior-lateral workspace as shown in Figure 7a. Task B has the humerus
between 70◦ and 180◦ in the anterior-medial workspace as shown in Figure 7b.
Subsets of the human ROM are then created by extracting humerus orientations that
lay within these two areas. We apply the optimisation to maximise the exoskeleton
ROM towards these two humerus ROM subsets.

Results for the task-specific optimisation, calculated with ε = 0.3 and kinematic
mode 2, are shown in Table 4. The ROM achieved was 93.57% and 99.67% for the
tasks A and B respectively. Even with a stringent singularity threshold of ε = 0.3 the
ROM obtained for these two specific tasks is much larger than the ROM obtained
when attempting to achieve the equivalent to a complete human ROM, which was
86.42% with the most relaxed singularity constraint, i.e. ε = 0.

Frontal plane
0°

70°

180°

(a) Task A

Frontal plane
0°

70°

180°

(b) Task B

Fig. 7 Two subsets of the humerus ROM are created by dividing the frontal workspace into
regions corresponding to different conceptual tasks

Table 4 Optimised design parameters and corresponding calculated ROM when optimising
the exoskeleton design for a subset of human ROM corresponding to two different tasks.
Results were calculated for inverse kinematic solution mode 2 and singularity threshold ε =
0.3.

Task α0x α0y α1 α2 α3 ROM

A 90.0◦ 31.2◦ 59.6◦ 63.4◦ −39.8◦ 93.57%
B 75.1◦ 45.0◦ 67.3◦ 82.4◦ −27.7◦ 99.67%
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5 Conclusion

The optimisation of the exoskeleton design was shown to maximise its ROM to-
wards that achievable by the natural human humerus. The method used allowed
factors such as collisions between exoskeleton and human, as well as an adjustable
threshold on kinematic singularity to be considered during the optimisation. Unlike
the commonly used approach of manually optimising a shoulder exoskeleton design
by positioning the singularity, the optimisation method automatically determined
the optimal singularity location, as well as additional design parameters such as the
arc angle of the links. It was also demonstrated how the exoskeleton design can
be optimised considering a subset of human ROM relevant to specific tasks. This
highlights how the presented optimisation method can be a useful tool for the cre-
ation or modification of new and existing exoskeleton designs for use in specialised
industrial or service applications.

For the optimisation to be made feasible several simplifications were made, for
example the assumption of the shoulder behaving as a pure spherical joint. Using
a similar optimisation framework as the one presented, more sophisticated methods
can be incorporated. Future work will look at extending the optimisation using more
advanced methods such as mesh-mesh approaches for realistic collision checking,
as well as applying the optimisation on alternative exoskeleton designs. Our goal is
to develop an upper limb exoskeleton platform with a large ROM for researching
new assistive paradigms [5, 4].

Appendix – Biomechanical Model Inverse Kinematics

For a given humerus orientation defined by rotation matrix RH we solve for the
corresponding joint angles φA, φF and φR for the biomechanical shoulder model
[12]. There actually exists two solutions for these angles that provide the specified
humerus orientation.

Solution 1: Solution 2:

φA = atan2(−RH13,RH33) φA = atan2(RH13,−RH33)
φF = asin(−RH23) φF = π − asin(−RH23)
φR = atan2(−RH21,RH22) φR = atan2(RH21,−RH22)

To determine if RH is a feasible orientation, we solve for both solutions. Then,
if either solution is found to satisfy equation (1) then we consider RH as a feasible
humerus orientation. RHi j is the element in row i and column j.
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through Virtual Reality Tele-operation
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Abstract. A micro rover, code-named Moonraker, was developed to demonstrate
the feasibility of 10kg-class lunar rover missions. Requirements were established
based on the Google Lunar X-Prize mission guidelines in order to effectively evalu-
ate the prototype. A 4-wheel skid steer configuration was determined to be effective
to reduce mass, maximize regolith traversability, and fit within realistic restrictions
on the rover’s envelope by utilizing the top corners of the volume.

A static, hyperbolic mirror-based omnidirectional camera was selected in order to
provide full 360◦ views around the rover, eliminating the need for a pan/tilt mecha-
nism and motors. A front mounted, motorless MEMS laser scanner was selected for
similar mass reduction qualities. A virtual reality interface is used to allow one op-
erator to intuitively change focus between various narrow targets of interest within
the wide set of fused data available from these sensors.

Lab tests were conducted on the mobility system, as well as field tests at three lo-
cations in Japan and Mauna Kea. Moonraker was successfully teleoperated to travel
over 900m up and down a peak with slopes of up to 15◦. These tests demonstrate
the rover’s capability to traverse across lunar regolith and gather sufficient data for
effective situational awareness and near real-time tele-operation.
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1 Introduction

A case study for a low cost lunar exploration mission is presented in this section
to establish a general set of requirements for a lunar micro rover. The case study is
based on the Google Lunar X-Prize (GLXP) and the goals of GLXP team Hakuto.

1.1 Google Lunar X-Prize

The GLXP is a privately funded competition to land a rover on the surface of the
Moon, with prize money of $30 million USD available to privately funded teams
who accomplish certain pre-determined goals, primarily to traverse 500m across the
lunar surface and transmit HD video and photographs to earth. The GLXP require-
ments are considered essential minimum capabilities for the design of a micro-rover
and for performance assessments.

Tohoku University’s Space Robotics Lab (SRL) is in partnership with Hakuto, an
official team contending for the GLXP. Hakuto has exploration goals in addition to
the minimum GLXP requirements, detailed in Sec. 1.2, and provides the SRL with
requirements based on the methods for launch, trans-lunar injection, and landing.

1.2 Landing Site and Exploration Target

In 2009, Haruyama et al. discovered evidence of collapsed lava tube skylights from
JAXA’s SELENE images of the surface of the moon[2]. Since then, many potential
skylights have been discovered from various satellite imagery. The landing target
is one of these potential skylights in the region known as Lacus Mortis, or ”Lake
of Death”, south of Mare Frigoris in the northern, Earth-facing hemisphere of the
Moon.

Team Hakuto plans to land within 500m of the skylight, which can be found at
44.95◦N, 25.61◦E, just south of a rille known as Rimae Bürg. Based on NASAs
Lunar Reconnaissance Orbiter (LRO) images, the skylight is just under 400m in
diameter, with the south-eastern edge of the pit collapsed, forming a natural ramp
from the lunar surface to the cavern floor (Fig. 1).

Data from the Lunar Orbiter Laser Altimeter (LOLA) instrument of LRO also
exist for this region[3]. The data is too sparse to develop a full digital elevation map,
but does suggest a minimum average slope angle of 13◦(Fig. 1 and Table 1). Tests
with lunar regolith simulants have found that the angle of repose (maximum stable
angle of a granular material) of lunar mare regolith can be up to 45-50◦ in Earth
gravity and as high as 58◦ in lunar gravity[1].

The slope of the skylight ramp is likely varied, but cannot be estimated more
precisely than between 13◦ and 58◦; from safe to highly hazardous. There is insuf-
ficient data to determine a distribution within this range, therefore the feasibility of
an unassisted descent must be decided on-site. In order to maximize the probability
for and reduce the risks of a potential extended mission into the skylight, designing
for stability during steep-slope traversal is a high priority.
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Fig. 1 The target skylight
near Rimae Bürg, with
the collapsed eastern wall
clearly visible [4]. LOLA
data (Table 1) indicate that
the altitude at the eastern
edge is -2042m, and a point
in the center of the skylight,
150m from the edge, is
-2077m altitude. 35m of
depth across 150m indicates
that the minimum average
angle of the slope can be
estimated at 13.13◦.

Table 1 Lunar Orbiter Laser Altimeter (LOLA) measurements in the vicinity of the lava tube
entrance[3]. One reading from the center of the pit suggests a minimum depth of 35m.

# Longitude Latitude Altitude Estimated Location

1 25.6222222 44.9595561 -2043.09 Vicinity East of the skylight

2 25.6222346 44.957638 -2042.38 Vicinity East of the skylight

3 25.6226786 44.9585525 -2042.14 Vicinity East of the skylight

4 25.616147 44.9562664 -2040.64 Southern edge of the skylight

5 25.6161021 44.9601059 -2077.34 Center of the skylight, 150m from #2

6 25.6165264 44.962933 -2055.96 Northern edge of the skylight

1.3 Communication Architecture

Hakuto plans to use the lander hardware to support a fixed communication relay
station to the Earth. By eliminating the need for the micro-rover to establish a di-
rect connection to the Earth, a greater portion of the mass budget can be alloted to
mobility and imaging subsystems and other payloads. This architecture has benefits
which apply to potential missions beyond the scope of the GLXP. In any situation
where a permanent base station is nearby the micro-rover’s tasked operation zone,
this architecture is effective for reducing mass.

For the prototype and field tests discussed in this paper, a laptop was used to em-
ulate the function of a stationary lander, and 802.11 wireless networks used for com-
munication. A lower frequency radio communication system with lower bandwidth
is planned for the flight model, but not included in this paper. For this particular case
study, should the traversal into the skylight be successful, fully autonomous explo-
ration of the skylight is necessary due to the communication blackout; however full
automation experiments are also not considered in this report.
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1.4 Requirements

• Mass limit: 10kg
• Stowed volume envelope: 50cm(length) x 40cm(width) x 30cm (height)
• Use of a nearby base station as relay to Earth
• Travel at least 500m across the surface
• Climb as steep an incline of regolith as possible (minimum 13◦)
• Ability to take self portraits and display relevant logos
• Full 360 degree HD panoramic stills: 0.3mrad/pixel, 8bit color

Fig. 2 Moonraker traversing over a mountain at Izu Oshima (Sec. 3)

2 Testbed Moonraker

Based on the case study mission and requirements, a micro rover prototype code-
named Moonraker was constructed for Earth-based testing and validation. In order
to meet the strict size constraints, redundancy is reduced, with greater focus on reli-
ability to mitigate risk. Non-essential actuation points were removed where possible
to minimize mass, power consumption, and the total number of failure modes. The
final mass and power budgets can be seen in Table 2. The resulting system is unique
among similar micro-rover missions, such as the 1997 Mars Pathfinder rover com-
ponent Sojourner, particularly due to the large wheel-size to system-size ratio.
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Moonraker uses an omnicamera, giving full 360◦ by 80◦ views of the surrounding
environment. A MEMS-based laser range finder (LRF) is equipped on the front, to
measure accurate 3D positions of any imminent obstacles. These data, along with
an IMU, are fused together in a 3D environment for viewing with a virtual reality
headset. The mobility system consists of four 20cm wheels, for a large wheel-size to
body-size ratio. Each wheel is independently controlled by 12W motors; maneuvers
are conducted through skid steering. The wheels are stowed above the rover body
during transit to maximize grouser length allowance.

As indicated in Table 2, the thermal subsystem and solar power generation de-
signs were unimplemented in the terrestrial prototype discussed in this report. Alu-
minum solar panel mockups, identical in surface area to the flight system design,
are used to properly obstruct the environment around the wheels as in a real lunar
mission (Fig.2).

Table 2 Moonraker mass and power budgets. The mass of Moonraker during tests was 8107g.
*indicates estimations based on unimplemented designs.

Subsystem Target Mass Actual Mass Nominal Power

Mobility 25% 24.6% 2462g 30W

Power 20% 18.9%* 1890g*

Structure+Thermal 20% 20.3%* 2027g*

Sensors 10% 9.7% 965g 5W

Avionics+Comms 5% 3.6% 363g 8W

Payload for Sale 5% 8.9% 893g*

Margin/Cables 15% 14.9% 1493g

Total 100% (81%) 10000g*(8107g) 43W

Fig. 3 Moonraker, shown with 25mm grousers, stowed (left) vs deployed (right)
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2.1 Sensors

2.1.1 Mirror Omni-Camera

In order to meet the requirements of the case study mission, Moonraker must be
equipped with the sensors necessary to construct a full 360◦ panoramic image, and
view itself. A standard camera equipped on a pan/tilt mechanism would be capable
of meeting these requirements, but the additional mass necessary for such a mecha-
nism is a challenge to accommodate within a 1kg total sensor mass budget (Table 2).
The potential for motor failure also introduces risk that redundancy may be neces-
sary to mitigate. In order to circumvent these challenges, wide FOV camera options
were evaluated and a hyperbolic mirror omnicamera was selected as the primary
sensor. Using a static camera pointed vertically towards a hyperbolic mirror, the
omnicamera system is able to construct 360◦panoramic images in single frames.

Using a calibration model developed by Scaramuzza[6], each pixel on the im-
age plane (bottom of Fig.4) can be projected onto a sphere to represent a ray in 3D
space through the focus of the hyperbola, as shown in Fig.6. This model is useful
for displaying and evaluating the characteristics of the environment, as the spatial
relationship between pixels is known. This allows for undistorted views as seen in
Fig.5. With a 70mm diameter mirror and 10 megapixel camera, the average visual
acuity is estimated to approach 0.3 mrad per pixel.

Fig. 4 Omnicamera raw image (bottom) and corresponding panoramic projection (top)
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2.1.2 MEMS Laser Range Finder

Although the omnicamera system enables collection of data on the surrounding en-
vironment over a wide area, it must be placed on top of the rover to achieve this.
This limits visibility in the immediate vicinity in front of the rover, especially where
the rover body obstructs the view of the ground. An additional sensor for detecting
imminent obstacles and determining their exact position relative to the wheels is
therefore highly desirable; a LRF is capable of satisfying these needs.

A MEMS-based LRF is able to achieve a 3D scan over a more narrow field of
view than traditional LRF units, but is able to do so without using motors or large
moving parts. A small MEMS mirror is precisely controlled to scan an area in front
of the sensor, using less power and keeping all moving parts in a small, isolated
chamber inside the sensor. The sensor selected for Moonraker (FX8, from Nippon
Signal) is able to scan 6000 points over a 60◦ by 50◦ region four times per second.
The range is specified as 5m, but effective range during field tests rarely exceeded
3m. Although limited for applications requiring full 3D data on the entire surround-
ing environment, this is sufficient for the requirements of Moonraker.

Fig. 5 Technical specialist’s graphical interface, with a snapshot of the mission specialist’s
view of fused sensor data (left) and telemetry with controls for various subsystems(right)

2.2 Teleoperation Interface

Two-person teams under a shared-roles model, with a task breakdown between one
mission/payload specialist and one technical specialist, have been found to be highly
effective for field robotics teleoperation[5]. Moonraker’s teleoperation software in-
terface is designed to reduce potential bottlenecks to understanding and acting on
available information quickly.
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The mission specialist software implements a virtual reality (VR) interface to
Moonraker’s sensor data. This allows the operator to easily focus on and intuitively
change focus between various narrow targets of interest within a set of wide and oth-
erwise cumbersome data. Without this interface, distortion prevents an accurate un-
derstanding of the spatial relationships between obstacles, and navigating the large
panoramic image or raw circular data becomes the primary operational challenge.

The technical specialist uses a more traditional mouse-based graphical interface
in parallel to view telemetry and control subsystem settings. This support interface
is rendered in a window on the same field-laptop (Figure 5), and displays the status
of each subsystem. The status of the IMU, remaining battery power, torques and
power used by the motors, and the signal strength of the connection with the rover,
can be seen. The resolution of both the camera and the LRF, as well as the cam-
era color settings, brightness settings, and compression rate can be controlled. A
snapshot of what the mission specialist is doing is available to facilitate effective
communication between the operators.

Fig. 6 The pixels on an
image plane (u, v) are pro-
jected, through the hyper-
bolic mirror above it, into
rays through 3D space (r,
θ , φ ). These rays can be
used as unit vectors (X,
Y, Z) to compose a virtual
semi-sphere for display-
ing undistorted images as
viewed from the focus of the
hyperbola, at the center of
the sphere. (image source:
Scaramuzza[6])

2.2.1 Virtual Reality (Sensor Fusion)

The data from all three sensors (camera, laser, IMU) are fused to provide the VR
interface display. The camera system streams compressed video of the panoramic
images to the operator computer. These panoramas are undistorted into a spherical
projection (Fig.6), and adjusted to match the orientation of the rover from IMU
data. Using an open source 3D engine (Ogre3D), the projection is rendered around
the position of two cameras.
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Frames of pointcloud data from the LRF are synchronized with the camera
frames and orientation and are displayed in alignment to give precise distance in-
formation about potential obstacles in front of the rover. The HMD used (Oculus
Rift) implements stereoscopy, requiring one rendering per eye, which gives the VR
operator a natural sense of depth when viewing the pointcloud. The operator can
also see any obstacle’s position relative to the rover, its wheels and any other feature
of interest in view of the camera.

Fig. 7 Mission specialist’s graphical interface, with a rendered view of fused camera and
LRF data for each eye. A joystick is used to control the mobility system.

2.3 Mobility

2.3.1 Four Wheels

Tracks are known to have advantages over wheels for clearing rough terrain and
maximizing contact area with soil, but are also heavier than wheels[9]. Tracks are
also less reliable than wheels, due to a susceptibility to failure from jamming, which
is difficult or impossible to repair in an exploration mission[7]. Wheels were there-
fore selected as the mobility system for Moonraker.
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More wheels are generally considered to result in higher performance, due to the
additional contact points with the surface[10]. A primary advantage of the popu-
lar 6-wheel configuration is from rocker-bogie suspension, which facilitates agile
traversal over rocky and uneven terrain. This advantage, however, does not apply to
the primary mobility challenge of slippage on steep soft regolith slopes of the target
lunar mare environment. The two primary wheel parameters that effect slippage on
loose soil are wheel diameter and grouser length.

The envelope length of 50cm (Sec. 1.4) is the primary constraint to wheel size.
With a 10cm gap between wheels, in a 6-wheel configuration the space available
for wheel and grousers together is 10cm diameter; in a 4-wheel configuration, the
diameter doubles to 20cm. Despite its popularity, for mass/volume-limited missions
in loose soil environments, the 6-wheel rocker-bogie design is a waste of valuable
wheel diameter potential, and results in higher risk for slippage in loose soil.

Fig. 8 The average torque per wheel required to perform a 90◦ spot-turning maneuver. The
area under the 10mm curve is 8% larger than the taller 25mm curve.

2.3.2 Grouser Length, Steering and Laboratory Experiment

Increasing the diameter of a wheel and the length of its grousers will improve lin-
ear traveling performance over loose soil by decreasing slip. Grouser length has a
greater impact on slip than diameter, to the extent that lengthening grousers at the
expense of diameter still improves performance[8]. This improved performance di-
rectly impacts traversability up steep slopes - a primary requirement for Moonraker.
The maximum possible grouser length is therefore desirable for linear travel, how-
ever the impact of grouser length on steering is not as well known.
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Steering can either be performed precisely by spinning the wheels about the axis
perpendicular to the ground with additional motors, or by skid steer, where the
difference between the rotational speed of the left and right motors causes rota-
tional slip. Although less precise, skid steering is simpler and more mass efficient.
However, the reliance of skid steering on slip and the additional power required
to overcome resistance against the soil was expected to reduce traveling efficiency.
Experiments were conducted in an indoor laboratory environment to determine the
impact of grouser length on skid steering spot-turn maneuvers (turning in place).

Moonraker was equipped with 20cm wheels and comparisons were made be-
tween the performance of 10mm grousers and 25mm grousers on operations con-
ducted in a sandbox of Toyura sand, measured with an Osprey motion capture
system. The linear slip ratio was calculated to quantify the benefit of the longer
grousers for linear performance. The torques of the wheels were also measured dur-
ing 90◦ spot-turning maneuvers at a constant speed of 2.9rpms to quantify the dif-
ference in skid steering torques. Longer grousers were expected to require more
torque, but the extent was not known.

With 10mm grousers, slip began at 8◦ and by 16◦ became severe (Fig.9). With
25mm grousers, no measurable slip occurred even at 16◦. This dramatic difference
in the slip ratio confirms previous research with 2-wheel rovers and, in isolation
from steering concerns, result in a preference for 25mm grousers on Moonraker.

Based on the linear performance results, higher requisite torques and expended
energy for turning operations was anticipated. As shown in Fig.8, although the
torques required for a spot-turning operation with 25mm grousers reach up to 60%
higher than with 10mm grousers, the turning operations were in fact completed in
almost half the time. This increases, rather than decreases, the efficiency of spot-
turning operations by 8%.

Our proposed explanation for the unexpected result is that the sand-flow against
the wheel during a spot-turn rotational slip approaches a direction parallel to the
grousers. The grousers’ push against the sand moves the rover, causing a yaw rota-
tion. Longer grousers create greater resistance against the sand in the direction of
wheel rotation, but if the rover is not moving forward during the turn, the grousers do
not create greater resistance in the direction of the rover’s yaw. This allows longer
grousers to maneuver the rover more quickly while sand flows between grousers
with little resistance. Further testing is required to prove this hypothesis.

2.3.3 Suspension and Wheel Deployment

Using a rocker suspension system ensures that each of the wheels remain in con-
tact with an uneven surface, and when traversing over small rocks. With a vertical
envelope restriction of 30cm, the clearance between the rover body and the ground
is restricted, which limits traversability over obstacles. In the initial iteration of the
Moonraker design, almost 50% of the volume in the 50x40x30cm envelope was
empty. It was found that stowing wheels above the rover body, for deployment post-
landing, dramatically increased the utilization of the limited envelope.
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Placing the stowed wheels diagonally to fill the corners of the volume gives the
largest improvement in space available to the wheels. This allowed for an increase
in wheel-grouser diameter from 20cm to 25cm, the clearance over the ground from
9cm to 15cm, the wheel width from 4cm to 8cm, and the lateral distance between left
and right-side wheels of the rover from 40cm to 50cm. These improvements, which
increase stability and traveling performance on slopes, are otherwise not possible
with the strict volume limitations.

Fig. 9 Slip ratios from lab tests of 10mm and 25mm grousers, compared with field
tests(Sec.3)

3 Field Tests

Field tests of Moonraker were conducted on Mt. Aso in Kyushu, Japan (2011), Mt.
Mihara at Izu Oshima, Japan (2012), and Mauna Kea, Hawai’i (2013). Each of the
test sites provided a range of environments from very soft, loose volcanic ash to
rocky pumice, on and near slopes of mountains and volcanic craters. This type of
environment is the closest available, on Earth, to what can be expected on the lunar
surface. In each test Moonraker was equipped with 10mm grousers and successfully
traveled over 500m towards points of interest. Issues in mobility and teleoperation
efficiency were identified in each case, informing iterative improvements.

In Kyushu, scattered pumice over loose sand and ash was found at Sunasenri near
the Mt. Aso crater. A 600m course was successfully run across the southern edge of
the crater. With 6W motors, Moonraker was unable to traverse over small rock ob-
stacles when the incline reached 10◦ and failed to reach the top of the crater. Motors
were subsequently upgraded to 12W for a 5x increase in torque (up to 7Nm/motor).
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Izu Oshima provides an environment covered in pumice from coarse sand to
rocks. A 900m course up to the peak of Mt. Kushigata from the south and down
the north was completed, with an average ascent incline of 5.7◦, and a maximum of
15◦. The average slip ratio over the course of the ascent was 0.12, as shown in Fig.9,
which is slightly higher than the prediction of laboratory tests for soft sand.

In Hawai’i, a 600m course was successfully completed over a sandy area in Hale-
wahine Valley on the southern slope of Mauna Kea. A 20◦ slope of soft dark vol-
canic ash, with similar mechanical properties to lunar regolith simulant, was found
on the north side of the valley. Due a slip ratio approaching 1, direct traversal up the
slope was not possible, but by progressing in alternating lateral trajectories, roughly
45◦ from direct ascent, it was possible to climb 30m (Fig.10). Over a 100m path, at
an average incline of 11◦, the slip ratio was 0.22 (Fig.9).

This field testing helped to develop the interface, which evolved from simple
command line to video and gamepad control to the interface described in Sec. 2.2.
Difficulty in control with communication delay have informed the next step in in-
terface development. The next techniques to be implemented in field testing are
mapping, semi-autonomy and global coordinate commands.

Fig. 10 900m path of a field test over Mt. Kushigata, near Mt. Mihara on Izu Oshima Island,
Japan (left). 100m path up a 20◦slope of soft volcanic ash performed on Mauna Kea, Hawai’i
(right).

4 Conclusion

Micro rovers in the 10kg-class are an attractive option for performing an exploration
mission at low cost. Although the reduction in size can limit capability, with careful
design, a micro rover can still provide rich data on the explored environment while
still being able to provide extensive mobility over across varied terrain.

A micro rover testbed, code-named Moonraker, was designed based on require-
ments for a specific lunar mission to investigate a lunar skylight. Static sensors
which require no moving parts, such as an omnicamera and a MEMS laser range
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finder allow for a lightweight but effective solution to extensively image the envi-
ronment and collect sufficient data for full situational awareness. The wide coverage
area of the sensors make a virtual reality interface an effective part of a shared-roles
teleoperation model, where one operator can intuitively change focus between vari-
ous narrow targets of interest within a wide set of available data.

A 4-wheel skid steering mobility system demonstrates the potential for high trav-
eling performance on loose soil for micro rovers, if wheel size is not sacrificed to
keep the system small. In limited-volume conditions, wheel size can be maximized
by utilizing the corner space of the envelope above the rover body. Laboratory ex-
periments were conducted to validate the efficiency of the 4-wheel skid steering
maneuvers and found that longer grousers make spot-turn maneuvers more efficient
and dramatically improve traversability on inclines of loose soil.

Field tests conducted with Moonraker validate the design by demonstrating suc-
cessful completion of the case study mission goals. Slip ratio results from the field
were found to deviate only marginally from laboratory tests. These real world field
tests helped to highlight shortcomings in mobility and software interface, leading to
opportunities for effective iterative improvements.
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Localization and Place Recognition
Using an Ultra-Wide Band (UWB) Radar

Eijiro Takeuchi, Alberto Elfes, and Jonathan Roberts

Abstract. This paper presents an approach to mobile robot localization, place
recognition and loop closure using a monostatic ultra-wide band (UWB) radar sys-
tem. The UWB radar is a time-of-flight based range measurement sensor that trans-
mits short pulses and receives reflected waves from objects in the environment. The
main idea of the poposed localization method is to treat the received waveform as
a signature of place. The resulting echo waveform is very complex and highly de-
pends on the position of the sensor with respect to surrounding objects. On the other
hand, the sensor receives similar waveforms from the same positions. Moreover, the
directional characteristics of dipole antenna is almost omnidirectional. Therefore,
we can localize the sensor position to find similar waveform from waveform data-
base. This paper proposes a place recognition method based on waveform matching,
presents a number of experiments that illustrate the high positon estimation accuracy
of our UWB radar-based localization system, and shows the resulting loop detection
performance in a typical indoor office environment and a forest.

1 Introduction

An ultra-wide band (UWB) radar is a time-of-flight based range measurement sen-
sor that transmits short pulses and receives reflected waves from objects in the en-
vironment. The resulting echo waveform is the sum of the reflected waves, and the
delay of each component reflected wave depends on the distance between the sensor
and the object. Consequently, the received waveform is a superposition of individual
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echoes that depend on ranging distance, material, shape and radar reflectance of the
obstacles in the environment.

UWB radar has a number of potential advantages over other sensors, particu-
larly optical devices such as stereo systems and laser scanners, that are extensively
used on mobile robots. The echo waveform measured by an UWB radar contains
information than that of an optical sensor of comparable range, as it provides data
from inside and beyond obstacles. UWB radar system is able to see through and be-
yond obstacles, walls and vegetation, and can detect objects through smoke and fog.
Hence, they can be used for reliable localization under a broad range of conditions,
which is especially promising for field, search and rescue, and service robotics.

Applications of UWB radars have included imaging the environment [1, 2], de-
tecting and tracking people through walls [3], and localization. Several localization
methods using UWB radar have been proposed [4, 5, 6, 7, 8]. However, almost all
of these methods rely on augmenting the environment with artificial beacons.

This paper proposes a place recognition method using a UWB radar based on
waveform matching. The full radar echo signal is used as a signature for a given
location. These signatures are collected and stored in a database of places, and are
subsequently used for place recognition and robot localization when the same loca-
tion is revisited by the robot. The proposed method results in accurate estimates of
location in real environments without the use of any artificial beacons. The paper
also presents a number of experiments that illustrate the high position estimation
accuracy obtained by our UWB radar-based localization system, and we show the
resulting localization and loop detection performance in a typical indoor office en-
vironment and a forest.

1.1 Related Work

One of the major applications of UWB radars is penetration imaging of objects us-
ing synthetic aperture radar (SAR) techniques [1, 2]. These techniques are used for
ground and underground imaging from satellites, subsurface imaging from airborne
platforms, and imaging of buildings from ground-based systems. The environment
model is estimated using reflected waves measured from different positions. Other
applications include through-wall moving object detection, which can be used for
tracking people [3]. Since the UWB radar receives the sum of reflected waves from
various objects, moving objects can be detected from temporal changes in the de-
tected waveform.

Segura et al. implemented a functional SLAM and localization system using
UWB radar sensor [4]. The receiver on a mobile robot measured waves from multi-
ple fixed transmitting antennas and estimated the transmit antenna positions and the
robot position using an extended Kalman filter (EKF).

Blanco et al. proposed a range-only SLAM-based method using a Rao-
Blackwellized particle filter and a sum of Gaussians approximation [5]. The paper
reported SLAM experiments using an UWB transceiver and radio beacons.
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Several other UWB radar-based localization methods have been proposed for
mobile robots, including [6, 7] and [8], who demonstrated localization using active
nodes or base stations.

1.2 Waveform Matching for Localization

In contrast to previous research, this paper proposes a reflected radar waveform
matching method for localization and loop closing. The method estimates positions
in real environments without the need of artificially introduced beacons, reflectors
or any other special devices.

Data retrieval based place recognition methods have been actively studied in the
computer vision community [9, 10]. These methods recognize a location by compar-
ing it to similar images retrieved from a database. Similarly, we use the measured
reflected waveform as a feature vector that encodes the signature of a place, and
localize a mobile robot by comparing this signature to other signatures (measured
waveforms) retrieved from a wave signature database.

The remainder of this paper discusses the waveform matching based place recog-
nition method and shows that it leads to a very high precision, high recall rate, and
accurate localization estimation. We also show how wave-based database building
and localization are performed in indoor environments and a forest without beacons.

2 UWB Radar

The UWB radar used in this work and shown in Fig. 1(a) is a Time Domain Inc. P400
system [11] with a range of approximately 30 m. The system is small, low power,
and has no moving parts. The radar unit has two antennas, the transmit antenna and
the receive antenna. The antennas are approximately omnidirectional in the azimuth
direction [12], leading to a doughnut-shaped beam pattern.

The radar transmits a short pulse and receives reflected waves from various ob-
jects in the environment. The resulting echo waveform is the sum of the reflected
waves, and the delay of each component reflected wave depends on the distance be-
tween the sensor and the object. The received waveform is a superposition of indi-
vidual echoes that depend on ranging distance, material, shape and radar reflectance
of the obstacles in the environment. Since the radio waves can penetrate objects, the
received waveform will depend on a large 3D volume of the environment around
the radar.

2.1 Reflected Waveform for the UWB Radar

Figure 1(b) shows a typical received echo for the TD P400 UWB radar unit. As can
be seen, the return signal shows a very complex waveform.

The echo or received waveform is the sum of the waves reflected by various
objects. This is expressed by the following simplified wave function [2]:
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Fig. 1 The UWB radar used in this work and a measured reflected waveform example

f (t) =
N−1

∑
i=0

(aiδ (t − τi))

In this equation, δ (t) is the transmitted wave, ai is the strength or amplitude of the
reflection from a single object i, τi is the time of arrival, and N is the number of
objects, which will depend on the distance between the radar and the objects in the
environment, as well as the objects shape and reflectance characteristics.

3 Waveform Matching Method for UWB Radar

In this section, a correlation based matching and retrieval method for UWB radars
is described. For a given measured echo, the proposed method searches for similar
waves in a place signature (measured echo waveforms) database.

3.1 Wave Correlation

The echo signature database MMM contains the reflected waveform fff i measured at each
position xxxi:

MMM = ( fff i,xxxi) (i = 0, ...,N − 1)

where

fff i = ( fi0, · · · , fit , · · · , fiT−1), xxxi = (xi,yi)

In these equations, t is discretized time and N is the id of the signature waveform
(and of the associated location) in the database.

In this paper, the similarity between waveforms i and j is defined as:

Ei j = η
T−1

∑
t=0

(wt fit −wt f jt)
2
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where wt is a weighing coefficient and η is a normalization factor defined as:

η = 1/min(
T−1

∑
t=0

(wt fit)
2,

T−1

∑
t=0

(wt f jt)
2)

If the radar echoes are received at the same position, they will be similar and
consequently Ei j will be low. Conversely, if Ei j is large, the signature echoes will
likely have been measured at different locations. The normalization factor is used to
keep the values of Ei j commensurate.

3.2 Finding the Peak of the Correlation

The proposed method finds corresponding locations using the similarity function as
follows:

1. measure the new echo waveform fff j
2. calculate similarities Ei j with all possible signatures i in the signature database MMM
3. calculate minimum value Emin of the similarities Ei j

4. find additional signature candidates by selecting those k such that |Ek j −Emin| ≤
ε , where ε is a predefined tolerance

5. check the position variance of candidates Var(xxxk)

In the results shown later in the paper, the acceptable value of ε is 0.5 and the
acceptable variance of position is 0.03 m.

Figure 2 shows search examples where the radar signature from a specific posi-
tion is correlated against the signatures in the database. For this dataset, the database
contains 36858 signatures. Figure 2(a) shows the correlations for an echo mea-
sured very close to position number 15054, which is the matched location. There
were two additional candidates within the defined tolerance, which are locationally
very close. Figure 2(b) shows the results for a location that had not been previously
visited, where no acceptable match was found.

3.3 Sensitivity Weight

Due to power dispersion, echoes received from obstacles become weaker with in-
creasing distance to the obstacle. However, the more distant components of place
signatures change more slowly, and are therefore more robust to small changes in
receiver position. To compensate the diminishing intensity of the echoes from more
distant targets, we use the sensitivity weights wt .

In this research, the sensitivity weight is designed to flatten the effect from un-
known obstacle as a function of distance. To define the sensitivity weight, consider
that we have a human moving within the range of the UWB radar. Figure 3(a) shows
the standard deviation of the echoes for a moving person. In these experiments, the
human moves in front of radar with constant velocity. The plot is the standard devia-
tion of the echoes, while the dashed black line is a fit using an inversely proportional



280 E. Takeuchi, A. Elfes, and J. Roberts

 0

 1

 2

 3

 0  5000  10000  15000  20000  25000  30000  35000

 0

 1

 2

 3

 0  5000  10000  15000  20000  25000  30000  35000

Minimum value

Minimum value

Acceptable value

Acceptable value

Wave ID

Wave ID

(a) Query wave is measured at close position of wave number 15054

(b) Query wave is measured at outside of database positions

C
or

re
la

tio
n

C
or

re
la

tio
n

Fig. 2 Correlation of a signature against the wave signature database

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7  8  9

S
ta

nd
ar

d 
de

vi
at

io
n

Distance[m]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7  8  9

S
ta

nd
ar

d 
de

vi
at

io
n

Distance [m]

 2.5

(a) Standard deviation of received echo for a moving human (b) Standard deviation of echoes measured at various positions

Fig. 3 Standard deviation of received echoes for a moving human

function. In this figure, the standard deviation shows only effects of moving objects
because reflected waves from static objects are almost constant value. The figure
illustrates that the standard deviation decreases with distance and the relationship
is almost inversely proportional. At the near distances, the standard deviation is
decreased, and this was caused by saturation.

This is compensated using the following proportional function as the sensitivity
weight:

wt = kt

For the later results, the parameter k was set to 0.01.

3.4 Range and Sensitivity

To accurately find similar signatures in the database, it is necessary to use the por-
tions of the signature that correspond to more distant objects as they provide more
robust information. At the same time, the signature search and matching time de-
pends on the effective range of the signature that was used. This section discusses
this effective range.
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Fig. 5 Loop detection and localization using radar signature matching

Similarly to what was shown in Fig. 3(b) shows the standard deviation of signa-
tures measured at various position in a static indoor environment, while the dashed
line is an exponential function fitted using a least square method. The standard de-
viation indicates breadth of the value change over the environments, and the high
deviation ranges are more effective ranges to identify the waves. Again, this shows
that the intensity of the information decreases exponentially with distance.

The sensitivity weight is increased propotionally with distance and the environ-
ment information decreases exponentially with distance. As a result, we can find the
sensitive distance of the echoes by multiply these characteristics. Figure 4 shows
the sensitive distance. As can be seems, the most useful information is in the middle
range of the signatures. This research uses a range out to 9 m for signature matching.

4 Experiments

This section describes several experimental localization results using the proposed
signature matching method. Figure 5 illustrates localisation and loop closure pro-
cess. In the mapping phase, the robot moves around an environment using a me-
andering motion. This motion increases the number of potential crossing points
and consequently of signature candidates for localization and loop closure. Once
the robot finds a matching signature in the database, it closes the trajectory using
a graph-based SLAM approach [13] [14][15] to keep consistency of the database.
In the localization phase, if the robot finds several similar signatures in the database,
it corrects the position using a position estimation method such as an EKF [14].
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Fig. 6 Experimental vehicle and indoor environments used for testing at the Autonomous
Systems Lab, Brisbane

4.1 Experimental Setup

Figure 6 shows the experimental setup and the experimental environment. The mo-
bile robot was a PatrolBot developed by Mobile Robots Inc., and the UWB radar
was a PulsOn 400 MRM developed by Time domain Inc. The radar was mounted on
the robot at a height of 1.15 m. The experimental environment was a typical indoor
office area with meeting rooms, desks and people. The UWB radar has a range of
up to 30 m, of which the first 9 m were used as discussed previously. The sampling
rate at which the signatures were collected was 25 Hz. The mobile robot moved at
speed under 10 cm/s, and consequently the inter-measurement distances were under
4 mm.

4.2 Waveform Retrieval with Unknown Objects and a Moving
Target

The first experiment was a robustness test with unknown objects. The robot repeated
a move and stop motion in the environment, and a human moved around the robot
randomly when the robot stopped. The distance of the person from the robot was
between 1 m and 10 m. Figure 7 shows the similarity and the obtained results. In
this figure, the upper triangle shows the similarity values, while the bottom triangle
is the matched results. The white points on the upper triangle side indicate high
correlation. On the lower triangle the gray points show true positive matches, the
white points are false negatives, and the black points are true negatives.The false
positives are almost nothing. The true positives mean that the distance between the
retrieved signature wave position and the query wave position was under 1 cm. The
gray squares show places where the robot stopped for varying amounts of time.

In this experiment, the precision of retrieval was 0.999 and the recall rate was
0.955, showing that the method was robust to the disturbance of having a person
moving around the vehicle in an indoor environment.
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Fig. 7 Waveform retrieval results using radar signature matching

4.3 Loop Detection and Closing

The following experiments demonstrate how the technique can be used for loop de-
tection and closing to build maps. Here, the robot moved around the laboratory using
a meandering route. Figure 8 shows the loop detection results using the proposed
method. The solid line shows the route taken by the robot, and the dashed lines are
corresponding points detected by the signature matching method. The route has 23
crossing points and the proposed method detects loops on 22 crossing points. The
corresponding pairs are found irrespective of the direction that the vehicle is pointing
at, as the radar antennas have omnidirectional sensitivity in the azimuth direction.
For this experiment, these were no corresponding pairs with large distance errors.
However, there were cases where multiple corresponding pairs were found clustered
close to the actual position, leading to small errors in the estimated position. The
total number of signatures in the database is 36858, and the mean matching/retrieval
time is 25ms on an Intel core i7 2.8 GHz processor. The graph had 1263 nodes and
1460 constraints, and the graph closing time is approximately 0.4 s.

Figure 9 shows loop closing results using a graph-based SLAM method [15]. The
solid line is the corrected graph, the black points are laser scanner mapping results
using the corrected positions, circles are detected loops and the square is a non-
detected loop. Note that the laser scanner was used only for reference, but not for
loop detection and localization. The results show that the trajectory was corrected
and the laser point clouds overlap well.

4.4 Localization Using the Radar Echo Signature Database

The next experiment was conducted to demonstrate the localization performance
achieved using our radar echo signature matching and retrieval method. This exper-
iment estimated the position of the robot using an Extended Kalman Filter [14]. The
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motion model used vehicle odometry and the measurement model is the retrieved
position match using UWB radar signatures. The localization method uses as a map
the radar signature database obtained from previous loop closing experiments, and
finds the position using radar signature matching and retrieval.

Figure 10(a) shows the localization results obtained using signature matching.
The experiment was conducted three days after the mapping experiment discussed
earlier. The solid line is the estimated position using an EKF with UWB radar data,
the gray line is the position associate with the signature stored in the database,
the crosses are corrected points, and the dashed line is the reference position es-
timated using a scan matching method with laser scanner data [16]. The laser-based
scan matching method estimates the vehicle position using the point clouds that
were obtained in the previous experiment, and as a result the ”reference” position
has its own, relatively small errors. This figure illustrates that in almost all cases
the estimated positions using the UWB radar are close to the reference positions.
For this experiment, the total number of signatures in the database is 36858, the
search area is 2 m, and the mean matching and retrieval time is 9 ms.

Figure 10(b) shows the difference between the estimated position and the ref-
erence position. The black line shows the difference in the x-axis and the gray
line the difference in the y-axis, indicating that almost all position differences were
smaller than 0.2 m. The results show that the localization accuracy achieved using
the UWB radar signature retrieval method is close to the laser scanner localization
performance.
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4.5 Loop Detection and Closing in Forest

The final experiment was conducted to demonstrate that the proposed method works
in heavy vegetation and forest environments.

Figure 11(a) shows the forest area used for the experiments, which is located
within the area of the Queensland Centre for Advanced Technologies (QCAT). The
PatrolBot used for the experiments is not an outdoor vehicle, but we took advantage
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of a boardwalk through the forest which provided a route that was traversable by the
vehicle. The route is surrounded by trees, heavy vegetation, and some light posts.

In this experiment, a straight trajectory following the boardwalk was used on
the outward path, while a meandering trajectory was used on the return path. The
parameters used in our method were the same as in the indoor experiments.

Figure 11(b) shows the loop detection results, and Fig. 12 the loop closing results.
The solid line shows the route taken by the robot, the dashed lines are corre-

sponding points detected by the signature matching method, the black points are
laser scanner mapped results for reference using the estimated positions on the out-
ward path, and the gray points are mapped points on the return path. In Fig. 12, the
circles are detected loops and the squares are non-detected loops. The route has 25
crossing points and our method detects loops on 21 crossing points. The graph had
1090 nodes and 1235 constraints. After loop closing, Fig. 12 shows that the outward
and inbound point clouds overlap well. The results show the proposed method can
detect crossing points in natural environments.
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5 Conclusions

This paper presents an approach to robot loop detection and localization using an
UWB radar and an echo waveform signature matching and retrieval method. We
have shown that the radar signature waveform is highly correlated with the position
of the sensor, that the correlation of waves have strong minima, and that the global
minimum can be found using a computationally efficient method.

The experiments illustrate the robustness of the proposed method in the presence
of a moving human, and show loop detection and closing, as well as localization
results. The robustness experiments show that the method retrieves the correct sig-
nature with a high level of precision and recall rate, even with a moving target in the
scene. The loop detection results show that the method detects almost all crossing
points on a route, and that an accurate map is obtained from the loop closing result
using graph-based SLAM. Finally, the localization results using radar are compared
with laser scan-matching localization, showing that the differences between UWB
radar-based localization and laser scanner-based localization are typically below 0.2
m. Accurate results were obtained for both indoor and outdoor environments.

In summary, the experimental results confirm the usefulness of an UWB radar
for place recognition.

Future work will include a more accurate evaluation of the proposed method, the
extension of the technique to more complex indoor and outdoor environments, and
the development of higher position localization accuracy using predictive modelling
of the radar echo signatures. The proposed localization method may have the ability
to localize within a millimeter-order accuracy, but the experiments outlined in the
paper are not precise enough to assess this potential accuracy.

The UWB radar can detect objects through walls, smoke, fog, and vegetation.
Consequently, the sensor and the methods discussed are applicable to domains such
as forest traversal or search and rescue in smoky environments. However, the pro-
posed method has only been used to detect crossing points along a 2D trajectory,
and while it is also applicable to 2 1/2 D environments, it will need further research
to be generalized to 3D trajectories.
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Laser-Radar Data Fusion with Gaussian Process
Implicit Surfaces

Marcos P. Gerardo-Castro, Thierry Peynot, and Fabio Ramos

Abstract. This work considers the problem of building high-fidelity 3D representa-
tions of the environment from sensor data acquired by mobile robots. Multi-sensor
data fusion allows for more complete and accurate representations, and for more re-
liable perception, especially when different sensing modalities are used. In this pa-
per, we propose a thorough experimental analysis of the performance of 3D surface
reconstruction from laser and mm-wave radar data using Gaussian Process Implicit
Surfaces (GPIS), in a realistic field robotics scenario. We first analyse the perfor-
mance of GPIS using raw laser data alone and raw radar data alone, respectively,
with different choices of covariance matrices and different resolutions of the input
data. We then evaluate and compare the performance of two different GPIS fusion
approaches. The first, state-of-the-art approach directly fuses raw data from laser
and radar. The alternative approach proposed in this paper first computes an initial
estimate of the surface from each single source of data, and then fuses these two
estimates. We show that this method outperforms the state of the art, especially in
situations where the sensors react differently to the targets they perceive.

1 Introduction

The ability to build high-fidelity representations of the environment is critical for
autonomous robots [14]. Range scanners such as laser range finders and radars are
widely used in field robotics [10]. However, like any sensor, they suffer from limi-
tations, e.g. in terms of field of view, resolution and noise [1]. Consequently, robots
need techniques that can estimate accurate representations of the environment with
incomplete data and uncertainty.

Gaussian Processes (GP) have become a popular technique in recent literature
of robotic perception, due to their ability to learn spatial representations from noisy
data in a non-parametric Bayesian fashion [12]. Gaussian Process Implicit Surfaces
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(GPIS) [19] is a mechanism to estimate the surface of an object with uncertainty,
within a GP framework, by representing the geometry of the object as an Implicit
Surface [15]. GPIS applied on range data offers a number of benefits to overcome
the aforementioned problems. Firstly, the generated model is fully predictive as it
is able to predict a surface at arbitrary regions of an object that were not entirely
observed by the range sensor [5]. Secondly, the model also yields the uncertainty
of the estimates, at any point of the surface. By capturing the correlations between
points using parametrized covariance functions, only a limited number of points are
required to learn an accurate model. In addition, the GP can automatically handle
the model selection (parameter estimation) efficiently.

The use of data from multiple sensing modalities can help to obtain a more com-
plete and accurate representation of an object. As these modalities sense the envi-
ronment using different physical processes, they also respond differently to some
materials, textures, or environmental conditions [1, 4].Consider the example of a
car with windows perceived by a laser and a radar. Lasers operate at near-infrared
frequencies of the electromagnetic spectrum, which are close to visible wavelengths.
Therefore, a window appears mostly transparent to their sensing. In contrast, a mm-
wave radar operates at lower frequencies (e.g. around 94GHz), and is getting more
returns back from the surface of the windows. On the other hand, on the rest of the
car, the laser sensing is more accurate [1]. Therefore, a more complete and more
accurate representation of the car can be obtained by fusing the data from the two
sensor modalities.

In this paper we perform the fusion of data from two distinct sensing modalities
(a laser and a radar) within a GPIS framework, in the context of field robotics. We
propose a thorough experimental analysis of the performance of 3D surface recon-
struction from laser and radar data in a realistic field robotics scenario: an unmanned
ground vehicle (UGV) scanning an outdoor environment. We first analyse the per-
formance of the GPIS approach using raw laser data alone, and using raw radar data
alone, with 4 different choices of covariance matrices and different resolutions of
the input data, on a total of 8 objects with different geometries. We then evaluate
and compare the performance of two different fusion approaches within the GPIS
framework. The first approach directly fuses raw data from the two different sensor
modalities in the GPIS, as in [2]. In the second approach, we fuse points extracted
from two initial estimates of the object surface that were built using raw laser data
only and raw radar data only, respectively. We show that this novel approach out-
performs the first state-of-the-art approach, especially in cases where the sensing
modalities react differently, perceiving different targets. Although we put special
emphasis on the implementation of data fusion for laser and radar data in this paper,
the frameworks for GPIS fusion may be used with different range sensors.

The paper is organised as follows. Sec. 2 discusses related work on surface re-
construction with uncertainty representations, GPIS, and multi-sensor data fusion.
Sec. 3 develops the GPIS framework used in this work and the fusion methods con-
sidered. Sec. 4 describes the experimental setup and Sec. 5 presents the experimental
evaluation and analysis. Finally, Sec. 6 proposes conclusions and elements of future
work.
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2 Related Work

The problem of estimating continuous representations of data from range sensors
has been extensively studied in the recent literature [13, 8]. To build continuous
representations from range sensor data while accounting for uncertainties, different
variations of Gaussian Processes have been implemented in the robotics community.
Gaussian Beam Processes [11] give an independent treatment of the noise using
heteroscedasticity on the beams, however, this approach is limited to 2D scenar-
ios. Other applications using GP in 3D scenarios are related to mapping and terrain
modelling [17, 7]. These approaches adopt the same parametrisation problem by
associating a single elevation value z with any given position (x,y) in 2D Euclidean
space. While this way of mapping is effective for applications such as terrain mod-
elling, it is not suitable for applications that consider the full 3D mapping case, e.g.
full 3D modelling of an object, where there can be multiple elevation values for
a given (x,y). Implicit Surfaces (IS) is a representation that is appropriate for this
case [15]. It takes advantage of the geometry and topology of the objects. GPIS is a
framework to estimate IS surfaces with uncertainties using Gaussian Process [19].
This approach has been applied to range sensor data for robotics applications in dif-
ferent contexts, such as change detection [18], active learning [5], and grasping [2].

Gaussian Process has been shown to be a powerful tool for multi-sensor data fu-
sion when considering noisy input data [7, 3]. This concept has been adopted in [6],
which proposes a sensor fusion framework based on a mixture of GPs. The appli-
cation focussed on affect recognition, rather than object representations. GP data
fusion was also explored in [17], where the author fuses raw data from laser scan-
ner and Global Positioning System, with distinct noise models for each data source.
However, this approach uses a representation that only allows for a single elevation
value at a given (x,y) location, which is not appropriate for representing objects, as
mentioned above. A similar fusion approach was used in [2] within a GPIS frame-
work. Raw data from lasers and tactile sensors are directly fused in a GPIS with
multi-variance noise in the input dimensions. However, the paper shows limited ex-
perimental results and no error analysis is provided. In this paper we propose an
extensive experimental analysis of the performance of sensor data fusion within a
GPIS framework, in the context of field robotics.

3 Gaussian Process Implicit Surfaces

3.1 Implicit Surfaces

Consider a set of points X = [x1,x2, ...xn] in Euclidean space corresponding to ob-
servations of the object. In order to model an object represented by X , an Implicit
Surface is defined as the 0-level set of real-valued function f : R3 → R, where the
function f specifies whether a point x is inside the surface ( f (x) > 0), outside the



292 M.P. Gerardo-Castro, T. Peynot, and F. Ramos

surface ( f (x)< 0), or on the surface ( f (x) = 0). Such constraints values are assigned
to the variable Y , so that Y = [ f (x1), f (x2)... f (xn)]. Direct observations made by
range scanners are usually assumed to be on the surface of the object, therefore,
zero-value constraints ( f (x) = 0) are assigned to the sensor measurements. Addi-
tional observations of points known to be inside or outside the object may be added
to help the estimation process.

3.2 Gaussian Process Implicit Surfaces

Gaussian process regression can be used to provide the surface estimate f∗(x∗),
with variance V( f∗(x∗)) based on observation data from X and constraints Y (i.e.
targets for the GP), defined as training data under the GPIS framework. This can be
formulated as:

P( f∗(x∗) |X ,Y,θ ,x∗) =N ( f̄∗,V[ f∗]), (1)

where θ is a set of hyper-parameters. The mean f̄∗ and variance V[ f∗] at a selected
point x∗ given the measured data X are:

f̄∗ = k(x∗,X)T (K +σn
2I)−1Y (2)

V[ f∗] = k(x∗,x∗)− k(x∗,X)T (K +σ2
n I)−1k(x∗,X), (3)

where K is a covariance matrix. The noise variance of the observed data is repre-
sented by σ2

n I. Note that σ2
n can be learnt along with the other GP hyper-parameters.

In this paper, we implement different stationary kernels: the exponential covariance
function,

k = k(xi,x j) = σ2
f

d

∑
k=1

exp(−(
Δk

�
)γ ), (4)

and two variants of the Matérn type [12],

kM3/2
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)exp(
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The hyper-parameter σ2
f represents the signal variance and the length-scale is rep-

resented by �, Δk = |xi − x j|. kM3/2
and kM5/2

are stationary covariance functions
used to amplify the sensitivity between the correlations of the points compared to
the widely used square exponential (Eq. (4) with γ = 2), which produces a smooth
kernel that drops off with distance. We extend our analysis to the exponential co-
variance function (γ = 1), which is even more sensitive to changes.

An important aspect of the GP is the optimisation of the hyper-parameters
θ = (σ f , �,σn). In this paper this was done by maximising the log-marginal
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likelihood. The Cholesky decomposition was used to obtain the predictors ( f̄∗ and
V[ f∗]) and the log-marginal likelihood [12]. Once an estimate f∗ of the surface has
been obtained, 3D surface points and corresponding variances are then computed
for values of f∗ = 0 in Eq. (2) and Eq. (3) by querying in a region pre-defined by x∗.

3.3 Single-Sensing-Modality GPIS

We define a single-sensing-modality GPIS as a GPIS whose input is a set of data
provided by a single sensor type (in this paper, laser or radar), as illustrated in Fig. 1.
We name the process GPISi, The input data Xi and Yi, the estimated surface f̄i∗ , and

f i (x*)f

GPISi 

ff

GPISG iSS

GPIS 

Query 
Points 

Xi

YiYiiiYY Vi(x*)

(x*))))ff ifff

VVViV ((x*)

X*

Fig. 1 GPISi process, using laser (i = L)
or radar (i = R) input data

Fig. 2 Argo UGV equipped with the laser
and radar sensors used in this study

the variance Vi∗ , where the index i specifies the nature of the input data: i = L if the
input data is provided by a laser, and i = R if the data is from a radar. A global noise
parameter σn

2 is used for all the input points in each GPISi (see Eqs. (2) and (3)).

3.4 Multi-sensor Data Fusion: GPISLR

The first fusion method, GPISLR, fuses two sets of raw data, XL and XR, acquired
by laser and radar, respectively, in a single GPIS. The approach is similar to the
one in [2]. The input data of GPISLR is composed of all training points from each
sensing modalities put together: X = [XL XR] and Y = [YL YR]. A diagram of the
process of GPISLR is illustrated in Fig. 3(a). GPISLR accounts for different noise
parameters for each sensing modality by implementing an input-dependent noise
process, i.e. heteroscedastic, similar to [11]. Let σ2 ∈ R

n be the noise variances for
n given sensing modalities. The predicted distributions become:
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Fig. 3 The two alternative fusion processes: GPISLR (a) and GPISL∗R∗ (b)

f̄∗ = k∗T (K +H)−1Y (5)

V[ f∗] = k(x∗,x∗)− k∗T (K +H)−1k∗ (6)

where H = diag(σ1
2(X1),σ2

2(X2)...σn
2(Xn)) is a non-fixed noise matrix.

3.5 Alternative Fusion Method: GPISL∗R∗

In the alternative fusion approach we propose, GPISL∗R∗ (see Fig. 3(b)), we first
estimate the object surface from raw laser points and from raw radar points sepa-
rately, using two independent GPIS (i.e. GPISL and GPISR). We then query a set
of points, XL∗ and XR∗ , which are randomly sampled from the points where f̄L∗ = 0
and f̄R∗ = 0 respectively, along with the corresponding variances, VL∗ and VR∗ . The
number of points in XL∗ and XR∗ is two times the original number of input points
(i.e. in XL and XR). Associated constraints YL∗ and YR∗ are computed from the es-
timated surfaces f̄L∗ and f̄R∗ . The next step is to compute the final estimate using
GPISL∗R∗ , with inputs: X = [XL∗ XR∗ ] and Y = [YL∗ YR∗ ]. The predicted uncertainties
of VL∗ and VR∗ are integrated in the final GPIS as fixed noise parameters. We sub-
stitute H in Eqs. (5) and (6), with H = diag(HL∗ ,HR∗), where HL∗ is a fixed noise
matrix, defined by the variances VL∗ as HL∗ = diag(VL∗1 ,VL∗2 ...VL∗m), and, simi-
larly, HR∗ = diag(VR∗1 ,VR∗2 ...VR∗p). m and p represent the number of points in XL∗
and XR∗ , respectively.

GPISL∗R∗ can be used to fuse two continuous surface estimates with uncertain-
ties. Therefore, it may allow for a consistency check between the laser and radar
perception prior to fusion. The data that passes this test should be fused to obtain a
refined estimate, while the inconsistent data should not be fused. The implementa-
tion of this consistency check is left to future work.
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4 Experimental Setup

4.1 Data Collection

Experiments were conducted with the Argo UGV (Fig. 2), used as a data collec-
tion platform. The Argo is equipped with a laser range finder, a mm-wave radar,
and a cm-accuracy 6-DOF dGPS/INS localisation unit. The laser sensor is a Sick
LMS-291 (range resolution: 0.01m and angular resolution: 0.25◦) and the radar is
a 94 GHz Frequency Modulated Continuous Wave (FCMW) radar, custom-built at
ACFR (range resolution: 0.2m and angular resolution: 2◦). The laser and radar were
directed at the front of the vehicle with a constant nodding angle, so that the cen-
ter of the beam intersected the ground at a look-ahead distance of approximately
11.4m. The sensor data, along with the navigation data, were collected by the plat-
form while it was moving around a rural environment. Consequently, the errors in
the resulting 3D points were the result of the combination of 3 error sources: sensor
noise, calibration and localisation. A detailed description of the platform, sensors
and the datasets can be found in [9]. In particular, objects of different geometries
(listed in Table 1) were partially scanned by the sensors on the UGV from distances
varying from 2m up to 30m and used to evaluate the performance of the surface
reconstruction techniques.

Table 1 List of objects, sizes and number of ground truth points

Object Comp. Car Wall Wall2 Trailer Pole Pole2 Fence

Dim. (m3) 3.3x1.7x1.4 2.9x2.8x2.0 14x3.1x1.7 9.0x2.5x9.0 4.6x4.6x0.4 0.4x0.4x0.4 0.4x0.4x0.4 4.5x4.5x4.5
Nb. Pts. 7,958 22,736 16,738 15,584 18,784 2,578 1,032 6,470

4.2 Data Pre-processing

The data pre-processing follows the process described in Fig. 4. The data provided
by the laser sensor consist of a single range value for each bearing angle in its scan,
which are the result of the target extraction developed by the sensor manufacturer.
The raw radar data consist of multiple range values, with corresponding intensities,
for each bearing angle in its scan (note that the radar beam is much larger than the
laser’s). The extraction of the targets from the noise in the data is achieved using the

Fig. 4 Data Preparation Process
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approach presented by the authors in [4]. We first extract peaks (i.e. local maxima)
for each bearing angle. Most robotics applications only consider the highest peak
(global maxima) as a target detected by the radar, thereby using the radar as a laser.
However, this leads to the loss of useful information contained in the rest of the radar
beam. Therefore, along with the highest peaks, we also extract local maxima that
correspond to secondary targets by using an adaptive intensity threshold [4]. The
result is a set of 3D points per scan, similar to a the data provided by a multi-echo
laser sensor.

Laser and radar raw scans are then cropped to only keep data where the two
sensors’ FOVs overlap. Laser and radar points are then transformed into a com-
mon global navigation frame (GF). This transformation is obtained by combining
the output of a prior extrinsic sensor calibration (using the technique in [16]) with
the localisation of the Argo. The object of interest is then manually segmented from
the full point cloud obtained with each sensing modality. A segmented object is a
dense 3D point cloud, scanned from different perspectives. To evaluate the perfor-
mance of the object reconstruction techniques, a small set of 5% of the data points is
randomly sampled from the object. The rest of the laser data (i.e. 95% of the point
cloud), constituting a dense point cloud, is used to build a ground truth (GT) (see
Sec. 4.3). For each sampled observation provided by the range sensor, the normal
to the surface of the object at that point, Ni, is approximated by the perpendicular to
the segment between this point and the closest point in the same scan. Points inside
and outside the surface are computed using the normal value constraints [15]. We
place two points on Ni: one outside the object at a given distance d = −0.5m from
the surface, and one inside at a distance d = 0.2m (see Fig. 5). In the GPIS, these
points constitute positive ( f (x) = 1) and negative ( f (x) =−1 ) constraints, respec-
tively, and populate XL,YL and XR,YR which are used as input data of the GPIS, for
the laser and radar, respectively.

Fig. 5 The positive and negative constraints, given range sensor observations (red dots). The
noise-free observations are assumed to be on the surface, represented by the dashed line.
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4.3 Ground Truth (GT)

To quantify the errors made in the reconstructions, we used 95% of the full-
resolution laser point cloud to obtain ground truth data, since the laser is the most
accurate sensor available in our system. In this paper, the mean distance between
any point in the full resolution point cloud and its closest neighbour was 3cm. In
some cases, due to the limitations of laser sensing, this dense point cloud of the
object has to be corrected or completed to better reflect the actual surface of the
object. For example, the side windows of the car shown in Fig. 8(a) were poorly
represented (see Fig. 8(b) before correction), since the laser did not provide many
returns from the windows surface. Therefore, points on the windows were manually
added to complete the ground truth, using a resolution and noise level comparable
to those of the original point cloud.

5 Experimental Results

5.1 Single-Sensing-Modality GPIS

Surfaces were estimated from laser (XL) and radar (XR) data separately, using the
GPISL and GPISR processes described in Sec. 3.3. We evaluated the surfaces ob-
tained with different resolutions of input data, and with the different covariance
functions mentioned in Sec. 3.2. For all evaluations herein we queried the GPIS us-
ing a 3D grid of points (see x∗ in Fig. 1) uniformly spaced at a resolution of 1cm.
In each of the 3D grid cells, values where f (x∗) = 0 were selected to represent the
surface estimate. An example of a 3D surface reconstruction generated using GPIS
with 376 input points is showed in Fig. 6. From a limited number of points, the
general geometry of the object was recovered. A quantitative evaluation of the ac-
curacy of surface estimates was performed by computing the 3D distances between
points extracted from the estimated surfaces and our ground truth (the full resolution
laser point cloud). Error statistics for each object were then obtained by calculating
the root mean square (RMS) of these distances, providing an RMS error (RMSE)
for each object. The analysis was performed for all 8 objects we considered, but
for conciseness, we only show the RMSE for the different surface estimates of the
compressor, in Fig. 7.

With an RMSE of 0.069m and 0.125m for laser and radar GPIS surfaces respec-
tively, the exponential covariance function outperforms (γ = 1 in Eq. (4)) all the
other kernels. Furthermore, the RMSE decreases as more sampled points are used,
until the error does not change significantly.

Surface estimates obtained with GPISL are more accurate than with GPISR. This
was expected considering the higher accuracy and resolution of the laser sensor (see
Sec. 4.1. However, in some cases radar surfaces showed an extended coverage of
the object compared with laser surfaces. For example, Fig. 8(c) shows that most
parts of the car are quite well modelled by GPISL, but the surfaces of the windows
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(a) Visual Image (b) Ground truth, coloured by
elevation.

(c) Left: Input laser points, coloured by elevation. Right: GPISL surface.
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Fig. 6 Surface reconstruction of the compressor from sparse laser data. (a) Visual image of
the compressor. (b) Full resolution 3D laser point cloud, used as ground truth only. (c) Surface
estimated by GPISL (right) using 376 input laser points (left). The surface is coloured by
uncertainty (variance), using the colour scale shown in (d).
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Fig. 7 RMSE of the compressor surface estimates obtained with GPISL (a) and GPISR (b)
for different kernels and input point densities. Note the different scales of the errors obtained
(larger errors with radar data).

are incomplete, since they are partially transparent to laser sensing. On the other
hand, the radar perception of these windows is more complete, resulting in a more
complete representation using (GPISR) (Fig. 8(e)).
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(a) Visual Image. (b) Full laser point cloud, coloured by
elevation.

(c) Left: Input laser points, coloured by elevation. Right: GPISL surface.
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(e) Left: Input radar points, coloured by elevation. Right: GPISR surface.
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Fig. 8 Surface reconstruction of the car (a) using sparse laser or radar data. (b) Full reso-
lution laser point cloud, used to build the ground truth data (shown before correction of the
windows). (c) Surface estimated by GPISL and (d) Surface estimated by GPISR. 1136 in-
put points are used in each case. The surfaces are coloured by variance. Note the difference
in scale between the variances for GPISL and GPISR, the latter showing higher uncertainty
overall. The edges of the car show high uncertainty since the car was only partially observed
by both sensors.

5.2 Laser-Radar Data Fusion

Laser and radar data were fused using the GPISLR and GPISL∗R∗ fusion methods
described above. Table 2 shows the RMSE obtained using different covariance func-
tions to estimate the surface of the compressor. The most accurate results seem to
be obtained with the exponential kernel. However, the improvement is relatively in-
significant, in particular for the GPISL∗R∗ method, whose accuracy is consistently
the highest. We evaluated the performance of surface estimation on the 8 differ-
ent objects listed in Table 1 using each GPIS method considered in this paper.
Fig. 9(a) shows the RMSE for each surface estimate obtained using the exponential
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Table 2 RMSE (in m) obtained for the compressor using different covariance functions

GPISL GPISR GPISLR GPISL∗R∗

SqExp 0.074 0.134 0.071 0.063
Exp 0.069 0.125 0.064 0.060

Mat3 0.071 0.132 0.069 0.063
Mat5 0.074 0.134 0.071 0.063

Compressor Car Wall Wall2 Trailer Pole Pole2 Fence
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(a) Global errors for all objects (b) Local errors (car
windows).

Fig. 9 (a) RMSE (in m) obtained using the different GPIS methods to estimate the surfaces
of all 8 objects. (b) Local analysis of the RMSE in the area of the car windows, shown in
Fig. 10. The black error bars represent the standard deviation.

covariance function. As an example, Fig 10 shows the estimated surface of the
car using GPISL∗R∗ . The estimation of the surfaces of the compressor, the car and
the second pole (Pole2) were significantly improved by the fusion (GPISLR). In
addition, further improvement was obtained using the alternative fusion method
(GPISL∗R∗). The trailer was not significantly better represented by the state-of-
the-art fusion method (GPISLR), however, the improvement is clearer when using
(GPISL∗R∗). For the other objects, such as the walls, the improvements are less sig-
nificant. To better illustrate some of the benefits of the laser-radar fusion, Fig.9(b)
proposes a local analysis of the errors obtained with the car, focussing on the area
of the windows (see white box in Fig. 10). These results show that due to the poor
perception of the windows by the car, the accuracy of the surface estimation was
particularly improved by the laser-radar fusion process.
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(a) Surface estimated by GPISL∗R∗ .
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Fig. 10 Surface of the car (seen in Fig. 8(a)), reconstructed using sparse laser and radar data
(1136 points) fused with the GPISL∗R∗ method. The surface is coloured by uncertainty, with
low uncertainty shown in blue (see corresponding colour bar in (b)). Note that the windows
of the car were correctly reconstructed, with low uncertainty and no holes. The white box
delimitates the area used to perform the local analysis of errors in the area of the windows.

6 Conclusion

In this paper, we proposed an experimental analysis of the performance of continu-
ous 3D surface reconstruction from laser and mm-wave radar data using Gaussian
Process Implicit Surfaces, in a realistic field robotics scenario. We evaluated the
performance of single-sensor approaches with different resolutions of input data
and different kernels. We also compared the performance of these approaches with
a state-of-the-art fusion approach and a new alternative method to multi-sensor data
fusion. The GPIS fusion showed a significant improvement of the surface represen-
tations, especially when taking advantage of the complementarity of the two sensor
modalities (e.g. in the case of the car windows, consistently detected by the radar
but not by the laser). The proposed fusion process GPISL∗R∗ outperformed the state-
of-the-art fusion method.

The next step of this work will be to implement a test within the GPISL∗R∗ frame-
work to validate the consistency between the estimates obtained using laser and
radar perception separately, prior to fusion. This will allow for higher resilience in
challenging conditions, when laser and radar may not detect the same targets (e.g.
in the presence of airborne dust, as in [4]). In this paper, the 3D data were manu-
ally segmented before applying the GPIS approaches. A direct extension will be the
integration of automatic data segmentation in the same framework, or by analysing
large scale environmental datasets rather than pre-segmented objects. In addition,
the heterocedasticity treatment can be extended to sets of scans rather using a single
noise parameter for all the points provided by each sensing modality.
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Cluster-Based SJPDAFs for Classification
and Tracking of Multiple Moving Objects

Naotaka Hatao and Satoshi Kagami

Abstract. This paper describes a method for classifying and tracking multiple mov-
ing objects with a laser range finder (LRF). As moving objects are tracked in the
framework of sample-based joint probabilistic data association filters (SJPDAFs),
the proposed method is robust against occlusions or false segmentation of LRF
scans. It divides tracking targets and corresponding LRF segments into clusters
and able to classify each cluster as a car or a group of pedestrians. In addition,
it can correct false segmentation of LRF scans. We implemented the proposed
method and obtained experimental results demonstrating its effectiveness in outdoor
environments and crowded indoor environments.

1 Introduction

This paper describes a method using a horizontal laser range finder (LRF) to track
and classify multiple moving objects. Mobile robots need to detect and track moving
objects, and moving object tracking can also be used in traffic stream measuring,
security systems, and so on.

It is generally difficult to identify individual moving objects from horizontal LRF
scans in crowded areas because the shapes of objects are not static, and some moving
objects are occluded by other moving objects. Multiple hypothesis approaches are
often efficient at coping with these uncertainties. Joint probabilistic data association
filters (JPDAFs) [1] and multiple hypothesis tracking (MHT) are well-known track-
ing algorithms using multiple hypothesis methods [2], and several modifications of
these algorithms have been proposed to improve tracking performance in cluttered
environments [3][4][5]. These algorithms enumerate the correspondences between
features extracted from sensor data and moving objects and build hypotheses using
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sets of these correspondences. As these algorithms can handle false positives and
negatives, they are able to track moving objects reliably even in noisy environments.

Particle filters are robust methods for tracking moving objects, but normal parti-
cle filters are unsuitable for tracking multiple targets because particles easily become
gathered around a single target. Although several methods have been proposed to
overcome this problem [6][7], they do not have a mechanism to treat false positives
or negatives. Schulz et al. proposed the use of sample-based JPDAFs (SJPDAFs),
which use particle filters instead of Kalman filters used in normal JPDAFs [8].

It is important to identify categories of moving objects. Because the shapes of
LRF scans corresponding to moving objects are not stable, many researchers have
used time-series LRF scans to classify such objects [9][10][11]. Their methods,
however, assume that pedestrians in a group have a same velocity vector and do
not explicitly treat the merging and separation of groups of moving objects.

Candidates of moving objects are extracted from LRF scans by dividing the scan
points into segments, and segmenting LRF scans correctly is also a difficult prob-
lem. If the gap between adjacent LRF scan points exceeds a threshold distance,
it becomes a boundary of segments.Segments, however, do not always correspond
one-to-one with moving objects. For example, pedestrians often walk so close to
each other that an LRF cannot measure the space between them. And LRF scans
corresponding to a car are often divided into several parts.

In this paper, we propose an classification and tracking method based on
SJPDAFs. SJPDAFs are robust against false positives and negatives, and they make
it possible to flexibly design individual trackers using particle filters. The proposed
method has two advantages to track moving objects effectively in the real world.
The first is that it generates additional hypotheses to cope with the above-mentioned
false segmentation. The second is that it divides tracking targets and corresponding
LRF segments into clusters and classify each cluster as a car or a group of pedestri-
ans. The numbers of pedestrians in clusters are also estimated, and each pedestrian is
tracked individually. Individual tracking enables the merging or splitting of clusters.

This paper is organized as follows. An overview of the proposed method is pre-
sented in Section 2, and the methods for detecting moving object candidates are
described in Section 3. The proposed method is described in greater detail in Sec-
tion 4, experimental results are presented in Section 5, and a conclusion is given in
Section 6.

2 Multiple Moving Object Tracking Using SJPDAFs

2.1 Overview of SJPDAFs

This section briefly introduces the concept of SJPDAFs. Suppose that nk moving
objects are being tracked and mk features are measured at time k. For convenience
we let i denote the ID number of a moving object and let j denote the ID number of a
feature. XXXk = {xxxk

1, · · · ,xxxk
i , · · · ,xxxk

nk
} and ZZZ(k) = {zzz1(k), · · · ,zzz j(k), · · · ,zzzmk(k)} denote
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Table 1 Example hypotheses: the case of two moving objects and three features

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12 θ13

xxxk
1 zzz0(k) zzz0(k) zzz0(k) zzz0(k) zzz1(k) zzz1(k) zzz1(k) zzz2(k) zzz2(k) zzz2(k) zzz3(k) zzz3(k) zzz3(k)

xxxk
2 zzz0(k) zzz1(k) zzz2(k) zzz3(k) zzz0(k) zzz2(k) zzz3(k) zzz0(k) zzz1(k) zzz3(k) zzz0(k) zzz1(k) zzz2(k)

mk −|θ | 3 2 2 2 2 1 1 2 1 1 2 1 1

the state vectors of moving objects and the features, respectively. In addition, ZZZk

denotes the sequence of all features up to time k.
As mentioned above, SJPDAFs use particle filters to estimate the states of mov-

ing objects. SJPDAFs deploy N particles per moving object. The prediction and
resampling steps of SJPDAFs are the same as those of normal particle filters, but
the likelihoods of particles are calculated by the following expressions.

ωk
i,n = α

mk

∑
j=0

β ji p(zzz j(k)|xxxk
i,n) (1)

xxxk
i,n and ωk

i,n denote the state vector and the likelihood of the nth particle in ith
particle set at time k, respectively. β ji is calculated as follows:

β ji = ∑
θ∈Θ ji

[P(θ |ZZZk)] (2)

where

P(θ |ZZZk) = αγ(mk−|θ |) ∏
( j,i)∈θ

1
N

N

∑
n=1

p(zzz j(k)|xxxk
i,n). (3)

θ and P(θ |ZZZk) respectively denote a hypothesis and its likelihood. γ denotes the
probability that an observed feature is a false alarm (false positive), and mk − |θ |
denotes the number of false alarms in θ .Θ ji denotes the set of all hypotheses for
which zzz j corresponds to xxxi, and α represents a normalizer.

We assume that two objects are being tracked and three features are measured.
All possible hypotheses are listed in Table 1, where zzz0(k) indicates a false negative.
For example, in θ5, xxx1 corresponds to zzz1(k) and no feature that corresponds to xxx2 is
found. Also, in this example, Θ12 equals {θ2,θ9,θ12}.

The original implementation of SJPDAFs uses local minima of LRF scans as
the features. It uses occupancy grid maps to calculate p(zzz j(k)|xxxk

i,n), whereas the
proposed method uses the shapes of contours of moving objects. See Sections 4.2
and 4.3 for details.

A major weakness of (S)JPDAFs is that they cannot estimate the number of mov-
ing objects, and the number of moving objects is estimated in a separate process. In
the original implementation of SJPDAFs, it is assumed that the change in the num-
ber of moving objects follows a Poisson process, and the number of moving objects
is calculated as follows:
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P(Nk|MMMk) = α ·P(mk|Nk,MMMk) ·P(Nk|MMMk−1)

= α ·P(mk|Nk) ·∑
n
[P(Nk|Nk−1 = n) ·P(Nk−1 = n|MMMk−1)] (4)

Nk denotes the number of moving objects at time k, and MMMk denotes the sequence
of the number of features up to time k.

2.2 Cluster-Based SJPDAFs with Classification

This section describes the overview of the proposed method. The proposed method
works both on LRFs fixed on the ground and on LRFs mounted on mobile robots.

In the original work on SJPDAFs, LRFs were mounted at a height of 40 cm and
detected the legs of persons. In the proposed method, in contrast, LRFs are placed
at about the height of a person’s chest. This is because the detection of small objects
such as legs at a large distance is unstable. In addition, if the LRFs on outdoor
mobile robots are mounted low, the laser beams often hit the ground.

The original implementation of SJPDAFs estimates the number of people within
the entire sensor area by assuming a Poisson process. In the real world, however, the
areal density of moving objects varies considerably, thus a Poisson process is not
suitable for representing the change in the number of moving objects. The proposed
method therefore uses cluster-based SJPDAFs. A “cluster” in this paper means a set
of SJPDAF particle filter components and corresponding LRF segments. “Segment”
means a set of LRF scan points, and the boundaries of segments are placed where the
gaps between adjacent scan points are large. Estimation of the number of pedestrians
and classification are performed for each cluster.

The proposed tracking method is performed as follows:

1. Moving object candidates are extracted from the latest LRF scan. Each candidate
is an LRF segment. If the “Extended Trajectories” method described in Section
3 is used, initial grouping of segments is performed.

2. Particles in existing clusters are updated according to p(xxxk
i,n|xxxk−1

i,n ), and corre-
sponding segments are enumerated.

3. Merging and splitting of clusters are performed. If two particle filters belonging
to different clusters share a corresponding segment or grouped segment, those
clusters are merged. In contrast, if a set of particle filters no longer shares corre-
sponding segments with the remaining particle filters in the same cluster, the set
of particle filters is split as a new cluster. (see Section 4.4 for details)

4. Each cluster is updated independently. (see Sections 4.2 and 4.3 for details)
5. Classification and estimation of the number of pedestrians are performed for each

cluster. (see Section 4.1 for details)
6. New clusters are initialized for segments that are not associated with existing

clusters.
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3 Extraction of Candidate Moving Objects and Initial Velocity
Estimation

Before moving objects can be tracked, candidate moving objects must be ex-
tracted from LRF scans. Three extraction methods are implemented in the proposed
method.

1. Occupancy grid map with a polar coordinate system for fixed LRFs
2. Occupancy grid map with a Cartesian coordinate system for indoor robots
3. Extended Trajectories for outdoor robots

Extraction of moving object candidates using occupancy grid map is a common
method. Grid maps are generated in advance before starting tracking. Each occu-
pancy grid cell has one of three states: “free,” “occupied,” or “unknown.” “Occu-
pied” means that there are static objects in the grid cell, whereas “free” means that
there are no objects in the grid cell. If LRF scans appear in free grid cells, those
scans might be associated with moving objects.

If the LRFs are fixed in the ground, grid maps with polar coordinate systems are
selected. The origins of the polar coordinate systems are same as the measurement
origins of the LRFs. This method has the lowest computational cost. If the LRFs are
mounted on robots that move in indoor environments (i.e., they can estimate their
coordinates precisely), grid maps with a Cartesian coordinate systems are selected.

If, on the other hand, the LRFs are mounted on robots that move outdoor envi-
ronments, the “extended trajectories” method described below is used. This method
has two advantages. The first is that it can estimate velocities. Since there are fast-
moving objects in outdoor environments, tracking often fails if the initial velocity
vectors follow a zero-centered Gaussian distribution. The second advantage is that
the proposed method can perform initial grouping of LRF segments.

The “Extended Trajectories” extraction method also uses a grid map in which
each grid cell has one of three states: “Unknown”, “Foreground”, “Background”.
LRF scans are transformed to global coordinates using the odometry of the robot.
Candidate moving objects at time k are extracted according to the following
procedure.

1. Grids within L1 mm of LRF scan points from time k − t1 to time k are set as
“Foreground.”

2. Grids within L2 mm of LRF scan points from time k− t2 to time k− t1 are set as
“Background.” Grids that are already set as Foreground are overwritten.

3. Foreground regions adjacent to Background regions are enumerated. Isolated
foreground regions derive from false positives.

4. If an LRF scan segment at time k is on a Foreground region enumerated in step
3, it is extracted as a candidate moving object.

Fig. 1 shows the results of moving object initialization. This procedure builds
“extended” trajectories of moving objects. That is, if there are moving objects, fore-
ground regions growing on background regions appear.
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Fig. 1 Results of moving object initialization. Blue and aqua regions respectively indicate
“Background” and “Foreground” regions. Red points and white arrows respectively indicate
extracted candidate moving objects and their velocities.

The velocity vector of the jth candidate is estimated using the following
expressions.

|v j|=
√
(xo j − xb j)

2 +(yo j − yb j)
2 +L2

t1
(5)

θ j = arctan((yo j − yb j),(xo j − xb j)) (6)

xxxo j = (xo j ,yo j ) denotes the centroid of LRF scan points in the corresponding
foreground region, and xxxb j = (xb j ,yb j ) denotes the centroid of border grids between

the foreground and background regions. |v j| and θ j respectively denote the esti-
mated values of the velocity and angle of the jth candidate. In Eq.(5), the moving
distances are approximated by sums of L2 (the size of expansion) and the distances
between centroids of border grids and the centroids of the current LRF scan points.

These estimated values are used for initialization of particles in SJPDAFs. If there
are two background regions adjacent to the corresponding foreground region, two
estimated values of velocity vectors are generated. In this case, particles are divided
into two groups and each group is given a separate velocity vector.

Initial grouping of LRF segments is performed using extended trajectories. Seg-
ments in the same foreground region belong to the same group. In this process,
separated LRF segments associated with a car belong to the same group.

4 Moving Object Classification and Tracking Classification
Using Cluster-Based SJPDAFs

The proposed method divides LRF segments and particle filters into several clusters,
and classification and tracking are performed independently for each cluster.

After classification of each cluster is performed, corresponding particle filters are
applied. The proposed method assumes that LRF scans corresponding to pedestrians
form cylindrical shapes and those corresponding to cars form rectangular shapes. It
also uses different methods to build hypotheses for pedestrians and cars.
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Table 2 Class definition of SVM

c0 c1 c2 c3 · · ·
false positive one car one pedestrian two pedestrians · · ·

4.1 Classification and Estimation of Number of Moving Objects

The proposed method performs classification and estimation of the number of
pedestrian using a support vector machine (SVM). As the shapes of LRF scan seg-
ments are not stable, the method uses a time-series estimation.

The class definition of moving objects is shown in Table 2, where cn indicates
the label of each class.

We define the feature vector of LRF scans in a cluster as zzz f (k) and define a set
of feature vectors from time 0 to k as Zk

f = {zzz f (0) · · · zzz f (k)}. The value we want to

estimate is P(cn|Zk
f ), and using the same assumption as in Eq.(4) we obtain

P(cn(k)|Zk
f ) = α ·P(z f (k)|cm(k)) ·P(cm(k)|Zk−1

f ) (7)

P(cn(k)|Zk−1
f ) = ∑

m
[P(cn(k)|cn(k− 1) = m) ·P(cn(k− 1) = m|Zk−1

f )] (8)

And from Bayes’ theorem we obtain

P(zzz f (k)|cn) = α
P(cn|zzz f (k))

P(cn)
(9)

P(cn|zzz f (k)) can be estimated using an SVM, and P(cn) can be estimated using
the SVM training sets. The features for the SVM are defined as followed:

z f 0 : Number of LRF segments
z f 1 : Sum of lengths of LRF segments
z f 2 : Average speed
z f 3 : Difference between angle of directed bounding box

and angle of average velocity vector
z f 4 : Length of long side of directed bounding box
z f 5 : Length of short side of directed bounding box
z f 6 : Residual error between directed bounding box

and LRF scan points

Once a cluster is classified as a “False Positive,” all corresponding particle filters
are removed and tracking finishes. If the cluster class changes from “car” to “pedes-
trian(s)” or from “pedestrian(s)” to “car”, new particle filters are deployed. In these
cases, old particle filters are not removed immediately and continue to be tracked
in preparation for false classifications. The average velocity vector of old particle
filters is carried on as the initial velocity vector of new particle filters.
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x1 z1

Fig. 2 Results of tracking a group of pedestrians. Dark green circles denote individual par-
ticles. Light green circles and white arrows denote results of particle filters (position, radius
and velocity). White circles denote the robot, and black regions denote occluded areas.

Table 3 Hypothesis likelihood results for Fig. 2 left

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

xxxk
1 zzz0(k) zzz0(k) zzz0(k) zzz0(k) zzz1(k) zzz1−1(k) zzz1−2(k) zzz1−1(k) zzz1−2(k)

xxxk
2 zzz0(k) zzz1(k) zzz1−1(k) zzz1−2(k) zzz0(k) zzz0(k) zzz0(k) zzz1−2(k) zzz1−1(k)

P(θ |Zk) 0.0054 8.7e-7 1.1e-9 0.027 3.2e-15 0.16 6.3e-21 0.80 1.2e-27

Table 4 Hypothesis likelihood results for Fig. 2 right

θ1 θ2 θ3

xxxk
1 zzz0(k) zzz0(k) zzz1(k)

xxxk
2 zzz0(k) zzz1(k) zzz0(k)

P(θ |Zk) 2.8e-9 0.93 0.068

4.2 Tracking and Hypothesis Building for Pedestrians

The proposed method assumes that pedestrians have a cylindrical shape. The nth
particle for the ith pedestrian at time k is defined as follows:

xxxkkk
i,n = (xk

i,n,y
k
i,n,v

k
i,n,θ k

i,n,r
k
i,n)

T (10)

where vk
i,n, θ k

i,n and rk
i,n respectively denote the velocity, direction, and radius of the

cylinder. The likelihood of a particle is calculated using sum of the distances from
LRF scan points in a corresponding segment to the circumference of the particle.

p(z j(k)|xk
i,n) =

1√
2πσp

exp(−∑
mk

j
l=0(d

k
i,n,l)

2

2mk
jσ2

p
) (11)

dk
i,n,l = |x̂k

i,n − z j,l(k)|− rk
i,n (12)

z j,l(k) denotes the lth LRF scan point in the jth LRF segment at time k, mk

denotes the number of LRF scans in the corresponding segment, and x̂k
i,n =(xk

i,n,y
k
i,n)

denotes the position of the nth particle. σp is a constant.
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When several pedestrians close together are moving, segmentation of a LRF scan
often fails and large LRF segments are obtained. To cope with this problem, the
method generates hypotheses in which large segments are divided into several small
segments. How to divide the segments is decided on the basis of a single-step result
of the SVM P(zzz f (k)|cn) described in Sections 4.1. For example, Hypothesis gener-
ation results corresponding to the left side of Fig. 2 are listed in Table 3. In this case,
although only one segment is detected, the class that has the largest P(zzz f (k)|cn) is
c3 (two pedestrians). Thus, hypotheses in which the segment is divided into two
segments are built. zzz1−1(k) and zzz1−2(k) denote divided segments. The most reliable
hypothesis is θ8, in which each tracker corresponds to divided segments.

Hypothesis generation results corresponding to the right side of Fig. 2 are listed
in Table 4. The class that has the largest P(zzz f (k)|cn) is c2 (one pedestrian) and
dividing of segments does not occur. In this case the left pedestrian is hidden by the
right pedestrian, and the most reliable hypothesisθ2 supports this status.

4.3 Tracking and Hypothesis Building for Cars

There are two types of LRF scans corresponding to cars. One is associated with the
car body, and the other is associated with the window frames. Both, however, are
approximately rectangular.

Thus the nth particle for the ith car at time k is defined as follows:

xxxkkk
i,n = (xk

i,n,y
k
i,n,v

k
i,n,θ

k
i,n,Llk

i,n,Lwk
i,n)

T (13)

where Llk
i,n and Lwk

i,n respectively denote the lengths of the long and short sides of
the rectangle.

p(z j(k)|xk
i,n) =

1√
2πσc

exp(−∑
mk

j
l=0(d

k
i,n,l)

2

2mk
jσ2

c
) (14)

dk
i,n,l = min

xl∈Lk
i,n

|z j,l(k) − xl | (15)

Lk
i,n denotes the rectangle constructed using xk

i,n. σc is a constant.
Unlike LRF scan segments corresponding to pedestrians, those corresponding to

cars are often separated. The proposed method therefore generates hypotheses in
which several segments correspond to one tracking target. Fig. 3 shows a result of
car tracking. Although the shapes of individual LRF segments change dynamically,
the overall shape remains rectangular. Hypothesis generation results corresponding
to Fig. 3(1) and Fig. 3(2) are listed in Table 5 and Table 6. (where hypotheses that
have small likelihoods are omitted). θ17 in Table 5, for instance, means that zzz1, zzz2,
and zzz4 correspond to the car, and zzz3 and zzz5 are false positives. The most reliable
hypothesis Table 5 is θ28, in which zzz3(the scan segment corresponding to the driver
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z1

(1)

z2
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z5

z4

(2)

z4

z3

z1 z2

(3)

z1

Fig. 3 Result of tracking a car. The car was climbing up a ramp, and LRF firstly detected the
window frames, and then detected the body. Dark green squares denote individual particles.
Light green squares and white arrows denote results of particle filters (position, angle, size of
rectangle, and velocity)
.

Table 5 Example of hypotheses for a car (Fig. 3(1))

θ17 θ18 θ21 θ24 θ28 θ29 θ31

xxxk
1 zzz1,zzz2,zzz4 zzz1,zzz2,zzz5 zzz1,zzz4,zzz5 zzz2,zzz4,zzz5 zzz1,zzz2,zzz4,zzz5 zzz1,zzz3,zzz4,zzz5 zzz1,zzz2,zzz3,zzz4,zzz5

P(θ |Zk) 0.011 0.019 0.022 0.0071 0.63 0.048 0.24

Table 6 Example of hypotheses for a car (Fig. 3(2))

θ7 θ9 θ10 θ12 θ13 θ14 θ15

xxxk
1 zzz1,zzz4 zzz2,zzz4 zzz3,zzz4 zzz1,zzz2,zzz4 zzz1,zzz3,zzz4 zzz2,zzz3,zzz4 zzz1,zzz2,zzz3,zzz4

P(θ |Zk) 3.7e-4 3.1e-4 2.7e-4 0.016 0.018 1.5e-4 0.96

of the car) is a false positive. The most reliable hypothesis in Table 6, on the other
hand, is θ14, in which all segments are obtained from the car.

4.4 Merging and Splitting of Clusters

If a set of particle filters no longer shares corresponding segments with the remain-
ing particle filters in the same cluster, it is split as a new cluster. In contrast, if two or
more particle filters belonging to different clusters share a corresponding segment
or grouped segment, these clusters are merged. The proposed method uses two types
of merging: temporary merging and permanent merging.

If one or both of the clusters is classified as a car or they have different veloc-
ity vectors, temporary merging is used (Fig. 4). In this case, the hypotheses for
SJPDAFs are created using all LRF segments and particle filters that belong to both
clusters. In the current implementation, the P(cn|Zk

f ) values for clusters that are tem-
porarily merged are updated individually. Corresponding LRF scan segments are
selected based on the most reliable SJPDAF hypothesis. If one cluster departs from
the other again and the “Foreground region” is divided into two, temporary merging
is terminated. Using this framework, the proposed methods can treat clusters that
contain both cars and pedestrians.
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Fig. 4 Example of temporary merging: G21 (a pedestrian) and G22 (a car) were temporarily
merged

(1) (3)(2)

Fig. 5 Example of permanent merging: G0 (a pedestrian) and G2 (a pedestrian) were merged
permanently because they had almost same velocity vectors

Table 7 Numbers and frames of training data set

class c0 c1 c2 c3 c4 c5 c6

false positive car 1 person 2 persons 3 persons 4 persons 5 or more persons
numbers 212 18 318 54 9 5 3
frames 868 899 20462 3631 352 267 58

Table 8 Results of tracking in an outdoor environment: Per-object accuracies

Target Succeeded Disrupted in occ. Failed Mismatch FP
Pedestrian 89 16 2 4 41

Car 7 0 0 0 2

If both approaching clusters are classified as pedestrian groups and the differ-
ences between their average speeds and the directions of their velocity vectors are
below the thresholds, permanent merging is used (Fig. 5). In this case, the P(cn|Zk

f )
values of both clusters are integrated.
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5 Classification and Tracking Experiments and Evaluations

5.1 Classification and Tracking Experiments in an Outdoor
Environment

This section describes experimental results obtained using the proposed method in
an outdoor environment. An outdoor mobile robot equipped with a LRF(Hokuyo
Top-URG) mounted about 800 mm above the ground was allowed to move over a
distance of about 250 m in the University of Tokyo Hongo campus. It traveled the
course back and forth four times, and LRF scans were obtained every 100 ms. The
LRF scans obtained in first three runs were used to train the SVM, and the LRF
scans obtained in the last run are used to evaluate accuracy. The total numbers of
each class and the total numbers of frames detected each class are listed in Table
7. No groups that consist of more than five pedestrians are appeared in the training
data, thus the the maximum number in a group is limited five.

Table 9 Results of classification in an outdoor environment: Per-object accuracies

Target TP FP FN Precision Recall
Pedestrian 111 41 11 73.0% 91.0%

Car 4(3) 2 1 77.8% 87.5%

Table 10 Results of classification and tracking in an outdoor environment: Per-frame accu-
racies

Target TP FP FN Precision Recall
Pedestrian 11116 1609 456 87.4% 96.1%

Car 344 44 42 88.6% 89.1%

Fig. 6 Result of car tracking. G11 was initially classified as a pedestrian when it was far away
from the robot because it initially produced a small LRF segment (left). When it approached
the robot, however, the LRF segments became larger and it was correctly classified as a car
(center). Tracking was terminated successfully (right).
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Fig. 7 Scenes of tracking experiment in a crowded environment. White circles indicate the
position of the LRF.

Table 11 Tracking results: Per-object accuracies in a crowded environment

Target Succeeded Disrupted in occ. Failed Mismatch FP
Pedestrian 625 114 12 37 2

The parameters defined in Section 3 were set to t1 = 1 sec, t2 = 2 sec, L1 = 300
mm, and L2 = 500 mm. These parameters are suitable for detecting objects moving
at a velocity between 500 and 3000 mm/s. The number of particles per object was
500, and average processing time for one frame, including the processing time for
the “Extended Trajectory” method described Section 3) was about 42.7 ms (Intel
Core i7-940XM). Within the range of the LRF were 8 cars and 113 pedestrians.

The per-object accuracies of the tracking are listed in Table 8. The meaning of
the states are the following.

1. Succeeded: Tracking completed successfully.
2. Disrupted in occ.: Tracking terminated one in an occluded area, and the same

object was detected again
3. Failed Tracking failed in non-occluded area.
4. Mismatch The particle filter migrated another object.

Table 9 and Table 10 shows The per-objects accuracies of the classification and
the per-frame accuracies of the tracking are listed in Table 9 and Table 10, where
‘TP”, “FP,” and “FN” mean “True positive.” “False positive,” and “False Negative.”.
The number in parentheses in Table 9 is the number of cars first mistakenly classified
as a group of pedestrians but later reclassified correctly. Fig. 6 shows an example of
such a case. Initially erroneous classification is also the reason that the car Recall
value in Table 10 is lower than the pedestrian Recall value there. In these experi-
ments, many false positives were the result of a care being classified as a pedestrian
by the “Extended Trajectory” initializing method.



316 N. Hatao and S. Kagami

5.2 Classification and Tracking Experiments in a Crowded
Indoor Environment

This section describes experimental results obtained using the proposed method in
a more crowded environment. One SICK LMS200 was placed on a booth at an
exhibition and the real-time performance of the proposed system was demonstrated.
The exhibition lasted three days, and we extracted a subset of the whole data for the
evaluation (about 10 minutes at the most crowded time). As the LRF was fixed to
the ground, the initialize method was the occupancy grid with a polar coordinate.

The SVM data for estimation of numbers of pedestrians was the same as that in
the outdoor experiment described in the preceding section. As this experiment was
performed in an indoor environment without cars, the class “Car” was removed.

The average numbers of groups and individual pedestrians were 18.3 and 23.8
respectively. The number of particle per object was 500, and average processing
time for one frame was about 53.4 ms (Intel Core i7-940XM). Although the number
of particles was much greater than that in the experiment described in the preceding
section, the initialization method using a grid has a much smaller computation cost
than the “Extended Trajectory” method does. As a result, processing time did not
become worse. The LRF scans were obtained every 120 ms, so the proposed method
could run in real time.

Fig. 7 shows the scenes of the tracking, and the per-object accuracies are listed
in Table 11. As the grid map did not update during the evaluation, many stopping
persons were detected. Therefore only the numbers of pedestrians that moved more
than 1 m are listed in Table 11. As the LRF was fixed, there were far fewer false pos-
itives than there were in the outdoor results. The number of pedestrians “Disrupted
in occ.” was large, however, because there were several persons were standing near
the LRF and they caused large occluded areas.

6 Conclusion

This paper described a method for classifying and tracking multiple moving objects
with a laser range finder. The experimental results obtained when we implemented
the proposed method using a personal mobility robot demonstrated its effectiveness
in the real world. The number of false positives in outdoor environments is a major
problem to overcome. We are now implementing initializing test algorithms that use
several time-series LRF scans to determine whether or not tracking should start.

A major theoretical shortcoming of this method is that it performs classification
and estimation of the number of pedestrians independent of the results of SJPDAFs.
In future work, we are planning to integrate classification and tracking using MHT
frameworks.
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GPmap: A Unified Framework for Robotic
Mapping Based on Sparse Gaussian Processes

Soohwan Kim and Jonghyuk Kim

Abstract. This paper proposes a unified framework called GPmap for reconstruct-
ing surface meshes and building continuous occupancy maps using sparse Gaussian
processes. Previously, Gaussian processes have been separately applied for surface
reconstruction and occupancy mapping with different function definitions. How-
ever, by adopting the signed distance function as the latent function and applying
the probabilistic least square classification, we solve two different problems in a sin-
gle framework. Thus, two different map representations can be obtained at a single
cast, for instance, an object shape for grasping and an occupancy map for obstacle
avoidance. Another contribution of this paper is reduction of computational com-
plexity for scalability. The cubic computational complexity of Gaussian processes
is a well-known issue limiting its applications for large-scale data. We address this
by applying the sparse covariance function which makes distant data independent
and thus divides both training and test data into grid blocks of manageable sizes.
In contrast to previous work, the size of grid blocks is determined in a principled
way by learning the characteristic length-scale of the sparse covariance function
from the training data. We compare theoretical complexity with previous work and
demonstrate our method with structured indoor and unstructured outdoor datasets.

1 Introduction

Learning maps from observations is a fundamental problem in robotics. As rep-
resentations of the world, accurate maps are essential for robots to perform tasks
successfully while interacting with the world. For instance, mobile robots navigate
through environments using occupancy maps, while manipulators grasp unknown
objects based on their shape models. In addition to accuracy, scalability is another
important issue in robotic mapping. With the emergence of high definition range
sensors such as Velodyne laser scanners and Microsoft Kinects, millions of data
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points are acquired even from a single snapshot. In large-scale environments such
as university campuses and cities, this scalability issue becomes more serious.

In this paper, we use machine learning techniques to generate accurate and scal-
able robotic maps. Particularly, we combine Gaussian process implicit surfaces
(GPIS) [31] and Gaussian process occupancy mapping (GPOM) [19] to build two
different kinds of map representations, surface meshes and occupancy maps in a
unified framework. This is made possible by applying Gaussian process regression
even to GPOM with a signed distance latent function and applying the probabilistic
least square classification [21].

In addition, we apply the sparse covariance function [16] to address the cubic
computational complexity of Gaussian processes. Most of approximation methods
use a subset of training data to reduce the computational complexity [5, 25], but the
data selection relies on heuristics. Instead, we partition both training and test data in
a principled way by training the characteristic length-scale of the sparse covariance
function and discretizing the world into grid blocks with the hyperparameter. Then,
the test positions within a block are correlated only with the training data in itself
and its neighboring blocks. Therefore, active data selection and data clustering based
on heuristics in previous approaches is substituted with training hyperparameters of
the sparse covariance function.

Moreover, in order to handle arbitrary and complex shapes, we use derivative ob-
servations for training data based on the fact that the derivative of a Gaussian process
is still a Gaussian process [28]. Because the gradient of the signed distance func-
tion is the surface normal vector, we estimate surface normals from the hit points
and the robot positions and use them as derivative observations. As a result, we
extract zero-valued iso-surfaces from the signed distance scalar fields using march-
ing cubes [15] and build continuous occupancy maps by applying the probabilistic
least square classification. We compare theoretic complexity with previous work and
demonstrate our method with structured indoor and unstructured outdoor datasets.
The map accuracy and runtime of occupancy maps is compared with octomaps [8].

The rest of the paper is organized as follows. We summarize related work in
Section 2 and describe the overview of our method in Section 3. The mathematical
foundation of our method, Gaussian processes, is explained in Section 4, while the
post processing for surface reconstruction and occupancy mapping follows in Sec-
tion 5. We demonstrate our method with real datasets and compare with octomaps
in Section 6 and conclude the paper with future work in Section 7.

2 Related Work

Occupancy grid maps [17] have been widely used for mobile robot navigation. The
world is discretized into disjoint grid cells, and the occupancy of each cell is updated
incrementally and independently. Thanks to the independence assumption between
observations, it runs fast and produces accurate maps, but requires huge amount of
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memory to store every single occupancy value of the environment. To address this
problem, octomaps [32, 8] apply a memory-efficient data structure, octrees which
maintain updated cells only and support multi-resolution map queries. By updating
the occupancy maps scan-by-scan rather than ray-by-ray, the map accuracy is further
enhanced in octomaps.

As an alternative map representation, elevation maps [4] have also been applied
for legged robot locomotion. Because it stores height of every point on the ground,
less memory is consumed, compared with occupancy grid maps. However, it is tech-
nically a 2.5 dimensional representation and thus suitable for terrain maps, not for
arbitrary and complex environments. Recently, Gaussian processes have been ap-
plied to elevation maps [30]. Non-stationary covariance functions were adopted to
reflect local characteristics [14, 20], and visibility information was exploited to en-
hance the map accuracy [3].

Meanwhile, Gaussian processes have also been applied to occupancy mapping
[19]. Because a Gaussian process prior assumes a joint Gaussian distribution be-
tween outputs of a latent function, more accurate and continuous occupancy maps
have been obtained compared with conventional occupancy grid maps. Another ben-
efit of this approach is that map uncertainties are also provided, which can be used
for exploration and path planning. Since Gaussian processes require discrete data
points for training data, rays acquired from range sensors need to be discretized into
several knot points, which increases the size of training data dramatically. Integral
kernels [18] addressed this problem by integrating output values along the rays.

Interestingly, Gaussian process implicit surfaces [31] have been proposed for sur-
face reconstruction. A signed distance function was adopted as a latent function
from which zero-valued iso-surfaces were extracted. In the robotics community, it
was applied for estimating unknown object shapes for grasping [2] by combining
visual, haptic and laser data and for assessing mesh uncertainties to plan underwa-
ter inspection paths [6]. Gaussian process implicit surfaces were also represented
with a beam-space parameterization and further used for adaptive compression of
3D laser data [27].

However, the cubic computational complexity of Gaussian processes limits its
applications for large-scale environment mapping. Thus, many approximation meth-
ods have been proposed to speed up the runtime of Gaussian processes. A kd-tree
was used to search for nearest training data of a test position, but it requires to build
a new covariance matrix for each test position [26, 30, 19]. Based on the divide-and-
conquer strategy, training data was clustered into manageable sizes, and Gaussian
process experts were applied to each clusters [9, 10, 11]. In order to take the large
size of test data into account, both training and test data was partitioned together, and
local Gaussian processes were applied [12, 13]. However, those approaches heuris-
tically determine the size of clusters or threshold the correlation between data. In
this paper, we apply the sparse covariance function [16] of which hyperparame-
ters are trained from data and partition both training and test data in a principled
way.
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Fig. 1 Flow chart of our unified framework, GPmap for surface reconstruction and occu-
pancy mapping using sparse Gaussian processes. PLSC stands for probabilistic least square
classification.

3 Overview of Our Unified Approach

Fig. 1 describes the overview of our unified framework called GPmap for occu-
pancy mapping and surface reconstruction. As training data, we use hit and free
points for function observations and surface normal vectors for derivative observa-
tions. For free points, we sample points on the rays just before the hit points, while
surface normals are estimated from nearest neighbors of the hit points. In order to
address the scalability problem of Gaussian processes, we partition the space with
grid blocks and store the training data in an octree. For the test positions of each
grid block, we locally apply a Gaussian process regression with the training data
in itself and its neighboring grid blocks. Given the means and variations of test
positions, we produce surface meshes by extracting zero-valued iso-surfaces using
marching cubes and build continuous occupancy maps by applying the probabilistic
least square classification. Detailed explanation of each step will be followed in the
next sections.

4 Gaussian Process Regression

Let us begin with the mathematical foundation of our method, Gaussian processes.
A Gaussian process is a non-parametric Bayesian approach to regression and classi-
fication. It is a distribution over functions and assumes a joint Gaussian distribution
between function outputs. Particularly, Gaussian process implicit surfaces (GPIS)
are designed to predict the signed distance function which maps every point on the
surface to zero and other points inside/outside of the surface to positive/negative
distances to the surface, respectively.

Suppose that we have point clouds acquired from range sensors. Since sensors
are not perfect, we assume that the output y of the signed distance function f at a
position x is corrupted by addictive Gaussian noise ε ,

y = f (x)+ ε, ε ∼N (0,σ2
n ) . (1)
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Given n noisy observations (X,y) = {(xi,yi)}n
i=1 and a test data (x∗, f∗), a Gaus-

sian process assumes a joint Gaussian distribution between outputs,[
y
f∗

]
∼N

(
0,
[

K+σ2
n I k∗

kT∗ k∗∗

])
,

K ∈ R
n×n, [K]i j = k(xi,x j) ,

k∗ ∈ R
n, [k∗]i = k(xi,x∗) ,

k∗∗ ∈ R, k∗∗ = k(x∗,x∗) , (2)

where k(x,x′) denotes the covariance function of outputs between two input posi-
tions x and x′, and a zero mean function is selected. See [23] for details.

Therefore, we can infer the predictive distribution of the test output f∗ which is
also a Gaussian distribution,

f∗ | x∗,X,y ∼N
(
μ∗,σ2

∗
)
,

μ∗ = kT
∗
(
K+σ2

n I
)−1

y ,

σ2
∗ = k∗∗ −kT

∗
(
K+σ2

n I
)−1

k∗ . (3)

Thus, from the estimated signed distances of test positions μ∗, a scalar field in the
three dimensional space, we can reconstruct surface meshes by extracting zero-
valued iso-surfaces and estimate continuous occupancy maps by squashing the
means μ∗ with variances σ2∗ into an S-shaped curve, a cumulative Gaussian den-
sity function. Details will be explained in Section 5.

The hyperparameters of covariance functions and σn are determined by maximiz-
ing the log marginal likelihood,

log p(y|X,θ ) =−1
2

yT(K+σ2
n I)−1y− 1

2
log |K+σ2

n I|− n
2

log2π , (4)

where | · | denotes the matrix determinant.

4.1 Sparse Mátern Covariance Function

The covariance function defines the correlation between two data points and thus
plays a pivotal role in Gaussian processes. The squared exponential covariance func-
tion is a common choice, but it is too smooth to handle complex and arbitrary ob-
ject shapes. Thus, we employ the Mátern covariance function, instead. However, its
correlation does not vanish to zero even though two data points are very far away,
which makes the covariance matrix dense in Eq. (2) and inverting it computationally
expensive. Therefore, we combine the Mátern covariance function and the sparse
covariance function to cover sudden changes in outputs and avoid the high compu-
tational complexity. The independency of the sparse covariance function enables us
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to partition both training and test data with grid blocks and to apply local Gaussian
processes to each block separately.

4.1.1 Mátern Covariance Function

We use the Mátern covariance function with ν = 3/2,

kMátern(x,x
′) = σ2

f

(
1+

√
3r

lM

)
exp

(
−√

3r
lM

)
, (5)

where r = |x− x′|, and the hyperparameters σ f and lM > 0 are called the signal
variance and the characteristic length-scale, respectively. Note that as the distance
between two points grows, the correlation decreases quickly. However, even if it is
huge enough, the correlation is still non-zero because of the exponential term.

4.1.2 Sparse Covariance Function

The sparse covariance function [16] is designed to make the covariance to be sparse
and thus to make the exact inference possible even with large datasets without any
approximation. It is defined as

kSparse(x,x
′) =

{
σ2

f

(
2+cos(2πrS)

3 (1− rS)+
1

2π sin(2πrS)
)

if rS < 1

0 if rS ≥ 1,
(6)

where rS = r/lS, and the characteristic length-scale lS > 0 .

4.1.3 Sparse Mátern Covariance Function

Since a product of two kernels is also a kernel, we multiply them together to take
advantages of both covariance functions,

kSparseMátern(x,x
′) = kSparse(x,x′) kMátern(x,x

′) . (7)

Fig. 2(a) compares different covariance functions. Recognize that when the dis-
tance between two points is greater than lS, the sparse and the sparse Mátern co-
variance functions vanish, while the Mátern covariance function still has non-zero
values. This is more evident when visualizing the covariance matrices. Notice that
all the coefficients of the Mátern covariance matrix in Fig. 2(b) is filled with non-
zero values, while the off-diagonal terms of the sparse Mátern covariance matrix in
Fig. 2(c) are set to zero, hence it is named the sparse covariance function.
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(a) Covariance, k(r) (b) KMátern (c) KSparseMátern

3lS

(d) Data Partioning

Fig. 2 The effects of the sparse covariance function. (1) Comparison between several co-
variance functions (σ f = 1, lS = 0.5, and lM = 0.2), (2) and (3) Covariance matrices of the
Mátern and sparse Mátern covariance functions with linearly spaced points between 0 and 1
(red: high, blue: small, and white: zero), and (4) Data partitioning with grid blocks. The data
in the red cube is independent of others outside of the extended cube.

4.1.4 Data Partitioning with Grid Blocks

The hyperparameter lS in the sparse covariance function also naturally controls the
data partitioning. Suppose that the space is divided into grid blocks of size lS as
shown in Fig. 2(d). Then, the distances between test positions in the red cube and
any training data out of the extended 3lS×3lS×3lS cube are greater than lS. In other
words, all the test points of the red cube in the center are totally independent of
the training data outside of the extended cube. Therefore, we apply local Gaussian
processes to the test positions in each grid block with the training data in itself
and its surrounding blocks. Note that because there exists correlation between the
training data inside and outside of the extended cube, this is not an exact inference
but a reasonable approximation of Gaussian processes.

To be more precise, we partition the training data with an octree of a resolution
lS and infer the predictive distribution of the test positions of each grid block, only
if there exist training data in the extended cube. This seems similar to the Gaussian
process approximation with a kd-tree [26, 30, 19] in that the training data is clus-
tered. However, our method predicts the posteriors for blocked test positions, not
for every single test position. In addition, our method also applies local Gaussian
processes as in [12, 13]. However, the size of the grid block is determined in a prin-
cipled way by learning the hyperparameter lS from the training data to maximize the
marginal likelihood in Eq. (4).

Now, let us focus on how much computational complexity is reduced with this
data partitioning. According to Eq. (3), for predicting the mean and variance of a
test position given n training data, we need to invert the n× n matrix, which costs
O(n3), and to multiply the n× n inverted matrix with the n× 1 vector, which costs
another O(n2). Therefore, for m test positions, the total computational complexity
is O(n3 + n2m).

Suppose that training and test data is evenly partitioned with k grid blocks. Then,
the number of training data would drop to 9n/k in the extended cube, and the num-
ber of test data in the red cube is m/k. Thus, the computational complexity decreases
significantly to O

(
n3/k2 + n2m/k2

)
. Note that predictions are repeated k times by
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Table 1 Comparison of computational complexity between various approximation methods
for Gaussian processes. ([methods] GP: Gaussian process, MGP: mixture of Gaussian pro-
cesses, and LGP (our method): local Gaussian processes, [parameters] n: number of training
data, m: number of test positions, and k: number of equally-divided grid blocks.) Note that
n ≈ m in large-scale environments.

GP MGP LGP (our method)

O(n3 +n2m) O

(
n3

k2 +
n2m

k

)
O

(
n3 +n2m

k2

)

individual Gaussian processes in each grid block. This is even faster than the previ-
ous work [9, 11] which clusters training data only and applies a mixture of Gaussian
processes. In that case, the predictions are repeated k times over the whole m test po-
sitions by k experts with n/k training data per cluster, and the results are merged into
one by a weighted sum. Thus, the computation complexity is O

(
n3/k2 + n2m/k

)
.

Table 1 summarizes the computational complexities of approximations for Gaussian
processes.

4.2 Derivative Observations

Since a Gaussian process is a linear estimator, the derivative of a Gaussian process is
still a Gaussian process. Thus, the covariances between function values and partial
derivatives, and between partial derivatives are well-defined as

cov

(
f ,

∂ f ′

∂x j

)
=

∂k(x,x′)
∂x j

, cov

(
∂ f
∂xi

,
∂ f ′

∂x j

)
=

∂ 2k(x,x′)
∂xi∂x j

. (8)

For details, refer to [28]. Note that by the definition of the signed distance function,
its partial derivative is the surface normal vector. Therefore, for each hit point, we
estimate the surface normal from nearest neighbors and flip to the robot positions.
However, the estimated surface normals are generally very noisy. Therefore, we
assume a different level of measurement noise σdn for the derivative observations,

∂y
∂xi

=
∂ f (x)

∂xi
+ εdn, εdn ∼N (0,σ2

dn). (9)

5 Marching Cubes and Probabilistic Least Square
Classification

In this section, we describe the post processing steps, marching cubes and proba-
bilistic least square classification in Fig. 1.
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5.1 Marching Cubes

Reconstructing surfaces from points clouds is a well-known problem in computer
graphics. Among various approaches, the marching cubes [15] is an algorithm to
extract iso-surfaces from a scalar field with a target value. For each cube, it deter-
mines intersecting vertices of the target value on each edge by interpolating two
values of the end points. In the previous section, we predicted the means of the
signed distances at each grid test position. Therefore, we can reconstruct surfaces
by extracting iso-surfaces from the means using marching cubes.

5.2 Probabilistic Least Square Classification

Now, we turn our focus to building occupancy maps. Since occupancy mapping is
a binary problem, applying Gaussian process classification might look more rea-
sonable. However, because the output values should be class labels, we can not
define a continuous latent function directly or use derivative observations. There-
fore, in order to combine surface reconstruction and occupancy mapping in a single
framework, we take a two-step approach using Gaussian process regression and
probabilistic least square classification as shown in Fig. 1. Because the predictive
distribution is a Gaussian, with a choice of a probit likelihood we can obtain class
probabilities by squashing the means μ∗ with variances σ2∗ in Eq. (3) through a
cumulative Gaussian density function Φ ,

p(o∗ = 1 | x∗) = Φ

(
αμ∗+β√
1+α2σ2∗

)
, (10)

where the binary random variable o∗ = 1 (occupied) or 0 (empty), and the param-
eters α and β are optimized by performing leave-one-out cross-validation on the
training set. Refer to [21] for details.

6 Experimental Results

Table 2 summarizes the benchmark datasets to be used for demonstration. Both
structured indoor and unstructured outdoor environments are included. Our method
was from 1.5 to 17 times slower than octomap. Recognize that the running time ratio
of our method to octomap is decreasing in general as the size of the environment
grows. This is because octomap updates free cells as well as occupied cells, while
our method only considers grid blocks which have training data. Thus, one of our
disadvantages is that our method is not suitable for dynamic environments. Instead,
our method provides continuous occupancy maps with map uncertainties which can
be used for exploration and path planning. We trained the hyperparameters of the
sparse Mátern covariance function and noise variances of function values and partial
derivatives with sampled datasets. (σ f = 3.6847× 10−3, lS = 3.4349× 10−1, lM =
1.8907× 10−1, σn = 2.2063× 10−3, and σdn = 5.2856× 10−1)
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Table 2 Datasets used for demonstration and corresponding running time of octomap and
our method (resolution = 0.1 m and ratio = ours/octomap)

Dataset Size (m3) Scans Points/Scan Ours Octomap Ratio

FR 0791 44×18×4 66 89,446 7.7 min 27.8 sec 16.6
Winter2 72×70×19 31 138,205 10.1 min 38.1 sec 15.9
Hauptgebaude2 62×65×18 36 189,163 9.5 min 98.6 sec 5.8
Gauss3 204×237×44 27 854,404 31.9 min 22.1 min 1.4

1 The octomap 3D scan datasets of University of Freiburg [7]
2 ETHZ ASL datasets [22]
3 The robotic 3D scan repository of Jacobs University [1]

6.1 Estimated Surface Normals

We first subsampled the hit points using a voxel grid filter [24] for fast surface
normal estimation. The point clouds were partitioned with octrees of size 0.05 m
and approximated with their centroids. This approach is known to compress the
size of point clouds with less loss of the details of the structure. Then, we stored
the subsampled point clouds into kd-trees and estimated normal vectors with the
eigenvectors associated with the smallest eigenvalues of the covariance matrices
created from the nearest neighbors within a radius of 0.1 m. Finally, to make sure
that surface normals are oriented towards the robot positions, we flipped them if
they made obtuse angles with corresponding rays. The surface normal vectors were
subsampled again with octrees of size 0.1m to remove redundant training data. The
free points were sampled on the rays just 0.1 m before the hit points.

Fig. 3 shows exemplary results of our method. In the structured environment the
normal vectors are estimated regularly towards inside of the cloister. On the other
hand, the estimated normal vectors on the tree leaves are very noisy and pointing
in almost every direction. This is why we introduced another noise variance for
derivative observations, σdn in Eq. (9). As expected, σdn was trained much higher
than the noise variance of function values σn.

(a) Structured environment (cloister) (b) Unstructured environment (tree)

Fig. 3 Estimated surface normal vectors
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(a) Octomap (b) Occupancy Map (c) Surface Mesh

Fig. 4 Corridor (dataset: FR 079 [29])

(a) Octomap (b) Occupancy Map (c) Surface Mesh

Fig. 5 Cloister (dataset: Hauptgebaude [22])

6.2 Occupancy Maps and Surface Meshes

Fig. 4 and 5 depict octomaps and our results of a corridor and a cloister, respectively.
In both results, octomaps reflect the structures very well but have some errors such
as holes on the ground and noise on the walls. Our method, on the other hand,
generated more accurate and consistent occupancy maps. Surface meshes are also
well reconstructed, but they are a little bit smoothed. For example, the arches at
the cloister look thicker than the reality. This is because of noise in observations.
Octomaps and our continuous occupancy maps were thresholded at the probability
of 0.5. Particularly, we removed uncertain occupied cells with variances greater than
a threshold of 3.0× 10−6.

We also demonstrated our method with unstructured outdoor environments. Fig.
6 and 7 show occupancy maps and reconstructed surfaces of a forest and a city,
respectively. Again, our method produced more accurate occupancy maps compared
with octomaps as well as surface meshes at the same time. Notice that our occupancy
maps have less holes on the ground and on the building walls. Also, the sharp objects
such as the electric cables in the air of the city are represented more clearly in our
occupancy map and surface mesh.
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(a) Octomap (b) Occupancy Map (c) Surface Mesh

Fig. 6 Forest (dataset: Winter [22])

(a) Octomap (b) Occupancy Map (c) Surface Mesh

Fig. 7 City (dataset: Gauss [1])

7 Conclusions

In this paper, we proposed a unified framework for surface reconstruction and oc-
cupancy mapping using sparse Gaussian processes, called GPmap. Therefore, two
different map representations, surface meshes and continuous occupancy maps were
obtained at a single cast. Free and hit points, and estimated surface normals were
used as training data to predict signed distances of test positions. From predicted
means and variances, we extracted iso-surfaces using marching cubes and generated
continuous occupancy maps using the the probabilistic least square classification.

Another contribution of this paper is our approximation method to reduce the
computational complexity of Gaussian processes by applying the sparse covariance
function. We partitioned both training and test data with blocks of which size is de-
termined by learning the characteristic length-scale of the sparse covariance func-
tion from training data. We demonstrated our method with indoor and outdoor real
datasets. Compared with octomaps, our method took more time for prediction, but
provided more accurate occupancy maps as well as surface meshes.

The limitation of our method is that it is designed for static environments and
same hyperparameters are used across the whole input space. In other words, the
algorithm runs in batch processing. Our future work will include adapting hyper-
parameters to local training data and updating the maps incrementally for dynamic
environments for online processing.



GPmap: A Unified Framework for Robotic Mapping 331

Acknowledgements. The authors would like to thank Tim Barfoot at University of Toronto
and James Underwood at University of Sydney for their valuable comments.

References
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Purposive Sample Consensus: A Paradigm  
for Model Fitting with Application  
to Visual Odometry 

Jianguo Wang and Xiang Luo* 

Abstract. ANSAC (random sample consensus) is a robust algorithm for model fit-
ting and outliers’ removal, however, it is neither efficient nor reliable enough to 
meet the requirement of many applications where time and precision is critical. Var-
ious algorithms have been developed to improve its performance for model fitting. 

A new algorithm named PURSAC (purposive sample consensus) is introduced 
in this paper, which has three major steps to address the limitations of RANSAC 
and its variants. Firstly, instead of assuming all the samples have a same probabili-
ty to be inliers, PURSAC seeks their differences and purposively selects sample 
sets. Secondly, as sampling noise always exists; the selection is also according to 
the sensitivity analysis of a model against the noise. The final step is to apply a 
local optimization for further improving its model fitting performance. Tests show 
that PURSAC can achieve very high model fitting certainty with a small number 
of iterations.  

Two cases are investigated for PURSAC implementation. It is applied to line 
fitting to explain its principles, and then to feature based visual odometry, which 
requires efficient, robust and precise model fitting. Experimental results demon-
strate that PURSAC improves the accuracy and efficiency of fundamental matrix 
estimation dramatically, resulting in a precise and fast visual odometry. 

Keywords: robust model fitting, visual odometry, samples’ reliability, samples’ 
geometry, sampling noise.  

1 Introduction 

Introduced in 1981, RANSAC is a popular algorithm for a variety of robust model 
fitting problems - particularly in computer vision for recovering epipolar geometry 

                                                           
Jianguo Wang · Xiang Luo 
University of Technology Sydney (UTS), Sydney, Australia 
e-mail: xiang.luo@student.uts.edu.au, jianguo.wang@uts.edu.au 

5



336 J. Wang and X. Luo 

 

and 3D motion estimation [2]. It estimates a model that fits the provided data, while 
simultaneously classifies the data into inliers (samples consistent with the relation) 
and outliers (samples not consistent with the relation). It is a simple yet powerful 
technique that can estimate a model using data contaminated by a large fraction of 
outliers. RANSAC can be briefly summarized as a hypothesize-and-verify frame-
work: a minimal subset of samples for model fitting is randomly selected from the 
entire dataset. The subset is then used to fit model hypotheses which are evaluated 
on the entire dataset by computing the distance of all other samples to this model 
and constructing an inliers’ set with a threshold. This hypothesize-and-verify loop 
is repeated until the probability of finding a model with better consensus than the 
current best model falls below a predefined threshold. Then all the inliers are used 
for model parameter estimation [1],[4]. 

For generality and simplicity, RANSAC is based on a set of assumptions which 
are not true in many real situations. This leaves large room for improvement. In this 
paper we analyse potentials for improvement, and propose a purposive sampling 
algorithm named PURSAC (purposive sample consensus) to substitute random 
sampling. Comparing to RANSAC and MLESAC (maximum likelihood estimation 
sample consensus), PURSAC can detect more inliers with much fewer number of 
iterations and in turn can improve both the efficiency and reliability of model fit-
ting. This is very important for applications where speed and precision is critical, 
such as visual odometry (VO). With analysis about a model’s sensitivity against 
sampling noise (MSASN) and the pattern of samples’ validity, PURSAC is de-
signed to efficiently handle both sampling noise and outliers for model fitting.  

The rest of the paper is organized as follows: Section II gives a detailed review 
of RANSAC and various approaches for its improvement at different aspects, and 
then introduces the principles of the proposed PURSAC. Section III describes a 
scheme for line fitting to justify the methodology of PURSAC. Section IV explains 
the details of applying PURSAC to VO, especially a method for purposive sample 
subsets selection considering both features’ matching score and their geometry. The 
experimental results of VO on several scenarios are presented in Section V, which 
demonstrate the effectiveness and robustness of the proposed algorithm. Finally, 
the conclusion and discussions appear in the last section. 

2 RANSAC and Its Variants 

RANSAC can often find a correct solution even for seriously contaminated data; 
however, in order to achieve a high confidence level the required number of sample 
subsets increases exponentially, and associated computational cost is substantial. 
Many algorithms have been developed for increasing the efficiency of the basic 
RANSAC algorithm, some aiming to optimize the process of model verification 
while some others seeking to preferentially generate more useful hypotheses [3-7]. 
A comparative analysis of the state-of-the-art RANSAC algorithms and their cate-
gorization can be found in [1] and [4]. Here we review them from the aspects they 
targeted for improvement.  
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selects samples from a set of higher ranked features to reduce the computational 
costs [9]. Uncertainty RANSAC [13] incorporates feature uncertainty and shows 
that this determines a decrease in the number of potential outliers, thus enforcing a 
reduction in the number of iterations. A deterministic RANSAC approach [14] also 
estimates the probability of a match to be correct. Tordoff and Murray [21] pro-
posed guided sampling and consensus for motion estimation based on MLESAC. 
While MLESAC assumes a uniform prior for the validity of a match, the guided-
sampling approach uses the quality function of a feature matching algorithm to 
derive the probability of matches’ validity. Similar to PROSAC, guided sampling 
and consensus is also based on the evidence that a valid match is likely to have a 
higher matching score. 

Above approaches often achieve significant computational savings in practice, 
since good hypotheses tend to be generated early on during the sampling process. 
However, it is observed in many cases, features with high matching scores often lie 
on a same spatial structure, such as a rich texture section or object in an image, and 
are potentially in a degenerate geometric configuration [4]. Thus, utilizing above 
approaches alone has the danger of selecting feature close to each other; therefor 
other strategies are needed to avoid the degenerate geometric configurations.  

2.3 Sampling Noise Analysis 

For most model fitting tasks, two types of sampling errors must be considered: 
small errors (noise) and blunders (outlier) [15]. Even if a consensus subset is found 
after N iterations, due to the sampling noise and degenerate configurations, the 
model and inliers decided by this subset may be largely wrong. The reason will be 
explained with a line fitting example in Fig.1. 

There are several algorithms have been proposed to address sampling noise with 
different strategies. GroupSAC [6] proposed by Kai aims to handle sample subset 
degenerate configuration. It performs well in the cases of high outlier ratios by 
image segmentation for group sampling; however, it is inefficient as increasing the 
computational cost. Assuming inlier samples with Gaussian noise, MLESAC 
adopts the same sampling strategy as RANSAC to generate putative solutions, but 
chooses the solution to maximize the likelihood rather than the number of inliers 
[8]. MLESAC is a generalization of RANSAC. Capel [10] proposed a statistical 
bail-out test for RANSAC that permits the scoring process be terminated early and 
achieve computational savings. Tordoff and Murray [21] also mentioned spatial 
grouping of samples as a cue for further speed the search. 

Chum et al. define a locally optimized RANSAC variant to deal with sampling 
noise and to purposively select sample subset [22]. Observing that a good model 
tends to find a significant fraction of the inliers, an inner RANSAC strategy is de-
vised using only the set of inliers to the current best model. The inner RANSAC 
technique has the effect of improving sample consensus more rapidly than standard 
RANSAC, which causes the termination criterion (1) to be met earlier.  
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Above methods can make improvement from RANSAC in some aspect, but the 
improvement is usually limited and unstable. Further improvement can be achieved 
by strategically fusing a group of selected strategies together.  

2.4 PURSAC 

By analysing the principle and effectiveness of various approaches, we design a 
new algorithm PURSAC, aiming to induce better model fitting results with a 
smaller number of iterations. It takes three major steps to address the limitations of 
RANSAC and it variants.  

a) Instead of assuming all the samples have same probability to be inliers, 
PURSAC seeks their difference and purposively selects sample sets.  

b) As sampling noise always exists, PURSAC purposely selects the subsets 
according to the analysis of a model’s sensitivity against the sampling 
noise, causing a selective geometric consideration in VO and line fitting.  

c) The final step is to apply local optimization algorithm iteratively with all 
the inliers so as to further improve model fitting performance.  

PURSAC can achieve results close to optimal theoretical estimation. Being a 
qualitative guidance in theory, PURSAC’s implementation needs a quantitative 
analysis to design executable rules for purposive sample consensus. Two examples 
will be investigated. Line fitting is used as an example to describe the scheme of 
PURSAC and to justify its methodology. Then it is applied to feature based VO, to 
conform to its prominent requirement of efficient, robust and precise model fitting.  

3 PURSAC for Line Fitting 

Let us investigate the line fitting example in the original RANSAC paper [2]. One 
of the assumptions inherent in the standard termination criterion (1) is that a model 
computed from an uncontaminated sample subset is consistent with all inliers. In 
practice, this is often not the case, particularly when the data points are noisy. As 
showing in Fig.1, two types of sampling errors (noise and outlier) exist within the 
sample points. Due to sampling noise, model hypotheses selected by RANSAC 
with limited number of iterations usually do not fit a model well, as Line 1 in the 
figure. By randomly selecting a set of samples (two points for line fitting) from all 
the samples without considering MSASN, RANSAC likely misses some inliers and 
consequentially reduces the accuracy of model fitting. Original RANSAC is only 
effective in removing outliers but is inadequate of handling sampling noise.  
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Fig.2 shows the results of 1,000 runs’ line fitting tests to verify the possibility 
distribution of two final points with the best model fitting against their distance.  
The two points are randomly selected from 100 points, so the average possibility of 
a point to be selected as the second point is about 1%. However, as shown in the 
right figure, the possibility of two final points with the best model fitting increases 
dramatically with their distance, from almost 0% for two close points to about 3% 
for two far apart points. Therefore it is wise to purposely select two sample points 
apart, instead of random selection, so as to dilute the effect of sampling noise for 
model fitting.  

The left figure shows that the distance between two random selected points tends 
to be close; while the middle figure indicates that the distance of the final two 
points selected by RANSAC has a Gaussian distribution with the peak at middle. 
The difference of these two distributions causes the result in right figure. 

Observation2: Samples Validity 

The sample points themselves do not have any information available about their 
validity for line fitting. It is impossible to rank or score the points without any prior 
knowledge about them.  However, we do know for a line model some of the points 
are inliers and other are outliers, and their validity will be assessed during the 
process of classifying them. This validity information can be used to purposively 
select points afterward that have higher possibility to be inliers so as to speed up 
the model fitting process.  

Similar to locally optimized RANSAC [22], by observing that a good model 
tends to find a significant fraction of the inliers, a strategic inner iteration is used. 
After a very small number of iterations k, the inliers of the current best model are 
generated with RANSAC or MLESAC. Then next sample subset is selected only 
form the current inliers but verified against the entire dataset. As the sampling is 
running on only inliers, the size of sample subset can be all the inliers. This can 
mitigate sampling noise and minimize the error of model fitting. 

This optimization technique has the effect of improving the consensus score 
more rapidly and causes the iteration termination criterion (N in (1)) to be met ear-
lier by selecting samples from current inliers set, which has a lower outlier rate than 
the entire dataset has. In addition it can also provide more robust and precise model 
fitting by minimizing the error of model estimation with proper sample size. 

Line Fitting with PURSAC 

Considering the two observations about samples geometry and validity for the line 
fitting tests, PURSAC is designed to purposely select two points far apart, instead 
of random selection. The first point is randomly selected; then the distances from it 
to all the other points are calculated. The second point is selected according to the 
statistical distribution shown in Fig.2. Inner iteration is then applied by selecting 
samples only from the current inliers until reaching iteration termination criterion 
(1). Finally local optimization is implemented and all the inliers are used iteratively 
to compute the final model parameters. 
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Table 1 shows the results of 1,000 runs line fitting tests with RANSAC and 
PURSAC. Within 100 points, 55 are inliers. The number of iteration N is set to 20, 
which means the success rate p in (1) is 99.97%. Fitting_error is a model fitting error 
against the ground truth measured by the area between the two lines. Inliers_miss is 
the number of points that should be counted as inliers but miscounted as outliers; 
similarly is Outliers_miss. STD and mean is the standard deviation and mean of the 
1,000 runs’ results.  

Table 1 Line Fitting Monte Carlo Test Results 

Line fitting 
Method 

Number of inliers 
mean/STD 

Fitting_error 
mean/STD 

Inliers_miss 
mean/STD 

Outliers_miss 
mean/STD 

PURSAC 46.07 / 0.92 117.58 / 7.22 11.69 / 1.80 1.76 / 1.46 

RANSAC 43.67 / 3.41 122.99 / 22.23 14.53 / 4.19 2.20 / 1.69 

The result shows that under exactly the same condition, PURSAC can achieve 
better performance than RANSAC, with less miscounted inliers and outliers, and is 
closer to true model. The final line fitting performance is affected by the mis-
counted inliers and outliers. As shown in Table 1 and Fig.3, all the STDs of 
PURSAC are smaller than that of RANSAC, indicating that PURSAC has better  
reliability. 

 

Fig. 3 1000 runs Monte Carlo test results with PURSAC and RANSAC 

The key idea behind PURSAC is to purposely select sample sets according to 
the sensitivity analysis of a model to be fitted against sampling noise; and also to 
the measures of samples’ possibility to be inliers. It is worth to mention that the 
way to implement PURSAC is based on the analysis of each model fitting case and 
it is open to find an optimal way for different cases. 

4 PURSAC for Visual Odometry 

RANSAC and MLESAC has been widely used in computer vision, particularly in 
the areas of recovering epipolar geometry and 3D motion estimation, such as image 
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related to feature matching score. This observation will be counted in designing 
PURSAC rules for purposive sample subset selection. 

Model Noise Sensitivity Analysis 

Model noise sensitivity analysis is to find a strategic way to dilute the effect of 
sampling noise for model fitting. It has been found that the geometry of selected 
features in images affects VO result remarkably [10, 11]. The more evenly features 
are distributed in images, the less sensitive a model is to noise, and the more stable 
is VO results. The fact that the geometry of the features in images affects the VO 
results reflects the relation between sampling noise and the model to be fitted.  

The fundamental matrix estimation with RANSAC etc. method takes geometric 
constraints introduced by a motion model. After feature detection and matching, 
matched features are nominated for subsequent procedure. In RANSAC, sample 
data sets are randomly chosen from entire matched features. However, the selected 
feature points may be close to each other (causing degenerate configuration), which 
will induce uncertainty of model fitting and affect the accuracy of estimation.  

PURSAC Rules for Visual Odometry 

Feature based VO requires efficient and robust model fitting. According to the 
statistical analysis of outlier possibility and features’ location accuracy against the 
matching scores, rules for PURSAC implementation are innovated by considering 
both scores ranking and feature geometry.  

a) All the matched features are ranked by their matching scores. The one with 
the highest rank is selected and the features close to it within a threshold ρ 
are excluded in following samples selection. This process iterates until all 
the matched features are either selected or excluded.  

b) Only the selected features are used for searching the sample set for the con-
sensus of model hypothesis but it is verified against the entire dataset. 
Sample subsets are purposely selected according to their ranking until 
reaching an initial iteration number k.  

c) Same as line fitting case, local optimization is then implemented to further 
increase the speed and certainty of model fitting. By improving accuracy 
and efficiency of fundamental matrix estimation, a precise and fast visual 
odometry can be achieved.  

This set of rules is combined with both standard RANSAC and MLESAC for 
fundamental matrix estimation and visual odometry computation. The threshold ρ 
is set as 10 times of the inlier threshold in RANSAC (10x1 pixels), and the initial 
iteration number k is set to 20. 
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5 Experiment Results 

Málaga 2009 Robotic Dataset Collection PARKING-6L is used in this paper for 
featured based VO testing [20]. A section of the dataset is selected from the images 
captured by a camera mounted on a test vehicle which runs a closed loop in a car 
park. The test runs 100 times to evaluate the precision and consistency of the VO 
results from different methods. Test results from PURSAC are compared with 
RANSAC and MLESAC, which were implemented in our previous approaches for 
VO [19] and monocular SLAM [18] respectively.  

  

Fig. 5 Test field, trajectory (left) and a sample image for visual odometry 

The red line in left image of Fig.5 is trajectory of the test in a car park. The right 
image is one of the images captured by an onboard camera for our visual odometry 
test.  

Table 2 is the test results of matched features’ inlier rate detected by different 
methods in 100 runs. Five pairs of images have the inlier rate from less than 50% to 
over 85%. The tests set two different success rate p1 = 99% and p2 = 99.99%. The 
number of iterations is calculated by (1) dynamically. 

The results show that combining with either RANSAC or MLESAC, PURSAC 
achieves much better results than the original algorithms. The inlier rate is higher 
and the standard deviation of the number of detected inliers is much lower, which 
means PURSAC has much better and more consistent sample consensus. It is noted 
that for the images with high inlier rate (Image 58&59), the STD of both RP and 
MP reaches zero, entailing a complete certainty. Results show that the two different 
success rates p do not impact much on the inlier rate µ of PURSAC, but do for 
MLESAC and RANSAC. Even if a higher success rate p2 is selected for MLESAC 
and RANSAC, PURSAC still performs better with a low success rate, as the bold 
data indicated. Therefore, the number of iterations needed for PURSAC (RP and 
MP) is much lower than the original algorithms, leading to a faster process. 
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Table 2 Image Matching Monte Carlo Test Results  

Image pair 
(Number 

of 
matches) 

Inlier rate µ 
& number of 
iteration N 

RO (RANSAC 
Original) 

RP (RANSAC 
PURSAC) 

MO (MLESAC 
Original) 

MP (MLESAC 
PURSAC) 

p1 p2 p1 p2 p1 p2 p1 p2 

  Image 
2&3 (357) 

 Mean µ  68.74% 70.03% 75.92% 75.83% 68.10% 69.37% 75.90% 75.93% 
Inliers STD 10.39 9.06 0.98 1.16 12.78 10.30 0.96 1.0714 

Mean N 68.29 116.83 47.66 81.31 79.58 125.68 49.61 85.98 
Image 27 

&28  
(390) 

 Mean µ 52.78% 54.32% 58.39% 58.46% 52.72% 54.1% 58.45% 58.36% 
Inliers STD 8.12 6.82 3.12 2.90 10.23 9.27 3.09 3.1527 

Mean N 447.92 689.88 315.82 585.35 475.55 713.77 349.3 610.29 
Image 58 

&59 
 (1019) 

 Mean µ 77.03% 78.71% 85.57% 85.57% 77.3% 78.9% 85.57% 85.57% 
Inliers STD 38.96 31.92 0 0 36.85 32.05 0 0 

Mean N 31.72 50.60 21.02 39.05 30.89 51.68 23 39.56 

Image 2&4 
(186) 

 Mean µ 55.22% 56.81% 59.47% 59.70% 55.35% 56.23% 59.78% 59.77% 
Inliers STD 4.97 3.66 2.40 1.72 4.56 5.44 1.53 0.6257 

Mean N 335.70 507.45 230.12 390.37 346.98 582.5 228.08 422.55 

Image 2&6 
(129) 

 Mean µ 44.32% 44.99% 47.16% 47.22% 43.81% 43.95% 47.28% 47.38% 
Inliers STD 1.96 1.87 1.73 1.52 2.25 2.46 1.47 1.6161 

Mean N 1471.0 2567.2 1127.7 2090.6 1640.6 3193.4 1338.5 2615.3 

The test results on 103 pair of images for 100 runs are plotted in Fig.6. The top 
figure shows the number of matches Nm, the number of inliers Nin and inlier rate µ 
in each pair of images. The middle one is the mean difference of Nin detected by 
MO and MP. It indicates that MP can always detect more inliers than MO, espe-
cially in the case that Nin is low (image number 76). The bottom figure shows the 
standard deviation of Nin for 100 runs. MO has higher STD than MP in all the 103 
pair of images. This proves that MP has better consistency than original MLESAC, 
which is also critical for model fitting.  

 

Fig. 6 Number of inliers in visual odometry tests 
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The trajectories of 100 runs VO using MLESAC (MO) and proposed PURSAC 
(MP) are plotted for analysis and comparison. As shown in Fig.7, PURSAC has 
significantly improved the performance of VO in terms of standard deviation. The 
final position of the true trajectory returns to the start position, however, due to the 
camera calibration uncertainty, there is a bias in both cases. The mean and standard 
deviation of final camera positions with different methods are listed in Table 3. 

 

Fig. 7 The 100 trajectories of VO using MO and MP 

Table 3 VO Final Position STD and Number of Iterations 

Methods X STD/mean  Y STD/mean Z STD/mean Mean iterations 
RO (p2 = 99.99%) 0.215/ 1.247 2.220/ 1.349 0.217/ 0.319 147.51 

RP (p1 = 99%) 0.0840/ 1.207 0.252/ 0.782 0.0588/ 0.296 65.87 
MO (p2 = 99.99%) 0.184/ 1.208 0.533/ 1.005 0.151/ 0.292 151.75 

MP (p1 = 99%) 0.0625/ 1.204 0.236/ 0.791 0.0415/ 0.295 67.59 

Table 3 shows that the mean final camera positions with different methods are 
similar, which is a systemic bias to the ground truth. While for standard deviation 
and number of iterations, PURSAC achieves much better results than RANSAC 
and MLESAC. With less than half of the number of iterations, the final positions of 
the two PURSAC methods (RP and MP) have much smaller STD than that of the 
original RANSAC (RO) and MLESAC (MO). 
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6 Conclusion 

This paper introduces PURSAC, a purposive sample set selection paradigm for 
model fitting. It has three major steps to implement. Firstly, instead of assuming all 
the samples have a same probability to be inliers, PURSAC seeks their differences 
and purposively selects sample sets. Secondly, as sampling noise always exists; the 
selection is also according to the sensitivity analysis of a model against the noise. 
The final step is to apply a local optimization for further improving its model fitting 
performance. PURSAC can combine with any model fitting algorithm that uses 
random sample sets selection, and achieve better outcomes with a smaller number 
of iterations.  

Being a qualitative guidance in principle, PURSAC’s implementation needs 
quantitative analysis to design executable rules for purposive sample consensus. 
Two examples are investigated in this paper. PURSAC is applied to line fitting to 
explain its principles, and then to visual odometry, which requires efficient, robust 
and precise model fitting.  

Experimental results in the two examples show that PURSAC can achieve very 
high model fitting certainty using only a small number of iterations. It demonstrates 
much better performance than RANSAC and MLESAC. Applied in VO, concern-
ing both features’ geometry and matching score ranking, PURSAC improves the 
accuracy and efficiency of fundamental matrix estimation dramatically, resulting in 
a precise and fast visual odometry.  
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Cooperative Targeting: Detection
and Tracking of Small Objects
with a Dual Camera System

Moein Shakeri and Hong Zhang

Abstract. Surveillance of a scene with computer vision faces the challenge
of meeting two competing design objectives simultaneously: maintain a suf-
ficient field-of-view coverage and provide adequate details of a target object
if and when it appears in the scene. In this paper we propose a dual-camera
system for tracking small objects based on a stationary camera and a pan-
tilt-zoom (PTZ) camera. The utilization of two cameras enables us to detect
a small object with the stationary camera while tracking it with the second
moving camera. We present a method for modeling the dual-camera system
and demonstrate how the model can be used in object detection and tracking
applications. The main contribution of this paper is that we provide a model
for explicitly computing the extrinsic parameters of the PTZ camera with
respect to the stationary camera in order to target the moving camera at
an object that has been detected by the stationary camera. Our mathemat-
ical model combines stereo calibration and hand-eye calibration algorithms
as well as the kinematics of the pan-tilt unit, in order for the two cameras
to collaborate. We present experimental results of our model in indoor and
outdoor applications. The results prove that our dual camera system is an
effective solution to the problem of detecting and tracking a small object with
both excellent scene coverage and object details.

1 Introduction

In recent years visual surveillance research has attracted considerable atten-
tion due to its importance in both civilian and military applications [1, 2].

Moein Shakeri · Hong Zhang
Department of Computing Science, University of Alberta, Canada, Edmonton
e-mail: {shakeri,hzhang}@ualberta.ca

L. Mejias, P. Corke, and J. Roberts (eds.), Field and Service Robotics, 351
Springer Tracts in Advanced Robotics 105,
DOI: 10.1007/978-3-319-07488-7_24, c© Springer International Publishing Switzerland 2015



352 M. Shakeri and H. Zhang

However, such a system faces the challenge of meeting two competing de-
sign objectives simultaneously: maintain a sufficient field-of-view coverage
and provide adequate details of a target object if and when it appears in the
scene. On one hand, a wide-angle camera can provide a large field of view,
but it can capture only a small number of pixels of the target object. On the
other hand, a PTZ camera can pan, tilt and zoom to improve the resolution
of a small object in the scene; however, tracking small objects with a PTZ
camera is still an open problem in computer vision. To overcome the limita-
tion of either type of camera, there have been some surveillance systems that
involve the collaboration between a moving camera with a large zoom range
and a wide-angle stationary camera (see Section 2).

This paper deals with the problem of capturing a moving object in high
resolution with two collaborating cameras, one stationary and the other on a
PTU with a variable focal length (zoom). The role of the stationary camera
is to detect the object of interest in the scene, and that of the moving camera
is to place the object of interest in the center of its field of view at a high
resolution. For capturing the close-up of a moving object, the moving camera
must move and change its the position and orientation with respect to the
stationary camera. To handle this change and map the location of the target
object in the field of view of the stationary camera to the center of the
field of view of the moving camera with an appropriate scale, we introduce
a mathematical model for computing the pan and tilt angles and the focal
length of the moving camera. Note that we make no assumption about the
placement of the two cameras and that, if we choose the world reference
frame to be that of the stationary camera, then the problem becomes one of
computing the extrinsic parameters of the moving camera in order to target
it at the object of interest.

The reminder of this paper is organized as follows. In Section 2, we discuss
related works. In Section 3, we introduce our model for controlling the moving
camera, based on the results of offline camera calibration and the object
location detected online by the stationary camera. Experimental results in
indoor and outdoor environments are described in Section 4. Finally Section
5 summarizes our method and concludes the paper.

2 Related Works

Tracking moving objects using moving cameras and specially PTZ cameras
is found in many applications. In general, the existing methods can be di-
vided in two approaches in terms of the camera configuration. In the first
approach, there is a PTZ camera for both detection and tracking of mov-
ing objects [2, 5, 6], while in the second approach multiple cameras are in-
volved [3, 7, 9, 16]. Methods using the first approach work by extracting
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features from the moving object, and this is often not robust in cluttered and
dynamic backgrounds, especially when the object is small, due to the fact that
the background is moving when the camera moves. Methods following the
second approach is more robust to track small objects, with the fixed camera
extracting the moving object by using background subtraction methods and
the second camera tracking it. Some of the previous works use a master-slave
camera configuration [3, 9, 16] where the master fixed camera detects and
tracks the moving object in the scene while the PTZ camera is employed
to acquire a close-up. This approach relies on offline calibration between the
stationary and the PTZ camera; however, the basic assumption in existing
methods is that either the offset between the fixed and the moving camera is
ignored or the moving camera is placed in a special configuration with respect
to the fixed camera with well aligned optical axes. Xu et al. [16] reported
an autonomous surveillance system with multiple PTZ cameras assisted by
a fixed wide-angle camera. The wide-angle camera provides large but low
resolution coverage and detects and tracks all moving objects in the scene.
Based on the output of the wide-angle camera, the system generates spatio-
temporal observation requests for each moving object, which are candidates
for a close-up using PTZ cameras. The basic assumption in their work is all
cameras are already calibrated and all transformation between cameras are
available.

Recently, Choi et al. [3] proposed a camera system consisting of one PTZ
camera and two stationary cameras to acquire high resolution face images.
They used a camera calibration method based on the coaxial configuration
among the three cameras. Specifically, they configured two stationary cam-
eras, one above (horizontal camera), and one beside (vertical camera) the
PTZ camera, so that the x coordinate (y coordinate) of the horizontal (ver-
tical) camera’s focal point coincides with the x coordinate (y coordinate) of
the PTZ camera’s center of rotation. The limitation of their system is that
they have assumed all cameras are configured to have parallel camera axes.

Marchesotti et al. [9] used two cameras including one stationary and one
PTZ camera to capture high resolution face images. The first camera moni-
tors the entire area of interest and detects the moving objects using change
detection techniques, while the second camera tracks the objects at high
resolution. They employed the standard calibration procedure to obtain the
intrinsics of the individual cameras. The extrinsics between the cameras how-
ever are assumed to consist of simple translations in a 2D plane. No general
calibration method is employed to obtain these translations.

Hampapur et al. [7] used stationary and PTZ cameras to estimate the
3D world coordinates of the objects and then zoom to capture a high reso-
lution image. Stillman in [14] used multiple stationary cameras to estimate
the location of objects in a calibrated scene and then applied the PTZ cam-
era for tracking them. Bodor et al. [1] proposed a dual-camera system which is
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Fig. 1 (a)Schematic of a system with two cameras and a PTU supporting one of
the cameras and (b) view of our experimental platform

comprised of a wide-angle fixed field of view camera coupled with a PTZ
camera to make detailed measurements of activity recognition applications.
Zhou et al. [17] proposed a different kind of master/slave system. This system
collaborates based on one fixed camera and one camera that can zoom in
and out as well as pan and tilt using a Pan Tilt Unit (PTU). Geometric
models were proposed for calibrating between a camera and a PTU [4, 10]
and active calibration of a multi-camera system consists of zoom cameras
mounted on PTU [15]. After a coarse initial calibration, the probability of
each relative pose is determined using a probability distribution based on the
camera image. Works in [1, 8, 5] described the mathematical model of the
collaboration between two cameras, but made the same limiting assumption
as in [9] of simple 2D translational change between the camera positions.
The methods in [7, 14, 18] assumed that known crude relationship among
the cameras, and no formal treatment for the spatial relationship among the
collaborating cameras was attempted.

In this paper, we introduce a dual-camera detection and tracking system
in which there is no limitation for configuration of the locations of the two
cameras. We derive a mathematical model for controlling the moving camera
based on the location of the target object in the view of the stationary camera.

3 Modeling of a General Active Dual-Camera System

In this section we present a summary of our system which contains one fixed
wide-angle camera and one camera with a changeable focal length mounted
on a PTU. We will also describe the mathematical model for our system. An
example of such a system is shown in Fig. 1.
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Fig. 2 Platform of active dual-camera coordinate system

In this system when PTU moves not only does the camera rotate but it
also translates to a new position. As a result, the extrinsic parameters of
the moving camera are changed with respect to the stationary camera. In all
mentioned methods in Section 2, authors a simple spatial relation between
the active camera and the stationary camera. This assumption could be ac-
ceptable with some errors when the active camera has a small zoom range
or if the two cameras are mounted in a special configuration. Alternatively
and more appropriately, we can build an exact mathematical model for the
relationship between the fixed camera and the moving camera on the PTU
to compute the variable extrinsic parameters from the moving camera to the
stationary camera online.

To establish this mathematical model, we first define the coordinate frames
associated with the various objects of importance in the system as shown
in Fig. 2. Assume that the left camera is stationary and right camera is
mounted on the PTU. Let X be a space point of interest, and XL and XR

be its 3D coordinates in the left camera coordinate frame {L} and right
camera coordinate frame {R}, respectively. {R} is initially at {R0} before
PTU motion. We further define Γ to be the transformation of {L} with
respect to {R0}, T the transformation of {R0} with respect to the PTU’s
coordinate frame {O}. Finally, when the PTU moves, its new position {P}
with respect to the original {O}, is defined by the transformation P , which
can be computed from PTU’s direct kinematics. Note that after the PTU
moves to {P}, the right camera’s coordinate frame {R} with respect to the
PTU’s initial position {O} can be obtained through transformation P and
the known transformation T (see below).

Upon detection of a point of interest X by the left camera, the goal is move
the right camera by way of the PTU from {R0} to {R} in such a way that
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X is centered in the field of view of the right camera. X in the left camera
and in the right camera are related by

XR = ΔΓXL (1)

where Δ = T−1P−1T , so that

XR = T−1P−1TΓXL or TXR = P−1TΓXL (2)

From Eq. (2), we are now able to compute the control variables of the
PTU given XL. Specifically, XL and XR are projected to {L} and{R} via
xL = CLXL and xR = CRXR where CL and CR are the camera matrices
and they are available through camera calibration. For xL that defines an
object of interest in the left camera’s image plane, its 3D coordinates XL

are estimated, using prior knowledge about the object size (e.g., the rough
height of a person or dimensions of a bird) and the camera’s intrinsics. In
addition, Γ is known through the stereo calibration between {L} and {R0}.
The only remaining unknown is the transformation T , which can be obtained
with hand eye calibration as described in the next section.

3.1 Hand-Eye Calibration

The unknown transformation T can be obtained by one of the existing algo-
rithms in robot hand-eye calibration. This is the common task of computing
the relative 3D position and orientation between the camera mounted on the
end effector of a robot (such as a PTU) and the coordinate frame of the
robot wrist in a so called eye-on-hand configuration [13]. In our model PTU
works the same as robot. Therefore, hand-eye calibration is defined between
coordinate frames {O} and {R0} in Fig. 2, and it is redrawn in Fig. 3. Dif-
ferent algorithms have been proposed for hand-eye calibration and they all
attempt to solve a system of linear equations of the form: AT = TB where
A and B are known from robot forward kinematics and from stereo camera
calibration, respectively [13, 11]. To solve for T , it is necessary to make at
least two independently movements and form a system of equations such as
Eq. (3).

AiT = TBi i = 1, ..., n (3)

For each configuration of the robot (PTU), Ai is available through direct
kinematics and Bi can be found by using a stereo calibration algorithm with
the camera observing a calibration target. T can be obtained optimally by
minimizing the error:

η =

n∑
i=1

E(AiT, TBi) (4)

where E is a distance metric on the Euclidean group [11].
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Fig. 3 Schematic of the hand-eye calibration for finding T by solving AT = TB

3.2 Computation of PTU Variables

The final task is to obtain the pan and tilt angles, θ1 and θ2, in order to center
X in the right camera {R}. This is equivalent to requiring XR = (0, 0, z)
where z is the depth ofX which has been estimated with the camera intrinsics
and known object size, as mentioned. To begin, we rewrite Eq. (2) as follows:

X
′
R = P−1X

′
L or PX

′
R = X

′
L (5)

where
X

′
R = TXR and X

′
L = TΓXL (6)

For the PTU, P is a rotation transform and Eq. (5) can be expanded as

PX
′
R = R(θ1, θ2)

⎡
⎣xy
z

⎤
⎦ =

⎡
⎣ab
c

⎤
⎦ = X

′
L (7)

where from the forward kinematics of the PTU, P is given by

P = R(θ1, θ2) = Rot(Y, θ1)Rot(X, θ2) =

⎡
⎣ c1 s1s2 s1c2

0 c2 −s2
−s1 c1s2 c1c2

⎤
⎦ (8)

where si and ci are sine and cosine functions of the two joint angles. From
Eq. (8) and the second row of Eq. (7) we have

c2y − s2z = b (9)

Eq. (9) may be solved by making the following trigonometric substitution [12]:

r1cosϕ = z and r1sinϕ = y (10)

where
r1 = +

√
(y2 + z2) and ϕ = tan−1(y/z) (11)
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Substituting Eq. (11) into Eq. (9) we obtain

sin(θ2 − ϕ) = −b/r1 (12)

Therefore, we obtain two solutions to θ2

θ2 = tan−1 y

z
+ sin−1−b

r1
and θ2 = tan−1 y

z
+ π − sin−1−b

r1
(13)

With Eq. (7) and Eq. (13), we have

Rot(Y, θ1)

⎡
⎣x

′

y
′

z
′

⎤
⎦ =

⎡
⎣ab
c

⎤
⎦ (14)

where

⎡
⎣x

′

y
′

z
′

⎤
⎦ = Rot(X, θ2)

⎡
⎣xy
z

⎤
⎦ . Eq. (14) expands into

⎡
⎣ c1 0 s1

0 1 0
−s1 0 c1

⎤
⎦
⎡
⎣x

′

y
′

z
′

⎤
⎦ =

⎡
⎣ab
c

⎤
⎦ (15)

From the first row of Eq. (14), we have c1x
′
+ s1z

′
= a. This equation can

be solved the same as Eq. (9), and the solutions are

θ1 = tan−1 z
′

x′ + cos−1 a

r2
and θ1 = tan−1 z

′

x′ − cos−1 a

r2
(16)

where r2 =

√
(x′2 + z′2) and ϕ = tan−1(z

′
/x

′
)

Once the object is centered in the right camera, we can vary its size in
the camera by controlling the focal length. Since the camera is calibrated, for
a given desired object size ud in pixels, we can easily find the desired focal
length of the right camera using trigonometry and the pinhole camera model
and, it is, in pixels and millimeters (fp and fmm), given by:

fp = ud
z

x
or fmm = pud

z

x
(17)

where z and x are the depth and the size of the object, and p is the pixel size
of the camera in mm. Note that that fmm is limited by the maximum focal
length of the zoom camera.

The model for controlling the PTU is summarized in Table 1, and it shows
how the image coordinates of the target in the left view are mapped to the
pan and tilt angles and the focal length of the moving camera.
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Table 1 Cooperative Targeting Algorithm

Offline Calibration

• Calibrate each camera independently to determine their intrinsics CR, CL,
and pixel size p

• Identify the transformation Γ by stereo calibration between the fixed and
the moving camera with pan/tilt angles = 0

• Perform hand-eye calibration to find T by Eqs. (3) and (4)

Online Detection and Tracking

• In the fixed camera, detect the object of interest centered at xL in image
• Estimate XL using known object size and camera model xL = CLXL

• Set XR = [0, 0, z]T where z is the depth of the object in XL

• Compute X
′
L, X

′
R with Eq. (6), and pan and tilt angles by Eqs. (13) and

(16),
• Find the focal length fmm by Eq. (17)
• Command the PTZ with θ1, θ2 and fmm accordingly

4 Experimental Results

We are interested in the use of a multi-camera system for object detection and
tracking in indoor and outdoor environments. In this section, we will present
experimental results to demonstrate the utility of our proposed model in this
application. Our system (see Fig. 1) consists of a stationary camera with a
fixed lens (a Philips LTC 0600) and a zoom camera (a Canon PowerShot S5
IS with 12x optical zoom). The Philips camera is interfaced to a Linux PC via
an Axis video server (241Q) using http, and the Canon camera is connected
to the PC through a USB serial port. The communication between the Canon
camera and the PC is established with the camera’s publicly available API
that allows the remote capture of its images and the selection of its focal
length. Finally the pan tilt motion of the Canon camera is achieved through
a PTU by Directed Perception (D46), which has a pan range of −180◦ to
180◦, and a tilt range of −80◦ to +30◦. While target detection is performed
with images from the stationary camera, object tracking and zooming into
the region of interest are handling by the moving camera by the algorithm
described in Table 1. The control software is developed in Matlab.

4.1 Offline Calibration

As described in Table 1, our model has an offline calibration step, followed
by an online detection and tracking step. In the first step we calibrate each
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camera in turn to determine its intrinsics. The camera intrinsic parameters
are shown in Table 2. Also, we identify the transformation by the stereo
calibration algorithm between the fixed camera and the initial position of
the moving camera. Furthermore, we need to compute the transformation
between the PTU and the moving camera so as to determine the extrinsic
parameters of the moving camera when the PTU moves. For this we apply
hand eye calibration algorithm described in Section 3.1. Table 3 shows the
numerical values of transformation Γ and T .

Table 2 Intrinsic parameters of the cameras

Camera model Focal length Camera center CCD Size Pixel Size p
(pixels/mm) (pixels) (mm) (mm)

Canon PowerShot∗ [693, 692] [235, 326] [5.74, 4.31] 0.009
(zoom camera) [6.237, 6.228]
Philips Camera [684, 686] [239, 325] [6.40, 4.80] 0.01
(stationary camera) [6.840, 6.860]

∗: The focal length for the Canon camera was calibrated at its minimum.

4.2 Online Detection and Tracking

In the second step we perform online detection and tracking. Figure 4 shows
an example of target detection and tracking based on our model. The target
(a book) is small and far from the camera, and Fig. 4(a) and Fig. 4(b) show
its initial view in the stationary (left) and moving camera (right). Using a
color-based appearance template, we first detect the target, and then find its
pixel coordinates to be [529, 275], in the 640×480 left image. We can esti-
mate the depth of the object with respect to the stationary camera knowing
the real size of the object using (17) and Table 2. For illustration purposes,
we assume the estimated depth of the target to be z = 10000 mm, and we
compute its 3D coordinates with respect to stationary camera using Table 2.
The estimated position of the object, XL = [2973, 519, 10000, 1]T in mm in
homogeneous coordinates. So, the 3D coordinates of the point with respect
to the moving camera before any pan-tilt motion can be computed, also in
homogeneous coordinates, as follows:

XR = ΓXL = [811, 563, 10464, 1]
T

(18)
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Table 3 Transformation matrices for our dual camera system

Γ =

⎡
⎢⎢⎣

0.97 0.02 −0.24 356.18
−0.02 1.00 0.00 93.59
0.24 −0.00 0.97 38.30
0 0 0 1

⎤
⎥⎥⎦ T =

⎡
⎢⎢⎣
0.99 0.0032 0.00 −159.97
0.00 1.00 0.00 −90.01
0.00 0.0011 1.00 −39.98
0 0 0 1

⎤
⎥⎥⎦

For the object to be at the center of the moving camera, we need to control
the PTU it is centered with respect to the moving camera. We compute its co-
ordinates according to Eq. (6) and Table 2. Setting XR = [0, 0, 10464, 1]

T
,

we have

X
′
R = TXR = [−143.26, − 79.54, 10424, 1]

T
(19)

X
′
L = TΓXL = [661.92, 481.35, 10426, 1]

T
(20)

Finally, from Eqs. (16) and (13), pan and tilt angles are θ1 = −3.08◦ and
θ2 = 4.44◦.

Fig. 4 Result of an indoor experiment (a) and (b) show position of the target
before tracking in both cameras, (c) shows the detected target after tracking, and
(d) shows the close-up of the target in the moving camera
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After applying the rotation of [θ1, θ2] to the PTU, the object of interest
moves to the center of the image as shown in Fig. 4(c). In addition, we
use Eq. (17) to compute the focal length of the camera zoom in order to
capture a high resolution view of the object. The object (book) has a size of
x = 234 mm in this case. If its desired size in the image is ud = 160 pixels,
then the focal length should be 64.14 mm or we need a zoom factor of 10.3,
which our camera is able to provide with its 12x zoom. Fig. 4(d) shows the
close-up of the target object in the moving camera.

We have also applied our algorithm in a background subtraction applica-
tion. Fig. 5 shows the results from one experiment in the indoor environment
where a person moves across the scene and is detected by the stationary
camera using the standard adaptive Gaussian mixture model (GMM) for ex-
tracting moving pixels and simple connected-component tracking to identify
the object. The pixel coordinates of the object are used to compute the pan
and tilt angles of the moving camera, with the close-up shown in Fig. 5(b).

  
(a)                                                                            (b) 

Fig. 5 Result of another indoor experiment (a) shows position of the detected
moving object by stationary camera, and (b) shows position and close-up of the
moving object in moving camera after PTU motion

We have also conducted experiments with our system in video surveillance
in the outdoor environment. Fig. 6 shows some example results where the
left column displays the detecting foreground moving objects in the scene,
the middle column wide-angle view of the monitored scene from the station-
ary camera, and the right column the close-up of the detected objects in
the PTZ camera. The detection is once again performed with the straight-
forward Gaussian mixture model background subtraction, and the control of
the camera is done through our proposed model. The detection and tracking
is conducted in real time. In case of multiple objects in the view, we choose
to track the first object in the scene until it disappears, before the system
switches to the next object of interest in the stationary camera. The advan-
tage of our system to target an object through cooperative control of the two
cameras is clearly demonstrated, with the stationary camera maximizing the
coverage of the scene and the moving camera providing a clear view of the
object of interest to all its identification and further analysis.
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Fig. 6 Result of an outdoor experiment (a) shows results of adaptive GMM by sta-
tionary camera, (b) shows the position of the detected moving object by stationary
camera, and (c) illustrates the close-up of the detected object.

5 Conclusion

We have presented a novel dual-camera system in which a stationary wide-
angle camera detects an object of interest in its view, and the moving PTZ
camera is directed at the moving object and zooms in appropriately to acquire
a high-resolution view of the object. The transformation between the two
cameras is explicitly modeled mathematically and used in real time to control
the moving camera. Our model does not ignore the offset between the two
cameras, a common practice in previous systems when an active camera was
involved. We have validated our approach through extensive real experiments
in both indoor and outdoor environments.
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Experiments on Stereo Visual Odometry
in Feature-Less Volcanic Fields

Kyohei Otsu, Masatsugu Otsuki, and Takashi Kubota

Abstract. This paper describes a stereo visual odometry system for volcanic fields
which lack visual features on the ground. There are several technical problems in
untextured terrain including the diversity of terrain appearance, the lack of well-
tracked features on surfaces, and the limited computational resources of onboard
computers. This paper tries to address these problems and enable efficient and accu-
rate visual localization independently of terrain appearance. Several key techniques
are presented including a framework for terrain adaptive feature detection and a
motion estimation method using fewer feature points. Field experiments have been
conducted in volcanic fields for validation and evaluation of the system effectiveness
and efficiency.

1 Introduction

The robotics in unstructured and dynamic environments has been studied exten-
sively for these decades. The robots applied to such challenging areas are often
referred as ‘field robots’, which should be more important in the future. The appli-
cations of field robots spread widely, including construction, forestry, agriculture,
mining, subsea, intelligent highways, search and rescue, military, and space. Espe-
cially, hazardous areas where humans cannot work are the important fields for such
robots, represented by active volcanic fields. The robotic exploration of volcanic
fields are highly desired since detailed observations on site can provide valuable re-
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sults for geoscientists to figure out the mechanism of eruptions, and for rescues to
reduce the impact of disasters [20].

In order to deploy robots into the hazardous areas without human intervention,
robotic autonomy is required not only to accomplish tasks but also to keep their
safety. One of the important techniques is localization, i.e., to identify their orienta-
tion and position. Accurate localization enables a robot to explore efficiently, obtain
precise data about the environment, and keep safety from collapsed obstacles and
dangerous places. GPS (Ground Positioning System) is widely used for this pur-
pose, while it can provide only position (not orientation) and it cannot be used if the
satellites are not visible such as in a valley.

Recently, localization approaches using vision sensors are extensively studied.
It is called ‘visual odometry (VO)’ in contrast with conventional wheel odometry
(WO) that uses wheel encoders to estimate the motion and direction. The accuracy
of WO is harmfully affected by wheel slips which a robot frequently experiences in
unstructured natural terrain. In contrast, VO is not degraded by slips, hence it can
provide accurate pose estimation even in slippery sandy terrain or steep slopes.

Meanwhile, the vision-based method may suffer in several specific cases. One
of the crucial problems is the failure of visual feature tracker. Recent VO systems
extract visual features from terrain and track them frame by frame [4, 15]. However,
in some feature-less terrain where fewer features found on the ground surface, sta-
ble feature tracking can occasionally be difficult. The lack of well-tracked features
results in poor accuracy or failure of motion estimation. Moreover, the performance
of feature tracker depends on the parameters such as thresholds and window size.
A field robot encounters various types of terrain while exploring natural scenes and
thus, it is hard to find the best parameters that fit to a new terrain. Another challenge
is the high computational cost for dealing with 2D images. In order to perform real-
time operations using limited onboard processors and memories, the efficiency of
algorithms must not be neglected. One will find the tradeoff problem between the
computational efficiency and the accuracy of estimation.

This paper introduces a VO system for a wheeled robot equipped with a stereo
camera rig. It employs an algorithm adaptive to variable terrain in order to exhibit
higher robustness for terrain diversity. Furthermore, for real-time operations, a novel
efficient algorithm for estimating motion is adopted. The proposed system is evalu-
ated through field experiments in volcanic fields with a testbed robot developed for
future volcanic or planetary exploration missions.

2 Related Works

The research on VO in volcanic fields may be relevant to the one that visually esti-
mates poses of mobile vehicles in untextured environments. The environments span
volcanic fields, planetary surfaces, arctic regions, and paved roads. Broadly speak-
ing, the approaches of related works can be divided into three types.

The first one is to preprocess images so that a feature tracker performs prop-
erly. An image enhancement method using adaptive histogram equalization was
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demonstrated to be effective for feature limited arctic images [26]. The second way
is to select a better feature detector. Several detectors finding scale-space features
are stable across scale changes of images, such as SIFT [13] or CenSurE [1]. Edge
points are another option due to their sufficient availability even in untextured envi-
ronments [25]. The third method is to adapt grids on a image. It divides an image
into several blocks and selects best features in each block [24].

While the conventional techniques have enabled robust motion estimation in
feature-poor terrain, this paper employs other approaches to improve it further. First,
a terrain-adaptive feature detector is employed. Natural environments exhibit vari-
ous appearance, which makes it hard to find a universally good feature detector.
The proposed method selects a detector from several prepared detectors in accor-
dance with the terrain appearance. Secondly, a novel motion estimation method is
employed to reduce the number of required feature points. Compared to the conven-
tional three-point algorithms for a stereo rig, the proposed method merely uses one
near point and one far point. It also mitigates the computational burden in combina-
tion with an iterative outlier rejection scheme.

3 Technical Approaches

An image pair grabbed with a rig is processed along the pipeline shown in Fig. 1.
This section mentions a detector adaptive to terrain appearance, and a method to
recover rigid motion from the set of corresponding 3D points.

3.1 Feature Extraction

Feature extraction is the first step of VO and deeply related to the later tracking pro-
cess. One crucial problem in feature extraction is the lack of well-tracked distinctive
features in untextured scenes. Fig. 2 shows a typical scene in a volcanic fields with
FAST corners [19] extracted. The low-textured terrain with a small portion of high-
contrast objects imposes difficulty in feature extraction. Furthermore, the diversity

Fig. 1 Block diagram of feature-based VO algorithm
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Fig. 2 Examples of a vol-
canic field with FAST cor-
ners extracted. Left: textured
terrain with rich features.
Right: untextured terrain
with poor features.

of terrain appearance is identified as a challenging problem since the parameters
used in a detector cannot be universal to all terrains. The properties required for a
feature detector are summarized as follows:

• Repeatability to re-appear a feature in different images of same scenes.
• Distinctiveness to be distinguishable from other features.
• Flexibility to be adaptive to many types of terrain.
• Invariance to be invariant to the motion of a robot or illumination changes.
• Computational efficiency to perform the algorithm in real time.

As of today, numerous number of feature detectors have been proposed includ-
ing [10, 13, 19, 1]. A survey was conducted to evaluate the performance of these
detectors in the context of visual tracking [9]. The comprehensive evaluation under
various conditions provides the insights about the characteristics of each detector.
In conclusion, they mentioned the difficulty to derive a universally appropriate de-
cision.

A straightforward answer for this problem is to use the combination of several
detectors. The previous work of authors introduced the hybrid of several detectors
which selects the appropriate detector for current terrain [17]. Using the hybrid de-
tector, features can be extracted in wide variety of appearance in natural terrain.

The hybrid detector is composed of two parts: texture assessment and detector
switching. The texture assessment part analyzes the texture of current terrain using
a machine learning technique. In Fig. 3, the terrain is classified into three classes
(ROUGH, SMOOTH, and SHADOW) so that each segments can be characterized
by the impact on feature extraction. The AdaBoost [7] is employed to classify image
patches. In order to describe the image patches, four statistical values are computed
for the probability distribution function P of image intensity:

μ = ∑
m

mP(m) (1)

σ2 = ∑
m
(m− μ)2P(m) (2)

E = ∑
m

P(m)2 (3)

po = ∑
m<μ−3σ ,
μ+3σ<m

P(m) (4)
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Fig. 3 Terrain classification using a machine learning technique. ROUGH(red): feature-rich
terrain. SMOOTH(blue): feature-poor terrain. SHADOW(green): the shadow of robots which
can be outliers for motion estimation.

where m denotes pixel brightness (ranging 0 to 255 for 8-bit depth images). Fi-
nally, the concatenated AdaBoost classifiers enablesR4 �→R

3 mapping by the hand-
labeled supervised learning.

Based on the terrain classification, an appropriate detector is selected from a
pre-defined detector set. Through the preliminary experiments, parameter-tuned
Harris [10] for SMOOTH and FAST [19] for ROUGH are selected. Note that scale-
invariant detectors such as SIFT [13] can be selected if the motion of a robot is
assumed to be large, while it sacrifices the computational efficiency. A detector set
should be determined in consideration of specific conditions.

In order to avoid excessive switching between detectors, which imposes extra
computation, a branch prediction using a saturating counter is employed. The n-bit
saturating counter is composed of a finite state machine with 2n states. The counter
increments its count if the current terrain is classified as ROUGH, and decrements
if it is classified as SMOOTH. The saturating property means the further increment
(decrement) has no effect when the counter reaches to its maximum (minimum)
value. The detector is selected depending on the highest bit of the counter (0/1).
This technique is simple but known to generate good estimation with less time and
memory usage. Based on the experiments, a two-bit counter which has four states
produces the best estimate and efficiency.

3.2 Motion Estimation

In VO systems, camera motion between frames is estimated with a set of associ-
ated feature points. Data association is one of the challenging problems, and the
associated features between frames inevitably suffer from wrong matches. In or-
der to reduce the impact of wrong matches and estimate motion accurately, out-
lier rejection schemes are commonly employed. Among several known schemes,
the RANSAC [5] is used in many VO systems [16, 12]. It is a hypothesis-and-test
framework which produces hypotheses with randomly sampled data sets and selects
the hypothesis that acquires highest consensus with other data.
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Fig. 4 The number of re-
quired RANSAC iterations
w.r.t. the number of data
points (p = 99%,ε = 50%)
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According to [5, 21], the number of RANSAC iterations that assure a certain
level of correct solutions can be found is computed by

Ks =
log(1− p)

log(1− (1− ε)s)
(5)

where p is the requested probability of success, ε is the percentage of outliers in the
dataset, and s is the number of data points which can be used for model estimation.
Fig. 4 shows the number of iterations increases exponentially with the number of
data points s. In the other words, if the number of required data can be reduced the
computational efficiency will drastically be improved.

Theoretically, to solve the relative pose problem of a stereo camera rig, the avail-
ability of three point correspondences is required. The proposed algorithm, however,
uses only two point correspondences. Reducing the number of data points requires
another cue to fully recover pose parameters. The main approach is to use knowl-
edge about the common direction which is estimated from inertia measurements or
vanishing points [14, 11, 6]. However, those measurements are not easily obtained
by mobile robots in uneven terrain. The proposed method employes an alternative
obtained from the correspondence of a feature point in the distance.

Fig. 5 Coordinate frames with two poses of a stereo camera
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Fig. 6 Transformation to
intermediate frame

At first, a distant point correspondence recovers two rotation parameters. In
Fig. 5, two poses are associated with a rigid transformation

X′ = R (X− t)+N(z) (6)

with a distance-dependent noise vector N(z). Let dM be the unit vector toward the
corresponding distant point. Introducing the intermediate frame FZ−→ where dM = ez

(see Fig. 6), the axes of frame FL−→ is aligned to FZ−→ by the following rotation

Rω(θ ) = 1+[ω ]× sinθ +(1− cosθ )[ω ]2× (7)

where

ω = ez ×dM (8)

θ = arccos(ez ·dM) . (9)

If the point is sufficiently far, the z-axis of FZ−→ and FZ′−−→ are approximately aligned.

The rotation matrix between two poses can then be expressed as

R= Rω ′(θ ′)�Rez(φ)Rω (θ ) (10)

where φ is the rotation angle for solving the rotational ambiguity around z-axis.
Next, the remaining parameters are solved by a near point correspondence. In (6),

N(z) can be negligible where the point is close to the camera. Thus, the translation
is computed as

t ≈ X−R�X′. (11)

From (10) and (11), the following equations

tZ = XZ −Rez(φ)
�X′

Z (12)

can be deduced, which are three equations with four unknown parameters. No-
tice that the vectors are transformed to the intermediate frames. By introducing the
epipolar constraint

m′�
Z [tZ]×Rez(ψ)mZ = 0 (13)

all unknown parameters can be recovered as one of two roots of polynomial systems.
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Fig. 7 Sliding window SBA (window size= 2)

3.3 Local Optimization

The motion parameters recovered with the two-point algorithm contain small errors.
A dominant reason is the approximated alignment between the vectors towards a
point at a finite distance, which is introduced in (10). If a distant point is sufficiently
far, the approximation almost meets. However, points at infinity are hard to be found
in real outdoor environments, and the small directional difference generates an es-
timation error. Additionally, improper camera calibration or wrong matches may
also be the causes of inaccurate estimation. As VO estimates the current pose by
concatenating transformations at each time, the small error accumulates quickly.

The accumulated error can be mitigated by optimization techniques. The sparse
bundle adjustment (SBA) is an efficient solution for the pose graph optimiza-
tion [23]. In the developed system, the sliding window SBA shown in Fig. 7 is
employed. It optimizes the parameters in a fixed-size image window and slides it
as the new pose is added.

The procedure of employed sliding window SBA is as follows. Firstly, the pose
graph is generated. The new pose and feature measurements are added to the graph
if the motion from the previous pose exceeds a certain threshold. Then, nonlinear
optimization such as Levenberg-Marquardt is performed for the last w poses, where
w denotes the window size. The window is shifted while the graph grows, and the
poses are locally optimized in the whole graph.

3.4 Algorithm Summary

A summary of the complete algorithm is given as follows:

1. Capture images with a stereo camera rig.
2. Apply terrain classification to select the appropriate detector.
3. Extract features and descriptors for both images.
4. Triangulate feature points in 3D space.
5. Match features between frames using feature description.
6. Perform the two-point algorithm with RANSAC to compute the relative pose

from the previous pose.
7. Validate the estimated pose using the pose constraint of the robot (e.g., direction

of gravity, ground height).
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8. Concatenate poses. If the motion exceeds the predetermined threshold, perform
sliding window SBA to reduce accumulated errors.

4 Experiments and Results

Field experiments have been conducted to evaluate the proposed VO method. The
experimental field, Urasabaku Desert, is located at the center of Izu-Oshima Island
in Tokyo, Japan (Fig. 8). The terrain is covered with scoriae, dark and bright colored
volcanic rocks, and volcanic bombs on large uneven slopes.

The images are taken by the M6A rover, which is equipped with a stereo camera
rig at the height of 1.5 m from the ground, a GPS receiver, and an AHRS (Attitude
and Heading Reference System). Images are captured with Point Grey Dragonfly2
CCD cameras and Tamron M13VG308 wide-angle lenses. The intrinsic and ex-
trinsic parameters of a stereo camera is preliminary calibrated using the method of
Zhang [27].

The entire system has been integrated into ROS (Robot Operating System) and
coded with C++. The visualization of a robot and a path is shown in Fig. 9. The
analysis is performed on a laptop PC with Intel Core 2 Quad 2667MHz CPU using
only a single core.

Fig. 8 Experimental ar-
eas. Top: Site map of Izu-
Oshima Island. Bottom left:
Sample Image for Site A.
Bottom middle: Sample Im-
age for Site B. Bottom right:
Experimental robot M6A.



374 K. Otsu, M. Otsuki, and T. Kubota

Fig. 9 The window image
for visualizing path

4.1 Feature Extraction

The VO systems in feature-less environments such as these volcanic fields encounter
the first and most challenging problem at the extraction of features. The above
mentioned hybrid detector selects the well-tuned appropriate detector for feature-
rich/poor scenes (Refer to Fig. 2) so that enough features can be extracted from
both environments. The scene classifier is trained with hundreds of labeled data for
each class using the one-versus-rest technique. The patch classification accuracy is
around 70–80%. The slightly low classification rate can be mitigated with the voting
procedure in a whole image.

The proposed hybrid detector is compared with common detectors including Har-
ris [10], Shi-Tomasi [22], FAST [18, 19], DoG (Difference of Gaussians) [13],
Fast Hessian [3], and STAR based on CenSurE [1]. The result is summarized in
Table 1. Two combinations for the hybrid detectors are shown: Harris+FAST and
DoG+FAST. The notable improvement is the average number of successful feature
tracking for the hybrid detector with Harris and FAST. It also shows good perfor-
mance in extraction time due to the combination with high-speed FAST detector. It
successfully benefitted from both Harris and FAST.

Although the hybrid detector additionally imposes the extra computational cost
for terrain classification, it only takes 0.39 ms for 4x4 blocks in a 320x240 resolution
image. This is due to the efficient AdaBoost algorithm and the design of terrain
descriptor with four simple statistical values describing the terrain well.
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Table 1 Performance comparison in feature extraction (961 frames, 320x240 grayscale im-
ages)

Detector Inlier Count Success Frames Extract Time Class. Time

Harris 47.27 (9.8%) 97.3% 11.87 ms –
Shi-Tomashi 43.21 (4.6%) 93.1% 14.36 ms –
FAST 33.73 (21.1%) 25.3% 1.32 ms –
DoG 31.13 (10.4%) 75.5% 54.98 ms –
Fast Hessian 31.16 (12.1%) 39.2% 27.90 ms –
STAR 18.61 (23.5%) 28.3% 9.86 ms –
Proposed (Harris+FAST) 56.93 (12.1%) 87.7% 9.24 ms 0.39 ms
Proposed (DoG+FAST) 45.43 (14.3%) 54.4% 39.34 ms 0.39 ms
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Arun [2] 0.18 ms 1.061 m (3.16%)
Gao [8] 1.32 ms 2.757 m (8.23%)
Proposed 0.12 ms 1.357 m (4.05%)

Fig. 10 Comparison of motion estimation methods. Left: Estimated trajectories. Right: Av-
erage time and RMS errors in meters. (Arun: 3D-to-3D least squares method [2] using four
points. Gao: 3D-to-2D P3P method [8] using three points.)

4.2 Pose Recovery

Using the tracked features, motion is estimated between frames. The two-point al-
gorithm is compared with conventional three-point algorithms [2] and [8], all of
which are implemented in C++. The trajectories are estimated in Fig. 10 along a
40 m drive on a circular path. The motion is estimated within the RANSAC frame-
work. The two-point algorithm successfully recovers a circular path while it contains
small fluctuation in yaw direction. The fluctuation is derived from the approxima-
tion using points at finite distance. Even so, this formulation recovers trajectory with
sufficiently small RMS error and time.

Moreover, the VO system was tested for longer trajectories. The sliding window
SBA approach optimizes the poses within w-window (w = 4 in this experiment). If
a motion threshold is set, the motion between adjacent images inside the window
should exceed the threshold. Exceptions occur if the number of feature tracking
drops less than a threshold due to a sudden view change or bad image conditions.
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Fig. 11 Estimated trajectories for longer traverse at varying motion thresholds. Left: Esti-
mated trajectories. Right: RMS errors in meters.
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Fig. 12 The frequency of SBA process at varying motion thresholds. Each dot represents the
execution of SBA. Yellow: Normal process. Red: Few feature tracking detected.

In Fig. 11, the trajectories for a 60 m path are estimated at varying motion thresh-
olds for sliding window SBA. By introducing SBA, the error accumulation is re-
duced. Smaller motion thresholds show better performance in error reduction. How-
ever, determining the motion threshold is not a simple problem. It is not preferable
to perform SBA in every frame since it consumes the resources. On the other hand,
with larger thresholds the feature tracker may fall into failure. Fig. 12 presents the
timing that SBA is performed for the motion thresholds 0.0, 0.1, 0.2, 0.3 m. Yellow
dots represent normal process (reaching the threshold), while red dots show the case
where the failure of feature tracking is detected.

5 Conclusion

Although estimating camera poses in natural environments is a difficult task, the
proposed techniques enabled pose estimation by VO even in challenging feature-less
scenes. One crucial problem of VO in such scenes is that the terrain does not exhibit
rich visual features. The lack of feature tracking degrades the accuracy and in some
case causes the failure of pose estimation. Considering there does not exist a ‘single’
method to extract interest points in ‘any’ situation, the proposed approach makes
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use of the different properties of multiple detecters. The hybrid detector selects the
most appropriate detector in accordance with the terrain classification by an efficient
machine learning technique.

Moreover, a novel motion estimation method was proposed to efficiently recover
six motion parameters with smaller data points. In theory, the minimal number for
recovering an unconstraint motion is three. It is reduced by the proposed algorithm
which only requires one point from near region and another point from far region.
Since it is difficult to extract feature points from near region in feature-less terrain,
the strategy of point selection will be able to reduce missed frames. The two-point
algorithm reduced the number of data points by exploiting common direction be-
tween poses. The common direction is computed by the direction to the point at
a finite distance which is obtained by triangulation. Using the two-point algorithm
with RANSAC accelerated the estimation process by reducing iterative operations.

The proposed VO algorithm was evaluated with real data, which was obtained
by the developed testbed robot at the volcanic fields in Izu-Oshima, Japan. The
algorithm was validated by the image sequences of several drives. The estimated
motion contained a small yaw error caused by the approximation in formulation,
while the error can be mitigated with SBA approaches. The future work involves the
performance evaluation with longer (multi-km) paths in untextured environments.
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Eight Weeks of Episodic Visual Navigation
Inside a Non-stationary Environment Using
Adaptive Spherical Views�

Feras Dayoub, Grzegorz Cielniak, and Tom Duckett

Abstract. This paper presents a long-term experiment where a mobile robot uses
adaptive spherical views to localize itself and navigate inside a non-stationary office
environment. The office contains seven members of staff and experiences a continu-
ous change in its appearance over time due to their daily activities. The experiment
runs as an episodic navigation task in the office over a period of eight weeks. The
spherical views are stored in the nodes of a pose graph and they are updated in
response to the changes in the environment. The updating mechanism is inspired
by the concepts of long- and short-term memories. The experimental evaluation is
done using three performance metrics which evaluate the quality of both the adap-
tive spherical views and the navigation over time.

1 Introduction

Functional and useful mobile service robots require the ability to share physical
spaces with humans, and need to deal with a dynamic and ever-changing world.
These changes are mainly caused by human activities making them spontaneous,
discontinuous and unpredictable. This includes changes in the structure of the envi-
ronment as well as its appearance (e.g. rearrangement of the furniture or changing
the colour of a curtain).

In order to maintain an up-to-date inner representation of the world, robots can
use their continuous stream of sensory information, which reflects the momentary
status of their surroundings. However, the amount of sensory information to be pro-
cessed in a lifetime is vast; therefore, efficient methods are required for filtering,
storing and updating this information over time.
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One possible solution for handling this large amount of sensory information can
be inspired by the concepts of short- and long-term stores of the human memory.
While a robotic memory need not be constrained by the fallibilities of human mem-
ory nor the exact details of its biological implementation, we believe that the modal
model of human memory provides a useful framework for the filtering and storage
of perceptual information in artificial agents such as robots.

This paper uses a long-term map-updating mechanism inspired by the multi-store
model of human memory [7] for the application of visual navigation. The map con-
sists of an adjacency graph of nodes on a global level, and each node on the local
level of the map represents a spherical view of image features extracted from an
omnidirectional image of the node. The spherical views provide both an appearance
signature for the nodes, which the robot uses to localise itself in the environment,
and heading information when the robot uses the map for visual navigation. The
paper presents an evaluation of the navigation performance within a typical office
environment over a period of eight weeks. These metrics are used to evaluate the
effect of the learning and forgetting processes on the quality of the map over time.

The rest of the paper is structured as follows. Section 2 discusses related work.
Section 3 presents an overview of the proposed memory model, Section 4 describes
our method for long-term adaptation and visual navigation. Section 5 discusses the
performance evaluation metrics. Section 6 presents the experiments and results ob-
tained. Finally we draw conclusions in Section 7.

2 Related Work

Although nearly every actual robot real-life environment is dynamic, the majority of
previous work on robotic mapping assumes that the world is static. Whereas, most
previous approaches that consider mapping dynamic environments assume that the
underlying structure of the environment is static, and then try to separate moving
objects from stationary parts by treating the dynamic effects as measurement out-
liers [8, 12, 10]. Alternatively, many authors try to improve the robustness of the
mapping process by detecting and tracking moving objects separately [18, 15, 13].

Considering that the environment consists of static and dynamic objects, other
approaches build two maps, one for the static parts and one for dynamic elements.
The complete state of the environment is obtained by merging the two maps [19].
Other approaches try to maintain one map for both dynamic and static landmarks,
by classifying landmarks as dynamic or stationary using a probabilistic framework.
Movements of the dynamic landmarks are observed and included in the estimation
process of the map [4].

Several authors have investigated mapping systems that incorporate simple for-
getting mechanisms based on recency weighting. Andrade-Cetto and Sanfeliu [1]
developed an EKF-based mapping system that is able to forget landmarks that have
disappeared, where an existence state associated with each landmark measures how
often it has been seen. However, none of these methods are general enough to
handle environmental changes occurring at different rates, nor has the long-term
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robustness of these approaches been demonstrated in real world environments. Us-
ing a map learning and forgetting mechanism, Biber and Duckett [5] introduced an
approach to update a laser based map which represents the environment at differ-
ent timescales, with older memories fading at different rates. They used samples
and robust statistics to handle noise and contradicting measurements produced by
environment changes.

Very recently [17] proposed a method to update a laser-based metric map. The
method uses a pose graph SLAM approach to optimise the trajectory of the robot
and produce the map. In order to update the map, the robot compares its current
laser scan view with scans stored from previous passes through the same sections
of the environment. The author makes the assumption that the environment contains
only low dynamic objects, i.e. objects that move only outside of the robot’s view,
which makes the environment static when the robot is passing through it. However,
in a dynamic environment, changes can occur while the robot is operating inside the
environment. As such, these changes need to be detected and filtered out.

The main aspect of the previous works on vision-based navigation that is super-
seded by our approach is the ability to adapt and maintain only one reference view
for each place in the robot’s map in response to environmental changes instead of
keeping a history of multiple views to represent the same place over time.

3 An Overview of the Memory Model

According to the basic model of Atkinson and Shiffrin [2], human memory is di-
vided into separate stores for sensory memory (SM), short term memory (STM) and
long term memory (LTM). The sensory memory contains information perceived by
the senses, and selective attention determines what information moves from sensory

Fig. 1 Multi-store memory model. SM: Sensory memory. STM: Short-term memory. LTM:
Long-term memory. Selective attention, which involves the LTM, determines what informa-
tion moves from SM to STM. Through the process of rehearsal, information in STM can be
transferred to LTM and be retained for longer periods of time. Information from the LTM
store is retrieved using a process called “recall”.
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memory to short-term memory. Through the process of rehearsal, information in
STM can be committed to LTM to be retained for longer periods of time. In return,
the knowledge stored in LTM affects our perception of the world, and influences
what information we attend to in the environment. In our approach, perceptual at-
tention includes detection of local image features for subsequent processing in the
memory model. (see Fig. 1).

The concepts of the above memory model are used to update the map, incre-
mentally, by gradually adding information about new stable image features in the
environment, while removing information about features that no longer exist. The
sensory memory contains the features extracted from the current image. Then an
attentional mechanism selects which information to move to STM, which is used as
an intermediate store where new image features are kept for a short time. Over this
time the system uses a rehearsal mechanism to select features that are more stable
for transfer to LTM. In order to limit the overall storage requirements and adapt to
changes in the environment, the system also contains a recall mechanism that forgets
(i.e. removes) unused feature points in LTM. LTM is used in turn by the attentional
mechanism for selecting the new image features to update the map.

3.1 Map Representation

The robot’s world is represented as a hybrid map consisting of two levels, global
and local. Fig. 2 illustrates the hybrid map. On the global level, the world is repre-
sented as n optimized pose-graph. On the local level of the map, each node stores
a spherical view representation of image features. The spherical views contain the
3D location of the image features on a sphere, so only the directions of the features
(but not their distance or depth) from the centre of the sphere are stored. The centre
of the sphere in this case corresponds to the centre of that node.

Each spherical view is initialised from an omnidirectional image recorded from
the centre of each node in the global map. The spherical representation of the nodes
creates a connection between the global and local levels of the map, where the group
of image features is used as a qualitative descriptor for localisation on the global
level, and the 3D location of these features on the sphere is used for estimating the
heading needed for the navigation system at the local level [7].

Localisation on the global level is achieved by using an image similarity score
based on the number of matched feature points between the current view of the
robot and the group of points stored in each node. The robot localises itself to the
node which has the highest similarity score in the map. Navigation on the local
level is done by using multiple view geometry for spherical views to estimate the
robot’s heading during autonomous navigation. This navigation method is described
in Section 4.3. The same image features used for navigation are also used to update
the spherical views stored inside each node over time, in response to changes in the
appearance of the environment.
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Fig. 2 The environment is represented as an adjacency graph of nodes on a topological level
and each node on the metric level of the map represents the 3D location of image features
on a unit sphere. Our method represents the direction of the features from the centre of the
sphere, which corresponds to the centre of that node.

4 Methodology

4.1 Map Updating Mechanism

We represent STM and LTM as finite state machines (see Fig. 3), where each mem-
ory type consists of a set of states (Si). There is one STM and one LTM associated
with each node of the map that stores information about features. The LTM repre-
sents the recent stable configuration of features in the environment and these are
the features that are used as reference views of the map. The rehearsal process for
a stored feature in STM is the process of continually recalling information into the
STM in order to memorise it. In order to transfer a feature point from STM to LTM
the feature has to be seen frequently. Features enter STM from sensory memory and
must progress through several intermediate states (S1 to Sn) before transfer to LTM.
Every time the robot finds the feature (“detect”), the state of the feature is moved
closer to LTM. However if the feature is missing from the current view (“miss”), it
is returned to the first state (S1) or forgotten if it is already there. This policy means
that spurious features should be quickly forgotten, while persistent features will be
transferred to LTM. The recall process for a stored feature in LTM first involves up-
dating the LTM by a process of feature matching. In order to remain in the LTM, a
feature has to be seen occasionally. In contrast to rehearsal, features enter LTM from
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Fig. 3 The proposed multi-store memory model. SM: Sensory memory. STM: Short-term
memory. LTM: Long-term memory.

STM and must progress through several intermediate states (S1 to Sv) before being
forgotten. Stored features which have been seen in the current view are reset to the
first state (S1), while the state of features which have not been seen is progressed,
and a feature point that passes through all states without a “detect” is forgotten.
Finally, recall returns the list of new features that were not already present in the
LTM (i.e. the difference in appearance between the current and reference views).
We use multiple view geometry to transfer the image features from the current view
to the spherical views of the nodes. The geometric method by which we update the
spherical views of the map is presented in full detail in [7].

4.2 Temporal Calibration for the Updating Mechanism

Temporal calibration means selecting the real-time unit in which the robot uses the
memory system to update its map. In this work, it is assumed that the system is used
by a mobile service robot working inside a house or public environment, where life
is a series of daily episodes. This suggests that using days as a basic time unit would
be a realistic choice. After each working day, during which it spends its time navi-
gating inside the environment and visiting different nodes inside the map, the robot
goes through what could be called a “sleep” period where it activates its memory
system to update the map. However, in other situations where life and human activ-
ities do not follow daily cycles, the robot can adopt a time scale to update the map
which reflects the natural cycle of activities in its surroundings.

Depending on the nature of the task, the robot may visit some nodes in the map
multiple times during one day, whereas other nodes will be visited less frequently.
This means that it is important to unify the rate at which the appearance of each
node is updated. In order to achieve this aim, the robot selects, at the end of each
working day and for each visited node in the map, one view only to use for map
updating. The selected view is the one which has the highest number of matched
points with the reference view of each visited node over the whole day.
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Fig. 4 The proposed navigation strategy using heading estimation. The robot is required
to re-execute a path consisting of a number of key images which were recorded during a
previous mapping stage. In the figure, Nk is the current node in the path and Nj is the next
node. The red dashed line is the intended path. θk,θ j are the relative orientations between
the robot’s heading and the reference orientation of the nodes Nk, Nj respectively. θr is the
desired heading which results from a weighted sum of θk and θ j .

4.3 Using the Map for Navigation

Every map can be judged by its usefulness for practical purposes. In our case the
map is used for a daily path following routine inside a continually changing envi-
ronment.

When robots work inside an indoor environment, their navigation generally is
restricted to what the humans consider to be a path inside that environment, such as
corridors and the areas between the furniture. These routes effectively simplify the
task of navigation by limiting the robot to only one degree of freedom along the path.
And by representing this path as a sequence of images, the following framework
of the appearance-based approach for visual navigation is repeatedly used in the
literature:

• The path is first built during a learning phase where the robot is controlled by a
human operator. During this phase the robot captures a sequence of images along
the path.

• A subset of the captured images is selected to represent the reference images
along the path.
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• During the replay phase, the robot starts near the first position and is required to
repeat the same path.

• The robot extracts motion directions by comparing the currently observed image
with the reference images along the path.

In this work we adopted a similar framework for visual path following using a
sequence of nodes from the map. Fig. 4 illustrates the navigation strategy. First the
robot localizes itself to one of the nodes in the path. This is done by selecting the
node which has the highest similarity score with the currently observed view. Let
Sk be the similarity score, i.e, the number of matched points. The similarity score is
also computed between the current view and the next node in the sequence. Let S j

be the similarity score with the next node. After that the following ratio is computed:

ωk =
Sk

Sk + S j
, ω j =

S j

Sk + S j
. (1)

Then the heading angle θr is computed as a weighted sum:

θr = ωk ∗θk +ω j ∗θ j. (2)

where θk and θ j are the relative orientation between the current view and the nodes
Nk and Nj respectively (see Fig. 4). By following this navigation strategy, the nodes
in the path can be considered as directional signs which lead the robot toward its
goal.

In order to estimate the relative orientation between two views, such θk and θ j in
the above case, we use epipolar geometry to estimates the essential matrix E, which
is factored to give a rotation matrix R ∈ SO(3) and the skew-symmetric matrix [t]×
of a translation vector t ∈ R

3 [11] as follows:

E = [t]×R. (3)

After that, the relative orientation is extracted from the rotation matrix R.

5 Performance Evaluation

5.1 Map Adaptability

The main goal of the proposed memory model is to make the reference views of the
map adapt to the changes in the appearance of the environment over time. In order to
measure this adaptability we use the similarity between the views of the nodes and
the reference views as a metric. Higher similarity means better representation for
the environment where the similarity is measured as the number of matched feature
points between two views. We compare how the similarity changes over time when
the memory is used to update the reference views and again when the reference
views were left static.
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5.2 Map Consistency

Map consistency in our case means that the updating process of the reference views,
which involves removing and adding image features over time, does not cause the
map to degrade. If the map degraded over time, the robot would have difficulties to
use the map for tasks such as autonomous visual navigation. Therefore, measuring
the performance of executing a visual navigation task over time would be a good
indicator of the quality of the map. In other words, the map is considered to be
consistent if the performance does not drop over time.

In order to evaluate the performance of the proposed navigation strategy pre-
sented in Section 4.3, we use two metrics. The first is the length of the trajectory. If
the length of the trajectory increased over time this would mean that the robot took
more steps to execute the path due to poor directional information from the map.
The second metric is the curvature of the executed trajectory by the robot [14]: the
lower the curvature the smoother the trajectory. The smoothness of the trajectory is
a good indicator of the consistency of the decision-action relationship in the navi-
gation system. Similar to the first metric, if the curvature of the trajectory increased
over time this would indicate that the robot performance is degrading.

Representing the trajectory of the robot as a curve in a 2D plane:

y = f (x), (4)

the length of this trajectory can be calculated as:

L =
n−1

∑
i=1

√
(xi+1 − xi)2 +( f (xi+1)− f (xi))2, (5)

where (xi, f (xi)), i=1...n, are the n points of the trajectory in Cartesian coordinates.
The curvature of the trajectory at any point can be calculated as:

k(xi) =
f
′′
(xi)

[1+( f ′(xi))2]
3
2

. (6)

Using the above curvature factor, the smoothness of the trajectory can be mea-
sured as follows:

BE =
1
n

n

∑
i=1

k(xi)
2, (7)

where BE is called the bending energy [16]. The bending energy can be understood
as the energy needed to bend a rod to the desired shape. The less the energy the
smoother the trajectory.
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Fig. 5 An ActivMedia P3-AT robot equipped with an omnidirectional vision system.

6 Experiment and Results

Our experimental platform was an ActivMedia P3-AT robot equipped with a GigE
progressive camera (Jai TMC-4100GE, 4.2 megapixels) with a curved mirror from
0-360.com. See Fig. 5

The experiment was carried out inside the faculty office at the School of Com-
puter Science at the University of Lincoln. We choose this area to conduct a long-
term experiment because the room is designed as open offices where seven members
of staff perform their daily activities. These activities result in changes to the appear-
ance of the room over time. On the first day the robot was driven in a loop and a
map with 10 nodes was created. For each node in the map, a spherical view of SURF
features [3] was built. Using these spherical views, the map was used by the robot
to perform a visual navigation routine from node number 1 to node 10. The 10 node
route was repeated 38 times over a period of 8 weeks and after each run the robot
used the memory model to update the map. Fig. 7 shows three images taken by the
robot from the same place but at different times.

In this experiment the robot uses 3 stages in STM and 7 stages in LTM (one
week) as the parameters for the memory. In other words, the robot rehearses new
information for 3 days before transferring it to the LTM. In the LTM the robot forgets
any information which has not been used for a week, taking into account the weekly
episodic nature of our daily life.

At the beginning of each run, the robot was placed in the vicinity of the first
node. Then the robot performed global localization by matching the extracted fea-
ture points from its current view with all the reference views in the map and local-
ized itself to the node with the highest number of matched points. Then the robot
estimated its heading as described in Section 4.3. The obstacle avoidance proce-
dure used in this work is as follows. When the robot receives a command to rotate,
it checks its sonar range readings first. If the sonar ranges allow for movement,
the robot simply executes the movement; otherwise, it turns 10o in the opposite
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Fig. 6 Left:A laser based occupancy map for the area of the room where the experiments took
place. Right: The trajectory of the path taken by the robot at one of the navigation episode
during the experiment.

direction and then moves forward for a distance of 50 mm. After that it re-estimates
the desired heading using the view from its new position. If both directions are
blocked, the robot moves backward 100 mm and then re-estimates the desired head-
ing from its new position. Finally, if the robot receives a command to move forward
but there is no room for the movement based on sonar readings, the robot checks the
sonar ranges on its right and left sides and then turns in the direction which has the
most free space. This procedure is done in a recursive manner.

In order to obtain the ground truth data, we used Laser Range Finder (LRF)
sensor with the GMapping library [9]. The GMapping algorithm provides a Simul-
taneous Localization and Mapping (SLAM) solution for static environments based
on a Rao-Blackwellized particle filter. The output of the algorithm is an estimate of
the robot trajectory along with an occupancy grid map of the environment. This data
provides us with information about the total distance travelled by the robot and the
smoothness of the trajectory. Fig. 6 shows a laser-based occupancy map for the area
of the room where the experiments took place.

The robot was able to perform the path following task successfully during all
runs. As mentioned earlier, we use the similarity metric as an indicator for the adapt-
ability of the map. The mean number of matched points between the view which
has the best number of matching points and the reference views of the map was
170.9±84.6 when the static reference views were used for the map and 255.7±92.6
when the adaptive map was used. This result shows the effect of using our memory
model in increasing the similarity of the map to the environment. Fig. 8 shows how
the similarity score changed over the 38 runs for node number 4 in the map.

The second metric is the change of the length of the trajectory over time. Fig. 9
shows that the length of the trajectory does not increase over time. The mean
distance traveled over all runs was 19.9± 0.8 m.
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Fig. 7 Three images recorded from the same place at different times. The appearance changes
through the existence of new objects in the arena and the disappearance of others.

Fig. 8 A comparison between the static and the adaptive map showing the change of the
similarity over the 38 runs for node number 4

The third metric used for the evaluation is the smoothness of the trajectory mea-
sured by the bending energy. Fig. 10 shows that the bending energy of the trajectory
is not increasing over time but it is consistent. This means that the quality of the
map is also consistent over time.
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Fig. 9 The change of trajectory length over time. The mean distance travelled over all runs
was 19.9±0.8 m. Between days 27 and 28 a big box was delivered into the office, taking up
part of the robot’s path and forcing it to take a longer trajectory.

Fig. 10 The change of the smoothness of the trajectory measured by its bending energy.
Between days 27 and 28 a big box was delivered into the office which affected the smoothness
of the trajectory.

7 Conclusion

This paper presented am eight weeks episodic visual navigation experiment in a real
office environment. An updating mechanism, based on short- and long-term mem-
ory concepts, incorporates a spherical view representation of image features, is used
to keep robot’s map up-to-date. The spherical views are used for navigation using
multi-view geometry, as well as representing appearance signature of the environ-
ment. The results show that the proposed system has a persistent performance in
such a real changing environments.
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Human Activity Recognition for Domestic
Robots

Lasitha Piyathilaka and Sarath Kodagoda

Abstract. Capabilities of domestic service robots could be further improved, if the
robot is equipped with an ability to recognize activities performed by humans in its
sensory range. For example in a simple scenario a floor cleaning robot can vacuum
the kitchen floor after recognizing human activity “cooking in the kitchen”. Most
of the complex human activities can be sub divided into simple activities which can
later used for recognize complex activities. Activities like “take meditation” can be
sub divided into simple activities like “opening pill container” and “drinking wa-
ter”. However, even recognizing simple activities are highly challenging due to the
similarities between some inter activities and dissimilarities of intra activities which
are performed by different people, body poses and orientations. Even a simple hu-
man activity like “drinking water” can be performed while the subject is in different
body poses like sitting, standing or walking. Therefore building machine learning
techniques to recognize human activities with such complexities is non trivial. To
address this issue, we propose a human activity recognition technique that uses 3D
skeleton features produced by a depth camera. The algorithm incorporates impor-
tance weights for skeleton 3D joints according to the activity being performed. This
allows the algorithm to ignore the confusing or irrelevant features while relying on
informative features. Later these joints were ensembled together to train Dynamic
Bayesian Networks (DBN), which is then used to infer human activities based on
likelihoods. The proposed activity recognition technique is tested on a publicly avail-
able dataset and UTS experiments with overall accuracies of 85% and 90%.

1 Introduction

Recent advancements in robotics technologies have introduced low cost domestic
robots that can vacuum the floor while residents are away or provide company for
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less mobile or elderly people. It is argued that the success of such domestic ser-
vice robots can be significantly enhanced by the ability of robots to understand the
human activities and to respond them accordingly. Such capabilities will enable
robots to make more human like decisions without explicitly being ordered to carry
out a certain task. It will also allow the robot to seamlessly integrate with human
interactions.

Our research focus is to develop robotic technologies to help and promote inde-
pendent living for elderly people. It is motivated by the growing number of older
people around the world and difficulty of finding enough care staff. In general el-
derly people gradually lose their cognitive ability to keep track of daily activities.
In this context, an assistive robot that can recognize human daily activities will be
immensely helpful. For example, an elderly person could be reminded of taking
medications in appropriate times and could follow it up until the activity has been
completed. In addition, the robot may detect abnormal conditions such as some-
one laying on the floor or sleeping longer than usual and notify the appropriate
personnel.

Detection of human activities is challenging due to several reasons. The first
reason is related to noisy sensory inputs, and the second reason is related to the
difficulty of modeling highly ambiguous actions. Moreover human activities are
performed in different body poses and orientations with inter subject variations.
Therefore, video-based human action recognition has unwarranted complexity and
limited accuracy.

Recent trend in human activity recognition research is to use low cost RGB-D
cameras like Microsoft KinectTM . These cameras are capable of generating skele-
ton model of a human with 15 body joints positions and their orientation. In this
research our intention is to use these skeleton features to extract relatively unam-
biguous features to model human activities.

In our previous work [9], we have developed human activity recognition model
that used Gaussian mixture based HMM. However, its recognition accuracy is
severely compromised, if the actions are performed with different body poses. For
example “drinking water” activity can be performed while the person is in differ-
ent body poses such as sitting, standing or even while walking. This is due to the
incorporation of all the features, including non informative and ambiguous ones.
However, if we could devise a methodology for identifying the most informative
features for a given activity, then it will be better positioned at handling actions
done with different body poses.

This paper presents a novel human action recognition approach that uses only
3D skeleton features produced by a depth camera. Each activity was modelled as
a Dynamic Bayesian Network (DBN) in which each joint node is probabilistically
weighted according to the importance of that joint to the activity being modelled.
These joint weights together with their observation probability ensembles, form a
model for each activity. Joint weights are calculated by training HMM for each case
of a given activity and estimating the dissimilarity measure between such trained
models. The model is firstly evaluated on a publicly available benchmark dataset:
Cornell activity Detection Dataset [11]. Then it was tested with our experiments
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which shows that proposed method is able to achieve higher recognition accuracies
even with higher intra-activity variations of 3D skeleton features.

2 Related Works

Human activity detection is not a new research area that has been looked into by
various researchers. In [12] human activities are classified as either normal or ag-
gressive by using a mobile robot and a 3D sensory tracker system. Other researchers
have utilized human activity detection to learn and imitate humans activities [2][5].
In [4], audio-based human activity recognition using non-markovian ensemble vot-
ing technique is presented. Applicability of this method is limited by the inherent
distinguishable sounds associated with activities. Therefore such a system may only
be used as a complement to the existing sensory systems.

It is common knowledge that knowing the 3D joint position is helpful for activ-
ity recognition. Multi-camera motion capture (MOCap) systems [13] has also been
used for activity detection but requires markers attached to joints with a highly cali-
brated camera system. Therefore, such a system is infeasible to be used in practical
robotic scenarios. With the invention of low cost depth cameras, several researchers
have used RGB-D skeleton data to recognize activities. In [11] two-layered max-
imum entropy Markov model with a set of sub-activities is used to detect human
activities. There, both the skeleton and 3D point cloud data are used extracting 715
features. However, the algorithm is heavily dependent on a particular sequence of
sub activities to form human activities. This can have adverse influence on the gen-
eralization aspect due to the individual differences in carrying out activities.

In [13] actionlet ensemble model for human activity detection with depth cam-
eras are proposed. The actionlets are proposed to compensate intra-class variations
caused by human activities. This approach mainly differs form ours in many ways.
Their actionlets only comprises of different combination of joints, whereas our ap-
proach assigns probabilistic weighting for each skeleton joint. Therefore our action
ensembles contain more meaningful information than actionlets. Secondly our ap-
proach only relies on universal skeleton features whereas actionlet based approach
uses depth data associated with each joint position, called Local Occupancy Pattern
(LOP). But these LOP features would depend on the objects that the subject inter-
acts with. Therefore it may have difficulty in dealing with a subject performing an
activity using different object sizes and shapes.

Use of probabilistic graphical models is one of the most popular techniques that
has been used by automatic human activity detection. In [1] researchers used cou-
pled HMM to detect human two hand activities and some others utilized motion tem-
plate together with HMM to recognize human activities [6]. But these researchers
didn’t incorporate all the joint information in their models. However most of the
human daily activities are too complex to recognize by only observering few joint
features. Therefore those techniques would fail to recognize human daily activities
with high intra-activity variations.
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The paper is organized as follows. Sect. 3 describes overall activity detection
model which is the core of our proposed approach. It details the algorithm we used
to calculate joint confidence weights followed by the Dynamic Bayesian Network
(DBN) that incorporates joint ensembles. Sect. 4 describes the implementation of
the proposed approach and training of DBNs for activity detection. Experimental
results are discussed in Sect. 5 followed by the conclusions in Sect. 6.

3 Activity Recognition Model

Fig. 1 Block diagram of the recognition process

Fig. 1 shows the overall process which is utilized in the proposed human activity
detection method. First we identify joint ensembles and their associated weights for
each and every activity in the data-set. Then we train separate Dynamic Bayesian
Networks (DBN) by incorporating joints weights for each activity in the data-set.
Once a new sequence of skeleton features has been captured, the previously trained
models produce likelihood estimation, from which the maximum is selected.

3.1 Learning Action Ensembles

We represent each activity as weighted joint ensembles to better characterize intra
class (same activity done with different body poses) variations of human activities.
This allows us to identify common joint movements associated with each intra-
class activity. The approach can be justified by the fact that all 14 skeleton joints do
not contribute equally to a particular human activity. For example, for the activity
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“drinking water” most descriptive skeleton features would be 3D joint skeleton data
of hands and the head. Therefore more weight may be assigned to joint positions
of hand and head for the activity “drinking water”. Following section describes the
learning mechanism that has been utilized to identify joint ensembles and their as-
sociated weights for each activity in the data set.

3.1.1 Calculating Joint Confidence Weights

In the proposed algorithm weighted joint ensembles are denoted as W j
a , where

jεJ = { j1, j2, ..., jn} and aεA = {a1,a2,a3..am}. Here J is the set of skeleton joints
and A is the set of all activities in the dataset and m is the number of activities. In
addition the weights of each joint are constrained as in (1) to give probability value
for each joint.

n

∑
j=1

W j
a = 1 (1)

We assumed each joint is independent of each other when calculating joint
weights for a given activity. For the person pn , joint jn and for the activity an,
we can denote the set of k observation sequence as Opn

Jn
= {O1,O2,O3, ...,Ok} . For

each subset of observation sequences S ⊂ Opn
Jn

, what we are interested in knowing
is the similarity or the likelihood between the observation sequences. When calcu-
lating the likelihood of each observation sequence tempo-spatial movement of the
joint need to be considered. In order to calculate the likelihood between observation
sequences, we should be able to build models that efficiently represent observation
sequences. Hidden Markov Models (HMM) have shown a great deal of success to
model sequential data [10] and therefore, intra activity likelihood is calculated based
on a HMM by training each joint and subsequent testing.

Fig. 2 (x,y,z) positions of
the right hand with respect
to the torso, when the ac-
tion “drinking water” is
performed
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Fig. 2 shows position information (with reference to torso) of the right-hand’s
wrist joint when “drinking water” activity is performed. It shows few distinguish-
able clusters. In addition, within each of these clusters, few sub clusters can also be
observed. This is due to the variation caused when the subject performs the same ac-
tivity in different poses. Although unimodal Gaussians are used in HMM to model
continuous data, it is not capable of capturing multimodal nature of the joint move-
ments and hence in this research we implemented HMM based on Gaussian Mixture
Models (GMM) in order to calculate joint likelihoods.

In GMM based HMM, observation probability given states s can be modelled
with weighted sum of M component Gaussian densities as,

bs(O) =
M

∑
i=1

wig(x|μi,Σi) (2)

where x is a 3-dimensional continuous-valued joint position vector , wi, i = 1, ...,M,
are the mixture weights, and g(x|μi,Σi), i = 1, ...,M are the component Gaussian
densities. Each component density is a 3-variate Gaussian function with mean of μi

and covariance matrix of Σi.
GMM based HMM was trained for each joint with every observation sequence for

a given activity. Given such two HMMs, λ1 and λ2, our interest is to find similarities
from which the weights can be estimated: for higher similarities higher weights are
assigned where as for less similarities lower weights are assigned. This concept of
model dissimilarity can be generalized by defining the distance measure D(λ1,λ2),
between two HMMs as ,

D(λ1,λ2) =
1
T
[logP(Oλ2 |λ1)− logP(Oλ2|λ2)] (3)

where Oλ2 = O1,O2,O3..OT is a sequence of observations generated by model λ2

[10]. Equation (3) is a measure of how well λ1 matches observations generated by
model λ2, relative to how well model λ2 matches observations generated by itself.
The dissimilarity measure discussed above is none-symmetric. Therefore for better
representation (4) can be symmetrized by

Ds(λ1,λ2) =
Ds(λ1,λ2)+Ds(λ2,λ1)

2
(4)

Finally, to estimate weights W j
a associated with a given activity following steps

have been followed.
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for activity a=1 to A do
for Observation o=1 to O do

Train GMM based HMM λ a
j (o) for each joint j

end
for joint j=1 to J do

• For all S ⊂ Λ = {λ a
j (1),λ

a
j (2).....λ

a
j (n)}

s.t N(S)=2, calculate dissimilarity measure
Da

j(n) by (4) where 1 ≤ n ≤Cn
3 .

• Calculate total dissimilarity for joint j as Da
jtotal

= ∑
Cn

3
n=1 Da

j(n)

• Assign weight for the joint as W j
a = 1

Da
jtotal

end

Normalize all joint weiights s.t ∑n
i=1 W j

a = 1 to assign probability value for weights.
end

Algorithm 1. Learning action ensemble joint weights

3.2 DBN for Action Recognition

Once joint weights are known, we can effectively model each activity by a Dy-
namic Baysian Network (DBN) as shown in Fig. 3. A DBN is a directed acyclic
graph, which represents the conditional independencies and the conditional proba-
bility distributions of each node [7]. Shaded nodes represent the observed continu-
ous 3-dimensional joint positions (Jt

j where 1 ≤ j ≤ 14, 1 ≤ t ≤ T ) and transparent
squares represent the discrete hidden nodes. We have incorporated joint weights to
the observation probability by an exponents as shown in (7). We assumed each hu-
man activity is a collection of different poses that evolves over time. Therefore, in
the proposed model, top hidden node represents pose class and the middle hidden
nodes represent mixture weight components. Pose classes are not directly observed
as opposed to the joint positions, which can be directly measured from RGB-D
camera’s skeleton information.

The proposed DBN can be parameterized by three probabilities A,B and π as
follows. First we define individual pose states as S = {S1,S2, ...,SN}, the state at
time t as qt and K as the number of states. In the proposed model ai, j is the state
transition probability from state i to state j and bt(i) represents the probability of the
observation Ot given the ith state of the pose nodes. Then initial state distribution,
π = {πi} can be defined as

πi = P(qi = Si), 1 ≤ i ≤ N (5)

The observation probability distribution can be defined as, B = {bt(i)} where

bt(i) = P(Ot |qt = Si), 1 ≤ i ≤ K,1 ≤ t ≤ T (6)

Ot is the joint observation at time t.
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Fig. 3 Graphical representation of the proposed DBN. Square nodes represent discrete hid-
den nodes and round nodes represent observed continuous 3-dimensional joint positions. Dot-
ted ellipses that encircle observations represent weights associated with each joint.

The observation probability with joint weight W j
a that represents contribution of

that joint to the activity, can be modeled as

bt(i) =
J

∏
j=1

�
Mn

i

∑
m=1

wj
i,mN(O j

t ,μn
i,m,Σ

j
i,m)�W j

a (7)

where J represents the total number of joints, O j
t the observation vector of the jth

node at time t, M j
i is the number of mixture components in the joint j and state i,

and μ j
i,m, Σ j

i,m, wj
i,m are the mean, covariance matrix, and mixture weight for the jth

joint, ith state, and mth Gaussian mixture component, respectively.
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Finally the state transition probability distribution can be defined as A = {ai, j}

ai, j = P(q(t+1) = S j|qt = Si),1 ≤ i, j ≤ K (8)

4 Implementation

The proposed activity recognition model has been implemented using the Bayes
Net Toolbox (BNT) for Matlab [8] which is public domain toolkit for modelling
Dynamic Bayesian Networks.

4.1 Training Dynamic Bayesian Network

It is a standard practice to use expectation maximization (EM) algorithm to train pa-
rameters when a DBN contains any hidden nodes [3]. However it is well known that
EM algorithm only converges to a local optimum solution. Therefore initial param-
eters of the model needed to be carefully chosen in order to get good classification
results. In our proposed DBN for activity recognition we used an efficient method
to initialize the parameters as explained in our previous research [9].

4.2 Activity Recognition

Once a HMM is trained for each action class, we need to select the most likely activity
given an observation sequence. Given the observation sequence O = O1,O2, ...,Ot ,
and model λ = (A,B,π) we calculated P(O/λ ), the probability of the observation
sequence once the model is given(likelihood). Then the activity with the maximum
likelihood is selected as the most probable activity. The log-likelihood calculation
is done using the forward algorithm [10] for HMM that enabled us to recognize
activities in real-time.

5 Experiments

First we tested our activity recognition model on the publicly available Cornell
Activity Dataset 60 [11] to validate the model. Then we carried out our own ex-
periments on activities with high intra class variations to test the performance of
the model to intra activity variations. The empirical results show that proposed
framework is capable of recognizing even highly similar activities with reasonable
accuracy.
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Fig. 4 Confusion matrix for Cornell activity60 dataset

5.1 Model Validation through Cornell Activity Dataset

The Cornel activity [11] is consists of 14 activities carried out by four different
individuals performing an activity once. Therefore, it is to be noted that the intra-
activity complexity is limited to the variation among subjects.They have used the
Microsoft Kinect RGBD sensor to record both depth and skeleton data of human
daily activities done in a indoor environment. Data has been collected with four
different people: two male and two females, recorded for about 45 seconds with
each person, without compromising to any occlusion of arms and body. Therefore
full skeleton was always observed throughout the activity. With this dataset, 2-fold
cross validation testing has been carried out i.e we trained our model on two people
and tested on others. Our experiments recorded precision and recall accuracies of
90% and 89% respectively. The confusion matrix is shown in Fig. 4. These results
are in general better than the results obtained by [11] as can be seen from the Table 1.

5.2 UTS Experiments

There are few publicly available datasets that include skeleton data, which can be
used in activity detection. However, they offer very limited intra-activity variations.
The concept of weighted joint ensembles can be better explained and tested with a
data set which has higher intra-activity variations.

Therefore, we have collected a dataset (UTS-Skeleton3D) consisting of 3D skele-
ton data. Fig. 5 shows the hardware set-up of the robot that we developed to aid our
experiments. It consists of a RGB-D sensor mounted on a AmbigobotTM mobile
robotic platform. RGB-D sensor is mounted on a Pan-Tilt module. The robot, Pan-
Tilt Module and the RGB-D sensor are interfaced by Robotic Operating System
(ROS) and its drivers.
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Fig. 5 Hardware set-up of the Robot

Fig. 6 Samples from our data set. (1) Applying Cream, (2) Brushing Teeth, (3) Combing, (4)
Drinking, (5) Eating, (6) Stirring, (7) Opening a pill container, (8) Phone Call

The experimental dataset consists of 8 highly similar activities: applying cream
on the face, brushing teeth, combing, drinking water, eating cereals, phone call,
stirring and opening a pill container in a domestic environment. Four subjects were
used to collect the data in which each activity is performed in three different body
poses like, “sitting”, “standing” and “walking”. All together there are 96 samples
of activities in the experiments. Each subject performed the activity about 45-60
seconds and data is recorded from different camera angles with a Microsoft Kinect
sensor. Initially we recorded each joint’s 3-D position and orientation with respect
to the sensor. Later we transformed the data w.r.t the torso coordinates to alleviate
the effects of the sensor location

First we have calculated joint weights associated with each activity in the dataset
by using the algorithm described in the Sect. 7. Fig. 7 shows the joint weights as-
signed for each activity in the dataset. The radius of the dark circle at each joint is



406 L. Piyathilaka and S. Kodagoda

proportional to the probabilistic weight assigned by the algorithm. We trained sepa-
rate models for right-handed people and left-handed people. Therefore each activity
is consisted of two models and likelihood calculations were done for each model,
once observation sequence is received. From the Fig. 7 it is clear that proposed algo-
rithm is capable of identifying importance of joints for a given activity. For example,
the activity “ applying cream on the face” has higher probability weights assigned to
hand, forearms, and head while relatively low probability values has been assigned
to other joints.

Fig. 7 Learnt weighted joint ensembles for right handed person. The radius of the circle at
each joint is proportional to the joint weight.

Once joints weighs have been calculated, the DBN was trained for each activity
with their associated joints weights ensembles. K-fold cross validation was used
for testing, i.e we left out one sample activity and trained model and weights on
others. Left out sample was then used as the activity to be detected. Same procedure
was followed for all activity samples in the dataset. Confusion matrix of the test
is shown in the Fig. 8. As can be seen, it has a very high rate of activity detection
accuracies. It seems the “phone call” activity was slightly confused with “drinking
water” activity. This is due to high similarity of the hand movements when these
activities are performed and skeleton tracker often fails to track the hand when it is
moving very close to the human body. “Stirring” is slightly confused with “Eating
cereal” since “Eating cereal” often includes the “Stirring” as a sub activity of it. The
proposed method was able to achieve recall and precision accuracies of 85% and
86% respectively. This is a high detection rate given the high intra-class complexity
of the dataset. As it can be seen from Table 1 there is a significant improvement of
detection rate when joint weighted ensembles are introduced to the DBN, in UTS
experiments. This is because UTS experiments contain highly similar activities with
very high intra-activity variation.
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Fig. 8 Confusion matrix for UTS experiments

Table 1 Recognition Accuracy Comparison for Different Datasets

Dataset DBN only Proposed Method
UTS Experi-
ments

Recall 66% Precision 69% Recall 85% Precision 86%

Dataset Maximum Entrophy
Markov Model [11]

Proposed Method

Cornel activity
60

Recall 57% Precision 69% Recall 90% Precision 89%

6 Conclusions

In this paper, we presented weighted joint ensembles based human activity recogni-
tion system using skeleton features generated from an inexpensive RGB-D sensor.
In the proposed technique, joint weights model the importance of that particular
joint to the activity. Then we trained a DBN for each activity in the datasets and
maximum log-likelihood estimation is calculated in-order to select the most proba-
ble model for a given sequence of observations. The proposed algorithm was tested
with a challenging publicly available dataset and through UTS experiments with
very promising accuracies. More importantly, it is shown that the proposed model is
robust to intra-activity variations when people perform the same activity in different
body poses.
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In a real situation, the humans perform activities in a continuous way. There-
fore future work involves detecting end of the activity to improve the model to a
long term activity recognition system. In addition currently we are using supervised
learning techniques to recognize activities that were previously seen. The reliabil-
ity of the system can be further improved if the system can detect the difference
between a new activity and a previously trained activity.
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Building Environmental Maps of Human
Activity for a Mobile Service Robot at the
”Miraikan” Museum

Ippei Samejima, Yuma Nihei, Naotaka Hatao, Satoshi Kagami,
Hiroshi Mizoguchi, Hiroshi Takemura, and Akihiro Osaki

Abstract. This paper describes environment maps that are comprised of the follow-
ing three types of information, 1) 3D environmental changes that represents human
activities, 2) human trajectories in 2D that represent how humans move in the envi-
ronment, and 3) human posture data. These maps are utilized in order to plan safer,
quicker and/or non-human-disturbingpaths for a mobile service robot at the museum
”Miraikan”. Experiments are conducted within ”Miraikan” and results are shown.

1 Introduction

Autonomous carrier, cleaning, and security guard robots have recently become
commercially available. The mobility function of such robots assumes quasi-static,
indoor environments with few human inhabitants. Research in simultaneous lo-
calization and mapping (SLAM), mapping, localization, and path planning fields
actively targets quasi-static environments. However, robots in human rich environ-
ments need further information about how humans use the environment to achieve
safe and efficient behavior. Konolige et al. proposed lifelong environmental maps for
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daily living environments [1] to tackle this kind of problem that focused on tempo-
ral changes in map occupancy. Hamada et al. also proposed a human trajectory map
that categorized human use by using moving speed and direction [2]. This informa-
tion was used to bias results from robot path planning so that they could efficiently
move through space cohabited by human beings.

We focused on a map used by a mobile service robot at a museum. Several such
studies have been reported such as the RHINO robot at the Deutsches Museum in
Bonn [3], and Minerva at the Smithsonian’s National Museum of American History
[4]. The Minerva study demonstrated that robots in museum situations sometimes
encounter crowds of people, and not just single individuals, and the typical interac-
tion time is quite short.

We have also done studies at the ”Miraikan” Museum and identified three diffi-
culties with mobility such as a) crowds of people moving in corridors and stopping
in front of displays, b) frequently changing environments (such as fences, stools for
small children, and guideboards), and c) changes in displays or exhibition areas.
It is important for robots operating in museums, whatever their tasks are (such as
guiding, giving tours, or cleaning), to better understand how humans use the envi-
ronment. Therefore, we propose three types of maps to help robots understand the
way humans use the environment: 1) a 3D environmental change map that repre-
sents human activities, 2) a map of human trajectories in 2D that represents how
humans move in the environment, and 3) a human posture map to detect human
interaction with museum displays.

2 Concept of Human Environment Maps

Maps are searched in the path planning phase for minimum cost paths by minimiz-
ing the accumulated costs that are assigned to each map cell. Although we can ob-
tain minimum length paths, such a strategy might not be appropriate for museum
environments. What we would like to obtain is somewhat safe, efficient, and
nonhuman- disturbing paths. Three maps were constructed to obtain such paths: 1) a
3D environmental change map, 2) a map of human trajectories in 2D, and 3) a human
posture map. The robot could understand more about the environment by combining
these three maps and generate better paths to reach its goal. This information was
also useful for museum management purposes, in addition to such direct usage by
the robot, such as how many people looked at displays, how long they spent looking
at them, the human density of corridors, and the existence of bottlenecks.

3 3D Environmental Change Map

Static maps that include walls and columns of buildings are relatively easy to con-
struct. However, there are objects in the environment whose locations/states can
change, such as doors, chairs, fences, stools for small children, and guide boards.
Also, museum displays occasionally change, and some displays are actually movable.
Such objects can be avoided after they become visible to robot sensors by re-planning
paths. However, when a robot becomes aware of typical changes in the environment,
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Fig. 1 DEM generation

it can utilize that information to plan paths that traverse through areas more likely to
be open space.

3.1 Finding Regions with 3D Obstacles

There are obstacles with complex shapes in a museum environment that a robot
needs to distinguish from the background to avoid possible collisions. A swinging
laser range finder (3D LRF) was utilized to achieve this. The 3D LRF returned a
point cloud that represented the surrounding environment. As the points were not
distributed uniformly over 2D space, we utilized digital elevation maps (DEMs)
and Delaunay triangulation to detect 3D obstacle regions [5]. A DEM is a kind of
2D grid map with each grid cell containing height information. DEMs enable the
number of data to be reduced in dense sampling areas. If there are several 3D LRF
points in a DEM cell, the height of the cell becomes the height of the highest 3D
LRF point. Figure 1 shows the results for DEM cell generation. Local path planning
uses DEMs by converting “ground” into traversable regions and “obstacles” and
“near obstacles” into non-traversable regions.

3.2 Generation of 3D Obstacle Changing Map

When the robot moves in the environment, 3D LRF data are always converted into
local DEM cell classifications to avoid obstacles around the robot. The global 3D ob-
stacle changing map is statistically updated with Eq. 1 by using this local DEM map.

cost =
1
t

t

∑
i=0

‖Mi −Mi−1‖, (1)

where M indicates whether the cell is traversable (0), or not (1), and t is the
number of updates. The path planner can utilize this 3D environmental change map
to generate the path most likely to avoid potential collisions due to moving obstacles.

4 Pedestrian Trajectory Map

Useful information can be extracted by looking at human pedestrian behavior. For
example, as regions that humans quickly traverse can be considered to be corridors,
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the robot can also utilize these regions. People walking in a museum tend to avoid
going between displays and other people that are looking at the displays. Such be-
havior is observed and aggregated into maps, so that robots can plan similar paths.

4.1 Tracking and Identifying Pedestrian Trajectories

We often see groups of people moving together at museums. As they occlude
each other in such places, it is difficult to track and identify human trajectories.
We adopted cluster based sample-based joint probabilistic data association filters
(SJPDAFs) [6] that use 2D LRF input to accomplish this.

SJPDAFs are robust against false positives and negatives, and they make it possi-
ble to flexibly design individual trackers using particle filters. The proposed method
divides tracking targets and corresponding LRF segments into clusters, and classi-
fies each cluster as a group of pedestrians. The number of pedestrians in each cluster
is estimated independently, and each pedestrian in a cluster is tracked individually.
Individual tracking enables the number of merging and splitting clusters to be esti-
mated. Furthermore, the proposed method can remove the unwanted effects of false
segmentation of LRF scans.

A SVM is adopted to classify and estimate the number of pedestrians. The
method adopts time-series estimates as the shapes of LRF scan segments are not
stable. The class definition of moving objects is c0: false positive, c1: one pedes-
trian, c2: two pedestrians, and so on, where ck indicates the label of each class. We
define the feature vector of LRF scans in a cluster at time t as z f (t), and a set of fea-
ture vectors from time 0 to t as Zt

f = z f (0) · · · z f (t). The value we want to estimate
is P(cn|Zt

f ), and we obtain:

P(ck(t)|Zt
f ) = α ·P(z f (t)|ck(t)) ·P(ck(t)|Zt−1

f ) (2)

We define the feature vector of LRF scans in a cluster at time t as z f (t), and a set
of feature vectors from time 0 to t as Zt

f = {z f (0) · · · z f (t)}. The value we want to
estimate is P(cn|Zt

f ), and we obtain:

P(ck(t)|Zt−1
f ) = ∑

n
[P(ck(t)|ck(t − 1) = n) ·P(ck(t − 1) = n|Zt−1

f )] (3)

Also, from Bayes’ theorem, we obtain:

P(z f (t)|ck) = α
P(ck|z f (t))

P(ck)
(4)

P(ck|z f (t)) can be estimated using SVM, and P(ck) can be estimated using training
sets of SVM.
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Table 1 Numbers and frames in SVM training data set

Class c0 c1 c2 c3 c4 c5
desc. False positives 1 pedestrian 2 pedestrians 3 pedestrians 4 pedestrians 5 or more pedestrians

Numbers 212 318 54 9 5 3
Frames 868 20362 3631 352 267 58

The features for SVM are defined as follows:

z f 0 : Number of LRF segments
z f 1 : Sum of lengths of LRF segments
z f 2 : Average speed
z f 3 : Difference between angle of directed bounding box

and angle of average velocity vector
z f 4 : Length of long side of directed bounding box
z f 5 : Length of short side of directed bounding box

Table.1 lists the total numbers of each class and the total numbers of frames
detected in each class.

4.2 Aggregated Pedestrian Existence Map

An aggregated pedestrian traversal map is generated by accumulating detected
pedestrian trajectories into each cell and normalizing them by time.

This map is useful for finding where humans can be reached in the entire area. If
a cell and a surrounding area have no aggregated data, that may mean that humans
are not allowed in the region or it is not it possible for them to traverse it, so even
this is an open space for a robot, it may not be a good idea to use that region.

4.3 Aggregated Pedestrian Stopping Position Map

Slow or zero speed pedestrian trajectories are chosen to accumulate at each cell to
generate an aggregated pedestrian stopping position map. If the average speed in the
last N frame measurements is less than the threshold, v[m/s], this segment is treated
as a stopping motion. The number obtained at each cell is normalized as previously
described for the existence of aggregated pedestrians.

If the cell and surrounding area has a high stopping position score, humans tend
to stay around that area. This often happens in front of displays and resting areas
in museums. A robot may not find it nice to traverse those areas since humans are
concentrating on displays or are relaxing. In either case, they may not want to be
distracted by the robot, or the presence of humans may cause the robot to potentially
collide with them. However, as slowly moving humans in this area may need help
with guidance, the robot may have to reach humans to interact with them using an
additional margin for safety.
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Fig. 2 Conditions to assess posture

4.4 Variance in Pedestrian Velocity Map

Variations in the velocity of pedestrians at each cell were calculated from the walk-
ing speed of those who traversed each cell to generate this map.

When a group of people is moving in the corridor area, a few people first occa-
sionally stop to wait for other people, where there are no displays. This information
can be used to find corridor regions where people tend to stop and gather. This
means there is enough space in the region, so that the robot can utilize such places
for moving purposes, since there should be few obstacles around.

5 Human Posture Map

There are displays that can physically interact with human beings. The robot can
find humans who are interacting with such displays by previously knowing where
such displays are, and where interfaces are.

We adopted the Microsoft Kinect sensor as a marker-less motion capture system.
This sensor was installed on a pan unit, and combined with the previously described
pedestrian tracking system to control who (where) to look at. Controlling where to
look at is required as the Kinect sensor has a limited working range, view angle,
and maximum number of subjects that can be simultaneously tracked. We usually
controlled Kinect to look at the closest human from the robot, but it could also
track a specified human. Joint angles and limb lengths were obtained by utilizing
the Kinect software development kit (SDK), and these data were mapped onto a 2D
map.

Joint angles and limb lengths could also be used to identify where humans sat or
rested.

The sitting posture was distinguished by joint angle and position conditions.
Fig.2 shows three condition parameters. These values were thresholded by ratio p of
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Fig. 3 Robot System

observation time where all three parameter conditions were satisfied. The three pa-
rameters were:

• Hip height, hhip,
• Angle between the spine and the vertical direction, αspine, and
• Shoulder width dshoulder.

Hip height hhip was used to distinguish standing and sitting postures. αspine had a
maximum and minimum threshold to exclude forward and backward bent postures.
Since Kinect SDK often incorrectly recognized the human skeleton when looking
from the side of the subject, especially when the far side arm was hidden by the
torso, dshoulder had a maximum and minimum threshold. Those three conditions
were used to determine sitting/standing postures.

6 System and Environment Setup

Fig.3 has photographs of the robot that we used in the experiments. The mobile base
was the Pioneer-III of Adept Mobilerobots. The onbody sensor for the 3D LRF was
the Hokuyo UTM-30LX-F with a Pan-Unit from Sustainable Robotics, and that for
the 2D LRF was the Hokuyo UTM-30LX with the Microsoft Kinect sensor. 2D LRF
was not only utilized to track pedestrians racking, but also to generate 2D maps and
2D localization.

The experiments were conducted on the 3rd floor of the National Museum of
Emerging Science and Innovation (Miraikan). Fig.4 shows a CAD drawing and pho-
tographs of the environment. The total area was about 120× 35 [m]. There are dis-
plays with complex shapes in the environment as can be seen in Fig.4 (bottom two
rows). There are also many stools for small children that can be moved.

A 2D map was generated before the experiment from 2D LRF data obtained by
manually controlling the robot. Fig.4 shows a 2D map with a 5-cm grid.



416 I. Samejima et al.

7 Experiments

Three type of maps were generated and evaluated: 1) a 3D obstacle changing map,
2) a pedestrian trajectory map, and 3) a human posture map. The experiments were
conducted at Miraikan as explained in the previous section.

7.1 Experiment to Generate 3D Obstacle Changing Map

The robot autonomously navigated itself by generating a path while the 3D LRF
obtained data associated with localization results from a previously obtained 2D
environmental map; a human operator manually provided input.

This experiment was conducted after the museum had closed and the exhibition
areas were free of visitors (however, there were maintenance people present). The
total length of the robots path was 1014.9 [m]. The DEM resolution was a 5-cm grid
(the same as that for the 2D map) and the threshold for the Delaunay edge angle
was set to 10 [deg]. DEM voting was limited to 5 [m] around the robot from the 3D
LRF results since increasing the distance made sampling very sparse.

The size of the error ellipsoid area and variance in the ellipsoid direction calcu-
lated from the covariance matrix of the particle filter are summarized in Table.2 to
evaluate 2D localization.

Fig. 4 CAD drawing of 3rd floor of “Miraikan” (top) and photographs of 3D obstacles
(bottom)

Table 2 Accuracy of localization

Max. Min. Average SD
Size of error ellipsoid area [m2] 0.24 0.0 0.029 0.019
Variance in error Ellipsoid direction [rad] 0.14 0.01 0.040 0.013
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Fig. 5 Stools and their placement Fig. 6 Detected stools

Table 3 Accuracy of detecting 3D obstacles

Average error SD
Distance between centers of gravity [m] 0.19 0.06
Area size of obstacles [m2] 0.11 0.10

Fig. 7 Environmental change map

7.1.1 Measurements of Accuracy of Detection

We manually moved the stools for small children into a flat area to evaluate the ac-
curacy of detection, and manually measured their positions. Accuracy was evaluated
by the size of the detected area and distance between the centers of gravity of the
objects. Fig.5 outlines the experimental setup.

The same conditions as in the previous experiment were adopted, and robot be-
havior was also the same. The resulting map is given in Fig.6.

Table.3 summarizes the size of the detected area and the distance between stools.
Since the 2D map and DEM resolution were on 5[cm] grids, we considered the

results we obtained to have sufficient accuracy.
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Fig. 8 Positions and photographs of sensors

7.1.2 Detection of 3D Changing Environment

We manually moved the stools for small children into the display area to generate a
3D environmental change map, and the robot measured the previous stools.

Fig.7 shows the 3D environment change map. The red regions in the figure indi-
cate changes that have happened. Because the stools were moved, there are yellow
or red regions around the displays.

There are also yellow or red regions around the obstacles because of errors with
localization, odometry, or 3D LRF.

7.2 Experiment to Generate Pedestrian Trajectories

7.2.1 Obtaining Pedestrian Trajectories

Measurements were conducted on one weekday from 11:00 am until 5:00 pm. Fig.8
shows the 2D LRF arrangement. Six 2D LRFs were placed on top of a tripod. Three
SICK LMS200s were placed at points B, C, and D, and three Hokuyo UTM-30LXs
were placed at points A, E, and F for 2D LRF. The height of the sensors was set so
that it was 0.9 [m] above the ground and this was the same as the 2D LRF on the
robot. The working range to detect pedestrians was limited to 20 [m]. The coverage
of the sensors overlapped as can be seen from the figure.

Fig.9 shows the trajectories we obtained. Trajectories that were shorter than 5
[s] were omitted to prevent false positives from being detected caused by occlu-
sion or noise. The total number of trajectories that remained was 126,839. The
color indicates the average speed of each trajectory, where blue means slow and red
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Fig. 9 Obtained pedestrian trajectories

Fig. 10 Map of aggregated pedestrian stopping positions

means fast. As can be seen from the figure, visitors covered all possible movable
regions.

7.2.2 Generation of Pedestrian Trajectory Map

Three maps were generated from the previous experiment. Theses were 1) an aggre-
gated pedestrian stopping map (Fig.10), 2) an aggregated pedestrian velocity map
(Fig.11), and 3) a variance of pedestrian velocity map (Fig.12).

The red region in Fig.10 indicates a higher probability of pedestrians. Regions A
and B in the figure are mostly red, and as they are close to displays they tend to stop
there. However, region C in the figure is basically used as a corridor, and indicates
a low probability of pedestrians. Consequently, these tendencies indicate that this
map is of a real use environment.

Fig.11 indicates pedestrian speed and the red regions indicate faster motion. Re-
gion D in the figure, which is farther away from the wall, indicates faster motion.
As this region has few obstacles to move around and there are no displays close by,
humans there tend to move quickly.

Fig.12 indicates variance in the walking speed. The red region has higher vari-
ance. Region E is used as a corridor where there are no displays around, but some-
times people stop there to wait for other people in their group, so that variance in-
creases. Region F is around a display and variance in speed tends to be small in such
regions. However, as this region is at the entrance of a corridor, variance increases.
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Fig. 11 Map of aggregated pedestrian velocity

Fig. 12 Map of aggregated variance of pedestrian velocity

7.3 Experiment on Generation of Posture Map

An experiment to detect human postures and map them onto a posture map was con-
ducted at points A, B, and C in Fig.13. There are displays with physical interaction
at points A and B, where point C is a technical information counter where visitors
sit and ask the science staff of Miraikan questions.

Fig. 13 Target position in experiment to generate posture map

The results are shown in Fig.14,Fig.15, and Fig.16. The yellow circle indicates
the robots position, the blue human posture indicates that the subjects were detected
as standing, and the red human posture indicates that the subjects were detected as
sitting.

All posture and detection results for standing or sitting postures were aggregated
onto a map. Such a map can be utilized to identify where displays are with physical
interactions, and where people are resting or standing.
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Fig. 14 Posture map experiment at point A

Fig. 15 Posture map experiment at point B

Fig. 16 Posture map experiment at point C

Fig. 17 A developing robot and children

8 Conclusion

We described three types of methods of generating maps that were aimed at utilizing
an autonomous robot in a museum environment, i.e., 1) a 3D environmental change
map to identify human activities, 2) a pedestrian trajectory map to identify how
humans use locations, and 3) a human posture map to identify how people interact
with displays or the environment. Since simply a static map of environmental shapes
was not sufficient in such a crowded environment, this new information should be
useful in mobility based robotic services such as guidance, tours, and cleaning.
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We developed several key components to obtain each map. DEM with a Delauney
triangulation representation was used to segment 3D obstacle regions from a 3D
point cloud with the method of detecting 3D obstacles from 3D LRF explained in
Section III. The method of SJPDAFs with SVM based classification and estimation
was used to simultaneously find multiple pedestrians in the pedestrian tracking from
2D LRF discussed in Section IV. This pedestrian tracking function was also used to
orient the KINECT sensor presented in Section V.

This was a joint project undertaken with the National Museum of Emerging Sci-
ence and Innovation (Miraikan), and the experiments were conducted on the third
floor.

We are now jointly developing a mobile service robot that has an omni-directional
telescopic microphone array for human interaction and is covered with a flexible
shell so that it does not injure visitors.
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Accuracy and Performance Experiences  
of Four Wheel Steered Autonomous 
Agricultural Tractor in Sowing Operation 

Timo Oksanen 

Abstract. In agriculture, a typical task is to do a coverage operation for a field. 
Coverage path planning algorithms can be used to create the path for a vehicle. In 
case of an autonomous agricultural vehicle, the path is provided to the guidance or 
navigation system that steers the vehicle. In this paper, a four wheel steered tractor 
is used in autonomous sowing operation. The full size tractor is equipped with 2.5 
m hitch mounted seed drill and the developed guidance system is used to sow 
about six hectares spring wheat. In this paper is presented the results of the guid-
ance accuracy in the field tests, in four field plots. The guidance accuracy in terms 
of lateral and angular error to the path is typically less than 10 cm and one degree, 
respectively. The paper also presents real life problems happened in the field tests, 
including losing GPS positioning signal and tractor safety related wireless com-
munication problems.  

1 Introduction 

The trend in agricultural engineering is to improve the productivity; to make one 
farmer to produce more food with the help of tools and technology. The improve-
ment has been remarkable since the 19th century. Agricultural mechanization was 
ranked 7th in all achievements in the 20th century, leaving e.g. computers and 
telephone behind [1]. During the 20th century the development was also important 
for the industrialization as agriculture did not require so much workforce anymore. 
The trend to improve the productivity continues, but the mechanization and  
scaling up are not providing remarkable improvement any more. Electronics, 
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automation and ICT are used together with the mechanical agricultural tools to 
improve systems. Some call this mechatronization, some call it automation and 
some call it robotization – despite the name, the main purpose is to improve pro-
ductivity; to produce the food with less workforce and less effort.  

Agricultural field robots or autonomous agricultural machines have been pro-
posed for a long time [2, 3]. A remarkable step towards autonomous operations 
was the development and availability of GPS technology [4]. So far, very little 
commercial success is reached compared with the visions of the future, but on the 
other hand the same applies to autonomous road vehicles. The field robots help to 
improve productivity in a way; the farmer does not need to guide the vehicles 
onboard, but he could use his/her time to do other agricultural tasks meanwhile. 
Still, the story of field robots is not only improving the productivity, but also im-
prove the precision and accuracy of agricultural production. The precision refers 
to naturally to spatial accuracy, but also approach towards operations-on-demand 
– as the price to do field operations decreases and allows more unmanned opera-
tions to care the crops and harvest site-specifically.  

A roadmap towards the commercial success of agricultural field robots is 
needed to improve robustness. Several attempts to build autonomous field robots 
have proven to be accurate enough, e.g. in guidance, but not in a way that long 
working hours and durability in a season is paid much attention [2, 3, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 14, 15, 16]. Some of the studies are related to specific application, 
like weed scouting or control [3, 13, 16] or planting [12], but typically the guid-
ance studies are not related too much on the agricultural operation, but being ge-
neric [2, 5, 7, 9, 10, 11].  

Looking back in the history of agricultural engineering, many early tractor pro-
totypes with an internal combustion engine were build in 1910’s and the versatility 
in engineering was blooming. In 1920’s tractor trials were organized, e.g. in Eng-
land, to make the tractor more common tool in farms [17]. In the tractor trials, the 
purpose was not only marketing in public demonstration, but the events also 
pushed the manufacturers to improve robustness, performance and usability as the 
machines were benchmarked and evaluated and the results were published. Per-
haps ”agricultural field robot trials” are necessary one day to promote the technol-
ogy and push the engineers to improve quality.  

This paper presents a trial, carried out in Finland, to evaluate the developed 
autonomous tractor in sowing operation, in real fields, in real operation. The pur-
pose of the trial was to evaluate performance factors in long run; the trial took one 
and half days, sowing 6.6 ha. This cannot be considered a season long operation, 
but it would reveal design flaws, e.g. in durability, robustness and temperature 
issues.  

2 Materials 

The tractor, the positioning system and navigation algorithms are reported and 
discussed earlier in [18], [19], [20] and [21]. In this chapter, the main functions 
and features of the system are presented.  
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2.1 The Autonomous Tractor “APU-Module” 

The tractor known as “APU-Module” is shown in Fig. 1. The tractor was origi-
nally built by a Finnish company Modulaire Oy in the years 1990-1995. The four-
wheel steered tractor is equipped with 123 kW diesel engine and hydrostatic 
transmission. The wheelbase is 2.7 m and the weight is 5900 kg. Each wheel 
steers maximum 22° and the control system keeps the steering angles synchro-
nous, to realize the Ackermann steering principle. The control system (electrics, 
electronics, communication, software) was completely refurbished in the years 
2009-2012. [18] 

 

Fig. 1 APU-Module, the autonomous tractor 

The steering is based on a dedicated hydraulic pump, a hydraulic valve block 
with four directional valves and four steering cylinders, one for each wheel. The 
control system for the synchronous steering of four wheels was developed during 
the refurbishment process. The maximum steering rate is limited by the hydraulic 
pump that needs to produce flow for four cylinders, compared with traditional 
tractor design where only one hydraulic cylinder or actuator is used for steering. In 
the closed loop control system, the identified control delay was 400 ms plus sec-
ond order dynamics (time constant ~600 ms); the maximum steering rate is 8-12 
°/s depending on steering directions if all the wheels are steered synchronously 
with 1500 RPM engine speed. Based on the field experiments, the hydraulic pump 
should be larger (volume per revolution) in order to do navigation in full speed, 
3.0 m/s. [18, 20] 

As the steering rate is limited and there is remarkable dead time delay, the 
guidance accuracy decreases when high driving speed is used. In first field tests, it 
was found that in practice with driving more than 2.0 m/s the path following accu-
racy decreases under tolerance. Therefore, the operating speed in navigation re-
quiring accuracy is limited to about 2.0 m/s. In the trial presented in this paper, 
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operating speed 1.8 m/s was used as a compromise between operational efficiency 
and navigation accuracy. [21] 

In the sowing operation, the tractor is equipped with a mounted seed drill: 
Tume KL-2500; see Fig. 2. The seed drill is a combined seed and fertilizer drill, 
both seeds and local fertilizing are applied at the same time. Local fertilizing is 
applied in the middle of every other seed row by using another set of coulters (a 
device making a furrow for seeds/fertilizer). For seed rows the inter row width is 
12.5 cm. The working width of the seed drill is 2.5 m, thus 20 seed coulters and 10 
fertilizer coulters are installed. The seed drill is a 25-year-old machine without any 
electronic control, still in use for farming and in excellent condition. [20]  

With both hoppers full, the weight is about 1450 kg, which does not cause any 
trouble for the tractor to lift or no counter weights are needed. The power of the 
tractor would be enough for much wider seed drill, but this was the only option 
available for the trials.  

 

Fig. 2 APU-Module with the seed drill, Tume KL-2500 in the field trial 

2.2 Positioning System 

The positioning system is based on GNSS technology. The positioning system 
consists of a) a RTK-GPS receiver, b) a fiber-optic gyroscope in heading and c) an 
inclinometer for tilt compensation. Trimble 5700 RTK-GPS receiver was used for 
global positioning; with the virtual base station signal provided by Trimble. The 
positioning accuracy is claimed to be typically better than 2 cm, but if the view to 
the GPS satellites is poor, the positioning accuracy is worse. There are several 
quality indicating values the receiver transmits besides the coordinates: Fix level, 
RTK correction in action, HDOP (and other DOP values), pseudorange noise sta-
tistics and the number of satellites. These values can be used to measure the qual-
ity of positioning, to trust on the coordinates the receiver transmits. [20] 

For the heading estimation, a fiber-optic gyroscope (KVH DSP-3000) is used to-
gether with odometry and GPS heading information. Inertial-Link 3DM-GX2 was 
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used for tilt compensation. All the signals were fused together in an embedded con-
troller; the GPS positioning is corrected to ground level, heading is estimated based 
on GPS heading, fiber-optic gyro and odometry information and all the relevant in-
formation is transmitted to the navigation system by using CAN-bus. [20] 

2.3 Guidance System 

The desired route shall be given as waypoints that form a polyline. Here it is as-
sumed that the route planner above in the system gives these waypoints 5 seconds 
in advance before they are passed – in order to utilize prediction. In curves, the 
waypoints are given frequently, typically a new waypoint is added if the angle 
deviates more than five degrees, so that the polyline is smooth enough to follow. It 
is also assumed that the route planner gives feasible waypoints, so that the vehicle 
kinematic constraints are not violated – for instance the minimum turning radius is 
considered in the route planner. The used geographic coordinate system is 
KKJ3/YKJ, a Finnish projection commonly used in cartography.  

As the vehicle knows its position and attitude in the global coordinate system by 
using the sensors, and the waypoints are given in the same coordinate system, the 
path tracking algorithm needs to consider two error variables: lateral error and angu-
lar error.  

The path tracking algorithm knows the waypoints it has passed successfully, 
and the path error computation is computed for the line segment that starts from 
the last passed waypoint to the next one. However, computing the error variables 
only for the current position and attitude does not provide enough information for 
steering controllers, as in curves this kind of vehicle would overshoot remarkably. 

The guidance system computes the error variables not only for the current posi-
tion all the time, but also for all the predicted positions of the vehicle based on the 
current position, heading, speed and steering angles. The prediction relies on the 
kinematic model of the vehicle and it takes the dynamics of speed and steering 
actuators into account in integration. The prediction horizon is a tuneable parame-
ter; the value used in the tests was five seconds. The predicated error variables are 
converted to single error variables by using weighed averaging; the weighting 
function was an exponent function; the current state is weighted more than the 
predicted error five seconds ahead. The weighting factor affects on overshooting 
vs. cutting corners in the curves.  

The structure of the path tracking algorithm is presented in Fig. 3. In the first 
block the path error is computed including the prediction, described above. The 
Approach Filter tweaks the error signals in case the lateral error is very large (over 
one meter): it modifies the angular error signal in order to guide the vehicle 
quicker to the route. This is helpful in case the automatic guidance is started after 
manually manoeuvring the vehicle to the field and/or after refilling the hoppers. If 
the lateral error is less than one meter, the error variables are passed through as is, 
which is the normal case during the autonomous operation.  

Lateral Controller and Angular Controller are controllers in the feedback loop; the 
structure of both is PID. The feed forward part helps to stabilize heading control. The 
last block is Inverse Kinematics, which translates the desired lateral speed and  
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Fig. 3 Structure of path tracking algorithm; the input is the state of robot, the outputs are the 
steering angle setpoints for the steering servo controller 

angular speed commands to the steering angles in front and rear. The so called feed-
forward part is used to transfer the angular error to the setpoints of steering angles 
without dynamic filtering. The outputs are the steering angles in front and rear [20].  

2.4 Path Planning 

The approach in coverage path planning is semiautomatic. Path planning was done 
in Matlab, by using two stage strategy: 1) 7 times around the field counter-
clockwise to lay headlands (the turning area) and 2) swathing the mid area by 
following one of the edge trails of the field and using U-turns. The user may give 
the field boundaries as a polygon and the coverage path planning generates at first 
the headlands that are laid around the field. In the headland, the driving direction 
is always either CW or CCW, in order to sow the corners of the field by reversing. 
Seven times around the field is necessary for this machine in order to generate 
large enough headland for forward turnings. In the second step the semiautomatic 
path planning algorithm asks which edge of the field to follow. This was done in 
order to allow a user to select non-optimal path, in order to compromize with prac-
tical issues, like refilling station or stationary position of operator in the field. The 
path planning algorithm generates waypoints with the information whether tool is 
up or down (working position) and required ramps for acceleration/deceleration.  

3 Results and Discussion 

3.1 Fields and Path Planning 

The system was tested in four field plots in southern Finland, May 7-8, 2013. The 
total area of cultivated area was 6.6 ha. The autonomous sowing trial was carried 
out during the normal sowing season, the harrowing was made appropriately  
before the sowing for the seed drill. Spring wheat was sown with local fertilizing 
using the Tume combined fertilizer and seed drill. The hoppers of the seed drill 
were refilled manually, in the field, by manually guiding the vehicle next to the 
refilling wagon. With one refill, it was possible to sow about 0.85 ha. The operat-
ing speed 1.8 m/s was used in sowing and 1.5 m/s in turning manoeuvres.  
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Fig. 4 The field plots used in the field trials. Top: Fields #1 and #2, Bottom: Fields #3 and 
#4. The planned path is presented in gray lines.  

The trial started from Field #1 to Field #4 in order. The field areas are: 1) 1.07 ha, 
2) 2.40 ha, 3) 1.76 ha, and 4) 1.36 ha. The path planning is semiautomatic, the user 
may select from which corner of the field the operation starts. A typical rule of thumb 
is to follow the longest edge; this was used in this trial in ¾ of the cases. For Field #2 
it was more convenient to select short swaths in order to avoid long runs in the large 
field; this was selected for a practical reason – the human operator needs to be all the 
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time within 50 m distance from the tractor, otherwise the tractor safety system would 
kill the engine and this strategy allowed the operator to stay in place instead of con-
tinuously running behind the machine back and forth. Similarly, the first stage is 
driven counter-clockwise because the remote controller radio receiver/transmitter is 
located on the left side of the tractor, so the range is slightly better when the operator 
stands in the middle of the field during the operation. The fields and the planned 
paths are presented in Fig. 4.  

3.2 Autonomous Sowing in Practice 

In theory, the developed system is autonomous. However, there are many practical  
issues why it was necessary to have at least one human in the field all the time. 
First of all the hoppers of the vehicle needs to be refilled after every 0.85 ha; this 
is required more or less every hour with the system (Fig. 5). The other practical 
reason is the seed drill, which is not developed for autonomous use and in some 
moist places of the field the coulters were blocked by moist clay soil, which is not 
uncommon for this type of machines – a human operator was able to see block-
ages during autonomous operation (as there was nothing else to do) and by inter-
rupting the autonomous mode, lifting the hitch and cleaning the coulters helped; 
and became a common practise during the trial.  

 

Fig. 5 Autonomous operation going on in Field #2. The refilling wagon is seen on right.  

The wireless radio communication between the tractor and operator is another 
issue. The wireless remote control system, manufactured by Technion Oy, has 
versatile control knobs and an integrated emergency stop feature. The manufac-
turer has used 2.4 GHz band in communication; the manufacturer says it is done 
according to IEEE 802.15.4. The manufacturer sells the remote control system for 
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cranes and other machines in the market and in the design safety has been an  
important requirement. Therefore, in the wireless system continuous two way 
communication is alive all the time, and in case of the communication timeout, the 
system goes to the safe state, which can be programmed in the tractor end. In the 
tractor, in case of timeout, the receiver module shuts off the electricity from all 
safety critical ECU’s; including the one controlling the diesel engine – the engine 
shuts down, the drives go idle and the parking brake engages. However, 2.4 GHz 
band is crowded in urban areas, not necessarily in rural areas like in the fields, but 
still any unexpected noise is easily created; e.g. by mobile phone (Bluetooth) or 
computers (WiFi) of the operator; or a WiFi access point nearby. Furthermore, the 
transmission power is limited, which limits the range to less than 50 m in practice. 
A closed system operating in 2.4 GHz band, limited range, the nature of wireless 
communication (scattering, reflection, multipath, diffraction etc.) and the safety 
feature together caused the tractor to shut down 36 times altogether during two 
trial days. The restart requires not only restarting the engine, but also resetting the 
radio communication which typically requires walking closer to the machine; the 
mean time to recover the system was 52 seconds (range 27-92 seconds).  

For instance, Field #3 is surrounded by three houses (see Fig. 6), which is not 
unusual as the field plots in Finland are rather small. The fields are not in safe 
from 2.4 GHz noise transmitted by household apparatuses, like WiFi and wireless 
surveillance cameras.  

    

Fig. 6 Houses surround Field #3. The household equipment using 2.4 GHz wireless band 
may cause noise to radio communication in the field.  

Finally, the autonomous vehicles contain a lot of basic technology, not only the 
standard equipment like engine control, fuel system, hydraulic system but also 
more electronics and electrical systems compared with conventional vehicles. 
There is always a risk that some failure appears in the basic system. This risk real-
ized in the second day, in the last field (Field #4), as only 0.5 ha to go, the hydrau-
lic system breakdown (oil leak) forced the trial to end. Therefore, the covered area 
during the trials was only 6.1 ha.  
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3.3 Temporal Performance 

As explained above, Field #4 was not completed due to the machine breakdown. 
Otherwise the system was performing in a similar way in all four fields. The Table 1 
reveals the statistics when it comes to the interrupts of autonomous operation, the 
reasons for that. Altogether, the system shut off altogether 36 times during these 
fields. On average, it takes 52 seconds to recover the system, so about a half an 
hour was spent on that during the trial days. Manual interventions were done 35 
times, usually to clean the coulters or check the level of hoppers (seeds & fertil-
izer), or to adjust the seed drill settings.  

RTK-GPS signal quality dropped under the required level (the number of  
satellites, HDOP, RTK fix status, STD major axis of pseudorange noise statistics) 
altogether 30 times, which is worse behaviour than unintended shutdowns as the 
average recovery time is longer. The total time required to recover from GPS sig-
nal quality level drops was 1h27min in four fields together – it would have been 
even larger if not helping the vehicle couple of times manually away from forest 
corners where trees shadowed GPS receiver. Generally, the reason inside the GPS 
receiver was not losing the correction signal for RTK, but the loss of GPS satel-
lites tracking. The median number of satellites was seven and with less than five 
satellites in view, the positioning accuracy drops below an acceptable level.  

Generally, the number of interruptions to the autonomous operation was pretty 
high, varying from 11-20 times per hectare, as seen in Table 1. However, the 
variation in the length of continuous autonomous pieces in time is high, the long-
est period was 1223 seconds (20 minutes) and the shortest was 2.8 seconds. The 
typical length of a continuous work period is 4-5 minutes.  

Table 1 Temporal statistics of autonomous operation in the fields 

 Field #1 Field #2 Field #3 Field #4 

Area (ha) 1.07 2.40 1.76 1.36 

Operated area (ha) 1.07 2.40 1.76 0.85 

# Unintended shutdown 6 10 13 7 

# Manual intervention 6 10 11 8 

# GPS signal quality lost 3 7 11 9 

  - of which correction lost 1 1 1 1 

  - too few satellites / HDOP 2 6 10 8 

Total # interrupts in autonomy 15 27 35 24 

Area / # Total interrupts 14.0 11.2 19.9 17.6 

GPS recov. time, average (s) 72 143 175 155 

GPS recov. time, max (s) 108 674 841 346 

Uninterrupted work, aver. (s) 233 274 147 111 

Uninterrupted work, max (s) 1223 818 880 611 
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As seen in the results, it is crucial to take the GPS signal quality, properties and 
breaks into a consideration in the development process of a guidance system and 
algorithms. Simulation of GPS error is crucial in order to take all the cases into 
consideration as it is hard to repeat the conditions in the field. [22] presents a 
simulator model capable creating similar noise and quality signals than happened 
in real life.  

3.4 Spatial Accuracy 

In coverage operation, a general requirement is to keep the parallel swaths 12.5 
cm apart from each other in order to create seamless crop rows. The hard require-
ment for navigation accuracy is to avoid parallel rows to overlap, which would 
mean 12.5 cm deviation from the desired path. From this hard requirement it is 
possible to lead soft requirements, e.g. the navigation accuracy should be better 
than ±10 cm, ±7.5 cm or ±5 cm. At the beginning of this study the objective ±10 
cm was set, in order to avoid overlapping, as the same was used in [23]. 

The Fig. 7 shows the angular and lateral errors as a histogram, all four fields 
together. It can be seen that the lateral error is most of the time within the requires 
±10 cm tolerance and heading error is relatively small also, under ± one degree. 
The mean angular error is -0.06°(standard deviation 0.75°) and the mean lateral 
error is -0.15 cm (standard deviation 5.91 cm). In lateral error, 90% of the samples 
are in range ±6.2 cm, and 95% of the samples in range ±9.6 cm.  

 

Fig. 7 Histogram of angular and lateral error, respectively 
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4 Conclusions 

This paper presented the results of the autonomous sowing trial in Finland in the 
spring of 2013. The guidance system is able to navigate in accuracy that is suitable 
for cereal sowing; the lateral error is typically less than ±10 cm.  

It was discussed also the practical challenges that limit the full autonomy. The 
positioning system based on RTK-GPS receiver is suffering from shadows and 
other reasons that cause interrupts for reliable positioning signal. Based on the 
experiences and presented results, RTK-GPS is not suitable alone for an autono-
mous tractor that should operate without interrupts. Multi technology GNSS is 
seen as an option to improve the situation, e.g. by using a receiver that utilizes 
both GLONASS and GPS satellites. Using multiple technologies increases the 
number of possible satellites in view, but the RTK system would have to provide 
correction for all signals as well.  

Furthermore, the safety system may also limit operational efficiency, if an op-
erator needs to be all the time within 50 meters; if the operator forgets this, the 
system will shut down or halt – and valuable time during sowing season is spent 
on recovering the system back online.  

Generally, the after some hectares, monitoring an autonomous field robot be-
comes very boring, as the only thing to do is to stand and watch with a hand on the 
emergency button and try to be concentrated all the time to see the risks of haz-
ardous movement. Standing a full day in dust and under the burning hot sun is not 
necessarily more convenient than sitting in a tractor cabin with air conditioning 
on. Nevertheless, before the full autonomy is achieved and safety issues solved, it 
is necessary to supervise the system all the time.  

In spite of the problems and harms presented, the autonomous sowing trial was 
successful and it proved that the developed guidance and control system works in 
real work.  
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Abstract. This paper describes the development of small low-cost cooperative 
robots for sustainable broad-acre agriculture to increase broad-acre crop produc-
tion and reduce environmental impact. The current focus of the project is to use 
robotics to deal with resistant weeds, a critical problem for Australian farmers. To 
keep the overall system affordable our robot uses low-cost cameras and position-
ing sensors to perform a large scale coverage task while also avoiding obstacles. A 
multi-robot coordinator assigns parts of a given field to individual robots. The 
paper describes the modification of an electric vehicle for autonomy and experi-
mental results from one real robot and twelve simulated robots working in coordi-
nation for approximately two hours on a 55 hectare field in Emerald Australia. 
Over this time the real robot ‘sprayed’ 6 hectares missing 2.6% and overlapping 
9.7% within its assigned field partition, and successfully avoided three obstacles. 

1 Introduction 

The current trend in agriculture is to increase the farmer’s productivity by using 
larger machinery combined with controlled traffic farming, which is where the 
                                                           
* David Ball · Patrick Ross · Andrew English · Ben Upcroft · Gordon Wyeth ·  
Peter Corke 
School of Electrical Engineering and Computer Science  
Queensland University of Technology (QUT) 
e-mail: david.ball@qut.edu.au  
 
Tim Patten · Robert Fitch · Salah Sukkarieh  
Australian Centre for Field Robotics The University of Sydney 
 
* This work was supported in part by the Australian Research Council Linkage Project 

LP110200375 “Robotics for Zero-Tillage Agriculture” awarded to QUT, SwarmFarm Ro-
botics and The University of Sydney. 

5



440 D. Ball et al. 

 

vehicles traverse exactly the same paths using precision guidance. However, the 
growth in complexity, size and weight of agricultural equipment, combined with 
repeatedly traversing the same path, has led to concentrated soil compaction dam-
age as well as longer disruptions due to single machine failures. Soil compaction 
and single points of failure ultimately decrease yield and productivity. The goal of 
this project is to create a new class of machines for sustainable agriculture that 
will increase broad-acre crop production and reduce environmental impact; small, 
light, inexpensive robots that coordinate as a team to manage the fields and work 
24 hours a day. This represents a movement back towards a time when large num-
bers of human workers would tend the fields and provide individualised plant 
treatment. 

 

Fig. 1 The small robot platform (green) shown next to a typical farm spray machine (red) 
with humans for scale. While the robot shown here is a research platform it is approximate-
ly the size envisaged by the work in this paper. 

This project is focussed on an immediate problem facing farms in Australia – 
resistant weeds. Zero-tillage agriculture, where soil disturbance is kept to a mini-
mum, is considered best practice farming in Australia to reduce topsoil erosion. 
However, to compensate for removing a mechanical means of weed destruction, 
farmers typically use more herbicide to manage weeds which has led to the emer-
gence of resistant weeds. The magnitude of the issue in Australia is that the agri-
cultural cost of weeds alone is in the vicinity of $4 billion per annum [1]. Our 
solution to combat increasing weed resistance is to introduce multiple lighter ma-
chines that are able to be deployed into the field rapidly after a rain event as they 
are less prone to being bogged, cause less soil damage, and operate as a system 
that is more robust to individual machine failures. See Fig. 1 for a comparison in 
size between existing farm machinery and the robot platform used in this study. 
While the robot shown in the figure is a test platform this is approximately the size 
envisaged for the approach described in this paper. 

Since our approach is based on multiple robots, to keep the overall system af-
fordable, the goal is to use relatively low cost sensors for obstacle detection and 
pose estimation. Cameras are preferred over lasers as they provide rich and infor-
mative snapshots of the surrounding environment at high rates. This paper de-
scribes a study into using this system to ‘spray’ a large field using one real robot 
and twelve simulated robots using low cost sensors to track pose and detect obsta-
cles typical to a farm. 
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Coverage planning is a topic that has a rich history in the robotics community 
[17]. Recent work has studied coverage in the agriculture context in simulation 
and addressed the problem of choosing an optimal track orientation [18–20]. In 
this paper, the existing planting patterns determine the track orientation in advance 
and therefore basic methods of coverage may be applied. Our work involves simu-
lation to illustrate the behaviour of many robots, but our focus instead is on the 
whole-system aspects, including navigation and perception, that allow these re-
sults to be applied in practice. 

The next section describes the prior art in robotics related to farm automation. 
Section 3 describes the design of the robot system. Section 4 describes the ex-
perimental setup for the experiments in this paper and then section 5 has the re-
sults of the experiments. Section 6 has a discussion of the results and section 7 has 
concluding remarks. 

2 Literature 

The chief application of intelligent technology in agriculture has been to increase 
the accuracy with which a vehicle is guided through a field which allows the prin-
ciple of controlled traffic farming [2]. Precision guidance has been improved using 
GPS [3] and vision  techniques such as for row following [4, 5], however, these 
by themselves are not enough for driverless farming as they lack a full navigation 
system which includes obstacle avoidance.  

Early work in developing autonomous farm machinery is described by Ollis 
and Stentz [6] who use vision for following the boundary between cut and uncut 
crop and demonstrated harvesting over 48 hectares of crop [7]. To detect obstacles 
they use probability density functions to threshold novel regions in the images 
demonstrating preliminary results. Stentz et al. [8] describes a semi-autonomous 
tractor, which waits for human advice when detecting an obstacle in the path of 
the robot. A human trains the system by driving the relevant routes and the robot 
uses pure pursuit [9] to follow the path. To detect obstacles they combine a neural 
network processing single images with a stereo camera system. Torii et al. [10] 
reviews a number of approaches including using neural networks, genetic algo-
rithms, and fuzzy logic for robots capable of tillage, planting and plant care. 

Since then there have been numerous approaches to the robotics farm with a sig-
nificant focus on adding a variety of sensors to existing tractors. Johnson et al. [11] 
describe a complete multi-robot system demonstrated working over a long period of 
time. To detect obstacles the tractor has colour cameras, infrared cameras and a nod-
ding laser which generates tagged 3D data. Recent long term work in an orchard, 
with a similar set of sensors added to an existing tractor, demonstrates substantial 
productivity improvements of 30% over human operated machinery [12].  

Some groups have focussed on the development of custom platforms. Bakker et 
al. [13] describe a systematic approach to the design of an autonomous platform 
for robot weeding considering a large range of issues such as: methods to detect 
the weeds and destroy them, guidance technique, energy sources and vehicle type. 
The result of their design process is a four wheel driven and steered mechanical 
weeder guided by vision and GPS. Another example is the BoniRob [14] which 
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3.2 Software and Hardware Details 

The robot runs the Robot Operating System (ROS) [21] framework which uses a 
topic-based publish and subscribe model. Local and remote nodes communication 
over topics using pre-defined messages. The robot has two standard off the shelf 
computers running Ubuntu 12.04 and ROS Fuerte, one that runs the traversability 
node and the other for localisation, path planning and vehicle control. The traver-
sability node sends information about obstacles using a ROS PointCloud message. 
The path planner communicates the desired motion using ROS ackermann_msgs. 
The path planners use the ROS move_base and costmap framework. Most of the 
nodes on the robot operate at 10 Hz. 

A separate laptop is used to run the multi-robot planner and communicates with 
the rest of the system over 3G. Potential problems with 3G include narrow band-
width, delays and network failures; however, this isn’t a problem as the communica-
tion between the multi-robot planner and the robots is limited to sparse commands 
and status updates. To handle communication failures and provide namespace sepa-
ration, there are two ROS masters, one is on a laptop computer, and another is on the 
robot. These communicate using custom messages over a ROS actionlib interface 
and relevant topics are connected using ROS foreign_relays.  

3.3 Multi-robot Planner 

The task of weed management through controlled herbicide delivery is algorithmi-
cally an instance of the coverage problem [22]. This section describes the plan-
ning subsystem for multi-robot coverage of large fields. 

The goal of coverage is to plan a path such that the robot(s) eventually visit 
(cover) all points within a defined area. Finding an optimal coverage path is re-
lated to the well-known Travelling Salesman Problem (TSP) and is NP-hard [23]. 
However, this application is a restricted case of coverage where robot motion is 
constrained to travel parallel to pre-existing rows within a field. In this case, cell-
decomposition algorithms work well in practice. 

Following [22], we apply the boustrophedon decomposition, where the coverage 
area is exactly partitioned according to a back-and-forth (lawnmower) pattern. For a 
single field with crop rows at a known row orientation, the boustrophedon decompo-
sition is computed using a sweep-line moving perpendicular to the rows. This method 
partitions the paddock into cells of approximately-equal area measured by the sum of 
row lengths. One robot is allocated to each cell. The robot's path within its cell is 
determined by the existing row pattern which can be obtained from satellite data or 
from the farmer. The number of cells within a field is determined by the number of 
available robots. The initial decomposition and allocation of cells to robots is com-
puted offline given the field boundaries. For this, the system calculates a list of way-
points located at the start and end of each pass. Then, each robot performs  
row-following and obstacle avoidance within its allocated cell using the algorithms 
described in the following sections. Cells may also be allocated to simulated robots 
that operate simultaneously with real robots, although the simulated robots drive 
directly to waypoints without obstacle avoidance. 
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3.4 Coverage Planner 

This node, which runs on each robot, is responsible for ensuring the robot follows 
the coverage plan waypoints provided by the multi-robot planner. It sequentially 
provides the next goal waypoint located at the end of each row. The node also 
sends a funnel field to the costmap to ensure that even while avoiding obstacles 
the robot will stay close to the row. The funnel field strength is proportional to the 
distance from the desired path and so forms an inverted triangle. So that overall 
progress can be tracked, this node regularly sends the multi-robot planner the 
global location of the robot.  

3.5 Pose Estimation 

For localization, a particle filter combines sensor information from several low-
cost sensors, specifically a single-channel GPS, IMU and velocity from the robot’s 
wheel encoders. The particle filter allows the robot to determine its pose based on 
a series of noisy readings and allows the robot to continue to operate even if GPS 
drops out for a period of time. GPS position calculations are performed on the 
robot’s PC using the free software library RTKLIB [24] which applies RTK cor-
rections to the raw GPS satellite observations to dramatically improve the robot’s 
global accuracy. The robot receives corrections from the CORS network via a 3G 
internet connection. 

3.6 Traversability 

This node is responsible for determining the traversability of the area in front of 
the robot using only vision. Currently, the node detects obstacles, which is a sub-
set of traversability which would include determining the terrain type. 

The node firstly determines novel regions in the left camera image and then 
processes these novel regions using stereo vision. To determine novel regions the 
node maintains a model of the typical appearance of the field, under the assump-
tion that obstacles typically deviate significantly from this appearance model. 
Candidate obstacles are detected in image space by looking for novel image re-
gions with respect to this model. Novelty detection uses a weighted variant of 
Parzen windows [25] where samples lose weighting over time. Fast inference on 
this model is performed using the Fast Library for Approximate Nearest Neigh-
bours (FLANN). Candidate obstacle image regions are then passed through stereo 
matching in order to generate a metric point cloud of the candidate obstacles. Ste-
reo matching was performed using LIBELAS [26]. The point cloud is filtered 
based on their height and distance from the camera, and the remaining points are 
obstacles. 

This two-step process has advantages over purely stereo matching-based ob-
stacle detection. The first advantage is that stereo matching typically performs 
poorly in agricultural fields due to its highly repetitive nature, hence stereo match-
ing alone generates significant false positives. Empirical results indicated that 
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stereo matching is more robust on obstacles over stubble (based on the assumption 
that their appearance deviates from the typical), since obstacles provide strong 
edges which are useful for stereo matching. The novelty pre-processing then im-
plicitly encodes an understanding of the image regions in which stereo matching 
performs well, and significantly reduces false positives while having negligible 
impact in terms of false negatives. The second advantage is that since stereo 
matching is only performed on a subset of the image regions, it typically has a 
reduced computational load for equivalent performance. 

3.7 Costmap 

The costmap maintains a 2D representation of the environment surrounding the 
robot and the global lattice planner and local pure pursuit planner use it to gener-
ate paths. As is typical, the map encodes the cost of the robot occupying particular 
cells. To ensure that obstacles are avoided and the robot remains on the desired 
row, the obstacles are given high values and the funnel from the coverage planner 
is given low to medium values.  Specifically, each cell is 0.2 meters squared and 
the costmap is 100 meters squared centered on the robot. The costmap is aligned 
with the known direction of the crop rows to allow the system to plan smooth 
straight paths.  

3.8 Global Lattice Planner 

This node plans a long-term path to the coverage planner’s goal pose through the 
costmap. This node uses the Search Based Lattice Planner (SBPL) [27] to generate 
collision free paths around obstacles. SBPL incrementally searches for the best 
path considering the cost of motion primitives and the cost of traversing the cost-
map cell. Obstacles have high cells costs. The funnel provided by the robot’s  
coverage node, provides increasing costs perpendicular to the desired row, and 
therefore ensures that SBPL will generate paths that, after avoiding an obstacle, 
will guide the robot back onto the correct row. SBPL constructs the path using 
motion primitives specific to the Gator vehicle. These motion primitives represent 
the Gator vehicle’s kinematics, in particular the minimum radius of curvature, and 
include travelling straight and turning left and right. These plans extend in the 
direction of the goal and are clipped to the extent of the costmap. 

For typical row following without obstacles this approach is more complex than 
required however provides flexibility for the future functionality such as moving 
between fields. The global lattice planner recalculates a new path every 10 
seconds, or when the goal changes or when the local planner rejects the plan. 

3.9 Local Pure Pursuit Controller 

This node is responsible for ensuring that the robot tracks the long-term lattice 
path using a pure pursuit controller [9]. The node has two proportional integral 
controllers to minimize the error in the distance between the robot and the lattice 
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Fig. 8 Coverage of the entire 55 hectare area using 1 real and 12 simulated robots shown in 
different colours. The result shows that each robot was assigned approximately the same 
distance to travel. The multi-robot planner assigned the real robot the top section (blue). 
The real robot’s three large deviations are due to true obstacles and the small deviation is 
due to a single false positive obstacle. 

 

Fig. 9 This plot shows the coverage for the real robot (grey) within its assigned boundary 
(red) including the parts of the field where the spray would be overlapped (black) and 
missed part of the field (white). The top three large missed and overlapped areas are true 
positive obstacles that were successfully avoided. The small area towards the bottom in the 
middle was where the robot slightly deviated to avoid a false positive obstacle.  
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Table 1 These results represent the overall performance of the real robot for the coverage 
task 

Result Metric 

Missed percentage 2.6% 

Overlap percentage 9.7% 

True positive obstacles avoided 3 

False positive obstacles avoided 1 

Real robot run time 1.8 hours 

Area covered 6 hectares 

RMS pass-to-pass error 0.18 meters 

6 Discussion 

The robot autonomously ‘sprayed’ 97.4% of its section of the field while avoiding 
obstacles typical to the farm environment. The real robot was shown to work 
alongside many simulated robots to perform complete coverage of a large area. 
The robot was able to globally localise to perform the coverage task with a preci-
sion only marginally worse than provided by commercial agricultural solutions. 
This was achieved using a particle filter to fuse inexpensive odometry, IMU and 
GPS sensors combined with the open source RTKLIB and a correction signal. The 
missed and overlapped percentages can be traded depending on the cost of herbi-
cide and the loss due to missed areas by changing the desired pass-to-pass value 
relative to the spray width. 

The results demonstrate that the obstacles were successfully added to the cost-
map. In the sorghum field, by themselves the stereo vision and novelty detection 
methods generated many false positive obstacles. However, using the novelty 
detector to identify regions for stereo matching overcame problems with ambigu-
ity in the appearance and ground plane. The contour banks were higher than the 
system was designed to handle resulting in a false positive obstacle. While the 
robot briefly deviated from the row to avoid a false obstacle, the system was tuned 
to ensure detection of true positive obstacles at the expense of some false obstacle 
detection.  

The navigation system generated suitable paths to avoid obstacles and guide the 
robot back onto the correct row. In particular, the combination of the lattice plan-
ner generating kinematically suitable paths around obstacles and through the fun-
nel proved successful. A simpler navigation system could have been used for the 
exact experiment described in this paper. However, the benefit is that this system 
allows for a wide range of flexibility for adding future functionality, changing 
sensors or handling increasingly complex navigation challenges.  

The robot platform, while sufficient for this experiment, will be unsuitable for 
commercial deployment in broad-acre fields. Due to the existing large machinery, 
the terrain is rugged and the gator bounced around during turns and while avoid-
ing obstacles. To address the rugged terrain for this experiment the tire pressure 
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was lowered which increased the cost of transport, and so is not a suitable long 
term solution.  

There are several areas for future work. The multi-robot planner will be up-
dated to adaptively handle robots that are unable to complete their assigned sec-
tions due to robot failure or very large obstacles. A vision based docking system 
will be added to so that the robots can autonomously recharge power and herbi-
cide. Lastly, there will be continued development of more robust techniques for 
detecting traversability and estimating the robot’s pose.  

7 Conclusion 

The paper has described a new approach to increasing broad-acre agricultural 
productivity with small affordable autonomous robots. This will lead directly to 
improved productivity through reduced soil compaction and specifically for weed 
management, reduced herbicide usage through smarter local application, providing 
direct environmental benefits. The technology will lower production costs through 
more timely interventions and the increased robustness and incremental scalability 
inherent in multiple small machines. 
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A Pipeline for Trunk Localisation Using LiDAR
in Trellis Structured Orchards

Suchet Bargoti, James P. Underwood, Juan I. Nieto, and Salah Sukkarieh

Abstract. Autonomous operation and information processing in an orchard environ-
ment requires an accurate inventory of the trees. Individual trees must be identified
and catalogued in order to represent their distinct measures such as yield count, crop
health and canopy volume. Hand labelling individual trees is a labour-intensive and
time-consuming process. This paper presents a trunk localisation pipeline for identi-
fication of individual trees in an apple orchard using ground based LiDAR data. The
trunk candidates are detected using a Hough Transform, and the orchard inventory is
refined using a Hidden Semi-Markov Model. Such a model leverages from contex-
tual information provided by the structured/repetitive nature of an orchard. Operating
at an apple orchard near Melbourne, Australia, which hosts a modern Güttingen V
trellis structure, we were able to perform tree segmentation with 89% accuracy.

1 Introduction

Information gathering and processing are becoming increasingly important in hor-
ticulture as we try to keep up with demand increases. Having accurate information
such as crop health, yield estimates and tree counts aid in optimising control pro-
cesses and therefore allows for better farm management. Efficient chemigation, fer-
tigation and fruit thinning processes then ultimately lead to maximising yield count.

Information gathering is already commonly used by farmers, but it is a time-
consuming and labour-intensive task. Additionally, the data is extrapolated through
significant sub-sampling, where a farmer uses their judgement to pick a few trees
that best represent the average over the entire farm. The future of farm robotics and
information systems will involve making key measurements for all trees in a timely
and accurate manner.
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A natural way to store and process this information is to quantise and associate
to the standard farm unit, which is the individual tree. This enables all aspects of
information processing to be done in a tree by tree topological fashion rather than
relying on three dimensional Cartesian mapping. For example, consider change de-
tection for growth rates. We could attempt to visualise this in 3D over the entire
farm, requiring accurate 3D sampling, vehicle localisation, and scan registration
and alignment. Instead, a simpler approach is to estimate local properties in the data
such as tree height, canopy volume and yield count, and link them to individual trees
in the farm topology.

This paper provides this unit representation by automatically building a tree in-
ventory over a farm. In particular, we present an autonomous pipeline for localising
apple tree trunks using a LiDAR mounted on an Unmanned Ground Vehicle. The
trunks, being primary components of the trees, can therefore be used to map tree
locations. The procedure is designed for an apple orchard located near Melbourne,
Australia (Fig. 1), which hosts a plantation structure known as the Güttingen V
trellis. Trees are planted on V-shaped trellises rather than the traditional squat for-
mation, which helps with better weight support of the apple limbs, allows for more
sunlight for the fruits and easier fruit picking [3]. The orchard also has a top cover
netting to prevent damage to trees caused by hail.

The contribution of this paper is the end-to-end pipeline to automatically process
orchard-wide LiDAR data to produce a tree inventory. This includes the necessary
adaptations from the segmentation framework proposed by [14] to enable operation
in orchards with a continuous Güttingen V trellis structure.

Fig. 1 Apple Orchard, Warburon 3799, Victoria. The research ground vehicle Shrimp travers-
ing between two trellis rows, scanning one side using a LiDAR.

The remainder of the paper is organised as follows. Section 2 presents re-
lated work on crop/tree localisation. Section 3 gives an in-depth description of the
pipeline built for apple trunk localisation. Section 4 evaluates the success of the
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pipeline on the orchard, discussing its capabilities and shortcomings. We conclude
in Section 5, discussing the future directions of this work.

2 Related Work

Automation and advanced sensing in orchards helps farmers make improved deci-
sions regarding farm management. Research in this field has ranged from orchard
mapping, autonomous driving for farm vehicles and segmentation and classification
of the farm.

Work done by [7] and [10] looks at autonomous vehicle guidance in orchards.
Using a combination of visual and laser sensors to detect trees and drivable terrain,
along with GPS for localisation, they build a map of the environment. Their devel-
opments led to autonomous spraying operations across the farm, however, they do
not target individual trees.

Ultrasonic, image and laser sensors have been used by [13, 11] for predicting
canopy volume and height for individual trees. From this data, tree health and yield
are inferred and associated with trees that have been manually labelled. We wish to
automate the construction of a tree inventory to support a database of health, yield
and other tree specific information.

Geometry and feature based model fitting have been popular choices in outdoor
scenes for locating individual trees. Using data from lasers on a ground vehicle,
[8] fits Gaussian Mixture Models (GMMs) onto a row of trees. A single Gaussian
cluster represents a tree (assuming they are well separated in the point cloud data)
and the ideal number of clusters (representing the count and position of individ-
ual trees) is evaluated through an information criterion algorithm. With regards to
feature based approaches, tree detection can be performed by classifying points us-
ing shape descriptors and shape functions [6, 9]. Airborne laser scanning has also
been used for tree detection. In [15] trees are segmented based on height variations
captured by a downward facing laser sensor.

The configuration of the apple orchard prevents the use of these techniques for
the following reasons: the protective net ceiling would not allow for reliable air-
borne sensing and the heavily intertwined and overlapping trees blur the definition
of an individual tree, preventing the use of canopy geometry or feature based models
for segmentation. Additionally, these methods do not leverage from the regular tree
spacing, which has been shown by [14] to improve the accuracy of tree segmenta-
tion.

In [14], a tree segmentation method is presented that uses laser data on a citrus or-
chard. By splitting the point cloud data into thin slices along an orchard row, slice by
slice classification is performed to separate trees, tree boundaries and gaps between
trees. A Hidden Semi-Markov Model (HSMM) helps predict the most optimal state
sequence giving rise to a quantifiable observation. Adjacent trees are differentiated
from each other through changes in the point cloud heights along the slices. This
method is able to encapsulate orchard structural information by setting state dura-
tion probabilities, which explicitly encode the repetitive tree spacing as a constraint
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in the solution. Through segmentation, this method provides a means of localising
each tree, building a tree inventory over the orchard.

However, as stated before, in a trellis structured orchard with heavily intertwined
trees, the concept of tree segmentation is ambiguous. Additionally, an observational
model based on tree height changes is not representative of individual tree loca-
tions. Instead, as the trees in orchards are generally pruned at the bottom, the trunks
are clearly visible and act as distinct markers for the individual trees. This paper
presents a novel observational model that helps identify each tree by performing
trunk localisation. In particular, a perception pipeline which is geared towards ex-
tracting this model is detailed. An HSMM framework, like the one used in [14], can
then be applied for building a tree inventory for meshed tree canopy, trellis orchards.

3 Trunk Localisation Pipeline

This section describes the main stages of the trunk localisation pipeline used for tree
identification in trellis environments, as illustrated in Fig. 2.

We operate on a half hectare block at the apple farm, which consists of 15 adja-
cent rows of trees. The primary input into the pipeline is a point cloud representing
this block, which is a set of raw measurements that represent the geometry of the or-
chard (top view in Fig. 2a). This is obtained by geo-referencing a vertically scanning
LiDAR mounted on a ground vehicle. Within the sensor frame, a distance threshold
is applied to ensure that data from adjacent rows is discarded. Individual rows are
segmented using GPS boundaries derived from the structure of the whole block.

A point cloud representation of a row (Güttingen V trellis) is shown in Fig. 2b. It
consists of the two halves (trellis faces) of the V structure plantation. The rear trellis
face along a row has lower point cloud density due to occlusions. Therefore, trees
are segmented on one trellis face at a time. Support poles are fixed along these faces
to hold up the trees. By running a parallel localisation process, the poles and trees
are detected independently, using two instances of the same algorithm.

We capture observations that relate to states representing trunks and the gaps
between the trunks. Splitting this into vertical slices along the row, the HSMM pro-
vides a probabilistic framework for estimating the most optimum state sequence re-
sulting in the set observations. By running inference on this model we can estimate
individual trunk locations along the row and subsequently build a tree inventory
across the farm.

3.1 Trellis Segmentation

Fig. 3 shows the view of a Güttingen V structure from between the two trellis faces.
The trees are planted periodically down the row and the trunks of the two halves are
separated by roughly 0.5 m at the ground. We aim to segment out the two halves of
the point cloud shown in Fig. 3b. This is made easier by first removing points be-
longing to the ground. Ground removal also helps the trunks appear as more distinct
linear structures in the point cloud.
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(a) Gather LiDAR data over the orchard
block

(b) Segment single Güttingen V trellis
row

(c) Segment out the closest trellis face (d) Gather observations by line fitting us-
ing Hough Transform

(e) Run inference on HSMM for trunk de-
tection

(f) Tree inventory over the orchard block

Fig. 2 Segmentation pipeline a) → f).
a) Point cloud representation of the orchard block. Points are coloured by elevation and the
blue path represents the vehicle trajectory.
b) A single segmented Güttingen V row.
c) Red points represent the segmented trellis face.
d) Hough transform applied to the segmented face to detect lines as shown in red, which
equate to possible trunk locations.
e) Trunk and gap estimates obtained by running inference on the HSMM, indicated by the
red line with 1:trunk and 0:gap.
f) Tree inventory over the orchard block. Vehicle path in blue, trunks in red. Inset shows
individually labelled trunks.
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(a) Photo (b) Laser data

Fig. 3 The Güttingen V trellis structure at the apple orchard. In (a), we are looking through
the centre of one Güttingen V trellis. In (b) there is a side view of the equivalent point cloud.
The scan was acquired from the left hand side. The density on the right is lower due to
occlusion.

3.1.1 Ground Removal

Ground removal in laser data has been a subject of investigation in many mapping
and segmentation problems [4]. However, given the constraints on the geometry of
the orchard, and the vehicle and sensor configuration, a simple local height threshold
was found to be sufficient. To simultaneously account for non-uniform terrain and
GPS altitude errors due to poor satellite visibility, we artificially set the altitude co-
ordinate of our localisation estimate to zero everywhere, prior to geo-referencing the
laser data. In the resulting data, ground points are at a constant height, which can be
cropped with a threshold. A similar approach is used to remove the top cover.

3.1.2 Face Segmentation

To segmented the two faces shown in Fig. 3, we form a piecewise linear boundary
along the row length by observing changes in point density into the trellis. A piece-
wise linear approach is robust to point cloud errors caused by geo-referencing with
erroneous localisation due to an occluded GPS signal.

Fig. 4 shows a top view of the point cloud representing a row. To find the sep-
aration boundary, the point distribution is analysed along the Y-axis for a sliding
window along the X-axis (one instance of the window is the black rectangle in the
figure). The sliding window is configured with 2m width and no overlap. A too
narrow window would have suffered from noise in the point cloud data and a win-
dow too large would fail to capture any sharp transverse changes along the row.
Fig. 5 shows the point count histogram for the illustrated window. We can see two
peaks representing the front and rear face (smaller second peak due to occlusion).
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Fig. 4 Top view of the point cloud. The data was obtained from the perspective shown in the
image resulting in a higher point density on the closer trellis face. Discrete boundary points
are found at sliding windows along the x-direction (black rectangle). The resultant separation
boundary is illustrated by the red line.

A Gaussian Mixture Model (GMM) with two modes is a fit to this, and the means
represent the central position of the two faces. The boundary point between the
faces is taken as the midpoint between the means (shown by the red dot). Addition-
ally, the GMM parameters from the preceding window are used as priors for the
next window, which allows to filter out peaks from excessive foliage or inaccurate
ground removal. Joining together the boundary points along the row results in the
red boundary line illustrated in Fig. 4. The points to one side represent the trellis
face closest to the vehicle, which are shown in red in Fig. 2c.

3.2 Hidden Semi-Markov Model

The second half of this pipeline focuses on individual tree trunk detection. For this
we make use of a Hidden Semi-Markov Model (HSMM) [2]. The same process is
also used in parallel for the detection of support poles, which will be described in
Section 3.2.2. HSMMs are used to estimate the most likely sequence of states given
a sequence of sensory observations. They have been used diversely, for example, in
speech recognition, building rainfall models and modelling traffic on web servers.
For trunk detection the states represent trunks and gaps between the trunks, and the
observations are derived from raw LiDAR data.
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Fig. 5 Distribution of points in a sliced segment of the row. The grey patches represent the
two faces of the Güttingen V trellis. A GMM of two modes is fitted onto this data (green
lines) and the mid point between their means (red point) is the boundary point between the
faces for the given slice.

3.2.1 Observations

The point cloud is not directly representative of trunks and gaps, hence we must
define a feature space that can emphasise their unique linear, cylindrical structure.

There are several approaches in the literature that are used to estimate the linearity
or cylindrical nature of regions of point clouds. Derived from the work by [12],
Principal Component Analysis (PCA) was used to define the linearity, planarity or
scatter of the points. In our initial experiments as in theirs, GMMs were trained using
hand labelled classes such as ground, trunks and foliage. However, due to a sparse
point cloud, the point density on the trunks was not high enough to obtain clear
linear structures. This caused the trunks to be often labelled as foliage. Additionally,
our aim was to have an unsupervised segmentation pipeline and we wished to avoid
the manual labelling.

Another approach that relies on 3D point statistics worked through ellipsoidal
region growth by using minimum spanning trees [9]. This works by connecting
neighbouring points according to an edge weight equivalent to the similarity in the
PCA feature space. However, once again due to a sparse representation of the trunks,
foliage was often mis-labelled as trunks.

We instead chose a direct line fitting approach using the Hough Transform [5] on
a region of interest at the lowest 0.75 m of data 1.

1 RANSAC line fitting was tested, but found to be too computationally expensive due to
large ratio of outliers in our experimental data
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Given a parametric equation of a line, a voting procedure is used in the parameter
space to find lines of best fit on the input data. For points in 3D space (as in the
case here), a 4D Hough space is needed for line detection, which is computationally
expensive [1]. An alternative is to detect edges using intersections between fitted
planes in 3D space [1]. This works well in indoor environments where objects have
flat surfaces and sharp edges but is infeasible in an outdoor scene where planar
surfaces are infrequent. Instead, we leverage from the inherent 2D structure of the
trellis and flatten the 3D data onto a 2D plane, and apply a 2D Hough transformation.
As the trunks are approximately vertical structures, we restrict the fitted lines to the
domain −15◦ ≤ θ ≤ 15◦. Fig. 2d shows the fitted line on the flattened point cloud.

For use with an HSMM, we divide the point cloud into 5 cm slices (roughly the
trunk width) along the length of the row, with the aim to infer the state of each slice.
The length of the fitted line gives a probabilistic indication of the presence of a trunk.
As seen in Fig. 2d, there are several instances of false line fits due to overhanging
foliage or tall grass. However by adding structural constraints in the form of regular
spacing in the farm, the HSMM can help significantly reduce mis-classification.

3.2.2 Model Parameters

The states in the HSMM are defined as S = {Strunk,Sgap,Srow-end}. With perfect
inference, a trunk slice state indicates the presence of trunk points and a group of
gap states would be represent the area between two trunks. For a given row, the size
of the area before the first tree and after the last depends on how the rows were
initially segmented. A row-end state is therefore introduced to model this arbitrary
length. A state at slice n is then denoted as qn, where n ∈ [1 : N] for a total of N
slices.

For a sequence of observations O = {O1, . . . ,ON}, the HSMM aims to find the
state sequence Q = {q1, . . . ,qN} that best represents the data:.

argmax
Q

P(O|Q,π ,A,B,C) (1)

Here π is the initial state distribution, the probability of a state in the first slice.
This can either be the row-end state or a tree trunk.

π = P(q1 = Si) = [ 0.5 0 0.5 ] i ∈ {trunk,gap,row-end} (2)

The state transition matrix, A represents the probability of moving between states
as we go from slice to slice. Its elements are:

ai j = P[qn+1 = S j|qn = Si], i, j ∈ {trunk,gap,row-end} (3)

The probabilities are illustrated in Fig. 6. The most likely transitions are between
the trunk and gap states. Naturally, it is only possible to transition to/from the row-
end state at the end of the rows, which can be modelled with transition probabilities
that are a function of slice position. However, we found that setting a fixed low
transition probability into the row-end state sufficed for the segmentation process.
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Fig. 6 Transition probabilities between states in the HSMM

The emission probability, B states how likely an observation will occur for a given
state

Bn = P(On|qn = Si) i ∈ {trunk,gap,row-end} (4)

This is illustrated in Fig. 7a. The distribution was manually obtained by analysing
the LiDAR data. We state that the longer the fitted line (i.e. On), the more likely it
is to represent a trunk (red line in Fig. 7a). The inverse was true for the gap/row-end
state (blue line), however, we dampened the likelihood as line fits on foliage and tall
grass could represent gaps.

(a) State observation likelihood (b) State duration probability

Fig. 7 Observation and duration probabilities for the HSMM

Finally, the duration probability, C, encapsulates the structural order of the or-
chard. With slices of 5 cm width, we expect a gap state to last as long as the mean
separation between trunks in the farm. Within the HSMM framework2 we can define
a state duration probability:

Ci(d) = P(Si lasts for d observations) (5)

2 Self state transitions experience an exponential decay when working with a Hidden
Markov Model (HMM). This ability to explicitly set state durations is what differentiates
an HSMM from an HMM.
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Distributions for the different states are shown in Fig. 7b. The gap duration has
been modelled as a Gaussian distribution through manual measurements of trunk
separations at the orchard. The trunk states are set to last either one or two slices
and the row-end states can last for an arbitrary amount of time.

We run the Viterbi inference algorithm [2] that searches for an optimal solution
for Eq 1. The algorithm produces a state estimate at each slice (as shown in Fig. 2e).
Tracing back the points present in the trunk slices, a point wise representation of
individual trunks can be made (shown by the red points in Fig. 8). Secondly, through
this labelling, we can re-evaluate the average trunk separation over a larger data set
and therefore redefine the Gaussian duration distribution (Eq 5) shown in Fig. 7b.

Fig. 8 Resulting Trunk and Pole Localisation

A parallel implementation of the HSMM with different parameters is used to
segment support poles (Fig. 8). The states are now S = {Spole,Sgap,Srow-end} and
have a different duration distribution, C. The poles are wider than the trunks and are
separated by longer gaps.

4 Trunk Localisation Results

The trunk localisation pipeline was implemented using data obtained from an apple
orchard near Melbourne, Australia (Fig. 1). The test vehicle, Shrimp, is a percep-
tion research ground vehicle, built at the ACFR, University of Sydney. It is equipped
with a vertically oriented 2D SICK laser directed perpendicular to the vehicle’s di-
rection of travel. The vehicle was teleoperated at ∼ 2 m/s between the rows (vehicle
path shown in light blue in Fig. 2a) over a half hectare block on the farm, which is
a standard division of the orchard. This consists of 15 rows (30 Güttingen V trel-
lis faces), a total trajectory length of 3157 m and 2629 trees. Using the navigation
solution from the on-board Novatel Global Positioning Inertial Navigation System
(GPS/INS), a geo-referenced point cloud representation of the entire block was pro-
duced. After manually selecting a bounding box around the block, individual rows
were automatically segmented by recognising the vehicle’s entry/exit points into/out
of the box. The manual selection compensates for any GPS errors on a block scale
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Table 1 Localisation results over the apple orchard

State Total
count

True Positives False Positives False Nega-
tives

Accuracy

Trunk 2629 2350 186 93 89.4%
Pole 294 280 9 5 95.2%

but would need to be repeated when working with a new dataset. We aim to use ve-
hicle heading angle in the future to segment rows, automating this step. Trunk and
pole localisation results are summarised in Tab. 1.

True positives represent the correctly identified trunk states, and the localisation
accuracy is the ratio of true positives to the total count. A false positive is the classi-
fication of foliage and/or tall grass as trunks/poles, and a false negative corresponds
to trunks/poles that were missed all together. Instances of these cases can be seen
in Fig. 9b. These statistics were evaluated by manual visual interpretation of all in-
dividual trunks in the point cloud. To account for any visual bias, we also analysed
the respective photos captured by an onboard camera, confirming the presence of a
tree or support pole.

(a) Gaps in data due to GPS errors (b) Trunk mis-classification

Fig. 9 Trunk and Pole segmentation results with a) gaps in the point cloud due to GPS errors.
b) large amounts of low hanging foliage.

Localisation errors were due to two primary causes. Firstly, occlusions in the
GPS satellite transmission caused jumps in the vehicle position estimates, affecting
the geo-referenced point cloud (Fig. 9a). This caused trellis segmentation errors and
un-even spacing between trunks. However, as the Viterbi algorithm runs inference
on the entire row, small errors are compensated for due to good state estimates on
the rest of the row. As a result, we see successful trunk and pole segmentation in
Fig. 9a. Larger jumps (not shown on the figure) result in a longer gap state then
expected and cause mis-classification, labelling nearby foliage as trunks.

Secondly, errors stemmed from the ambiguity of the line segment observation
model. Trunks and support structures are identified through line fits on the point
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cloud data. However, if the trees have not been trimmed, or if there is tall grass
on the ground, distinction between the trunk and gap state becomes harder. Faulty
segmentation due to this can be seen in Fig. 9b. The error occurrence was however
very minimal and due to the nature of the HSMM model, the error is bounded, with
trunk estimates close to the actual trunk.

5 Conclusion

We have described a pipeline that uses a probabilistic approach to localise tree
trunks at an apple orchard configured in a Güttingen V trellis structure. The trunk
localisation, performed on LiDAR data captured by a UGV includes row extraction,
feature selection for representing trees with overlapping canopies and using a Hid-
den Semi-Markov Model, which leverages from the regular structure of the orchard.
Through this, we were able to build a tree inventory over the farm, which can be
used for localising yield counts, tree heights/volume and soil quality measurements,
providing the farmer with a detailed and accurate model of the orchard.

We found that erroneous GPS data caused by occlusions resulted in erroneous
trunk localisation. For future work, we aim to use the regular spacing constraints
placed by the HSMM to perform simultaneous localisation and spatial correction,
meaning locally smooth odometry could replace GPS entirely. We also intend to
expand the tree observation model by combining appearance models from other
sensor modalities such as vision and hyperspectral sensing.
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15. Yu, X., Hyyppä, J., Kaartinen, H., Maltamo, M.: Automatic detection of harvested trees
and determination of forest growth using airborne laser scanning. Remote Sensing of
Environment 90(4), 451–462 (2004)



LiDAR Based Tree and Platform Localisation
in Almond Orchards

Gustav Jagbrant, James Patrick Underwood, Juan Nieto, and Salah Sukkarieh

Abstract. In this paper we present an approach to tree recognition and localisation
in orchard environments for tree-crop applications. The method builds on the natu-
ral structure of the orchard by first segmenting the data into individual trees using
a Hidden Semi-Markov Model. Second, a descriptor for representing the character-
istics of the trees is introduced, allowing a Hidden Markov Model based matching
method to associate new observations with an existing map of the orchard. The
localisation method is evaluated on a dataset collected in an almond orchard, show-
ing good performance and robustness both to segmentation errors and measurement
noise.

1 Introduction

Recent years have seen the successful adaptation of autonomous machinery in com-
mercial broad-acre agriculture. In contrast, tree-crops, part of the specialty crops
category, are still particularly labour-intensive and suffer from lack of technology
for precision sensing and management. The tight and inhomogeneous operating en-
vironments present in these fields pose multiple challenges for automation. Never-
theless, robotics and autonomous systems are expected to provoke a revolution in
agriculture practices [1].

Information systems, such as the estimation of yield and health, as well as the
detection of weeds, pests and diseases, can help to increase agricultural output and
to build new practices that ensure long-term sustainability. For most of these opera-
tions, the tree is the natural unit of the orchard. A correct recognition of individual
trees would thus allow high level objectives to be completed, without introducing
any demands for metric accuracy. As such, the detection and recognition of individ-
ual trees is a key enabling component for most aspects of orchard automation.
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A key problem for any autonomous robot is localisation; how does the robot
know where it is? In agricultural robotics, the most common approach is to use the
Global Positioning System (GPS). However, in an orchard environment, the dense
and tall vegetation limits the effectiveness and accuracy of GPS, due to occlusion
of the satellite signal. In order to enable the use of smaller and more cost efficient
robots, it is instead desirable to develop GPS independent systems. The robot will
estimate its position using external observations of the environment. However, the
repetitive nature of the environment and the lack of distinct salient landmarks can
create challenges for general purpose non-GPS based techniques such as Simul-
taneous Localisation and Mapping (SLAM). Perceptual aliasing is when a region
appears visually or geometrically similar to another and is a constant challenge in
orchard environments. On the other hand, orchards have a well defined structure,
being divided into rows and trees, which can be utilised to aid localisation.

In this paper, we use a 3D data representation of an orchard, created by a 2D
LiDAR sensor on a moving ground vehicle, to perform localisation. The approach
presented uses the trees as natural orchard landmarks. The trees are first segmented
and characterised using distinctive features that permit tree recognition. Using these
features for tree recognition, the framework enables topological localisation, or
geo-location when the database of trees is geo-referenced.

2 Background

There exist numerous general purpose approaches to segmenting 3D data. For exam-
ple, the method in [2] can segment multiple arbitrary classes of objects by relying on
spatial separation. Empirically, this was found to yield reasonable results in orchard
environments, however, frequent contact between adjacent tree canopies caused a
percentage of under-segmentation (two trees joined). Using the repetitive orchard
structure explicitly as a constraint for segmentation should lead to superior results,
hence in this work we focus on such methods.

The authors of [3] present a method utilising Gaussian mixture models with an
unknown number of clusters to segment the individual points into trees. In contrast
to this per-point segmentation, the authors of [4] propose a method based on splitting
the row into vertical perpendicular slices of 0.2 metres width. Based on the height of
each slice, the dataset is segmented into trees by employing a Hidden Semi-Markov
Model (HSMM).

Our segmentation approach is an extension of the method presented in [4]. In or-
der to increase the segmentation accuracy and the detection performance with regard
to irregular small trees, the method is extended to incorporate volume measurements
and an additional small-tree state.

To perform localisation based on the segmented trees, it is necessary to be able to
compare the similarity of two trees, as observed with sensor data. Determining tree
characteristics such as height and volume from 2D LiDAR has been investigated
[5] [6], however, to the authors’ knowledge there has not been significant research
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into estimating the similarities of trees measured with 2D LiDAR. Nevertheless,
there exists several generic 3D descriptors that could be used for this purpose.

A common trait among many descriptors is to use the normal direction estimated
using a sub-sample of points [7] [8] [9]. The significant under-sampling of the tree
foliage, due to the sparse nature of the LiDAR data, makes the use of descriptors that
require accurate normals inappropriate. Furthermore, as the data is unevenly sam-
pled due to the varying speed of the robot, descriptors aiming to describe the dis-
tribution of points [7] [10] [11] are also deemed as inappropriate. In addition, these
descriptors are often used to discriminate significantly different classes, whereas
we require a descriptor capable of discerning between trees that have been grown
to be as similar as possible. Therefore we introduce a new descriptor, specifically
designed to differentiate the trees in the orchard.

An integral part of the orchard structure is that the trees are divided into rows. The
similarities among trees makes it extremely difficult to perform robust localisation
based on one-to-one matching. The ambiguities in data association can be reduced
by using sequence matching. In [12], Dynamic Time Warping (DTW) was used to
show that sequence-based localisation can be performed despite the information of
each element being severely limited. Another option for sequence alignment is to
use a Hidden Markov Model (HMM) [13] [14]. HMMs provide greater flexibility in
defining the models, making it well suited to explicitly encode the constraints due
to the orchard structure and the sensors’ noise.

HMMs have been successfully applied in numerous localisation problems. In
[13], both sensor measurements and odometry readings are used to perform local-
isation in a grid map. Another problem was examined in [14], where place based
localisation was performed in an indoor environment based only on sensor mea-
surements. This approach is similar to the one employed in this paper, as we want
to examine what localisation accuracy can be obtained when based only on tree
appearance.

Extending beyond the previous literature on tree segmentation and counting, the
primary contribution of this paper is to provide a tree-centric localisation methodol-
ogy, which not only separates trees as per [4], but introduces recognition, allowing
us to determine exactly which tree is being observed, by comparison to previously
acquired tree databases.

The remainder of the paper is organised as follows: Section 3 describes the out-
line of the algorithm as well as the individual steps and Section 4 describes the
experimental setup and evaluation. Section 5 concludes the paper and discusses po-
tential extensions to the method.

3 Algorithm

The proposed localisation algorithm consists of three dependent steps, as shown in
Fig. 1. The input to the algorithm is a 3D point cloud describing an orchard environ-
ment, an excerpt of which is presented in Fig. 2. The data are first segmented into
individual trees, and then the geometric characteristics of each tree are described.
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New tree observations are then matched against a reference map of the orchard,
by using a similarity metric. In order to create a reference map, a segmented and
characterised point cloud is associated with a secondary reference source. If global
localisation is required, the secondary source could be from a vehicle with very ac-
curate GPS-based navigation system, or from geo-referenced satellite or aerial im-
agery. If topological localisation in a local frame is sufficient, the reference source
could simply be the row and tree numbers.

Fig. 1 A block representation of the localisation algorithm

Fig. 2 An excerpt of a point cloud representation of an orchard

3.1 Tree Segmentation

The first step is to segment the LiDAR data for each row in the orchard. This is
done using the heading of the robot. Afterwards, each row is quantised into vertical
perpendicular slices where the volume and height of each slice are calculated. We
used slices of 0.2 m width in our experiments. The volume is calculated by dividing
the slice into textbfcubic voxels and counting the number of voxels containing at
least one point. The height of a slice is calculated simply as the maximum height of
all points in the slice.

Using the height and volume information, a Hidden Semi-Markov Model
(HSMM) is used to infer whether the observations of the slice belongs to either:
a tree, a gap (a slice without a tree), the boundary of a tree, or a small tree. Our
model differs from [4] in two respects. First, the volume is used to model the state
because the boundaries between trees with meshed canopies were found to be easier
to distinguish by this feature. Second, the small tree state is introduced in order to
improve the performance with regard to irregular small trees (usually new plants).
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Fig. 3 The state transition diagram of the orchard model. Note that the explicit state duration
distributions are not shown.

In order to incorporate prior knowledge of the tree width, the duration of the state
tree is defined as a Gaussian centred around the expected mean width. The small
tree state is given a short uniform distribution, making thin trees more probable.
However, as this may cause repeated transitions between gap and small tree, the
gap state is given a notable minimum duration. Furthermore, different to [4], the
gap distribution is modelled as uniform, as the width of gaps were found to vary
uniformly. Finally, the duration of the boundary state is explicitly set to 1 in order to
guarantee that it is as precise as possible. Fig. 3 illustrates the state transition model.

The height measurements are used to determine the likelihood of the gap and
small tree states, while the volume measurements determine the likelihood of the
tree and boundary states. For the boundary state however, the volume feature is not
used directly. Instead the difference between a broad moving average and a small
moving average of the volume is calculated, giving an estimate of the size of the
local volume compared to the immediate surrounding. An example of this feature is
presented in Fig. 4. Similar to the work done in [4], all observation likelihoods were
hand-tuned.
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Fig. 4 The measured volume (—) and the difference of moving averages (—)

Using the model presented above, the Viterbi algorithm [15] is used to find the
optimal state sequence given the measurements. An example of the result is shown
in Fig. 5.
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Fig. 5 An typical segmentation result, with unique colours per segment and red boundaries

3.2 Tree Characterisation

The data collected in the orchard is both sparse and unevenly sampled compared to
the fine geometry of tree canopies, suggesting that the generic 3D descriptors relying
on normal estimation or point distributions will yield inaccurate results. Instead, an
application specific height signature descriptor is introduced, which contains the
height measurements of each slice in the segmented tree. The possibility of using an
equivalent volume descriptor was also examined, however it was shown to be less
consistent. An example height signature descriptor of a single tree is shown in Fig.
6. The tree has been scanned on four separate occasions to illustrate the repeatability
of the signature.
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Fig. 6 The height signature of one tree scanned on four separate occasions

The signatures are generated from the slice height measurements of consecutive
tree state segments of data, and as such, they are not guaranteed to be of equal
length. Therefore the signature difference is calculated by finding the best fit be-
tween two signatures. Denoting the longer sequence slong, with length Nlong, and the
shorter sshort , with length Nshort , there are N = Nlong −Nshort + 1 discrete sequence
alignments. For each alignment i, the shorter sequence is padded with zeros:

s0
short,i = [0(i) , sshort , 0(N − i− 1)], (1)
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where 0(i) denotes a vector of i zeros. The minimum distance Δs is calculated using
the L1 norm:

Δs(slong,sshort) = min
i∈[0,N−1]

|slong − s0
short,i| (2)

3.3 Localisation

Assuming there exists a prior map where each tree is represented by a descriptor, the
task of the localisation algorithm is to match newly observed trees with the correct
tree in the map. This is useful for online localisation for autonomy and offline (batch
processing) to associate new observations with previously mapped trees, allowing
the health, growth and yield of individual trees to be monitored and stored over time.

In operation, the robot is constrained to move either forwards or backwards along
a row, with no possibility of changing rows before the end is reached. This constraint
is integrated into the localisation algorithm. In addition, if the direction of the robot
is known, for example from odometry, the algorithm is further constrained. There-
fore, two localisation methods are presented, one assumes knowledge of the robot’s
direction of motion, while the other does not.

The prior map is represented by a Hidden Markov Model (HMM) [16] where
each state represents an individual tree, seen from a specific side. A height signature
descriptor is stored for each state and the transition matrix is designed to integrate
the motion constraints of the robot. Localisation is performed by computing the
descriptors of a newly observed sequence of trees, comparing the descriptors to
those in the map, and finding the most probable corresponding states in the HMM.
In the online situation, the state sequence is found using the Forward algorithm [16],
while the Forward-Backward algorithm [16] is used in offline localisation.

The robot’s motion is modelled by the transition matrix A, where entries Ai j con-
tain the probability of the robot moving from tree i to tree j. In order to allow for
segmentation errors, the intra-row transition elements are defined by Eq. 3, allowing
for both self-transitions as well as transitions to non-adjacent trees. If the direction
of the robot is not known, the elements are defined according to Eq. 4, which permits
transition to trees either in front or behind the robot.

Ai j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.10 , if j = i+ 0

0.70 , if j = i+ 1

0.10 , if j = i+ 2

0.05 , if j = i+ 3

0.05 , if j = i+ 4

0 , else

, (3) Ai j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.025 , if j = i− 4

0.025 , if j = i− 3

0.05 , if j = i− 2

0.35 , if j = i− 1

0.10 , if j = i+ 0

0.35 , if j = i+ 1

0.05 , if j = i+ 2

0.025 , if j = i+ 3

0.025 , if j = i+ 4

0 , else

. (4)
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Transitions between rows are handled by assuming it is possible to move from
one row to any other, including a return into the same row. When Equations (3) or
(4) assign probability mass past the end of the current row, the overhanging mass is
evenly spread among the corresponding entry points of all rows. This is illustrated
by an example where the robot is known to be three trees from the end of a row, with
a constraint of motion to the right in Fig. 7(a) and in either direction in Fig. 7(b).

(a) Directed Row Transition (b) Undirected Row Transition

Fig. 7 An example of (a) rightward directed and (b) undirected transitions (�) given the
current position (�). The red shading indicates probability.

To determine the likelihood of a state given an observed tree, the difference
between the observed and previously mapped descriptor is compared to the self-
similarity distribution, shown for real data in Fig. 11. The match likelihood is de-
fined as the cumulative probability of observing a difference larger than the mea-
sured difference given an identical tree, shown in Fig. 8 and described further in the
next Section.
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Fig. 8 The likelihood of a matching tree, given a height signature difference observation, as
described in Section 4.1
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4 Algorithm Evaluation

Data were collected at an almond orchard in Mildura (Victoria, Australia), by the
robot shown in Fig. 9(a). The vertically oriented SICK LMS-291 2D LiDAR points
to the right of the vehicle, generating range data at 75Hz, which is swept by the
forward motion of the vehicle. A global positioning inertial navigation system
(GPS/INS) estimates the robot’s trajectory, however, due to the vegetation in the
orchard, the estimates were inaccurate. Nevertheless, this was used to geo-reference
the LiDAR data to create a point cloud, because the INS guarantees local smooth-
ness at the scale of individual trees. Future work will use vehicle odometry to create
a smooth local trajectory, with global corrections provided by the tree matching sys-
tem proposed by this paper. An aerial view of a small part of the orchard is given
in Fig. 9(b), showing the orchard row structure. Additionally, an overview of the
surveyed orchard block is presented in Fig. 10. Each letter corresponds to scanning
one side of a line of trees, as this quantum of data is treated separately in this paper.
The pairs (B,C), (D,E), (F,G), and (H,I), represent the same line of trees seen from
two different sides. The data are divided into four datasets, with d1 containing all
rows A-J, and d2,d3,d4 being three repeated scans of rows B and C.

(a) (b)

Fig. 9 Photos from the data collection process showing a) the perception research ground
vehicle “Shrimp” and b) an aerial view of the orchard structure

Fig. 10 An overview of the surveyed orchard block where the different rows’ sides have been
marked with different letters
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4.1 Self-similarity Distribution

Using datasets 1 to 4, the height signature difference is calculated for the same trees
seen multiple times in rows B and C, and also for different trees in all rows, to esti-
mate the response of the measure for identical and differing trees. The distributions
are shown in Fig. 11, which indicates that on average, the descriptor is an effective
way to differentiate trees. Note that the cumulative PDF shown previously in Fig. 8
was obtained from these self-similarity distributions.
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Fig. 11 The self-similarity distribution of the height signature descriptor (�) and the simi-
larity between different trees (�)

4.2 Segmentation

The performance of the segmentation was evaluated by visually inspecting the
segmentation on dataset 1 and counting the resulting:

• True Positives: trees labelled as trees.
• False Positives: gaps labelled as trees
• False Negatives: trees labelled as gaps
• Boundary Errors: a tree/gap boundary that from visual inspection could be placed

more precisely.

True negatives were not counted, as a single gap between two trees is represented
by arbitrarily many consecutive gap states, therefore true negatives are poorly de-
fined. The results of the evaluation are presented in Table 1, showing that the method
accurately detects and segments the trees.

Table 1 The performance of the segmentation method applied on dataset 1

True Positives False Positives False Negatives Boundary Errors
579 0 0 2
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4.3 Characterisation

To determine the applicability of the height signature descriptor for localisation, a
preliminary sequence matching test was done using exhaustive search. Assuming
no segmentation errors, this allows to determine the information contained in the
height signature features. Sequences of trees from datasets 2 to 4 were localised
within a map created from dataset 1. Test sequences of length N were compared
to all possible sequences of length N in the map to find the closest match, by min-
imising the sum of the individual height descriptor differences. Before the test was
performed, the segmentation was visually inspected and it was verified that there
were no segmentation errors.

The ratio of correct matches was calculated for the height and volume signa-
ture descriptors. For completeness, comparison is made to using only the maximum
height, or the total volume of the tree, (analogous to a signature of length 1). The re-
sults, presented in Table 2, show that although no descriptor is able to uniquely char-
acterise a single tree, using short sequences provides a considerable performance
increase. The power of sequence matching shows that localisation is possible even
with single point height or volume descriptor, though signatures enable far shorter
sequences. This simple approach presents a good localisation solution, even for the
“kidnapped robot problem”. The only problem is that the method is sensitive to
possible segmentation errors.

Table 2 The correct match ratio (%) for sequences of length N from datasets 2-4 vs. dataset 1

Length Simple Volume Simple Height Volume Signature Height Signature
1 3.46 5.48 65.71 74.64
3 34.03 44.48 92.54 98.21
5 63.16 69.97 97.83 99.69

10 85.32 88.40 100.0 100.0
20 99.57 97.85 100.0 100.0

4.4 Localisation

To evaluate the performance of the complete HMM based localisation method, a
map was created from dataset 1. Thereafter a sequence of observations was lo-
calised in the map and the ratio of correct matches calculated. Two different types
of datasets were localised against the map: real datasets 1 to 4, and synthesised
datasets, created by perturbing the height measurements and boundary positions of
dataset 1. Furthermore, segmentation errors were introduced into all sequences. Us-
ing this configuration it is possible to determine both the algorithm’s performance
and its robustness to noise and segmentation errors.
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Three different types of segmentation errors were introduced:

• merge errors: two trees are merged into one;
• split errors: a tree is split into two trees;
• detection errors: a tree is incorrectly labelled as a gap.

The correctness of a match with the segmentation errors introduced was defined
according to the following definitions:

• for a split tree, the correct match for both split components is the original tree;
• for a merged tree, a match is considered to be correct if the merged tree is

matched with either of the two original trees;
• trees labelled as gaps are not part of the matching process and yield neither cor-

rect nor incorrect matches.

To calculate appropriate measurement noise values, 1000 slices from datasets 1 to
4 were aligned and the slice height variation was found to be Gaussian with mean of
approximately 0 and standard deviation 0.25m. The boundary noise was calculated
from the variation in tree width according to σwidth =

√
2 ·σboundary, because the

labelled tree width is a function of the two boundaries. The boundary noise σboundary

was found to be 1.0 slices. For the synthesised tests, one noise or segmentation error
parameter was changed while the others remain fixed, as shown in Table 3. Note that
the segmentation error probability is the probability of a tree being affected by any
of the introduced segmentation errors.

Table 3 Parameters used to evaluate the performance and robustness of the localisation
method

Dataset Boundary StdDev Measurement StdDev Segmentation Error Prob.
Synthesised 0.0-3.0 slices 0.25 m 0.05
Synthesised 1.0 slices 0.0-1.0 m 0.05
Synthesised 1.0 slices 0.25 m 0.00-0.25
Real - - 0.00-0.25

The localisation performance is shown for varying amounts of introduced seg-
mentation error in Figs. 12(a) and 12(b). The results are similar for the real and syn-
thesised datasets, validating the noise modelling process. As expected, the offline
localisation (smoothing) performs better than the online version (filtering). Using
the direction of the robot is also shown to have a positive impact on the perfor-
mance, especially when large amounts of segmentation error are introduced. The
performance when the measurement and boundary noise is varied are presented in
Figures 12(c) and 12(d), showing that all but the online undirected localisation per-
form well even at noise levels significantly larger than those encountered in the real
datasets.
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Fig. 12 The ratio of correctly matched trees using offline, directed (—) and undirected (---),
and online, directed (—) and undirected (---), localisation. Varying the ratio of segmentation
errors introduced to the a) real b) synthesised datasets. Varying the c) measurement noise and
d) boundary noise.

5 Conclusion

A three step localisation algorithm that utilises the inherent structure of the orchard
has been presented. It has been shown that tree height and volume measurements
derived from a 2D LiDAR sensor are sufficiently informative to enable accurate tree
segmentation and for sequence-based orchard-wide tree recognition and localisa-
tion. Furthermore, we have shown that the proposed algorithm is robust both against
segmentation errors and measurement noise.
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It remains for future work to evaluate the proposed method when using pure ve-
hicle odometry to arrange the LiDAR slices and calculate local height signatures
for each tree. Nevertheless, given the low satellite visibility of the GPS during the
experiments and the subsequent reliance on smooth local trajectories for LiDAR
compilation, we are confident that similar performance can be obtained using odom-
etry. In addition, it is also necessary to evaluate the effects of seasonal variations in
the trees’ appearance, and to determine appropriate mechanisms for updating the
database to manage the tree signature changes over time.
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A Feature Learning Based Approach
for Automated Fruit Yield Estimation

Calvin Hung, James Underwood, Juan Nieto, and Salah Sukkarieh

Abstract. This paper demonstrates a generalised multi-scale feature learning ap-
proach to multi-class segmentation, applied to the estimation of fruit yield on tree-
crops. The learning approach makes the algorithm flexible and adaptable to different
classification problems, and hence applicable to a wide variety of tree-crop applica-
tions. Extensive experiments were performed on a dataset consisting of 8000 colour
images collected in an apple orchard. This paper shows that the algorithm was able
to segment apples with different sizes and colours in an outdoor environment with
natural lighting conditions, with a single model obtained from images captured us-
ing a monocular colour camera. The segmentation results are applied to the problem
of fruit counting and the results are compared against manual counting. The results
show a squared correlation coefficient of R2 = 0.81.

1 Introduction

A continuous growing population has generated an unprecedented demand for
agriculture production. Several problems with traditional farming will need to be
addressed in order to achieve the required increase in production. First of all,
there is a shortage in labour in rural areas. Migration and urbanization have left
rural areas with a reduced and aging population and has also reduced
the available farmland for production. Secondly, the impacts of current
practices to climate change provoke a necessity for innovation in order to make
agriculture a sustainable practice. Reducing emissions, increasing efficiency in the
use of resources such as water, reducing the use of chemical products are some of
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the actions that will need to be addressed to reduce the environmental footprint of
farming.

Robotics and automation are expected to have a significant impact on farms of
the future by increasing efficiency in production and the use of resources and re-
ducing labour costs. Information gathering systems are already being used in many
farms. Geographic Information Systems (GIS) based on remote sensing data have
been shown to provide good methods to solve spatial problems and support de-
cision making [1]. The main limitation of GIS is that they provide coarse spatial
and temporal information. Manual sampling suffers from the same two shortfalls,
in addition to an increase in labour cost. On the other hand, field data from ground
mobile sensor platforms can increase spatial and temporal resolution with improved
operational and cost benefits.

The operational benefit of the autonomous system is to provide accurate yield
estimation that grants better decision making such as fertiliser application across a
farm, prediction for production purposes later in the supply chain. In addition the
research into image processing can provide understanding of individual health and
nutritional values of the fruit.

This paper demonstrates a feature learning based approach for image based fruit
segmentation. We present results for apple segmentation using a camera mounted on
an unmanned ground vehicle shown in Fig.1. Outdoor fruit classification using vi-
sion systems is a challenging task. An autonomous segmentation approach will have
to deal with illumination changes, occlusion, variety of object sizes and in our case
variety of colours. The algorithm presented here performs pixel classification using
feature learning to automatically select the most important attributes of the target

(a) Sensor Configuration (b) Scanning a Row

Fig. 1 The perception research ground vehicle Shrimp, operating at the apple orchard
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(fruit). We show that the approach can handle different illumination conditions and
different fruit size and colour.

In particular this paper presents the following contributions:

• an extension for apple tree segmentation of the algorithm presented in [2] for
almonds;

• extensive experiments using data collected in an apple orchard with a robotic
platform. The algorithm detects both, red and green apples with a common
model;

• a pipeline for fruit counting and validation against manual fruit counting per-
formed by the farmer.

2 Related Work

There has been a relatively large amount of work presented in fruit segmentation
using vision. The literature covers a variety of fruits such as grapes [3] [4], mangoes
[5], oranges [6] and apples [7, 8]. A common trend in orchard tree classification is
the use of manually designed features, such as intensity or colour ranges or shape
features [9]. For example, the work presented in [8] uses a simple intensity threshold
to segment flowers, while the work presented in [5] uses a colour threshold. Another
example is the work proposed by [4] where a shape based detection followed by a
colour and texture classifier is applied to grape segmentation. The main drawback
of these approaches is that they are specifically designed for a particular fruit variety
and will need to be re-designed for different fruits or to cope with variations such as
seasonal changes.

Apart from the always present occlusion and illumination challenges, fruit clas-
sification becomes a simpler task when the fruit has a distinctive colour from the
foliage. Green apples however, do not belong to that category. A pipeline for apple
segmentation is presented in [7]. In order to control the illumination the authors col-
lected data at night with an artificial source. The algorithm selects red apples using
colour and green apples using specular reflection features.

The fruit classification framework presented here has been designed with the aim
of automatically adapting the feature sets for different fruits; the feature extraction
and classification rules are all obtained via learning. Our approach does not require
domain specific assumptions and can therefore be applied to different types of trees.

3 Fruit Classification

Green apple detection using vision is challenging due to the low contrast of the
fruit with the background foliage. In addition, outdoor environments present extra
difficulties due to the variations in illumination caused by occlusion and different
weather conditions.

This paper applies the fruit segmentation algorithm previously demonstrated on
almond trees [2], to apple segmentation and counting. The learning based approach
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allows the algorithm to be applied on fruit of different appearance. This section
provides a brief description of the algorithm, interested reader please refer to [2] for
details.

3.1 Image Modelling Using Conditional Random Fields

This paper models the image data using a Conditional Random Fields (CRF) frame-
work [10]. The graphical model for an image consists of a two dimensional lattice
G =< V ,E > where V is a set of pixels representing the vertices of the graph and
E is a set of edges modeling the relationships between the neighbouring pixels.

Image segmentation is performed by assigning to every pixel xi ∈ V in the image
a meaningful label li ∈ L . For multi-class image segmentation, the label set L
may contain multiple labels up to k classes L ∈ {1, ...,k}. The optimal labeling
l� is obtained via energy minimisation on the graph structure G with the energy
function defined as in Eq. 1

E(l) = ∑
i∈V

ψi(li,xi)+ ∑
(i, j)∈E

ψi j(li, l j,xi,x j)− log(Z(x)) (1)

where ψi(li,xi) is the unary potential which models the likelihood of a pixel taking
a certain label, ψi j(li, l j) is the pairwise potential which models the assumption that
the neighbouring pixels should take the same label, and log(Z(x)) is the partition
function.

Conventionally the unary potential is computed using the features in the image,
for example grey level intensity [11], colour [12], or texture [13]. In our approach
the unary potential is generated using the multi-scale features learnt from the image
dataset.

3.2 Multi-scale Feature Learning

This section provides an overview of our feature learning approach. We first apply
a sparse autoencoder [14] at different scales to obtain the multi-scale feature dic-
tionaries. A logistic regression classifier is then used to learn the label association
to the multiscale responses. The classifier output is then passed into the CRF as the
unary term described in Eq. 1 for multi-class image segmentation.

The first step is to use unsupervised feature learning to capture the features
from an unlabelled dataset. In this paper a sparse autoencoder is used to learn the
dictionaries from randomly sampled image patches. This process is then repeated
with images sub-sampled at different scales.

With the low dimensional dictionary code obtained using unsupervised feature
learning, an additional supervised label assignment step can be used to train a clas-
sifier. In this paper a softmax regression classifier is used. Softmax regression was
chosen because it can be formulated as a single layer perceptron and trained using
back-propagation.
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Lastly the sparse autoencoder used for unsupervised feature learning and the
logistic regression classifier are joined into one single network to fine-tune the
network parameters.

3.3 Fruit Counting

With the apple segmentation output, two approaches are used to estimate the fruit
count. The first is to count the total number of fruit pixels per side of the row and
use the pixel count to infer actual fruit count, the second approach is to perform
circle detection using the circular Hough transform [15] to estimate the actual fruit
count. Prior to detection, image erosion is applied to remove the noise and dilation
is applied to join partially occulded fruit.

4 Experimental Setup

The experiments were conducted using Shrimp; a general purpose perception re-
search ground vehicle. The system is equipped with a variety of localisation, rang-
ing and imaging sensors that are commonly used in machine perception, together
with soil specific sensors for agricultural applications, see Fig. 1(a).

Data from all sensors were gathered from a single 0.5ha block at a commercial
apple orchard near Melbourne, Victoria in Australia, shown in Fig. 3. The data col-
lection was performed one week before harvest with the apple diameter ranged from
70 to 76 mm. The orchard employs a modern Güttingen V trellis structure, whereby
the crop is arranged in pairs of 2D planar trellises, arranged to form a ’V’ shape.
The structure was designed to maximise sunlight on the leaves and to promote ef-
ficient manual harvesting, and potentially would be an appropriate structure for fu-
ture robotic harvesters. The Shrimp robot acquired data while driving between the
rows, as shown in Fig. 1(b). All fifteen rows in Fig. 3 were scanned, with a trajectory
length of 3.1km and a total of 0.5TB of data. The data collection took approximately
3 hours. The experiments in this paper were conducted using the single front facing
camera of the Ladybug3 panospheric camera, seen at the top of the robot, because
this camera has a sufficiently wide field of view to see the entire trellis face, while
scanning from the centre of a row, as shown in Figs. 1(b). The data was acquired
continuously at 5Hz, with an individual image resolution of 1232× 1616 pixels.
Other sensors are used as part of research in tree segmentation and farm modelling.

4.1 Image Analysis

Two set of experiments were performed in this study. The experiments were de-
signed to test both the generalisation of the algorithm for pixel classification, and to
verify that the resulting fruit count did correlate to the ground truth. Multi-class seg-
mentation was used to test the generalisation of the algorithm and binary apple/non-
apple segmentation was used to evaluate the fruit counting performance.
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The dataset consists of over 8000 images with resolutions of 1232×1616 pixels.
To simplify the labelling process each image was divided into 32 sub-images with
308× 202 pixels. Overall 90 sub-images were hand labelled with pixel accuracy
with multi-class labels, and 800 sub-images were labelled with pixel accuracy with
binary apple/non-apple classes. These labelled sub-images were used for the seg-
mentation algorithm training and 2-fold cross validation. Examples of the labelled
images are shown in Figure 2.

Ground Truth Labels Sub-Images 
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Fig. 2 Example of image labels: 90 sub-images were hand labelled with pixel accuracy
with multi-class labels, and 800 sub-images were labelled with pixel accuracy with binary
apple/non-apple classes

Apart from the individual class pixel classification accuracy, three evaluation
metrics were applied, the global, average accuracy and the F measure. The global
accuracy measures the number of correctly classified pixels of the entire dataset
whereas the average accuracy measures the average performance over all classes.
The F measure was computed by averaging the F-measure of the individual classes.

4.1.1 Multi-class Fruit Segmentation

The first experiment performed multi-class segmentation with the same setting as
[2] to classify fruits, leaves, branches, sky and ground. The main difference was
that the fruit in this paper were apples instead of almonds. The objective of this
experiment was to test the generalisation of the multi-class segmentation algorithm
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on different fruits, as well as the same fruit (apple) with different colours (red and
green).

4.1.2 Apple Counting

The second experiment was designed to evaluate the fruit counting performance.
With this objective in mind the algorithm was re-trained to specialise in apple/non-
apple binary classification. This was done because in general, the classification ac-
curacy improves with decreasing number of classes. In addition to the binary class
segmentation evaluation using the hand labelled image data, the apple farmer pro-
vided us with the ground truth count and weight over several rows of the apple farm
shown in Fig. 3 by using an automated post-harvest weighing and counting machine.
The apple trees are grown on a V shaped trellis known as Güttingen V. Each row
has two sides, the rows are numbered sequentially and the A-sides are west facing
whereas the B-sides are east facing. The ground truth counts were provided as totals

Fig. 3 The Map of the Farm: The apple trees are grown on a V shaped trellis (Güttingen
V). The rows are numbered sequentially, each row has two sides and the A-sides are facing
west whereas the B-sides are facing east. The robot surveyed the entire labelled area and the
farmer provided the ground truth apple count and weight for each row face for the majority
of the surveyed area.
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for each side of each row, and were used to evaluate the correlation between the
algorithm count and the ground truth.

To normalise the pixels counts provided by the algorithm, all the images and
pixel class probabilities were first undistorted using the camera calibration data.
Secondly, by using the navigation solution the algorithm sampled images every 0.5
metres along each row to minimise overlap. Finally the total pixel count per side of
the rows were normalised by dividing by the number of images sampled.

5 Results

5.1 Multi-class Fruit Segmentation

The multi-class segmentation results are shown in Fig. 4 and Table 1. The dataset
consists of leaves, apples and tree trunks at different lighting conditions and scales.
The algorithm was able to segment various objects and also the background scene
(sky and ground). The confusion matrix shows that the majority of mis-classification
occurs between the apple and leaf classes, this is largely due to the colour and texture
similarity between the leaves and green apples.

Table 2 also shows the overall performance in apple segmentation compared to
almond segmentation shown in [2] using the same multi-scale feature learning al-
gorithm. The segmentation algorithm performed slightly better on the apple dataset
(F score 87.3) compared to the almond dataset (F score 84.8). The algorithm gen-
eralised well on two different fruit applications, and both show that fruit and leaves
are the hardest to classify.

5.2 Apple Fruit Counting

Fig. 5 shows the binary apple/non-apple pixel classification results. The classifi-
cation algorithm took the image collected by the robotic platform shown in (a),
returned the probability of each pixel belonging to the apple class shown in (b),
the class probability map was then thresholded at 95% , and erosion was applied
to clean up the noise and dilation to join partially occluded apples shown in (c),
followed by the apple detection using circular Hough transform shown in (d).

As expected the classification accuracy improved as the number of classes was
reduced from 5 down to only apple and non-apple. For the apple counting appli-
cation, the algorithm was re-trained to only perform binary classification between
apple and non-apple class. The classification accuracy was 93.3 % for the apple
class and 87.7 % for the non-apple class. Compared to the multi-class experiment
where the apple classification accuracy was 71%.

The normalised pixel count was computed by summing the apple pixels in the im-
ages for each side of the rows and dividing by the number of images. Separately, the
apple count was generated by detecting circular regions in the class map using cir-
cular Hough transform. Overall the algorithm undercounted the fruit due to shading
and occlusion, however the undercounting was consistent. This was demonstrated
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Fig. 4 Apple orchard multi-class segmentation qualitative results: This dataset was collected
during an orchard surveying mission aiming to automate the yield estimation and harvesting
process. The class colour code: Apples are red, leaves are green, branches are brown, sky is
blue and the ground is yellow.

Table 1 Confusion matrix for pixel multi-class classification: The classifier performs well in
the leaves and the sky classes. The majority of mis-classification occurs between leaves and
green apples.

leaves apples trunk ground sky
leaves 96.7 25.2 17.4 7.4 0.6
apples 2.0 71.0 7.7 0.1 0.1
trunk 0.5 2.2 71.8 1.9 0.1
ground 0.3 0.6 2.6 86.9 0.0
sky 0.4 1.1 0.5 3.6 99.1

Table 2 Multi-class segmentation performance comparison between previous work on al-
mond and this paper on apple. The learning algorithm performed well across different types
of fruit with different appearances.
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Almond [2] 94.0 69.8 72.8 89.1 95.8 86.9 84.3 84.8
Apple 96.7 71.0 71.9 86.9 99.1 92.5 85.1 87.3

in the comparison between the pixel and fruit count produced by the algorithm, and
the ground truth fruit count and weight, shown in Fig. 6. Positive correlations can
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Fig. 5 Apple Pixel: a) Original Image. b) Classifier confidence output, higher confidence is
shown in red and lower confidence is shown in blue. c) Confidence threshold at 0.95 and
with morphological operations to clean up the noise d) Apple detection with circular Hough
transform.

be observed in all plots, with the strongest correlation (R2 = 0.810) between the al-
gorithm fruit count and the ground truth fruit count. Overall higher correlation was
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Fig. 6 Algorithm counts versus ground truth counts: Positive correlation is observed in all
plots. The strongest correlation occurred between the algorithm fruit count and the ground
truth fruit count, demonstrating the algorithm’s ability to infer actual fruit count. The row
naming convention is according to the map shown in Fig. 3.
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Fig. 7 Calibrated algorithm count versus ground truth count: The algorithm and ground truth
fruit count matched well in the first 10 sides. The row naming convention is according to the
map shown in Fig. 3.

observed between the algorithm and ground truth when comparing to fruit count
rather than weight.

Finally the algorithm fruit count can be calibrated using the linear equation re-
lating ground truth to the algorithm output. The calibrated fruit count is shown in
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Fig. 7. The algorithm and ground truth match well for the first 10 sides and has a
poor match for three sides 8a, 7b and 6a in particular.

6 Discussion

The results showed that the algorithm performed well for the apple fruit segmen-
tation tasks. In this paper the multi-class segmentation achieved 71 % accuracy on
the apple class, and when re-trained to specialise in apple/non-apple classification
the accuracy improved to 93.3 %. This paper also showed that the apple count can
be estimated by using the pixel classification output. Although the algorithm un-
dercounted the apples due to factors such as occlusion and shading, the algorithm
output was consistent. The results showed high correlation between the algorithm
fruit count to the ground truth fruit count provided by the apple farmer.

There were several outliers and it is ongoing work to determine the root cause in
these cases, to make the algorithm more robust. The farmer also reported logistical
problems with the harvest weighing procedure, as it is not standard practice to mea-
sure the yield per row and we are working together to produce the most accurate
ground truth for the next season.

This work focused on fruit segmentation and counting in outdoor natural lighting
conditions. The same method used here could be applied to natural or controlled
lighting, as long as training data were supplied for the chosen condition. We expect
the performance of this method to be higher in controlled conditions than under
natural lighting, due to the increased stability of the appearance of the fruit, but this
remains to be verified experimentally.

One limitation of the algorithm is that it currently does not run in real time,
instead it runs at 30 seconds per frame. This is acceptable for yield estimation tasks
but will need further optimisation for future autonomous harvesting applications.
There are two potential solutions. The first is to down sample the image, the current
image resolution of 1232× 1616 pixels is more than enough to resolve large fruits
such as apples. The second is to process a smaller subset of frames with reduces
overlap, while still maintaining full coverage.

7 Conclusion

This paper presented an approach for multi-class image segmentation for an apple
fruit segmentation application. This algorithm has been successfully applied to al-
mond segmentation previously, and this paper proved that by providing new training
data, the algorithm can be generalised to apple segmentation without modification.
In addition, the experiments showed that by sampling the classification output with
the aid of the navigation data, the algorithm is able to provide reliable apple yield
estimation.

Compared to the existing work, the algorithm developed in this paper is able to
work in natural lighting conditions and is able to detect both red and green apples
using images from a monocular camera.
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Visual and Inertial Odometry for a Disaster
Recovery Humanoid

Michael George, Jean-Philippe Tardif, and Alonzo Kelly

Abstract. Disaster recovery robots must operate in unstructured environments
where wheeled or tracked motion may not be feasible or where it may be subject
to extreme slip. Many industrial disaster scenarios also preclude reliance on GNSS

or other external signals as robots are deployed indoors or underground. Two of the
candidates for precise positioning in these scenarios are visual odometry and inertial
navigation. This paper presents some practical experience in the design and analysis
of a combined visual and inertial odometry system for the Carnegie Mellon Univer-
sity Highly Intelligent Mobile Platform (CHIMP); a humanoid robot competing in
the DARPA Robotics Challenge.

1 Introduction

Odometry is a form of dead reckoning which infers position from measurements
of wheel or track rotation [20]. The canonical odometry techniques in 2D robotics
involve one or two wheel encoders, whose measurements, over a given interval are
passed through a simple kinematic model to produce an estimate of change in posi-
tion. The term has been extended to other techniques which make similar measure-
ments using different sensors, most notably visual odometry [15] which constructs
position estimates from streams of images.

Odometry systems are often used in combination with absolute positioning sen-
sors such as the GPS [21] or to seed SLAM algorithms [17]. In certain scenarios
odometry alone is sufficient. One such scenario is tele-operation where a human
is in the loop and performs the high level spatial reasoning and navigation while
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the odometry system works at a lower level to facilitate tasks like laser and image
stitching or control feedback.

Odometry is normally an open loop process. This is sufficient in simple applica-
tions or when an absolute positioning system is able to correct accumulated drift but
it breaks down in the presence of extreme wheel slip or terrain that is impassable
to wheeled vehicles. CHIMP contains both traditional and visual odometry systems
along with a high precision IMU and a GPS receiver. These subsystems are com-
bined into a single best estimate of the robot’s motion for use in planning, control
and perception under the control of a remote operator.

This paper describes the design and initial results for the combination of inertial
navigation and visual odometry on CHIMP.

2 CHIMP Robot

The Carnegie Mellon University Highly Intelligent Mobile Platform is the Tartan
Rescue (http://www.rec.ri.cmu.edu/projects/tartanrescue/)
team entry in the ongoing DARPA Robotics Challenge (DRC). CHIMP is a statically
stable humanoid robot that can also drive on two or four legs. The DRC event is
designed to test competing robots in typical disaster recovery tasks like clearing
rubble and closing valves and in ambitious locomotion strategies like climbing lad-
ders and driving utility vehicles. CHIMP has a visual odometry system that uses
a custom stereo camera pair composed of Pixim Inc. Seawolf cameras, a Honey-
well Inc. HG9900 navigation grade IMU, a Novatel Inc. OEM628 GPS receiver and a
mix of relative and absolute encoders on its joints and tracks. The visual odometry
subsystem runs on a desktop grade processor as part of CHIMP’s ROS based com-
puting platform while the inertial navigation and data fusion algorithms run on an
embedded processor in CHIMP’s torso. The two subsystems communicate via user
datagram protocol over CHIMP’s onboard network.

3 Positioning System Design for CHIMP

CHIMP’s positioning system is designed primarily for reliability and redundancy
during tele-operation and supervised autonomy. It prioritizes locally consistent posi-
tion information over global accuracy and it prioritizes decentralized and redundant
sources of this position information over centralized and optimal fusion.

Disaster recovery scenarios are characterized by challenging and unpredictable
environments where the robot may encounter collapsed buildings, mine shafts, un-
structured debris and radiation or biological hazards. Global position systems are
unreliable or completely unavailable indoors and underground, odometry is subject
to gross errors due to slip or debris and cameras may be obscured by dust, gases
or just a lack of ambient light. An inertial navigation system, in contrast, is self-
contained and unaffected by environmental conditions and provides a fall-back in
all conditions.

http://www.rec.ri.cmu.edu/projects/tartanrescue/
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(a) (b)

Fig. 1 A rendering of CHIMP in four limb driving mode (a). CHIMP’s tracks and joints are
fitted with encoders for odometry. Its torso contains a Honeywell Inc. HG9900 IMU. Close-up
of CHIMP’s head (b), containing Pixim Inc. Seawolf cameras in a stereo configuration for
visual odometry along with other perception sensors.

The work presented here fits into a category of visual inertial fusion characterized
by an aided inertial navigation Kalman filter as the central component [4] [14]. This
arrangement gracefully degrades if subsystems, which provide measurements to the
Kalman filter, go offline or fail. It can also be extremely computationally efficient,
as demonstrated in [4] where a design for a similar filter for spacecraft navigation
of small interplanetary bodies is presented. Our own implementation is deployed in
real-time on an embedded 400MHz processor. We add some additional modifications
to these works. CHIMP’s positioning system automatically detects periods of zero
motion (In translation and rotation, relative to Earth) and corrects positioning error
accordingly. The design also accounts for large delays (100+ ms) in the processing
of the visual odometry solution when it arrives at the Kalman filter.

There are alternative approaches to integrating inertial and visual sensors which
relax the Kalman filter assumptions and potentially extract better performance [12]
[13]. The trade-off is computational expense and less graceful degradation with
component failure.

Due to space constraints we concentrate on the inertial and visual components of
CHIMP’s positioning system and specifically their integration. The GPS and odome-
try components are simple extensions of this framework and some results including
odometry measurements are also presented.

4 Inertial Navigation on CHIMP

Inertial navigation is a mature field in its traditional areas of application: aircraft,
ships and military components. There are many excellent texts that develop the de-
tails [18] [21]. However, these references typically assume access to absolute Earth
referenced initial conditions: heading, latitude, height above the Earth’s reference
ellipsoid and a database of local gravity anomalies. For most field robots at least
some of these will be unknown or known only approximately. The more precise the
IMU the more important these initial conditions become.



504 M. George, J.-P. Tardif, and A. Kelly

An approximate summary of IMU categories is given in Table 1. Most robotics
applications that require an IMU use a tactical grade unit with cost and size being
the major factors. Tactical grade IMUs are capable of tracking orientation for ex-
tended periods but cannot be used to track position for more than a few seconds in
unaided operation. Commercial grade sensors may be found in small robots where
size and cost must be strictly minimized such as micro air vehicles [5]. With clever
calibration they may also be capable of tracking orientation in some applications.

Table 1 Approximate IMU categories

IMU grade Size Error Characteristics Cost

Navigation 1600cm3 < 1600 meters per hour in position.
< 1/3000 degrees per hour in orientation.

$70,000+

Tactical 100cm3 < 107 meters per hour in position.
< 50 degrees per hour in orientation.

$2,000+

Commercial 1cm3 ∼ 109 meters per hour in position.
< 3600 degrees per hour in orientation.

$15+

A Monte Carlo simulation of a typical scenario for CHIMP was performed be-
fore selecting the IMU. Position and orientation errors for three devices that were
considered in a trade study are shown in Figure 2.
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(b) Orientation errors

Fig. 2 Standard deviation of position and orientation errors for 5 minutes in simulated DRC

scenario using an unaided IMU. Results generated from Monte Carlo analysis based on sim-
ulated IMU and robot trajectories.

The navigation grade Honeywell HG9900 [1] was selected for its accuracy in the
worst case scenario that all other aiding systems fail. The resulting requirement for
absolute initial conditions is satisfied in two ways: the IMU can be used to gyro-
compass for initial heading and the remote operator must enter a configuration con-
taining approximate latitude and altitude of operation. This information is available
from public sources like Google Earth and US government agencies [2].
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4.1 Inertial Navigation Equations

The fundamental equations of inertial navigation are repeated here to introduce the
notation used in following sections [21]. They consist of an orientation differential
equation, integrated once, and a velocity differential equation, integrated twice.

Ċ
n
b = Cn

b[ω
b
ib×]− [ωn

in×]Cn
b (1)

v̇n = Cn
bfb − (ωn

en + 2ωn
ie)× vn + gn

p, (2)

where the following definitions are used

xz Vector x expressed in frame z
Cz

y Rotation matrix mapping frame y to frame z such that xz = Cz
yxy

[x×] Cross product matrix version of x such that [x×]y = x× y
ωz

xy Angular rate vector of frame y relative to frame x expressed in frame z
gn

p Plumb-bob gravity, i.e. gravitation plus centripetal effects
v IMU velocity vector
f Non-gravitational acceleration a.k.a. specific force.
i Inertial frame of reference
b Body frame of reference, assumed to coincident with the IMU frame
n Navigation frame of reference, a design choice with subtle implications
ωb

ib Angular rate vector of IMU measured by gyroscopes
ωn

ie Angular rate vector of Earth
ωn

en Angular rate vector of navigation frame relative to Earth, in this work zero

5 Visual Odometry

CHIMP’s visual odometry system is largely inspired by the work of Nister et al. [15].
It produces a solution based on incremental structure from motion with key frame
selection and sparse local bundle adjustment [8]. It makes use of a stereo pair to
eliminate scale ambiguity in the resulting solution.

Like most visual odometry systems, it solves consecutive relative pose problems
from image correspondences and scene structure estimates. Details of an earlier im-
plementation with many similarities can be found in [19] and the references therein.

The algorithm produces relative pose solutions at frame rate. Key frames are se-
lected when motion between consecutive frames is sufficiently large. New scene
points are added, old scene points are re-triangulated and bundle adjustment is ap-
plied only on key frames. On other frames, only tracking and pose estimation based
on the reconstructed scene is performed. Generally speaking, using key frames
results in drift being proportional to distance rather than time. In addition, key
frames eliminate trajectory drift when the robot is standing still but oscillating which
happens frequently while CHIMP is performing manipulation tasks.

Stereo tracking relies on Harris corners computed with sub-pixel accuracy
and matched using normalized cross-correlation. We develop an algorithm that
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combines both temporal and stereo information by doing tracking and stereo match-
ing together.

Pose estimation given a set of reconstructed points and corresponding image
locations is generally referred to as the PnP problem [10]. Robust estimation is
achieved using random sampling (RANSAC) with solution candidates computed with
subsets of 3 correspondences. This is the so-called P3P problem and well established
solutions exist [16]. Given our high frame rate and relatively small angular velocity,
we implement a simpler and faster solution that assumes small orientation changes.
For simplicity, assume a coordinate system centered on the left camera. We first
transform the reconstructed points in the coordinate frame of left camera, c at frame
k− 1. At frame k, we then consider a projection function for the left camera of the
form:

x(k) ∝ PX(k− 1)

∝ Cc(k)
c(k−1)

(
I3 −pc(k−1)

c(k)

)
X(k− 1)

where P is a 3×4 projection matrix, Cc(k)
c(k−1) is a rotation matrix of small angles

Cc(k)
c(k−1) ≈

⎛
⎝ 1 u v
−u 1 w
−v −w 1

⎞
⎠ ,

pc(k−1)
c(k) is a 3×1 translation vector representing the camera position at time k in

the camera frame at time k− 1, x(k) is the correspondence in image coordinates,
X(k− 1) is the 3D location of the correspondence and ∝ is equality up to scale.

Assuming measurements uncorrupted by noise and a perfect rotation approxima-
tion, three linear constraints over the unknowns can be obtained. These are given
by

[x(k)×]PX(k− 1) = 0.

Only two out of the three constraints are linearly independent, so a minimum
of three correspondences are required to obtain a solution. Similar constraints can
be derived for the right camera. Since measurements are corrupted by noise, we
estimate the unknowns by minimizing the constraints under least-squares. In the-
ory, only two stereo correspondences are necessary to obtain a solution. However,
we have found that using three provides more reliable results. Once a solution is

found, Cc(k)
c(k−1) is converted to a orthogonal matrix by using u,v,w as Euler angles.

Finally, the solution provided by random sampling is improved using robust iterative
refinement.

The number of features being tracked is automatically adjusted so it is maximized
while ensuring real-time performance. In practice, the system can comfortably track
300 stereo features at 30 Hz on full resolution 720×487 stereo images. The most
computationally intensive steps are the corner detection at 6ms for a stereo pair and
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bundle adjustment at 5ms. Pose estimation, stereo and tracking each take under 2ms.
As a result, key frames are processed in under 20ms and non-key frames in under
15ms.

Integration with the rest of the pose system can be accomplished in multiple
ways. At each frame k, the following potential measurements are available to the
Kalman filter.

1- Relative position and orientation increments, i.e. the immediate outputs of the
visual odometry

pc(k−1)
c(k) (3)

Cc(k−1)
c(k) =

(
Cc(k)

c(k−1)

)ᵀ
(4)

2- Global pose. Given initial conditions pn
c(0) and Cn

c(0) from the inertial naviga-
tion system, global pose at increment k can be calculated via

pn
c(k) = pn

c(0) +
k

∑
i=1

Cn
c(i−1)p

c(i−1)
c(i) (5)

Cn
c(k) = Cn

c(0)

k

∏
i=1

Cc(i−1)
c(i) (6)

3- Velocity. Given our high frame rate (30 Hz) the translation component can be
numerically differentiated to produce a velocity signal

vc(k− 1
2 ) =

pc(k−1)
c(k)

t(k)− t(k− 1)
(7)

where the k− 1
2 notation indicates the velocity is valid at the mid-point of the frame

interval.
Using pose increments allows a decoupled integration between the Kalman fil-

ter and the visual odometry [19]. However, because the global pose of the visual
odometry is not considered, the filtered solution can drift even when the robot is
standing still. For that reason, the visual odometry estimates whether the robot is
under motion or not and provides that information to the filter. A couple of crite-
ria are used. First, it is verified that tracked features move by less than one pixel
over the last second. Then the average relative position of the camera within the last
second is compared to a small threshold which is determined empirically. This is
combined with a similar determination from the IMU and a pseudo-measurement of
zero velocity is applied to the Kalman filter.

6 Kalman Filter for Visual and Inertial Odometry

Visual and inertial estimates are blended in a modified extended Kalman filter.
The Kalman filter has several advantages in this approach, it’s a well understood
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algorithm with a large body of literature, in particular as it relates to aided inertial
navigation. The filter uses the common indirect inertial navigation state model [21]
which keeps subsystems decoupled and allows the inertial navigation and visual
odometry to continue operating normally in the event of filter failure. In addition
it can be embedded on low power and hardened processors for demanding
environments.

The standard Kalman filter equations are suitable for incorporating an absolute
visual odometry pose or a velocity measurement (Equations 5-6 and Equation 7).
They are not suitable for incorporating the fundamental visual odometry outputs
(Equations 3-4), the relative state measurements. A modified version able to incor-
porate this type of measurement can be found in [6]. The modified Kalman update
equations take the following form

zk = h(xk,xk−1)

Hk =
∂h(xk,xk−1)

∂xk

Jk =
∂h(xk,xk−1)

∂xk−1

Lk = HkPkHᵀ
k +Rk + JkPk−1ΦΦΦᵀ

k−1Hk +HkΦΦΦk−1Pk−1Jᵀk + JkPk−1Jᵀk
Kk = (PkHᵀ

k +ΦΦΦk−1Pk−1Jᵀk )L
−1
k

P+
k = Pk −KkLkKᵀ

k

x+k = xk +Kk(zk −h(xk,xk−1))

where the following definitions apply

z Measurement vector
h Measurement function mapping states to measurements
H Measurement matrix, jacobian of h w.r.t xk

J Measurement matrix, jacobian of h w.r.t xk−1
P State covariance matrix
ΦΦΦ State transition matrix mapping state evolution over time
K Kalman gain matrix
xk State mean at time k

These equations are functions of variables at time k and k− 1, as indicated by the
subscripts. For clarity this notation is slightly different from other sections where
time indices are indicated in parentheses. The k−1 parameters are stored in a mem-
ory buffer or retrodicted explicitly using the current x and P variables with saved
versions of ΦΦΦk−1 and the noise inputs [3].

7 Delayed Measurements

Visual odometry is performed in its own computing cores separate from the embed-
ded Kalman filter. While the computation is achieved in real-time (20ms) additional
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communications delays and image capture through embedded hardware introduce
a non-trivial time synchronization problem. Total delays of up to 100ms can occur
between capturing an image and that data being available to the Kalman filter. In
this case the previous relative state update relations can be modified for the absolute
or velocity forms of the visual odometry (Equations 5-6 and Equation 7) by setting
the current measurement jacobian to zero, giving

Hk = 0

zk = h(xk−1)

Lk = Rk + JkPk−1Jᵀk
Kk = (ΦΦΦk−1Pk−1Jᵀk )L

−1
k

P+
k = Pk −KkLkKᵀ

k

x+k = xk +Kk(zk −h(xk−1))

These now represent the equations necessary to apply a delayed measurement that
was valid at time k− 1 but arrived at the filter at time k. It should be noted that the
interval between k’s is not required to be constant.

8 Calibration

It is necessary to calibrate the relative position (pb
b→c) and orientation (Cb

c) of the
visual odometry cameras and IMU on CHIMP. Assuming a rigid link the following
relation holds, where k and j are time indices with k > j and b represents the IMU

frame while c is the camera frame

Cb( j)
b(k) = Cb

cCc( j)
c(k)C

bᵀ
c

This can be converted to a quaternion form and solved for the relative rotation matrix
between camera and IMU Cb

c . Details can be found in [7].
For the translation, most methods involve a calibration Kalman filter [11]. These

methods are necessarily complex because they are designed for low-cost IMUs
where position estimates drift rapidly. For a navigation grade IMU a more direct
method is possible. The following relation maps the relative pose increments gen-
erated by the visual odometry system with similar increments calculated from the
unaided inertial navigation system

pc(k−1)
c(k) = Cc

bCb(k−1)
n (pn

b(k) +Cn
b(k)p

b
b→c −pn

b(k−1)−Cn
b(k−1)p

b
b→c)

Re-arranging for pb
b→c, the fixed position offset between IMU and camera

Cc
b(C

b( j)
b(k)− I)pb

b→c = pc( j)
c(k) +Cc

bCb( j)
n (pn

b( j)−pn
b(k))

which stacked over many j, k intervals has the form
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Apb
b→c = b

A least squares solution is given by pb
b→c = (AᵀA)−1Aᵀb. This can be transformed

into a weighted least squares with the standard inertial error model from the Kalman
filter prediction steps used to generate covariances as the IMU solution drifts. Given
these covariances, P, the weighted least squares solution then becomes

pb
b→c = (AᵀP−1A)−1AᵀP−1b

9 Results

The preceding algorithms were tested on CHIMP in three stages of construction:
camera and IMU sensors on a test cart, CHIMP’s completed torso on a mobile frame,
Figure 3(a) and the finished robot under its own motion, Figure 3. Since CHIMP

is designed to operate without access to global positioning, obtaining ground truth
is challenging. These results were generated using a combination of the following
three techniques

1 In small volumes, CHIMP’s positioning system can be compared to motion
capture from a Natural Point Inc. Optitrack system.

2 Over longer trajectories a laser line striper is attached to CHIMP to align pre-
cisely with known locations on the ground. CHIMP is returned to these loca-
tions, typically at the start and end of a test and and error can be read directly
as the difference between calculated and true position.

3 Virtual objects are placed in identifiable locations in a 3D reconstruction gen-
erated with CHIMP’s laser scanners and positioning data. Accumulated error
in the positioning data shifts the 3D voxels from the virtual objects. The shift
due to positioning error is measurable in an operator control GUI.

CHIMP is tested in scenarios reflecting the DRC tasks, broadly divided into mobil-
ity, driving over smooth and rough terrain and manipulation, arm motion and small
movements but no overall locomotion. Figures 4 and 5 demonstrate CHIMP a sim-
ple mobility scenario where the torso-only test rig was moved through a variety of
motions (sweeping arcs, point turns, straight lines etc.). Total accumulated error on
returning to the known initial location is 0.72m or 0.6% of distrance traveled for the
filtered result using visual odometry velocity measurements (Equation 7).

Figure 6 demonstrates live results from CHIMP in a simulated manipulation sce-
nario where the robot is in a typical manipulation posture (Similar to Figure 3) and
is interacting with objects in close proximity. This represents a challenging sce-
nario where the visual odometry system is throttling its CPU usage (By dropping
corner features) to accomodate planning, control and perceptions priorities and is
viewing a scene at close proximity with self occlusion by moving arms. The left
panel of Figure 6 compares three trajectories, visual odometry only, the combined
IMU and visual odometry solution and a motion capture ground truth reference. The
bottom panels plot horizontal errors (North and East) for the combined solution.
The right hand panel illustrates the further addition of velocity data from CHIMPs
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(a) (b)

Fig. 3 A partially constructed CHIMP on a test-rig (a). The sensor head containing visual
odometry sensors and a single arm are shown. The IMU is located in a temporary enclosure
at the base of a mobile frame (not shown). Fully constructed CHIMP (b). The visual odometry
sensors are unchanged. The IMU is located in CHIMP’s torso (not visible). For the results in
this section CHIMP is remotely operated by a human.
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joints and tracks which serves to compensate most of the residual error in this sce-
nario.

Figure 7 shows a typical colorized 3D point cloud generated from the positioning,
laser and camera sensors. This point cloud is generated open loop with no scan
matching or other improvements. For a tele-operated control scenario only the last
10 seconds of the 3D reconstruction are presented to the operator for clarity.
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Fig. 7 3D point cloud generated by colorizing laser scans using image data and accumulating
points in North, East, Down world frame. No corrections are applied using point cloud data
itself, it is stitched open loop using the positioning system described in this paper. The view
point is from an elevated mezzanine floor looking down on CHIMPs test bay. Test fixtures like
framed doors and an cinder block obstacle course are visible along with red safety barriers
running diagonally through the image separating the robot’s area behind the barriers from
engineers and their desks and computers in front.

10 Ongoing Work

CHIMP is scheduled to compete in the first year of the DRC in late 2013. Further
refinement of the current system is expected to continue beyond that based on feed-
back from this event. An improved 3D mapping capability based on the laser scan
matching and a pose graph optimization framework is anticipated.

Acknowledgements. Michel Laverne and Dane Bennington designed and built much of the
positioning hardware. Clark Haynes implemented the track and joint odometry subsystem
and many others contributed to CHIMPs development.
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Precise Velocity Estimation for Dog
Using Its Gait

Naoki Sakaguchi, Kazunori Ohno, Eijiro Takeuchi, and Satoshi Tadokoro

Abstract. We aimed to record and visualize the investigation activities of search
and rescue dogs. The dog’s trajectory is required to create this visualization, and
the dog’s velocity needs to be determined to estimate its trajectory. In this study,
we examined a method for velocity estimation that uses a dog’s gait. We measured
a Labrador dog’s gaits (walk and trot) and analyzed the gait data. From the gait
data, we found that there are cyclic moments when the dog’s velocity vector faces
its heading direction. This fact enables the reconstruction of the velocity vector
v = (vx,vy,vz)

T from the dog’s speed |v| and pose. We devised a precise estimation
method for a dog’s velocity and evaluated its accuracy. From the evaluation results,
we confirmed that the gait-based velocity estimation was more accurate than veloc-
ity estimation based on the extended Kalman filter when |v| was obtained at 1, 5,
and 10 Hz. This result can pave the way for using a mobile phone to estimate a dog’s
trajectory.

1 Introduction

We have researched methods for recording and visualizing the investigation activities
of search and rescue (SAR) dogs. SAR dogs can investigate and find victims in forests
and at disaster sites using their keen sense of smell. SAR dogs are trained to continue
barking when they find victims. A human handler then determines whether a victim
is located in the place where the dog is barking, by calling out and looking around for
victims. The handler then informs other rescue workers about the place and situation
in which the victims are, by using a radio or handwritten memorandum.

However, verbal communication or a handwritten memorandum has limitations
in relation to sharing accurate information about a victim and the investigation activ-
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ities. Therefore, we conducted research on methods for recording the investigation
activities of SAR dogs.

Figure 1 shows the equipment we developed for recording an SAR dog’s inves-
tigation activities. The device can record what the dog is looking at, along with its
trajectory. Using wireless tablet devices, handlers can share the images and trajec-
tory online. Other researchers have used similar approaches [1, 2, 3]. These studies
showed that the use of a camera and GPS is an efficient way to record an SAR dog’s
investigation activities. In our case, the GPS position data are insufficient as trajec-
tory data. A more continuous and accurate trajectory is needed for sharing accurate
information. Therefore, we recorded the investigation activities using a camera, a
GPS, and an internal measurement unit (IMU).

The trajectory was estimated by integrating the sensor data from the IMU. Its
cumulative error was canceled using the velocity v and position data x. The velocity
vector of a dog, v, consists of three components (vx,vy,vz). It is difficult to directly
measure the velocity v for an SAR dog because of the size and weight of the required
sensor device. Therefore, we measured the scalar of the velocity vector, |v|, by using
a GPS or an optical sensor. We wanted to determine a velocity collection method
by using |v|. In this paper, we propose a velocity collection method that analyzes
a dog’s motion. We found that there were cyclic moments when the dog’s velocity
vector faced its heading direction. In these moments, the velocity vector could be
recovered from its scalar speed |v| and the dog’s pose.

In this study, we analyzed a dog’s motion data and developed a velocity collection
method. We explain the related works in Sec. 2. The dog’s motion was recorded
using motion capture. In Sec. 3, we show how the motion was analyzed to find a
new rule for velocity estimation. We propose a velocity collection method in Sec. 4,
and evaluate its efficiency in Sec. 5. In Sec. 6, we discuss the results.

(a) Prototype Device (b) Current Recording Device

Fig. 1 Recording Equipment of Dog’s Investigation Activities
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2 Related Works

Several studies have recorded the images that an animal is looking at, along with its
trajectory [1, 2, 3, 4]. In the CAT project, the investigation activity of an SAR dog
was recorded using a camera and GPS mounted on it [1, 2, 3]. In another study, a
camera and GPS receiver were attached onto a cat and cat’s-eye-view images and its
motion were recorded [4]. We had the goal of recording the investigation activities
of SAR dogs by using a camera, a GPS receiver, and an IMU sensor. We developed
the recording devices by referring to these studies. Our goal was to obtain more
accurate data for an SAR dog’s velocity and trajectory than could be obtained from
GPS data alone. Thus, we developed the velocity estimation method reported in this
paper.

Several studies have proposed methods for human position estimation that use
an IMU and/or GPS. Bebek et al. proposed a method for human position estimation
that uses an IMU sensor and a pressure sensor [5]. They equipped the inner sole
of a shoe with these sensors to measure the zero velocity point (ZVP). Using ZVP
makes it possible to cancel the cumulative error caused by the double integration
of the acceleration. ZVP is useful for canceling the cumulative error. Therefore, we
considered applying ZVP to SAR dogs’ position estimation. An IMU sensor and
a pressure sensor could be attached to a dog’s paw by using shoes. However, this
was not convenient for SAR dogs, because they disliked having something on their
paws. In addition, the handlers worried that the shoes would come off or get stuck
when the SAR dog moved on rubble. Thus, we needed to consider another method.

Many methods have been proposed to measure the velocity of mobile robots.
Odometry is the most popular method, which calculates the velocity from the
number of rotations of a wheel. Visual odometry can be used to calculate the
velocity from the optical flow between different stereo camera images [6]. Scan
matching calculates the velocity by matching several data scans measured using
three-dimensional light detection and ranging [7]. We considered measuring the ve-
locity v = (vx,vy,vz)

T using optical flow or scan matching. However, it was too dif-
ficult to apply these methods to SAR dogs because these devices are not lightweight
and not small enough to be carried by an SAR dog. In addition, the dog’s motion
would cause blurring and distortion of the image and the scan data.

DGPS (Differential GPS) and RTK-GPS (Real Time Kinematic GPS) could be
used to directly and accurately to measure the position of a dog. However, these
GPS devices are too large and heavy to attach to an SAR dog. Therefore, we needed
to develop another method.

Our goal then was to develop a method for estimating a dog’s velocity using the
features of its gait. We analyzed a dog’s gaits and found their characteristics. Using
these characteristics, we estimated the dog’s velocity from its speed and pose.
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3 Analysis of Dog’s Gait and Its Velocity

3.1 Hypothesis about the Dog’s Velocity

We analyzed a dog’s gait and its velocity to establish a new principle for estimating
this velocity. Several studies have analyzed the relationship between a dog’s gait
and its velocity. Maes described the relationship between a dog’s body size and its
velocity (speed) at each gait [8]. The average velocity can be estimated when the
dog’s gait and body size are obtained. That study suggested that the gait affects the
velocity. However, these data are insufficient for estimating a dog’s velocity vector
at a certain moment. Therefore, we needed to analyze the relationship between a
dog’s gait and its velocity.

It is difficult to directly measure the velocity vector v = (vx,vy,vz)
T (see Sec. 2).

Its scalar value |v| can be measured by using Doppler-effect-based speed sensors
or optical flow sensors. A dog’s pose can be measured using an IMU sensor. We
wanted to find a method to calculate the velocity v from |v| and the dog’s pose.

One assumption that we considered was that during each gait, there is a certain
moment when the dog’s velocity direction is equal to its heading direction. Actually,
when a dog moves ahead, its heading direction faces the moving direction.

To evaluate the above assumption, we defined the dog’s velocities as shown in
Figure 2. Here, ΣG is the world coordinate, whose x-y plane is parallel to the ground
and whose z-axis is perpendicular to the x-y plane. x = (x,y,z,θroll ,θpitch,θyaw)

T is
the dog’s position and pose on ΣG. v is the dog’s velocity on ΣG. ΣD is the dog’s
coordinate, where the origin is equal to the center of the dog’s shoulder; the x axis
is equal to the heading direction; the y axis is equal to the shoulder; and the z axis
is perpendicular to the x-y plane. n is a unit vector of the x axis on ΣD. vD is the
dog’s velocity on ΣD. R and t are rotation and translation matrices that are used to
convert from ΣG to ΣD. θ is the angle between v and n. If θ is equal to 0, we can
calculate v from |vD| and R. Therefore, we analyze the relationship between dog’s
gait and its velocity by looking at changes in θ .
ΣD’s coordinate center and the heading direction are calculated from the positions

of motion capture marker. Concrete definition of ΣD is described at Sec. 3.2.

x
y

z

v
θ

yz

x

GΣ

DΣ

Rt

Fig. 2 Definition of Coordinate Systems (ΣG, ΣD) and Dog’s Velocity on Each Coordinate
System (v, vD)
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3.2 Dog’s Gait Measurement Using Motion Capture System

A Labrador was used for the measurement because it is a breed commonly adopted
for SAR purposes. The dog’s gaits (walk and trot) were measured using a motion
capture system (eight cameras). Figure 3 shows the experimental setup for the gait
measurement, along with the dog’s trajectories while walking and trotting. Two
cones were placed on the ground at a distance of 4 m. While walking, the dog
walked three times around these cones. During trotting, the dog ran three times be-
tween these cones. The solid line shows the outward trip, and the dotted line shows
the return trip. The outward trip data are almost the same as the return trip data. We
explain our observations by using the outward trip data.

Figure 4 shows the layout of the motion capture markers. The numbers in Figure
4 show the IDs of the markers. A total of 14 markers were used. IDs 10, 11, 12, 13,
and 14 were located on the other side of the dog’s body. The center of ΣD is located
at ID 2. The x axis of ΣD is parallel to the vector from ID 3 to ID 2. The y axis of
ΣD is parallel to the vector from ID 5 to ID 10 (which is located at the shoulder on
the other side). vD is the velocity of ID 2 on ΣD.

Figure 5 shows each component of vD during walk and trot. The walk data and
trot data are analyzed in Sec. 3.3 and Sec. 3.4, respectively.

Fig. 3 Experimental Setup for Gait Measurement

4

5

6
7

8
9

13 2

Fig. 4 Positions of Motion Capture Markers



520 N. Sakaguchi et al.

37 37.5 38 38.5 39 39.5 40
-0.5

0

0.5

1

time[s]

ve
lo

ci
ty

[m
/s

]

 

 
vx

D

vy
D

vz
D

(a) During Walk Gait

21 21.5 22 22.5 23-1

0

1

2

time[s]

ve
lo

ci
ty

[m
/s

]

 

 
vx

D

vy
D

vz
D

(b) During Trot Gait

Fig. 5 Graph of Dog’s Velocity Components (vD
x ,v

D
y ,v

D
z )

3.3 Analysis of Walk Gait

Figure 5(a) shows the components of vD at walk. The graph shows that there are
cyclic moments where vD

y and vD
z are almost equal to 0 m/s. At these moments,

the dog’s velocity vD almost faces the x axis of ΣD. Then, we analyzed the angle
between v and vD using θ . Figure 6 shows the graph of θ . This graph shows that
there are cyclic moments where θ is almost equal to 0◦. Although there were offsets,
θ was close to 0◦ at these moments (the average offset was 6.2◦ (standard deviation
σθ = 2.2◦)).

We considered reasons why the offset occurred in the same direction. One pos-
sible reason is the SAR dog’s vest. The markers were placed on a hard vest. The
angle offset might have occurred during the gait because this hard vest affected the
markers.

On the basis of these facts, we consider that the dog’s velocity v can be recon-
structed from the dog’s speed |v| or |vD| and the dog’s pose at the above moments,
when the dog is walking. This fact is important for online velocity estimation be-
cause heavy and large sensor devices are not required for the estimation.
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We desired to detect the moments when θ was nearly equal to 0◦ (vD
y and vD

z were
nearly equal to 0 m/s). We observed the relationships between the dog’s four paws
and θ . The velocities of the dog’s four paws were used for the observation. Figure 7
shows graphs of these velocities and θ . During the walk, θ becomes approximately
0◦ at several moments (t = 37.6, 38.0, 38.4, and 38.8 s in Figure 7). From Figure
7, we confirmed that the dog’s rear paws were just leaving the ground at these mo-
ments. The graph is slightly difficult to observe. Therefore, Figure 8 shows graphs
of the velocities of the dog’s rear paws and θ . When θ becomes approximately 0◦,
the velocities of the dog’s rear paws are increasing rapidly.

We evaluated the accuracy of the detection on the basis of the motion of the dog’s
rear paws. In this evaluation, those moments ware detected st which the dog’s rear
paws left the ground, from motion capture data. The average error was 11.7◦, and
its standard deviation was 6.82◦. Although the error was not very small, this result
suggests that we can detect the moments when θ becomes 0◦ by using the motion
of the dog’s rear paws.
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3.4 Analysis of Trot Gait

Figure 5(b) shows a graph of each component of vD. The evaluation results for the
trot gait are similar to those for the walk gait. vD

y and vD
z periodically become 0 m/s

at the same time. Figure 9 shows a graph of θ . This graph shows that there are cyclic
moments where θ is almost equal to 0◦, just as with the walk gait. The offsets of
these moments were 5.1◦ ( σθ = 2.1◦). The average error for the trot gait is smaller
than that for the walk gait. This is beacause the variation in vD

y was small during the
trot gait.

We wanted to detect the moments when θ was nearly equal to 0◦(vD
y and vD

z
were both nearly equal to 0 m/s) for the trot gait. Figure 10 shows the relationships
between the velocity of the dog’s four paws and θ . During the trot gait, θ becomes
approximately 0◦ (t = 21.5, 21.8, 22, and 22.3 s in Figure 10) at the moments when
the dog’s rear paws just leave the ground. Figure 11 shows graphs of the velocities
of the dog’s rear paws and θ . When θ becomes approximately 0◦, the velocities of
the dog’s rear paws are approximately 0 m/s.

We evaluated the accuracy of the detection on the basis of the motion of the dog’s
rear paws for the trot gait. In this evaluation, those moments were detected at which
the dog’s rear paws left the ground from motion capture data. The average error was
9.2◦, and its stadard deviation was 4.6◦. These results suggest that we can detect the
moments when θ is close to 0◦ by using the motion of the dog’s rear paws.

3.5 Consideration

We analyzed the motion capture data measured with a Labrador and found that there
were cyclic moments when vD

y and vD
z became 0 m/s simultaneously for the walk and

trot gaits. At these moments, the dog’s velocity vector faced its heading direction.
Therefore, the dog’s velocity vector could be reconstructed from the dog’s speed |v|
and the pose at these moments.
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Fig. 9 Graph of Angle θ during its Trot Gait
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Fig. 10 Graph of Dog’s Paw Velocities and Angle θ during Trot

Fig. 11 Graph of Dog’s Rear Paw Velocities and Angle θ during Trot

The walk and trot gait data show that at these moments, the dog’s rear paws just
leave the ground. When the dog’s rear paws kick the ground, the dog’s acceleration
becomes reaches its maximum. Accelerating in the moving direction can lead to an
efficient walk. Therefore, θ becomes close to 0◦. This suggests that these moments
can be detected by using the motion of the dog’s rear paws.

For application of the velocity estimation method in engineering, it was necessary
to evaluate its accuracy. In Sec. 4 and Sec. 5, we describe the gait-based velocity
estimation method and an evaluation of its accuracy, respectively.

4 Gait-Based Velocity Estimation

We found that there were cyclic moments when the dog’s velocity vector faced its
heading direction. The dog’s velocity consists of three components, vD =
(vD

x ,v
D
y ,v

D
z )

T. However, at these moments, the dog’s velocity is equal to (|vD|,0,0)T.
Therefore, the dog’s velocity vector v can be reconstructed from the dog’s speed
|vD| and its pose R (v = R−1(|vD|,0,0)T). We use this calculated velocity vector v
to modify the cumulative errors.
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We propose a velocity estimation method based on the extended Kalman filter
(EKF). The velocity and its error are estimated from IMU sensor data using the
following equations:

vt = vt−1 +R−1
t−1at dt

Σvt = Σv t−1 + JaΣaJT
a +ΣN

(1)

The cumulative error of the velocity estimation is modified at these cyclic mo-
ments using the following equations:

vt = vt +Kvt(zv t − vt)

Σv t = (I−Kvt)Σvt

Kvt = Σvt(Σvt +Qv)
−1

zv(t) = R−1
t−1

[ vmeasure
0
0

] (2)

Here, vt is the dog’s velocity on ΣG. Σvt is the covariance matrix, and at is the
dog’s acceleration. Rt is the rotation matrix that is used to convert ΣG to ΣD. Ja is a
Jacobian of vt about a.Σa, Qv, andΣN are the covariance matrices of the acceleration,
observed velocity, and system noise, respectively. vmeasure is the measured speed |vD|.

The cycle of the velocity modification depends on the dog’s gait. We detect the
cyclic moments (θ = 0◦) on the basis of the motion of the dog’s rear paw smotion
in each gait. During the walk gait, the modification cycle is approximately 3 Hz,
whereas in the trot gait, the cycle is approximately 4 Hz.

5 Evaluation of Velocity Estimation Method Based on Dog’s
Gait

5.1 Evaluation Method

We evaluated the accuracy of our proposed estimation method for a dog’s velocity.
In this evaluation, we used the IMU data and motion capture data during walk, which
were described in Sec. 3.2. The acceleration a and pose R were obtained from the
IMU sensor attached to the dog. The speed |v| was obtained from the motion capture
data. We detected the moments when the dog’s rear paws left the ground using the
motion capture data.

We compared the accuracy of the gait-based velocity estimation with that of non-
gait-based velocity estimation. In the gait-based velocity estimation, the velocity v
is modified using Eq. (2) at the moments when the dog’s rear paws leave the ground.
In the non-gait-based velocity estimation, the velocity v is modified using Eq. (2)
at the moments when the sensor data are obtained. In the latter case, the velocity
direction does not face the dog’s heading direction.
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We consider that the accuracy changes depending on the frequency of sen-
sor data acquisition. Therefore, we evaluated the proposed method using different
frequencies for sensor data acquisition (1 Hz, 5 Hz, and 10 Hz). These frequencies
were selected on the basis of the frequencies of commercial GPS sensors. In the
gait-based velocity estimation, the speed was interpolated linearly.

5.2 Evaluation of Velocity Estimation During Dog’S Walk

Figure 12 shows the estimation results when using the dog’s gait, along with the
raw speed data. Figure 13 shows the estimation result without any modification.
The cumulative error in Figure 12 is smaller than that in Figure 13. We confirmed
that the cumulative error caused by the integration of the acceleration was canceled
by using the speed data.

Figure 14 shows the error of the velocity estimation at each frequency. The error
of the gait-based estimation is smaller than that of the non-gait-based estimation at
each frequency. When the frequency was 10 Hz, the average errors in vD

y and vD
z

were 0.11 m/s and 0.06 m/s for the gait-based estimation, and 0.14 m/s and 0.09 m/s
for the non-gait-based estimation, respectively.

When the frequency was 1 Hz, the average estimation error decreased for the gait-
based method in comparison to that for the non-gait-based method. vD

x decreased by
0.04 m/s; vD

y decreased by 0.22 m/s; and vD
z decreased by 0.03 m/s. At the low

frequency, the proposed method performed accurate velocity estimation.

5.3 Evaluation of Velocity Estimation at Dog’s Trot

Figure 15 shows the estimation results when using the dog’s gait, along with the raw
speed data. Figure 16 shows the error of the velocity estimation at each frequency. In
the case of the trot data, accurate velocity (vD

x , vD
y , vD

z ) could be estimated by using
the proposed method. In particular, the error of vD

y and vD
z became small when using

the proposed method (Figures 16(b) and (c)). The errors in vD
x at 5Hz and 10Hz were

almost the same for the gait-based approach and non-gait-based approach.
When the frequency was 10 Hz, the average errors in vD

y and vD
z were 0.12 m/s

and 0.24 m/s for the gait-based estimation, and 0.13 m/s and 0.37 m/s for the non-
gait-based estimation, respectively.

When the frequency was 1 Hz, the average estimation error decreased for the gait-
based method in comparison to that for the non-gait-based method, as was observed
in the case of walk gait. vD

x decreased by 0.15 m/s; vD
y decreased by 0.09 m/s; and

vD
z decreased by 0.16 m/s.



526 N. Sakaguchi et al.

0 5 10 15 20 25 30 35 40
0
1
2

V
d x[m

/s
]

 

 Reference Value
Estimated Value

0 5 10 15 20 25 30 35 40-1
-0.5

0
0.5

V
d y[m

/s
]

0 5 10 15 20 25 30 35 40
-0.5

0
0.5

time[s]
V

d z[m
/s

]

(a) Not Using Gait

0 5 10 15 20 25 30 35 40
0
1
2

V
d x[m

/s
]

 

 Reference Value
Estimated Value

0 5 10 15 20 25 30 35 40
-1

0

1

V
d y[m

/s
]

0 5 10 15 20 25 30 35 40
-0.5

0
0.5

time[s]

V
d z[m

/s
]

(b) Using Gait

Fig. 12 Graph of Dog’s Velocity Estimation using 10 Hz Speed Data in Walk Gait: (a) Ve-
locity Modified using 10 Hz Speed Data. (b) Velocity Modified Based on Gait.

0 5 10 15 20 25 30 35 40
0
1
2
3

V
d x[m

/s
]

 

 Reference Value
Estimated Value

0 5 10 15 20 25 30 35 40
-20
-10

0

V
d y[m

/s
]

0 5 10 15 20 25 30 35 40-6
-4
-2
0

time[s]

V
d z[m

/s
]

Fig. 13 Graph of Velocity Estimation without Any Modification in Walk
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Fig. 14 Error of Velocity Estimation: Gait-based Velocity Estimation vs. Non-gait-based
Velocity Estimation during Walk Gait
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(a) Not Using Gait

(b) Using Gait

Fig. 15 Graph of Dog’s Velocity Estimation using 10 Hz Speed Data in Trot Gait: (a) Velocity
Modified using 10 Hz Speed Data. (b) Velocity Modified Based on Gait.
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Fig. 16 Error of Velocity Estimation: Gait-based Velocity Estimation vs. Non-gait-based Ve-
locity Estimation during Trot Gait

6 Discussion

From the analysis of the dog’s gaits, we found the cyclic moments when the dog’s
velocity faces its heading direction (θ � 0◦). At these moments, the dog’s velocity
can be reconstructed from its speed and pose. During the walk and trot gaits, the
cyclic moments were synchronized with the dog’s rear paws. There were small off-
sets between the cyclic moments and the dog’s rear paw motions. The offset for the
walk gait was larger than that for the trot gait. For accurate velocity estimation, it is
essential to estimate the offsets during the gaits. In addition, we believe that the hard
vest caused θ to be unequal to 0◦. In future work, we need to determine whether this
was actually the reason.
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We confirmed that the accuracy of the velocity estimation improved by using
the gait-based velocity estimation. The proposed method worked well at a low fre-
quency for sensor data acquisition (1 Hz). This result can pave the way for the
development of embedded devices that can obtain the speed at 1 Hz (e.g., mobile
phone), for estimating a dog’s trajectory.

In this study, we evaluated the walk and trot gaits. In future work, we intend to
evaluate not only the walk and trot gaits but also the gallop gait. Motion capture
data were used to detect the moments when the dog’s rear paws left the ground.
With regard to the dog’s wearable equipment, we need to develop a walk-detection
method for a dog. Currently, we are trying to detect walk by using force sensors,
microphones, or IMU sensors. The results of this work will be reported in the near
future.

7 Conclusion

In this study, we analyzed a dog’s gait data (walk and trot) and found the moments
when the dog’s velocity faced its heading direction during walk and trot. Using the
above facts, we proposed a velocity estimation method based on the dog’s gait. We
confirmed that the use of gait permits the improvement of the accuracy of velocity
estimation during the walk and trot gaits. This result will facilitate the acquisition
of a dog’s trajectory.
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