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Foreword

The field of robotics continues to flourish and develop.  In common with general
scientific investigation, new ideas and implementations emerge quite
spontaneously and these are discussed, used, discarded or subsumed at con-
ferences, in the reference journals, as well as through the Internet. After a little
more maturity has been acquired by the new concepts, then archival publication
as a scientific or engineering monograph may occur.

The goal of the Springer Tracts in Advanced Robotics is to publish new
developments and advances in the fields of robotics research – rapidly and
informally but with a high quality. It is hoped that prospective authors will
welcome the opportunity to publish a structured presentation of some of the
emerging robotics methodologies and technologies.

The edited volume by Fabrizio Caccavale and Luigi Villani concerns with a
wide subject of modern engineering, namely mechatronics. This new discipline
has lately been receiving an increasing deal of attention for its unique connotation
to represent a blend of mechanical, electronic and information technologies. In
such a scenario, the importance of providing the supervisory control system with
fault detection and fault identification capabilities becomes crucial to the effective
development of mechatronic systems.

Remarkably, besides the theoretical advancement in the field, the contributions
are not restricted to robotic systems but they cover combustion, thermal,
hydraulic systems and even outreach to underwater vehicles and aircrafts. A fine
start for the series!

Napoli, July 2002 Bruno Siciliano



Preface

This book is focused on the state-of-the-art of fault diagnosis for mechatronic
systems. Beyond its survey aspects, the book aims at presenting challenging
applications to various mechatronic systems, as well as relevant theoretical
findings.

The contents reflects the lectures given by distinguished scholars at the
workshop Fault Diagnosis and Fault Tolerance for Dynamic Systems, held in
Vancouver, Canada, on October, 2002, in conjunction with the IEEE Inter-
national Symposium on Intelligent Control . We asked each lecturer to extend
her/his contribution to the workshop, thus giving birth to a chapter of the
book.

The term “mechatronics” is used to designate the integration of mechan-
ical, electronic and information technologies. Examples of mechatronic sys-
tems range from robotics and automotive systems to marine and aerospace
vehicles. Often, mechatronic systems operate in remote or hazardous envi-
ronments, where a high degree of autonomy and safety is required. On the
other hand, in a wide class of applications, a close interaction with humans
is of concern; in this case the main goal is to achieve a safe and reliable
man-machine interaction. Therefore, designing of systems with self-diagnosis
capabilities is becoming a crucial challenge in mechatronics.

A reading track along the six chapters of the book is briefly outlined in
the following.

In mechatronic systems fast and accurate detection of anomalous situa-
tions (fault detection) as well as identification of their causes (fault identi-
fication) is of the utmost importance. This problem can be tackled by re-
sorting to model-based fault diagnosis approaches, e.g., to observer-based
techniques. The first chapter, co-authored by M. Saif and Y. Xiong , is fo-
cused on observer-based fault diagnosis. Namely, two different sliding mode
observer design strategies are reviewed. Moreover, a new sliding mode ob-
server for a class of nonlinear uncertain systems is proposed, and a number
of mechatronic application examples is provided.

Whenever a deterministic model of the plant is not available, e.g., the
system is subject to parameter randomness, fault diagnosis can be achieved
by considering stochastic models. In the second chapter H. Wang addresses
this problem with reference to non-Gaussian stochastic systems. Also, the
problem of fault tolerant control is formulated and solved into an adaptive
framework.

Embedding fault diagnosis in mechatronic systems is becoming critical
to ensure higher levels of safety and reliability in automated factory plants
and autonomous systems. A crucial component of automated factory plants
is the industrial robot. The adoption of fault diagnosis techniques for in-
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dustrial robots plays a central role in order to achieve a safe man-robot
interaction as well as a quick and appropriate reaction of the robotic system
to the occurrence of failures. In the third chapter, authored by F. Caccav-
ale and L. Villani , different observer-based approaches to fault diagnosis
for mechanical manipulators are presented and critically compared. All the
considered schemes are experimentally tested on a six-degree-of-freedom in-
dustrial robot. An application to autonomous systems operating in remote
environments is presented in the fourth chapter by G. Antonelli . Namely, sev-
eral fault detection/tolerance strategies for autonomous underwater vehicles
(AUVs) and remotely operated vehicles (ROVs) are surveyed.

An important application of mechatronics in aerospace systems is repre-
sented by flight controllers. In the fifth chapter, authored by J.D. Bošković
and K. Mehra, issues in fault detection, identification and reconfiguration in
flight control are addressed. Numerical simulations developed for a combat
aircraft are carried out to illustrate the theoretical findings.

The last chapter, authored by M.L. Leuschen, I.D. Walker and J.R. Cav-
allaro is focused on the application of the analytical redundancy method to
fault detection for electro-hydraulic systems. In order to cope with the typical
nonlinear behavior of hydraulic systems, the analytical redundancy approach
is generalized to nonlinear dynamical systems.

The book is intended for graduate students, researchers, scientists and
scholars who wish to update their knowledge in fault diagnosis and fault
tolerant control of mechatronic systems. We hope they will find the book
useful.

Napoli, Fabrizio Caccavale
June 2002 Luigi Villani



Contents

Sliding Mode Observers and Their Application in Fault Diagnosis 1
Mehrdad Saif and Yi Xiong
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Sliding Mode Observers for Linear and Nonlinear Systems . . . . . . . . . . . 5
3 A Sliding Mode Observer for Linear Uncertain Systems . . . . . . . . . . . . . 18
4 Nonlinear SMO Design Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 A Simple Sliding Mode Output Observer for Fault Diagnosis . . . . . . . . . 26
6 Incipient Fault Diagnosis Using SMFO for Linear Uncertain Systems . . 30
7 SMFO Based Incipient Fault Diagnosis for Nonlinear Uncertain Systems 35
8 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Fault Diagnosis and Fault Tolerant Control for Non-Gaussian
Stochastic Systems with Random Parameters . . . . . . . . . . . . . . . . . 59
Hong Wang
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2 The Representation for Fixed Parameter Systems . . . . . . . . . . . . . . . . 61
3 Fault Detection for Fixed Parameter Systems . . . . . . . . . . . . . . . . . . . . 62
4 Fault Diagnosis for Fixed Parameter Systems . . . . . . . . . . . . . . . . . . . . 64
5 Model Representation for Random Parameter Systems . . . . . . . . . . . . 67
6 Laplace Transformations for Probability Density Functions . . . . . . . . 70
7 Unexpected Change Diagnosis Using Scanning Parameter Estimation 72
8 Fault Diagnosis Design via Minimizing Residual Entropy . . . . . . . . . . 74
9 Fault Tolerant Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10 Applicability Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
11 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Fault Diagnosis for Industrial Robots . . . . . . . . . . . . . . . . . . . . . . . . . 85
Fabrizio Caccavale, Luigi Villani
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3 A Simple Model-Based Fault Diagnosis Scheme . . . . . . . . . . . . . . . . . . . . 90
4 Observer-Based Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5 Observer-Based Fault Diagnosis in the Absence of Velocity

Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6 Fault Detection, Isolation, and Identification . . . . . . . . . . . . . . . . . . . . . . 95
7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



XII Contents

A Survey of Fault Detection/Tolerance Strategies for AUVs
and ROVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Gianluca Antonelli
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3 Experienced Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4 Fault Detection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5 Fault Tolerant Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Failure Detection, Identification, and Reconfiguration in Flight
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
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Sliding Mode Observers and Their Application
in Fault Diagnosis

Mehrdad Saif and Yi Xiong

School of Engineering Science
Simon Fraser University
8888 University Drive
Vancouver, British Columbia V5A 1S6 CANADA

Abstract. Two commonly used approaches to sliding mode observer (SMO) de-
sign, namely the equivalent control approach of Utkin and the Walcott and Zak’s
observer design strategies are reviewed. Ceratin limitations of each design strategy
are discussed and two alternative design approach for the Walcott and Zak observer
based on the representation of a linear system in special coordinate basis (SCB)
from are given. Additionally, a comparative discussion between the SMO and the
unknown input observer (UIO) is provided, along with a discussion on similarities
and differences between the two observer design strategies. Next a new sliding mode
observer for linear uncertain systems is discussed. The advantage of this observer is
that it can be built under much less conservative conditions than the one discussed.
In addition, we address the issue of estimating a function of the state as well as
unknown inputs or structural uncertainties. Furthermore, basic SMO design idea
is extended to certain class of nonlinear uncertain systems. Next, we discuss how
these SMOs can be used for fault detection and isolation (FDI) purposes. Finally, a
number of examples illustrating the application of the SMO in mechatronic applica-
tions such as fault diagnosis of an internal combustion engine, robots, and electric
motors are presented.

1 Introduction

System monitoring and timely fault detection capabilities are critical require-
ments of many modern mechatronic systems. Traditionally these features
have been of utmost importance in safety critical systems such as civil and
military aviation, or nuclear power plants, etc. However, in recent years, other
factors have been playing a major role in recognizing the need for these ca-
pabilities in other technical systems. Broadly speaking, by the term fault we
mean failures, errors, malfunctions or disturbances in the functional units
that can lead to undesirable or intolerable behavior of the system. Some of
the contributing factors that have made the automatic fault detection, iso-
lation and accommodation (FDIA) problem to become an active area for
research in a wide variety of industries and systems are:

i. The increased level of sophistication of many industrial and consumer
goods due to the advances in electronics and computer technology, and

F. Caccavale, L. Villani (Eds.): Fault Diagnosis and Fault Tolerance for Mechatronic Systems, STAR 1, pp. 1-57, 2003.
     Springer-Verlag Berlin Heidelberg 2003
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at the same time decrease in processor’s costs. Today’s automobiles are
a good example of this mechatronic trend. The auto manufacturers have
introduced a tremendous amount of electronics in recent models. Many
functions such as powertrain control, anti-lock brake, chassis control, cli-
mate control, traction control, etc. are now performed electrically and are
available on many vehicles.

ii. Many manufacturing and process industries are highly interested in FDIA
capabilities due to the fact that timely detection of early faults can result
in unexpected and total failure that can lead to plant shutdown and loss
of revenues. Therefore, economics is now an important factor in incorpo-
ration of FDIA techniques in many industries.

iii. The environmental concern is now a new driving force for FDI require-
ment. An example of this is the recent California Air Resource Board
(CARB), and Environmental Protection Agency (EPA) legislations which
required that as of 1998, On Board Diagnostics II (OBD-II) to be rolled
into all light duty vehicles sold in North American fleet. Essentially, OBD-
II requires fault detection capability for all vehicle components whose
failure can result in emission levels beyond a certain level. It would not
be surprising if similar tight restriction were to be placed on control and
fault diagnosis of other internal combustion engines such as those of boats
or lawn mowers.

In any of the systems that were discussed above, in order to have the
efficient operation of the process and to increase the reliability and safety,
prompt detection of anomalous situations (fault detection) and the fast iden-
tification (isolation) of the most probable causes (faults) need to be addressed.
FDI can be carried out using analytical or functional information about the
system being monitored, i.e., based on a mathematical model of the system.
This approach is known as analytical redundancy, which is also known as
model–based or quantitative FDI. Model–based FDI is currently the subject
of extensive research and is being used in highly reliable control systems due
to the fact that analytical redundancy based techniques are more economical
and at times more powerful. These methods have the potential of detecting
soft incipient faults even during the system’s transient operation. One of the
most popular of the model based approaches to FDI is that of the observer
based techniques. The basic idea of observer-based methods consists of re-
construction of the outputs of the system of interest with the aid of observers
or Kalman filters, and the use of the estimation error (or innovation, re-
spectively) as the residual. The observer feedback gain enters the calculation
of the residual generator and the gain design problem provides freedom for
achieving the required performance (e.g. see [18],[45], [19]). However, special
attention has to be paid when applying observer theory for fault detection
and isolation. The basic configuration of observer-based fault diagnosis is
shown in Figure 1.
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Analytical Symptoms

Actuators Sensors

Residual

Residual

Inputs

Normal
Behavior

Process

Observer

Generator

Evaluation

Unknown Inputs

Outputs

Faults

Fig. 1. Basic configuration of observer-based fault diagnosis

The early works were based on the assumption that the system under
consideration is linear and that a sufficiently accurate mathematical model
of the system is available. False alarm may frequently occur when these ap-
proaches are used to linear systems subject to unknown inputs, because the
fault signal and unknown input are very likely to produce a similar resid-
ual signal. A straightforward method to create robustness with respect to
unknown inputs is to generate unknown input decoupled residuals. If condi-
tions for a perfect decoupling are not fulfilled, one can determine an optimal
approximation in the sense of compromise between sensitivity with respect to
faults, and robustness with respect to unknown inputs. The problem of per-
fect decoupling of faults from the unknown inputs has been attacked in both
frequency and time domain. A frequency domain solution was given by Frank
and Ding [17]. There are three kinds of time domain solutions. The first one
is known as the unknown input observer (UIO) based approach (see Chang
and Hsu [8], Chen et al. [9], Frank et al. [18], Saif and Guan [45]). The sec-
ond is the eigenstructure assignment approach (Patton and Chen [38], Wang
and Daley [57]). These two approaches do not make assumptions on the size
and the time functions or on the frequency characteristics of the faults or of
the unknown inputs. The third is the sliding mode FDI observer (Hermans
and Zarrop [25]), where unknown inputs are assumed to be bounded. The
practical importance of the decoupling approach lies in the fact that it allows
small faults to be detected, even if there are large modeling errors. Of course,
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certain conditions have to be satisfied in order for decoupling between faults
and unknown inputs to be made possible.

Recently, some methods to improve the robustness of Beard and Jones
Detection Filter were proposed by [13], and [10]. The GLRT was generalized
by [35] to make it insensitive to a large class of noise and plant model uncer-
tainties. These works were based on the newly developed H∞ and differential
game theory.

The investigations mentioned above are based on linear multivariable un-
certain systems with a nominally linear time-invariant part and an unknown
input part. Many industrial processes are of nonlinear nature, and conse-
quently, have a nonlinear mathematical model. Linear robust approaches are
limited if the system to be monitored is strongly nonlinear. Linear uncertain
system models can cover a small class of nonlinear systems by representing
nonlinear parts as unknown inputs. However, they will introduce too many
unknown inputs which will make perfect or approximate decoupling difficult.
Therefore, the study of nonlinear observer-based FDI has received consider-
able attention in the past few years. Apart from the problem of nonlinear
observer based FDI, the subject of nonlinear observer design in itself is very
much an active area of current research. One nonlinear observer design ap-
proach deals with nonlinear systems for which observers with linearizable
error dynamics can be designed (see e.g. [2], [30], [31], [41], [59]). In several
works (e.g. [4], [6],[21], [39]) systems which are composed of a linear unforced
part and a nonlinear state dependent controlled part are considered. In [22],
an observer is given for a class of nonlinear systems which are not necessarily
control affine. However, the gain of the proposed observer is not easily com-
putable. Recently [7,27] proposed observers based on some ideas from the
high gain approach whose gain could easily be designed.

With the application of nonlinear observer theory, some nonlinear system
FDI approaches have been obtained, principally in the detection, and also
with some restrictions, for isolation of faults. Based on a Thau-type nonlinear
observer, the BJDF method is generalized in [20] for a class of Lipschitz
nonlinear systems, with the linearity assumption being made on the output
vector. A nonlinear observer, which was constructed by sliding mode design
techniques, was used for fault diagnosis of control affine nonlinear systems in
[34]. For state affine systems, Hammouri et al. used Kalman-like time-varying
observers to build the residual for FDI [24]. The fault diagnosis based on UIO
for linear systems (in different versions) is generalized to bilinear systems in
[66], and [67,68]. Seliger and Frank [48], Yang and Saif [65] extended linear
UIO to a more general class of nonlinear systems by applying a nonlinear state
transformation, and applied their proposed nonlinear UIO to fault diagnosis
for nonlinear uncertain systems.

Recently, a considerable number of papers have been devoted to the topic
of observers design based on sliding mode concept [14,49,54–56,70,16,64].
Utkin presents a sliding mode observer strategy for linear systems whereby
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the error between the estimated and measured outputs is forced to exhibit
a sliding mode and measurement noise effects are reduced [54]. Walcott and
Zak use a Lyapunov-based approach to formulate an observer design which
exhibits asymptotic state error decay in the presence of bounded nonlinear-
ity/uncertainties that satisfy the so-called matching condition [55]. This ob-
server is also called as the min-max observer due to its sliding mode properties
[70]. Unlike several other techniques for observer design of nonlinear systems
where the exact knowledge of the plant’s nonlinearities must be known and
either directly or indirectly incorporated into the dynamics of the observer,
only the bounds of the nonlinearities of the plant are used in Walcott and Zak
observer dynamics. Moreover, these dynamics may easily be implemented. In
spite of these appealing properties, the design method of Walcott and Zak
observer was impractical for high order systems until Edwards and Spurgeon
proposed a numerically tractable algorithm [16]. Sreedhar and Fernandez ex-
plore the practical application of sliding mode observers for fault detection
if full state measurements are available [52]. Hermans and Zarrop [25] inves-
tigate the potential and advantages of the sliding mode observers for robust
fault detection based on the design procedure given in [16].

In [14] the approach of of designing an extended the sliding mode observer
using equivalent control for linear systems [54] was extended to nonlinear
systems of the form

ẋ = f(x) + B(x)u
y = h(x) (1)

This extension was also applied to nonlinear systems in triangular input form
in [1], output and output derivative injection form in [5] and was applied
to FDI problem in [12] . In papers [49] and [58], a framework similar to
a Luenberger observer were used by appending a switching function with
constant or time-varying gains.

In summary the existing SMO design methods can be classified in two
categories: 1) The equivalent control based methods, and 2) sliding mode
observer designs based on the method of Lyapunov. Since these techniques
are important to the developments in this article, we shall briefly expand on
these approaches in the following:

2 Sliding mode Observers for Linear and Nonlinear
Systems

In this section we shall review two popular SMO design strategies and propose
new SMO designs based on these strategies.
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2.1 SMO Design Based on Utkin’s Method of Equivalent Control

Observers based on sliding mode approach first were developed for linear
systems [54]. Consider a linear uncertain dynamic system described by

ẋ = Ax + Bu + Gd(x, u, t)
y = Cx

(2)

where x ∈ Rn is the state, u ∈ Rm is the control input, y ∈ Rp is the output.
The matrices A,B and C are of appropriate dimensions. It is assumed that
d(x, u, t) is unknown, but bounded, so that

‖d(x, u, t)‖ ≤ ρ ∀x ∈ Rn, u ∈ Rm, t ≥ 0

where ‖ · ‖ refers to the Euclidean norm. G is a full rank matrix in Rn×q.
Gd(x, u, t) represents the system uncertainties or nonlinearities, namely the
unknown input. In addition, the matrices B and C are assumed to be of full
rank. For the moment assume that d = 0 and the pair {A,C} is observable.
Furthermore, without the loss of generality, it can be assumed that the output
distribution matrix can be written as

C = [C1 C2]

where C1 ∈ Rp×(n−p), C2 ∈ Rp×p and det(C2) �= 0. Consequently, the trans-
formation

T =
[

In−p 0
C1 C2

]
(3)

is non-singular and with respect to this new coordinate system it can be seen
that the new output distribution matrix CT−1 = [0 Ip]. If the other system
matrices are written as

TAT−1 =
[

A11 A12

A21 A22

]
and TB =

[
B1

B2

]

then the nominal system can be written as

ẋ1 = A11x1 + A12y + B1u
ẏ = A21x1 + A22y + B2u

(4)

The corresponding sliding mode observer for the y subsystem is

˙̂y = A22ŷ + A21x̂1 + B2u + L1sign(y − ŷ) (5)

where (x̂1, ŷ) are the estimates of (x1, y), L1 is a constant nonsingular feed-
back gain matrix, and sign(.) is the sign function. If the error between the
estimates and the true states are written as ey = y − ŷ and e1 = x1 − x̂1,
then the following error system is obtained:

ėy = A22ey + A21e1 − L1sign(ey). (6)
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It can be shown using singular perturbation theory that for a large enough
L1, a sliding mode motion can be induced on the outputs’ error state in (6)
[54]. It follows that, after some finite time ts, for all subsequent time, ey = 0
and ėy = 0. For the second subsystem, the observer equation is

˙̂x1 = A11x̂1 + A12y + B1u + L2L1sign(ey) (7)

which results in the following estimation error dynamics

ė1 = A11e1 − L2L1sign(ey). (8)

According to the equivalent control method, the system in sliding mode be-
haves as if L1sign(ey) is replaced by its equivalent value (L1sign(ey))eq,
which can be calculated from the subsystem (6) assuming ey = 0 and ėy = 0.
Hence

(L1sign(ey))eq = A21e1. (9)

Substituting (9) into (8) we obtain

ė1 = (A11 − L2A21)e1. (10)

Note that the pair {A11, A21} is observable if {A,C} is observable, therefore
through an appropriate choice of L2 the estimation error e1 can be made to
approach zero as t → ∞.

To see how the performance of the observer will be affected as a result of
uncertainties in the system, assume now that the term Gd in (2) is no longer
zero. Then using the transformation (3) for Utkin SMO, the linear uncertain
system (2) can be transformed into following canonical form,

ẋ1 = A11x1 + A12y + B1u + G1d(x, u, t)
ẏ = A21x1 + A22y + B2u + G2d(x, u, t) (11)

Under the sliding observer (5), the equivalent control signal will be

(L1sign(ey))eq = A21e1 + G2d(x, u, t). (12)

The error dynamics of e1 in this case will become,

ė1 = (A11 − L2A21)e1 + (G1 + L2G2)d(x, u, t). (13)

Based on the above error dynamics, e1(t) will not in general approach zero if
d is nonzero. Also, note that even if the first subsystem in (11) is unknown
input free (i.e. G1 = 0), the equivalent control signal will still introduce the
uncertainties into its observer error dynamics. To have a convergent estimate
one approach may be to select the gain L2 such that G1+L2G2 = 0. However,
in general it may be very difficult to satisfy this added constraint on the
observer gain L2. A more reasonable approach to get around this difficulty is
to force the estimation error to be below an acceptable threshold. This can be
achieved through a suitable choice of the gain L2 under the assumption that
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‖d(x, u, t)‖ is small enough, as discussed in [49,58]. Obviously in such a case
the observer’s performance is not guaranteed if ‖d(x, u, t)‖ is not small. The
idea described above can be extended to nonlinear systems of the form (1).
This extension is covered in [14], and was also applied to nonlinear systems
in triangular input form in [1], output and output derivative injection form
in [5], and general nonlinear observable systems with measurements that are
linearly related to the state vector (i.e. y = Cx) in [49,58].

2.2 Walcott and Zak Sliding Mode Observer

The Walcott and Zak’s sliding mode observer ([55,56]) which was further
developed by Misawa [37] attempts to provide an exponentially convergent
estimate of the state of the dynamical system described in (2) despite the
presence of matched uncertainty. Note that the term d(x, u, t) in (2) can
represent not only system nonlinearities, but also time-varying terms or in-
ternal/external uncertainties/disturbances.

Recall that it was assumed that the pair {A,C} is completely observable
in which case a matrix K ∈ Rn×p exists such that A0 = A−KC is Hurwitz.
Therefore, for every real symmetrical positive definite (SPD) matrix Q ∈
Rn×n, there exists a real SPD matrix P as the unique solution to the following
Lyapunov equation:

P (A − KC) + (A − KC)T P = −Q (14)

It is also assumed that a Lyapunov pair {P,Q} for A0 exists such that the
structural constraint

WC = GT P (15)

is satisfied for some W ∈ Rq×p. The proposed observer in [55] has the form

˙̂x = Ax̂ + Bu + K(y − x) + ν (16)

where

ν =
{

ρ GWCe
‖WCe‖ if WCe �= 0

0 otherwise
(17)

or

ν = ρGsign(WCe) (18)

where e = x− x̂, and sign(·) is the sign function. Note that this is basically a
conventional Luenberger observer with the additional nonlinear discontinuous
“switching” term ν. By using V (e) = eT Pe as a Lyapunov function candidate
it can be shown that V̇ (e) < 0 for e �= 0 and thus e → 0 exponentially, and
the surface S = {e : WCe = 0} is the sliding manifold. The main difficulty
in designing the Walcott and Zak observer is that of computing the matrix
pair {P,W} such that (14) and (15) are satisfied. This is not an easy task
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because P is a Lyapunov matrix for A0, where A0 itself is dependent on the
choice of K. Nevertheless, the Walcott and Zak [56] design algorithm can be
summarized as follows:

i. Choose the spectrum of A0, and compute K accordingly;
ii. Solve the structural constraint symbolically to obtain an expression for

P in terms of entries of W , ensuring that P is symmetric;
iii. Compute Q symbolically in terms of entries of P using the expression

−(PA0 + AT
0 P );

iv. Choose the elements of W and P to ensure Q is SPD.

The Walcott and Zak observer is very simple in its structure and the
notion of total insensitivity of the observer to the matched uncertainties is
appealing. However, from a computational point of view, this framework is
impractical for high order systems because of the manipulation and solution
of the associated constrained Lyapunov problem defined by equations (14)
and (15). Furthermore, it is difficult to verify the existence of the Walcott-
Zak observer for systems (A,G,C) based on the original system matrices.
In [51] it is shown that a sufficient condition for(15) being valid is that the
modified transfer function defined as GF (s) = WC(sI − A0)−1G be strictly
positive real. However, [51] did not consider the problem of finding a suitable
W . Edwards and Spurgeon [16] provided a numerically tractable algorithm
by transforming the system (A,G,C) into a canonical form.

In the next subsection an alternative approach for designing the Walcott
and Zak observer based on the representation of the system in special co-
ordinate basis (SCB) form is discussed. Further the SCB form will lay the
foundation for the remainder of the discussions in this chapter.

2.3 Special Coordinate Basis (SCB) Form

First consider some preliminary results from the SCB form of linear systems
given below.

Theorem 1. [42] For system (2), there exist non-singular transformations
Γ1, Γ2 and Γ3, and integer md ≤ q, qi = 1, ...,md, such that

x = Γ−1
1 x, y = Γ−1

2 y, d = Γ−1
3 d;

x = [(xa)T , xT
b , xT

c , xT
d ]T , xa = [(x−

a )T , (x+
a )T ]T

y = [yT
d , yT

b ]T , d = [dT
d , dT

c ]T

yd = [y1, y2, ..., ymd
]T , dd = [d1, d2, ..., dmd

]T

and

ẋa = Aaxa + Ladyd + Labyb + Bau
ẋb = Abxb + Lbdyd + Bbu, yb = Cbxb

ẋc = Acxc + Lcdyd + Lcbyb + GcEcaxa + Gcdc + Bcu
(19)
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and xd =
[
x1d x2d ... xmdd

]T , for each xid, i = 1, ..., ,md,

ẋid =Aqi
xid+Lidyd+Gqi

[Eiaxa+Eibxb+Eicxc+
md∑
j=1

Eijxjd+di]+Bidu (20)

yi = Cqi
xid, yd = Cdxd (21)

Here the states xa, xb, xc, xd are of dimensions na, nb, nc and nd =
∑md

i=1 qi

respectively, while xid is of dimension qi for each i = 1, ...,md. The matrices
Aqi

, Gqi
and Cqi

have following form:

Aqi
=

[
0 Iqi−1

0 0

]
;Gqi

=
[

0(qi−1)×1

1

]
;Cqi

=
[
1 01×(qi−1)

]
; (22)

and last row of Lid is identically zero.

To this end, xd subsystem is further decomposed into md subsystems. Let

xid =
[
xi

1 xi
2 ... xi

qi

]T
;

The special form of Aqi
, Gqi

implies that the equations of subsystem xid in
(20) can be rewritten as

ẋi
1 = xi

2 + Li
1yd + Bi

1u
ẋi

2 = xi
3 + Li

2yd + Bi
2u

... ...
ẋi

qi−1 = xi
qi

+ Li
qi−1yd + Bi

qi−1u
ẋi

qi
= Eiaxa + Eibxb + Eicxc +

∑md

j=1 Eijxjd + Bi
qi

u + di

yi = xi
1

(23)

In a more compact notation the above representation of the system in the
SCB form can be written as:

Σ :
{

ẋ = Ax + Bu + Gd
y = Cx

where (A,G,C) are given by

A := Γ−1
1 AΓ1 =




A−
aa 0 L−

abCb 0 L−
adCd

0 A+
aa L+

abCb 0 L+
adCd

0 0 Ab 0 LbdCd

GcE
−
ca GcE

+
ca LcbCb Ac LcdCd

GdE
−
a GdE

+
a GdEb GdEc Ad




G := Γ−1
1 GΓ3 =




0 0
0 0
0 0
0 Gc

Gd 0


 , C := Γ−1

2 CΓ1 =
[

0 0 0 0 Cd

0 0 Cb 0 0

]
(24)
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where

Aaa =
[

A−
aa 0
0 A+

aa

]

Ea = [E−
a , E+

a ], Eca = [E−
ca, E+

ca].

and Gd, Cd is in the form of

Gd =




Gq1 0 ... 0
0 Gq2 ... 0
... ... ... 0
0 0 0 Gqd


 ;Cd =




Cq1 0 ... 0
0 Cq2 ... 0
... ... ... 0
0 0 0 Cqd


 ; (25)

The matrices Gqi, Cqi have the following form:

Gqi =
[

0
1

]
;Cqi =

[
1 0

]
; (26)

Obviously for the case qi = 1, we have Gqi = 1, Cqi = 1.
Some of the important properties of the SCB which are relevant to our

discussion are outlined below [42]:

Property 1 The system Σ is right invertible if and only if xb and hence yb

do not exist (i.e. nb = 0), and left invertible if and only if xc and hence
uc do not exist (i.e. nc = 0). Finally, the system is right invertible if and
only if it is both right and left invertible.

Property 2 The invariant zeros of the systems are the eigenvalues of Aa. If
Aa is further decomposed, the number of stable and unstable zeros of the
system are given by n−

a , n+
a respectively . Eigenvalues of A−

aa and A+
aa are

stable and unstable zeros of the system respectively.
Property 3 nd is the number of infinite zeros, and nd =

∑md

i=1 qi, where
qi, i = 1, ...,md is the number of infinite zeros of order of i, md is the
highest order of an infinite zero. Further, md = rank(Cd) = rank(Gd).

Property 4 (Ab, Cb) and (Ad, Cd) form observable pairs. The subsystems
involving xa and xc are unobservable. The pair {A,C} is observable (de-
tectable) if and only if {Aob, Cob} is an observable (detectable) pair, where

Aob =
[

Aaa 0
GcEca Acc

]
, Cob =

[
Ea Eca

]

As will be seen in this section, the SCB form of the system plays a dom-
inant role also in our Walcott and Zak observer analysis and synthesis.
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2.4 Lyapunov Equation Based Walcott and Zak’s SMO Design

In this section we shall introduce a systematic approach for Walcott and Zak’s
SMO design based on the constrained Lyapunov equation discussed before.

Lemma 1. Let (A,G,C) be SCB form of the original system (A,G,C).
(A,C) is observable if and only if (A,C) is observable. Furthermore, P =
Γ−T

1 PΓ−1
1 , Q = Γ−T

1 QΓ−1
1 is a Lyapunov matrix pair for A0 = A − KC

which satisfies the structural constraint WC = GT P , where K = Γ1KΓ−1
2 ,

W = Γ−T
3 WΓ−1

2 if and only if there exists K such that a Lyapunov matrix
pair {P ,Q} for A0 = A−KC satisfies the structural constraint WC = G

T
P .

Proof: By direct validation.

Lemma 2. Given matrices P,C,and G, there exists W satisfying WC =
GT P if and only if

GT P (I − C†C) = 0

in which case a general solution is given by

W = GT PC† + Z − ZCC† (27)

where Z is arbitrary matrix of the same size as W ,and C† is generalized
inverse of C.

Proof: It is a straightforward application of the fundamental result of
linear matrix equation AXB = Y , where A,B, and Y are given with adequate
dimensions, and X is the unknown.

Lemma 3. [26] Suppose a symmetric matrix P is partitioned as[
P11 P12

PT
12 P22

]

where P11, and P22 are square matrices. The matrix P is positive definite if
and only if P11 is positive definite and P22 > PT

12P
−1
11 P12. Furthermore, this

condition is equivalent to having ρ(P T
12P

−1
11 P12P

−1
22 ) < 1, where ρ(.) represents

spectral radius.

Theorem 2. If the pair {A,C} is completely observable, a Walcott and Zak
observer (16) for system (2) exists if and only if the system (A,G,C) is
minimum phase and rank(CG) = rank(G).

Proof: Based on Lemma 2, it is assume that the (A,G,C) is already in
SCB form.

Necessity . Let K be any appropriate gain matrix so that A0 = A − KC is
stable with an associated Lyapunov matrix P such that there exists a W
satisfying

WC = GT P
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Let P = MT M , where M is nonsingular. Following Lemma 3, then

GT P (I − C†C) = GT MT M(I − C†C) = 0 (28)

From (24),

I − C†C =




In−
a

0 0 0 0
0 In+

a
0 0 0

0 0 Inb
− C†

bCb 0 0
0 0 0 Inc

0
0 0 0 0 Ind

− C†
dCd


 (29)

Let Îb = Inb
− C†

bCb, Îd = Ind
− C†

dCd. By partitioning M as

M =
[
M−

a M+
a Mb Mc Md

]

we can write

GT MT M(I − C†C) =[
GT

d MT
d M−

a GT
d MT

d M+
a GT

d MT
d MbÎb GT

d MT
d Mc GT

d MT
d MdÎd

GT
c MT

c M−
a GT

c MT
c M+

a GT
c MT

c MbÎb GT
c MT

c Mc GT
c MT

c MdÎd

]
= 0

It is easy to show that GT
c MT

c Mc = 0 if and only if

GT
c MT

c = 0 (30)

Obviously, M will be singular if Mc is to satisfy (30) which is a contradiction.
Therefore, nc must be zero and therefore no Gc,and Mc appears in SCB form
of the system. From (25) and (26),

Îd =




Cq1 0 ... 0
0 Ĉq2 ... 0
... ... ... 0
0 0 0 Ĉqd




where Ĉqi
= Iqi − C†

qiCqi =
[

0 0
0 Iqi−1

]
. In the special case where qi = 1 for

all i = 1, ...,md, or the order of all infinite zeros equal to one, then Îd = 0.
However, if any qi > 1, it is easy to show that GT

d MT
d MdÎd = 0 if and only if

GT
d MT

d = 0 (31)

Obviously, again in this case M will be singular if Md is to satisfy (31)
which again is a contradiction. Therefore, qi = 1 for all i = 1, ...,md so that
Îd = 0 and GT

d MT
d MdÎd = 0 is satisfied for any Md. Finally, the required

conditions, namely, nc = 0 and the order of all infinite zeros equal to one
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are equivalent to rank(CG) = rank(G). Next we show that system (A,G,C)
must be minimum phase. Now G =

[
0 0 0 Ind

]
and

I − C†C =




In−
a

0 0 0
0 In+

a
0 0

0 0 Înb
0

0 0 0 0




By writing P as



P11 P12 P13 P14

PT
12 P22 P23 P24

PT
13 PT

23 P33 P34

PT
14 PT

24 PT
34 P44




and evaluating (28), it follows that

P14 = 0 and P24 = 0

On the other hand, it can easily be verified that

A − KC =




A−
aa 0 � �
0 A+

aa � �
0 0 � �
� � � �




for any K, where ′′�′′ represents appropriately dimensioned matrices, other-
wise non relevant to the proof. Let

Pa =
[

P11 P12

PT
12 P22

]
, Aa =

[
A−

aa 0
0 A+

aa

]

It can be shown that

P (A − KC) =


PaAa � �

� � �
� � �




According to Lemma 4, Pa must be a Lyapunov matrix of Aa in order that
P is definite positive, thus Aa must be a stable matrix. Based on Property
2 stated earlier, invariant zeros of system (A,G,C) are eigenvalues of Aa,
which means the system must be minimum phase.

Sufficiency. By assumption, the SCB form of the system is reduced to

A =


A−

aa L−
abCb L−

ad

0 Ab Lbd

E−
a Eb Ad


 , G =


 0

0
Ind


 , C =

[
0 0 Ind

0 Cb 0

]
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Based on the SCB theory [42] {Ab, Cb} and {Ad, Ind
} form observable pairs.

Let Kb and Kd be gains such that Âb = Ab − KbCb and Âd = Ad − Kd are
stable. Define the feedback gain K as

K =


L−

ad L−
ab

Lbd Kb

Kd 0


 (32)

then

A0 = A − KC =


A−

aa 0 0
0 Âb 0

E−
a Eb Âd




Let

Aab =
[

A−
aa 0
0 Âb

]
, Eab =

[
E−

a Eb

]
(33)

Given any positive definite matrix Qd, compute the Lyapunov matrix Pd

of Âd. Then calculate the spectral radius ρd of matrix (PdEab)T PdEabQ
−1
d .

Define Q as,

Q =
[

αI PdEab

(PdEab)T Qd

]
(34)

According to Lemma 3, Q is positive definite for α > ρd. Let Pab be a solution
for PabAab + AT

abPab = −αI, then it can be verified

P =
[

Pab 0
0 Pd

]
(35)

is a Lyapunov matrix of A0 corresponding to the Q which is given by (34)
and GT P (I − C†C) = 0.
Lyapunov based Walcott and Zak SMO design algorithm

The proof procedure of Theorem 1 implies an algorithm for the construc-
tion of a Walcott and Zak observer that is suitable for numerical implemen-
tation. The algorithm is detailed below:

i. If rank(CG) = rank(G) and system (A,G,C) is minimum phase, trans-
form it into SCB form by non-singular state, output, and input transfor-
mations Γ1, Γ2, Γ3.

ii. Compute Kd and Kb to stabilize Âb = Ab − KbCb and Âd = Ad − Kd

respectively. Formulate Aab, Eab as (33).
iii. Compute Lyapunov matrix Pd of Âd corresponding to identity matrix,

calculate spectral radius ρd of matrix (PdEab)T PdEab, then find Lya-
punov matrix Pab of Aab corresponding to αI with α > ρd.
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iv. The feedback gain is K = Γ1KΓ−1
2 , where K is constructed as in (32).

The Lyapunov matrix for A − KC is P = Γ−T
1 PΓ−1

1 , where P is given
by (35), and W is solved by (27).

Remark 1. It is interesting to note that the existence conditions for unknown
inputs observer [33] are exactly the same as those stated in Theorem 1. We
shall elaborate on this fact in the next subsection.

2.5 Alternative Walcott-Zak SMO Design

The analysis and the discussion of the last subsection clearly signals that the
two required conditions for the design of Walcott and Zak SMO, i.e., (14) and
(15) in a round about way impose some structural constraints on the system
under consideration. Recently, an explicit equivalent condition for (14) and
(15), in terms of original system matrices was derived by Corless and Tu [11].
However, Corless and Tu’s work focused on robust state and input estimator
design and did not address the connection of their result to sliding mode
observer. In the following we shall present a summary of Corless and Tu [11]
results as it pertains to the discussion here, in the form of two lemmas. It
should be mentioned however that both results have been addressed, albeit
using a different and perhaps more general approach than that of [11] in the
last two subsections.

Lemma 4. There exists symmetric positive definite matrices P , and Q and
gain matrices K, and W that satisfy (14) and (15) if and only if rank(CG) =
rank(G) and the triplet {A,G,C} is minimum phase.

The system satisfying the conditions stated in Lemma 4 has a canonical
form, which is described in the following Lemma.

Lemma 5. For system (2) there exist non-singular transformations Γ1, and
Γ2 such that

x = Γ1[xT
ab, x

T
d ]T , y = Γ2[yT

d , yT
b ]T ,

in which case the transformed system can be written as

ẋab = Aabxab + Ldxd + Babu
ẋd = Eabxab + Adxd + Bdu + Gdd(x, u, t)
yb = Cabxab

yd = Cdxd

(36)

where Gd is full rank, and Cd is invertible, and the pair (Aab, Cab) is de-
tectable if and only if rank(CG) = rank(G) and the triplet {A,G,C} is
minimum phase.
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Lemma 5 is a direct result of the work on the special coordinate transforma-
tion (SCB) theory [42]. Lemmas 4 and 5 imply that Walcott-Zak observer
can actually be designed for systems which can be transformed into the form
given in (36). Based on the above representation of the system in (36), we
shall now suggest a Walcott and Zak type of SMO. It should be noted that
the nonlinear term Gsign(WCe) in (36), actually appears in the subsystem

which is affected directly by unknown inputs. Letting K =
[

Kab 0
0 Kd

]
, the

observer has following form,

˙̂xab = Aabx̂ab + Ldx̂d + Babu + Kab(yb − ŷb)
˙̂xd = Eabx̂ab + Adx̂d + Bdu + Kd(yd − ŷd) + ρsign(yd − ŷd)

(37)

Obviously, by making a suitable choice of suitable Kd and ρ, it is possible
to make x̂d − xd to converge exponentially to zero in spite of the presence
of the unknown inputs. So long that {A,G,C} is minimum phase, there
exists Kab that can make x̂ab − xab converge to zero. This can be carried out
using classical Luenberger observer design. This procedure has considerably
simplified the Walcott-Zak SMO design because no constrained Lyapunov
equation is involved in the design process.

Remark 2. Note once again that the existence conditions for unknown in-
puts observers (UIO) [33,23] are exactly the same as those stated in Lemma
4. This is interesting in that it was generally perceived that the sliding mode
observers can be designed under less restrictive conditions than UIOs. Con-
sidering the the fact that the dynamics of UIO is much simpler than that of
Walcott-Zak observer, in addition to the fact that in the case of the UIO the
assumption of boundedness of unknown inputs is unnecessary, these results
raise certain questions with regards to the applicability and/or advantages
of the SMOs. It is also noteworthy to point out that UIO and SMO rely on
different operating principles to achieve their robustness to matched uncer-
tainties. Typically when designing an UIO, it is not necessary to estimate
the states of xd subsystem which is subject to unknown inputs, because they
are available through the measurement. For an observer based control system
design it is unnecessary to estimate those states whose value can be derived
directly from outputs. However, for fault diagnosis purposes, the estimation
of those measurable and unknown input driving states through sliding mode
method may prove to be very useful. Thus it is anticipated that a fault diag-
nosis scheme based on SMO may have additional capabilities. This issue will
be explored in the sequel.

Remark 3. To conclude the discussion of this section, a comparison between
the SMO based on the walcott and Zak design versus that of the Utkin’s
equivalent control principle is in order. The Walcott-Zak based sliding-mode
observer (16) design makes x̂ → x. Because d(x, u, t) may represent both
nonlinearities and unknown inputs due to uncertainties (modeling error or
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disturbance), it means the Walcott-Zak SMO (16) results in an exact es-
timation for certain class of nonlinear uncertain systems. If the number of
unknown inputs are equal to outputs, it will require the unknown input free
subsystem itself to be stable. In this approach no equivalent control infor-
mation is used. The main disadvantage of the Walcott-Zak observer is that
it imposes strong structural constraint on the system and thus is of limited
application. On the other hand, the SMOs designed based on the equivalent
control principle can work under less stringent existence conditions. How-
ever, section 2.1 showed that the drawback with these SMOs comes from the
fact that these SMOs can introduce unknown inputs into error dynamics for
those unmeasurable states. As a result there exist bounded estimation er-
ror for bounded modeling errors when equivalent control based sliding mode
observers are employed.

In the next section we propose a novel sliding mode observer design tech-
nique by exploiting the structural property of subsystems and by careful use
of the equivalent control signal. The proposed design significantly reduces the
structural constraint required by the previous design approaches.

3 A Sliding Mode Observer for Linear Uncertain Systems

Consider the SCB form of (2). We propose the following sliding mode observer
for each xid subsystem in (23) based on equivalent control method,

˙̂x
i

1 = x̂i
2 + Li

1yd + Bi
1u + λi

1sign(yi − x̂i
1)

˙̂x
i

2 = x̂i
3 + Li

2yd + Bi
2u + λi

2sign(ei
2)

... ...
˙̂x
i

qi−1= x̂i
qi

+ Li
qi−1yd + Bi

qi−1u + λi
qi−1sign(ei

qi−1)
˙̂x
i

qi
=Eiax̂a + Eibx̂b + Eicx̂c +

∑md

j=1 Eij x̂jd + Bi
qi

u + λi
qi

sign(ei
qi

)

(38)

where x̂a, x̂b, x̂c are estimations for the states xa, xb, xc respectively, coming
from sub-observers which are given later. And

ei
j = (λi

j−1sign(ei
j−1))eq (39)

for j = 2, ..., qi, and e1 = x̂i
1 − yi can be calculated directly. The equivalent

control signal (v)eq for signal v is calculated by a low pass filtering signal
v [14]. Further, we do not inject the observation error information before
reaching the sliding manifold linked with this information. Moreover, we reach
the manifold one by one. More precisely,

ei
j = (λi

j−1sign(ei
j−1))eq = 0

before ei
j−1 reaches its sliding manifold.
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Theorem 3. For system (23) and observer (38) with any initial state and
any bounded unknown input di(x, u, t), there exists a choice of

λi
j , i = 1, ...,md, j = 1, ..., qi

such that the state estimation converges in finite time to its real value.

Proof: From (23) and (38), we obtain the following observation error
dynamics of ei

j = xi
j − x̂i

j , j = 1, ..., qi,

ėi
1 = ei

2 − λi
1sign(ei

1)
ėi
2 = ei

3 − λi
2sign(ei

2)
... ...

ėi
qi−1 = ei

qi
− λi

qi−1sign(ei
qi−1)

ėi
qi

= Eiaea + Eibeb + Eicec +
∑md

j=1 Eijejd + di − λi
qi

sign(ei
qi

)

(40)

where ec = xc − x̂c, ea = xa − x̂a, eb = xb − x̂b. Thus, as the known and
unknown inputs are bounded, the state does not go to infinity in finite time.
Consequently, the observation error state is also bounded. By choosing λi

1 >
|ei

2|, ei
1 goes to zero in finite time t1. Moreover, after t1, we have

ei
2 = (λi

1sign(e1))eq = ei
2.

Therefore, after t1, the second error equation becomes

ėi
2 = ei

3 − λi
2sign(ei

2).

If λi
2 > |ei

3|, e2 goes to zero in finite time t2 > t1. Therefore after t > t2,

ei
3 = (λi

2sign(e2))eq = ei
3,

ėi
3 = ei

4 − λi
3sign(ei

3).

We run the procedure up to step qi, thus after tqi−1, we have

ėi
qi

= Eiaea + Eibeb + Eicec +
md∑
j=1

Eijejd + di − λi
qi

sign(ei
qi

).

Let

λi
qi

> |Eiaea + Eibeb + Eicec +
md∑
j=1

Eijejd + di|, (41)

eqi
converges to zero in finite time tqi

> tqi−1.
Now, going back to provide the estimation of xa, xb and xc in (38). A

classical Luenberger observer is applied to subsystem xb,

ẋb = Abxb + Lbdyd + Bbu, yb = Cbxb
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because it is unknown input free, and (Ab, Cb) forms an observable pair. Of
course, the Utkin SMO can be used as well. The subsystem xa can be further
decomposed into two subsystems,

ẋ−
a = A−

a x−
a + L−

a y + B−
a u

ẋ+
a = A+

a x+
a + L+

a y + B+
a u

A−
a is stable, and therefore a Luenberger observer for subsystem x−

a can be
designed. However, because A+

a is unstable, some other way has to be found
in order to estimate x+

a .
Let us now discuss the possibility of estimating x+

a together with the esti-
mation of xc. After ei

qi
reaches sliding mode, we have the following equivalent

control signal:

(λi
qi

sign(ei
qi

))eq = E−
iae−a + E+

iae+
a + Eibeb + Eicec +

∑md

j=1 Eijejd + di

i = 1, ...,md

and after all states of x−
a , xb and xd have been estimated, it will equal to

(Λsign(eq))eq = Edcec + E+
dae+

a + dd (42)

where all md equivalent control signals are written together as a vector. Con-
sidering the above equivalent control signal as the output of the xc, x

+
a sub-

system, this subsystem can be rewritten as

ẋac = Aacxac + Lacy + Bacu + Gacd
yac = Eacxac − Eacx̂ac + God

(43)

where

xac =
[

x+
a

xc

]
, Aac =

[
A+

a 0
GcE

+
ca Ac

]
, Gac =

[
0 0

Gc 0

]
,

Eac =
[
E+

da Edc

]
, Go =

[
0 I

]
,

An interesting fact is that (Aac, Eac) is detectable if (A,C) is detectable.
Unfortunately, the system (43) has unknown inputs, and no UIO for this
system exist according to the following lemma.

Lemma 6. [28] A UIO for system (43) exists only if

rank

[
Go EacGac

0 Go

]
= rankGo + rank

[
Gac

Go

]
(44)

It is easy to show that condition (44) will never be satisfied due to the par-
ticular form of Gs, Go.

As a last resort, we may use H2 or H∞ optimal observer design techniques
proposed in [43] to make the estimation error as small as possible. On the
other hand, [49] has shown that exact or approximate estimation using sliding
mode observer is impossible if all the measurements of a system are disturbed
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by the unknown inputs. Assuming the disturbance on the measurement is
bounded by some constant v0, the estimation error will not be bigger than
v0.

Finally, although in general we can not design observers to make e+
a and

ec become zero, as long as these errors are bounded, their value will not affect
the convergence of the sliding mode observer (38) with a gain satisfying (41).

At this point, based on the above analysis, we shall summarize the new
sliding mode (functional) observer design procedure for a linear uncertain
system as follows.

Sliding mode and sliding mode functional observer design algorithms

The steps of the following algorithm can render either a state or when the
state observer design is not possible, a functional sliding mode observer:

i. Transform system (2) it into its SCB form (19)-(20) by non-singular trans-
formations Γ1, Γ2, Γ3.

ii. Estimate xd using the sliding mode observer (38), and estimate x−
a , xb

using a regular Luenberger observer. The measurement variable for the
transformed system yd, yb is derived from the original output by [yd, yb]′ =
Γ−1

2 y, and the known input distribution matrix is transformed by Γ−1
1 B.

iii. If {A,G,C} is left invertible (or equivalently nc = 0) and is minimum
phase ( or n+

a = 0), the original state can be derived by

x = Γ1[x−
a xb xd]T .

iv. If nc �= 0 or n+
a �= 0, any linear function of the states, Tk×nx can be

estimated, where T must satisfy the following condition:

TΓ1 = [T−
a 0 Tb 0 Td]k×n = T̂k×n

where T−
a , Tb, Td are any matrices of dimension k×n−

a , k×nb and k×nd

respectively. Obviously, the maximum rank of T is n−
a + nb + nd.

Remark 4. The Walcott-Zak SMO requires rank(CG) = rank(G), which im-
mediately implies that nc = 0 and qi = 1, i = 1, ...,md, namely, the number
of infinite zeros of order i is one. The restriction on the system {A,G,C}
infinite zero structure is removed in our algorithm. Unfortunately, the re-
quirement of nc = 0 is still necessary for estimating all states, and it implies
rank(C) ≥ rank(G).

Remark 5. In [60], linear state function Tx is estimated using unknown input
functional observer (UIFO), and the maximum rank of T is n−

a + nb. The
maximum rank of T has been increased significantly using our new SMFO
design.

Checking the equivalent control signal (42), we have following corollary about
unknown inputs estimation,
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Corollary 1. If the system {A,G,C} is left invertible (i.e. nc = 0) and all
unstable transmission zeros are unobservable modes (i.e. in SCB form, E+

da =
0), all unknown inputs can be estimated exactly using the proposed SMFO.
If system {A,G,C} is not left invertible (i.e. nc > 0) but all eigenvalues of
corresponding nc subsystem are unobservable modes (i.e. Edc = 0), and all
unstable transmission zeros are unobservable modes (i.e. E+

da = 0), at least
md unknown inputs can be estimated exactly using the proposed SMFO.

Remark 6. Compared with input estimator based on UIFO, which was dis-
cussed in [11,61], our new SMFO has better capability in estimating the
unknown inputs as well.

4 Nonlinear SMO Design Extension

Consider multivariable nonlinear systems described in state space form by
equations of the following form

ẋ = f(x) + B(x, u) +
∑m

i=1 gi(x)di(x, u, t)
y1 = h1(x)
... ...
yp = hp(x)

(45)

in which x ∈ M , a C∞ connected manifold of dimension n, f(x), B(x, u), and
G(x) = [g1(x), ..., gm(x)] are smooth vector fields on M , and hi(x), i = 1, ..., p
are smooth functions from M to R. In what follows, local coordinates are
generally used. When global properties are considered, notions are simplified
by assuming that M accepts a global coordinate system.

Assumption 1 We assume that p ≥ m, and the first m outputs have a
vector relative degree {q1, ..., qm} corresponding to G(x) at each point x0 ∈
M . Stated differently, this means

Lgj
Lk

fhi(x) = 0

for all j = 1, ...,m, for all k < qi − 1, for all i = 1, ...,m, and for all x in M .
Further, the m × m matrix

A(x) =




Lg1L
q1−1
f h1(x) ... Lgm

Lq1−1
f h1(x)

Lg1L
q2−1
f h2(x) ... Lgm

Lq2−1
f h2(x)

... ... ...

Lg1L
qm−1
f hm(x) ... Lgm

Lqm−1
f hm(x)




is nonsingular at each point x0 ∈ M .

Assumption 2 The distribution spanned by the vector fields g1(x),..., gm(x)
is involutive.
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Lemma 7. Given the system (45), if assumptions 1-2 are valid, then

q1 + ... + qm ≤ n

For i = 1, ...,m set,

φi
1 = hi(x)

φi
2 = Lfhi(x)

... ...

φi
qi

= Lqi−1
f hi(x)

if q = q1 + ... + qm is strictly less than n, it is always possible to find n − q
more functions φq+1(x), ..., φn(x) such that the mapping

Φ(x) = col(φ1
1(x), ..., φ1

q1
(x), ..., φm

qm
(x), φq+1(x), ..., φn(x))

has a Jacobian matrix which is nonlinear at each x0 ∈ M and therefore
qualifies as a local coordinate transformation in M . Moreover, based on As-
sumption 2, it is always possible to choose φq+1(x), ..., φn(x) in such a way
that

Lgjφi(x) = 0 (46)

for all i = q + 1, ..., n, j = 1, ...,m, and all x in M .
Set

xi
d =




xi
1

xi
2

...
xi

qi


 =




φi
1(x)

φi
2(x)
...

φi
qi

(x)




for i = 1, ...,m, and xd = ((x1
d)

T , ..., (xm
d )T ),

xo =




x1
o

x2
o

...
xn−q

o


 =




φq+1(x)
φq+2(x)

...
φn(x)




the equations under new coordinates can be written as

ẋi
1 = xi

2 + bi
1(xd, xo, u)

... ...
ẋi

qi−1 = xi
qi

+ bi
qi−1(xd, xo, u)

ẋi
qi

= ai(xd, xo) + bi
qi

(xd, xo, u) +
∑m

j=1 cij(xd, xo)dj

yi = xi
1

(47)

for i = 1, ...,m, and

ẋo = q(xd, xo) + p(xd, xo, u)
ym+1 = hm+1(xd, xo)
... ...
yp = hp(xd, xo)

(48)
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where

ai(xd, xo) = Lqi

f hi(Φ−1(xd, xo)), cij = Lgj
Lqi−1

f hi(Φ−1(xd, xo))

and

bi
k(xd, xo, u) =

∂(Lk−2
f hi)
∂x

B(Φ−1(xd, xo), u)

The above lemma is a trivial extension of Proposition 5.1.2 in [29]. The
nonlinear transformation Φ(x) decomposes the system (45) into two subsys-
tems. Next, we shall discuss the observer design for system (47)-(48).

Before one can proceed with the observer design, the observability of
nonlinear subsystem (47)-(48) needs to be studied. It is well known that
inputs which make a nonlinear system unobservable are called “bad inputs”
or “not universal inputs”. For known input signals, one can avoid applying
those “bad inputs”. However, the unknown inputs which may be the result
of a fault or certain other disturbances are beyond ones control. Therefore,
observability for all unknown inputs is in general necessary in order to design
a nonlinear unknown input observer, unless it can be guaranteed a priori
that the unknown inputs do not belong to the class of bad inputs. Based on
the work in [22], we have following lemma that shows the conditions such
that the observability of xd subsystem is independent of unknown inputs.

Lemma 8. Let xi
d = {x1

d, ..., x
i−1
d , xi+1

d , ..., xm
d }. Assume each xi

d subsystem
in (47) has its input term in the following form

bi
1(xd, xo, u) = bi

1(x
i
1, x

i
2, x

i
d, xo, u)

bi
2(xd, xo, u) = bi

2(x
i
1, x

i
2, x

i
3, x

i
d, xo, u)

... ...
bi
qi−1(xd, xo, u) = bi

qi−1(xd, xo, u)
bi
qi

(xd, xo, u) = bi
qi

(xd, xo, u)

(49)

and the functions

1 +
∂bi

j

∂xi
j+1

�= 0, j = 1, ..., qi − 1

and state xo, xi
d is considered as inputs for xi

d subsystem. Then xi
d subsystem

is uniformly observable for all inputs u, d, xi
d and xo.
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Theorem 4. If each xi
d subsystem in (47) has its input term in the following

form

bi
1(xd, xo, u) = bi

1(y, u)
bi
2(xd, xo, u) = bi

2(x
i
2, y, u)

... ...
bi
qi−1(xd, xo, u) = bi

qi−1(x
i
2, ..., x

i
qi−1, y, u)

bi
qi

(xd, xo, u) = bi
qi

(xd, xo, u)

(50)

there exists a choice of λi
j , i = 1, ...,m, j = 1, ..., qi such that following sliding

mode observer can be built to estimate states,

˙̂x
i

1 = x̂i
2 + bi

1(y, u) + λi
1sign(yi − x̂i

1)
˙̂x
i

2 = x̂i
3 + bi

2(x̂
i
2, y, u) + λi

2sign(ei
2)

... ...
˙̂x
i

qi−1 = x̂i
qi

+ bi
qi−1(x̂

i
2, ..., x̂

i
qi−1, y, u) + λi

qi−1sign(ei
qi−1)

˙̂x
i

qi
= ai(x̂d, x̂o) + bi

qi
(x̂d, x̂o, u) + λi

qi
sign(ei

qi
)

(51)

where ei
j , j = 1, ..., qi are given by

ei
j = (λi

j−1sign(ei
j−1))eq (52)

for j = 2, ..., qi, and ei
1 = ei

1 = yi − x̂i
1 can be obtained directly.

Proof: Follows along the same lines as the linear case ([63]).
Once again, the equivalent control signal (v)eq for signal v is calculated

by low pass filtering the signal v with anti-peaking structure [14]. This anti-
peaking structure is based on the principle that the observation error in-
formation is not used before reaching the sliding manifold linked with this
information. Moreover, we reach the manifold one by one in a sort of a re-
cursive fashion. As a result of this, obtain a sub-dynamics of dimension one
is encountered and consequently the peaking phenomena is avoided. More
precisely,

ei
j = (λi

j−1sign(ei
j−1))eq = 0

before ei
j−1 reaching its sliding manifold.

Remark 7. Note that the transformation in Lemma 7 decomposed the non-
linear system (45) into two interconnected subsystem with states xd and xo.
Of these two subsystems, the unknown inputs only appear in one, namely
the xd. The observer proposed in the above discussion will provide state es-
timates for this subsystem. On the other hand, the xo subsystem is free of
the unknown inputs, and any applicable existing observer can be used to es-
timate its state x̂o. This estimate is needed in observer (51), for estimating
the state of xd. On the other hand, if xo subsystem is unobservable, or if it
is too complex to build an observer for it, x̂o will not approximate real value

4.1 SMO for Subsystem with Unknown Inputs

We shall first build an unknown input independent observer for xd subsystem.
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of xo. However, as long as both x̂o and xo are bounded, observer (51) will
always converge as long as gain λi

qi
is selected large enough.

It is therefore possible to let x̂o = 0 and still estimate part of the state.
The reason for this desirable property is that xo is only confined to the last
equation. In such a case, we are essentially building a functional sliding mode
observer. It is well known, at least in the linear realm, that it is generally
possible to design functional observers under less restrictive conditions than
full state observers. Such observers can be useful for control purposes and
more so for fault diagnosis applications. In fault diagnosis applications ob-
servers are essentially used as residual generators. The estimation error of
the observer is used as a residual that is used to draw conclusions about the
health of the system. In such applications, a full estimate of the actual state
may not be necessary and a functional observer may accomplish the fault
detection task under less restrictive existence conditions [62].

Remark 8. If q1+ ...+qm = n, then the xo subsystem will actually disappear,
and all states can be estimated.

Remark 9. It should be noted that if qi = 1, i = 1, ...,m, the above theorem
does not put any special constraint on the input term. qi = 1, i = 1, ...,m
means all states of subsystem xd are measurable. An observer for such a
system may be unnecessary for controller synthesis, but will be useful in
fault detection and isolation (FDI) applications.

To conclude this section, although sliding mode concept provides a nice
framework for observer design of a general class of nonlinear uncertain sys-
tems, due to the inherent property of sliding mode, there exist two basic
drawbacks for practical applications. First, although the bound of unknown
input is known, the estimation error bound is not known a priori . This makes
the selection of the gain difficult. If the gain is too large, observer will exhibit
excessive chattering before reaching sliding mode. If the gain is too small,
observer may never be able to reach sliding mode and converge to real state
value. Secondly, it is difficult to choose a suitable time to use the equivalent
control signal. The equivalent control signal should be used only if its corre-
sponding estimation error is near zero, or in sliding mode. However, except
for those states which are measured, we do not know if a state estimation
is in sliding mode or not. If the equivalent control is used too early, peaking
phenomena is unavoidable. If the equivalent control is used too late, a correct
estimation in time cannot be achieved which is unacceptable for high quality
control.

5 A Simple Sliding Mode Output Observer for Fault
Diagnosis

Most observer-based fault diagnosis schemes generate residuals by compar-
ing the measurement and its corresponding estimate provided by observers.
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Because most observers will produce wrong estimates when faults occur, a
nonzero residual would raise an alarm. In this section it is shown that slid-
ing mode output observers can produce the estimates of outputs for general
nonlinear systems, and can be useful for detecting faults of large magnitude.
However, it will be shown that the SMOO framework is not useful for the de-
tection of incipient faults in many practical applications where system model
mismatch is unavoidable and is significant. An incipient fault slowly develops
from zero to a certain significant value, it will neither produce a sudden peak
in the residual, nor will it push the system out of sliding mode, at least when
its value is small in its early stage. Many previous studies on SMO based
fault diagnosis neglected this important limitation.

Consider a multivariable nonlinear system described in state space form
by equations of the following kind:

ẋ = A(x, u, d, fa(t))
y = H(x) + fs(t)

(53)

where x ∈ M , a C∞ connected manifold of dimension n, and H(x) =
[h1(x), ..., hp(x)] are smooth vector fields on M , u and d represent the control
input and the signal representing the system uncertainties respectively. It is
assumed that all x, u and d are bounded. The term fa(t) represents actua-
tor and component faults, while fs(t) = [f1

s (t), ..., fp
s (t)] represent the sensor

faults, which can be any function of time.
A general sliding mode output observer (SMOO) for the above system is

of the following form,

ż = L(y, u) + Λsign(y − z) (54)

where z is an estimate of H(x), L(y, u) is a function of y and u, Λ is a diagonal
gain matrix with elements λi, i = 1, ..., p. The design of L(y, u) is discussed
later.

Based on the above, the dynamics of the estimation error e = H(x) − z
can be obtained

ė =
∂H(x)

∂x
A(x, u, d, fa(t))

−L(H(x) + fs(t), u) − Λsign(H(x) + fs(t) − z) (55)

Note that e cannot be measured, and only r = y − z = H(x) + fs(t) − z is
measurable. The quantity r is the sliding surface and can be considered as a
residual signal. Assume ei = hi(x) − zi and defining

∂H(x)
∂x

A(x, u, d, fa(t))=




m1(x, u, d, fa(t))
m2(x, u, d, fa(t))

...
mp(x, u, d, fa(t))


 and L(y, u)=




l1(y, u)
l2(y, u)

...
lp(y, u)


 .

the dynamics of ei can be expressed as

ėi = mi(x, u, d, fa(t)) − li(H(x) + fs(t), u) − λisign(ei(x) + f i
s(t)).
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Assuming that no sensor or actuator faults are present, i.e. fa(t) = fs(t) = 0,
and if |mi(x, u, d, 0) − li(H(x), u)| ≤ λi, we have

d

dt
e2
i = 2eiėi = 2ei(mi(x, u, d, 0) − li(H(x), u) − λisign(ei)).

Therefore,

if ei > 0, d
dte

2
i = 2ei(mi(x, u, d, 0) − li(H(x), u) − λi) < 0;

if ei < 0, d
dte

2
i = 2ei(mi(x, u, d, 0) − li(H(x), u) + λi) < 0.

Thus ri = ei exponentially decreases to zero according to the Lyapunov prin-
ciple. Next we shall investigate what happens when sensor or actuator faults
occur. It is necessary to determine how a fault interacts with the sliding sur-
faces and how the sliding performance of the observer is affected.

Case 1: Effect of sensor faults

If sensor i becomes faulty at time ti, namely f i
s(t) �= 0 after t > ti, the

residual ri = ei + f i
s(t), then

ṙi = mi(x, u, d, 0) − li(H(x) + fs(t), u) + ḟ i
s(t) − λisign(ri). (56)

In this case the sensor fault may produce one of two results:

i. If |mi(x, u, d, 0) − li(H(x) + fs(t), u) + ḟ i
s(t)| ≤ λi, the sliding behavior

can then only occur on the surface

ri = hi(x) + f i
s(t) − zi = 0. (57)

In other words, the estimation error hi(x) − zi is nonzero. However, the
estimation error cannot be measured, and the measured residual signal
will still be zero. Fortunately, if the fault is an abrupt event, or f i

s(t)
jumps from zero to a significantly large value at time ti (see Figure 2a), a
corresponding abrupt change will be observed in ri. The reason for such a
phenomena is that the residual will change from zero to f i

s(ti), and then
decrease to zero quickly. Unfortunately, not all abrupt changes of f i

s(t)
may represent faults that need to be detected. Consider the shape of f i

s

shown in Figure 2b, which represents a sensor jitter. This sensor jitter
will produce almost the same residual shape as an abrupt sensor fault. In
such a case, it is difficult to distinguish between the real abrupt sensor
fault and sensor jitter.

ii. If

|mi(x, u, d, 0) − li(H(x) + fs(t), u) + ḟ i
s(t)| > λi (58)

persistently holds, the observer will be disturbed from its surface and slid-
ing will cease. In this case, the ith residual element will become nonzero
persistently, and will alarm the occurrence of a sensor fault.
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Fig. 2. Two possible sensor failure modes

For multiple sensor fault identification, we need to design li(y, u) = li(yi, u)
so that ri is only sensitive to f i

s(t).

Case 2: Effect of actuator faults

If actuators fail, namely if fa(t) �= 0 when t > ta, we may also observe
two effects on the residual:

i. If |mi(x, u, d, fa(t)) − li(H(x), u)| ≤ λi for all i = 1, ..., k, the observer,
will keep on the sliding surface and faults can not be detected, i.e.,

ri = ei = 0, i = 1, ..., k.

ii. If

|mi(x, u, d, fa(t)) − li(H(x), u)| > λi (59)

is true persistently for some i ∈ {1, 2, ...k}, the residual element, ri, will
become nonzero which would indicate an onset of a failure.

In practice, due to ever present measurement noise, saturation function
could be used to replace the sign function. When there are no faults present,
the residual is not exactly zero, but less than a small threshold. Once its
value passes the threshold, an alarm is registered.

Amongst the past FDI studies, [52] only considered the abrupt sensor
fault detection, and [25] simply assumed that the faults were persistent and
had moved outside the interval of robustness. While these studies are based
on the linearized system model, the above discussion has conceptually shown
that fault diagnosis using the sliding mode concept can actually be used for
general nonlinear uncertain systems, as long as

i. The upper bound of model mismatch |mi(x, u, d, 0)−li(H(x), u)| is known
a priori , such that a suitable gain λi can be selected;

ii. The faults result in a system model mismatch out of the boundary, namely
condition (58) or (59) is satisfied;
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Therefore, in order to improve the capability of SMOO based fault diag-
nosis scheme, we must minimize the effect of the model mismatch through
the design of L(y, u). Recall the error dynamics of SMOO given by (55), we
know that L(y, u) should be designed such that

‖∂H(x)
∂x

A(x, u, d, 0) − L(H(x), u)‖

is minimized for all possible value of state x and input u. The solution of
L(y, u) will be strongly dependent on the specific form of the nonlinear equa-
tion (53). Consider a simple case of linear uncertain systems described by the
following equation:

ẋ = Ax + Bu + Gd + Fafa

y = Cx + Fsfs.
(60)

With the general form of SMOO (54), the estimation error equation (55) is
simplified as

ė = CAx + CBu + CGd + CFafa − L(Cx + Fsfs(t), u)−
Λsign(Cx + Fsfs − z).

For the linear system (60), L(y, u) is designed as L(y, u) = Ky + CBu. The
problem of minimizing the model mismatch is formulated as finding the gain
K, such that ‖CA − KC‖ is minimized. Obviously, the residual is totally
independent of the unknown input d and the unknown states x, if and only
if CG = 0 and there exists K satisfying CA − KC = 0, namely

ė = CFafa − KFsfs(t) − Λsign(e + Fsfs).

However this is impossible in most cases.

6 Incipient Fault Diagnosis Using SMFO for Linear
Uncertain Systems

In order to detect incipient faults, we have to exploit the structural properties
of the system. Therefore, we use special coordinate basis (SCB) to transform
the linear uncertain system (60). The SCB transformation is applied to matri-
ces (A,G,C) of the system (60). It is easy to show that the fault distribution
matrices Fa and Fs will be transformed as

Fa = Γ−1
1 Fa =

[
FT

aa FT
ab FT

ac FT
ad

]T
, (61)

and

Fs = Γ−1
2 Fs =

[
Fsd

Fsb

]
. (62)
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Therefore, the SCB form of the system (60) will be

ẋa = Aaxa + LadCdxd + LabCbxb + Bau + Faafa,
ẋb = Abxb + LbdCdxd + Bbu + Fabfa, yb = Cbxb + Fsbfs,
ẋc = Acxc + LcdCdxd + LcbCbxb + GcEcaxa + Gcdc + Bcu + Facfa

(63)

and xd =
[
x1d x2d ... xmdd

]T . Each xid, i = 1, ..., ,md is further composed of
qi states, or

xid =
[
xi

1 xi
2 ... xi

qi

]T
;

so Fad = [F 1
d1, ..., F

1
dq1

, ..., Fmd

d1 , ..., Fmd

dqmd
]T , and the equations of xid are

ẋi
1 = xi

2 + Li
1Cdxd + Bi

1u + F i
d1fa

ẋi
2 = xi

3 + Li
2Cdxd + Bi

2u + F i
d2fa

... ...
ẋi

qi−1 = xi
qi

+ Li
qi−1Cdxd + Bi

qi−1u + F i
d(qi−1)fa

ẋi
qi

= Eiaxa + Eibxb + Eicxc +
∑md

j=1 Eijxjd + Bi
qi

u + F i
dqi

fa + di

yid = xi
1 + f i

sd

(64)

where f i
sd is the ith element of Fsdfs. Note that yd = Cdxd if no sensor faults

occur.

6.1 Residual Generation Using Utkin SMO for Unknown Input
Free Subsystem

Here we discuss if a SMO can be used to generate the residuals if observable
and unknown input free subsystem, xb, does exist. It is well known that
an Utkin SMO can be built for a linear system without unknown input. In
order to design an Utkin SMO, we further transform the xb subsystem into
following form:

ẋb1 = A11xb1 + A12xb2 + Lbd1Cdxd + Bb1u + Fab1fa

ẋb2 = A21xb1 + A22xb2 + Lbd2Cdxd + Bb2u + Fab2fa

yb = xb2 + Fsbfs.
(65)

The corresponding Utkin SMO is

˙̂xb1 = A12yb + A11x̂b1 + Lbd1yd + Bb1u + Λ2(Λ1sign(yb − x̂b2))eq

˙̂xb2 = A22x̂b2 + A21x̂b1 + Lbd2yd + Bb2u + Λ1sign(yb − x̂b2)
(66)

where Λ1 is a nonsingular diagonal matrix and its diagonal elements must be
large enough to compensate initial estimation errors. (Λ1sign(yb − x̂b2))eq is
the equivalent control of Λ1sign(yb − x̂b2), Λ2 is a matrix selected to make
A11 − Λ2A21 stable.

The estimation error equations for the observer (66) are

ėb1 = −A12Fsbfs + A11eb1 − Lbd1Fsdfs + Fab1fa−
Λ2(Λ1sign(eb2 + Fsbfs))eq

ėb2 = A22eb2 + A21eb1 − Lbd2Fsdfs + Fab2fa − Λ1sign(eb2 + Fsbfs)
(67)
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where eb2 = xb2 − x̂b2, eb1 = xb1 − x̂b1.
Now, we set the residual as r = yb − x̂b2 = eb2 + Fsbfs. Its dynamic

equation is

ṙ=A22r − A22Fsbfs + A21eb1 − Lbd2Fsdfs − Fsbḟs + Fab2fa − Λ1sign(r).

If faults are incipient, it is expected that r will keep on the sliding plane, thus

req = (Λ1sign(r))eq

= −A22Fsbfs + A21eb1 − Lbd2Fsdfs − Fsbḟs + Fab2fa

= A21eb1 + fw2,
(68)

then

ėb1 = (A11 − Λ2A21)eb1 + A12Fsbfs − Lbd1Fsdfs + Fab1fa − Λ2fw2

= (A11 − Λ2A21)eb1 + fw1 − Λ2fw2.

Finally, we have the following transfer function of req,

req(s) = A21(sI − A11 + Λ2A21)−1(fw1(s) − Λ2fw2(s)) + fw2(s). (69)

req will be the residual that is used for fault detection. req is a function of the
fault signal and is independent of unknown inputs or unknown state variable.
In practice, we can easily check if req will be nonzero for certain faults using
equation (69).

Remark 10. If Cb happens to be of full rank, the above Utkin SMO reduces
into the simple SMOO discussed in Section 5. Because eb1 term actually
disappears under this condition, req in equation (68) is simplified as

req = −AbFsbfs − LbdFsdfs − Fsbḟs + Fabfa.

If there are no sensor faults and Fab is full column rank, Fab has a left
inverse = (Fa)L, and the actuator faults can actually be identified directly
as fa = (Fa)L(r)eq.

6.2 Residual Generation Using SMFO for Subsystem with
Unknown Input

Here we examine how fault information in the xd subsystem can be extracted,
even though the xd subsystem is affected by unknown input. In Section 3 the
following SMO was built for xid subsystems

˙̂x
i

1 = x̂i
2 + Li

1yd + Bi
1u + λi

1sign(yid − x̂i
1)

˙̂x
i

2 = x̂i
3 + Li

2yd + Bi
2u + λi

2sign(ri
2)

... ...
˙̂x
i

qi−1= x̂i
qi

+ Li
qi−1yd + Bi

qi−1u + λi
qi−1sign(ri

qi−1)
˙̂x
i

qi
=Eiax̂a + Eibx̂b + Eicx̂c +

∑md

j=1 Eij x̂jd + Bi
qi

u + λi
qi

sign(ri
qi

)

(70)
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where x̂a, x̂b, x̂c are estimations for states xa, xb, xc respectively, and

ri
k = (λi

k−1sign(ri
k−1))eq (71)

for k = 2, ..., qi, and ri
1 = y1d− x̂i

1 and can be obtained directly. The x̂a, x̂b, x̂c

are given by

˙̂xa = Aax̂a + Ladyd + Labyb + Bau,
˙̂xb = Abx̂b + Lbdyd + Bbu + Kbyb,
˙̂xc = Acx̂c + Lcdyd + Lcbyb + GcEcax̂a + Bcu.

(72)

We can make x̂b → xb by designing Kb such that Ab − KbCb is a stable
matrix. However, ea = xa − x̂a will not be zero if Aa is an unstable matrix
and the initial estimation error is nonzero. Also, ec = xc − x̂c will not be zero
because of the unknown input. However, if no sensor faults appear and

λi
k > ‖xi

k+1 − x̂i
k+1‖

k = 1, 2, ..., qi − 1, as well as

λi
qi

> ‖Eiaea + Eicec + di‖
the observer (70) will give the right estimation of xid.

To analyze the effect of the faults, let us consider the dynamic equation
of the estimation error ei

1 = xi
1 − x̂i

1, which is given by

ėi
1 = ei

2 − Li
1fsd + F i

d1fa − λi
1sign(ei

1 + f i
sd)

and the residual is given by

ri
1 = yid − x̂1

1 = ei
1 + f i

sd (73)

Since ei
1 = 0 so long that f i

sd = 0, the above algebraic equation for ri
1 implies

that ri
1 will become nonzero as f i

sd becomes nonzero. On the other hand, the
dynamics of ri

1 is governed by

ṙi
1 = ei

2 − Li
1fsd + ḟ i

sd + F i
d1fa − λi

1sign(ri
1). (74)

Since detection of incipient faults is of interest, it is expected that magnitude
of −Li

1fsd + ḟ i
sd + F i

d1fa will be small. Note that we already chose λi
1 >

‖xi
2 − x̂i

2‖ = ei
2, and it is expected that

‖ei
2 − Li

1fsd + ḟ i
sd + F i

d1fa‖ < λi
1.

Under the above condition, ri
1 will approximate zero. With ri

1 = 0, its equiv-
alent control signal will be

ri
2 = (λi

1sign(ri
1))eq = ei

2 − Li
1fsd + ḟ i

sd + F i
d1fa. (75)

ri
2 is used for the estimation of xi

2, therefore,

ėi
2 = ei

3 − Li
2fsd + F i

d2fa − λi
2sign(ri

2).
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and the dynamics of ri
2 will be governed by

ṙi
2 = ei

3 − Li
2fsd − Li

1ḟsd + ḟ i
sd + F i

d2fa + F i
d1ḟa − λi

2sign(ri
2).

As long as λi
2 is large enough, ri

2 will approximate zero. However, if we com-
pare the algebraic representations of ri

1 and ri
2, namely equations (73) and

(75), we note that the derivative of sensor fault f i
sd appears in ri

2, which is
much more significant than f i

sd itself in ri
1.

The equivalent control signal of ri
2 is used further for the estimation of

xi
3, and so on, until ri

qi
is calculated. Following the above derivation process

and so long that no fault is large enough to make the system sliding stop, we
have following the following algebraic description of ri

k(k = 1, ..., qi) ,

ri
k = ei

k −
k−1∑
j=1

Li
jf

(k−j−1)
sd +

k−1∑
j=1

F i
djf

(k−j−1)
a + (f i

sd)
(k−1) = ei

k + f i
k,

where (·)j refers to the the jth derivative. On the other hand, all ri
k(1 ≤

k ≤ qi, 1 ≤ i ≤ md) will dynamically approximate zero. However, we may
observer peak phenomenon in ri

k(2 ≤ k) if the derivative of the fault signal
changes abruptly from zero to a nonzero value, which is likely to be the case
for incipient faults. For large ks a higher order of the derivative appears in ri

k

which will make fault detection possible. At the same time, fault isolation is
possible if the fault distribution matrices Li

k, F i
dk(k = 1, ..., qi, i = 1, ...,md)

have some special structure such that ri
k is only sensitive to certain faults.

The drawback of fault detection based on residual ri
k is that it is not

possible to distinguish between sensor or actuator jitter and more persistent
sensor or actuator faults. Again this is so because both events will produce
peak phenomena. On the other hand no other effect such as system uncer-
tainties or unknown inputs will produce such a peak. Therefore, occurrence
of peaks in ri

k can provide useful information for fault detection.

Remark 11. We can derive the equivalent control signal of ri
qi

as

ri
qi+1 = (λi

qi
sign(ri

qi
))eq

= Eiaea + Eibeb + Eicec +
∑md

j=1 Eijejd + ḟqi
+ F i

dqi
fa + di.

Even under healthy conditions, ri
qi+1 will be nonzero because of the estima-

tion errors of ea, ec and the unknown input di. We may also observer peak
phenomenon in ri

qi+1 because it contains the derivative of faults. However,
since it is never known how di changes, an occurrence of a peak phenomenon
in ri

qi+1 is an unreliable means for fault detection.

Remark 12. Note that if qi = 1 for all i = 1, ...,md, the above SMO is reduced
to SMOO for xd subsystem. There is no way to distinguish between the faults
and the unknown inputs under this condition.



Sliding Mode Observers and Fault Diagnosis 35

In summary, to accomplish robust fault diagnosis for a linear uncertain
system, it is proposed to decompose it into the SCB form. In the SCB form
since xa and xc subsystems have no outputs, they can not be used for the
purpose of residual generation. If xb subsystem exists, the residual generation
discussed in section 6.1 can be applied. If xd subsystem exist and not all
qi = 1, (i = 1, ...,md), we can build SMFO for xd subsystem and generate
the residual (71).

It should be stressed that in practice if the number of independent un-
known inputs is larger than the number of independent outputs, no unknown
input free subsystem exists and many of the commonly used techniques such
as the UIO based FDI will not be applicable. In such cases the SMFO for xd

subsystem significantly improves the possibility of robust fault detection for
the linear uncertain systems.

7 SMFO Based Incipient Fault Diagnosis for Nonlinear
Uncertain Systems

We consider the nonlinear uncertain systems described as:

ẋ = A(x) + B(x, u) + Fa(x, u)fa +
∑m

i=1 gi(x)di(x, u, t)
y = H(x) + fs

(76)

where H(x) = [h1(x), ..., hp(x)]T . In Section 4 it was shown that if the non-
linear system (76) satisfies the following conditions:

i. p ≥ m, where p,m are dimensions of the output and the unknown inputs
respectively,

ii. First m outputs have the relative degree {q1, ..., qm} corresponding to
the unknown input matrix G(x) = [g1(x), ..., gm(x)], and the distribution
spanned by the vector fields g1(x), ..., gm(x) is involutive,

then there exists a nonlinear transformation Φo(x) such that (76) can be
decomposed into one subsystem xd with unknown inputs, and one subsystem
without unknown inputs. The xd subsystem can be further decomposed into
m subsystems with triangular structure, or xd = [x1d, ..., xmd]T , and each xid

subsystem has qi states, or xid = [xi
1, ..., x

i
qi

]T , i = 1, ...,m. The equations are

ẋi
1 =xi

2 + bi
1(xd, xo, u) + F i

d1(x, u)fa

... ...
ẋi

qi−1=xi
qi

+ bi
qi−1(xd, xo, u) + F i

d(qi−1)(x, u)fa

ẋi
qi

=ai(xd, xo) + bi
qi

(xd, xo, u) +
∑m

j=1 cij(xd, xo)dj +F i
dqi

(x, u)fa

yid =xi
1 + f i

sd

(77)

The unknown input free subsystem can be written as

ẋo = q(xd, xo) + p(xd, xo, u) + s(xd, xo, u, fa)
ym+1 = hm+1(xd, xo) + Fm+1(x)fs

... ...
yp = hp(xd, xo) + Fp(x)fs

(78)
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In Section 4 it was also shown that if the input term of subsystem (77) is
in the following form

bi
1(xd, xo, u) = bi

1(yr, u)
bi
2(xd, xo, u) = bi

2(x
i
2, yr, u)

... ...
bi
qi−1(xd, xo, u) = bi

qi−1(x
i
2, ..., x

i
qi−1, yr, u)

(79)

where yr represents the sensor fault-free output, a nonlinear SMO can be
built because of its triangular structure,

˙̂x
i

1 = x̂i
2 + bi

1(y, u) + λi
1sign(yid − x̂i

1)
˙̂x
i

2 = x̂i
3 + bi

2(x̂
i
2, y, u) + λi

2sign(ri
2)

... ...
˙̂x
i

qi−1 = x̂i
qi

+ bi
qi−1(x̂

i
2, ..., x̂

i
qi−1, y, u) + λi

qi−1sign(ri
qi−1)

˙̂x
i

qi
= ai(x̂d, x̂o) + bi

qi
(x̂d, x̂o, u) + λi

qi
sign(ri

qi
)

(80)

where ri
k(k = 2, ..., qi) are given by (71). In this case ri

k can be written as

ri
k = ei

k +
k−1∑
j=1

(∆bi
j)

(k−j−1) +
k−1∑
j=1

(F i
dj(x, u)fa)(k−j−1) + (f i

sd)
(k−1) = ei

k + f i
k

where
∆bi

j = bi
j(x

i
2, ..., x

i
j , yr, u) − bi

j(x̂
i
2, ..., x̂

i
j , yr + fs, u).

Finally, the ri
qi+1 = (λi

qi
sign(ri

qi
))eq is equal to

ri
qi+1 = ai(xd, xo) − ai(x̂d, x̂o) + bi

qi
(xd, xo, u) − bi

qi
(x̂d, x̂o, u)

+
∑m

j=1 cij(xd, xo)dj + F i
dqi

(x, u)fa + ḟqi
.

(81)

Similar to the linear case, the usage of ri
k(2 ≤ k ≤ qi) for fault detection is

based on a peak phenomenon which would arise due to derivative of fault
signal.

To exploit the usage of an unknown input free subsystem for FDI, one
can try to build an observer for the xo subsystem. If xo is an observable
system and an observer could be built for it, then the following residuals can
be formulated:

rj = hj(x̂d, x̂o) − yj , j = m + 1, ..., p.

Unfortunately, the complete solution for nonlinear systems in the form of
(78) is an open problem and needs to be studied in the future.

Here we propose a sliding mode output functional observer (SMOFO) and
discuss its use for incipient fault diagnosis. Assume

yr,j = hj(xd, xo), j = m + 1, ..., p



Sliding Mode Observers and Fault Diagnosis 37

Y (x) = [yr,m+1, ..., yr,p]T

fts = [Fm+1(x)fs, ..., Fp(x)fs]

and

Yo = [ym+1, ..., yp]T

Obviously Yo = Y (x) + fts and Yo = Y (x) when fs = 0. The following
SMOFO is proposed

ż = L(Yo, x̂d, u) + Λsign(W (Yo) − z). (82)

It is expected that z → W (Y (x)). Let e = W (Y (x)) − z, in which case

ė = ∂W (Yo)
∂Yo

∂Yo

∂xo
(q(xd, xo) + p(xd, xo, u) + s(xd, xo, u, fa))

−L(Yo, x̂d, u) − Λsign(W (Yo) − z)
= M(xd, xo, u, fa) − L(Yo, x̂d, u) − Λsign(W (Yo) − z).

Set r = W (Yo)−z = W (Y (x)+fts)−z, then W (Y (x)+fts) can be represented
in a Taylor series expansion as

W (Y (x) + fts) = W (Y (x)) +
∞∑

k=1

W (Y (x))(k)fk
ts

k!
= W (Y (x)) + Q(x, fts)

where W (Y (x))(k) refers to the kth derivative. Thus, r = e + Q(x, fts). Rep-
resenting the derivative of Q(x, fts) as

∂Q

∂x
ẋ +

∂Q

∂fts
ḟts = D(x, fts, ḟts).

then

ṙ = M(xd, xo, u, fa) − L(Yo, x̂d, u) − D(x, fts, ḟts) − Λsign(r).

Similar to the principle of SMOO, r will approximate zero due to the high
gain design of Λ and will stay at zero even when there are incipient faults.
However, we can set residual for fault detection as the equivalent control
signal of r, which is

req = (Λsign(r))eq = M(xd, xo, u, fa) − L(Yo, x̂d, u) − D(x, fts, ḟts). (83)

Now to accomplish fault detection based upon the above, the following need
to be satisfied:

i. req = 0 when there are no faults, namely, fs = fa = 0. It is easy to show
that Q(x, fts) = 0 and D(x, fts, ḟts) = 0 if there are no faults. Therefore,
req is reduced to

req = M(xd, xo, u, 0) − L(Y (x), x̂d, u).
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Note that x̂d → xd when there are no faults, thus xd can be considered as
a known input for the xo subsystem. Given this, the objective of having
req = 0 under fault free condition can be achieved if and only if

M(xd, xo, u, 0) = L(Y (x), xd, u). (84)

ii. req is nonzero when fa �= 0 or fs �= 0. In practice this property need to
be checked using the equation (83).

Remark 13. Compared with SMOO, the SMOFO introduces one more degree
of freedom in the design process. That is the function of output W (Y (x)),
which could allow the effect of unknown states variable xo can be removed
through nonlinear state transformation. This design avoids the complex prob-
lem of estimating states for nonlinear systems. Unfortunately, we still need
to find a general means for designing W (Y (x)) and L(Y (x), xd, u) such that
condition (84) is satisfied. In the next section it will be shown that solutions
could be found through trial and error for certain nonlinear systems with
special structure.

8 Illustrative Examples

Example 1. In this example we shall briefly outline the application of SMOs
in engine diagnostics application. This example is concerned with the diag-
nostics issues on one engine subsystem, namely, the intake manifold.

In this study a model of the intake manifold dynamics was obtained based
on the physics of the intake process. This model can be used to generate en-
gine variables such as the manifold pressure (MAP), and mass air flow (MAF)
based on the throttle input, Exhaust Gas Recirculation(EGR), and RPM in-
puts. It is possible then to use the error between the measured MAP and the
predicted MAP from the model to detect MAP sensor failure. It can be shown
that for the particular case of the manifold dynamics which is a very stable
dynamic system, this approach can work for estimating the intake manifold
variables. However, in general it is well known that the dynamics of the open
loop model can not be used for estimation purposes as the estimates may be
unstable or slow to converge to their true values. In addition, since model
variation due to engine aging and car to car variations are expected, it is
important to consider improvements to the open loop strategy. Therefore, it
was also the purpose of this study to investigate means for robustifying the
model based diagnosis methodology. Here we investigate the design of a ro-
bust estimation and diagnosis scheme using a sliding mode observer strategy.

The model used for this study is based on a V8 engine model that was de-
veloped and validated (excluding the EGR model) using data from an exper-
imental vehicle [44]. The model used for this example was build in XMATH’s
System Build environment and is briefly discussed here.
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Throttle Body

ma =
(CdAth + CdiAi)P0√

RT0

Ψ (85)

where

Ψ =




√
2k

k−1 (( P
P0

)
2
k − ( P

P0
)

k+1
k ) if P

P0
> ( 2

k+1 )
k

k−1√
k( 2

k+1 )
k+1
k−1 otherwise

ma: Air flow rate
P : manifold pressure
P0: atmospheric pressure
k: ratio of specific heats
Ath: cross sectional area of throttle
Ai: idle Air Control (IAC) valve area
Cd: orifice discharge coefficient
R: Ideal gas constant for air
T0: Ambient temperature
The throttle flow area is a function of throttle geometry and throttle

angle,

Ath = c1 + c2(1 − cos(θ − θ0))

Intake Manifold Dynamic

Ṗ =
RmTm

V
(ma + megr − me) (86)

ṙ =
(1 + r)RmTm

PV
(megr − rmt) (87)

where
Rm: Ideal gas constant
Tm: Temperature
r: Fraction of EGR
me: Mass flow rate into engine cylinders
megr: EGR flow rate
V : Intake manifold volume

me
�
=

ηvVdPω

4πRmTm
(88)

where

Rm =
1

r + 1
R +

r

1 + r
Re Tm =

1
1 + r

T0 +
r

1 + r
Te
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Vd: engine displacement
ω: engine speed
T0: ambient temperature
Te: EGR temperature
Re: Ideal gas constant for EGR
ηv: Volumetric efficiency (function of MAP & ω via look-up table).

Rotational Dynamics and Torque Converter

ω̇ =
1
J

(Ti − Tf − Tp − TL) (89)

Tp = C1ω
2 − C2ωωt − C3ω

2
t (90)

where
Ti: Indicated torque
Tf : Friction torque
TL: Load torque
Tp: Torque converter pump torque
J : Engine inertia
ωt: Torque converter’s turbine speed
Ci, i = 1, 2, 3: Constants

As mentioned before, in this study EGR effect was not modeled, i.e.,
r = 0, so that from (85)-(88), we have the following,

Ṗ =
RT0

V
(ma − me)

=
RT0

V

[
Cd(c1 + c2(1 − cos(θ − θ0))) + CdiAi√

RT0

P0Ψ(P ) − ηvVdPω

4πRT0

]
(91)

For notational convenience set

x
�
= P

combining (89)-(91), we can rewrite the dynamic model for x,

ẋ = −a(ω)x + b(θ, t)Ψ(x) (92)

where the output equation is given by y = x. Where

a(ω)
�
=

ηvVdω

4πV
b(θ, t)

�
=

Cd(c1 + c2(1 − cos(θ − θ0))) + CdiAi

V

√
RT0P0

Both a(ω) and b(θ, t) are positive functions, and from our model, we
estimate

a(ω) ≤ 0.0531ω, b(θ, t) ≤ 9000000.

Assuming that (92) represent real dynamics of the throttle body plus the
intake manifold subsystems, with the knowledge of the input variables (e.g.,
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speed, throttle angle, etc) it is possible to use a similar model along an
assumed initial condition on the manifold pressure to estimate future values
of the manifold pressure. This is possible, by using the following model,

˙̂x = −a(ω)x̂ + b(θ, t)Ψ(x̂) (93)

Note that any possible difference between the outputs of (92) and (93) is
due to the initial condition. Set

x̃ = x − x̂

then the error dynamics becomes,
˙̃x = −a(ω)x̃ + b(θ, t)(Ψ(x) − Ψ(x̂)) (94)

we know that

Ψ(x) − Ψ(x̂) = Ψ ′(x̄)x̃, (95)

where x̄ is between x and x̂.
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Fig. 3. Ψ(P ) and Ψ ′(P )

Combine (94) and (95), we have,
˙̃x = (−a(ω) + b(θ, t)Ψ ′(x̄))x̃

and from Figure 3, Ψ ′ ≤ 0, so −a + bΨ ′ < 0, then the above system is
asymptotically stable. This is the main reason that one can theoretically use
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the open loop model of this particular system to estimate its state, even with
a wrong initial condition. On the other hand, when there are some deviation
between the plant and the model, then this open-loop model-based estimation
will not yield accurate estimates and experimental data from two cars with
the same engine class indicated this as well.

As a result, for the intake manifold dynamics under investigation, we
propose an observer of the form

˙̂x = −a(ω)x̂ + b(θ, t)Ψ(x̂) + K(x − x̂) + K0sgn(x − x̂) (96)

Given the above observer, the error dynamics of the estimation and plant
state is,

˙̃x = (−a(ω) − K)x̃ + b(θ, t)(Ψ(x) − Ψ(x̂)) + d − K0sgn(x − x̂) (97)

By using an argument based upon the Lyapunov approach, we can show
that as long as the disturbances and uncertainties are bounded, i.e., d < K0,
then the sliding mode observer should perform satisfactorily.

Figure 4 shows actual data from a test vehicle during a typical city driving
cycle. Figure 5 illustrates the comparison between the open loop and the slid-
ing mode observer’s estimate of the MAP when there are plant uncertainties
present in the system. In Figure 6, the estimation error is illustrated which
clearly indicates that the sliding mode observer can provide a more robust
estimate. Finally, Figure 7 illustrates the fact that the MAP sensor failures
can still be detected when using the sliding mode observer whereas in the
case of the open loop observer, if there are model mismatches present due to
car to car variations, then this would be impossible.

20 40 60 800 100
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10

15

20

0

25

Fig. 4. Throttle input

Example 2. The system under consideration is a one-link manipulator with
revolute joints actuated by a DC motor as shown in Figure 8. The elasticity
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Fig. 5. Actual, open loop, and closed loop MAP estimates with plant uncer-
tainty.The closed loop estimator practically provides an estimate that is very close
to the actual MAP reading. On the other hand, the open loop estimator clearly can
not provide a good estimate due to the model mismatch.
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Fig. 6. Residuals of the open and closed loop observers with d(t) = 40, 000.The
closed loop estimator’s superior performance can be seen from the residuals.

of the joint can be well-modelled by a linear torsional spring [50]. The elastic
coupling of the motor shaft to the link introduces an additional degree of
freedom. The states of this system are motor position and velocity, and the
link position and velocity.

The corresponding state-space model is
˙θm = ωm

˙ωm = k
Jm

(θl − θm) − B
Jm

ωm + Kr

Jm
u

θ̇l = ωl

ω̇l = − k
Jl

(θ − θm) − mgh
Jl

sin(θl)

with Jm being the inertia of the motor; Jl being the inertia of the link; θm

the angular rotation of the motor; θl the angular position of the link; ωm the
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Fig. 7. MAP residuals for open and close loop observer with MAP sensor failure
at t = 20 seconds. (d(t) changing)

Motor
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Tosional spring

Fig. 8. A Flexible Link Robot

angular velocity of the motor; and ωl the angular velocity of the link. Thus,
the system dynamics are nonlinear and of the form

ẋ = Ax + Φ(x) + Bu

with x = [θm, ωm, θl, ωl]T

A =




0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 0


 , B =




0
21.6
0
0


 , Φ(x) =




0
0
0

−3.33sin(x3)




The above parameters for the system are typical and have been taken from
[50]. A nonlinear input–output linearizing control law for this system is pre-
sented in [50]. The control law guarantees closed-loop stability and tracking
of any desired trajectory by the robot link. However, this control law requires
measurement of all the states, and the measurement of angular position (x3)
and velocity (x4) of the link is difficult. Reference [40] proposed an observer
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by considering this system as a Lipschitz nonlinear system, where motor po-
sition and velocity are measured. Obviously, this systems can be considered
as a linear system subject to bounded unknown input, namely the nonlin-
ear term −3.33sin(x3). Further it is easy to verify that even if only motor
position is measured, or

y =
[
1 0 0 0

]
x,

a sliding mode observer can be designed using the proposed SMO algorithm.
The observer based design will relieve the need for measurement of motor
velocity. It should be stressed that no Walcott-Zak SMO or linear UIO for
the above robotic system exists because rank(CG) = 0 < rank(G) = 1. The
transformation

Γ1 =




1 0 0 0
0 1 0 0
1 0.0257 0.0206 0
0 1 0.0257 0.0206


 ;Γ2 = 1;Γ3 = 0.0206;

will transform the system into

ẋ =




0 1 0 0
0 0 1 0
0 0 0 1
0 −24.375 −68.1 −1.25


 x +




0
21.6
−27.0
1016.0


 u +




0
0
0
1


 d

and C is the same as before. The observer is

˙̂x =




0 1 0 0
0 0 1 0
0 0 0 1
0 −24.375 −68.1 −1.25


 x̂ +




0
21.6
−27.0
1016.0


 u +




λ1sign(y1 − x̂1)
λ2sign(e2)
λ3sign(e3)
λ4sign(e4)




Actually, the observer can be designed without a need for SCB transforma-
tion. First, build the observer for x1 as

˙̂x1 = x̂2 + λ1sign(y1 − x̂1)

After e1 has approximately reached zero, we know e2 = (λ1sign(e1))eq. Next,
build the observer for x2 as

˙̂x2 = −48.6y1 − 1.25x̂2 + 48.6x̂3 + λ2sign(e2)

After e2 approximates to zero, we know that

e3 = (λ1sign(e2))eq/48.6

and the observer for x3 is built as

˙̂x3 = x̂4 + λ3sign(e3)

Finally, e4 = (λ3sign(e3))eq and the observer for x4 is

˙̂x4 = −19.5y1 + 19.5x̂4 + λ4sign(e4)
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e4 will go zero in spite of the nonlinear term −3.33sin(x3). Actually, it does
not matter if the nonlinear term is more complicated, Lipschitz or not. In
simulation, we use the saturation function to replace sign function and upper
limit is set to be 0.02. The switching gains are λ1 = 800, λ2 = 120, λ3 = 120
and λ4 = 1400. The equivalent control signal is applied to the second, third
and fourth state estimation at t1 = 0.2sec, t2 = 0.8sec and t3 = 1.8sec
respectively, the initial states are assumed to be

x0 =
[
1 1 1 1

]
, x̂0 =

[
0 0 0 0

]
Figure 9 shows that all estimated states converge rapidly to the correct values.
We conclude that the proposed SMO is a practical solution to an important
robotic application.
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Fig. 9. Simulation of SMO for a flexible link robot

Example 3. The mechatronic system considered is an inverted pendulum.
This system has four states: x1, the position of base; x3 = ẋ1, the velocity
of the base; x2, the angular position of the pendulum; x4 = ẋ2, the angular
velocity of the pendulum. It is assumed that x1, x2 and x3 are measurable.
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The input variable is the input voltage, u, to the power amplifier which
drives the motor. This is a nonlinear unstable system which is stabilized by
an observer-based feedback controller [17]. The linearized closed-loop system
can be described as follows:

ẋ = (A + ∆A)x + Bu + Brref + Bξ
y = Cx + fs

(98)

where u = −Kx̂, and x̂ is the estimation of the state x. It also incorporates the
system input rref , the desired position of the moving base, into the amplifier
input. ξ represents the effects of the nonlinear friction in the drive train on
the pendulum motion. The numerical values of the system matrix A,B,C
and the controller gain K are,

A =




0 0 −1.399 0
0 0 0 1
0 −0.1389 −0.546 0.001905
0 21.7 6.236 −0.2902


 , B =




0
0

−4.192
47.82


 ,K =



−3.7219
3.615
4.7994
0.7849




T

,

C =


 1 0 0 0

0 1 0 0
0 0 1 0


 .

The matrix ∆A is unknown, which represents model uncertainty due to the
system’s nonlinearity. This can be expressed by

∆A =




0 0 0 0
0 0 0 0
0 ∆a32 ∆a33 ∆a34

0 ∆a42 ∆a43 ∆a44


 .

All system uncertainty and disturbance can be grouped together as Gd, where

Gd =




0 0
0 0
1 0
0 1




[
∆a32x2 + ∆a33x3 + ∆a34x4 − 4.192ξ1

∆a42x2 + ∆a43x3 + ∆a44x4 − 47.82ξ2

]
.

The states and disturbance ξ are bounded, thus the unknown input d is
bounded. For details of controller design we refer the reader to [17]. Because
actuator fault vector Fa = B belongs to Im(G), it is not separable from the
unknown inputs. The detection and isolation of sensor faults is considered
here.

We first note that state x1 and output y1 form an unknown input free
and observable subsystem,

ẋ1 = −1.399x3; y1 = x1,

where x3 is the state for a subsystem subject to the unknown input,

ẋ3 = −0.1389x2 − 0.546x3 + 0.001905x4 − 4.192u + d1; y3 = x3.
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The x1 is equivalent to the xb subsystem in SCB form, and all states are mea-
surable. Thus, the Utkin SMO is simplified as SMOO, which is constructed
as

ż = −1.399y3 + Λsign(y1 − z).

If r = y1 − z, we know that

ṙ = 1.399f3
s + ḟ1

s − λsign(r),

and

req = 1.399f3
s + ḟ1

s .

Therefore, the residual will be sensitive to faults of sensor 1 and 3. Because
the dimension of the residual vector is 1, it is impossible to isolate these two
faults.

We note that x2, x4 is in the form of a two dimensional xd subsystem.
The following SMFO can be constructed:

˙̂x2 = x̂4 + λ1sign(y2 − x̂2)
˙̂x4 = 21.7x̂2 − 0.2902x̂4 + 6.236y3 + 47.82u + λ2sign((λ1sign(y2 − x̂2))eq)

Thus, we can detect f2
s by the following fact:

r2 = (λ1sign(y2 − x̂2))eq = e4 + ḟ2
s

Figure 10 shows the simulation result of SMFO where sensor noise with
maximum magnitude 0.01 is introduced, and λ1 = 2000, λ2 = 500. We use
the saturation function to replace the sign function, and the upper limit is
set to be 0.02. The subplot a) is the shape of incipient sensor fault signal
f2

s , and subplot b) is the residual r2. It is noted that a peak appears in the
residual when the fault occurs.
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Fig. 10. Fault diagnosis simulation using SMFO for an inverted pendulum
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Example 4. A three-phase current motor model [3] is described by the fol-
lowing nonlinear equations:

ẋ =


 f1(x)

f2(x)
f3(x)


 + B(x)u + g(x)d

=


 x2

−A1x2 − A2x3sinx1 − A3sin2x1

−D1x3 + D2cosx1


 x +


 0 0

1 0
0 1




[
u1

u2

]
+


 0 0

1 0
0 1




[
d1

d2

]

where x = [x1, x2, x3]T , x1, x2 and x3 denote the model states rotor angle,
speed deviation and field flux linkage, respectively. The known inputs are u1

(nominal mechanical power input) and u2 (field voltage), the and unknown
inputs are

d1 = ∆A1x2 + ∆A2x3sinx1 + ∆A3sin2x1

which represent uncertainties of parameters A1, A2 and A3, and

d2 = ∆D1x3 + ∆D2cosx1

which represents uncertainties of parameters D1, D2. All changes are induced
by the operating temperature, or component incipient faults. Signals d1 or
d2 may be small enough to be neglected in different operational conditions.
To illustrate the robust SMFO design, we consider several cases.

Case 1: Both d1 and d2 are nonzero

In this case, it is noted that x1, x2 is a sub-system in the triangular form
of (47) if x1 is measured, namely if y1 = x1, it will make x2 observable. If we
have y2 = x3, the all states will be estimated by following observer,

˙̂x1 = x̂2 + λ1sign(y1 − x̂1)
˙̂x2 = −A1x̂2 − A2y2siny1 − A3sin2y1 + λ2sign((λ1sign(y1 − x̂1)eq)
˙̂x3 = −D1x̂3 + D2cosy1 + λ1sign(y2 − x̂3)

However, if the second output y2 = x3 is not available, only a SMFO, but
not a SMO, can be designed, because x3 cannot be estimated correctly under
this condition.

Case 2: d1 is nonzero, d2 is zero

In this case, x3 is an unknown input free sub-system. Fortunately, it is
detectable because D1 > 0. Therefore, we can build following observer using
only one measurement y1 = x1,

˙̂x1 = x̂2 + λ1sign(y1 − x̂1)
˙̂x2 = −A1x̂2 − A2x̂3siny1 − A3sin2y1 + λ2sign((λ1sign(y1 − x̂1)eq)
˙̂x3 = −D1x̂3 + D2cosy1
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Case 3: d1 is zero, d2 is nonzero

In this case, with only one measurement for x1, the system can be trans-
formed into triangular form and all states can be estimated. Note that g(x) =
[0 0 1]T , and the relative degree of output y = h(x) = x1 corresponding
to g(x) can be calculated as

∂h1

∂x
= (0 0 1), Lgh1(x) = 0, Lfh1(x) = f1(x) = x2

∂(Lfh1)
∂x

=
∂f1

∂x
= (0 1 0), LgLfh1(x) = 0;L2

fh1(x) = f2(x)

∂(L2
fh1)

∂x
= (−A2x3cosx1 − A3cos2x1 − A1 − A2sinx1),

Lg1L
2
fh1(x) = −A2sinx1.

Note that LgL
2
fh1(x) �= 0 if x1 �= kπ, thus the relative degree is r1 = 3 at

point x1 �= kπ. This means that we shall be able to find a transformation
only locally, away from any point such that x1 = kπ. The transformation is

ξ1 = φ1(x) = h1(x) = x1

ξ2 = φ2(x) = Lfh1(x) = x2

ξ3 = φ3(x) = L2
fh1(x) = f2(x).

The Jacobian matrix of the transformation thus defined

∂Φ

∂x
=


 1 0 0

0 1 0
−A2x3cosx1 − A3cos2x1 −A1 −A2sinx1




which is nonsingular for all x1 �= kπ, and the inverse transformation is given
by

x1 = ξ1

x2 = ξ2

x3 = z(ξ) = ξ3+A1ξ2+A3sin2ξ1
−A2sinξ1

.

In these new coordinates the system is described by

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 =−A1ξ3 − ξ2(A2z(ξ)cosξ1 + 2A3cos2ξ1) − A2sinξ1(−D1z(ξ) + D2cosξ1)
y1 = ξ1.

Actually, in this example the SMO can be designed without the above com-
plicated transformation calculation. The observer is

˙̂x1 = x̂2 + λ1sign(y1 − x̂1)
˙̂x2 = −A1x̂2 − A2x̂3siny1 − A3sin2y1 + λ2sign((λ1sign(y1 − x̂1)eq)
˙̂x3 = −D1x̂3 + D2cosy1 + λ3sign(e3).
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Note that the equivalent control signal based on the second equation, is

(λ2sign(e2))eq = −A2e3siny1

thus

e3 =
(λ2sign(e2))eq

−A2siny1
= e3.

Obviously, it is true only if siny1 �= 0. The parameters in the model have the
value, A1 = 0.2703, A2 = 12.01, A3 = −48.04, D1 = 0.3222, D2 = 1.9, and
∆D1 = 0.1,∆D2 = 0.6. The control input u1 = 36.19, u2 = 1.9333. The gain
λ1 = λ2 = λ3 = 200. The initial state is assumed to be x0 = {0.88, 0.0, 6.5},
and the initial value of the observer is x̂ = {0.8, 0.0, 5.0}. The simulation
result for case 3 is shown in Figure 11.

0 2 4 6 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (Seconds)

estimation of x1

0 2 4 6 8

−1

−0.5

0

0.5

1

1.5

2

Time (Seconds)

estimation of x2

0 2 4 6 8
4

6

8

10

12

14

Time (Seconds)

estimation of x3

Fig. 11. Results of state estimation for a three-phase current motor using SMO
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Example 5. To illustrate the fault diagnosis for a nonlinear system using
SMFO, the three-phase current motor studied in the last example is consid-
ered. Its model is repeated as below:

ẋ =


 x2

−A1x2 − A2x3sinx1 − A3sin2x1

−D1x3 + D2cosx1


 +


 0 0

1 0
0 1



[

u1

u2

]
+


 0 0

1 0
0 1



[

fa1

fa2

]

y =
[

x1

x3

]
.

We consider the isolation of faults fa1 and fa2 through the multiple observer
scheme. fa1 represents the fault of actuator 1 and the component faults which
lead to change of parameters A1, A2 and A3. fa2 represents the fault of actu-
ator 2 and the component faults which lead to change of parameters D1 and
D2.

First, we regard fa1 as an unknown input, and design SMFO as insensitive
to fa1. In this case, it is noted that x3 is an unknown input free subsystem
with one output. Because it is one-dimensional, the SMOFO design for x3

is simplified as a simple SMOO. It is easy to show that x1 and x2 can be
estimated using the SMFO technique proposed earlier, even if there is an
unknown input in the xd subsystem formed by x1 and x2. Generally, the
estimation of xd is required in order to form a SMOFO for xo subsystem
which is without unknown input. However, it is unnecessary here because x3

is only affected by x1, and x1 is an output. Finally, the SMOFO is

ż = −D1y2 + D2cos(y1) + u2 + λsign(y2 − z). (99)

It is easy to show that this SMOFO is only sensitive to fa2. The corresponding
residual is

r1 = (λsign(y2 − z)eq = fa2

In the second observer design, fa2 is considered as an unknown input. In
this case, there is no unknown input free subsystem. However, the following
SMO can be designed using the techniques discussed earlier

˙̂x1 = x̂2 + λ1sign(y1 − x̂1)
˙̂x2 = −A1x̂2 − A2x̂3siny1 − A3sin2y1 + u1 + λ2sign((λ1sign(y1 − x̂1)eq)
˙̂x3 = −D1x̂3 + D2cosy1 + u2 + λ3sign(e3)

where

e3 =
(λ2sign(e2))eq

−A2siny1
= e3 +

fa1

−A2siny1
. (100)

Assuming ˆfa1 = fa1
−A2siny1

, we know that

r2 = (λ3sign(e3))eq = D1
ˆfa1 + fa2 + ˙̂

fa1.
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i. If r1 = r2 �= 0, only fa2 happens.
ii. If r1 = 0, r2 �= 0, only fa1 exists.
iii. If r1 �= 0, r2 �= 0 and r1 �= r2, both faults fa1 and fa2 exist.

If y2 = x3 is not available, the SMOFO for fault diagnosis of actuator 2
cannot be designed, or r1 will not be available. In this case, fault detection
based on r2

= e3

is possible, and fault isolation will be difficult. However, an abrupt
fault of fa1 will
make the signal e3 (given by equation (100)) becomes nonzero for a short
while. Therefore, we can record the third residual signal as r3 .

Figure 12 is the simulation result. For simplicity, it is assumed that the
original estimation error is zero. The solid line and dashed line in subplot
a) are the shapes of fa1 and fa2 respectively, and subplot b) is the residual
signal r1, c) is the residual signal r2, d) is the residual signal r3. Obviously,
r3 stays near zero for slow-varying fa1, and only produces a nonzero value
peak for abrupt fa1 at time t = 18s. The residuals r1 validate our
fault isolation logic very well.

can still be isolated because only the abrupt change of fa1
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Fig. 12. Fault diagnosis simulation using SMFO for a nonlinear three phase motor
model

Therefore, we have the following fault diagnosis logic:
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9 Summary

In this chapter, we discuss the existence condition and design method for
sliding mode observers and sliding mode functional observers which are in-
sensitive to matched bounded uncertainty/nonlinearity. It is proved that the
existence conditions of sliding mode observer are equivalent to those of classi-
cal unknown input observer. The sliding mode functional observer can exists
under less conservative conditions compared with unknown input functional
observer. The proposed design strategies were extended to a class of nonlin-
ear systems. Additionally, the chapter explored application of the proposed
SMO design strategies for fault detection and isolation in linear and nonlinear
systems. A number of examples illustrated the application of the proposed
methodologies to a number of mechatronics applications.
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Abstract. This chapter discusses the design of fault diagnosis and its related fault
tolerant control for non-Gaussian stochastic systems subjected to parameter ran-
domness. At first, a new formulation of fault diagnosis algorithm is proposed for
linear fixed parameter systems that are subjected to non-Gaussian input. For this
type of system, the residual signals are controlled, by the estimated fault, to reach a
statistic state that is only affected by the original random inputs to the system and
the uncontrollable part caused by the rate of changes of the unknown fault. This is
followed by the design of fault diagnosis algorithm for non-Gaussian systems that
are also subjected to random parameter changes. In this case, the fault is taken
as the unexpected changes of the probability density functions of the random pa-
rameters. The Laplace transform is used to convey the output probability density
function of the system into a simple form, where functional parameter estimation is
applied to estimate the faults. Fault tolerant control has been formulated for both
systems through an adaptive framework. A simulated example for the Thermal Me-
chanical Pulping process has been included to demonstrate the use of the proposed
algorithm and interesting results have been obtained.

1 Introduction

In model based fault detection and diagnosis the faults are regarded as un-
expected changes of some physical parameters of the system. The so far de-
veloped algorithms look into both deterministic and stochastic systems. The
former uses observer based fault detection and diagnosis scheme [3,4,9–11],
whilst the latter employs the Kalman filter techniques and on-line parameter
identification [6]. In each cases, a residual signal can be generated and used
to perform fault detection and diagnosis.

For stochastic systems, the residual signals are random processes whose statis-
tic analysis can sometimes be difficult. However, many methods have been
developed in the past two decades. In general, these approaches can be clas-
sified into the following two groups:

i. Identification based fault detection and diagnosis for dynamic systems
whose models are unknown [6];

ii. Unexpected change detection for stochastic signals [7].

F. Caccavale, L. Villani (Eds.): Fault Diagnosis and Fault Tolerance for Mechatronic Systems, STAR 1, pp. 59-84, 2003.
     Springer-Verlag Berlin Heidelberg 2003
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The first approach uses an ARMAX model to represent the system and apply
parameter identification, such as least square algorithms or stochastic gra-
dient approaches, to estimate the unexpected changes in the system. As for
the unexpected change detection for stochastic signals, focus has been largely
made on either the detection of unexpected changes in the mean value and
the variance of the considered random signals [7], or on the detection of un-
expected parameter changes for static probability density functions of the
random signal. In this case, the required fault detection and diagnosis are
normally performed by applying the theory of statistical decision, where a
likelihood ratio is evaluated between the hypotheses on the healthy parame-
ters and the faulty parameters using the known probability density functions.
As a result, the faulty parameters can be estimated by optimizing this like-
lihood ratio. These methods detect and diagnose the faults based on the
residual generations but do not design the fault diagnosis scheme that di-
rectly minimizes the randomness of the residual signals.

In recent years, development has been made for a group of stochastic sys-
tems [15], where the system is represented in terms of the output probability
density functions that are driven by a set of control input. Assuming that the
output probability density functions are measurable, a B-spline decoupling
model can be established, where the measured output probability density
functions are represented by the instinct B-spline approximation whilst a set
of differential equations are used to link the B-pline approximation weights
to the control input. By expressing the relationship between the weights and
the control input as a state space model, an observer based approach can be
established that detects and diagnoses the fault in the system. In this case,
the residual signal that is used to drive the observer is related to a weighted
integration of the difference between the measured output probability density
functions and the estimated output probability density functions.

However, all these methods are restricted to stochastic systems whose param-
eters are either fixed or obey a simple statistic distribution (e.g., Markovian
jumping parameters). As such, there is a need to develop fault detection and
diagnosis method that can be used to the stochastic systems that are sub-
jected to arbitrary random parameters. These parameters are represented by
their probability density functions whose unexpected changes are regarded as
the fault occurring in the system. This type of system widely exist in process
control practice and examples are the wet end control systems in paper man-
ufacturing, particle size distribution control in food processing and chemical
engineering, and combustion flames distributions. In fact, this type of system
belongs to non-Gaussian stochastic systems, where standard mathematical
treatment to fixed parameter systems cannot be directly applied.
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The purpose of this chapter is therefore to develop fault detection and di-
agnosis algorithms for non-Gaussian systems that are subjected to random
parameters. At first, a fixed parameter non-Gaussian linear system will be
considered, where the fault detection and diagnosis algorithm will be formu-
lated so that the residual signals only depend on the random input of the
system. Indeed, if the fault detection and diagnosis can be performed by us-
ing the residual as a performance measure, then a clear interpretation of the
statistics of the residuals in terms of stochastic disturbances will be obtained.
That is, the estimated fault should be such that the residual signals have zero
mean values and their statistics be affected only by the original random in-
puts to the system. It means that the optimal fault diagnosis scheme should
be such that the randomness or uncertainty in the residual signals is mini-
mized. Since the entropy is a general measure of the uncertainty of a random
variable, the fault diagnosis can also be performed by minimizing the residual
entropy. This is followed by the design for non-Gaussian stochastic systems
that are subjected to random parameters. In this case, it is assumed that the
output probability density functions are measurable. This condition enables
the use of the Laplace transform to the probability density functions of the
random parameters so as to transfer the complicated convolutions integration
between the output probability density functions and those of random pa-
rameters into a simple algebraic equation. By applying the on-line estimation
to this algebraic equation, the probability density function of the random pa-
rameters can be estimated. With the estimated fault, a fault tolerant control
can be formulated by using an adaptive control framework.

The chapter is organized as follows: in sections 2 - 5, the fault detection and
diagnosis algorithm for fixed parameter non-Gaussian stochastic systems will
be described. Starting from section 6, the random parameter systems will
be considered. This includes the fault diagnosis algorithm that minimizes
the residual entropy in section 8 and the fault tolerant control in section 9.
An applicability study will be given in section 10, which is then followed by
concluding remarks.

2 The Representation for Fixed Parameter Systems

In the next few sections, we consider the following general linear and known
stochastic system

xk+1 = Axk + Bfuk + Eωk (1)
yk = Cxk + Dfuk + Fµk (2)

where xk ∈ Rn is an unmeasurable state vector, uk ∈ Rm is the input vector,
yk ∈ Rr is the measured output vector, respectively. A ∈ Rn×n, B ∈ Rn×m,
E ∈ Rn×p, C ∈ Rr×n, D ∈ Rr×m, and F ∈ Rr×q are known parameter
matrices. f ∈ Rm×m represents the actuator gain of the system.



62 Wang

In equations (1) and (2), ωk ∈ Rp and µk ∈ Rq are the two random
processes representing either noises or model uncertainties. They can obey
either Gaussian or non-Gaussian distributions. The problem to be solved is to
use the measured input uk and the output yk to estimate unexpected changes
in the actuator gain f . For this purpose, it is assumed that when the system
is healthy [13],

f = fH ∈ Rm×m (3)

where fH stands for a healthy actuator gain and is assumed known. It is also
assumed that the pair {A,C} is observable.

3 Fault Detection for Fixed Parameter Systems

To perform the required fault detection, one can construct the following fault
detection observer

zk+1 = Azk + BfHuk + Lε̄k (4)
ε̄k = yk − Czk − DfHuk (5)
uk �= 0 (6)

where zk ∈ Rn is the estimated state of the system, and ε̄k is the detection
residual. L ∈ Rn×r is a fixed observer gain matrix which has been selected
so that the matrix A − LC is stable. This can be achieved since it has been
assumed that {A,C} is an observable pair. Note that the healthy actuator
gain matrix, fH , has been used here. Since all the matrices are known in
equations (4)-(5), and the fault detection observer uses only the measured
input and output of the system, this detection observer is therefore realizable
in practice.

Define the following observation error

ek = xk − zk (7)

then the error dynamics can be formulated from equations (1) - (6) to give

ek+1 = Axk + Bfuk + Eωk − Azk − BfHuk − Lε̄k

= (A − LC)ek + (B − LD)(f − fH)uk +
Eωk − LFµk (8)

ε̄k = Cek + D(f − fH)uk + Fµk (9)

Denote

A0 = A − LC (10)
B0 = B − LD (11)
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then it can be further obtained from equations (8)-(9) that

ek+1 = A0ek + B0(f − fH)uk + ηk (12)
ε̄k = Cek + D(f − fH)uk + σk (13)
ηk = Eωk − LFµk (14)
σk = Fµk (15)

where ηk ∈ Rn and σk ∈ Rn are the two random processes whose character-
istics can be uniquely determined from those of ωk and µk, respectively [8].
From equations (12) and (13), the transfer function of the detection residual,
ε̄k, can be readily formulated to give

ε̄k = G(q−1)(f − fH)uk + vk (16)

where it has been denoted that

G(q−1) = C(I − q−1A0)−1q−1B0 + D (17)
vk = C(I − q−1A0)−1q−1ηk + σk (18)

with vk being another random process related to ωk and µk. It can be seen
that once the probability density functions of ωk and µk are known, the
probability density function γv(Z) of vk, can be directly calculated. From
equation (16), it can be seen that when no fault occurs, i.e., f = fH , then
the residual becomes

ε̄k = vk (19)

This means that, when the system is healthy, the residual is a random process
which has the same known probability density function, γv(Z), as that of vk.
This fact provides a fault detection mechanism which checks the statistics of
the detection residual, ε̄k. If the statistics are the same as that of vk, then
there is no fault in the system. Since vk is calculated from two random inputs
(i.e., ωk and µk) that have known statistics, its mean value and variance, v0

and σ0, can be obtained from the statistics of ωk and µk [8]. As such, by
checking the changes in the mean values of ε̄k, one can decide whether the
system has a fault or not. Assume that at sample time k, there are a set of
residual signals with window length N

{ε̄k−N , ε̄k−N+1, · · · , ε̄k} (20)

then the following statistics on the mean and variance of ε̄k can be calculated
to give

mε(k,N) =
1

N + 1

k∑

i=k−N

ε̄i (21)

sε(k, N) =
1
N

k∑

i=k−N

(ε̄i − mε(k, N))2 (22)
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As a result, the following parity check can be performed so as to detect faults
in the actuator

if

∣∣∣∣
mε(k,N) − v0

sε(k, N)/
√

N + 1

∣∣∣∣ > λ → f �= fH (23)

where λ > 0 is a pre-specified threshold which reflects the confidence coeffi-
cient of the hypothesis test.

4 Fault Diagnosis for Fixed Parameter Systems

Once a fault is detected, its diagnosis needs to be performed so as to locate the
size of the fault. This can be achieved by constructing an effective estimation
algorithm for unknown f �= fH . Two cases, namely the constant actuator
fault and a drifting fault, will be considered.

4.1 Fault Diagnosis for Constant Faults

In this subsection it is assumed that f is a constant and unknown matrix after
a fault has occurred. To diagnose this type of fault, the following observer is
used

x̂k+1 = Ax̂k + Bf̂kuk + Lεk (24)

εk = yk − Cx̂k − Df̂kuk (25)

where x̂k ∈ Rn is the state, f̂k is the estimate of the unknown f . All the
other parameter matrices are the same as those defined in section 3. Defining
the estimation error of fault diagnosis as

ek = xk − x̂k (26)

and using the same formulation procedure as those in section 3, it can be
shown that the residual signal εk satisfies

εk = G(q−1)(f − f̂k)uk + vk (27)

Since f − f̂k is an estimation error, this residual consists of a linear combi-
nation of the estimation error and a random input that is only related to the
original random inputs, ωk and µk, to system (1). This suggests that the best
estimation f̂k should be such that the residual εk only relates to vk. For this
purpose, it is denoted that

G(q−1) =
M(q−1)
N(q−1)

(28)

M(q−1) =
n∑

i=0

Miq
−i, Mi ∈ Rr×m (29)

N(q−1) = 1 +
n∑

j=1

ajq
−j , aj ∈ R1 (30)



Fault Diagnosis and Fault Tolerant Control for Stochastic Systems 65

where Mi and aj are known and are directly related to the observer gain L
and the parameter matrices of the original system (1) and (2). At the current
sample time k, equation (27) can be formulated to give

εk = G(q−1)(f − f̂k−1 + f̂k−1 − f̂k)uk +
vk−1 + vk − vk−1 = εk−1

+ G(q−1)(f̂k−1 − f̂k)uk + vk − vk−1 (31)

where εk−1 and f̂k−1 are available at sample time k. This equation enables us
to design a recursive calculation of f̂k so that εk is only affected by vk −vk−1,
which is related to the original random inputs to the system. This means
that f̂k should be selected so that

εk−1 + G(q−1)(f̂k−1 − f̂k)uk = 0 (32)

Using notations in equations (28) - (30), it can be seen from equation (32)
that

N(q−1)εk−1 + M(q−1)(f̂k−1 − f̂k)uk = 0 (33)

or in the time domain

εk−1 + a1εk−2 + · · · + anεk−n−1 +
M0(f̂k−1 − f̂k)uk + M1(f̂k−2 − f̂k−1)uk−1 + · · ·

+ Mn(f̂k−n−1 − f̂k−n)uk−n = 0 (34)

Denote

ε̃k = εk−1 + a1εk−2 + · · · + anεk−n−1 +
M1(f̂k−2 − f̂k−1)uk−1 + · · · +
Mn(f̂k−n−1 − f̂k−n)uk−n (35)

then it can be seen that at the current sample time k, ε̃k is measurable. As
a result, equation (34) becomes

ε̃k + M0(f̂k−1 − f̂k)uk = 0 (36)

Denote M−
0 as a pseudo inverse of matrix M0 such that

M0M
−
0 = Ir (37)

and assume that uk �= 0, then by selecting the following adaptive tuning rule

f̂k = f̂k−1 + M−
0

ε̃kuT
k

uT
k uk

(38)

it can be shown that

(f̂k−1 − f̂k) = −M−
0

ε̃kuT
k

uT
k uk

(39)
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As a result,

M0(f̂k−1 − f̂k)uk = −M0M
−
0

ε̃kuT
k uk

uT
k uk

= −ε̃k (40)

This means that the adaptive tuning rule for f̂k in equation (38) guarantees
that equality (36) is satisfied so long as uT

k uk �= 0. Using the adaptive tuning
rule (38), it can be seen that the resulting residual satisfies

εk = vk − vk−1 (41)

which has its mean value given by

E{εk} = 0 (42)

4.2 Fault Diagnosis for Slow-Drifting Faults

The fault diagnosis algorithm developed in section 4.1 has considered the
case of constant fault signals and the residual signal is only affected by the
random inputs when the recursive fault diagnosis (38) is used. However, in
practical systems, a drifting actuator fault can also occur where the gain of
the actuator changes its value with respect to time. For such a system with
a slow-changing fault, its state space model should be modified to

xk+1 = Axk + Bfkuk + Eωk (43)
yk = Cxk + Dfkuk + Fµk (44)

When the same observer as that in (24)-(25) is used, the fault diagnosis
residual is again given by

εk = G(q−1)(fk − f̂k)uk + vk (45)

where G(q−1) and vk are the same as those in the previous sections. Similar
to the procedures in the case of constant faults, equation (45) is re-formulated
as

εk = vk−1 + vk − vk−1 +
G(q−1)(fk − fk−1 + fk−1 − f̂k−1 + f̂k−1 − f̂k)uk

= εk−1 + G(q−1)(f̂k−1 − f̂k)uk + vk − vk−1 +
G(q−1)(fk − fk−1)uk (46)

Comparing with equation (31), the new term G(q−1)(fk − fk−1)uk reflects
the drifting actuator fault. From this structure of residual, it can be seen that
the fault estimation should also be made to satisfy

εk−1 + G(q−1)(f̂k−1 − f̂k)uk = 0 (47)
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as the other three terms, vk, vk−1 and G(q−1)(fk −fk−1)uk in equation (46),
cannot be minimized. Indeed, term G(q−1)(fk − fk−1)uk is defined as an
uncontrollable part that is purely caused by the unknown rate of change for
the slow-drifting fault. Based upon this analysis, it can be seen that the same
recursive diagnosis rule as equation (38) should still be used. In this context,
the residual signal in equation (46) becomes

εk = vk − vk−1 + G(q−1)(fk − fk−1)uk (48)

As a result, the residual εk is related to the random inputs and the control
input weighted by the small changes of the faults between each time interval.
This is a suboptimal solution and the mean value of this residual signal can
be calculated from equation (48) to give

E{εk} = G(q−1)(fk − fk−1)uk (49)

When the fault drifts at a slow rate, it can be assumed that there is a small
and positive number ε0 such that

‖fk − fk−1‖ ≤ ε0 (50)

As such, when the input uk is bounded by U0 (i.e., ‖uk‖ ≤ U0) and G(q−1) is
a stable polynomial, the following inequality can be established from equation
(49)

‖E{εk}‖ ≤ G0ε0U0 (51)

where G0 is the l1 norm of G(q−1). From this equation it can be seen that for
slowly drifting faults, so long as the magnitude of the control input is small,
the mean value of the residual can also be made small.

5 Model Representation for Random Parameter
Systems

Starting from this section, we consider the physical model that relates the
input sequences uk, the output sequence of system yk and a stochastic noise
term ωk through the following ARMAX model

yk =
n∑

i=1

aiyk−i +
m∑

j=1

bjuk−j + ωk (52)

where yk ∈ R1 and uk ∈ R1 are one dimensional output and input of the
system, respectively, and ai, (i = 1, 2, · · · , n), bj , (j = 1, 2, · · · ,m), and ωk are
all independent and uniformly bounded random parameters characterized by
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their known probability density functions given by

P{a ≤ yk < ξ} =
∫ ξ

a

γy(x, uk)dx (53)

P{a ≤ ai < ξ} =
∫ ξ

a

γai(x, θ)dx (54)

P{a ≤ bj < ξ} =
∫ ξ

a

γbj(x, θ)dx (55)

P{a ≤ ωk < ξ} =
∫ ξ

a

γω(x)dx (56)

where θ ∈ RL is a parameter vector whose unexpected changes are regarded
as the faults in the system. In equation (52), n and m are known structure
orders of the system. Without loss of generality, we assume that all the pa-
rameters are positive. This means that a > 0 for all the probability density
functions. We also assume that:

A1 the triple {γy(x, uk), yk, uk} are measurable;

A2 Under healthy conditions, θ = θH and {γai(x, θH), γbj(x, θH)} are known.

The purpose of fault detection and diagnosis is therefore to use the triple
{γy(x, uk), yk, uk} to detect unexpected changes in parameter vector θ.

Suppose that system (52) is stable under the conditions stated in the the-
orem of Kharitonov, and uk is bounded by Mu, then the output sequence
yk of equation (52) is also a bounded stochastic process at sample time k.
This means that the probability density function of yk can be defined on the
bounded interval [a, b] and is of course related to the past inputs and outputs
given by

φk = {yk−1, yk−2, ..., yk−n, uk, uk−1, ..., uk−m} (57)

Since at sample time k, φk is measurable, the output probability density
function at sample time k is in fact a conditional probability density function
under available φk. To detect and diagnose the fault, it is important to for-
mulate a mathematical relationship that links the measured γy(x, uk) with
{γai(x, θH), γbj(x, θH)} for all i = 1, 2, ..., n and j = 1, 2, ...,m.

Since φk is measurable at sample time k, it can be seen from equation (52)
that yk is a linear combinations of all the random parameters and the ran-
dom noise, ωk. Under the assumption that all the random parameters and
the random noise are independent, then from the results in the probability
theory, it can be shown that the probability density function γ(x, uk) is of a
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(n + m + 1)-fold convolution of the form

γy(x, uk) =
∫ x

a

∫ b

a

· · ·
∫ b

a

γω(x − zn+m)
m−1∏

j=0

γb(m−j)(zn+m−j − zn+m−j−1, θ, uk−m+j) ×

×
n−2∏

i=0

γa(n−i)(zn−i − zn−i−1, θ, yk−n+i)γa1(z1, θ, yk−1)dz1dz2 · · · dzn+m (58)

where γai(x, θ, yk−i) is the probability density function of random variable
aiyk−i, and γbj(x, θ, uk−j) is the probability density function of random vari-
able bjuk−j , respectively.

Denote θ̂(k) as the estimate of θ, then the estimated output probability den-
sity function can be expressed as

γy(x, uk, θ̂) =
∫ x

a

∫ b

a

· · ·
∫ b

a

γω(x − zn+m)
m−1∏

j=0

γb(m−j)(zn+m−j − zn+m−j−1, θ̂(k), uk−m+j) ×

×
n−2∏

i=0

γa(n−i)(zn−i − zn−i−1, θ̂(k), yk−n+i)γa1(z1, yk−1)dz1dz2 · · · dzn+m (59)

Since γy(x, uk) is measurable, one can select θ̂(k) such that the following
performance function

J =
∫ b

a

(γy(x, uk) − γy(x, uk, θ̂))2dx = min (60)

As such, the fault detection and diagnosis can be performed by a nonlinear
minimization to J which measures the functional distance for the functional
space that contains all the continuous functions defined on [a, b]. However,
since there are (n + m + 1)-multiple integrations involved in calculating J ,
it is generally difficult to implement such a complicated optimization process.

This leads to the re-consideration of the expression for the output proba-
bility density function as shown in equation (58). The idea comes from the
Laplace transforms and the transfer functions in classical control systems
theory, where it has been shown that in terms of the Laplace transformed
variables, the convolutions in time domain variables can be transferred as an
algebraic multiplication in s-domain. As such, if we can apply the Laplace
transforms to all the probability density functions of the random parameters
and the noise, the (n + m + 1)-fold convolutions in equation (58) can then
be expressed as an algebraic multiplications of the transformed probability
density functions. This is a new approach that has recently been developed
in Ref. [17]. In the next section, the s-domain expression of the output prob-
ability density function will be described.



70 Wang

6 Laplace Transformations for Probability Density
Functions

In this section, we consider the Laplace transformations for general prob-
ability density functions that are defined on [0,+∞) interval. Denote such
a probability density function as γ(x) with x ∈ [0,+∞), then its Laplace
transform is defined as

Γ (s) =
∫ +∞

0

γ(x)e−sxdx (61)

where s is the Laplace variable. For this definition, the following properties
can be directly established.

Property 1: Since all the probability density functions are non-negative,
we have Γ (s) ≥ 0 for all s > 0;

Property 2: The mean value of the random variable x that has the proba-
bility density function of γ(x) is given by

mx = E{x} =
∫ +∞

0

xγ(x)dx = −dΓ (s)
ds

|s=0 (62)

Property 3: The variance of random variable x that has a probability density
function γ(x) is given by

E{(x − mx)2} = E{x2} − m2
x =

d2Γ (s)
ds2

|s=0 − (
dΓ

ds
|s=0)2 (63)

It can also be formulated that for the lth momentum, we have

E{xl} =
∫ +∞

0

xlγ(x)dx = (−1)l d
lΓ (s)
dsl

|s=0

From these properties, it can be seen that all the distribution properties
of a probability density functions can be calculated using the Laplace trans-
formed functions. Denote the Laplace transforms of the probability density
functions of aiyk−i and bjuk−j as Γai(s, θ, yk−i) and Γbj(s, θ, uk−j) respec-
tively, then by applying the Laplace transforms to equation (58), it can be
shown that

Γy(s, uk) = Γω(s)
m∏

j=1

Γbj(s, θ, uk−j)
n∏

i=1

Γai(s, θ, yk−i) (64)

where

Γy(s, uk) =
∫ +∞

0

γy(x, uk)e−sxdx (65)
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Γai(s, θ, yk−i) =
∫ +∞

0

γai(x, θ, yk−i)e−sxdx (66)

Γbj(s, θ, uk−j) =
∫ +∞

0

γbj(x, θ, uk−j)e−sxdx (67)

Since in the probability theory there are the following relationships between
γai(x, θ), γai(x, θ, yk−i), γbj(x, θ) and γbj(x, θ, uk−j) as

γai(x, θ, yk−i) =
1

|yk−i|γai(
x

|yk−i| , θ) (68)

γbj(x, θ, uk−j) =
1

|uk−j |γbj(
x

|uk−j | , θ) (69)

we have, in terms of the Laplace transforms, that

Γai(s, θ, yk−i) =






Γai(yk−is, θ), yk−i > 0
−Γai(yk−is, θ), yk−i < 0
1, yk−i = 0

(70)

and

Γai(s, θ, yk−i) =






Γbj(uk−js, θ), uk−j > 0
−Γbj(uk−js, θ), uk−j < 0
1, uk−j = 0

(71)

As a result, equation (64) can be further expressed, in terms of the Laplace
transforms of the probability density functions of random parameters (ai, bj),
as

Γy(s, uk) = Γω(s)
m∏

j=1

Γbj(uk−js, θ)
n∏

i=1

Γai(yk−is, θ) (72)

where, without loss of generality, it has been assumed that all the input
and output measurements are positive. Denote Γy(s, θ̂(k), uk) as the Laplace
transform of γy(x, θ̂(k), uk), then convolutions (59) can be similarly expressed
as

Γy(s, uk, θ̂(k)) = Γω(s)
m∏

j=1

Γbj(uk−js, θ̂(k))
n∏

i=1

Γai(yk−is, θ̂(k)) (73)

To further reduce the calculation of the multiplication, we introduce the
following performance function in the s-domain for the estimation

π(θ̂(k)) =
∫ +∞

0

K(s)(log
Γy(s, θ̂(k), uk)

Γy(s, uk)
)2ds (74)
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where K(s) is a weighting function to be selected so that for any bounded
{Γy(s, uk), Γy(s, θ̂(k), uk)}, the performance function should satisfy

∣∣∣π(θ̂(k))
∣∣∣ < +∞ (75)

In a recent work [17], the following weight function

0 ≤ K(s) ≤ M1s
2e−M2s

8M2
0 [(logM0)2 + (logs)2]

(76)

has been selected, where M0 is the uniform upper bound of the output prob-
ability density function (i.e., |γy(x, uk, θ)| ≤ M0), and M1 and M2 are pre-
specified positive numbers.

The advantage of using ”log” operation is to transfer the multiplications in
equations (72) and (73) into algebraic sum. Since the output probability den-
sity function γy(x, uk) is assumed measurable, this performance, as indicated
already, is only a function of the estimated parameter θ̂(k). Indeed, because
there is a one-to-one relationship between the probability density function of
the random variable and its Laplace transform, to estimate the unexpected
changes in the probability density function of the random parameters, we only
need to estimate the unexpected changes in Γai(yk−is, θ) and γbj(uk−js, θ).
In this context, the estimation of θ can be performed by minimizing π(θ̂(k))
as defined in equation (74). This is a nonlinear optimization problem, where
an analytic solution does not exist in general. Of course, one can use the
following gradient rule to get a ”kind” of solution as

θ̂(k) = θ̂(k − 1) − λ
∂π

∂θ
|θ=θ̂(k−1) (77)

In the next section, the scanning parameter estimation method described
in [14] will be used.

7 Unexpected Change Diagnosis Using Scanning
Parameter Estimation

Again, by applying ”log” operation to both sides of equation (73), it can be
obtained that

log(Γy(s, uk, θ̂(k))) = (78)

log(Γω(s)) +
m∑

j=0

log(Γbj(uk−js, θ̂(k))) +
n∑

i=1

log(Γai(yk−is, θ̂(k)))

At this stage, since the output probability density function γy(x, uk, θ) and
γω(x) are known, by denoting

r(s, k) = log(Γy(s, uk, θ̂(k))) − log(Γω(s)) (79)
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then r(s, k) is measurable. This transforms equation (78) into

r(s, k) =
m∑

j=0

log(Γbj(uk−js, θ̂(k))) +
n∑

i=1

log(Γai(yk−is, θ̂(k))) (80)

Assuming that there are a set of basis functions Bp(s) with p = 1, 2, ..., N so
that each function in equation (80) can be approximated as

log(Γbj(uk−js, θ̂(k)) =
N∑

p=1

vbj
p (θ̂(k))Bp(uk−js) (81)

log(Γai(yk−is, θ̂(k)) =
N∑

p=1

vai
p (θ̂(k))Bp(yk−is) (82)

(83)

we can then select a set of sq ∈ [0,+∞) for q = 1, 2, ...,M such that

r(sq, k) =
m∑

j=0

N∑

p=1

vbj
p (θ̂(k))Bp(uk−jsq) +

n∑

i=1

N∑

p=1

vai
p (θ̂(k))Bp(yk−isq)(84)

where the weights in front of the basis functions are only functions of θ̂(k).
Using this decomposition expression, we can then express equation (80) in
the following format

r(sq, k) = Θ(k)Φ(k, sq) (85)
Θ(k) = (vb1

1 , vb1
2 , ..., vb1

N vb2
1 , vb2

2 ..., vb2
N ,

......, va1
1 , va1

2 , ..., va1
N , ...,

van
1 , van

2 , ..., van
N ) (86)

Φ(k, sq) = (B1(uksq), B2(uksq), ..., BN (uksq),
B1(uk−1sq), B2(uk−1sq), ..., BN (uk−1sq), ...,
..., B1(yk−nsq), B2(yk−nsq), ..., BN (yk−nsq)) (87)

Then in terms of index q = 1, 2, ...,M , the following recursive least square
algorithm can be applied

Θq(k) = Θq−1(k) +
P (q)Φ(k, sq)εq(k, sq)

1 + Φ(k, sq)T P (q)Φ(k, sq)
(88)

εq(k, sq) = r(sq, k) − Θq−1(k)Φ(k, sq) (89)
P−1(q) = P−1(q − 1) + Φ(k, sq)Φ(k.sq)T (90)

The estimated vector Θ(k) should therefore be given by

Θ(k + 1) = ΘM (k) (91)

Using this recursive calculation, the unexpected change detection can be per-
formed by the following mechanism

|εq(k, sq)| > λ → a fault has occurred (92)
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8 Fault Diagnosis Design via Minimizing Residual
Entropy

So far we have discussed two approaches for the fault detection and diag-
nosis of stochastic systems, where the unexpected changes are detected and
diagnosed through the residual signals as in equations (23), (38) and (92).
The idea is to minimize residual uncertainty for linear stochastic systems
with either fixed or random parameters. In this section, we continue this
idea by considering general nonlinear stochastic dynamic systems which are
subjected to explicit random input

yk = h(yk−1, yk−2, · · · , yk−n, uk, · · · , uk−m, F, ωk) (93)

where ωk is an known arbitrary bounded random input and F is the fault
and h(...) is a general nonlinear function that characterizes the dynamics of
the nonlinear system. For such a system, assuming h(...) is known, then the
following estimated model

ŷk = h(yk−1, yk−2, · · · , yk−n, uk, · · · , uk−m, F̂ , ωk) (94)

can be obtained, leading to the following simple residual signal

ε(k) = ŷk − yk (95)

Denote

φ(k) = [yk−1, · · · , yk−n, uk, · · · , uk−m] (96)

then at sample time k, φ(k) is available and the residual signal can be further
expressed as

ε(k) = g(φ(k), F̂ , ωk) (97)

where g(., ., .) is another known nonlinear function which is related to the
original system function h(...). Assuming that

• the probability density function of the noise is γω(x), and
• function g(., ., .) in invertible with respect to variable term ωk

then at sample k, the residual signal has a probability density function
γε(x, φ(k), F̂ ), that is given by

γε(x, φ(k), F̂ ) = γω(g−1(φ(k), F̂ , x))

∣∣∣∣∣
∂g−1(φ(k), F̂ , x))

∂x

∣∣∣∣∣ (98)

In this case, the best estimation F̂ at sample instance k should be solved by
minimizing the mean values of the residual and its entropy (i.e., the uncer-
tainty)

J(F̂ ) = −
∫ b

a

γε(x, φ(k), F̂ )log(γε(x, φ(k), F̂ ))dx

+
∫ b

a

xγε(x, φ(k), F̂ )dx (99)
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where the first term is the residual entropy. This is simply because that a
good fault estimation should have a very small mean value of its residual,
and at the same time the uncertainty of the residual signal should be made
as small as possible. Since the entropy is a more general measure than just
variance of uncertainty (randomness) for non-Gaussian distributions, it is
used here for the selection of the estimated fault. To minimize J(F̂ ), one can
simply use the following gradient learning rule

F̂ (k) = F̂ (k − 1) − λ
∂J

∂F
|F=F̂ (k−1) (100)

where λ > 0 is a pre-specified learning rate. Similar formulations can also
be obtained for continuous-time systems represented by the following Ito
differential equation

ẋ = f(x, u, F )dt + σ(x, u, F )dw (101)

where x is a state vector and w is a stochastic process.

9 Fault Tolerant Control Design

Once the fault is diagnosed, controller that is designed for the healthy sys-
tem should be modified so as to compensate the performance losses that are
caused by the fault in the system. In this respect, there are only two situations
as listed below:

• the fault has caused a major performance deterioration in the closed loop
system, and

• the fault has caused certain performance losses in the closed loop system.

In the first case, the solution to the problem would generally be to switch off
the system and perform the required repair. For example, when all the actu-
ators fail to operate, there is no need to modify the controller at all and in
this case the use of fault tolerant control is not suited. However, in the second
case, it is generally necessary to modify the control input so that the closed
loop system can still be operated. This needs to the design of fault tolerant
control. This is because if only some part of the actuators failed, one can still
use other actuators to perform the control task. Of course, this requires the
controller to be redesigned so as to realize the closed loop control through the
remaining healthy actuators. This can be achieved via the use of either the
reconfiguration of the system or the use of an adaptive control framework.
In this respect, the well developed adaptive control can be regarded as the
fault tolerant control.

In this section, both the direct control modification and the adaptive control
will be formulated for the stochastic systems discussed so far in this chapter.
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9.1 Fault Tolerant Control for Fixed Parameter Systems

In this context, we consider again the system represented by equations (1)
and (2). We assume that the original healthy system has an output based
controller of the following format:

uk = K(yk, fH , rk) (102)

where K is a control function that realizes the closed loop control for the
healthy system and rk ∈ Rr is the set point for the closed loop system. It
can be concluded that is closed loop control includes the value of the healthy
actuator matrix fH .
Without of loss of generality, we can assume that this controller stabilizes
the closed loop system when rk = 0 and there is an upper-bound η so that
xk

‖xk‖ ≤ η (103)

for any bounded Eωk and Fµk. The fault tolerant control design looks into
two aspects. In the first aspect, we assume that the fault is not serious in
the sense that rank(f) = m. In this case, an adaptive control scheme can be
used for the control input (102) to give

uk = f̂−1
k fHK(yk, f̂k, rk) (104)

where f̂k is obtained from equation (38). In this case the control input can
be formulated further as

uk = f̂−1
k fHK(yk, fH , rk) + u0 (105)

u0 = f̂−1
k fH

∂K

∂f
|k(f̂k − fH) (106)

Assuming the fault diagnosis has realized a good estimation in the sense that
f̂k is close to f , then when control input (105)-(106) is applied to the system,
the closed loop equation becomes

xk+1 = Axk + BfHK(yk, fH , rk) + BfH
∂K

∂f
|k(f̂k − fH)uk + Eωk (107)

yk = Cxk + DfHK(yk, fH , rk) + DfH
∂K

∂f
|k(f̂k − fH)uk + Fµk (108)

From this equation, it can be seen that the stability of the closed loop system
can still be guaranteed if the following condition is satisfied

‖fH
∂K

∂f
|k(f̂k − fH)uk‖ ≤ +∞ (109)

When some of the actuators are totally failed, the gain matrix f will be sin-
gular. In this case, the reconfiguration of the controller is required, where the
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system equation can be re-written in the form of a reduced actuators form.
In this context, the fault diagnosis (38) is only used to help such a reconfigu-
ration. A different control has to be verified. The reconfigured system should
be of the following form

xk+1 = Axk + Brfru
r
k + Eωk (110)

yk = Cxk + Drfru
r
k + Fµk (111)

where Brfru
r
k and Drfru

r
k are the reconfigured input channel for the system

and ur
k is the reduced dimensional input to the system that applies only to

the remaining healthy actuators. This requires that the control input given by
equation (102) be able to be reconfigurable in terms of the diagnosed faults
f̂k. A switching function has therefore to be built into the controller based
on the values of f̂k. For example, if some values of the elements in matrix f̂k

are very small, then these actuators should be switched off. Since the system
is linear, the well developed linear control or adaptive control can be applied
to find out the control function for the reduced actuators system (110)-(111).

9.2 Fault Tolerant Control for Random Parameter Systems

The fault tolerant control for system (52) can be obtained by purely using
an adaptive framework. In this case the design purpose is to obtain a con-
trol sequence so that the shape of the output probability density function
γy(x, uk) is made as close as possible to a given distribution function. This
controller should have an adaptive component for the estimated probability
density functions of the random parameters as generated by equations (88)
- (90). Denote such a desired distribution function as g(x), then its Laplace
transform can be obtained to give

Γ (s) =
∫ +∞

0

g(x)e−sxdx (112)

Using the same performance function as given by Wang et, al, (2002), it can
be obtained that

J =
∫ +∞

0

K(s)(log
Γy(s, θ̂(k), uk)

Γ (s)
)2ds + Ru2

k (113)

where R > 0 is a pre-specified weighting function. Using this performance
function, the control design for known probability density functions of the
random parameters have been carried out in Wang (2002). This will form
a basis for the adaptive control by simply incorporating the estimation of
the probability density functions in (88)-(90). Detailed design procedure will
therefore not be given here.
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10 Applicability Study

In this section, we consider a simple example in the refining system in paper
making process. Refining is a key part in paper making in generating fibres
from raw materials such as wood and straw. This is an energy intensive
process that consumes up to 75 percent of total energy used by paper mills.
For example in Thermo-Mechanical Pulping (TMP), up to 250 kWhr/tonne
of electrical energy can be consumed. As such, effective and reliable control
in this part of the paper making will therefore

• increase the produced fibre quality;
• reduce energy consumption, and
• minimizing the faults occurring in the whole process.

10.1 Process Description

As described in [16], a chip refiner consists of either two counter-rotating or
one-fixed and one rotating grooved plates with pressure exerted on one of
them by a hydraulic cylinder. This structure of such a chip refiner is shown
in Fig. 1, where wood chips and diluition water are fed near the axis and
are forced to move outward between the plates by centrifugal and frictional
forces between the two plates. The wood chip feeding is realized via a transfer

Motor Motor
Chips

Dilution
Water

Gap

Plates

Fig. 1. General structure of a refining process, [16].

screw shown in the figure and the two plates are driven by electrical motors
to a constant high speed. In some cases, only one plate rotates and the other
is fixed.
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Due to mechanical actions and high pressure steam and friction, chips
are broken down into fibres, which, when combined with steam produced by
evaporation, creates a few hundred micrometer thick pad between the plates.
This pad forms a major load to the driving motor [1,2]. This is a continuous
process where wood chips are fed in continuously and the pulp and steam are
generated and discharged into the next stage.

To characterize the quality of the produced pulp, a number called freeness
F is used which describes the resistance of a fiber network to the flow of water.
A widely applied approach to determine the freeness is to use a Canadian
Standard Freeness (CSF) tester discussed in [12]. However, since the freeness
measurement is only taken every one or two hours in most paper mills, such a
long sampling period will not be suitable for on-line control purposes. Instead,
another quantity called specific energy is used. This means that there is a
deterministic function, η which relates freeness and specific energy Se

F = η(Se) (114)

in the TMP refining process. The specific energy is defined as energy con-
sumed per mass unit of wood fibres and is expressed as

Specific Energy =
Motor Load

Oven Dry Pulp Mass F low
(115)

The purpose of closed loop control for refining process is to manipulate either
the wood chip feed g(k) or the gap in order to control the process to achieve
the desired motor load, specific energy and consequently, the freeness of the
fibre.

To control the motor load, the wood chip feeding is manipulated by ad-
justing the transfer screw. In general, the increased wood feeding speed will
increase the motor load and thus increase the specific energy. This charac-
ter is shown in Fig. 2. Assuming the current operation of the refiner is at a
wood chip feeding speed g0 that produces a steady motor load M0, then the
following normalized incremental values for the wood chip feeding and motor
load are used to establish the model.

uk =
g(k) − g0

g0

yk =
M(k) − M0

M0

where g(k) and M(k) are the absolute values of the wood chip feeding speed
and motor load at sample time k, respectively. By taking the input to the
system as uk and the output from the system as yk, a dynamic nonlinear
system of the form (1)-(2) can be established around an operating point in
the characteristic curve shown in Fig. 2. In general, a second order dynamic
system with fixed parameters can be obtained. This differs from the control
system where the plate gap is used as an input, as in this case the dynamic
equation is of a nonlinear nature where the gain of the control input channel
is dependent of the current gap position.
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Motor Load

Wood Chip Feeding Speed

Fig. 2. Motor load vs wood-chip feeding speed [16].

10.2 Simulation Study

To simulate the proposed algorithm, it is assumed that the dynamic model of
the refining system is represented by equations (1) and (2) whose parameter
matrices are:

A =
[

0.8 0.5
0.0 0.9

]
, B =

[
0.1
0.5

]
, c = [1 1], D = 1,

E =
[

0.5
0.6

]
, F = 1, fH = 10.

In this example, the fault is regarded as the unexpected changes of the screw
transfer gain which can be directly expressed as f in equation (1). The sim-
ulation is carried out in a closed loop framework, where a state feedback
control of

uk = r − Kxk (116)

is used. The observer matrix L and the feedback matrix K are designed to
be

L =
[

0.533
0.467

]
and K = [0.175 0.245]

so that the observer eigenvalues are placed at 0.5 and 0.2, and the desired
closed-loop pole locations are paced at 0.1,0.2, which are desired locations
between 0 and 1. The set point is set to r = 30 and the two random signals,
ωk and ν, are independent truncated Gaussian processes with zero means.
In the simulation, the healthy actuator has a gain fH = 10 and a constant
step fault is f = 0.8fH which is created at k = 50 after an initial healthy
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operation of the closed loop system. This fault is switched back to f = fH

at sample time k = 100. A slow-drifting fault is created at sample time k =
200 with

fk =
{

fk−1 + 0.005fH , 200 ≤ k < 250
fk−1 − 0.005fH , 250 ≤ k < 300 (117)
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Fig. 3. Result of fault detection and diagnosis
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Fig. 5. Output estimation and control input

The simulation results are shown in Figs. 3–5, where in Fig. 3 the fault
detection and the parity check results using (21)–(23) are given. The response
of the parity check has shown a clear, but small detection delay that is in fact
caused by the window length applied. The window length for the parity check
algorithm is set to be N = 10 and the threshold is set to be λ = 8. It can
be seen that the fault has been correctly detected. Fig. 4 shows the results
of fault diagnosis and the response of the system and the observer outputs.
In Fig. 5, the response of the system state vector and its estimation are
displayed. From these figures it can be seen that the fault cannot be simply
diagnosed by visual inspection of the system state/output variables and their
direct estimations. This has justified the necessity and the effectiveness of
using the established recursive fault diagnosis algorithm in equation (38).

11 Discussions and Conclusions

In this chapter, a new fault diagnosis algorithm has been firstly established
for linear stochastic systems subjected to actuator faults. The observer based
approach is used to construct the residual signals and the fault detection
is performed using the statistically based parity check method. In terms of
fault diagnosis, a recursive algorithm is developed. This algorithm is used to
control the residual signal so that the resulting residual is only affected by
the random inputs for constant faults. It has been shown that the developed
fault diagnosis algorithm can also be applied to slow-drifting faults, where
the resulting residual signal is related to both the random inputs and the
uncontrollable part that is caused by the unknown rate of the drifting faults.
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The fault diagnosis for linear systems with random parameters have also be
formulated, where a new application of the Laplace transform to the prob-
ability density functions has been made. This leads to the fault diagnosis
algorithm as shown in equation (92), where the scanning parameter estima-
tion in s-domain is used. A general approach has also been developed that
designs the fault diagnosis algorithm by minimizing the residual entropy for
systems with a known nonlinear dynamics.

An applicability study on the mechanical pulping process is made to illus-
trate the use of the fault diagnosis algorithm, where a simulated example
demonstrates the effectiveness of the proposed algorithms. Desired results
have been obtained.
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Università degli Studi della Basilicata
Contrada Macchia Romana, 85100, Potenza, Italy

2 Dipartimento di Informatica e Sistemistica
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Abstract. In the last decade considerable research efforts have been spent to seek
for systematic approaches to Fault Diagnosis (FD) in dynamical systems. Special
attention has been put in robotic systems, especially for those operating in remote
or hazardous environments, where a high degree of safety as well as self-diagnostics
capabilities are required. On the other hand, the development of effective strate-
gies of fault diagnosis for robot manipulators operating in an industrial context is
a critical research task. Several FD techniques for robot manipulators have been
proposed in the literature, although the problem of their application to industrial
robots has not been extensively investigated. In this chapter different discrete-
time observer-based approaches to FD for mechanical manipulators are presented
and critically compared. First, a rough FD technique is considered, which is based
solely on the prediction capabilities of the manipulator dynamic model. Next, an
observer-based technique is presented, where a robust time-delayed compensation
is introduced to cope with disturbances and modeling uncertainties. Finally, two
different observer-based schemes are developed, where the uncertain terms in the
model are dynamically estimated: the first scheme is based on the recursive es-
timation of the uncertain terms, while the second one adaptively estimates the
parameters of a suitable parametric model of the uncertainties. All the considered
schemes are experimentally tested on a six-degree-of-freedom industrial robot and
the performance are critically compared each other.

1 Introduction

The adoption of effective fault diagnosis (FD) techniques is becoming critical
to ensure higher levels of safety and reliability in automated plants and au-
tonomous systems. In the last decade considerable research efforts have been
spent to seek for systematic approaches to fault diagnosis in dynamical sys-
tems. In this framework special attention has been paid to robotic systems,
especially for those operating in remote or hazardous environments, where a
high degree of safety and self-diagnostics capabilities are required. However,
the development and the application of FD techniques is also of the utmost
importance for industrial robots, where the main objectives are the achieve-
ment of a safe man-machine interaction as well as a quick and appropriate
reaction of the system to the occurrence of failures.

F. Caccavale, L. Villani (Eds.): Fault Diagnosis and Fault Tolerance for Mechatronic Systems, STAR 1, pp. 85-108, 2003.
     Springer-Verlag Berlin Heidelberg 2003
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The main goal of an FD system is the monitoring of the plant during its
normal working conditions so as to detect the occurrence of failures (fault de-
tection), recognize the location (fault isolation) and the time evolution (fault
identification) of the failures. In the model-based approach to FD, this goal is
achieved by comparing the actual system’s behavior with the corresponding
expected behavior derived via its mathematical model. Usually, the output
of a fault detection algorithm is a set of variables sensitive to the occurrence
of a failure (residuals). Namely, when a a failure occurs, a fault signature
affects the residuals. Then, the information from the signatures is processed
to identify the size and the location of the fault. The interested reader is
referred to [10–12,4,16] for a wide overview of the existing model-based FD
techniques. As for the case of nonlinear dynamical systems the fault detec-
tion methods can be roughly regrouped in three main classes: observer-based
approaches [10,11], parameter estimation techniques [13,14] and algorithms
based on learning methodologies [18,24,6,22,23]. Recently, soft computing
methods, integrating quantitative and qualitative modeling information, have
been developed to improve FD reasoning capabilities (see [17] and references
therein).

Several FD techniques for mechanical manipulators have been developed
in the literature, based on parameter estimation [14,9], on the combined use
of state observers and fuzzy logic residuals evaluation [19] and on discrete-
time observers [2,3]. Moreover, in [26] an analytical redundancy concept [5] is
applied together with an adaptive update of the thresholds on the residuals,
while in [25] a neural network is employed to match an unknown fault.

This chapter focuses on nonlinear observer-based FD approaches for me-
chanical manipulators. The goal is to develop FD schemes suitable for the
application to conventional industrial manipulators, which overcome the typ-
ical problems of industrial setups, i.e., lack of knowledge of some terms in the
mathematical model, effects of sensory noise and of discrete-time implemen-
tation.

Usually, the observer-based methods require a model of the system to
be operated in parallel to the process (diagnostic observer) in an open-loop
fashion [19]. Then, the residuals are computed as the difference between the
measured output variables and those predicted via the diagnostic observer.
Assuming an exact knowledge of the manipulator dynamics, the residuals
should become nonzero when a fault occurs. However, perfect knowledge
of the manipulator model is rarely a reasonable assumption, especially for
industrial gear-driven robots, where effects like backlash and friction become
not negligible, and yet difficult to model. Further, the diagnostic observer
has to be implemented as a discrete-time system eventually working at a
low sampling rate. In order to limit the computational burden, a simple
discretization scheme should be used to implement the observer; this may
lead to a drifting behavior of the residuals. Hence, the observer cannot be
operated in an open-loop fashion: some information coming from the plant
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(through the sensors) must be provided to the observer in order to improve
its robustness to both model uncertainties and discretization errors. However,
robust detection of the faults can be achieved only at the expense of reduced
sensitivity to failures; this requires that solutions based on a trade-off between
these two performance indexes must be devised.

Hence, the design of a diagnostic observer must take into account two
main requirements:

• In order to take into account the unavoidable effects of the discretization,
the diagnostic observer should be designed directly in the discrete-time
domain;

• Information provided by sensor measurements must be used, so as to
improve the robustness of the observer without a destructive impact on
the sensitivity to the failures.

In order to fulfill the above requirements, a diagnostic observer is designed
so as to estimate the manipulator state; it includes a term depending on the
state estimation error and a term compensating for unmodeled dynamics,
disturbances and noise. Different strategies for computing the compensation
term are considered and critically compared. Then, a suitable choice of the
residuals, computed on the basis of the observer outputs, allows the design of
a simple and reliable fault isolation procedure, i.e., the type and the size of the
failures can be determined from the signatures on the residuals. Remarkably,
the FD scheme is designed directly in discrete-time so as to take into account
the effect of discretization.

Finally, the proposed FD schemes are experimentally tested on a six-
degree-of-freedom industrial manipulator with open control architecture.

2 Modeling

The dynamic model of an n-degrees-of-freedom rigid robot in the continous
time can be written in the form

M(q(t))q̈(t) + n(q(t), q̇(t)) = τ (t), (1)

where q and τ denote the (n× 1) vectors of joint variables and joint torques,
respectively. In equation (1) M is the (n×n) symmetric and positive definite
inertia matrix and

n(q, q̇) = V (q, q̇)q̇ + F q̇ + g(q) + ν(q, q̇) (2)

is the (n × 1) vector collecting the Coriolis and centrifugal (V (q, q̇)q̇), fric-
tion (F q̇) and gravitational (g(q)) terms, while ν(q, q̇) collects other dy-
namic terms, usually difficult to model (e.g.,friction effects at low velocities,
motors electromagnetic disturbances). Hereafter, it is assumed that only an
approximate model of the manipulator is known, i.e., only nominal estimates
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(M̂(q), n̂(q, q̇)) are available for the terms in (1). By introducing the quan-
tities M̃ = M −M̂ and ñ = n− n̂, the equations of motion can be rewritten
in the form

M̂(q(t))q̈(t) + n̂(q(t), q̇(t)) = τ (t) − δ(q(t), q̇(t), τ (t)), (3)

where the modeling uncertainties are explicitly taken into account by the
term

δ(q, q̇, τ ) = M̃(q)
(
M(q)−1(τ − n(q, q̇))

)
+ ñ(q, q̇). (4)

A choice for the state variables of the system is represented by the (2n×1)
vector

x(t) =
[

x1(t)
x2(t)

]

=
[

q(t)
q̇(t)

]

. (5)

The state-space equations of the manipulator are then given by
{

ẋ(t) = Acx(t) + hc(x(t)) + Bc(x(t))u(t) + ηc(x(t),u(t))
y(t) = Cx(t), (6)

where y denotes the (p × 1) output vector, u = τ and C is the (p × 2n)
output matrix. The matrices Ac and Bc in (6) are defined as follows:

Ac =
[

On In

On On

]

, Bc(x) =
[

On

M̂
−1

(x1)

]

, (7)

where On denotes the (n×n) null matrix and In denotes the (n×n) identity
matrix. If the whole state (i.e., joints positions and velocities) is measurable,
then p = 2n and C = I2n.

The other two terms in (6), representing the nonlinear part of the dynam-
ics, are given by

hc(x) =
[

0n

−M̂
−1

(x1)n̂(x1,x2)

]

, (8)

and

ηc(x,u) =
[

0n

−M̂
−1

(x1)δ(x1,x2,u)

]

, (9)

where 0n denotes the (n × 1) null vector.
It is assumed that the measurements of the output variables are sampled

at a fixed time step T , while the input torques are assumed to be constant over
each time interval Ik ≡ [kT, (k + 1)T [, where the integer k ≥ 0 denotes the
discrete time variable. Thus, it is worth looking for a discrete-time equivalent
of the model (6). To the purpose, consider a Taylor expansion of x1(t) and
x2(t) at tk+1 = (k + 1)T , with starting point tk = kT

{
x1(k + 1) = x1(k) + Tx2(k) + ρd1(k)
x2(k + 1) = x2(k) + T ẋ2(k) + ρd2(k), (10)
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where the discrete time variables tk and tk+1 have been denoted simply by
the integers k and k + 1, respectively. In (10) the two quantities ρd1 and
ρd2 represent the local discretization errors due to the truncation of the se-
ries; they depend linearly on the joint accelerations and jerks respectively,
evaluated at suitable intermediate points in Ik. Thus, a simple discrete-time
model based on the first order Euler method, can be found

{
x(k + 1) = Ax(k) + h(x(k)) + B(x(k))u(k) + η(k,x(k),u(k))

y(k) = Cx(k),
(11)

where

A =
[

In TIn

On In

]

, h = T hc, B = T Bc, (12)

and

η = T ηc +
[

ρd1

ρd2

]

. (13)

The features of the Euler method method for numerical integration of
differential equations are well-known (see, e.g., [7]): the local truncation errors
are given by ρd1 an ρd2, while the global accumulated error is of the same
order of magnitude as T . It is worth noticing that different discrete dynamic
models have been proposed in the literature, ensuring better performance
both for simulations and control purposes (see, e.g., the model proposed
in [15]). However, these models are not so simple as the Euler-based one, and
they are not tailored for direct dynamics purposes (i.e., for the evaluation of
the manipulator state at the current step, given the state and the input at
the previous step).

The classes of failures considered in this work are those of actuator faults
and sensor faults. The former can be defined as the class of failures occurring
either in the driving motors or, eventually, in the corresponding gear trains.
This class of failures can be represented as an unknown additive disturbance
on the commanded torques, hereafter referred as nominal torques, ū. Hence,
an actuator fault occurring at tk = kT results in a faulty torque input given
by

u(k) = ū(k) + δu(k), (14)

where δu represents the unknown fault.
A sensor fault occurs when the sensor readings do not coincide with the

true values of the state variables, i.e., the vector of the nominal measures of
the state variables (x̄) is given by

x̄(k) = x(k) + δx(k), (15)
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where δx is the unknown fault. In the general case, i.e., both joint positions
and velocities are measured, the vector sensor faults is of the form

δx(k) =
[

δx1(k)
δx2(k)

]

, (16)

where δx1(k) and δx2(k) are independent.
Therefore, the nominal dynamics (11) in the presence of faults becomes

x̄(k + 1) = Ax̄(k) + h(x̄(k)) + B(x̄(k))ū(k) + η(k) + f(k), (17)

where the dependence of f and η upon x and u has been dropped for notation
compactness. The fault vector f represents the effect of the faults on the
system dynamics, and is given by f(k) = fa(k) + fs(k), where:

fa(k) = B(x̄(k))δu(k), (18)

and

fs(k) = δx(k + 1) − Aδx(k) + δh(x̄(k), δx(k)) + (19)
δB(x̄(k), δx(k))(ū(k) + δu(k)),

where δh(x̄, δx) = h(x) − h(x̄) and δB(x̄, δx) = B(x) − B(x̄). It is worth
noticing, that an actuator fault affects only the last n components of the fault
vector f , while a sensor fault influences all the 2n components.

In the following different fault diagnosis schemes are presented. The main
goal is to design a diagnostic system able to track the behaviour of the ma-
nipulator despite the discretization errors and uncertainties in the available
mathematical model. Each scheme is developed with reference to the discrete-
time model (17), in which it is assumed the whole state measurable. In Sec-
tion 5 the case of unmeasurable velocities will be tackled.

3 A Simple Model-Based Fault Diagnosis Scheme

A rough estimate of the fault vector f(k) can be obtained by defining the
residual vector as follows:

r(k + 1) = x̄(k + 1) − Ax̄(k) − h(x̄(k)) − B(x̄(k))ū(k). (20)

From (17) it can be simply recognized that the residual is directly affected
by the uncertainties

r(k + 1) = η(k) + f(k). (21)

Hence, the fault can be detected and isolated only if ‖η‖ ≤ ηM for every k,
x and u in the domain of interest. In this case, a fault occurring at the time
step kf would be detected if there exists a k ≥ kf such that

‖f(k)‖ > ηM > ‖η(k)‖. (22)

However, either a good estimate of ηM is not available or the uncertainties
cannot be considered limited. Moreover, sensitivity to faults is heavily affected
by the magnitude of ηM , i.e., the effect faults with small magnitude would
be masked by uncertainties.
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4 Observer-Based Fault Diagnosis

In order to overcome the drawbacks of the simple strategy proposed in the
previous subsection, an observer-based scheme can be adopted. The main
goal is to design a so-called diagnostic observer, which is able to track the
behaviour of the manipulator despite the discretization errors and uncertain-
ties in the available mathematical model.

The general structure of the observer is:

x̂(k + 1) = Ax̂(k) + h(x̄(k)) + B(x̄(k))ū(k) + Koe(k) + η̂(k), (23)

where e = x̄ − x̂ is the state estimation error, and the notation ‘̂’ denotes
the estimated variables. In equation (23) the term Koe performs a feedback
action based on the estimation error, where

Ko =
[

K1 TIn

On K2

]

, (24)

and K1 and K2 are positive definite diagonal (n × n) matrices. The term
η̂(k) represents an estimate of the uncertainties η(k).

Therefore, the estimation error dynamics is given by

e(k + 1) = Fe(k) + η̃(k) + f(k), (25)

where F i = In − Ki (i = 1, 2) and F = block diag{F 1,F 2} and η̃(k) =
η(k) − η̂(k).

The residual vector can be chosen as:

r(k + 1) = e(k + 1) − Fe(k), (26)

which can be rewritten as

r(k + 1) = η̃(k) + f(k). (27)

It can be recognized that, differently from (20), the residual vector is affected
by the fault vector and the estimation error of the uncertain term, i.e. η̃(k).
Hence, if an accurate estimation of η(k) is achieved, the fault signature on
the residual becomes more obvious.

In the following, three different estimation techniques for η(k) are pre-
sented.

4.1 Time-Delayed Estimation

The estimation the uncertain term in equation (17) can be thought as a
problem of unknown input estimation. In this framework, the so-called time-
delayed feedback approach [27] can be effectively adopted; moreover, the
results obtained in [21] for linear systems are closely related both to our
problem and to time-delayed feedback techniques.
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Therefore, an estimate of the uncertain term can be obtained by resorting
to a time-delayed evaluation of the the dynamics of the system [2,3]. Namely,
η̂(k) can be computed as

η̂(k) = x̄(k) − Ax̄(k − 1) − h(x̄(k − 1) − B(x̄(k − 1))ū(k − 1), (28)

which can be rewritten as

η̂(k) = η(k − 1) + f(k − 1). (29)

Hence, the estimation error dynamics becomes

e(k + 1) = Fe(k) + η(k) − η(k − 1) + f(k) − f(k − 1), (30)

while the residual is given by

r(k + 1) = η(k) − η(k − 1) + f(k) − f(k − 1). (31)

Differently from (21), the effect of the uncertainties on the residual does
not depend on the magnitude of η(k), but on its rate of change. If η(k) can
be assumed slowly varying, i.e.:

• its rate of change is upper bounded by a constant ∆ηM :

‖η(k) − η(k − 1)‖ < ∆ηM

for every x and u in the domain of interest;
• the upper bound ∆ηM is lower than ηM :

ηM < ∆ηM ,

Hence, the residuals are less sensitive to uncertainties with respect to (21),
i.e., a fault occurring at the time step kf would be detected if there exists a
k ≥ kf such that

‖f(k) − f(k − 1)‖ > ∆ηM > ‖η(k) − η(k − 1)‖. (32)

In other words, the time-delayed approach is capable of detecting only abrupt
faults, i.e., faults such that the rate of change of f is lower bounded by the
maximum norm of the rate of change of η.

4.2 Recursive Estimation

As already pointed out, the time-delayed estimation strategy does not per-
form well in the presence of incipient faults, i.e., such that f is characterized
by a lower rate of change with respect η. To overcome this drawback, the es-
timation of the uncertain term can be performed in a recursive way. Namely,
η̂(k) can be computed as

η̂(k + 1) = η̂(k) + Γ η (e(k + 1) − Fe(k)) , (33)
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where Γ η is chosen such that Ip − Γ η has all its eigenvalues inside the unit
circle.

In this case, the estimation error dynamics is given by
{

e(k + 1) = Fe(k) + η̃(k) + f(k)
η̃(k + 1) = (Ip − Γ η) η̃(k) + η(k + 1) − η(k) − Γ ηf(k).

(34)

Therefore, by taking into account (27), the residuals vector can be expressed
as

r(k + 1) = (Ip − Γ η) r(k) + η(k) − η(k − 1) + f(k) − f(k − 1). (35)

It can be easily recognized that the residual in (35) is a low-pass filtered
version of the residual generated via (31). Hence, by suitably choosing the
matrix Γ η, the scheme may be capable of detecting incipient faults.

4.3 Adaptive Estimation

The approaches described above do not make use of any a priori information
on the uncertainties. As a matter of fact, a parametric model of the un-
certainties is often available, although some parameters in the model might
be unknown. In this case an adaptive estimation algorithm of the unknown
parameters can be set up. It is worth remarking that such a paradigm has
been keenly exploited for adaptive fault identification (see, e.g., the work
in [18]–[23]). However, in this work the same concept is exploited in order to
adaptively compensate for the uncertainties, so as to obtain small values of
the residuals in the absence of faults.

It is assumed that the uncertain term is a function of state, input and p
constant parameters

η(k) = η(k,x(k),u(k),θ), (36)

where θ is the (p × 1) parameters vector.
In this case, the uncertain term can be indirectly evaluated through the

estimation of θ. Namely, and adaptive update law for the parameters estimate
θ(k) can be chosen as

θ̂(k + 1) = θ̂(k) + ZT (k, θ̂(k))Γ θ(k) (e(k + 1) − Fe(k)) , (37)

where the (2n × p) Jacobian matrix Z is given by

Z(k,θ) =
∂η(k,x(k),u(k),θ)

∂θ
. (38)

The gain matrix Γ θ(k) is chosen as follows:

Γ θ(k) = 2
(

Z(k, θ̂(k))ZT (k, θ̂(k)) + Q
)−1

, (39)

where Q is a positive definite symmetric matrix.
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By resorting to a Taylor expansion about (x(k),u(k), θ̂(k)), the estima-
tion error can be expressed as

η̃(k) = η(k,x(k),u(k),θ) − η(k,x(k),u(k), θ̂(k))

� Z(k, θ̂(k))θ̃(k) + ε(k),
(40)

where ε(k) is the error due to the truncation of the series and θ̃(k) = θ− θ̂(k)
is the parameters estimation error.

The estimation error dynamics is then given by





e(k + 1) = Fe(k) + Z(k, θ̂(k))θ̃(k) + f(k) + ε(k)

θ̃(k + 1) =
(

Ip − ZT (k, θ̂(k))Γ θ(k)Z(k, θ̂(k))
)

θ̃(k)

−ZT (k, θ̂(k))Γ θ(k) (f(k) + ε(k)) .

(41)

Therefore, the residual becomes

r(k + 1) = Z(k, θ̂(k))θ̃(k) + f(k) + ε(k). (42)

It can be recognized that residuals vector is influenced by the parameters
estimation error and the error due to the truncation of the series. Moreover,
the influence of the past values of f(k) on r(k + 1) is filtered out by the
dynamics of the parameters estimation error.

5 Observer-Based Fault Diagnosis in the Absence of
Velocity Measurements

If velocity measurements are not available the joint velocities are usually
obtained via numerical reconstruction, e.g., using a first order difference of
the measured joint positions

z2(k) =
x1(k) − x1(k − 1)

T
, (43)

where the relationship with the true time derivative can be expressed as
x2(k) = z2(k) + ρ2z(k − 1), being ρ2z(k − 1) an discretization error term
depending on the chosen discretization method (e.g., the first-order backward
difference as in (43)).

In this case the model (11) can be rewritten in terms of the numerically
reconstructed velocities rather than the actual velocities, and a new discrete-
time model can be derived, which is formally similar to (11)

{
z(k + 1) = Az(k) + h(z(k)) + B(z(k))u(k) + ηz(k,z(k),u(k))

yz(k) = z(k),
(44)

where

z(k) =
[

z1(k)
z2(k)

]

, z1(k) = x1(k), (45)
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and ηz is a suitably defined vector depending on η and ρ2z. Therefore, the
approach described in the following for the design of the diagnostic observer
can be extended to this case. Clearly, the new model is written in terms of
a new set of variables, in which the actual joint velocities are replaced with
their numerical counterparts; this is not to be considered as a drawback, since
the main goal of an FD scheme is not the state estimation.

Therefore, when only joint position sensors are available, the model (44)
have to be considered. In this case the faulty state vector is

z̄(k) = z(k) + δz(k), (46)

where

δz(k) =
[

δz1(k)
δz2(k)

]

, (47)

where δz1(k) is the vector of the position sensors faults, and

δz2(k) =
δz1(k) − δz1(k − 1)

T
. (48)

Hence, differently from (16), the last n components of z (i.e., z2) are not
independent from the first n (i.e., z1).

6 Fault Detection, Isolation, and Identification

Once the residuals vector r(k) is computed at each step, a fault is declared
if each component of r(k) exceeds a suitably selected threshold ρi:

|ri(k)| > ρi i = 1, . . . , n. (49)

The a priori selection of each threshold should be based on the expressions of
the residuals (21),(31),(35) and (42). Namely, proper setting of the thresholds
requires an accurate knowledge of the uncertainties influence on the residuals,
i.e,. of the constant valuse ηM and ∆ηM . However, this approach often leads
to extremely conservative results.

Therefore, an empirical approach may be pursued to set the residuals
thresholds in alternative to (or in combination with) the approach based
on the a priori knowledge of the uncertainties. Namely, a number of exper-
iments in the absence of faults may be performed and the corresponding
residuals recorded; then, the thresholds can be set on the basis of the max-
imum absolute values of each component of the residuals vector. Of course,
the experimental trials should be chosen following the worst-case criterium
for the residuals, i.e., the uncertainties influence should be the maximum pos-
sible. In the case of a robot manipulator, the experimental data should be
collected along trajectories at very low velocities (so as to emphasize effects
like friction and motor electromagnetic disturbances) as well as trajectories
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characterized by high acceleration and wide joint displacements (so as to
emphasize the effect of inertial and configuration-dependent terms).

On the other hand, a complete fault diagnosis scheme should ensure not
only the early and reliable detection of the failures, but also the isolation
of the fault, i.e., the location of the failure. The expressions of the residuals
vector (21),(31),(35) and (42) clearly show that the signatures of the faults
reflect the structure of the fault vector f(k). In other words, it can be stated
that:

• a fault on the ith actuator affects only the last n components of r(k);
• a fault on the ith sensor affects the ith component of r(k) and, possibly,

the last n components (see equation (47)).

Hence, different faults correspond to distinct fault signature on the residuals:
this implies that a reliable fault isolation is always ensured.

Fig. 1. The robot Comau Smart-3 S.

The problem of fault identification (i.e., the determination of the fault
time evolution as accurately as possible) is a difficult task, since only the
combined effect of uncertainties and faults can be estimated and not the
two contribution separately. In other words, the uncertainties and the faults
affect the estimation error dynamics in the same way, thus making impossible
a clear distinction between faults and uncertainties influence.

In fact, the observer-based approach described above is based on the es-
timation of the uncertain term η(k). However, in the presence of faults the
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Fig. 2. Actuator fault. Time-delayed uncertainties estimation: Residuals.

estimated uncertainties η̂(k) will be affected a combination of η(k) and f(k).
Therefore, the best estimate of the fault vector can be obtained only by taking
f̂(k) = η̂(k). In detail:

• before a fault is declared (i.e., all the components of r(k) are below the
chosen thresholds), f̂(k) is set to the null vector;

• after the detection of a fault (i.e., some components of r(k) exceed the
corresponding thresholds), the corresponding components of the fault
vector are set equal to those of η̂(k).

Then, after the detection the fault can be determined as follows:

• the estimated ith component of δτ (k) is set equal to the ith component
of the vector (M(q(k))/T )f 2(k);

• the estimated ith component of δx1(k) is set equal to the ith component
of x1d(k) − x̄1(k),

where f2 is the vector collecting the last n components of the fault vector,
x1d is the commanded (desired) joint position trajectory and e1 is the vector
collecting the first n components of the estimation error vector.

7 Experimental Results

The FD techniques described above are tested on the setup available in the
laboratory. The robot is a Comau SMART-3 S industrial unit (Fig. 1). The
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Fig. 3. Actuator fault. Time-delayed uncertainties estimation: Estimate of the fault
time evolution.

manipulator has a six-revolute-joint anthropomorphic geometry with nonnull
shoulder and elbow offsets and non-spherical wrist. The joints are actuated
by brushless motors via gear trains; shaft absolute resolvers provide motor
position measurements. The robot is controlled by the C3G 9000 control unit
which has a VME-based architecture with 2 processing boards (Robot CPU
and Servo CPU) both based on a Motorola 68020/68882. It is worth remark-
ing that the SMART-3 S is a conventional industrial unit and not a research
prototype; hence, all the typical drawbacks of industrial manipulators (e.g.,
joint friction, stiction and backlash due to the gear trains, disturbances on the
torque delivered by the actuators, unmodeled elasticity of the joint shafts).

An open version of the control unit has been developed which allows
testing of advanced control algorithms on a conventional industrial robot.
Communication between the VME bus of the C3G 9000 unit and the ISA
bus of a standard PC is made possible by a bus-to-bus adapter board and
a shared memory area available in the Robot CPU. Time synchronization is
implemented by interrupt signals from the C3G to the PC with data exchange
at a given sampling rate. A set of C routines are available to drive the bus
adapter boards. At present, a PC Pentium MMX/233 is used as control unit.

Various operational modes are available in the control unit, allowing the
PC to interact with the original controller both at trajectory generation level
and at joint control level. To implement model-based control schemes, the
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Fig. 4. Actuator fault. Recursive uncertainties estimation: Residuals.

operational mode 4 is used in which the PC is in charge of computing the
control algorithm and passing the references to the current servos through
the communication link.

The dynamic model of the manipulator is expressed in terms of a mini-
mum set of dynamic parameters, estimated on the basis of direct measure-
ments on the manipulator [1]. In the experiments a joint-space inverse dynam-
ics control algorithm [20] is adopted working at a sampling rate of 1000 Hz.

In the experiments a fifth-order polynomial trajectory is imposed at each
joint with null initial and final velocities and accelerations; the initial joint
configuration is

qT
0 = [ π/2 −2π/3 π/6 −π/2 π/2 0.0 ] ,

and the commanded joint displacement is given by:

∆qT = [ π/4 π/4 −π/4 0.0 −π/2 π/2 ] .

The total (programmed) duration of the motion is 4 s.
The trajectory has been then executed. In order safely to emulate the

presence of sensor and actuator faults, an additive signal has been super-
imposed to the measured experimental data off-line. Namely, the sequences
δτ (k) and δx1(k) have been simply added to the measured fault-free data
τ (k) and x1(k). In detail, two actuator faults have been considered affecting
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Fig. 5. Actuator fault. Time-delayed uncertainties estimation: Estimate of the fault
time evolution.

the driving torques generated by the actuators of the joints 3 (occurring at
time tfault = 1 s) and 5 (occurring at time tfault = 3 s), with the following
time profile:

{
δτ3(k) = 60 (1 − e−(kT−1)/0.002) kT ≥ 1
δτ5(k) = 40 (1 − e−(kT−3)/0.08) kT ≥ 3.

Moreover, a second case study has been considered in which two sensor faults
have been added to the measured angular positions of joints 3 (occurring at
time tfault = 1 s) and 5 (occurring at time tfault = 3 s), with the following
time profile:

{
δx1,3(k) = 0.006 (1 − e−(kT−1)/0.002) kT ≥ 1
δx1,5(k) = 0.004 (1 − e−(kT−3)/0.08) kT ≥ 3.

The first fault has to be considered as a an abrupt fault, while the second
can be seen as an incipient fault.

The FD schemes are implemented at a sampling rate of 500 Hz (T = 2 ms).
The matrix gains of the diagnostic observer (23) have been chosen as

K1 = K2 = 0.1 I3,

The matrix gains in (33) and (39)are chosen as

Γ η = 0.1diag{0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 2, 2, 2, 2, 2, 3}, Q = 2Γ −1
η .
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Fig. 6. Actuator fault. Adaptive uncertainties estimation: Residuals.

In order to perform a proper fault detection, suitably defined thresholds
on the residuals has been selected. Thresholds setting has been achieved
by measuring the residuals obtained in a set of fault-free trajectories under
various operating conditions. By inspecting the measured residuals and their
deviations from zero, the threshold in (49) have been set as follows:

ρ1 = 3 · 10−5, ρ2 = 2 · 10−5, ρ3 = 4 · 10−5, ρ4 = 2 · 10−5,

ρ5 = 10−4, ρ6 = 2 · 10−4, ρ7 = 3 · 10−3, ρ8 = 2 · 10−3,

ρ9 = 2.5 · 10−3, ρ10 = 10−3, ρ11 = 5 · 10−3, ρ12 = 10−2.

As for the choice of the parametric model of the uncertainties (36), it is
possible to resort to different approaches. A widely adopted choice is rep-
resented by the so-called on-line approximators [18]–[22], e.g., RBF neural
networks and polynomials. However, in the case of industrial robots, the un-
certainties model is usually known (e.g., friction at low velocities, periodic
torque disturbances), but the corresponding parameters are difficult to iden-
tify. In fact, for the robot used in the experiments an accurate dynamic model
can be obtained [1] except for the periodic torque disturbances due to elec-
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Fig. 7. Actuator fault. Adaptive uncertainties estimation: Estimate of the fault time
evolution.

tromagnetic phenomena in the brushless motors. Hence, a realistic model of
the uncertainties is given by [8]:





ηi(k,θ) = θi,
ηi+6(k,θ) = θ7i + θ7i+1sin(θ7i+2x1i(k) + θ7i+3

+τi(k)θ7i+4 ∗ sin(θ7i+5xi1(k) + θ7i+6).
i = 1, . . . , 6 (50)

Suitable initial values for all parameters have been found via spectral analysis
of the residuals obtained in a set of fault-free trajectories.

In the following the results obtained by adopting the observer-based ap-
proach to FD, with the different uncertainties estimation techniques, will be
briefly commented.

7.1 Diagnosis Results for Sensor Faults

Figures from 2 to 7 show the obtained results in the presence of the emulated
actuator fault. As expected, the time-delayed estimation technique presented
in Section 4.1 is characterized by a lower sensitivity to incipient faults in front
of very low residuals (see Figure 2). On the other hand, the FD scheme based
on the recursive estimation of the uncertainties presented in 4.1, achieves
higher sensitivity to the occurrence of incipient faults, although the residuals
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Fig. 8. Sensor fault. Time-delayed uncertainties estimation: Residuals.

magnitude is much higher (see Figure 4). The best trade-off between robust-
ness to uncertainties (i.e., low residuals) and sensitivity to faults is achieved
by adopting the adaptive estimation technique devised in Section 4.3 (see
Figure 6); this result is due to the accurate choice of the uncertainties model.

Once a fault is detected, it can be reliably isolated, since the sole residuals
corresponding to the faulty actuators become larger than the corresponding
thresholds .

Finally, it is worth noticing that a fairly accurate fault identification can
be achieved by adopting the strategies proposed in Section 6 (see Figures 3,
5 and 7).

7.2 Diagnosis Results for Actuator Faults

Figures from 8 to 13 show the obtained results in the presence of the emu-
lated actuator fault. Again, the time-delayed estimation technique presented
in Section 4.1 is characterized by a lower sensitivity to incipient faults in front
of very low residuals (see Figure 8). On the other hand, the FD scheme based
on the recursive estimation of the uncertainties presented in 4.1, achieves
higher sensitivity to the occurrence of incipient faults, although the residuals
magnitude is much higher (see Figure 10). The best trade-off between robust-
ness to uncertainties (i.e., low residuals) and sensitivity to faults is achieved



104 Caccavale and Villani

0 1 2 3 4

−1

−0.5

0

0.5

1

x 10
−4 estimate of δ x

1
(1)

[r
ad

]

0 1 2 3 4

−1

−0.5

0

0.5

1

x 10
−4 estimate of δ x

1
(2)

0 1 2 3 4

−5

0

5

x 10
−3 estimate of δ x

1
(3)

[r
ad

]

0 1 2 3 4

−1

−0.5

0

0.5

1

x 10
−4 estimate of δ x

1
(4)

0 1 2 3 4

−1

−0.5

0

0.5

1

x 10
−4 estimate of δ x

1
(5)

[s]

[r
ad

]

0 1 2 3 4

−1

−0.5

0

0.5

1

x 10
−4 estimate of δ x

1
(6)

[s]

Fig. 9. Sensor fault.Time-delayed uncertainties estimation: Estimate of the fault
time evolution.
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Fig. 10. Sensor fault. Recursive uncertainties estimation: Residuals.
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Fig. 11. Sensor fault. Time-delayed uncertainties estimation: Estimate of the fault
time evolution.
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Fig. 12. Sensor fault. Adaptive uncertainties estimation: Residuals.
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by adopting the adaptive estimation technique devised in Section 4.3 (see Fig-
ure 12); this result is due to the accurate choice of the uncertainties model.

Once a fault is detected, it can be reliably isolated, since the sole residuals
corresponding to the faulty sensors become larger than the corresponding
thresholds .

Finally, it is worth noticing that a fairly accurate fault identification can
be achieved by adopting the strategies proposed in Section 6 (see Figures 9,
11 and 13).

8 Conclusion

In this chapter different schemes to Fault Diagnosis (FD) for mechanical
manipulators have been presented and critically compared. Namely, all the
proposed FD schemes are based on a suitably designed discrete-time ob-
server of the manipulator’s state, while each scheme differs from others for
the uncertainties estimation strategy. First, a robust time-delayed estimation
technique has been presented. Then, a recursive estimation of the uncertain
terms is proposed which overcomes some limitations of the first technique.
Finally, an adaptive estimation technique has been investigated, which makes
use of a parametric model of the uncertainties. All the considered schemes
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Fig. 13. Sensor fault. Adaptive uncertainties estimation: estimate of the fault time
evolution.
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have been experimentally tested on a six-degree-of-freedom industrial robot
and the performance have been critically compared each other.
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Abstract. The use of Remotely Operated Vehicles (ROVs) and Autonomous Un-
derwater Vehicles (AUVs) increased significantly in the last years. Such vehicles
are complex systems engaged in missions in un-structured, unsafe environments for
which the degree of autonomy becomes a crucial issue. In this sense, the capability
to detect and tolerate faults is a key to successfully terminate the mission or recu-
perate the vehicle. In this paper, an overview of fault detection and fault tolerance
algorithms, specifically designed for ROVs or for AUVs is presented.

1 Introduction

Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles
(ROVs) received increasing attention in the last years due to their significant
impact in several underwater operations. Examples are the monitoring and
maintenance of off-shore structures or pipelines, or the exploration of the sea
bottom; see, e.g., reference [50] for a complete overview of existing AUVs with
description of their possible applications and the main subsystems. The bene-
fit in the use of unmanned vehicles is in terms of safety, due to the possibility
to avoid the risk of manned missions, and economic. Generally, AUVs are
required to operate over long periods of time in unstructured environments
in which an undetected failure usually implies loss of the vehicle. It is clear
that, even in case of failure detection, in order to terminate the mission, or
simply to recover the vehicle, a fault tolerant strategy, in a wide sense, must
be implemented. In fact, simple system failure can cause mission abort [28]
while the adoption of a fault tolerant strategy allows to safely terminate the
task as in the case of the arctic mission of Theseus [18]. In case of the use of
ROVs, a skilled human operator is in charge of command the vehicle, a fail-
ure detection strategy is then of help in the human decision making process.
Based on the information detected, the operator can decide in the vehicle
rescue or to terminate the mission by, e.g., turning off a thruster.

Fault detection is the process of monitoring a system in order to recog-
nize the presence of a failure; fault isolation or diagnosis is the capability to
determine which specific subsystem is subject to failure. Often in literature
there is a certain overlapping in the use of these terms. Fault tolerance is the

F. Caccavale, L. Villani (Eds.): Fault Diagnosis and Fault Tolerance for Mechatronic Systems, STAR 1, pp. 109-127, 2003.
     Springer-Verlag Berlin Heidelberg 2003
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capability to complete the mission also in case of failure of one or more sub-
systems, it is referred also as fault control, fault accommodation or control
reconfiguration. In the following the terms fault detection/tolerance will be
used.

The characteristics of a fault detection scheme are the capability of isolate
the detected failure; the sensitivity, in terms of magnitude of the failure that
can be detected and the robustness in the sense of the capability of working
properly also in non-nominal conditions. The requirements of a fault toler-
ant scheme are the reliability, the maintainability and survivability [40]. The
common concept is that, to overcome the loss of capability due to a failure, a
kind of redundancy is required in the system. A general scheme is presented
in Figure 1.

In this paper, a survey over existing fault detection and fault tolerant
schemes for underwater vehicles is presented. For these specific systems,
adopting proper strategies, an hardware-software (hw-sw) sensor failure or
an hw-sw thruster failure can be successfully handled in different operating
conditions as it will be shown in next Sections. In some conditions, it is re-
quired that the fault detection scheme is also able to diagnostic some external
not-nominal working conditions such as a multi-path phenomena affecting the
echo-sounder system [11]. It is worth noticing that, for autonomous systems
such as AUVs, space systems or aircraft, a fault tolerant strategy is necessary
to safely recover the damaged vehicle and, obviously, there is no panic button
in the sense that the choice of turning off the power or activate some kind of
brakes is not available.

Most of the fault detection schemes are model-based [1–4,9,11,20,22,39,48]
and concern the dynamic relationship between actuators and vehicle behav-
ior or the specific input-output thruster dynamics. A model-free method
is presented in [7,29]. Higher level fault detection schemes are presented
in [17,18,25,51]. References [6,30,32,33,44,49] deal with hardware/software
aspects of a fault detection implementation for AUVs. Neural Network and
Learning techniques have also been presented [15,16,21,23,46].

Concerning fault tolerant schemes, most of them consider a thruster re-
dundant vehicle that, after a fault occurred in one of the thrusters, still is
actuated in 6 degrees of freedom (dofs). Based on this assumption a real-
location of the desired forces on the vehicle over the working thrusters is
performed [2–4,9,11,35–38,41,48]. Of interest is also the study of reconfigu-
ration strategies if the vehicle becomes under-actuated [34].

Only few papers concern the experimental results of fault detection and
fault tolerant schemes [2–4,6,9,11,17,18,32,35,36,41,48]; for all the above ref-
erences it is worth noticing that the successfully results has been achieved
with the implementation of simple algorithms.

In Section 2, the mathematical model of underwater vehicles is briefly
discussed and the main properties are highlighted; in Section 3 a small list of
failures occurred during wet operations is reported; Section 4 and 5 report the
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description of fault detection and tolerant strategies for underwater vehicles.
Since the implementation of such strategies in a real environment is not trivial
Section 6 describes in more detail some successfully experiments. Finally, the
conclusions are drawn in Section 7.

+
FTC UUV−

FD

high level

Fig. 1. General fault detection/tolerant control scheme for an Unmanned Under-
water Vehicle (UUV). The Fault Detection (FD) block is in charge of detecting the
failure, send a message to the higher level supervisor and, eventually, modifying the
Fault Tolerant Controller (FTC).

2 Modeling

Let define as Σi, {O−xyz} a reference frame that we will suppose earth-fixed
and inertial and as Σv, {Ov −xvyvzv} a vehicle-fixed frame. The unit vector
z is considered parallel to the gravity, xv is parallel to the vehicle fore aft
direction and zv is aligned with z when the vehicle is at the surface. Moreover,

η =
[
ηT

1 ηT
2

]T, where η1 = [ x y z ]T ∈ IR3 is the vector of vehicle

position coordinates in a earth-fixed reference frame, η2 = [ φ θ ψ ]T ∈ IR3

is the vector of Euler-angles coordinates expressing the vehicle orientation in

the earth-fixed reference frame. ν =
[
νT

1 νT
2

]T, ν1 ∈ IR3 is the vector of
vehicle linear velocity expressed in the vehicle-fixed reference frame, ν2 ∈ IR3

is the vector of vehicle angular velocity expressed in the vehicle-fixed reference
frame.

The vehicle-fixed velocity ν and the time derivative of the earth-fixed
vehicle coordinates are related by the following:

ν1 = RB
I η̇1, (1)

ν2 = T (η2)η̇2. (2)

where RB
I is the rotation matrix expressing the transformation from the

earth-fixed frame to the vehicle-fixed frame, the matrix T (η2) ∈ IR3×3, ex-
pressed in terms of Euler angles, is given, e.g., in [19].
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The equations of motion of an AUV can be written in vehicle-fixed refer-
ence frame in the form [19]:

Mν̇ + C(ν)ν + D(ν)ν + g(RB
I ) = τ (3)

where M ∈ IR6×6 is the mass matrix including the added mass, C(ν)ν ∈ IR6

is the vector of Coriolis and Centripetal terms including the effects of the
added mass, D(ν)ν ∈ IR6 is the vector of friction and hydrodynamic damping
terms, g(RB

I ) ∈ IR6 is the vector of gravitational and buoyant generalized
forces, τ ∈ IR6 is the vector of forces and moments acting on the vehicle.

For a ground-fixed serial chain of rigid bodies the properties of linearity
in the dynamic parameters hold [43]. In case of underwater vehicles, adopting
a suitable mathematical model for the hydrodynamic forces, eq. (3) can be
rewritten in a matrix form that exhibits this property:

Φ(RB
I ,ν, ν̇)θ = τ (4)

with Φ ∈ IR6×nθ , being nθ the size of θ, the vector of parameters. Notice that
nθ depends on the model used for the hydrodynamic generalized forces. An
estimate is given in [24] where, due to the hydrodynamic terms, nθ > 100.

The dynamics of marine vehicles is affected by the ocean current. Let us
assume that the ocean current, expressed in the earth-fixed frame, νI

c is con-
stant and irrotational, i.e., νI

c = [ νc,x νc,y νc,z 0 0 0 ]T and ν̇I
c = 0.

Its effects can be added to the dynamics of a rigid body moving in a fluid
simply considering the relative velocity in vehicle-fixed frame νr = ν−RB

I νI
c

in the derivation of the Coriolis, centripetal and the damping terms in the
equation (3).

Thrusters and control surfaces provide forces and moments on the vehicle
according to a nonlinear relation. A simplified relationship can be expressed
through the linear mapping [19]

τ = Bu (5)

where B is a (6 × p) matrix known as the Thruster Control Matrix (TCM)
and u is the (p × 1) vector of control inputs. In case of 6-dofs AUVs it is
p ≥ 6. In case of underactuated AUVs p is generally p = 3 and it is obtained
by one thruster and 2 control surfaces. As an example, ODIN (Figure 2) has
the following TCM:

B =










∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0 0 0 0










(6)
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where ∗ means a non-zero constant factor depending on the thruster allo-
cation. Different TCM can be observed as in, e.g., the vehicle Phantom S3
manufactured by Deepocean Engineering that has 4 thrusters:

B =










∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0
∗ ∗ 0 0










(7)

in which it can be recognized that not all the directions are independently
actuated.

Fig. 2. ODIN AUV (Autonomous Systems Laboratory of the University of Hawaii,
USA).

The brief description of the mathematical model clearly shows that the
equations of motion are strongly non-linear and coupled. Moreover, the num-
ber of dynamic parameters is large; the hydrodynamic terms are the result
of a mathematical approximation and their values are difficult to identify.
The relationship in eq. (5) is an approximation that is not valid for control
surfaces whose dynamic contribution is velocity-dependent.



114 Antonelli

3 Experienced Failures

In this section, a small list of possible ROVs/AUVs’ failures is reported.

sensor failure The underwater vehicles are currently equipped with several
sensors in order to provide information about their localization and veloc-
ity. The problem is not easy, it does not exist a single, reliable sensor that
gives the required position/velocity measurement or information about the
environment, e.g., about the presence of obstacles. For this reason the use of
sensor fusion by, e.g., a Kalman filtering approach, is a common technique to
provide to the controller the required variables. This structural redundancy
can be used to provide fault detection capabilities to the system. In detail, a
failure can occurs in one of the following sensors:

• IMU (Inertial Measurement Unit): provide information about the vehi-
cle’s linear acceleration and angular velocity;

• Depth Sensor: by measuring the water pressure gives the vehicle’s depth;
• Altitude and frontal sonar: they are used to detect the presence of obsta-

cles and the distance from the sea bottom;
• Ground Speed Sonar: it measures the linear velocity of the vehicle with

respect to the ground;
• Currentmeter: it measures the relative velocity between vehicle and water;
• GPS (Global Positioning System): it is used to reset the drift error of the

IMU and localize exactly the vehicle; it works only at the surface;
• Compass: it gives the vehicle yaw;
• Baseline Acoustic: with the help of one or more transmitters allows exact

localization of the vehicle in a specific range of underwater environment;
• Vision system: it can be used to track structures such as pipelines.

For each of the above sensors the failure can consist in a output zeroing if,
e.g., there is an electrical trouble or in an loss of meaning. It can be considered
as sensor failure also an external disturbance such as a multi-path reading
of the sonar that can be interpreted as a sensor fault and correspondingly
detected.

Thruster blocking. It occurs when a solid body is between the propeller
blades. It can be checked monitoring the current required by the thruster. It
has been observed, e.g., during the Antarctic mission of Romeo [11] caused
by a block of ice.

Flooded thruster. A thruster flooded with water has been observed during
a Romeo’s mission [11]. The consequence has been an electrical dispersion
causing an increasing blade rotation velocity and thus a thruster force higher
then the desired one.
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Fin stuck or lost. This failure can causes a loss of steering capability as
discussed by mean of simple numerical simulations in [22].

Rotor failure. A possible consequence of different failures of the thrusters is
the zeroing of the blade rotation. The thruster in question, thus, simply stop
working. This has been intentionally experienced during experiments with
ODIN [35,36,48], RAUVER [20] and Roby 2 [3] and during another Romeo’s
mission [11].

Hardware-software failure. A crash in the hardware or software imple-
mented on the vehicle can be experienced. In this case, redundancy techniques
can be implemented to handle such situations [6].

Fig. 3. Romeo ROV (courtesy of CNR-IAN Robotlab).

4 Fault Detection Schemes

In [2,3] a model-based fault detection scheme is presented to isolate actuators’
failures in the horizontal motion. Each thruster is modeled as in [19]. The
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algorithm is based on a bank of Extended Kalman Filters (EKFs) whose out-
puts are checked in order to detect behaviors not coherent with the dynamic
model. In case of two horizontal thrusters and horizontal motion 3 EKFs are
designed to simulate the 3 behaviors: nominal behavior, left thruster fault,
right thruster fault. The cross-checking of the output allows efficient detec-
tion as it has been extensively validated experimentally (detailed are given
in Section 6). A sketch of this scheme is given in Figure 4 where u is the
vector of thruster inputs and the vehicle yaw ψ is measured by mean of a
compass. In [4], the same approach is investigated with the use of a sliding-
mode observer instead of the EKF. The effectiveness of this approach is also
discussed by means of experiments.

u

ψ
EKF
nominal
model

residual
evaluation

EKF
left th. fault
model

residual
evaluation

EKF
right th. fault
model

residual
evaluation

FD

Fig. 4. Fault detection strategy for one of the horizontal thruster failure proposed
by A. Alessandri, M. Caccia and G. Verrugio.

The work in [9,11] focuses on the thruster failure detection by monitoring
the motor current and the propeller’s revolution rate. The non-linear nominal
characteristic has been experimentally identified, thus, if the measured couple
current-propeller’s rate is out of a specific bound a fault is experienced. Based
on a mapping of the i-o axis the possible cause is also specified with a message
to the remote human operator. The two failures corresponding to a thruster
flooding or to a rotor failure, in fact, falls in different axis regions and can be
isolated. Interesting experiments are given in Section 6.

The fault in a thruster is also monitored in [48] by the use of a hall-
effect sensor mounted on all the thrusters. The input is the desired voltage
as computed by the controller and the TCM, the output is the voltage as
measured by the hall-effect sensor; the mismatching between the measured
and the predicted voltage is considered as a fault. The paper also consider
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fault tolerance for sensor and actuator faults and experiments, as shown in
next sections.

The vehicle Theseus [17,18] is equipped with a Fault Manager subsystem.
This provides some kind of high-level failure detection in the sense that the
mission is divided in a number of phases (each phase is a series of manoeu-
vres between waypoints); in case of failure of a phase there is a corresponding
behavior to be activated. See Section 6 for detail about a practical interven-
tion of the Fault Manager. A hierarchical control system developed for future
implementation on Theseus is described in [51], this is based on the layered
control concepts [10].

References [6,32] present an architecture for AUVs that integrates fault
detection capabilities of the subsystems. The hardware and software archi-
tecture, named AUVC (Autonomous Underwater Vehicle Controller) im-
plements a fault detection strategy based on five rule-based systems that
monitor all the subsystems. The five systems concern the Navigation, the
Power/Propulsion, the Direction Control and the Communication; they are
coordinated by a Global Diagnoser that avoid contradictory actions. A spe-
cific attention has been given at the hardware reliability, in fact the AUVC is
distributed on a redundant network of 18 loosely coupled processor. AUVC
has been also used to test the approach proposed in [33], a redundancy man-
agement technique based on CLIPS expert system shell to identify faults
affecting depth and heading control. In [49] an architecture developed for the
vehicle ARICS with fault detection/tolerant capabilities is presented. A soft-
ware developed for ROVs to help the remote operator that integrate some
elementary fault detection algorithms is presented in [44]. The paper in [30]
describes the first results on the development of a long endurance AUV that
is currently ongoing at the MBARI (Monterey Bay Aquarium Research Insti-
tute, California, USA). The fault detection approach is mainly ported from
the MIT (Massachusetts Institute of technology, Massachusetts, USA) vehicle
Odyssey (I and II) [8] and it is based on the Layered Control Architecture.
The software architecture is based on C++, QNX-based modules, that give
multi-tasking capabilities suited for fault-tolerant operations. A single thread
suppression and restart can be implemented to recover from software failure.
Short-duration operations in open sea and long-duration operations in the
lab proved the effectiveness of this approach.

In [22] a model-based observer is used to generate residual between the
sensor measured behavior and the predicted one. The model also take into
account the presence of waves in case of operations near the surface. When
the residual is larger than a given threshold a Fuzzy Inference System is in
charge of isolate the source of this mismatching (see sketch in Figure 5). A
planar simulation is provided in the case of low speed under wave action and
a stuck fin.
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+
FTC UUV−

FD
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high level

Fig. 5. Fuzzy fault detection/tolerant control scheme proposed by A.J. Healey: the
FIS (Fuzzy Inference System) block is in charge of isolation of the faults observed
by the FD (Fault Detection) block between fin stroke, servo error, residual and
wave activity detectors.

A model-free fault detection method is proposed in [7,29], this is based on
the Hotelling T 2 statistic and it is a data-driven approach. The validation is
based on a 6-dofs simulation affected by stern plane jams and rudder jams.

A model-based, integrated heterogeneous knowledge approach is proposed
in [20]. A multi-dimensional correlation analysis allows to increase the confi-
dence in the detected fault and to detect also indirectly sensed subsystems.
Some preliminary results with the vehicle RAUVER are also given.

In [1] a model-based fault detection scheme for thrusters and sensors is
proposed. It has been designed based on the identified model of the 6-thruster
ROV Linotip and it is composed on a bank of single-output Luenberger ob-
servers. Its effectiveness is verified by simulations. Another model-based fault
detection scheme verified by simulations is provided in [39]. A robust ap-
proach in [31].

A neuro-symbolic hybrid system is used in [15] to perform fault diagnosis
on AUVs with learning capability. The method is simulated on the planar
motion of the VORTEX mathematical model. Another learning technique is
proposed in [16] and verified by means of 6-dofs simulations. In [46], a neural
network mathematical model is used to set-up a self-diagnosis scheme of
the AUV. A software for health monitoring of AUVs’ missions with learning
capabilities is also described in [27].

The work in [5] studies a systematic, quantitative approach in order to
maximize the mission and return success probabilities. The failed sensor is
de-activated and the information obtained by a backup sensor able to recover
the vehicle. No dynamic simulations are provided.

In [14], the wavelet theory is used to detect the fault in the vehicle’s
navigation angle fault.
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Finally, [42] developed a software tool to test intelligent controllers for
AUVs. This is done by using learning techniques from the artificial intelli-
gence theory.

5 Fault Tolerant Schemes

Most of the fault tolerant controllers developed for thruster-driven underwa-
ter vehicles are based on a suitable inversion of the TCM in eq. (5). It is
self-evident that, if the matrix is low rectangular it is still possible to turn
off the broken thruster and to control the vehicle in all the 6 dofs. When the
vehicle becomes underactuated, or when it is driven by control surfaces, the
problem is mathematically more complex. In this case only few solutions to
specific set-up have been developed.

The work in [9,11] reports a fault tolerant approach for ROMEO, a
thruster redundant ROV with 8 thrusters. The strategy, experimentally ver-
ified, simply consists in deleting the column corresponding to the broken
thruster from the TCM. The mapping from the vehicle force/moment to the
thrusters’ forces, thus, does not concern the broken component. A similar
approach is used in [48] by exploiting the thruster redundancy of ODIN,
an AUV developed at the Autonomous Systems Laboratory (ASL) of the
University of Hawaii, HI, USA.

In [35–38,41], a task-space-based, fault tolerant control for vehicles with
redundant actuation is proposed. The control law is model based and han-
dle the thruster redundancy by a pseudo-inverse approach of the TCM that
guarantee the minimization of the actuator quadratic norm. The thruster
dynamics, with the model described in [26], is also taken into account. The
proposed approach is sketched in Figure 6 where the subscript d denotes the
desired trajectory, V m is motor input voltage and Ω the propeller angular ve-
locity of the thrusters. Despite the necessity to know the dynamic parameters
the experimental validation was successfully (see Section 6).
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Fig. 6. Fault tolerance strategy proposed by N. Sarkar and T.K. Podder.
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The work [48] presents a fault detection-tolerant scheme for sensor faults.
In detail, the depth of the vehicle is measured by using a pressure sensor
and a bottom sonar sensor. A third, virtual, sensor is added, this is basically
an ARX (AutoRegressive eXogeneous) model of the vehicle depth dynamics.
By comparing the measured values with the predicted ones, the residual is
calculated and the failed sensor eventually disconnected for the remaining
mission. A sketch of the scheme is shown in Figure 7, in nominal working
condition the 3 residual Ri are close to the null value. It is worth noticing
that this approach require exact knowledge of the ocean depth.
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Fig. 7. Fault tolerance strategy for sensor fault proposed by K.C. Yang, Y. Yuh
and S.K. Choi.

In [34], the case of an underactuated AUV controlled by control surfaces
is considered. The vehicle tries to move in the unactuated dofs by using
elementary motions in the actuated dofs. The method has been tested on the
vehicle ARCS and showed that, in this form, it is not applicable. This study
gives information on structural changes to adopt in the vehicle in order to
develop a vehicle suitable for the implementation of this method.

One of the first works of reconfiguration control for AUVs is given in [45],
where, however, only a superficial description of a possible fault tolerant
strategy is provided. Recently, [47] proposed a reconfiguration strategy to
accommodate actuator faults, this is based on a mixed H2/H∞ problem.
Simulation results are provided.
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6 Experiments

Roby 2 is a ROV developed at the Naval Automation Institute (CNR-IAN),
National Research Council, Italy. It has been object of several wet tests to
validate fault detection approaches. The horizontal motion is obtained by
the use of two fore thrusters that control the surge velocity as well as the
vehicle heading; the depth is regulated thanks to two vertical thrusters. In [2–
4] experiments of different fault detection schemes has been carried out by
causing an actuator failure: one of the thrusters has been simply turned off.
The experiments in [2,3] have been carried out in a pool, in [4] the experiments
also concern a comparison between EKFs and sliding-mode observers. The
latter is a result of a bilateral project with the Naval Postgraduate School,
Monterey, CA.

The Italian Naval Automation Institute (CNR-IAN) also developed the
ROV ROMEO and tested, in an antarctic mission, both fault detection and
tolerant schemes [9,11]. In particular the case of flooded and blocked thrusters
occurred. In both cases the fault has been detected and the information could
have been reported to the human operator to activate the reconfiguration
procedure. Figure 8 shows the expected and measured motor currents in case
of flooded thruster, it can be observed a persistent mismatching between the
output of the model and the measured values.

The vehicle Theseus manufactured by ISE Research Ltd with the Cana-
dian Department of National Defence successfully handled a failure during
an Arctic mission of cable laying [17,18]. In detail, the vehicle did not ter-
minate an homing step, probably due to poor acoustic conditions, and the
Fault Manager activated a safe behavior: stop under the ice and wait for
further instructions. This allowed to re-establish acoustic telemetry and sur-
face tracking and to safely recover the vehicle. Notice that his fault wasn’t
intentionally caused [18].

The vehicle ODIN, an AUV developed at the Autonomous Systems Labo-
ratory (ASL) of the University of Hawaii, HI, USA, has been used for several
experiments. In [48] the fault detection and tolerant schemes are experimen-
tally validated. The thruster fault has been tested by zeroing the output
voltage by software, the fault detection scheme identified the trouble and cor-
rectly reconfigured the force allocation by proper modification of the TCM.
The fault tolerant scheme with respect to depth sensor fault has also been
tested by zeroing the sensor reading and verifying that the algorithm, after
a programmed time of 1 s, correctly switched on the other sensor. While the
theory has been developed for a 6-dofs vehicle, the experiments results only
present the vehicle depth.

The same vehicle has been used to validate the fault tolerant approach
developed in [35,36,41] in 6-dofs experiments. Different experiments have been
carried out by zeroing the voltage on one or two thrusters simultaneously that,
however, did not make the vehicle became under-actuated. The implemented
control law is based on an identified reduced ODIN model and does not make
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Fig. 8. Expected and measured motor currents for the vehicle Romeo in case of
flooded thruster (courtesy of CNR-IAN Robotlab).

use of thruster model neither it needs the vehicle acceleration as required by
the theory; the block diagram, thus, is simply given by Figure 9. Details on
the control law are given in the referenced papers, the basic formulation of
the controller is given by:

u = E† [ (η̈d − β) + Kv
˙̃η + Kpη̃ ] (8)

where Kv and Kv are control gains, the vector η̃ is the position/orientation
error, β represents the compensation of the nonlinear terms of the equation
of motions. The matrix E takes into account the TCM matrix, the inertia
matrix and the Jacobian matrix that convert body-fixed to inertial-fixed ve-
locities. Generalization about control of a desired task is given in [36]. The
experiments validated the proposed approach; in Figure 10 the voltages are
shown, it can be recognized that thrusters 2 and 6 (one horizontal and one
vertical) are turned off at t = 260 s and t = 300 s, respectively, this causes
an augmentation of the chattering of the remaining thrusters that, however,
still can perform the desired task (Figure 11).
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Fig. 9. Sketch of the fault tolerance strategy implemented by N. Sarkar, T.K. Pod-
der and G. Antonelli.
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Fig. 11. Task-space trajectories (left column) and their errors (right column) for
the N. Sarkar and T.K. Podder algorithm.

The AUVC described in [6,32] has been tested on a six-processor version
on the Large Diameter Unmanned Underwater Vehicle of the Naval Undersea
Warfare Center.

7 Conclusions

An overview over existing fault detection and fault tolerant schemes for un-
derwater vehicles has been presented. The case of failures for autonomous
missions in un-structured environment is, obviously, a dramatic occurrence
to handle. In this sense, the underwater community would benefit from re-
search studies with a strong practical orientation rather than theoretical-only
approaches. Failures in a redundant sensor seem to be a solved problem; how-
ever, care have to be done in the tuning of the detection gains, real-data ex-
periments for off-line tuning seems to be a reliable way to select those gains.
As far as thrusters are of concern, experiments have shown that current AUVs
can be controlled at low velocity with 6 thrusters, also if the original sym-
metric allocation is lost, without a strong performance deterioration. Some
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possible research areas concern the case of a thruster-driven AUV that be-
come under-actuated and the case of vehicles controlled by means of control
surfaces that failed; in both cases some practical approaches might be useful
for the underwater community.
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Abstract. In this chapter we describe issues arising in Failure Detection, Iden-
tification and Reconfiguration (FDIR) in flight control. The fault accommodation
problem is stated and discussed, followed by the derivation of models of sensor
and control effector failures and structural damage. Corresponding FDIR schemes
that minimize the effect of different failures and structural damage are presented
next, and their properties are illustrated through numerical simulations of advanced
combat aircraft. At the end, an Integrated FDIR scheme is discussed consisting of
on-line health monitoring and status determination system combined with the pro-
posed FDIR algorithms.

1 Introduction

The next generation of complex multivariable systems such as aircraft, space-
craft, autonomous vehicles, missiles, submarines and others, will be required
to achieve and maintain the desired levels of performance under large per-
turbations and to perform multiple tasks in multiple operating regimes au-
tonomously and under different failures and upsets. The overall closed-loop
system will also be expected to be robust to modeling errors, noise, and dif-
ferent uncertainties. Since the dynamics of such systems are highly nonlinear
and interacting and may often possess nonminimum phase characteristics,
the corresponding control design problem is highly complex. The complex-
ity of the problem is further increased by the requirement that the resulting
control system should also be designed to take into account hard constraints
on the actuators and the structural limits of the system.

On-line Health Monitoring and Failure Detection, Identification and Re-
configuration (HM-FDIR) has been widely applied in many different areas of
technology including process control, power system control, manufacturing,
and aerospace. In this context many different techniques have been developed
and successfully implemented. The common goal shared by the designers is
to achieve very high levels of safety and reliability even while minimizing op-
eration and production costs. Fast and accurate FDI is of utmost importance
since timely FDI information enables the operator (or the control computer)
to take appropriate actions and minimize the effect of the failures and other
upsets.
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     Springer-Verlag Berlin Heidelberg 2003
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In this context, from the point of view of HM-FDIR, modern commercial
and military aircraft have some unique features compared to other industrial
applications, and the design of control systems capable of compensating for
a wide range of failures and upsets poses numerous challenges for the flight
control designer. This is described in more detail in the following section.

1.1 Unique Challenges in Aircraft FDIR Design

There is a number of features, particularly in the case of advanced combat
aircraft and Unmanned Combat Aerial Vehicles (UCAV), that distinguish
FDIR in flight control from other industrial applications. Those include:
1. Modern aircraft are equipped by thrust vectoring and unconventional con-
trol surfaces, resulting in an over-actuated system where the number of con-
trol effectors exceeds the number of controlled variables. Thrust vectoring
refers to the use of engines with moving jets that can create forces in differ-
ent directions, while unconventional control surfaces include different flaps
that are not commonly used for feedback control.
2. Most of the relevant aircraft states are measured and available for feed-
back. While commonly measured states include pitch, roll and yaw rates and
angles, forward velocity and altitude, modern aircraft are equipped by sensors
that also measure angle-of-attack and side-slip angle. Accelerations of sev-
eral variables are also available, either through dedicated sensors, or through
filtering.
3. Modern aircraft are characterized by highly reliable components and flight
software. Even though individual sensors and control effectors are highly re-
liable by design, modern aircraft are equipped by triple-redundant control
systems, and (at least) doubly-redundant flight computers. Flight software
is flight-certified through rigorous Verification and Validation (V&V) pro-
cedures involving a very large number of computer simulations of different
flight regimes encountered throughout the flight envelope.
4. Critical subsystem or component failures can cause instability of the closed-
loop control system and loss of aircraft. While not every failure is critical,
there is a large number of flight-critical failures (or their combinations) in
every flight regime that can lead to substantial performance deterioration
and instability. The fact that even a single failure may lead to catastrophic
consequences makes the FDIR system design highly challenging.
5. One of the unique situations encountered in military aircraft is that due
to flying over enemy territory when the aircraft is exposed to enemy fire
from the air and ground. This may result in severe structural damage and/or
failures and upsets whose effect may be such that the recovery is not possible.
Another type of upset that is likely to occur during the flight over enemy
territory are deteriorated communications due to jamming that can also result
in performance degradation.
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1.2 Existing Results in Aircraft FDIR

In the past decade there has been substantial progress in the development of
on-line FDIR techniques in aerospace applications [1,3,2,13,14,9,8,11,6,5,7].
A large number of techniques has been proposed, and some of those have
actually been flight tested [3]. Extensive simulation studies and flight-tests
have demonstrated the potential of on-line FDIR systems to achieve the de-
sired flight performance despite severe flight-critical subsystem or component
failures, structural damage and large external disturbances.

While most of the techniques are based on treating the failures and struc-
tural damage as parametric uncertainty, and designing corresponding adap-
tive controllers to achieve the desired control objective, different methods
were shown to be able to deal with very different size of the corresponding
uncertainty sets. For instance, standard approach to indirect adaptive con-
trol is based on ”certainty equivalence” where uncertain plant parameters are
estimated on-line, and those estimates are in turn used in the control law as-
suring the stability of the overall system. However, it was shown that such an
approach, when applied to linearized aircraft models, can handle only small
to moderate uncertainty, which is due to a large number of model parame-
ters that need to be estimated on-line. In the context of fault-tolerant control,
this implies that standard indirect adaptive control approach can handle a
very limited class of subsystem or component failures. It was also shown
in [3,13,14] that direct adaptive control using neural networks can handle
moderate to large uncertainty arising due to different failures and structural
damage. However, it has yet to be demonstrated that such a method is well
suited for combined sensor and control effector failures and structural damage
that generate very large internal disturbances.

In addition, a systematic approach to the design of Integrated FDIR sys-
tems is lacking in the existing literature. The main precondition for effective
FDIR design is a detailed analysis of different failure parameterizations, along
with stability, robustness, and performance analysis of the overall closed-loop
reconfigurable control system. In addition, integrated FDIR systems that can
efficiently compensate for the simultaneous effect of sensor and control effec-
tor failures and structural damage, are not addressed adequately by existing
methods. If such failures are not compensated for properly, this can lead to se-
vere flight performance degradations, and even to the loss of aircraft. Hence
integrated FDIR strategies that also take into account the highly coupled
nonlinear aircraft dynamics in the nominal and failure modes are of great
interest in practice.

To handle very large failure-generated uncertainties arising due to differ-
ent types of failures and structural damage, we have developed a systematic
procedure for the design of the corresponding FDIR systems. The procedure
is based on the Multiple Models, Switching and Tuning (MMST) methodol-
ogy from [20] described in the following section.
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1.3 Multiple Models, Switching, and Tuning (MMST)

As shown in [12], for an aircraft controlled by a full-state feedback con-
troller, lock-in-place failure introduces both constant and state-dependent
disturbances into the overall closed-loop system, and control reconfiguration
is necessary for maintaining the stability and robustness of the system. It was
also shown that adaptive control using a single model may not be adequate
for achieving this task in the presence of failures of critical control effectors.
This is due to the fact that, in a particular flight regime, aircraft dynamics
immediately after the failure may be very far from its nominal (no-failure)
dynamics. Hence single model-based adaptive controller may be too slow to
bring the closed-loop system close to the new operating regime, which may
result in unacceptably large transients.

Fig. 1. Single Model versus Multiple Model Adaptation: (i) (Top) Failure causes
the plant to switch from some nominal set of parameters Po to the failure set of
parameters P ; single-model adaptation may take a long time to identify the new set
of parameters; (ii) (Bottom) The parametric set is divided into subsets; models Mi

(i = 1, 2, 3, 4) are placed into each subset; the multiple-model system switches to the
model closest in some sense to the failure dynamics, and adapts from there thus
achieving fast and accurate FDI ( c©1999-2002 Scientific Systems Company, Inc.)
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For this reason, we have developed a multiple model-based reconfigurable
control strategy based on the concept of Multiple Models, Switching and
Tuning (MMST) from [20], Figure 2.

Fig. 2. Structure of the Multiple Model-based Controller

The MMST concept is fairly general and is well suited for the case of
plants with rapidly varying dynamics. If the plant dynamics in different op-
erating regimes is described by different models, the MMST concept is imple-
mented by using the outputs of the parallel estimators (identification models)
M1,M2, ... MN to find the model closest in some sense to the current plant
dynamics, and switch to the corresponding controller. In the context of re-
configurable control, each model in the above figure represents a different
failure scenario. While the system is initiated with the controller for the no-
failure case, in the case of failure the objective is to design a suitable control
reconfiguration algorithm to assure that the scheme switches to the controller
corresponding to the model closest in some sense to the dynamics of the failed
plant. The need for MMST in plants with rapidly switching dynamics can be
conveniently motivated using Figure 2.

As shown in the figure, failure may cause the plant dynamics to switch
abruptly from some nominal point Po in the parametric space, to the point
P corresponding to the failed plant. The top figure illustrates the case when
adaptation using a single model may be too slow to identify the new operating
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regime and reconfigure the controller. In such a case placing several models
in the parametric set, switching to the model close to the dynamics of the
failed plant, and adapting from there can result in fast and accurate control
reconfiguration.

In this paper we will describe several implementations of the MMST con-
cept in the context of FDIR in flight control. In section 2 we will state and
discuss the fault accommodation problem. Derivation of models of sensor
and control effector failures and structural damage and corresponding FDIR
schemes that minimize the effect of different failures and structural damage
are presented in sections 3-5, and their properties are illustrated through nu-
merical simulations of advanced combat aircraft. In section 6 an Integrated
FDIR scheme is discussed consisting of on-line health monitoring and status
determination system combined with the proposed FDIR algorithms.

2 The Fault-Accommodation Problem

In this section we will state the fault-accommodation problem in the case of
different types of failures, including sensor and control effector failures, and
structural or battle damage.

Let the plant dynamics be described by the following model:

ẋ = A(p)x + B(p)u + z(p), (1)
y = C(p)x + d(p) (2)

where x ∈ IRn, u ∈ IRm and y ∈ IRl denote respectively the state, control
input, and output of the system, and p denotes a vector of failure-related
parameters.

We assume that u is saturated, i.e. that u ∈ Su = {u : (ui)min ≤ ui ≤
(ui)max, (ūi)min ≤ u̇i(t) ≤ (ūi)max, i = 1, 2, ...,m}. We also assume that
p ∈ Sp, where Sp denotes a failure set.
Nominal model: The above model is a fairly general representation of dif-
ferent failure conditions. For instance, in the no-failure case, the dynamics of
the plant is described by

ẋ = Aox + Bou + zo,

y = Cox + do

where Ao = A(pN ), Bo = B(pN ), zo = z(pN ), do = d(pN ), and Co = C(pN ),
where pN ∈ Sp denotes the value of p that corresponds to the no-failure case.
We next consider different failure models.
Sensor failure models: Common sensor failures include: (i) Bias; (ii) Drift;
(iii) Performance degradation (loss of accuracy); (iv) Freezing; and (v) Cali-
bration error (loss of effectiveness). In the case of freezing the output of the
sensor is constant (but nonzero) regardless of the variations of the measured
variable.
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Sensor failures can be parameterized in the following way:

yi(t) =






xi(t), for all t ≥ 0, No-Failure Case

xi(t) + di, ḋ(t) ≡ 0, di(tFj) �= 0, Bias

xi(t) + di(t), |di(t)| = λit, 0 < λi << 1, for all t ≥ tFj , Drift

xi(t) + di(t), |di(t)| ≤ d̄i ḋi(t) → 0, for all t ≥ tFj , Loss of Accuracy

xi(tFi), for all t ≥ kFi, Sensor Freezing

cixi(t), for all t ≥ kFi, Calibration Error

where tFi denotes the time instant of failure of the ith sensor, and di denotes
its accuracy coefficient such that di ∈ [−εmin, εmax], where εmin, εmax > 0.
Also, the effectiveness coefficient satisfies ci ∈ [c̄i, 1], where c̄i > 0. It is seen
that all of the above failures can be modeled as changes in the matrix C and
vector d in (2). These failures are illustrated in Figure 3. We can conclude
that the model (2) includes all above cases, where C is a positive definite
diagonal matrix whose elements vary slowly within [c̄i, 1], and elements of
vector d that vary slowly within [−d̄i, d̄i] so that the following assumption is
satisfied:

Assumption 1 Ċ(t) ∼= 0; and ḋ(t) ∼= 0.

Control Effector Failures: Typical control effector failures include: (i)
Lock-In-Place (LIP); (ii) Hard-Over Failure (HOF); (iii) Float; and (iv) Loss
of Effectiveness (LOE). In the case of LIP failures the effector ”freezes” at a
certain condition and does respond to subsequent commands. HOF is charac-
terized by the effector moving to the upper or lower position limit regardless
of the command. The speed of response is limited by the effector rate limit.
Float failure occurs when the effector ”floats” with zero moment and does
not contribute to the control authority. Loss of effectiveness is characterized
by lowering the effector gain with respect to its nominal value. Different types
of control effector failures are shown in Figure 4.

Let us, for simplicity, assume that the transfer functions of the actuators
is equal to one, and let ũ be defined as:

ũ = Bu = BKuc = [b1k1uc1 b2k2uc2 ... bmkmucm], (3)

where uc denotes the vector of signals generated by the controller, K =
diag[k1 k2 ... km], and bj denotes the jth column of B. The relationship be-
tween uc and u is represented graphically in Figure 5. It is clear that in the
case with no failures, ki = 1, and ui = uic, i = 1, 2, ...,m.
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Fig. 3. Types of Sensor Failures: (a) Bias; (b) Drift; (c) Performance degradation
(loss of accuracy); (d) Freezing; and (e) Calibration error (loss of effectiveness)

Different types of control effector failures can be parameterized as follows:

ui(t) =






uc(t), ki(t) = 1, for all t ≥ 0, No-Failure Case

ki(t)uc(t), 0 < εi ≤ ki(t) < 1, for all t≥ tFi, Loss of Effectiveness

0, ki(t) = 0, for all t ≥ tFi, Float Type of Failure

uci(tFi), ki(t) = 0, for all t ≥ tFi, Lock-in-Place Failure

(ui)min or (ui)max, ki(t) = 0, for all t ≥ tFi, Hard-Over Failure
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Fig. 4. Types of Control Effector Failures: (a) Lock-in-place; (b) Float; (c) Hard-
over; and (iv) Loss of effectiveness.

where tFi denotes the time instant of failure of the ith effector, qi denotes its
effectiveness coefficient such that qi ∈ [εi, 1], and εi > 0 denotes its minimum
effectiveness. Hence control effector failures can be modeled as changes in the
matrix B and vector z in (2).
Structural or Battle Damage: Structural or battle damage can be mod-
eled as simultaneous changes in matrices A and B [8]. This is discussed in
detail in section 5.

Hence the model (1), (2) is a suitable representation covering a large class
of failures and structural damage.

In order to present the failure accommodation approach, we will further
simplify the model (1), (2) by introducing the following assumption:

Assumption 2 (i) State x(t) is measurable;
(ii) m > n; and
(ii) B(p)BT (p) is full rank for all p ∈ Sp.
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B
u1(t)

u2(t)

um(t)

b1

b2

bm

ũ(t)

k1

k2

km

uc1(t)

uc2(t)

ucm(t)

Fig. 5. Relationship between uc and u ( c©1999-2002 Scientific Systems Company,
Inc.)

Desired Dynamics: We further assume that the desired dynamics of the
plant (1), (2) is defined by the state of the following reference model:

ẋ∗(t) = Amx∗(t) + Bmr(t), (4)

where Am is asymptotically stable, and r denotes a vector of bounded piece-
wise continuous reference inputs. The control objective for the plant (1), (2)
can now be stated as follows:
Control Objective: Design a control input u(t) such that, for all p ∈ Sp:
(i) limt→∞[x(t) − x∗(t)] = 0; and (ii) u(t) ∈ Su for all time.
No-failure Model: Based on the above failure models, the model that de-
scribes plant dynamics in the no-failure and no-disturbance case is of the
form:

ẋ = Aox + Bou,

y = x,

where Ao and Bo denote nominal system matrices.
Baseline Controller: We will choose a baseline controller for the no-failure
model. We choose the following baseline control strategy, referred to as the
Inverse Dynamics Control Law (IDCL):

uc = WBT
o (BoWBT

o )−1{−Aox + Amx + Bmr}, (5)

where uc is the signal generated by the controller, and W = W T > 0 denotes
the control weighting matrix.

3 Sensor FDIR

In this paper, we will focus on the case when y is given by (2), and consider
the following cases: (i) Case when C = I and d �= 0; (ii) Case when C �= I and
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d = 0; and (iii) Case when C �= I and d �= 0. The case (i) corresponds to the
case of sensor drift, bias, and loss of accuracy, while the case (ii) corresponds
to variations in the calibration gain. Since the sensor failures do not affect
matrix B from (1), in this case uc = u, i.e. the control signal generated by
the controller coincides with that actually applied to the plant.

3.1 Sensor Drift, Bias, and Loss of Accuracy

The problem of sensor FDIR in this case reduces to estimating the unknown
vector b that describes sensor drift, bias, and loss of accuracy. In this case we
assume that C = I, so that the equation (2) is now of the form:

y = x + d. (6)

We will also assume that −d̄ ≤ d ≤ d̄ (elementwise), and d̄ is a known vector.
We first take a derivative of y to obtain:

ẏ = ẋ = A(y − d) + Bu. (7)

We now build a series-parallel estimator in the form:

˙̂y = A(y − d̂) + Bu + Λey, (8)

where ey = ŷ−y and Λ is asymptotically stable. To simplify further analysis,
we choose Λ to be diagonal.

The corresponding error equation is of the form:

ėy = Λey − Aφd, (9)

where φd = d̂ − d denotes the parameter error vector. We next consider:

Theorem 1. When d̂ is adjusted using:

˙̂
d = φ̇d = Proj[−d̄,d̄]{ΓAT ey}, (10)

where Γ is a diagonal positive definite adaptive gain matrix, all signals in
the system (9), (10) are bounded and limt→∞ ey(t) = 0. In addition, if A is
nonsingular, then limt→∞ φd(t) = 0.

Proof: The proof of this theorem can be found in [10].
Tracking using the measurement estimate: In this case the control law
is modified as:

u = W−1BT (BW−1BT )−1{−A(y − d̂) − Λey + Amŷ + Bmr}. (11)

This results in d
dt (ŷ−xm) = Am(ŷ−xm)+Bmr. Hence limt→∞[ŷ(t)−xm(t)] =

0. Since ey(t) = ŷ(t) − y(t) also tends to zero asymptotically, we have that
y(t) will follow asymptotically the output of the reference model.
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Static State Estimator: In some cases we are interested in assuring that the
error ex(t) = x(t)−xm(t), rather than y(t)−xm(t), tends to zero asymptoti-
cally. We will further address this problem. From (6) we have that x = y−d.
We next build a state observer of the form:

x̂ = ŷ − d̂.

The estimation error ex = x̂ − x is now:

ex = ey − φd.

Hence, if A is nonsingular, limt→∞ ex(t) = 0.
Tracking using state estimate: In this case the control law is modified as:

u = W−1BT (BW−1BT )−1{−(A − Am)x̂ + Bmr}. (12)

Substituting the above expression into (2) and using (4), we obtain:

ėc = Amec − (A − Am)êx, (13)

where ec = x − xm denotes the tracking error. Assuming that the estima-
tor (9) is much faster than the system (13) and since ex(t) tends to zero
asymptotically, we can conclude that limt→∞ ec(t) = 0 as well.
Dynamic State Estimator: The stability of the system in the case of the
static estimator for x(t) depends on the speed of the estimator (refspe1). We
will relax this assumption using a dynamic observer of the form:

˙̂x = Ax̂ + Bu + L(ŷ − y),

where L is chosen to make A + L asymptotically stable. The corresponding
error model is obtained when (2) is subtracted from the above equation:

ėx = Aex + L(ŷ − y), (14)

where ex = x̂ − x. Since the estimate of y is of the form ŷ = x̂ + b̂, (14) can
be rewritten as:

ėx = (A + L)ex + Lφd.

In the case of dynamic estimator, the adaptive law is chosen in the form:

˙̂
d = φ̇d = Proj[−d̄,d̄]{−Γey}.

The stability of the resulting closed-loop system is discussed in [10].
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3.2 Calibration Error

The problem of sensor FDIR in this case is a difficult one since the known
signal (y) is a product of the unknown quantities C and x. There are two
possible approaches that can be used. One is based on the estimation of the
unknown C, and the other is based on estimating both C and x(t). We will
focus on the former case.

In this case we assume that d = 0, so that the equation (2) is now of the
form:

y = Cx. (15)

After taking a derivative of y, we obtain:

ẏ = Cẋ = CAC−1y + CBu. (16)

We next define Co = CAC−1. Since A and the bounds on elements of C
are known, we can calculate the bounds on the elements of Co. We next build
a series-parallel estimator in the form:

˙̂y = Ĉoy + ĈBu + Λey, (17)

where ey = ŷ − y and Λ is diagonal and asymptotically stable. The corre-
sponding error equation is of the form:

ėy = Λey + Φω, (18)

where Φ = Θ − Θ∗, Θ = [ĈT
o ĈT ]T , Θ∗ = [CT

o CT ]T , and ω = [yT uT BT ]T .
We also denote the bounds on elements of Θ by a vector θ̄, and consider:

Theorem 2. When Θ(t) is adjusted using:

Θ̇ = Φ̇ = Proj[−θ̄,θ̄]{−ΓωeT
y }, (19)

where Γ is a diagonal positive definite adaptive gain matrix, all signals in the
system (18), (19) are bounded and limt→∞ ey(t) = 0. In addition, if ω is per-
sistently exciting in the n(n+1)-dimensional parametric space corresponding
to Θ, then limt→∞ Φ(t) = 0.

Proof: The proof of this theorem can be found in [10].
Tracking using measurement estimate: In this case the control law is
modified as:

u = Ĉ−1W−1BT (BW−1BT )−1{−Ĉoy − Λey + Amŷ + Bmr}. (20)

This results in d
dt (ŷ−xm) = Am(ŷ−xm)+Bmr. Hence limt→∞[ŷ(t)−xm(t)] =

0. Since ey(t) = ŷ(t) − y(t) also tends to zero asymptotically, we have that
y(t) will follow asymptotically the reference model.
Static State Estimator: In this case we build a state observer of the form:

x̂ = Ĉ−1ŷ.
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The estimation error ex = x̂ − x is now:

ex = Ĉ−1ey + (Ĉ−1 − C−1)y.

Since ey(t) tends to zero asymptotically, ex(t) can tend to zero only if Ĉ(t)−C
tends to zero, which will be so if ω is persistently exciting.
Tracking using state estimate: In this case the control law is modified as:

u = W−1BT (BW−1BT )−1{−(A − Am)x̂ + Bmr}. (21)

Substituting the above expression into (2) and using (4), we obtain:

ėc = Amec − (A − Am)êx, (22)

where ec = x − xm denotes the tracking error. Assuming again that the
estimator (9) is much faster than the system (13) and since ex(t) tends to
zero asymptotically, we can conclude that limt→∞ ec(t) = 0 as well.

4 The Generalized Case

In this section we will now use the previous results to derive stable adaptive
laws in the case when there is both the calibration error, and sensor bias or
drift. In such a case we have:

y = Cx + d.

Upon taking the first derivative of the above equation, we obtain:

ẏ = Cẋ = CAC−1(y − b) + CBu. (23)

We also note that, based on the results from the previous section, we have
that the following holds:

Co(y − d) + CBu = (Ĉo − Φo)(y − d̂ + φd) + (Ĉ − Φc)Bu

= ĈAĈ−1(y − d̂) + ĈAĈ−1φd + ĈBu

−Ω(y − d̂, u)φc − Φoφd.

Upon neglecting the term Φoφd and using the notation Ĉo = ĈAĈ−1, we
have that

ẏ = Ĉo(y − d̂) + Ĉoφd − Ω(y − d̂, u)φc + ĈBu. (24)

The observer is now chosen in the form:
˙̂y = Ĉo(y − d̂) + ĈBu + Λey,

where Λ is asymptotically stable.
Hence the error model is now of the form:

ėy = Λey + Ω̃φ, (25)

where Ω̃ = [Ĉo Ω(y − d̂, u)], and φ = [φT
d φT

c ]T .
We now define θ̂ = [d̂T ĉT ]T , and denote the bounds corresponding to the

bounds on C and d as [θmin, θmax]. We next consider:
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Theorem 3. If θ̂(t) is adjusted using:
˙̂
θ = φ̇ = Proj[θmin,θmax]{−ΓΩ̃T ey}, (26)

then limt→∞ ey(t) = limt→∞[y(t) − xm(t)] = 0 and all signals in the system
(25),(26) are bounded. In addition, if Ω̃ is persistently exciting in the 2n-
dimensional parametric space, then limt→∞ φ(t) = 0.

This theorem can be proved along the same lines as before. In this case the
control law that assures that limt→∞[y(t) − xm(t)] = 0 is of the form:

u = Ĉ−1W−1BT (BW−1BT )−1{−ĈAĈ−1(y − d̂) + Amŷ + Bmr − Λey}.
Simulation 1: Nominal response of F/A-18C/D during power ap-
proach. We first simulated the nominal (i.e. no-failure) case using the model
from [11] of F/A-18C/D dynamics during power approach, and the base-
line controller of the form (5). The control allocation algorithm is chosen to
achieve the control objective without encountering position saturation. The
resulting response is shown in Figure 6. Lateral response is omitted as all
variables are essentially zero over the entire time interval. It is seen that
the objective of following the states of the reference model (dashed line) is
achieved with available control authority.

Simulation 2: Uncompensated sensor failures. We next simulated the
aircraft response with the same controller, but now in the presence of bias
and drift of angle-of-attack, pitch rate and pitch angle sensors. The vector d
is assumed to change as:

di(t) = e0.05∗(t−tF )ci, i = 2, 3, 4,

where tF = 3, and c = [0.0175 0.045 − 0.0525]T . The response is shown in
Figure 6. It is seen that the response is unacceptable and that effective failure
compensation is needed in order to achieve the objective.

Simulation 3: Adaptive reconfigurable controller. We next simulated
the aircraft response under the same failure scenario as in the previous simu-
lation, but with the adaptive reconfigurable controller. The resulting response
is shown in Figure 8, while the parameters and their estimates are shown
in Figure 9. Controller adaptation is seen to result in substantially improved
response.

4.1 Conclusions

In this section we propose a suitable parametrization for the modeling of sen-
sor failures in flight control applications. The failures include bias, drift, loss
of accuracy, and calibration error. Based on this parameterization, reconfig-
urable control algorithms are designed and stability and robustness analysis
is carried out. Properties of the proposed algorithms are illustrated through
simulations.
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Fig. 6. Simulated response of F/A-18C/D with the baseline controller in the no-
failure case (solid line: actual response; dotted line: desired response; dashed lines
denote position limits)

5 Control Effector FDIR

In this section we present a new Failure Detection and Identification (FDI)
and Adaptive Reconfigurable Control (ARC) scheme for achieving the desired
flight performance in the presence of multiple control effector failures. The
scheme is well suited for accommodation of failures that occur short time
apart. The failures include lock-in-place and hard-over. The problem of stable
control reconfiguration in the presence of such failures is solved using a scheme
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Fig. 7. Aircraft response with the baseline controller in the case of bias and drift
of angle-of-attack, pitch rate and pitch angle sensors (solid line: actual response;
dotted line: desired response

employing multiple adaptive FDI observers and controllers and a suitably
chosen decision-making mechanism. The scheme is shown to guarantee the
detection and identification of a failed effector. Due to a convenient structure
of the overall system, the adaptive FDI observers can be modified on-line
to reflect the new operating regime immediately following the failure. This
enables fast FDI and effective ARC in the case of subsequent failures. The
stability of the overall FDI-ARC system is demonstrated using the Lyapunov
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Fig. 8. Aircraft response with the adaptive reconfigurable controller in the case
of bias and drift of angle-of-attack, pitch rate and pitch angle sensors (solid line:
actual response; dotted line: desired response)

method, while the approach is illustrated through numerical simulations of
the F-18 aircraft during carrier landing.

5.1 Failure Models

In this section we will focus on the case of lock-in-place and hard-over fail-
ures to derive FDI algorithms for guaranteed detection of these two types of
failures. Using the expression (3) and the properties of the linearized aircraft
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Fig. 9. Bias parameters and their estimates (solid line: bias parameters; dashed
line: estimates)

models (see e.g. [7]), we first rewrite the plant equation (1) (for z = 0) in the
form:

ẋ1 = Āx, (27)
ẋ2 = Ax + b1uc1 + b2uc2 + ... + bmucm. (28)

This is the model of the plant in the case with no failures, and can be ex-
pressed in a compact form as:

ẋ1 = Āx, (29)
ẋ2 = Ax + Buc. (30)

Failure Models: Using the above parametrization of ui we next focus on
the case of failures of control effectors. It is seen that each case of failure can
be modeled by a different model resulting in the total of m models of the
form:

ẋ1i = Āxi, (31)
ẋ2i = Ax + B̄iuc + biūi, i = 1, 2, ...,m, (32)

where ūi can assume the following values: (i) uci(tFi) (Lock-in-place), or (ii)
(ui)min or (ui)max (Hard-over). Matrices B̄i from the above expression are
of the form:

B̄1 = [0 b2 b3 ... bm−1 bm]
B̄2 = [b1 0 b3 ... bm−1 bm]



148 Bošković and Mehra

...
...

B̄m−1 = [b1 b2 b3 ... 0 bm]
B̄m = [b1 b2 b3 ... bm−1 0],

where 0 is an m-vector with zero elements. It is seen that each failure is
modeled by removing the corresponding column of matrix B, and adding the
term biūi.
FDI Observers: The corresponding FDI observers are chosen in the follow-
ing form:

˙̂x1o = Āx̂o, (33)
˙̂x2o = Λêo + Ax + Buc, (34)
˙̂x1i = Āx̂i, (35)
˙̂x2i = Λêi + Ax + B̄iuc + biûi, i = 1, 2, ...,m, (36)

where êi = x̂i − x, i = 0, 1, 2, ...,m, êi = [êT
1i êT

2i]
T , x̂i = [x̂T

1i x̂T
2i]

T , and
denotes the estimate of ui. Equations (33), (34) correspond to the observer
for the no-failure case, while (35), (36) correspond to the observers for the m
effector failures. The matrix Λ is chosen such that the matrix Λo = [ĀT ΛT ]T

is asymptotically stable.
Let P be a symmetric positive definite solution of Λ̄T

o P + PΛ̄o = −Q,
where Q = QT > 0.
On-line Estimation of ûi: Adaptive algorithms for adjusting ûi(t) are cho-
sen in the form:

˙̂ui = −γiê
T
i Pbi, i = 1, 2, ...,m, (37)

where γi > 0 denote adaptive gains.
To increase robustness of the system, we can also adjust the estimates ûi

using adaptive algorithms with projection of the form:

˙̂ui = Proj[(ui)min,(ui)max]{−γiê
T
i Pbi}, ûi(0) ∈ [(ui)min, (ui)max], (38)

i = 1, 2, ...,m,

where Proj{·} denotes the projection operator.
Our objective is to design control algorithms corresponding to the above

FDI observers, and devise a suitable strategy for switching among the con-
trollers to achieve the control objective in the presence of the above discussed
failures. The baseline control strategy is discussed in the following section.

5.2 The Baseline Reconfigurable Controller

To derive the reconfigurable control laws for the above cases, we first rewrite
the baseline control law (5) in the form:

uc = W−1BT (BW−1BT )−1η, (39)
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where

η = −Ax + Amxm + Bmr. (40)

Based on the above failure models and the approach from [12], we design
m + 1 controllers of the form:

uci = Θi(η − biūi), i = 1, 2, ...,m, (41)

where Θi ∈ IRm×k and is chosen as [12]:

Θi = W−1B̄T
i [B̄iW

−1B̄T
i ]−1, i = 1, 2, ...,m. (42)

As shown in [12,7], such controllers achieve the objective in the presence of
known control effector freezing and hard-over.

The above controllers are designed for the ideal case, i.e. assuming that
the type of failure (i.e. the value of ūi) is known. The corresponding adaptive
reconfigurable controllers are based on on-line estimation of ūi, and are of
the form

uci = Θi(η − biûi), i = 1, 2, ...,m, (43)

where ûi is the estimate of ūi.
Our next objective is to devise a suitable strategy for switching among

these controllers so that the control objective is achieved in the presence of
the above discussed failures.

5.3 Multiple Model Adaptive Controller

In [7], a reconfigurable control strategy was designed that is based on switch-
ing among the above controllers, and that results in a stable overall system.
The scheme is discussed below.
The switching scheme: Switching among the controllers is based on the
following performance indices:

Ij(t) = c1‖êj(t)‖2 +
c2

t + c3

∫ t

to

‖êj(τ)‖2dτ, j = 0, 1, 2, ...,m, (44)

where êj = x̂j − x, ci > 0, i = 1, 2, 3.
The scheme is started with uco, and is implemented by calculating and

comparing the above indices every ts instants, and finding their minimum.
Once the minimum is found, the scheme switches to (or stays at) the corre-
sponding controller.

In this section we will refine the above switching scheme by introducing a
suitable threshold such that, in the case when one or more indices have the
same value as that for the no-failure observer, the scheme chooses the latter.
In addition, the state estimates generated by the FDI observers are reset to
x(t) every ts instants.
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Stability Analysis: The proof of stability of the overall system was given
in [7]. However, it is based on an assumption that both u and u̇ are known in
advance to be bounded. We will relax this assumption here, and also prove
explicitly that, in the case of a failure, the corresponding estimate converges
to its true value.

Theorem 4. In the case of failure of the ith effector, the above switching
scheme assures the stability of the system (27), (28), (33)-(36), (37) and
(43) and guarantees that:
(a) limt→∞[ûi(t) − ui(t)] = 0; and
(b) limt→∞[x(t) − xm(t)] = 0.

Proof: The proof of this theorem can be found in [9].
Comment: Even though it can be proved in a straightforward fashion that
ûi(t) will converge to zero asymptotically, it is clear that the other estimates
will not converge to their true values even if uc(t) converges to a constant
vector. This is due to the fact that each observer assumes that the no-failure
case is the nominal regime, while, immediately following a failure of the ith
effector, the new nominal regime is the failure mode of the ith effector. Hence,
the scheme cannot handle subsequent failures which can cause significant per-
formance deterioration and even instability of the system. For these reasons,
we designed a hybrid FDI-ARC scheme. This is discussed in the following
section.

5.4 Hybrid FDI-ARC Scheme

The Hybrid FDI-ARC system is shown in Figure 10. The overall system is
managed as an event-driven system. In particular, to increase its robust-
ness and decrease computing time, the Decision-Making Subsystem monitors
the system behavior on-line and takes appropriate actions. These include
freezing of the parameter estimates associated with failures, disturbance or
structural damage parameters, and resetting all other observers to the new
operating regime immediately following an upset condition. The advantage
of this approach is that most of the time only one fixed observer is run, while
multiple observers are run only a short time immediately following failure
detection and until the pre-specified settling time for the parameter estimate
is reached. This substantially increases the robustness of the overall system,
and decreases computing time.

We will next discuss our hybrid FDI-ARC design. Our first objective is to
address the speed of convergence of the position estimate of the failed effector
to its true value. Following that, we will show how to use the convergence
time to reset all other observers to the new set of values. The design is carried
out in several steps as discussed below.
Step 1: In this step we will simplify the FDI-ARC design from [7]. We
note that the vector x1 from (27), (28) is not directly affected by u. Hence,
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for estimating control effector failure it is sufficient to consider the relative-
degree-one subsystem, i.e. the x2 subsystem. Hence the FDI observers can be
chosen as:

˙̂x2o = −λê2o + Ax + Buc, (45)
˙̂x2i = −λê2i + Ax + B̄iuc + biûi, i = 1, 2, ...,m, (46)

where λ > 0 is a scalar, and ûi is adjusted using:

˙̂ui = −γiê
T
i bi, i = 1, 2, ...,m. (47)

It can be readily verified that the above adaptive algorithm results in a stable
overall system in which the control objective is achieved.
Step 2: Let the ith effector fail. We now subtract (32) from the expression
(46) to obtain:

˙̂e2i = −λê2i + biφi, i = 1, 2, ...,m, (48)

where φi = ûi − ūi, i = 1, 2, ...,m.
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Step 3: We now take a derivative of (47) and use (48) to obtain:

¨̂
φi + λφ̇i + γbT

i biφi = 0. (49)

This is simple second-order dynamics. Since λ and γ are under our discretion,
we can choose them to achieve any prespecified settling time τs.
Step 4: The supervisory scheme now works as follows:
1. For each of the i estimates, we pre-specify the corresponding settling time
τsi.
2. If the ith control effector fails, starting at to we run the corresponding
estimator for τsi instants, and then freeze the estimate at to + τsi.
3. We remove the nominal observer from the scheme, and reset all other
observers so that the terms biui that correspond to the ith control input
are replaced with constant terms biûi(to + τsi). In addition, the state of all
observers is reset to x(to + τsi).
Comments:
1. It is seen that the above described scheme is well suited for the case of
failures that are at least τsi instants apart. Since τsi depends on the design
parameters that are under our discretion, we can arrive at small values of τsi.
2. Since, after a failure, the system will be reset after τsi instants, we can set
the new initial time to that value. Hence the stability analysis in the case
of subsequent failures can proceed along the same lines as before, resulting
in a stable overall system in which the boundedness of all the signals is
guaranteed, and asymptotic convergence to zero of the tracking error and
parameter estimates is guaranteed.

We will next present the simulation results for the F/A-18C/D aircraft
controlled by the proposed FDI-ARC control system. This is discussed in the
following section.

5.5 Simulations

The performance that can be achieved using the proposed FDI-ARC scheme
is evaluated on the semi-nonlinear model of F/A-18C/D dynamics. The test
vehicle is described in [11], and its response in the nominal (i.e. no-failure)
case is shown in Figure 6.

Simulation 4: Uncompensated Multiple Failures. We first simulated
the aircraft with the baseline controller in the case of multiple failures. The
failure scenario chosen is such that the left rudder goes hardover at t = 1.5
seconds, and the right LEF freezes at t = 3.5 seconds. The resulting response
is shown in Figure 11. It is seen that the response is unacceptable and that
control reconfiguration is mandatory in order to achieve the control objective.

Simulation 5: Proposed FDI-ARC in the Presence of Multiple Fail-
ures. We next simulated the same failure scenario, but this time with the
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Fig. 11. State response with the baseline controller in the case when the rudder
fails at t = 1.5 and LEF fails at t = 3.5 (solid line: actual response; dashed line:
desired response)

proposed Hybrid FDI-ARC scheme. The total of seven models was built, one
for the nominal (no-failure) case, and six for the following control effectors:
Left and Right Leading Edge Flap, Left and Right Stabilator. and Left and
Right Rudder. The following parameter values were chosen for the FDI-ARC:
γ = 5000, λ = 40, c1 = 1, c2 = 10, and c3 = 100. The response is shown in
Figures 13-14. It is seen that the actual response is barely distinguishable from
the desired one, and that the control inputs are reconfigured to compensate for
the failure. This demonstrates the feasibility of the proposed approach. In the
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Fig. 12. Input Response with the baseline controller in the case when the rudder
fails at t = 1.5 and LEF fails at t = 3.5 (dashed lines denote position limits)

right part of the Figure 14 we plotted the estimate of the failed control input,
and the switching sequence that shows as to how the system detects the failure
and resets to the new nominal regime established immediately following each
failure.

5.6 Conclusions

In this section we present a new Failure Detection and Identification (FDI)
and Adaptive Reconfigurable Control (ARC) scheme for achieving the desired
flight performance in the presence of multiple control effector failures that
occur short time apart. The failures include lock-in-place and hard-over. The
problem of stable control reconfiguration in the presence of such failures
is solved using an scheme employing multiple adaptive FDI observers and
controllers and a suitably chosen decision-making mechanism. The scheme is
shown to guarantee the detection and identification of a failed effector. Due
to a convenient structure of the overall system, the observers can be modified
on-line to reflect the new operating regime following the failure. This enables
fast FDI and effective ARC in the case of subsequent failures. The stability
of the overall FDI-ARC system is demonstrated using the Lyapunov method.

6 Structural Damage FDIR

In this section we will consider a linearized model of a Tailless Advanced
Fighter Aircraft (TAFA) in the presence of wing damage. This aircraft is
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Fig. 13. State response with the proposed adaptive reconfigurable controller (solid
line: actual response; dashed line: desired response)

a variant of X-36, and is shown in Figure 15. Its main feature is that is is
equipped by a whole suite of innovative control effectors resulting in sub-
stantially increased control input redundancy and reconfiguration capabili-
ties [13]. Such a redundancy is effectively used here to compensate for severe
damage of the outer portion of the wing.

The generalized aircraft model is of the form:

ẋ = AD(t)x + BD(t)u, (50)
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Fig. 14. Input response with the proposed adaptive reconfigurable controller (top)
and parameter estimate and switching sequence (bottom)

where x ∈ IRn and u ∈ IRm denote respectively the state and control input
vectors, AD : IR+ → IRn×n, BD : IR+ → IRn×m, and C ∈ IRp×n. The time
varying nature of matrices AD and BD is due to the wing damage which
affects the dynamics of the aircraft in an abrupt fashion. In [13], the following
form of these matrices was proposed:

AD(ρ(t))=ADo+AD1ρ(t) + AD2ρ
2(t)+AD3ρ

3(t)+AD4ρ
4(t)+AD5ρ

5(t), (51)
BD(ρ(t))=BDo+BD1ρ(t)+BD2ρ

2(t)+BD3ρ
3(t)+BD4ρ

4(t)+BD5ρ
5(t), (52)
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Fig. 15. The Tailless Advanced Fighter Aircraft (TAFA)

where ρ ∈ [0, 1] denotes the damage parameter. The above model sufficiently
accurately covers all cases from ρ = 0 (no-damage case) to ρ = 1 (100% wing
damage) [13].
In this section our objective is to design a suitable control strategy for the
above aircraft model such that the desired performance is achieved despite
the presence of severe wing damage. In particular, our strategy will include
guaranteed robustness along with on-line reconfiguration in the case when
ρ(t) abruptly switches within the set [0, 1].
We will first make the following assumption:
Assumption 2: There exists a nonsingular transformation matrix T that
transforms the model (50) to the form:

ẋ1 = Āx2, (53)
ẋ2 = A(t)x + B(t)u, (54)

where x1 is an (n − p)-vector, x2 is a p-vector, Ā is a ((n − p) × p) matrix
independent of ρ, A and B are respectively p × n, and p × m matrices, and

A(ρ(t)) = Ao + A1ρ(t) + A2ρ
2(t) + A3ρ

3(t) + A4ρ
4(t) + A5ρ

5(t), (55)
B(ρ(t)) = Bo + B1ρ(t) + B2ρ

2(t) + B3ρ
3(t) + B4ρ

4(t) + B5ρ
5(t). (56)

We will consider the case when the desired behavior of the plant is specified
by a reference model of the form:

ẋm1 = Āxm2, (57)
ẋm2 = Amxm + Bmr, (58)
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where xm1 ∈ IR(n − p), xm2 ∈ IRp, [ĀT AT
m]T is an asymptotically stable

(n× n) matrix, Bm is a (n× p) matrix, and r denotes a p-vector of bounded
piecewise continuous reference inputs.
Considering the plant and reference model representations we have that x =
[xT

1 xT
2 ]T , and xm = [xT

m1 xT
m2]

T . The control objective is now formally
stated as follows:
Control Objective: Design a control law u(t) for the plant (53), (54) such
that all signals in the system are bounded, and limt→∞[x(t)− xm(t)] = 0, in
the presence of variations of ρ(t) within [0, 1] that satisfy assumption 1(v).

Hence the requirement is, even in the case of 100% wing damage, to
achieve the same level of performance as in the no-damage case.

6.1 Baseline Control Strategy

Since, by virtue of assumption 1, the plant is invertible, we suggest the con-
trol law based on dynamic inversion for the overactuated case, which is also
referred to as the pseudo-inverse control [17]. We will refer to this control law
as the Inverse Dynamics Control Law (IDCL).

Let η(x, α, t) = {−A(α)x + Λ(x− xm) + Amxm + Bmr}. The control law
is now of the form:

u = W−1BT (α)[B(α))W−1BT (α)]−1η(x, α, t), (59)

where W is a diagonal (m × m) matrix with strictly positive elements, and
Λ is chosen such that the matrix

Λo =
[

Ā
Λ

]

(60)

is asymptotically stable. The IDCL law also minimizes the total control effort,
as discussed in [17] (see the Appendix).

We note that the above IDCL is augmented with the output error feedback
term Λ(x − xm).

The above control law can be readily shown to achieve the objective for a
known operating regime of the plant. Let e = x−xm denote the output error
vector. From (53), (54), (4), and (59) we obtain that ė = Λoe. This system
is exponentially stable since Λo is asymptotically stable. In addition, Λo can
be chosen to place the poles of the closed-loop system arbitrarily far into the
left half plane.

The above control laws assume complete prior knowledge of matrices A
and B. Since this assumption is not realistic in the case when ρ > 0, we will
further consider a MMST-based control design for the model (53), (54).

6.2 Adaptive Control Design

In this section we will discuss the design of an on-line scheme for estimation
of ρ, as well as the corresponding reconfigurable controller, and study the
stability of the overall system.
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We recall that the TAFA model is of the form (53), (54), where A and B
are given by (55) and (56). Since the parameter ρ is unknown (i.e. the extent
of damage and its time instant of occurrence is not known), we next build
an observer for estimating ρ on-line and design a corresponding controller,
as shown below.
Observer: The observer is chosen in the form:

˙̂x1 = Āx̂2, (61)
˙̂x2 = Λê + Âx + B̂u, (62)

where ê = x̂ − x, x̂ = [x̂1 x̂2]T , and

Â = Ao + A1ρ̂ + A2ρ̂
2 + A3ρ̂

3 + A4ρ̂
4 + A5ρ̂

5, (63)
B̂ = Bo + B1ρ̂ + B2ρ̂

2 + B3ρ̂
3 + B4ρ̂

4 + B5ρ̂
5, (64)

where ρ̂ denotes the estimate of ρ.
Controller: Let η̂ = Cj{−Âx + Λ(x − xm) + Amxm + Bmr}. The baseline
control law is now modified as follows:

u = W−1(CjB̂)T [CjB̂W−1((CjB̂)T ]−1η̂. (65)

On-line estimation of ρ: Since it was assumed that ρ ∈ [0, 1], we will also
adjust its estimate within the interval [0, 1] using the adaptive algorithms
with projection (see the Appendix). This will also assure that the properties
(iii) and (iv) from the assumption 2 are retained even when the true value of
ρ is substituted by its estimate in the control law.

Let S denote the system consisting of the plant (53), (54) and the con-
troller (65). Let also P denote a symmetric positive definite solution of the
Lyapunov matrix equation ΛT

o P + PΛo = −Q, where Q = QT > 0 and Λo is
given by (60). We next consider the following theorem:

Theorem 5. If the estimate ρ̂ is adjusted using the following adaptive law:

˙̂ρ = Proj[0,1]{−γêT PΩ(x, u, ρ̂)}, (66)

where

Ω(x, u, ρ̂) =
5∑

i=1

i · [Aix + Biu]ρ̂i−1, (67)

and γ > 0, then all the signals in the system S are bounded and limt→∞[x(t)−
xm(t)] = 0 in the presence of arbitrary variations of ρ(t) within [0, 1].

Proof: The prof of this theorem can be found in [8].
Comment:
1. Due to the properties of adaptive algorithms with projection [21], we can
readily demonstrate that the system will be robust in the presence of large
bounded external disturbances, noise and some classes of unmodeled dynam-
ics.
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2. Since an error model linearized with respect to φ was used to design adap-
tive algorithms, the stability property of the overall system is local in nature,
i.e. the approximation is valid for sufficiently small φ. Global stability can be
demonstrated using an approach where the adaptive controller is combined
with a variable-structure controller using multiple models. In the problem un-
der consideration, numerous simulations revealed that the values φ ∈ [0, 1] are
sufficiently small to guarantee the validity of the approximation and assure
excellent overall performance. Some representative simulations are included
in the following section.

6.3 Simulations

Since the TAFA dynamics is open-loop unstable, any percentage of damage
results in unacceptable response. To test our adaptive reconfigurable algo-
rithm, we used Boeing’s high-fidelity 6DOF TAFA simulation that has a
damage simulation capability. A detailed description of the corresponding
implementation issues is given in [6] and [5]. We will include here some rep-
resentative simulation results. As the simulation test case we have chosen
the flight regime of Mach 0.9 at the sea-level. The test maneuver is altitude
capture under wing damage.

Simulation 6: Nominal response. Before we test the suitability of our
FDI-ARC scheme for handling wing damage, it is important to demonstrate
that the scheme does not give false alarm and/or interfere with the nominal
controller in the case with no damage. Figure 16 shows the state response of
the aircraft under the no-damage condition. The bottom right figure shows
the parameter estimate ρ̂. As it can be seen, the scheme identifies no wing
damage and ρ̂ remains zero during the simulation. The nominal controller is
used at all time and gives excellent tracking response.

Simulation 7: Response in the case of 60% outer wing damage. Fig-
ure 17 shows the aircraft state response and control effector positions in the
case of a 60% wing damage that occurs at t = 1.5 sec. The parameter estimate
ρ̂ converges to 0.645 after 10 sec. The control switched to uf2 as the failure
was detected. This results in stable tracking performance of the aircraft. It
should be noted that if no configuration is attempted, the closed-loop system
becomes unstable and the system states rapidly diverge.

Simulation 8: Response in the case of 100% outer wing damage.
Figure 18 shows the aircraft state response and control effector positions in the
case of 100% wing damage that occurs at t = 1.5 sec. The parameter estimate
ρ̂ converges to 0.916 after 10 sec. The control switched to uf3 as the failure is
detected. Again, stable tracking performance of the aircraft is achieved. The
FDI-ARC scheme was tested extensively for different levels of wing damage
under the condition described above. In all cases, the parameter estimate ρ̂
converges within ±0.1 of the actual ρ, and the control is always reconfigured
in a manner that achieves stability and good tracking performance.
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Fig. 16. Longitudinal state response of TAFA in the nominal (no-damage) case

6.4 Conclusions

In this section we developed an adaptive reconfigurable control scheme for
compensation of wing damage of TAFA. The scheme consists of failure de-
tection through on-line estimation of the percentage-of-damage parameter,
and the corresponding adaptive reconfigurable control algorithm. The over-
all scheme results in fast and accurate detection and identification of wing
damage and corresponding control reconfiguration, and was demonstrated
analytically to be stable in the sense that all signals are bounded and the
output error converges to zero asymptotically even in the case of 100% wing
damage. The properties of the proposed adaptive controller are evaluated
through numerical simulations on a high-fidelity TAFA simulation, and it is
shown that the proposed approach results in excellent overall performance
despite severe structural damage.
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Fig. 17. Longitudinal state response of TAFA under 60% left wing damage at
t = 1.5 sec with control reconfiguration

7 An Integrated FDIR System

In the previous sections we discussed separate FDIR systems for sensor and
control effector failures, and structural damage. While each individual sys-
tem achieves its own objective, the overall objective is to compensate for a
wide array of upsets. These systems, therefore, need to be implemented si-
multaneously, which is a highly complex problem due to strong inter-system
couplings. When such a multi-objective task is to be achieved under state,
output, and control input constraints, the problem at hand becomes truly
formidable. The related control problem is that of system integration that
needs to achieved without violating the constraint and desired dynamics spec-
ifications.
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Fig. 18. Longitudinal state response of TAFA under 100% left wing damage at
t = 1.5 sec with control reconfiguration

A conceptual solution for such an Integrated Failure Detection, Identifi-
cation and Reconfiguration (FDIR) system is shown in Figure 1. The system
needs to have a capability of compensating for multiple simultaneous sensor
and control effector failures and structural damage. The FDIR algorithms
need to distinguish between different failures and rapidly and accurately iden-
tify failure-related parameters.

Control Input Monitoring and Allocation (CIMAS) system: One of
the key issues in reconfigurable control design is that of control input alloca-
tion before and after the reconfiguration. The Control Allocation Algorithms
(CAA) pre and post failure can be very different, and finding the adequate
CAA for different combinations of failures is a formidable task. For this rea-



164 Bošković and Mehra

Fig. 19. Structure of the Integrated FDIR System ( c©1999-2002 Scientific Systems
Company, Inc.)

son, we developed a new Control Input Monitoring and Allocation System
(CIMAS). The role of CIMAS is to monitor all of the control inputs, detect
when a particular control input is approaching its saturation bound, and carry
out two tasks: (i) Re-allocate the remaining control inputs automatically so
that either there is no saturation (in the ideal case), or, if there is saturation,
then only non-critical effectors saturate; and (ii) If there is no solution to the
problem of finding the CAA with the available control authority, the CIMAS
changes the reference input to avoid saturation of critical effectors.
Failure/upset models: A possible approach to the design of an Integrated
FDIR system uses the description of the system dynamics of the form (1),
(2). The modeling starts with sensor failures:

y = Cx + d

ẏ = Cẋ = CAx + CBu

= CAC−1(y − d) + CBu

We next replace the term Bu in the case of the control effector failures with
BK(I − Σ)u + BΣū, where K is the control effector effectiveness matrix
described earlier, Σ = diag[σ1 σ2 ... σm], ū denotes an (unknown) vector
whose elements are positions at which different effectors have locked, and

σi(t) =
{

1, if t ≥ tFi,
0 elsewhere

and tFi denotes the time of failure of the ith effector. Hence the combined
sensor-control effector failure model is of the form:

ẏ = CAC−1y − CAd + C[BK(I − Σ)u + BΣū].
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We further assume that matrices A and B change due to structural damage
in a similar way as described in the section on damage FDIR. However, the
model (55), (56) describes only structural damage of the outer part of the
left wing of TAFA. In order to take into account damage of different surfaces,
we need to introduce a vector ρ such that ρ = [ρ1 ρ2 ... ρN ], where N is
the number of surfaces that can be damaged. The model is now of the form
similar to (55), (56) except that different order polynomials may have to be
used to model damage of different surfaces. Hence the overall model is of the
form:

ẏ = CA(ρ)C−1y − CA(ρ)d + C[B(ρ)K(I − Σ)u + B(ρ)Σū].

We need to emphasize that the above model does not take into account
failures a number of important subsystems including the flight computer,
communication channels, and power system. Hence the proposed FDIR sys-
tem needs to be combined with an on-line system-wide health monitoring and
status determination system that can rapidly and accurately assess the over-
all health of the vehicle, and take appropriate actions in order to minimize
the effect of different failures and upsets on the closed-loop system.

8 Conclusions and Future Work

In the paper we describe issues arising in Failure Detection, Identification and
Reconfiguration (FDIR) in flight control. The fault accommodation problem
is stated and discussed, followed by the derivation of models of sensor and
control effector failures and structural damage. Corresponding FDIR schemes
that minimize the effect of different failures and structural damage are pre-
sented next, and their properties are illustrated through numerical simula-
tions of advanced combat aircraft. At the end, an Integrated FDIR scheme
is discussed consisting of on-line health monitoring and status determination
system combined with the proposed FDIR algorithms.

The design of such a comprehensive health monitoring and FDIR system
will be the focus of research in this area. The techniques that will arise from
this research are expected to eventually lead to the development and im-
plementation of a fully autonomous Intelligent Vehicle Management System
(IVMS).
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Nonlinear Fault Detection for Hydraulic
Systems

Martin L. Leuschen1, Ian D. Walker2, and Joseph R. Cavallaro1

Abstract. One of the most important areas in the robotics industry is the devel-
opment of robots capable of working in hazardous environments. As humans cannot
safely or cheaply work in these environments, providing a high level of robotic func-
tionality is important. Our work in this area focuses on a fault detection method
known as analytical redundancy, or AR. In this paper we discuss the application
to a hydraulic servovalve system of our novel rigorous nonlinear AR technique. AR
is a model-based state-space technique that is theoretically guaranteed to derive
the maximum number of independent tests of the consistency of sensor data with
the system model and past control inputs. Conventional linear AR is only valid for
linear sampled data systems. However, our new nonlinear AR (NLAR) technique
maintains traditional linear AR’s mathematical guarantee to generate the maximum
possible number of independent tests in the nonlinear domain. Thus NLAR allows
us to gain the benefits of AR testing for nonlinear systems with both continuous
and sampled data.

1 Introduction

The usefulness of robots in hazardous situations is highly dependent on their
reliability [8–10,30]. Chemicals and radiation can damage robotic compo-
nents, and many environments can be made more hazardous by actions of
a malfunctioning robot. As humans usually cannot enter hazardous environ-
ments to repair or remove a failed robot, such failures can be very dangerous
and costly. Thus, our team has investigated reliability issues for robots exten-
sively [17–19,23]. A fault detection method known as analytical redundancy
[4,16], or AR, is the focus of this particular paper. AR is a model-based
technique that derives the maximum number of independent tests from the
state-space control model of the system. These AR tests monitor the con-
sistency of sensor data with the linearized system model and past control
inputs. The tests determine whether the system is performing nominally, or
is deviating from the desired plan and presumably under fault conditions.
Our group has used the linear version of the AR technique successfully on
electrical robotic systems in the past [30], and has also applied our nonlin-
ear version to nonlinear hydraulic systems such as the Rosie robot discussed
below.

In previous papers [19,23], we have discussed the derivation through linear
AR of a suite of model based tests for the default sensor package for hydraulic
wheel actuators, and introduced an approximate technique for using AR effi-
ciently in nonlinear systems. Some of these tests are comparison of the actual

F. Caccavale, L. Villani (Eds.): Fault Diagnosis and Fault Tolerance for Mechatronic Systems, STAR 1, pp. 169-191, 2003.
     Springer-Verlag Berlin Heidelberg 2003
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system response to control inputs to the predicted response indicated by the
model. These show that AR clearly monitors known behaviors of the sys-
tem. The other tests uncovered by the linear AR analysis reflect higher order
state interdependencies, as discussed later and in [27]. These tests give us
important additional information about the system that we might not have
normally examined.

These previous tests are all based at least partially on linear models of the
system. However, the hydraulic valve and motor system behavior is highly
nonlinear in nature, which leads to a degradation in the performance of the
AR method. Linear AR can miss or improperly detect faults in this situation,
so nonlinear AR techniques are highly desirable. We now show our results for
rigorously extending the linear AR tests into the nonlinear realm.

2 Nonlinear Analytical Redundancy

Let us begin by defining a nonlinear state-space system with states, inputs,
and outputs.

ẋ(t) = f(x(t)) +
∑

i

g
i
(x(t)) · u(t)

y(t) = h(x(t))
(1)

The corresponding linear system model is:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) (2)

NLAR uses the left null-matrix of the observability:
[
Ω

(
f, g

)] [O�(f, g)
]

= 0 (3)

where the model-based observability O�(f, g) is calculated using stan-
dard methods using the model equations for linear systems, and our modi-
fied ‘triangular’ method [16,21] for nonlinear systems. The � refers to this
method, which reduces to the standard method in the linear case) The linear
observation space is the rows of the matrix

[
C, CA, CA2 . . .

]
. For nonlin-

ear systems, the Lie Derivative operation Lfhi is used to combine the vector
functions f, g

i
with elements of h, and the observation space is generated from

appropriate combinations of Lkhi, k ∈
{

f, g
1
, g

2
, . . .

}
. For more details, see

[15,16,21,22].
However, if the system is observable it is also possible to express the

observability in terms of sensor readings y and control inputs u [15,16,22] in
addition to the state and model. This observability will be referred to as the
‘dynamically derived observability,’ or O�DD(y, u). The important aspect of
this formulation is the explicit dependence of every element of it on the input-
output behavior of the system as it is functioning at the time the observability
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is calculated. By taking the product of O�DD(y, u) with the left null-matrix
from equation 3 we can generate the suite of NLAR residual tests R:

[
Ω

(
f, g

)] [O�DD(y, u)
]

= R = [0] (4)

As Ω (f, g) is derived from the system equations, while the input-output
observability matrix depends on the recent sensor readings and inputs, if
the system is observable the result of the above matrix multiplication can be
expressed as a set of equations dependent on the known quantities of y and u .
If the system is behaving in accordance with the nominal model O�DD(y, u)
will be as similar to O�(f, g) as measurement error and noise allow, and
equation 4 will generate near-zero values [15,16,22]. However, if the system
model has become inaccurate due to a fault changing the characteristics of the
system, nonzero values will be generated, allowing the fault to be detected.

In fact, since the observability space by definition spans all that can be
observed about the system using the current model, it can be shown that
NLAR is guaranteed to react to any observable discrepancy [15,16,22]. The
basis vectors of the observability space generated from system data (model
O�DD(y, u)) span a space dependent on the current behavior of the system
that spans the observability space if the model is correct. The null-space of the
model derived observability space Ω

(
f, g

)
spans the space of information you

shouldn’t be able to see if the system is performing according to the model.
Projecting the basis onto the null space instantly reduces a complex stream
of sensor and input data into residual signals that show all the deviations
from the expected model, and only those deviations.

NLAR test results can only be zero if the system equations are modeling
the system behavior correctly. Any discrepancies, such as those that result
from sensor noise, manifest as bias or noise in the NLAR output. However,
given a good system model, most faults will cause deviations between the
system and the model much greater than the difference caused by modeling
inaccuracies. Faults will appear as large nonzero NLAR signals, thus allowing
NLAR to be used as an effective tool for fault detection [15,16,20,22].

The standard linear AR is shown to be a special case of NLAR in [16].
The linear technique described in [4] requires a linear system model like that
described in equation 2. This can cause significant extra bias and noise in
the linear AR tests if the system has nonlinear characteristics. NLAR can of
course solve this problem.

2.1 The NLAR Algorithm

Although the full derivation of the NLAR method described above is too
extensive to reproduce here, the following algorithm [16,21,22] summarizes
the necessary steps in deriving a suite of NLAR tests:

i. Determine the triangular nonlinear observability O� and its left null Ω.
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ii. Determine the nonlinear dynamically derived observability O�DD.
iii. Find the rank, rj(nonlin), of each observability sub-matrix in the observ-

ability “matrix” in ∇O�DD. Keep rj(nonlin)+1 rows in each sub-vector.
iv. Apply the NLAR equation to find the test residuals R : ΩO�DD = R.
v. The number of independent NLAR tests, NNLAR, can be determined by

the equation NNLAR =
m∑

j=1

(rj(nonlin)) + (m − n) . Use this equation to

determine how many independent tests exist. Delete the redundant tests.

Full details of this method are discussed in [16,21,22].

2.2 Other Related Work

Considerable work has been done using the concept of nonlinear observers in
place of AR [3,13]. In fact, it has been shown that AR and observer based
methods are equivalent in the linear case [24]. However, the proof in [24] is
only applicable to linear systems, so the nonlinear observers are not neces-
sarily the same as nonlinear AR. Additionally, the nonlinear observer based
method [13] lacks the span guarantees of NLAR.

Zhirabok and Preobragenskaya have presented work with nonlinear AR
test residuals based on observer theory [33]. Nonlinear test residuals are gen-
erated by following an algorithm for restating the model equations in terms
of inputs ui and outputs yi. Unfortunately this method does not use the
observability to maintain the guarantees that make AR so desirable.

Wünnenberg and Frank have investigated methods for using dynamic
thresholding with linear robotic AR test residuals to compensate for vari-
ous modeling inaccuracies [11,32]. Instead of adapting the AR tests to the
nonlinear systems, this work takes the practical approach of developing a
system that runs in parallel to the AR system, predicts when the model-
ing inaccuracies will likely be large, and increases the thresholds on the AR
residual tests appropriately.

Starosweicki and Comtet-Varga have produced some interesting work de-
scribing rigorous nonlinear AR limited classes of nonlinear systems [28,29].
This work discusses several methods of rigorously developing various AR-
like test residuals without actually using the nonlinear observability. This
work considers the spanning issue, but is limited by its neglect of the core
observability issues of AR.

Isidori and De Persis have derived a geometric residual generator using
nonlinear observability [7]. These residuals are similar in concept to those
generated by AR in that they use the null space of the observability to test
the system behavior. However, they are limited to checking for faults where
both the disturbance and fault dynamics are known well enough to model
accurately, making span guarantees much more troublesome [12,25]. This
limits the Isidori approach to detecting well known and well modeled faults,
while AR and NLAR are geared to detect all deviations from the model.
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3 NLAR Applied to a Hydraulic System

The Rosie mobile worksystem [1,5,26] discussed in this section was the initial
motivation for the study of nonlinear analytical redundancy. The nonlineari-
ties introduced by hydraulic flow through components such as servovalves are
a significant issue when dealing with hydraulic robots and systems [2,6,14].
These nonlinearities led us to investigate the application of modified AR
fault detection techniques to deal in an approximate manner as shown in Ap-
pendix 9 with the nonlinear hydraulic system [18–20,23]. Eventually, we left
the approximation limitations of our early techniques behind with increas-
ingly rigorous notions of nonlinear analytical redundancy.

3.1 The Rosie Mobile Worksystem

The Rosie Mobile Worksystem is a tele-robotically operated, hydraulically
driven robot, which provides locomotion and a four degree-of-freedom heavy
manipulator arm which can be equipped with various tools and robot ma-
nipulators. Figure 1 is a photograph of the Rosie worksystem working at the
CP-5 reactor. As described in the literature [1,5,26], the robot consists of
two main components or modules. The first module is a locomotor or mobile
platform upon which is mounted the second module, a heavy manipulator.
The locomotor module supports and transports the manipulator, and sup-
plies it with power and control/communications. The locomotor consists of
a central spine, or body core, upon which are attached front and rear drive
wheel assemblies, an electronics enclosure, a hydraulic power supply system,
a hydraulic enclosure for filters and valving, and a tether system. The loco-
motor platform is 198 cm wide, 107 cm high and 290 cm long (78 x 42 x 114
in.), supports an overall machine weight of 6,350 kg (14,000 lb.), and has a
maximum speed of 0.6 m/s (2.0 ft/s).

Each wheel is powered individually by means of a geared, piston-type
hydraulic motor, and is independently steered by means of a rotary actuator
above that wheel. The front wheels are mounted on beams that can extend to
provide additional stability when the manipulator arm is extended, as shown
in Figure 2. The rear wheels are mounted on a pivoting beam for steering
purposes.

The HPSS consists of a 45 kW (60 hp) supply which provides 114 l/min.
(30 GPM) at 20.7 MPa (3,000 psi) for all robot operations. Electrical power
and control are provided through a 61 m (200 ft) tether which is wound on
a powered reel at the rear of the unit.

The heavy manipulator module supports and positions the tools that ac-
tually perform the decontamination and dismantlement (D&D) functions.
Shown with a fully-extended boom in Figure 2, the heavy manipulator per-
forms the functions of waist rotation, shoulder pitch, outer forearm extension,
inner forearm extension, and wrist pitch. The hardware to execute each of
these functions is very similar and consists of a flow servovalve, an actuator,
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Fig. 1. The Rosie Mobile Worksystem at the CP-5 Reactor. (Courtesy of Sharon
Curd at Oak Ridge National Labs)

and fluid components (tubing, fittings, etc.). The shoulder pitch and forearm
extension functions have piston-cylinder actuators and the waist and wrist
rotation are achieved through rotary actuators.

3.2 The Hydraulic Testbed and Fault Simulation

Failure modes, effects, and criticality analysis (FMECA) and fault tree based
reliability analysis by researchers working with Rosie determined that the
hydraulic wheel actuator subsystem was a vital component for the reliabil-
ity of the mobile platform. A failure of a wheel mechanism might prevent
the removal of the chassis from the reactor work site. This led to a project
where the goal was to develop effective data analysis procedures (in our case
AR-based fault detection) for hydraulic wheel actuators and then implement
them on a testbed system located at Foster-Miller Inc., a company with con-
siderable experience with hydraulic systems. The reliability of existing and
future robots could then be enhanced by the results of this project.
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Fig. 2. Rosie with manipulator arm extended. (Courtesy of Sharon Curd at Oak
Ridge National Labs)

The testbed was a hydraulic motor controlled by a hydraulic servovalve.
(This was the main nonlinear component of the system.) The specific compo-
nent selected for the test program was the hydraulic wheel motor from Rosie,
a Black Bruin Model 404-080-2111 from Valmet Power Transmission Inc. It
has a radial piston design and has a maximum power rating of 35 kW (47
hp), a maximum output speed of 185 rpm and can deliver a torque of 2990
Nm at 250 bar (2205 ft-lb at 3600 psi). This motor was capable of driving
a wheel directly and therefore accepting a substantial radial load, the exact
value of load depending on the axial location of the load with respect to the
motor.

The concept for the test rig itself is shown in Figures 3 and 4. A hydraulic
motor powered by a HPSS was mounted on a machine bed. The output shaft
was loaded radially by means of an adapter and a hydraulic jack assembly.
Load was applied to the motor by means of an identical motor, used as
a pump. The pump loading device was connected to the motor through a
flexible coupling and differed from the motor in not having a hardened shaft
and not having the “freewheeling with springs” option. The pump was fed
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through a separate hydraulic supply consisting of a low-pressure pump, cooler
and reservoir. Load was controlled by means of a throttling valve, with a relief
valve to prevent overpressure. Table 1 shows a listing of the motor-servovalve

Machine Base

Angle
Bracket

Hydraulic Motor

Radial Loading
DeviceHydraulic

Jack

Hydraulic Pump

Flexible
Coupling

Simulated Wheel

Angle
Bracket

Output
Shaft

Fig. 3. Hydraulic test rig schematic. (Courtesy of Foster-Miller)

Motor
P(supply)=ps

θθ(k)

pl(k)

Spool Valve

Sticking
Servovalve

Fig. 4. Conceptual hydraulic system.

system faults investigated, along with the planned installation methods.
Problems with the servovalves focused on open windings and sticking of

internal valve components. Open winding faults were simulated by inserting
a relay in series with the winding. The relay was actuated by means of a bit
output of the data acquisition board. This allowed a simple simulation of the
fault in software.
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Component Fault Installation Method

Servovalve Open winding Relay

Servovalve Sticking valve Change control profile in software

Tachometer Failed tachometer Make input zero in controller

Hydraulic motor Ruptured line Tee flow to separate tank

Table 1. Faults for the Foster-Miller hydraulic testbed.

A sticking valve was simulated by altering the software control profile for
the valve. For example, a new open loop control profile was substituted for the
standard PID closed loop control algorithm. The new algorithm incorporated
stick-slip behavior as needed to simulate the sticking valve.

Hydraulic systems are clearly vulnerable to many faults that electrical sys-
tems do not experience and are much harder to model due to their inherently
nonlinear nature. However, a hydraulic system has considerable advantages
as an actuator in a radioactive environment, as such systems are rugged and
powerful, and much less likely to produce dangerous sparks than an electrical
system. Therefore, it is sensible to use one and simply put some extra time
and energy into ensuring the hydraulic system is adequately monitored.

3.3 The Mathematical System Model

Begin by defining the terms used in the model.
Notation:

• A, B, and C are the canonical discrete time state-space system matrices
• Bm is the viscous damping coefficient
• Ctm = cem + cim represent total, external, and internal leakage, respec-

tively
• dm is the volumetric displacement of the motor
• Jt is the inertia of the motor and load
• Kf ,kq and kc are valve flow coefficients
• M = kc + Ctm is a generalized pressure coefficient
• pl and p(k) are the (continuous and discrete) pressure drop across the

motor as measured by the sensors
• ps is the hydraulic power supply; nominal pressure of 3000 PSI
• Q is the net fluid flow into the spool valve
• R1 through R5 are nonlinear AR tests
• t is the continuous time variable, k the discrete time variable, ∆t is the

time step
• Tg is the torque generated by the motor
• Tl is the load torque
• uv and u(k) are the (continuous and discrete) servovalve positions
• vt is the volume of fluid within the motor
• y(k) is the state vector
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• βe is the bulk modulus of the hydraulic fluid
• θm and θ(k) are the (continuous and discrete) position of the motor shaft

- the derivative of this is measured by a velocity sensor
• ρ is the hydraulic fluid density.

The following model equations are standard for hydraulic systems [27,31]:

Tg = pldm = Jtθ̈m + Bmθ̇m + Tl, (5)

Q = uvKf

√
2(ps − pl)/ρ = dmθ̇m + (cim + cem)pl +

vtṗl

4βe
(6)

The state-space control model uses the following state vector:

x =




θ

θ̇
pl



 . (7)

The second and third state variables are instrumented, but the first (θ) is
not. The nonlinear control system formed by these assumptions is as follows:

ẋ = f(x) + g(x)u, (8)




θ̇

θ̈
ṗl



 =




0 1 0
0 −Bm/Jt dm/Jt

0 −4βedm/vt −4βeCtm/vt








θ

θ̇
pl





+




0
0

(4βeKf/vt)
√

2(ps − pl)/ρ



 uv

, (9)

y = Cx, C =
[

0 1 0
0 0 1

]

, y =
[

θ̇
pl

]

(10)

The intractability of nonlinear systems such as the one described above
makes fault detection techniques like AR more important. The behavior of
a nonlinear system is harder to predict and control, resulting in reduced
safety and reliability, which in turn makes fault detection more prominent.
However, model-based fault detection techniques require good models to be
effective, and traditional linear AR is generally unsatisfactory for systems
with significant nonlinear components. Figure 5 shows the modeling error
for a standard linearization of the Rosie wheel actuator. As this error is not
accounted for in linear AR, but is modeled in the NLAR method, the figure
also shows the expected improvement in going from linear to nonlinear AR.



Nonlinear Fault Detection for Hydraulic Systems 179

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

Pressure (PSI)

C
on

tr
ol

 V
al

ve
P

os
iti

on
 (

in
.)

Linear Approximation Error

50%
25%

0%
-25% -50%

Fig. 5. Error due to linearization for hydraulic servovalve.

4 Nonlinear Analytical Redundancy for the Rosie
Wheel Actuator

Now we apply our nonlinear analytical redundancy (NLAR) technique to the
Rosie subsystem described above. This will allow us to avoid the mathemati-
cal errors caused by linearization, as shown in Figure 5. To begin, we calculate
the grouped observability vector O� :

O� =











c1x
Lfc1x + Lgc1xu

Lffc1x + Lfgc1xu + Lgfc1xu + Lggc1xu2

c2x
Lfc2x + Lgc2xu

Lffc2x + Lfgc2xu + Lgfc2xu + Lggc2xu2











,

O� =































θ̇

−Bmθ̇/Jt + dmpl/Jt




(
B2

m/J2
t + −4βed

2
m/Jtvt

)
θ̇

+
(−Bmdm/J2

t + −4βedmCtm/Jtvt

)
pl

+(4βedmKf/Jtvt)
√

2(ps − pl)/ρ u






pl{
(−4βedm/vt)θ̇ + (−4βeCtm/vt)pl

+(4βeKf/vt)
(√

2(ps − pl)/ρ
)

u

}






(
4Bmβedm/Jtvt + 16β2

edmCtm/v2
t

+
(
8β2

edmKf/v2
t

) √
2/ρ(ps − pl) u

)

θ̇

+
(−4βed

2
m/Jtvt + 16β2

eC2
tm/v2

t

+
(
8β2

eKfCtm/v2
t

) √
2/ρ(ps − pl) u

)

pl

(−16β2
eKfCtm/v2

t )
(√

2(ps − pl)/ρ
)

u

+
(
−16β2

eK2
f/ρv2

t

)
u2




































. (11)
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Note the nonlinear sub-observability matrices ci∇O� have no terms con-
taining θ, so the system is rank two and only three terms are needed in each
Cj . This also means four independent NLAR tests are expected.

Now calculate the null-matrix Ω:

ΩO� =









Ω11 θ̇ 0 0 0 0
Ω21 0 θ̇ 0 0 0
Ω31 0 0 θ̇ 0 0
Ω41 0 0 0 θ̇ 0
Ω51 0 0 0 0 θ̇








O� = 0 , (12)

where:

Ω11 =
Bm

Jt
θ̇ +

−dm

Jt
pl,

and

Ω12 =

(−B2
m

J2
t

+ 4βed2
m

Jtvt

)
θ̇ +

(
Bmdm

J2
t

+ 4βedmCtm

Jtvt

)
pl

+
(−4βedmKf

Jtvt

√
2(ps − pl)/ρ

)
u

,

Ω13 = −pl,

Ω14 =
4βedm/vtθ̇ + 4βeCtm/vtpl

+(−4βeKf/vt)
√

2(ps − pl)/ρ u
,

Ω51 =

(−4Bmβedm/Jtvt − 16β2
edmCtm/v2

t

+
(−8β2

edmKf/v2
t

) √
2/ρ(ps − pl) u

)

θ̇

+
(

4βed
2
m/Jtvt − 16β2

eC2
tm/v2

t +(−8β2
eKfCtm/v2

t

)√
2/ρ(ps − pl) u

)

pl

+
(
16β2

eKfCtm/v2
t

) √
2(ps − pl)/ρ u + 16β2

eK2
f/ρv2

t u2

.

Then calculate O�DD:

O�DD =











y1(t)
ẏ1(t)
ÿ1(t)
y2(t)
ẏ2(t)

ÿ2(t) − (4βeKf/vt)
√

2(ps − y2(t))/ρ u̇(t)











. (13)

Then simply apply the NLAR equation:









Ω11 θ̇ 0 0 0 0
Ω21 0 θ̇ 0 0 0
Ω31 0 0 θ̇ 0 0
Ω41 0 0 0 θ̇ 0
Ω51 0 0 0 0 θ̇



















y1(t)
ẏ1(t)
ÿ1(t)
y2(t)
ẏ2(t)

ÿ2(t) − (4βeKf/vt)
√

2(ps − y2(t))/ρ u̇(t)











= 0. (14)
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to get the NLAR tests.

R1 = −ẏ1(t) − Bm

Jt
y1(t) +

dm

Jt
y2(t) (15)

R2 =
−ÿ1(t) +

(
B2

m/J2
t − 4βed

2
m/Jtvt

)
y1(t)

+
(−Bmdm/J2

t − 4βedmCtm/Jtvt

)
y2(t)

(16)

R3 = −y2(t)y1(t) + y1(t)y2(t) (17)

R4 =
−ẏ2(t) − 4βedmy1(t)/vt − 4βeCtmy2(t)/vt

+(4βeKf/vt)
√

2(ps − y2(t))/ρ u
(18)

R5 =

−ÿ2(t)

+

(
4Bmβedm/Jtvt + 16β2

edmCtm/v2
t

+
(
8β2

edmKf/v2
t

) √
2(ps − y2(t))/ρ u

)

y1(t)

+

(
−4βed

2
m/Jtvt + 16β2

eC2
tm/v2

t

+
(
8β2

eKfCtm/v2
t

) √
2(ps − y2(t))/ρ u

)

y2(t)

− (
16β2

eKfCtm/v2
t

) √
2(ps − y2(t))/ρ u − 16β2

eK2
fu2/ρv2

t

+(4βeKf/vt)
√

2(ps − y2(t))/ρ u̇

(19)

Note that R3 is trivial, so the expected number of independent NLAR
tests is generated. R1 and R4 correspond to the model equations. R2 and R5

correspond to the convolved first derivatives of the model equations. This is
a common result of AR and NLAR analyses, and a reassuring one. The tests
generated relate directly and intuitively to the system being analyzed.

5 Results

The following results were generated by applying nonlinear analytical redun-
dancy techniques to recorded experimental data from the hydraulic testbed
described previously. In the case of the Rosie wheel actuator, the NNAR1

tests discussed in Appendix 9 and in previous papers [18–20,23] are the same
1 It turns out that the spans of linear and nonlinear observability spaces for this

sytem are similar enough that previously derived approximate techniques [19,23],
created by us to allow application of linear AR to nonlinear systems, were correct
for this particular system. (This is something of a co-incidence, and not true for a
generaleralized nonlinear system.) For this specific case the approximation used
in the NNAR technique is exact. The nearly nonlinear AR (NNAR) technique
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as the NLAR tests. While this is a useful coincidence validating previously
derived approximate test results, the most important aspect of the following
results remains that they validate the NLAR technique using physical testbed
data.

Each of the following result sections shows all four of the NLAR test
residuals for both a baseline data run (light grey) and a run with an injected
fault (black). As NLAR test residual magnitudes are a somewhat arbitrary
function of basis choice during derivation, it is important to note that the
magitude of the plot along the y-axis is important only in comparison with
other runs. It is thus the shape and magnitude of the residual relative to the
baseline test run that is indicative of faulty or fault-free conditions.

The hydraulic engine speed and the load on the system (in terms of PSI
across the load pump) are shown with each set of residuals.

5.1 Servovalve, Open Winding Fault

This fault was modeled by physically opening the winding on the hydraulic
servovalve and inserting a relay to short circuit the control solenoid. The fault
is detected easily by NLAR -the onset and duration of this fault is clear in
all AR tests - large spikes in two of the NLAR test residuals (R1 and R5)
show the fault the instant after it appears. Large steps in the other two tests
are almost as fast. This is because the open winding acts like a large step
input that is not accounted for in the model, degrading the accuracy of the
model greatly in a short time period. This naturally provokes a strong AR
response, which allows us to determine the system is operating under faulty
conditions.

5.2 Sticking Wheel Motor Servovalve Fault

In the simulation of this fault, the system was ramped from zero speed to
a speed of 5 RPM (equal to the fault free run) while the control input was
intermittantly set to zero to simulate sticking. This fault is evident on all of
the AR tests, although R1 and R5 show the clearest results. The system starts
out close to the model but rapidly departs from model-following behavior if
the control system tries to apply a nonzero control input while the servovalve
is ‘stuck.’ This causes the spikes in the NLAR tests shown in Figure 5.2 that
make the fault easily detectable.

is an approximate but useful method developed early in the course of this work
to deal with the nonlinearities of the Rosie hydraulic actuator [18–20,23]. This
method is not truly nonlinear in nature, however, as it uses the linearized system
model to derive the AR tests. (The approximate NNAR and PLAR methods are
briefly described in Appendix 9.)
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Fig. 6. Servovalve, open winding fault run.

5.3 Loss of Speed Feedback (Tachometer) Fault

The failed sensor invalidates the control loop if the commanded velocity is
nonzero. The sensor reports zero angular velocity, so the controller tries to
increase the speed by providing more power, quickly leading to a runaway
system. (The testbed had a limiting device to prevent damage when this hap-
pened.) NLAR detects this as a deviation from the model-expected behavior
almost instantly - the control inputs and sensor values disagree. This leads
to the clear error signals seen in the figure.

6 The Importance of Model Accuracy

It bears repeating that the success of the NLAR fault detection technique is
limited by the accuracy of the system model. The successful tests described
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Fig. 7. Sticking wheel motor servovalve fault run.

in Section 5 are notable in that they are detecting faults that cause large
and immediate deviations from the system model described in Section 3.3.
All faults are not so tractable. Consider the following fault, which represents
a leak in the motor-valve system, shown in figure 9.

Why does NLAR not generate a clear and unambiguous signal as it did
for the other three faults? Investigation shows that as NLAR is a model
based fault detection algorithm, it is limited by the accuracy of the model.
The NLAR test residuals shown were applied as a post-analysis to an in-
completely documented system. While the model presented in Section 3.3 is
a good mathematical representation of this hydraulic system, several of the
constants in the system are only approximately determined or not as constant
as one might desire. For example, the supply pressure ps is approximated as
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Fig. 8. Loss of speed feedback (tachometer) fault run.

a constant 3000 PSI. This is a rough approximation made necessary by the
lack of a pressure sensor to give this value directly. Similarly, many of the
parameters describing the liquid behavior of the hydraulic fluid are actually
functions of the oil temperature. Several other constants are catalog values
of uncertain accuracy. For most error based control applications, these ap-
proximations are acceptable. However, for model based fault detection, every
inaccuracy limits the resolution of the tests. In the case of the leak fault
shown, the resolution of the NLAR tests is too coarse to detect the tiny error
caused by the steady leakage of a small percentage of the hydraulic fluid. We
are confident that better modeling and proper instrumentation of the system
could overcome this and make NLAR capable of detecting quite such leak
faults. For many sensitive systems, better modeling is a small price to pay
for improved reliability, and NLAR is a good choice for such systems.
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7 Conclusions

Analytical redundancy is a model based fault detection technique, and thus
requires an accurate system model to be effective. Previous AR theory has
been limited to linear system models; this is a serious problem in a nonlinear
world. Advances in nonlinear control theory have opened the door to the
nonlinear realm. This allows us to apply the AR method rigorously to most
nonlinear systems without losing any of the valuable theoretical assurances of
complete coverage inherent to the AR method. The Rice and Clemson group
has developed such theoretically robust nonlinear AR techniques.

Nonlinear AR fault detection is a useful monitoring method for hydraulic
systems such as Rosie that must operate in hazardous environments. Better
fault detection for hydraulics will reduce the costs associated with failures of
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such systems in the workplace by minimizing damage done by and to faulty
systems as well as the amount of time wasted by false alarms. Safety and reli-
ability are critical for success of many operations in hazardous environments,
and this work represents the first detailed examination of nonlinear AR fault
detection for these types of hydraulic robot systems.
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9 Appendix: Approximate Approaches to NLAR

One way to deal with a system model that is nonlinear enough to change
considerably as it moves through the workspace is to create several sets of
AR tests for the system linearized about state vectors located in each region
of interest. In the local region each set would be more accurate than a general
linearization of the control equations for the entire workspace. An example of
this technique, and the improvement it brings, is illustrated below in Figure
10. In this case, generated for the hydraulic servovalve system, the pressure-
valve position workspace in which the flow equation is nonlinear is divided up
into nine equal regions. The model equation is linearized about a point at the
center of each and normal AR tests are derived. (Due to the symmetry of the
system, only four linearizations are needed in practice.) During operation,
the AR test used is the one that was linearized about a point closest to
the current position, with interpolated transitions near the borders of each
region.

Figure 11 shows the results from a fault free run and a faulty run (the fault
was a large leak) of PLAR tests on a simulated hydraulic servovalve [18,19].
The fault free run shows how PLAR minimizes the drifting away from the
model errors of pure linear AR. Before the test residual can drift far from
the point about which it was linearized, the system transitions into another,
more appropriate AR test linearized about a point closer to the actual state
of the system, leading to a saw-toothed residual about the nominally correct
zero value. The results in a test run with a large leak fault added to the
hydraulic system show that this saw-tooth is about an order of magnitude
smaller than the fault signature.

Nearly nonlinear analytical redundancy is a natural outgrowth of PLAR.
Although each PLAR partition uses a different linearization of the control
equations, the different linearizations all share the same basic form - they
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are tangents to the control system at the point of linearization. This means
that the AR tests generated by the different linearizations will be, in essence,
tangents to some more accurate nonlinear AR test. It is reasonable to ap-
proach this test by dividing the workspace into many closely packed regions
and taking appropriate linearizations. In the limit of infinitely small regions,
this is a nonlinear AR test! However, there is a much simpler method of find-
ing these tests. Recall that AR tests tend to be combinations of the model
equations, sensor comparisons, and their derivatives. By performing linear
AR on a linearized system and identifying the relationship between the AR
residual tests and the control model and sensors, it is possible to find nonlin-
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ear AR tests by simply duplicating this relationship to the nonlinear control
system and sensors! For example, if the AR tests for the linear system are
the linearized model equations, their first derivatives, and direct sensor com-
parisons between the linearized sensors, the nonlinear model equations, their
first derivatives, and comparisons of the nonlinear sensors can be used as
NNAR tests.

Why, then, are these tests referred to as merely “nearly nonlinear” rather
than “fully nonlinear?” Unfortunately, as they use the linear observability
matrix they are still using linear approximations of the observability null-
space, Ω. It can be shown that this is different than the nonlinear null-space;
in fact the two can have a different rank. The AR guarantees of testing for all
of the possible model deviations efficiently are thus not valid in PLAR and
NNAR. Any AR method that doesn’t use the full nonlinear observability
space will suffer from this drawback. This is what makes fully nonlinear AR
using the nonlinear observability space so desirable, and relegates PLAR and
NNAR to secondary roles. These methods do not require extensive nonlinear
calculation to use, but they are essentially approximations of the complete
NLAR technique.
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