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Supply chain management decisions are made under the conflicting criteria of 
maximizing profit and customer responsiveness while minimizing supply chain 
risk. Multiple Criteria Decision Making in Supply Chain Management 
provides a comprehensive overview of multi-criteria optimization models and 
methods that can be used in supply chain decision making. 

Presenting the contributions of internationally known authors, researchers, 
educators, and practitioners, this new book in the Operations Research Series 
provides readers with a single source guide to recent developments in this area. 
Starting with an introduction to supply chain management (SCM) and to multiple 
criteria decision making (MCDM), this book:

•	 Covers transportation issues and supply chain inventory decisions  
in detail

•	 Presents multiple criteria  mathematical programming models for 
optimizing decisions regarding the number and location of supply  
chain facilities and determining optimal distribution strategies

•	 Discusses the supplier selection models under multiple conflicting criteria

•	 Incorporates supply chain risk as an objective function  for designing 
resilient global supply chains

The focus of the book is on the design and operation of the supply chain system, 
which involves connecting many production and distribution systems, often 
across wide geographic distances, in such a way that the businesses involved 
can ultimately satisfy consumer demand as efficiently as possible, resulting in 
maximum financial returns to those businesses connected to that supply chain 
system. The book includes several case studies on the design and operation of 
supply chain networks in manufacturing and healthcare. 
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Preface

Supply chain management (SCM) decisions are made under the conflict-
ing criteria of maximizing profit, maximizing customer responsiveness, 
and minimizing supply chain risk. This book provides a comprehensive 
overview of multiple criteria decision making (MCDM) models and meth-
ods that can be used in supply chain decisions. It covers recent develop-
ments and applications of MCDM for solving SCM problems. Our focus 
in this book is on the design and operation of the supply chain system, 
which involves connecting many production and distribution systems, 
often across wide geographic distances, in such a way that the businesses 
involved can ultimately satisfy customer demand as effectively as possi-
ble, resulting in maximum financial returns to those businesses connected 
to the supply chain system.

The key features of this book are as follows:

• Single source guide
• Written by leading researchers and practitioners
• Comprehensive resource, but concise
• Covers recent developments and applications
• Quick reference guide for students, researchers, and practitioners
• Bridges theory and practice
• Designed and edited with non-experts in mind
• Unified and up-to-date coverage ideal for ready reference

The supply chain topics that are covered in this volume include

• Supplier selection
• Network design
• Logistics and distribution
• Inventory policies
• Risk management
• Global SCM



viii Preface

Book Overview

The chapters in this book are contributed by internationally known authors, 
researchers, educators, and practitioners. Chapters 1 and 2 provide an intro-
duction to supply chain management (SCM) and to multiple criteria decision 
making (MCDM), respectively. These two chapters will standardize the ter-
minology that will be used in this book and set the stage for the various SCM 
problems that will be covered in the chapters that follow.

Supply chain drivers represent the critical areas of decision making in 
SCM—those that ultimately generate the outcomes that impact the supply 
chain performance. The key drivers of supply chain include inventory, trans-
portation, facilities, and suppliers. Companies maintain inventory to protect 
against unpredictable demand and unreliable supply. The key decision vari-
ables in managing inventory in supply chains are how much and when to order 
(inventory policies) and where to hold inventory (locations). Chapters 4, 5, and 
12 discuss the supply chain inventory decisions in detail.

Transportation is concerned with the movement of items among the sup-
ply chain stages—namely, suppliers, plants, distribution centers (DCs), and 
retailers. Use of faster transportation modes, such as air and roadways, incurs 
higher transportation costs, but this reduces delivery times and increases reli-
ability. Chapters 3, 5, 7, and 8 cover the transportation issues in supply chains.

Facilities (plants and DCs) play a key role in managing supply chains. 
Their numbers and locations are generally considered as strategic decisions 
and directly affect the supply chain performance. Chapters 3–8 and 11 pres-
ent multiple criteria integer programming models to make optimal decisions 
regarding the number and location of supply chain facilities and to deter-
mine the optimal distribution strategies.

Selection of suppliers of raw materials and intermediate components is con-
sidered a critical area of strategic decision making in SCM. Chapters 3, 4, 7, 9, 
and 10 discuss the supplier selection models under multiple conflicting criteria.

Managing the risk in supply chains has gained a lot of attention in recent years. 
Man-made events, such as the labor strike in US West Coast ports in 2002, and 
natural events, such as the Japanese earthquake and tsunami in 2011, have 
caused companies to realize that a singular emphasis on the cost efficiency 
of supply chains can actually make the supply chains brittle and much more 
susceptible to risk from disruptions. Chapters 3, 7, 9, and 10 incorporate supply 
chain risk as an objective function in multiple criteria optimization models.

Chapter Summaries

Chapter  1 provides an introduction to the meaning of supply chains and 
to the types of design and operational decisions that are made in SCM. 
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It introduces a variety of conflicting performance measures that are used in 
supply chain optimization—namely, supply chain costs, customer respon-
siveness, and supply chain risk.

Chapter 2 presents an overview of the MCDM models and solution meth-
ods. MCDM problems are categorized on the basis of whether (1) the alterna-
tives are finite and known, which are called multi-criteria selection problems 
(MCSP) or (2) the alternatives are infinite and unknown, which are called mul-
tiple criteria mathematical programming (MCMP) problems. In this chapter, 
the most common methods that are available for solving both MCSP and 
MCMP problems are reviewed.

Chapter 3 presents a case study in designing a resilient global supply chain 
network. With increased globalization, SCM has become strategic for com-
panies striving to maximize the overall value generated by reducing costs, 
increasing responsiveness to customers, and decreasing risks. The empha-
sis of this chapter is on developing MCMP models for designing and man-
aging a global supply chain network to support the strategic and tactical 
decisions within the complex multi-national environment. The models are 
illustrated by applying them to a global consumer products company listed 
in the Fortune 500.

Chapter  4 introduces a two-phased approach to multi-objective supply 
chain design and operation. When designing a production–distribution net-
work, supply chain managers may have only limited knowledge of costs, 
demand, and other information needed to develop a network’s infrastruc-
ture and optimize its performance. The model developed and demonstrated 
in this chapter parallels the supply chain planning process through the for-
mulation of a strategic sub model for infrastructure design and initial opera-
tion based on limited inputs followed by a tactical sub model to assist in 
more refined operational planning once higher resolution information is 
available. Notably, this model takes into account the decision makers’ mul-
tiple objectives, allowing them to reprioritize among profit, demand satisfac-
tion, and transit time goals.

Chapter 5 presents a multi-criteria distribution planning model for a con-
sumer products company. Integrating different types of supply chain deci-
sions in optimization models allows the supply chains to operate more 
efficiently. This chapter presents a multiple criteria mixed-integer linear 
program to design the best possible supply chain distribution network. The 
model makes the strategic decisions of determining the optimal configura-
tion of manufacturing plants, distribution centers, distributors, and custom-
ers, as well as the tactical decisions of designing the product flows through 
these distribution stages. The model contains multiple criteria, including 
customer service objectives, in addition to maximizing profit. Its functional-
ity and applicability are shown by implementation in a real-world case study 
of a consumer goods company.

Chapter 6 discusses multiple criteria network design in health and human-
itarian logistics, where the key challenges include multiple conflicting 
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objectives and the significant amount of inherent uncertainty. The authors 
of this chapter present two detailed applications in this area. The first appli-
cation optimizes the design of a humanitarian assistance and disaster relief 
(HA/DR) supply chain network for military aerial delivery operations under 
uncertainty that considers trade-offs between military HA/DR aerial delivery 
supply chain efficiency and responsiveness. The second application optimizes 
the network for federally qualified community health centers to serve at-risk 
populations in Pennsylvania.

Chapter 7 incorporates disruption risk in a supply chain network design 
model. Supply chain network design decisions that determine the number 
and location of facilities and the selection of transportation modes have a 
significant impact on competitive performance. However, facilities and 
transportation links are susceptible to disruptions. In addition, they have 
different capacities to cope with those disruptions, which contribute to sup-
ply chain resilience. This chapter provides a framework to quantify the risk 
level of supply chain nodes and links. Then, a multiple objective optimiza-
tion model is presented for designing a resilient supply chain network, with 
an emphasis on balancing the cost, responsiveness, and risk of the supply 
chain.

Chapter 8 focuses on the design of closed loop supply chains. Integrating for-
ward and reverse supply chains, termed closed loop supply chains (CLSC), 
has proven to be a challenging task due to the differences in the nature 
of the activities that make up the forward and reverse flows. This  chapter 
discusses the optimal design of a CLSC with commercial returns with the 
objectives of maximizing profit and minimizing energy usage. The bi-
criteria network design model considers quality-based classification of the 
product returns and also the customer behavior toward buying refurbished 
products.

Chapter  9 presents a multiple objective multi-period supplier selection 
model with product bundling for low cost/low risk items. The buyer’s objec-
tive is to decide which products to order from which supplier, in what quan-
tity, and in which period. The multi-objective problem is solved using four 
different variants of goal programming, and the results are compared.

Chapter  10 incorporates supply disruptions in a multi-objective supplier 
selection model and uses “back-up” suppliers as risk mitigation strategies. 
Disruption risks are among the major threats to supply chains. By nature, 
disruptive events are either very hard or impossible to prevent, making iden-
tification and implementation of mitigation measures much more critical. 
This chapter presents a statistical model to quantify the effect of disruption 
risks and a multiple objective model to improve supply chain decision mak-
ing by selecting optimal disruption mitigation strategies.

Chapter  11 discusses the use of MCDM models in planning prevention 
services in health care. Prevention services have been widely implemented 
in communities to improve mental health care for the youth population, 
and to reduce antisocial, criminal, and disruptive behaviors. Under this 
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circumstance, prioritizing prevention services is crucial for policymakers 
when allocating a limited budget. In this chapter, a budget allocation prob-
lem is solved considering limited budget, preferences of policymakers, and 
effectiveness of each prevention program.

Chapter 12 investigates optimal inventory policies for divergent supply chains, 
under conflicting criteria. Past research has assumed that orders received by 
the distributor/manufacturer from its retailers are interchangeable and that 
replenishment to retailers can happen in any manner, without any consider-
ation to the corresponding orders placed by them. Such an approach, with-
out linking replenishment to order, is not acceptable in many real-life supply 
chains due to the lack of material traceability. The presentation in this chapter 
is a significant step toward modeling and solving such real-life supply chain 
problems with inventory allocation and rationing. It also considers multiple 
objectives of minimizing the total supply chain cost and maximizing the 
product fill rate.

Additional material is available from the CRC Press website: http://www.
crcpress.com/product/isbn/9781498708586.
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1
Managing Supply Chains: An Introduction

A. Ravi Ravindran
The Pennsylvania State University, University Park, Pennsylvania

Our focus in this book is on the design and operation of the supply chain  system, 
which involves connecting many production and distribution systems, often 
across wide geographic distances, in such a way that the businesses involved 
can ultimately satisfy consumer demand as efficiently as possible, resulting 
in maximum financial returns to those businesses connected to that supply 
chain system. A good discussion of the supply chain design and operation is 
given in Warsing (2008, 2009).

Most supply chain design and operational problems are multiple criteria 
decision making (MCDM) problems. In this chapter, we address the mean-
ing of supply chains and the types of design and operational decisions that 
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2 Multiple Criteria Decision Making in Supply Chain Management

are made in supply chain management. We introduce a variety of conflict-
ing  performance measures that are used in supply chain  optimization. 
In Chapter 2, we provide an overview of MCDM models and methods. These 
two chapters will standardize the terminology that will be used in the book 
and will set the stage for the various supply chain management problems 
that will be covered in the chapters that follow.

1.1 Understanding Supply Chains

Before we formally define supply chain management, we begin with the defini-
tion of a supply chain. A supply chain consists of the following:

 1. A series of stages (e.g., suppliers, manufacturers, distributors, retail-
ers, and customers) that are physically distinct and geographically 
separated at which inventory is either stored or converted in form 
and/or in value.

 2. A coordinated set of activities concerned with the procurement of 
raw  materials, production of intermediate and finished products, 
and the distribution of these products to customers within and 
external to the chain.

Thus, a supply chain includes all the partners involved in fulfilling cus-
tomer demands and all the activities performed in fulfilling those demands. 
Figure 1.1 illustrates a typical supply chain.

It is important to recognize that, for a multi-national company with a global 
supply chain network, the different stages of the supply chain (suppliers, plants, 
distribution centers [DCs], and retailers) may be located in different countries. 

Supplier

Supplier

Supplier

Supplier

Plant

Plant

Plant

DC

DC

R

R

R

R

R

C
U
S
T
O
M
E
R
S

(DC = distribution center, R = retailer)

FIGURE 1.1
Supply chain network.
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It is also possible that a firm may employ fewer supply chain stages than those 
represented in Figure 1.1, or perhaps more. Indeed, some business researchers 
(e.g., Fine 2000) argue that the supply chains in various industries follow histor-
ical cycles that move from periods of significant vertical integration to periods 
of significantly less integration, where firms in the supply chain rely more on 
partnerships than on owning substantial portions of the value chain within a 
single firm. In vertical integration periods, the supply chain may employ only 
a few stages from raw material extraction to final production, owned primar-
ily or exclusively by a single firm. A good example of this would be the early 
days of Ford Motor Company in the 1920s. In the less integrated periods, it is 
the horizontal, across-firm relationships that are prominent. A good example 
would be in the 1990s and early 2000s, when Dell led the global market for 
personal computers with a highly decentralized supply chain in which they 
served only as the final assembler  and  direct distributor. In this latter case, 
Dell not only relied heavily on its suppliers to independently manage the pro-
duction and supply of components but also simply bypassed independent 
distributors and retailers and dealt with the final consumers directly, without 
the “middle men.” Interestingly, Fine’s (2000) hypothesis regarding cycles of 
change in  various industries may be coming to light in the personal computer 
(PC) industry because Dell has recently added the retail “middle men” back 
into its supply chain.

1.1.1 Flows in Supply Chains

Following Chopra and Meindl (2001), the key flows in a supply chain are as 
follows:

• Products: Includes raw materials, work-in-progress (WIP), sub-
assemblies, and finished goods

• Funds: Includes invoices, payments, and credits
• Information: Includes orders, deliveries, marketing promotions, plant 

capacities, inventory, and so on

Thus, the flows in the supply chain are not just “goods.” Tracking flows 
from the suppliers to the customers is called “moving downstream” in the 
supply chain. Tracking flows from the customers to the suppliers is called 
 “moving upstream” in the supply chain.

1.2 Managing Supply Chains

Chopra and Meindl (2001, p. 6) define supply chain management (SCM) as 
“the management of flows between and among supply chain stages to maxi-
mize supply chain profitability.” A more complete definition of SCM  by 
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Simchi-Levi et al. (2003, p. 1) states, “SCM is a set of approaches utilized to 
 efficiently integrate suppliers, manufacturers, warehouses, and stores, so that 
merchandise is produced and distributed at the right quantities to the right 
locations, and at the right time in order to minimize system-wide costs while 
satisfying service level requirements.” Their definition brings out all the key 
aspects of SCM, including the two conflicting objectives in SCM— minimizing 
supply chain costs while simultaneously maximizing customer service.

Ravindran and Warsing (2013) define supply chain engineering, which 
encompasses the following key activities for the effective management of 
a supply chain:

 1. Design of the supply chain network, namely the location of plants, 
DCs, warehouses, and so on

 2. Procurement of raw materials and parts from suppliers to the manu-
facturing plants

 3. Management of the production and inventory of finished goods to 
meet customer demands

 4. Management of the transportation and logistics network to deliver 
the final products to the warehouses and retailers

 5. Managing the integrity of the supply chain network by mitigating 
supply chain disruptions at all levels

Most of the aforementioned activities involved in supply chain engineering 
(SCE) also come under the rubrics of SCM. An important distinction, however, 
between SCE and SCM is the emphasis in SCE on the design of the supply chain 
network and the use of mathematical models and methods to determine the 
optimal strategies for managing the supply chain.

This emphasis on mathematical models makes sense if one returns to the 
introductory comments of the chapter, where we point out that our empha-
sis in this book is really on supply chain design, namely on the design of 
a relatively complex system of interconnections and flows that move both 
goods and information around the globe. In order to accomplish that in a 
systematic way, we must turn to some reasonably precise and verifiable tools 
of analysis. Hence, our emphasis on design—ultimately, what we hope to 
characterize as optimal design—requires a hand-in-hand emphasis on math-
ematical models.

Without doubt, commerce has become increasingly global in scope over the 
past several decades. This trend toward globalization has resulted in supply 
chains whose footprint is often huge, spanning multiple countries and con-
tinents. Because products and funds now regularly flow across international 
boundaries, engineering a global supply chain becomes impractical—or at 
least ill-advised—without the use of sophisticated mathematical models. The 
use of MCDM methods for managing the supply chain decisions will be the 
primary focus of this book.
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1.3 Supply Chain Decisions

The various decisions in SCE can be broadly grouped into three types: 
 strategic, tactical, and operational.

1.3.1 Strategic Decisions

Strategic decisions deal primarily with the design of the supply chain net-
work and the selection of partners. These decisions are not only made over a 
relatively long time period (usually spanning several years) and have greater 
impact in terms of the company’s resources, but they are also subject to sig-
nificant uncertainty in the operating environment over this lengthy span of 
time. Examples of strategic decisions include:

• Network Design: Where to locate and at what capacity
• Number and location of plants and warehouses
• Plant and warehouse capacity levels

• Production and Sourcing: To make or to buy
• Produce internally or outsource
• Choice of suppliers, subcontractors, and other partners

• Information Technology: How to coordinate the chain
• Develop software internally or purchase commercially available 

packages, such as SAP, Oracle

1.3.2 Tactical Decisions

Tactical decisions are primarily supply chain planning decisions and are made 
in a time horizon of moderate length, generally as monthly or quarterly deci-
sions, covering a planning horizon of one or two years. Thus, these decisions 
are typically made in an environment characterized by less uncertainty rela-
tive to strategic decisions, but where the effects of uncertainty still are not 
inconsequential. Examples of tactical decisions include:

• Purchasing decisions: For example, how much to buy and when?
• Production planning decisions: For example, how much to produce and 

when?
• Inventory management decisions: For example, how much and when to 

hold to balance the costs of resupply with the risks of shortages?
• Transportation decisions: For example, which modes to choose and 

how frequently to ship using them?
• Distribution decisions: For example, how DC replenishment be coor-

dinated with production schedules?
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1.3.3 Operational Decisions

Operational decisions are short-term decisions made on a daily/weekly basis, 
at which point much of the operational uncertainty that existed when the 
strategic and tactical decisions were made has been resolved. In addition, 
because the time scale is so short, most of these decisions involve a signifi-
cantly lower expenditure of funds. Examples include:

• Setting delivery schedules for shipments from suppliers
• Setting due dates for customer orders
• Generating weekly or daily production schedules
• Allocating limited supply (e.g., between backorders and new 

 customer demand)

It is important to recognize that the three types of supply chain  decisions—
strategic, tactical, and operational—are interrelated. For example, the 
number and locations of plants affect the choice of suppliers and the trans-
portation mode for receiving raw materials. Moreover, the number and loca-
tions of plants and warehouses also affect the inventory levels required at 
the  warehouses and the delivery times of products to customers. Aggregate 
production planning decisions affect product availability and customer 
fulfillment.

1.4 Importance of SCM

SCM can have a significant impact on business performance. Based on a 
2003 study conducted by Accenture in conjunction with Stanford University, 
Mulani (2005) reported the following:

• Nearly 90% of the companies surveyed said that SCM is critical or 
very important.

• 51% said that the importance of SCM had increased significantly in 
the five years leading up to the survey.

• SCM accounted for nearly 70% of the companies’ operating costs and 
comprised at least half of all the typical company’s assets.

Mulani (2005) also reported that a significant percentage of promised syn-
ergies for many company mergers and acquisitions came from SCM. For 
example, during the HP/Compaq merger, it was estimated that the merger 
would result in a savings of $2.5 billion, of which $1.8 billion would be due 
to supply chain efficiency.
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Moreover, failure to excel in SCM can negatively affect a company’s stock 
prices. Hendricks and Singhal (2005) found this to be true in a study of 885 
supply chain disruptions reported by publicly traded companies from 1989 to 
2000. The list included small, medium, and large companies with respect to 
market capitalization and covered both manufacturing and information 
technology (IT) industries. A summary of their findings is given here:

• An average loss of over $250 million in shareholder value per 
disruption

• An average reduction of 10% in stock price
• 92% reduction in return on assets
• 7% lower sales
• 11% increase in cost of doing business
• 14% increase in inventory

SCM has become sufficiently important to business performance to war-
rant a mantra of sorts, namely that “companies do not compete with each 
other, but their supply chains do.” Although some might debate whether 
entire supply chains could literally compete with each other, there is no 
doubt that efficient management of the supply chain has become a competi-
tive differentiator for many companies.

1.5 Enablers and Drivers of Supply Chain Performance

1.5.1 Supply Chain Enablers

Enablers make things happen and, in the case of SCM, are considered 
essential for a supply chain to perform effectively. Without the necessary 
enablers, the supply chain will not function smoothly. Simply having the 
necessary enablers, however, does not guarantee a successful supply chain 
performance.

Based on a survey of supply chain managers, Marien (2000) describes 
four enablers of effective management of the supply chain. In order of their 
ranked importance by the survey respondents, they are organizational infra-
structure, information technology, strategic alliances, and human resource 
management.

• Organizational infrastructure: As we mentioned earlier, the essential 
issue in this case is whether SCM activities internal to the firm, and 
across firms in the supply chain, are organized in more of a ver-
tical orientation or with greater decentralization. The fact that this 
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enabler ranked first among practicing supply chain managers is 
clearly  consistent with much that has been written in the trade press 
regarding the fact that intrafirm SCM processes must be in place and 
operating effectively before there is any hope that interfirm collabo-
ration on supply chain management activities is to be successful.

• Technology: Two types of technology are critical to success in design-
ing and managing supply chains effectively—information technol-
ogy and manufacturing technology. Although the emphasis of many 
consultants and software providers is on information technology, 
product design can often have more impact on whether supply chain 
efficiencies ultimately can be achieved. Prominently, product design 
should account for manufacturability (e.g., using modular compo-
nents that utilize common interfaces with multiple final products), 
and it should allow for efficiencies in managing inventories and dis-
tribution processes.

• Alliances: The effectiveness of alliances is particularly important in 
supply chains that are more decentralized, wherein more author-
ity is given to suppliers. In some cases, these suppliers may take on 
roles that go beyond just supplying components; instead they may 
become outsourcing partners who assume significant responsibility 
for product design and manufacturing.

• Human resources: Two categories of employees are critical to effective 
SCM. First, technical employees assume an important role in design-
ing networks that minimize costs while simultaneously achieving 
high levels of customer service performance. These employees must 
have a solid understanding of the types of mathematical tools that 
we discuss in this book. Second, managerial employees must have 
a solid conceptual grasp on the key issues addressed by the models 
and tools of the technical staff and must clearly understand how 
such tools ultimately can be applied to allow the firm to achieve its 
strategic goals.

1.5.2 Supply Chain Drivers

Supply chain drivers represent the critical areas of decision making in 
SCM—those that ultimately generate the outcomes that impact supply chain 
performance. Thus, they appear as the decision/design variables in the opti-
mization models used in SCM decision making. Following Ravindran and 
Warsing (2013), the key drivers of supply chain performance are described in 
the following sections.

1.5.2.1 Inventory

Companies maintain inventory of raw materials, WIP, and finished goods 
to protect against unpredictable demand and unreliable supply. Inventory is 
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considered an idle asset of the company and is one of the major portions of 
supply chain costs. Maintaining large inventories increases  supply chain 
costs but provides a higher level of customer service.

The key decision variables here are what items to hold in inventory 
(raw materials, WIP, and finished products), how much and when to order 
 (inventory policies), and where to hold inventory (locations). Chapters 4, 5, 
and 12 discuss the supply chain inventory issues in detail.

1.5.2.2 Transportation

Transportation is concerned with the movement of items among the supply 
chain stages—suppliers, plants, DCs, retailers. Use of faster transportation 
modes such as air and roadways incurs higher transportation costs but reduces 
delivery times and increases reliability. The key decision variables here are:

 1. Whether to outsource transportation decision making and execution 
to a third party logistics (3PL) provider

 2. What transportation mode(s) to use (air, sea, road, etc.) for what 
items (raw materials, WIP, and finished goods)

 3. Distribution options for finished goods (either shipped to customers 
directly or through intermediate distribution centers)

Chapters 3, 5, 7, and 8 discuss the transportation issues in supply chains.

1.5.2.3 Facilities

Facilities (plants and distribution centers) play a key role in managing sup-
ply chains. They are generally considered as strategic decisions and directly 
affect the performance of the supply chain. The key decision variables under 
facilities are the following:

 1. Number of plants and their locations
 2. Plant capacities and product mix allocated to plants
 3. Number of DCs and their locations
 4. Distribution strategies

Chapters 3–8 and 11 discuss the use of multiple criteria integer program-
ming models to make optimal decisions regarding the number and location 
of supply chain facilities.

1.5.2.4 Suppliers

Raw material cost accounts for 40–60% of the production cost in most 
manufacturing industries. In fact, for the automotive industry, the cost  of 
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components and parts from outside suppliers may exceed 50% of sales 
(Wadhwa and Ravindran 2007). For technology firms, it could be as high 
as 80%. Hence, the selection of suppliers for raw materials and intermedi-
ate components is considered a critical area of strategic decision making 
in SCM. Chapters 3, 4, 7, 9, and 10 discuss supplier selection models under 
 multiple conflicting criteria.

1.6 Assessing and Managing Supply Chain Performance

The idea that there are key drivers of supply chain performance is useful in 
thinking about another theme emphasized by many authors and was first 
 proposed by Fisher (1997) in an important article that advanced the notion 
that “one size fits all” is not an effective approach to managing supply chains. 
Fisher (1997) cogently lays out a matrix that matches product characteristics—
what he describes as a dichotomy between innovative products (such as those 
that are technology based) and functional products (such as toothpaste or 
other staple goods)—and supply chain characteristics—and another dichot-
omy between efficient (cost-focused) supply chains and responsive (customer 
 service-focused) supply chains. Chopra and Meindl (2001) take this concep-
tual model a step further, first by pointing out that Fisher’s product character-
istics and supply chain strategies are really continuous spectrums, and then 
by superimposing the Fisher model, as it were, on a frontier that represents 
the natural trade-off between responsiveness and efficiency. Clearly, it stands 
to reason that a firm, or a supply chain, cannot maximize cost efficiency and 
customer responsiveness simultaneously. Some aspects of each of these objec-
tives necessarily work at cross purposes. A combined version of Chopra and 
Meindl’s frontier and Fisher’s product dichotomy is presented in Figure 1.2.

The value of this perspective is that it clearly identifies a market driven 
basis for strategic choices regarding the supply chain drivers: Should our 
inventory management decisions be focused more on efficiency (e.g., mini-
mizing inventory levels) or on responsiveness (e.g., maximizing product 
availability)? Should our transportation choices be focused more on effi-
ciency (e.g., minimizing transportation costs, perhaps through more exten-
sive economies of scale) or on responsiveness (e.g., minimizing delivery lead 
times and maximizing reliability)? Should our facilities (network design) 
decisions be focused more on efficiency (e.g., minimizing the number of loca-
tions and maximizing their size and scale) or on responsiveness (e.g., seeking 
high levels of customer service by choosing many focused locations closer 
to customers)?

In the following, we discuss efficiency and responsiveness in more detail, 
and we also introduce supply chain risk as an additional criterion to consider 
in designing the supply chain network and its associated operating policies.
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1.6.1 Supply Chain Efficiency

Generally, efficiency is measured by a ratio of the level of output generated 
to the level of input consumed to generate that output. This concept can 
be applied to physical systems (e.g., an automobile engine that converts 
the energy stored in the fuel consumed by the engine into horsepower 
generated by the engine to drive the wheels of the vehicle) and to busi-
nesses (e.g., the conversion of dollar-valued inputs—such as labor, mate-
rials, and the costs of owning and/or operating physical assets such as 
plants and warehouses—into sales revenue). Therefore, the efficiency of 
a given supply chain focuses on how well resources are utilized across 
the chain to fulfill customer demand. In Fisher’s conceptual framework 
(1997), discussed earlier, efficient supply chains are focused more on cost 
minimization—the idea being that a supply chain that requires less cost 
input to generate the same amount of sales revenue output is more effi-
cient. Therefore, efficiency measures in SCM are often focused on costs, 
and they include the following:

• Raw material cost
• Manufacturing cost
• Distribution cost
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• Inventory holding cost
• Facility operating costs
• Freight transportation costs
• Shortage costs

In addition, other measures that may influence the costs listed here include:

• Product cycle time: This is the time that elapses from the start of 
production of the item up to its conversion into a product that can 
be shipped to the customer. Clearly, longer cycle times can result in 
larger costs (e.g., labor costs and/or inventory holding costs).

• Inventory levels: Again, higher levels of inventory can result in a 
number of associated costs, beyond the cost of tying up the firm’s 
cash in currently idle assets. Higher inventory levels generate 
greater needs for storage space and for labor hours and/or employee 
levels in order to manage these inventories as they reside in and 
flow among storage facilities.

Typically, supply chain optimization models focus on minimizing costs 
because the decisions of supply chain managers often involve choices that 
directly influence costs, while revenue may often be outside the scope of the 
supply chain manager’s decisions. Some models, however, may appropri-
ately involve maximizing profit—to the extent that it is clear that the decision 
at hand has both cost and revenue implications.

1.6.2 Supply Chain Responsiveness

Responsiveness refers to the extent to which customer needs and expec-
tations are met and also the extent to which the supply chain can flex-
ibly accommodate changes in these needs and expectations. Thus, in the 
 efficiency–responsiveness trade-off introduced by the Fisher (1997) frame-
work discussed earlier, firms whose supply chains are focused on respon-
siveness are willing to accept higher levels of cost (i.e., lower cost efficiency) 
in order to improve their ability to meet and flexibly accommodate customer 
requirements (i.e., higher responsiveness). Common measures of responsive-
ness are:

• Reliability and accuracy of fulfilling customer orders
• Delivery time
• Product variety
• Time to process special or unique customer requests (customization)
• Percent of customer demand filled from finished goods inventory 

versus built to order from raw materials or component inventories
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1.6.3 Supply Chain Risk

A third supply chain criterion has gained attention in recent years. The 
September 11, 2001, terrorist attacks in the United States obviously had 
broad and lasting impacts on society in general. From the standpoint of 
managing supply chains, the disruption in material flows over the days 
and weeks after September 11 caused companies to realize that a singular 
emphasis on the cost efficiency of the supply chain can actually make the 
chain brittle and much more susceptible to the risk of disruptions. This 
includes not only catastrophic disruptions such as large-scale terrorist 
attacks but even mundane, commonly occurring disruptions such as a labor 
strike at a supplier. Thus, effective SCM no longer just involves moving 
products efficiently along the supply chain, but it also includes mitigating 
risks along the way. Ravindran and Warsing (2013) classify supply chain 
risks into two types:

 1. Hazard risks: These are disruptions to the supply chain that arise 
from large-scale events with broad geographic impacts, such as nat-
ural disasters (e.g., hurricanes, floods, blizzards), terrorist attacks, 
and major political actions such as wars or border closings.

 2. Operational risks: These are more commonly occurring disruptions 
whose impacts are localized (e.g., affecting only a single supplier) 
and are resolved over a relatively short period of time. Examples 
include information technology disruptions (e.g., a server crash due 
to a computer virus infection), supplier quality problems, and tem-
porary logistical failures (e.g., temporarily “lost” shipments).

Chapters 3, 7, 9, and 10 incorporate supply chain risk as an objective in 
multi-criteria optimization models.

1.6.4 Conflicting Criteria in Supply Chain Optimization

It is important to recognize that efficiency and responsiveness are conflict-
ing criteria in managing supply chains. For example, customer respon-
siveness can be increased by having a larger inventory of several different 
products, but this increases inventory costs and thereby reduces efficiency. 
Similarly, using fewer distribution centers reduces facility costs and can also 
reduce inventory levels across the network through “risk pooling” effects. 
The  downside, however, is that such a network design increases delivery 
time and thereby reduces responsiveness, and it also increases supply 
chain risk by concentrating the risk of distribution failure in fewer facilities. 
Thus,  supply chain optimization problems generally are multiple criteria 
 optimization models. In the chapters that follow, we use multiple criteria 
optimization models to determine the optimal solutions. An overview of 
MCDM models and methods is given in Chapter 2.
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Managers are frequently called upon to make decisions under multiple cri-
teria that conflict with one another. For example, supply chain engineers 
have to consider conflicting criteria—such as supply chain costs, customer 
responsiveness, and supply chain risk—when making decisions. The gen-
eral framework of a multiple criteria optimization problem is to simulta-
neously optimize several criteria that are usually conflicting and subject 
to a system of constraints that define the feasible alternatives. Multiple 
criteria decision making (MCDM) problems are categorized on the basis 
of whether (i) the constraints are implicit (i.e., the feasible alternatives are 
finite and known) or (ii) the constraints are explicit and given by a set of 
linear and nonlinear inequalities or equations (i.e., the feasible alterna-
tives are infinite and unknown). MCDM problems with finite (known) alter-
natives are called multiple criteria selection problems (MCSPs). MCDM 
problems with infinite (unknown) alternatives are called multiple crite-
ria mathematical programming (MCMP) problems. In this chapter, we 
will give an overview of some of the methods that are available for solv-
ing both MCSPs and MCMP problems. For a more detailed discussion of 
multi-criteria optimization methods, the reader is referred to Masud and 
Ravindran (2008, 2009).

2.1 Multiple Criteria Selection Problems

For MCSP, the alternatives are finite, and their criteria values are known a 
priori in the form of a pay-off matrix. Table 2.1 illustrates the pay-off matrix 
for an MCSP with n alternatives (1, 2, …, n) and p criteria ( f1, f2, …, fp). The 
matrix elements, fij, denote the value of criterion j for alternative i.
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2.1.1 Concept of “Best Solution”

In a single objective optimization problem, the “best solution” is defined 
in terms of an “optimal solution” that maximizes (or minimizes) the objec-
tive, compared to all other feasible solutions (alternatives). In MCSP, due to 
the conflicting nature of the objectives, the optimal values of the various 
criteria do not usually occur at the same alternative. Hence, the notion of 
an optimal or best alternative does not exist in MCSP. Instead, decision 
making in MCSP is equivalent to choosing the “most preferred” alterna-
tive or the “best compromise” solution based on the preferences of the 
decision maker (DM). Thus, the objective of the MCSP method is to rank 
order the alternatives from the best to the worst, based on the DM’s prefer-
ence structure.

We begin the discussion with some key definitions and concepts in 
solving MCSP. We will assume that all the criteria in Table 2.1 are to be 
maximized.

2.1.2 Dominated Alternative

Alternative i is dominated by alternative k if and only if fkj ≥ fij, for all j = 
1, 2, …, p and for at least one j, fkj > fij. In other words, the criteria values of 
alternative k are as good as those of alternative i and, for at least one criterion, 
alternative k is better than i.

2.1.3 Non-Dominated Alternatives

An alternative that is not dominated by any other feasible alternatives is 
called non-dominated, Pareto optimal, or an efficient alternative. For a non- 
dominated alternative, an increase in the value of any one criterion is pos-
sible only with a decrease in the value of at least one other criterion.

TABLE 2.1

Pay-Off Matrix of MCSP

Criteria/Objectives (Max)

f1 f2 f3 … fp

Alt. 1 f11 f12 f13 f1p

2 f21 f22 f23 f2p

–
–
–
N fn1 fn2 fn3 fnp

Max fi f1
* f2

* f3
* fp

*
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2.1.4 Ideal Solution

The ideal solution is the vector of the best values achievable for each  criterion. 
In other words, if =f fj

i
ijmax* , then the ideal solution = ( )…f f fp, , ,1

*
2
* * . Because 

the f j
* values may correspond to different alternatives, the ideal solution is 

not achievable for MCSP. However, it provides good target values to compare 
against for a trade-off analysis.

2.2 Multi-Criteria Ranking Methods

Weighted methods are commonly used to rank the alternatives under 
 conflicting criteria. Based on the DM’s preferences, a weight wj is obtained 
for criterion j such that

 ∑≥ =
=

w wj j

j

p

0 and 1
1

 (2.1)

Next, a weighted score of the criteria values is calculated for each alterna-
tive as follows:

 ∑( )
=

i w f i nj ij

j

p

Score = for =1, 2,…,
1

 (2.2)

The alternatives are then ranked based on their scores. The alternative 
with the highest score is ranked at the top.

There are two common approaches for determining the criteria weights 
based on the DM’s preferences.

2.2.1 Rating Method

Here the DM is asked to provide a rating for each criterion on a scale of 1–10 
(with 10 being the most important and 1 being the least important). The rat-
ings are then normalized to determine the weights as follows:

 w
r

r
j

j

j
j

p

1∑
=

=

 (2.3)

where rj is the rating assigned to criterion j for j = 1, 2, …, p.

NOT E:  ∑≥ =
=

w wj j
j

p
0 and 1

1
.
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2.2.2 Borda Count Method

Under the ranking method devised by Jean Charles de Borda (an eighteenth-
century French physicist), the DM is asked to rank the p criteria from the most 
important (ranked first) to the least important (ranked last). The  criterion 
that is ranked first gets p points, the one that is ranked second gets (p − 1) 
points, and the last place criterion gets 1 point. The sum of all the points for 
the p criteria is given by

 =
+

S
p p( 1)

2
 (2.4)

The criteria weights are then calculated by dividing the points assigned to 
criterion j by the sum S, given by Equation 2.4.

Let us illustrate the basic definitions (dominated, non-dominated, and 
ideal solutions) and the two weighting methods with a numerical example.

Example 2.1 (Faculty Recruiting)

An industrial engineering (IE) department has interviewed five doctoral 
candidates for a faculty position and has rated them on a scale of 1–10 
(with 10 being the best and 1 being the worst) on three key criteria—
research, teaching, and service. The criteria values of the candidates are 
given in Table 2.2.

 1. Determine the ideal solution to this problem. Is the ideal solu-
tion achievable?

 2. Identify the dominated and non-dominated candidates.
 3. Determine the ranking of the candidates using
 a. Rating method
 b. Borda count method

Solution

 1. The ideal solution represents the best values achievable for each 
criterion. Because all the criteria are to maximize, the ideal 
solution is given by (8, 8, 5). The ideal solution is not achievable 
because the criteria conflict with one another and no candidate 
has the ideal values.

TABLE 2.2

Faculty Recruiting for Example 2.1

Candidate

Criteria

Research Teaching Service

A 8 4 3
B 4 5 3
C 6 6 5
D 2 8 4
E 7 3 2
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 2. Candidate A dominates E because A has higher values for all 
three criteria. Similarly, candidate C dominates B. On the other 
hand, Candidates A, C, and D are non-dominated.

 3. Using the two ranking methods, the following are determined.
 a. Rating method: Assume that the ratings for research, 

teaching, and service are 9, 7, and 4, respectively. Then, the 
weights for research, teaching, and service are computed 
using Equation 2.3 as follows:

 wR = 9/(9 + 7 + 4) = 0.45

 wT = 7/20 = 0.35

 wS = 4/20 = 0.20

  Note that the sum of the weights is equal to one. Using 
the criteria weights, the weighted score for Candidate A is 
computed using Equation 2.2: Score (A) = (0.45) 8 + (0.35) 4 + 
(0.2) 3 = 5.6

  Similarly, the scores for the other candidates are com-
puted and are given as follows:

 Score (B) = 4.15

 Score (C) = 5.8

 Score (D) = 4.5

 Score (E) = 4.6

  The five candidates are then ranked, using their scores, 
from the highest to the lowest. Thus, Candidate C is ranked 
first, followed by candidates A, E, D, and B, respectively.

 b. Borda count method: Assume that the three criteria are 
ranked as follows:

Rank Criteria

1 Research
2 Teaching
3 Service

  Thus, research gets 3 points, teaching 2 points, and 
 service 1 point. Their sum (S) is 6, and the weights are

 wR = 3/6 = 0.50

 wT = 2/6 = 0.33

 wS = 1/6 = 0.17
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  Using the above weights and Equation 2.2, the scores for 
candidates A, B, C, D, and E are 5.83, 4.17, 5.83, 4.33, and 
4.83, respectively. Thus, both candidate A and C are tied 
for first place, followed by candidates E, D, and B. Note that 
the rankings are not exactly the same for the two methods. 
This does happen in practice.

2.2.3 Pairwise Comparison of Criteria

When there are many criteria, it would be difficult for a DM to rank order 
them precisely. In practice, pairwise comparison of criteria is used to facili-
tate the criteria ranking required by the Borda count method. Here, the DM is 
asked to give the relative importance between two criteria Ci and Cj, whether 
Ci is preferred to Cj, Cj is preferred to Ci or both are equally important. When 

there are n criteria, the DM has to respond to −n n( 1)
2

 pairwise comparisons. 

Based on the DM’s response, the criteria rankings and their weights can be 
computed, following the steps given here:

Step 1: Based on the DM’s response, a pairwise comparison matrix, 
P(n×n), is constructed, whose elements pij are as follows:

 pii = 1 for all i = 1, 2, …, n

pij = 1, pji = 0, if Ci is preferred to Cj (Ci > Cj).
pij = 0, pji = 1, if Cj is preferred to Ci (Ci < Cj).
pij = pji = 1, if Ci and Cj are equally important.

Step 2: Compute the row sums of the matrix P as

 ∑=t pi ij
j

, for i = 1, 2, …, n

Step 3: Rank the criteria based on the ti values and compute their weights,

 ∑
= ∀ =, 1, 2, ...,W

t

t
j nj

j

i
i

Example 2.2

Five criteria—A, B, C, D, and E—have to be ranked based on 10 pairwise 
comparisons as follows.

• A > B, A > C, A > D, A > E
• B < C, B > D, B < E
• C > D, C < E
• D < E
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Solution

Step 1: Construct the pairwise comparison matrix P.

P(5×5) = A B C D E

A 1 1 1 1 1
B 0 1 0 1 0
C 0 1 1 1 0
D 0 0 0 1 0
E 0 1 1 1 1

Step 2: Compute the row sums as tA = 5, tB = 2, tC = 3, tD = 1, and tE = 4.

Step 3: The ranking of the five criteria is A > E > C > B > D and their 

weights are: 
5

15
,

2
15

,
3

15
,

1
15

, and
4

15
W W W W WA B C D E= = = = = .

2.3 Scaling Criteria Values

The major drawback of the ranking methods discussed so far is that they 
use criteria weights that require the criteria values to be scaled properly. For 
example, in Table 2.2, all the criteria values ranged between 2 and 8. In other 
words, they have been already scaled. In practice, the criteria are measured in 
different units. Some criteria values may be very large (e.g., cost), while others 
may be very small (e.g., quality, delivery time). If the criteria values are not 
scaled properly, the criteria with large magnitudes would simply dominate 
the final rankings, independent of the assigned weights. In this section, we 
shall discuss some common approaches to scaling the criteria values.

Consider a supplier selection problem with m suppliers and n  criteria, 
where fij denotes the value of criterion j for supplier i. Let F denote the 
 supplier criteria matrix:

 F(m × n) = [ fij]

Determine Hj = maxi fij

Lj = mini fij

Hj will be the ideal value if criterion j is maximizing and Lj is its ideal value 
if it is minimizing.

2.3.1 Simple Scaling

In simple scaling, the criteria values are multiplied by 10K where “K” is a 
positive or negative integer, including zero. This is the most common scaling 
method used in practice. If a criterion is to be minimized, its values should 
be multiplied by (−1) before computing the weighted score.
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2.3.2 Ideal Value Method

In this method, criteria values are scaled using their ideal values as given 
below:

 For “max” criterion: r
f

Hij
ij

j
=  (2.5)

 For “min” criterion: r
L
fij

j

ij
=  (2.6)

Note that the scaled criteria values (rij) will always be ≤ 1, and all the  criteria 
have been changed to maximization. The best value of each criterion is 1, but 
the worst value need not necessarily be zero. In the next approach, all criteria 
values will be scaled between 0 and 1, with 1 for the best value and 0 for the 
worst.

2.3.3 Simple Linearization (Linear Normalization)

Here the criteria values are scaled as follows: 

 For “max” criterion: r
f L

H Lij
ij j

j j
=

−
−

 (2.7)

 For “min” criterion: r
H f
H Lij

j ij

j j
=

−
−

 (2.8)

All the scaled criteria values will be between 0 and 1, and all the criteria 
are to be maximized after scaling.

2.3.4 Use of Lp Norm (Vector Scaling)

The Lp norm of a vector X∈Rn is given by Lp norm = 
1

1

X j
p

j

n p∑

=

, for 
p = 1, 2, …, ∞.

The most common values of p are p = 1, 2, and ∞.

 For p = 1, L1 norm = ∑ =
X j

j

n

1
 (2.9)

 For p = 2, L2 norm = ∑

=

X j
j

n 2

1

1
2

 (length of vector X) (2.10)

 For p = ∞, L∞ norm = max[|Xj|] (Tchebycheff’s norm) (2.11)

In this method, scaling is done by dividing the criteria values by their 
respective Lp norms. After scaling, the Lp norm of each criterion will be one.

We shall illustrate the different scaling methods with an example.
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2.3.5 Illustrative Example of Scaling Criteria Values

Example 2.3 (Scaling Criteria Values)

Consider a supplier selection problem with three suppliers—A, B, and C, 
and three selection criteria—total cost of ownership (TCO), service, and 
experience. The criteria values are given in Table 2.3. TCO has to be mini-
mized, while the service and experience criteria have to be maximized.

Solution

Note that the high cost supplier A gives the best service and has the 
most experience, while supplier C has the lowest cost and experience 
and gives poor service. The criteria values are not scaled properly, 
 particularly cost measured in dollars. If the values are not scaled, TCO 
criterion will dominate the selection process irrespective of its assigned 

weight. If we assume that the criteria weights are equal 





1

3
, then the 

weighted score for each supplier would be

 

( )

( )

( )

=
− + +

= −

=
− + +

= −

=
− + +

= −

S
125,000 10 9

3
41, 660

S
95,000 5 6

3
31, 663

S
65,000 3 3

3
21, 665

A

B

C

Note that the cost criterion (TCO) has been multiplied by (−1) to 
 convert it to a maximization criterion, before computing the weighted 
score. Supplier C has the maximum weighted score and the rankings 
will be Supplier C > Supplier B > Supplier A in that order. In fact, even 
if the weight for TCO is reduced, cost will continue to dominate as long 
as it is not scaled properly. Let us look at the rankings after scaling the 
criteria values by the methods given in this section.

2.3.5.1 Simple Scaling Illustration

Dividing TCO values by 10,000, we get the scaled values as 12.5, 9.5, and 
6.5, which are comparable in magnitude with the criteria values for service 

TABLE 2.3

Supplier Criteria Values for Example 2.3

TCO
(Min)

Service
(Max)

Experience
(Max)

Supplier A $125,000 10 9
Supplier B $95,000 5 6
Supplier C $65,000 3 3
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and  experience. Assuming equal weight again for the criteria, the new 
weighted scores of the suppliers are as follows:

 

S
12.5 10 9

3
2.17

S
9.5 5 6

3
0.5

S
6.5 3 3

3
0.17

A

B

C

( )

( )

( )

=
− + +

=

=
− + +

=

=
− + +

= −

 

Now, Supplier A is the best, followed by Suppliers B and C.

2.3.5.2 Scaling by Ideal Value Illustration

For Example 2.3 (Table 2.3), the maximum and minimum criteria values are 
as follows:

 C1 – TCO: H1 = 125,000, L1 = 65,000

 C2 – Service: H2 = 10, L2 = 3

 C3 – Experience: H3 = 9, L3 = 3

The ideal values for the three criteria are 65,000, 10, and 9, respectively. 
Of course, the ideal solution is not achievable. Using the ideal value method, 
the scaled criteria values are computed using Equation 2.6 for TCO and 
Equation 2.5 for service and experience. They are given in Table 2.4.

Note that the scaled values are such that all criteria (including TCO) have 
to be maximized. Thus, the new weighted scores are

 

S
0.52 1 1

3
0.84

S
0.68 0.5 0.67

3
0.62

S
1 0.3 0.33

3
0.54

A

B

C

( )

( )

( )

=
+ +

=

=
+ +

=

=
+ +

=

TABLE 2.4

Scaled Criteria Values by the Ideal Value 
Method (Example 2.3)

TCO Service Experience

Supplier A 0.52 1 1
Supplier B 0.68 0.5 0.67
Supplier C 1 0.3 0.33
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The final rankings (in descending order) are Suppliers A, B, and C—the 
same ranking obtained using the simple scaling.

2.3.5.3 Simple Linearization (Linear Normalization) Illustration

Under this method, the scaled values are computed using Equations 2.7 and 
2.8 and are given in Table 2.5.

Note that the best and worst values of each criterion are 1 and 0, respec-
tively, and that all the criteria values are now going to be maximized. The 
revised weighted sums are

 

S
0 1 1

3
0.67

S
0.5 0.29 0.5

3
0.43

S
1 0 0

3
0.33

A

B

C

( )

( )

( )

=
+ +

=

=
+ +

=

=
+ +

=

The rankings are unchanged, with Supplier A as the best, followed by B, 
and C.

2.3.5.4 Scaling by Lp Norm Illustration

We shall illustrate using L∞ norm for scaling. The L∞ norms for the three 
 criteria are computed using Equation 2.11:

 L∞ norm for TCO = Max (125000, 95000, 65000) = 125,000

 L∞ norm for service = Max (10, 5, 3) = 10

 L∞ norm for experience = Max (9, 6, 3) = 9

The criteria values are then scaled by dividing them by their respective L∞ 
norms, and they are given in Table 2.6.

TABLE 2.5

Scaled Criteria Values by Simple 
Linearization (Example 2.3)

TCO Service Experience

Supplier A 0 1 1
Supplier B 0.5 0.29 0.5
Supplier C 1 0 0
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Note that the scaling by Lp norm did not convert the minimization crite-
rion (TCO) to maximization as the previous two methods (ideal value and 
simple linearization) did. Hence, the TCO values have to be multiplied by 
(−1) before computing the weighted score. Note also that the L∞ norm of 
each criterion (column) in Table 2.6 is always 1. The new weighted scores 
are as follows:

 

S
1 1 1

3
0.33

S
0.76 0.5 0.67

3
0.14

S
0.52 0.3 0.33

3
0.04

A

B

C

( )

( )

( )

=
− + +

=

=
− + +

=

=
− + +

=

Once again, the rankings are the same, namely Supplier A, followed by 
Suppliers B and C.

It should be noted that even though the scaled values using different 
scaling methods were different, the final rankings were always the same. 
Occasionally, it is possible for rank reversals to occur.

2.4 Analytic Hierarchy Process

The analytic hierarchy process (AHP), developed by Saaty (1980), is an 
MCDM method for ranking alternatives. Using AHP, the DM can assess 
not only quantitative but also various qualitative factors, such as financial 
 stability, feeling of trust, and so on, in the supplier selection process. The 
buyer establishes a set of evaluation criteria, and AHP uses these criteria 
to rank the different suppliers. AHP can enable the DM to represent the 
interaction of multiple factors in complex and unstructured situations. AHP 
does not require the scaling of criteria values.

TABLE 2.6

Scaled Criteria Values Using L∞ Norm 
(Example 2.3)

TCO Service Experience

Supplier A 1 1 1
Supplier B 0.76 0.5 0.67
Supplier C 0.52 0.3 0.33
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2.4.1 Basic Principles of AHP

• Design a hierarchy: Top vertex is the main objective, and bottom verti-
ces are the alternatives. Intermediate vertices are criteria/ subcriteria 
(which are more and more aggregated as you go up in the hierarchy).

• At each level of the hierarchy, a pairwise comparison of the verti-
ces criteria/subcriteria is performed from the point of view of their 
“ contribution (weights)” to each of the higher-level vertices to which 
they are linked.

• Uses both rating method and pairwise comparison method with 
a numerical scale of 1 through 9 (1 = equal importance; 9 = most 
important).

• Uses pairwise comparison of alternatives with respect to each crite-
rion (subcriterion) and gets a numerical score for each alternative on 
every criterion (subcriterion).

• Computes total weighted score for each alternative and ranks the 
alternatives accordingly.

We shall illustrate AHP using a case study.

Case Study 1 (Ravindran and Warsing, 2013)
Consider a supplier selection problem involving 20 suppliers and 14   criteria. 
The supplier criteria have been split into various categories as described here:

• Organizational criteria:
• Size of company (C1): Size of the company can be either its  number 

of employees or its market capitalization.
• Age of company (C2): Age of the company is the number of years 

that the company has been in business.
• Research and development (R&D) activities (C3): This is the 

 company’s investment in research and development.
• Experience criteria:

• Project type (C4): Specific types of projects completed in the past.
• Project size (C5): Specific sizes of projects completed in the past.

• Performance criteria:
• Cost overruns (C6): Cost overruns in the past.
• Capacity (C7): Capacity of the supplier to fulfill orders.
• Lead time (C8): Meeting promised delivery time.

• Quality criteria:
• Responsiveness (C9): If there is an issue concerning quality, how 

fast the supplier reacts to correct the problem.
• Acceptance rate (C10): Perfect orders received within acceptable 

quality.
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• Cost criteria:

• Order change and cancellation charges (C11): Fees associated with 
 modifying or changing orders after they have been placed.

• Cost savings (C12): Overall reduction in procurement cost.
• Miscellaneous criteria:

• Labor relations (C13): Number of strikes or any other labor prob-
lems encountered in the past.

• Procedural compliances (C14): Conformance to national/international 
standards (e.g., ISO 9000).

In this case study, there are 20 suppliers to be ranked. The 14 supplier 
 criteria values for the set of 20 suppliers are given in Table 2.7. Smaller values 
are preferred for criteria C6, C11, and C13; larger values are preferred for the 
other criteria. Using this case study, we shall illustrate the key steps of the 
AHP method.

To design the hierarchy for Case Study 1, the 14 supplier criteria are grouped 
into six major criteria and several subcriteria as shown in Figure 2.1.

2.4.2 Steps of the AHP Model

Step 1: In the first step, a pairwise comparison of criteria using the 1–9 degree 
of importance scale shown in Table 2.8 is carried out.

If there are n criteria to evaluate, then the pairwise comparison matrix for 
the criteria is given by A(n × n) = [aij], where aij represents the relative impor-

tance of criterion i with respect to criterion j. Set aii = 1 and =a
a

ji
ij

1
. The 

pairwise comparisons—with the degree of importance—for the six major 
criteria in Case Study 1 are shown in Table 2.9.

Step 2: Compute the normalized weights for the main criteria. We obtain the 
weights using the L1 norm. The two-step process for calculating the weights 
is as follows:

 1. Normalize each column of A matrix using L1 norm:

 

∑
=

=1

r
a

a
ij

ij

ij
i

n

 2. Average the normalized values across each row to get the criteria 
weights:

 ∑
= =1w

r

ni

ij
j

n
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Table 2.10 shows the criteria weights for Case Study 1 obtained as a result 
of Step 2.

Step 3: In this step, we check for consistency of the pairwise comparison 
matrix using Eigen value theory as follows (Saaty 1980).

 1. Using the pairwise comparison matrix A (Table 2.9) and the weights 
W (Table 2.10), compute the vector AW. Let the vector X = (X1, X2, 
X3, …, Xn) denote the values of AW.

TABLE 2.10

Final Criteria Weights Using 
AHP (Case Study 1)

Criteria Weight

Organizational 0.047
Experience 0.231
Performance 0.430
Quality 0.120
Cost 0.124
Miscellaneous 0.047

TABLE 2.8

Degree of Importance Scale in AHP

Degree of Importance Definition

1 Equal importance
3 Weak importance of one over another
5 Essential or strong importance
7 Demonstrated importance
9 Absolute importance
2,4,6,8 Intermediate values between two adjacent judgments

TABLE 2.9

Pairwise Comparison of Criteria (Case Study 1)

Organizational Experience Performance Quality Cost Miscellaneous

Organizational 1 0.2 0.143 0.33 0.33 1
Experience 5 1 0.5 2 2 5
Performance 7 2 1 5 4 7
Quality 3 0.5 0.2 1 1 3
Cost 3 0.5 0.25 1 1 3
Miscellaneous 1 0.2 0.143 0.33 0.33 1
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 2. Compute
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�

 3. The consistency index (CI) is given by

 

n
n

CI
1

max= λ −
−

Saaty (1980) generated a number of random positive reciprocal matri-
ces with aij ∈(1, 9) for different sizes and computed their average CI values, 
denoted by RI, as given here.

N 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49

He defines the consistency ratio (CR) as CR = CI
RI

. If CR < 0.15, then accept 

the pairwise comparison matrix as consistent. Using these steps, the CR is 
found to be 0.009 for our sample problem. Because the CR is less than 0.15, 
the response can be assumed to be consistent.

Step 4: In the next step, we compute the relative importance of the subcriteria 
in the same way as done for the main criteria. Steps 2 and 3 are carried out 
for every pair of subcriteria with respect to their main criterion. The final 
weights of the subcriteria are the product of the weights along the corre-
sponding branch. Table 2.11 illustrates the final weights of the various crite-
ria and subcriteria for Case Study 1.

Step 5: Repeat Steps 1, 2, and 3 and obtain the following:

 1. Pairwise comparison of alternatives with respect to each criterion 
using the ratio scale (1–9).

 2. Normalized scores of all alternatives with respect to each criterion. 
Here, an (m × n) matrix S is obtained, where Sij = normalized score 
for alternative i with respect to criterion j, and m is the number of 
alternatives and n is the number of criteria.

Step 6: Compute the total score (TS) for each alternative as follows: TS(m×1) = 
S(m×n)W(n×1), where W is the weight vector obtained after Steps 3 and 4. Using 
the total scores, the alternatives are ranked. The total scores and the final rank-
ings of the suppliers obtained by AHP for Case Study 1 are given in Table 2.12.

NOT E:  There is commercially available software for AHP called Expert 
Choice. Interested readers can refer to http://expertchoice.com for additional 
information.
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TABLE 2.12

Supplier Ranking Using AHP 
(Case Study 1)

Supplier Total Score Rank

Supplier 1 0.119 20
Supplier 2 0.247 14
Supplier 3 0.325 12
Supplier 4 0.191 18
Supplier 5 0.210 16
Supplier 6 0.120 19
Supplier 7 0.249 13
Supplier 8 0.328 11
Supplier 9 0.192 17
Supplier 10 0.212 15
Supplier 11 0.427 7
Supplier 12 0.661 1
Supplier 13 0.431 6
Supplier 14 0.524 5
Supplier 15 0.422 8
Supplier 16 0.539 4
Supplier 17 0.637 2
Supplier 18 0.421 9
Supplier 19 0.412 10
Supplier 20 0.543 3

TABLE 2.11

AHP Subcriteria Weights for Case Study 1

Criteria (Criteria 
Weight) Subcriteria

Subcriteria 
Weight

Global Weight 
(Criteria Weight × 

Subcriteria Weight)

Organizational (0.047) Size of company 0.143 0.006
Age of company 0.429 0.020
R&D activities 0.429 0.020

Experience (0.231) Project type 0.875 0.202
Project size 0.125 0.028

Performance (0.430) Cost overruns 0.714 0.307
Capacity 0.143 0.061
Lead time 0.143 0.061

Quality (0.120) Responsiveness 0.833 0.099
Acceptance rate 0.167 0.020

Cost (0.124) Order change 0.833 0.103
Cost savings 0.167 0.020

Miscellaneous (0.047) Labor relations 0.125 0.005
Procedural compliances 0.875 0.041
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2.5 Group Decision Making

Most purchasing decisions, including the ranking and selection of suppli-
ers, involve the participation of multiple DMs, and the ultimate decision 
is based on the aggregation of DMs’ individual judgments to arrive at a 
group decision. The rating method, Borda count, and AHP discussed in 
Sections 2.2 and 2.4 can be extended to group decision making as described 
in the following:

 1. Rating method: Ratings of each DM for every criterion are averaged. 
The average ratings are then normalized to obtain the group criteria 
weights.

 2. Borda count: Points are assigned based on the number of DMs that 
assign a particular rank for a criterion. These points are then totaled 
for each criterion and normalized to get criteria weights. (This is 
similar to how the college polls are done to get the top 25 football or 
basketball teams.)

 3. AHP: There are two methods to get the group rankings using AHP.
 a. Method 1: Strength of preference scores assigned by individual 

DMs are aggregated using geometric means and then used in 
the AHP calculations.

 b. Method 2: First, all the alternatives are ranked by each DM using 
AHP. The individual rankings are then aggregated to a group 
ranking using the Borda count method.

2.6 Use of Lp Metric for Ranking Alternatives

Mathematically, the Lp metrics, for p = 1, 2, …,∞, represent the distance 
between two vectors x and y, where x,y ∈ Rn, and is given by

 ∑− = −
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x y
p j j
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n
p

x y | |
1
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 (2.12)

The ranking of alternatives is done by calculating the Lp metric between the 
ideal solution (I) and each vector representing an alternative’s ratings for 
the criteria. The ideal solution represents the best values possible for each 
criterion. Because no alternative will have the best values for all the crite-
ria (e.g., a supplier with minimum cost may have poor quality and delivery 
time), the ideal solution is an artificial target and cannot be achieved. The 
Lp metric approach computes the distance of each alternative’s attributes 
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from the ideal solution and ranks the alternatives based on that distance 
(the smaller the better). One of the most commonly used Lp metrics is the L2 
metric (p = 2), which measures the Euclidean distance between two vectors. 
We shall illustrate the steps of the L2 metric method using the Case Study 1 
data in Table 2.7.

2.6.1 Steps of the L2 Metric Method

Step 1: Determine the ideal solution. The ideal values for the 14 criteria in 
Table 2.7 are given in Table 2.13.

Step 2: Use the L2 metric to measure the closeness of each supplier to the 
ideal values. The L2 metric for supplier k is given by

 ∑= −
=

L k I Yj jk

j

n

( ) ( )2
2

1

 (2.13)

where, Ij is the ideal value for criterion j and Yjk is the jth criterion value for 
supplier k.

Step 3: Rank the suppliers using the L2 metric. The supplier with the small-
est L2 value is ranked first, followed by the next smallest L2 value, and so 
on. Table 2.14 gives the L2 distance from the ideal for each supplier and the 
resultant rankings from 1 to 20.

TABLE 2.13

Ideal Values for Case 
Study 1

Criteria Ideal Value

C1 0.86
C2 1
C3 0.98
C4 1
C5 0.95
C6 0.08
C7 1
C8 1
C9 1
C10 1
C11 0.18
C12 0.99
C13 0.05
C14 1
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2.7 Comparison of Ranking Methods

Different ranking methods can provide different solutions resulting in rank 
reversals. In extensive empirical studies with human subjects (Powdrell 2003, 
Ravindran et al. 2010), it has been found that Borda count rankings (with 
pairwise comparison of criteria) are generally in line with AHP rankings. 
Given the increased cognitive burden and expensive calculations required 
for AHP, the Borda count method would be an appropriate procedure for 
ranking alternatives. Even though rating method is easy to use, it could lead 
to several ties in the final rankings, thereby making the results less useful.

Velazquez et  al. (2010) studied the best combination of weighting and 
 scaling methods for single and multiple DMs. The scaling methods consid-
ered were ideal value, linear normalization, and vector normalization using 
Lp norm for p = 1, 2, 3, and ∞. The weighting methods included in the study 
were rating, ranking (Borda count), and AHP. The Lp metric methods for 
p = 1, 2, 3, and ∞ were also included for ranking. Experiments were done 
with real DMs. They found that the best scaling method was influenced 
by the chosen weighting method. The best combination was scaling by L∞ 

TABLE 2.14

Supplier Ranking Using L2 Metric 
(Case Study 1)

Supplier L2 Value Rank

Supplier 1 2.105 7
Supplier 2 2.332 11
Supplier 3 3.011 20
Supplier 4 1.896 3
Supplier 5 2.121 8
Supplier 6 2.800 19
Supplier 7 1.817 1
Supplier 8 2.357 4
Supplier 9 2.206 9
Supplier 10 2.339 12
Supplier 11 2.782 18
Supplier 12 2.083 5
Supplier 13 2.429 15
Supplier 14 2.347 13
Supplier 15 2.517 16
Supplier 16 1.834 2
Supplier 17 2.586 17
Supplier 18 2.092 6
Supplier 19 1.970 4
Supplier 20 2.295 10
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norm and ranking by Borda count. The worst combination was scaling by 
L∞ norm and ranking by L∞ metric. The conclusions were the same for single 
and multiple DMs.

2.8 MCMP Problems

In the previous sections, our focus was on solving MCDM problems with a 
finite number of alternatives, where each alternative is measured by  several 
conflicting criteria. These MCDM problems were called multiple criteria 
selection problems. The ranking methods we discussed earlier helped in 
identifying the best alternative and rank order of all the alternatives from 
the best to the worst.

In this and subsequent sections, we will focus on MCDM problems with 
an infinite number of alternatives. In other words, the feasible alternatives 
are not known a priori but are represented by a set of mathematical (linear/
nonlinear) constraints. These MCDM problems are called Multi Criteria 
Mathematical Programming (MCMP) problems.

2.8.1 MCMP Problem

 Max F(x) = {f1(x), f2(x), …, fk(x)}

 Subject to: gj(x) ≤ 0 for j = 1, …, m 
(2.14)

where x is an n-vector of decision variables and fi(x), i = 1, …, k are the k 
 criteria/objective functions. All the objective functions are to maximize.

 Let S = {x/gj (x) ≤ 0, for all j}

 Y = {y/F (x) = y for some x ∈ S}

S is called the decision space, and Y is called the criteria or objective space 
in MCMP.

A solution to MCMP is called a superior solution if it is feasible and maxi-
mizes all the objectives simultaneously. In most MCMP problems, superior 
solutions do not exist because the objectives conflict with one another.

2.8.2 Efficient, Non-Dominated, or Pareto Optimal Solution

A solution xo∈S to MCMP is said to be efficient if fk(x) > fk(xo) for some, x∈S 
implies that fj(x) < fj(xo) for at least one other index j. More simply stated, an 
efficient solution has the property that an improvement in any one objective 
is possible only at the expense of at least one other objective. A dominated 
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solution is a feasible solution that is not efficient. A set of all efficient  solutions 
is called the efficient set or efficient frontier. 

NOT E:  Even though the solution of MCMP reduces to finding the efficient 
set, it is not practical because there could be an infinite number of efficient 
solutions.

Example 2.4

Consider the following bi-criteria linear program:

 Max Z1 = 5x1 + x2

 Max Z2 = x1 + 4x2

 Subject to: x1 ≤ 5

 x2 ≤ 3

 x1 + x2 ≤ 6

 x1, x2 ≥ 0

Solution

The decision space and the objective space are given in Figures 2.2 and 2.3, 
respectively. Corner points C and D are efficient solutions, while  corner 
points A, B, and E are dominated. The set of all efficient solutions is 
given by the line segment CD in both figures.

Feasible
decision

space

X2

X1A (0, 0)

B (0, 3) C (3, 3)
Optimal for Z2

Optimal for Z1

D (5, 1)

E (5, 0)

FIGURE 2.2
Decision space (Example 2.4).
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An ideal solution is the vector of individual optima obtained by 
optimizing each objective function separately, ignoring all other objec-
tives. In Example 2.4, the maximum value of Z1, ignoring Z2, is 26 and 
occurs at point D. Similarly, maximum Z2 of 15 is obtained at point C. 
Thus the ideal solution is (26, 15), but it is not feasible or achievable. 

NOT E: One of the popular approaches to solving MCMP problems is 
to find an efficient solution that comes “as close as possible” to the ideal 
solution. It is similar to the Lp metric method discussed earlier. We will 
discuss this approach later in Section 2.12.

2.8.3 Determining an Efficient Solution

For the MCMP problem given by Equation 2.14, consider the following single 
objective optimization problem, called the Pλ problem. The Pλ problem is 
also known as the weighted objective problem.

 ∑ ( )= λ
=

Z fi

i

k

iMax x
1

 (2.15)

 Subject to: x ∈ S

 ∑λ =
=

i

i

k

1
1

 and λi ≥ 0 

Z2

B (3, 12)

C (18, 15)
(26, 15)

D (26, 9)

E (25, 5)

Z1A (0, 0)

Achievable
objective

values

FIGURE 2.3
Objective space (Example 2.4).
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Theorem 1: Sufficiency

Let λi > 0 for all i be specified. If xo is an optimal solution for the Pλ prob-
lem (Equation 2.15), then xo is an efficient solution to the MCMP problem. 
In Example 2.4, if we set λ 1 = λ 2 = 0.5 and solve the Pλ problem, the optimal 
solution will be at D, which is an efficient solution.

Warning: Theorem 1 is only a sufficient condition and is not necessary. 
For example, there could be efficient solutions to MCMP that could not be 
obtained as optimal solutions to the Pλ problem. Such situations occur when 
the objective space is not a convex set. However, for MCMP problems, where 
the objective functions and constraints are linear, Theorem 1 is both neces-
sary and sufficient.

2.8.4 Test for Efficiency

Given a feasible solution ∈x S for MCMP, we can test whether or not it is 
efficient by solving the following single objective problem.

 
∑=

=

W di

i

k

Max
1

Subject to: f f d i ki i ix x for =1, 2, ...,( )( ) ≥ +

 x ∈ S
 di ≥ 0

Theorem 2

 1. If Max W > 0, then x is a dominated solution.
 2. If Max W = 0, then x is an efficient solution (Geoffrion 1968).

NOTE: If Max W > 0, then at least one of the di‘s is positive. This implies that at 
least one objective can be improved without sacrificing on the other objectives.

2.9 Classification of MCMP Methods

In MCMP problems, there are often an infinite number of efficient solutions, 
and they are not comparable without the input from the DM. Hence, it is gen-
erally assumed that the DM has a real-valued preference function defined on 
the values of the objectives, but it is not known explicitly. With this assump-
tion, the primary objective of the MCMP solution methods is to find the best 
compromise solution, which is an efficient solution that maximizes the DM’s 
preference function.
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In the last three decades, most MCDM research have been concerned 
with developing solution methods based on different assumptions and 
approaches to measure or derive the DM’s preference function. Thus, the 
MCMP methods can be categorized by the basic assumptions made with 
respect to the DM’s preference function as follows:

 1. When complete information about the preference function is avail-
able from the DM

 2. When no information is available
 3. Where partial information is obtainable progressively from the DM

In the following sections, we will discuss the MCMP methods—goal 
 programming, compromise programming, and interactive methods, as 
examples of Category 1, 2, and 3 type approaches, respectively.

2.10 Goal Programming

One way to treat multiple criteria is to select one criterion as primary and 
the other criteria as secondary. The primary criterion is then used as the 
optimization objective function, while the secondary criteria are assigned 
acceptable minimum and maximum values and are treated as problem 
 constraints. However, if careful considerations were not given while select-
ing the acceptable levels, a feasible design that satisfies all the constraints may 
not exist. This problem is overcome by goal programming (Ravindran et al. 
2006), which has become a practical method for handling multiple  criteria. 
Goal programming falls under the class of methods that use  completely 
 prespecified preferences of the DM in solving the MCMP problem.

In goal programming, all the objectives are assigned target levels for 
achievement and relative priority on achieving these levels. Goal program-
ming treats these targets as goals to aspire for and not as absolute constraints. 
It then attempts to find an optimal solution that comes as “close as possible” 
to the targets in the order of specified priorities.

Before we discuss the formulation of goal programming models, we should 
discuss the difference between the terms real constraints and goal constraints 
(or simply goals) as used in goal programming models. The real constraints 
are absolute restrictions on the decision variables, while the goals are condi-
tions one would like to achieve but that are not mandatory. For instance, a 
real constraint given by

 x1 + x2 = 3

requires all possible values of x1 + x2 to always equal 3. As opposed to this, 
a goal requiring x1 + x2 = 3 is not mandatory, and we can choose values of 
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x1 + x2 ≥ 3 as well as x1 + x2 ≤ 3. In a goal constraint, positive and negative 
deviational variables are introduced as follows:

 x x d d d d3 , 01 2 1 1 1 1+ + − = ≥− + + −

Note that, if 0, then 3, and if 0, then 31 1 2 1 1 2d x x d x x> + < > + >− + .
By assigning suitable weights − + − +d dw and w on and1 1 1 1  in the objective 

function, the model will try to achieve the sum x1 + x2 as close as possible 
to 3. If the goal were to satisfy x1 + x2 ≥ 3, then only −d1  is assigned a posi-
tive weight in the objective, while the weight on +

1d  is set to zero.

2.10.1 Goal Programming Formulation

Consider the general MCMP problem given by Equation 2.14. The assump-
tion that there exists an optimal solution to the MCMP problem involving 
multiple criteria implies the existence of some preference ordering of the 
criteria by the DM. The goal programming (GP) formulation of the MCMP 
problem requires the DM to specify an acceptable level of achievement (bi) 
for each criterion fi and specify a weight wi (ordinal or cardinal) to be associ-
ated with the deviation between fi and bi. Thus, the GP model of an MCMP 
problem becomes

 Minimize (w w )i

1

d di i i

i

k

∑Ζ = ++ + − −

=

 (2.16)

 Subject to: f d d bi i i i(x) =+ −− +  for i = 1, …, k (2.17)

 gj(x) ≤ 0 for j = 1, …, m (2.18)

 ≥− +, , 0 for all andx d d i jj i i  (2.19)

Equation 2.16 represents the objective function of the GP model, which 
minimizes the weighted sum of the deviational variables. The system of 
equations (Equation 2.17) represents the goal constraints relating the  multiple 
criteria to the goals/targets for those criteria. The variables, − +andd di i , 
in Equation 2.17 are called deviational variables, representing underachievement 
and overachievement of the ith goal. The set of weights i i( )+ −w and w  may take 
two forms:

 1. Prespecified weights (cardinal)
 2. Preemptive priorities (ordinal)

Under prespecified (cardinal) weights, specific values in a relative scale are 
assigned to + −

i iw and w  representing the DM’s “trade-off” among the goals. 
Once + −

i iw and w  are specified, the goal program represented by Equations 2.16 
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through 2.19 reduces to a single objective optimization problem. The cardinal 
weights could be obtained from the DM using any of the methods discussed 
earlier, such as the rating method, Borda count, and AHP. However, in order 
for this method to work, the criteria values have to be scaled properly.

In reality, goals are usually incompatible (i.e., incommensurable), and some 
goals can be achieved only at the expense of some other goals. Hence, pre-
emptive goal programming, which is more common in practice, uses ordinal 
ranking or preemptive priorities to the goals by assigning incommensurable 
goals to different priority levels and weights to goals at the same priority 
level. In this case, the objective function of the GP model (Equation 2.16) 
takes the form

 Minimize w wP d dp

p

ip i ip i

i
∑ ∑( )Ζ = ++ + − −  (2.20)

where Pp represents priority p with the assumption that Pp is much larger 
than Pp+1 and + −

ip ipw and w  are the weights assigned to the ith deviational 
variables at priority p. In this manner, lower priority goals are considered 
only after attaining the higher priority goals. Thus, preemptive goal program-
ming is essentially a sequence of single objective optimization problems in 
which successive optimizations are carried out on the alternate optimal solu-
tions of the previously optimized goals at higher priority.

In both preemptive and non-preemptive GP models, the DM has to  specify 
the targets or goals for each objective. In addition, in the preemptive GP 
models, the DM specifies a preemptive priority ranking on the goal achieve-
ments. In the non-preemptive case, the DM has to specify relative weights 
for goal achievements. To illustrate, consider the following bi-criteria linear 
program (BCLP).

Example 2.5 (BCLP)

 Max f1 = x1 + x2

 Max f2 = x1

 Subject to: 4x1 + 3x2 ≤ 12

 x1, x2 ≥ 0

Maximum f1 occurs at x = (0, 4) with ( f1, f2) = (4, 0). Maximum f2 occurs 
at x = (3, 0) with ( f1, f2) = (3, 3). Thus the ideal values of f1 and f2 are 4 and 
3, respectively, and the bounds on ( f1, f2) on the efficient set will be

 3 ≤ f1 ≤ 4

 0 ≤ f2 ≤ 3
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Let the DM set the goals for f1 and f2 as 3.5 and 2, respectively. Then the 
GP model becomes

 x x d d 3.51 2 1 1+ + − =− +  (2.21)

 x d d 21 2 2+ − =− +  (2.22)

 4x1 + 3x2 ≤ 12 (2.23)

 x x d d d d, , , , , 01 2 1 1 2 2 ≥− + − +  (2.24)

Under the preemptive GP model, if the DM indicates that f1 is much 
more important than f2, then the objective function will be

 = +− −Min 1 1 2 2Z P d P d

subject to the constraints (2.21) to (2.24), where P1 is assumed to be much 
larger than P2.

Under the non-preemptive GP model, the DM specifies relative weights 
on the goal achievements, say w1 and w2. Then the objective function 
becomes:

 = +− −Min 1 1 2 2Z w d w d

subject to the same constraints (2.21) to (2.24).

2.11 Partitioning Algorithm for Preemptive Goal Programs

2.11.1 Linear Goal Programs

Linear GP problems can be solved efficiently by the partitioning algorithm 
developed by Arthur and Ravindran (1978, 1980a). It is based on the fact that 
the definition of preemptive priorities implies that higher order goals must 
be optimized before lower order goals are even considered. Their procedure 
consists of solving a series of linear programming sub problems by using 
the solution of the higher priority problem as the starting solution for the 
lower priority problem. Care is taken that higher priority achievements are 
not destroyed while improving lower priority goals.

2.11.2 Integer Goal Programs

Arthur and Ravindran (1980b) show how the partitioning algorithm for  linear 
GP problems can be extended with a modified branch and bound strategy 
to  solve both pure and mixed integer GP problems. They demonstrate the 
applicability of the branch and bound algorithm by solving a multiple objec-
tive nurse scheduling problem (Arthur and Ravindran 1981).
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2.11.3 Nonlinear Goal Programs

Saber and Ravindran (1996) present an efficient and reliable method, called 
the partitioning gradient based (PGB) algorithm, for solving nonlinear GP 
problems. The PGB algorithm uses the partitioning technique developed for 
linear GP problems and the generalized reduced gradient (GRG) method to 
solve single objective nonlinear programming problems. The authors also 
present numerical results by comparing the PGB algorithm against a modi-
fied pattern search method for solving several nonlinear GP problems. The 
PGB algorithm found the optimal solution for all test problems—proving its 
robustness and reliability, while the pattern search method failed in more 
than half the test problems by converging to a non-optimal point.

Kuriger and Ravindran (2005) have developed three intelligent search 
methods to solve nonlinear GP problems by adapting and extending the 
simplex search, complex search, and pattern search methods to account for 
multiple criteria. These modifications were largely accomplished by using 
partitioning concepts of GP. The paper also includes computational results 
with several test problems.

2.12  Method of Global Criterion and 
Compromise Programming

Method of Global Criterion (Hwang and Masud 1979) and Compromise 
Programming (Zeleny 1982) fall under the class of MCMP methods that do 
not require any preference information from the DM. Consider the MCMP 
problem given by Equation 2.14. Let

 S = {x/gj (x) ≤ 0, for all j}

Let the ideal values of the objectives f1, f2, ..., fk be f1
*, f2

*, …, fk
*. The global cri-

terion method finds an efficient solution that is “closest” to the idea solution 
in terms of the Lp distance metric. It also uses the ideal values to normalize 
the objective functions. Thus, the MCMP reduces to
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=
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Minimize Z
*

*
1

k

Subject to: x ∈ S

The values of fi
* are obtained by maximizing each objective fi subject to the 

constraints x ∈ S but ignoring the other objectives. The value of p can be 1, 
2, 3, … and so on. Note that p = 1 implies equal importance to all deviations 
from the ideal. As p increases, larger deviations have more weight.
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2.12.1 Compromise Programming

Compromise programming is similar in concept to the method of global crite-
rion. It finds an efficient solution by minimizing the weighted Lp distance 
metric from the ideal point as follows:

 Min *

1

1
p

L f fp i
p

i i
p

i

k

∑ ( )= λ −










=

 (2.25)

subject to x ∈ S and p = 1, 2, …, ∞,

where λis are weights that have to specified or assessed subjectively. Note 
that λi could be set to 1/( fi*).

Any point x* that minimizes Lp (Equation 2.25) for λi > 0 for all i, ∑ λi = 1, 
and 1 ≤ p < ∞ is called a compromise solution. Zeleny (1982) has proved that 
these compromise solutions are non-dominated. As p → ∞, Equation 2.25 
becomes

 
Min Min Max *L f f

i
i i i( )= λ − ∞

and is known as the Tchebycheff metric.

2.13 Interactive Methods

Interactive methods for MCMP problems rely on the progressive articulation 
of preferences by the DM. These approaches can be characterized by the fol-
lowing procedure.

• Step 1: Find a solution, preferably feasible and efficient.
• Step 2: Interact with the DM to obtain his/her reaction or response 

to the obtained solution.
• Step 3: Repeat Steps 1 and 2 until satisfaction is achieved or until 

some other termination criterion is met.

When interactive algorithms are applied to real world problems, the most 
critical factors are the functional restrictions placed on the objective functions, 
constraints, and on the unknown preference function. Another important factor 
is preference assessment styles (hereafter, called interaction styles). According to 
Shin and Ravindran (1991), the typical interaction styles are as follows:

 1. Binary pairwise comparison: The DM must compare a pair of two-
dimensional vectors at each interaction.
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 2. Pairwise comparison: The DM must compare a pair of p-dimensional 
vectors and specify a preference.

 3. Vector comparison: The DM must compare a set of p-dimensional 
vectors and specify the best, the worst, or the order of preference. 
(Note that this can be done by a series of pairwise comparisons.)

 4. Precise local trade-off ratio: The DM must specify precise values of local 
trade-off ratios at a given point. It is the marginal rate of  substitution 
between objectives fi and fj; in other words, trade-off ratio is how 
much the DM is willing to give up in objective j for a unit increase in 
objective i at a given efficient solution.

 5. Interval trade-off ratio: The DM must specify an interval for each local 
trade-off ratio.

 6. Comparative trade-off ratio: The DM must specify his preference for 
a given trade-off ratio.

 7. Index specification and value trade-off: The DM must list the indices 
of objectives to be improved or sacrificed, and specify the amount.

 8. Aspiration levels (or reference point): The DM must specify or adjust 
the values of the objectives that indicate his/her optimistic wish 
 concerning the outcomes of the objectives.

Shin and Ravindran (1991) also provide a detailed survey of MCMP inter-
active methods. Their survey includes

• A classification scheme for all interactive methods
• A review of methods in each category based on functional assump-

tions, interaction style, progression of research papers from the first 
publication to all its extensions, solution approach, and published 
applications

• A rating of each category of methods in terms of the DM’s cognitive 
burden, ease of use, effectiveness, and handling inconsistency

2.14 MCDM Software

One of the problems in applying MCDM methods in practice is the lack 
of commercially available software implementing these methods. There is 
some research software available. Two good resources for these are:

 1. http://www. mcdmsociety.org
 2. http://www.sal.hut.fi
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The first is the web page of the International Society on Multiple Criteria 
Decision Making. It has links to MCDM software and a bibliography. Most of 
the software is available free for research and teaching use. The second link 
is to the Systems Analysis Laboratory at Aalto University. It also has links to 
some free software, again for research and instructional use.
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3
Designing Resilient Global Supply 
Chain Networks

Rodolfo C. Portillo
Amazon, San Jose, Costa Rica

3.1 Introduction

A supply chain consists of (1) a series of physical entities (e.g., suppliers, 
plants, warehouses, and retailers) and (2) a coordinated set of activities 
concerned with the procurement of raw material and parts, production of 
intermediate and final products, and their distribution to the customers 
(Ravindran and Warsing 2013). The various decisions involved in managing 
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a supply chain can be grouped into three types—strategic, tactical, and opera-
tional. Strategic decisions deal primarily with the design of the supply chain 
network—namely, the number and location of plants and warehouses and 
their respective capacities. They are made over a longer time horizon and 
have a significant impact with respect to the company’s assets and resources, 
such as opening, expanding, closing, and downsizing facilities. Tactical deci-
sions are primarily of a planning nature and made over a horizon of one 
or two years. They involve purchasing, aggregate production planning, 
inventory management, and distribution decisions. Finally, operational deci-
sions are short term and made on a daily or weekly basis, such as setting 
customer delivery and weekly production schedules as well as inventory 
replenishment.

Optimal supply chain design needs to balance among multiple conflicting 
objectives, such as efficiency in terms of costs and profitability as well as 
speed to source, produce, and distribute products to customers. Resiliency is 
also an important objective and is measured in terms of the reliability of the 
supply chain network when there are disruptions to the supply chain. The 
case study presented in this chapter addresses strategic and tactical deci-
sions in designing and managing an agile global supply chain.

The material in this chapter is based on the doctoral dissertation of the 
author (Portillo 2009). With increased globalization, global supply chain 
management has become strategically important for many companies. 
The objectives of every supply chain continue to be maximizing the over-
all value generated by reducing the costs of procurement, increasing the 
responsiveness to customers, and decreasing the risks due to disruptions 
affecting the supply chain network. The big change now is that global sup-
ply chain management involves a company’s worldwide interests: manufac-
turing facilities, distribution centers (DCs), customers, and suppliers located 
in several countries. Besides the conventional financial aspects, companies 
are now required to deal with a plethora of other factors for doing business 
abroad, such as duties, transfer prices, taxes, multiple exchange rates, and 
disruption risk. Transfer prices are charges among enterprise entities on 
goods and services. Disruption risk can be due to natural disasters, supplier 
quality issues, political tensions among countries, civil unrest, economic 
issues, government controls, and strikes from unions, among others. Within 
this environment, as part of their global supply chain management strategy, 
a company must make decisions on its overall outsourcing plan, supplier 
selection, the number of production plants and DCs that are needed, as well 
as the locations of those facilities, modes of transportation, and customer 
allocations to the DCs.

The emphasis of this chapter is on developing mathematical models 
to determine optimal supply chain design to support specific competi-
tive strategies within the complex multi-national environment. A multi-
criteria  mixed-integer linear programming model has been developed to 
aid in a multiple echelon supply chain design, including manufacturing 
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and distribution facilities’ location/allocation, capacity and expansion 
requirements, production and distribution variables, international issues, 
exchange rates, lead times, and transfer prices. This work also considers 
a variety of semi-finished goods of a health and hygiene consumer prod-
ucts company (e.g., tissue hard rolls, unpacked diapers, and oily soap solu-
tion) and finished products (e.g., facial tissues, toilet paper, toiletries, and 
gloves). Moreover, it includes the definition of a set of supply chain design 
criteria that integrates financial aspects, customer service, disruption risk, 
and strategic factors in the process. Strategic factors may include decisions 
to open new markets, increase market share, and to strengthen relation-
ships with particular customers.

The methods for designing a resilient and responsive supply chain devel-
oped in this chapter have been applied to a leading global health and hygiene 
company listed in the Fortune 500. The company is a leader in tissue paper 
manufacturing, baby products (such as diapers), adult personal care, and 
health care products. More specifically, the case study has focused on devel-
oping analysis tools for a market driven supply chain structure so that the 
global manufacturing and distribution network for the largest international 
division of the company can be redesigned. This required integrating local 
structures, as well as distribution and manufacturing networks, into a 
unique global optimization model with the objective of reducing the supply 
chain cost and increasing supply chain market responsiveness to customers, 
thereby enabling a more robust supply chain strategy—including manufac-
turing, external sourcing, and distribution activities.

3.2 Problem Description

The company employs approximately 55,000 people worldwide, and its sales 
are close to $20 billion a year. With operations in 37 countries, the company’s 
global brands are sold in more than 150 countries and are used by approxi-
mately 1.3 billion people; it holds first or second position in the majority of 
its markets. This case study focuses on one of the company’s international 
divisions, which sells products across Latin America. The division has sev-
eral offices, distribution centers, and manufacturing facilities in more than 
20 countries. To support its competitive strategy, its supply chain is formed 
by different types of customers—from multi-national chains and large dis-
tributors to thousands of small “mom-and-pop” stores. In the last 15 years, a 
series of mergers and acquisitions across the continent led to a supply chain 
with a highly complex internal structure of many production and distribu-
tion facilities without standard assets and product technologies, together 
with redundancy of operational strategies and organizational structures. 
Currently, the supply chain is comprised of approximately 45 distribution 
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locations spread across the continent and 21 manufacturing facilities located 
in 10 countries. Most of the products sold in the region are supplied by these 
21 manufacturing plants, and the rest are imported from other company 
facilities located all around the world. In addition, cross-sourcing activ-
ity within the continent has increased significantly in the last few years, 
by  blending the advantages of single and multiple sourcing strategies. 
Today, more than 60% of the production facilities manufacture finished and 
semi-finished products that are distributed to different countries in addi-
tion to the local market. At least three facilities are continent-wide facili-
ties sourcing all markets within the division, and they also export products 
to other company divisions worldwide. Until now, asset rationalization to 
improve operational efficiencies and structural reorganization efforts have 
focused on supply chain distribution designs for specific business units or 
division-wide designs considering manufacturing facilities for particular 
products only. In order to better support and enhance the division’s competi-
tive  strategy, a robust, flexible, and efficient global supply chain design was 
required to ensure exceptional achievement of customer service levels and 
financial goals while considering related risk factors.

For a complete strategic and tactical optimization of the manufactur-
ing and distribution network, the model needed to manage more than 
100   customer zones or markets, as well as dozens of products manufac-
tured in more than 250 production lines. Because of the diverse interna-
tional nature of the problem, many global factors needed to be considered, 
such  as domestic and international freights, transfer prices, taxes and 
duties, among others. Some products have a multi-stage production pro-
cess and are processed in multiple echelons (Figure 3.1). In other words, the 
production process involves more than one stage before the final product is 

ProductionSupply Distribution

Demand variabilityProduction costsInvestment strategy Market share

Vendors Manufacturing Converting Warehouses Markets

FIGURE 3.1
Supply chain network echelon.
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ready, where inventory may need to be managed and production technol-
ogy and manufacturing lead times may differ. For example, in  tissue pro-
duction, you may have multiple processes to manufacture the paper itself 
in the form of semi-finished hard rolls that are later converted to finished 
products such as napkins, facial tissue, toilet paper, and kitchen towels. 
Multiple production rates are considered for multi-product machines and 
products. The costs in the optimization process include facility overheads, 
fixed and variable costs of production lines, and raw materials consump-
tion costs.

3.3 Multi-Criteria Model for Resilient Supply Chain

Decision makers often need to consider multiple criteria in order to deter-
mine the best course of action to solve a particular problem. The relation-
ship among these decision criteria can be conflicting, which implies that 
trade-offs among the conflicting criteria need to be considered and care-
fully evaluated. As described by Masud and Ravindran (2008), a general 
multi-criteria  decision-making problem can be represented as follows:

 Maximize C1(x), C2(x), …, Ck(x) x ∈ X

where x is any specific alternative, X is a set representing the feasible region 
or available alternatives, and Cj is the jth criterion or objective function.

The objective functions (Cj) may conflict with one another, and the diffi-
culty is to maximize all the objectives simultaneously.

According to Masud and Ravindran, multi-criteria decision-making prob-
lems can be classified into two types: (1) multi-criteria mathematical pro-
gramming problems (MCMP) with an infinite number of feasible alternatives 
determined by a finite number of explicitly stated constraints and (2) multi-
criteria selection problems (MCSP) that consist of ranking a finite number of 
alternatives stated explicitly.

The supply chain network design problem presented in this chapter is a 
multi-criteria mathematical programming problem. In this case study, goal 
programming is used as the solution approach for handling multiple  criteria. 
Because there is conflict among the criteria, there is no “optimal solution” to 
the MCMP problem that will maximize all the criteria simultaneously. This 
problem is overcome with GP, which finds the “best compromise solution” 
that is acceptable to the decision maker. In the GP approach, all the criteria 
are assigned acceptable target levels of achievement and a relative priority 
on achieving these levels. GP treats these targets as goals to aspire for and not as 
absolute constraints and then attempts to find a solution that comes as “close 
as possible” to these targets, in the order of importance for the decision maker, 
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by minimizing the weighted deviations from the target values. The criteria 
relative weights are obtained from the decision makers. For a detailed dis-
cussion of GP, the reader is referred to Ravindran et al. (2006) or Chapter 5 
of the Operations Research and Management Science Handbook (Ravindran 2008). 
A detailed discussion of the ranking methods for computing criteria weights 
(Borda count, analytic hierarchy process [AHP], etc.) is available in Chapter 6 
of the Supply Chain Engineering: Models and Applications by Ravindran and 
Warsing (2013).

3.3.1 Model Features

The multi-criteria global supply chain network design model integrates 
customer service levels, strategic factors, and disruption risk criteria along 
with the financial measure of performance. Customer service level is 
measured using two factors: (1) demand fulfillment and (2) speed of delivery. 
Demand fulfillment is defined as the portion of the customer demand that 
is satisfied—namely, the quantity that is effectively delivered to the cus-
tomers. The ability to completely fulfill customer demand is modeled as a 
goal constraint by specifying demand fulfillment targets for all the com-
binations of products and customer zones. Speed of delivery is measured in 
terms of the lead time to deliver the products to the customers. This is also 
modeled as a goal, by minimizing the quantity weighted lead time, based 
on volume and the respective delivery lead times.* Weighted lead time tar-
gets, for each customer zone, are explicitly considered in the GP model. In 
 addition, the multi-criteria model considers the minimization of risk asso-
ciated with supply chain disruptions. Different measures of risk for domes-
tic and global sourcing are estimated for each manufacturing, converting, 
and distribution location. These measures incorporate facility and country 
specific risk factors. Facility specific risk factors are determined based on 
assessments performed by the decision makers. Country specific risk fac-
tors are obtained by considering the weighted average cost of capital rates 
for each country. A more detailed description of the risk measure estima-
tion is given in Section 3.3.2. The objective of minimizing the risk measure 
is also modeled as a goal constraint by setting the overall risk target value 
for the entire supply chain.

Decisions related to supply chain network design may also require the 
modeler to consider strategic factors to open new markets, to increase mar-
ket share, and to strengthen relationships with customers. This model 
includes measures for strategic factors for each facility, based on the ratings 
provided by the decision makers. A goal constraint is set to achieve the 
maximum possible overall strategic measure for the entire supply chain 
network.

* Corresponding to each arc of the supply chain network that links a facility (plant/DC) to 
a customer zone.
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Among other features, the model allows the evaluation of outsourcing 
decisions as well as the consideration of different product mix and cor-
responding productivity rates on different production lines and at differ-
ent locations. The model supports both strategic and tactical decisions. 
On the strategic side, the focus is on the design of the supply chain net-
work, in which the optimization model determines the facilities that need 
to be opened and their locations, as well as the facilities that negatively 
affect profitability and therefore need to be closed. In the case where cur-
rent  network capacity (measured in product units) is not sufficient to fulfill 
customer demand, the model provides for manufacturing and distribution 
decisions, evaluating where and how capacity should be expanded or out-
sourced. Note that when combining products with significantly different 
specifications, a common standard unit of measure may be defined within 
the enterprise, such as weight (i.e., tons) and volume (i.e., cubic meters) for 
measuring capacity. Also, the ability to perform analysis at the production 
line level facilitates decisions associated with the transfer of equipment 
among facilities. Moreover, strategic decisions related to technological 
changes are supported by the model—such as what technologies are more 
convenient for the required expansions, or what specific equipment should 
be considered for write-off and replacement. The model also assists in tacti-
cal decisions, such as customer zone assignments to the distribution centers, 
the development of high level production and distribution plans, product 
allocation to specific equipment, and cross-sourcing among  production 
facilities. A more detailed description of the model features is presented in 
the following sections.

The multiple and conflictive decision criteria used in the model will be 
explained in more detail in Section  3.3.2. The objective then becomes the 
minimization of the deviations from the specified criteria targets: profit, 
demand fulfillment, lead time, disruption risk, and strategic factors.

3.3.2 Decision Criteria and Risk Assessment

This section presents a detailed discussion of the supply chain design criteria 
used in the case study (Figure 3.2) and the methods used to determine the 
criteria weights and preferences. Assessments of risk and strategic factors are 
also discussed.

The financial objective of maximizing the gross profit considers revenue 
from sales less production costs, distribution expenses, and freight expenses. 
The production costs include facility overhead or fixed costs, fixed and 
variable machine costs, and raw materials cost. The distribution expenses 
include all the fixed and variable costs for operating a distribution center 
(DC). The transportation cost is divided into inbound and outbound freight. 
Inbound transportation cost is incurred when moving goods among facili-
ties within the firm’s supply chain network. Outbound transportation costs 
are the freight paid for shipping the goods to the end customers.
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The customer service criterion has two sub-criteria: lead time and demand 
fulfillment. Lead time is defined as the time from when a customer places 
an order until the moment it is delivered at the customer’s facility (used as 
a proxy for speed of delivery). Demand fulfillment is the proportion of the 
customer’s order that is effectively delivered. Under the lead time criterion, 
customers are classified as modern trade or traditional trade. Modern trade refers 
to large customers (e.g., super market chains), while traditional trade refers to 
small customers (e.g., “mom-and-pop” stores).

The supply chain disruption risk criterion includes the facility specific 
and country specific disruption risk factors. For each facility, the facility 
specific risk factor is assessed using an expert opinion-based risk rating 
method. It  is a qualitative assessment done by the decision makers con-
sidering factors such as key raw material sourcing, transportation avail-
ability, existence of labor unions, risk of zoning, and occurrence of natural 
disasters. The decision makers assign a score for each facility, on a 1–5 scale 
(see Table 3.1), considering its impact on the domestic and export market. 
An example of a facility risk rating is given in Table 3.2. The country spe-
cific risk factor uses the firm’s weighted average cost of capital (WACC) as 
the risk measure, according to the country in which the facility is located. 
The WACC is an indicator of risk used primarily for evaluating the expo-
sure of the company’s investments. WACC can be used for supply chain 
design decisions for two reasons: (1) most of the strategic decisions would 
imply making capital investments to purchase new assets or build new 
facilities, and (2) WACC is a comprehensive and standard measure of risk 
when dealing in diverse international environments. WACC is an esti-
mate of the domestic cost of capital, excluding inflation, and is based on 
US dollar denominated bonds, which are used to determine the spread 
between the United States and foreign countries. The WACC rates are then 
adjusted based on political risk (50%), economic risk (25%), and financial 
risk (25%). The weights associated with the types of risk are defined by 
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the  decision  makers.  Political risk considers government stability, corrup-
tion,  bureaucracy, socioeconomic conditions, involvement of military in 
 politics, investment profile, religious tensions, internal conflicts, law and 
order,  external conflict, ethnic tensions, and democratic accountability. 
Economic risk considers the current account balance and budget balance 
as a percentage of gross domestic product (GDP), GDP per capita, annual 
inflation, and real annual GDP growth. Financial risk includes the percent-
age of exports of goods and services (XGS), foreign debt as a percentage of 
the GDP, net liquidity as months of import cover, foreign debt service as 
a percentage of XGS, and exchange rate stability. All of these factors are 
very important for any supply chain strategic decision because—in the long 
run—they may affect the ability to operate the business from a logistic or 
financial perspective. For example, imagine a company that needs to pay 
for imported raw materials in order to produce goods and also needs to 
repatriate profits from its sales as an expected return on the invested capi-
tal. This could be disrupted if the government of the country limits the 
amount of US dollars the company can convert.

Three methods have been used to obtain criteria weights: simple rating, pair-
wise comparison using Borda count, and AHP. For a detailed discussion of 
these methods, the reader is referred to Chapter 6 of Supply Chain Engineering 
by Ravindran and Warsing (2013). In the simple rating method, the experts 
assign a score from 1 to 10 (the higher the better) for each criterion and for each 
attribute within a criterion. A sample criteria rating for one decision maker 
(DM) is given in Table 3.3. Based on this information, a set of criteria weights 
for a DM is calculated by normalizing the weights, as presented in Table 3.4. 

TABLE 3.1

Scale for Facility Risk Rating

Verbal Preference Score to Assign

No risk 1
Very low risk 2
Medium risk 3
High risk 4
Very high risk 5

TABLE 3.2

Example of Facility Risk Rating

Facilities

Open Closed

Local Exports Local Exports

DC 1 2 2 5 5
Plant 2 2 2 5 5
… 2 2 5 5
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In the pairwise comparison method using Borda count, preferences between 
two criteria and between attribute pairs for each criterion are specified by each 
DM. For AHP, a pairwise comparison of the criteria, using a strength of pref-
erence scale of 1–9 (the higher the better), is done by each DM. Table 3.5 gives 
the strength of preference scale used for AHP. Based on this, each DM assigns 
a numerical value representing the importance of one criterion over another, 
as presented in Table 3.6. Then, two sets of criteria weights are determined: 
(1) using the ordinal preference by Borda count, based on how the decision 
makers ranked the criteria, and (2) by AHP, based on the strength of preference 
between criteria (how much more the DM preferred one criterion over another). 
Examples of both criteria weights are given in Tables 3.7 and 3.8, respectively. 
For details on the calculations used to obtain the criteria weights with Borda 
count and AHP, the reader is referred to Ravindran and Warsing (2013).

A group of 11 DMs were involved in the criteria assessments. For each 
DM, three sets of criteria weights were computed using the three methods 

TABLE 3.3

Sample Criteria Ratings for a Decision Maker

Rating Score (1–10)

Main Criteria
1 Gross profit 10
2 Lead time 6
3 Demand fulfillment 9
4 Sourcing risk 6
5 Strategic factor 6

Attributes—Lead Time
1 Modern trade 10
2 Traditional trade 7

Attributes—Risk
1 WACC 7
2 Facility risk 5

TABLE 3.4

Criteria Weights by Simple Rating 
Method for a DM

Criteria Rating Weight

Gross profit 10 27%
Lead time 6 16%
Demand fulfillment 9 24%
Sourcing risk 6 16%
Strategic factor 6 16%

37
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of preference assessment. The DMs were then asked to indicate which of 
the three methods and their weights best reflected their preferences. In half 
of the cases, the DMs answered that the simple rating method represented 
better their preferences, while the pairwise comparison method using Borda 
count performed better in 30% of the cases, and AHP, with the strength of 
preference information, did better in 20% of the cases.

The individual set of weights selected by each DM was then combined to 
obtain the group criteria weights using three different group decision-making 

TABLE 3.5

Strength of Preference Scale Used in AHP

Verbal Preference Score to Assign

Equally important 1

Slightly more important 3

Strongly more important 5

Very strongly more important 7

Absolutely more important 9

TABLE 3.6

Pairwise Comparison

Criterion Pair
Which is More 

Important?
How Much More 
Important (1–9)?

Pairwise Comparison of Criteria and Strength of Preference 
for a DM

GP – LT GP 6

GP – DF GP 5

GP – RD GP 3

GP – SF GP 5

LT – DF DF 7

LT – RD LT 7

LT – SF LT 3

DF – RD DF 5

DF – SF DF 5

RD – SF SF 5

Pairwise Comparison of Response Time (Lead Time)
Lead time to modern 
or traditional trade?

MT 7

Pairwise Comparison of Sourcing Risk Attributes
WACC or facility risk? WACC 3

Note: GP: gross profit, LT: lead time, DF: demand fulfillment, 
RD: sourcing risk, SF: strategic factor.
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approaches: simple averaging, Borda count, and AHP. Group weights with 
simple averaging are presented in Table  3.9. In the Borda count approach, 
a value from 1 to 5 points (the higher the better) is given to each criterion, 
depending on the ranking obtained from the pairwise comparison performed 
by each DM, assigning five points to the most important and one to the least 
important. The group weights are then calculated based on the total number 
of points obtained for each criterion, combining all DMs (see Table 3.10). On 
the other hand, the AHP method provided the following results for group 
weights: 38% for gross profit, 12% for lead time, 22% for demand fulfillment, 
10% for risk, and 18% for strategic factor.

Table 3.11 shows the group weights obtained from the three group decision-
making approaches. In all three approaches, the ranking of the criteria were 
the same: gross profit, demand fulfillment, strategic factor, lead time, and risk, 
in order from the most important to the least important. The group weights 
obtained by each approach were reasonably close. For the case study, the set 

TABLE 3.7

Criteria Weights by Pairwise Preference for 
a DM

GP LT DF RD SF Total %

GP 1 1 1 1 1 5 33
LT 0 1 0 1 1 3 20
DF 0 1 1 1 1 4 27
RD 0 0 0 1 0 1 7
SF 0 0 0 1 1 2 13

15

TABLE 3.8

Criteria Weights by Strength of Preference 
by AHP for a DM

GP LT DF RD SF %

GP 1 6 5 3 5
LT 1/6 1 1/7 7 3
DF 1/5 7 1 5 5
RD 1/3 1/7 1/5 1 5
SF 1/5 1/3 1/5 1/5 1

1.9 14.5 6.54 16.2 19
GP 0.53 0.41 0.76 0.19 0.26 43
LT 0.09 0.07 0.02 0.43 0.16 15
DF 0.11 0.48 0.15 0.31 0.26 26
RD 0.18 0.01 0.03 0.06 0.26 11
SF 0.11 0.02 0.03 0.01 0.05 4
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of weights obtained from the simple averaging method was used in the GP 
objective function, which minimized the weighted deviations of the criteria 
from their target levels.

3.3.3 Mathematical Model

3.3.3.1 Notations

A specific index is given to each echelon of the supply chain. For the case 
study, one or more echelons can be part of the supply chain, depending 
on the product. The production process is split into two production ech-
elons, manufacturing and converting facilities, and needs one or more dis-
tribution centers to reach a market. For example, a manufacturing facility 
may produce a semi-finished product, such as paper rolls, and a converting 

TABLE 3.9

Group Weights by Simple Averaging of Each DM’s Weights

DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 Overall %

GP 23 36 24 27 40 28 53 33 44 33 33 34
LT 18 18 19 20 4 13 14 12 17 20 13 15
DF 23 27 19 13 9 28 24 14 25 27 27 21
RD 18 9 19 7 14 6 6 10 5 7 13 10
SF 20 9 19 33 32 25 3 31 8 13 13 19

TABLE 3.10

Group Weights by Borda Count

DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 Overall %

GP 1 1 1 2 1 1 1 1 1 1 1 33
LT 4 3 3 3 5 4 3 4 3 4 2 17
DF 2 2 2 4 4 2 2 3 2 2 5 22
RD 5 5 4 5 3 5 4 5 5 5 4 10
SF 3 4 5 1 2 3 5 2 4 3 3 19

TABLE 3.11

Group Weights for the Criteria

Criteria % Simple Averaging Borda Count AHP

Gross profit 34 33 38
Lead time 15 17 12
Demand fulfillment 21 22 22
Sourcing risk 10 10 10
Strategic factor 19 19 18
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facility may convert the paper rolls into finished products, such as facial 
tissues, napkins, paper towels, and so on. In addition, specific indexes are 
used to represent different product and production lines.

h Manufacturing facility index where h = (1, …, nh)
i Converting facility index where i = (1, …, ni)
j Distribution center (DC) number where j = (1, …, nj)
l Receiving DC supplied by a DC where l = (1, …, nj)
k Market or customer zone index where k = (1, …, nk)
p Product p = (1, …, np)
t Production line t = (1, …, nt)
g Goal constraint number g = (1, …, 5)

3.3.3.1.1 Sets

Multiple sets are defined to allow feasible flows among manufacturing, 
converting, and distribution facilities as well as flows from these facilities 
at different echelons to different markets. This is based on geographic, 
infrastructure, or business considerations. In addition, several sets are 
defined linking products with particular production lines and facilities 
where they can be produced based on technological constraints. Similarly, 
sets are created based on marketing strategies to link products with spe-
cific markets. The sets definition is particularly valuable for the database 
build-up process and for computational efficiency because it is not neces-
sary to consider all mathematically possible network combinations as a 
complete graph.

MFS Manufacturing facilities, h = (1, …, nh)
CFS Converting facilities, i = (1, …, ni)
DCS Distribution centers, j, l = (1, …, nj)
MKS Markets, k = (1, …, nk)
PRS Products, p = (1, …, np)
CTS production lines, t = (1, …, nt)
PRSS Semi-finished products
MKSTR Traditional trade markets (large supermarkets)
MKSMR Modern trade markets (small retail stores)
CFSMh Converting facilities supplied by manufacturing 

facility h
MKSMh Markets served by manufacturing facility h
MFSCi Manufacturing facilities supplying converting 

facility i
DCSCi Distribution centers supplied by converting 

facility i
MKSCi Markets supplied by converting facility i
CFSDj Converting facilities supplying distribution center j
MKSDj Markets supplied by distribution center j
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MFSKk Manufacturing facilities supplying market k
CFSKk Converting facilities supplying market k
DCSAj Distribution centers supplying distribution center j
DCSDj Distribution centers supplied by distribution 

center j
DCSKk Distribution centers supplying market k
CTSMh Production lines at manufacturing facility h
CTSCi Production lines at converting facility i
CTSPp Production lines that produce product p
PRSCi Goods produced at conversion facility i
PRSTt Goods produced by production line t
PRSMh Goods produced at manufacturing facility h
PRSDj Goods distributed by distribution facility j
PRSKk Products sold at market k
MSFPp Manufacturing plants producing product p
CFSPp Conversion plants producing product p
DCSPp Distribution centers shipping product p
MFSTThtt′ Installed line t at manufacturing facility h and 

corresponding extension within technology t′
CFSTTitt′ Installed line t at converting facility i and 

corresponding extension within technology t′
DCSINTERPLANTS Distribution centers shipping intercompany
DCSTOMARKETS Distribution centers shipping directly to markets

3.3.3.1.2 Parameters

The following parameters represent the financial and operational data:

Dkp Customer demand in market k for product p, in tons for semi-
finished goods and in standard units for finished goods

Pkp Sales price for product p in market k, in $/standard unit for 
finished goods and in $/ton for semi-finished products

FMh Facility fixed costs of manufacturing plant h
FMMht Fixed costs of production line t at manufacturing plant h
MRChp Raw material variable cost per ton for product p in 

manufacturing site h
MMCt Machine cost per hour for manufacturing line t
MPTpt Production time hours per ton for product p at production line t
MUChp Cost, insurance, and freight (CIF) unit cost for product p from 

manufacturing facility h, includes intercompany markup
(2)Ihip Cross-sourcing cost percentage for product p from 

manufacturing facility h to converting facility i
(2)Thip  Freight in $/ton for product p from manufacturing facility h to 

converting facility i
(2)TIhip Freight in $/ton for p from facility h to entry customs when 

sending goods to facility i
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(3)Thkp Freight in $/ton for product p from manufacturing facility h to 
market k

MCht Manufacturing capacity in hours for production line t at facility h
(1)DFip  Unit of measure conversion factor for product p at conversion 

facility i (standard units/ton). (Note that different measurement 
units may be used at different echelons, such as tons or standard 
units for production, cubic meters for storage and distribution, 
and standard units or cases for sales.)

(2)DFjkp  Conversion factor unit of measure for product p for arc (j, k) 
(cubic meters/standard units)

(3)DFjlp  Conversion factor unit of measure for product p for arc (j, l) 
(cubic meters/standard units)

FCi Facility fixed costs of converting plant i
FCMit Fixed costs of production line t at converting plant i
CRCip Raw material variable cost per ton for product p in converting 

plant i
CMCt Machine cost per hour for production line t
CPTpt Conversion time hours/ton for product p at production line t
CUCip Cost, insurance, and freight (CIF) unit cost for product p in 

conversion facility i, includes intercompany markup
(4)Iijp  Cross-sourcing cost factor for product p from converting facility i 

to distribution facility j
(4)Tijp  Transportation cost for product p from converting facility i to 

distribution facility j in $/standard unit
(4)TIijp  Transportation cost for product p from facility i to entry customs 

when sending to facility j
(5)Tikp  Transportation cost for product p from converting facility i to 

market k in $/standard unit
CCit Converting capacity in hours for facility i and production line t

(7)Tjkp  Transportation cost for product p from DC j to market k in 
$ per standard unit

(6)Tjlp  Transportation cost for product p from DC j to DC l in 
$ per standard unit

(6)TI jlp Transportation cost for product p from DC j to entry port or 
customs when sending goods to DC l in $ per standard unit

DUCjl CIF unit cost for product p at DC j, includes intercompany markup
(6)I jlp Cross-sourcing cost percentage for product p from DC j to DC l

FDj Fixed operational cost of DC j
VOCj Variable operational cost of DC j in $/cubic meters
SCj Shipping capacity of DC j in cubic meters

The following parameters represent the subjective facility risk rating 
values obtained from the DMs using a numerical scale (1–5), where higher 
numbers represent higher risk as presented in Table 3.1. The risk values are 
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related to opening or closing a facility and the corresponding impact on ful-
filling the demand of local customers and exports. Different parameters are 
defined for different echelons of the supply chain.

R h
(1)

�  Risk rating for manufacturing facility h if opened to serve local 
customers

(1)
εR h  Risk rating for manufacturing facility h if opened to serve 

exports’ demand
(1)

Rch  Risk rating for manufacturing facility h if closed to serve local 
customers

(2)
R i�  Risk rating for conversion facility i if opened to serve local 

customers
(2)

εR i  Risk rating for conversion facility i if opened to serve exports’ 
demand

(2)
Rci  Risk rating for conversion facility i if closed to serve local customers

(3)
R j�  Risk rating for distribution facility j if opened to serve local 

customers
(3)

εR j  Risk rating for distribution facility j if opened to serve exports’ 
demand

(3)
Rcj  Risk rating for distribution facility j if closed to serve local 

customers

Similar to the facility risk ratings, three rating groups are defined to rep-
resent the strategic factor values based on the DMs’ assessment for each 
echelon. The DMs assign a value from 1 to 5 indicating how relevant it is 
to keep the facility open for strategic purposes (the higher the value the 
more important it is). For example, consider a facility operating in a country 
where imports are restricted by the government. Because it is not possible 
to import cheaper products to this market, it is strategically more important 
to keep this facility open to serve the local markets.

(1)
Sth  Strategic rating for manufacturing facility h

(2)
Sti  Strategic rating for converting facility i

(3)
Stj  Strategic rating for distribution facility j

Other parameters are defined to incorporate the lead times for  shipments 
between a given facility and a customer zone. These are measured in 
days and represent the time from when a customer places an order with the 
sales department until this order is delivered at the customer’s facility.

(3)
Lhk Lead time in days for shipments between manufacturing facility 

h and market k
(5)

Lik  Lead time in days for shipments between converting facility i 
and market k



68 Multiple Criteria Decision Making in Supply Chain Management

(7)
Ljk  Lead time in days for shipments between DC j and market k

(6)
Ljl  Lead time in days for shipments between DC j and DC l

Target values for the criteria are determined by identifying the ideal values 
for each criterion. Ideal values represent the best values achievable for each 
criterion, ignoring the other criteria. For example, the ideal value of the profit 
criterion is obtained by maximizing the profit function alone and is expressed 
in dollars. The ideal value of the lead time criterion is obtained by minimizing 
the lead time objective and is measured in days. Ideal values are then used 
by the DMs to set the best target values for each criterion. Target values are 
generally set close to the ideal or at the ideal by the DMs. Because the units of 
measurement for the criteria are different, it is important to scale the criteria 
values properly. A common approach to scaling is to divide the criteria by 
their respective ideal values so that the best values of the criteria are always 
one. The parameter T (g) is used to denote the target value of the criterion (goal) 
“g” and its relative weight, assessed by the DMs, is denoted by wg.

3.3.3.2 Decision Variables

Several continuous variables are defined to represent the flow of goods 
through the network for both production and distribution volumes, consid-
ering different units of measure depending on the echelon where the flows 
occur. Binary variables are used for opening or closing decisions associ-
ated with manufacturing, converting, and distribution facilities, as well as 
for specific production lines.

Production Stage 1
(1)

xhipt Production of product p at production line t at manufacturing 
facility h sent to converting facility i in tons

(2)
xhkpt Production of product p at production line t at manufacturing 

facility h sent to market k in tons
(1)

δh  1 if manufacturing facility h is opened, 0 otherwise
(1)

γ ht  1 if production line t at manufacturing facility h is opened, 
0 otherwise

Production Stage 2
(1)

yijpt Production of product p at converting facility i and line t sent to 
DC j in standard units

(2)
yikpt Distribution of product p from converting facility i and line t to 

market k in standard units
(2)

δi  1 if converting facility i is opened, 0 otherwise
(2)

γ it  1 if production line t at converting facility i is opened, 
0 otherwise
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Distribution Stage
(1)

zjlp Distribution of product p from DC j to DC l in standard units
(2)

zjkp Distribution of product p from DC j to market k in standard units
(3)

δ j   1 if distribution facility i is opened, 0 otherwise

3.3.3.3 Decision Criteria

3.3.3.3.1 Gross Profit

The gross profit is given by the total revenue less fixed and variable operat-
ing costs, raw material costs, transportation costs, and cross-sourcing costs 
(Equations 3.1–3.13).

3.3.3.3.2 Total Revenue

The total revenue is given by the demand volume and sales price of a particu-
lar product p in a specific customer zone k (Equation 3.1). Shipping a product 
to a customer zone can be done from three different sources: (1) a distribution 
center j ships products to customers where the flow is represented by 

(2)
zjkp, 

(2) direct shipments to customers occur from a converting facility i for which 
the decision variable 

(2)
yikpt is used, and (3) semi-finished goods are directly 

shipped to customers from a manufacturing facility h represented by 
(2)

xhkpt.
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3.3.3.3.3 Fixed Operating Costs

The fixed costs associated with the manufacturing and distribution processes 
are separated into facility overheads (Equation 3.2) and production line fixed 
costs (Equation 3.3). Facility overheads include all the fixed costs associated 
with the operation of a manufacturing, converting, or distribution facility—
such as plant general management, quality, maintenance, building leasing 
or depreciation, among others. The product line fixed costs include machine 
specific fixed costs—such as equipment depreciation, labor required to oper-
ate a particular production line, and so on. In the objective function, these 
fixed cost parameters are multiplied by their corresponding binary variables, 
which represent the activation status of a facility or a production line.
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3.3.3.3.4 Variable Operating Costs

The variable operating costs are given by raw materials consumed; costs 
incurred for the operation of production lines such as utilities, operating 
supplies, and spare parts; and some expenses at the distribution centers, 
such wrapping materials and nonreusable pallets. At a particular production 
facility h or i, the total raw material costs are determined by the total units 
produced of each product p and their corresponding unit of raw material 
costs MRChp and CRCip. Then the network total raw material costs are given 
by Equations 3.4 and 3.5.
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Total production line operation costs are presented in Equations 3.6 and 
3.7. The calculation is based on the total hours of operation required by the 
volume produced for a particular product p in a production line t and its cor-
responding productivity rate in hours per unit MPTpt and CPTpt. Then, each 
production line t has a specific variable operating cost per hour of operation 
MMCpt and CMCpt. Finally, the total network costs are summarized by facil-
ity, based on the production lines operating at each facility.
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Equation 3.8 shows the formula for the distribution variable costs at the 
warehouse, which converts to cubic meters the volume in standard units 
shipped from a given distribution center j for a specific product p. The total 
variable distribution cost is then calculated for all facilities, and the products 
handled at each DC are multiplied by a unit variable operating cost VOCj 
determined for each DC.
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3.3.3.3.5 Transportation Costs

Equations 3.9 and 3.10 show the inbound and outbound shipment costs, 
respectively, that are included in the objective function, based on the trans-
portation costs determined for each arc of the network. The outbound ship-
ments are associated with the transportation of semi-finished and finished 
products directly to customers, regardless of the origin facility type, and 
the inbound shipments correspond to the inter-plant transactions among 
production and distribution facilities.
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3.3.3.3.6 Cross-Sourcing Costs

Cross-sourcing costs include any amount related to international shipments, 
with the exception of freight costs that were already considered in Equations 
3.9 and 3.10, such as import and export duties, imports agencies’ fees, among 

others. Cross-sourcing costs , , and
(2) (4) (6)

I I Ihip ijp jlp are expressed as a percentage 
and are applied to the total unit product cost accumulated at the manufac-
turing, converting, and distribution echelons represented by the parameters 
MUCkp, CUCip, and DUCjp, as shown in Equations 3.11 and 3.12.
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In addition, the cross-sourcing rates given by , , and
(2) (4) (6)

TI TI TIhip ijp jlp  are 
applied over the transportation costs from a sourcing facility to the cus-
toms office at a first entry point to a country (Equation 3.13). Generally, in 
international trade, the total duties are determined by customs over the 
total cost of the product at the country’s first entry point, considering not 
only the cost of production of the product but the expenses incurred in its 
transportation.
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Thus, the gross profit goal constraint is given by Equation 3.14.

3.3.3.3.6.1 Maximize Gross Profit

 Gross Profit 1 1
(1)( ) + − =− +d d T  (3.14)

where T (1) is the gross profit target and the objective is to minimize 1
−d , which 

is the underachievement of the profit target.

3.3.3.3.6.2 Minimize Lead Time to Customers Equation 3.15 presents a 
demand-weighted measure of the lead time to ship products to customers, 
where the lead time parameters for the corresponding facility to customer 
arcs are weighted by the flow of goods in each arc. Delivery time targets 
are defined for each customer zone k, and the goal is to not exceed those 
targets for each customer  zone (2)( )Tk . Hence, the deviation variable 2

+d k is 
minimized, which  represents the violation of the lead time goal. All terms 
in Equation 3.15, except for the deviational variables, are scaled by the total 
demand at the  market to get an approximate value, in days, of the weighted 
average delivery time.

 

L y L z

D
d d

ik
i CFS

ikpt
t CTSCp PRSK

jk
j DCS

jkp
p PRSK

kp
p PRSK

k k
ik k

k

–

(5) (2) (7) (2)

2
–

2

∑ ∑∑ ∑ ∑
∑





 + 





+∈ ∈∈ ∈ ∈

∈

+

 
T y z

D
k MKS

k ikpt
t CTSC

jkp
p PRSKp PRSK

kp
p PRSK

i kk

k

for all

(2) (2) (2)∑ ∑∑
∑

=
+





∈∈ ∈∈

∈

 (3.15)



73Designing Resilient Global Supply Chain Networks

3.3.3.3.6.3 Minimize Risk of Supply Chain Disruptions The risk measures, 
based on the qualitative assessment of the DMs and the quantitative cost 
of capital measure presented in Section 3.2, are included in Equation 3.16, 
together with its global goal target and corresponding deviational variables. 
For this goal, it is required to have the least possible risk level, thereby mini-
mizing the deviation 3

+d  over T (3).
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3.3.3.3.6.4 Maximize Strategic Factors Equation 3.17 includes the strategic 
factor ratings for each manufacturing, converting, and distribution facility, 
along with a global strategic target and the deviational variables. In this case, 
the goal is to minimize the underachievement of a predetermined level of 
the strategic factor measure T (4) for the entire supply chain network.
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3.3.3.3.6.5 Maximize Demand Fulfillment at the Markets Equation 3.18 rep-
resents the goal constraint for any product and market combination, where 
the total flow of semi-finished or finished goods shipped to customers 
from the manufacturing, converting, and distribution facilities should not 
exceed the predicted customer demand. Hence, the deviational variables 

5
+d kp are included in the minimization objective function.
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In the multi-criteria problem, the objective is to minimize the weighted sum 
of the deviations from the target values defined for each goal. As presented in 
Equation 3.19, the objective function considers the minimization of the under-
achievement of the profit, overall strategic factor value, and demand fulfillment 
targets, as well as any deviations (overachievements) above the lead time and 
risk targets. Note that for the demand fulfillment component of the objective 
function, the sum of all the deviational variables 5

−d kp, is arithmetically averaged 
based on the total number of markets and product combinations with customer 
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demand greater than zero, which is given by the product of the cardinality of 
the sets MKS and PRS such that Dkp > 0 for all k, p. This result is then weighted 
as a component of the GP objective function. Similarly, the sum of the lead time 
deviational variables 2

+d k is averaged arithmetically based on the number of 
markets in the network with customer demand. This is the given by the cardi-
nality of the set MKS such that Dkp > 0 for all k, p.

3.3.3.3.7 GP Objective Function
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For the weighted objective GP formulation, scaling of the goals is neces-
sary for proper optimization. Note that the goal constraints explained here 
are in different units of measure and can significantly vary in magnitude. 
For example, gross profit can be in millions of currency units, lead time may 
be from single to no more than double digits, demand fulfillment is a per-
centage amount, and risk and strategy are single digit measures. The formu-
lation uses the goals’ target values for scaling purposes, assuring that the 
deviational variables vary between 0 and 1. The group weights obtained in 
Table 3.9 are used in Equation 3.19. Thus, the objective function minimizes 
the weighted sum of the scaled deviational variables.

3.3.3.4 Model Constraints

The model constraints represent the distribution and production capacities, 
mass and flow balance, and binary variables relationships.

3.3.3.4.1 Distribution Capacity Utilization

Equation 3.22 states that the total volume shipped from each distribution 
center j to other distribution centers l and customer zones k cannot exceed its 
capacity SCj, stated in cubic meters. Specific mass factors are considered for 
each product p and specific arc (j, l) and (j, k).
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3.3.3.4.2 Flow Balance at Semi-Finished Manufacturing

Equation 3.23 represents the balance required between flows, in and out, 
given the production volumes at a manufacturing facility h, corresponding 
shipments to converting facilities i, and sales of semi-finished products to 
customer zones k, considering mass conversion factors. These balance con-
straints are enforced only for the products p defined as part of the set PRSS.
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3.3.3.4.3 Flow Balance at Conversion Facilities

Similarly, Equations 3.24 and 3.25 show the balance constraints required 
between flows, in and out, given the production volumes at a converting 
facility i, any amount received from a manufacturing facility h, when appli-
cable, corresponding shipments to distribution facilities j, and sales of fin-
ished products to customer zones k. Note that Equation 3.24 represents the 
flow balance for specific products p for which converting facilities receive 
semi-finished goods from manufacturing facilities. In contrast, Equation 3.25 
applies only for products that have a one-stage production process.
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3.3.3.4.4 Flow Balance at Distribution Centers

At the distribution centers, the flow balance constraints are defined for 
facilities that receive goods from both production facilities and other dis-
tribution centers (Equation 3.26) or only from other distribution centers 
(Equation 3.27). These flows are balanced with the shipments out to cus-
tomer zones k or to other distribution facilities. Note that several distribu-
tion echelons may be necessary to fulfill demand at some markets.
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3.3.3.4.5 Manufacturing and Conversion Capacity

The production capacity at the manufacturing and converting facilities is 
given by the total number of hours of operation available for each production 
line t, represented by MCht and CCit. The volumes produced for each product 
p at each production line t, have specific productivity rate MPThpt and CPTipt, 
that give the total required load for the machines. As stated by Equations 
3.28 and 3.29, the total required load must be less than or equal to the total 
number of hours available for a machine t, if the machine is operating, which 
is determined by the value of the binary variables (1)γ ht  and (2)γ it .
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3.3.3.4.6 Distribution Capacity

Equation 3.30 represents the shipping capacity constraint, in cubic meters, 
for the flows out of the distribution facility j, provided it is open.
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3.3.3.4.7 Manufacturing and Conversion Binary Decision Variables

Equations 3.31 and 3.32 ensure that a production line t is not active if the 
associated manufacturing facility h or converting facility i is not open. 
However, when a facility is open, the production lines are not necessarily 
active; they may or may not operate depending on the production needs.

 h MFS t CTSM
ht h hγ ≤ δ ∈ ∈, for all ,(1) (1)  (3.31)

 i CFS t CTSCit i iγ ≤ δ ∈ ∈, for all ,(2) (2)  (3.32)
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3.3.3.4.8 Production Expansions Binary Decision Variables

Equations 3.33 and 3.34 ensure that a new production line t, proposed as 
a capacity expansion, is activated only when all the existing machines of 
similar technology t are operating. If at least one production line of type t is 
idle at a given plant, then no capacity expansion can be done. Note that these 
constraints can be relaxed if the analyst wants to evaluate the replacement of 
equipment. In such a case, new production lines could be opened even when 
the existing equipment is idle.

 γ ≤ γ ′ ∈′ ′h t t MFSTT
ht ht htt, for all ( , , )(1) (1)  (3.33)

 γ ≤ γ ′ ∈′ ′i t t CFSTT
it it itt, for all ( , , )(1) (1)  (3.34)

Finally, Equations 3.35 and 3.36 make sure that at least one production line 
t is active, in order to open a manufacturing facility h or converting facility i.

 ∑γ ≥ δ for all(2) (2) iit

t

i  (3.35)

 ∑γ ≥ δ hht

t

h for all(1) (1)  (3.36)

All the decision variables are continuous and nonnegative, except for (1)δh , 
(2)δi , and (3)δ j  that are binary variables, defined as 1 if facility is open and 0 

otherwise. Similarly (1)γ ht  and (2)γ it  are defined as 1 if production line is operat-
ing and 0 otherwise.

3.4 Data Needs, Model Results, and Managerial Insights

3.4.1 Data Collection

Before conducting the analysis, significant effort was required to collect data 
of both types, historical and planned. Because of the large scale of the analy-
ses, it is important to highlight the effort dedicated to build the databases 
for the different supply chain network scenarios. Each scenario analysis 
required extracting thousands of market, finance, and operations related 
data records from the firm’s business systems as well as obtaining infor-
mation from external sources. At least three employees worked full time 
directly gathering or requesting information, as well as organizing it appro-
priately to run the optimization models. In addition, at least a dozen people 
were contacted to provide information. The historical data was obtained 
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from the company’s enterprise resource planning (ERP) system at very low 
levels of granularity to have the flexibility of aggregating it as required by 
the optimization model. Sales volume and prices were obtained at stock 
keeping unit (SKU) and customer levels and then aggregated to the product 
and customer zone level. Production volume and unit costs were extracted 
at the SKU and production line levels and then aggregated to a product for 
each production line. Plant cost information was generated at the finan-
cial account level by each cost center associated with each production line 
and then classified as plant overheads, production line fixed and variable 
costs, and raw material costs. Transportation and cross-sourcing cost was 
defined for each arc of the network at the SKU level and then aggregated 
to products. Also, mass conversion factors were determined to handle dif-
ferent volume units of measure used at the different echelons of the supply 
chain. Projected information was obtained from the company’s most recent 
business plans, including forecasted demand volume, price, and cost pro-
jections. Finally, an aggregated database consisting of approximately 75,000 
data records, including marketing, sales, production, distribution, and pur-
chasing information, was built.

The mathematical formulation was coded in ILOG and solved using a 
CPLEX solver. The optimization model consisted of approximately 7,500 vari-
ables, from which 300 were binary and around 7,000 were constraints. Three 
persons were involved in coding the models in ILOG and then using the CPLEX 
software to solve the problems. In general, optimal solutions were obtained 
very efficiently, taking less than three minutes for each scenario analysis to run.

3.4.2 Single Objective (Profit Maximization) Analysis

The model was applied to the manufacturing and distribution network of 
a leading health care and hygiene company, based on its competitive strat-
egy and corresponding customer demand projections, for a 10-year horizon. 
Initially, the analysis was executed with the primary objective of maximizing 
profits, and it consisted of three supply chain scenarios:

• Scenario 1: Determine the ability of the company to fulfill current and 
projected sales levels, based on the current supply chain network.

• Scenario 2: Evaluate how the company’s ability would be improved 
by including the potential expansions of plants and DCs already 
under consideration by the management.

• Scenario 3: Optimize the global supply chain network that would 
deliver the best results for the entire time horizon.

Under the profit maximization assumption, a single objective integer pro-
gramming problem was solved using the ILOG CPLEX Solver. The optimal 
solution gave the best values of the decision variables (defined in Section 3.3.2) 
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that would maximize the total profit for the company. The optimal values of 
the binary variables provided the following information:

• Location of new facilities (manufacturing plants, converting facilities, 
and DCs) that were to be opened and their capacities

• Status of the existing facilities—whether they have to be expanded, 
downsized, closed, or operated at the same level

The optimal values of the continuous variables provided the following 
information:

• Specific products manufactured at the plants and converting 
facilities

• Products handled by the DCs
• Optimal distribution plans for the products and customers

• Shipments from a manufacturing plant to a converting facility, to 
a DC, or directly to the customer

• Shipments from a converting facility to a DC or directly to 
customers

• Shipments from a DC to another DC or directly to customers

Based on these optimal distribution plans, the demand fulfillments for 
each customer were determined by computing the ratio of the total amount 
shipped to a customer from all sources to that customer’s estimated demand. 
Besides confirming the supply chain design decisions already made, impor-
tant outcomes for strategic investment and business tactical plans were 
obtained regarding the optimal levels of demand fulfillment, location and 
size of required facility expansions, relocation of production lines, intercom-
pany cross-sourcing, and distribution to strategies. The results of each sce-
nario will be discussed in detail in the next sections.

3.4.2.1 Scenario 1 Analysis

The Scenario 1 analysis, which considered only the existing supply chain net-
work, provided relevant results related to the ability of the current supply 
chain to support the given competitive strategy of the company. When per-
forming the analysis with current demand levels, the overall results showed a 
very close to full capacity utilization of the current facilities. Regarding struc-
tural changes, as expected from a high utilization of resources, the network 
design did not have major changes except for the closure of a small facility 
and a few inter-facility transfer production lines. However, the model sug-
gested modifications to the cross-sourcing strategy. Also, when considering 
the future demand, the overall results showed that the current supply chain 
design could fulfill only 70% of the total projected demand, and that it was 
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restricted primarily by the production and distribution capacities. The model 
used the production and distribution capacities for the most profitable com-
binations of products and markets, clearly identifying potential shortages in 
specific products and markets.

3.4.2.2 Scenario 2 Analysis

Analysis of Scenario 2 included capacity expansions in the production and 
distribution facilities already considered by the management. Close to a dozen 
new production lines were planned to be installed within a two-year hori-
zon to increase production capacity of different products. Although manage-
ment had already decided on the location of these machines, multiple options 
were allowed in the model to confirm their choices. The results showed that 
the majority of the chosen locations for the production lines were optimal, 
while others had no significant differences between the chosen location and 
the optimal location. Although the locations were the best to maximize profit, 
the supply chain network was capable of meeting only 85% of the projected 
demand, even after all the approved expansions. Again, the model identified 
clearly where the demand shortages would occur.

3.4.2.3 Scenario 3 Analysis

For Scenario 3, it was necessary to first perform an assessment of the physi-
cal feasibility and strategic convenience of expansions at each of the current 
facilities. Different levels of expansions were also considered—expanding 
a facility by incorporating a new machine to the existing infrastructure 
or acquiring additional support equipment, additional building construc-
tion, land, and so on. In addition, locations for potential new facilities 
were determined based on the opinions of senior management. Similar 
 evaluation was performed for the distribution centers as well. With this 
information, multiple expansion alternatives were incorporated into the 
database in the optimization analysis. The results of the Scenario 3 analysis 
provided optimal levels of production, distribution, and sales, in order to 
maximize the profits. The optimal demand fulfillment ratio increased from 
85% in Scenario 2 to 96% in Scenario 3, again highlighting specific product/ 
market combinations that were not profitable. This opened up opportuni-
ties to improve business practices in the company.

3.4.2.4 Other Results

Another outcome very important for investment planning was the determi-
nation of the specific location and size of the required expansions or openings 
of new facilities for different technologies and products. For some products, 
where economies of scale are more important due to large fixed costs involved 
in the manufacturing process, the model suggested centralizing the manu-
facturing at key regional facilities and closing some of the smaller facilities in 
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other countries. For other products, where the operational and technological 
advances had made the operation of the local plants economically feasible, 
the model suggested not expanding the regional plants but adopting a local 
production strategy to save in freight and cross-sourcing costs. The model 
suggested not only new expansions but also relocation of assets among 
existing facilities. In addition, the model was useful in determining the need 
for production lines with new technologies as demand for new technology 
products increases and that for old technology products decreases.

Based on the optimal supply chain design, optimal distribution strategies, 
including cross-sourcing and distribution for each product, were obtained. 
The distribution plans gave the optimal flow of products through the sup-
ply chain from the manufacturing facilities to the customers. This analysis 
involved decisions on the selection of production lines to produce products, 
sourcing strategy for converting facilities, allocation of distribution centers to 
production facilities, and on allocation of customer zones to either distribu-
tion centers or production facilities. The model suggested a more centralized 
distribution strategy for customers in two groups of countries, where favor-
able geographic conditions and trade agreements exist. This implied closing 
the local warehouses and opening an expanded regional distribution center. 
The aforementioned results were critical—for determining strategic actions as 
well as for developing tactical business plans.

3.4.3 Multi-Criteria Analysis

In order to enhance the initial analysis of the profit maximization model, a 
multi-criteria supply chain optimization model was solved by adding objec-
tives on demand fulfillment, lead time, sourcing risk, and strategic factors 
(defined in Section 3.3.3). The weights and preferences obtained earlier from 
the DMs (Table 3.11) were used in solving the GP models. The results obtained 
in this analysis are similar to the ones generated for the single objective 
model. However, important differences in the supply chain network design 
occurred primarily due to the inclusion of the lead time and risk criteria. Also, 
the size of the facility expansions was affected by the demand fulfillment 
 criterion. In addition, the results led to a trade-off analysis among the conflict-
ing decision criteria. Significant differences in the optimal supply chain net-
work design between the multi-criteria model and the single objective profit 
maximization model are discussed as follows:

 1. The profit maximization model suggested adopting a centralized 
distribution strategy for some countries. The multi-criteria model 
suggested a decentralized structure. This change was primarily due 
to the relative importance given to the lead time criterion. Evidently, 
a trade-off exists between the profit and lead time criteria. Based on 
the model results, the marginal benefits in profits may not justify 
reduction in customer service levels. More specifically, the savings 
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from efficiencies gained from economies of scale and risk pooling 
are partially offset by higher transportation costs, making the mar-
ginal benefit not large enough to justify a decrease in the responsive-
ness to customers. The risk of serving local markets increased with 
the centralized approach because the probability of supply chain 
disruptions is higher due to increased foreign sourcing, longer inter-
company routes, and greater lead times.

 2. The multi-criteria model suggested keeping specific facilities open 
in countries where having local production facilities was crucial for 
minimizing supply chain disruptions when serving local customer 
zones. Previously, results from the single criterion optimization 
(focused on maximizing profit) considered closing facilities in these 
countries. However, when considering the high values of the WACC 
of the firm and the risk assessments obtained from the DMs, which 
were driven primarily by the current political instability in those 
countries, the optimal solution recommended keeping the facilities 
open regardless of profit implications.

 3. Strategic factors had less impact on the supply chain network design 
because there were no significant differences in the assessed values 
among the facilities. However, the results from the multi-criteria 
models were different in two cases. In one case, the multi-criteria 
model resulted in opening a production facility with a very high 
strategic rating. The profit maximization model considered closing 
that facility due to the cost. In another case, one of the new produc-
tion facilities opened by the profit maximization model was closed 
in the multi-criteria model. This was due to the fact that its strate-
gic rating was very low compared to the second sourcing option for 
that specific country, which had a larger regional plant with a higher 
strategic rating. The profit maximization model only focused on 
marginal benefit in profit.

 4. In the multi-criteria model, the overall demand fulfillment ratio 
increased to 99% with some reduction in profits. A valuable outcome 
of this analysis was the trade-off evaluations for specific product–
market combinations where increases in sales reduced profitability. 
These insights led to valuable managerial implications for the evalu-
ation of the company’s competitive strategy.

3.5 Conclusions

This chapter provided relevant insights from modeling to the implementa-
tion of designing a resilient global supply chain network. The multi-criteria 
mixed-integer linear programming model provided robust solutions for 
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supporting strategic decisions related to the design of supply chain networks 
and tactical plans for manufacturing and distribution within a highly com-
plex global environment. The models focused on optimizing multiple con-
flicting criteria, such as financial, customer service, risk, and strategic factors. 
These models were able to handle the complexity of the system (i.e., multiple 
products sold in several markets in different countries that required dealing 
with different currencies and commercial practices). Decisions regarding the 
optimal location, relocation, and allocation of production and distribution 
facilities as well as specific assets were efficiently addressed.

The case study illustrated several real-world applications. First, the analysis 
evaluated the current supply chain network and optimized the production 
and distribution flows within the given network. From the Scenario 1 analysis, 
it was possible to determine the maximum demand fulfillment potential of 
the current structure, understand the firm’s supply chain design limitations, 
and to identify opportunities for future business growth. Scenario 2 consisted 
of running the optimization model with the approved future capacity expan-
sions. This analysis was very valuable to the firm in reviewing the decisions 
made earlier but not yet implemented. Finally, the Scenario 3 analysis deter-
mined several alternative modifications to the current supply chain structure 
based on the judgments of the senior management and then performed opti-
mization to obtain the best supply chain structure as well as cross-sourcing 
strategies. Different analyses were performed with different objectives—some 
focused on profitability, some on supply chain disruption risk, and others on 
a combination of criteria. The models were capable of delivering optimal solu-
tions for large-scale applications with many products, dozens of facilities, and 
hundreds of assets and markets.
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4
A Two-Phased Approach to Multi-Objective 
Supply Chain Design and Operation

Christopher J. Solo
The Pennsylvania State University, University Park, Pennsylvania

4.1 Approaches to Multi-Objective Supply Chain Problems

Supply chain designers and managers potentially face a wide array of chal-
lenges, such as uncertain costs and unpredictable demand, when develop-
ing a supply chain’s infrastructure and determining optimal production, 

CONTENTS

4.1 Approaches to Multi-Objective Supply Chain Problems .......................85
4.2 Two-Phased Mathematical Model for Supply Chain 

Design and Operation ................................................................................. 87
4.3 Strategic Submodel ...................................................................................... 91

4.3.1 Strategic Submodel Objective Function ........................................ 92
4.3.1.1 Strategic Submodel Costs ................................................. 93

4.3.2 Strategic Submodel Constraints ..................................................... 96
4.3.3 Strategic Submodel Summary ..................................................... 101

4.4 Tactical Submodel ...................................................................................... 104
4.4.1 Additional Notation ...................................................................... 105
4.4.2 Tactical Submodel Goal Constraints ........................................... 106

4.4.2.1 Profit Optimization Goal Constraint ........................... 106
4.4.2.2 Total Weighted Transit Time Goal Constraint ............ 109
4.4.2.3 Customer Demand Nontraditional Goal Constraint .....109

4.4.3 Tactical Submodel Regular Constraints ..................................... 110
4.4.4 Tactical Submodel Objective Function........................................ 114
4.4.5 Tactical Submodel Summary ....................................................... 116

4.5 Case Study .................................................................................................. 119
4.5.1 Model Input .................................................................................... 120
4.5.2 Model Outputs and Results .......................................................... 123

4.6 Managerial and Planning Implications .................................................. 128
References ............................................................................................................. 128



86 Multiple Criteria Decision Making in Supply Chain Management

shipment, and inventory quantities. To complicate matters, they are also 
charged with meeting objectives other than maximizing profit, such as min-
imizing transportation time. Fortunately, given the wide array of available 
multiple objective optimization techniques—many of which receive addi-
tional managerial attention through decision maker participation—supply 
chain designers and operators have the ability to model and solve sup-
ply chain problems in a way that very accurately reflects real-world busi-
ness goals. Although the literature is ripe with an extensive array of single 
objective supply chain models and solutions, many authors (e.g., Beamon 
1998) have also recognized the advantages of considering multiple objec-
tives when developing solutions to supply chain problems. For instance, 
Sabri and Beamon (2000) use the ε-constraint method to handle the con-
flicting objectives of cost, customer service levels (fill rates), and volume/
delivery flexibility in a two-stage supply chain problem under production, 
delivery, and demand uncertainty. Attai (2003) proposes a deterministic 
multi-criteria supply chain model that seeks to optimize facility locations, 
production quantities, shipment amounts, shipment routes, and inventory 
levels. This mixed integer model, solved using both a weighted objective 
method and compromise programming, considers profits, lead times, and 
local incentives. Local incentives, in this case, refer to labor quality, tax 
breaks, loans, and customer buying power (see Melachrinoudis and Min 
2000). Min and Zhou (2002) provide a brief overview of several supply chain 
papers that consider multiple objectives. Ashayeri and Rongen (1997) con-
sider the problem of optimally locating distribution centers and apply the 
ELECTRE solution method. This effort was extended to the multi-period 
case by Melachrinoudis and Min (2000). Melachrinoudis et al. (2000) con-
sider a problem similar to the one addressed in Melachrinoudis (1999), this 
time using physical programming, in which a decision maker expresses 
criteria preferences in terms of degrees of desirability. In a shift from tra-
ditional multi-objective techniques, Altiparmak et al. (2006), Al-Mutawah 
et al. (2006), and others show how genetic algorithms can be used to pro-
vide a set of optimal or near-optimal solutions to a supply chain design 
problem.

More recently, Cintron et  al. (2010) report on an application of a multi- 
criteria model for designing the distribution network for a major consumer 
products company. Due to globalization, supply chain networks have 
expanded beyond national boundaries, with suppliers, distribution centers 
(DCs), and manufacturing plants located all over the world. This expansion 
makes the supply chain more vulnerable to disruptions in different countries 
(Ravindran and Warsing 2013). Indeed, Ravindran et al. (2010) and Bilsel and 
Ravindran (2011, 2012) have developed multiple objective models for global 
sourcing considering disruption risk, and Rienkhemaniyom and Ravindran 
(2014) have formulated goal programming models for designing global sup-
ply chain networks incorporating disruptions at facilities (e.g., plants, DCs, 
and suppliers) and transportation links.
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Although the aforementioned multi-criteria optimization techniques can 
be used to pursue multiple objectives in a supply chain scenario, the method 
of choice should be one that readily provides optimal solutions while accom-
plishing the following: (1) placing a minimum amount of input burden on 
the decision maker and (2) remaining straightforward and easily described 
to the decision maker, allowing him to gain a sufficient level of confidence in 
both the technique and accompanying solution. In many scenarios, decision 
makers require a solution based upon a simple prioritization of goals. A fur-
ther requirement may include the flexibility to quickly explore alternate solu-
tions based upon a reprioritization of goals. Alternatively, a decision maker 
may wish to formulate and optimize a supply chain problem in which a 
particular relative importance has been placed upon the various goals. One 
method that allows for such solution analysis is goal programming, and this 
technique will be addressed later in the chapter.

4.2  Two-Phased Mathematical Model for Supply Chain 
Design and Operation

The remainder of this chapter describes the formulation of a mathematical 
model developed to aid supply chain managers in the design and operation 
of a single product, multi-echelon, production–distribution network of sup-
pliers, plants, warehouses, and customer markets. The problem considered 
here consists of designing the supply chain infrastructure (i.e., selection of 
suppliers, plants, production capacities, and warehouses) and determining 
the raw material, production, and inventory quantities needed to optimize 
profits, supply chain response time, and customer service levels (in terms of 
demand fulfillment) over a specified planning horizon when all input data 
is assumed to be known with certainty. In the design phase of the problem, 
where time periods are assumed to be in the one- to five-year range, manag-
ers wish to develop the framework for a production–distribution network 
that will achieve the maximum possible profit while ensuring market deliv-
eries do not exceed forecasted customer demand. In the operational phase of 
the supply chain problem, it is assumed that time periods are in the three- to 
twelve-month range, that raw material and finished product transit times will 
become available, and that raw material availability, various costs, and cus-
tomer demand are known with higher resolution (i.e., in terms of shorter time 
periods). In this phase, managers seek to make additional supplier selections 
and determine the best compromise raw material, production, inventory, and 
finished product shipment quantities necessary to achieve or exceed a speci-
fied profit level, minimize supply chain response time, and to come as close 
as possible to exactly meeting customer demand, all within the confines of 
the infrastructure developed in the design phase. In solving this complex 
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problem, a two-phase, multi-objective, deterministic supply chain model, 
comprised of a strategic submodel and a tactical submodel, is developed to 
provide a strategic/tactical-level planning tool for the design and operation 
of a multi-echelon supply chain over a given planning horizon. The strategic 
submodel, represented by a multi-period mixed integer linear program, is 
formulated to determine the following: (1) supplier selections for critical raw 
materials, (2) plant construction decisions, (3) plant and warehouse operating 
decisions, and (4) necessary production capacities (based on optimal produc-
tion quantities). While determining these elements of the supply chain, the 
strategic submodel is designed to achieve two conflicting objectives: (1) maxi-
mize the overall profit for the supply chain and (2) ensure market deliveries 
do not exceed demand. Although the profit objective is pursued through an 
objective function, the limits on deliveries are in fact achieved through the 
inclusion of a set of straightforward demand constraints.

Using the critical raw material supplier selections and infrastructure 
design decisions made in the solution to the strategic submodel; newly 
available raw material and finished product transit times; newly available 
supplier-specific, noncritical raw material availability and cost information; 
higher resolution demand data; and higher resolution production, storage, 
and shipping costs as inputs; the tactical submodel is then formulated as 
a linear goal programming model and solved to select suppliers of non-
critical raw materials and determine (revised) best compromise production, 
shipment, and inventory quantities while seeking to achieve the following 
conflicting objectives: (1) exactly meet customer/market demand, (2) meet or 
exceed a specified profit goal, and (3) minimize supply chain response time. 
Figure 4.1 depicts the inputs, outputs, and objectives of the strategic and tac-
tical submodels and shows the interconnectivity of the two submodels.

The index sets used in this model are defined as

i for raw materials (i = 1, …, I);
k for suppliers (k = 1, …, K);
m for plants (m = 1, …, M);
n for warehouses (n = 1, …, N);
p for markets (p = 1, …, P);
t for time periods (t = 1, …, T).

The data used in this model are represented by

ai units of raw material i needed to produce one unit of finished 
product;

cikt
R  cost per unit of (critical) raw material i purchased from supplier 

k in period t;
avcit

R average cost per unit (across all potential suppliers) of 
( noncritical) raw material i purchased in period t;

cmt
CON cost to build a plant of capacity Um at location m in period t;
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cmt
FP production cost per unit of finished product at plant m in period t;

+cmt
PQ  cost per unit of production quantity increase at plant m in period t;

−cmt
PQ  cost per unit of production quantity decrease at plant m in 

period t;
cikmt

SRP shipping cost per unit of (critical) raw material i from supplier k 
to plant m in period t;

avcimt
SRP average shipping cost per unit (across all potential suppliers) of 

(noncritical) raw material i to plant m in period t;

Objectives

Output

 Input

 Input
Tactical

submodel

Output

Operations

Higher-resolution
data

All raw material availability
and costs (supplier-specific)
Operating, production, storage,
and shipment costs
Raw material and finished
product transit times
Customer demand

Input

Strategic
submodel

 Initial data

Infrastructure

 Critical raw material availability and costs (supplier-specific)
 Noncritical raw material availability and costs (marketwide)
 Construction, operating, production, storage, and shipment costs
 Customer demand

Critical raw material supplier selections
Plant and warehouse locations
Production capacities
Optimal profit goal

Achieve/exceed profit goal
Meet demand exactly
Minimize response time

Noncritical raw material supplier selections
Raw material shipment and inventory quantities
Finished product production, inventory,
and shipment quantities
Best compromise profit level

 Maximize profits
 without exceeding
 market demand

Objective

FIGURE 4.1
Inputs and outputs of strategic and tactical submodels.
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cmnt
SFW shipping cost per unit of finished product from plant m to 

warehouse n in period t;
cnpt

SFM shipping cost per unit of finished product from warehouse n to 
market p in period t;

cimt
HRP holding cost per unit of raw material i held at plant m in period t;

cmt
HFP holding cost per unit of finished product held at plant m in 

period t;
cnt

HFW holding cost per unit of finished product held at warehouse n in 
period t;

fmt
P  fixed cost of operating plant m in period t;

fnt
W fixed cost of operating warehouse n in period t;

Cikt
RS availability (units) of (critical) raw material i from supplier k in 

period t;
Cit

RS total market availability (from all potential suppliers) of 
(noncritical) raw material i in period t;

Um maximum possible production capacity (units) of finished 
product at plant m;

υm minimum production quantity required for plant m to remain 
open in a given period;

qn minimum number of units required in storage in a given period 
in order for warehouse n to remain open;

Rm
PLANT outbound shipping capacity at plant m in each period;

Rn
INW inbound shipping capacity at warehouse n in each period;

Rn
OUTW outbound shipping capacity at warehouse n in each period;

Cimt
HRP holding capacity (units) of raw material i at plant m in period t;

Cmt
HFP holding capacity (units) of finished product at plant m in 

period t;
Cnt

HFW holding capacity (units) of finished product at warehouse n in 
period t;

rim0 initial (known) inventory of raw material i at plant m;
gim0 initial (known) inventory of finished product at plant m;
hn0 initial (known) inventory of finished product at warehouse n;
hFIN fraction of final period’s total demand required in ending 

inventory;
xm0 initial production quantity at plant m;
dpt demand for finished product in market p in period t;
SFP sales price per unit of finished product.

The decision variables used in this model are

wikmt quantity of (critical) raw material i shipped from supplier k to 
plant m in period t;

wimt quantity of (noncritical) raw material i shipped from all potential 
suppliers to plant m in period t;

xmt quantity of finished product produced at plant m in period t;
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emt unrestricted production quantity change from period t − 1 to 
period t;

+emt increase in production quantity from period t − 1 to period t;
−emt decrease in production quantity from period t − 1 to period t;

ymnt quantity of finished product shipped from plant m to warehouse 
n in period t;

znpt amount of finished product shipped from warehouse n to 
market p in period t;

rimt amount of raw material i held in inventory at plant m in period t;
gmt amount of finished product held in inventory at plant m in 

period t;
hnt amount of finished product held in inventory at warehouse n in 

period t;

α






k i t
ikt

1 if supplier is selected to provide raw material in period

0 otherwise
;

β






m t
mt

1 if plant is in operation in period

0 otherwise
;

δ






n t
nt

1 if warehouse is open in period

0 otherwise
;

φ






U m t
mt

m1 if a plant of capacity is to be built at site in period

0 otherwise
.

The following sections describe the sequential development and solution 
of the strategic and tactical submodels.

4.3 Strategic Submodel

The strategic submodel, formulated as a mixed integer linear program, is 
developed as a tool to aid supply chain managers in designing the infrastruc-
ture of a multi-echelon manufacturing and distribution network. The solu-
tion to this submodel provides optimal selections of critical raw material 
suppliers, plant construction decisions, plant and warehouse operating loca-
tions, and optimal production quantities (to be used in the determination of 
production capacities for the tactical submodel). At the same time, supply 
chain profit is maximized while market deliveries are limited to forecasted 
demand. As a strategic model, this submodel applies to long-term planning 
and is appropriate for time periods in the one- to five-year range. In fact, 
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supply chain managers might find it useful to run the strategic submodel 
once per year in order to validate the strategic-level decisions made in the 
design phase of the problem. However, this submodel is readily adaptable 
for shorter or longer periods.

A unique characteristic of this supply chain design and operation problem 
concerns the two-phase supplier selection process. Following the modern 
trend of establishing strategic partnerships with suppliers of critical materials, 
supply chain managers wish to make critical raw material supplier selections 
as soon as possible (i.e., during the supply chain design phase.) Because non-
critical raw materials are assumed to be more readily available on the market, 
supplier selection decisions for these materials can be made more frequently 
and are deferred until supply chain operational decisions are considered. It is 
assumed that when first designing the supply chain infrastructure, supplier-
specific information pertaining to raw material availability and costs is limited 
to those raw materials deemed as critical; for noncritical raw materials, only 
overall market availability is known in terms of the total availability of each 
raw material type across all potential suppliers (in each period). Furthermore, 
only estimated purchasing and shipping costs for each noncritical raw mate-
rial type (across all potential suppliers) are assumed to be available during this 
phase. However, supply chain managers expect to obtain supplier- specific, 
noncritical raw material availability and cost data within a given amount of 
time, presumably once supply chain design decisions are made. Therefore, 
with such raw material availability and cost information, the strategic sub-
model is used to determine the supply chain infrastructure and make criti-
cal raw material supplier selection decisions, while the tactical submodel uses 
inputs from the solution to the strategic submodel, various higher resolution 
cost and demand data, newly acquired raw material and finished product 
transit times, and supplier-specific, noncritical raw material availability and 
cost data to determine best compromise supplier selections (for noncritical raw 
materials) and revised production, inventory, and shipping quantities.

4.3.1 Strategic Submodel Objective Function

Throughout the development of the overall model, profit is defined as total 
supply chain revenue (TR) minus total supply chain cost (TC). In the strategic 
submodel, profit is expressed as

 ProfitSTR = TRSTR – TCSTR. (4.1)

Here, TRSTR is calculated by multiplying the finished product unit sales 
price by the total number of finished product units sent to all markets over 
the entire planning horizon. In other words,
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The costs associated with this supply chain include plant construction 
costs, plant and warehouse fixed operating costs, raw material costs, vari-
able production costs, production quantity change costs, shipping costs, 
and holding costs. The total cost for a given planning horizon can then be 
expressed as the sum of these respective costs:

 
= + + +

+ + +

TC CN FC RM PC

PQ SC HC

STR STR STR STR STR

STR STR STR .
 (4.3)

The following subsection describes the formulations of these various costs.

4.3.1.1 Strategic Submodel Costs

A one-time cost cmt
CON is associated with the construction of a plant of capac-

ity Um at each location m. In fact, overall construction costs are expressed as

 ∑∑= φ
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,
11

CN cSTR
mt
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mt
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m
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 (4.4)

where the binary variable ϕmt indicates whether or not a plant of capacity Um 
is to be built at location m in period t.

In the strategic submodel, fixed operating costs, such as utility charges, are 
incurred in each period that plant m is used for production, and warehouse 
n is used to hold inventory. That is,

 ∑∑ ∑∑= β + δ
== ==

.
11 11

FC f fSTR
mt
P

mt

t

T

m

M

nt
W

nt

t

T

n

N

 (4.5)

In this scenario, it is assumed that a limited number of suppliers have 
the capability to provide critical raw materials, while numerous suppliers 
can provide noncritical raw materials. Moreover, each potential supplier 
of critical raw materials is capable of providing any/all of the necessary 
critical and noncritical raw materials, while each potential noncritical 
material supplier is capable of providing any/all of the required noncritical 
materials. Following the increasingly common business practice of devel-
oping strategic partnerships with suppliers of critical materials, suppliers 
who will provide critical components or materials (or both) are selected 
in the solution to the strategic submodel. In contrast, suppliers provid-
ing more common, less critical components or materials (or both) will be 
selected more frequently and only once more detailed supplier informa-
tion becomes available. Hence, these supplier selections are made using the 
tactical submodel. For critical components/materials and their suppliers, 
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the acquisition and shipping costs, as well as availability by supplier and 
period, are assumed to be known during formulation of the strategic sub-
model. On the other hand, the strategic submodel does not consider indi-
vidual suppliers of noncritical components or materials (or both). Instead, 
acquisition and shipping costs, as well as availability, are assumed to be 
known only in the aggregate for noncritical materials. More precisely, for 
each type of noncritical component or material (or for both), it is assumed 
that only estimated acquisition and shipping costs (across all potential sup-
pliers, for each time period) are known and that only the broad market 
availability (across all potential suppliers, for each time period) is known. 
Therefore, in the strategic submodel, total raw material costs are calculated 
as the sum of the supplier-specific costs for critical raw materials plus the 
marketwide estimated costs for noncritical raw materials purchased over 
the entire planning horizon. That is,
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Here, critical raw materials are designated by the index range 1 through I′, 
while noncritical raw materials are represented by the index range I′ + 1 
through I. Likewise, potential suppliers of critical raw materials are desig-
nated by the index range 1 through K′, while the index range K′ + 1 through K 
designates those suppliers capable of providing only noncritical raw materi-
als. (Recall that all suppliers 1 through K are capable of providing any of the 
noncritical raw materials.)

Variable production costs are calculated as the sum of the number of units 
of finished product produced at each plant during each period times the unit 
production cost. That is,

 ∑∑=
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A production quantity change cost, related to workforce changes, the start-
up or idling of production equipment (or both), and other production fac-
tors, is incurred (at each plant) in any period in which production quantity 
either increases or decreases from the previous period. This cost (incurred in 
period t) may be expressed as

 PQ change cost = (per unit change cost) · |xmt − xmt−1|, (4.8)

where |xmt − xmt−1| represents the change in production quantity at plant m 
from period t – 1 to period t. However, the use of the absolute value operator 
here introduces the undesirable characteristic of nonlinearity into the model 
and prevents the use of separate per unit costs for production quantity 
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increases and decreases. In order to avoid this situation, an unrestricted 
variable is used in place of the difference xmt − xmt−1. That is,

 xmt − xmt−1 = emt, m = 1, …, M; t = 1, …, T. (4.9)

Moreover, the unrestricted variable emt is further defined as the difference 
of two nonnegative deviational variables:

 = − = =+ − , 1, ..., ; 1, ..., .e e e m M t Tmt mt mt  (4.10)

Hence, + −ande emt mt represent, respectively, the increase and decrease in pro-
duction quantity from period t – 1 to period t. When the costs per unit of pro-
duction quantity change are known, the total production quantity change 
cost over the entire planning horizon can be expressed as
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where + −andc cmt
PQ

mt
PQ  represent, respectively, the cost per unit of production 

quantity increase and decrease at plant m in period t. Because these costs 
are to be minimized in the objective function, only one of the deviational 
variables for each m and t will take on a positive value, with the other equal 
to zero. Furthermore, if production takes place at plant m in period 1, it is 
assumed that production increases from 0 to xm1 in the first period. Hence,

 xm0 = 0,  m = 1, …, M. (4.12)

Minimization of the aforementioned production quantity change costs 
results in the “smoothing” of production quantities (from period to period) 
over the entire planning horizon.

Shipping costs are calculated for the shipment of critical and noncritical 
raw materials from all suppliers to all plants, for the shipment of finished 
products from all plants to all warehouses, and for the shipment of finished 
products from all warehouses to all markets over the entire planning hori-
zon. Recall, however, that shipping costs for noncritical raw materials are 
known only in the aggregate in the strategic submodel and are not associ-
ated with specific suppliers. Hence, overall shipping costs are calculated as
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Holding costs for raw materials and finished products held in inventory 
at all production facilities and for finished products held in inventory at all 
warehouses are calculated as
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Because the strategic model seeks to maximize total supply chain profit, 
the objective function becomes
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4.3.2 Strategic Submodel Constraints

Maximization of profit in the supply chain is subject to various constraints 
regarding suppliers’ capacities to provide raw materials, plants’ production 
capacities, warehouses’ storage capacities, market demand, and to plant and 
warehouse flow conservation. Each of these constraint types is expressed as 
follows.

During the formulation of the strategic submodel, it is assumed that 
detailed supplier information (e.g., cost and availability) is available for 
critical raw materials. Hence, the total amount of critical raw materials pur-
chased and shipped to all plants must be less than or equal to the critical raw 
material supply capacity at each corresponding supplier during each period. 
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Hence, the critical raw material availability and supplier selection constraints 
are expressed as

 ∑ ≤ α = ′ = ′ =
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where I′ ≤ I represents the number of critical raw material types, and K′ ≤ K 
represents the number of potential suppliers of critical raw materials. 
Furthermore, the model must reflect the fact that critical raw materials can 
only be purchased from those suppliers designated as potential sources 
of critical raw materials. In other words, critical raw materials may not be 
sought from “marketwide” sources and therefore are not purchased from 
suppliers K′ + 1 through K. This restriction is imposed by declaring the 
decision variables wikmt and αikt as undefined over certain ranges in the 
overall formulation of the strategic submodel. (During numerical computa-
tion, this restriction may be addressed by assigning a value of zero to the 
appropriate supplier selection decision variables.) Additionally, because the 
selection of critical raw material suppliers during the supply chain design 
phase represents the establishment of strategic partnerships with suppliers 
of hard-to-find or sensitive materials, it is assumed that minimum purchase 
quantities are inherent to such supplier selections. Hence, the correspond-
ing constraints are expressed as

 ∑ ≥ α = ′ = ′ =
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where minwik  represents the user-defined minimum purchase quantity of raw 
material i from supplier k when supplier k is selected to provide raw material 
i in any period. (It is assumed here that minimum purchase quantities are 
constant across time periods.)

For noncritical raw materials, only broad marketwide information is 
assumed to be available during the design phase. Therefore, the total quan-
tity of each noncritical raw material purchased and shipped to all plants 
must be less than or equal to the overall market availability of each non-
critical raw material during each period. Hence, the noncritical raw material 
availability constraints are expressed as
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As with critical raw materials, the decision variable wimt is declared as 
undefined over certain ranges to reflect that the strategic submodel may not 
attempt to make noncritical raw material purchases from specific suppliers.

As part of the design phase of the supply chain problem, the strategic sub-
model determines where and when to construct plants, based on the various 
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cost and demand inputs. At each potential location m, at most one plant with 
production capacity Um may be built. In other words,

 ∑φ ≤ =
=

1, 1,..., .
1

m Mmt

t

T

 (4.19)

Obviously, a plant must have been constructed at location m in order for it 
to operate there. Hence, the following constraint is added:

 ∑φ ≥ β = =τ
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Notice that Equation 4.20 does not necessarily imply operation of a plant at 
location m in period t; instead, it simply requires plant operation to be preceded 
by or coincide with plant construction. In other words, if a plant is built at loca-
tion m in period t, operation at plant m may commence in period t or later.

Each potential plant location m may accommodate a plant with maximum 
production capacity Um. However, it is assumed that supply chain managers 
have chosen to limit plant capacity (in the design phase) to some fraction 
of maximum site capacity in order to allow for future capacity expansion. 
Hence, production at plant m in period t is limited as follows:

 xmt ≤ uUmβmt, m = 1, …, M; t = 1, …, T, (4.21)

where u represents a user-defined production capacity factor, and the binary 
variable βmt indicates whether or not plant m operates in period t. For instance, 
if supply chain managers wish to limit plant capacity to 90% of maximum 
site capacity at all potential plant locations, the production capacity factor is 
set to u = 0.90. Furthermore, in order to remain operational in period t, plant 
m must produce a minimum quantity vm of finished product. That is,

 xmt ≥ vmβmt, m = 1, …, M; t = 1, …, T. (4.22)

A function of the optimal production quantity at plant m in period t will 
be used to set production capacity for plant m over the same time span in the 
tactical submodel.

As in any supply chain scenario, this model requires the conservation 
of flow of raw materials (both critical and noncritical) through all plants. 
Hence, the following two constraints represent this conservation of flow for 
critical and noncritical raw materials, respectively:
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 rim(t−1) + wimt − aixmt = rimt, i = I′ + 1, …, I; m = 1, …, M; t = 1, …, T. (4.24)
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It is assumed that a (known) amount rim0 of each raw material i is on hand 
at each plant m at the beginning of the initial period.

Although plants’ required production capacities are not determined until 
after the strategic submodel is solved, their raw material storage capacities 
are assumed to be known with certainty. Hence, the amount of raw material 
i held in inventory at plant m during period t is limited to a known inventory 
capacity. Again, the use of the binary variable βmt indicates whether or not 
plant m is utilized in period t:

 ≤ β = = =, 1, ..., ; 1, ..., ; 1, ..., .r C i I m M t Timt imt
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As with raw materials, this model requires the conservation of flow of fin-
ished products through all plants. That is,
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As with raw materials, it is assumed that an initial (known) inventory gm0 
of finished product is on hand at each plant at the beginning of the initial 
period.

As is the case with raw material storage capacities at each plant, the fin-
ished product storage capacities are assumed to be known. Hence, the num-
ber of units of finished product held in inventory at plant m during period t 
is limited to a known inventory capacity. Again, a binary variable is used to 
indicate whether or not plant m is utilized in period t:
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Additionally, it is assumed that plant m must be in operation in period t 
in order for it to be able to ship finished products to the open warehouses in 
period t. Moreover, if plant m is operational in period t, it is assumed to have 
outbound shipment capacity Rm

PLANT. In other words,
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Similar to the previous conservation of flow requirements, the warehouse 
inventory of finished products must meet this requirement as follows:
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It is assumed that an initial (known) inventory hn0 of finished product is on 
hand at each warehouse at the beginning of the initial period.
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Furthermore, warehouse n must be open in period t to receive shipments 
of finished products from the operational plants. Hence,
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where Rn
INW represents the inbound shipping capacity of warehouse n in each 

period, and the binary variable δnt is used to indicate whether or not ware-
house n is open during period t.

The number of units of finished product held in inventory at warehouse n 
during period t is limited to a known inventory capacity. Hence,

 ≤ δ = =, 1, ..., ; 1, ..., .h C n N t Tnt nt
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Furthermore, if warehouse n is open in period t, it must store at least qn 
units of finished product in that period. That is,

 hnt ≥ qnδnt,  n = 1, …, N; t = 1, …, T. (4.32)

Note, however, that this minimum storage requirement may be set to zero 
to reflect “crossdocking” operations at the warehouses. Additionally, each 
open warehouse has a defined outbound shipping capacity Rn

OUTW. Hence,
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Because supply chain operations are expected to continue beyond the ini-
tial planning horizon considered in the model, a predefined finished prod-
uct quantity is required to remain in inventory during the final time period. 
Specifically, the sum of the finished product inventory remaining in all 
plants and warehouses during the final period must be equal to or greater 
than some fraction of the final period’s total demand. In other words,
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where 0 ≤ hFIN ≤ 1.
During the design phase, managers seek to build a supply chain infrastruc-

ture that will fulfill but not exceed demand through deliveries to customer 
markets. In other words, the number of units of finished product shipped 
from all warehouses to market p during period t must be less than or equal 
to demand at market p in period t. That is,
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4.3.3 Strategic Submodel Summary

Now, the overall strategic submodel formulation becomes
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This submodel involves T(2I′K′ + 2IM + I − I′ + 8M + 5N + P) + 2M + 1 
constraints and T(7M + 2N + 2IM − I′M + I′K′M + MN + NP + I′K′) decision 
variables, of which T(I′K′ + 2M + N) are integer (binary) variables. Clearly, 
the greatest impact to the size of the strategic submodel would result from a 
change in the number of time periods. For example, doubling the number of 
time periods would double the overall number of variables and nearly dou-
ble the number of constraints. Depending on data availability and software 
limitations, care should be taken when considering any significant increase 
in the number of time periods considered in this submodel.

When data related to costs, capacities, and demand are available, this mixed 
integer linear program can be solved using a variety of commercially available 
solvers. Once solved, the strategic submodel provides managers with opti-
mal figures for the following supply chain infrastructure planning elements: 
(1) critical raw material supplier selections, (2) plant construction decisions, 
(3) locations of operating plants and warehouses for each period, (4) input for 
production capacity requirements, and (5) a profit goal. The tactical submodel, 
whose formulation is described in the next section, uses these elements (along 
with revised cost and other data) as inputs and provides as outputs the follow-
ing best compromise supply chain operational planning elements: (1) noncriti-
cal raw material supplier selections; (2) raw material shipments and inventory 
quantities; (3) finished product production, shipment, and inventory quanti-
ties; and (4) a profit figure. Even though optimal purchase, production, inven-
tory, and shipment quantities for both raw materials and finished products 
are determined in the solution to the strategic submodel, these quantities are 
overridden by the solution to the tactical submodel.
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4.4 Tactical Submodel

In the two-phase construct of the overall supply chain model, it is assumed 
that only limited information is available to supply chain managers during 
the design phase. Once supply chain infrastructure decisions have been made, 
however, higher resolution cost and demand data, supplier-specific noncriti-
cal raw material data, and inter-echelon transit times for raw materials and 
finished products become available to supply chain designers and operators. 
Therefore, once the solution to the strategic submodel has indicated the opti-
mal critical raw material supplier selections and determined the general infra-
structure of the supply chain, the tactical submodel is formulated and solved 
to select suppliers of noncritical raw materials and to determine (revised) best 
compromise production quantities and raw material and finished product 
shipment and inventory quantities. In order to connect the two submodels, 
the critical raw material supplier selections, plant and warehouse locations, 
and optimal production quantities determined in the strategic submodel are 
used as inputs to the tactical submodel, with user-defined functions of the 
optimal production quantities determined in the solution to the strategic sub-
model utilized as production capacity limits in the tactical submodel.

During the operational phase of this supply chain scenario, managers pres-
ent the additional objective of minimizing the overall supply chain response 
time. This objective, interpreted here as minimizing total weighted transit 
time for raw material and finished product shipments, may be particularly 
important for perishable materials or products, such as foodstuffs and medi-
cines. In order to achieve this objective, it is assumed that detailed raw mate-
rial and finished product transportation times among the various echelons 
of the supply chain become available to planners once the infrastructure has 
been determined via the solution to the strategic submodel. Furthermore, it 
is assumed that supply chain managers now wish to exactly meet customer/
market demand in an effort to avoid shortages (i.e., customer dissatisfaction) 
and overproduction (i.e., wasted surplus). At the same time, managers are 
able to develop a profit target based on the optimal profit figure determined 
in the solution to the strategic submodel. As such, the tactical submodel is 
designed to reflect the desire of supply chain managers to minimize devia-
tions from the profit, demand, and response time targets to the greatest extent 
possible. Therefore, because multiple, nonrigid objectives are considered in 
the tactical submodel, linear goal programming is adopted  as an appro-
priate optimization technique for this problem. A significant advantage to 
this technique stems from the inclusion of goal constraints, which allow for 
deviations from the objectives’ target values without rendering the entire 
solution infeasible. Hence, the three objectives of meeting or exceeding a 
certain profit level, exactly meeting customer demand, and minimizing total 
weighted transit time are expressed as traditional and nontraditional goal 
constraints in the tactical submodel. Because goal programming objective 
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functions include the minimization of deviations from stated target values, 
the goal and regular constraints are presented here first, followed by the 
formulation of the deviation-minimizing objective function.

It is assumed in this supply chain scenario that inputs available to the tacti-
cal submodel include newly obtained supplier-specific, noncritical raw mate-
rial information, higher resolution cost and demand information (based on 
shorter time periods than those used in the strategic submodel), and detailed 
raw material and finished product transportation times among the various 
supply chain elements. Because such a great amount of new and revised infor-
mation is assumed to be available after the solution to the strategic submodel 
has been determined, the best compromise profit, raw material shipments 
and inventory levels, and finished product production, inventory, and ship-
ment quantities determined in the solution to the tactical submodel override 
those of the strategic submodel’s solution. Also, because the length of a time 
period differs between the two submodels, inputs to the tactical submodel 
derived from the solution to the strategic submodel must be converted/scaled 
appropriately. Finally, all notation in the tactical submodel is assumed to cor-
respond to the shorter time periods, unless otherwise stated.

4.4.1 Additional Notation

In general, the tactical submodel uses the same notation and many of the same 
data and decision variables as the strategic submodel. However, because new 
information is assumed to be available to supply chain managers after infra-
structure decisions have been made, additional notation is needed. The addi-
tional data variables are as follows:

bikm
TRP transportation time per unit of raw material I from supplier k to 

plant m;
bmn

TFW transportation time per unit of finished product from plant m to 
warehouse n;

bnp
TFM transportation time per unit of finished product from warehouse 

n to market p;
Cmt

FP production capactity at plant m in period t;
tTAC the number of time periods in the tactical submodel that 

comprise one time period in the strategic submodel;
Y profit goal as determined in the solution to the strategic submodel.

In addition to the data variables listed here, the following decision vari-
ables are added to the tactical submodel:

−d ptdem-  negative deviational variable related to fulfillment of demand 
at market p in period t;

+dprofit positive deviational variable related to achievement of 
profit goal;
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−dprofit  negative deviational variable related to achievement of 
profit goal;

+dtime positive deviational variable related to achievement of weighted 
transit time goal;

−dtime negative deviational variable related to achievement of weighted 
transit time goal.

4.4.2 Tactical Submodel Goal Constraints

As mentioned earlier, three goal constraints are formulated in the tactical 
submodel to reflect the objectives of meeting or exceeding a certain profit 
level, exactly meeting customer demand, and minimizing total weighted 
transit time. These goals’ formulations are described as follows.

4.4.2.1 Profit Optimization Goal Constraint

Using the optimal profit figure that resulted from the solution to the strategic 
submodel, supply chain managers can set a specific profit target in the tacti-
cal submodel. Once again, total revenue is defined as
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and total cost is defined as
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Because several of the per unit costs may have changed since infrastruc-
ture decisions were made via the solution to the strategic submodel, these 
tactical submodel costs are recalculated as follows.

As in the strategic submodel, a one-time construction cost cmt
CON is asso-

ciated with the construction of a plant of capacity Um at each location m. 
However, because construction decisions have already been made via the 
solution to the strategic submodel, the values of the binary variables ϕmt are 
known for each plant location m and each period t. Therefore, construction 
costs are again calculated as
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where the binary variables ϕmt are now known constants for all m and t. 
Here, it is assumed that a plant to be constructed in a given strategic sub-
model period is constructed in the first of the tactical submodel periods that 
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combine to comprise the same time span as that of the given strategic sub-
model period.

In the tactical submodel, fixed costs are incurred in each period whenever 
plant m is used for production and warehouse n is used to hold inventory. 
Although these costs are recalculated in the tactical submodel to account 
for potential cost changes, the values of the binary variables βmt and δnt are 
known for each plant m, each warehouse n, and each period t. Hence, fixed 
operating costs are recalculated as
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where the binary variables βmt and δnt are now known constants for all m, n, 
and t.

Because the solution to the strategic submodel determined the optimal 
critical raw material supplier selections, these “strategic partnerships” are 
assumed to endure throughout the operational phase of the supply chain. 
Furthermore, supplier-specific, noncritical raw material information is now 
assumed to be available at the beginning of the operational phase of the sup-
ply chain problem. Hence, overall raw material shipment amounts and costs 
may change in the solution to the tactical submodel, and shipment quantities 
of critical and noncritical raw materials from each supplier are used to deter-
mine overall raw material costs as follows:
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Production costs are calculated as the sum of the number of units of finished 
product produced times the finished product unit production cost. Hence, the 
following term is identical to the one used in the strategic submodel:
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As in the strategic submodel, an attempt is made to “smooth” production 
from one period to the next. Again, nonlinearity through use of the abso-
lute value operator is avoided by the introduction of an unrestricted variable 
and positive and negative deviational variables. Hence, the total production 
quantity change cost over the entire planning horizon is calculated as
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As in the strategic submodel, constraints in the form of Equations 4.9, 4.10, 
and 4.12 are added to the tactical submodel.
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In addition, as in the strategic submodel, shipping costs are calculated for 
the shipment of raw materials from all suppliers to all plants, for the ship-
ment of finished products from all plants to all warehouses, and for the ship-
ment of finished products from all warehouses to all markets over the entire 
planning horizon. However, the tactical submodel’s inclusion of detailed 
costs regarding suppliers of noncritical raw materials is in contrast to the 
strategic submodel. Hence, overall shipping costs are calculated as
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As in the strategic submodel, holding costs are calculated for raw materials 
and finished products held at all production facilities and for finished prod-
ucts held at all warehouses. That is,
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In formulating and solving the tactical submodel, managers may seek to 
earn at least as much overall profit as indicated in the solution to the strategic 
submodel. Given a profit goal of Y (based upon the optimal profit determined 
in the solution to the strategic submodel), the goal constraint corresponding 
to the optimization of profit becomes
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where − +andprofit profitd d  represent the under- and overachievement, respec-
tively, of the profit goal Y. In order to achieve a profit that meets or exceeds 
Y, the negative deviational variable −

profitd  will be minimized in the objective 
function. It is important to note that while the tactical submodel seeks to 
achieve a profit greater than or equal to Y (presumably the optimal profit 
determined in the solution to the strategic submodel), the formulation of 
the profit objective as a goal constraint allows for the possibility of a best 
compromise profit that is less than Y without rendering the entire solution 
infeasible.

4.4.2.2 Total Weighted Transit Time Goal Constraint

In an effort to ensure a more responsive supply chain and achieve higher 
levels of customer satisfaction, supply chain managers often seek to mini-
mize the time between order placement and finished product delivery 
(to  the customer.) This requirement is addressed in the tactical submodel 
by including the additional objective of minimizing total weighted transit 
time, which is defined here as the time required to ship one unit of raw 
material/final product from one supply chain element to another multiplied 
by the number of units to be shipped, summed over all raw materials types, 
suppliers, plants, warehouses, markets, and time periods. Hence, the cor-
responding goal constraint is expressed as
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where − +andtime timed d  represent the under- and overachievement, respectively, 
of the total weighted transit time goal. Because the goal (unrealistically) is 
zero weighted transit time, the positive deviational variable +

timed  will be min-
imized in the objective function to achieve the lowest possible total weighted 
transit time while still maintaining a feasible solution.

4.4.2.3 Customer Demand Nontraditional Goal Constraint

Whereas supply chain managers sought to meet but not exceed demand 
when planning the infrastructure of the production–distribution network, 
they now also wish to minimize the number of units of unsatisfied demand. 
This requirement is expressed here in the form of a nontraditional, one-
sided goal constraint in which positive deviations (i.e., excess deliveries to 
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customer markets) are not permitted. Hence, the constraint in the tactical 
submodel that seeks to meet demand exactly is expressed as
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where the negative deviational variable −
dem-d pt represents the underachieve-

ment of the customer demand goal at market p in period t. In an attempt to 
exactly meet the demand of market p in period t (represented by dpt), 

−
dem-d pt is 

minimized in the objective function.

4.4.3 Tactical Submodel Regular Constraints

In addition to the traditional and nontraditional goal constraints described 
in the previous section, the tactical submodel requires several regular con-
straints that must be met for the overall solution to remain feasible. These 
constraints are formulated as follows.

Because supplier selections for critical raw materials have already been 
made via the solution to the strategic submodel, the only supplier selec-
tions necessary in the tactical submodel are those involving noncritical raw 
materials. As in the strategic submodel, the total amount of raw material i 
shipped from supplier k to all production facilities in period t must be less 
than or equal to the supply capacity of raw material i at supplier k during 
each period t. Hence,

 ∑ ≤ α = ′ = ′ =
=

, 1, ..., ; 1, ..., ; 1, ..., ;
1

w C i I k K t Tikmt

m

M

ikt
RS

ikt  (4.49)

 ∑ ≤ α = ′ + = =
=

, 1, ..., ; 1, ..., ; 1, ..., .
1

w C i I I k K t Tikmt

m

M

ikt
RS

ikt  (4.50)

Note that for i = 1, …I′, the binary variables αikt (indicating whether or 
not supplier k ≤ K′ has been selected to provide critical raw material i in 
period t) have already been assigned values via the solution to the strategic 
submodel and are therefore constants in this constraint. Therefore, only the 
binary variables αikt where i = I′ + 1, …, I (indicating supplier selections for 
noncritical raw materials) are considered decision variables in the tactical 
submodel.

As discussed earlier, the critical raw material supplier selections made in 
the solution to the strategic submodel are accompanied by minimum pur-
chase quantity requirements. It is assumed here that the tactical submodel 
requires the same minimum purchase quantities be made over the same 
time periods. Hence, in the tactical submodel, each period’s minimum pur-
chase quantity (when applicable) is equal to the corresponding strategic 
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submodel minimum purchase requirement divided by the number of tacti-
cal submodel periods that comprise a single strategic model period. In other 
words,

 ∑ ≥ α = ′ = ′ =
=

w
w
t

i I k K t Tikmt

m

M
ik

TAC ikt , 1, ..., ; 1, ..., ; 1, ..., ,
1

min

 (4.51)

where αikt is known from the solution to the strategic submodel and are 
scaled appropriately for the tactical submodel (i.e., for shorter time periods.) 
As with the strategic submodel, an effort must be made to ensure the tactical 
submodel does not allow critical raw material purchases to be made from 
noncritical raw material suppliers. Once again, this restriction is imposed by 
declaring the appropriate variables as undefined over a certain range.

In the solution to the strategic submodel, (initial) optimal production quan-
tities are determined for the operating plants. As stated earlier, functions of 
these optimal quantities are used as production capacities in the tactical sub-
model. This is done to reflect a supply chain manager’s desire to maintain 
production capacities that are slightly higher than the previously planned 
optimal production quantities. This planning decision is made in anticipa-
tion of different cost and demand data than were available during the supply 
chain design phase. Recall that in the strategic submodel, production capac-
ity at each plant m was limited to uUm. Once the (initial) optimal production 
quantities are determined in the strategic submodel, it is assumed that sup-
ply chain managers wish to set the production capacity at each plant m (in 
the tactical submodel) to 1 + (1 − u) = 2 − u times the strategic submodel’s 
optimal production quantity for plant m over the same time span. Of course, 
this capacity must be scaled to correspond to tactical submodel time peri-
ods. For example, suppose production capacity factors of 0.9- and 1-year time 
periods are used in the strategic submodel, while three-month time periods 
are used in the tactical submodel. (Hence, u = 0.9 and tTAC = 4.) It follows 
that the (strategic submodel) production capacity at plant m in each period 
t is set to 0.9Um. If the optimal production quantity (from the solution to the 
strategic submodel) at plant m in period (year) 1 is 5,000 units, then the (tacti-
cal submodel) production capacity at plant m in each corresponding period 

(quarters 1, 2, 3, and 4) is 
(2 0.9)5000

4
1.1(5000)

4
1, 375 units

− = = . In the tactical 

submodel, this new production capacity for plant m in periods 1 through 4 
is denoted as C tmt

FP 1, 375 for 1, 2, 3, 4= = . Furthermore, in order to avoid con-
fusion due to the mixing of time period lengths, this capacity calculation 
is done “offline” and is not included in the final mixed integer linear goal 
program. Hence, in order to limit tactical submodel production to the new 
plant capacities, the following constraint is added to the tactical submodel:

 ≤ β = =, 1, ..., ; 1, ..., ,x C m M t Tmt mt
FP

mt  (4.52)
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where the constant βmt (whose value is determined in the solution to the 
strategic submodel) indicates whether or not plant m is utilized in period t. 
Furthermore, in order to prevent open plants from sitting idle, each plant m 
that operates in period t must produce a minimum number of units of fin-
ished product in that period. That is,

 ≥ β = =, 1, ..., ; 1, ..., .x
v

t
m M t Tmt

m
TAC mt  (4.53)

As in the strategic submodel, production quantity change costs are 
incurred in each period t in which production quantity changes from the 
previous period.

In the tactical submodel, raw material conservation of flow constraints are 
similar to those in the strategic submodel. Hence,

 ∑+ − = = ′ = =−

=

′

, 1, ..., ; 1, ..., ; 1, ..., ;( 1)

1

r w a x r i I m M t Tim t ikmt

k

K

i mt imt  (4.54)

 ∑+ − = = ′ + = =−

=

, 1, ..., ; 1, ..., ; 1, ..., .( 1)

1

r w a x r i I I m M t Tim t ikmt

k

K

i mt imt  (4.55)

As in the strategic submodel, it is assumed that a reasonable (known) 
amount 0r

t
im
TAC  of each raw material i is on hand at each plant m at the begin-

ning of the initial period.
Although plants’ operational production capacities are not determined 

until the strategic submodel is solved, their raw material storage capacities 
are assumed to be known with certainty. Hence, the amount of raw material 
i held in inventory at plant m during period t is limited to a known inven-
tory capacity Cimt

RP. Because the values of the binary variables βmt (indicating 
whether or not plant m is utilized in period t) were determined in the solu-
tion to the strategic submodel, they are included as constants in the follow-
ing constraint:

 ≤ β = = =, 1, ..., ; 1, ..., ; 1, ..., .r C i I m M t Timt imt
HRP

mt  (4.56)

As in the strategic submodel, the number of units of finished product held 
in inventory at plant m during period t is equal to the number of units of 
finished product held in inventory in the previous period plus the num-
ber of units of finished product produced in the current period minus the 
total number of units of finished product shipped to all warehouses during 
period t. In other words,

 ∑+ − = = =−

=

, 1, ..., ; 1, ..., .( 1)

1

g x y g m M t Tm t mt mnt

n

N

mt  (4.57)
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As in the strategic submodel, it is assumed that an initial inventory 0g
t

m
TAC  

of finished product is on hand at each plant at the beginning of the initial 
period.

In addition, as in the strategic submodel, the number of units of finished 
product held in inventory at plant m during period t is limited to a known 
inventory capacity. Because the solution to the strategic submodel deter-
mined which production facilities should be used during which periods, the 
values of the indicator variables βmt are constants and are used in the tactical 
submodel to indicate whether or not plant m is utilized in period t. Hence, 
the corresponding constraint is expressed as

 ≤ β = =, 1, ..., ; 1, ..., .g C m M t Tmt mt
HFP

mt  (4.58)

Moreover, if plant m is operational in period t, it is assumed to have out-

bound shipment capacity R
t
m
PLANT

TAC . In other words,

 ∑ ≤ β = =
=

, 1, ..., ; 1, ..., .
1

y
R

t
m M t Tmnt

n

N
m
PLANT

TAC mt  (4.59)

Similar to the strategic submodel, the number of units of finished product 
held in inventory at warehouse n during period t is equal to the number 
of units of finished product held in inventory at warehouse n during the 
previous period plus the number of units of finished product shipped from 
all production plants to warehouse n during period t minus the number of 
units of finished product shipped from warehouse n to all markets during 
period t. That is,

 ∑ ∑+ − = = =−

= =

, 1, ..., ; 1, ..., .( 1)

1 1

h y z h n N t Tn t mnt

m

M

npt

p

P

nt  (4.60)

As in the strategic submodel, it is assumed that an initial inventory 0h
t

n
TAC  of 

finished product is on hand at each warehouse at the beginning of the initial 
period. Furthermore, warehouse n must be open in period t to receive ship-
ments of finished products from the operational plants. Hence,

 ∑ ≤ δ = =
=

, 1, ..., ; 1, ..., ,
1

y
R
t

n N t Tmnt

m

M
n
INW

TAC nt  (4.61)

where Rn
INW represents the inbound shipping capacity of warehouse n in 

each (strategic submodel) period, and the binary variable δnt (actually a con-
stant here) is used to indicate whether or not warehouse n is open during 
period t.
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Similar to the strategic submodel, the number of units of finished prod-
uct held in inventory at warehouse n during period t is limited to a known 
inventory capacity. Because the solution to the strategic submodel deter-
mined which warehouses are used in which periods, the (known) values of 
the binary variables δnt are used here to indicate whether or not warehouse n 
is utilized during period t. Hence,

 ≤ δ = =, 1, ..., ; 1, ..., .h C n N t Tnt nt
HFW

nt  (4.62)

Furthermore, if warehouse n is open in period t, it must store a minimum 
number of units of finished product in that period. In other words,

 ≥ δ = =, 1, ..., ; 1, ..., .h
q

t
n N t Tnt

n
TAC nt  (4.63)

Each open warehouse has a defined capacity to ship units of finished prod-
uct out to customer markets (as in the strategic submodel). Hence,

 ∑ ≤ δ = =
=

, 1, ..., ; 1, ..., ,
1

z
R

t
n N t Tnpt

p

P
n
OUTW

TAC nt  (4.64)

where Rn
OUTW represents the outbound shipping capacity for warehouse n in 

each (strategic submodel) period.
As in the strategic submodel, a predefined finished product quantity is 

required to remain in inventory during the final time period. Specifically, 
the sum of the finished product inventory remaining in all plants and ware-
houses during the final period must be equal to or greater than some fraction 
of the final period’s total demand. In other words,

 ∑ ∑ ∑+ ≥
= = =

,
1 1 1

g h h dmT

m

M

nT

n

N
FIN

pT

p

P

 (4.65)

where 0 ≤ hFIN ≤ 1.

4.4.4 Tactical Submodel Objective Function

Because the multiple objectives stated by supply chain managers are formu-
lated as goal constraints with allowable deviations in the tactical submodel, 
the objective function is formulated to minimize some function of the devia-
tions. Here, two different goal programming techniques are considered: 
preemptive and non-preemptive goal programming. With non-preemptive 
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goal programming, decision makers assign weights to each goal, allowing 
for tradeoffs among goals. Using non-preemptive goal programming, and 
with the objectives in no particular order, the single objective function for 
the tactical submodel is formulated as

 ∑∑+ +− −

==

+Minimize .1 profit 2 dem-

11

3 timew d w d w dpt

t

T

p

P

 (4.66)

In order to determine the weight values for Equation 4.66, Ballestero (2005) 
suggests several techniques for eliciting the relative importance of multiple 
goals, including those detailed in Keeney and Raiffa (1976), Roy (1991), Brans 
and Vincke (1985), Mareschal (1988), and Saaty (1994). In addition, Masud 
and Ravindran (2008) summarize several other methods for determining 
weight values that help define the relative importance among goals, includ-
ing weights from ranks, the rating method, and the ratio weighing method. 
Despite the existence of such techniques for determining weight values, 
however, it generally may be easier to elicit from decision makers a prior-
ity ranking among multiple goals. When preemptive goal programming is 
used, decision makers rank their goals from most to least important. The 
objective function is then formulated such that the solution technique first 
focuses on the most important goal, then the second-most important goal, 
and so on. Suppose here that supply chain managers have determined that 
achieving a minimum profit level is their top priority, followed by exactly 
meeting demand, and then minimizing total weighted transit time. First, 
a priority level Pr, r = 1, 2, 3 is assigned to each of these objectives. The objec-
tive function is then formulated as a linear combination of functions of the 
deviational variables as follows:

 ∑∑+ +− −

==

+Minimize .1 profit 2 dem-

11

3 timeP d P d P dpt

t

T

p

P

 (4.67)

Besides involving the relatively straightforward task of eliciting priority 
rankings from decision makers, preemptive goal programming provides 
an additional advantage over its non-preemptive counterpart regarding the 
objective function. Because relative weights are used in a non-preemptive 
goal programming formulation, the deviational variables corresponding 
to different units (e.g., dollars versus years) must be scaled or normalized 
appropriately. With preemptive goal programming, the sequential optimi-
zation of each successively lower-priority goal obviates the need for such 
normalization. Because goals are often incommensurable with one another 
and can sometimes only be achieved at the expense of others, and because 
preemptive goal programming generally places less of a burden on decision 
makers in terms of prioritizing objectives, the formulation of Equation 4.67 
will be used for the tactical submodel (Masud and Ravindran 2008).
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4.4.5 Tactical Submodel Summary

The overall formulation is as follows. (Of course, the goals in the objective 
function may be reprioritized based on decision maker preferences.)
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This submodel involves T(2I′K′ + IK − I′K + 2IM + 7M + 5N + P) + M + 3 
constraints and T(I′K′M + IKM − I′KM + 5M + MN + NP + IM + N + IK − 
I′K  + P) + 4 decision variables, of which T(IK − I′K) are integer (binary) 
variables. Once again, a change in the number of time periods would 
have the most impact on the overall size of the submodel. Furthermore, 
if a sequential solution approach is used to solve this linear integer goal 
program, the number of decision variables will decrease with each succes-
sive optimization. However, the magnitude of the decrease in the number 
of decision variables, which results from the fixing of deviational variable 
values after each successive optimization, depends upon the priority order 
of the objectives.

The solution to the tactical submodel provides supply chain managers with 
a best compromise solution for (1) noncritical raw material supplier selec-
tions; (2) raw material shipment and inventory quantities; (3) finished prod-
uct production, inventory, and shipment quantities; and (4) a profit figure.
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For convenience, the following constraint is added during numerical 
computation:
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 (4.69)

where PROFIT is an unrestricted variable.

4.5 Case Study

To demonstrate its applicability, the two-phase model described in Sections 
4.2 through 4.4 is now applied to the example supply chain scenario depicted 
in Figure  4.2. In this scenario, consisting of five suppliers (S1–S5), three 
manufacturing locations (P1–P3), four warehouses (WH1–WH4), and five 
customer markets (M1–M5), a single product is manufactured from two 
critical (i = 1, 2) and three noncritical (i = 3, 4, 5) raw materials. Specifically, 
raw material requirements for each unit of finished product are 5, 7, 7, 12, 
and 6  units each of raw materials 1, 2, 3, 4, and 5, respectively. Suppliers 
1 and 2 are each capable of providing both of the critical raw materials as 
well as all of the noncritical raw materials, while suppliers 1 through 5 can 
each provide all of the noncritical raw materials (to varying degrees, that is.) 
The finished product may be produced at any of the three manufacturing 
sites (m = 1, 2, 3) and shipped to any of the four warehouses (w = 1, 2, 3, 4). 
Although the storage capacities for raw materials and finished products at 
each potential plant location are known, the production capacities initially 
are set to some fraction of the maximum site capacities. Given a five-year 
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planning horizon, supply chain managers are charged with two tasks: 
(1) supply chain design—establishing the infrastructure of the supply chain 
by making critical raw material supplier selections, choosing the optimal set 
of plants and warehouses, and determining the necessary plant capacities, 
and (2) supply chain operation planning—determining best compromise 
noncritical supplier selections and production, inventory, and shipping 
quantities for each quarter over the five-year planning horizon. In this case, 
upper-level decision makers have chosen profit maximization as their top 
priority goal, followed by exactly meeting market demand, and then mini-
mizing total weighted transit time in an effort to improve customer service.

4.5.1 Model Input

All data related to purchase, production, holding, and shipment costs for raw 
and finished materials; demand forecasts; and plant and warehouse capaci-
ties and costs are presented in Tables 4.1 through 4.4. Because raw material, 
production, holding, and shipping costs vary over periods, routes, and sup-
ply chain elements, Table 4.1 presents only the ranges of these costs. Data 
related to plant costs and capacities are shown in Table 4.2. Each unit of fin-
ished product has a sale price of $450, and managers have chosen to limit stra-
tegic submodel production to 99% of maximum site capacity. Other inputs 

S5

S4

S3

S2

S1
P1

P2

P3 WH4

WH3

WH2

WH1

M5

M4

M3

M2

M1

S = supplier, P = plant, WH = warehouse, M = market

FIGURE 4.2
An example of a supply chain scenario.
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used in the strategic submodel (but not shown here) include raw material 
availability, storage capacity (at plants), and minimum purchase data; raw 
material and finished product initial inventories; and production quantity 
change costs.

Data used here as input to the tactical submodel is generally proportional 
to that used in the strategic submodel. For example, although input to the 
strategic submodel reflects demand at Market 1 as 4,000 units in Year 1, 
demand at Market 1 in the tactical submodel is 1,000 units in each of quarters 

TABLE 4.1

Strategic Submodel Cost Ranges

Cost Range ($)

Critical raw material 5.60–9.00/unit
Noncritical raw material 4.00–6.00/unit
Shipping—critical raw material 0.90–1.90/unit
Shipping—noncritical raw material 0.40–1.20/unit
Shipping—finished product 2.30–6.40/unit
Holding—raw material 0.20–0.60/unit/period
Holding—finished product 0.70–1.10/unit/period
Production 4.50–9.00/unit

TABLE 4.2

Plant Costs and Capacities

Plant Year
Construction 

Cost ($)

Fixed 
Operating 

Cost ($)

Minimum 
Production 
Quantity 

(Units)

Maximum 
Production 

Capacity 
(Units)

Finished 
Product 
Storage 

Capacity 
(Units)

Outbound 
Shipping 
Capacity 
(Units)

1 1 1,000,000 300,000 1,000 5,500 1,000 150,000
2 1,050,000 300,000 1,000 5,500 1,100 150,000
3 1,100,000 350,000 1,000 5,500 1,200 150,000
4 1,150,000 350,000 1,000 5,500 1,400 150,000
5 1,200,000 400,000 1,000 5,500 1,500 150,000

2 1 1,000,000 400,000 1,000 6,000 2,000 150,000
2 1,050,000 400,000 1,000 6,000 2,000 150,000
3 1,100,000 450,000 1,000 6,000 2,000 150,000
4 1,150,000 450,000 1,000 6,000 2,000 150,000
5 1,200,000 500,000 1,000 6,000 2,000 150,000

3 1 800,000 300,000 1,000 4,000 3,000 150,000
2 825,000 300,000 1,000 4,000 3,100 150,000
3 850,000 350,000 1,000 4,000 3,200 150,000
4 875,000 350,000 1,000 4,000 3,300 150,000
5 900,000 400,000 1,000 4,000 3,400 150,000
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one through four. Furthermore, although not shown here, transportation 
times for raw materials and finished products among different elements in 
the supply chain range from one to five days. Additionally, in an effort to 
explicitly demonstrate the results of changing the priority order of the three 
objectives, a disruption in one of the transportation routes is simulated in 
the tactical submodel. Specifically, the cost of delivering finished products to 
Market 1 is made prohibitively expensive.

TABLE 4.4

Market Demand (Units)

Market

Year

1 2 3 4 5

1 4,000 4,200 5,000 5,300 6,000
2 3,500 3,600 3,700 3,800 3,900
3 2,000 2,000 2,300 2,400 2,500
4 3,000 3,100 3,200 3,300 3,400
5 2,500 2,500 2,500 2,500 2,500

TABLE 4.3

Warehouse Costs and Capacities

Warehouse Year

Fixed 
Operating 

Cost ($)

Minimum 
Storage 

Quantity 
(Units)

Storage 
Capacity 
(Units)

Outbound 
Shipping 
Capacity 
(Units)

1 1 100,000 0 4,000 150,000
2 100,000 0 4,000 150,000
3 150,000 0 4,000 150,000
4 150,000 0 4,000 150,000
5 150,000 0 4,000 150,000

2 1 200,000 0 5,000 150,000
2 200,000 0 5,000 150,000
3 250,000 0 5,000 150,000
4 250,000 0 5,000 150,000
5 250,000 0 5,000 150,000

3 1 200,000 0 6,000 150,000
2 200,000 0 6,000 150,000
3 250,000 0 6,000 150,000
4 250,000 0 6,000 150,000
5 250,000 0 6,000 150,000

4 1 200,000 0 4,500 150,000
2 200,000 0 4,500 150,000
3 250,000 0 4,500 150,000
4 250,000 0 4,500 150,000
5 250,000 0 4,500 150,000
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4.5.2 Model Outputs and Results

This numerical example was formulated and solved using Extended LINGO 
9.0 optimization software. The solution to the strategic submodel (which took 
nearly zero processing time) provides an optimal profit target of $5,643,366, 
along with the supply chain infrastructure plan. In this example, plants 1, 2, 
and 3 should be constructed in year 1, corresponding to quarter 1 in the tacti-
cal submodel. Results related to supplier selections for critical raw materials, 
warehouse operating schedules, optimal production quantities, and produc-
tion capacities to be used as input to the tactical submodel are presented 
in Tables 4.5–4.7. Based upon the optimal production quantities for each of 

TABLE 4.5

Critical Raw Material Supplier Selections

Supplier

Year

Critical Raw Material #1 Critical Raw Material #2

1 2 3 4 5 1 2 3 4 5

#1 ✓ ✓ ✓ ✓ ✓ ✓

#2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE 4.6

Warehouse Operating Schedule

Year

Warehouse

1 2 3 4

1 ✓ ✓ ✓ ✓
2 ✓
3 ✓
4 ✓
5 ✓

TABLE 4.7

Strategic Submodel Optimal 
Production Quantities (Units)

Year

Plant

1 2 3

1 4,950 5,400 3,600
2 4,950 5,400 3,600
3 4,950 5,400 3,600
4 4,950 5,400 3,600
5 4,950 5,400 3,600
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the operating plants over the five-year planning horizon, and a user-defined 
production capacity factor of u = 0.99, production capacities for input to the 
tactical submodel are shown in Table 4.8.

Using the infrastructure and supplier selection decisions made in the solu-
tion to the strategic submodel, along with higher resolution data (omitted 
here for brevity), the tactical submodel was solved using the preemptive 
goal programming technique to determine noncritical raw material sup-
plier selections and best compromise purchasing, production, inventory, 
and shipment quantity decisions. Using Extended LINGO 9.0, each of the 
three  sequential optimizations of the tactical submodel required three or 
fewer seconds of processing time. When the profit goal has top priority, fol-
lowed by the demand goal, and then the response time goal, a best compro-
mise profit level of $3,131,097 is achieved. When meeting demand is given 
the highest priority, followed by meeting or exceeding the profit goal, and 
then minimizing response time, the solution indicates a profit of $1,353,256 
over the five-year planning horizon. This lower profit figure can be attributed 
to the tactical submodel attempting to first minimize unsatisfied demand, 
despite the prohibitively high costs associated with the disrupted transpor-
tation routes to Market 1. Indeed, this case resulted in only 6,145 units of 
unsatisfied demand, compared to the 24,500 units of unsatisfied demand in 
the profit-first case.

Table 4.9 summarizes the best compromise production quantities result-
ing from this implementation of the tactical submodel. Due to the disrup-
tion in the transportation routes leading to Market 1 (and the associated 
prohibitively high shipping costs), none of the demand for Market 1 was 
met in an effort to maximize overall profits. However, this situation frees up 
the necessary resources to satisfy all other demand over the five-year plan-
ning horizon. Figure 4.3 compares the profit goal achievement levels for the 
profit-first and demand-first cases. Although both profit goal achievement 

TABLE 4.8

Tactical Submodel Production Capacities (Units)

Quarter

Plant

Quarter

Plant

1 2 3 1 2 3

1 1,362 1,485 990 11 1,362 1,485 990
2 1,362 1,485 990 12 1,362 1,485 990
3 1,362 1,485 990 13 1,362 1,485 990
4 1,362 1,485 990 14 1,362 1,485 990
5 1,362 1,485 990 15 1,362 1,485 990
6 1,362 1,485 990 16 1,362 1,485 990
7 1,362 1,485 990 17 1,362 1,485 990
8 1,362 1,485 990 18 1,362 1,485 990
9 1,362 1,485 990 19 1,362 1,485 990
10 1,362 1,485 990 20 1,362 1,485 990
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levels fall well short of the original profit goal due to the prohibitively high 
shipping costs corresponding to transportation routes leading to Market 1, 
this example is meant to demonstrate the ability to conduct tradeoff anal-
ysis using the deterministic tactical submodel. Table 4.10 summarizes the 
best compromise production quantities resulting from this implementa-
tion of the tactical submodel, while Table 4.11 shows the quarterly change 
in production at each plant as the demand goal replaces the profit goal as 
the top priority. Clearly, Plant 3, which operates at its minimum produc-
tion rate when profit achievement takes top priority, provides most of the 
additional production necessary to fulfill demand when the minimization 

TABLE 4.9

Tactical Submodel Optimal Production (Profit First)

Quarter

Plant (Units)

Quarter

Plant (Units)

1 2 3 1 2 3

1 1,362 1,009 250 11 1,362 1,388 250
2 1,362 1,246 250 12 1,362 1,388 250
3 1,362 1,485 250 13 1,362 1,313 250
4 1,362 1,485 250 14 1,362 1,238 250
5 1,362 1,485 250 15 1,362 1,238 250
6 1,362 1,485 250 16 1,362 1,189 250
7 1,362 1,485 250 17 1,362 1,189 250
8 1,362 1,485 250 18 1,362 1,040 250
9 1,362 1,241 250 19 1,362 1,040 250
10 1,362 1,288 250 20 1,362 1,040 250

1,353,256

3,131,097

5,643,366

0

1,000,000
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FIGURE 4.3
Profit goal achievement as a percentage of goal target.
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of unsatisfied demand is set as the top priority goal. Table 4.12 presents the 
distribution of unsatisfied demand over all markets and periods in both 
the profit-first and demand-first cases. As expected, the achievement level 
for the demand satisfaction goal increases when it is assigned top prior-
ity (see Figure 4.4). However, because demand alone is not affected by the 
prohibitively high shipping costs assigned to all shipping routes leading to 
Market 1, the change in the achievement level as the demand satisfaction 
goal moves from first to second or second to first priority is not as drastic as 
that of the profit goal.

TABLE 4.10

Tactical Submodel Optimal Production (Demand First)

Quarter

Plant (Units)

Quarter

Plant (Units)

1 2 3 1 2 3

1 1,362 1,485 990 11 1,362 1,485 990
2 1,362 1,485 990 12 1,362 1,485 990
3 1,362 1,485 990 13 1,362 1,485 975
4 1,362 1,485 990 14 1,362 1,485 868
5 1,362 1,485 990 15 1,362 1,485 863
6 1,362 1,485 990 16 1,362 1,485 863
7 1,362 1,485 990 17 1,362 1,485 990
8 1,362 1,485 990 18 1,362 1,485 990
9 1,362 1,485 990 19 1,362 1,485 990
10 1,362 1,485 990 20 1,362 1,485 990

TABLE 4.11

Production Change as Demand Goal Replaces Profit Goal 
as Top Priority

Quarter

Plant

Quarter

Plant

1 2 3 1 2 3

1 0 +476 +740 11 0 +97 +740
2 0 +239 +740 12 0 +97 +740
3 0 0 +740 13 0 +172 +725
4 0 0 +740 14 0 +247 +618
5 0 0 +740 15 0 +247 +613
6 0 0 +740 16 0 +296 +613
7 0 0 +740 17 0 +296 +740
8 0 0 +740 18 0 +445 +740
9 0 +244 +740 19 0 +445 +740
10 0 +197 +740 20 0 +445 +740
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4.6 Managerial and Planning Implications

The two-phase model formulated here provides a tool for supply chain 
designers and operators to determine the best supplier selection, purchas-
ing, production, shipping, and inventory decisions for a single product 
manufacturing and distribution network. The strategic submodel first 
gives supply chain designers an opportunity to establish the initial supply 
chain infrastructure for the overall manufacturing and distribution net-
work that will maximize overall profit. With detailed information pertain-
ing to noncritical raw material costs and availability, transportation times, 
and customer demand, supply chain operators can use this newly obtained 
information, along with the results of the strategic submodel, as input to 
the tactical submodel to determine best compromise noncritical raw mate-
rial supplier selections and (revised) production, inventory, and shipment 
quantities.
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5
Multi-Criteria Distribution Planning Model 
for a Consumer Goods Company

Aixa L. Cintrón
Supply Chain Manager, San Juan, Puerto Rico

5.1 Introduction

The optimization model presented in this chapter was developed to design 
a supply chain distribution network for a consumer goods company 
located on a Caribbean island. This company is a major global competi-
tor in its area, selling approximately $20 billion per year worldwide. The 
company has markets in more than 150 countries, and its brands are in 
first or second position in most of these markets. The country analyzed in 
this case study has sales of approximately $86 million per year. Its mar-
ket includes 71 customers (66 retailers and 5 independent distributors), 
and it receives products from four manufacturing plants (all outside this 
country). To distribute the demand in this region, the company owns one 
distribution center located on this island.
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The integrated supply chain model presented in this chapter was  developed 
to help the company reduce their distribution costs in this region. The results 
of this model will help the company in making several  decisions, such as 
evaluating the location of their distribution center (DC) and its capacity or 
whether more than one DC is needed and the optimal locations to  consider. 
Also, the model will identify the best source (i.e., the manufacturing plants, 
the DC, or an independent distributor) to serve the demand of each retailer. 
The costs may be reduced by decreasing the customer demand supplied 
from the regional DC (because there will be less handling costs) and hence 
supplying more from independent distributors or directly from the plants’ 
warehouses. An independent distributor, who is also considered a customer, 
stores and distributes the merchandise to smaller clients but does not sell 
it directly as a retailer. The model includes several manufacturing plants, 
where each plant manufactures several products. It is assumed that a mix-
ture of products can be sent directly from a plant to a customer as long as all 
the products in the container are manufactured at the same plant.

Most researchers, such as Ambrosino et al. (2009) and Rabbani et al. (2008), 
consider an optimal design as one that minimizes the distribution costs or that 
maximizes profit. However, other criteria that are important in distribution 
network design are also considered in this study: customer response time, power, 
credit performance, and distributor reputation. Profit is the most commonly used 
criterion for decision making. It includes revenue from sales minus the distri-
bution costs. Profit is considered, instead of just minimizing the distribution 
costs, because the revenue obtained from sales depends on the way a customer 
is supplied (e.g., discounts apply to some distribution options, such as receiv-
ing a full container directly from the manufacturing plant). The terms used to 
calculate the profit will be discussed in a later section. Response time is the 
time between the order entry and order’s proof-of-delivery at the customer. 
The response time determines the ability to satisfy the customer’s demand 
in a reasonable time. The power criterion is a rating (from 1 to 10) given by 
the sales team, reflecting their desire to keep a customer. A preference for 
specific customers may be due to their growth potential or their relationship 
with the company. The credit performance criterion is a rating (from 1 to 10) 
dependent on the customer’s credit history. Clearly, clients with a good credit 
history will be preferred. This rating is given by a decision maker from the 
credit department. The distributor’s reputation rating is based on the distribu-
tor’s experience and service to the clients. This criterion ranges from 1 to 10 
and considers the distributor’s responsiveness, their skills, and their relation-
ship with the clients/company. Higher rating values are preferred for all three 
criteria—credit performance, power, and distributor’s reputation.

The problem presented here integrates strategic and tactical decisions to 
obtain a better supply chain performance. Integrated supply chains consider 
more than one decision level when modeling: strategic, tactical, or opera-
tional decisions (or any combination thereof). Strategic decisions are those 
that are typically made for the long term (e.g., years) and that are very 
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expensive to alter at short notice. Tactical decisions are those decisions made 
quarterly/yearly, and the decisions that are made weekly or daily are consid-
ered as operational decisions. The integrated supply chain model presented 
in this chapter provides optimal DC locations to use and the capacities of the 
DCs as well as the flow of products in the distribution network. The opti-
mal locations and capacities of the DCs are considered strategic decisions 
because contracts are required for leasing the DCs, and companies do not 
want to change locations frequently due to the high relocation costs. The 
actual distribution of the products to the customers in each period impacts 
the tactical decisions.

This chapter presents a mathematical model to select the best way of 
configuring the existing customers so that profit is maximized (and hence, 
distribution costs are reduced) while meeting other key criteria. A strategic-
tactical model will be discussed in the next sections. Section  5.2 contains 
a detailed description of the deterministic strategic-tactical model, and 
Section 5.3 summarizes the applicability of this model using the case study 
described.

5.2 Literature Review

Designing a distribution network involves making a large number of deci-
sions. Different researchers, such as Bachlaus et  al. (2008), Portillo-Bollat 
(2008), and Solo (2009), among others, have already considered many of these 
aspects in the distribution network design process, mostly based on the 
number of warehouses and plants needed and their locations, production 
and inventory levels, and optimal routing plans. Supply chain optimization 
or distribution network optimization is the term used for most models that 
pretend to solve these decision-making problems. The research in supply 
chain optimization is very broad nowadays, but a small review on research 
related to this chapter is presented in this section.

Simchi-Levi et  al. (2008) define supply chain management as a set of 
approaches used to integrate all the supply chain components efficiently, 
so that goods are produced and distributed at the right quantities, to the 
right locations, and at the right time, in order to minimize system-wide costs 
while satisfying service level requirements. In line with this definition is 
the research of Rabbani et al. (2008), where a distribution network design 
problem is presented in a multi-product supply chain system that locates 
production plants and warehouses and that determines the best distribu-
tion strategy from plants to warehouses and from warehouses to customers. 
Similarly, Wang et al. (2005) formulated a multi-echelon distribution network 
design problem with transportation and inventory considerations, in addi-
tion to the facility location problem.
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Most supply chain models tend to minimize cost or to minimize cost 
while maximizing service level, but nowadays it is getting more com-
mon to include other criteria in the models. Portillo-Bollat (2008) modeled 
a multi-echelon supply chain design process, including facilities’ location 
and allocation, capacity requirements, production and distribution network 
planning, and other international issues (such as currency changes), using 
multi-criteria selection techniques to integrate the following objectives in 
the model: financial, customer service, risk, and strategic factors. Bachlaus 
et al. (2008) integrated production, distribution, and logistics activities when 
designing a multi-echelon supply chain network aiming to minimize costs 
and to maximize plant flexibility and volume flexibility. Later, Bachlaus 
et al. (2009) integrated tangible and intangible factors into the design consid-
eration of a resource assignment problem for a product-driven supply chain, 
formulating a multi-objective optimization model to maximize profit—
ahead of time of delivery, quality, and volume flexibility. In addition, Solo 
(2009) developed a stochastic programming model integrating manufactur-
ing and distribution decisions to maximize profit while fulfilling uncertain 
demand and minimizing supply chain response time.

The model presented in this chapter was developed by Cintrón et  al. 
(2010) and Cintrón (2010), where a multi-criteria mixed-integer linear 
model was created to determine the optimal configuration of manufactur-
ing plants,  distributors, and customers in a distribution network based on 
several  criteria: profit, lead time, power, credit performance, and distribu-
tors’ reputation. Moreover, Cintrón (2010) also integrated a more operational 
model that makes the distribution decisions of supplying the customer 
demands and making the replenishment orders for the DCs while meeting 
the following criteria: maximize profit, minimize customer response time 
for filled orders, and minimize the number of stock-outs. This chapter will 
describe in detail the development of the supply chain integrated model that 
makes the strategic-tactical decisions of the DC locations and product flow 
from the plants to the customers.

5.3 Integrated Supply Chain Model

This chapter presents a mathematical model for designing the best distribu-
tion network so that profit is maximized while optimizing the other key crite-
ria discussed in Section 5.1. The model also considers multiple time periods. 
This allows the company to plan for actions to be taken in future peri-
ods. That is, the model results show the time period when a DC should be 
used, its location, and its capacity. It also allows for expanding the capacity of 
an already opened DC in the future. Adding this type of dynamic decision 
makes the model more realistic and useful for companies.
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The model considers four options that may occur when supply-
ing a customer. These four options are illustrated in Figure  5.1. Let S = 
{1, 2, …, nS} be the set of manufacturing sites, R = {1, 2, …, nR} be the set 
of DC locations (already built DCs), J = {1, 2, …, nJ} be the set of custom-
ers or retailers, and I = {1, 2, …, nI} be the set of independent distributors. 
The first option represents the situation when plant s sends the order to a 
regional DC r, and from there, it is then sent to customer j. Option 2 repre-
sents a direct shipment from manufacturing plant s to customer j. A direct 
shipment goes directly from the manufacturing plant to the customer, 
skipping the regional DC. In option 3, customer j is supplied by distribu-
tor i, and distributor i receives the products from regional DC r, which is 
supplied by manufacturing plant s. Option 4 represents the scenario when 
customer j is supplied by distributor i, and distributor i receives direct 
shipments from manufacturing plant s. Also, a set K = {1, 2, …, nK} is intro-
duced to identify the different vehicle types (e.g., van or trucks with dif-
ferent container sizes) that can be used to ship products from the DC to the 
customers and distributors. Each vehicle has a different cost and capacity 
(in pallets). The relationship between the vehicles’ cost and capacities is 
discussed in Section 5.3.4. Finally, let C = {1, 2, …, nC} be the set of possible 
DC capacities (in pallets) and P = {1, 2, …, nP} be the set of time periods. 
The next subsections present the notations, the constraints, and the objec-
tive functions used in the strategic-tactical model.

5.3.1 Notations

5.3.1.1 Model Parameters

Nj set of independent distributors that can supply customer j
M very large number
cdsjp demand of customer j from plant s in period p (in pallets)
ddsip demand of independent distributor i from plant s in period p 

(in pallets)

Option 1

Option 2 Option 4

Option 3

Plants

Plants

DCDC

Plants

Plants

Customer
j

Customer
j

Customer
j

Customer
j

Distributor
i

Distributor
i

FIGURE 5.1
Distribution options in the supply chain.
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Dmin minimum demand necessary for direct shipments (in pallets)—if 
demand is less than Dmin, a direct shipment is not possible

CAPrc capacity c of DC r (in pallets)
LTCCkrj transportation cost per trip to deliver from DC r to customer j 

when using vehicle type k
LTCDkri transportation cost per trip to supply from DC r to distributor i 

when using vehicle type k
vck capacity of vehicle type k (in pallets)
CC capacity of the containers sent from the plants to DCs (in pallets)
TCCsjp transportation cost for delivering the demand of customer j 

directly from plant s in period p
TCDsip transportation cost for delivering the demand of independent 

distributor i directly from plant s in period p
VCMsjp variable contribution margin (selling price—product landed 

cost) of customer j for the demand from plant s in period p
VCMsip variable contribution margin (selling price—product landed 

cost) of distributor i for the demand from plant s in period p
STC cost per customer incurred by the sales department (total 

salaries paid for merchandisers and sales representatives 
divided by the number of customers)

HCCsjp inventory holding cost per pallet at the DC of the demand of 
customer j from plant s in period p

HCDsip inventory holding cost per pallet at the DC of the demand of 
independent distributor i from plant s in period p

CPP cost per pallet position (DC storage costs divided by the DC 
capacity in pallets, fixed for all periods)

WLOCrcp fixed cost of operating a DC at location r with capacity c in 
period p

ILF inventory level factor; represents the fraction of demand (rate) 
withheld as average inventory

RC utilization level at which the DC is intended to be run 
(0 < RC ≤ 1)

DCLTrj lead time from the DC r to customer j (in periods)
SLTsj lead time from plant s to customer j (in periods)
DLTij lead time from distributor i to customer j (in periods)
Pj power rating for customer j, where Pj ∈ {1, 2, …, 10}
CPj credit performance rating for customer j, where CPj ∈ {1, 2, …, 10}
DRi reputation rating for distributor i, where DRi ∈ {1, 2, …, 10}

5.3.1.2 Decision Variables

ysrjp 1 if option 1 is selected for customer j when receiving from plant 
s via DC r in period p, and 0 otherwise

tsjp 1 if option 2 is selected for customer j when receiving from plant 
s in period p, and 0 otherwise
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xsrijp 1 if option 3 is selected for customer j when receiving from plant 
s via distributor i, who is distributed from DC r in period p, and 
0 otherwise

msijp 1 if option 4 is selected for customer j when receiving from plant 
s via distributor i in period p, and 0 otherwise

λj 1 if customer j receives product from a DC or the plants, and 0 if 
it receives it from a distributor

βsip 1 if distributor i is supplied directly from plant s in period p, and 
0 if it is supplied from a DC

αij 1 if distributor i supplies customer j, and 0 otherwise
γkrjp number of vehicles type k (or number of trips) needed to supply 

the demand of customer j from DC r in period p, assuming that 
there is an unlimited number of vehicles

δkrip number of vehicles type k (or number of trips) needed to supply 
the demand of distributor i from DC r in period p, assuming that 
there is an unlimited number of vehicles

ICsip number of containers to be sent from plant s to distributor i in 
period p, assuming that there is an unlimited of containers

τsrip 1 if distributor i receives the demand from plant s through DC r 
in period p, and 0 otherwise

ωrcp 1 if DC r with capacity c is opened during period p, and 0 otherwise

5.3.2 Relevant Costs and Revenue Factors

One of the objectives or criteria considered in this model is to maximize profit. 
In this model, the profit is calculated by subtracting the distribution costs from 
the sales revenue. The revenue can be obtained by multiplying the variable 
 contribution margin (VCM) of an option times the binary variable for that 
option. The VCM is the revenue obtained from the sales according to how the 
product is supplied (which option is selected for each customer per plant). If the 
product is sent directly from the plant or if the product is sold to the indepen-
dent distributors, the VCM for these demands will have some discount. This is 
to encourage customers to receive direct shipments and to reward the distribu-
tors for storing and distributing the products of several customers.

The distribution costs include transportation costs, inventory holding 
costs, storage costs, and “customer service” costs. The transportation costs 
vary according to the option selected and the demand. If the product is 
sent directly from the plant, it will be sent only in containers and the costs 
will depend on the distance from the plant to the customer’s city. On the 
other hand, when the product is supplied locally from the DC, there exist 
several transportation vehicles (e.g., a van that holds up to three pallets 
or a container truck that holds up to 30 pallets, among others). Hence, the 
transportation cost will depend on the type of vehicle used, according to 
the customer’s demand, and on the travel distance between the DC and the 
customer location. This model assumes that orders from different customers 
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are not consolidated when delivering orders because the model is used only 
for tactical decisions. The optimal arrangement of vehicles and routes for 
customer deliveries would require the development of another optimization 
model for operational decisions.

It is also important to consider other costs that are only incurred when 
the demand is supplied locally from the DC, such as the inventory holding 
costs and storage costs. These costs are considered in order to allow the 
model to select direct shipment whenever possible; that is, it is costs more 
to store products in the DC for distribution than to ship them directly from 
a plant. Because the VCM is lower when supplied directly, it is important to 
show in the model that, when demand is high, the profit is still higher when 
supplying directly rather than locally due to storage and inventory holding 
costs incurred at the DC. Another storage cost considered is the cost per 
pallet position. This is to “charge” for storing the product at the DC. The cost 
per pallet position is equal to the sum of warehouse storage costs (e.g., rent, 
salaries, pallets, and wrapping paper) divided by the maximum number of 
pallets that fit in the DC. Even though costs such as the rent and salaries 
are constant every month, independent of the size of the demand supplied 
from the DC, these costs are considered to force the model to use direct ship-
ments. That is, in the future, if less demand is supplied locally, the DC can 
be replaced by a smaller warehouse in order to lower rental and labor cost.

Finally, the cost of “customer service” is considered. This cost is incurred 
when customers are supplied from the company, directly or locally, and not 
from the independent distributors. This is due to the fact that a company 
merchandiser has to go regularly to the customer stores to provide service. 
In addition, a sales representative is needed to negotiate with these custom-
ers and to prepare customers’ orders. Hence, this cost is represented as that 
incurred per customer in the sales team, which is the sum of the salaries 
of the merchandisers and sales representatives divided by the total number 
of customers currently supplied by the company, including the distributors. 
This cost was included in the model to encourage low-demand customers to 
move to distributors. When a customer has low demand, its revenue or VCM 
is lower than the distribution costs (including the “customer service” cost); 
hence, it will be moved to the aggregated demand of distributors.

With the aforementioned revenues and costs, a profit function can be 
obtained. However, this is not an exact accounting profit but a representation 
of a profit according to the costs and revenue factors that affect the decisions 
to be made by the model presented in this study. This function is only used 
to obtain the best arrangement of customers and distributors in the supply 
chain so that “profit” can be maximized.

5.3.3 Shipping Considerations

The distribution to the customers in this region can be performed in three 
different ways: directly from the manufacturing plant, from the DC in the 



139Multi-Criteria Distribution Planning Model 

island (regional DC), or from an independent distributor. The shipping 
 considerations for the different distribution options are as follows:

• Manufacturing plant: The manufacturing plants are located in 
North, South, and Central America. For customers to receive their 
 merchandise directly from the manufacturing plant, they must 
order full container loads (in this case study, containers are assumed 
to be 53 feet long). These containers are all shipped by ocean because 
the region in this study is an island.

• Regional distribution center (DC): To serve the customers from the DC in 
the island, several ground vehicles can be used. The different  vehicles 
used are vans, 12- to 26-foot-long trucks, and 40- to 53-foot-long 
containers. The smallest vehicle that is used would be a van, which can 
carry up to three pallets, and the largest vehicle would be a 53-foot-long 
container, which holds up to 30 pallets.

• Independent distributors: These distributors are all located in the 
island and deliver to smaller customers. The distributors all use the 
same ground transportation options that are used at the company’s 
regional DC.

Figure 5.2 illustrates the different shipping options.
The vehicles at the manufacturing plants and at the regional DC are 

all loaded with pallets. The pallets may carry only one product or may 
have a mix of products. Figure  5.3 shows an example of a pallet load. In 
this case study, the demand is measured in pallets, and the individual 
product stock keeping units (SKUs) were not considered in order to reduce 

Manufacturers DCs Distributors Retailers End customers

FIGURE 5.2
Illustrative distribution/shipping options.
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the  complexity of the model. (There are more than 300 SKUs, which would 
increase the model size too much.) Hence, the demand in pallets was calcu-
lated from the demand in cases before running the model, using the cases 
per pallet from the company’s database.

5.3.4 Model Constraints

The model is formulated under the assumption that only one option may be 
selected per customer per plant for each period. Set Nj is introduced for each 
customer, which includes all the independent distributors that can supply 
customer j. Equation 5.1 summarizes the set of constraints that considers this 
assumption:

 ∑ ∑∑ ∑+ + + = ∈ ∈ ∈
∈ ∈ ∈ ∈

y t x m s S j J p P
r R

srjp sjp

r R i N

srijp

i N

sijp

j j

1, , , . (5.1)

Another important assumption is that a customer may be distributed either 
from the company (i.e., a manufacturing plant or a DC) or from an indepen-
dent distributor but not from both. Therefore, for each customer, options 3 
and 4 may not be selected if option 1 or 2 is selected for a plant. This set of 
constraints is shown in Equations 5.2 and 5.3:

 ∑∑∑ ∑∑+ ≤ λ ∈
∈ ∈ ∈ ∈ ∈

y t M j J
s S r R p P

srjp

s S p P

sjp j, , (5.2)

 ∑∑∑∑ ∑∑∑ ( )+ ≤ − λ ∈
∈ ∈ ∈ ∈ ∈ ∈ ∈

x m M j J
s S r R i I p P

srijp

s S i I p P

sijp j1 , , (5.3)

where λj is a binary variable introduced to allow exactly one of the constraints 
(option 2 or 3) to be true for each customer j∈J.

In each period, each independent distributor may be supplied either 
directly from the plant or locally from a DC. Hence, only one of the options 

FIGURE 5.3
Pallet load examples.
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(3  or 4) may be selected per distributor for each plant in each period. 
Equations 5.4 and 5.5 represent these constraints. The set of binary variables 
βsip is introduced in these constraints, so that when βsip = 1, distributor i is 
supplied directly from plant s in period p, and when βsip is 0, it is supplied 
from one of the regional DCs.

 ∑∑ ( )≤ − β ∈ ∈ ∈
∈ ∈

x M s S i I p P
r R j J

srijp sip1 , ,  ,  , (5.4)

 ∑ ≤ β ∈ ∈ ∈
∈

m M s S i I p P
j J

sijp sip, ,  , . (5.5)

In addition, a variable τsrip is introduced to identify when a distributor 
is supplied from a DC. When τsrip = 1, it means that distributor i receives 
the demand from plant s via DC r in period p. Equation 5.6 indicates that 
only one τsrip and βsip can be equal to 1 for each period, plant, and distributor 
because, at each period, a distributor may receive the demand from a specific 
plant either directly from the plant or from only one of the DCs.

 ∑τ + β = ∈ ∈ ∈
∈

s S i I p P
r R

srip sip 1, ,  , . (5.6)

After identifying from which DC a distributor is being supplied, a 
constraint has to be introduced to relate this variable to the one related with 
option 3 (xsrijp). That is, Equation 5.7 makes the r value in the index the same 
in both x and τ.

 ∑∑ ∑≤ τ ∈ ∈ ∈
∈ ∈ ∈

x M r R i I p P
s S j J

srijp

s S

srip, , , . (5.7)

Another important assumption is that, in all periods, only one distributor 
may be selected per customer. This is because the decision of moving a cus-
tomer to an independent distributor is a strategic decision. This means that 
if a customer is to be given to an independent distributor, the customer will 
stay with that independent distributor for the entire time horizon and can-
not be a direct customer of the company anymore or be moved to another 
distributor. To represent this, binary variable αij is introduced, where αij = 1 
implies that customer j is supplied by distributor i. Equations 5.8 and 5.9 
denote these constraints.

 ∑∑∑ ∑∑+
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j J
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1, . (5.9)

The next set of constraints considers the minimum demand needed for 
a customer or a distributor to receive direct shipments from the plants. 
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Customers/distributors must have a demand larger than MD pallets for the 
specific plant. These sets of constraints are shown in Equations 5.10 and 5.11.

 cdsjp ≥ MDtsjp,  s ∈ S, j ∈ J, p ∈ P, (5.10)

 ∑+ ≥ β ∈ ∈ ∈
∈

dd cd m D s S i I p Psip

j J

sjp sijp min sip, , , . (5.11)

The next set of constraints selects the best vehicle types from each DC fir 
each customer and distributor for each period so that the transportation costs 
are minimized. The transportation cost when the customers and distributors 
are supplied locally depends on the demand size; that is, different vehicles 
can be used with different capacities and costs. This means that the trans-
portation cost for local supply is a step function. Figure  5.4 illustrates an 
example of the local transportation cost function, where the LTCks are the 
costs of using vehicle k and the vcks are the vehicle capacities. The model 
assumes that partial loads are charged at the full load capacity of the vehicle.

Equations 5.12 and 5.13 represent the set of constraints for vehicle 
arrangements.

 ∑ ∑≤ γ ∈ ∈ ∈
∈ ∈

cd y vc r R j J p P
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For the distributors that receive their demand directly from a plant, two 
sets of constraints (Equations 5.14 and 5.15) must be introduced. These 
constraints determine the number of containers to be sent from each plant to 
each distributor in each period. A constraint in this set is only true if a distrib-
utor receives its demand directly from a plant (option 4). An integer variable 

0

LTC1

LTC2

LTC3

LTCk

VC1 VC2 VC3

...

... VCK

FIGURE 5.4
Step-wise transportation cost function.
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is introduced to obtain the demand in containers by rounding up the divi-
sion of the demand in pallets over the number of pallets per container (CC).

 
∑β +
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Finally, to have the DCs opened, additional constraints are introduced. 
First, two sets of constraints are used to show that, for a customer or a dis-
tributor to receive a shipment from a DC, this DC must be open. Variable 
ωrcp is introduced in Equations 5.16 and 5.17 to activate τsrip or ysrjp only if the 
corresponding ωrcp is equal to 1 for each location and period:

 ∑∑ ∑τ ≤ ω ∈ ∈
∈ ∈ ∈
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Then, a set of constraints is introduced to select the capacity needed for 
each DC. If a DC with capacity CAPrc is opened, capacity CAPrc must be 
greater than or equal to the average inventory at that DC divided by the 
capacity at which the DC is run. The average amount stored in inventory at a 
DC can be expressed as the inventory level factor (ILF) times the demand in 
that period. The ILF is the fraction of a period that is planned to be the aver-
age inventory level in the inventory review policy. This model assumes that 
the average inventory level used in the inventory review policy will remain 
the same throughout the entire time horizon. If the average inventory or ILF is 
changed, especially if it is increased, the model results may change. The other 
factor considered at the moment of selecting the size of a DC is the capacity 
at which it will be run (the running capacity, or RC). A DC should not be run 
at 100% because, if changes in demand occur, some space should be available 
to take care of those sudden changes. For this reason, the average inventory 
is divided by a factor RC in the capacity equation to make sure that the size 
of the DC considers the capacity at which it will be run. Equations 5.18 and 
5.19 denote the capacity constraints for each DC location, allowing only one 
capacity or less to be opened for each location at each period:
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 ∑ω ≤ ∈ ∈
∈
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Finally, it is important to consider that after a DC at a specific location is 
opened, it must remain open or be expanded during the remaining time 
horizon or planning period considered in the model, but it cannot be closed. 
Equation 5.20 forces a DC to remain open or be expanded at period p if it was 
already opened during the previous period:

 ∑ ∑ { }ω ≥ ω ∈ ∈
∈ ∈

−CAP CAP r R p P
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rc rcp ,  11 . (5.20)

5.3.5 Objective Functions

This model considers multiple objectives. The criteria modeled are: profit, 
customer response time, power, customer’s credit performance, and distrib-
utor’s reputation. Equations 5.21 through 5.25 represent the five objectives for 
the integrated supply chain model.

• Maximize profit:
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• Minimize response time:

 

∑∑ ∑∑ ∑∑ ∑

∑∑∑∑∑ ∑∑∑∑

+






+ +












∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

DCLT y SLT t

DLT x m

r R j J

rj

s S p P

srjp

s S j J

sj

p P

sjp

s S i I j J r R p P

srijp

s S i I j J p P

sijp ,

 (5.22)

• Maximize power:
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• Maximize credit performance:
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• Maximize distributor’s reputation:
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5.3.5.1 Non-Preemptive Goal Programming

Non-preemptive or weighted goal programming is used to solve the multi-
criteria model by modeling the objective functions presented earlier as goals. 
Each goal uses a target value that can be set by the company. Non-preemptive 
goal programming allows for tradeoffs between goals or objectives and 
allows the decision makers to change their preferences easily (i.e., the deci-
sion makers’ preferences can be easily changed by just changing the weights). 
In this chapter, the ideal values are used as the targets. To get the ideal value 
of each objective, a single objective model is solved, ignoring the other objec-
tives (e.g., maximum profit, minimum response time, maximum power, 
etc.). Equations 5.26 through 5.30 represent the goal constraints of the multi-
period deterministic strategic-tactical model. The goal constraints are scaled 
using their ideal values.
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• Profit goal:
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 where MP is the maximum profit (ideal value).
• Response time goal:
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 where MRT is the minimum response time (ideal value).
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• Power goal:
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 where MW is maximum power value (ideal value).
• Credit performance goal:
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 where MCP is the maximum credit performance value (ideal value).
• Distributor’s reputation goal:
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 where MDR is the maximum distributors’ reputation value (ideal value).
With non-preemptive goal programming, the model minimizes the objec-

tive function (Equation 5.31), which is a weighted sum of the deviations of 
the goals. The ws in this equation are the weights for each criterion,

 = + + + +− + − − −z w d w d w d w d w d .1 1 2 2 3 3 4 4 5 5  (5.31)

Finally, the strategic-tactical non-preemptive goal programming model 
minimizes Equation 5.31 subject to Equations 5.1 through 5.20 and Equations 
5.26 through 5.30. The goals are normalized using the ideal values obtained 
from solving the model with each criterion as a single objective.

5.4 Case Study: Results and Discussion

Real data from the case study described in Section 5.1 was used to list the 
applicability of the integrated supply chain model (Additional material is 
available from the CRC Press website: http://www.crcpress.com/product/
isbn/9781498708586). The case study considered 24 periods, and each period 
was one month. The demand data used for this model were approximate 
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monthly forecasts. The average inventory to be kept in the DCs is for two 
weeks; hence, the ILF is equal to 0.5 in this model. Also, each DC is to be run 
at 85% (i.e., RC = 0.85) of its capacity to keep a 15% of capacity available for 
emergencies.

Three DC locations were considered and three different sizes (capacities) 
were possible at each location. The three different capacities considered at 
each location were: 500; 1,000; and 2,000 pallets. The DC costs according to its 
location and size are shown in Table 5.1. The costs shown in this table are a 
sum of the general overhead costs and labor costs. The general overhead costs 
include: rent (or mortgage), property taxes, utilities, equipment (e.g., pallets, 
racks, material handling equipment, etc.), and security devices, among others.

This case study was run with General Algebraic Modeling System (GAMS) 
optimization software. Table  5.2 displays the model statistics (e.g., num-
ber of equations and different variables) to show the problem size. It took 
approximately six hours to run this model with an Intel Pentium Dual Core, 
2 GHz processor with 4 GB memory, when using the actual data from the 
company. However, some parameters were changed for validating the model 
(e.g., weights, DC capacities and costs, and demand data), and the running 
time may vary according to the data. Depending on the data used when run-
ning the model, it could take from 15 minutes to up to 8 hours to run this 
model. The next section summarizes the results obtained from the case study.

TABLE 5.1

Cost of Each Distribution Center

Location

Capacity (Pallets)

500
(Small)

1,000
(Medium)

2,000
(Large)

1 $210,000 $250,000 $300,000
2 $200,000 $240,000 $290,000
3 $180,000 $210,000 $250,000

TABLE 5.2

Problem Size

Model Statistics

Equations 21,915

Objective Function 1
Goal Constraints 5
Hard Constraints 21,909

Variables 180,647
Continuous 11
Discrete 180,636

Binary 156,036
Integer 24,600
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Several scenarios were evaluated by varying the non-preemptive weights 
to show the multiple results to the decision makers. Tables 5.3 and 5.4 present 
the solutions of the different scenarios with their weights, goal achievements, 
and DC locations and their size. These results are shown to the decision 
makers so that they can decide which scenario represents the best strategy for 
implementation. Table 5.3 shows the results from the single objective models 
with 100% weight in one objective and zeros in the others (the highlighted 
cells are the ideal or optimal values for the respective objectives). Table 5.4 
presents four more scenarios with different weights on the objectives.

It can be observed in these tables that changes to the weights affect the 
results. In Scenario 1, where profit is the only goal considered, the power and 
credit performance goals are close to the ideal values, but the response time 
and distributor reputation goals are not. This happens because only four out 
of 66 customers had power and credit performance ratings lower than 5 (two 
for power and two for credit performance), and no customers were moved to 

TABLE 5.3

Results of the Single Objective Models and Their Impact on All Criteria

Weights (Profit, Power, Credit Performance, Response Time, 
Distributor’s Reputation)

Scenario 1
(1,0,0,0,0)

Scenario 2
(0,1,0,0,0)

Scenario 3
(0,0,1,0,0)

Scenario 4
(0,0,0,1,0)

Scenario 5
(0,0,0,0,1)

Profit Goal $52,680,802 $43,388,000 $42,087,000 $34,439,240 $38,771,000
Power Goal 624 630 610 624 566
Credit Perf. 
Goal

502 496 506 502 476

Response 
Time Goal

30,334 30,320 28,839 6,375 26,755

Dist. Rep. 
Goal

0 1,920 1,920 0 12,480

DC 1 Size 500 for 
periods 23 

and 24

500 for 
periods 1–5

1,000 for 
periods 6–8

2,000 for 
periods 9–24

500 for 
periods 1–3

1,000 for 
periods 4–6

2,000 for 
periods 7–24

2,000 for all 
periods

500 for 
period 1
1,000 for 

periods 2–3
2,000 for 

periods 4–24
DC 2 Size 500 for all 

periods
500 for 

periods 1–12
1,000 for 

periods 13–24

500 for 
periods 1–14

1,000 for 
periods 15–24

2,000 for all 
periods

500 for 
period 1
2,000 for 

periods 2–24
DC 3 Size 500 for all 

periods
500 for 

periods 1–5
2,000 for 

periods 6–24

500 for 
period 1
1,000 for 

periods 2–8
2,000 for 

periods 9–24

500 for 
periods 1–12

2,000 for 
periods 
13–24

500 for 
periods 1–5

2,000 for 
periods 6–24
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an independent distributor. Hence, the solution does not affect the power and 
credit performance goals significantly but makes the value of the distributors’ 
reputation goal zero. On the other hand, the customer response time is dras-
tically affected in Scenario 1 because every direct shipment from the plant 
that is possible and profitable is selected and each has really large lead times. 
In Scenarios 2 and 3, where power and credit performance are the only goals 
considered, all the goals, except for those of credit performance and power, 
seem to be affected. This is because when the other goals are not taken into 
account, the model selects the distribution randomly as long as the custom-
ers with power and credit performance ratings lower than 5 are moved to an 
independent distributor. When response time is the only objective consid-
ered (Scenario 4), it can be observed that profit and distributors’ reputation 
are the most affected goals. This is attributed to the fact that everything is 
being supplied by the DC closest to each customer. Scenario 5, in Table 5.3, 
considers only the distributors’ reputation goal. In this situation, the model 
selects all the customers that can receive from a distributor (e.g., customers in 
the Nj sets) and moves them to an independent distributor. This affects all the 
other goals—even the power and credit performance goals—due to the fact 
that customers with high ratings are moved to independent distributors only 
because they are allowed to receive from them.

In Table  5.4, it can be observed that, even though all the criteria are 
considered, the weight distribution affects the different goal achievements 
significantly. Scenario 6 represents the weights given by the decision mak-
ers initially. These weights were changed in Scenarios 7, 8, and 9, so that the 
impact of weights can be demonstrated to the decision makers in terms of 
the actual solutions. Figure 5.5 is a value path graph that shows the achieve-
ments of each goal under Scenarios 6, 7, 8, and 9 and allows a graphic view 
of the trade-off among objectives (a graphical illustration of Table 5.4 results). 
To construct this graph, the objective function values from Table 5.4 were 
scaled using the ideal values. That is, for the maximization goals (e.g., profit, 
power, credit performance, and distributors’ reputation), the objective func-
tion values were divided by the ideal ones, and for the minimization goal 
(e.g., customer response time), the ideal value was divided by the objective 
function result. This converts all the values to numbers between 0 and 1 (with 
1 being the ideal value); hence, the higher the number, the closer the solu-
tion is to achieving the ideal value (even for the minimization goals). These 
values were plotted in the graph and then connected by lines (for   clarity) 
representing each scenario.

This graph helps to identify whether one scenario dominates another. That 
is, if one line has all its values higher than another line, it means that first 
line (solution or scenario) dominates the other. In Figure  5.4, no scenario 
dominates another because all the lines intersect with each other. Also, it 
can be observed that the five criteria are conflicting, especially profit and 
response time. The conflict between profit and customer response time can 
be easily identified by seeing that Scenario 8 has the highest profit but the 
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lowest customer response time achievement, whereas Scenario 7 has the 
 lowest profit but the highest response time achievement.

In addition, more detailed results and comparisons can be obtained about 
each scenario’s goal achievements from Table 5.4 and Figure 5.5. In Scenario 6, 
the profit weight is higher than those of the other criteria, the power and 
credit performance weights are almost the same, and the customer response 
time weight is not too far from the latter. The distributors’ reputation goal 
has a significantly lower weight in all the scenarios, based on the decision 
makers’ preferences. Scenario 7 has slightly higher weights for profit and 
customer response time but lower weights for power and credit performance. 
Scenario 8 includes a significantly higher weight for profit, a somewhat lower 
weight for response time, and significantly lower weights for profit, credit 
performance, and distributors’ reputation. Finally, Scenario 9 is similar to 
Scenario 7, but it reduces the response time weight and increases the credit 
performance weight. From these scenarios, it can be observed that if the 
profit weight is not significantly high, the profit goal will be notably affected. 
The profit decreases by 10.5% from Scenario 8 to Scenarios 6 and 9 and by 
20% compared to Scenario 7. In Scenario 7, the profit was also affected by the 
weight increase in the customer response time. Similarly, Scenario 7 shows 
the best customer response time among the four scenarios, but it affects the 
profit the most. It seems that these two criteria (profit and response time) 
are the most conflicting with each other. The power and credit performance 
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FIGURE 5.5
Value path graph of the scenarios in Table 5.4.
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criteria were never highly affected because in all the cases one of the two 
customers with low ratings for each criterion was selected. The distribu-
tors’ reputation obtained the same value in all scenarios, which was that of 
moving two customers to an independent distributor. This criterion does not 
make any difference in this case study because the reputation ratings were 
the same for all distributors. Thus, the value path graph is a good way for 
the decision makers to visualize the trade-off among the conflicting criteria.

Scenarios 1, 6, and 8 were selected for detailed discussion in order to com-
pare their solutions. Scenario 1 represents the model that most companies 
use—where only profit is considered as the objective function. Scenario 6 
uses the weights that were selected by the decision makers when solving the 
model initially. Scenario 8 is also discussed because it shows a “most likely 
to be selected” solution where the profit is close to the ideal although the 
response time does not increase that much compared to Scenario 1. When 
the decision makers selected the weights used in Scenario 6, they were 
looking only at the criteria and their relative importance without knowing 
how these criteria would impact the final solution. However, when looking 
at the results of Scenarios 6 and 8, Scenario 8 will most likely be selected by 
the decision makers because they would probably not want to give up as 
much in profit for a small increase in response time.

The distribution plans obtained from the (profit maximizing) single objec-
tive model (Scenario 1) and the multi-criteria models in Scenarios 6 and 8 
are shown in Figures 5.6, 5.7, and 5.8, respectively. The results shown in the 
figures are the averages (in percentages) for each distribution among all 
periods. Each customer may have a different distribution option in every 
period. To construct these figures, the total demand in pallets from all 

Plants
88.4%

DC 3
7.2%

DC 2
4.2%

DC 1
0.2%

FIGURE 5.6
Scenario 1 model results (weights = 1,0,0,0,0).
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customers was obtained for each period as well as the corresponding distri-
bution option. Then, the average demand of all periods for each distribution 
option was obtained, and the four averages (for four different distribution 
options) were converted to percentages.

Some interesting results can be observed from these figures. First, looking 
at Figure 5.7, we see that, on average, only 44% of the demand is to be sent 
directly from the plants to the customers each month, while the profit maxi-
mizing single objective model (Figure 5.6) indicates that 88% of demand is 

Plants
43.99%

DC 1
42.63%

DC 2
13.04%

DC 3
0.34%

FIGURE 5.7
Scenario 6 model results (weights = 0.45,0.2,0.19,0.13,0.03).

Plants
62.07%

DC 1
21.03%

DC 2
16.90%

FIGURE 5.8
Scenario 8 model results (weights = 0.72,0.05,0.05,0.15,0.03).
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directly shipped from the plants. On the other hand, the direct shipments 
from the plants suggested in Scenario 8 (Figure 5.8) are closer to the profit 
maximizing model results (Scenario 1). In Scenario 8, the DC at location 3 
is always closed, and the DC at location 1 never expands to the largest size 
(see Table 5.5). This is explained by the fact that more direct shipments from 
the plants are recommended; hence, there is no need to have so much storage 
space at the DCs. However, because of the larger amounts of direct ship-
ments from the plant, Scenario 8 has a higher profit than Scenario 6 at the 
expense of higher response time.

A comparison of the optimal distribution plans for Scenarios 1, 6, and 8 is 
shown in Table 5.5. In the model with profit as the only objective (Scenario 1), 
the results suggest opening only two DCs with the lowest cost at the begin-
ning (locations 2 and 3 at the lowest capacity) and to open the location with 
the highest cost (location 1 at the lowest capacity) for the last two periods. 
On the other hand, the multi-criteria model for Scenario 6 opens DCs at loca-
tions 1 and 2 from the beginning (location 1 at the second capacity for the 
first period and the highest capacity for the rest and location 2 at the lowest 
capacity) and a DC at location 3 during the last period (at the lowest capacity). 
Similarly, the model for Scenario 8 opens DCs at locations 1 and 2 (location 1 
at medium capacity for all periods and location 2 at the lowest capacity in the 
first four periods and at the medium capacity for the rest) and does not suggest 
opening a DC at location 3 at all. This difference in results occurs because the 
multi-criteria models consider customer response time as another objective, 

TABLE 5.5

Comparison of Scenarios 1, 6, and 8

Scenario 1
(1,0,0,0,0)

Scenario 6
(0.45,0.2,0.19,0.13,0.03)

Scenario 8
(0.72,0.05,0.05,0.15,0.03)

Profit Goal $52,680,802 $46,043,021 $51,416,463
Power Goal 624 618 618
Credit Perf. Goal 502 425 425
Response Time Goal 30,334 9,148 11,883
Dist. Rep. Goal 0 1,920 1,920
DC 1 Size 500 for periods 

23 and 24
1,000 for period 1

2,000 for periods 2–24
1,000 for all periods

DC 2 Size 500 for all 
periods

500 for all periods 500 for periods 1–4
1,000 for periods 5–24

DC 3 Size 500 for all 
periods

500 for period 24 0

Distribution from plants 88.4% 43.41% 62.07%
Distribution from DC 1 0.2% 43.21% 21.03%
Distribution from DC 2 4.2% 13.04% 16.90%
Distribution from DC 3 7.2% 0.34% 0%
# of customers moved 
to distributors

0 2 2
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whereas the profit maximizing single objective model does not. Direct ship-
ments from the plants have significantly larger lead times compared to those 
from a DC. Hence, when response times (and the other criteria) are included, 
the multi-criteria models seem to obtain a better objective  function value 
(weighted sum of the deviations) by opening the DCs that are closer to the 
high demand points and delivering less from the plants as compared to open-
ing the less costly DCs and also supplying more product directly from the 
plants. This makes the profit in Scenario 6 decrease by 13% (representing 
about $6.6 million) and the profit in Scenario 8 reduce by 2% (representing 
$1.3 million). Note that the profit calculated from this model is not an actual 
accounting profit but an approximate representation of the revenues and costs 
that affect the supply chain. In other words, the profit numbers obtained from 
this model are not the ones reported in the profit and loss statements.

Another difference, observed from Table  5.5, is that the single objective 
model does not recommend moving any customers to a distributor, whereas 
the multi-criteria models suggest doing this for two customers. This differ-
ence is attributed to the power and credit performance criteria. These two 
criteria have the second and third highest weights, giving them a higher 
chance to have an impact on the results.

The objectives considered in the multi-criteria model conflicted with one 
another. Non-preemptive goal programming with ideal values as targets 
was used to obtain the best possible solution that represented the decision 
makers’ preferences. Because the criteria were conflicting, it was not pos-
sible to achieve any of the ideal values. Table 5.6 shows how much of each 
criterion was achieved and the percent difference from the ideal values for 
Scenarios 6 and 8. As can be observed, in both scenarios, the power objective 
was almost fully met but the credit performance was not met very much at 
all. This happened because very few customers had low ratings (two cus-
tomers had power ratings below 5 out of 10 and two had credit performance 
ratings below 5 as well) and two of them were selected.

The profit goal in Scenario 6 did not seem to have such a high percent-
age of difference but, in dollar terms, it was a large amount. Even though 
the profit criterion had the largest weight in this scenario, the profit values 

TABLE 5.6

Goal Achievements for Scenario 6

Goal Ideal

Scenario 6 Scenario 8

Achieved % Difference Achieved % Difference

Profit $52,680,802 $46,043,021 13 $51,416,463 2
Power 630 618 2 618 2
Cred. Perf. 506 425 16 425 16
Resp. Time 6,375 9,148 43 11,883 86
Dist. Rep. 12,480 1,920 85 1,920 85
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were significantly larger in magnitude than the other criteria’s values—hence 
the large difference in the amounts. Also, in order to consider other objec-
tives, the model recommended opening more expensive DCs and supplying 
less from the plants, which resulted in a large drop in profit. On the other 
hand, Scenario 8 used a much higher weight for profit; hence, the difference 
from the ideal profit value was not significant.

The customer response time criterion was affected by those customers 
receiving direct shipments from the plant. The ideal value for response time 
would be achieved if every customer receives everything from their clos-
est DC. However, the profit objective forces some direct shipments from 
the plant, which increases the response time to customers. In Scenario 6, 
the response time goal was not affected too much (compared to Scenario 8) 
because the model suggested opening more or larger DCs (or both) to supply 
more demands from the DCs than from the plants. However, Scenario 8 rec-
ommended using more direct shipments from the plants and opening less 
or smaller DCs (or both); hence, the response time goal was affected more.

Finally, the distributor’s reputation goal was not close to being satisfied in 
either Scenario 6 or 8 because the ideal assumed that all customers would be 
supplied by a distributor. Because this goal had a significantly lower weight, 
it did not have much impact on the multi-criteria model results. If the weights 
were to be changed, these results might change as well.

The discussion of the results of Scenario 6 with weights (0.45, 0.20, 0.19, 
0.13, and 0.03 for profit, power, credit performance, customer response time, 
and distributors’ reputation, respectively) is primarily for comparison. These 
weights are not necessarily the preferred solution for all decision makers, but 
they represented the initial preferences of the company’s decision makers. 
Most likely, decision makers might not sacrifice so much profit ($6.6 million) 
and might pick one of the solutions with higher profit, such as the one for 
Scenario 8 with the (0.72, 0.05, 0.05, 0.15, 0.03) weight vector (see Table 5.4). 
It is clear that the customer response time objective affects the profit signifi-
cantly. However, in this case study, the company is interested in maintain-
ing good customer responsiveness; therefore, this plays an important role 
in the model as an objective. In some cases, different weights could also be 
applied, where the criteria weights could be different for customers. With 
this method, responsiveness could be considered as important as profit for 
major customers and not as important for minor customers.

5.5 Conclusions

The model developed in this chapter integrates strategic and tactical deci-
sions when designing a supply chain distribution network. The strategic 
decisions are what distribution options and DC locations to use and the 
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size of the DCs to be opened in specific time periods. The tactical  decisions 
are the selection or planning of the distribution options to be used for 
each customer in each period. The integrated model considers conflict-
ing criteria—such as profit, customer response time, power, credit perfor-
mance, and distributor’s reputation. In addition, this model also considers 
multiple time periods in order to make decisions for a given planning 
horizon.

The case study involving a consumer goods company, described in 
Section  5.1, was used to show the applicability of this model. The model 
was run in GAMS and took approximately six to eight hours to obtain opti-
mal results with an Intel Pentium Dual Core, 2 GHz processor with 4 GB 
memory. It was shown that, when multiple criteria are considered in long-
term  decision-making models, direct shipments from the plant are not 
always the best supplying option even if the demand is sufficient. However, 
this will depend on the importance of each criterion. In Scenario 6, the profit 
criterion weight was not high enough to manipulate the decision of increas-
ing the number of direct shipments from the plants. It could be observed 
that the multi-criteria model suggested that only 44% (on average) of the 
monthly demand should be supplied directly from the plants; whereas the 
model that only considered profit (Scenario 1), recommended direct ship-
ments from the plants for 88% of the monthly demand. On the other hand, 
Scenario 8 used a significantly higher profit weight, resulting in supplying 
62% of the demand directly from the plants. Also, the model considering 
only the profit does not propose moving any customers to the distributors—
whereas the multi-criteria models do it for two customers. The latter decision 
in the multi- criteria models is influenced by the power, credit performance, 
and customer responsiveness criteria.

The different results obtained from this case study showed the impor-
tance of considering multiple criteria when designing and analyzing supply 
chains. To have an effective supply chain, several factors and criteria must 
be considered. Many researchers consider cost or profit as their only objec-
tive and fail to consider that response time and other factors (e.g., dealing 
with irresponsible customers that represent problems and implicit costs to 
the company). Also, using weighted non-preemptive goal programming 
allows changing the priorities of each objective according to the situation 
at the moment (e.g., in most cases, profit has a significantly higher weight, 
but in case of an emergency, customer response time may end up as the 
most important criterion). The criteria weights can also be adjusted by cus-
tomer. For example, for important customers, response time could be as 
important as profit.

One weakness or concern in having a multi-period model is that profit and 
the other criteria values are considered only for a specific number of periods, 
and that the decisions to be made depend on the demands of each period. 
To take care of this, a demand sensitivity analysis should be used, such as a 
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procedure to evaluate different demand patterns. This is necessary because 
the DC opening decisions are very dependent on when the large demands 
occur. Also, a scenario approach that deals with the demand uncertainty 
(e.g., actual changes in demand not changes in the demand pattern) should 
be used, such as discrete economic scenarios.

The multi-criteria deterministic model showed how effective it can be 
when making practical decisions in the marketplace. The model was devel-
oped to generate realistic planning decisions that consider the decision 
makers’ preferences. Based on the results obtained for the case study, this 
model can be very helpful when designing a supply chain distribution 
network. The model serves as a support tool for the managers to make 
the important strategic decisions of opening new DCs and giving up cus-
tomers to distributors. The model makes the strategic decisions of opening 
DCs, but these decisions can also be considered tactical because, for the 
opening of DCs in future periods, the model should be run again before 
that period to make sure that it is still optimal to open a DC at that moment.
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6.1 Introduction

Within the applications of health and humanitarian logistics, there are often 
multiple conflicting objectives or criteria that are important to the decision 
makers. Examples include designing a logistics network that serves the max-
imum number of people, responds in the shortest time possible, and targets 
those in need. There may also be objectives that are unique to health and 
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humanitarian applications such as ensuring that there are not disparities in 
the outcomes (i.e., the solution is equitable for the population).

In this chapter, we present two examples of multi-criteria network design 
optimization models for health and humanitarian logistics. The first example 
is a model to optimize the design of a humanitarian assistance and disaster 
relief (HA/DR) supply chain network for military aerial delivery operations 
under uncertainty. In addition to optimizing the logistics costs, staging loca-
tions, procurement amounts, and inventory levels across a wide range of 
real-world, probabilistic scenarios, the proposed model enables decision 
makers to explore the trade-offs between military HA/DR aerial delivery 
supply chain efficiency and responsiveness. The second example is a model 
to optimize the network design for community health centers to serve at-risk 
populations in Pennsylvania. Additional details about both models may be 
found in Bastian et al. (2015) and Griffin et al. (2014), respectively.

The layout of the chapter is as follows. We first provide the background 
and literature review for the two applications. The HA/DR network design 
optimization model is then presented and applied to US military aerial 
delivery operations. The community health center network design model 
is then presented and applied to the state of Pennsylvania. Results are dis-
cussed for each example. Conclusions and future work are discussed in 
Section 6.4.

6.2 Background and Literature Review

In this section, we provide a brief review of the literature on humanitarian 
and health logistics, with special emphasis on network design.

6.2.1 Network Design in Humanitarian Logistics

Supply chain management (SCM) for HA/DR delivery operations is the pro-
cess of planning, implementing, and controlling the efficient, cost- effective 
flow and storage of goods and materials, as well as related information, 
from  the point of origin to the point of consumption for the purpose of 
alleviating the suffering of vulnerable people (Thomas and Kopczak 2005). 
Logistics in the HA/DR sector encompass several traditional activities such 
as the procurement, transportation, and warehousing of goods and ser-
vices, as well as other specific activities such as disaster preparedness and 
planning (Van Wassenhove 2006). Network design emphasizes the optimal 
design of the HA/DR supply chain using mathematical models and methods 
to determine optimal strategies and policies for managing the supply chain 
(Ravindran and Warsing 2013). Important performance criteria include sup-
ply chain efficiency, responsiveness, and risk.
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Characteristics that bring additional complexity and unique challenges to 
HA/DR delivery supply chain design and management include: unpredict-
ability of demand in terms of timing, geographic location, type of commod-
ity, and quantity of commodity; suddenly occurring demand in very large 
amounts and short lead times for a wide variety of supplies; high importance 
associated with response time; and lack of initial resources (supplies, people, 
technology, transportation capacity, and money) (Balcik and Beamon 2008). 
The flow of resources coincides with four main phases of disaster relief: 
assessment (minimal resources are required to identify what is needed), 
deployment (resource requirements ramp up to meet the needs), sustainment 
(operations are sustained for a period of time), and reconfiguration (opera-
tions are reduced, then terminated).

Given that HA/DR delivery supply chains usually operate in highly 
uncertain environments, they must be engineered and executed in shorter 
periods of time so as to provide relief to the affected population as soon as 
possible (Ratliff 2007). Further, inventory management in HA/DR delivery 
supply chains is affected by unreliable, incomplete, or nonexistent informa-
tion about lead times, demand levels, and locations (Beamon 2004). In terms 
of distribution network configuration, the number and location of distribu-
tion centers is uncertain. This makes cost assessment difficult in terms of 
planning financial flows.

For the HA/DR supply chain network, there are three dominating costs: 
supply costs, distribution costs, and inventory holding costs. Unpredictable 
demand patterns increase the complexity of relief organization–supplier rela-
tionships, making them more difficult to foster than in the relatively stable 
demand environment of the commercial supply chain (Beamon and Balcik 
2008). Further, supply procurement options generally cannot be evaluated 
before a disaster occurs. Thus, it may be difficult to control the cost of sup-
plies. Distribution costs stem from the need to transport massive amounts 
of materials in a very short amount of time. Varied disaster locations lead to 
varied modes of transportation. The types of inventory costs include inven-
tory investment, inventory obsolescence (and spoilage), order/setup costs, 
and holding (carrying) costs. Inventory control for supply warehouses in 
the relief chain is challenging due to the higher variations in lead times, 
demands, and demand locations (Beamon and Balcik 2008). Coordinating 
activities among various agencies for HA/DR is also a challenging issue 
(Duran et al. 2012; Ergun et al. 2014).

Relatively few studies have been conducted to optimize HA/DR delivery 
operations in terms of distribution center pre-positioning and inventory 
staging. Akkihal (2006) solves an array of mixed-integer linear program for-
mulations to examine the strategic impact of inventory pre-positioning on 
delivery lead time of HA/DR operations. The model determines optimal 
locations for warehousing nonconsumable inventories required for initial 
deployment of aid. The objective of the model is to minimize the average 
global distance from the nearest warehouse to a forecasted homeless person. 
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Demand patterns, along with correlated variables such as population and 
hazard frequency, offer views of regional vulnerability to natural disasters. 
Similarly, Balcik and Beamon (2008) consider facility location decisions for a 
humanitarian relief chain responding to quick-onset disasters, where they 
develop an optimization model that determines the number and locations 
of distribution centers in a relief network and the amount of relief supplies 
to be stocked at each distribution center to meet the needs of the affected 
population. The model integrates facility location and inventory decisions, 
while considering multiple item types and capturing budgetary constraints 
and capacity restrictions.

Duran et al. (2011) develop a mixed-integer programming inventory loca-
tion model to evaluate the effect that pre-positioning relief items would 
have on average relief-aid emergency response time. They find the optimal 
number and location of pre-positioning warehouses given that demand for 
relief supplies can be met from both pre-positioned warehouses and sup-
pliers. They allow multiple HA/DR events to occur within a replenishment 
period, thus capturing the adverse effect of warehouse replenishment lead 
time. They also allowed the probability of need for each item to depend on 
both local conditions and natural hazard type. Salmeron and Apte (2010) 
developed a two-stage stochastic optimization model with the goal of mini-
mizing casualties by determining location and expansion decisions of assets 
such as warehouses and shelters in the first stage and then determining the 
best supporting logistics decisions in the second stage. The second stage 
decisions classify the population in those that need emergency evacuation 
(critical), those that need commodities (stay-back), and those that are dis-
placed (transfer). The stochastic optimization formulation helps model the 
inherent uncertainty.

Mogilevsky (2013) developed the Disaster Relief Airlift Planner (DRAP), 
which is an optimization-based decision support tool that determines opti-
mal routes to deliver material given certain data such as disaster location 
and available airports, aircraft, and supply stockpiles. DRAP is formulated to 
minimize disaster material shortages while preferring to choose routes that 
reduce transportation costs (and delivery times) based on decision maker 
constraints and priorities. The model is also useful for helping determine the 
optimal aircraft allocation and positioning for HA/DR operations. DRAP 
can be used by logistics planners and decision makers to conduct trade-off 
analysis among routes with respect to transportation costs and demand 
shortages in very short time horizon logistics planning.

Relatively few studies have used multiple criteria optimization approaches 
for improving HA/DR delivery operations and logistics planning. As an 
exception, Park (2007) develops a multi-objective decision making model 
to incorporate the decision maker(s) value trade-offs in the disaster relief 
resource allocation problem. The decision window for resource allocation is 
the critical first 72 hours after the initial damage assessment has been made. 
Value-focused thinking was used to capture the value trade-offs, and the 
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resulting value hierarchy is optimized via a mathematical programming 
model to solve the multi-objective resource allocation problem. In another 
study, Vitoriano et al. (2011) propose a goal programming model to provide 
decision support to solve the multi-criteria humanitarian logistics aid distri-
bution problem, attempting to minimize costs and time of response while 
maximizing equity of distribution or reliability and security of the operation 
routes.

In addition, Bozorgi-Amiri et  al. (2013) develop a multi-objective robust 
stochastic programming approach for HA/DR logistics under uncertain 
demand, supply, and costs (procurement and transportation). Further, the 
model considers uncertainty for the locations where those demands might 
arise and the possibility that some of the pre-positioned supplies in the relief 
distribution center or the supplier might be partially destroyed by the disas-
ter. The multi-objective model attempts to minimize the sum of the expected 
value and the variance of the total cost of the relief chain while penalizing 
the solution’s infeasibility due to parameter uncertainty. The model also aims 
to maximize the affected areas’ satisfaction levels through minimizing the 
sum of the maximum shortages in the affected areas. To solve this  bi-criteria 
problem, they formulated a compromise programming model and solve it 
to obtain a Pareto-efficient (non-dominated) compromise solution. The pur-
pose of the model is to provide decision support on both facility location and 
resource allocation in cases of HA/DR efforts.

Recent developments in social media have been useful in facilitating 
humanitarian relief. For example, emergency response times can be reduced 
through the use of Twitter data (Schnebele et  al. 2013; Tapia et  al. 2013). 
Further, web-based mapping services such as Ushahidi and Crisis Mapping 
have taken advantage of crowdsourcing to get information to relief agencies 
in a more timely way (Zook et al. 2010).

Despite these recent studies, a critical gap in the literature remains in 
assessing the trade-offs between supply chain efficiency (i.e., total logistics 
costs) and supply chain responsiveness (i.e., supply delivery time, demand 
fulfillment) for aerial delivery operations in the entire military HA/DR sup-
ply chain network. None of these previous studies considered the delivery 
of HA/DR consumable aid via aerial delivery mechanisms. Further, none 
of these previous studies considered the trade-offs of response time, total 
cost, and amount of demand satisfied. Therefore, we seek to fill the gap in 
the literature while providing military HA/DR decision makers with stra-
tegic decision support using a multiple criteria decision analysis (MCDA) 
framework.

6.2.2 Network Design in Public Health

Providing comprehensive health care services to all the members in a com-
munity is important for the achievement of health equity and for increasing 
a community member’s quality of life. However, there are many disparities 
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that exist in health care services that affect not only individuals but also the 
entire community. Two important measures of disparity are not having a 
primary source of care (or lack of access) and a persistent lack of insurance 
coverage.

It is well known that having a source of primary care has many health 
benefits (Blumenthal et  al. 1995) including improvements in health status 
(Shi 1992; Shi and Starfield 2001), fewer hospitalizations (Freeman et al. 1982), 
more physician visits (Okada and Wan 1982), more control over treatable dis-
eases (Fihn and Wicher 1988; Lurie et al. 1984), and fewer preventable hos-
pitalizations (Deprez et al. 1987; O’Connor et al. 1990). However, there are 
many persons who do not have a main source of primary care. This may be 
due to a lack of insurance coverage over a significant period of time, the fact 
that not all doctors take Medicaid patients, or because of a limited supply of 
primary care physicians where they live. According to “Kaiser Health Facts,” 
the percentage of population in primary care shortage areas is 11.8% in the 
United States (Kaiser Family Foundation 2012). One of the specific goals of 
the Healthy People 2020 initiative is to “increase the proportion of persons 
who have a specific source of ongoing care” (HHS 2012a).

The number of persons without health insurance across the nation is 
significant. In 2011, 48.6 million Americans were uninsured for more than 
at least one calendar year, which is roughly 16% of the US population (Kaiser 
Family Foundation 2012). A persistent lack of adequate coverage makes it 
difficult for people to obtain the health care they need and, when they do get 
care, it typically leads to a financial burden on the individual.

Current policy efforts focus on the provision of access to health care and 
insurance coverage. Two examples include expanding federally qualified 
health centers (FQHCs) and relaxing eligibility requirements for Medicaid. 
Health care reform will provide $11 billion to expand FQHCs over the next 
five years (2013–2018), and beginning in 2014, Medicaid rules will be modi-
fied so that more people will be eligible for the program (Clemens-Cope et al. 
2012; Dievler and Giovannini 1998; HHS, 2012b; Sommers et  al. 2012). It is 
estimated that Medicaid enrollment increases under full implementation of 
the Affordable Care Act (ACA) will be roughly 37%; nationally, total enroll-
ments will rise from 48.3 million persons to 66.4 million (Blavin et al. 2012; 
HRSA 2013a).

The FQHC Initiative is one program designed to improve access of pri-
mary care, particularly for needy populations (Adashi et al. 2010). These cen-
ters provide primary and preventive health care, outreach, dental care, some 
mental health and substance abuse treatments, and prenatal care, especially 
for people living in rural and urban medically underserved communities. 
More than 90% of FQHC patients live with incomes below 200% of the fed-
eral poverty limits, and more than 40% of FQHC patients are uninsured.

Expanding FQHCs increases access to primary care for those who cur-
rently do not have it. In addition, it can increase the availability of free or 
lower cost services for those who remain uninsured, which has the same 
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effect as expanding coverage. Another alternative to improve coverage is 
expanding Medicaid by relaxing eligibility requirements. Medicaid is a 
state- administered health insurance program for low-income people—
families and children, the elderly, and people with disabilities. Although it 
does not improve access, it is an effective form of coverage. For the state of 
Pennsylvania, the composition of users for FQHCs in 2010 was as follows: 
26.5% were uninsured, 43.0% had Medicaid coverage, 9.3% had Medicare 
coverage, and 21.2% were privately insured (HRSA 2013b).

By many measures, FQHCs are improving the health care of the commu-
nity. Research has found that they reduced hospitalizations, reduced mortality, 
reduced usage of emergency rooms, and increased visits to physicians (Dievler 
and Giovannini 1998; Okada and Wan 1982). It has also been found that FQHCs’ 
quality of service is comparable to other types of primary care (Shi and Stevens 
2007), and they may be cost-effective for Medicaid patients compared to some 
other sources of care (Dor et al. 2008; Stuart and Steinwachs 1993). Although 
75% of uninsured persons in the United States report that they have a source 
of primary care, approximately 99% of FQHC users actually do have a source 
of primary care (Carlson et al. 2001). In addition, with the implementation of 
health care reform, the importance of FQHCs grows (Adashi et al. 2010).

There are a few studies that explicitly consider how delivering care through 
FQHCs compares to other alternatives. Griffin et  al. (2008) developed an 
optimization model to determine the FQHC locations, the services to offer 
at each, and the capacity level of the services and facility. Okada and Wan 
(1982) tried to determine the effect of FQHCs and Medicaid service on health 
care through surveys, and Cunningham and Hadley (2004) used data from 
the Community Tracking Study and FQHC reports to compare the impact 
of expanding FQHCs on increased insurance coverage. Shi and Stevens 
(2007) also compared the primary care experiences of FQHC uninsured and 
Medicaid insured. Using three aspects of primary care experience: access, 
longitudinality, and comprehensiveness, they found that FQHCs could fill 
an important gap in primary care for Medicaid and uninsured patients. 
They also report that Medicaid insurance remains important for high qual-
ity primary care, even with the presence of FQHCs.

These comparisons of delivery alternatives, however, do not take into 
account the specific location of FQHCs to improve a particular measure based 
on geographic and demographic differences in communities. We develop an 
integrated model to examine the impact of increasing the current govern-
ment budget for FQHCs in Pennsylvania and expanding Medicaid through 
relaxing the income eligibility limits. We consider the geographic and demo-
graphic differences in our model to consider the trade-offs between these two 
policies. The objective of this study is to find a balanced investment between 
FQHC expansion and relaxing Medicaid eligibility to improve both access 
(by increasing the number of FQHCs) and coverage (by FQHC and Medicaid 
expansion). The comparison is achieved by integrating mathematical models 
with several data sets that allow for specific estimations of health care need.
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6.3 Multi-Criteria Network Design Optimization Models

In this section, we discuss the multiple objective mathematical program-
ming formulations and results for network design optimization in health 
and humanitarian logistics.

6.3.1  Humanitarian Logistics Network Design—Military Aerial 
Delivery Operations

In the event of a natural disaster, military HA/DR aerial delivery planners 
and policymakers must make a series of quick decisions in an effort to pro-
vide humanitarian aid to the affected population as soon as possible. In 
order to facilitate this tactical- and operational-level decision making, strate-
gic planners must fully understand the process flow of consumable aid for 
military HA/DR aerial delivery operations. Figure 6.1 depicts the military 
HA/DR aerial delivery process flow.

In this aerial delivery process flow depicted in Figure 6.1, HA/DR consum-
able aid is purchased from the vendor(s) and transported to HA/DR supply 
depot(s) (typically located in the United States). Next, the consumable aid is 
transported from the depot(s) to be pre-positioned at HA/DR staging loca-
tions around the world, where the consumable aid is stored. The consumable 
aid consists of food bars and water, both of which have extremely long shelf 
lives; hence, perishability is not a concern. In the event that a natural disaster 
occurs requiring HA/DR aerial delivery operations, the aerial delivery capa-
bility is immediately prepared for mission execution, and the consumable 
aid is transported and airdropped to the affected population.

In addition to the process flow, Figure  6.2 depicts the military HA/DR 
aerial delivery supply chain network. Upon examining the four stages of the 
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FIGURE 6.1
Military humanitarian assistance and disaster relief (HA/DR) aerial delivery process flow.
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supply chain network, the vendors represent the suppliers, the depots repre-
sent the warehouses, the pre-positioned storage facilities represent the dis-
tribution centers, and the disaster areas represent the customers. We use this 
multi-stage supply chain network representation in Figure 6.2 to develop the 
stochastic, mixed-integer, weighted goal programming optimization model. 
This MCDA framework is used as a strategic-level planning tool for optimiz-
ing the military HA/DR aerial delivery supply chain network design.

In the MCDA framework, we incorporate several modeling methodologies 
to provide a robust decision support tool. First, we use goal programming 
to allow decision makers to systematically explore and examine different 
optimization problem criteria. The decision maker defines goals for each 
of the criteria considered and then evaluates the effects each of these cri-
teria have on the global optimal solution. This methodology is particularly 
useful for strategic planning when incorporated with goal priority weights 
determined by the decision maker(s) (Bastian 2010). Second, we use design of 
experiments (DOE) to estimate the impact of the underlying factors causing 
uncertainty within the system. We use a 23 full-factorial DOE to model the 
interactive effects among experimental design factors; this approach helps 
identify robust alternatives over the set of probabilistic scenarios (Bastian 
2010). Third, we use stochastic optimization to incorporate random elements 
into the model objective function and data parameters; this method pro-
vides more robust solutions to aid decision makers when optimizing under 
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network.
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uncertainty (Bastian 2010). In this model, we optimize the expected value of 
the objective function (due to the probabilistic scenarios) and calculate many 
of the data parameters stochastically.

In this model, we assume that each delivery mode transports its maxi-
mum allowable capacity each trip and that all consumable aid onboard is 
delivered. We assume that each aerial delivery mode is capable of traveling 
the full distance required each trip in terms of flight crew and fuel (i.e., fuel 
is available en route, if necessary). We also assume that there is no limit on 
the number of hours flown for each aerial delivery mode. Finally, we assume 
that all pre-positioned aerial delivery assets are available to be used (if neces-
sary, but number of trips may vary) to deliver consumable aid to the disaster 
area (aircraft will fly in parallel, as opposed to each aircraft waiting for the 
prior vehicle to return before departing with aid).

In the model, there are three goals: (i) meet a target total aerial delivery 
response time (in trip-hours), (ii) spend no more on total supply chain cost 
than a target budget, and (iii) ensure that the amount of consumable aid 
demanded and the amount actually delivered (i.e., shortage) be no more than 
a specified target. The disaster planning scenarios generated from the DOE 
are related to the impact of disaster; they are represented by expected con-
sumable aid demand, days of food required, and supply chain disruption. 
Further, the model iterations refer to the affected area hit by the disaster 
(i.e., one iteration per each disaster area).

6.3.1.1 Humanitarian Logistics Network Design Model

The following are the sets, parameters, and decision variables used in the 
model.

Model Sets
V set of consumable aid vendors (suppliers) with v ∈ V
D set of consumable aid depots (warehouses) with d ∈ D 
J set of candidate storage facilities (distribution centers) 

with j ∈ J 
N set of high-risk disaster areas (beneficiaries) with i ∈ N 
K set of aerial delivery modes (aircraft types) with k ∈ K
S set of disaster planning scenarios (based on impact factors) 

with s ∈ S
B set of model iterations (mapped to disaster area affected) 

with b ∈ B 
G set of decision maker goals with g ∈ G 

Model Parameters
psb probability of occurrence of disaster planning scenario s in 

iteration b
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wg decision maker weight for goal g
Disruptsb supply chain disruption effect on supply chain costs in 

scenario s and iteration b
Foodsb number of days worth of food to provide in scenario s and 

iteration b
Impsb disaster impact above or below estimated demand in 

scenario s and iteration b
Demisb expected consumable aid demand (pounds) per day at 

disaster area i in scenario s and iteration b
dsij geodesic distance (nautical miles) from storage facility j to 

disaster area i
ldj geodesic distance (nautical miles) from depot d to storage 

facility j
Spdk average speed of aerial delivery mode k
LoadDelayk load time for aid (per trip) of aerial delivery mode k
tijk travel time (per trip) from facility j to disaster area i via 

delivery mode k
rdj travel time (per trip) from depot d to storage facility j
OMFk operation and maintenance and fuel cost ($ per hour) of 

aerial delivery mode k
TDcostdj transportation cost (per trip) from depot d to storage facility j
TScostijk transportation cost (per trip) from facility j to disaster area i 

via delivery mode k
Atd amount of aid (lbs) transported (per trip) (between each 

depot and storage facility)
Atsk amount of aid (lbs) transported (per trip) via mode k 

(between each facility and disaster area)
IHDcostd inventory holding cost (per lb) at depot d
IHScostj inventory holding cost (per lb) at storage facility j
Pcostv procurement cost (per lb) of consumable aid from vendor v
Capj inventory holding capacity (lbs) at storage facility j
Cpd inventory holding capacity (lbs) at depot d
Fcostj fixed cost of opening storage facility j
Ntddj maximum number of trips with consumable aid from depot 

d to storage facility j
Ntsijk maximum number of trips with consumable aid from 

storage facility j to disaster area i via aerial delivery mode k
ADMjk number of aerial delivery modes k pre-positioned at storage 

facility j
TG1sb target goal for the total aerial delivery response time in 

scenario s and iteration b
TG2sb target goal for total supply chain cost in scenario s and 

iteration b
TG3sb  target goal for unmet demand in scenario s and iteration b
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Model Decision and Goal Deviation Variables
Xj equals 1 if open storage facility j or 0 otherwise
Yij equals 1 if disaster area i is served by storage facility j or 0 

otherwise
Zijksb number of trips with consumable aid from storage facility j 

to disaster area i via aerial delivery mode k in scenario s and 
iteration b

Hdjsb number of trips with consumable aid from depot d to storage 
facility j in scenario s and iteration b

Qdv amount of aid (lbs) purchased from vendor v for storage at 
depot d

Invj amount of aid (lbs) to store in inventory at storage facility j
Ind amount of aid (lbs) to store in inventory at depot d
posgsb positive deviation for goal g in scenario s and iteration b
neggsb negative deviation for goal g in scenario s and iteration b

Model Formulation

 p w pos w pos w pos
b s

sb sb sb sb∑∑ + +min ( )1 1, 2 2, 3 3,  (6.1)

Subject to:

 ∑∑∑ ∑∑+ + − ∀ ∈ ∈t Z r H neg pos TG s S b B
i j k
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d j

dj djsb sb sb sb= 1 ,1, 1,  (6.2)
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j

ij∑ ∀ ∈= 1  (6.5)
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 Y X j J
i

ij j∑ ∀ ∈=  (6.6)

 Ats Z ADM Inv j J s S b B
i k

k ijksb jk j∑∑ ≤ ∀ ∈ ∈ ∈, ,  (6.7)

 Invj ≤ CapjXj  ∀j ∈ J (6.8)

 Invj ≥ Xj ∀j ∈ J (6.9)

 Atd H In d D s S b B
j

djsb d∑ ≤ ∀ ∈ ∈ ∈, ,  (6.10)

 Ind ≤ Cpd  ∀d ∈ D (6.11)

 Q In d D
v

dv d∑ ≤ ∀ ∈  (6.12)

 Hdjsb ≤ NtddjXj ∀d ∈ D, j ∈ J, s ∈ S, b ∈ B (6.13)

 Zijksb ≤ NtsijkYij  ∀i ∈ N, j ∈ J, k ∈ K, s ∈ S, b ∈ B (6.14)

 Atd H Ats Z ADM j J s S b B
d

djsb

i k

k ijksb jk∑ ∑∑≥ ∀ ∈ ∈ ∈, ,  (6.15)

 Q Atd H v V s S b B
d

dv

d j

djsb∑ ∑∑≥ ∀ ∈ ∈ ∈, ,  (6.16)

 Xj ∈ {0,1} ∀j ∈ J

 Yij ∈ {0,1} ∀i ∈ N, j ∈ J

 Zijksb ≥ 0, integer  ∀i ∈ N, j ∈ J, k ∈ K, s ∈ S, b ∈ B

 Hdjsb ≥ 0, integer ∀d ∈ D, j ∈ J, s ∈ S, b ∈ B

 Invj ≥ 0 ∀j ∈ J (6.17)

 Ind ≥ 0 ∀d ∈ D

 Qdv ≥ 0 ∀d ∈ d, v ∈ V 

 posgsb ≥ 0 ∀g ∈ G, s ∈ S, b ∈ B

 neggsb ≥ 0 ∀g ∈ G, s ∈ S, b ∈ B 

The objective function in Equation 6.1 seeks to minimize the sum of the 
three expected weighted goal deviations for target response time, target 
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budget, and target demand met across all probabilistic disaster planning 
scenarios s and iterations b. The weights allow the planner to prioritize 
the targets. Goal constraints (Equation 6.2) ensure target TG1sb is met for 
the total aerial delivery response time (in trip-hours) for each scenario s 
and iteration b. The amount by which the first target is not met, pos1,sb, is 
minimized in Equation 6.1. Note that TG1sb is set to 0 for all s and b because 
the decision maker wishes to minimize total aerial delivery time, which 
is a function of replenishment time between depots and storage facilities 
as well as the final disaster response time between storage facilities and 
affected areas.

Goal constraints (Equation 6.3) ensure the target for total supply chain 
cost (TG2sb) with supply chain disruption factor is met for each scenario s 
and iteration b; target deviation is captured in pos2,sb. The amount by which 
the second target is not met, pos2,sb, is minimized in Equation 6.1. Note that 
TG2sb is set to 0 for all s and b because the decision maker wishes to mini-
mize total supply chain cost. Goal constraints (Equation 6.4) ensure that 
the amount of delivered consumable aid shortage to the affected popula-
tion including disaster impact and food factors for each scenario s and 
iteration b does not exceed the target TG3sb; the amount of shortage above 
the target is captured in pos3,sb. Again, the amount by which the third tar-
get is not met, pos3,sb, is minimized in Equation 6.1. Note that TG3sb is set 
to 0 for all s and b because the decision maker wishes for the estimated 
demand to be met.

Constraints (Equation 6.5) ensure that each disaster area i is served by 
exactly one storage facility j. Constraints (Equation 6.6) ensure that if disas-
ter area i is served by storage facility j, then storage facility j must be opened 
for pre-positioning inventory and assets, and that each storage facility j can 
only serve one disaster area i. Note that Equation 6.5 and Equation 6.6 are set 
partitioning constraints. From Equation 6.7, the amount of inventory to store 
at storage facility j must be greater than or equal to the sum of the product of 
the number of trips, the amount of consumable aid transported per trip, and 
the number of assets pre-positioned for every scenario s and iteration b. From 
Equation 6.8, the inventory is held only at opened storage facilities, and the 
amount of inventory kept at the storage facility j must not exceed its capacity. 
Constraints (Equation 6.9) enforce that if a storage facility j is opened, then 
inventory must be stored there.

Constraints (Equation 6.10) ensure that the amount of inventory to store at 
each depot d must be greater than or equal to the sum of the product of the 
number of trips (of a single C-17 aircraft) and the amount of consumable aid 
transported per trip for every scenario s and iteration b. In Equation 6.11, all 
depots are assumed to be open, but the amount of inventory kept at depot d 
must not exceed its capacity. In Equation 6.12, if consumable aid is purchased 
from the vendors for storage at depot d, then there is inventory for storage 
at depot d. Constraints (Equation 6.13) ensure that the number of trips with 
consumable aid from each depot d to each storage facility j must not exceed 
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a specified maximum; note that this maximum is a function of a target total 
flight time budget value set by the decision maker.

In Equation 6.14, the number of trips with consumable aid from each 
storage facility j to each disaster area i via each delivery mode k must not 
exceed a specified maximum number; again, this maximum is a function 
of a target total flight time budget value by the decision maker. Constraints 
(Equation 6.15) ensure that the total amount of consumable aid shipped 
from the depots d to each storage facility j must appropriately backfill the 
total amount of aid delivered to the disaster areas i for each scenario s and 
iteration b. From Equation 6.16, the amount procured from each of the ven-
dors v for storage at all of the depots d must be greater than or equal to the 
total amount of aid shipped out of depot d for each scenario s and iteration 
b. In Equation 6.17, we have the binary, integer, and nonnegativity decision 
variable constraints.

As part of the MCDA framework, we incorporated a 23 full-factorial exper-
imental design as a mechanism to help mitigate uncertainty associated with 
consumable aid demand as well as the effects of supply chain disruption on 
total supply chain costs. By exploring three different design factors (each at 
two levels), we generate eight different disaster planning scenarios that are 
combinatorially applied to each of the disaster areas in the military HA/DR 
supply chain network. Note that each of these disaster areas represents a 
unique model iteration, making sb scenario-iteration pairs.

6.3.1.2  Military Humanitarian Logistics Network Design 
for Aerial Delivery Operations

In this example, clustering methods were used to determine eight foreign 
disaster areas (beneficiaries): Haiti, Indonesia, Mexico, Tanzania, India, 
China, Australia, and Peru. In addition, there are 10 possible servicing stor-
age facilities (distribution centers) at pre-positioned US Air Force bases 
around the world: Ramstein, Charlotte, McChord, Hickam, Yokata, Incirlik, 
Osan, Ali Al Salem, Soto Cano, and MacDill. Two consumable aid depots 
(warehouses) are considered at pre-positioned, stateside US Marine Corps 
bases: Albany and Barstow. These depots procure from three consumable 
aid vendors (suppliers) located in the United States. Finally, three air trans-
portation modes for consumable aid aerial delivery are considered: C-17s, 
C-130s, and CH-47s. Ordinary least squares multiple regression was used 
to estimate the total number of affected people per year. Additional details 
on the data and methods used to populate the network design optimization 
model may be found in Bastian et al. (2015).

The three factors included in the 23 full-factorial DOE were Impsb, Foodsb, 
and Disruptsb. Impsb represents a disaster impact factor that adjusts the esti-
mated expected consumable aid demand in each scenario s and iteration 
b up or down by 25% to account for the deviation from expected impact. 
Foodsb represents a days of food factor that adjusts the estimated expected 
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consumable aid demand in scenario s and iteration b by the number of days 
worth of food to provide for each affected person; this factor is also varied at 
two levels (7 or 14 days’ worth of food). Note that these first two DOE factors 
address uncertainty involving the amount of beneficiary demand, affecting 
both supply chain efficiency and responsiveness. Disruptsb represents a sup-
ply chain disruption impact factor to better account for uncertainty in sup-
ply chain costs for each scenario s and iteration b, while also increasing the 
robustness of the supply chain network design. We assume that supply chain 
disruptions (such as aerial delivery weather delays and maintenance issues) 
will affect supply chain processes associated with transportation and stor-
age of consumable aid, which is reflected in the overall supply chain costs. 
Therefore, this factor increases the total supply chain costs by 0% (low risk) 
and 11% (high risk).

To implement the MCDA framework for solving the multi-criteria mili-
tary HA/DR aerial delivery supply chain network design optimization 
problem under uncertainty, we leveraged the General Algebraic Modeling 
System (GAMS), Microsoft Excel, and Microsoft Visual Basic for Applications 
(VBA) platforms. In particular, we used GAMS v.23.9.3 with IBM ILOG Cplex 
12.4.0.1 to solve the stochastic, mixed-integer weighted goal programming 
model, and we used Excel/VBA to create an automatic, user-friendly inter-
face with the decision maker for model input and analysis of model output. 
The following best compromise solution to the computational experiment 
was solved in 0.499 seconds on a Lenovo Thinkpad W510 laptop with an Intel 
i7 CPU (1.6 GHz) and 8.00 GB of RAM.

In the following solution, the decision maker heavily weighted the third 
goal to place significant priority on meeting the estimated expected con-
sumable aid demand across all high-risk disaster areas. Note that the solu-
tion depends upon the pseudo-random number generator seed in GAMS. 
Table  6.1 highlights which storage facilities were opened, the amount of 
pre-positioned inventory to store, and the number of required trips by each 
aerial delivery mode.

Given that each storage facility must serve exactly one disaster area, the 
results in Table 6.1 indicate that eight of the ten candidate storage facilities 
are opened for pre-positioning both aerial assets and consumable aid inven-
tory; note that the US Air Force bases in Kuwait and Honduras should not be 
opened as part the optimal supply chain network design. Table 6.2 shows the 
amount of inventory to store at each of the stateside Marine Corps logistics 
bases as well as the breakdown of the amount procured from each of the 
three consumable aid vendors.

These results in Table  6.2 indicate that both depots in the supply chain 
network are used to store inventory stateside, but it is clear that the depot in 
Albany is utilized more heavily. Further, only one of the three vendors sup-
plies consumable aid to both depots.

Table 6.3 depicts which global disaster areas (representing high-risk geo-
graphic regions) are served by which opened storage facilities.
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TABLE 6.1

Results for Storage Facility Locations, Inventory, and Trips

Storage Facility Name Opened Inventory Number of Trips

Ramstein Air Base (Germany) 1 665,600 4 2 0
Charlotte Air National Guard Base 
(North Carolina, USA)

1 832,000 3 5 0

McChord Air Force Base 
(Washington, USA)

1 896,000 4 5 0

Hickam Air Force Base 
(Hawaii, USA)

1 769,600 3 2 1

Yokota Air Base (Japan) 1 640,000 3 5 0
Incirlik Air Base (Turkey) 1 588,800 3 4 0
Osan Air Base (South Korea) 1 563,200 2 4 0
Ali Al Salem Air Base (Kuwait) 0 0 0 0 0
Soto Cano Air Base (Honduras) 0 0 0 0 0
MacDill Air Force Base 
(Florida, USA)

1 435,200 5 7 0

C-17 C-130 CH-47

TABLE 6.2

Results for Depot Inventory and Vendor Procurement

Depot Name Inventory Amount Procured from Vendors

Marine Corps Logistics 
Base Albany

14,208,000 3,072,000 5,568,000 5,568,000

Marine Corps Logistics 
Base Barstow

2,496,000 2,496,000 0 0

V1 V2 V3

TABLE 6.3

Results for Disaster Area and Storage Facility Assignments

Disaster Area (Geographic 
Region) Servicing Storage Facility

Haiti (Caribbean) MacDill Air Force Base (Florida, USA) 
Indonesia (South-Eastern Asia) Osan Air Base (South Korea) 
Mexico (Central America) McChord Air Force Base 

(Washington, USA) 
Tanzania (Eastern Africa) Ramstein Air Base (Germany) 
India (Southern Asia) Incirlik Air Base (Turkey) 
China (Eastern Asia) Yokota Air Base (Japan) 
Australia (Australia and 
New Zealand) 

Hickam Air Force Base (Hawaii, USA) 

Peru (South America) Charlotte Air National Guard Base 
(North Carolina, USA) 
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From these best compromise solution results, Figure  6.3 provides a 
visual illustration of the optimal military HA/DR aerial delivery supply 
chain network design. Upon investigating the trade-offs of supply chain 
efficiency versus responsiveness for this best compromise solution to the 
multiple criteria problem, the goal deviation variables provided criti-
cal information about response time, cost, and demand unmet for every 
scenario s and iteration b. In particular, this supply chain network design 
provided an average total aerial delivery response time (across all disaster 
areas) of roughly six days, an average total supply chain cost (across all 
stages of the supply chain network) of roughly $153 billion, and an aver-
age total demand shortage (across all disaster areas) of roughly 47 million 
pounds. Moreover, this supply chain network design provided identical 
median values for the response time and cost, but the median total demand 
shortage equaled 0; in fact, there were only eight of the 64 scenario-iteration 
combinations (13%) where the demand was unmet.

Although not presented here, we leveraged the sample average approxi-
mation (SAA) method within the MCDA framework to better estimate the 
optimal solution to the stochastic goal program, given that many of the 
parameters were computed by randomly sampling from a prior probabil-
ity distribution. In particular, the decision maker uses the MCDA frame-
work to run the optimization model for 30 separate instances to obtain 
30 optimal solutions; the average of these solutions provides an unbiased 
estimate of the true optimal solution. The MCDA framework uses the 
results of the SAA method to construct statistical lower and upper bounds. 

FIGURE 6.3
Optimal military humanitarian assistance and disaster relief (HA/DR) aerial delivery supply 
chain network design.
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This approach served as strategic decision support by helping the decision 
maker to better understand the range of possible best  compromise solu-
tions to the multi-criteria military HA/DR aerial delivery supply chain 
network design problem.

6.3.2  Public Health Network Design—Federally Qualified 
Health Centers

Health status disparities can be addressed better if the population is pri-
oritized according to current access and coverage status. Table  6.4 shows 
six population groups according to their current access status (served and 
underserved) and coverage status (private, public, and persistent lack of 
insurance [uninsured]).

We define an individual as being underserved if they live in a health profes-
sional shortage area (HPSA) as defined by the HRSA (2013a). Several studies 
have found that persons who live in an HPSA have poorer health outcomes 
compared to their counterparts (Brown et al. 2011; Kohrs and Mainous 1995; 
Liu 2007), even after controlling for sociodemographic factors. On the other 
hand, some studies have found no difference in health outcomes between 
these two groups (Kohrs and Mainous 1996). Further, because there are 
many different sources of health care, not all persons in the region that is an 
HPSA will have limited access. However, by its very definition, on average 
an individual living in an HPSA will have access to fewer health profession-
als than those that do not. We therefore use HPSA designation as a proxy for 
being underserved.

An individual is defined as having a persistent lack of insurance if they 
have been uninsured for at least one year. From this point on, we simply 
use the term uninsured. The primary components of public insurance are 
Medicaid and Medicare.

We introduce a multi-objective model to decide the optimal FQHC loca-
tions considering population groups with different priorities. Demand is 
estimated based on current access and coverage status. Details of demand 
estimate are given in Griffin et al. (2014).

TABLE 6.4

Population Groups by Access and Coverage

Coverage

Access 
No 

Insurance
Public 

Insurance
Private 

Insurance

Underserved ① ② ③
Served ④ ⑤ ⑥
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6.3.2.1 Public Health Network Design Model

The following are the indices, parameters, and decision variables used in the 
model.

Model Indices
i FQHC location
z Population location
j Service type (General, OBGyn, Dental, Mental)
k Capacity (Small, Medium, Large)
l Distance level (0, 10 miles, 20 miles, 30 miles)
g1 Insurance group (Private, Public, Uninsured)
g2 Access (Access, No access)

Model Parameters
FL Fixed cost per location
FSk Fixed cost per capacity level
VSj Variable cost per service
RBg1 Reimbursement rate
CAPjk Number of patients of service type j that can be served at level k
wi Weight by service type j
Pl Maximum percentage of z’s population that can be served at 

distance level l

1 2
nzjg g  Demand for service j in county z of insurance and access group

1 2
mizjg g  Maximum demand of county z can be served CHC located 

county i (=Pl 1 2
nzjg g , if the distance between i and z corresponds to 

level l, 0 otherwise)
Iizl Binary parameter equal to 1 if the distance level between i and z 

is greater than l, 0 otherwise

Model Decision Variables
yizj Number of encounters from county z served by FQHC in county 

i for service j
sijk Binary variable equal to 1 if county i has FQHC with service j at 

capacity k
ci Number of FQHC centers in location i

1 2
yizjg g  Number of encounters by insurance group g1 and access group 

g2 in county z served by FQHC in county i for service j

We categorize demand by insurance and access group, which makes it 
possible to use multiple objectives based on the groups. We set the first pri-
ority to maximize insurance coverage (Equation 6.18), which is the sum of 
encounters of the uninsured population (g1 = 3). The second priority is to 
maximize access (Equation 6.19), which is from the underserved population 
(g2 = 2). Finally, we maximize the utilization of FQHCs by providing the 
most weighted services (Equation 6.20). These weights were based on the 
odds ratios from a logistic regression performed on National Health and 
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Nutrition Examination Survey (NHANES) data, where self-reported gen-
eral health (poor, fair, good, excellent) was used as the dependent variable. 
The weights used are shown in Table 6.5, and the details of the regression are 
provided in Griffin et al. (2008).

Model Formulation
Objective:

 w yj izjg g
i z j g g

1st objective (Max Coverage): max
, , , 3 1 2

2, 1
∑ =

 (6.18)

 w yj izjg g
i z j g g

2nd objective (Max Access): max
, , , 2 1 2

1, 2
∑ =

 (6.19)

 3rd objective (Max Utilization): max
, , , 1 2

1 , 2
∑ w yj izjg g

i z j g g
 (6.20)

Subject to:
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1 2

1 2
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∑
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 for ,∑ ∑≤y CAP s i jizj

z

jk ijk

k

 (6.23)
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i  (6.24)
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for , ,
1 2

1 , 2

∑ ∑≤  (6.25)

TABLE 6.5

Adjusted Weights for the Four Service Types

Primary 
(w1)

OBGyN 
(w2)

Dental 
(w3)

Mental 
(w4) Total

Weights 0.88 1.20 0.07 0.05 2.20
Normalized weights 0.40 0.55 0.03 0.02 1.00

Source: Griffin PM, et al. IIE Transactions, 40(9), 880–892, 2008.
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 ∑≤y m i z jizj izjg g

g g

for only , ,
1 2

1, 2

 (6.26)

To define decision variable 
1 2

Yizjg g , we assume that the proportion of each 
group in FQHC encounters will follow the same rate of estimated demand at 
the population location (Equation 6.21). This variable is defined by the ratio of 
each group in the estimated demand (

1 2
nzjg g ) at the location to the total num-

ber of encounters (yizj). Constraint (Equation 6.22) restricts the total spend-
ing on fixed costs for locating FQHCs, fixed costs for capacity, and variable 
costs for services to be no greater than a given budget B. Constraint (Equation 
6.23) ensures that for each service type (General, OBGyn, Dental, and Mental) 
the number of patients served does not exceed the capacity for that ser-
vice. Constraint (Equation 6.24) ensures that services can only be provided 
at a location if there is capacity established at the location for that service. 
Constraint (Equation 6.25) ensures that service is provided to a patient only if 
they are eligible for that service and live close enough to the facility to access 
it. It is implied in this constraint that the likelihood a patient visits an FQHC 
decreases linearly in distance from the facility. Finally, constraint (Equation 
6.26) ensures that the number of patients served in a county for each service 
type does not exceed the number of persons that require that service.

6.3.2.2 Public Health Network Design for Pennsylvania

We apply the model for data for the state of Pennsylvania and use a pre-
emptive optimization approach based on the order given for the objective 
functions. The optimal locations given for the FQHCs for Pennsylvania from 
this example are shown in Figure 6.4. In this example, the budget is $300M, 
and the resulting served population is 1,456,641 persons. The “•” locations 
are from the multi-objective solution and the “x” solutions are for the case 
where only the single objective of utilization (Equation 6.20) was used. In 
Figure 6.4a, access status is shown by county. The darker the shading, the 
poorer is the access for an average person in the county. Similarly, Figure 6.4b 
shows coverage; darker shaded counties have poorer coverage status. As can 
be seen from the figure, the optimal solution using the multi-objective tends 
to place FQHCs in darker shaded regions and clearly outperforms the single 
objective solution, showing the value of a multi-criteria framework.

6.3.2.3 Discussion

The optimization framework presented here can be used by policymakers to 
estimate the impact of certain changes. For example, the Medicaid expansion 
from the ACA that started in 2014 will significantly increase demand for FQHC 
services. One estimate is that the number of Medicaid beneficiaries being 
served by FQHCs in the United States will increase from 7.5 million in 2010 
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FIGURE 6.4
Federally qualified health center (FQHC) optimal locations comparing (a) current access status 
and (b) current coverage status.
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to more than 18 million in 2015 (NACHC 2012). The optimization model could 
be solved directly to determine the impact on the current FQHC network and 
how to best expand that network to meet the demand. The payment scheme 
for FQHCs by Medicaid will also change (HHS 2012c). In 2014, state Medicaid 
agencies will reimburse FQHCs for services based on a per visit rate based on a 
prospective payment system (PPS). Further, if an FQHC contracts with a man-
aged care organization (MCO) to serve Medicaid patients, the FQHC must be 
paid by the MCO at the same rate that it pays other providers. If the MCO rate 
is less than the PPS rate, then the state must provide a “wrap around” payment 
up to the PPS rate. This provides significant revenue opportunities for FQHCs, 
which is particularly important because grants will likely decrease in the near 
future. The variable cost component used in the optimization model can be eas-
ily modified to account for these changes in order to model FQHC expansion.

6.4 Conclusions

In this chapter, we have shown two examples of multi-criteria network design 
optimization in health and humanitarian logistics applications. Because nei-
ther of these areas is profit-based, the use of multiple objectives is extremely 
important. Although cost could be used as a key driver, in practice it is typi-
cally the case for both of these areas that there is a budget provided and the 
goal is to effectively deliver services. Multi-criteria optimization methods 
help the decision maker to more effectively consider the trade-offs. We have 
illustrated two ways that these trade-offs can be considered. For the humani-
tarian logistics case, targets are set by the decision maker, and the importance 
of each target is defined by a corresponding weight. The decision maker can 
adjust either the targets or the weights (or both), depending on their prefer-
ence. In the second case, the decision maker adjusts the importance of each 
objective by their order. In this case, the decision maker is not required to 
set targets or weights if they do not have that information. However, the key 
limitation of this preemptive approach is that it assumes there are alternative 
optima at the earlier stages. If there is a unique optima in the first solution, 
then none of the remaining objectives have any importance.

When applying network design models to the applications of humanitar-
ian and health logistics, there are many unknowns. Getting accurate esti-
mates for these parameters can be quite difficult. The proper quantification 
of the uncertainty of the model parameters as well as the framework for 
incorporating the uncertainty into the model is therefore extremely impor-
tant. For the military humanitarian logistics example, a stochastic optimi-
zation approach was used to incorporate probabilistic scenarios. However, 
additional work is needed in both examples presented, particularly on 
estimating the “demand”-related parameters. For example, in the health 
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application, there are many national data sets that can be used to estimate 
overall demand in the form of prevalence of conditions (and correspond-
ing standard errors). However, there is very little data for local geographic 
regions; hence, some type of local estimation technique typically must be 
developed—such as the use of synthetic estimates. There is opportunity for 
refining these estimates through the use of spatial statistics models as well if 
there is some correlation structure among local regions that can be exploited.

Another important factor that was not considered in the models presented 
that is important for the decision maker to consider is how the network is 
built over time. In the two models presented here, the assumption is that the 
entire networks would be designed at the same instant. In many cases, how-
ever, the entire budget is not available from the start of the project, and so 
the network may be built up over a number of years. For this reason, some of 
the initial locations may be “suboptimal” in the short term in order to achieve 
good overall performance as the network evolves. Adding a temporal com-
ponent is therefore an important extension for what is presented here.
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7
Incorporating Disruption Risk in a Supply 
Chain Network Design Model

Kanokporn Rienkhemaniyom
King Mongkut’s University of Technology Thonburi, Bangkok, Thailand

7.1 Introduction

Globalization and outsourcing have enabled companies to focus on their 
core competencies and to increase their efficiency (Ravindran et  al. 2010). 
However, the increase in lead time and uncertainties due to globalization 
and outsourcing has also made supply chains susceptible to disruptions. 
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A small incident may lead to the disruption of the entire supply chain net-
work. Companies must understand both the risks and the vulnerability 
of their supply chain components to balance business efficiency and risk 
(Asbjørnslett 2009; Craighead et al. 2007; Fahimnia et al. 2015; Hohenstein 
et al. 2015; Jüttner 2005; Kungwalsong 2013).

7.1.1 Supply Chain Disruption

Supply chain disruptions are unplanned events that affect the flow of mate-
rials and result in adverse ability to satisfy customers’ needs and a compa-
ny’s performance (Blackhurst et al. 2008). Supply chain disruptions can be 
provoked by an accident at a local company, such as a small fire at Nokia 
and Ericsson’s supplier plant in 2000, or by a global catastrophe, such as the 
Japanese earthquake and tsunami and the massive floods in Thailand in 
2011 (Ravindran and Warsing 2013; Stecke and Kumar 2009). The unexpected 
events could be internal to supply chain, such as equipment breakdown, 
labor dispute, quality issue, and poor information system management, 
which occur frequently (Chopra and Sodhi 2004) or external to supply 
chain, such as natural disasters, technological disasters, financial crisis, ter-
rorist attacks. Even though many of these external risks are rare, the financial 
losses due to events such as natural disasters are usually enormous. Of the 
top ten costliest natural disasters reported in The Economist (2012), half of 
them have occurred since 2008. The majority of these disasters occurred in 
Asia, which is the manufacturing and supply base for several global supply 
chains. This observation is consistent with the disaster trend noted by the 
International Disaster Database, which found that Asia has had the highest 
number of disasters among five regions, based on the total number of disas-
ters reported from 2003 to 2012. The top three most costly natural disasters 
that occurred in Asia are geophysical (e.g., earthquakes, volcano eruptions, 
and landslides), hydrological (e.g., floods and landslides), and meteorological 
(e.g., storms) (Guha-Sapir 2014).

Due to the large number and the variety of disasters, companies should 
proactively identify, assess, and mitigate the risks to help avoid possible 
disruptions or, at the very least, to minimize their impact.

7.1.2 Supply Chain Network Vulnerability

For global supply chain networks in which the entities (suppliers, manu-
facturers, warehouses, distribution centers, and retailers) are located in dif-
ferent regions, the geographical locations, government regulations, and the 
country risk of those entities could contribute to supply chain vulnerability 
(Kungwalsong 2013). Country risk refers to political, financial, and eco-
nomic conditions of a country. For instance, Thailand is susceptible to mete-
orological hazards—such as intense rainfall, tropical storms, and cyclones, 
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and many industrial parks are located in flood-prone areas. Another exam-
ple is the Netherlands. Almost two-thirds of that country is flood-prone 
because its proximity to the North Sea and the Rhine and Meuse Rivers 
(The Economist 2012). Additionally, a country’s political, financial, and eco-
nomic conditions could also provoke disruptions. When goods are shipped 
between facilities through several countries using multiple transporta-
tion modes, increased handling and transfers could make supply chains 
more susceptible to disruptions. The higher the number of transshipment 
activities, the more chances there are of disruptions due to mishandling, 
pilferage, spoilage, and accidents. Thus, the conditions of facilities and 
transportation links are therefore important to the vulnerability of supply 
chains.

7.1.3 Risk Management Practice

Hazards and the vulnerability of facilities and transportation links are dif-
ficult to change; therefore, supply chain risks cannot be completely elimi-
nated, especially those external risks for which the occurrence and impact 
are difficult to predict. However, supply chain risks must be managed in 
order to reduce the chance of occurrence or the impacts. The availability of 
supply chain risk management practices, including monitoring and miti-
gation, are important for alleviating the impacts of disruptions and for 
faster recovery. In the Netherlands, the 1953 North Sea flood was a major 
disaster that motivated that country to undertake the Delta Works proj-
ect to prevent future flooding. With effective risk mitigation and a good 
monitoring system, the Netherlands has never experienced this type of 
disaster again, and the area between Amsterdam and Rotterdam is home 
to most of the country’s supply chain activities (Chakravarty 2014). During 
Thailand’s massive floods in 2011, many companies underestimated the 
situation and relied on the government. Water rose overnight before many 
plants could move their equipment; the floods damaged infrastructure 
and equipment and forced plants to shut down all operations. More than 
800 companies in seven industrial parks were inundated. As of June 2012, 
75% of them had resumed operations, but only 40% of those had returned 
to their pre-flood conditions (Haraguchi and Lall 2014).

The benefits of risk management practices can also be illustrated by the 
reactions of Nokia and Ericsson to the March 2000 fire at their supplier, 
a Phillips electronics semi-conductor plant in New Mexico. Nokia quickly 
responded to the potential disruption by shifting to a backup supplier, and 
production returned to normal in three weeks (Ravindran and Warsing 
2013). Nokia’s extraordinary efforts and collaborations with its suppli-
ers enabled the company to avoid disrupting its customers (Sheffi 2005). 
Ericsson, however, underestimated the situation and had no backup plan. By 
the time Ericsson realized the magnitude of the problem, it was too late; the 
company endured partial shortages and lost $640 million in business in the 
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North American mobile phone market (Ravindran and Warsing 2013; Sheffi 
2005). A survey by Aon plc (2013) revealed that companies’ risk readiness 
in 2013 has decreased by 7% due to inefficient risk management planning.

In this chapter, we present a disruption risk assessment procedure for 
determining the disruption risk scores of facilities and transportation links 
in a supply chain network. Disruption risk score is calculated from three 
factors: hazard, vulnerability, and risk management practice. We also pres-
ent the use of disruption risk scores as a risk parameter in a mathematical 
model.

The remainder of this chapter is organized as follows: Section 7.2 gives a 
review of the literature on risk assessment approaches. Section 7.3 provides 
a summary of the disruption risk assessment method. Section 7.4 provides 
a multi-criteria mathematical model for a supply chain design consider-
ing disruption risk and discusses solution methods. Section  7.5 outlines 
a numerical example. Section  7.6 presents conclusions and directions for 
future work.

7.2 Literature Review

A general framework of supply chain risk management includes risk identi-
fication, risk assessment, and risk mitigation. Risk assessment in the supply 
chain risk management literature focuses on estimating the occurrence of a 
risk event and its potential impact. The assessment techniques include quali-
tative assessment by risk rating (Knemeyer et  al. 2009; Stecke and Kumar 
2009), risk prioritization using risk priority number (RPN) and risk mapping 
(Ravindran and Warsing 2013; Yosha 2012), simulation (Vilko and Hallikas 
2012), stochastic model (Goh et al. 2007), disruption analysis network (Wu 
et al. 2007), failure mode and effect analysis (Chen and Wu 2013; Tuncel and 
Alpan 2010), the multi-criteria scoring approach (Blackhurst et al. 2008), and 
bow-tie analysis (Aqlan and Lam 2015).

Other risk assessment studies focus on evaluating the vulnerability of a 
supply chain that is susceptible to disruptions (Asbjørnslett 2009). Craighead 
et  al. (2007) studies the design characteristics (e.g., supply chain density, 
supply chain complexity, and node criticality) and mitigation capabilities 
(e.g., recovery and warning). Stecke and Kumar (2009) have identified that an 
increase in number of exposure points (e.g., transportation routes, transpor-
tation modes, geographical factors, socioeconomic factors, additional secu-
rity check points), an increase in distance or time, a decrease in flexibility 
due to sole sourcing, and a decrease in redundancy through just-in-time or 
lean policies are all drivers for vulnerability. Chaudhuri et al. (2013) deter-
mined the vulnerability score during a new product development consider-
ing group decision making and linguistic data. The authors considered the 
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degree of supplier involvement, process complexity, logistical complexity, 
and manufacturing capacity as the vulnerability drivers. Kim et al. (2015) 
evaluated the structural relationships among network entities using graph 
theory.

7.3 A Disruption Risk Assessment Framework

7.3.1 Disruption Risk Assessment

In this section, we present a framework for calculating the disruption risk 
score of each facility and each transportation link based on three main fac-
tors: hazard, vulnerability, and risk management practice, and their attributes, as 
shown in Figure 7.1. Interested readers can refer to Kungwalsong (2013) for 
more detail on disruption risk assessment.

Hazard refers to possible threats, such as natural disasters and technologi-
cal (man-made) disasters that could harm supply chain entities. The level of 
harm to a supply chain due to a hazard can be assessed from three attributes: 
predictability, occurrence, and impact.

Vulnerability refers to the sensitivity of each facility and transportation 
link to disruptions. The facility’s vulnerability is assessed from its geo-
graphical location and the country risk (political, financial, and economic 
conditions). The transportation link’s vulnerability is assessed from mode 
of transportation, transportation route, logistics performance index (LPI)— 
developed by the World Bank for the country of origin as well as the country 
of destination, and the number of transshipments.

Disruption risk

Hazard

Predictability Occurrence

Location

Political

Country Mode of
transportation Route Logistics

performance
Number of

transshipment

Impact Facilities Transportations Monitoring Mitigation

Vulnerability Risk management

Financial Economic Country
of origin

Country of
destination

FIGURE 7.1
Disruption risk factors and their attributes. (From Kungwalsong K. Managing Disruption Risks 
in Global Supply Chains. Unpublished PhD dissertation, Pennsylvania State University, 2013.)
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Risk management practice refers to the availability of actions for coping with 
hazards or vulnerability. Risk management practice consists of two attri-
butes: risk monitoring and risk mitigation.

To determine the disruption risk of facilities and transportation links, 
a decision maker first rates each attribute on a three-point scale (1, 2, 3: the 
higher number indicates the higher level for disruption risk). The descrip-
tion of disruption risk factors and their attributes for a facility and a trans-
portation link are given in Table  7.1. The guidelines for attribute rating 
are  provided in Table  7.2. Once the attributes are rated, the hazard score, 

TABLE 7.1

Disruption Risk Assessment of a Facility and a Transportation Link

Term Description

Hazard A possible risk event that may cause facility disruptions. 
The events could be natural or man-made disasters.

• Predictability • Is the location and time of the risk event predictable?
• Occurrence • How often does the hazard occur?
• Impact • How long does the hazard take to disrupt a facility (or a 

transportation link)?
Vulnerability of a facility Condition of a facility and its country

• Location • The physical location of a facility compared to the location of 
the hazard

• Political • The political instability of a country where the facility 
is located

• Financial • The financial instability of a country where the facility 
is located

• Economic • The economic instability of a country where the facility 
is located

Vulnerability of a 
transportation link

Characteristics of the transportation link that are relevant 
to disruption

• Mode • A main transportation mode that is used to ship items 
among facilities

• Route • A shipping path and duration from an original facility to a 
destination (including number of countries, key chokepoints)

• LPI • Logistics performance index of the countries of origin and 
destinations

• Number of 
transshipments

• Number of transshipments during the transportation, 
including inspections, ports of call, etc.

Risk management 
practice

The availability of actions or strategies to manage a hazard 
or vulnerability

• Monitoring • Does a facility (or a transportation link) have actions or 
strategies in place to monitor a hazard or its vulnerability 
(e.g., business continuity standard, warning system, etc.)?

• Mitigation • Does a facility (or a transportation link) have actions or 
strategies in placed to prevent or respond to a hazard?

Source: From Kungwalsong K. Managing Disruption Risks in Global Supply Chains. Unpublished 
PhD dissertation, Pennsylvania State University, 2013.
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TABLE 7.2

Attribute Rating Guidelines

Hazard

Predictability Risk Level Risk Score
Location and time of the hazard are predictable. Low 1
Location and time of the hazard are somewhat predictable. Moderate 2
Both location and time of the hazard are unpredictable. High 3

Impact
A hazard may take a longer time to disrupt a facility/
transportation link.

Low 1

A hazard may take a short time to disrupt a facility/
transportation link.

Moderate 2

A hazard could disrupt a facility/transportation link 
immediately.

High 3

Occurrence
A hazard rarely occurs (e.g., once in 5 years). Low 1
A hazard occurs every other year. Moderate 2
A hazard occurs every year. High 3

Vulnerability of a facility

Location
A facility seldom has direct impact from a risk event. Low 1
A facility may have direct impact from a risk event. Moderate 2
A facility always has a direct impact from a risk event. High 3

Financial Condition of a Country
Financial condition of the country is very good. Low 1
Financial condition of the country is moderate. Moderate 2
Financial condition of the country is very poor. High 3

Political Condition of a Country
Political condition of the country is very good. Low 1
Political condition of the country is moderate. Moderate 2
Political condition of the country is very poor. High 3

Economic Condition of a Country
Economic condition of the country is very good. Low 1
Economic condition of the country is moderate. Moderate 2
Economic condition of the country is very poor. High 3

Vulnerability of a transportation link

Transportation Mode
Surface transportation only (truck) Low 1
Air Moderate 2
Ship High 3

(Continued)
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the vulnerability score, and the risk management practice score are  calculated 
using Equations 7.1 through 7.4. Finally, the disruption risk score for each 
facility and transportation link is determined using Equation 7.5.

 Hazard score = (Predictability × Occurrence × Impact)1/3 (7.1)

 Facility’s vulnerability score =  (Location × Political × Financial 
× Economic)1/4 (7.2)

 Transportation’s vulnerability score =  (Mode × Route × LPIO × LPID 
× Transshipments)1/5 (7.3)

 Risk management practice score = (Monitoring × Mitigation)1/2 (7.4)

 Disruption risk score =  Hazard score × Vulnerability score 
× Risk management practice score (7.5)

TABLE 7.2 (Continued)

Attribute Rating Guidelines

Transportation Route Risk Level Risk Score

Shipping path is in a domestic route or of short duration. Low 1

Shipping path is within a region or of moderate duration. Moderate 2

Shipping path is across continents or of long duration. High 3

Logistics Performance Index/LPI (World Bank)

LPI of the country is high. Low 1

LPI of the country is moderate. Moderate 2

LPI of the country is low. High 3

Numbers of Transshipments

The number of transshipments is low. Low 1

The number of transshipments is moderate. Moderate 2

The number of transshipments is high. High 3

Risk Management Practice

Monitoring

Risk monitoring is available. Low 1

Risk monitoring is under preparation. Moderate 2

Risk monitoring is not available. High 3

Mitigation

Risk mitigation is available. Low 1

Risk mitigation is under preparation. Moderate 2

Risk mitigation is not available. High 3

Source: From Kungwalsong K. Managing Disruption Risks in Global Supply Chains. Unpublished 
PhD dissertation, Pennsylvania State University, 2013.
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7.4 A Multi-Criteria Mathematical Model

This section illustrates the use of the disruption risk scores in a  multi-criteria 
mathematical model. We consider disruption risk as one of the objective 
functions, along with profit and customer responsiveness, in a supply chain 
optimization model for designing the supply chain network. A supply chain 
network solution that has higher value of risk objective would imply a higher 
potential of disruption due to high-disruption risk facilities or transportation 
links. Therefore, a supply chain network that consists of low-disruption risk 
supply chain components should be more robust and preferable. To handle the 
multiple conflicting objectives, we apply goal programming (GP) techniques 
and an interactive method, which allow for a trade-off between benefits and 
risks among various design solutions in order to design a robust supply chain 
network.

7.4.1 Supply Chain Network Design Criteria and Model Assumptions

Consider that a global supply chain consists of suppliers, manufacturing 
plants, distribution centers (DCs), and customer zones that are located in dif-
ferent locations. There are multiple transportation links available between 
each pair of facilities. Raw materials are shipped from suppliers to plants in 
order to produce finished products. Finished products are then shipped to 
DCs to support customer demand. A physical representation of a global sup-
ply chain is shown in Figure 7.2.

We formulate a multi-criteria optimization model to make the following 
decisions: (i) supply chain network structure, including which suppliers, 
manufacturing plants, and DCs to use; (ii) production and distribution plan-
ning, including which plants should produce which finished products, and 
which plants or DCs should distribute finished products to which customers; 

Supplier 1 Plant 1

Plant 2

Plant M

DC 1

DC 2

DC N

Market 1

Market 2

Market C

Supplier 2

Supplier K

FIGURE 7.2
A physical representation of a global supply chain.
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and (iii) transportation selection, including which transportation links 
should be used to ship items among facilities. These decisions will be made 
to satisfy the following objectives: maximize profit (Z1), maximize demand 
fulfillment or minimize unfulfilled demand (Z2), minimize delivery time to 
customer (Z3), minimize facility disruption risk (Z4), and minimize disrup-
tion risk to transportation links (Z5). The supply chain network criteria are 
shown in Figure 7.3.

The strategic supply chain network design is based on the following 
assumptions:

• A multi-national company wants to design a supply chain network 
for new products. A set of potential suppliers, plant locations, DCs, 
and transportation links are available; hence, the decisions focus on 
network structure and distribution planning.

• When items (raw materials or finished products) are shipped inter-
nationally, additional costs are incurred (e.g., tariffs and import 
fees, export tax, etc.) that must be determined. In this study, import 
fees apply to raw materials that arrive at the plants because suppli-
ers and plants are located in different countries. It is expressed as a 
percentage of total raw material cost. Tariffs do not apply when fin-
ished products are shipped from plants to the company-owned DCs; 
however, export fees apply to finished products that are shipped 
directly from plants to customers in different countries. Export fees 
are calculated as a percentage of the total revenue at the plants.

• Products can be shipped directly from the plants to the demand 
zones if demand meets a minimum level.

• Business environments are deterministic. In addition, all relevant 
prices and costs are given in a standard currency (USD).

• Disruption risk scores for facilities (suppliers, plants, and DCs) and 
transportation links are pre-determined by the company and may 
vary based on facility location.

 

Decision criteria

Customer
satisfactionZ1: Profit

Revenue Costs Z2: Demand
fulfillment

Z3: Delivery
time Z4: Facility Z5: Transportation

Disruption risk

FIGURE 7.3
Supply chain network design criteria.
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7.4.2 Mathematical Formulation

Notations:
Indices
i For raw materials, i ∈ I
j For finished products, j ∈ J
k For raw materials suppliers, k ∈ K
m For manufacturing plants, m ∈ M
n For distribution centers, n ∈ N
c For customer zones, c ∈ C
f For origin facilities, f ∈ K ∪ M ∪ N
d For destination facilities, d ∈ M ∪ N ∪ C
u For transportation links connecting between facilities 

(u ∈ Ufd)

Parameters
Djc Forecasted demand of product j to customer c (units)
fjc Fraction of demand of product j to customer c that 

a company desires to satisfy
bij Quantity of raw material i needed to produce one unit of 

product j (units)
RMDi Quantity of raw material i required based on the forecasted 

demand (units)
 (Note: RMDi = ∑j bij ∑c Djc)
FSKk Fixed cost of selecting supplier k
FSMm Fixed cost of selecting plant m
FSNn Fixed cost of selecting DC n
FOKik Fixed operating cost when assigning raw material i to 

supplier k
FOMjm Fixed operating cost when assigning product j to plant m
FONjn Fixed operating cost when assigning product j to DC n
FAKMikm Fixed cost when assigning raw material i between supplier k 

and plant m
FAMNjmn Fixed cost when assigning product j between plant m and 

DC n
FAMCjmc Fixed cost when assigning product j between plant m and 

customer c
FANCjnc Fixed cost when assigning product j between DC n and 

customer c
Sj Space required at a distribution center to store one unit of 

product j
SPMjmc Selling price of product j from plant m to customer c
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SPNjnc Selling price of product j from DC n to customer c
MCik Cost per unit of raw material j shipped from supplier k
PCjm Unit production cost of producing product j at plant m
SCjn Storage cost per space unit of product j at DC n
FTKMukm Fixed transportation cost of link u if used between supplier k 

and plant m
FTMNumn Fixed transportation cost of link u if used between plant m 

and DC n
FTMCumc Fixed transportation cost of link u if used between plant m 

and customer c
FTNCunc Fixed transportation cost of link u if used between DC n and 

customer c
TCKMiukm Unit shipping cost of raw material i via link u from supplier 

k to plant m
TCMNjumn Unit shipping cost of product j via link u from plant m to 

DC n
TCMCjumc Unit shipping cost of product j via link u from plant m to 

customer c
TCNCjunc Unit shipping cost of product j via link u from DC n to 

customer c
LTKMukm Average lead time when using link u between supplier k and 

plant m
LTMNumn Average lead time when using link u between plant m and 

DC n
LTMCumc Average lead time when using link u between plant m and 

customer c
LTNCunc Average lead time when using link u between DC n and 

customer c
CAPmm Capacity of plant m
CAPnn Capacity of DC n
CAPikik Capacity of raw material i at supplier k
CAPjmjm Capacity of product j at plant m
MINikik Minimum order quantity to purchase raw material i at 

supplier k
MINjmjm Minimum production quantity to produce product j at 

plant m
MIND Minimum order to allow direct shipment between a plant 

and a customer (cumulative over all products)
CAPkmukm Capacity of transportation link u from supplier k to plant m
CAPmnumn Capacity of transportation link u from plant m to DC n
CAPmcumc Capacity of transportation link u from plant m to customer c
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CAPncunc Capacity of transportation link u from DC n to customer c
mCAPkmukm Minimum quantity required for transportation link u from 

supplier k to plant m
mCAPmnumn Minimum quantity required for transportation link u from 

plant m to DC n
mCAPmcumc Minimum quantity required for transportation link u from 

plant m to customer c
mCAPncunc Minimum quantity required for transportation link u from 

DC n to customer c
VarKk Disruption risk scores of supplier k
VarMm Disruption risk scores of plant m
VarNn Disruption risk scores of DC n
VarKMukm Disruption risk score of transportation link u between 

supplier k and plant m
VarMNumn Disruption risk score of transportation link u between plant 

m and DC n
VarMCumc Disruption risk score of transportation link u between plant 

m and customer c
VarNCunc Disruption risk score of transportation link u between 

DC n and customer c
∅m Percentage of import fees applied to the variable purchasing 

cost at plant m
∂m Percentage of export fees applied to the revenue of plant m

Decision Variables
Xkk Binary variable equals to 1 if supplier k is selected; 

0 otherwise
Xmm Binary variable equals to 1 if plant m is selected; 

0 otherwise
Xnn Binary variable equals to 1 if DC n is selected; 0 otherwise
Xikik Binary variable equals to 1 if raw material i is assigned to 

supplier k; 0 otherwise
Xjmjm Binary variable equals to 1 if product j is assigned to plant m; 

0 otherwise
Xjnjn Binary variable equals to 1 if product j is assigned to DC n; 

0 otherwise
Xikmikm Binary variable equals to 1 if raw material i is shipped from 

supplier k to plant m; 0 otherwise
Xjmnjmn Binary variable equals to 1 if product j is shipped from plant 

m to DC n; 0 otherwise
Xjmcjmc Binary variable equals to 1 if product j is shipped from plant 

m to customer c; 0 otherwise
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Xjncjnc Binary variable equals to 1 if product j is shipped from 
DC n to customer c; 0 otherwise

Xkmukm Binary variable equals to 1 if link u is used to ship raw 
material between supplier k and plant m; 0 otherwise

Xmnumn Binary variable equals to 1 if link u is used to ship product 
between plant m and DC n; 0 otherwise

Xmcumc Binary variable equals to 1 if link u is used to ship product 
between plant m and customer c; 0 otherwise

Xncunc Binary variable equals to 1 if link u is used to ship product 
between DC n and customer c; 0 otherwise

Qkmiukm Quantity of material i shipped via transportation link u from 
supplier k to plant m

Qmnjumn Quantity of product j shipped via transportation link u from 
plant m to DC n

Qmcjumc Quantity of product j shipped via transportation link u from 
plant m to customer c

Qncjunc Quantity of product j shipped via transportation link u from 
DC n to customer c

Yjm Quantity of product j produced at plant m
Wjc Quantity of unfulfilled demand of product j to customer c
σkk Fraction of raw materials handled by supplier k
σmm Fraction of products handled by plant m
σnn Fraction of products handled by DC n
δkmukm Fraction of raw materials handled by link u connecting 

supplier k and plant m
δmnumn Fraction of products handled by link u connecting plant m 

and DC n
δmcumc Fraction of products handled by link u connecting plant m 

and customer c
δncunc Fraction of products handled by link u connecting DC n and 

customer c

7.4.2.1 Objective Functions

• Objective 1: Maximize Profit of the Supply Chain (Z1) Profit is the dif-
ference between revenue and total cost. The first component rep-
resents the revenues from plants and DCs. Next are the facility 
location cost, the raw material purchasing cost (which consists of 
the fixed purchasing cost and variable cost), the production cost 
(which consists of the fixed cost of producing a specific product 
at a specific plant and the variable production cost), the distribu-
tion center cost (which consists of the fixed operating cost and the 
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variable cost calculated based on the space used), the transportation 
cost (which consists of the fixed transportation cost and the variable 
cost based on shipping quantities), the additional fixed administra-
tion cost that may occur when assigning an item between facilities, 
and the cross-sourcing cost incurred at plants when raw materials 
are imported from suppliers and finished products are exported to 
customers. Before tax profit of a supply chain can be determined 
using Equation 7.6.
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• Objective 2: Minimize Unfulfilled Demand (or Maximize Demand 
Fulfillment) (Z2 ) Because the first objective is to maximize profit, it 
is possible that some customer demands may not be fully met. This 
objective is introduced to achieve customer responsiveness by maxi-
mizing customer demand fulfillment—in other words, minimizing 
the unfulfilled demand or shortages, as shown in Equation 7.7.

 ∑∑=
∈ ∈

Z W
c C j J

jcMin      2  (7.7)

• Objective 3: Minimize Delivery Time to Customer (Z3 ) Besides the demand 
fulfillment, the delivery time to customer is another customer respon-
siveness measure. Given the estimated lead times between plants 
and customers and between DCs and customers based on the trans-
portation links used, we multiply these values with the amount of 
customer demand that is fulfilled by plants and DCs. Even though 
this value does not represent the true delivery time to customers, 
it provides a useful measure of responsiveness in terms of volume-
weighted lead time. If a link with a long travel time carries a huge 
amount of demand, then the volume-weighted delivery time value 
will be high. Hence, the customer demand should be allocated to each 
link in such a way that the total volume-weighted delivery time is 
minimal. In Equation 7.8, the first component represents the delivery 
time from plants to customers, while the second one represents the 
delivery time from DCs to customers.
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7.4.2.1.1 Disruption Risks

Supply chain disruption could come from either a disruption to a facility or 
a disruption to the transportation network. In addition, it depends upon the 
quantity (flow) handled by a particular node (link). If a node (link) with high-
disruption risk value accounts for a large amount of flow, the disruption risk 
to the supply chain will be high. Hence, items should be allocated to each 
node and link in such a way that the “flow weighted” disruption risk value 
of the whole supply chain is minimal. In this study, we consider two types 
of disruption risk: facility disruption risk and transportation disruption risk.

• Objective 4: Minimize Disruption Risk of Facility (Z4 ) Equation 7.9 pres-
ents the facility disruption risk, which is the summation of disrup-
tion risk of all individual facilities in the supply chain network, 
which includes suppliers, manufacturing plants, and DCs.
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where variables σkk, σmm, and σnn can be determined using Equations 7.10 
through 7.12.
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• Objective 5: Minimize Disruption Risk of Transportation (Z5 ) Equation 7.13 
represents the transportation disruption risk, which is the summation 
of disruption risks of all transportation links among facilities in the 
supply chain network.
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where variables δkmukm, δmnumn, δmcumc, and δncunc can be determined using 
Equations 7.14 through 7.17.
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7.4.2.2 Model Constraints

7.4.2.2.1 Demand Fulfillment Constraints

Equation 7.18 represents the demand fulfillment constraint, which ensures 
that customer demands are satisfied to the extent desired by the company.
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    ,   (7.18)

Equation 7.19 represents the constraint that allows the company to specify 
different levels of customer responsiveness, especially when shortages occur 
due to disruptions. The right side of the equation represents the maximum 
shortage allowed.

 Wjc ≤ (1 − fjc)Djc ∀j∈J, c∈C (7.19)

7.4.2.2.2 Supplier Selection and Capacity Constraints

Equation 7.20 ensures that raw material i can be purchased from supplier k 
if supplier k is selected:

 Xikik ≤ Xkk ∀i ∈I, k∈K (7.20)
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Equation 7.21 ensures that plant m can purchase raw material i from supplier 
k if supplier k is selected:

 Xikmikm ≤ Xikik ∀i ∈I, k∈K, m∈M (7.21)

Equation 7.22 ensures that quantity of raw material i must be sufficient to 
meet forecasted demand:

 Qkm RMD
m M k K u U

iukm i

km

∑∑∑ ≥
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 ∀i ∈I (7.22)

where RMDi = ∑j∈J bij ∑c∈C Djc.
Equation 7.23 ensures that the total amount of raw material purchased and 

shipped from a supplier to plants cannot exceed its capacity and must meet 
minimum order quantity:
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7.4.2.2.3 Plant Selection and Production Capacity

Equation 7.24 ensures that finished product j can be produced at plant m if 
plant m is selected:

 Xjmjm ≤ Xmm ∀j ∈J, m∈M (7.24)

Equations 7.25 and 7.26 ensure that DC n can receive a finished product j 
from plant m if plant m produces product j and DC n is opened for product j:

 Xjmnjmn ≤ Xjmjm ∀j ∈J, m∈M, n∈N (7.25)

 Xjmnjmn ≤ Xjnjn ∀j ∈J, m∈M, n∈N (7.26)

Equation 7.27 ensures that plant m can ship product j directly to customer 
c if product j is produced at plant m:

 Xjmcjmc ≤ Xjmjm ∀j ∈J, m∈M, c∈C (7.27)

Equation 7.28 ensures that the quantity of product j produced at plant 
m meets the minimum production requirement and does not exceed its 
capacity:

 MINjmjm Xjmjm ≤ Yjm ≤ CAPmjm Xjmjm ∀j ∈J, m∈M (7.28)
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Equation 7.29 ensures that the production quantities are limited by the 
received raw material:

 ∑ ∑∑≤ ∀ ∈ ∈
∈ ∈ ∈

b Y Qkm i I m M
j J

ij jm

k K u U

iukm

km

    ,   (7.29)

Equation 7.30 ensures that the use of raw material i cannot exceed the 
amount of the material purchased from suppliers:

 ∑ ∑ ∑∑∑≤ ∀ ∈
∈ ∈ ∈ ∈ ∈

b Y Qkm i I
j J

ij

m M

jm

m M k K u U

iukm

km

     (7.30)

Equations 7.31 and 7.32 ensure that the production quantity must meet 
the minimum demand fulfillment target but that more than the forecasted 
demand will not be produced:

 ∑ ∑≥ ∀ ∈
∈ ∈

Y f D j J
m M

jm

c C

jc jc     (7.31)

 ∑ ∑≤ ∀ ∈
∈ ∈

Y D j J
m M

jm

c C

jc     (7.32)

Equation 7.33 ensures that the total quantity of product j shipped from 
plant m to the customers and DCs cannot exceed the amount that is pro-
duced at the plant:

 ∑∑ ∑∑+ ≤ ∀ ∈ ∈
∈ ∈ ∈ ∈

Qmn Qmc Y j J m M
u U n N

jumn

u U c C

jumc jm

mn mc

    ,   (7.33)

7.4.2.2.4 DC Selection and Storage Capacity

Equation 7.34 ensures that a finished product j can be stored at the DC if the 
DC is selected:

 Xjnjn ≤ Xnn ∀j ∈J, n∈N (7.34)

Equation 7.35 ensures that DC n can respond to a demand of product j 
from a customer c if the product is stored at the DC:

 Xjncjnc ≤ Xjnjn ∀j ∈J, c∈C, n∈N (7.35)

Equation 7.36 ensures that total space used by all products cannot exceed 
the capacity of the DC:

 ∑ ∑ ∑












≤ ∀ ∈
∈ ∈ ∈

S Qmn CAPN Xn n N
j J

j

m Mu U

jumn n n

mn

     (7.36)
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Equation 7.37 ensures that quantity of product j shipped out of DC n to cus-
tomers cannot exceed the available quantity that is received from the plants:

 ∑∑ ∑ ∑≤ ∀ ∈ ∈
∈ ∈ ∈ ∈

Qnc Qmn j J n N
u U c C

junc

u U m M

jumn

nc mn

    ,   (7.37)

7.4.2.2.5 Transportation Link Operation

Equations 7.38 through 7.41 ensure that transportation link u can be used if 
items are assigned among the facilities:

 ∑≤ ∀ ∈ ∈ ∈
∈

Xkm Xikm u U k K m Mukm

i I

ikm km    ,  ,   (7.38)

 ∑≤ ∀ ∈ ∈ ∈
∈

Xmn Xjmn u U m M n Numn

j J

jmn mn    ,  ,   (7.39)

 ∑≤ ∀ ∈ ∈ ∈
∈

Xmc Xjmc u U m M c Cumc

j J

jmc mc    ,  ,   (7.40)

 ∑≤ ∀ ∈ ∈ ∈
∈

Xnc Xjnc u U n N c Cunc

j J

jnc nc    ,  ,   (7.41)

7.4.2.2.6 Transportation Capacity

Equation 7.42 ensures that the quantity shipped by each transportation link 
must be larger than the minimum requirement of the transportation link but 
that it cannot exceed its capacity:

 
mCAPkm Xkm Qkm CAPkm Xkm

u U i I k K m M

ukm ukm

i I

iukm ukm ukm

km

 

, , ,

   ∑≤ ≤

∀ ∈ ∈ ∈ ∈

∈  (7.42)

Equation 7.43 ensures that a direct shipment between plant m and customer 
c is allowed if the minimum order quantity is met (MIND):

 ≥ × ∀ ∈ ∈ ∈ ∈Qmc MIND Xmc j J u U m M c Cjumc umc mc    ,  ,  ,   (7.43)

Equations 7.44 through 7.52 represent binary and nonnegativity constraints:

 { }∈ ∀ ∈ ∪ ∪Xk Xm Xn k K m M n Nk m n,        0,1 , ,,   (7.44)

 { }∈ ∀ ∈ ∈∪ ∈ ∪ ∪Xik Xjm Xjn i I j J k K m M n Nik jm jn, ,       0,1 , ,  , ,  (7.45)

 
Xikm Xjmn Xjmc Xjnc

i I j J k K m M n N c C

ikm jmn jmc jnc, , , 0,1    

, ,  , , ,

{ }∈

∀ ∈ ∈∪ ∈ ∪ ∪ ∪
 (7.46)
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Xukm Xumn Xumc Xunc

u U u U u U u U

ukm umn umc unc

km mn mc nc

, , ,    0,1  

, , ,

{ }∈

∀ ∈ ∈ ∈ ∈
 (7.47)

 
≥

∀ ∈ ∈ ∈ ∈ ∈ ∈

Qkm Qmn Qmc Qnc

u U u U u U u U i I j J

iukm iumn jumc junc

km mn mc nc

, , , 0  

  , , , ,  , 
 (7.48)

 ≥ ∀ ∈ ∈Y j J m Mjm 0 ,   (7.49)

 ≥ ∀ ∈ ∈W j J c Cjc 0 ,   (7.50)

 σ σ σ ≥ ∀ ∈ ∪ ∪k m n k K m M n Nk m n, , 0 , ,  (7.51)

 δ δ δ δ ≥ ∀ ∈ ∈ ∈ ∈km mn mc nc u U u U u U u Uukm umn umc unc km mn mc nc, , , 0 , , ,  (7.52)

7.4.3 Solution Techniques

This section discusses the solution techniques for solving the proposed multi-
criteria optimization model. To solve the multiple and conflicting objectives 
model, we use preemptive goal programming (P-GP), non-preemptive goal 
programming (NP-GP), and the interactive method.

The P-GP and NP-GP techniques are two of the four GP approaches. GP 
requires a complete knowledge of decision makers’ preferences. However, 
they are different in the way the objective functions are prioritized and in the 
way deviations from targets are handled. The interactive method, however, 
requires partial information about decision makers’ preferences (Masud and 
Ravindran 2008).

Additional Parameters
Pi Priority of goal i for the preemptive GP formulation (i = 1, 2, 3, 4, 5)
Zi Objective functions denoting profit, demand fulfillment, delivery 

time, and disruption risk
IDEALi Ideal value of objective i. The ideal value of objective i can be 

obtained by solving a single objective optimization problem 
(ignoring other objectives). For example, the ideal value of profit 
is obtained by solving the problem to maximize profit ignoring 
the other objectives.

TARGi Target value of objective i. This value is set by the decision 
maker based on the ideal value and whether the objective is to 
maximize or minimize. For example, a profit target may be set at 
95% of the ideal profit, while a delivery time target may be set at 
110% of the ideal value.

Additional Variables
di

+
 Positive deviation from target value of objective i

di
−
 Negative deviation from target value of objective i
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7.4.3.1 Preemptive Goal Programming Model

In our model, it is assumed that the decision maker ranks the priorities (from 
high to low) as P1: profit, P2: delivery time, P3: facility disruption risk, P4: 
transportation link disruption risk, and P5: unfulfilled demand. Hence, 
the objective function for the goal programming model is to minimize the 
deviations from the target values defined for each objective. For instance, 
minimize the negative deviation of the profit d1( )− , minimize the positive 
deviation of the delivery lead time d3( )+ , minimize the positive deviation of 
the facility disruption risk d4( )+ , minimize the positive deviation of the trans-
portation disruption risk d5( )+ , and minimize the positive deviation of the 
unfulfilled demand d2( )+ . The preemptive goal programming formulation 
would be as follows.

P-GP Objective Function

 + + + +− + + + +P d P d P d P d P dMin        1 1 2 3 3 4 4 5 5 2  (7.53)

 Subject to: Z d d TARG   1 1 1 1− + =+ −  (7.54)

 Z d d TARG   2 2 2 2− + =+ −  (7.55)

 Z d d TARG      3 3 3 3− + =+ −  (7.56)

 Z d d TARG   4 4 4 4− + =+ −  (7.57)

 Z d d TARG 5 5 5 5− + =+ −  (7.58)

 d d ii i,       0 1,  , 5≥ = …+ −  (7.59)

including the other real constraints in Equations 7.18 through 7.52 given in 
Section 7.4.2.2.

7.4.3.2 Non-Preemptive Goal Programming Model

The NP-GP formulation for the supply chain network design problem is

 + + + +− + + + +W d W d W d W d W dMin  1 1 2 2 3 3 4 4 5 5  (7.60)

 Subject to: 
Z

TARG
d d  11

1
1 1− + =+ −  (7.61)

 
Z

TARG
d d  12

2
2 2− + =+ −  (7.62)
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Z

TARG
d d  13

3
3 3− + =+ −  (7.63)

 
Z

TARG
d d  14

4
4 4− + =+ −  (7.64)

 
Z

TARG
d d 15

5
5 5− + =+ −  (7.65)

 d d ii i,       0 1,  , 5≥ = …+ −  (7.66)

including the other real constraints in Equations 7.18 through 7.52 given in 
Section 7.4.2.2, where Wi are the cardinal weight of goal i.

7.4.3.3 Interactive Method

Goal programming techniques used in Sections 7.4.3.1 and 7.4.3.2 require 
completely prespecified preference from a decision maker. In addition, the 
NP-GP assumes that a decision maker’s utility function is linear. In prac-
tice, defining preference numerically could be difficult. Another MCMP 
approach, called an interactive method, can be used to overcome this issue. 
An interactive method does not require prespecified preference but relies on 
the progressive articulation of preferences by a decision maker (Masud and 
Ravindran 2008). The steps for an interactive method are as follows:

• Step 1: Find an efficient solution.

• Step 2: Interact with the decision maker to choose the most preferable 
solution.

• Step 3: Repeat steps 1 and 2 until satisfaction is achieved or until a termi-
nation criterion is met.

7.5 Numerical Example

Consider a global supply chain that consists of three suppliers (K1, K2, K3), 
two manufacturing plants (M1, M2), two DCs (N1, N2), and three customer 
zones (C1, C2, C3), which are located in different locations. There are two 
transportation links (U1, U2) available between each pair of facilities. There 
are two types of raw materials (i1, i2) and two types of finished products 
(j1, j2). A representation of the global supply chain is shown in Figure 7.4.

To solve the proposed P-GP model, we assume that preemptive priority is 
available. For the NP-GP model, we use criteria weights from a simple rating 
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and AHP methods. The priorities and weights are summarized in Table 7.3. 
The target value for each objective is set at 0.5% away from the ideal value, 
as shown in Table 7.4.

For an interactive method, in this study, we use six different weight sets, 
as shown in Table 7.5, to generate a set of efficient solutions. Note that the 
first five weight sets correspond to individual optimization of each objec-
tive, ignoring other objectives. The sixth weight set gives equal weights to 
all objectives. The objective function values and the corresponding network 
design for each weight set are presented in Tables 7.6 and 7.7.

• Step 1: Find an efficient solution. 

 From Table 7.6, we obtain three different efficient designs. The first 
design is from the weight set 1, which provides the highest profit 
($100,442,000), but it also provides the highest disruption risks (29.64 
and 31.93). The second design is from the weight sets 4 and 5, which 

K1

M1
C1

C2

C3
K2

M2

N1

N2
u2
u1

K3

FIGURE 7.4
Supply chain problem for a numerical example.

TABLE 7.3

Priorities and Weights Used in the P-GP and NP-GP Models

Criteria
Preemptive 

Priority

Weights
(Rating 

Method)

Weights
(AHP 

Method)

Z1: Profit #1 0.45 0.572
Z2: Unfilled demand #5 0.10 0.056
Z3: Delivery time #2 0.25 0.260
Z4: Facility risk #3 0.10 0.056
Z5: Transportation risk #4 0.10 0.056
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TABLE 7.7

Network Design Corresponding to Each Weight Set

Supply Chain 
Component

Weight 
Set 1

Weight 
Set 2

Weight 
Set 3

Weight 
Set 4

Weight 
Set 5

Weight 
Set 6

Suppliers K3 K1, K3 K1, K3 K1, K3 K1, K3 K1, K3
Plants M1, M2 M1, M2 M1, M2 M1, M2 M1, M2 M1, M2
DCs N1 N2 N2 – – N2
Transportation links U1, U2 U1 U1 U1 U1 U1
Direct shipment from 
plants to customers

No No No No No No

TABLE 7.4

Ideal Values and Target Values

Objective Ideal Values
Target Values

(0.5% from Ideal Value)

Z1: Profit ($) 101,046,500 100,541,267.5
Z2: Unfilled demand (%) 0 0.5
Z3: Delivery time (days) 240,000 241,200
Z4: Facility risk 22.16 22.27
Z5: Transportation risk 17.92 19.82

TABLE 7.5

Weight Sets to Generate Efficient Solutions

Criteria
Weight 

Set 1
Weight 

Set 2
Weight 

Set 3
Weight 

Set 4
Weight 

Set 5
Weight 

Set 6

Z1: Profit 0.96 0.01 0.01 0.01 0.01 0.2
Z2: Unfilled demand 0.01 0.96 0.01 0.01 0.01 0.2
Z3: Delivery time 0.01 0.01 0.96 0.01 0.01 0.2
Z4: Facility risk 0.01 0.01 0.01 0.96 0.01 0.2
Z5: Transportation risk 0.01 0.01 0.01 0.01 0.96 0.2
Sum 1.00 1.00 1.00 1.00 1.00 1.00

TABLE 7.6

Objective Function Values Corresponding to Each Weight Set

Criteria
Weight 

Set 1
Weight 

Set 2
Weight 

Set 3
Weight 

Set 4
Weight 

Set 5
Weight 

Set 6

Z1: Profit (×106 $) 100.442 95.538 95.538 88.058 88.058 95.538
Z2: Unfilled demand (%) 0 0 0 0 0 0
Z3: Delivery time (days) 241,200 240,000 240,000 480,000 480,000 240,000
Z4: Facility risk 29.64 25.47 25.47 22.16 22.16 25.47
Z5: Transportation risk 31.93 24.36 24.36 19.72 19.72 24.36
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provide the lowest disruption risks (22.16 and 19.72), but they also 
provide the lowest profit ($88,058,517). The third design is from the 
weight sets 2, 3, and 6, which has a profit of $95,538,900 and disrup-
tion risk values of 25.47 and 24.36. Their objective function values lie 
between those of designs 1 and 2.

• Step 2: Interact with the decision maker to choose the most preferable solution. 

 For an illustrative purpose, suppose a decision maker prefers the 
third design solution (from the weight sets 2, 3, and 6).

• Step 3: Repeat Steps 1 and 2 until satisfaction is achieved. 

 We generate a new set of efficient solutions around the second design 
solution. Based on the weight sets 2, 3, and 6, we vary the weight 
values as shown in Table 7.8 and re-optimize the NP-GP model. The 
results are summarized in Table 7.9. 

  From Table 7.9, there are two efficient design solutions. The first 
solution is from the weight sets 2_1 and 3_1. The profit is $100,230,100; 
unfilled demand is 0%; delivery time is 240,000; facility disruption 
risk is 30.05; and transportation link risk is 30.65. The supply chain 
network configuration is the same as the design from weight set 1. 
Another solution is from weight set 6_1, which is the same as the 
solution from weight set 6. Next, we repeat Step 2.

• Repeat Step 2: Interact with the decision maker to choose the preferred 
solution. 

 Suppose the decision maker chooses the design from weight set 6_1 
and is satisfied with this solution. We stop the interaction process.

TABLE 7.8

Weight Sets to Generate Efficient Solutions

Criteria Weight Set 2_1 Weight Set 3_1 Weight Set 6_1

Z1: Profit 0.21 0.21 0.4
Z2: Unfilled demand 0.76 0.01 0.1
Z3: Delivery time 0.01 0.76 0.1
Z4: Facility risk 0.01 0.01 0.2
Z5: Transportation risk 0.01 0.01 0.2

TABLE 7.9

Objective Function Values Corresponding to Each Weight Set

Criteria Weight Set 2_1 Weight Set 3_1 Weight Set 6_1

Z1: Profit (×106 $) 100.23 100.23 95.538
Z2: Unfilled demand (%) 0 0 0
Z3: Delivery time (days) 240,000 240,000 240,000
Z4: Facility risk 30.05 30.05 25.47
Z5: Transportation risk 30.65 30.65 24.36
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7.5.1 Comparison of the Supply Chain Network Design Results

The supply chain network design decisions and their performances from the 
multi-criteria model solved by P-GP, NP-GP, and the interactive method are 
summarized in Tables 7.10 and 7.11.

From Tables 7.10 and 7.11, the P-GP solution suggests choosing supplier 
K3, plants M1 and M2, distribution center N1, using transportation link U2 
(to ship items among suppliers, plants, and DC facilities), and using trans-
portation link U1 (to ship items from DC to customer zones). The profit and 
the unfulfilled demand objectives are achieved. However, the delivery time 
to customers, the facility disruption risk, and the transportation disruption 
risk objectives are not achieved, differing by 16.7%, 33.1%, and 65.1% from 
the target values, respectively. Because profit is the most important, this sup-
ply chain network design solution includes inexpensive facilities and trans-
portation links. Raw materials are purchased from supplier K3, which has 
the lowest cost among the three suppliers. Most of the finished products are 
produced at plant M1 because its production costs are lower than those at 
plant M2. Similarly, DC N1 is selected because it is less expensive to operate 
than DC N2. Transportation link U2 carries a higher quantity of raw materi-
als and finished products than the link U1. There is no direct shipment from 
plants to customers.

The decisions from the NP-GP model (with weights from the simple rating 
method) and the interactive method provide the same results. They choose 
suppliers K1 and K3, plants M1 and M2, distribution center N2, and trans-
portation link U1. Direct shipment from plants to customers is not allowed. 
Finished products are distributed to customers via DC N2. For this solu-
tion, the unfulfilled demand and delivery time to customer are achieved. 

TABLE 7.10

Supply Chain Network Decisions

Supply Chain Network 
Components

Supply Chain Network Solution

P-GP Model

NP-GP Model 
(Weights from 

Rating 
Method)

NP-GP 
Model 

(Weights 
from AHP)

Interactive 
Method

Suppliers K1 No Select No Select
K2 No No No No
K3 Select Select Select Select

Plants M1 Select Select Select Select
M2 Select Select Select Select

DCs N1 Select No Select No
N2 No Select No Select

Transportation links U1 Select Select Select Select
U2 Select No No No
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However, profit, facility disruption risk, and transportation disruption risk 
objectives are not achieved, differing by 4.98%, 14.36%, and 22.9% from the 
target values, respectively. Notice that this solution has lower facility and 
transportation disruption risk values than the P-GP solution. However, the 
profit value is decreased.

The NP-GP model (with weights from AHP) selects supplier K3, plants M1 
and M2, distribution center N1, and transportation link U1. Direct shipment 
from plant to customers is not allowed. Finished products are distributed to 
customers via DC N1. For this network design, the unfulfilled demand and 
delivery time to customers are achieved. However, profit, the facility disrup-
tion risk, and the transportation disruption risk goals are not achieved, dif-
fering by 2.36%, 30.35%, and 27.4% from the target values, respectively.

From the numerical example, we observe the following:

 1. The NP-GP solution has lower disruption risk objective values than 
the P-GP solution. This is because P-GP is a sequential optimization 
model. The problem is solved sequentially with respect to the deci-
sion maker’s order of preference. Because the profit objective is the 
most important, the model selects facilities and transportation links 
that are inexpensive (e.g., facilities K3, N1, and link U2), resulting in 
high-disruption risks. On the other hand, NP-GP is a single objective 
optimization model, and all criteria are solved simultaneously with 
relative weights assigned to them. The NP-GP solutions contain low-
disruption risk facilities and transportation links (e.g., facilities K1, 
N2, and link U1). Thus, it is likely that the company will spend some 
resources to prepare and mitigate potential disruptions but at a loss 
in profit. From the numerical example, the NP-GP solution (weights 
from rating method) has 4.97% lower profit than the P-GP solution. 
However, the loss in profit results in a decrease in facility disrup-
tion risk and transportation disruption risk values by 14.07% and 
25.53%, respectively. Similarly, the NP-GP solution (weights from 
AHP) has 2.36% lower profit than the P-GP solution, which results in 
a decrease in facility disruption risk and transportation disruption 
risk values by 2.06% and 22.81%, respectively.

 2. Between the two NP-GP solutions, the NP-GP solution (weights from 
rating method) has lower disruption risk values than the other. This 
is because the disruption risk weight values from the simple rating 
method are higher than the values from AHP.

 3. None of the solutions could achieve all the target values. In other 
words, a decision maker has to consider the trade-offs between dif-
ferent solutions. A decision maker can evaluate how much profit the 
company is willing to compromise in order to reduce the disrup-
tion risk values or to improve the robustness of the supply chain 
network.
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 4. We can study the impact of the supply chain disruption on each 
network design by examining the disruption risk scores. In the 
P-GP solution, supplier K3 and plant M1 have very high-disruption 
risk values compared to the other facilities due to a high occur-
rence of risk events and a lack of risk monitoring and risk mitiga-
tion practices at these two locations. Hence, the company should 
closely monitor supplier K3 and plant M1 and prepare mitigation 
strategies. Supplier K3 is prone to floods, which is quite predict-
able. However, this occurs frequently. Supplier K3’s suppliers are 
located in a disaster prone area. In addition, the supplier is located 
in a developing country where economic instability is high and 
risk management practices are not fully implemented. A company 
should establish risk mitigation strategies by having a backup 
supplier or by carrying extra inventory at plants to cope with 
the supply disruption. Plant M1 is also prone to flooding, which 
occurs almost every year. The facility is located in a disaster prone 
area, and the country is politically unstable. Disaster preparedness 
and a recovery plan are not yet implemented. The company may 
develop a contingency plan to relocate its production to other plant 
facilities in order to reduce risk from a possible plant disruption. 
Furthermore, the company should also pay attention to the trans-
portation link U2 from supplier K3 to all plants. Risk mitigation 
strategies, such as choosing alternate transportation links and risk 
monitoring, should help address plausible disruptions from unpre-
dictable events, long transportation lead times, and a large number 
of transshipments.

In this section, we compare the supply chain design alternatives and their 
trade-offs using the value path approach (VPA) proposed by Schilling et  al. 
(1983) in order to display the trade-offs among objective function values of 
different solutions and levels of goal achievement.

From the solutions obtained from the P-GP, NP-GP, and interactive mod-
els, the VPA starts with determining the best value corresponding to each 
 objective function. The best value corresponding to a maximization objective 
is the highest value among all alternatives, while the best value correspond-
ing to a minimization objective is the lowest value among all alternatives. 
Next, the best value is scaled to 1, while others are scaled to a value greater 
than 1. The larger the scaled value, the worse a method performs on that 
objective. A scaled value corresponding to a maximization objective is deter-
mined by dividing the best value by the achieved value, while a scaled value 
corresponding to a minimization objective is determined by dividing the 
achieved value by the best value.

From Table 7.12, the best values for profit and demand fulfillment (which 
are maximization objectives) are 100,541,267.5 and 100. The best values for 
delivery time to customers, facility disruption risk, and transportation 
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disruption risk (which are minimization objectives) are 240,000, 25.47, and 
24.36,  respectively. Note that we replace the unfulfilled demand objec-
tive with the demand fulfillment to avoid a computational error. For the 
P-GP method, the achieved values for profit, demand fulfillment,  delivery 
time to customers, facility disruption risk, and transportation disruption 
risk are 100,541,267.5, 100, 281,507, 29.64, and 32.71, respectively. Hence, 
the scaled objective values corresponding to the P-GP solution will be 
(100,541,267.5/100,541,267.5), (100/100), (281,507/240,000), (29.64/25.47), and 
(32.71/24.36), respectively. Table 7.12 summarizes the objective values with 
their ratios in parentheses for the solutions obtained from the GP  methods 
and the interactive method. Figure 7.5 shows the value path of supply chain 
network design alternatives. The horizontal axis represents profit, demand 
fulfillment, delivery time to customers, facility disruption risk, and trans-
portation disruption risk. The vertical axis represents the ratios of the 
objective values.

The output of the VPA can be used to determine dominated and non- 
dominated solutions. If the value path of one solution is above another, then 
the solution is a dominated solution. If the value paths of two solutions cross 
each other, then these solutions do not dominate each other. As shown in 
Figure 7.5, none of the three solutions are dominated. VPA can be used to 
perform a visual trade-off analysis among the different solutions. For exam-
ple, the NP-GP solution (with weights from the rating method) does 17% 
better than the P-GP solution on delivery time to customers, 16% better on 
the facility disruption risk, and 34% better on the transportation disruption 
risk—but with a 5% lower profit.

TABLE 7.12

Summary of the Objective Function Values and the Scaled Values

Objective 
Function Value

P-GP 
Method

NP-GP 
Method 

(Weights 
from 

Rating 
Method)

NP-GP 
Method 

(Weights 
from 
AHP)

Interactive 
Method Best Value

Z1: Profit ($) 100,541,267.5 95,538,900 98,168,500 95,538,900 100,541,267.5
(1.00) (1.05) (1.02) (1.05) (1.00)

Z2: Demand 
fulfillment (%)

100 100 100 100 100
(1.00) (1.00) (1.00) (1.00) (1.00)

Z3: Delivery time 281,507 240,000 240,000 240,000 240,000
(1.17) (1.00) (1.00) (1.00) (1.00)

Z4: Facility 
disruption risk

29.64 25.47 29.03 25.47 25.47
(1.16) (1.00) (1.14) (1.00) (1.00)

Z5: Transportation 
disruption risk

32.71 24.36 25.25 24.36 24.36
(1.34) (1.00) (1.05) (1.00) (1.00)
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7.6 Conclusions and Future Research

This chapter presented a disruption risk assessment method for managing 
the supply disruptions in a global supply chain. The assessment can help 
practitioners to quantify risks in their supply chains based on hazards, vul-
nerability, and risk management practices. The disruption risk scores of sup-
pliers’ facilities and transportation links can lead a company to proactively 
manage its suppliers. They then can use the disruption risk matrix to visual-
ize the relative risk of all identified hazards. We presented a case study of a 
global distribution company to illustrate the application of this framework in 
assessing disruption risks for facilities and transportation links. This frame-
work can be used to develop a company disruption risk profile, which in 
turn can be used to identify the critical network components that are prone 
to disruptions and to prioritize the risk mitigation activities.

This work can be extended in several directions. The qualitative assess-
ment scores for hazards and vulnerability can be improved by using the more 
elaborate quantitative models of risk developed by Bilsel and Ravindran 
(2012) for major disruptive events. For rare events, such as earthquakes and 
floods, Bilsel and Ravindran have used extreme value distributions to deter-
mine the financial impacts of disruptions. For other events, such as trans-
portation failures, they use Taguchi’s loss functions. Efforts can be taken to 
extend the risk assessment to consider multiple decision makers. Fuzzy logic 
can also be used to handle ambiguity in the scores.

1.4
1.35

1.3
1.25

1.2
1.15

1.1
1.05

1
0.95

0.9
Z1 Z2 Z3 Z4 Z5

NP-GP method (weights from rating method)
or interactive method

NP-GP method (weights from AHP)P-GP method

FIGURE 7.5
The value path comparison for supply chain network design solution.
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8
A Bi-Criteria Model for Closed-Loop 
Supply Chain Network Design 
Incorporating Customer Behavior

Subramanian Pazhani
Senior Engineer – Manufacturing Operations, Malta, New York

8.1 Introduction

Environmental concerns today include the rapid depletion of natural resources 
and minerals, adverse impacts of transportation and manufacturing pro-
cesses on the environment, and the insurmountable amount of waste gener-
ated by used and condemned products. Due to rapid advances in technology, 
low initial costs, and planned obsolescence, a surplus of computers and other 
electronic components is growing around the globe. According to  the US 
Environmental Protection Agency (USEPA), around 30–40   million surplus 
computers are expected to be available for end-of-life management in the next 
few years (Morgan 2006). In the United States, more than 12 million computers 
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are discarded every year, out of which fewer than 10% are remanufactured or 
recycled, while the others are sent to landfills (Platt and Hyde 1997). In 2007, 
the USEPA declared that more than 63  million computers in the United States 
were traded in for replacements or discarded, out of which only 15% of elec-
tronic devices and equipment were recycled. The estimated landfill space avail-
able in the United States is 10 or more years’ worth in 29 states, between 5 and 
10 years’ worth in 15 states, and less than 5 years’ worth in 6 states (Knemeyer 
et al. 2002). Landfill capacities have reduced considerably in recent years and 
are expected to fall at a much higher rate in the future (Akcalı et al. 2009). The 
hazardous materials from disposed electrical and electronic equipment, such as 
lead polybrominated diphenyl ether, mercury, cadmium, and hexavalent chro-
mium, cause serious damage to the environment and affect the sustainability of 
the ecosystem. In this situation, the recycling, repair, remanufacture, and reuse 
of used products are all strategies that can contribute to the sustainability of 
manufacturing supply chains. With increasing concerns over  environmental 
degradation, legislative compliance, diminishing supplies of raw materials, and 
consumer demands for eco-friendly products, companies have begun modi-
fying traditional supply chain paths to form a closed loop to facilitate the recy-
cling and reuse of product returns. The benefits of extracting and using the 
remaining value from old and reusable goods are being recognized by many 
developed countries such as Germany, Japan, the United States, France, and 
Australia. Japanese firms have started reclaiming rare minerals from used elec-
tronics (New York Times 2010). Efficient recycling processes will reduce disposal 
waste, thereby benefiting society as a whole (Visich et al. 2005).

Customers return products with which they are not satisfied, items that 
are defective or damaged, items that were leased, and items whose evalu-
ations are complete. The concept of reuse, in order to reduce waste, has 
produced an opportunity for material flow from the users back to the man-
ufacturers. The management of this material flow in the opposite direction 
of the conventional supply chain flow is defined as reverse logistics or reverse 
supply chain management (Stock 1992). The term reverse supply chain encom-
passes all the activities involved in collecting used products from consum-
ers and distributing them to the upstream supply chain (recycling centers, 
manufacturers) for reprocessing them to either recover their leftover mar-
ket value or to dispose of them (Pochampally et al. 2009). If returned prod-
ucts are not handled efficiently, then manufacturers will incur larger costs, 
and this could increase the cost of the final product (Mutha and Pokharel 
2009). Commercial returns are the products returned by consumers in the 
initial period after the purchase, say, within 90 days. The annual estimate 
of such commercial returns in the United States is more than $100 billion 
due to the presence of liberal policies that facilitate easy return of used 
goods by consumers. In this chapter, we primarily focus on these types of 
returns.

The characteristics of forward and reverse supply chains differ in many 
aspects (Visich et al. 2005). A forward supply chain has a demand-driven flow 
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where products move from a few entities (manufacturers) to many entities 
(customers). A reverse supply chain has a supply-driven flow where products 
move from many entities (customers) to a few entities (refurbishing plants). 
The supply of returned products is outside the direct control of the company. 
Also, uncertain product quantities and quality add complexity to the design 
of reverse supply chains (Thierry et al. 1995). The integration of forward and 
reverse supply chains is important because their independent operation and 
management lead to reductions in the efficiency of the supply chain as a 
whole. Fleischmann et al. (2001), Uster et al. (2007), and Pishvaee et al. (2010) 
discuss the importance of addressing forward and reverse supply chains 
in an integrated manner, considering the impact of returns in the network. 
A closed-loop supply chain (CLSC) is the integration of forward and reverse 
supply chains. Integration and management of CLSCs has proven to be a 
challenging task due to the differences in the nature of the activities that 
make up the forward and reverse flows (Visich et al. 2005).

In this chapter, an integrated four-stage supply chain network is consid-
ered with forward and reverse product flows with commercial returns, which 
could be potentially recovered by light repair operations or by refurbishing. 
Further to the literature in CLSC network design models, classification of 
the product returns in the supply chain based on their quality and customer 
behavior toward buying refurbished products are considered in the model.

Objectives of supply chain management have expanded from mini-
mizing total costs and maximizing customer service to including mini-
mizing adverse impact on the environment (Subramanian et  al. 2013a). 
Two major objectives of a supply chain, maximizing profit and customer 
responsiveness, have resulted in globalization in search of cost minimiza-
tion, access to new markets, and economies of scale. This is also coupled 
with time-based competition, driven by customers demanding a variety 
of products with minimum delivery time. This, in turn, has led to the 
increased complexity of supply chain functions and increased disrup-
tions in supply chains. Reputational risks are one among them that may 
cause substantial, unanticipated additional costs in a supply chain (Geary 
et al. 2006; Halldórsson and Kovács 2010). Minimizing energy usage and 
thereby reducing emissions of carbon and greenhouse gases (GHGs) can 
help firms mitigate the reputational hazards (Palmbeck 2012). Along with 
minimizing  reputational risks, rising energy prices, govern mental regula-
tions and incentives, increases in corporate environmental responsibility, 
and customers’ increasing ecological awareness have forced companies to 
minimize their energy usage and carbon emissions in their supply chain 
operations. Thus, improving energy efficiency has become a significant 
concern for corporations around the globe.

In the literature, there is no publication that considers the objectives of 
minimizing energy usage at the facilities and during transportation, the 
classification of returns, and the buying behavior of customers toward 
 refurbished products in designing a CLSC network.
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In this chapter, the objectives of maximizing profit and minimizing energy 
usage are considered, and a bi-criteria network design model is developed 
for the CLSC network. The focus is on reducing energy usage at the ware-
housing facilities and the energy consumed during transportation in the 
supply chain. An interactive optimization algorithm is proposed to system-
atically solve the bi-criteria problem that poses less cognitive burden on the 
decision maker and converges faster to the best compromise solution.

This chapter is organized as follows: Section 8.2 provides a review of the 
literature. Section 8.3 describes the problem and the formulation of the objec-
tives and presents a bi-criteria network design model for the CLSC network. 
In Section 8.4, we describe a bi-criteria interactive optimization algorithm 
for solving the model by involving the decision maker (DM) in the process. 
In Section 8.5, we present an illustrative example to show the applicability of 
the proposed approach. Section 8.6 presents some conclusions on the work 
and future research directions.

8.2 Literature Review

Network design in supply chains deals with the selection of the best loca-
tion for the facilities in the supply chain network and optimal product flows 
through the selected set of facilities. Literature on CLSC network design pri-
marily considers minimizing the cost of operating the network (Fleischmann 
et al. 2001; Salema et al. 2006, 2007; Uster et al. 2007; Easwaran and Uster 2009, 
2010; Pishvaee et al. 2009; Subramanian et al. 2010, 2013a; Pishvaee et al. 2011; 
Hasani et al. 2012; De Rosa et al. 2013; Subramanian and Ravindran 2014).

Given the intrinsic multi-criteria nature of the network design problem, 
some studies have considered multiple objectives for designing CLSC net-
works. Tables 8.1, 8.2, and 8.3 show the supply chain characteristics, return 
network characteristics, and model characteristics for the multi-objective 
CLSC network design articles discussed in this section.

Krikke et al. (2003) considered a single period CLSC network for refrigera-
tors of a Japanese consumer electronics company. A multi-objective mixed 
integer linear programming (MILP) model was developed to minimize cost, 
energy, and waste, and a weighted goal programming approach was used to 
solve the problem. Pishvaee and Torabi (2010) considered a  single-product, 
multi-time period CLSC network with manufacturing plants, distributors, 
retailers, return product collection centers, and recycling centers. Uncertainty 
in the input parameters can arise in two ways: (1) Aleatoric uncertainty is 
due to intrinsic randomness of the model parameters, and probability theory 
is used to solve it, whereas (2) epistemic uncertainty occurs due to unavail-
ability, incompleteness, or imprecise nature of data and is solved using pos-
sibility theory. In Pishvaee and Torabi’s (2010) paper, uncertain parameters 
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were assumed to be epistemic and to follow a possibility distribution. A 
bi-criteria possibilistic MILP model was developed to minimize cost and 
delivery tardiness, and an interactive fuzzy solution approach was devel-
oped to solve the problem. An aggregation method was used to convert the 
bi-criteria problem into a single objective problem, and the problem was 
solved iteratively.

Amin and Zhang (2012) considered a CLSC network design problem with 
three objectives: profit maximization, defect rate minimization, and maxi-
mization of the importance of external suppliers. A fuzzy model was used 
to determine the importance scores of the suppliers, and scores were used 
in the maximization of the importance of the external suppliers’ objective. 

TABLE 8.1

Supply Chain Characteristics of the Multi-Objective Network Design Models

Author (Year)

Supply Chain Characteristics

Planning 
Horizon

Number 
of Stages

Capacity at 
the Facilities

Location of the Facilities 
[Facility (K/NK)]

Krikke et al. 
(2003)

Single 4 (Forward)
4 (Reverse)

Uncapacitated 
facilities

Manufacturer (K), Warehouse (K), 
Disassembly (K), Inspection 
center (K), Recycling center (K), 
Rebuild center (K)

Pishvaee and 
Torabi (2010)

Multiple 2 (Forward)
5 (Reverse)

Capacitated 
facilities

Plants (K), Distribution centers 
(NK), Collection centers (NK), 
Recovery centers (NK), 
Recycling centers (NK)

Amin and 
Zhang (2012)

Single 3 (Forward)
4 (Reverse)

Capacitated 
facilities

Manufacturer (K), Warehouse (K), 
Refurbishing site (NK), 
Disassembly site (NK)

Pishvaee and 
Razmi (2012)

Single 1 (Forward)
4 (Reverse)

Capacitated 
facilities

Production centers (NK), 
Collection centers (NK), Steel 
recycling centers (K), Plastic 
recycling centers (K), 
Incineration centers (K)

Mehrbod 
et al. (2012)

Multiple 3 (Forward)
4 (Reverse)

Capacitated 
facilities

Plants (K), Distribution center 
(NK), Collection centers (NK), 
Recovery center (NK), 
Recycling center (NK)

Amin and 
Zhang 
(2013a)

Single 3 (Forward)
6 (Reverse)

Capacitated 
facilities

Manufacturer (K), 
Warehouse (K), Refurbishing 
site (NK), Disassembly site 
(NK), Subcontractor (NK)

Amin and 
Zhang 
(2013b)

Single 1 (Forward)
3 (Reverse)

Capacitated 
facilities

Manufacturer (NK), Collection 
center (NK), Disposal center (K)

Subramanian 
et al. (2013b)

Multiple 3 (Forward)
2 (Reverse)

Capacitated 
facilities

Plant (NK), Hybrid facility (NK), 
Warehouse (K)

Note: K, facility location is known; NK, facility location is not known.



230 Multiple Criteria Decision Making in Supply Chain Management

The  multi-objective MILP model was solved using the compromise pro-
gramming method with p = 1. Pishvaee and Razmi (2012) considered a CLSC 
network of a firm manufacturing single-use medical needles and syringes. It 
dealt with end-of-life operations of the needles and the syringes (either incin-
eration or recycling). In their study, uncertain parameters were assumed to 
be epistemic and to follow a possibility distribution. The problem was mod-
eled as a bi-criteria possibilistic MILP with cost minimization and environ-
mental impact minimization as objectives, and an interactive fuzzy solution 
method with ε-constraint was proposed to solve the bi-criteria model. The 
ε-constraint was used to convert the problem into a single objective problem 
for iterative solution.

Mehrbod et al. (2012) considered a multi-product, multi-time period CLSC 
network with manufacturing plants, distributors, retailers, return product 
collection centers, and recycling centers. The authors developed a bi-criteria 
mixed integer nonlinear program for the problem to minimize supply chain 
costs, delivery time of new products, and collection time of returned prod-
ucts. An interactive fuzzy goal programming method was used to solve the 
problem.

Amin and Zhang (2013a) considered a CLSC network with external suppli-
ers, manufacturing plants, wholesalers, retailers, collection centers, disassem-
bly sites, disposal sites, refurbishing sites, and remanufacturing subcontractors. 
The authors proposed a three stage model: Stage 1 used a fuzzy quality function 

TABLE 8.2

Return Network Characteristics of the Multi-Objective Network Design Models

Author (Year)

Return Network Characteristics

Nature of 
Returns

Return 
Quantity

Return 
Location

Recovery 
Location

Krikke et al. 
(2003)

End-of-use/
end-of-life

Deterministic Disassembly 
center

Rebuild center

Pishvaee and 
Torabi (2010)

End-of-use Stochastic Collection center Recovery center/
recycling center

Amin and 
Zhang (2012)

End-of-use Deterministic Disassembly site Refurbishing site

Pishvaee and 
Razmi (2012)

End-of-use Stochastic Collection center Recycling center

Mehrbod et al. 
(2012)

End-of-use Deterministic Collection center Recovery center/
recycling center

Amin and 
Zhang (2013a)

End-of-use Deterministic Collection center Recovery center/
recycling center/
subcontractor

Amin and 
Zhang (2013b)

End-of-use Deterministic Collection center Recovery center/
recycling center

Subramanian 
et al. (2013b)

End-of-use Deterministic Hybrid facilities Manufacturing 
plant
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deployment model to evaluate suppliers, remanufacturing subcontractors, and 
refurbishing; Stage 2 used a stochastic programming model to configure the 
supply chain with uncertain demand and with the objective of maximizing the 
expected profit; and Stage 3 used a multi-objective model to solve the network 
design and the order allocation problem in the CLSC. The model considered 
four objectives: minimize cost; maximize the importance of suppliers, refur-
bishing sites, and remanufacturing subcontractors (the importance scores are 
obtained from stage 1); minimize defect rate; and maximize on-time delivery. 
Compromise programming and weighted goal programming methods were 
used to solve the multi-objective problem.

Amin and Zhang (2013b) considered a simple CLSC network compris-
ing of manufacturing plants, retailers, return product collection centers, 
and disposal centers with cost minimization and environmental objectives. 
Under the environmental objective, the authors considered the use of envi-
ronmentally friendly materials for production of new products at the plants 
and clean technology to process the returns at the collection centers. They 
 developed a MILP model and solved the bi-criteria model using a weighted 

TABLE 8.3

Model Characteristics of the Multi-Objective Network Design Models

Author (Year) Objective Function Solution Methodology
Strategic/
Tactical

Krikke et al. 
(2003)

Minimize cost, minimize 
energy use, minimize waste

MILP, solved using 
non-preemptive goal 
programming

Tactical

Pishvaee and 
Torabi (2010)

Minimize cost, minimize 
total delivery tardiness

Possibilistic MILP, solved 
using interactive 
optimization approach

Strategic

Amin and 
Zhang (2012)

Maximize total profit, 
minimizes defect rates, 
maximizes importance of 
external suppliers

MILP, solved using 
compromise programming

Strategic

Pishvaee and 
Razmi (2012)

Minimize cost, minimize 
environmental impact

MILP, solved using interactive 
optimization approach

Strategic

Mehrbod et al. 
(2012)

Minimize cost, minimize 
delivery and collection time

MILP, solved using 
interactive fuzzy goal 
programming

Strategic

Amin and 
Zhang (2013a)

Minimize costs, minimize 
defect rates, maximize 
weights of selected facilities, 
maximize on-time delivery

MILP, solved using 
compromise programming

Strategic

Amin and 
Zhang (2013b)

Minimize costs, minimize 
environmental impact

MILP, solved using 
ε-constraint method

Strategic

Subramanian 
et al. (2013b)

Minimize costs, maximize 
service efficiency

MILP, solved using goal 
programming and 
compromise programming

Strategic
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goal programming approach. Weights for the objectives were varied to gen-
erate different efficient solutions. An ε-constraint method was also used to 
generate different efficient points for the problem. The authors also consid-
ered uncertainty in demand of the product and quantity of return products. 
A scenario approach, analogous to Salema et al. (2007), was used to solve 
the problem. Finally, Subramanian et al. (2013b) considered a CLSC network 
with suppliers, manufacturing plants, warehouses, hybrid facilities, and 
retailers with cost minimization and service efficiency maximization objec-
tives. They developed a bi-objective MILP model and solved it using goal 
programming and compromise programming. The efficient solutions from 
the different models are presented to the DM using the value path approach.

Based on the detailed review of literature on the multi-objective network 
design models in CLSC, some observations are presented here:

• Almost every study in the multi-objective network design models 
uses an interactive approach to solve the problem. Multiple efficient 
solutions are generated and presented to the DM. The DM guides 
the procedure until a best compromise solution is reached.

• Most of the studies use the ε-constraint method, the Torabi and 
Hassini aggregation method (Torabi and Hassini 2008), or the 
weighted goal programming method in their interactive approach. 
With these methods, the number of efficient solutions to be gener-
ated for reaching the best compromise solution is large. There is also 
a chance of missing the best compromise solution in the process.

• Minimization of energy due to transportation and warehousing, 
which is one of the important focuses of many businesses, has not 
been addressed in any of these studies.

• Quality of returns and customer behavior toward buying refurbished 
products have not been considered in the models in the literature.

This chapter addresses the problem of designing a network for a four-stage 
CLSC with forward and reverse product flows. A bi-criteria MILP model is 
proposed with two objectives: maximizing profit and minimizing energy 
usage. Categories of product returns based on their quality and on the buy-
ing behavior of customers toward refurbished products are incorporated in 
the model. An interactive bi-criteria optimization algorithm is developed for 
the problem based on the paired comparison method (PCM) of Sadagopan 
and Ravindran (1982). We show that the interactive algorithm poses less 
cognitive burden on the DM and converges faster to the best compromise 
solution.

The bi-criteria model is an extension of the single objective model devel-
oped by Subramanian and Ravindran (2014). Table 8.4 gives a classification 
of the recent key publications in multi-objective CLSC network design that 
are directly relevant to this study. The extensions carried out in this chapter 
are also indicated.
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8.3 Bi-Criteria CLSC Network Design Model

In this chapter, a strategic-level decision-making problem of optimally 
designing a four-stage CLSC network is studied. Consider a CLSC net-
work that produces and distributes a single product and recycles the return 
products in the return flow path. Let S = {1, 2 …, nS} be the set of suppliers, 
M = {1, 2 …, nM} be the set of manufacturing plants, W = {1, 2 …, nW} be the set 
of warehouses, H = {1, 2 …, nH} be the set of hybrid facilities, C = {1, 2, …, nC} 
be the set of retailers, R = {1,  2, …, nR} be the set of recovery centers, and 
L = {1, 2, …, nL} be the set of capacity levels at each of the warehouse and 
hybrid facility locations. Figure 8.1 shows the CLSC network considered in 
the chapter.

The CLSC is comprised of a forward channel and a return channel. The for-
ward channel includes suppliers, manufacturing plants, warehouses, hybrid 
facilities, and retailers. The return channel includes the retailers, hybrid 

TABLE 8.4

Classification of Recent Key Publications in Multi-Objective CLSC Network 
Design Models

Paper

Categories 
of Product 

Returns 
Based on 
Quality

Customer 
Behavior for 
Refurbished 

Products

Objectives

Cost
Energy 

Use
Environmental 

Impact
Service 

Efficiency

Pishvaee and 
Torabi 
(2010)

✓

Amin and 
Zhang 
(2012)

✓

Pishvaee and 
Razmi 
(2012)

✓ ✓

Mehrbod 
et al. (2012)

✓

Amin and 
Zhang 
(2013a)

✓

Amin and 
Zhang 
(2013b)

✓ ✓

Subramanian 
et al. 
(2013b)

✓ ✓

This chapter ✓ ✓ ✓ ✓
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facilities, recovery centers, and plants. The suppliers provide raw materials 
for manufacturing new products. The plants perform two functions: (1) pro-
duce new products using the raw materials procured from the suppliers and 
(2) refurbish the returned products from the customers. The warehouses are 
used to distribute both new products and refurbished products in the for-
ward channel.

Recovery centers function as inspection centers in the reverse chan-
nel. These centers collect the return products from the retailers, then 
inspect them and distribute them to the plants. Hybrid facilities act as 
warehouses in the forward channel and as recovery centers in the reverse 
channel. Hybrid facilities are preferred in practice due to economies of 
scale, with substantial savings in infrastructure, equipment, and human 
resources (Easwaran and Uster 2010). The retailers satisfy the demand 
in the  forward channel and collect the products that are returned by the 
customers.

The retailers’ demand is satisfied by using new products and refurbished 
products. The manufacturing plant procures the raw material required 
for production of new products from a set of suppliers. Customers return 
used or defective products to the retailers. In this chapter, we consider com-
mercial returns. Once the customer buys the product from the retailer, he 
has a 90-day period to return the product for any of the reasons shown in 
Table 8.5.

8.3.1 Categorization of Product Returns

In this section, the categorization of the product returns based on return 
quality is discussed. Commercial returns initiate the reverse flow in the net-
work (see Table  8.5). For instance, assume a customer buys a product (A) 
from retailer 1. In a week, he finds a different product (B) with specifications 

Suppliers (S) Manufacturing
plants (M)

Warehouses (W )

Hybrid
facilities (H)

Recovery
centers (R)

Retailers (C)

Forward flow Reverse flow

FIGURE 8.1
Structure of the CLSC network.
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that are the same as A but for a better price. He decides to return prod-
uct A at retailer 1 and purchase product B. Subramanian and Ravindran 
(2014) assume only one category of returns and an average cost associated 
with refurbishing these returned products. But, in practice, the quality of 
product returns are bound to vary depending upon how long the product 
has been put to use, the nature of defects and shipping damages, and so 
on. Ovchinnikov (2011) classifies returns into four tiers based on the cost 
involved in refurbishing them.

• Tier 1 returns do not meet customers’ expectations for some rea-
son. The customers might have found the same product at a better 
price,  or the customers might have experienced remorse for other 
reasons.

• Tier 2 returns have some shipping damages or minor product defects.
• Tier 3 and Tier 4 returns have major product defects. Even though 

we classify Tier 3 and Tier 4 returns as having major product 
defects, the refurbishing cost for Tier 4 returns is higher than that 
of Tier 3 returns. We consider this split explicitly in the optimization 
model.

TABLE 8.5

Reasons for Commercial Product Returns

Nature of 
Returns

Reason for 
Product Returns Description

Length of Time 
Before Return

Commercial 
returns (less 
than 90 days 
from date of 
sale)

Customer 
satisfaction

The quality of product 
does not meet the 
customer’s expectation. 
This category also 
includes miscellaneous 
reasons such as customers 
cannot use products, 
found a better price, 
over-ordered, or feel 
remorse.

Return period varies 
between 14 days 
and 90 days

Evaluation 
product

Products that were 
reviewed and tested by 
editors or vendors.

Evaluation period 
(~30 days)

Shipping 
damage

Products cannot be sold as 
new when their 
containers are damaged.

Shipping period 
(<7 days)

Defective Incompatible performance 
with user needs.

Return period varies 
between 14 days 
and 90 days

Sources: Vorasayan, J., and Ryan, S. M., Production and Operations Management 15, 369–
383, 2009; Guide, V. D. R., and Wassenhove, L. V. N., Operations Research 57, 
10–18, 2009.



236 Multiple Criteria Decision Making in Supply Chain Management

In practice, the cost associated with refurbishing is comprised of the cost 
of inspecting the returned product (to determine to which tier it belongs 
and to plan appropriate refurbishing activities) and the actual refurbishing 
cost itself. The two cost components for refurbishing the return product are 
denoted as inspection cost and refurbishing cost. They vary depending on the 
type of returns. Tier 1 returns are typically products that are fully functional 
but have an opened package. These returns have the lowest refurbishing 
cost because they do not comprise any replacement of raw materials or com-
ponents. Tier 2 returns have some shipping damages, cosmetic blemishes, 
or some minor defects (or a combination thereof). Tier 3 and 4 returns have 
major product defects, and the proportion of these returns is small. The cost 
of refurbishing Tier 3 and 4 returns is the highest. Table 8.6 shows the details 
of the inspection and refurbishing cost components for the different tiers of 
product returns.

According to an Accenture Report (Douthit et al. 2011), 95% of returns are 
Tier 1 returns, and only 5% can be attributed to actual defects in the product 

TABLE 8.6

Components of the Inspection and Refurbishing Cost Based on the Reason for 
Return (Commercial Returns)

Nature of 
Returns

Reason for 
Product Returns Tier

Components in 
Inspection Cost

Components in 
Refurbishing Cost

Commercial 
returns 
(less than 
90 days 
from date 
of sale)

Customer 
satisfaction

Tier 1 Collection cost, storage 
cost, visual inspection 
for cosmetic defects 
(labor)

Cleaning and cosmetic 
repairs, repackaging 
and restocking cost

Evaluation 
product

Tier 2 Collection cost, storage 
cost, visual inspection 
for cosmetic defects 
(labor)

Cleaning and cosmetic 
repairs, repackaging 
and restocking cost

Shipping 
damage

Tier 2 Collection cost, storage 
cost, inspection for 
part damages during 
shipping, visual 
inspection for 
cosmetic defects 
(labor)

Damaged part cost, 
labor cost involved in 
replacing the 
damaged part, 
cleaning and 
cosmetic repairs, 
repackaging and 
restocking cost

Defective Tier 2, 3, 
and 4

Collection cost, storage 
cost, inspecting the 
product for electrical/
mechanical faults, 
visual inspection for 
cosmetic defects 
(labor)

Defective part cost, 
labor cost involved in 
replacing the 
defective part, 
cleaning and 
cosmetic repairs, 
repackaging and 
restocking cost
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(i.e., Tier 2, 3, and 4). Based on the case study published by Ovchinnikov 
(2011) for a major wireless carrier in North America, Tier 1 returns accounted 
for 60% of the total. Together, Tier 1 and Tier 2 returns accounted for more 
than 90% of all returns. The quantity of the returns under each tier may dif-
fer for various industries. The refurbishing cost also depends on its tier of 
return. Hence, it is imperative to distinguish the returns based on the tiers 
they belong to in the model. This chapter considers the four tiers of returns 
in the model.

Let rck and ink be the refurbishing cost and inspection cost for tier k returns, 
respectively, ∀k ∈ {1,2,3,4}. Without loss of generality, we will assume that 
the inspection and refurbishing costs for lower tier returns will be less 
than those of the higher tier returns. Hence, rc1 < rc2 < rc3 < rc4 and in1 < in2 
< in3 < in4. We will also assume that there is no difference among the refur-
bished products based on the tier of return; that is, all refurbished products 
are priced the same.

8.3.2 Customer Behavior in Buying Refurbished Products

Ovchinnikov (2011) categorizes customers as quality sensitive high-end 
customers and price-sensitive low-end customers. High-end customers 
prefer not to trade-off the quality of the product for a lower price. Low-
end customers are willing to trade-off quality for lower product prices. 
Ovchinnikov (2011) conducted an empirical study and showed that both 
high-end and low-end customers exist. Buying behavior of the customers 
differs with respect to the refurbished products. Low-end customers are 
price sensitive and are more willing to buy refurbished items because of 
their lower price. Ovchinnikov (2011) assumes that the low-end consumers 
will buy refurbished items (if they are available) owing to their lower price. 
Guide and Li (2010) showed empirically that customer acceptance rate is 
influenced by preconceived impressions about quality, performance, and 
durability. A negative experience will keep customers from buying refur-
bished products. In general, a low-end customer tries to maximize his 
own utility based on his perceived value of the quality of the refurbished 
product. Lee (2011) refers to this concept as risk aversion—where consum-
ers face critical uncertainties and ambiguities with regard to product qual-
ity. Risk aversion is a way to avoid potential future regrets in a natural 
decision-making mechanism when DMs in a CLSC perceive uncertainties 
and ambiguities. A low-end customer will buy the refurbished product if 
it is priced no more than his/her perceived value. Okada (2010) character-
izes the perceived value using a concave curve with respect to a product’s 
quality.

High-end customers are quality sensitive and often more inclined toward 
purchasing new products. Ovchinnikov (2011) finds that only a fraction of 
high-end consumers will switch from new to refurbished products because 
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of the price. His analyses show that a fraction of high-end consumers who 
switch from new to refurbished products follow an inverted U-shaped 
curve. At very low discount levels, high-end customers stick to new prod-
ucts and are not willing to trade-off quality for the small savings in price. At 
moderate discount levels, a fraction of high-end customers (not all) switch 
to refurbished products due to their price. At large discount levels, high-end 
customers suspect that the product quality of refurbished products is very 
low and decide to buy the new product instead. The market has both high-
end and low-end customers, and discounts offered for refurbished products 
directly affect the acceptance of the refurbished products. Thus, optimal dis-
count levels have to be set, considering customer behavior.

The model presented in Subramanian and Ravindran (2014) does not con-
sider customer categories. In this chapter, two customer categories (low-end 
and high-end) are considered. It is assumed that only a proportion of low-
end customers will buy the refurbished products based on their perceived 
value and price. The perceived value is modeled as a function of the quality 
perception for the low-end customer. The acceptance rate of high-end cus-
tomers is modeled using a U-shaped function.

8.3.2.1 Modeling Low-End Customer Acceptance Rate

Let rp be the price offered for refurbished products. As noted earlier, there 
are quality sensitive high-end customers and price-sensitive low-end cus-
tomers. A low-end customer will buy the refurbished product only if his 
own utility is positive, that is, if the refurbished product price is less than or 
equal to his perceived value. Let q be the quality of the product and v(q) be 
the perceived value for quality level q, where q and v(q) are scaled between 
0 and 1. Here, q = 0 implies that customers’ quality perception for the prod-
uct is zero and v(q) = 0. When q = 1, v(q) = 1, and customers value new and 
refurbished products the same. Figure 8.2 shows an example of the perceived 
value curve with respect to its product quality.

Given the new product price np and perceived value v(q), a customer’s 
perceived value for a refurbished product can be calculated as (v(q) × np). A 
low-end customer will purchase the refurbished product as long as he/she 
pays a price that is less than (v(q) × np). Thus, the customer gets a positive 
surplus (v(q) × np) − rp. In the market, a customer’s perception of product 
quality is uncertain and can be characterized to fall between [q − i, q + i], 
where i is the uncertainty range. The corresponding perceived value of 
the product falls between [v(q − i), v(q + i)]. The distribution of perceived 
value (also referred to as a customer’s willingness to pay) is assumed to fol-
low a uniform distribution in the literature (Mitra 2007; Atasu et al. 2008; 
Ferguson 2009). We will also assume a uniform distribution to model the 
customer’s perceived value. Note that the customer’s perceived value for 
a refurbished product is always less than or equal to a new product price, 
that is, (v(q) × np) < np.
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Let v(x) be the perceived value function uniformly distributed between 
[v(q − i), v(q + i)]. The fraction of customers whose perceived value is greater 
than rp, or simply the customer acceptance rate for refurbished products, can 
be calculated as follows:

 ( )( ) ( )> = >
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where v(x) is uniformly distributed between [v(q − i), v(q + i)].
By solving the above equation, we get
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when ( )= +rp
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v q i , P(np.v(x) > rp) = 0 and when ( )= −rp
np

v q i , P(np.v(x) > rp) = 1. 

When the interval of uncertainty in product quality increases, that is,  an 
increase in [q − i, q + i], the interval of perceived value of the product 
increases because perceived value is a monotonically increasing curve with 
respect to q. Based on Equation 8.1, when the interval of perceived value of 
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FIGURE 8.2
Perceived value curve. (From Okada, E. M., Marketing Science, 29, 75–84, 2010.)
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the product increases, customer acceptance rate decreases. This is consistent 
with the fact that, as the uncertainty in product quality increases, the cus-
tomer acceptance rate decreases.

The customer acceptance rate is illustrated using the following example. 
Table  8.7 shows data on product quality and its corresponding perceived 
value.

As an example, consider the case that the product quality in the market 
is uncertain and falls between [q − i = 0.30, q + i = 0.7]. The corresponding 
perceived value falls between [v(q − i) = 0.55, v(q + i) = 0.84]. We will assume 
that the perceived value is assumed to be uniformly distributed between 
[0.55, 0.84]. Let the new product price (np) be $1,000 and refurbished product 
price (rp) be $750.

 Customer acceptance rate, P(np.v(x) > rp) = 
( )

( ) ( )
+ −

+ − −
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implying that 31.03% of low-end customers are willing to accept refurbished 
products for a price of $750, that is, at a 25% discount.

Figure 8.3 shows the plot of the customer acceptance rate under varying 
levels of discounts offered for refurbished products. We observe that the cus-
tomer acceptance rate is linear with respect to the discount offered. Using 
Equation 8.1, at discount rate 16%, = 0.84

rp
np

 and the acceptance rate is zero. 

When = 0.55
rp
np

, that is, at 45% discount, the acceptance rate is one.

TABLE 8.7

Product Quality vs. Perceived Value

Product Quality, q Perceived Value, v(q)

0.00 0.00
0.10 0.32
0.20 0.45
0.30 0.55
0.40 0.63
0.50 0.71
0.60 0.77
0.70 0.84
0.80 0.89
0.90 0.95
1.00 1.00
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8.3.2.2 Modeling High-End Customer Acceptance Rate

In this chapter, we will assume that a fraction of high-end customers will 
switch from new to refurbished products because of the discounts. The 
switching behavior of the high-end customers is modeled using an inverted 
U-shaped curve, as a function of the refurbished product price (Ovchinnikov 
2011). This is illustrated here using the example that follows. Table 8.8 shows 
the data on the percentage of high-end customers willing to purchase refur-
bished products under different discount levels. The data in Table  8.8 is 
based on the empirical survey presented in Ovchinnikov (2011), where θ is 
the rate of discount offered for refurbished products.

NOT E:  θ = −






1
rp
np

.

The relationship between discount level and customer acceptance is shown 
in Figure 8.4.

Usually, customer surveys are done using a discrete set of discount values. 
The dots in the graph are the actual data collected from customer surveys. 
In order to study the behavior of the customers over a continuous scale of 
discount values, we fit a quadratic function on the data (Equation 8.2).

 Cu stomer acceptance rate (High-end customers) 
= 0.008 − (1.227 × θ) + (13.45 × θ2) − (31.12 × θ3) + (20.68 × θ4) (8.2)

This function is used to calculate the acceptance rate of high-end custom-
ers based on the discount offered for the refurbished products.
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Discount versus customer acceptance rate (low-end customers).
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TABLE 8.8

Discounts vs. Customer Acceptance 
Rate (High-End Customers)

Discount Offered for 
Refurbished Products 
(𝛉 × 100) (%)

High-End 
Customers 

Accepting (%)

0.00 0.00
5.00 0.00
10.00 0.00
15.00 0.00
20.00 6.00
23.00 12.00
25.00 15.00
30.00 20.00
35.00 25.00
40.00 19.00
45.00 16.00
50.00 14.00
55.00 12.00
60.00 10.00
65.00 5.00
70.00 2.00
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8.3.3 Objectives in the Model

In this chapter, the CLSC network is designed considering the objectives of 
maximizing profit and minimizing energy usage in the supply chain.

Under the profit objective, we maximize the profit of the entire supply 
chain. Different components considered under this objective are revenue 
generated from the sales of new and refurbished products, purchasing cost, 
production cost, refurbishing cost, transportation cost, inspection cost, and 
the fixed cost for opening facilities.

Under the energy usage objective, minimizing energy usage at the ware-
housing facilities and the energy consumed during transportation in the 
CLSC network is considered. The annual energy usage in warehouses in 
the United States ranges between 33 and 64 kBtu/sq.ft.* This range will be 
used for generating energy usage data in our model illustration. Commercial 
trucks deployed in road transportation use diesel fuel as the source of 
energy. According to the US Energy Information Administration (2007), a 
diesel-powered vehicle emits 10.15 kg/gallon of carbon into the environ-
ment. Burning a gallon of diesel produces 128.7 kBtu of energy. The aver-
age mileage for commercial trucks carrying weights between 20,000 pounds 
and 80,000 pounds ranges from 7.9 to 9.5 miles/gallon (Oscar 2011). This 
energy and mileage data will be used to calculate the energy consumed dur-
ing transportation in our model illustration. The focus of this chapter is on 
reducing the energy footprint due to warehousing and distribution of prod-
ucts in the supply chain.

The profit objective is measured in US dollars. Energy use at the warehous-
ing facilities and during transportation is typically measured in kBtu units. 
Hence, we can combine the two together into one energy objective.

In summary, Table 8.9 provides some observations about the existing lit-
erature, gaps, and motivation for this chapter.

8.3.4 The Bi-Criteria MILP Model

The proposed bi-criteria network design model for a CLSC is presented in 
this section. The list of input parameters, cost components, and decision 
variables for the model is given as follows:

Input Parameters
capm Production capacity at manufacturing plant m
capw

l  Capacity of warehouse w of capacity level l
caph

l  Capacity of hybrid facility h of capacity level l
capr Capacity of recovery center r
caps Capacity of supplier s
dc Demand for products at retailer c

* kBtu/sq.ft = Kilo British thermal unit/square foot.
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θ Rate of discount offered for refurbished products
q Quality of the product
v(q) Perceived value for quality level q
[q − i, q + i] Customer’s perception range on product quality in the 

market
[v(q − i), v(q + i)] Perceived value of the product for customer’s perception 

range [q − i, q + i]
γ Fraction of demand returned at retailer
βk Fraction of tier k returns
α1 Fraction of low-end customers willing to buy refurbished 

items (calculated as discussed in Section 8.4.2.1)
α2 Fraction of high-end customers willing to buy refurbished 

items (calculated as discussed in Section 8.4.2.2)

NOT E:  α1, α2 ∈ [0, 1]

ω1, ω2 Fraction of low-end and high-end customers
sqfr, eir Square foot and energy usage/sq.ft used by recovery center r

,sqf eiw
l

w
l  Square foot and energy usage/sq.ft used by warehouse w of 

capacity l
,sqf eih

l
h
l  Square foot and energy usage/sq.ft used by hybrid facility h of 

capacity l
eur Energy usage at recovery center r
euw

l  Energy usage at warehouse w of capacity l
euh

l  Energy usage at hybrid facility h of capacity l

TABLE 8.9

Motivation for the Chapter

Current State of 
Literature

Literature Gap or 
Motivation

Considered in 
This Research

Returns Models in the literature 
do not consider 
different categories of 
returns and their 
corresponding 
refurbishing costs

Product returns can be 
categorized into different 
categories based on their 
quality level. The cost for 
refurbishing them differs

In this chapter, 
four tiers of 
product returns 
are considered 
with different 
refurbishing cost

Customers Models in the literature 
do not consider 
different customer 
categories and their 
buying behavior for 
refurbished products 

In the market, there exist 
quality sensitive high-end 
and price-sensitive low-end 
customers. Buying behavior 
of these customer categories 
varies with respect to 
refurbished products

The two customer 
categories are 
considered, and 
their buying 
behavior is 
modeled

Energy Models in the literature 
have not considered 
energy usage 
objectives in their 
models

Minimizing energy usage and 
thereby reducing greenhouse 
gases is one of the important 
objectives in industries

In this chapter, we 
develop a 
bi-criteria model 
with profit and 
energy objectives
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te Energy produced by burning one gallon of diesel
disij Distance (in miles) between facilities in stage i and stage j, 

i ∈{S, M, W, H, R, C} and j ∈ {M, W, H, R, C}
teuij Total energy used per unit of product between facilities i and j
mpg Miles per gallon of vehicles
vcap Carrying capacity of a vehicle (in units of products)

Cost Function Components
psm Purchasing cost of raw material from supplier s by plant m
trmw Transportation cost per unit from plant m to warehouse w
trmh Transportation cost per unit from plant m to hybrid facility h
trhc Transportation cost per unit from hybrid facility h to retailer c
trwc Transportation cost per unit from warehouse w to retailer c
trcr Transportation cost per unit from retailer c to recovery center r
trrm Transportation cost per unit from recovery center r to plant m
pcm Production cost for a new product at plant m
rckm Refurbishing cost for a returned product in tier k at plant m
Np Price of a new product
Rp Price of a refurbished product
inkr Inspection cost of returned product in tier k at recovery center r
inkh Inspection cost of returned product in tier k at hybrid facility h
fw

l  Fixed cost of opening a warehouse w of capacity level l
fh

l  Fixed cost of opening a hybrid facility h of capacity level l
fr Fixed cost of opening a recovery center r

Decision Variables
QSMsm Quantity of raw materials purchased from supplier s by plant m
QMWmw Quantity of new products transported from plant m to 

warehouse w
RQMWmw Quantity of refurbished products transported from plant m to 

warehouse w
QMHmh Quantity of new products transported from plant m to hybrid 

facility h
RQMHmh Quantity of refurbished products transported from plant m to 

hybrid facility h
QWCwc Quantity of new products transported from warehouse w to 

retailer c
RQWCwc Quantity of refurbished products transported from warehouse 

w to retailer c
QHChc Quantity of new products transported from hybrid facility h to 

retailer c
RQHChc Quantity of refurbished products transported from hybrid 

facility h to retailer c
RQCHkch Quantity of returned products in tier k transported from 

retailer c to hybrid facility h
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RQCRkcr Quantity of returned products in tier k transported from 
retailer c to recovery center r

RQHMkhm Quantity of returned products in tier k transported from 
hybrid facility h to plant m

RQRMkrm Quantity of returned products in tier k transported from 
recovery center r to plant m

DISPkc Quantity of return products in tier k disposed at retailer c

δw
l

 







1, if warehouse is opened with capacity

0, otherwise

w l

ηh
l

 






1, if hybrid facility is opened with capacity

0, otherwise

h l

ξr 






1, if recovery center is opened

0, otherwise

r

The following are the assumptions considered in this research:

 1. Retailers’ demands are deterministic. This assumption is reasonable 
given that the proposed model is at the strategic level.

 2. Customer demands must be satisfied either by new or refurbished 
products. No shortages are allowed.

 3. The refurbished products are assumed to be available for sale in the 
planning horizon.

 4. The production process could produce defective products, which is 
indicative of the product return rate at the retailer.

 5. Only a portion of customers are willing to purchase refurbished 
products.

 6. If the demand for refurbished products exceeds their supply, then 
these units are allocated on a first-come, first-served basis. The 
remaining customers continue shopping and purchase the new 
product.

 7. The transportation cost of raw material from the supplier to the 
manufacturing plant is included in the raw material purchasing 
cost.

 8. The facilities in the entire supply chain (suppliers, manufacturing 
plants, warehouses, hybrid facilities, recovery centers) have capacity 
restrictions.

 9. Vehicles have homogeneous capacities and are in similar conditions. 
Thus, all the vehicles in the supply chain have the same miles per 
gallon (MPG) values.

 10. We assume that the product weight does not vary between stages.
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The bi-criteria network design model for the CLSC network is formulated 
as follows:

• Objective 1: Maximize the total profit of the supply chain (Z1):
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Maximize 1

  The objective function of the model consists of revenue  generated 
from the sales of new products and refurbished products, purchas-
ing cost of raw materials, production cost, refurbishing cost, trans-
portation cost in the forward and return channel, inspection cost for 
the return products, and fixed cost for opening facilities. The terms 
in the objective function Z1 are described as follows: The first and 
second term refer to the revenue generated from the sales of new and 
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refurbished products. The third term refers to the cost of purchas-
ing raw materials for the production of new products. The fourth 
term represents the production cost, which is the cost of producing 
new products, and the fifth term represents the cost of refurbishing 
the return products in the plant. The sixth through eleventh terms 
represent the costs incurred in the distribution of the new and refur-
bished products among the stages of the supply chain. The four-
teenth and fifteenth terms represent the cost incurred in inspecting 
the return products to determine their usability. The last three terms 
are the fixed costs invested in opening warehouses, hybrid facilities, 
and recovery centers.

• Objective 2: Minimize the energy usage at the warehousing facili-
ties and energy consumed during transportation in the supply 
chain (Z2):

  Energy consumed during transportation between facilities i and j 
is calculated as follows:

  Number of gallons of diesel used per vehicle = 
dis

mpg
ij

, and total energy 

used per vehicle = ×
dis
mpg

teij . Total energy used per unit of product 

(assuming that the vehicles are trucked at full capacity), between i and 

j (teuij) = 
×







dis
mpg

te

vcap

ij

. Thus, if Q is the quantity of shipments between i 

and j, the total energy consumed due to transportation = teuij × Q.

Total energy used during transportation in the CLSC network is given by 
Equation 8.3:
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 (8.3)
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Energy usages at the warehousing facilities (warehouses, hybrid facilities, 
and recovery centers) are calculated as follows:

• Energy usage at recovery center r (eur) = sqfr × eir

• Energy usage at warehouse w of capacity l ( ) = ×eu sqf eiw
l

w
l

w
l

• Energy usage at hybrid facility h of capacity level l ( ) = ×eu sqf eih
l

h
l

h
l

Total energy usage at the warehousing facilities in the CLSC network is 
given by Equation 8.4:

 ∑∑ ∑∑ ∑δ + η + ξ
∈∈ ∈∈ ∈

eu eu euw
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w
l

w Wl L

h
l

h
l

h Hl L

r r

r R

 (8.4)

Based on Equations 8.3 and 8.4, the energy objective is formulated as 
follows:
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Following are the set of constraints of the model, subject to the fact that 
each supplier s has a finite supply capacity.

Equation 8.5 ensures that the quantity of raw materials supplied by sup-
plier s to all the manufacturing plants should be less than or equal to its 
capacity.

 ∑ ≤ ∀ ∈
∈

QSM cap s Ssm

m M

s  (8.5)
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Equation 8.6 is the set of production capacity constraints at the plants. The 
left side term of the constraint represents the sum of new and refurbished 
products transported to warehouses and hybrid facilities from plant m, 
which should be less than or equal to its capacity.

∑ ∑( ) ( )+ + + ≤ ∀ ∈
∈ ∈

QMW RQMW QMH RQMH cap m Mmw mw

w W

mh mh

h H

m  (8.6)

Equation 8.7 ensures that the quantity of raw material flowing into plant 
m is equal to the quantity of new products flowing out of that plant to the 
warehouses and hybrid facilities. The left side term of the constraint repre-
sents the sum of products flowing into manufacturer m. The right side term 
of the constraint is the sum of products flowing out of manufacturer m to 
warehouses and hybrid facilities.

 ∑ ∑ ∑= + ∀ ∈
∈ ∈ ∈

QSM QMW QMH m Msm

s S

mw

w W

mh

h H

 (8.7)

Equation 8.8 ensures that the quantity of returned products under all tiers 
flowing into plant m is equal to the quantity of refurbished products flowing 
out of that plant to the warehouses and hybrid facilities.
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r Rk K
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 (8.8)

Equation 8.9 ensures that the quantity of new products and refurbished 
products flowing into warehouse w does not exceed its storage capacity, if 
the warehouse is selected for operation. The left side term of the constraint is 
the sum of new and refurbished products flowing into warehouse w, and the 
right side term is the capacity of the selected warehouse. If a warehouse w is 
opened, Equation 8.10 ensures that only one of the capacity levels is selected.

 ∑ ∑( )+ ≤ δ ∀ ∈
∈ ∈

QMW RQMW cap w Wmw mw

m M

w
l

w
l

l L

 (8.9)

 ∑δ ≤ ∀ ∈
∈

w Ww
l

l L

1  (8.10)

Equation 8.11 ensures that the quantity of new products flowing into 
warehouse w is equal to the quantity of new products flowing out of that 
warehouse. Similarly, Equation 8.12 is the flow constraint for the refurbished 
products at warehouse w.
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 ∑ ∑= ∀ ∈
∈ ∈

QMW QWC w Wmw

m M

wc

c C

 (8.11)

 ∑ ∑= ∀ ∈
∈ ∈

RQMW RQWC w Wmw

m M

wc

c C

 (8.12)

Equation 8.13 ensures that the quantity of new products and refurbished 
products flowing in the forward channel and returned products flowing in 
the return channel into a hybrid facility h does not exceed its storage capacity, 
if the hybrid facility is selected for operation. If hybrid facility h is opened, 
Equation 8.14 ensures that only one of the capacity levels is selected.

 ∑ ∑∑ ∑( )+ + ≤ η ∀ ∈
∈ ∈∈ ∈

QMH RQMH RQCH cap h Hmh mh

m M
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h
l
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 ∑η ≤ ∀ ∈
∈

h Hh
l

l L

1  (8.14)

Equations 8.15 and 8.16 represent the flow constraints for the new and 
refurbished products, respectively, at hybrid facility h in the forward channel.

 ∑ ∑= ∀ ∈
∈ ∈

QMH QHC h Hmh

m M

hc

c C

 (8.15)
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∈ ∈

RQMH RQHC h Hmh

m M

hc

c C

 (8.16)

Equation 8.17 ensures that the quantity of return products, under all tiers, 
flowing into the hybrid facility h is equal to the quantity flowing out of that 
hybrid facility in the return channel.

 ∑ ∑= ∀ ∈ ∀ ∈
∈ ∈

RQCH RQHM h H k Kkch

c C

khm

m M

,  (8.17)

Equation 8.18 deals with the capacity and operation constraints for recov-
ery center r. This constraint ensures that the quantity of return products, 
under all tiers, flowing into recovery center r should be less than or equal to 
its storage capacity, if recovery center r is opened.

 ∑∑ ≤ ξ ∀ ∈
∈∈

RQCR cap r Rkcr

c Ck K

r r  (8.18)
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Equation 8.19 represents the flow balance constraints for recovery center r.

 ∑ ∑= ∀ ∈ ∀ ∈
∈ ∈

RQCR RQRM r R k Kkcr

c C

krm

m M

,  (8.19)

Equation 8.20 represents the demand satisfaction constraints. The total 
quantity of products (new and refurbished) flowing into retailer c should be 
less than or equal to the demand at that retailer.

 ∑ ∑( ) ( )+ + + = ∀ ∈
∈ ∈

QWC RQWC QHC RQHC d c Cwc wc

w W

hc hc

h H

c  (8.20)

Equation 8.21 ensures that the total quantity of refurbished products flow-
ing into retailer c should be less than or equal to the sum of customer accep-
tance rate of low-end and high-end customers to buy refurbished products.

 ∑ ∑ ( ) ( )+ ≤ α ω + α ω  ∀ ∈
∈ ∈

RQWC RQHC d d c Cwc

w W

hc

h H

c c. . . .1 1 2 2  (8.21)

Equation 8.22 represents the flow balance constraints for the return prod-
ucts in each tier at the retailers. The return products are either sent to refur-
bishing through recovery centers and hybrid facilities or are disposed at the 
retailer.

 ∑ ∑+ + = γ β  ∀ ∈ ∀ ∈
∈ ∈

RQCH RQCR DISP d c C k Kkch

h H
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r R
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Equations 8.23 and 8.24 describe nonnegativity and binary conditions of 
the decision variables.

 
QSM , QMW , RQMW , QMH , RQMH , QWC , RQWC ,
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 { }δ η ξ ∈w
l

h
l

r, , 0,1  (8.24)

8.4 Interactive Optimization Algorithm

In this section, we describe the PCM for solving bi-criteria optimization prob-
lems (Sadagopan and Ravindran 1982). PCM is an interactive method and 
has been successfully applied to solve bi-criteria mathematical programming 
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problems in health planning and quality control. PCM eliminates a certain 
portion of the objective space at each iteration through interactions with 
the DM, using the golden section search (Masud and Ravindran 2008). This 
method poses lesser cognitive burden to the DM and converges faster to the 
best compromise solution. We will use this method to solve the bi-criteria net-
work design model for the CLSC network.

The bi-criteria mathematical programming model in this study is stated in 
general as follows:

 Max f1(x)

 Min f2(x)

 Subject to: gi(x) ≤ 0 i = 1, …, m

where x is an n-dimensional vector of decision variables, f1 and f2 repre-
sent the profit and energy objectives, and gis are the set of constraints, 
representing Equations 8.5 through 8.24. Let S = {x|gi(x) ≤ 0} denote the fea-
sible region. Let U [ f1(x), f2(x)] be the unknown DM’s utility function defined 
over the criterion values, such that for any two feasible solutions, x(1) and 
x(2), U [ f1(x(1)), f2(x(1))] > U [ f1(x(2)), f2(x(2))], if DM prefers solution x(1) to x(2). 
The objective is to find the best compromise solution that maximizes the 
unknown utility function.

The steps of the proposed method are summarized as follows (see 
Figure 8.5):

Step 1:

 Solve (P1): Max f1 (x), subject to x ∈ S

 Set max f1 (x) = v*

 Solve (P2): Min f2 (x), subject to x ∈ S

 Set min f2 (x) = w*

Step 2:

 Solve (Pv): Min f2 (x), subject to x ∈ S and f1(x) ≥ v*

Set min f2 (x) = wu. The optimal value of f2 (x) lies between 
w* and wu. Set w* = w1.

 Let the initial length of the interval I0 = wu − w1.
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Step 3:
Choose two values wA and wB, such that wl < wA < wB < wu. Golden section 
search is used to generate wA and wB. Solve the problem,

 Pw: Max f1(x), subject to x ∈ S and f2(x) ≤ w for w = wA and w =wB;

 Let g(w) = Max f1(x) for Pw.

Step 4:

Let y(1) and y(2) be the two feasible solutions in the objective space.

 y(1) = [g(wA), wA] and y(2) = [g(wB), wB]

DM is asked to specify his preference between the two solutions y(1) 
and y(2).

If y(1) is preferred to y(2), then U[y(1)] > U[y(2)], and the optimal value of f2 will 
not lie in the interval (wB, wu). Set wu = wB.

If y(2) is preferred to y(1), then U[y(2)] > U[y(1)], and the optimal value of f2 will 
not lie in the interval (w1, wA). Set w1 = wA.

f1

f2

wu

wB

wA

v1 f1(x1*)

x1*

x2*

f1(x2*) v*

w*

Profit

En
er

gy

Efficient frontier

FIGURE 8.5
Illustration of the paired comparison method.
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Step 5:

We define the interval of uncertainty as 
( )−

×




I

w w
100l u

0
.

If the interval of uncertainty < ε (chosen small value) or if the DM is satisfied 
with the current solution, stop; else return to Step 3.

At each iteration, we maximize f1 (x) with a constraint on f2 (x). The problem 
can also be solved by minimizing f2 (x) with a constraint on f1 (x).

8.5 Illustrative Example

In this section, we present an illustrative example and solve it using the 
 proposed interactive optimization algorithm. The supply chain network 
consists of the following entities:

• Twenty potential suppliers provide the raw materials required to 
manufacture new products.

• Five manufacturing plants produce new products as well as refur-
bish the product returns.

• Sixteen potential warehousing facilities distribute new and refur-
bished products to the retailers in the forward channel.

• Five potential recovery centers collect product returns from the 
retailers and then inspect and distribute them to the manufacturing 
plants in the return channel.

• Nine potential hybrid facilities can act as warehouses in the forward 
channel and recovery centers in the return channel.

• One hundred retailers face demand from the customers.

The cost parameters are modeled as a function of the new product price. 
Refurbishing cost and inspection cost of returned products are set based on 
their tier of return; that is, the higher the tier of return, the higher is the cost 
of refurbishing and inspection. Initially, we assume a mix of 70% low-end 
and 30% high-end customers (ω1 = 0.7, ω2 = 0.3). Other cost parameters are 
shown in Table 8.10.

The capacities of the suppliers and plants, production cost and refurbish-
ing cost at the plants, and the purchasing cost of raw materials are the same 
as given in the Appendix (see Table A1; available on the CRC Press web-
site: http://www.crcpress.com/product/isbn/9781498708586). Three pos-
sible capacity levels (sizes) of warehouses and hybrid facilities could be 
built in their respective potential locations. The capacities and fixed cost of 
the warehouses, hybrid facilities, and the recovery centers are also given in 
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the Appendix (see Tables A2, A3, and A4; available on the CRC Press web-
site: http://www.crcpress.com/product/isbn/9781498708586). The demand 
values at the retailers are drawn from a uniform  distribution between 500 
and 700 units. New products are sold at a price of $1,000 per unit. The refur-
bished products are assumed to be sold at three-fourths of the new product 
price ($750 per unit). Product return percentage of 30% (γ = 0.3) is considered 
in this example. Out of the product returns, 50% are Tier 1 returns (β1 = 0.5), 
30% are Tier 2 returns (β2 = 0.3), 10% are Tier 3 returns (β3 = 0.1), and 10% are 
Tier 4 returns (β4 = 0.1). Tier 1 and Tier 2 returns account for more than 90% of 
the total returns based on a case study published in Ovchinnikov (2011) for 
a major wireless carrier in North America. We assume 80% Tier 1 and Tier 
2 returns. Tier 3 and Tier 4 returns are assumed to be 10% each in order to 
discuss their effect on the supply chain network design.

Vehicle capacity (vcap) is 40,000 units per vehicle. The energy produced by 
burning one gallon of diesel (te) is 128 kBtu, and the MPG of vehicles is 8.5. 
The distances between the stages in the supply chain are generated randomly 
using the settings shown in Table  8.11. The square footage and the energy 
used at the warehouses, hybrid facilities, and the recovery centers are given in 
the Appendix (see Tables A5, A6, and A7; available on the CRC Press website: 
http://www.crcpress.com/product/isbn/9781498708586).

We assume that the refurbished product quality in the market is uncer-
tain and falls between [q − i = 0.30, q + i = 0.7]. The corresponding perceived 

TABLE 8.10

Cost Parameters (Illustrative Example)

Parameter Variable Setting

Total cost of a new product pp $750
Profit margin 20%
Price of new product np $900
Purchasing cost of raw material psm ~ Unif (70%, 80%) * pp
Production cost for a new product pc m ~ Unif (8%, 12%) * pp
Refurbishing cost for a returned 
product

rc1m ~ Unif (6%, 8%) * pp
rc2m ~ Unif (14%, 18%) * pp
rc3m ~ Unif (25%, 35%) * pp
rc4m ~ Unif (45%, 55%) * pp

Transportation cost per unit 
between plant and warehouse/
hybrid facility/recovery center

trmw, trmh, trrm ~ Unif (5.5%, 6.5%) * pp

Transportation cost per unit 
between retailer and warehouse/
hybrid facility/recovery center

trwc, trhc, trcr ~ Unif (8.5%, 9.5%) * pp

Inspection cost of returned 
product at recovery center/
hybrid facility

inkr, inkh ~ Unif (8%, 12%) * rckm

Price of a refurbished product rp < np 75% of the new product price
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value falls between [v(q−i) = 0.55, v(q+i) = 0.84] (see data in Table 8.7). The 
acceptance rate of low-end customers is calculated using Equation 8.1 
and that of high-end customers is modeled using an inverted U-shaped 
function, given in Equation 8.2. In this example, the discount offered for 
refurbished products is initially set at 25% (θ = 0.25). Customer acceptance 
rate for low-end customers (α1) is calculated (using Equation 8.1) as 0.3103 
(31.03%); for high-end customers (α2), it is calculated (using Equation 8.2) as 
0.1364 (13.64%).

The example is coded in Microsoft Visual C++ 6.0 and solved using 
ILOG  Concert Technology with CPLEX 12.1 on a PC with INTEL(R) 
Core (TM) 2 Duo Processor at 2.8 GHz and 2.0 GB RAM. First, we solve 
and analyze the model with the profit objective. We will compare this 
solution with the Subramanian and Ravindran (2014) model solution to 
show the importance of incorporating the different tiers of returns in the 
model. We will then illustrate the utility of the proposed PCM using the 
example.

8.5.1 Profit Maximization Model

In this section, the model is first solved with the profit maximization objec-
tive.  The model for this example has 11,723 variables (11,643 continuous 
variables and 80 binary variables) and 808 constraints. The model took 
approximately 12 seconds to solve for optimality. The optimal profit achieved 
by the model for this example is $12,295,957.

The total demand at the retailers is 60,028. Retailer returns in the model 
are calculated as follows:
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TABLE 8.11

Distance Settings (Illustrative Example)

Facilities in (Stage i—Stage j) Distance Setting (in Miles)

(supplier – manufacturer) ~ Unif (100, 300) * 5
(manufacturer – warehouse), (manufacturer – hybrid facility), 
(recovery center – manufacturer)

~ Unif (100, 500) * 5

(warehouse – retailer), (hybrid facility – retailer), 
(retailer – recovery center)

~ Unif (200, 800) * 5
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Thus, retailer returns are 17,837, out of which 8,958 (50%) are Tier 1; 5,363 
(30%) are Tier 2; 1,758 (10%) are Tier 3; and 1,758 (10%) are Tier 4 returns. Total 
acceptance for refurbished items is calculated as follows:

 ∑ ∑( ) ( ) ( ) ( )α ξ + α ξ
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Thus, the total acceptance for refurbished items is 15,449 based on the 
acceptance rates of low-end and high-end customers. Because the acceptance 
rate is less than the returns, some products are disposed of at the retailers. 
In the optimal solution, all the Tier 1 and Tier 2 returns are refurbished; 
630 units of Tier 3 and 1,758 units of Tier 4 returns are disposed of at the 
retailers. We observe that higher tier returns are disposed of because their 
refurbishing costs are higher. Thus, it is important to consider different 
categories of returns and customer buying behavior in our model to avoid 
sub-optimal solutions. The optimal network design for the profit maximiza-
tion objective is given in the Appendix (available on the CRC Press website: 
http://www.crcpress.com/product/isbn/9781498708586).

8.5.2 Paired Comparison Method

In this section, we illustrate the interactive solution method using the illus-
trative example. Let f1(x) = Z1 and f2(x) = Z2. We solve the problems (P1) and 
(P2) as follows:

(P1): Maximize Z1, subject to constraints (Equations 8.5 through 8.24).
  The optimal profit achieved by the model for this example 

is $12,295,957. The corresponding energy usage for this profit is 
1,475,494 kBtu.

  By solving the energy objective with the model presented in 
Section 8.3.4, we get a trivial solution with no shipments and all the 
returns being disposed of at the retailer. In order to get a realistic 
value for the energy objective, we incorporate a minimum demand 
satisfaction constraint in the model (see Equation 8.25).

 ∑ ∑( ) ( ) ( )+ + + ≥ × ∀ ∈
∈ ∈

QWC RQWC QHC RQHC d c Cwc wc

w W

hc hc

h H

c0.8  (8.25)

(P2): Minimize Z2, subject to constraints (Equations 8.5 through 8.25).*

  The optimal energy consumed by the model for this example 
is 665,918 kBtu. The corresponding profit obtained for this energy 
usage is $7,667,994.

* Constraint (Equation 8.25) is added just to get a realistic value for the energy objective.
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  We assume a quasiconcave utility function for the DM in order to 
simulate the interaction process in the algorithm as shown:

 [ ] =






U Z Z
Z
Z

,1 2
1
2/3

2
1/2 .

Interactive Solution Steps
Step 1:

 Solve (P1): Max Z1, subject to constraints (as defined earlier)

 We get v* = 12,295,957.

 Solve (P2): Min Z2, subject to constraints (as defined earlier)

 We get w* = w1 = 665,918.

Step 2:

 Solve (Pv): Min Z2, subject to constraints (as defined for P(2)) & Z1 ≥ v*

 We get Min Z2 = wu = 1,475,494.

 The optimal value of Z2 lies between 665,918 and 1,475,494.

 Calculate I0 = wu − w1 = 1,475,494 − 665,918 = 809,576.

Figure 8.6 shows the efficient frontier of the bi-criteria problem. It is used 
to illustrate the trade-off curve between the profit and the energy objectives 
in the interactive algorithm. The ideal values for the profit and the energy 
objectives (v*, w*) are $12,295,957 and 665,918 kBtu, respectively. The cor-
responding energy usage for v* is 1,475,494 kBtu and the profit obtained 
for w* is $7,667,994 (see Figure 8.6). Thus, we get the bounds for the profit 
and the energy objectives as $7,667,994 and $12,295,957 and 665,918 kBtu 
and 1,475,494 kBtu, respectively. The two extreme solutions, y(p) and y(e), in 
Figure 8.6 are $12,295,957 and 1,475,494 kBtu and $7,667,994 and 665,918 kBtu, 
respectively, where y(p) maximizes profit and y(e) minimizes energy. In the 
interactive algorithm, we are trying to find the best compromise solution 
between the two extreme solutions using DM’s preferences.

Iteration 1 (see Figure 8.6)
Step 3:
Choose wA and wB using the golden section search ratios 0.618 and 0.382.

 Using the ratios, wA = 975,176 and wB = 1,166,236

 Solve the problem, Pw: Max Z1, subject to constraints (as defined for (P2))
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and Z2 ≤ w for w = wA and w = wB;

g(wA) = 11,666,561 and g(wB) = 12,222,303

Step 4:

 y(1) = [11666561, 975176] and y(2) = [12223303, 1166236].

Interact with DM and get his preference between y(1) and y(2).

Assuming the utility function [ ] = 



,1 2

1
2/3

2
1/2U Z Z Z

Z
, U[y(1)] = 52.09 and 

U[y(2)] = 49.14. As U[y(1)] > U[y(2)] ⇒ y(1) is preferred to y(2).
Eliminate the interval (wB, wu). Update wu = wb = 1,166,236.

Step 5:
Assuming the interval of uncertainty has to be reduced to 10% we continue 
the search procedure on the reduced efficient frontier.

Table 8.12 shows the iterations of the algorithm. The best compromise solu-
tion obtained by the method is Z1 = $11,996,282 and Z2 = 1,003,013 kBtu in 
Iteration 5.

In Iteration 1, U[y(1)] > U[y(2)]. Thus, the algorithm eliminates the region 
(wB, wu) from the efficient frontier; that is, the best compromise solution does 
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En
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FIGURE 8.6
Illustration of the interactive method.
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not lie in the interval (wB, wu). Golden section search rule is used again to 
generate the next two points between (wl, wB) in Iteration 2 (see Table 8.12). 
We observe that one of the new points is wA, and U[y(2)] > U[y(1)]. Hence, we 
eliminate the region (wl, wA) from the efficient frontier in Iteration 2. The 
same procedure is continued until the interval of uncertainty is reduced to 
a specified level. In general, the DM will be able to reduce the interval of 
uncertainty to less than 10% of the initial interval with just five iterations. The 
cognitive burden is minimal in each iteration because the DM has to give his 
preference between two solutions only. For a specified level of uncertainty, 
this method converges rapidly to the best compromise solution.

The best compromise network design solution by this method is as follows:

• Suppliers 1, 3, 5, 6, 7, 8, 9, and 10 are selected to supply raw materials 
to the plants for producing new products.

• Plants 1, 2, 3, and 5 are used in new product production, and Plants 1 
and 2 are used for refurbishing the return products. Table 8.13 shows 
the product flows and production of new and refurbished products 
in the plants.

• Warehouse 12 of size 2 is opened. Warehouse 12 is used to distribute 
10,613 units of new products and 4,748 units of refurbished products.

• Recovery centers are not used for distribution in the solution.
• Hybrid facilities 5 and 9, each of size 3, are opened. Hybrid facility 

5 is used to distribute 16,381 units of new products and 5,498 units 
of refurbished products. Hybrid facility 9 is used to distribute 
19,542 units of new products and 3,246 units of refurbished prod-
ucts. In the return path, Hybrid facility 5 collects and distributes 
7,476 units of return products, and Hybrid facility 9 collects and dis-
tributes 6,016 units of return products.

• The retailers’ demands are satisfied from Hybrid facility 5, Hybrid 
facility 9, and Warehouse 12 in the forward channel. The returns at the 
retailers are shipped to Hybrid facilities 5 and 9 in the return channel.

TABLE 8.13

Product Flows, Production, and Refurbishing in the Plants

Production and Forward Channel Flow
Return 

Channel Flow 
(Units)

New Products 
(Units)

Refurbished 
Products (Units)

Plant 1 13,030 2,101 2,101
Plant 2 5,359 11,391 11,391
Plant 3 16,381 0 0
Plant 4 0 0 0
Plant 5 11,766 0 0
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The percentage deviation of the best compromise solution, obtained in 
Iteration 5, corresponds to a 2.44% decrease for the profit objective and 
a 50.62% increase for the energy objective from the ideal values. Energy 
usage is reduced by 32.02% in the supply chain for a 2.44% decrease in 
profit when compared to the optimal solution with just profit maximiza-
tion. These values are based on the best compromise solution obtained 
for the assumed utility function. The best compromise solution will vary 
depending on the DM and his relative preference between the profit and 
energy objectives.

8.6 Conclusions

Integrated operations and management of forward and reverse supply 
chains is critical to gain economic advantages in a CLSC. In this chap-
ter, we considered an integrated four-stage supply chain network with 
forward and reverse product flows. The condition of returned products 
and the cost for refurbishing them varies significantly. Also, the customer 
behavior toward buying refurbished products is not the same. In this 
study, we extended our previous work by considering different tiers of 
return and customer buying behavior in purchasing refurbished prod-
ucts. We also considered two objectives—maximizing profit and mini-
mizing energy usage in warehousing and transportation. We developed 
a bi-criteria MILP model for the problem. In the model, we considered 
two customer categories, high-end and low-end customers, and four tiers 
of returns based on the quality and condition of the products. We consid-
ered refurbishing cost based on the tier of return and modeled the accep-
tance rate of low-end and high-end customers. The model determined 
 optimal locations of facilities and the distribution of new, refurbished, and 
returned products in the CLSC network.

First, we presented and analyzed the MILP model with the profit maximi-
zation objective using an illustrative example. Then, we proposed an interac-
tive optimization algorithm to solve the proposed bi-criteria MILP model. The 
algorithm was illustrated using an example. The results showed the ability of 
the method to take the DM’s preferences and systematically solve the bi- criteria 
problem. Also, the method posed less cognitive burden on the DM because the 
DM only had to compare two solutions and give his preference.

The model can be extended by considering other objectives such as sup-
ply chain risk, responsiveness in forward and reverse supply chains, and 
environmental impact. Interactive optimization methodologies with mul-
tiple objectives can be developed. We have not considered any uncertainties 
in the return parameters. The model can also be extended by considering 
uncertainties in demand and returned products.
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9.1 Introduction

For most manufacturing firms, the purchasing of raw material and com-
ponent parts constitutes a major expense. A study carried out by the 
Aberdeen group found that more than 83% of the organizations engaged in 
outsourcing achieved significant reduction in purchasing cost, more than 
73% achieved reduction in transaction cost, and more than 60% were able 
to shrink sourcing and procurement cycles (Aberdeen Group 2004). Once a 
decision is made to outsource, the next critical activity is selecting the sup-
pliers. Supplier selection is a key decision in outsourcing, which is prone to 
errors. The right supplier is one who will meet and complement the organi-
zation’s needs from its corporate culture to its long-term future needs. The 
selection of a good supplier is difficult because some suppliers that meet 
some selection criteria may fail in others. In order to select the right supplier, 
two basic and interrelated decisions must be made by a firm. The firm must 
decide which suppliers to do business with and how much to order from 
each supplier. Weber et al. (1991) refer to this pair of decisions as the supplier 
selection problem.

Many organizations have found that the only way to align the procure-
ment function with the overall firm’s goals is to segregate the purchasing 
process into different segments based on supply strategies, supply tactics, 
and supply management approaches. This differentiation process is known 
as supply segmentation (Cavinato and Kauffman 1999).

9.1.1 Supply Segmentation Approach

Supply segmentation provides a mechanism for distinguishing among 
different items and services that are purchased by a firm with the goal of 
developing specific strategies to meet the needs of the organization. For 
constructing a supply segmentation matrix, each firm should carry out a 
spend analysis (Cavinato and Kauffman 1999). In the spend  analysis, the total 
purchasing cost of the products is plotted on the x-axis and market-risk 
is plotted on the y-axis. The cost represents the importance of the item in 
terms of annual dollars spent. Each organization also has to define its own 
risks, which may include technological risks, supply risks, demand risks, 
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environmental risks, and so on. The result of the spend analysis is the 
 supply segment matrix, which is represented in Figure 9.1. Products classi-
fied in each of the four quadrants have specific characteristics, as shown in 
Figure 9.2. In this chapter, we present a supplier selection method for tacti-
cal items (Quadrant I).

Critical
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FIGURE 9.1
Supplier selection framework.
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FIGURE 9.2
Purchasing strategy for each quadrant.
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9.1.2 Supplier Selection for Tactical Items

Tactical items represented in the first quadrant of the supply matrix are low-
risk and low-cost items (i.e., not only the cost of these items to the firm is 
low but the risk of disruption due to the nonavailability of these items also 
is low). Maintenance, repair, and operating (MRO) items and office supplies 
are some examples of products that can be classified as tactical. The  largest 
 number of parts and components in any organization will eventually be clas-
sified as tactical. There are many suppliers that supply these items; however, 
due to the low value of these items, it is not beneficial to frequently search 
and choose suppliers for these products.

9.1.3 Supply Strategy for Tactical Items

In most organizations, the majority of the items are classified as tactical. 
Although these items are large in number, their overall cost impact is low. 
The strategy adopted for tactical items includes product standardization, vol-
ume ordering, efficient processing, and inventory management. For  tactical 
items, in addition to the selling price of each item, the transaction cost (fixed 
order cost) is also important because the transaction cost may exceed the 
quoted price of the supplier. Therefore, tactical items should be consolidated 
to minimize the transaction cost of procurement.

9.1.4 Problem Definition

In this chapter, we present a multi-period supplier selection problem with 
product bundling. Due to the advances in information technology (IT), the 
demand for tactical items is deterministic; therefore, the buyer can forecast 
demand for various products in each time period with high confidence. 
These days, most suppliers offer a variable pricing model where the final 
price may be discounted based on the quantity of product purchased; in this 
chapter, we model the supplier discount using product bundling. Product 
bundling is a form of discount where the final price of a product depends on 
the quantities of different products ordered.

Supplier selection problem is inherently a multi-objective problem, a 
supplier with the lowest cost may also have very high rejects. In this chap-
ter, we model the supplier selection problem with four objectives. The first 
objective is to minimize the total cost. The total cost is composed of vari-
able cost, fixed cost, inventory holding cost, and bundling cost. The variable 
cost is the cost to buy every additional unit. The buyer incurs a fixed cost 
to order shipments from the suppliers. The fixed cost may include the cost 
incurred in order requisitions, transportation, and so on. The fixed cost is 
incurred every time a buyer places an order with the supplier. The buyer 
also incurs a holding cost to maintain inventory of the procured items. The 
holding cost is applied to each product in inventory that is carried from 
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one period to another. The last component of the cost is the price  reduction 
due to bundling. If a buyer buys enough quantities of  different products 
from a supplier, then that supplier offers free units of some products that 
are credited back to the buyer.

The second objective is to minimize rejects over the planning horizon. 
Every supplier maintains a certain quality standard for each product in 
each period. The buyer’s objective is to decide which products to order from 
which supplier, in what quantity, and in which period that will minimize 
the rejects.

The third objective is to minimize the lead time for procurement. Finally, 
the fourth objective minimizes the value-at-risk (VaR) type risks resulting 
from transactions with suppliers. VaR type risks are used to model less 
frequent events that disrupt operations at suppliers that can bring severe 
impacts to buyers (e.g., a labor strike, terrorist attack, natural disaster, etc.).

In this chapter, we demonstrate the application of a multi-criteria decision-
making approach to supplier selection and the use of goal programming 
(GP) as a solution approach. Supplier selection criteria are conflicting in 
nature and, because all the criteria/goals cannot be achieved simultaneously 
by a single supplier, an integer programming solution model might result in 
an infeasible solution. This problem is overcome by GP, which has become 
a practical method for handling multiple criteria. GP falls under the class of 
methods that use completely pre-specified preferences of the  decision maker 
in solving the multi-objective optimization problem. The multi-objective 
problem is solved using four different variants of GP—namely,  preemptive 
GP, non-preemptive GP, fuzzy GP, and Tchebycheff GP. The results of 
the multi-objective formulations are then compared against each other using 
the value path approach.

The rest of the chapter is organized as follows: Section 9.2 contains a brief 
review of supplier selection literature. In Section 9.3, we present the multi-
objective supplier selection problem and discuss various GP approaches to 
solving the problem. Section  9.4 illustrates the application of the solution 
approach using a numerical example. Section 9.5 contains the conclusion.

9.2 Literature Review

Supplier selection plays a key role in cost reduction and is one of the most 
important functions of the purchasing department. Several factors affect 
a supplier’s performance. An important review of these criteria has been 
carried out by Weber et al. (1991) and by Deshmukh and Chaudhari (2011). 
They assigned rankings based on the proportion of articles that discussed 
a given criterion. Price, quality, and lead time consistently ranked among 
the top three over the years. In the 1990s, geographical location was among 



272 Multiple Criteria Decision Making in Supply Chain Management

the top five criteria while, in the first decade of the twenty-first century, it 
was displaced by technical capability and financial position. Ho et al. (2010) 
presented a review of multiple criteria approaches mentioned in 78 articles 
appearing in international journals between 2000 and 2008. Agarwal et al. 
(2011) offered a different review based on 68 articles published between 2000 
and 2011 related to supplier evaluation and selection.

It is necessary to make a trade-off between conflicting qualitative and 
quantitative factors to find the best supplier(s). Mathematical programming 
models are the most appropriate methods for multiple sourcing situations 
(Ravindran and Warsing 2013). They allow the inclusion of constraints 
related to capacity, delivery time, quality, and others, while suppliers are 
selected along with their order allocations. Demirtas and Ustun (2008) pres-
ent a multi-objective model that evaluates total material cost, supplier defect 
rate, and total purchasing value using the Chebycheff technique to solve the 
problem. Elahi and Etaati (2011) developed a bi-objective mixed integer non-
linear program for allocating orders in a four-echelon supply chain, which 
maximizes service level and minimizes total costs for multiple periods. Li 
and Zabinsky (2011) applied two multi-objective models, which included 
a stochastic programming (SP) model and a chance-constrained program-
ming (CCP) model to determine a minimal set of suppliers and optimal 
order quantities with  consideration  of  business volume discounts. Sawik 
(2010) developed a bi- criteria version of an integer programming model that 
incorporates risk constraints.

Weber et  al. (1991), Degraeve (1999), De boer et  al. (2001), Wadhwa and 
Ravindran (2007), Aissaoui et  al. (2007), Wadhwa (2008), Ravindran and 
Wadhwa (2009), and Ravindran and Warsing (2013) provide a comprehensive 
review of supplier selection methods and solutions.

9.2.1 Supplier Selection with Quantity Discounts

According to Aissaoui et al. (2007), supplier selection problems without dis-
counts are easier to solve compared to the supplier selection problems in 
the presence of quantity discounts. The most common types of discounts 
found in literature are all-units and incremental discounts. In this chapter, 
we model the quantity discount using bundling. Bundling is the practice of 
marketing two or more products or services (or both) in a single package. 
Use of bundling is widespread in many products and services. Some com-
mon examples of bundling are:

 1. Travel websites offer specials price on booking flights and hotels/
cars together.

 2. Automotive manufacturers offer optional equipment as a package.
 3. In the telecommunications industry, the providers offer bundling 

discounts on cable, internet, and phone.
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The two most common bundling practices are pure bundling and mixed 
 bundling (Rosenthal et al. 1995):

• Pure bundling: In pure bundling, the buyer only can buy the entire 
bundle (i.e., the buyer cannot buy any individual items).

• Mixed bundling: Mixed bundling is a more general form of bundling 
in the sense that the buyer may purchase the entire bundle or indi-
vidual items. Mixed bundling can be further classified as:
• Mixed leader: In mixed leader, the price of one of the two products 

is discounted when the other product is purchased at regular price.
• Mixed joint: In mixed joint form of product bundling, the price 

PA+B is set when two products A and B are purchased jointly 
(i.e., PA+B < PA + PB).

Rosenthal et al. (1995) have illustrated three different bundling scenarios.

• In the first scenario, the buyer has the option of buying the entire 
bundle but not buy any subset of it. This bundling scenario is equiv-
alent to pure bundling.

• In the second scenario, the buyer can get a per unit discount on one 
product when sufficient quantities of all other items are purchased.

• In the third scenario, the buyer receives free units of some items 
when sufficient quantities of other items are purchased.

Scenario 3 is the most general form of bundling and can be extended to 
model the other two bundling scenarios.

9.2.1.1 Illustration of Bundling

Bundling can be illustrated using the following example. Suppose a buyer 
has a demand of 100 units each of two products A and B. Supplier s offers the 
product A for $1,000 apiece and product B for $100 apiece; the supplier also 
offers bundling discounts. The bundling scenario states that if the buyer buys 
100 units of item A at $1,000 each and 50 units of item B at $100 each, then 
the supplier will give 50 units of item B free. This concept of bundling can 
be extended to a case where more than two products are offered on  bundle. 
For example, in the case of four products, a sample bundling case could be as 
follows: The supplier offers a bundling discount on either all or a subset of all 
products. For example, if a buyer buys at least 100 units of product 1, 100 of 
product 2, 100 of product 3, and 100 of product 4, then the supplier provides 
0 units of product 1, 5 units of product 2, 10 units of product 3, and 10 units 
of product 4 free of cost. This means that even though the buyer does not 
get any free units on product 1, the buyer still has to buy at least 100 units of 
product 1 to satisfy bundling condition for other products.
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9.2.2 Multi-Period Supplier Selection Problem

A vast majority of research in the area of supplier selection considers only a 
 single period problem. According to Aissaoui et al. (2007), although a multi-
period supplier selection problem is difficult to solve, the potential benefits of 
solving such a problem are many. One of the primary advantages of considering 
a multi-period supplier selection problem is that the buyer can study the trade-
off among inventory holding costs, transaction costs, and quantity discounts.

Multi-period problems are usually solved in a rolling format whereby 
the model is solved at the beginning of each period. For instance, at the 
end of the first period, the model is moved forward and the second period 
becomes the first period and so on. Interaction among the periods is 
obtained by using an inventory decision variable. For example, a buyer 
buys Pt units in a period t and let It and Dt be the inventory left at the end 
of period t and the demand in period t, respectively, then the material 
 balance constraint for period t is

Beginning Inventory + production − ending inventory = demand

 It−1 + Pt − It = Dt (9.1)

Equation 9.1 assumes zero lead time. For the first period I1 is either equal 
to 0 or equal to the inventory held in the system at the end of previous cycle. 
Similarly, at the end of the cycle, the ending inventory could be either equal 
to 0 or an amount decided by the buyer. In our formulation, the buyer has to 
trade-off among the fixed order cost (transaction cost), the inventory holding 
cost, and the benefits of product bundling.

In multi-period inventory selection problem, one or more suppliers can 
be chosen in each of the periods or the products can be carried forward to a 
future period incurring holding cost. Inventory lot size and supplier selec-
tion are closely related. Supplier selection problem that include multiple 
time periods can lead to reduction in purchasing price and also can improve 
inventory management.

9.3  Multi-Objective Multi-Period Supplier Selection Model 
with Product Bundling

The supplier selection problem involves decisions that need to be made by 
an organization that would not only minimize total purchasing cost but also 
minimize rejects, the lead time of the products, and VaR risk. We consider the 
least restrictive case for modeling as a situation where the buyers can acquire 
one or more products from any of the suppliers. The mathematical model for 
the problem is discussed next.
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i Set of products to be purchased (i = 1… I)
j Potential set of suppliers (j = 1…J)
t Set of time periods (t = 1…T), where T is the planning horizon

Data
pij Cost of acquiring one unit of demand of product i from supplier j
Hi Holding cost of product i per time period
Fj Fixed cost associated with supplier j
Dit Demand of product i in period t
qijt Quality that supplier j maintains for product i in period t, which 

is measured as percent of defects
lijt Lead time of supplier j for product i in period t, which is 

measured in number of days. The lead time of different buyers is 
not the same because of geographical distance

CAPijt Production capacity of supplier j for product i in period t
Bij Minimum quantity of product i to be purchased from supplier j 

for satisfying the bundling constraints
VaRj Quantified VaR type risk for supplier j
kij Free items offered by supplier j for product i when bundling 

requirements are satisfied

Variables in the Model
xijt Number of units of product i supplied by supplier j in period t
Iit Inventory of product i carried from period t to t+1
yjt Binary variable indicating whether or not an order is placed with 

supplier j in period t
zj One binary variable for each supplier, with zj = 1 if x Bijt

t
ij∑ >  

for all products and 0 otherwise

Objective Function

 ∑∑∑∑∑ ∑∑∑∑+ ⋅ + −












min p x F y H I p k zij ijt j jt

tjtji

i it ij ij j

jiti

 (9.2)

 min ∑∑∑ ⋅q xijt ijt

tji

 (9.3)

 min ∑∑∑ ⋅l xijt ijt

tji

 (9.4)

 xj ijt

tji

min VaR∑∑∑ ⋅  (9.5)
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The first objective function minimizes the total purchasing cost 
(Equation 9.2). Purchasing costs have four components: variable cost, fixed cost, 
inventory  holding cost, and the bundling discount. The first component, the vari-
able cost, is directly proportional to the number of units purchased. The fixed 
cost, the second component, is incurred if a supplier is chosen irrespective 
of the number of units purchased. The third component, the inventory hold-
ing cost, is incurred for holding inventory from one period to other. The last 
component is the amount credited to the buyer if the bundling constraints 
are satisfied.

The second objective is the minimization of the number of rejects 
(Equation 9.3). Summed over all products and time periods, it minimizes the 
overall rejects for all supplier-product-time period combinations.

The third objective is the minimization of lead time (Equation 9.4). Summed 
over all products and time periods, it minimizes the lead time for all supplier-
product time periods.

The fourth objective minimizes the VaR type risks resulting from transac-
tions with suppliers (Equation 9.5).

Constraints
Demand/Inventory Constraints

 ∑ + = + ∀− ,, 1x I D I i tijt i t it

j

it  (9.6)

 ∑ ∑≤ ∀
=

,x D i tijt

j

it

t t

T

 (9.7)

Capacity Constraints

 xijt ≤ CAPijt · yjt ∀ i, j, t (9.8)

Bundling Constraints

 ∑⋅ − ≤ ∀0 ,B z x i jij j ijt

t

 (9.9)

Nonnegativity and Binary Constraints

 yjt ∈ (0, 1) (9.10)

 zj ∈ (0, 1) (9.11)
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 Ii, j ≥ 0 (9.12)

 xijt ≥ 0 (9.13)

Equation 9.6, the material balancing constraint, states that all the 
requirements for a period must be satisfied (i.e., shortage and backorder-
ing are not allowed). It also specifies that the number of units purchased 
in any period plus any inventory carried from previous periods must 
be equal to demand for that period plus the inventory carried forward. 
Equation  9.7 ensures that the maximum the buyer can buy should not 
exceed the total remaining demand for that product over the planning 
horizon. Equation 9.8 models the capacity limit of each supplier and stipu-
lates that a fixed cost is incurred whenever an order is placed with a sup-
plier. The total order placed with a supplier should be less than or equal to 
the available capacity in that period. Note that the binary variable (yjt) is 
used to activate the  constraint for a supplier j only if supplier j is chosen in 
that period. Equation 9.9 is used to model the bundling constraint, where 
zj is a binary variable, one for each supplier, such that

 

z
x ≥ B

j

ijt ij

t

1 if

0 otherwise

∑
=









The advantage of this model is that zj could be made a general integer; 
in that case, the buyer can buy more than one bundle from the same sup-
plier over the planning horizon. Finally, Equations 9.10 through 9.13 force 
 nonnegativity and binary restrictions on the decision variables.

9.3.1 Model Size

For a problem with i products, j suppliers, and t time periods, the size of the 
problem is as follows:

• Demand/inventory constraints: i * t + i * t
• Capacity constraints: i * j * t
• Bundling constraints: i * j
• Total constraints: i * (2 * t + j * t + j)
• Total integer variables: j * t + j
• Total continuous variables: i * t + i * j * t

This problem size represents the worst case scenario. In most problems, 
the  matrix of variables will be sparse because many variables will be 
zero; therefore, the computations would be less intensive.
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9.3.2 Solution Methodology

One way to treat multiple criteria is to select one criterion as primary and 
the other criteria as secondary. The primary criterion is then used as the 
optimization objective function, while the secondary criteria are assigned 
acceptable minimum and maximum values and are treated as problem 
 constraints. However, if careful considerations were not given while select-
ing the  acceptable levels, a feasible solution that satisfies all the constraints 
may not exist. This problem is overcome by Goal Programming (GP), which 
has become a practical method for handling multiple criteria.

In GP, all the objectives are assigned target levels for achievement and 
relative priority on achieving these levels. GP treats these targets as goals 
to aspire to and not as absolute constraints (Masud and Ravindran 2008). 
It  then attempts to find an optimal solution that comes as “close as possi-
ble” to the targets in the order of specified priorities. GP is one of the most 
commonly used techniques to solve multi-objective optimization problems. 
We solve the supplier selection problem using four different variants of GP 
(Ravindran and Wadhwa 2009), namely,

• Preemptive GP
• Non-preemptive GP
• Tchebycheff (min–max) GP
• Fuzzy GP

9.3.2.1 Preemptive Goal Programming

In preemptive GP, priority is assigned for each incommensurable goal and 
weights are assigned to goals at the same priority. Goals at a higher priority have 
to be satisfied before lower priority goals are even considered. The  preemptive 
GP formulation for a supplier selection problem is as follows:

 P d P d P d P d+ + ++ + + +min 1 1 2 2 3 3 4 4  (9.14)

Subject to:

∑∑∑∑∑ ∑∑∑∑+ ⋅ + −












+ −

=

− +

Price goal

1 1p x F y H I p k z d dij ijt k jt

tjtji

i it ij ij j

jiti  (9.15)

 quality goal2 2∑∑∑ + − =− +q x d dijt ijt

tji

 (9.16)

 lead time goal3 3∑∑∑ + − =− +l x d dijt ijt

tji

 (9.17)
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 x d dj ijt

tji

VaR VaR type risk goal4 4∑∑∑ + − =− +  (9.18)

 d d nn n ≥ ∀ =− +, 0 1...4  (9.19)

All the constraints (Equations 9.6 through 9.13) are also included in the 
model. The decision maker (DM) provides preference ranking of goals with-
out any weight. In our formulation, price is the more important than quality, 
followed by lead time and VaR type risk goals. Target values of the goals are 
to be set by the DM. Variables d d d d d d d d, , , , , , , and1 2 3 4 1 2 3 4

− − − − + + + + are the devia-
tion variables representing how far away we are from satisfying each goal. 
Symbols P1, P2, P3, and P4 stand for preemptive priorities, determining the 
hierarchy of goals. Goals of the higher priority levels are satisfied before any 
of lower priority goals are considered.

9.3.2.2 Non-Preemptive Goal Programming

In the non-preemptive GP model, the buyer sets goals to achieve for each 
objective, and preference in achieving those goals is expressed as numerical 
weights, one for each goal as follows:

• Weight w1 for the price goal
• Weight w2 for the quality goal
• Weight w3 for the lead time goal
• Weight w4 for the VaR type risk goal

Thus, the non-preemptive GP formulation for the supplier selection 
becomes:

 = ⋅ + ⋅ + ⋅ + ⋅+ + + +d d d dMin Z w w w w1 1 2 2 3 3 4 4  (9.20)

Subject to:

∑∑∑∑∑ ∑∑∑∑+ ⋅ + −
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Price goal

1 1p x F y H I p k z d dij ijt k jt

tjtji

i it ij ij j

jiti  (9.21)

 quality goal2 2∑∑∑ + − =− +q x d dijt ijt

tji

 (9.22)

 lead time goal3 3∑∑∑ + − =− +l x d dijt ijt

tji

 (9.23)



280 Multiple Criteria Decision Making in Supply Chain Management

 x d dj ijt

tji

VaR VaR type risk goal4 4∑∑∑ + − =− +  (9.24)

 ≥ ∀ =− +, 0 1...4d d nn n  (9.25)

In this model, + + + +, , , and1 2 3 4d d d d  represent the overachievement of the stated 
goals. Due to the use of the weights, goals have to be scaled properly. The 
weights w1, w2, w3, and w4 can be varied to obtain different solutions.

9.3.2.3 Tchebycheff (Min–Max) Goal Programming

The Tchebycheff GP model minimizes the maximum weighted deviation 
from the stated goals. For the supplier selection problem, the Tchebycheff 
goal program becomes:

 ( )⋅ ⋅ ⋅ ⋅ 
+ + + +Min Max w , w , w , w1 1 2 2 3 3 4 4d d d d  (9.26)

where w1, w2, w3, and w4 are the same weights used in non-preemptive GP.
Equation 9.26 can be reformulated as a linear objective by setting

 ( )⋅ ⋅ ⋅ ⋅ =+ + + +Max w , w , w , w M1 1 2 2 3 3 4 4d d d d .

Thus, Equation 9.26 is equivalent to:

 Min Z = M (9.27)

Subject to:

 ( )≥ ⋅ +dM w1 1  (9.28)

 ( )≥ ⋅ +dM w2 2  (9.29)

 ( )≥ ⋅ +dM w3 3  (9.30)

 ( )≥ ⋅ +dM w4 4  (9.31)

 M ≥ 0 (9.32)

Constraints (Equations 9.6 through 9.13) and (Equations 9.21 through 
9.24) stated earlier will also be included in this model. The disadvantages 
of this method are (i) the scaling of goals is necessary (as required in non- 
preemptive GP) and (ii) outliers are given more importance and could lead 
to poor solutions.
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9.3.2.4 Fuzzy Goal Programming

Fuzzy GP uses the ideal values as targets and minimizes the maximum nor-
malized distance from the ideal solution for each objective. An ideal solu-
tion is the vector of the best values of each criterion obtained by optimizing 
each criterion independently, ignoring other criteria. In this example, the 
ideal solution is obtained by minimizing the price, quality, lead time, and 
VaR goals independently. In most problem settings, the ideal solution is not 
achievable because the criteria conflict with one another. Ideal values are 
also used to scale the different goals.

If M equals the maximum deviation from the ideal solution, then the fuzzy 
GP model is as follows:

 Min Z = M (9.33)

Subject to:

 
d

M
Ideal value of Price objective

1≥
+

 (9.34)

 
d

M
Ideal value of Quality objective

2≥
+

 (9.35)

 
d

M
Ideal value of Lead Time objective

3≥
+

 (9.36)

 
d

M
Ideal value of VaR Type Risk objective

4≥
+

 (9.37)

 M ≥ 0 (9.38)

Constraints (Equations 9.6 through 9.13) and (Equations 9.21 through 9.24) 
stated earlier will also be included in this model.

9.4  Supplier Selection with Bundling and Inventory 
Management: A Case Study

To illustrate the supplier selection method for tactical items with product 
bundling and to evaluate the effectiveness of GP as a solution method, 
we solved several supplier selection models with varying parameters and 
compared their solutions. This section describes how the problems were 
generated, computational results, and our recommendation on which GP 
method works better. In the case study, we assume that every supplier is 
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capable of supplying every product. The scenario where a supplier does not 
 supply a particular product can easily be incorporated into the model. For 
convenience, we also assume that every supplier offers a similar bundling 
discount profile. The bundling threshold and quantity of free units is set 
arbitrarily. The problem formulation in the illustration only considers the 
price and quality (reject) objective.

9.4.1 Experimental Design

We varied the number of products, number of suppliers, and number of time 
periods to generate several supplier selection problems. The problems require 
data on the number of products, number of suppliers, number of time peri-
ods, price, capacity, quality, and bundling for various suppliers as well as the 
holding cost of product and the demand of different products in each time 
period. The complete data used in the case study are given in Wadhwa (2008). 
The experimental design is illustrated in Table 9.1.

The number of products is fixed at two different levels—namely, 4 and 8. 
The number of suppliers and time periods are fixed at 4 and 12, respectively. 
Data required in the model is generated through a uniform distribution 
(Jayaraman et al. 1999). We adopt these settings to evaluate a base case of the 
problem and then parametrically vary them to evaluate the performance of 
the model. In order to evaluate the effectiveness of the different GP model 
solutions, we measure their goal achievements. The various parameters used 
in the model are:

• Demand of each product in each period ~ uniform [100, 200]
• Price that the supplier charges for each product ~ uniform [30, 50]
• Percentage rejections of each product by the supplier in each time 

period ~ uniform [0.01, 0.09]
• Fixed cost of each supplier ~ uniform [1000, 1200]

TABLE 9.1

Experimental Design by Varying 
Product, Supplier, and Time

Set Products Suppliers Time Periods

1 4 4 4
2 4 4 12
3 4 12 4
4 4 12 12
5 8 4 4
6 8 4 12
7 8 12 4
8 8 12 12
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• Holding cost of each product ~ uniform [1, 3]
• Capacity of each supplier for each product in each time period 

~  uniform [100, 200]

9.4.2 Computational Results

We solve eight different problems using four different variants of GP, as dis-
cussed previously. For the purpose of illustration, computational results for 
the first problem set involving four products, four suppliers, and four time 
periods are discussed here.

9.4.2.1 Preemptive Goal Programming

In preemptive GP, price is given the highest priority, followed by quality. The 
target values for each of the objectives are set at 102% of the ideal value. For 
example, the ideal (minimum) value for price objective is $86,195; hence, the 
target value for price is $87,918.90, and the goal is to minimize the deviation 
above the target value. Table 9.2 illustrates the solution using the  preemptive 
GP model. Preemptive GP does not require the goals to be scaled. Numbers 
of units bought from different suppliers in each time period are shown 
in Table 9.3. Inventory carried on from one period to another is shown in 
Table 9.4.

Three different suppliers were utilized to supply the different products. 
Table 9.5 shows the capacity utilization for different suppliers. This is useful 
in case of a sudden surge in demand or a supply disruption at one or more 
suppliers.

The bundling conditions for supplier 2 and 3 are satisfied; hence, z2 and z3 
are 1, and the buyer receives free units from suppliers 2 and 3.

9.4.2.2 Non-Preemptive Goal Programming

In non-preemptive GP, weights w1 and w2 are 0.75 and 0.25 for price and 
quality, respectively. The target values used are the same as in preemptive 
GP. The solution of the non-preemptive GP model is shown in Table  9.6. 
Non-preemptive GP requires scaling; the target values are used as scaling 
constants.

TABLE 9.2

Preemptive Goal Programming Solution 

Preemptive 
GP

Ideal 
Values

Preemptive 
Priorities

Scaling 
Constant

Target for 
Preemptive 

Goal 
(Ideal+2%)

Actual 
Achieved

Whether 
Goal 

Achieved

Price 86195 1 N/A 87918.9 87918.9 Achieved
Quality 80.76 2 82.37 115 Not achieved
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TABLE 9.3

Preemptive Goal Programming Solution: 
Supplier Allocation

Product Supplier
Time 

Period Quantity

1 1 1 185

1 2 1 60

1 2 3 121

1 3 2 115

1 3 4 163

2 1 1 126

2 2 1 188

2 2 3 135

2 2 4 140

2 3 2 9

2 3 4 49

3 2 1 146

3 2 3 145

3 2 4 102

3 3 1 67

3 3 2 140

3 3 4 89

4 1 1 54

4 2 3 42

4 3 1 196

4 3 2 125

4 3 4 152

TABLE 9.4

Preemptive Goal Programming 
Solution: Inventory Decision 

Product
Time 

Period Inventory

1 1 60

1 2 38

2 1 139

2 2 27

3 1 13

3 2 19

4 1 71

4 2 81
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9.4.2.3 Tchebycheff Goal Programming

In Tchebycheff GP, the target values used are the same as in preemptive 
goal programming. Scaling constants are chosen in such a way that both the 
objectives have a similar magnitude. For example, price target ($87,918.90) 
when multiplied by 0.01 gives $879.18, and quality (82.37) when multiplied by 
10 yields 823.7; this makes price and quality of similar magnitude. Using the 
Tchebycheff method, the solution obtained is illustrated in Table 9.7.

9.4.2.4 Fuzzy Goal Programming

In fuzzy GP, the ideal values are used as targets for the different goals. The 
solution obtained using fuzzy GP is shown in Table 9.8.

9.4.3 Value Path Approach for Comparison of Multi-Objective Problems

The presentation of results in a multi-objective problem presents a critical 
link. Any sophisticated analysis without a good visual can render it useless. 

TABLE 9.5

Preemptive Goal Programming 
Solution: Supplier Capacity 
Allocation 

Supplier 
Capacity Used 

(%)

1 15.93
2 44.99
3 48.4
4 0

TABLE 9.6

Non-Preemptive Goal Programming Solution 

Non-
Preemptive 
GP

Ideal 
Values Weights

Scaling 
Constant

Target for 
Non-

Preemptive GP
Actual 

Achieved

Whether 
Goal 

Achieved

Price 86195 0.75 87918.9 87918.9 89878 Not achieved
Quality 80.76 0.25 82.37 82.37 91.87 Not achieved

TABLE 9.7

Tchebycheff Goal Programming Solution 

Tchebycheff 
GP

Ideal 
Values Weights

Scaling 
Constant

Target for 
Tchebycheff 

GP
Actual 

Achieved

Whether 
Goal 

Achieved

Price 86195 0.75 0.01 87918.9 90782 Not achieved
Quality 80.76 0.25 10 82.37 90.95 Not achieved
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In the case of multi-objective problems, a lot of information needs to be 
 conveyed that not only includes performance of various alternatives but also 
trade-offs among different solutions.

The value path approach is one of the most efficient ways to demonstrate 
the trade-offs among different criteria; this approach was developed by 
Schilling et al. (1983). The display consists of a set of parallel scales—one for 
each criterion on which is drawn the value path for each of the alternatives. 
Value paths have proven to be an effective way to present the trade-offs in 
problems with multiple objectives.

The value assigned to each solution on a particular axis is that solution’s 
value for the appropriate objective divided by the best solution for that objec-
tive. Therefore, the minimum value for each axis is 1. Following are some 
properties of the value path approach:

• If two value paths representing alternatives A and B intersect between 
two vertical scales, then the line segment connecting A and B in objec-
tive space has a negative slope and neither objective dominates the 
other.

• If three or more value paths intersect, then their associated points in 
the objective space are collinear.

• If two paths do not intersect, then one path must lie entirely below 
the other and is therefore inferior.

• Given any intersecting pair of value paths, a third value path is infe-
rior if it does not lie above the intersecting point.

The four variants of GP models provided different optimal solutions. 
A summary of the solutions obtained through the four methods is illustrated 
in Table 9.9.

The following illustrate the value path approach:

 1. Find the best solution for each of the criterions. On price criterion, 
preemptive GP has the best value of $87,918; on quality objective, the 
best value (90) is obtained through fuzzy GP.

 2. For each of the remaining alternatives, divide each solution’s value 
for the appropriate objective by the best solution for that objective. 

TABLE 9.8

Fuzzy Goal Programming Solution 

Fuzzy 
GP

Ideal 
Values Weights

Scaling 
Constant

Target for 
Fuzzy GP 

Actual 
Achieved

Whether 
Goal 

Achieved

Price 86195 NA NA 86195 89893 Not achieved
Quality 80.76 NA NA 80.76 91.85 Not achieved
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For example, for the non-preemptive GP alternative, the value of price 
and quality are $89,878 and 92, respectively. The ideal values for price 
and quality are $87,918 and 90, respectively. Therefore, the values cor-
responding to non-preemptive GP are obtained as ($89,878/$87,918) 
and (92/90), respectively. A similar process is undertaken for the other 
alternatives.

 3. Plot the results, with price and quality on the x-axis and ratios on the 
y-axis. A summary of the results up to Step 2 is shown in the Table 9.10. 
The final step is to plot them on a graph for visualization. The graph is 
shown in Figure 9.3.

From the results, it can be seen that Tchebycheff GP produces an inferior 
solution compared to fuzzy GP because both the price and quality objec-
tives for fuzzy GP are superior to those of Tchebycheff GP. The solution 
obtained from preemptive GP, non-preemptive GP, and fuzzy GP form a 
non- dominated set (i.e., it is impossible to improve on either objective with-
out sacrificing on the other objective).

9.4.4 Discussion of Results

In the problem instance discussed in Section  9.4, preemptive GP was the 
only method that achieved the price objective; none of the four methods 
achieved the quality goal. Fuzzy GP achieved the best possible solution for 
the quality objective. Nonachievement of the quality goal may be due to the 
target value setting of the quality goal due to inherent trade-off in the sup-
plier’s performance. Based upon the preference of the DM, the selection of 
suppliers and the quantity that is ordered from each supplier can change. 

TABLE 9.9

Goal Programming Solution: Summary

Method Price Quality

Preemptive GP 87918 115
Non-Preemptive GP 89878 92
Tchebycheff GP 90782 91
Fuzzy GP 89893 90

TABLE 9.10

Value Path Step 2 Summary 

GP Method  Price Quality

Preemptive GP 1.000 1.278
Non-Preemptive GP 1.022 1.022
Tchebycheff GP 1.033 1.011
Fuzzy GP 1.022 1.000
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In some cases,  the price of the product may dictate the suppliers who are 
 chosen, and in some other cases, quality dictates what suppliers are  chosen. 
By varying the priorities of the goal or by changing the target values, differ-
ent efficient solutions may be obtained. Another way to compare the trade-
off between the price and quality objective is to change the order of the 
objectives (i.e., solve the problem with price as the highest objective and then 
solve the problem with quality as the highest objective). These two problem 
instances will provide lower and upper bounds for the two objectives.

Similar results were obtained for other problem instances as well (Table 9.1). 
Preemptive GP was able to satisfy the highest goal in all of the instances and 
hence is the method most suitable to be used in solving the supplier selection 
problem for tactical items.

9.4.5 Other Results

For tactical items, fixed cost is as important as the variable cost. Table 9.11 
shows the fixed cost ratio, which is the ratio of fixed cost to total procurement 
cost. The result shown is for the preemptive GP method; similar results are 
obtained using other GP methods also. It can be seen from Table 9.11 that for 
the four-product case, the fixed cost ratio reduces marginally as the number 
of suppliers is increased; whereas for the eight-product case, the fixed cost 
ratio increases as the number of suppliers is increased.

1.400
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1.200
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1.000

0.900

0.800
Preemptive Non-preemptive

GP
Tchebycheff GP Fuzzy GP

Price Quality

FIGURE 9.3
Price versus quality comparison.
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9.4.6 Model Scalability

As seen from Table 9.12, the model can be solved quickly for moderate-sized 
problems. The problem was solved using Lingo on a Windows 7 machine with 
Intel i-5 2.3 GHz processor and 8 GB RAM. The solution times, number of con-
straints, and variables for the eight problems are shown in Table 9.12.

The model can be solved for reasonable problem sizes without much dif-
ficulty. There is a minimal impact on the solution by increasing the number 
of products or by increasing the number of suppliers. The solution time is 
most influenced by increasing the number of time periods. As evident from 
Table 9.12, there is a significant jump in solution time when the number of 
periods increases from 4 to 12. This is due to the fact that the model needs to 
evaluate different combinations to assign suppliers to different time  periods 
and to take into account the appropriate bundling criteria. The model also 
illustrates that there is sufficient spare capacity among the suppliers because 
some suppliers are not used. Hence, in case of demand fluctuations, back-up 
suppliers can be used.

TABLE 9.12

Model Scalability and Solution Time

Product Supplier Time
Number of 
Constraints

Number of 
Variables

(Integer Variables)
Solution 

Time

4 4 4 112 100(20) 1 sec
4 4 12 304 292(52) 17 sec
4 12 4 272 268(60) 10 sec
4 12 12 720 780(156) 37 sec
8 4 4 224 180(20) 24 sec
8 4 12 608 532(52) 3 min
8 12 4 544 476(60) 2.57 min
8 12 12 1440 1404(156) 19.07 min

TABLE 9.11

Fixed Cost Ratios for Product, Supplier, and Time Combination

Product Supplier Time
Total Procurement 

Cost ($)
Fixed 

Cost ($)
Fixed Cost 
Ratio (%)

4 4 4 87918.9 7500 8.53
4 4 12 265687.6 20552 7.74
4 12 4 85325 6502 7.62
4 12 12 258484 16102 6.23
8 4 4 167551 7450 4.45
8 4 12 506693 25450 5.02
8 12 4 165481 7530 4.55
8 12 12 498219 35640 7.15
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9.4.7  Supplier Selection Method for Other Quadrants of the Supply Matrix

In this chapter we presented a supplier selection problem for the tactical 
quadrant of the supply matrix. The supplier selection methods for other 
quadrants of the supply matrix are solved differently; the solution method 
and the criteria chosen to evaluate suppliers depend on the price/risk.

Leverage items in Quadrant 2 are high-priced and low-risk items; sup-
plier selection for leverage items is solved in two phases. In the first phase, 
called pre-qualification, we reduce the initial set of large number suppliers 
to a manageable set. Phase one reduces the effort of the buyer and makes 
the pre-qualification process objective. In the second phase, we analyze the 
shortlisted suppliers using several known multi-objective problem-solving 
techniques. We consider three conflicting criteria—namely, price, lead time, 
and quality.

For the critical items in Quadrant 3, we present a three-step method for 
global supplier selection. In the first step, we present a GP model for country 
selection; this step shortlists a country using various qualitative and quanti-
tative criteria. In the second step, we assess the risks of supply using the ana-
lytic hierarchy process (AHP). In the final step, we develop a multi- objective 
model with price and risk as the two conflicting objectives. For every  product, 
we assign three different suppliers—a global supplier, a domestic primary 
supplier, and a domestic secondary supplier. Order allocation among the 
suppliers is optimally decided by the model.

Finally, in Quadrant 4, we present a model for strategic supplier selection. 
In this quadrant, we suggest the buyer establish a strategic partnership with 
a supplier. For the strategic items, we integrate AHP and total cost of owner-
ship (TCO), using a pairwise comparison method. In most organizations, 
strategic supplier selection is a group decision-making process; hence, we 
incorporate multiple decision makers in the supplier selection process.

9.5 Conclusion

In this chapter, we model and solve a multi-period supplier selection prob-
lem using a multi-objective optimization technique. We have combined the 
two most critical aspects of supplier selection activity—namely,  inventory 
management and product bundling. The two aspects, when combined 
together, can yield more benefits to both the supplier and the buyer than if 
considered independently. The model assumes that the demand for  different 
products is known in advance. In case of demand fluctuations, the buyer 
may not be able to buy the required amount to obtain a bundling discount. 
In that case, the total cost may be higher than the one estimated in the model. 
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To overcome this problem, demand variability may be implemented in the 
model. This model also does not take into account the storage space avail-
able for the buyer. In the case of limited space, a storage constraint should be 
added to the model.

Four different GP methods were used to solve the problem. GP methods 
are flexible in their use and do not present too much of a cognitive burden 
on the DM. An important characteristic of a multi-objective technique is that 
it does not provide one solution but a number of solutions—known as effi-
cient solutions. By involving the DM early in the process, the acceptance of 
the results by management becomes easier. It can be seen from the results 
that the model can be solved quickly for moderate-sized problems. For very 
large problems, simple heuristics could be developed to solve problems in a 
reasonable time.
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10
An Analytical Supply Chain Disruption 
Framework and a Multi-Objective Supplier 
Selection Model with Risk Mitigation

R. Ufuk Bilsel
The Boston Consulting Group, Istanbul, Turkey

10.1 Introduction

Globalization of supply chains has brought many benefits, including better 
growth possibilities for firms and increased access to diverse resources and 
markets; however, globalization also has resulted in elevated exposure to 
risks. Many large supply chains have been affected by disruptions in recent 
years, including the East Japan Earthquake and floods in Thailand, both in 
2011. These catastrophic events had massive impacts on global production; it 
is estimated that up to 10% of total global output was affected by the Japan 
earthquake alone (Freedman et  al. 2011). Repair and preventive measures 
after Hurricane Sandy in 2012 exceeded $70 billion. Thailand’s gross domes-
tic product (GDP) growth declined from 2.6% to 1% after floods that same 
year (Bhatia et al. 2013).
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Suppliers are key elements of supply chains that have been adversely 
affected by disruptions. Protecting supply chains against supplier disruptions 
is paramount for the continuation of operations and company  profitability. 
The well-known case of disruption in one Ericsson’s chip  supplier’s plant led 
to significant sales losses to then-competitor Nokia and to the company’s exit 
from the North American cellular phone market. Building disruption mitiga-
tion strategies into supplier selection is one way to reduce the impact of disrup-
tions on the supply chain.

Study of disruptive events is an emerging field of research in supply 
chain management literature. Current research in disruption management 
evolved from earlier conceptual frameworks to comprehensive analytical 
models that assess the possibility and impact of disruptions and suggest 
managerial countermoves. This chapter presents a review of the recent lit-
erature on  supply disruption analysis. It builds a statistical framework to 
model effects of disruption risks and formulates a multi-objective mathe-
matical model to build disruption  mitigation strategies into supplier selec-
tion decisions.

This chapter is organized as follows. Section 10.2 presents an overview of 
the recent literature on disruption risk research and multi-objective supply 
chain management models. An analytic disruption risk quantification frame-
work is presented in Section  10.3. A multi-objective mathematical model 
for supplier selection under disruption risk is formulated in Section  10.4. 
Solution methods and a numerical example are discussed in Section 10.5 and 
Section 10.6, respectively. Concluding comments and future directions are 
provided in Section 10.7.

10.2 Literature Review

This chapter looks at the past and at current supply chain disruption analy-
sis and supplier selection. Readers interested in more detailed information 
on those topics can refer to Bilsel (2009), Ravindran and Warsing (2013), and 
Ivanov et al. (2014) for disruption modeling and to Bilsel (2009), Ravindran 
and Warsing (2013), and Karsak and Dursun (2016) for supplier selection 
models.

10.2.1 Disruption Analysis

Earlier research on disruption analysis concentrates on conceptual frame-
works, such as in Zsidisin et  al. (2004), Hendricks and Singhal (2005), 
Kleindorfer and Saad (2005), and Ritchie and Brindley (2007). The research 
is valuable in terms of opening up the supply chain disruption analysis field 
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and providing conceptual basis for future work. The step after  conceptual 
frameworks is analytical models. Tomlin (2006) was among the first to 
model supply chain disruptions, using stochastic optimization tools. 
Recently, Bilsel and Ravindran (2012) modeled disruptions as a function of 
impact, occurrence, detectability, and recovery; they presented analytical 
methods to quantify each component. Chaudhuri et al. (2013) proposed a 
group decision-making process to assess supply chain vulnerability dur-
ing new product development. Hu et al. (2013) discussed incentive mecha-
nisms for suppliers to invest in disruption recovery capabilities. Qi (2013) 
studied an inventory review problem of a retailer replenishing from two 
sources—a less costly, but riskier, primary supplier and a more expensive, 
but reliable, backup source. Ivanov et al. (2014) proposed a framework to 
analyze ripple effects of disruptive events in supply chains and modeled 
it as a dynamic optimal control problem. A three-step disruption risk man-
agement framework is developed in Kungwalsong and Ravindran (2014), 
where disruption risk scores for supply chain nodes are calculated based 
on three factors: hazard, vulnerability, and available risk management 
practices.

10.2.2 Multi-Objective Supplier Selection Models

The seminal paper in multi-objective supplier selection is Dickinson (1966), 
who proposed a set of 23 criteria that can be used in supplier selection. Buffa 
and Jackson (1983) were among the first to model the supplier selection prob-
lem using goal programming (GP). They included cost, quality, and delivery 
as decision criteria. More recent examples include Wadhwa and Ravindran 
(2007), who formulated a supplier selection problem with quantity discounts 
and included price, quality, and lead time as objective functions. Then 
they solved the model using GP. Demirtaş and Üstün (2008) proposed an 
integrated approach for supplier selection. They first calculated objective 
weights using the analytical network process and then used those weights 
in a multi-objective mixed integer program. Yang (2006) included disruption 
risks into a multi-objective supplier selection model using extreme value 
theory. He also treated operational risks using Taguchi’s loss functions. 
Ravindran et al. (2010) developed a multi-objective supplier selection model 
incorporating disruption risk and quantity discounts for the procurement 
organization of a global information technology (IT) company. They solved 
their model using different GP techniques. Bilsel and Ravindran (2011) 
developed a chance constrained multiple objective mathematical program-
ming (MOMP) model to solve supplier selection problems under demand 
and capacity uncertainty. They also proposed linearization methods for 
their nonlinear models. Li and Zabinsky (2011) developed two stochastic 
MOMP models (a two-stage model and a chance constrained model) to opti-
mally select suppliers under demand and capacity uncertainty. Sawik (2013) 
formulated a MOMP model to optimally select suppliers and to allocate 
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emergency stocks under disruption risks. Conditional value-at-risk is used 
to model the worst case costs of supply disruptions. Ravindran and Warsing 
(2013) presented a comprehensive overview of supplier selection and supply 
chain risks.

10.3 Disruption Risk Modeling

This section introduces an analytical framework for modeling disruption 
risk as a function of impact and occurrence. Interested readers can refer 
to Bilsel and Ravindran (2012) and Ravindran and Warsing (2013) for more 
comprehensive models that include detectability and recovery aspects of 
disruption risk.

10.3.1 Disruption Impact

Impact from disruptive events is modeled as the economic loss resulting 
from those events. In civil engineering literature, damages due to cata-
strophic events are modeled using heavy tailed statistical distributions, 
such as Weibull, Gumbel, and Frechet distributions. A more general fam-
ily of distributions called generalized extreme value distributions (GEVD) 
arises as the limit distributions of Weibull, Gumbel, and Frechet distribu-
tions (see Castillo et al. [2005] for a comprehensive discussion of those mod-
els and applications). There are two GEVDs—one for maximum extremes 
and  another for minimum extremes. Probability density functions (PDF) 
and cumulative distribution functions (CDF) for the maximum GEVD are 
given in Equations 10.1 through 10.4. PDF and CDF of the minimum GEVD 
can be found in Castillo et al. (2005)

 κ ≠ λ δ
δ

− − κ − λ
δ

























− κ − λ
δ













κ
κ κ

−

f x
x x

for 0, ( ; , ) =
1

exp 1 1

1 1
1

 (10.1)

 κ λ δ
δ

− λ −
δ













λ −
δ





f x

x x
for = 0, ( ; , ) =

1
exp exp exp

exp
0  (10.2)

 κ ≠ λ δ − − κ − λ
δ























κ

κ
F x

x
for 0, ( ; , ) = exp 1

1

 (10.3)

 κ λ δ − λ −
δ













F x
x

for = 0, ( ; , ) = exp exp0  (10.4)

Table 10.1 provides definitions of the GEVD parameters.
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The mean of the GEVD can be calculated using Equation 10.5 if the param-
eter κ ≠ 0,

 E X( ) = (1 )λ − δ
κ

+ δ
κ

Γ − κ  (10.5)

where Γ(.) is the Gamma function. In the case when κ = 0, the GEVD boils 
down to a Gumbel distribution, and the mean can be approximated as λ + ξδ, 
where ξ = 0.57721 is the Euler−Mascheroni constant. The GEVD parameters 
need to be estimated from disruption impact data. An example using US 
storm damage data is provided in Bilsel and Ravindran (2012).

10.3.2 Disruption Occurrence

Occurrence is the frequency of a certain disruptive event over a period of 
time (e.g., a year or several years depending on the event of interest). Tamhane 
and Dunlop (2000) state that the Poisson distribution is suitable to model the 
occurrence of rare events, unless they are correlated. The probability mass 
function of the Poisson distribution is shown in Equation 10.6.

 P x
e

x

x

( ) =
!
λ−λ

 (10.6)

where λ is the expected number of occurrences over a specific period. 
An example using real data for λ estimation can be found in Bilsel (2009).

Bogachev et al. (2008) note that the independence assumption required to 
use the Poisson distribution may not hold for disruptive events that have 
long-term correlation. Alternative occurrence models need to be developed 
for cases where disruptive events are correlated. The independence assump-
tion is assumed to hold for the models developed in this paper.

10.3.3 Estimated Disruption Value Function

Estimated values of impact Ei and occurrence Eo should be combined to 
derive the estimated value of disruptions Ed. It can be easily shown that 
Ed = Ei × Eo. A formal proof can be found in Bilsel (2009).

TABLE 10.1

GEVD Parameters

Parameter Interpretation

κ Shape parameter
κ > 0, corresponds to a Frechet distribution
κ = 0, corresponds to a Gumbel distribution
κ < 0, corresponds to a Weibull distribution 

δ Scale parameter

λ Location parameter
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10.4 Multi-Objective Sequential Supplier Assignment Model

This section presents a multi-objective mathematical model to optimally 
assign primary and backup suppliers in a supply chain. The optimal assign-
ment is calculated based on four objectives: minimizing the total cost of 
operation, maximizing the quality of procured products, minimizing the 
lead time of procurement, and minimizing the potential losses due to dis-
ruption risk. The first three objectives address the most common decisions 
made in supply chain operations. The disruption risk objective includes the 
perspective of hedging against rare events that may cause supply chain dis-
arrays. The order in which these objectives would be treated in the multi-
objective program solution process depends on the preferences of decision 
makers (DMs).

Consider a supply chain where a single buyer purchases multiple prod-
ucts from different suppliers. Let J = 1, ..., m represent the set of suppliers, 
K = 1, ..., k the set of products, and R = 1, ..., r the set of supplier levels. Indices 
j, k, and r represent suppliers, products, and supplier assignment levels in 
the sets J, K, and R, respectively. The multi-objective mathematical model 
assumes that once a supplier is selected to supply a product, it will provide 
the entire demand for that product. Hence, the model has one set of decision 
variables, xjkr, defined as follows:

 

=






1, if supplier   is assigned as a level   supplier for product 

0, otherwise
x

j r k
jkr

The concept of level r facility is introduced in Snyder and Daskin (2005) 
to handle sequential allocation of facilities to customers in an incapacitated 
facility location problem. In the model presented here, a level 1 supplier is 
responsible of supplying the products as long as there is no disruption and 
is named as a primary supplier. In case of a disruption, a backup supplier 
replaces the failed primary supplier. A buyer can have only one primary 
supplier for a given product. Remaining suppliers are then assigned as back-
ups at the m’ levels, where m’ ≤ m. Other parameters used in the sequential 
supplier assignment (SSA) model are given in Table 10.2.

It is assumed that suppliers would perform differently depending on 
their assignment levels; therefore cost, quality, and lead time param-
eters are indexed over assignment levels r. A supplier, when assigned 
as a backup, would ask for a higher price, need longer lead times, and 
would provide lower quality. In other words, a supplier assigned at level 
r would have higher cost, lower quality, and longer lead times compared 
to a supplier assigned at level r – 1. This is justified because a backup 
supplier would be used only when a primary supplier fails and would be 
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on a short notice to satisfy an order. However, the fixed cost of a supplier 
will increase with the assignment level. Because the buyer will not order 
from a backup supplier until that supplier is needed, we assume that the 
fixed costs of backup suppliers would be smaller than those of primary 
suppliers. The buyer would still need to cover fixed costs for backups 
because he still may have to sign a contract with the backup suppliers 
to be able to use them in case of disruptions. Fixed costs of backup sup-
pliers also would include overhead costs. Lastly, the supplier risk value 
depends on the business environment and is exogenous to the supplier 
levels. Therefore, independent of its assignment level, a supplier has the 
same risk value. The multi-objective mathematical formulation of the SSA 
is given in Equations 10.7 through 10.14:

 ∑∑∑ ∑∑∑= +
=

′

∈∈ =

′

∈∈

min 1

1 1

z c D x F xjkr k jkr

r

m

k Kj J

jr jkr

r

m

k Kj J

 (10.7)

 ∑∑∑=
=

′

∈∈

max 2

1

z Q xjkr jkr

r

m

k Kj J

 (10.8)

 ∑∑∑=
=

′

∈∈

min 3

1

z L xjkr jkr

r

m

k Kj J

 (10.9)

 ∑∑∑= ρ
=

′

∈∈

min 4

1

z xj jkr

r

m

k Kj J

 (10.10)

 x k K r mjkr

j J
∑ = ∀ ∈ = ′

∈

Subject to: 1 , 1,...,  (10.11)

TABLE 10.2

SSA Mathematical Model Parameters

Parameter Description

Dk Demand for product k
Capjk Capacity of product k at supplier j
cjrk Unit cost of sourcing product k from supplier j 

when j is a level r supplier
Fjr Fixed cost of working with supplier j at level r
Qjkr Quality of product k sourced from supplier j
Ljkr Lead time of product k from supplier j when j 

is a level r supplier
ρj Estimated value of the loss due to disruption 

at supplier j
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 xjkr (Capjk − Dk) ≥ 0 ∀j ∈ J, ∀k ∈ K, r = 1, …, m′ (10.13)

 xjkr ∈ (0, 1) ∀j ∈ J, ∀k ∈ K, r = 1, …, m′ (10.14)

The first objective function in Equation 10.7 minimizes total cost. 
The first summation captures variable cost, and the second summation 
 represents fixed cost. The first summation in Equation 10.7 can be split as

∑∑ ∑∑∑+
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jkr k jkr

r
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k Kj J
, where the first part rep-

resents the variable cost associated with primary suppliers. The second part 
can be considered as the opportunity cost of assigning a supplier as backup 
at some level r > 1. Hence, the first objective function minimizes the sum of 
variable cost of primary suppliers, opportunity cost of backup suppliers, and 
the fixed cost of the overall supplier assignment. The second objective func-
tion maximizes the weighted average quality of purchased products and 
backup supplier assignments; the third objective function minimizes the 
weighted average lead time, and the last objective function minimizes the 
risk value associated with supplier selection.

Constraints in Equation 10.11 ensure that the buyer is assigned a level r 
supplier for each product. These constraints guarantee that there will be one 
supplier at each level for all products. Constraints in Equation 10.12 prohibit 
assigning the same supplier to more than one level for the same product. 
However, the model allows a supplier to be a backup for more than one prod-
uct. Constraints in Equation 10.13 relate the supplier allocation to capacity 
restrictions. Given supplier j and product k, if the difference between supply 
capacity Capjk and demand Dk is greater than 0 (that is if the supplier has 
enough capacity to satisfy the demand), the formulation allows the respec-
tive assignment variable xjkr to be either 0 or 1. It is important to note that 
constraints in Equation 10.13 can also be considered as logical relations. If 
Capjk − Dk ≥ 0, then create the relevant xjkr variables; otherwise, do not intro-
duce those xjkr to the model. This logical relation was used when coding and 
solving the model to eliminate unnecessary xjkr variables and to reduce the 
size of the model. Lastly, constraints in Equation (14) restrict the decision 
variables to binary values.

10.5 Solution Techniques

There are many techniques for solving MOMP—compromise program-
ming, the weighted average method, and global criterion and GP methods, 
to name a few. GP techniques are used in this chapter because they measure 
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objective function performance against the targets set by the DMs; hence, 
in our opinion, GP methods are more user friendly and implementable than 
other optimization methods. Readers interested in alternative MOMP solu-
tion techniques can refer to Masud and Ravindran (2008).

In GP, each objective is assigned a target value that represents the desired 
achievement for that objective and deviation variables that model the prox-
imity to each target. The aim of GP is to minimize deviations from the targets. 
Target values are more natural to managers because they have an  aspiration 
in mind regarding their supply chain’s performance. In practice, target 
values can be provided by DMs, retrieved from business plans, or can be 
calculated as the ideal solution for an objective with some spread. Ideal solu-
tions in an MOMP are obtained by optimizing each objective  individually. 
There are four GP techniques—preemptive, non-preemptive, min–max, and 
fuzzy—distinguished by the way the objective functions are prioritized and 
how deviations from targets are treated. We briefly describe each of the SSA 
GP models here. Details on the GP formulations and solution techniques can 
be found in Masud and Ravindran (2008).

Preemptive GP ranks the objective functions with respect to the ordered 
preferences of the DMs and minimizes the deviations from the target values 
associated with each objective in the ranked order. Several different tech-
niques can be used to derive preemptive priorities. One convenient way is to 
use discrete alternative multi-criteria decision-making methods such as rat-
ing, Borda count, pairwise comparison, or the analytic hierarchy process 
(AHP) method (see Ravindran et al. [2010] for an application). These methods 
also provide a numerical strength-of-preference value that can be used in 
non-preemptive GP models. The preemptive GP model formulation, assum-
ing that the preference ordering of the objectives is z1, z2, z3, z4, as follows:

 P d P d P d P dmin 1 1 2 2 3 3 4 4+ + ++ − + +  (10.15)
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where P1, P2, P3, P4 are the respective preemptive priorities. All other SSA 
constraints in Equations 10.7 through 10.14 are also included. The new Ti 
parameters for i = 1, …, 4 are the assigned target values for the objective func-
tions. Additional variables −di  and +di  in Equations 10.15 and 10.16 represent the 
negative and positive deviations from the target values, respectively. The Pi 
parameters represent the preemptive priority of each objective  function. 
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For instance, the first objective is to minimize cost; hence, +P d1 1  can be inter-
preted as minimizing the positive deviation from the cost target having the 
highest priority. Note that the second objective function, quality, is to maxi-
mize; hence, the objective function in Equation 10.15 minimizes the negative 
deviation variable −d2 .

Non-preemptive GP formulation is very similar to the preemptive GP 
formulation. The objective function of the non-preemptive GP is given in 
Equation 10.17, where wi, i = 1, …, 4 are the normalized objective weights. 
The remainder of the formulation is the same as in Equation 10.16. Note that 
objective functions need to be scaled for correct implementation of non- 
preemptive GP because numerical weights are used. Scaling can be achieved 
by dividing each objective by its ideal solution

 w d w d w d w dmin 1 1 2 2 3 3 4 4+ + ++ − + + (10.17)

The min–max GP minimizes the maximum deviation from the targets. 
The min–max GP has a nonlinear objective function in Equation 10.18, 
which can be linearized as in Equation 10.19 with the additional con-
straints in Equation 10.20 and the original constraints given by Equations 
10.7 through 10.14,

 d d d dmin max , , ,1 2 3 4( )+ − + +  (10.18)
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Lastly, the fuzzy GP minimizes the maximum deviation from the ideal 
solution for each objective. In the fuzzy GP objective in Equation 10.21, Iz(i) is 
the ideal solution and Nz(i) is the anti-ideal solution for objective i. The anti-
ideal solution for objective i is obtained by individually optimizing −zi. The 
nonlinear objective function in Equation 10.21 can be linearized similar to 
the min–max objective function. Note that fuzzy GP does not require targets 
and does not have any deviation variables. Thus, the fuzzy GP formulation 
requires constraints in Equations 10.7 through 10.14 only,
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10.6 Numerical Example

Consider a supplier selection problem faced by a buyer with five candidate 
suppliers and three products to procure. Let the problem data be that from 
Tables 10.3 through 10.9.

TABLE 10.5

Quality Data Used in SSA 
(in % of Good Items)

Product Supplier Level 1

1 1 95
2 95
3 90
4 90
5 90

2 1 95
2 97
3 90
4 93
5 92

3 1 93
2 99
3 90
4 90
5 97

TABLE 10.3

Demand Data Used in SSA (in Units)

Product 1 2 3

Demand 210 250 250

TABLE 10.4

Capacity Data Used in SSA (in Units)

Supplier

Product

1 2 3

1 220 250 300
2 250 350 250
3 250 270 260
4 300 400 0
5 200 300 300
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Quality, lead time, and variable cost data in Tables 10.5 through 10.7 are 
given for level 1 suppliers only. Quality values for lower level suppliers are 
modeled by decreasing the level 1 values by 5%. For example, level 2 quality 
value for supplier 1–product 1 combination is 95% × 0.95 = 90.25%; level 3 
quality value is 90.25% × 0.95 = 85.74%. Similarly, lead time and variable cost 

TABLE 10.6

Lead Time Data Used in SSA (in Days)

Supplier Product Level 1

1 1 10
2 9
3 1

2 1 5
2 2
3 8

3 1 8
2 3
3 9

4 1 3
2 4
3 6

5 1 8
2 2
3 4

TABLE 10.7

Variable Cost Data Used in SSA 
(in $/Unit)

Supplier Product Level 1

1 1 15
2 10
3 12

2 1 15
2 8
3 9

3 1 10
2 9
3 5

4 1 15
2 16
3 9

5 1 6
2 8
3 18
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values for the lower level suppliers are modeled by increasing the level 1 
values by 5%. Risk values are calculated using the methods presented in 
Section 10.3. It is assumed that only one disruptive event affects the suppliers 
each period. Objective weight values and priorities shown in Table 10.10 are 
taken from Ravindran et al. (2010), were calculated with actual DMs for an 
IT company and will be used in non-preemptive and preemptive GP models. 
We set m’ = 4 to allow only four levels of assignment.

Optimal objective values to all four GP formulations are presented in 
Tables 10.11 through 10.14. Ideal solutions are calculated by optimizing each 
objective independently. For an objective function to be maximized, the 
target is set at 5% less than the ideal values, whereas for the minimization 
objectives, targets are set at 5% greater than the ideal values.

The status column in Tables 10.11 through 10.13 display the achievement 
status for each objective function. A target is achieved if the objective value 
at optimality, reported in the achievement column, is between the ideal 
value and the target value. The first value in each row of the achievement 
column is the objective value achieved in the optimal solution. The values 
in  parentheses are the portions of the objective value corresponding to the 

TABLE 10.8

Fixed Cost Data Used in SSA (in $)

Level

Supplier

1 2 3 4 5

1 100 200 150 150 120
2 75 150 113 113 90
3 56 113 84 84 68
4 42 84 63 63 51

TABLE 10.9

Disruption Risk Loss Values Used in SSA ($)

Supplier 1 2 3 4 5

ρ 400,707 496,028 360,773 937,733 968,962

TABLE 10.10

Non-Preemptive and Preemptive GP Objective Weights 
and Priorities

Criteria Weight Preemptive Priority

Cost 0.343 P1

Quality 0.338 P2

Lead time 0.246 P3

Disruption risk 0.073 P4
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primary suppliers. Note that the cost objective function has two values 
within the parentheses: the first value is the variable cost, and the second is 
the fixed cost for the primary suppliers at optimality.

The most promising results are obtained using non-preemptive, preemptive, 
and min–max GP solution techniques (see Tables 10.11 through 10.13), where 
three out of four targets have been achieved. Fuzzy GP, on the other hand, 
yields cost, quality, and risk results close to the ideal values, but the solution 
presents significant deviations from ideal values for the lead time objective. For 
illustration, let us present the preemptive GP optimal solution in Table 10.15.

TABLE 10.11

Non-Preemptive GP Solution

Objective Ideal Target Status Achievement

Cost 34,445 36,167 Achieved 36,053; (11,650; 420)
Quality 10.15 9.64 Achieved 10.08; (2.80)
Lead time 58.62 61.55 Achieved 60.26; (11)
Risk 6,616,955 6,947,802 Not achieved 7,185,209; (2,844,427)

TABLE 10.12

Preemptive GP Solution

Objective Ideal Target Status Achievement

Cost 34,445 36,167 Achieved 36,059; (11,650; 370)
Quality 10.15 9.64 Achieved 10.08; (2.70)
Lead time 58.62 61.55 Achieved 59.56; (18)
Risk 6,616,955 6,947,802 Not achieved 7,185,209; (2,307,402)

TABLE 10.13

Min–Max GP Solution

Objective Ideal Target Status Achievement

Cost 34,445 36,167 Achieved 34,990; (7,900, 450)
Quality 10.15 9.64 Achieved 10.09; (2.84)
Lead time 58.62 61.55 Not achieved 63.35; (18.99)
Risk 6,616,955 6,947,802 Achieved 6,648,187; (1,834,472)

TABLE 10.14

Fuzzy GP Solution

Objective Ideal
Anti-
Ideal Achievement

Deviation 
from Ideal (%)

Cost 34,445 37,093 34,797; (7,900, 450) 1.02
Quality 10.15 10.07 10.11; (2.84) 0.39
Lead time 58.62 71.61 63.85; (19) 8.92
Risk 6,616,955 7,225,144 6,648,183; (1,834,469) 0.47
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The solution can be interpreted as follows: The first row indicates that 
supplier 1 is going to be assigned as a level 1 supplier for product 1. The 
 second and third rows further indicate that supplier 1 will not be assigned 
at any level for product 2 and will be a level 3 supplier of product 3. 
Analyzing further, we can observe that suppliers 4 and 5 are the other pri-
mary suppliers of the buyer and will provide products 2 and 3, respec-
tively. Suppliers 2 and 3 act as backup suppliers. The buyer is assigned a 
single backup supplier for each product at each level. These backup suppli-
ers will not ship any products unless a primary supplier fails. Finally, note 
that each product has four suppliers, one primary and three backups, as 
expected because m’ = 4.

It is often challenging for managers to interpret the numerical solutions 
of MOMP. An effective visualization tool is required to compare the opti-
mal solutions obtained using different techniques. The value path approach 
(VPA) proposed in Schilling et al. (1983) is a simple and effective tool to visu-
alize MOMP optimal solutions. VPA begins by determining the best objec-
tive value obtained. Then, other objective values are scaled using the best 
value. The best objective value is set to one, while all the others have a scaled 
value greater than one. The larger the scaled objective value, the worse a GP 
method performs for that objective. Value path calculations for the SSA prob-
lem are displayed in Table 10.16, where the first row of each solution tech-
nique is the actual objective value, and the second row is the scaled objective 
value.

TABLE 10.15

Preemptive GP Solution

Supplier

Levels

Product1 2 3 4

1 1 0 0 0 1
0 0 0 0 2
0 0 1 0 3

2 0 0 1 0 1
0 0 0 1 2
0 1 0 0 3

3 0 0 0 1 1
0 1 0 0 2
0 0 0 1 3

4 0 1 0 0 1
1 0 0 0 2
0 0 0 0 3

5 0 0 0 0 1

0 0 1 0 2

1 0 0 0 3
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Figure 10.1 shows the value path for the SSA solution, and it can be used 
to determine the dominated and non-dominated solutions. If the value path 
of one solution is above that of another, then the solution is dominated. 
If  the  value paths of two solutions intersect, then these solutions do not 
dominate each other. None of the GP solutions obtained in the numerical 
example dominate each other. On the other hand, certain GP methods per-
form better on a particular objective than the others. For instance, as seen 
in Figure 10.1, all the methods perform very well for the quality objective. 
However, min–max and fuzzy GPs yield poor results for the lead time objec-
tive, while the best lead time solutions are obtained by preemptive GB and 
non-preemptive GP. VPA enables managers to easily perform trade-off anal-
yses by visually comparing the different GP solutions and selecting the best 
compromise solution.

TABLE 10.16

SSA Value Path Calculations

Cost Quality Lead Time Risk

Non-preemptive 36,053 10 60 7,185,209
1.04 1.01 1 1.08

Preemptive 36,059 10 60 7,185,209
1.04 1.01 1 1.08

Min–max 34,990 10 63 6,648,187
1.01 1.01 1.06 1

Fuzzy 34,797 10 64 6,648,183
1 1 1.07 1
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FIGURE 10.1
SSA value path.
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10.7 Conclusions and Future Directions

This chapter presents a disruption risk quantification method and a multi-
objective supplier selection model to generate mitigation plans against dis-
ruption risks. The proposed risk quantification method considers risk as a 
function of two components—impact and occurrence. Impact is  modeled 
using GEVD distributions, and occurrence is assumed to be Poisson-
distributed. The disruption risk quantification method calculates the esti-
mated value of the loss due to disruptive events at a supplier, which is then 
used in a multi-objective optimization model. The model minimizes cost, 
lead time, and risk and then maximizes quality and determines the opti-
mal supplier and order allocation for multiple products. The model is solved 
using four different GP solution techniques—preemptive, non-preemptive, 
min–max, and fuzzy GP. Optimal solutions are displayed using the VPA, 
and the performance of the solution techniques is discussed. We observe 
that, for the data set we have tested, preemptive GP, non-preemptive GP, and 
min–max GP achieve three out of four objectives.

Research presented in this paper can be extended in several ways. The 
assumption that only one disruption event can affect the operations can 
be relaxed, and more complicated models—as discussed in Bilsel and 
Ravindran (2012)—can be utilized. Quantity discounts are common in 
procurement and can be incorporated in the SSA model. Some suppliers 
may not prefer to be a backup or primary supplier for certain products. 
Those restrictions can be added to the SSA model to customize it for spe-
cific situations.
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11
Multi-Criteria Decision-Making Models 
in Planning Prevention Services

Yuncheol Kang, Yooneun Lee, Lisa M. Ulan, and Vittaldas V. Prabhu
The Pennsylvania State University, University Park, Pennsylvania

11.1 Background

Youth prevention services are targeted to prevent youth behavioral and men-
tal problems in advance or to address them in the early stages of develop-
ment. Specifically, it is known that effective prevention services can reduce 
delinquency, aggression, violence, bullying, and substance abuse in the 
youth population (Chilenski et al. 2007). Increased effectiveness of preven-
tion services could potentially lower the risk of substance abuse (tobacco, 
alcohol, drugs) among youths through better social and emotional health.

Some of the most widely used prevention programs are listed in Table 11.1, 
and details of the programs can be found on the Blueprints program website 
(Blueprints for Healthy Youth Development 2015). In Table 11.1, prevention pro-
grams are broadly categorized into three different types, universal, selective, and 
indicated, according to the target population and intensity/seriousness of the 
prevention program (Mrazek et al. 1994). A “universal” prevention program is 
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the least intensive; it targets a general youth population to provide benefits in a 
relatively inexpensive way. A “selective” program focuses on a sub- population 
that is exposed to risks of serious behavioral issues. “Indicated” prevention 
programs are the most intensive and expensive, dealing with the most  serious 
behavioral issues and targeting early prevention for youth at serious risk of 
 conduct disorder. Prevention services are delivered to youths but may include 
their families, depending upon the type of prevention program. Delivery can 
be individualized or in groups, through school or community settings (or both).

TABLE 11.1

Examples of Prevention Programs (Blueprints for Healthy Youth Development 2015)

Program Name Program Type Program Objectives

Strengthening 
Families Program 
10-14 (SFP)

Universal Aims to strengthen the relationship between 
parents and their children by teaching 
communication techniques, parenting rules, and 
empathy sharing.

LifeSkills Training 
(LST)

Universal Aims to prevent violence and drug abuse, primarily 
targeted to middle-school-aged students.

Promoting Alternative 
Thinking Strategies 
(PATHS)

Universal Aims to reduce aggressive behaviors in 
elementary school children through providing a 
classroom-based social emotional program.

Toward No Drug 
Abuse (TND)

Universal Aims to promote drug awareness and prevent 
drug use through classroom-based high school 
substance abuse program.

Olweus Bullying 
Prevention Program 
(OBPP)

Universal Aims to create a safe and positive school climate, 
thereby reducing bullying behaviors among 
students.

Big Brothers/
Big Sisters (BBBS)

Selective Aims to prevent youth misbehavior through the 
support of youth-adult relationships. The term 
“big” refers to adult volunteers, while “little” 
refers to youth.

Incredible Years (IY) Selective Aims to treat conduct problems through 
counseling in a small group treatment setting.

Multisystemic 
Therapy (MST)

Indicated An intensive intervention aiming to prevent 
reoccurrences of misbehavior in adolescents who 
once had contact with juvenile court systems. 
Participants are treated with cognitive-behavioral 
therapy, which is provided by trained 
professionals.

Multidimensional 
Treatment Foster 
Care (MTFC)

Indicated An intensive intervention aiming to prevent 
misbehaviors such as substance use or violence in 
a treatment setting. A type of foster care is 
provided by foster parents through 24-hour on-call 
assistance, clinical care, mentoring activities, and 
integrated types of community care.

Functional Family 
Therapy (FFT)

Indicated An intensive intervention aiming to prevent any 
type of misbehavior through engagement and 
motivational approaches.
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Generally, there are three primary roles in the planning and delivery of 
prevention services, and those include (1) state government policymakers, 
(2) prevention service providers (i.e., communities), and (3) youth or families 
needing the services.

Interestingly, the planning and delivery of prevention services can be mod-
eled as a service supply chain involving state government policymakers, ser-
vice providers, and program participants. The state government as a funding 
resource supplier, for example, provides financial resources to prevention 
service providers in response to their requests for funding. In turn, each pre-
vention service provider, as a service supplier, delivers prevention services to 
its own customers (youths or families) with the budget provided by the state 
 government. After implementing the prevention services, service providers 
evaluate their program participants’ improvements (feedback from customers), 
estimate annual/biennial demand for the programs, and then request fund-
ing from the state government to support the programs in the next delivery 
period. The planning and delivery of prevention services, however, is expected 
to face a number of challenges in the near future. As has been pointed out 
in the literature, policymakers and providers in all areas of health care must 
consider the most effective planning and delivery, given the limited resources 
that are available (Brandeau et al. 2004). In other words, planning and delivery 
on a prevention service supply chain must be organized and implemented in a 
cost-effective manner in order to face upcoming resource challenges.

From a state government perspective, prevention services—as public 
 services—contribute to the reduction of crime rates, thereby reducing the 
amount of money that taxpayers have to spend on the justice system, which 
includes law enforcement salaries, court costs, prisoner care, and prison main-
tenance (Jones et al. 2008). Several studies have explored the cost-effectiveness 
and return-on-investment (ROI) of prevention programs in terms of the fiscal 
benefits derived from successful outcomes (Aos et al. 2004; Miller and Hendrie 
2009). In particular, policymakers are interested in evaluating the effectiveness 
of prevention services given budget constraints, thereby determining the most 
appropriate prevention services, considering both the needs of the community 
and the cost-effectiveness of each prevention program (Jones et al. 2008).

In most cases, the planning of statewide prevention services ideally will 
be based on an accurate estimate of communities’ prevention needs, along 
with optimized allocation of resources for delivering prevention services. 
As primary input for planning services, prevention needs are estimated 
by investigating actual beneficiaries, while resource allocation is based on 
the community’s prevention needs. In light of this, the planning problem 
can be viewed as a hierarchical planning structure, from the youth level 
to the community level and on to the state level, as shown in Figure 11.1. 
In Pennsylvania, for example, in order to estimate the demand for preven-
tion programs, communities perform a biennial survey, the PA Youth Survey 
(PAYS), and examine prevention needs based on the results. The survey 
results are included in funding requests to the Pennsylvania Commission 
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on Crime and Delinquency (PCCD), which collects such requests from 
120  statewide communities in Pennsylvania. The collected demand informa-
tion is then used as primary input for determining long-term plans for sup-
porting prevention programs.

The biggest concern for a state government is to distribute a limited bud-
get over various types of prevention programs, optimizing for effectiveness 
of overall quality of services. The bottom line is that the assigned budget 
for each prevention program should be adequate to support the correspond-
ing program, while the total available funds are divided among the desired 
programs. We may thus consider a “trade-off” in allocating budgets over 
various prevention programs, considering their relative priorities, economic 
attributes, and, most importantly, the impact of each prevention program on 
the public goals set by the state government.

In the planning stages, we must also be aware of the many-to-many 
relationships among prevention programs and the behavioral patterns 
addressed. Each prevention program contributes to develop different behav-
ioral aspects of participants. Conversely, each behavioral aspect also can be 
affected by multiple prevention programs. A behavioral aspect may include 
either (1) risk factors, which needed to be reduced or prevented, or (2) protec-
tive factors, which need to be promoted or enhanced. Those factors will be 
explained in more detail in the following section. The bottom line is that each 
prevention service may show different efficacy in reducing some risk factors 
or in improving some protective factors. Differences in efficacy can result in 
difficulties in choosing the right set of prevention programs to  collectively 
address multiple behavioral aspects.

We have seen how planning of prevention services may involve complicated 
structures in terms of (1) varied prevention needs, (2) limited budget, and (3) dif-
fering behavioral targets. In this chapter, we show how planning of preven-
tion services can be formulated using multi-criteria optimization approaches 

Prevention investments
with optimized statewide
allocations to max ROI

Caring communities with
prevention services

Reduced
behavioral issues PA youths

PA communities
(providers, sites, teams)

PCCD Collected funding requests across
state-wide communities

Optimized funding
requests based on targets

Explored prevention needs
using PA youth survey

PA = Pennsylvania, PCCD = Pennsylvania Commission on Crime and Delinquency

FIGURE 11.1
Relationships among roles participating in planning and delivery of prevention services in 
Pennsylvania.
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considering all aforementioned constraints. For illustrative purposes, we use 
a real-world example, focusing on Pennsylvania’s prevention programs. Thus, 
we first focus on how to correctly identify prevention needs in communities in 
Pennsylvania. Then, based on these needs, we suggest how to plan the budgets 
for supporting prevention services at the program level (state-level planning) 
and for each prevention community level. In our model, we utilize several 
methodologies, including the analytic hierarchical process (AHP) and goal 
programming for solving multi-criteria decision-making problems, in that we 
consider multiple objectives that need to be met by prioritizing and distribut-
ing the limited budget. Although efficient delivery in implementing prevention 
services is another interesting and important topic, only the planning phase of 
prevention services will be discussed in this chapter.

11.2 Identifying Needs for Prevention Services

Planning prevention services begins with correctly identifying the needs of 
communities seeking such services. In this section, we focus on an approach 
that can quantitatively identify prevention needs arising in communities. 
Traditionally, the selection of prevention programs has relied heavily on pre-
vention researchers’ or decision makers’ subjective opinions and knowledge, 
without a thorough consideration of the actual needs of communities. Such a 
selection procedure may not capture actual needs, can be biased by research-
ers’ preferences or knowledge (or both), and may in fact result in different 
subjective recommendations for prevention programs for a given set of risk 
and protective factors. Furthermore, considering the many types of preven-
tion programs and the many factors involved in program selection, decision 
makers may be unable to identify appropriate programs among the available 
options, given the large and complex scale of the selection scheme.

In response to this problem, the AHP, which is an approach for dealing 
with complex decision making, can be useful. AHP was developed in the 
1970s by Thomas Saaty and has been applied in psychological and mathe-
matical problems to determine the best of many options and to rank alterna-
tives. With AHP, instead of striving to reach a correct decision, the decision 
maker seeks a solution that meets the goals or objectives in solving particular 
problems. AHP differs from most other decision-making techniques in that 
it allows diverse, incommensurable elements to be compared in a  consistent, 
rational way based on human judgment.

In this section, we describe an approach for systematically aligning pre-
vention needs with prevention programs using AHP. This approach begins 
by establishing links among risk and protective factors and candidate 
 prevention services, then prioritizing the potential prevention services by 
considering the needs of all communities.
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11.2.1  The Relevance of Risk and Protective Factors 
to Prevention Services

PAYS was developed to gather information for assessing the prevalence of 
risk and protective factors among youth in Pennsylvania. In general, PAYS 
assesses (1) school climate, (2) alcohol, tobacco, and other drug (ATOD) use, 
and (3) risk and protective factors (PCCD 2009). PAYS includes more than 
100 questions about communities’ opinions on numerous topics concern-
ing youth behavioral issues. According to PCCD, protective factors can 
be  considered to be conditions that buffer children and youth from exposure 
to risk, either by reducing risk impact or by changing how young people 
respond to risks (PCCD 2009). Protective factors are typically identified as 
strong bonds with family, school, peers, and community, and encourag-
ing these bonds generally involves teaching skills and the recognition of 
 contributions. At the same time, risk factors can be considered to be condi-
tions that increase the likelihood of a youth’s becoming involved in drug 
use, delinquency, school dropout, or violence (or any combination of these 
factors) (PCCD 2009). The PAYS 2009 includes 11 protective factors and 23 
risk factors, which are listed in Tables 11.2 and 11.3.

TABLE 11.2

List of Protective Factors

Protective Factors Description

Family Opportunities 
for Prosocial 
Involvement

Bonds with family reinforced through children’s contribution to 
their family; children adopt their parents’ positive ideas on 
success and achievement.

Family Rewards for 
Prosocial Involvement

Bonds with family reinforced through positive participation.

Family Attachment Bonds with family with reinforced with clear standards, leading 
children to want to please their parents and engage in fewer 
activities of which their parents strongly disapprove.

Family Discipline Growing up with parents who give clear standards.
Family Supervision Growing up with parents who give clear rules.
Community 
Opportunities for 
Prosocial Involvement

Participating in community activities leads to foster relationships 
with prosocial peers and adult role models.

Community Rewards for 
Prosocial Involvement

Recognition of children within a community leads to higher 
self-esteem and less negative behavior. 

Belief in Moral Order Having a strong bond to society leads children to follow society’s 
standards of behavior.

Religiosity Religious institutions can help instill prosocial beliefs.
School Rewards for 
Prosocial Involvement

Schools reward students for their involvement, creating a greater 
bond to the school and reducing incidence of behavioral issues.

School Opportunities for 
Prosocial Involvement

Opportunities to participate in school activities; helping students 
bond to their school and adopt the school’s standards of behavior.
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TABLE 11.3

List of Risk Factors

Risk Factors Description

Parental Attitudes Favorable 
toward Antisocial Behavior

Parental attitudes toward violence and law-breaking.

Family History of Antisocial 
Behavior

Family history of substance abuse and criminal activity, 
which can lead to exhibiting the same negative behaviors.

Parental Attitudes Favorable 
toward ATOD Use

Growing up in families where parents are tolerant of 
substance use and abuse.

Family Conflict Experiencing high levels of family conflict.
Poor Family Management Experiencing poor family discipline and supervision.
Transitions and Mobility Transitions to new environments; becoming less attached to 

their new environment.
Community Disorganization Not feeling safe or feeling in disarray in their community, 

leads to engaging in negative behaviors.
Low Neighborhood 
Attachment

Low attachment to their community, leads to higher rates of 
violence, drug use, and delinquency in the communities.

Peer Rewards for Antisocial 
Behavior

Perception of peers giving positive feedback toward 
substance use and delinquency.

Early Initiation of Drug Use Early start with substance use, leads to more consistent use 
throughout lifetime.

Favorable Attitudes toward 
ATOD Use

Seeing others who engage in substance use, leads to 
acceptance of and participation in those behaviors.

Perceived Availability 
of Drugs

Perceiving drugs to be readily available; can access the 
drugs easily.

Laws and Norms Favorable 
to Drug Use

Community standards toward drug use

Low Perceived Risks 
of Drug Use

Perceiving drug use harm as low, leads youth to easily 
engage in drug use.

Gang Involvement Associating with gangs; can increase the chances to engage 
in negative behaviors.

Friends’ Use of Drugs Associating with peers who use drugs; can increase the 
chances to engage in the behavior themselves.

Rebelliousness Not feeling connected to society or bound by rules; can 
increase risk for delinquency, drug use, and school 
dropout.

Sensation Seeking Impulse-driven attitude.
Friends’ Delinquent Behavior Associating with delinquent others increases risk of similar 

delinquent behavior.
Favorable Attitudes toward 
Antisocial Behavior

Perceiving others as showing acceptance of negative 
behaviors.

Low School Commitment Being less attached to school; can increase risk of developing 
problem behaviors.

Poor Academic Performance Poor academic performance can increase developing 
problems associated with violence, delinquency, and drugs.

Perceived Availability 
of Firearms

Easy to access to handguns; can increase risk of involving 
youth with the unauthorized use of them.
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As previously mentioned, each protective factor and risk factor can be 
addressed via prevention services, but little research has been conducted con-
cerning the linkages among these factors and prevention programs. In our pre-
vious research, we introduced an approach to examine each protective and risk 
factor in terms of what it measures, and we compared this with data across 
the many studies of Blueprints programs (Ulan 2014). First, youth prevention 
programs shown in the Blueprints programs were investigated thoroughly 
to determine intensity of involvement with each factor and related outcomes. 
Based on the findings, prevention programs were then ranked by each factor to 
determine weight of involvement with different factors. For ranking prevention 
programs, AHP was used to integrate experts’ subjective opinions.

Table 11.4 is an example of AHP analysis on a particular protective fac-
tor, family opportunities for prosocial involvement. In this table, the results 
of pair-wise comparison of each prevention program on the corresponding 
factor are recorded along with the eigenvector (AHP weight), which can be 
calculated as the normalized n-th root of the products of each value. In addi-
tion, we check consistency of the resulting AHP weights using the threshold 
(below 0.1) of consistency ratio (CR). In case of family opportunities for pro-
social involvement (Table 11.4), CR is measured as 0.06 (random index = 1.12), 
which shows consistency in terms of evaluating prevention programs.

Table 11.5 summarizes the results for 10 prevention programs (acronyms 
listed in Table 11.1), along with the weights assigned for each protective and 
risk factor. For each factor, the sum of weights representing relevance to 
prevention programs equals 1—the higher the weight of the program, the 
greater the relevance of the program to the corresponding factor. Such AHP 
weights can be used as a basis for recommending prevention services for 
each community, as the following section explains in detail.

11.2.2 The Effectiveness of Prevention Services in the Community

Having obtained the relevance of specific prevention programs to individual 
protective/risk factors, we now consider how to link the relevance matrix 
to communities in order to prioritize a set of prevention programs to meet 

TABLE 11.4

AHP Matrix of Family Opportunities for Prosocial 
Involvement

MST SFP MTFC FFT IY
Eigenvector 

(Priority Vector)

MST 1 1/5 5 5 1/3 0.14
SFP 5 1 9 9 3 0.51
MTFC 1/5 1/9 1 1 1/7 0.04
FFT 1/5 1/9 1 1 1/7 0.04
IY 3 1/3 7 7 1 0.27
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the community’s prevention needs. As mentioned earlier,  PAYS   provides 
information about the current status of risk and protective factors in a 
given community. With the PAYS results collected from all communities in 
Pennsylvania, we compare them with each other to determine relative preven-
tion needs based on specific protective/risk factors. For this, we define need-
based factors according to the community’s deviation from the Pennsylvania 
state average for each risk and protective factor. Protective (or risk) factors 
that deviate negatively (or positively) from the state average are considered. 
Because protective factors are considered to be positive for a community, 
higher scores are better. If a community scores lower than the state average 
(has negative deviation), then it is considered to have a need-based protec-
tive factor. By contrast, because risk factors are considered to be negative for 
a community, lower scores are better in these areas. If a community scores 
higher on a risk factor than the state average (has positive deviation), then it 
is considered to have a need-based risk factor. Absolute values of deviations 
have been used to assess the weight of each factor, and all weights have been 
normalized based on all need-based factors for the community. As an exam-
ple, in Table 11.6, we summarize all need-based protective and risk factors 
for the prevention community of Washington County, Pennsylvania. From 
the example, we can see Washington County has great needs in “perceived 
availability of firearms (risk factor)” and in “friends’ delinquent behavior 
(risk factor)” as compared to other factors (both risk factors’ weight is greater 
than 10%). Therefore, the prevention programs chosen for this county should 
show relatively greater effectiveness for these risk factors.

The effectiveness of prevention programs in a community can be calculated 
using the AHP weights shown in Table 11.5 and the need-based risk and protec-
tive factors of the corresponding community. First, we measure the need-based 
risk and protective factors for each community. Then, normalized weights for 
the need-based risk and protective factors are multiplied by AHP weights for 
how each program addressed the factors, and then they are added together to 
determine weights for how each program would help the needs of each com-
munity. In Table  11.7, we consider Mercer, Washington, Elk, Crawford, and 
Greene counties as sample communities for this analysis and include a list of 
prevention programs. In case of Washington County, for example, the relative 
importance of prevention programs for the community can be calculated by 
multiplying need-based protective/risk factors for the community (i.e., normal-
ized weight in Table 11.6) and AHP weights of each factor (i.e., Table 11.5).

11.2.3 Cost-Effectiveness Issues in Selecting Prevention Programs

By analyzing PAYS data and Blueprints programs, we have explained how to 
produce weighted rankings of prevention programs by effectiveness in terms 
of the needs of five communities in Pennsylvania. In the case of Washington 
County, for example, “Multisystemic Therapy” (MST) and “Towards No Drug 
Abuse” (TND) turn out to be the most appropriate prevention programs to 
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TABLE 11.6

Need-Based Protective/Risk Factor for Washington County

Protective/Risk Factor P/R
PA 

Average
Washington 

Score
Deviation 

(%)
Normalized 

Weight

Community Opportunities 
for Prosocial Involvement

P 1.7819 1.6025 −10.07 0.0611

Perceived Availability 
of Drugs

R 1.2701 1.3245 4.29 0.0260

Perceived Availability 
of Firearms

R 0.7086 0.9039 27.55 0.1673

Low Neighborhood 
Attachment

R 0.9463 1.0133 7.08 0.0430

Community 
Disorganization

R 0.9267 1.0243 10.53 0.0639

Transitions and Mobility 0.9616 0.9511 −1.09
Laws and Norms 
Favorable to Drug Use

R 1.1206 1.2727 13.57 0.0824

Parental Attitudes 
Favorable toward 
ATOD Use

R 0.2782 0.2909 4.58 0.0278

Parental Attitudes 
Favorable toward 
Antisocial Behavior

R 0.4053 0.4187 3.33 0.0202

Religiosity P 1.5308 1.3778 −10.00 0.0607
Low Perceived Risks 
of Drug Use

R 0.9275 0.9984 7.64 0.0464

Sensation Seeking R 1.2759 1.3247 3.83 0.0232
Gang Involvement R 0.3577 0.3633 1.57 0.0095
Early Initiation of Drug Use R 1.2632 1.3487 6.77 0.0411
Belief in the Moral Order P 2.1277 2.1031 −1.16 0.0070
Rebelliousness R 0.7516 0.7540 0.32 0.0019
Friends’ Delinquent 
Behavior

R 0.1773 0.2124 19.77 0.1200

Friends’ Use of Drugs R 0.7204 0.7630 5.90 0.0358
Favorable Attitudes 
toward Antisocial 
Behavior

R 0.5568 0.5657 1.60 0.0097

Favorable Attitudes 
toward ATOD Use

R 0.5979 0.5998 0.32 0.0020

School Opportunities for 
Prosocial Involvement

P 1.9598 1.8284 −6.71 0.0407

School Rewards for 
Prosocial Involvement

P 1.8065 1.6450 −8.94 0.0543

Poor Academic 
Performance

R 0.9152 0.9788 6.95 0.0422

Low School Commitment R 1.3878 1.4187 2.22 0.0135

P, protective factor; R, risk factor.
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support protective factors and mitigate risk factors in that county. Intuitively, 
this result makes sense, in that (1) TND is the only prevention program that 
affects “perceived availability of firearms,” which is the highest need-based 
risk factor for the county, and (2) MST is the most relevant prevention pro-
gram to reduce “friends’ delinquent behavior,” which is the second highest 
risk factor for the county. These two programs are likely to be more effective 
in addressing the protective and risk factors in the community than others.

This significant effectiveness may not, however, determine the final selec-
tion of the prevention programs because it does not consider cost. Because 
MST is classified as an indicated prevention program (see Table  11.1), the 
required funding resources are likely to be significant. Thus, allocating pre-
vention funds to MST might not be a cost-effective way to address protective 
and risk factors in the community. Furthermore, a state budget is limited, 
and investing in a few expensive prevention programs in a few counties may 
not be desirable in terms of improving overall public services at the state 
level. In the next section, we examine these issues further and develop a 
framework for planning prevention services, including budgeting preven-
tion programs and allocating budgets to each community in a cost-effective 
manner.

11.3 Multi-Criteria Decision Making for Budget Planning

There exists a serious need to develop a decision-making process for poli-
ticians and policymakers in order to generate a quantifiable budget plan-
ning process for prevention programs, so that statewide monetary benefits 
from the prevention programs are maximized. A recent report from PCCD 

TABLE 11.7

Relative Importance of Prevention Programs for Each Community

Prevention 
Program

Community

Mercer Washington Elk Crawford Greene

MST 0.1714 0.2174 0.1549 0.1670 0.2258
SFP 0.1189 0.0569 0.1173 0.1252 0.1144
LST 0.1100 0.0783 0.1216 0.1476 0.1306
MTFC 0.0389 0.0551 0.0322 0.0406 0.0517
TND 0.1792 0.2191 0.2256 0.3642 0.1542
OBPP 0.0415 0.0988 0.0200 0.0187 0.0588
BBBS 0.0717 0.0784 0.0798 0.0799 0.0695
FFT 0.0935 0.0380 0.0698 0.0982 0.0635
PATHS 0.0662 0.0676 0.0614 0.0343 0.0818
IY 0.0615 0.0160 0.0330 0.0483 0.0222
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evaluates the cost-effectiveness of the individual evidence-based programs 
in Pennsylvania, but a collective decision-making procedure for funding 
allocation needs to be presented. Given limited financial resources, the pro-
vincial fund must be efficiently allocated over the prevention programs to 
satisfy the present needs of local communities. Further, we have seen that 
a strictly need-based allocation of funds may not be appropriate in terms of 
implementation cost. Here, we focus on government funding of prevention 
programs and methods for allocating the state’s annual operating budget 
for prevention programs to communities across the state in such a way as to 
maximize youth benefits from them.

Economic planning is ever more complex, and a policymaker cannot easily 
decide how much money should be allocated to each community. Decision 
making is further complicated by the many-to-many relationships between 
protective/risk factors and prevention programs mentioned in Section 11.2. 
Here, we illustrate a two-level goal programming model in which the budget 
is allocated to prevention programs at the program level and then distributed 
among sites at the community level. Based on the needs identified by AHP 
in the previous section, a two-level model can produce cost-effective plans 
satisfying overall community needs under a limited budget and explain the 
real-world budgeting process in an intuitive way by providing a quantified 
analysis of program allocation and benefits.

We explain some assumptions used in the budget planning for prevention 
services as follows.

• Assumption 1: Total budget amount is fixed.
• Assumption 2: A prevention service can simultaneously affect the 

multiple protective and risk factors.
• Assumption 3: A prevention program with higher intensity can make 

a bigger impact in addressing risk and protective factors, but it 
imposes a larger cost burden.

The state budget is usually fixed and limited, so Assumption 1 is straightfor-
ward, and Assumption 2 is described in the AHP result in Table 11.5. Moreover, 
we introduce the degree of intensity of prevention programs in order to make 
realistic models in which the impact of each program is different from those 
of the others, as in Assumption 3. The Institute of Medicine (IOM) categorizes 
prevention programs into three levels of intensity: universal, selective, and 
indicated (Mrazek et al. 1994) (see Table 11.1). Universal programs are designed 
for a general youth population. Because their target populations are broader, 
the impact of these programs is narrow and limited, while the per capita 
cost is relatively low. Programs such as the Strengthening Families Program 
10–14 (SFP), LifeSkills Training (LST), Promoting Alternative Thinking 
Strategies (PATHS), Towards No Drug Abuse (TND), and the Olweus Bullying 
Prevention Program (OBPP) are included in this group. Indicated programs 
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are implemented for youths who have exceptionally poor scores in behavior 
assessments and hence need intense care. These programs are much more 
expensive, and they make a greater simultaneous impact on a larger number 
of risk and protective factors, so that the behavior of the youth can be expected 
to improve. Multisystemic Therapy (MST), Multidimensional Treatment 
Foster Care (MTFC), and Functional Family Therapy (FFT) are among such 
programs. Lastly, selective programs, such as Big Brothers/Big Sisters (BBBS) 
and Incredible Years (IY), are between those two groups in terms of intensity, 
cost, and the number of risk and protective factors affected by the programs. 
Table 11.8 summarizes the classification of prevention programs in terms of 
intensity, cost, and the number of related risk and protective factors.

11.3.1 Program-Level Planning

Based on the assumptions made earlier, we formulate a goal programming 
model for solving the program-level problem. By deciding the demand for 
each prevention program, we minimize the weighted sum of overall devia-
tions from the target scores of protective/risk factors. Decision variables and 
parameters are summarized as follows:

Decision Variables
xj Demand of the prevention program j

+di  Positive deviations from target score for protective/risk factor i
−di  Negative deviations from target score for protective/risk factor i

Parameters
B Total budget
Gi Target score for factor i
Rij Impact matrix of program j on factor is
cj Cost of prevention program j serving one youth
wi Weights on positive deviations
vi Weights on negative deviations

TABLE 11.8

Intensity of Prevention Programs

Program 
Type Intensity

Population 
Served Cost

Number of 
Protective/Risk 

Factors Impacted
Prevention 
Programs

Universal Low General Low Small SFP, LST, 
PATHS, 
TND

Selective Medium Sub Moderate Medium BBBS, IY
Indicated High Sub Expensive Large MST, FFT, 

MTFC
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αj Intensity of prevention program j
γi Maximum amount of positive deviation for factor i

The goal program model of program-level planning is given as follows:

 ( ) = − ∀+ − − +min , ,  f d d w d v d ii i i i i i i  (11.1)

 c x B
j

j j∑ ≤Subject to:  (11.2)

 ∑α + − = ∀− + ,R x d d G i
j

j ij j i i i  (11.3)

 ≤ ≤ ∀−0  ,d G ii i  (11.4)

 ≤ ≤ γ ∀+0  ,d ii i  (11.5)

The objective function (Equation 11.1) minimizes the unmet goals of all 
risk and protective factors, where the goal is set to be the state average score 
of the factor. The weights wi and vi will be adjusted based on the decision 
maker’s judgment as to how much overachievement and underachievement 
of the factor will be allowed. Constraint (Equation 11.2) ensures that the sum 
of budget  allocation is not allowed to exceed the government’s total bud-
get. Constraint (Equation 11.3) describes the amount of money allocated in 
the specific program to achieve the goal for every factor score based on the 
program intensity parameters, αjs. Finally, in constraints (Equation 11.4) and 
(Equation 11.5), the maximum amount of deviations allowed for both nega-
tive and positive deviations are defined by a decision maker.

11.3.2 Community-Level Planning

Once the potential demand for each program xj is determined in the 
 program-level planning and budget is allocated accordingly, the next ques-
tion is how much money has to be distributed throughout the communi-
ties for each prevention program. Not every community will necessarily run 
all programs; selected prevention programs will be implemented utilizing 
state funds so as to maximize the overall impact of budget allocation. The 
purpose of community-level planning is to ensure that money is allocated 
effectively to each site based on the effectiveness of the program.

Decision Variables
yjk Number of participants served by prevention program j on site k

Parameters
Ajk Effectiveness of program j at site k identified by AHP
Njk Number of potential participants for prevention program j at site 

k estimated by PAYS survey
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The community-level planning model is as follows:

 ∑∑A y
j k

jk jkmax  (11.6)

 ∑∑ ≤s.t. c y B
j k

j jk  (11.7)

 ∑ ≥ ∀,y x jjk j

k

 (11.8)

 0 ≤ yjk ≤ Njk, ∀j, k (11.9)

The objective function (Equation 11.6) is to maximize the overall impact 
across the sites based on the needs identified by AHP in the previous sec-
tion. The total budget constraint (Equation 11.7) remains the same, and con-
straint (Equation 11.8) enforces the total number of the program participants 
across all the sites and is at least the number of participants of the program 
determined in program-level planning. Constraint (Equation 11.9) provides a 
bound for the number of program participants in the community. The bound, 
Njk can be estimated by multiplying the number of potential participants of 
the community k (i.e., Nk) and the relative importance of prevention program 
j for the community k. For Nk, we refer to the number of PAYS respondents 
of the community k.

11.3.3 Data Description

In order to illustrate our model, we measure the risk and protective fac-
tors in the model using PAYS data collected by the PCCD. From the PAYS 
data, we calculate state averages of 26 risk and protective factor scores and 
set decision makers’ target score for each factor. Given the current average 
scores of factors and decision makers’ judgment of the situation, we deter-
mine a target value for the amount of efforts to be assigned to given factors. 
Additionally, we assume that a decision maker prefers to focus more on the 
risk factors whose scores are greater than state average and on the protec-
tive factors whose scores are lower than state average. For this illustration, 
we give such factors twice the weight of other factors that are currently less 
significant.

Figure 11.2 depicts average scores of protective factors; the decision mak-
er’s target score is represented by the straight line. Factors whose scores are 
below the line are marked in dashed fill. As we can see, average scores for 
four protective factors, Community Opportunities for Prosocial Involvement 
(xCP1), Community Rewards for Prosocial Involvement (xCP2), Religiosity 
(xIP1), and School Rewards for Prosocial Involvement (xSP2), are lower than 
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the target and hence will benefit from more effort and attention. Similarly, 
Figure 11.3 depicts average scores and the target score for risk factors; factors 
whose scores are above the target line are marked in dashed fill. As seen in 
the figure, 12 risk factors require more effort, while the other 11 factors are 
within acceptable parameters.

For cost and demand data, we use the cost−benefit assessment per-
formed by the Washington State Institute for Public Policy (WSIPP) 
(Lee  et  al. 2012). Using a statistical meta-analysis approach, the report 
estimates monetary values of benefits and costs of various prevention 
programs. Moreover, it provides not only measures of juvenile justice but 

xC
P1

xC
P2

xF
P1

xF
P2

xF
P3

xF
AMDISP

xF
AMSUP

xIP
1

xIP
3

xS
P1

xS
P2

0

0.5

1

1.5

2

2.5
Sc

or
e

Protective factor

FIGURE 11.2
Average protective factor scores and target score. Dashed fill indicates protective factors that 
are under the target score, and solid fill indicates those that are over the targeted score.

0

xC
R3

xC
R4

xC
R5

xC
R9
xC

R11
xC

R12
xF

R6
xF

R7
xF

R8
xF

R9
xF

R10
xIP

4
xIP

5
xIP

6
xIP

7
xIP

8
xIP

9
xIP

10
xIP

13
xIP

14
xIP

15
xS

R3
xS

R4

0.5

1

1.5

2

2.5

Sc
or

e

Risk factor

FIGURE 11.3
Average risk factor scores and target score. Dashed fill indicates risk factors that are over the 
target score. Solid fill indicates risk factors that are under.



331Multi-Criteria Decision-Making Models in Planning Prevention Services

metrics for public policy areas including child welfare and children’s men-
tal health, and public health and prevention, in which we are also inter-
ested. In order to determine the intensity parameter αi, we further assume 
that the program intensity is proportional to the cost of service, based on 
our earlier Assumption 3. The intensity parameters are log-transformed to 
adjust scales down to other parameters in the formula. Thus, the intensity 
parameters are measured by:

  αi = β log ci, ∀i,

where β is a scale-adjustment parameter.
Table 11.9 summarizes data for costs per individual and program inten-

sity. The optimal budget allocation of the program-level problem can now 
be obtained by solving the problem based on the data. Potential demand is 
calculated by dividing the optimal solution by costs and then is used as a 
bound parameter in the community-level problem.

11.3.4 Planning Results

Given the data mentioned in Section 11.3.3, a goal programming model is 
developed at the program level. Because the model includes several param-
eters subject to administrative decision, the solution can vary depending on 
the policy of the decision maker. In other words, the solution depends on 
the total budget, the judgment of policymakers as to the importance of each 
 factor, and the potential demand for prevention services.

For the first program-level problem, we further assume that the adminis-
tration has a specific preference among the risk and protective factors, and 
the objective function (Equation 11.1) can be expressed as the following sim-
plest weighted sum (Gass et al. 1955)

 ∑( )−− +w d v d
i

i i i imin  (11.10)

For the purposes of illustration, we set the weight equal to 1 for under-
achievement and 0.1 for overachievement, which can be interpreted as the 
policymaker concerns about underachievement of the goal being 10 times 
greater than concerns about overachievement.

Changing the total budget allocated to prevention services, we solve the 
goal programming using IBM® ILog® Cplex® Optimization Studio 12.2. 
Table 11.10 summarizes the result of the budget allocation among the pre-
vention programs based on the given budget. When the amount of bud-
get is low, the optimization algorithm tends to assign budget to relatively 
cheaper and less-effective (in terms of the number of factors impacted) 
prevention programs. This can be interpreted that funding-indicated pre-
vention programs may not be cost-effective when the total budget is low. 
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In other words, it may be more efficient to assign budgets to universal 
 programs whose targets for covering protective/risk factors are broader 
with a lower cost burden. As the total budget increases, the algorithm 
assigns more resources to indicated programs rather than to cheaper and 
less-effective programs. Figure  11.4  illustrates the budget  allocation ten-
dency by changing total budget. Based on our formulation, the total budget 
to cover the full potential demand of prevention programs is estimated at 
around $28 million.

Because different decision makers can have different weights on the factors, 
we now investigate how their judgment makes an impact on the budget allo-
cation. We change the weights of both over- (wi) and under-achievement (vi) 
of the goals and solve the problem to examine the sensitivity of the weights 
we first set (wi = 0.1, vi = 1). Table 11.11 describes the results of solution when 
we change the weight vectors wi and vi. For this numerical example, we fix 
the total budget at $28 million, which covers all prevention programs, and 
change the value of the weight vector. Figure 11.5 depicts that the pattern 
of assignment remains stable across the region, except for a few programs. 
As the relative importance of overachievement increases (overachievement is 
considered as important as underachievement), more of the budget tends to 
be allocated to MST. Recalling the number of risk and protective factors that 
are addressed by programs in Table 11.5, we see that MST has a far broader 
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impact than MTFC and FFT. Thus, when a decision maker is concerned 
about overachievement, MST is favored over the other two programs. We can 
observe that MST receives a higher budget, while a lower budget is allocated 
to MTFC and FFT.

For the community-level planning problem, an assignment problem is 
formulated in a linear programming containing 10 dominating prevention 
programs and 568 communities across Pennsylvania. The optimal solution 
represents the budget allocation decision that maximizes the overall impact 
of the prevention programs.

Because the solution obtained is too large to be fully described here, we 
select one prevention program, SFP, as a representative example of the solu-
tion. Based on the optimal solution obtained from the community-level 
planning, we plot the communities that will support SFP using solid dots 
on the Pennsylvania map in Figure  11.6. In Chester County, for example, 
six communities need to operate SFPs to mitigate the risks of the region. 
Interestingly, but understandably, the trend of the budget  allocation from 
the optimal solution is similar to that of the demographic profile because 
a much larger number of communities will require prevention services in 
the more densely populated areas. Figure 11.7 depicts budget for SFP allo-
cated to 14 counties in Pennsylvania (23 local communities in those counties 
receive budget allocations).
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11.4 Conclusion

In this chapter, we applied multi-criteria optimization techniques, includ-
ing AHP and goal programming, to solve a state budget planning prob-
lem involving prevention services. Using AHP and the goal programming 
approach, we suggest a decision-making framework that can efficiently 
allocate the limited state budget to local communities based on their iden-
tified needs. Specifically, AHP reveals the relationship among the risk and 
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protective factors to be addressed and each prevention program. With 
this, we solve a budget allocation problem under the two-level hierarchi-
cal structure and examine how the allocated budget for each prevention 
program would affect the current risk and protective factor scores of each 
community.

The two-level problem scheme suggested here provides some insights into 
how to assign a limited budget systematically over a collection of communi-
ties whose imminent goals for improving risk/protective factors are differ-
ent. The numerical result of the program-level problem shows the trend of 
budget allocation to prevention programs, considering the total budget and 
the preferences of decision makers. Also, the solution of the community-level 
problem distributes prevention program funds fairly over the needed com-
munities by considering both regional population and the risk/protective 
factor scores of the communities.

Although we discuss only the planning phase of prevention programs in 
this chapter, we also emphasize the importance of efficient delivery in imple-
menting prevention services. Efficient delivery can be achieved by maximiz-
ing output performance given the assigned budget and limited resources. 
Metrics for output performance in prevention services could be defined as, 
for instance, an increased number of successful completers of the program 
or a decreased crime rate. We could consider a data envelopment analysis 
(DEA) approach, which is a well-known multi-criteria decision-making tool, 
for analyzing the performance of multiple entities (in this example, commu-
nities) given multiple inputs and outputs.

The approaches and results presented here are not only for specific prob-
lems arising in prevention services. Rather, the proposed model is well-
suited to other budget  allocation problems in the public service domain, 
where multiple policies and programs have differing levels of impact on var-
ious aspects of a problem and where various multi-criteria decision-making 
approaches can be useful.
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12.1 Introduction

Supply chains exist in almost every industry, and the complexity of the 
chain may vary from industry to industry and firm to firm. An organiza-
tion may have many supply chains operational within its various depart-
ments or it could itself be part of a larger supply chain (or both). The major 
drivers of any supply chain’s performance are facilities, inventory, trans-
portation, information, sourcing, and pricing (Chopra and Meindl 2007). 
Inventory exists at every stage of the supply chain as either raw material 
or semi-finished/finished goods. Inventory stored at different points of the 
supply chain has a different impact on the supply chain’s costs and perfor-
mance. One of the important issues in supply chain management (SCM) 
is  to decide on the inventory to maintain at different stages in the chain 
so that the supply chain can achieve the desired levels of responsiveness 
and efficiency. To achieve this, firms use inventory-control policies or order 
policies and, for the problem in this work, we assume a periodic review (R), 
order-up-to (S) policy, that is, a (R, S) policy, at every installation.

If the supply chain is divergent, apart from managing inventory, firms 
face the additional challenge of rationing resources/products to down-
stream members. A rationing problem arises when the available resources 
cannot satisfy all demands, indicating a shortage at the installation, and 
this is widely observed in industries such as retail, airline, spare parts, 
and maritime. The product that is rationed varies from firm to firm, but 
the concept is universal and can be generalized under rationing, and the 
solutions to rationing are applied with necessary adaptations to suit the 
respective industry. Allocation is a term often used interchangeably with 
rationing. However, according to Lagodimos and Koukoumialos (2008), 
rationing is a special case of an allocation problem and, for multi-period 
models, allocation decisions for a given day need not involve all available 
material, whereas rationing allocates all available material to its down-
stream members, if demanded. Researchers have used these terms inter-
changeably after stating what they imply by the terminology. In this study, 
terminology usage is as follows: the quantity used to satisfy the unfulfilled 
demands of downstream members up to the day of the last review of the 
upstream member is called allocated quantity; and the leftover quantity used 
to satisfy the demands of downstream members after the day of the last 
review of the upstream member is called rationed quantity. In our model, 
the quantity allocated by the distributor is calculated in such a manner that 
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the shipment reaches the contemplated retailer for whom the replenishment 
order has been placed to the manufacturer at the time of the last review 
of the distributor. Subsequently, the rationed quantity, calculated in case of 
any shortage in meeting the demand of retailers, necessitates the shipment 
of the leftover on-hand inventory of the distributor to retailers, and any 
holding of inventory to satisfy the retailers’ demands in future time peri-
ods is not allowed. Thus we propose a two-phase allocation-rationing mecha-
nism for the distributor. Distinguishing among retailer demands is essential 
as the distributor places an order to its upstream member contemplating a 
 recipient. If all demands from a retailer are treated alike, then the replenish-
ment may not reach the contemplated recipient (retailer). The proposed two-
phase  allocation-rationing mechanism ensures that the distributor does not 
mix-up the demand of one retailer with that of another up to the day of its 
last review (with the orders received from retailers after the day of the last 
review of the distributor); hence, the proposed mechanism assures that the 
shipment corresponds to the contemplated retailer correctly.

The perceived value as well as importance of a product can differ from a 
customer/retailer to another customer/retailer, and hence the shortage cost 
(backlog or lost sales cost) that a retailer is set to incur in case of shortage 
can also vary. Lost sales could mean a loss of profit or a loss of goodwill, and 
its estimation in monetary terms has practical limitations and difficulties 
(Nahmias 1989); hence, approximations are widely in use. The costs of hold-
ing, handling a product, and ordering can be different for installations based 
on the location of the installation, machines used by the installation in han-
dling the products, facilities required to store them, and so on. The composi-
tion of the total cost, the contribution of each installation to the TSCC, and 
the conflicting nature of the objectives of the supply chain can have an influ-
ence on the central supply chain planner’s decisions on acceptable levels with 
respect to the objectives of the supply chain. According to Stadtler (2005), 
SCM is the task of integrating organizational units along a supply chain and 
coordinating material, information, and financial flows in order to fulfill cus-
tomer demands with the aim of improving the competitiveness of a supply 
chain as a whole. The aim of maximizing the supply chain profitability can 
never be achieved by optimizing the operating parameters with any single 
objective of the supply chain. There always exists a trade-off between the 
supply chain’s responsiveness and its efficiency (Chopra and Meindl 2007). 
Both responsiveness and efficiency are equally desired by any supply chain, 
and they hold the key to any supply chain’s performance. Along with the 
supply chain being responsive and efficient, a supply chain planner has to 
look at the satisfaction of customers because the purpose of any supply chain 
is to fulfill customer requests. A major task of any supply chain manager is 
to decide on the level of responsiveness, efficiency, and customer satisfaction 
that the supply chain should maintain; that is essential for the supply chain, 
while trying to maximize the chain’s profitability. The  efficiency of the sup-
ply chain is generally measured in terms of costs that the supply chain incurs 



344 Multiple Criteria Decision Making in Supply Chain Management

in the process of fulfilling a customer order. Customer satisfaction levels are 
very important in some supply chains where an unfulfilled customer request 
could result in lost sales—and hence loss of good will and also possible loss 
of future sales. Even though it is extremely difficult to measure penalty costs, 
they are unavoidable factors while making decisions pertaining to any sup-
ply chain. Delivery performance is considered as a measure of customer 
satisfaction by Sürie and Wagner (2005) and, according to the authors, deliv-
ering the right product to the right place at the right time ensures customer 
satisfaction. According to Klapper et al. (1999), the perfect order fulfillment is 
one of the measures of customer satisfaction, and the authors break down the 
metric into orders delivered completely, orders delivered on time, delivery 
with perfect paper works and procedures completed, and condition of the 
products in terms of guaranteed features.

The present study addresses the problem of inventory management in a 
divergent supply chain operating with periodic review (R), order-up-to (S) 
policy at all the installations, customer sales being lost if unsatisfied, retailer 
demands rationed in case of shortage at the distributor using the proposed 
two-phase allocation-rationing mechanism, and the multiple objectives of 
minimizing the TSCC and maximizing the customer satisfaction, over a finite 
planning horizon. We formulate the problem as a mixed integer linear program 
(MILP) based mathematical model and also propose a lower bound on the 
objective function of the problem based on the selective relaxation of some 
of the assumptions due to the computational complexity experienced while 
solving the original MILP problem. The MILP-based mathematical model 
ensures that interchanging or mix-up of retailers’ demands does not take 
place, and the model is solved to obtain installation-specific inventory- control 
policy parameters (R, S) and allocation-rationing quantities. The organiza-
tion of the chapter is as follows: There is review of literature in Section 12.2; 
a discussion on order policy, allocation-rationing mechanism, and problem 
statement appears in Section  12.3; the model is presented in Section  12.4; 
the solution methodology is discussed in Section 12.5; Section 12.6 covers 
the experimental analysis used to test the mathematical model and results 
of the experiments; and implications and conclusions along with possible 
future research directions are discussed briefly in Section 12.7.

12.2 Review of Literature

12.2.1 Multi-Objective Models for Inventory Management

Due to the multi-dimensional nature of any supply chain, multiple objectives 
in supply chains are considered to meet the objective of maximization of sup-
ply chain profitability while satisfying customers. Weber and Current (1993) 
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are the authors of one of the earliest papers on the multi-objective approach 
in supply chains, and they considered three objectives for the vendor selec-
tion. Various solution methodologies to the multiple objective problems are 
explained in detail by Collette and Siarry (2003). According to the authors, 
the solution methods can be classified as: (1) scalar, (2) interactive, (3) fuzzy, 
(4) metaheuristic, and (5) decision aided methods. The classical approach and 
the multi-objective evolutionary algorithm-based approach are explained 
by Deb (2001). According to the author, the classical approaches to solving 
multi-objective optimization problems are: (1) weighted sum, (2) ε-constraint, 
(3) weighted metric, (4) goal programming, (5) Benson’s method, (6) value 
function method, and (7) interactive methods. A review paper on multi-
objective optimization for SCM was presented by Aslam and Ng (2010), and 
Mula et al. (2010) reviewed the mathematical programming models for sup-
ply chain production and transport planning. Mansouri et al. (2012) tried to 
identify the gaps in decision-making support based on multi-objective opti-
mization for build-to-order SCM. Arntzen et al. (1995), Jayaraman and Pirkul 
(2001), and Amiri (2006) modeled the SCM problem based on the MILP with 
a single objective. Various studies used genetic algorithms to obtain solu-
tions to multiple objective problems in the SCM; examples are the works of 
Srinivas and Deb (1995) and Daniel and Rajendran (2006). A detailed survey 
on multi-objective evolutionary algorithms (MOEA) is presented by Zhou 
et al. (2011); the authors explain that the algorithm framework is a key issue 
to the design of any MOEA and the majority of MOEA’s share more or less 
the same framework.

12.2.2 ε-Constraint Method

The ε-constraint method was introduced by Haimes et  al. (1971), and 
Chankong and Haimes (1983) discussed the ε-constraint method in detail. 
The ε-constraint method optimizes the original problem, after converting 
all other objectives except one, into constraints within the respective upper/
lower bounds. Sabri and Beamon (2000) used the multi-objective approach to 
undertake strategic and operational planning simultaneously. The authors 
used the ε-constraint method to solve the problem and considered the multi-
objectives of cost, customer service levels (fill rates), and flexibility (volume or 
delivery). Guillén et al. (2005) used the ε-constraint method for multi- objective 
supply chain design under uncertainty. The authors considered net present 
value, demand satisfaction, and financial risk as the various objectives of the 
supply chain. You and Grossmann (2008) optimized the supply chain design 
and planning under responsive criterion and economic criterion with uncer-
tain demand. The authors measured the economic criterion in terms of the 
net present value and responsiveness in terms of transportation times, resi-
dence times, and cyclic schedules. They used the mixed integer non  linear 
programming (MINLP) to model the problem and used the ε-constraint 
method to solve it. Franca et al. (2010) introduced a multi-objective stochastic 
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model that uses six sigma measures to evaluate financial risk. They consid-
ered  maximization of total profit and increasing quality levels while investi-
gating the effect of uncertainty on the model, and they used the ε-constraint 
method to solve the model. Liu and Papageorgiou (2013) addressed the prob-
lems of production, distribution, and capacity planning of global supply 
chains and  considered costs, responsiveness, and customer service level as 
objectives. The authors proposed an MILP-based multi-objective approach 
with total cost, total flow time, and total lost sales as the objectives, and they 
resorted to the ε-constraint method to solve their model.

12.2.3 Lost Sales Models in Supply Chains

One of the earliest known works that considered lost sales is by Hadley 
and Whitin (1963), and many researchers over the years have worked on 
supply chains operating with lost sales. Huh and Janakiraman (2010) and 
van Donselaar and Broekmeulen (2013) stated that most of the models in 
 inventory-control literature treat unmet demand as backlogged, and the major 
reason is the knowledge that the analysis of general lost sales systems is diffi-
cult and optimal policy for even the single-stage system is complicated. One of 
the first papers on rationing policies in supply chains operating with lost sales 
was by Cohen et al. (1988). The authors modeled the problem as a Markov chain 
and developed a greedy heuristic that minimizes the expected costs subject to 
fill rate service constraint. Ha (1997) considered the stock rationing problem 
for a make-to-stock production system with several demand classes, lost sales, 
and a single product. A critical level-based rationing policy is proposed by the 
author. Melchiors et al. (2000) and Isotupa (2006) analyzed a lost sales (s, Q) 
inventory system with two customer classes. Deterministic lead times were 
considered by Melchiors et al. (2000) and exponentially distributed lead times 
by Isotupa (2006). Kranenburg and van Houtum (2007) proposed three heuris-
tic algorithms for an (S−1, S) lost sales inventory model with multiple demand 
classes differentiated by penalty costs for lost sales. The authors considered 
holding and penalty costs in their study. An ordering policy for a two-echelon 
inventory system consisting of one warehouse and a number of nonidentical 
retailers was proposed by Haji et al. (2009). Rationing mechanisms in diver-
gent supply chains, operating over a finite time horizon and with lost sales 
and costs of review, was studied by Paul and Rajendran (2011). The authors 
proposed a fractional rationing (FR) policy that makes use of dynamically cal-
culated fractions to arrive at the rationed quantity when a distributor faces a 
shortage. Cheng et al. (2011) considered a make-to-stock production system 
with a failure-prone machine and multiple demand classes. The unsatisfied 
demand was assumed to be lost with a penalty cost associated with lost sales. 
A dynamic inventory rationing policy was proposed by Wang and Tang (2014) 
for an inventory system with a mixture of backorder and lost sale demand 
classes. The authors proposed a heuristic dynamic rationing policy citing the 
computational complexity of a Markov decision model. A recent work in the 
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area of inventory rationing and lost sales is by Pang et al. (2014). They addressed 
the problem of inventory rationing in a make-to-stock production system with 
batch ordering and multiple demand classes. The authors assumed the pres-
ence of at least one outstanding order at any point in time and showed that an 
optimal ordering policy is characterized by a reorder point and time depen-
dent rationing levels.

12.2.4 Rationing Policies

Various rationing policies were proposed by authors in the past for general 
inventory systems with or without lost sales. The fair share (FS) rationing pol-
icy was first introduced by Clark and Scarf (1960), and many researchers came 
up with modifications of the FS policy. The FS policy tries to attain an equal 
stock-out probability for all the end stock points. Another notable policy is 
the consistent appropriate share (CAS) policy, first introduced by de Kok (1990), 
who allocated inventory to local stock points based on safety stock ratios. 
Van der Heijden (1997) proposed the balanced stock (BS) policy, which tries 
to ration the system-wide shortage in a way so that the rationing fractions 
minimize the average imbalance. Priority rationing (PR) policy was  proposed 
by Lagodimos (1992), and modified echelon stock rationing (MESR) policy was 
proposed by Huang and Iravani (2007). Paul and Rajendran (2011) proposed 
the fractional rationing (FR) policy that makes use of dynamically calculated 
fractions to arrive at the rationed quantity.

12.3  Discussion on Order Policy, Allocation-Rationing 
Mechanism, and Problem Statement

The present study proposes an MILP-based mathematical model as solution 
methodology to the problem of inventory optimization in divergent sup-
ply chains (over a finite time horizon) with the consideration of minimiz-
ing total costs (consisting of order costs, holding costs, and lost sales costs 
across the supply chain) and maximizing customer satisfaction, and it makes 
use of the ε-constraint method to solve this problem with multiple objec-
tives. Even though the fill rate has been considered by authors such as Sabri 
and Beamon (2000) and Guillén et al. (2005), their modeling approach is sto-
chastic and their approach differs from our model’s two objectives. In this 
work, we consider a divergent supply chain operating with lost sales from 
unsatisfied customer demands and backlogged retailer demands, and we 
model the problem as an MILP; moreover, the composition of the cost func-
tion in our model differs from the earlier works (by addressing all major 
cost components), and none of them (additionally) addressed the aspect 
of  rationing in a multi-stage divergent supply chain. The earlier work by 



348 Multiple Criteria Decision Making in Supply Chain Management

Liu and Papageorgiou (2013) proposed an MILP-based solution methodology, 
but it is different from ours in terms of the cost function and measuring cus-
tomer satisfaction, and the authors did not address the problem of allocation/
rationing that is inevitable in a divergent supply chain. Such earlier authors 
did not consider the inventory order policy considered in this study. Paul 
and Rajendran (2011) addressed the problem of inventory rationing with the 
single objective of minimizing the total supply chain cost (TSCC), and their 
solution is a lower bound on the objective function (related to the total cost) 
considered in our model, when solved with this objective as the sole one. 
Moreover, those authors considered both unsatisfied demands from retail-
ers up to the distributor’s day of the last review and demands after the day 
of the last review equally, and they did not differentiate between these two 
classes of demands. However, we claim that such an approach could result 
in a reduced cost with highly unsatisfied retailers; hence, the single-objective 
approach could affect the performance of the supply chain in the long run 
due to strained relationships (see our related earlier discussion on the two-
phase allocation-rationing mechanism). According to Paul and Rajendran, 
their rationing approach is superior to the various rationing approaches in 
literature such as CAS and BS, and it appears similar to FS rule for certain 
settings. Hence, in this study, we are benchmarking our work with that of 
Paul and Rajendran (2011), an appropriate representative work related to our 
chapter. In addition, Paul and Rajendran did not consider multiple objectives 
in their work, and they solved the supply chain problem with minimizing 
TSCC as the sole objective. A numerical illustration, comparing the rationing 
approach of Paul and Rajendran (2011) and the allocation-rationing approach 
proposed in this study, is provided in the Appendix to aid the reader in 
understanding the difference between the two approaches.

In this work, we propose a two-phase allocation-rationing mechanism 
involving allocation (first) and rationing (next), where allocation is inspired 
by the PR policy and rationing inspired by the FR policy. Lagodimos (1992) 
discussed the use of a PR rule where a list is used to decide the sequence 
in which orders are satisfied. The PR rule uses a priority list to satisfy the 
demands of successor stock points until the stock is exhausted. The first part 
of our two-phase mechanism is to allocate corresponding to the outstanding 
orders from the retailers up to the day of the last review of the distributor. 
The order of distributing unsatisfied demand up to the day of the last review 
of the upstream member to the downstream members is based on a prede-
termined priority list. The priority list in this work is developed based on 
the costs of penalties incurred by retailers in losing a unit of sale. The pro-
posed allocation-rationing mechanism is a step toward reality in the sense 
that the replenishment received by the distributor is allocated to satisfy the 
corresponding retailer’s unsatisfied demands up to the day of the last review 
of the distributor, and the leftover quantity is then rationed and used to sat-
isfy the demands from retailers accumulated after the day of the last review 
of the distributor. The quantity due to downstream members up to the day 
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of the last review of the distributor is completely satisfied in the sequence of 
decreasing penalty cost rates until the available material is depleted or out-
standing orders up to the day of the last review of the distributor are ful-
filled. Even though the sequence in which allocation is performed is based 
on a predetermined priority list, the allocation quantities are dynamic in the 
sense that they are related to the outstanding shipments to retailers. The PR 
policy in all the existing works is used for complete rationing, whereas in 
our study, it is used only to calculate the allocated quantity. To the best of our 
knowledge, no study published to date has modeled the supply chain along 
this line (often encountered in real life). We have proposed an exact solution 
methodology along with a lower bound on the objective function for supply 
chain operating (R, S) order policy, with multiple objectives of minimizing 
total supply chain cost (TSCC) comprising lost sales (only for retailers), hold-
ing and ordering costs, and maximizing the customer satisfaction measured 
using product fill rate (PFR) for a divergent supply chain operating with two-
phase allocation-rationing mechanism over a finite time horizon.

12.4 Model

In this work, a periodic review (R), order-up-to (S) policy—that is, (R, S) 
 policy—is assumed to operate at every installation of the supply chain. 
This policy is assumed owing to its ease in implementation in real life in 
terms of planning for logistics of inbound and outbound material, and the 
integrated inventory transportation function can be achieved in a better 
manner due to a fixed review period leading to fixed shipment/transport 
 frequency (refer to Silver et  al. [1998] for a detailed reading on inventory- 
control policies). The present study considers a divergent supply chain 
operating with a manufacturer supplying material to a distributor and the 
distributor serving I retailers; see Figure 12.1.

The unsatisfied demands of retailers are backlogged by the distributor, 
and the unsatisfied demands of customers are considered as lost sales by the 
retailer. The distributor uses the two-phase allocation-rationing mechanism 
proposed in this study to distribute its on-hand inventory to the downstream 
members. The first phase of the mechanism is used when there are unsatis-
fied demands of the retailers up to the day of the last review of the distribu-
tor. The second phase of the mechanism is used when the leftover inventory 
available with the distributor (after the allocation) is insufficient to meet the 
demands from retailers after the day of the last review of the distributor. 
The main objective of the supply chain is to minimize the TSCC while the 
maximizing customer satisfaction (measured in terms of the fill rate on a 
day). The TSCC is comprised of installation-specific holding cost and penalty 
cost per unit of product sale lost by the retailer and of  installation-specific 
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fixed ordering cost. Customer satisfaction is measured in terms of the PFR 
achieved by the retailer. The PFR is defined by Chopra and Meindl (2007) 
as  the fraction of product demand fulfilled from inventory. The authors 
explain that it should be measured over specific amounts of demand rather 
than time. In our work, we measure the PFR achieved by the retailer on a 
daily basis because the unsatisfied demands of customers are assumed to be 
lost. The PFR is a measure of a supply chain’s β-service level, which is defined 
as the proportion of incoming order quantities that can be fulfilled from 
inventory on hand and takes into account the extent to which orders cannot 
be fulfilled. In this work, we find out the optimum order policy parameters 
for the periodic review, order-up-to S (R, S) policy at every installation, and 
the allocated and rationed quantities of the distributor by considering the 
multiple objectives of minimizing the total supply chain costs and maximiz-
ing the PFR over a finite time horizon.

12.4.1 Assumptions

The supply chain model’s boundary is specified by a set of assumptions and 
is explained in this section. The supply chain is assumed to operate with 
installation-specific ordering policies in the class of periodic review, order-
up-to S policy. A single product is assumed to flow in the supply chain from 
manufacturer to customers. Retailers face deterministic and dynamic cus-
tomer demand, and the lead time for information processing is assumed 
to be negligible or zero. The model considers a finite time horizon. Time is 
assumed to be discrete, and a unit is assumed to be one day. This model does 
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FIGURE 12.1
A schematic representation of the divergent supply chain. 
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not consider capacity constraints (i.e., installations are faced with no limita-
tions in holding inventory). No discount or lot-sizing is allowed for mem-
bers. The review period of a retailer is one of {1, 2 … _Max ri

R}, where _Max ri
R 

denotes the maximum possible review period for retailer i, and the review 
period of the distributor is one of {1, 2 …Max_rD}, where Max_rD denotes the 
maximum possible review period for the distributor. For a given installation, 
the order-up-to S level and the review period take discrete integer values, 
and they remain constant across the entire finite time horizon, once set by the 
solver. The product considered in this supply chain neither becomes obsolete 
nor deteriorates in quality over time periods. Transshipments among installa-
tions of the same stage are not permitted. Each installation has its own specific 
holding cost, shortage (lost sales) cost, and ordering cost (i.e., cost of review). 
A retailer order is completely or partially satisfied depending on the distribu-
tor’s available on-hand inventory; if the distributor does not have enough on-
hand inventory, then the retailer’s order is backlogged. The distributor’s order 
is completely fulfilled after its replenishment lead time because it is assumed 
to be served by an upstream member (manufacturer) with unlimited capacity.

12.4.2 Mathematical Model

In this section, we present the mathematical formulation of the divergent 
supply chain model.

12.4.2.1 Terminology

The terminology used in this study is adapted/modified from that used by 
Zipkin (2000)/Silver et al. (1998).

Indices
t Current time (unit time period is assumed to be a day).
T Total number of time periods (planning horizon).
i Index for retailers, where i = 1, 2 … I.
I Total number of retailers.
R Retailer.
D Distributor.
M Manufacturer.

Parameters
hi

R  Inventory holding cost-rate of retailer i (in monetary units).
bi

R  Inventory shortage (lost sales) cost-rate of retailer i (in 
monetary units).

Oi
R Ordering cost per order for retailer i (in monetary units).

hD Inventory holding cost-rate of the distributor (in monetary 
units).
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OD Ordering cost per order for the distributor (in monetary units).
_Max ri

R  Maximum possible review period for retailer i (in unit of 
time; day).

Max_rD Maximum possible review period for the distributor (in unit of 
time; day).

LTi
R  Replenishment lead time of retailer i (in unit of time; day).

LTD Replenishment lead time of the distributor (in unit of time; day).
MR A large positive value for the retailer.
MD A large positive value for the distributor.
PFRi t

R
,  Product fill rate of retailer i in time period t.

Demi t
R
,  Demand from customers to retailer i in time period t (number 

of units of the product).

Decision Variables
i r
R
,∆  A binary variable that assumes the value of 1 for retailer i 

when the review period is r; otherwise 0; /*note: r is one of 
{1, 2 … Max ri

R_ }*/.
δ ,i t

R  A binary variable that assumes the value of 1 in time period t 
when an order is placed by retailer i; otherwise 0.

∆r
D A binary variable that assumes the value of 1 for the 

distributor when the review period is r; otherwise 0; /*note: 
r is one of {1, 2 …Max_rD}*/.

t
Dδ  A binary variable that assumes the value of 1 in time period t 

when an order is placed by the distributor; otherwise 0.
i t
Dλ ,  A binary variable that assumes the value of 1 when allocated 

quantity from the distributor to retailer i on day t exists; 
otherwise 0.

i t
D
,γ  A binary variable that assumes the value of 1 when the 

intermediate beginning on-hand inventory of the distributor 
on day t is available to ship the allocated quantity to retailer i; 
otherwise 0.

t
Dα  A (0, 1) binary variable used to prevent the coexistence of EIt

D

and Bt
D.

BOIi t
R
,  Beginning on-order inventory of retailer i at the beginning of time 

period t, after receiving the shipment (if any) from the distributor.
BOIt

D  Beginning on-order inventory of the distributor at the 
beginning of time period t, after receiving the shipment (if any) 
from the manufacturer.

BIi t
R
,  Beginning on-hand inventory of retailer i at the beginning of time 

period t, after receiving the shipment (if any) from distributor.
BIt

D  Beginning on-hand inventory of the distributor at the 
beginning of time period t, after receiving the shipment (if any) 
from the manufacturer.

EIi t
R
,  End on-hand inventory of retailer i at the end of time period t.
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EIt
D  End on-hand inventory of the distributor at the end of time 

period t.
EOIi t

R
,  End on-order inventory of retailer i at the end of time period t.

EOIt
D  End on-order inventory of the distributor at the end of time 

period t.
LSi t

R
,  Lost sales of retailer i at the end of time period t.

Bt
D  Backorder of the distributor at the end of time period t.

QSi t
R
,  Quantity shipped from retailer i to its customers at the end of 

time period t.
_ ,A QSi t

D  Allocated quantity that is shipped from the distributor to 
retailer i at the end of time period t.

_ ,R QSi t
D  Rationed quantity that is shipped from the distributor to 

retailer i at the end of time period t.
QSSi t

D
,  Sum of rationed and allocated quantity (for that time period) 

shipped from the distributor to retailer i at the end of time 
period t.

SQSi t
D
,  Sum of quantity shipped from the distributor to retailer i up to 

time period t.
QSD t

M
,  Quantity shipped from the manufacturer to the distributor at 

the end of time period t.
Demt

D  Total demand faced by the distributor from all retailers in time 
period t.

OQi t
R
,  Order quantity of retailer i to the distributor in time period t.

OQM t
D

,  Order quantity of the distributor to the manufacturer in time 
period t.

NOQi t
R
,  A dummy variable introduced to maintain feasibility in the 

mathematical formulation for retailer i in time period t, with 
respect to the order quantity.

NOQt
D  A dummy variable introduced to maintain feasibility in the 

mathematical formulation for the distributor in time period t, 
with respect to the order quantity.

SOQi t
R
,  Sum of order quantity of retailer i to the distributor up to time 

period t.
_ ,S RPi t

D Sum of order quantity from retailer i to the distributor up to 
the day of the last review of the distributor, computed with 
respect to time period t.

_ ,A Qi t
D  Allocated quantity due from the distributor to retailer i in time 

period t.
_ ,NA Qi t

D  A dummy variable introduced to maintain feasibility in the 
mathematical formulation for the distributor in time period t, 
with respect to the allocated quantity.

IBIi t
D
,  Intermediate beginning on-hand inventory of the distributor 

after allocating the quantity up to retailer i in time period t.



354 Multiple Criteria Decision Making in Supply Chain Management

NIBIi t
D
,  A dummy variable introduced to maintain feasibility in the 

mathematical formulation for the distributor in time period 
t with respect to retailer i, with respect to intermediate 
beginning on-hand inventory.

Si
R  Order-up-to level of retailer i.

SD Order-up-to level of the distributor.
TPFRR Threshold product fill rate of every retailer for entire time 

horizon.
TSCC Total supply chain cost over all installations and time periods 

(in monetary units).

All different forms of inventory and shipment quantity are expressed in 
terms of number of units of the product.

12.4.2.2 Mathematical Formulation

Objectives:
Minimize TSCC

 TSCC h EI O h EI b LS OD
t
D D

t
D

i
R

i t
R

i
R

i t
R

i
R

i t
R

i

I

t

T

∑∑ ( ) ( )= + δ + + + δ










==

, , ,

11

 (12.1)

TSCC is the sum of holding cost and ordering cost incurred by the distrib-
utor and holding, lost sales, and ordering costs encountered by all retailers 
over the entire planning horizon. The distributor is assumed to backorder the 
demand quantity from retailers that is not satisfied in a particular time period. 
The cost associated with backordering by the distributor is assumed to be zero 
because this study deals with a centralized supply chain and the lost sales/
backlog cost is incurred by the retailer that is in contact with its customers.

Maximize PFR

 = = =for 1, 2 ; and 1, 2 ;,
,

,
PFR

QS
Dem

i I t Ti t
R i t

R

i t
R … …  (12.2)

subject to the following: 

{
Constraints with respect to retailer i:

[
Constraints to set the review period of retailer i: Equation 12.3 ensures that 

the review period r is one of {1, 2 …Max ri
R_ }, and Equation 12.4 ensures that 

the binary variable i t
Rδ ,  is 1 if t is the day of review for retailer i:

 i r
R

r

Max ri
R

∑ ∆ =
=

1,

1

_

 (12.3)
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 ∑δ − ∆ + ∆

















=
=

=

i t
R

i
R

i r
R

r
t r

Max ri
R

0, ,1 ,

2
mod 0

_

 (12.4)

Receipt of material, if any, from the distributor takes place and the instal-
lation’s information pertaining to: (a) beginning on-order inventory and 
(b) beginning on-hand inventory are updated:

 BOI EOI QSSi t
R

i t
R

i t LT
D

i
R= −− −, , 1 ,  (12.5)

 BI EI QSSi t
R

i t
R

i t LT
D

i
R= +− −, , 1 ,  (12.6)

The next step is customer’s demand satisfaction by retailer i, and it 
depends on the retailer’s beginning on-hand inventory. If sufficient 
material is available with the respective retailer, retailer i ships it to the 
 customer instantaneously; otherwise the unsatisfied demand is consid-
ered to be lost. The quantity shipped by retailer i does not exceed cus-
tomer’s demand and does not exceed the beginning on-hand inventory of 
retailer i. We have

 EI BI Demi t
R

i t
R

i t
R≥ −, , ,  (12.7)

 QS BI EIi t
R

i t
R

i t
R= −, , ,  (12.8)

Constraint to calculate the lost sales:

 LS Dem QSi t
R

i t
R

i t
R= −, , ,  (12.9)

Retailer i makes the decision to place an order based on the following: 
(a) beginning on-order inventory of the retailer; (b) on-hand inventory of 
the retailer after satisfying the current day customer demand; (c) order-up-
to S level of the retailer; and (d) review period of the retailer. An order is 
placed by the retailer to the distributor if the current time period is the day 
of review of the respective retailer and the retailer places the order to raise 
its inventory position up to S. The order placed is instantaneously commu-
nicated to the distributor because the order processing lead time is assumed 
to be zero. We have

 NOQ OQ S EI BOIi t
R

i t
R

i
R

i t
R

i t
R+ = − −, , , ,  (12.10)
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 OQ Mi t
R R

i t
R≤ δ, ,  (12.11)

 NOQ Mi t
R R

i t
R( )≤ − δ1, ,  (12.12)

Constraints to update the sum of order quantity and end on-order inven-
tory of respective retailers:

 SOQ SOQ OQi t
R

i t
R

i t
R

, , 1 ,= +−  (12.13)

 EOI BOI OQi t
R

i t
R

i t
R

, , ,= +  (12.14)

], i = 1, 2 …I;
Constraints with respect to the distributor:

[
Constraints (Equation 12.15) and (Equation 12.16) set the review period of 

the distributor. Equation 12.15 ensures that r is one of {1, 2 … Max_rD} and 
Equation 12.16 ensures that the binary variable t

Dδ  is 1 if t is the day of review 
of the distributor:

 r
D

r

Max rD

1
1

_

∑ ∆ =
=

 (12.15)

 t
D D

r
D

r
t r

Max rD

01

2
mod 0
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∑δ − ∆ + ∆

















=
=

=

 (12.16)

Receipt of material, if any, from the manufacturer, takes place and dis-
tributor’s information pertaining to: (a) beginning on-order inventory and 
(b)  beginning on-hand inventory, and intermediate beginning on-hand 
inventory is updated:

 BOI EOI QSt
D

t
D

D t LT
M

D1 ,= −− −  (12.17)

 = +− −1 ,BI EI QSt
D

t
D

D t LT
M

D  (12.18)

 =0,IBI BIt
D

t
D  (12.19)

The first phase of the rationing mechanism proposed in this work is real-
ized by constraints (Equations 12.20 through 12.26) and these constraints 
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calculate the quantity to be allocated up to the day of the last review of the 
distributor. The distributor first satisfies the quantity that is due (if any) to 
the respective retailer up to the day of its last review:

(

 − = −− −_ _ _, , , 1 , 1A Q NA Q S RP SQSi t
D

i t
D

i t
D

i t
D  (12.20)

 ≤ λ_ , ,A Q Mi t
D D

i t
D  (12.21)

 ( )≤ − λ_ 1, ,NA Q Mi t
D D

i t
D  (12.22)

 − = −− _, , 1, ,IBI NIBI IBI A Qi t
D

i t
D

i t
D

i t
D  (12.23)

 = −−_ , 1, ,A QS IBI IBIi t
D

i t
D

i t
D  (12.24)

 IBI Mi t
D D

i t
D

, ,≤ γ  (12.25)

 NIBI Mi t
D D

i t
D1, ,( )≤ − γ  (12.26)

) ∀i ∈ ΩD and retailers are considered in the order they appear in ΩD. Note 
that ΩD is an ordered set in which retailers are indexed in a monotone man-
ner such that b bi

R
i
R

1≥ + .
Demand of the distributor for day t is calculated using Equation 12.27:

 Dem OQt
D

i t
R

i

I

,

1
∑=

=

 (12.27)

Constraints (Equations 12.28 through 12.30) calculate the rationed quan-
tity and the total quantity to be shipped to a retailer, and they update the 
total quantity shipped to respective retailers, respectively. The distributor 
satisfies the orders received after the day of the last review, depending on 
its updated beginning on-hand inventory. If sufficient inventory is available, 
the order of a retailer is completely satisfied; otherwise, the available on-
hand inventory is rationed among the retailers, and the unsatisfied demand 
is backlogged. The total quantity shipped from the distributor to any retailer 
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reaches it after the elapse of the respective retailer’s lead time; that is, LTi
R. 

QSSi t
D
,  is received by retailer i on t LTi

R( )+ , ≥ 1LTi
R . We have

(

 ( )≤ − +−_ _, , , 1 ,R QS SOQ SQS A QSi t
D

i t
R

i t
D

i t
D  (12.28)

 = +_ _, , ,QSS R QS A QSi t
D

i t
D

i t
D  (12.29)

 SQS SQS QSSi t
D

i t
D

i t
D

, , 1 ,= +−  (12.30)

Constraints to update the sum of order quantity from respective retailers 
up to the day of the last review of distributor:

 S RP S RP Mi t
D

i t
D D

t
D_ _, , 1≤ + δ−  (12.31)

 S RP S RP Mi t
D

i t
D D

t
D_ _, , 1≥ − δ−  (12.32)

 S RP SOQ Mi t
D

i t
R D

t
D_ 1, , ( )≤ + − δ  (12.33)

 S RP SOQ Mi t
D

i t
R D

t
D_ 1, , ( )≥ − − δ  (12.34)

), i = 1, 2 … I;

Constraint to ensure that the sum of rationed quantities shipped to all 
retailers in time period t does not exceed the intermediate beginning 
 on-hand inventory of the distributor (i.e., inventory available with the dis-
tributor after allocation to all the retailers in the set ΩD):

 ∑ ≤
=

Ω_ ,

1
,R QS IBIi t

D

i

I

t
D

D  (12.35)

End on-hand inventory and backlogged demand of the distributor are 
calculated using constraint (Equation 12.36), and the coexistence of end 
on-hand inventory and backlogged demand of the distributor is prevented 
using constraints (Equation 12.37) and (Equation 12.38). This ensures that 
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the supply chain model remains a rationing model and does not transform 
to an allocation model. The effect of relaxing the binary variable is discussed 
in the solution methodology. We have

 EI B BI B Demt
D

t
D

t
D

t
D

t
D

1− = − −−  (12.36)

 EI Mt
D D

t
D≤ α  (12.37)

 B Mt
D D

t
D1( )≤ − α  (12.38)

The distributor makes the decision to place an order based on the follow-
ing factors: (a) beginning on-order inventory of the distributor; (b) on-hand 
inventory of the distributor after satisfying the demand; (c) order-up-to S 
level of the distributor; (d) total backlogged demands from all retailers; and 
(e) review period of the distributor. An order is placed by the distributor to 
the manufacturer if t is day of review of the distributor, and the distributor 
places the order to raise its inventory position up to S. The order placed is 
instantaneously communicated to the manufacturer because the order pro-
cessing lead time is assumed to be zero. We have

 NOQ OQ S EI BOI Bt
D

M t
D D

t
D

t
D

t
D

, ( )+ = − + −  (12.39)

 OQ MM t
D D

t
D

, ≤ δ  (12.40)

 NOQ Mt
D D

t
D1( )≤ − δ  (12.41)

Constraint to update the end on-order inventory of the distributor:

 EOI BOI OQt
D

t
D

M t
D

,= +  (12.42)

Constraint to ensure that the total quantity shipped by the distributor to 
all retailers is the difference between the beginning on-hand inventory and 
end on-hand inventory of the distributor:

 BI EI QSSt
D

t
D

i t
D

i

I

,

1
∑− =

=

 (12.43)

]
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Manufacturer’s Constraint:
The manufacturer satisfies the distributor’s demand completely because it 
is assumed to have unlimited availability of product. The quantity shipped 
from the manufacturer reaches the distributor after the lead time with 
respect to the distributor and the manufacturer, that is, LTD:

 =, ,QS OQD t
M

M t
D  (12.44)

}, t = 1, 2 … T;

with the initial conditions:

 S RP i Ii
D_ 0 1, 2,0 = = … ; (12.45)

 EOI B i Ii
R

i
R 0 1, 2,0 ,0= = = … ; (12.46) 

 SOQ i Ii
R 0 1, 2,0 = = … ; (12.47) 

 QSS i I t LTi t LT
D

i
R

i
R 0 1, 2 ; 1, 2, = = =− … … ; (12.48) 

  EI S i Ii
R

i
R 1, 2,0 = = … ; (12.49) 

 SQS i Ii
D 0 1, 2,0 = = … ; (12.50)

 EOI BD D 00 0= =  (12.51)

 = =− 0 1, 2,QS t LTD t LT
M D

D … ; (12.52)

 EI SD D
0 =  (12.53)

 { }δ ∈ = =… …i I t Ti t
R 0,1 1, 2 ; 1, 2, ; (12.54) 

 { }δ ∈ = …t Tt
D 0,1 1, 2 ; (12.55)
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 { }α ∈ = …t Tt
D 0,1 1, 2 ; (12.56)

 { }λ ∈ = =… …i I t Ti t
D 0,1 1, 2 ; 1, 2, ; (12.57)

 { }γ ∈ = =… …i I t Ti t
D 0,1 1, 2 ; 1, 2, ; (12.58)

 all other variables are ≥ 0. (12.59)

The time period t is incremented by a unit of time (i.e., a day), starting 
from t = 1, and the same sequence of events repeats itself for the entire time 
horizon (until t = T).

12.5 Solution Methodology

The ε-constraint method is used to solve the MILP-based multiple objective 
mathematical programming model. In this study, the objective correspond-
ing to minimizing TSCC is maintained as the sole objective while solving 
the mathematical programming model, and the other objective is treated as a 
constraint. The objective of PFR for every retailer is converted to a constraint 
with a specified lower limit, while solving the mathematical programming 
model. To develop long-term relationships with customers and to attain a 
higher level of customer satisfaction, we introduce the PFR as a constraint 
with a threshold level. The threshold fill rate guaranteed by the supply chain 
to its customers can be fixed by the supply chain manager, and the solu-
tion to our mathematical programming model would aid the decision maker 
in arriving at the right level of trade-off between cost and customer satisfac-
tion. Because it is difficult to predict the magnitude of the total supply chain 
cost in terms of monetary units, we refrain from converting the objective, 
minimizing TSCC as a constraint with bounds. In pilot studies, it is observed 
that the fill rates achieved by the retailers are as low as zero on certain days, 
when the model is solved with the sole objective of minimizing the TSCC. 
It is due to this observation that we consider the fill rate as another objective 
of the supply chain.

Expression (12.2) calculates the PFRi t
R
,  for retailer i in time period t. It is 

reasonable to assume that the PFR is fixed over time (i.e., the same value 
of PFR is assumed for retailer i for the entire planning horizon because 
supply chains do not usually offer different fill rates across time periods). 
In this study, all retailers are assumed to operate with the same threshold 
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PFR (TPFRR) across time periods, and Expression (12.2) (i.e., objective func-
tion) is modified as here and converted to a constraint, while solving the 
mathematical formulation:

 
QS

Dem
TPFRi t

R

i t
R

R,

,
≥  for i = 1, 2 … I; t = 1, 2 … T (12.60)

Constraint (Equation 12.60) would ensure that the supply chain model is 
solved with the objective of minimizing its TSCC, while guaranteeing TPFR 
for every retailer and for every time period. The major questions for which the 
inventory-control mechanism in this work provides answers are: How much 
to order? When to order? How much to allocate and ration? In this study, we 
present the mathematical programming model (that essentially performs an 
implicit enumeration) to solve the problem over a fixed time horizon to answer 
these questions. The number of binary variables increases even with a small 
increase in the time horizon; hence, limitations and difficulty in executing the 
mathematical formulation beyond a time horizon are observed. Figure 12.2 is 
a graphical representation of the relation between the solution time needed to 
solve the mathematical programming model and its run length.

The time needed to solve the mathematical programming model appears 
to increase exponentially with an increase in run length. We propose the 
consideration of a lower bound on the total cost objective, obtained by an 
LP relaxation technique, when working with heuristics to solve the supply 
chain problems over a large planning horizon (or for use in a simulation-
based heuristic approach). All the solutions, except that for the run length of 
110 days, are solved for a maximum solution gap of 0.01% using IBM ILOG 
CPLEX Optimization Studio solver and a computer with 64 bit, Intel(R) 
Core(TM) i7-2600 CPU @ 3.40GHz processor and 16GB RAM.
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FIGURE 12.2
Graphical representation of relation between the run length and the time to solve the math-
ematical model.
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The lower bound on the objective of the model considered in this study 
is obtained by the LP-relaxation technique and a selective relaxation of 
some assumptions/conditions. Even though obtaining lower bounds would 
mean the relaxation of some of the conditions of the problem defined in this 
study, such an approach enables the decision maker to execute the model for 
a larger finite time horizon with considerably reduced computational dif-
ficulty. In the mathematical formulation presented in Section 12.3, we relax 
the binary variable t

D( )α  that prevents the coexistence of end on-hand inven-
tory and backlog (see Expression 12.37 and 12.38) for the distributor and treat 
it as a continuous variable in the interval [0, 1] to obtain a lower bound (LB) on 
the objective function (i.e., minimizing TSCC). From Table 12.1, it is clear that 
the time taken to solve the relaxed problem is considerably lower even for the 
longest run length for which the original problem has been solved. Therefore, 
we have not resorted to the relaxation of other binary variables. The time 
taken to obtain solution to the lower bound on the objective  function (i.e., 
TSCC) and the original problem for a run length of 100 days (pilot study) is 
reported in Table 12.1.

The relaxation of the binary variable would result in the distributor being 
able to maintain inventory, and yet incur backlog, in order to minimize the 
TSCC. Now the original model reduces to an allocation model where it is 
no longer necessary for the distributor to ship its entire available on-hand 
inventory in case of shortage, but the distributor reserves the inventory for 
satisfying high-priority demands in future time periods. The introduction 
of the binary variable corresponds to a rationing approach, while the relax-
ation of the binary variable to a [0, 1] continuous variable corresponds to an 
allocation approach. (See Lagodimos and Koukoumialos [2008] for detailed 
reading on the difference between allocation and rationing approaches.)

12.6 Experimental Analysis

In order to test the performance of the proposed mathematical model and 
the solution technology used, we have performed experiments; the next sub-
section discusses the settings for the experiments. In the subsequent subsec-
tion, we present the results and a discussion of the results.

TABLE 12.1

The Time Taken to Solve the Original Problem 
and the Lower-Bound Model

Solution Type TSCC Time (in Seconds)

Original Problem 181039 8789
LB on TSCC 132018 554

Note: TSCC, total supply chain cost; LB, lower bound.



364 Multiple Criteria Decision Making in Supply Chain Management

12.6.1 Experimental Settings

The mathematical programming model proposed in this study can han-
dle any number of retailers. However, to evaluate the performance of the 
solution technique, we have set the number of retailers as four (I = 4) for 
the experiments. The various cost settings used in this study are shown 
in Table 12.2. The maximum possible value for the review period of any 
installation in the experiment is set at five; that is, =Max ri

R_ 5 for i = 1, 
2 …  I; and =Max rD_ 5. The shortage cost-rate (lost sales) for any retailer 
in this study is generalized by b k hi

R
i i

R= ×  where: ki = 20 for i = 1, 2, 3, and 
4 in the case of CS1; and ki = 20, 18, 16, and 14 for i = 1, 2, 3, and 4, respec-
tively, in the case of CS2. The value of P = 1.5 is a parameter and is used to 
calculate the ordering costs of the installations. E Di

R( ) is the expectation 
of customer demand of retailer i and is taken as the mean demand for the 
particular retailer.

The shortage cost is expressed as a multiple of the holding cost because in 
a system with very high service level the holding cost is a prominent cost fac-
tor, and it can be used to approximate the total installation costs (see Silver 
et al. 1998). The lead time for all the installations is taken as one in this study 
because the shipped quantity from an upstream member reaches the down-
stream member in the beginning of the next period.

The customer demand is sampled from a uniform distribution between 
the minimum and maximum values and is assumed to be known a priori 
as the dynamic and deterministic demand over the planning horizon. Hence, 
the demand stream is given as a deterministic input to the mathematical 
model. The minimum and maximum values of demand settings used in this 
study are mentioned in Table 12.3.

Such settings are used with the aim of creating diverse problem instances 
to test the performance and adaptability of the proposed solution tech-
nique. We have set the run length of the study as 40 days. The run length 

TABLE 12.2

Cost Settings Used to Perform Computational Experiments

Cost Setting Distributor Retailer 1 Retailer 2 Retailer 3 Retailer 4

CS1 HC-R 1 2 2 2 2
SC-R 0 40 40 40 40
OC

E D Pi
R

i

I∑ ( ) × E Di
R

i

I∑ ( ) E Di
R

i

I∑ ( ) E Di
R

i

I∑ ( ) E Di
R

i

I∑ ( )
CS2 HC-R 1 2 2 2 2

SC-R 0 40 36 32 28
OC

E D Pi
R

i

I∑ ( ) × E Di
R

i

I∑ ( ) E Di
R

i

I∑ ( ) E Di
R

i

I∑ ( ) E Di
R

i

I∑ ( )
Note: CS1, Cost Setting 1; CS2, Cost Setting 2; HC-R, holding cost-rate; SC-R, shortage 

(lost sales) cost-rate; OC, ordering cost.
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of 40 time units is a reasonably good sample size given the complex nature 
of the mathematical model. If the model is to be run for very large time 
horizons, we propose the use of the LP relaxation in evaluating heuristics. 
MR and MD are set as 1000 in this study. We have three demand settings 
(with the sampled demand stream known a priori and given as an input 
to the mathematical model when executed) and two cost settings in this 
study. All the problem instances are solved by using IBM ILOG CPLEX 
Optimization Studio for a run length of 40 time periods. The TPFRR is 
varied from 0.1 to 1, in steps of 0.1. It implies that when TPFRR = 0.1, the 
solutions to the problem would guarantee a fill rate of minimum 10% for 
all retailers in every time period; when TPFRR = 1, the solutions from the 
mathematical programming model would ensure that the supply chain 
operates with no sales being lost.

12.6.2 Results and Discussions

The results of the problem of inventory optimization and rationing are 
obtained by solving the mathematical formulation using the solver men-
tioned in the previous section for a run length of 40 time periods. The cor-
rectness, robustness, and adaptability of the mathematical programming 
model are tested using the various problem instances explained in the 
experimental settings section. Figures 12.3 and 12.4 are graphs displaying 
the relationship between the TPFR and TSCC composed of installation-
specific holding, lost sales (for retailer), and ordering costs incurred in 
attaining the TPFR level.

The optimal solutions—in the class of (R, S) policy—for the correspond-
ing demand stream are highlighted in Figures 12.3 and 12.4. The math-
ematical formulation, when solved, gives the inventory policy parameters 
of order-up-to levels and review periods for all the installations in the 
supply chain. In demand-setting-A, all retailers are assumed to operate 

TABLE 12.3

Demand Setting Across Retailers 
for Computational Experiments

Installation

Demand-Setting (DS)

A B C

(Minimum Demand, 
Maximum Demand)

Retailer 1 (0, 80) (0, 80) (0, 20)
Retailer 2 (0, 80) (0, 60) (0, 40)
Retailer 3 (0, 80) (0, 40) (0, 60)
Retailer 4 (0, 80) (0, 20) (0, 80)



366 Multiple Criteria Decision Making in Supply Chain Management

with demands among the same limits across all retailers; demand-setting-
B and demand-setting-C represent the case where retailer demands are 
sampled from a uniform distribution with varying limits across retailers 
and given as an input to the model while executing it. Cost-setting-1 is the 
scenario where all retailers have equal cost rates, and cost-setting-2 repre-
sents the scenario where one retailer is differentiated from another with 
respect to profit (i.e.,  lost sales  cost-rate differs from retailer to retailer; 
refer to Table 12.2).

The results in Figures 12.3 and 12.4 can be interpreted as follows: The 
markers indicate the TSCC incurred by the supply chain offering the cor-
responding TPFR level, and the data label is the optimal solution when 
the supply chain is operating with that particular cost and demand setting 
for the demand stream. The supply chain operating with a particular cost 
and demand setting can guarantee a TPFR for the corresponding cost men-
tioned in the graph; for example, for cost-setting-1 and demand-setting-A 
(CS1DSA), minimum TSCC equals 33591 (monetary units), and the supply 
chain can guarantee a TPFR of 54% incurring the minimum TSCC. With the 
aid of the results in Figures 12.3 and 12.4, supply chain managers can make 
decisions about the level of customer satisfaction that the supply chain can 
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FIGURE 12.3
Relationship between TSCC and threshold PFR for cost-setting-1 and demand-setting-A.
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guarantee and the corresponding costs that the supply chain incurs, while 
attaining the level of customer satisfaction (denoted by the TPFR).

The compositions of TSCC vary with the TPFR levels and are displayed 
in Figure 12.5 through Figure 12.10 for a given demand stream. Our study 
helps managers to identify the areas in which to alleviate costs by provid-
ing the breakup of the various components of TSCC with respect to every 
TPFR level. From the bar chart in Figure  12.5, one can observe that the 
total supply chain shortage cost (TSCSC) component of TSCC is dimin-
ishing and is nonexistent when the TPFR of 100% is guaranteed by the 
supply chain. It  should  be noted that even though the TSCSC compo-
nent of TSCC decreases with an increased TPFR, the TSCC is escalating. 
This is due to the fact that the ordering frequency or ordering quantity 
(or both) is/are varied to meet the augmented TPFR requirement. The 
optimal solutions for various supply chain settings are highlighted in 
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Figure 12.5 to Figure 12.10 using a darker shade for the bar  corresponding 
to the minimum TSCC and the TPFR. The breakup of the TSCC and analy-
sis of its various components can bring to the   forefront the components 
of the TSCC that are prominent toward contributing and escalating the 
total costs; such an analysis can aid decision makers in understanding 
and resolving the corresponding trade-off issues involving the TSCC and 
the TPFR.

Table 12.4 displays the order-up-to levels of all the members of the supply 
chain with respect to all settings. The order-up-to levels and review periods 
are the decision variables in this study and are set by the solver for respec-
tive settings to obtain an optimum solution with the ε-constraint approach.

We present the breakup of the total costs incurred by respective retail-
ers in attaining threshold levels of PFR in Figure  12.11. The breakup of 
costs pertaining to each retailer for all the problem instances is obtained 
and is  presented for the problem instance with cost-setting-2 and demand- 
setting-A. An analysis of costs in terms of the various installations’ contribu-
tions to TSCC will help decision makers in making informed decisions, and 
it provides them with an enhanced understanding about the functioning of 
the supply chain.

Figure 12.11 is a collection of bar charts displaying the components of total 
cost for all retailers, and the optimum for the entire supply chain is depicted 
using a darker shade for the corresponding bar. The results obtained from 
cost-setting-2 and demand-setting-A are presented for individual retailers; 
the minimum TSCC is 33461 (monetary units) and corresponding TPFR is 
48% for this setting. In order to develop long-term relationships with its cus-
tomers and to attain higher level of customer satisfaction, we introduce the 
PFR as a constraint with a threshold level. The threshold fill rate guaran-
teed by the supply chain to its customers can be fixed by the supply chain 
manager, and the solution to our mathematical programming model would 
aid the decision maker in arriving at the right level of trade-off between the 
TSCC and customer satisfaction.

TABLE 12.4

Order-Up-To Levels for All the Settings

Setting

Order-Up-To Levels

Distributor Retailer 1 Retailer 2 Retailer 3 Retailer 4

CS1DSA 91 161 154 191 179

CS2DSA 93 159 152 186 177

CS1DSB 166 158 119 79 39

CS2DSB 166 158 119 78 38

CS1DSC 166 39 79 119 158

CS2DSC 166 39 79 117 156

Note: CS1DSA, Cost-Setting-1 and Demand-Setting-A and similarly for all other settings.
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12.7  Implications of This Study, Conclusions, 
and Future Research Directions

It should be noted from the breakup of costs incurred by respective retailers 
that, given the TPFR, the model does not guarantee minimum costs for each 
and every retailer but the minimum total cost for the entire supply chain. 
So the model presented in this study is appropriate for those supply chains 
where the retailers are owned by the distributor or the manufacturer and 
for those supply chains where the decision-making power vests with a sin-
gle supply chain planner such as a dominant manufacturer or distributor 
capable of dictating terms to retailers. If decision-making power is bestowed 
on individual retailers, the optimum policy parameters for the entire sup-
ply chain and optimum policy parameters for individual retailers could be 
different, and hence a conflict of interest may arise between the members of 
the supply chain. If individual retailers are allowed to locally optimize their 
policy parameters, the entire supply chain will either incur loss in the pro-
cess or the practice will lead to escalating TSCCs. It can be observed from the 
bar chart in Figure 12.11 that the optimum point in terms of the TSCC and 
the TPFR that can be guaranteed by retailer 1 is the TPFR of 70%, incurring a 
(minimum) total cost of 6230 (monetary units); for retailer 2, it is the TPFR of 
48%, incurring a (minimum) total cost of 7036 (monetary units); for retailer 
3, it is the TPFR of 20%, incurring a (minimum) total cost of 7068 (monetary 
units); and for retailer 4, it is the TPFR of 90%, incurring a (minimum) total 
cost of 6728 (monetary units), compared to the supply chain’s optimum of 
guaranteeing the TPFR of 48% and by incurring a (minimum) TSCC of 33461 
(monetary units). The retailers may have a conflict of interest (in terms of the 
optimum TPFR guaranteed and the total cost incurred in attaining the cor-
responding TPFR), and hence a revenue sharing mechanism is to be agreed 
between the members of the supply chain in order to operate within the 
optimal order policy parameters (in the class of (R, S) policy), if the mem-
bers of the supply chain are not controlled by a central supply chain plan-
ner. The intricacies and specifications of such coordination mechanisms/
agreements among the members in the case of the supply chain operating 
with a separate decision maker for every member of the supply chain can be 
taken up in future research. However, our study will enable the decision 
makers to make informed decisions during such agreements or coordination 
mechanisms because the cost components for respective retailers for various 
scenarios are presented. Our proposed approach is different from the ear-
lier approaches—such as that by Paul and Rajendran (2011) and, hence, ours 
is a step toward reality. (See our earlier discussion and the Appendix for a 
numerical illustration.)

Through the various cost and demand settings, the performance of the 
mathematical programming model for the supply chain operating with 
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lost sales, review period, rationing, and multiple objectives are analyzed. 
The  model presented in this study is a step closer to reality in the sense 
that the orders placed by the distributor, corresponding to the contemplated 
recipient (i.e., retailer), are delivered to the respective retailer. No interchang-
ing (or mix-up) of the replenishment corresponding to the demand from the 
contemplated retailer is allowed in any time period; in addition, customer 
satisfaction is considered simultaneously with minimizing TSCC. From a 
technical point of view, the optimal solution (in the class of assumed inven-
tory policy) obtained from the MILP model can act as a lower bound on the 
TSCC to evaluate the performance of heuristics, if developed in future. (This 
is because the MILP model has the complete demand stream as its input and 
it does the rationing mechanism inherently with multiple objectives, unlike 
the existing rationing rules.)

This chapter addresses the problem of obtaining the optimal installation-
specific inventory-control policy parameters for (R, S) policy in a divergent 
supply chain operating with multiple retailers, a distributor, a manufacturer, 
and lost sales of unsatisfied retailer demands, over a finite planning horizon. 
The model considered in this study does not allow the interchange of orders 
from/replenishments to retailers, and a two-phase allocation- rationing 
mechanism is proposed here to ration the inventories to the retailers in case 
of a shortage. A solution methodology based on the ε-constraint method is 
used to solve an MILP-based mathematical programming model of the sup-
ply chain operating with the conflicting objectives of minimizing TSCC and 
maximizing customer satisfaction measured using PFR. This study provides 
an analysis into the costs incurred by the various installations as well as the 
contribution of the various cost components to total supply chain cost in try-
ing to achieve a threshold level of fill rate. A lower bound on the objective 
(i.e., TSCC) is proposed by making use of the LP relaxation technique, and 
this approach can be used in the case of longer run lengths and therefore can 
be used for future research on heuristics. Multiple products, multiple stages, 
and multiple distributors can be a possible research extension. Supply chains 
operating with more than two objectives can be considered in the future. 
Measuring the performance of the supply chain with other metrics of cus-
tomer satisfaction also can be research for the future.
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Appendix

A hypothetical example to differentiate the model in this study and the 
model proposed by Paul and Rajendran (2011) is given here, with assumed 
data and values.

Distributor Retailer 1 Retailer 2 Retailer 3

Parameters
Holding cost rate 1 2 2 2
Shortage cost rate 0 10 100 200
Ordering cost 0 300 300 300

Decision Variables
Order-up-to level (S) 100 200 250 150
Review period (R) 1 1 1 1
Demand (t = 1) 150 200 50
Demand (t = 2) 50 100 150

Approach Used in this Study Approach Used by Paul and Rajendran (2011)

Day 1:

= 1501,1OQR = 1501,1OQR

= 2002,1OQR = 2002,1OQR

= 503,1OQR = 503,1OQR

= = 1001BI SD D = = 1001BI SD D

=_ 01,1A QD –

=_ 02,1A QD –

=_ 03,1A QD –

=_ 01,1R QSD =_ 01,1R QSD

( )= >_ 502,1 2 1R QS b bD R R∵ ( )= >∵_ 502,1 2 1R QS b bD R R

( )= > >_ 503,1 3 2 1R QS b b bD R R R∵ ( )= > >∵_ 503,1 3 2 1R QS b b bD R R R

= 01,1QSSD = 01,1QSSD

= 502,1QSSD = 502,1QSSD

Continued
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Approach Used in this Study Approach Used by Paul and Rajendran (2011)

= 503,1QSSD = 503,1QSSD

=_ 1501,1S RPD –

=_ 2002,1S RPD –

=_ 503,1S RPD –

= 400,1OQM
D = 400,1OQM

D

Day 2:

= 501,2OQR = 501,2OQR

= 1002,2OQR = 1002,2OQR

= 1503,2OQR = 1503,2OQR

= =400( 1)2BI LTD D = =400( 1)2BI LTD D

=_ 1501,2A QD –

=A QD_ 1502,2
–

=A QD_ 03,2
–

=R QSD_ 01,2 =R QSD_ 01,2

=R QSD_ 02,2 ( )= + >R QS b bD R R∵_ 100 1502,2 2 1

( )= > >∵R QS b b bD R R R_ 1503,2 3 2 1 ( )= > >∵R QS b b bD R R R_ 1503,2 3 2 1

= 1501,2QSSD = 01,2QSSD

= 1502,2QSSD = 2502,2QSSD

= 1003,2QSSD = 1503,2QSSD

Our approach is different, and this numerical example confirms our 
claim; OQM

D ( 400),1 =  corresponds to OQR
1,1 (i.e., equal to 150 and not sat-

isfied by the distributor), OQR
2,1 (equal to 200 and not satisfied com-

pletely by the distributor), OQR
3,1 (equal to 50, and completely satisfied 

by the distributor), and SD(= 100). On the second day, out of 400 units 
of replenishment received from the manufacturer, we first allocate 
150 units to retailer 1 (i.e., =_ 1501, 2A QD ) and allocate 150 units to retailer 2 
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(i.e.,  =_ 1502, 2A QD ), corresponding to the previous day’s retailer order 
 quantities to the distributor. We then ration the leftover inventory of 
100 units to retailers. This two-phase mechanism ensures that the replen-
ishment from the manufacturer is shipped by the distributor to the con-
templated retailers (orders up to the day of the distributor’s last review) 
with no mix-up or interchange. However, according to earlier attempts 
such as that by Paul and Rajendran (2011), the quantity received by the 
distributor from the manufacturer (400 units) is completely rationed 
between retailer 3 and retailer 2 in order to minimize the TSCC, without 
considering the unsatisfied order quantities corresponding to retailer 1 
and retailer 2 (up to the day of the last review of the distributor) and with-
out considering the due allocation to retailers. Hence, it is evident that our 
attempt is a step toward real-life situations where the interchange or mix-
up of shipments corresponding to retailers’ order quantities (up to the day 
of the last review of the distributor) is not permitted.
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