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Preface

The research work presented in this book arises from the involvement of
the author in engineering studies of the reliability of drinking water pipes.
This type of infrastructure is organized as a network of pipelines, and failures,
namely leakage or breakage, tend to occur in an aggregative manner on the
same network segments. Building relevant strategies of infrastructure asset
management requires, therefore, accurate modeling tools of the repeated
failures that can affect some pipes, due to the heavy socioeconomic and
environmental consequences of leakage and breakage.

Yves Le Gat
October 2015
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Introduction

Examples of recurrent failures abound in the literature devoted to the
reliability of technical objects, and in many cases, the occurrence rates tend to
increase not only with the ageing of the object, but also with the number of
past failures. The effect of ageing can be relevantly modeled using the now
classical non-homogeneous Poisson process (NHPP), a comprehensive
presentation of which can be found in [LAW 87], and a good example of
application to drinking water pipe failures in [RØS 00]. In this same context
of pipe failures, the PhD work of [EIS 94] emphasizes the critical importance
of past failures. The consideration of the dependency of the failure process on
its past is not a trivial question, and motivates a theoretical effort which the
present book attempts to contribute to.

The basic concept of a stochastic process underlies all developments of the
present work. A stochastic process must be understood as a function X() of
time t, each X(t) being considered as a random variable (r.v.).

The stochastic process theory is the natural mathematical framework for
studying the repetition of random events of the same kind. As presented by
[COO 02], this question can be addressed from two alternative perspectives,
which are equivalent and respectively consist of modeling:

– either the distribution of successive inter-arrival times;

– or the distribution of the number of events that occur in a given time
interval.

Recurrent Event Modeling Based on the Yule Process: Application to Water Network
Asset Management, First Edition. Yves Le Gat.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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The method chosen by [EIS 94] arises from the first approach. The
“classical” presentation of [ROS 83] arises from the second approach. The
linear extension of the Yule process (called LEYP throughout the rest of the
book) aims at building a failure occurrence model that cumulates the
advantages of both NHPP and [EIS 94]’s approaches. This involves a
theoretical setup, focused on the counting process concept, which is to be
developed throughout the next two chapters.

A counting process is a particular stochastic process, simply designed to
count repeated events, as presented in section 1.2.1.

As this presentation is to have a general scope, the entity subjected to
repeated failures will be called a technical object or more simply an object;
this term will be replaced by “water main” or “water pipe” when the context
refers more specifically to failures that affect a water network.

1.1. Notation

The following mathematical notations will be used throughout this book:

– � and �∗ respectively denote the sets of natural integers {0, 1, 2, . . . ,∞}
and the set of strictly positive natural integers {1, 2, . . . ,∞};

– �, �+ and �∗+ are the real sets ] −∞,+∞[, [0,+∞[ and ]0,+∞[ ;

– P (A) and P (A | B) respectively denote the probability of the event A, and
the conditional probability of A given that the other event B occurs;

– P (A ∩ B) and P (A, B) equivalently denote the joint probability of events
A and B ; P

(⋂
j A j
)

more generally stands for the joint probability of events
A j;

– t ∈ �+ is a positive time variable that stands for the age of a technical
object;

– N(t) ∈ � is an integer-valued step function that counts the failures;

– dN(t) = N(t+dt)−N(t) is the differential of N(t), i.e. dN(t) = 1 whenever
a failure occurs within [t, t + dt[, dN(t) = 0 otherwise;

– ΔN(t) = N(t) − N(t−) stands for the increment of N(t) at t;
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– N[a,t[ stands for the auto-excitingσ-algebra generated by the process N(t)
within [a, t[ ;

– Nt− stands for the auto-exciting σ-algebra N[0,t[;

– Z is a vector of failure factor values specific to a given technical object,
also called “covariates”;

– F[a,t[ = N[a,t[ ∨ σ(Z) denotes the information on the process N[a,t[
increased by the knowledge of the covariates Z, or more technically the
smallest σ-algebra that contains all events composed with events of σ-algebras
N[a,t[ and σ(Z);

– λ(t) is a real positive function bounded on any compact interval, and its
integral is Λ(t) =

∫ t
0 λ(u)du;

– EX and E (X | A) respectively denotes the expectation of the random
variable (r. v.) X and its conditional expectation given A;

– Var (X) denotes the variance of the r. v. X;

–UE stands for the uniform distribution on the set E;

–U[0,1] denotes in particular the uniform distribution on interval [0, 1] ;

– N(μ, σ2) stands for the Gaussian distribution with expectation μ and
variance σ2;

– Po(μ) is the Poisson distribution with expectation μ ∈ �+;

– NB(θ, p) is the negative binomial distribution with two parameters θ ∈
�∗+ and p ∈ [0, 1];

– NM(θ, (p j) j=1,...,n) is the negative multinomial distribution with n + 1
parameters θ ∈ �∗+ and p j ∈ [0, 1];

–M(k, (p j) j=1,...,n) is the multinomial distribution with n + 1 parameters
k ∈ �∗ and pj ∈ [0, 1], where

∑n
j=1 p j = 1;

– χ2(k) is the Chi-squared distribution with k ∈ �∗ degrees of freedom;

– L(θ) stands for the likelihood of a theoretical process with parameter θ
given a sequence of observed events;

– π stands for the product integral operator, which plays the same role for
products as the integral operator

∫
plays for sums;
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– the indicator function I (p) of proposition p takes value 1 if p is true, 0
otherwise;

– s ∧ t gives the minimum of scalars s and t;

– the operator min() gives the minimum of a collection of values;

– the operator max() gives the maximum of a collection of values.

The calculation lines that build up the proof of a proposition will be closed
by a right-justified � symbol. The text lines that express a remark will be typed
in italic and closed by a right-justified � symbol.

1.2. General theoretical framework

The theoretical approach adopted throughout this book builds on two
essential reference textbooks. The pioneering Statistical Models Based on
Counting Processes [AND 93], by P.K. Andersen, Ø. Borgan, R.D. Gill and
N. Keiding, emphasizes the power of the concepts of the counting process
and intensity function to rigorously process survival data. More recently,
Survival and Event History Analysis [AAL 08], by O.O. Aalen, Ø. Borgan
and H.K. Gjessing, explicitly extends the theoretical framework to properly
handle recurrent event data.

1.2.1. The concept of a counting process

We consider a technical object which is observable in continuous time and
is likely to undergo events of interest, also called failures, at random times T j,
with j ∈ � denoting the rank of the failure. The time variable t is measured
since the object considered was put into service, i.e. at t = 0, and we will often
use the terms “time” and “age” indifferently. By convention, the failure time
T0 is not random and fixed at the time the object began to be observed, at age 0
or later. The random variable T j might then be either the age at the first failure,
or at the first observed failure. The time interval within which the object is
observed will be denoted by [a, b], with a ∈ �+, b ∈ �∗+.

As illustrated in Figure 1.1, the counting process N(t) is a right continuous
and left-limited integer-valued function that starts at N(0) = 0 and increases
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by one unit at each T j:

∀t ∈ {T j : j = 1, . . . ,∞}, dN(t) = 1

∀t ∈]T j, T j+1[: j = 0, . . . ,∞, dN(t) = 0

It is moreover assumed that at most one failure can occur at a given time,
and that the process cannot “explode”, i.e. the counting function keeps a finite
value at any finite time:

∀t ∈ �+,{
P (dN(t) > 1) = 0
P (N(t) < ∞) = 1

�
0 t1 t2 t j· · · t

�

0

1

2

j

···

N(t) dN(t)

•

•

•

Figure 1.1. Counting process N(t) and differential dN(t)

1.2.2. The intensity function of a counting process

Let N[a,t[ denote the σ-algebra σ (N(s) − N(a))s∈[a,t[. Informally called the
past in [AAL 08], N[a,t[ can be seen as the knowledge available about the
process since the beginning of its observation until just before t. This
information is qualified as left-truncated if the failure process is not observed
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since the object was put into service (a > 0), so nothing is known about the
process within [0, a[.

The intensity function of N(t), which we will denote by η(t), can be
heuristically defined as the probability density of a one unit jump at t,
conditional on the past:

P
(
dN(t) = 1 | N[a,t[

)
= E
(
dN(t) | N[a,t[

)
Remark 1.1.– It is here to be stressed that the main modeling effort presented
in this book has consisted of searching for a parametric form as suitable as
possible for E

(
dN(t) | N[a,t[

)
. This conditional expectation assumes an

underlying probability distribution for the r.v. N(t) − N(a) | N[a,t[, which will
generally depend on the parameter denoted by θ; to emphasize the role of θ,
the intensity will sometimes be written as Eθ

(
dN(t) | N[a,t[

)
. �

1.3. The non-homogeneous Poisson process

The NHPP model, as presented by [ROS 83], can be defined as:

Definition 1.1.– The NHPP is defined by the system of equations:

∀t ∈ �+,{
N(0) = 0
E (dN(t) | Nt−) = E (dN(t)) = λ(t)dt

Pivotal properties of NHPP are:

– the intensity depends on age t, hence the term non-homogeneous;

– N(t) is Poisson distributed with parameter Λ(t) =
∫ t

0 λ(u)du;

– N(t) is Markovian, i.e. its distribution does not depend on the trajectory it
took between 0 and t−.

The particular intensity function λ(t) = δtδ−1eZTβ is presented by [LAW 87]
as tractable for practical use. It is the product of two factors:

– an ageing factor δtδ−1, sometimes called Weibull factor (see [AAL 08]),

– a scale factor eZTβ, often called Cox factor, for it has initially been
proposed by [COX 72].
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Z is a vector of explanatory variable values, or covariates, which can be
either categorical or quantitative, and characterize the technical object or its
environment. β is a vector of regression coefficients that account for the
effects of the covariates on the process intensity. The first components of Z
and β are respectively 1 and β0, and define the baseline intensity, when all
other covariate values are 0. The exponential form in the Cox factor make
covariates act multiplicatively on the intensity, which makes us qualify this
form of NHPP as proportional hazard model (PHM), sometimes also called
Cox model.

1.4. The Eisenbeis model

In the model of [EIS 94], which from now will be refered to as the Eisenbeis
model, the successive inter-event times are random variables X j = T j − T j−1
defined by �+, which are indexed by the event occurrence rank j ∈ �, and
follow Weibull distributions with parameters μ j and δ j that depend on j. The
cumulative distribution function (CDF) of X j is written as:

∀x ∈ �+,∀ j ∈ �, P
(
Xj ≤ x | μ j, δ j

)
= 1 − exp

(
−xδ jeμ j

)
The parameter μ j is moreover defined as a linear combination ZTβ j of

explanatory variables (covariates), which can be either categorical or
quantitative, and characterize the technical object or its environment. In the
technical context of the Eisenbeis model, water mains are characterized by
their diameter, length, location under roadway or sidewalk, type of
embedding soil, etc. β j is a parameter vector, specific to event rank j. As
NHPP, this model is thus also a PHM. The components of vectors Z and β j
are indexed by convention from 0 to q, where q is the actual number of
covariates; a numerical covariate counts indeed for one, whereas a categorical
covariate with m possible values counts for m − 1 actual covariates (i.e. m − 1
indicator variables).

The Eisenbeis model can also be reformulated as the counting process N(t)
of the number of events undergone by the object within interval [0, t]:
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Definition 1.2.– The Eisenbeis model is defined by the system of equations:

∀t ∈]T j−1, T j],∀ j ∈ �∗,{
N(0) = 0
E (dN(t) | N(t−) = j − 1) = δ j(t − TN(t−))δ j−1eZTβ jdt

where by convention T0 = 0 at installation of the water main.

To not have to estimate too many parameters, [EIS 94] proposes to simplify
the dependency of δ j and β j on j by grouping the values of j into three strata:

– Stratum I for j ∈ {1} ,

– Stratum II for j ∈ {2, 3, 4}
– and Stratum III for j ∈ {5, 6, . . .},

and by fixing also δIII = 1 in the third stratum.

The respective definitions 1.2 and 1.1 of Eisenbeis and NHPP models
highlight an essential difference: the intensity of Eisenbeis model strongly
depends on the failure rank, whereas the NHPP is mainly driven by the
process age. The counting process based on the Eisenbeis model is
additionally not Markovian, as its distribution depends on the ages at the
previous failures.

1.5. Other approaches for water pipe failure modeling

There is an extensive amount of international literature devoted to the
modeling of repeated water pipe failures. A relevant overview covering
publications since 1979 is given by [KLE 01], more recently completed by
[BER 08, BUR 10] and [STC 12]. It is to be noticed that, except for the works
focused on inter-failure times, the theoretical framework of stochastic
processes is never mentioned. This tendency seems to want to last, since most
recent publications, such as [DEB 10] and [YAM 09], promote generalized
linear models; [DEB 10] considers the occurrence of at least one failure
within time intervals of some years as Poisson distributed, whereas [YAM 09]
considers shorter time intervals of some months and the binomial distribution.
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1.6. Why mobilize the Yule process?

Definition 1.2 of the Eisenbeis model involves an important limitation:
estimating parameters by means of observed data is only possible provided
that the technical objects are observed since their installation; if observation is
oppositely restricted to an age interval [a, b] where a > 0, event ranks are
unknown and the model cannot therefore be applied.

Practical applications, reported by [LEG 00], have however been carried
out to get around the left-truncation issue:

– by consenting to consider that t = 0 at the beginning of the observation
window;

– and by introducing, in log transforms, the age at the previous failure as
well as observed failure ranks as covariates.

Results are interesting on the whole, and show an advantage over NHPP in
detecting the water pipes that are the most likely to fail. The Eisenbeis model
turns out to be an interesting tool for prioritizing water main renovations or
replacements. Predictions of future failure numbers have however always
included an embarrassing overestimation tendency. The NHPP, on the other
hand, poorly detects water pipes likely to fail, but provides unbiased average
predictions. Implementing the Eisenbeis model requires moreover time
consuming Monte Carlo computations to get around the impossibility of
literally calculating the convolution of Weibull distributions. By contrast,
NHPP allows very simple and quick prediction computations.

Investigating the use of the Yule process is then fully justified by the
search of a model that would combine the advantages of both Eisenbeis and
NHPP models, namely a good ability to detect the objects most likely to
undergo future failures, and to provide unbiased and easy to compute
predictions. The intensity of the searched process should increase both with
age and past failures. The idea to exponentially combine distributed
inter-arrival times, the parameter of which depends on the event rank, is
mentioned by [LEG 01], who refers to Furry distribution (sometimes also
known as the Yule–Furry distribution). The work of [PEL 99] is also to be
mentioned, which presents a rigorous solution to handle the Eisenbeis model
with observations restricted to age intervals [a, b] that do not start at a = 0, by
explicitly calculating probabilities P (N(b) − N(a) = m | N(a) = j), and then



10 Recurrent Event Modeling Based on the Yule Process

their expectation over j. The idea to mobilize the Yule process is thus greatly
indebted to [LEG 01] and [PEL 99]. The theoretical basis of the Yule process
is moreover well presented by [ROS 83].

1.7. Structure of the book

After this introductory chapter, Chapter 2 will be devoted to preliminary
concepts and tools of probability theory; these preliminaries will particularly
concern the binomial and multinomial distributions, the negative binomial
and multinomial distributions and power series, and their link with the Yule
process. Chapter 3 presents the most general form of non-homogeneous birth
process (NHBP), insisting particularly on a general formula for the
conditional probability of the number of events within a given time interval
[a, b] given the number of events that occurred within interval [0, a[. This
result is then applied in Chapter 4 to the case where the intensity of NHBP
linearly depends on the number of past events, which defined the so-called
linear extension of the Yule process (LEYP); analytical formulas of the
negative binomial probability of the number of events within a time interval
given increasingly general past observation interval configurations will be
established, as well as a negative multinomial generalization for the joint
probability of several time intervals (adjacent and non-overlapping). Chapter
5 will establish the likelihood function of a LEYP process given randomly
observed sequences of failures, undergone by technical objects characterized
by known covariate values; this result is essential to implement an estimation
procedure of the LEYP parameters, for which task the interest of the
box-constrained Nelder–Mead optimization algorithm will be emphasized.
An important extension of LEYP model will then be presented in Chapter 6,
aiming at accounting for the selective survival phenomenon; this arises when
the LEYP process is not observed since the object installation, and the objects
which can be observed are likely to be the most robust among their cohort.
This setup involves considering technical objects with a limited service life,
and a decommissioning process that depends on the failure process, and at the
same time is susceptible to truncate and censor it. This development gives rise
to the so-called LEYP2s, the likelihood of which is then studied in Chapter 7;
this chapter also presents a numerical validation of LEYP2s model parameter
estimation procedure. A case study LEYP2s model application, that uses
water network data kindly provided by Lausanne (CH) water utility, is
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presented in Chapter 8, and allows us to check the practical interest of such a
statistical tool. Chapter 9 concludes the book.

Chapters 7 and 8 involve some computations, either based on random or
actual data, which were all carried out by the author for specific illustration
purpose of the book. This whole computational work has been implemented in
R scripts [RD 11].





2

Preliminaries

This chapter gathers miscellaneous basic concepts and tools in probability
calculus that are useful for further analyzing constructs of the
non-homogeneous birth process (NHBP), and as a particular case, the linearly
extended Yule process (LEYP). The main covered topics here are the Yule
process, the negative binomial distribution and its multinomial generalization,
the gamma function and gamma distribution, and the negative binomial and
multinomial power series.

Although these fundamental topics are somewhat classical in probability
theory, we have considered it useful to present them in detail. Our goal is to
familiarize the reader with some analytical handlings indispensable to
understand the next chapters, which are not explicitly covered in classical
textbooks.

2.1. The Yule process and the negative binomial distribution

The so-called Yule process was initially presented by G. Udny Yule in his
seminal paper [YUL 24], which attempted to formalize the probabilistic bases
of evolution theory, and more particularly the temporal increase in the number
of taxonomic species in a given genus. The Yule process, also frequently
called pure birth process, has since become a classical model in stochastic
process theory. It was presented by [ROS 83] as a simple model of the
temporal growth of a population, initially composed of a single founder, and
within which individuals reproduce at the constant rate λ > 0 and have a null
mortality rate. The Yule process is then considered by [ROS 83] as the
counting process N(t) that represents the population size at time t.

Recurrent Event Modeling Based on the Yule Process: Application to Water Network
Asset Management, First Edition. Yves Le Gat.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Definition 2.1.– The Yule process with intensity λ ∈ �+ is defined by the system
of equations:

∀t ∈ �+,∀ j ∈ �∗,{
N(0) = 1
E (dN(t) | Nt−) = E (dN(t) | N(t−) = j) = jλdt

The process N(t) has two important properties:

– it is a Markovian process, as the probability of a birth between t and t+dt
only depends on the population size just before t, denoted by N(t−);

– at most, one birth can occur within an infinitesimal time interval.

As a remarkable consequence, the distribution of N(t) over�∗ is geometric:

∀t ∈ �+,∀ j ∈ � : P (N(t) = j + 1) = e−λt(1 − e−λt) j [2.1]

This result generalizes to the case of more than one founder, i.e. an initial
population size k � 1. The distribution of N(t) over�∩ [k,+∞[ is obtained by
summing the random descendant numbers of the k founders, i.e. by convolving
k times the geometric distribution [2.1]. This convolution leads to a negative
binomial distribution NB(k, e−λt):

∀t ∈ �+,∀ j ∈ � : P (N(t) = j + k) =
(

j + k − 1
k − 1

)
e−kλt(1 − e−λt) j [2.2]

This way of generating a negative binomial distribution is substantially
different from the classical distribution presented by [REN 66]. Let the event
A( j, k) be defined by j + k random Bernoulli trials, identical and independent
with success probability p, and along which j failures and k successes are
observed, the last trial being successful. The discrete r.v. J takes the value
j ∈ � when A( j, k) occurs, and its probability function is then:

P (J = j) =
(

j + k − 1
k − 1

)
pk(1 − p) j [2.3]

This is simply the joint probability of k successes and j failures multiplied
by the number of ways to locate the k − 1 first successes among the j + k − 1
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trials that precede the final kth success. The negative binomial distribution of
J is then denoted by J ∼ NB(k, p).

The definition of the negative binomial distribution NB(k, p), where k is
an integer, generalizes without difficulty toNB(θ, p) where θ is a positive real
number. The probability function of integer-valued r.v. J ∈ � ∼ NB(θ, p) is
then:

P (J = j) =
Γ(θ + j)
Γ(θ) j!

pθ(1 − p) j [2.4]

Remark 2.1.– The form in [2.4] is consistent with [2.3] on account of the
property of the Gamma function Γ(.):

∀n ∈ � : Γ(n + 1) = n! �
It is also worth mentioning the formulas to calculate the expectation and

variance of the integer-valued r.v. J ∼ NB(θ, p). To establish them, the
following property of the Gamma function Γ(.) is used:

∀z ∈ �∗+, Γ(z + 1) = zΓ(z) [2.5]

Proposition 2.1.– The expectation of the r.v. J ∼ NB(θ, p) is:

E (J) =
θ(1 − p)

p

Proof.–

We use [2.5] and the change of variable l = j − 1:

E (J) =
∞∑
j=0

jP (J = j) =
∞∑
j=0

j
Γ(θ + j)
Γ(θ) j!

pθ(1 − p) j

=

∞∑
j=1

(θ + j − 1)
Γ(θ + j − 1)
Γ(θ)( j − 1)!

pθ(1 − p)(1 − p) j−1

= θ(1 − p)
∞∑

l=0

Γ(θ + l)
Γ(θ)l!

pθ(1 − p)l + (1 − p)
∞∑

l=0

l
Γ(θ + l)
Γ(θ)l!

pθ(1 − p)l

= θ(1 − p) + (1 − p)E (J)
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Which shows that:

E (J) − (1 − p)E (J) = θ(1 − p)

And finally:

E (J) =
θ(1 − p)

p
�

Proposition 2.2.– The variance of the r.v. J ∼ NB(θ, p) is:

Var (J) =
θ(1 − p)

p2

Proof.–

Var (J) =
∞∑
j=0

j2P (J = j) − E (J)2

We use [2.5] and the change of variable l = j − 1:

Var (J) + E (J)2 =

∞∑
j=0

j2
Γ(θ + j)
Γ(θ) j!

pθ(1 − p) j

=

∞∑
j=1

j
Γ(θ + j)
Γ(θ)( j − 1)!

pθ(1 − p) j

=

∞∑
j=1

( j − 1)
Γ(θ + j)
Γ(θ)( j − 1)!

pθ(1 − p) j

+

∞∑
j=1

Γ(θ + j)
Γ(θ)( j − 1)!

pθ(1 − p) j

=

∞∑
j=1

( j − 1)(θ + j − 1)
Γ(θ + j − 1)
Γ(θ)( j − 1)!

pθ(1 − p) j

+

∞∑
j=1

(θ + j − 1)
Γ(θ + j − 1)
Γ(θ)( j − 1)!

pθ(1 − p) j
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=

∞∑
j=1

θ( j − 1)
Γ(θ + j − 1)
Γ(θ)( j − 1)!

pθ(1 − p) j

+

∞∑
j=1

( j − 1)2Γ(θ + j − 1)
Γ(θ)( j − 1)!

pθ(1 − p) j

+

∞∑
j=1

θ
Γ(θ + j − 1)
Γ(θ)( j − 1)!

pθ(1 − p) j +

∞∑
j=1

( j − 1)
Γ(θ + j − 1)
Γ(θ)( j − 1)!

pθ(1 − p) j

=

∞∑
l=0

θ(1 − p)l
Γ(θ + l)
Γ(θ)l!

pθ(1 − p)l +

∞∑
l=0

(1 − p)l2
Γ(θ + l)
Γ(θ)l!

pθ(1 − p)l

+

∞∑
l=0

θ(1 − p)
Γ(θ + l)
Γ(θ)l!

pθ(1 − p)l +

∞∑
l=0

(1 − p)l
Γ(θ + l)
Γ(θ)l!

pθ(1 − p)l

= θ(1 − p)E (J) + (1 − p)
(
Var (J) + E (J)2

)
+ θ(1 − p)(1 − p)E (J)

Which shows that:

Var (J) − (1 − p)Var (J)

= θ(1 − p)E (J) + (1 − p)E (J)2 + θ(1 − p) + (1 − p)E (J) − E (J)2

And, using proposition 2.1:

pVar (J) = pE (J)2 + (1 − p)E (J)2 + pE (J) + (1 − p)E (J) − E (J)2

And, finally:

Var (J) = E (J) /p �

2.2. Gamma-mixture of NHPP

The following result are taken from [GRE 20]: if the conditional
distribution of r.v. X is Poisson with expectation θ, and θ is
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Gamma-distributed with parameters μ, σ ∈ �∗+, then the marginal distribution
of X is negative binomial NB(μ, 1/(σ + 1)).

Proof.–

The conditional probability of X is:

P (X = x | θ) = θ
x

x!
e−θ,∀x ∈ �

and the probability density of θ ∈ �+ ∼ G(μ, σ):

f (θ) =
θμ−1e−θ/σ

σμΓ(μ)

And the marginal probability of X is then:

P (X = x) =
∫ +∞

0

θx

x!
e−θ
θμ−1e−θ/σ

σμΓ(μ)
dθ

=
1

Γ(μ)x!σμ

∫ +∞
0
θx+μ−1e−θ(1+

1
σ )dθ

=
Γ(μ + x)

Γ(μ)x!σμ(1 + 1
σ )μ+x

=
Γ(μ + x)
Γ(μ)x!

(
1
σ + 1

)μ (
σ

σ + 1

)x
�

Remark 2.2.– The penultimate equality results from the definition and the
following property of the Gamma function (see [ABR 72]):

∀x ∈ �∗+,∀y ∈ �∗+, Γ(x) =
∫ +∞

0
tx−1e−tdt

= yx
∫ +∞

0
tx−1e−ytdt �

As a consequence emphasized by [LAW 87], a counting process with
intensity function:

E (dN(t)) = vλ(t)dt
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where v is a Gamma-distributed random factor with expectation 1 and
variance α:

v ∈ �+ ∼ G(α−1, α)

has a negative binomial distribution:

N(t) ∼ NB
(
α−1, (αΛ(t) + 1)−1

)
where Λ(t) =

∫ t
0 λ(u)du.

2.3. The negative binomial power series

The proofs of some results will subsequently use the following negative
binomial power series:

∀p ∈]0, 1[,∀θ ∈ �∗+,
∞∑
j=0

Γ(θ + j)
Γ(θ) j!

p j = (1 − p)−θ [2.6]

Proof.–

We consider the negative binomial r.v. J ∼ NB(θ, 1 − p) and sum up its
probability function defined by [2.4]:

∞∑
j=0

Γ(θ + j)
Γ(θ) j!

(1 − p)θp j = 1

And, then:

∞∑
j=0

Γ(θ + j)
Γ(θ) j!

p j = (1 − p)−θ

�

2.4. The negative multinomial distribution

The negative binomial distribution generalizes two random trials with
more than two possible outcomes, to give the so-called negative multinomial
distribution.

We will have to use the negative multinomial distribution in Chapter 6, to
handle the joint distribution of several r.v. D j, j ∈ {1, . . . , n}, with respective
probability parameters p j:
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n⋂
j=1

D j ∼ NM (θ, p1, . . . , pn)

with:

0 <
n∑

j=1

p j < 1

The joint probability of D j, j ∈ {1, . . . , n} is given by:

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n⋂

j=1

Dj = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = Γ(θ +
∑n

j=1 dj)

Γ(θ)
∏n

j=1 dj!

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
n∑

j=1

pj

⎞⎟⎟⎟⎟⎟⎟⎟⎠
θ n∏

j=1

pd j
j [2.7]

The NM distribution has two important properties. The first property
relates to the distribution of the sum of r.v. the joint distribution of which is
NM, and the second property to their joint conditional distribution given
their sum.

Proposition 2.3.– If D j, j ∈ {1, . . . , n} are r.v. such as:

n⋂
j=1

D j ∼ NM (θ, p1, . . . , pn) ,

then:

n∑
j=1

D j ∼ NB
⎛⎜⎜⎜⎜⎜⎜⎜⎝θ, 1 −

n∑
j=1

pj

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Proof.–

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

D j = k

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = ∑
∑n

j=1 d j=k

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n⋂

j=1

Dj = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
∑

∑n
j=1 d j=k

Γ(θ +
∑n

j=1 dj)

Γ(θ)
∏n

j=1 d j!

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
n∑

j=1

p j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
θ n∏

j=1

pdj
j

=
Γ(θ + k)
Γ(θ)k!

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
n∑

j=1

pj

⎞⎟⎟⎟⎟⎟⎟⎟⎠
θ ∑
∑n

j=1 d j=k

k!∏n
j=1 d j!

n∏
j=1

pd j
j
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And using the multinomial theorem:

=
Γ(θ + k)
Γ(θ)k!

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
n∑

j=1

pj

⎞⎟⎟⎟⎟⎟⎟⎟⎠
θ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

pj

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k

�

Proposition 2.4.– If D j, j ∈ {1, . . . , n} are such as:

n⋂
j=1

D j ∼ NM (θ, p1, . . . , pn) ,

then for any k ∈ �:

n⋂
j=1

D j |
n∑

j=1

Dj = k ∼ M
⎛⎜⎜⎜⎜⎜⎝k, p1∑n

j=1 p j
, . . . ,

pn∑n
j=1 p j

⎞⎟⎟⎟⎟⎟⎠ .
Proof.–

For any n-tuple (d1, . . . , dn) ∈ �n such as
∑n

j=1 dj = k:

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n⋂

j=1

D j = d j |
n∑

j=1

D j = k

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = P
(⋂n

j=1 D j = d j,
∑n

j=1 Dj = k
)

P
(∑n

j=1 D j = k
)

=
P
(⋂n

j=1 D j = d j
)

P
(∑n

j=1 D j = k
)

=
Γ(θ + k)

Γ(θ)
∏n

j=1 dj!

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
n∑

j=1

p j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
θ n∏

j=1

dj
d j

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Γ(θ + k)
Γ(θ)k!

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
n∑

j=1

p j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
θ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

pj

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1

=
k!∏n

j=1 dj!

n∏
j=1

⎛⎜⎜⎜⎜⎜⎝ d j∑n
j=1 pj

⎞⎟⎟⎟⎟⎟⎠
d j

�
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2.5. The negative multinomial power series

To prove some results in Chapter 6, we will need the following multinomial
generalization of [2.6]:

∞∑
d1=0

. . .
∞∑

dn=0

Γ(θ +
∑n

j=1 dj)

Γ(θ)
∏n

j=1 d j!

n∏
j=1

pdj
j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
n∑

j=1

x j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−θ

[2.8]

The proof outline is the same as for equation [2.6].
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Non-homogeneous Birth Process

In order to build an extension of the Yule process suitable to model recurrent
events, definition 2.1 has to undergo three modifications:

1) as the event of interest is generally speaking a failure, no event
occurrence is first to be considered before the commissioning of the technical
object at t = 0. The counting process starts then necessarily with N(0) = 0;

2) to account for the loss of reliability as the object ages, the process
intensity has vary with time: λ = λ(t). Such an extension has already been
considered by [CHA 02], under the name of time-dependent Yule process;

3) it is additionally relevant to consider a dependency of the process on the
event rank j more general than the direct proportionality 1+ j, and the intensity
will be proportional to the strictly positive real-valued quantities α j.

The third consideration defines the process usually called simple birth
process or pure birth process in the literature (see [BHA 97] or [SEN 99] for
examples). The process we consider in this chapter will then be called
non-homogeneous birth process, abbreviated as NHBP.

Definition 3.1.– The NHBP is defined by the system of equations:

∀t ∈ �+,∀ j ∈ � :{
N(0) = 0
E (dN(t) | Nt−) = E (dN(t) | N(t−) = j) = α jλ(t)dt

with : α j ∈ �∗+, ∀ j, k ∈ � : j � k ⇒ α j � αk, and α0 = 1

Recurrent Event Modeling Based on the Yule Process: Application to Water Network
Asset Management, First Edition. Yves Le Gat.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.



24 Recurrent Event Modeling Based on the Yule Process

As the intensity in definition 2.1, the intensity in definition 3.1, according
to the factor α j, confers the Markovian property on process N(t).

According to the Doob–Meyer decomposition theorem (see [AND 93]), the
process N(t) can be written as the sum of a predictable process A(t), which is
the model, and a mean zero martingale M(t), which is the residual the model
cannot account for:

N(t) = A(t) + M(t)

where:

A(t) =
∫ t

0
αN(u−)λ(u)du

3.1. NHBP intensity

The probability density of a one unit jump at t of the counting process
depends on the σ-algebra Nt−, which is the set of all possible trajectories or
paths of the counting function N(t) between 0 and just before t.

In definition 3.1, the process intensity only depends on the value reached
by the counting function at t−, and the NHBP is then a Markovian process:

E (dN(t) | Nt−) = E (dN(t) | N(t−) = j) = α jλ(t)dt

where:

∀t ∈ �+, λ(t) ∈ �+

3.2. Conditional distribution of the counting process

This section is devoted to establishing an explicit formula for the
conditional distribution of the counting process defined in definition 3.1. To
that end, we focus on the conditional probability of the number of events that
are likely to occur within time interval [t, t + s], with t, s ∈ �+, given the
number of events that already occurred within [0, t[. We use the method
presented by [ROS 83] in the case of the NHPP; we fix t and j, and introduce
the following notation:

Qm(s) = P (N(t + s) − N(t) = m | N(t−) = j) [3.1]
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We first show that Qm(s) is solution of a linear ordinary differential
equation.

Proposition 3.1.– The conditional probability Qm(s) is solution of the first
order linear ordinary differential equation:

∀m ∈ �∗, ∀s ∈ �+ :

dQm(s)/ds + α j+mλ(t + s)Qm(s) = α j+m−1λ(t + s)Qm−1(s) [3.2]

with the initial condition:

Q0(s) = exp
(
−α j[Λ(t + s) − Λ(t)]

)
[3.3]

where:

Λ(t) =
∫ t

0
λ(u)du [3.4]

Proof.–

We first establish the validity of the initial condition [3.3].

For m = 0, with t and j fixed, we can write:

Q0(s + ds) = P (N(t + s + ds) − N(t) = 0 | N(t) = j)

= P (N(t + s + ds) − N(t + s))

= 0,N(t + s) − N(t) = 0 | N(t) = j

As P (N(t) = j) � 0 and P (N(t + s) − N(t) = 0,N(t) = j) � 0, we find:

Q0(s + ds) = P (N(t + s + ds) − N(t + s))

= 0 | N(t + s) − N(t) = 0,N(t) = j

× P (N(t + s) − N(t) = 0 | N(t) = j)
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As N(t) is a Markovian process:

P (N(t + s + ds) − N(t + s) = 0 | N(t + s) − N(t) = 0,N(t) = j)

= P (N(t + s + ds) − N(t + s) = 0 | N(t + s) = j)

So:

Q0(s + ds) =
(
1 − α jλ(t + s)ds

)
Q0(s)

And also:

Q0(s + ds) − Q0(s) = −α jλ(t + s)Q0(s)ds

=⇒ dQ0(s)/Q0(s) = −α jλ(t + s)ds =⇒ d ln Q0(s) = −α jλ(t + s)ds

Then by integration:∫ s

0
d ln Q0(u) = −α j

∫ s

0
λ(t + u)du with: Q0(0) = 1

We finally obtain:

Q0(s) = exp
(
−α j[Λ(t + s) − Λ(t)]

)
We can now prove the validity of proposition [3.2]. For any m ≥ 1, t and j

being fixed:

Qm(s + ds) = P (N(t + s + ds) − N(t) = m | N(t) = j)

= P (N(t + s + ds) − N(t + s) = 0,N(t + s) − N(t) = m | N(t) = j)

+ P (N(t + s + ds) − N(t + s) = 1,N(t + s) − N(t) = m − 1 | N(t) = j)

= P (N(t + s + ds) − N(t + s) = 0 | N(t + s) − N(t) = m,N(t) = j)

× P (N(t + s) − N(t) = m | N(t) = j)

+ P (N(t + s + ds) − N(t + s) = 1 | N(t + s) − N(t) = m − 1,N(t) = j)

× P (N(t + s) − N(t) = m − 1 | N(t) = j)
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Again, from the Markovian property of

N(t) : P (N(t + s + ds) − N(t + s) = 0 | N(t + s) − N(t) = m,N(t) = j)

= P (N(t + s + ds) − N(t + s) = 0 | N(t + s) = j + m)

and:

P (N(t + s + ds) − N(t + s) = 1 | N(t + s) − N(t) = m − 1,N(t) = j)

= P (N(t + s + ds) − N(t + s) = 1 | N(t + s) = j + m − 1)

we obtain:

Qm(s + ds) =
(
1 − α j+mλ(t + s)ds

)
Qm(s) +

(
α j+m−1λ(t + s)ds

)
Qm−1(s)

and then:

dQm(s)/ds + α j+mλ(t + s)Qm(s) = α j+m−1λ(t + s)Qm−1(s) �

Remark 3.1.– To establish the validity of [3.3], we have used the following
property:

A,B,C being such events so as P (C) � 0 and P (B ∩C) � 0:

P (A ∩ B | C) = P (A | B ∩C) × P (B | C)

which is easily obtained by considering:

P (A ∩ B | C) =
P (A ∩ B ∩C)

P (C)

and

P (A | B ∩C) × P (B | C) =
P (A ∩ B ∩C)

P (B ∩C)
× P (B ∩C)

P (C) �
Proposition 3.1 is a particular case of Kolmogorov differential equations

presented by [BHA 97] for discrete value in continuous time Markovian
processes.
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The analytical form of the general solution of the linear ordinary differential
equation [3.2] is suggested by the convolution of exponential distributions with
pairwise different parameters, presented in [COX 62].

This leads to the following proposition.

Proposition 3.2.– The conditional probability that an NHBP with intensity
defined by definition 3.1 generates m events within time interval [t, t + s]
given by N(t−) = j is:

∀m ∈ �, ∀s ∈ �+ : Qm(s) =

⎛⎜⎜⎜⎜⎜⎜⎝
m−1∏
k=0

α j+k

⎞⎟⎟⎟⎟⎟⎟⎠
m∑

k=0

e−α j+k[Λ(t+s)−Λ(t)]

m∏
l=0,l�k

(α j+l − α j+k)

[3.5]

where α0 = 1 and j � k ⇒ α j � αk.

Proof.–

The general solution of the first order linear ordinary differential equation
is obtained as follows:

v(s) = e−
∫ s

0 α j+mλ(t+u)du and (s) =
∫ s

0

α j+m−1λ(t + u)Qm−1(u)
v(u)

du

which leads to the solution:

Qm(s) = v(s)w(s)

= eα j+m[Λ(t)−Λ(t+s)]
∫ s

0
α j+m−1λ(t + u)Qm−1(u)eα j+m[Λ(t+u)−Λ(t)]du

= e−α j+mΛ(t+s)
∫ s

0
α j+m−1λ(t + u)Qm−1(u)eα j+mΛ(t+u)du

The recursion equation [3.5] holds for m = 1:

Q1(s) = e−α j+1Λ(t+s)
∫ s

0
α jλ(t + u)Q0(u)eα j+1Λ(t+u)du

= e−α j+1Λ(t+s)
∫ s

0
α jλ(t + u)eα j+1Λ(t+u)−α j[Λ(t+u)−Λ(t)]du
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= e−α j+1Λ(t+s)+α jΛ(t) α j

α j+1 − α j

∫ s

0
d[e(α j+1−α j)Λ(t+u)]

= α j

(
eα j[Λ(t)−Λ(t+s)]

α j+1 − α j
+

eα j+1[Λ(t)−Λ(t+s)]

α j − α j+1

)

which is [3.5] indeed for m = 1.

Assuming that [3.5] holds for m − 1, we can write:

Qm(s) = e−α j+mΛ(t+s)
∫ s

0
α j+m−1λ(t + u)

⎛⎜⎜⎜⎜⎜⎜⎝
m−2∏
k=0

α j+k

⎞⎟⎟⎟⎟⎟⎟⎠
×

m−1∑
k=0

eα j+k[Λ(t)−Λ(t+u)]

m−1∏
l=0,l�k

(α j+l − α j+k)

eα j+mΛ(t+u)du

=

⎛⎜⎜⎜⎜⎜⎜⎝
m−1∏
k=0

α j+k

⎞⎟⎟⎟⎟⎟⎟⎠ e−α j+mΛ(t+s)

×
m−1∑
k=0

eα j+kΛ(t)

m−1∏
l=0,l�k

(α j+l − α j+k)

∫ s

0
λ(t + u)e(α j+m−α j+k)Λ(t+u)du

=

⎛⎜⎜⎜⎜⎜⎜⎝
m−1∏
k=0

α j+k

⎞⎟⎟⎟⎟⎟⎟⎠ e−α j+mΛ(t+s)

×
m−1∑
k=0

eα j+kΛ(t)

m−1∏
l=0,l�k

(α j+l − α j+k)

∫ s

0

d[e(α j+m−α j+k)Λ(t+u)]
α j+m − α j+k

=

⎛⎜⎜⎜⎜⎜⎜⎝
m−1∏
k=0

α j+k

⎞⎟⎟⎟⎟⎟⎟⎠ e−α j+mΛ(t+s)
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×
m−1∑
k=0

eα j+kΛ(t)
(
e(α j+m−α j+k)Λ(t+s) − e(α j+m−α j+k)Λ(t)

)
m∏

l=0,l�k

(α j+l − α j+k)

=

⎛⎜⎜⎜⎜⎜⎜⎝
m−1∏
k=0

α j+k

⎞⎟⎟⎟⎟⎟⎟⎠
m−1∑
k=0

eα j+k[Λ(t)−Λ(t+s)] − eα j+m[Λ(t)−Λ(t+s)]

m∏
l=0,l�k

(α j+l − α j+k)

=

⎛⎜⎜⎜⎜⎜⎜⎝
m−1∏
k=0

α j+k

⎞⎟⎟⎟⎟⎟⎟⎠ ×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m−1∑
k=0

eα j+k[Λ(t)−Λ(t+s)]

m∏
l=0,l�k

(α j+l − α j+k)

− eα j+m[Λ(t)−Λ(t+s)]
m−1∑
k=0

1
m∏

l=0,l�k

(α j+l − α j+k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using identity [B.1], which is proven in Appendix B:

m∑
k=0

1
m∏

l=0,l�k

(αl − αk)

= 0

we finally obtain:

Qm(s) =

⎛⎜⎜⎜⎜⎜⎜⎝
m−1∏
k=0

α j+k

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m−1∑
k=0

eα j+k[Λ(t)−Λ(t+s)]

m∏
l=0,l�k

(α j+l − α j+k)

+
eα j+m[Λ(t)−Λ(t+s)]

m∏
l=0,l�m

(α j+l − α j+m)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
m−1∏
k=0

α j+k

⎞⎟⎟⎟⎟⎟⎟⎠
m∑

k=0

eα j+k[Λ(t)−Λ(t+s)]

m∏
l=0,l�k

(α j+l − α j+k)

�

Remark 3.2.– The analytical form [3.5] is similar to equation [3.9] in
[SEN 99], which relates to the convolution of exponential distributions with
pairwise different parameters. The authors present this result as an extension
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of the discrete case of the convolution of geometric distributions. Their proof
also uses interpolation by Lagrange polynomials, as for proposition B.1 in
Appendix B. �





4

Linear Extension of the Yule Process

In the previous chapter, we established the general formula [3.5] for the
conditional probability of the NHBP. This result is nevertheless not tractable
for practical applications. We can somewhat sacrifice the generality to obtain
a more practical result, by defining a Markovian process with intensity at t
that linearly depends on the value reached by the counting process at t−. Such
a linear dependency is shown to generate a counting process with a negative
binomial distribution.

4.1. LEYP intensity

We call linear extension of the Yule process (LEYP) the particular case of
NHBP, for which the intensity linearly depends on N(t−).

Definition 4.1.– A LEYP is defined by the following intensity:

∀t ∈ �+,∀ j ∈ �, α ∈ �∗+ :

E (dN(t) | N(t−) = j) = (1 + α j)λ(t)dt

The class of processes defined by definition 4.1 contains as particular case
for the non-homogeneous Poisson process, for which α = 0, and the
time-dependent Yule process, for which α = 1. This second case is trivial,
whereas setting α = 0 raises a non-trivial problem of passage to the limit with
respect to the distribution of the counting process, which will be addressed in
section 4.3.

Recurrent Event Modeling Based on the Yule Process: Application to Water Network
Asset Management, First Edition. Yves Le Gat.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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4.2. Conditional distribution of the LEYP

We are concerned here by the conditional distribution of the number of
events likely to occur in a given time interval, which we call prediction
interval or prediction window, given the number of events that happened in a
previous time interval, which we call observation interval or observation
window. We will envisage this conditional distribution in increasingly general
configurations; this research is not gratuitous but motivated by the
construction of the likelihood function that allows us to estimate model
parameters from observations, and by the ability to predict numbers of
failures in time intervals not necessarily adjacent to the observation window,
and even in the case where observations do not start at the commissioning of
the technical objects, or may also only be available on disjoint time intervals
(intermittent observation).

4.2.1. Distribution of N(b) − N(a) | N(a−)

The simplest configuration is illustrated by Figure 4.1, where the
observation window [0, a] starts at the commissioning of the technical object,
with an adjacent prediction window.

m︷������������������︸︸������������������︷ k?︷����������︸︸����������︷
�

0 a b t

Figure 4.1. Conditional event N(b) − N(a)|N(a−)

In order to simplify the calculations, we introduce the following notation:

μ(t) = eαΛ(t) [4.1]

We first prove the following proposition.

Proposition 4.1.– For an LEYP defined by definition 4.1, the number of events
likely to occur within observation window [a, b] given by N(a−) = m follows
a negative binomial distribution:

[N(b) − N(a) | N(a−) = m] ∼ NB
(
α−1 + m,

μ(a)
μ(b)

)
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Proof.–

In [3.5], αi is replaced by (1 + iα):

P (N(b) − N(a) = k | N(a−) = m)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k−1∏
j=0

(1 + (m + j)α)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k∑

j=0

exp {(1 + (m + j)α) (Λ(a) − Λ(b))}∏k
l=0,l� j {(1 + (m + l)α) − (1 + (m + j)α)}

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k−1∏
j=0

α(α−1 + m + j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k∑

j=0

(
μ(a)
μ(b)

)α−1+m+ j
⎛⎜⎜⎜⎜⎜⎜⎜⎝

m∏
l=0,l� j

α(l − j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1

But:
k−1∏
j=0

α(α−1 + m + j) = αk Γ(α
−1 + m + k)
Γ(α−1 + m)

and

k∏
l=0,l� j

α(l − j) = αk(−1) j j!(k − j)!

so:

P (N(b) − N(a) = k | N(a−) = m)

=
Γ(α−1 + m + k)
Γ(α−1 + m) k!

(
μ(a)
μ(b)

)α−1+m k∑
j=0

(
k
j

)
(1)k− j

(
−μ(a)
μ(b)

) j

Now, from binomial theorem:

P (N(b) − N(a) = k | N(a−) = m)

=
Γ(α−1 + m + k)
Γ(α−1 + m) k!

(
μ(a)
μ(b)

)α−1+m (
1 − μ(a)
μ(b)

)k
�
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4.2.2. Marginal distribution of N(t)

The marginal distribution of N(t) can be directly derived from proposition
4.1 by setting a = 0, t = b and m = 0:

Proposition 4.2.– The distribution of LEYP counting process N(t) is negative
binomial:

∀t ∈ �+, N(t) ∼ NB(α−1, μ(t)−1)

The compensator of LEYP counting process is then:

EN(t) =
μ(t) − 1
α

It is interesting to compare this result with the Gamma-mixture of NHPP
presented in section 2.2. [ASF 15] compare, both theoretically and practically,
the Gamma-mixture of NHPP and the LEYP, considered as NHPP extensions,
respectively called heterogeneous and dynamic.

4.2.3. Marginal distribution of N(b) − N(a)

The marginal distribution of N(b) − N(a) can be derived from
proposition 4.1:

Proposition 4.3.–

∀a, b ∈ �+, such as a < b, N(b) − N(a) ∼ NB
(
α−1,

1
μ(b) − μ(a) + 1

)

Proof.–

We can first calculate P (N(b) − N(a) = k | N(a−) = m), and then use [2.6]:

P (N(b) − N(a) = k)

=

∞∑
m=0

P (N(b) − N(a) = k | N(a−) = m) P (N(a−) = m)

=

∞∑
m=0

Γ(α−1 + m + k)
Γ(α−1 + m) k!

(
μ(a)
μ(b)

)α−1+m (
μ(b) − μ(a)
μ(b)

)k
Γ(α−1 + m)
Γ(α−1) m!
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(
1
μ(a)

)α−1 (
μ(a) − 1
μ(a)

)m

=
Γ(α−1 + k)
Γ(α−1) k!

(
1
μ(b)

)α−1 (
μ(b) − μ(a)
μ(b)

)k ∞∑
m=0

Γ(α−1 + m + k)
Γ(α−1 + k) m!

(
μ(a) − 1
μ(b)

)m

=
Γ(α−1 + k)
Γ(α−1) k!

(
1
μ(b)

)α−1 (
μ(b) − μ(a)
μ(b)

)k (
1 − μ(a) − 1

μ(b)

)−(α−1+k)

=
Γ(α−1 + k)
Γ(α−1) k!

(
1

μ(b) − μ(a) + 1

)α−1 (
μ(b) − μ(a)
μ(b) − μ(a) + 1

)k
�

4.2.4. Conditional distribution of N(a−) given N(b) − N(a)

The following proposition will be useful later on:

Proposition 4.4.– The conditional probability of N(a−), given as N(b) − N(a)
(0 < a < b) is negative binomial:

[N(a−) | N(b) − N(a) = m] ∼ NB
(
α−1 + m,

μ(b) − μ(a) + 1
μ(b)

)

Proof.–

P (N(a−) = j | N(b) − N(a) = m)

=
P (N(a−) = j,N(b) − N(a) = m)

P (N(b) − N(a) = m)

=
P (N(b) − N(a) = m | N(a−) = j) P (N(a−) = j)

P (N(b) − N(a) = m)

Using propositions 4.1, 4.2 and 4.3:

=
Γ(α−1 + j + m)
Γ(α−1 + j) m!

(
μ(a)
μ(b)

)α−1+ j (
μ(b) − μ(a)
μ(b)

)m
Γ(α−1 + j)
Γ(α−1) j!(

1
μ(a)

)α−1 (
μ(a) − 1
μ(a)

) j
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×
⎛⎜⎜⎜⎜⎜⎜⎝Γ(α−1 + m)
Γ(α−1) m!

(
1

μ(b) − μ(a) + 1

)α−1 (
μ(b) − μ(a)
μ(b) − μ(a) + 1

)m⎞⎟⎟⎟⎟⎟⎟⎠
−1

=
Γ(α−1 + j + m)
Γ(α−1 + m) j!

(
μ(b) − μ(a) + 1

μ(b)

)α−1+m (
μ(a) − 1
μ(b)

) j

�

4.2.5. Conditional distribution of N(c) − N(b) given N(b−) − N(a)

The first generalization of proposition 4.1 considers an observation
interval [a, b] that does not start at the commissioning of the technical object
(i.e. a may not be zero), and an adjacent prediction interval [b, c] as illustrated
by Figure 4.2.

m︷��������︸︸��������︷ k?︷��������︸︸��������︷
�

0 a b c t

Figure 4.2. Conditional event N(c) − N(b)|N(b−) − N(a)

Proposition 4.5.– The conditional distribution of N(c)−N(b), given as N(b−)−
N(a), with 0 � a < b < c, is negative binomial:

[N(c) − N(b) | N(b−) − N(a) = m] ∼ NB
(
α−1 + m,

μ(b) − μ(a) + 1
μ(c) − μ(a) + 1

)

Proof.–

According to the total probability formula:

P (N(c) − N(b) = k | N(b−) − N(a) = m)

=

∞∑
j=0

P (N(c) − N(b) = k | N(b−) − N(a) = m,N(a−) = j)

×P (N(a−) = j | N(b−) − N(a) = m)

=

∞∑
j=0

P (N(c) − N(b) = k | N(b−) = j + m) P (N(a−) = j | N(b−) − N(a) = m)
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Using proposition 4.4:

P (N(a−) = j | N(b−) − N(a) = m)

=
Γ(α−1 + j + m)
Γ(α−1 + m) j!

(
μ(b) − μ(a) + 1

μ(b)

)α−1+m (
μ(a) − 1
μ(b)

) j

Then:

P (N(c) − N(b) = k | N(b−) − N(a) = m)

=

∞∑
j=0

Γ(α−1 + j + m + k)
Γ(α−1 + j + m)k!

(
μ(b)
μ(c)

)α−1+ j+m (
μ(c) − μ(b)
μ(c)

)k

× Γ(α
−1 + j + m)

Γ(α−1 + m) j!

(
μ(b) − μ(a) + 1

μ(b)

)α−1+m (
μ(a) − 1
μ(b)

) j

=
Γ(α−1 + m + k)
Γ(α−1 + m)k!

(
μ(b) − μ(a) + 1

μ(c)

)α−1+m (
μ(c) − μ(b)
μ(c)

)k

×
∞∑
j=0

Γ(α−1 + m + k + j)
Γ(α−1 + m + k) j!

(
μ(a) − 1
μ(c)

) j

Using equation [2.6]:

=
Γ(α−1 + m + k)
Γ(α−1 + m)k!

(
μ(b) − μ(a) + 1

μ(c)

)α−1+m (
μ(c) − μ(b)
μ(c)

)k
(
1 − μ(a) − 1

μ(c)

)−(α−1+m+k)

=
Γ(α−1 + m + k)
Γ(α−1 + m)k!

(
μ(b) − μ(a) + 1
μ(c) − μ(a) + 1

)α−1+m (
μ(c) − μ(b)
μ(c) − μ(a) + 1

)k
�

4.2.6. Distribution of N(b−) − N(a) given N(c) − N(b)

The following generalization of proposition 4.4 will be useful later on:
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Proposition 4.6.– If a LEYP is defined by definition 4.1, the conditional
probability of N(b−) − N(a) given as N(c) − N(b), with 0 < a < b < c, is
negative binomial:

[N(b−) − N(a) | N(c) − N(b) = k] ∼ NB
(
α−1 + k,

μ(c) − μ(b) + 1
μ(c) − μ(a) + 1

)

m︷������︸︸������︷ k?︷���︸︸���︷
�

0 a b c d t

Figure 4.3. Conditional event N(d) − N(c)|N(b) − N(a)

Proof.–

We proceed as for the proof of proposition 4.4:

P (N(b−) − N(a) = m | N(c) − N(b) = k)

=
P (N(c) − N(b) = k | N(b−) − N(a) = m) P (N(b−) − N(a) = m)

P (N(c) − N(b) = k)

=
Γ(α−1 + m + k)
Γ(α−1 + m)k!

(
μ(b) − μ(a) + 1
μ(c) − μ(a) + 1

)α−1+m (
μ(c) − μ(b)
μ(c) − μ(a) + 1

)k

× Γ(α
−1 + m)

Γ(α−1)m!

(
1

μ(b) − μ(a) + 1

)α−1 (
μ(b) − μ(a)
μ(b) − μ(a) + 1

)m

×
⎛⎜⎜⎜⎜⎜⎜⎝Γ(α−1 + k)
Γ(α−1)k!

(
1

μ(c) − μ(b) + 1

)α−1 (
μ(c) − μ(b)
μ(c) − μ(b) + 1

)k⎞⎟⎟⎟⎟⎟⎟⎠
−1

=
Γ(α−1 + m + k)
Γ(α−1 + k)m!

(
μ(c) − μ(b) + 1
μ(c) − μ(a) + 1

)α−1+k (
μ(b) − μ(a)
μ(c) − μ(a) + 1

)m
�

4.2.7. Distribution of N(d) − N(c) given N(b) − N(a)

The following proposition provides a further generalization, where the
observation and prediction intervals [a, b] and [c, d] are not adjacent, as
illustrated by Figure 4.3:
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Proposition 4.7.– If a LEYP is defined by [4.1], the conditional distribution of
N(d) − N(c) given as N(b) − N(a) = m, with 0 < a < b < c < d, is negative
binomial:

[N(d) − N(c) | N(b) − N(a) = m]

∼ NB
(
α−1 + m,

μ(b) − μ(a) + 1
μ(d) − μ(c) + μ(b) − μ(a) + 1

)

Proof.–

Using both total probability formula and proposition 4.5

P (N(d) − N(c) = k | N(b) − N(a) = m)

=

∞∑
j=0

P (N(d) − N(c) = k | N(b) − N(a) = m,N(c−) − N(b+) = j)

×P (N(c−) − N(b+) = j | N(b) − N(a) = m)

=

∞∑
j=0

P (N(d) − N(c) = k | N(c−) − N(a) = m + j)

×P (N(c−) − N(b+) = j | N(b) − N(a) = m)

=

∞∑
j=0

Γ(α−1 + m + j + k)
Γ(α−1 + m + j)k!

(
μ(c) − μ(a) + 1
μ(d) − μ(a) + 1

)α−1+m+ j (
μ(d) − μ(c)
μ(d) − μ(a) + 1

)k

×Γ(α
−1 + m + j)

Γ(α−1 + m) j!

(
μ(b) − μ(a) + 1
μ(c) − μ(a) + 1

)α−1+m (
μ(c) − μ(b)
μ(c) − μ(a) + 1

) j

=
Γ(α−1 + m + k)
Γ(α−1 + m)k!

[(
μ(c) − μ(a) + 1
μ(d) − μ(a) + 1

) (
μ(b) − μ(a) + 1
μ(c) − μ(a) + 1

)]α−1+m (
μ(d) − μ(c)
μ(d) − μ(a) + 1

)k

×
∞∑
j=0

Γ(α−1 + m + j + k)
Γ(α−1 + m + k) j!

[(
μ(c) − μ(a) + 1
μ(d) − μ(a) + 1

) (
μ(c) − μ(b)
μ(c) − μ(a) + 1

)] j

And, using the series [2.6]

=
Γ(α−1 + m + k)
Γ(α−1 + m)k!

(
μ(b) − μ(a) + 1
μ(d) − μ(a) + 1

)α−1+m (
μ(d) − μ(c)
μ(d) − μ(a) + 1

)k
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×
(
1 − μ(c) − μ(b)
μ(d) − μ(a) + 1

)−(α−1+m+k)

=
Γ(α−1 + m + k)
Γ(α−1 + m)k!

(
μ(b) − μ(a) + 1

μ(d) − μ(c) + μ(b) − μ(a) + 1

)α−1+m

×
(

μ(d) − μ(c)
μ(d) − μ(c) + μ(b) − μ(a) + 1

)k
�

This result is practically important regarding the application of the LEYP
model to actual failure data, with the aim of helping decisions in matters of
infrastructure renovation.

4.3. Limiting distribution when α tends to 0+

As mentioned in section 4.1, setting α = 0 in definition 4.1 of the LEYP
intensity straightforwardly gives the NHPP intensity (see definition 1.1).
However, α cannot be set to 0 in the negative binomial distributions of section
4.2, as their first parameter contains the term α−1. In this section, we will
attempt to overcome this difficulty by investigating the limiting behavior of
the distributions when α tends to 0+.

We can show on this matter that the distribution of the LEYP counting
process in proposition 4.2 tends to a Poisson distribution when α tends to 0+.

Proposition 4.8.– The negative binomial distributionNB(α−1, e−αΛ(t)) tends to
the Poisson distribution Po(Λ(t)) when α tends to 0+.

Proof.–

On the one hand, we first notice that:

αmΓ(α−1 + m)/Γ(α−1) = αm 1
α

(
1
α
+ 1
) (

1
α
+ 2
)
· · ·
(

1
α
+ m − 1

)

=
α

α

(
α

α
+ α
) (
α

α
+ 2α
)
· · ·
(
α

α
+ (m − 1)α

)
= (1 + α) (1 + 2α) · · · (1 + (m − 1)α)
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which leads to:

lim
α→0+

αmΓ(α−1 + m)/Γ(α−1) = 1

On the other hand, we have by definition:

∀x ∈ �, ex =

∞∑
j=0

x j/ j!

and it follows that:

1 − e−αΛ(t) = 1 −
(
1 + [−αΛ(t)] + [−αΛ(t)]2 /2! + [−αΛ(t)]3 /3! + · · ·

)
= αΛ(t) − [αΛ(t)]2 /2! + [αΛ(t)]3 /3! − · · ·

then:

1 − e−αΛ(t)

α
= Λ(t) − αΛ(t)2/2! + α2Λ(t)3/3! − · · ·

and so:

lim
α→0+

1 − e−αΛ(t)

α
= Λ(t)

The above can now be applied to the distribution NB(α−1, e−αΛ(t)) :

lim
α→0+

P (N(t) = m) = lim
α→0+

Γ(α−1 + m)
Γ(α−1)m!

(
e−αΛ(t)

)α−1 (
1 − e−αΛ(t)

)m
= lim
α→0+

Γ(α−1 + m)
Γ(α−1)

αm e−Λ(t)

m!

(
1 − e−αΛ(t)

α

)m

=
Λ(t)m

m!
e−Λ(t)

which is indeed the probability function of the distribution Po(Λ(t)). �
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4.4. Partition of an interval

We will now address a topic which is not only in itself theoretically
interesting, but also practically in view of the study of selective survival,
which will be addressed later in Chapter 6.

We consider now an age interval [a0, an[, with 0 � a0 < an, which is
partitioned into n adjacent non-overlapping subintervals
[a j−1, a j[, j ∈ {1, . . . , n}, as illustrated by Figure 4.4. To lighten the notations,
the random number of events N(a j) − N(a j−1) likely to occur within intervals
[a j−1, a j[ will be denoted by Dj, and its possible realizations d j; μ(a j) will
also be abbreviated as μ j, and μ(aj) − μ(a j−1) as Δμ j.

D1︷︸︸︷ D2︷︸︸︷ D j︷︸︸︷ Dn︷︸︸︷
�

0 a0 a1 a2 a j−1 a j an−1 an t

Figure 4.4. Partition of interval [a0, an[

We will now establish the two following results:

– the joint probability of r.v.
⋂n

j=1 D j is negative multinomial, which
generalizes the negative binomial distribution of any single r.v. Dj;

– the conditional joint probability of r.v.
⋂n

j=1 Dj given their sum is
multinomial.

Proposition 4.9.– The joint distribution of r.v.
⋂n

j=1 D j is negative
multinomial:

n⋂
j=1

D j ∼ NM
(
α−1,

(
Δμ j

1 +
∑n

i=1 Δμi
, j ∈ {1, . . . , n}

))

Proof.–

We proceed by induction, and first prove that the proposition holds
for n = 2:

P (D1 = d1,D2 = d2)

= P (D2 = d2 | D1 = d1) P (D1 = d1)
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=
Γ(α−1 +

∑2
j=1 dj)

Γ(α−1 + d1)d2!

⎛⎜⎜⎜⎜⎜⎜⎝ 1 + Δμ1

1 +
∑2

j=1 Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
α−1+d1

⎛⎜⎜⎜⎜⎜⎜⎝ Δμ2

1 +
∑2

j=1 Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
d2

× Γ(α
−1 + d1)

Γ(α−1)d1!

(
1

1 + Δμ1

)α−1 (
Δμ1

1 + Δμ1

)d1

=
Γ(α−1 +

∑2
j=1 dj)

Γ(α−1)
∏2

j=1 d j!

⎛⎜⎜⎜⎜⎜⎜⎝ 1

1 +
∑2

j=1 Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
α−1

2∏
j=1

⎛⎜⎜⎜⎜⎝ Δμ j

1 +
∑2

i=1 Δμi

⎞⎟⎟⎟⎟⎠d j

We assume now that the proposition holds for a given n:

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n⋂

j=1

D j = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = Γ(α
−1 +
∑n

j=1 dj)

Γ(α−1)
∏n

j=1 d j!

⎛⎜⎜⎜⎜⎜⎝ 1
1 +
∑n

j=1 Δμ j

⎞⎟⎟⎟⎟⎟⎠
α−1 n∏

j=1

(
Δμ j

1 +
∑n

i=1 Δμi

)dj

Then for n + 1:

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n+1⋂
j=1

D j = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n⋂

j=1

D j = d j,Dn+1 = dn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= P

⎛⎜⎜⎜⎜⎜⎜⎜⎝Dn+1 = dn+1 |
n⋂

j=1

D j = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠P
⎛⎜⎜⎜⎜⎜⎜⎜⎝

n⋂
j=1

Dj = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
But from the Markovian property:

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝Dn+1 = dn+1 |
n⋂

j=1

D j = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= P

⎛⎜⎜⎜⎜⎜⎜⎜⎝Dn+1 = dn+1 |
n∑

j=1

D j =

n∑
j=1

dj

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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And then, using proposition 4.5 and the induction hypothesis:

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n+1⋂
j=1

D j = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

Γ(α−1 +
∑n

j=1 dj)

Γ(α−1 +
∑n

j=1 dj)dn+1!

⎛⎜⎜⎜⎜⎜⎜⎝1 +
∑n

j=1 Δμ j

1 +
∑n+1

j=1 Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
α−1+

∑n
j=1 d j
⎛⎜⎜⎜⎜⎜⎜⎝ Δμn+1

1 +
∑n+1

j=1 Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
dn+1

×
Γ(α−1 +

∑n
j=1 dj)

Γ(α−1)
∏n

j=1 d j!

⎛⎜⎜⎜⎜⎜⎝ 1
1 +
∑n

j=1 Δμ j

⎞⎟⎟⎟⎟⎟⎠
α−1 n∏

j=1

⎛⎜⎜⎜⎜⎜⎝ Δμ j

1 +
∑n

j=1 Δμ j

⎞⎟⎟⎟⎟⎟⎠
d j

=
Γ(α−1 +

∑n+1
j=1 d j)

Γ(α−1)
∏n+1

j=1 d j!

⎛⎜⎜⎜⎜⎜⎜⎝ 1

1 +
∑n+1

j=1 Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
α−1

n+1∏
j=1

⎛⎜⎜⎜⎜⎜⎜⎝ Δμ j

1 +
∑n+1

j=1 Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
dj

�

Proposition 4.10.– The conditional joint distribution of r.v.
⋂n

j=1 D j given their
sum
∑n

j=1 D j is multinomial:

n⋂
j=1

D j |
n∑

j=1

Dj = k ∼ M
(
k,
(
Δμ j∑n
i=1 Δμi

, j ∈ {1, . . . , n}
))

Proof.–

The proof is a straight forward consequence of proposition 2.4 with:

p j =
Δμ j

1 +
∑n

i=1 Δμi

which yields:

p j∑n
i=1 pi

=
Δμ j∑n
i=1 Δμi

�

4.5. Generalization to any subset of a partition

We consider the partition of interval [a0, an[ into n subintervals:

[a0, an[=
n⋃

i=1

[ai−1, ai[
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We name I the complete index set {1, . . . , n}, and partition it into two non-
empty and non-overlapping index sets J ⊂ I and K ⊂ I:

I = J ∪ K, J � ∅, K � ∅, J ∩ K = ∅

We will now generalize proposition 4.9 to any subset of the partition of an
interval, and keep to this end the same notations as in previous section 4.4.
It is important to note that the intervals indexed by J are now not necessarily
contiguous.

Proposition 4.11.– The joint distribution of r.v.
⋂

j∈J D j is negative
multinomial:

⋂
j∈J

D j ∼ NM
(
α−1,

(
Δμ j

1 +
∑

l∈J Δμl
, j ∈ J

))

Proof.–

The proof is based on the law of total probability:

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝⋂
j∈J

D j = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

∞∑
dk=0,k∈K

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝⋂
j∈J

D j = d j |
⋂
k∈K

Dk = dk

⎞⎟⎟⎟⎟⎟⎟⎟⎠P
⎛⎜⎜⎜⎜⎜⎜⎝⋂

k∈K
Dk = dk

⎞⎟⎟⎟⎟⎟⎟⎠
=

P
(⋂

j∈J D j = d j,
⋂

k∈K Dk = dk
)

P
(⋂

k∈K Dk = dk
) P

⎛⎜⎜⎜⎜⎜⎜⎝⋂
k∈K

Dk = dk

⎞⎟⎟⎟⎟⎟⎟⎠
=

∞∑
dk=0,k∈K

P

⎛⎜⎜⎜⎜⎜⎝ ⋂
i∈J∪K

Di = di

⎞⎟⎟⎟⎟⎟⎠
=

∞∑
dk=0,k∈K

Γ(α−1 +
∑

i∈J∪K di)
Γ(α−1)

∏
i∈J∪K di!

∏
i∈J∪K (Δμi)di(

1 +
∑

i∈J∪K Δμ j
)α−1+

∑
i∈J∪K di

=
Γ(α−1 +

∑
j∈J d j)

Γ(α−1)
∏

j∈J d j!

∏
j∈J

(
Δμ j
)d j

(
1 +
∑

i∈J∪K Δμi
)α−1+

∑
j∈J d j
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×
∞∑

dk=0,k∈K

Γ(α−1 +
∑

i∈J∪K di)
Γ(α−1 +

∑
j∈J d j)

∏
k∈K dk!

∏
k∈K

(
Δμk

1 +
∑

i∈J∪K Δμi

)dk

And using multinomial power series [2.8] yields:

=
Γ(α−1 +

∑
j∈J d j)

Γ(α−1)
∏

j∈J d j!

∏
j∈J

(
Δμ j
)d j

(
1 +
∑

i∈J∪K Δμi
)α−1+

∑
j∈J d j

(
1 −

∑
j∈J Δμ j

1 +
∑

i∈J∪K Δμi

)−(α−1+
∑

j∈J d j)

=
Γ(α−1 +

∑
j∈J d j)

Γ(α−1)
∏

j∈J d j!

∏
j∈J

(
Δμ j
)d j

(
1 +
∑

j∈J Δμ j
)α−1+

∑
j∈J d j

�

A further step of generalization can be reached by considering the
conditional distribution of joint events D j indexed on any index set J given as
joint events Dk indexed on a subset of the complement of J in I.

Proposition 4.12.– The conditional joint distribution of
⋂

j∈J D j given as⋂
k∈K Dk, with K ⊂ I \ J, is negative multinomial:

⋂
j∈J

D j |
⋂
k∈K

Dk = dk ∼ NM
⎛⎜⎜⎜⎜⎜⎜⎝α−1 +

∑
k∈K

dk,

(
Δμ j

1 +
∑

i∈J∪K Δμi
, j ∈ J

)⎞⎟⎟⎟⎟⎟⎟⎠
Proof.–

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝⋂
j∈J

D j = d j |
⋂
k∈K

Dk = dk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

P
(⋂

i∈J∪K Di = di
)

P
(⋂

k∈K Dk = dk
)

Applying proposition 4.11 both to numerator and denominator yields:

=
Γ(α−1 +

∑
i∈J∪K di)

Γ(α−1)
∏

i∈J∪K di!

∏
i∈J∪K (Δμi)di(

1 +
∑

i∈J∪K Δμi
)α−1+

∑
i∈J∪K di

×
⎛⎜⎜⎜⎜⎜⎝Γ(α−1 +

∑
k∈K dk)

Γ(α−1)
∏

k∈K dk!

∏
k∈K (Δμk)dk(

1 +
∑

k∈K Δμk
)α−1+

∑
k∈K dk

⎞⎟⎟⎟⎟⎟⎠
−1
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Rearranging terms and simplifying yields:

=
Γ(α−1 +

∑
i∈J∪K di)

Γ(α−1 +
∑

k∈K dk)
∏

j∈J d j!

(
1 +
∑

k∈K Δμk
)α−1+

∑
k∈K dk(

1 +
∑

i∈J∪K Δμi
)α−1+

∑
i∈J∪K di

∏
j∈J

(
Δμ j
)dj

�

4.6. Discontinuous observation interval

A direct application of proposition 4.12 concerns the case of an observation
window composed of non-adjacent intervals, as illustrated by Figure 4.5. The
following proposition will be practically useful when, for some reasons either
structural or accidental, the observation process is intermittent.

m1︷︸︸︷ m j︷︸︸︷ mn︷︸︸︷ k?︷︸︸︷
�

0 a1 b1 a j b j an bn c d t

Figure 4.5. Conditional event N(d) − N(c) given as
⋂

j N(bj) − N(a j)

Proposition 4.13.– The conditional distribution of N(d) − N(c), given by⋂n
j=1 N(b j − N(a j) = m j, is negative binomial:

N(d) − N(c) |
n⋂

j=1

N(b j − N(aj) = m j

∼ NM
⎛⎜⎜⎜⎜⎜⎜⎜⎝α−1 +

n∑
j=1

m j,
1 +
∑n

j=1 μ(b j) − μ(a j)

μ(d) − μ(c) + 1 +
∑n

j=1 μ(b j) − μ(a j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Proof.–

The proof follows from a straightforward application of proposition 4.12.
�





5

LEYP Likelihood and Inference

We will now address the estimation of LEYP parameters from observation
data related to a sample of technical objects. As already mentioned in section
4.2, the estimation procedure developed in this chapter is required to be usable
with failure historics which are not available since the commissioning of the
objects. This is particularly the case for water mains, which were extensively
installed in most of the European urban areas before 1940, and the maintenance
archives of which cover a period posterior to 1985 or often later.

5.1. LEYP likelihood

We consider first a single technical object observed within [a, b], where
a ∈ �+, b ∈ �∗+ and a < b, and which underwent m ∈ � failures at times
t1 < . . . < t j < . . . < tm. The method to infer LEYP parameter estimates from
these observations consists of building the likelihood function of the intensity
parameters given t j, and searching for the parameter values at which the
likelihood reaches its maximum.

An intuitive construction of the likelihood function is presented by
[SAM 94] in the NHPP case. It consists of calculating the product of the
probabilities that no failure occurs within intervals ]t j, t j+1[, and of the limits
for h → 0+ of the probabilities that one failure occurs within each [t j, t j + h[.
Applying this to the LEYP framework involves considering all the
probabilities as conditional given N(t j). The developments carried out in
Chapter 4 allow us to circumvent the difficulty that arises from the lack of
information within [0, a[, and then about the value of N(a) and the actual rank
of the successive observed failures. The likelihood construct proposed here is
well adapted to handle left-truncated failure data.

Recurrent Event Modeling Based on the Yule Process: Application to Water Network
Asset Management, First Edition. Yves Le Gat.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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In order to rigorously construct the likelihood function, we rely upon the
general concept of likelihood in the sense of Jacod, presented in [AND 93].
The theoretical LEYP likelihood of parameter θ, given a failure sequence, is
formally defined as the following product integral:

L(θ) = π
t∈[a,b]

E
(
dN(t) | N[a,t[

)ΔN(t) (1 − E
(
dN(t) | N[a,t[

))1−ΔN(t) [5.1]

with:

ΔN(t) = N(t) − N(t−)

Using the product integral to define the likelihood of a counting process
involves considering the observation window [a, b] as an infinite countable
sequence of infinitesimal intervals, each of which undergoes a Bernouilli trial
with the alternative outcomes:

– either a failure with probability E
(
dN(t) | N[a,t[

)
;

– or no failure with complementary probability 1 − E
(
dN(t) | N[a,t[

)
.

The basic concept of product integration used in the present context is
presented in Appendix A.

In order to provide an explicit analytical form for [5.1], we first have to
establish the following proposition.

Proposition 5.1.–

E
(
dN(t) | N[a,t[

)
=
(
α−1 +

(
N(t−) − N(a)

))
d ln
(
μ(t) − μ(a) + 1

)
=
(
1 +
(
N(t−) − N(a)

)
α
) μ(t)λ(t)dt
μ(t) − μ(a) + 1

Proof.–

As a result of definition 4.1, and using both proposition 4.5 and the
continuity of function μ():

E
(
dN(t) | N[a,t[

)
= P (N(t + dt) − N(t) = 1 | N(t−) − N(a))
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=
(
α−1 + N(t−) − N(a)

) ( μ(t) − μ(a) + 1
μ(t + dt) − μ(a) + 1

)α−1+N(t−)−N(a)

(
μ(t + dt) − μ(t)
μ(t + dt) − μ(a) + 1

)

=
(
α−1 + N(t−) − N(a)

) dμ(t)
μ(t) − μ(a) + 1

=
(
α−1 +

(
N(t−) − N(a)

))
d ln
(
μ(t) − μ(a) + 1

)
Note.– dμ(t) can also be written as αμ(t)λ(t)dt. �

We can now establish the following proposition that provides a closed
analytical form for the LEYP likelihood.

Proposition 5.2.– The likelihood of the theoretical process LEYP with
parameter θ given a sequence of observed failures is:

L(θ) = αmΓ(α
−1 + m)
Γ(α−1)

∏m
j=1 μ(t j)λ(t j)

(μ(b) − μ(a) + 1)α
−1+m

Proof.–

As they are a finite number m of jumps within [a, b]:

π
t∈[a,b]

E
(
dN(t) | N[a,t[

)ΔN(t) (1 − E
(
dN(t) | N[a,t[

))1−ΔN(t)

=

m∏
j=1

E
(
dN(t j) | N[a,t j[

) m∏
j=0
π

t∈]t j,t j+1[

(
1 − E

(
dN(t) | N[a,t[

))

Ignoring (dt)m (see [AND 93]), the left side can be written:

m∏
j=1

E
(
dN(t j) | N[a,t j[

)

=

m∏
j=1

E
(
dN(t j) | N(t j−) − N(a) = j − 1

)
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=

m∏
j=1

(1 + ( j − 1)α)
μ(t j)λ(t j)

μ(t j) − μ(a) + 1

= αmΓ(α
−1 + m)
Γ(α−1)

m∏
j=1

μ(t j)λ(t j)
μ(t j) − μ(a) + 1

Using the product integral property π (1 − dX) = exp
(
− ∫ dX

)
(see

Appendix A), the right side can be written:

m∏
j=0
π

t∈]t j,t j+1[

(1 − E (dN(t) | N(t−) − N(a) = j))

=

m∏
j=0

exp
⎛⎜⎜⎜⎜⎝−∫ t j+1

t j

(
α−1 + j

) dμ(t)
μ(t) − μ(a) + 1

⎞⎟⎟⎟⎟⎠
=

m∏
j=0

exp
⎛⎜⎜⎜⎜⎝−∫ t j+1

t j

d ln (μ(t) − μ(a) + 1)α
−1+ j
⎞⎟⎟⎟⎟⎠

=

m∏
j=0

(
μ(t j) − μ(a) + 1
μ(t j+1) − μ(a) + 1

)α−1+ j

=

∏m
j=1 μ(t j) − μ(a) + 1

(μ(b) − μ(a) + 1)α−1+m

Simplifying by
∏m

j=1

(
μ(t j) − μ(a) + 1

)
completes the proof. �

For a random n-sample of technical objects assumed to fail each mi times
within [ai, bi], i ∈ {1, . . . , n}, independently of each other, the global likelihood
is the product of the individual likelihoods:

L(θ) =
n∏

i=1

Li(θ)

In practice, the log-likelihood is preferentially used, as it involves a sum
calculation numerically more tractable than a product. The log-likelihood for



LEYP Likelihood and Inference 55

n technical objects is written as:

ln L(θ) =
n∑

i=1

(
mi lnα + ln Γ

(
α−1 + mi

)
− ln Γ

(
α−1
)

−
(
α−1 + mi

)
ln (μ(bi) − μ(ai) + 1) +

mi∑
j=1

ln λ(ti j) + αΛ(ti j)
)

[5.2]

5.2. LEYP parameter estimation

5.2.1. Maximum likelihood estimator

The theoretical outline of maximum likelihood (ML) estimation assumes
the observed technical objects as randomly drawn from a theoretical infinite
population, the failure process of which follows a LEYP with parameter ϑ.
This theoretical parameter is not random but unknown. The ML estimator of
ϑ is a random vector:

θ̂n = argθmax ln L(θ)

which we conjecture as being asymptotically (1) unbiased, (2) efficient and (3)
normally distributed:

(1) lim
n→∞E

(
θ̂n
)
= ϑ

(2) lim
n→∞Var

(
θ̂n
)
=

(
−∂

2 ln L(θ)
∂θ2

)−1

ϑ

(3) lim
n→∞

(
−∂

2 ln L(θ)
∂θ2

) 1
2

ϑ

(
θ̂n − ϑ

)
∼ N(0, 1)

where 0 and 1 are respectively the null vector and the identity matrix of same
dimension as θ.

We are not able to show that these properties hold in the LEYP case, and
comply with the theoretical ML properties. The asymptotic behavior of the
ML estimator results from regularity conditions of the likelihood function,
presented by [RAO 73] or [COX 74], which seem difficult to assert with the
analytical form [5.2]. We graphically check that the shape of the likelihood
function allows us to search its maximum, using to that end randomly



56 Recurrent Event Modeling Based on the Yule Process

simulated datasets of several thousands of technical objects, assumed to
follow known failure process with realistic failure rates. This verification
work will be presented in Chapter 6 in the more general LEYP2s framework.

5.2.2. Null hypothesis of parameter estimates

Property (2) stated in section 5.2.1 allows us to estimate the covariance
matrix of the parameter estimates θ̂:

V̂ar
(
θ̂
)
=

(
−∂

2 ln L(θ)
∂θ2

)−1

θ̂

[5.3]

This makes it possible to carry out a null hypothesis test on the parameter
estimates. The aim is to infer whether a given parameter estimate significantly
departs, or not, with respect to a given error probability, from a given value
(which is most often 0, but not always). This inferential procedure is usually
implemented by using the so-called Wald Chi-squared test, presented by
[GRE 96]. This test is based on the one degree of freedom chi-squared
distribution followed by a Gaussian r.v. of null expectation and variance unity.

5.2.3. The Yule–Weibull–Cox intensity

For practical applications, the Yule–Weibull–Cox intensity related to a
technical object at age t, characterized by covariates gathered in the vector
Z, and that has undergone j failures, is defined as the product of three factors:

– Yule factor 1 + α j that ensures the dependence on the number j of past
events;

– Weibull factor δtδ−1 accounting for ageing, modeled as a power function
of time;

– Cox factor eZTβ accounting for covariate effects.

The Yule–Weibull–Cox intensity (with q covariates) is defined by the
formula:

Eθ (dN(t) | N(t−) = j, Z) = (1 + jα)δtδ−1eZTβdt [5.4]
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with:

θ =
(
α, δ,β

T)T
α > 0, δ � 1, Z = (1 Z1 Z2 . . . Zq)

T
, β = (β0 β1 β2 . . . βq)

T ∈ �q+1

The “1” as first component of Z and the corresponding β0 in the vector of
regression coefficients β specifies the baseline intensity (1 + α j)δtδ−1eβ0 .

5.2.4. Null hypothesis test implemented for the Yule–Weibull–Cox
intensity

In the case of an unconstrained parameter θk, the test statistic is calculated
as the ratio of the squared difference between the estimate and the test value,
to the estimation variance:(

θ̂k − θk0
)2

V̂ar
(
θ̂k
) ∼ χ2

1

where V̂ar
(
θ̂k
)

is the kth diagonal term of the covariance matrix V̂ar
(
θ̂
)

defined
by equation [5.3]. This method concerns the β values associated with the above
LEYP intensity covariates. It is relevant to test the β̂ estimates against the test
value 0, which means the lack of effect of the covariate.

In the case of constrained parameters, as α > 0 and δ � 1, the asymptotical
normality assumption may not hold, especially if the estimation variance is
high. It is then preferable to use the so-called likelihood ratio test. Concerning
α, this involves estimating with the same dataset the alternative model with
α = 0, i.e. the NHPP, calculate the LR statistic, which is twice the difference
of the log-likelihoods:

LR = 2 (ln LLEYP − ln LNHPP)

and assume that, under the null hypothesis α = 0, the LR statistic is chi-squared
distributed, with a degree of freedom (DF) equal to the difference between the
number of parameters of the alternative models LEYP and NHPP, hence 1 DF.
The same test procedure can be used for δ, by considering the null hypothesis
model δ = 1, i.e. no ageing.
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5.2.5. Parameter estimation algorithm

To find the optimal parameter values that maximize the likelihood function
(the objective function of the optimization process), the so-called
Nelder–Mead algorithm, initially proposed by [NEL 65] and described by
[PRE 02], has empirically proven to work well for LEYP parameter
estimation. For a model with p parameters, this algorithm explores the space
of parameter possible values using a polyhedron (also called sometimes
simplex) with p + 1 vertices, that moves sequentially by undergoing basic
geometric transforms: reflection of one vertex with respect to the hyperplan of
the p remaining vertices, expansion or contraction; the optimization process
eventually contracts the polyhedron around the optimum, and stops when the
maximum difference of the objective function values among the vertices is
below a given threshold. The constraints α > 0 and δ � 1 are taken into
account by using a box-constrained version of the Nelder–Mead algorithm. It
consists of simply replacing after each transform of the polyhedron the α
values that may have become negative on some vertices by a small positive
value (10−4 in practice), and by 1 the δ values that may have fallen below 1.

The Nelder–Mead algorithm has the benefit of necessitating no calculation
of derivatives of the objective function with respect to the parameters. The
Hessian (second order derivatives of the objective function) is nonetheless
numerically evaluated at the optimum point in order to provide an estimate of
the estimate covariance matrix. Extensive random experiments with synthetic
datasets generated with known parameters never suggested possible
convergence problems.

5.3. Validation of the estimation procedure

Estimating LEYP parameters from an either actual or synthetic dataset
involves the implementation of a computer code, the complexity of which
may be a source of potential errors, both numerical or algorithmic. In order to
ensure the validity of the code, it is advisable to generate a synthetic dataset
from known LEYP parameters, then to carry out the coded estimation
procedure, and lastly check that the obtained estimates are reasonably close to
the theoretical estimates. As this code validation method involves the ability
to generate a synthetic LEYP compliant dataset, we will provide a formula for
the theoretical distribution of inter-event times.
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5.3.1. Conditional distribution of the inter-event time

The r.v. T j is the time at which the jth failure occurs . The inter-event time
is the random time Xj+1 = T j+1−T j elapsed between jth failure and the ( j+1)th

one, as illustrated by Figure 5.1.

Xj+1︷�������︸︸�������︷
�

T0 = 0 T j T j+1 t

Figure 5.1. Inter-failure time

The following proposition characterizes the conditional distribution
of X j+1.

Proposition 5.3.– The conditional survival function of X j+1 given the jth failure
time is.

P
(
X j+1 > x | T j = t j

)
= exp

(
−(1 + α j)

[
Λ(t j + x) − Λ(t j)

])

Proof.–

The sought conditional survival is the conditional probability of no failure
within ]t j, t j + x] given N(t j) = j, which is calculated using proposition 4.1:

P
(
X j+1 > x | T j = t j

)
= P
(
N(t j + x) − N(t j) = 0 | N(t j) = j

)
= exp

(
−(1 + α j)

[
Λ(t j + x) − Λ(t j)

])
�

5.3.2. LEYP event simulation

A sequence of events which occur according to a LEYP with known
parameters can be simulated from a pseudo-random sequence of numbers
uniformly distributed within the interval [0, 1]. The classical inverse
transform method, presented by [ROS 97], can be used to that end, which
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only requires the knowledge of the analytical form of the inverse of the
cumulated probability function of Xj.

Let U be a r.v. uniformly distributed on [0, 1], and X a real r.v. with
cumulative distribution function F(x) = P (X � x). As F() is monotonically
increasing, and as:

U ∼ U[0,1] ⇒ P (U � u) = u,

F−1(U) follows then the same distribution as X:

P
(
F−1(U) � x

)
= P
(
F(F−1(U)) � F(x)

)
= P (U � F(x)) = F(x).

The following proposition makes it possible to simulate recursively a
sequence of realizations of random failure times T j:

Proposition 5.4.– Let (u j : j ∈ �∗) be a sequence of independent uniformly
distributed realizations ofU[0,1], and t j a realization of T j, then:

t j+1 = Λ
−1
(
Λ(t j) − ln(1 − u j+1)

1 + α j

)

is a realization of T j+1.

Proof.–

We apply proposition 5.3:

1 − exp
(
−(1 + α j)

[
Λ(t j+1) − Λ(t j)

])
= u j+1

⇒ Λ(t j+1) − Λ(t j) = −
ln(1 − u j+1)

1 + α j

⇒ t j+1 = Λ
−1
(
Λ(t j) − ln(1 − u j+1)

1 + α j

)
�

5.4. LEYP model goodness of fit

Usual methods for assessing the model goodness-of-fit are based on:

– regression residuals in the case of general regression models (linear or
nonlinear);
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– deviance residuals in the case of generalized regression models (e.g.
count data analysis based on Poisson distribution – see [MCC 89]);

– martingale residuals in the case of survival data analysis models (see
[THE 90]).

Martingale residuals method have been extended to counting process
models [LAW 95, AND 93, AAL 08], and defined for this purpose as the
difference:

N(t) −
∫ t

0
E (dN(u) | N(u−)) .

Unfortunately, when observation starts at age a > 0, such residuals cannot
be calculated since N(t) is unknown (only N(t)−N(a) is observed). It is useful
yet to compute for each segment the residual:

N(b) − N(a) −
∫ b

a
E (dN(u) | N(u−)) ,

and check the segment data related to the highest values, as they may allow us
to detect absurd data.

The model goodness-of-fit can be globally assessed by graphically
comparing the empirical and theoretical failure rates averaged over the
sample of objects, and plotted against age, as explained in [AND 93].

In the water network IAM context, the technical objects considered are
network segments, also equivalently named pipes, defined as contiguous
pipeline elements, homogeneous with respect to their age, material and pipe
diameter. An n-sample of segments indexed by i is considered, with length
denoted by li. Each segment is characterized by the covariate vector Zi, and
has been observed within [ai, bi] where its counting process Ni(t) has
recorded mi failures at times

(
ti j
)

j∈{1,...,mi}.

The empirical estimator ρ̂(t) of the average failure rate at age t is
calculated as the weighted number of failures observed to occur within
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[t − Δt, t + Δt] divided by the total length of the segments observed within the
same age interval, and by the bandwidth Δt:

ρ̂(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∑

i=1

mi∑
j=1

K
( t − ti j

Δt

)⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ n∑

i=1

I (ai ≤ t ≤ bi) li

⎞⎟⎟⎟⎟⎟⎠
−1

(Δt)−1 [5.5]

ρ̂(t) is a Nelson–Aalen empirical estimator of the increments of N(t),
smoothed by the Epanechnikov kernel K(x) with bandwidth Δt:

K(x) = 0.75(1 − x2)I (| x |≤ 1) , x ∈ �

Smoothing is especially useful at older ages, poorly represented in the
available data, which may generate chaotic inter-annual variations. Other
smoothing methods could have been used (e.g. uniform or biweight kernels),
but the Epanechnikov kernel is a good trade-off that uses adjacent ages
information but gives a more prominent weight to the current one. It must also
be noticed that the empirical failure rate defined by equation [5.5] complies
with the practical concept of failure rate used by water utilities and defined as
a number of failures by time unit and by network segment length unit.

To compute a confidence interval for ρ̂(t), its variance can be estimated as:

V̂arρ̂(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∑

i=1

mi∑
j=1

K2
( t − ti j

Δt

)⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ n∑

i=1

I (ai ≤ t ≤ bi) li

⎞⎟⎟⎟⎟⎟⎠
−2

(Δt)−2

The theoretical average conditional failure rate at age t is calculated as (see
proposition 5.1 for the conditional intensity):

n∑
i=1

Eθ (dNi(t) | Ni(t−) − Ni(ai), Zi) I (ai ≤ t ≤ bi)

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

I (ai ≤ t ≤ bi) li

⎞⎟⎟⎟⎟⎟⎠
−1

[5.6]

5.5. Validating LEYP model predictions

A method to validate the model predictions has been proposed by [LEG 02]
(see also [REN 12] and [LEG 14]); it consists of:

– calibrating the model using, for example, the first 80% of the duration of
the available observation window;
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– then predicting for each pipe the number of failures in the last 20% of the
window.

This makes it possible to compare in the last 20% of the observation
window the actual number of failures versus the predicted number of failures.
The relative comparison allows us to make an assessment of the ability of the
model to detect the pipes with highest failure risks, by measuring how actual
failures are concentrated on the pipes with the highest expected failure rate.
This is done by building a predictive performance curve presented in the next
section.

5.5.1. Lorenz curve

The building of predictive performance curves follows an outline similar
to the method proposed by [LOR 05] to graphically assess the inequity of
economic wealth concentration within a population. Such a curve is often
called a Lorenz curve, or also Lift curve in marketing applications.

The following presentation is adapted to applications in the water network
IAM context, where the technical object considered is a network segment
indexed by i, of length li, and assumed to have been observed both:

– within calibration interval [ai, bi], where it experienced mi failures;

– and within validation interval [bi, ci], where it experienced ki failures.

The key point is the ranking of the pipes by decreasing expected failure rate:

k̂i/li/(ci − bi)

where:

k̂i = Eθ (Ni(ci) − Ni(bi) | Ni(bi) − Ni(ai) = mi, Zi) .

Considering the subset of size i of pipes with highest expected failure rates,
the relative risk rank weighted by the pipe length is calculated as:

r(i) =

(i)∑
j=(1)

l j/

(n)∑
j=(1)

l j
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and the relative number of failures observed within the validation interval:

κ(i) =

(i)∑
j=(1)

k j/

(n)∑
j=(1)

k j

where parenthesized indices (1), . . . , (i), . . . , (n) means that pipes are arranged
in decreasing order of expected failure rate. The predictive performance curve
is the graph

(
r(i), κ(i)

)
, as illustrated by Figure 5.2. The area A under the step

curve is calculated as:

A =

∑(n)
i=(1) liκi∑(n)
i=(1) li

1

1
0

r(i) =

∑(i)
j=(1) l j∑(n)
j=(1) l j

Relative lengths
0

κ(i) =

∑(i)
j=(1) k j∑(n)
j=(1) k j
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Objects ranked by decreasing
expected failure rate k̂i/li/(ci − bi)

A =

∑(n)
i=(1) li κi∑(n)

i=(1) li

Figure 5.2. Lorenz curve

The predictive performance is all better since A is closer to 1. κ(i) can be
interpreted as the rate of failures that would have been avoided if a
corresponding rate r(i) of the total pipe length had been replaced, provided the
replaced pipes have been chosen in priority according to their theoretical
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failure rate. Despite a formal resemblance with the so-called receiver
operating curve, used by [DEB 10] for validating pipe failure predictions, the
predictive performance curve cannot be similarly interpreted, since the
response variable is not a Bernoulli random variable.

5.5.2. Prediction bias checking

For a sample of objects sufficiently large, for example n � 30, the lack of
bias in the predictions can be assessed by checking that the sum of the actual
numbers of failures

∑n
i=1 ki lies within 95% confidence interval of the sum

of the expected numbers of failures
∑n

i=1 k̂i. This confidence interval can be
calculated using the asymptotic normality of a sum of independent negative
binomial variables with variance

∑n
i=1 V̂ar(k̂i), provided the variances V̂ar(k̂i)

do not vary too much.





6

Selective Survival

In the previous Chapters 4 and 5, the objects under study were assumed to
remain indefinitely in service, i.e. have an infinite lifetime. This hypothesis is
of course simplistic with regard to the real world, but nevertheless useful in
the first step of research work. In order to go one step further toward our
objective to design a tool to aid infrastructure asset management (IAM)
decisions, finite service lifetimes have to be considered instead. Revisiting the
LEYP model in this respect turns out to be also theoretically interesting, as
the end of the service life of an asset, i.e. its decommissioning, obviously
stops the observation of its failure process, and is then an important cause of
right-censoring. If repeated failures can motivate the decommissioning,
right-censoring has then to be considered, at least partly, as informative (or
dependent), which necessitates an adapted mathematical treatment.

6.1. Left-truncation, right-censoring and decommissioning
decisions

In order to practically implement a failure model within an IAM decision
process, it is necessary to understand why the elementary components of the
infrastructure may have shorter or longer service lifetimes. More specifically,
in the case of water networks, water mains can be decommissioned for various
reasons, that can be grouped for theoretical grounds into two main categories,
according to whether the decommissioning is motivated by the performance
degradation, or not:

– we call selective, the decommissioning which is motivated by repeated
failures of a given object; this kind of decommissioning results indeed from

Recurrent Event Modeling Based on the Yule Process: Application to Water Network
Asset Management, First Edition. Yves Le Gat.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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a decision made because the observed failure rate of the considered object
exceeds a threshold, which is a function of potential impacts of failures on
users and environment;

– the decommissioning is called constrained when it is independent of the
object condition; this kind of decommissioning is most often dictated by land
management decisions, which involve the considered object to be moved or
reconfigurated.

It is thought that there exists in practice an intermediate case where a
decommissioning decision is made on the occasion of land management work
with little regard for the suspected object condition, but as a precaution, with
the aim of taking the opportunity of third party works and potential cost
reduction. Such opportunity decommissioning most often concerns objects of
a certain age, and can be considered as an age-dependent constrained
decommissioning.

Selective decommissioning involves a selection phenomenon of the
technical objects on their robustness, which will be called selective survival.
This makes it tricky to estimate LEYP model parameter, and all the more
since actual failure data are left-truncated, as already mentioned in sections
1.6 and 4.2. Moreover, in the case where the observation window is
terminated because of the decommissioning, the right-censoring of the
observation of the failure process cannot be considered as non-informative or
independent. As a major consequence of left-truncation and informative
right-censoring, both dependent on the failure process itself, the objects with
high failure rate are likely to be under-represented in actual datasets. It is
therefore of utmost importance to build an enhanced version of the LEYP
model that accounts for both processes of failure and decommissioning.

6.2. Coupling failure and decommissioning processes: LEYP2s
model

In order to couple the failure and decommissioning processes, the counting
process R(t) devoted to decommissioning events is introduced in addition to the
failure counting process N(t). The coupling between both processes is ensured
by making the decommissioning intensity linearly depend on N(t−). This gives
rise to the so-called LEYP2s model, enhanced version of LEYP that accounts
for selective survival.
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Definition 6.1.– The LEYP2s model is defined by coupling the failure and
decommissioning intensity functions as follows:

∀t ∈ �+,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
N(0) = 0
E (dN(t) | N(t−)) = (1 + αN(t−)) λ(t)dt
R(0) = 0
E (dR(t) | N(t−)) = (ψ(t) + φN(t−)) dt

with: α > 0, λ(t) � 0, ψ(t) � 0, φ > 0

The parameter function ψ(t) and scalar φ relate, respectively, to the
constrained and selective decommissionings. For the constrained
decommissioning, a function is considered instead of a scalar to account also
for opportunity decommissioning.

The decommissioning intensity is hence designed as a competing risk
model, in which two decommissioning causes compete independently of each
other (see [AAL 08] p. 18). Two competing decommissioning processes can
then be defined; they will be denoted, respectively, RC(t) and RS (t), for the
constrained and selective decommissionings, the intensities of which are:

E (dRC(t)) = ψ(t)dt

E (dRS (t) | N(t−)) = φN(t−)dt

The following additivity of intensities characterises the competing risk
concept:

E (dR(t) | N(t−)) = E (dRC(t)) + E (dRS (t) | N(t−))

6.3. LEYP2s discretization scheme

In order to obtain a tractable tool for practical applications, we need to
derive the distributional properties of the LEYP2s model for a given technical
object conditionally on its survival until the beginning of the observation
window [a, b], i.e. given R(a−) = 0. However, despite the apparent simplicity
of the LEYP2s in definition 6.1, the study of this process is difficult to carry
out in continuous time.
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D1︷︸︸︷ D2︷︸︸︷ D j︷︸︸︷ Dn︷︸︸︷ Dn+1︷︸︸︷
�

a0 a1 a2 a j−1 a j an−1 an an+1 t

Figure 6.1. LEYP2s discretization scheme on interval [0, a[

We have then chosen to partition the interval [0, a[ according to Figure 6.1,
with by convention a0 = 0 and an = a. For each subinterval [aj−1, a j[, the
following notations are adopted:

D j = N(aj−) − N(a j−1)

Δμ j = μ(aj) − μ(aj−1)

ψ j = e
− ∫ a j

a j−1
ψ(t)dt

[6.1]

φ j = e−(aj−a j−1)φ [6.2]

It is assumed that:

– decommissioning can only occur at times a j;

– the probability of no decommissioning at a j given none occured before
and given the numbers of failures within intervals [ai−1, ai[, for i = 1, . . . , j, is:

P

⎛⎜⎜⎜⎜⎜⎜⎝R(a j) − R(a j−1) = 0 |
j⋂

i=1

Di = di

⎞⎟⎟⎟⎟⎟⎟⎠ = ψ jφ
∑ j

i=1 di

j

Proposition 6.1.– The discretization scheme tends to a LEYP2s when n → ∞
while max j

(
a j − a j−1

)
→ 0+.

Proof.–

Setting indeed a j = t in the above, noting that
∑ j

i=1 Dj is then N(t−), and
as:

lim
x→0+

1 − exp−x = x,
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allows us to check that:

lim
a j−a j−1→0+

1 − ψ jφ
∑ j

i=1 Dj

j = (ψ(t) + φN(t−)) dt

= E (dR(t) | N(t−)) �

6.4. Failure and decommissioning probabilities

Whereas definition 6.1 makes LEYP2s Markovian, the probability
P (R(t) = 0) that the technical object has not been decommissioned yet at age t
depends on the specific trajectory followed by the failure process N(s), s < t.
We will see, however, that the discretization scheme makes it nevertheless
possible to establish simple probabilistic results for both R(t) and N(t)
processes.

6.4.1. Probability of no decommissioning

Within the discretization framework illustrated by Figure 6.1 we will
establish first the following marginal probability that no decommissioning
occurs up to a given time.

Proposition 6.2.– The marginal probability that no decommissioning occurs
up to time an is:

P (R(an) = 0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

ψ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝μn −

n∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i= j

φi

⎞⎟⎟⎟⎟⎟⎟⎟⎠Δμ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−α−1

Proof.– A specific discretized trajectory of the failure process between a0 and
an is completely defined by an n-tuple (d1, . . . , dn), and the corresponding
conditional probability is hence:

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝R(an) = 0 |
n⋂

j=1

Dj = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =
n∏

j=1

ψ jφ
∑ j

i=1 di

j

which can be rewritten:

=

n∏
j=1

ψ j

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i= j

φi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
d j
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Using law of total probability:

P (R(an) = 0)

=

∞∑
d1=0

. . .

∞∑
dn=0

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝R(an) = 0 |
n⋂

j=1

D j = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠P
⎛⎜⎜⎜⎜⎜⎜⎜⎝

n⋂
j=1

D j = d j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Then, from proposition 4.9, with a0 = 0:

=

∞∑
d1=0

. . .
∞∑

dn=0

n∏
j=1

ψ j

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i= j

φi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
d j
Γ(α−1 +

∑n
j=1 d j)

Γ(α−1)
∏n

j=1 d j!

(
1
μn

)α−1 n∏
j=1

(
Δμ j

μn

)d j

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

ψ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(

1
μn

)α−1 ∞∑
d1=0

. . .

∞∑
dn=0

Γ(α−1 +
∑n

j=1 dj)

Γ(α−1)
∏n

j=1 d j!

n∏
j=1

⎛⎜⎜⎜⎜⎜⎜⎝
(∏n

i= j φi
)
Δμ j

μn

⎞⎟⎟⎟⎟⎟⎟⎠
dj

and using equation [2.8]:

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

ψ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(

1
μn

)α−1
⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −

n∑
j=1

(∏n
i= j φi
)
Δμ j

μn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−α−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

ψ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝μn −

n∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i= j

φi

⎞⎟⎟⎟⎟⎟⎟⎟⎠Δμ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−α−1

�

Passing to the limit (n → ∞ while max j=1,...,n
(
a j − a j−1

)
→ 0+), and

setting in the above:

a0 = 0, an = a,

the following proposition related to LEYP2s can be infered.

Proposition 6.3.– The marginal probability that no decommissioning occurs
up to time a− is:

P (R(a−) = 0) = ξ(a) (μ(a) − ν(a))−α
−1
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where:

ξ(a) = e−
∫ a

0 ψ(t)dt [6.3]

and:

ν(a) =
∫ a

0
e−(a−t)φdμ(t) [6.4]

Proof.–

The proposition is a straightforward consequence of proposition 6.2 and
notations defined by equations [6.1] and [6.2] �

6.4.2. Distribution of N(b) − N(a) given R(a−) = 0

We will now establish the conditional counterpart of proposition 4.3 given
R(a−), i.e. calculate the conditional distribution of the number of failures
within an interval given no decommissioning occured up to the beginning of
this interval. We first consider the discretized problem (see Figure 6.1).

Proposition 6.4.– The conditional distribution of Dn+1 given R(an) = 0 is
negative binomial:

Dn+1 | R(an) = 0 ∼ NB
⎛⎜⎜⎜⎜⎜⎜⎝α−1,

μn −∑n
j=1

(∏n
i= j φi
)
Δμ j

μn+1 −∑n
j=1

(∏n
i= j φi
)
Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
Proof.–

Using Bayes’ theorem:

P (Dn+1 = dn+1 | R(an) = 0)

=
P (R(an) = 0 | Dn+1 = dn+1) P (Dn+1 = dn+1)

P (R(an) = 0)

The numerator can be calculated using law of total probability:

P (R(an) = 0 | Dn+1 = dn+1) P (Dn+1 = dn+1)
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=

∞∑
d1=0

. . .

∞∑
dn=0

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝R(an) = 0 |
n⋂

j=1

D j = d j,Dn+1 = dn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
×P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n⋂

j=1

D j = d j | Dn+1 = dn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠P (Dn+1 = dn+1)

=

∞∑
d1=0

. . .

∞∑
dn=0

n∏
j=1

ψ j

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i= j

φi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
dj P
(⋂n

j=1 D j = d j,Dn+1 = dn+1
)

P (Dn+1 = dn+1)
P (Dn+1 = dn+1)

Then, from proposition 4.9 at order n + 1, with a0 = 0:

=

∞∑
d1=0

. . .
∞∑

dn=0

n∏
j=1

ψ j

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i= j

φi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
d j
Γ(α−1 +

∑n+1
j=1 d j)

Γ(α−1)
∏n+1

j=1 d j!

(
1
μn+1

)α−1 n+1∏
j=1

(
Δμ j

μn+1

)dj

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

ψ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ Γ(α−1 + dn+1)
Γ(α−1)dn+1!

(
1
μn+1

)α−1 (
Δμn+1

μn+1

)dn+1

×
∞∑

d1=0

. . .

∞∑
dn=0

Γ(α−1 + dn+1 +
∑n

j=1 dj)

Γ(α−1 + dn+1)
∏n

j=1 d j!

n∏
j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝

n∏
i= j

φi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(
Δμ j

μn+1

)⎤⎥⎥⎥⎥⎥⎥⎥⎦
dj

Then, using equation [2.8]:

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

ψ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ Γ(α−1 + dn+1)
Γ(α−1)dn+1!

(
1
μn+1

)α−1 (
Δμn+1

μn+1

)dn+1

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
n∑

j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i= j

φi

⎞⎟⎟⎟⎟⎟⎟⎟⎠ Δμ j

μn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−(α−1+dn+1)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

ψ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ Γ(α−1 + dn+1)
Γ(α−1)dn+1!

(Δμn+1)dn+1(
μn+1 −∑n

j=1

(∏n
i= j φi
)
Δμ j
)α−1+dn+1

And finally, dividing by denominator (calculated by proposition 6.3) yields:

P (Dn+1 = dn+1 | R(an) = 0)
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=
Γ(α−1 + dn+1)
Γ(α−1)dn+1!

⎛⎜⎜⎜⎜⎜⎜⎝ μn −∑n
j=1

(∏n
i= j φi
)
Δμ j

μn+1 −∑n
j=1

(∏n
i= j φi
)
Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
α−1

⎛⎜⎜⎜⎜⎜⎜⎝ Δμn+1

μn+1 −∑n
j=1

(∏n
i= j φi
)
Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
dn+1

�

Passing to the limit (n → ∞ while max j=1,...,n
(
a j − a j−1

)
→ 0+), and

setting in the above:

a0 = 0, an = a, an+1 = b,

yields the following proposition.

Proposition 6.5.– The conditional distribution of N(b)−N(a) given R(a−) = 0
is negative binomial:

N(b) − N(a) | R(a−) = 0 ∼ NB
(
α−1,
μ(a) − ν(a)
μ(b) − ν(a)

)

Proof.–

The proposition is a straightforward consequence of proposition 6.4. �

Remark 6.1.– Setting φ = 0 in proposition 6.5 yields proposition 4.3, as∫ a
0 e−(a−t)φdμ(t) becomes then μ(a) − 1. �

6.4.3. Conditional probability of R(a−) = 0 given N(b) − N(a)

The converse of previous proposition 6.5 is also useful.

Proposition 6.6.– The conditional probability of R(a−) = 0 given N(b) − N(a)
is:

P (R(a−) = 0 | N(b) − N(a) = m) = ξ(a)
(
μ(b) − μ(a) + 1
μ(b) − ν(a)

)α−1+m
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Proof.–

Using Bayes’ theorem:

P (R(a−)) = 0 | N(b) − N(a) = m

=
P (N(b) − N(a) = m | R(a−) = 0) P (R(a−) = 0)

P (N(b) − N(a) = m)

Applying propositions 6.5, 6.3 and 4.3:

=
Γ(α−1 + m)
Γ(α−1)m!

(
μ(a) − ν(a)
μ(b) − ν(a)

)α−1 (
μ(b) − μ(a)
μ(b) − ν(a)

)m
ξ(a) (μ(a) − ν(a))α

−1 ×

×
⎛⎜⎜⎜⎜⎜⎜⎝Γ(α−1 + m)
Γ(α−1)m!

(
1

μ(b) − μ(a) + 1

)α−1 (
μ(b) − μ(a)
μ(b) − μ(a) + 1

)m⎞⎟⎟⎟⎟⎟⎟⎠
−1

= ξ(a)
(
μ(b) − μ(a) + 1
μ(b) − ν(a)

)α−1+m

�

Remark 6.2.– In proposition 6.6, the conditional probability of undergoing no
decommissioning within interval [0, a[ given the number of failures within
interval [a, b] does not depend on the trajectory of the failure process within
that interval. As a consequence, if we partition [a, b[1 into n ajacent
non-overlapping subintervals:

[a, b[=
n⋃

j=1

[b j−1, bj[

where b0 = a and bn = b, we can then write as:

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝R(a−) = 0 |
n⋂

j=1

N(b j) − N(b j−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = P (R(a−) = 0 | N(b) − N(a)) �

1 Time point b is excluded for sole notation convenience, without loss of generality for our
purpose.
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Remark 6.3.– A discretized version of proposition 6.6 will be needed to prove
proposition 6.8 in the next section 6.4.6:

P (R(an = 0 | Dn+1 = dn+1)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

ψ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ 1 + Δμn+1

μn+1 −∑n
j=1

(∏n
i= j φi
)
Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
α−1+dn+1

�
We have yet to establish two propositions that will be useful in practical

LEYP2s applications to carry out conditional predictions in a future time
interval given the number of failures within an available observation window.

6.4.4. Conditional distribution of N(c) − N(b) given N(b) − N(a) and
R(a−) = 0

We will establish thus the conditional counterpart of proposition 4.5 given
R(a−).

Proposition 6.7.– The conditional distribution of N(c)−N(b) given N(b)−N(a)
and R(a−) = 0 is negative binomial:

N(c) − N(b) | N(b) − N(a) = m,R(a−) = 0 ∼ NB
(
α−1 + m,

μ(b) − ν(a)
μ(c) − ν(a)

)

Proof.–

Using Bayes’ theorem:

P (N(c) − N(b) = k | N(b) − N(a) = m,R(a−) = 0)

= P (R(a−) = 0 | N(c) − N(b) = k,N(b) − N(a) = m)

× P (N(c) − N(b) = k | N(b) − N(a) = m)
P (R(a−) = 0 | N(b) − N(a) = m)

But, as stressed by remark 6.2:

P (R(a−)) = 0 | N(c) − N(b) = k,N(b) − N(a) = m

= P (R(a−) = 0 | N(c) − N(a) = m + k)
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Then:

P (N(c) − N(b) = k | N(b) − N(a) = m,R(a−) = 0)

= ξ(a)
(
μ(c) − μ(a) + 1
μ(c) − ν(a)

)α−1+m+k

× Γ(α
−1 + m + k)

Γ(α−1 + m)k!

(
μ(b) − μ(a) + 1
μ(c) − μ(a) + 1

)α−1+m (
μ(c) − μ(b)
μ(c) − μ(a) + 1

)k

×
⎛⎜⎜⎜⎜⎜⎜⎝ξ(a)

(
μ(b) − μ(a) + 1
μ(b) − ν(a)

)α−1+m
⎞⎟⎟⎟⎟⎟⎟⎠
−1

=
Γ(α−1 + m + k)
Γ(α−1 + m)k!

(
μ(b) − ν(a)
μ(c) − ν(a)

)α−1+m (
μ(c) − μ(b)
μ(c) − ν(a)

)k
�

6.4.5. Conditional distribution of N(d) − N(c) given N(b) − N(a) and
R(a−) = 0

We can now establish the conditional counterpart of proposition 4.7 given
R(a−), which will be proven by using proposition 6.7 twice.

Proposition 6.8.– The conditional distribution of N(d)−N(c) given N(b)−N(a)
and R(a−) = 0 is negative binomial:

N(d) − N(c) | N(b) − N(a) = m,R(a−)

= 0 ∼ NB
(
α−1 + m,

μ(b) − ν(a)
μ(d) − μ(c) + μ(b) − ν(a)

)

Proof.–

Using the law of total probability:

P (N(d) − N(c) = k | N(b) − N(a) = m,R(a−) = 0)

=

∞∑
j=0

P (N(d) − N(c) = k | N(c) − N(b) = j,N(b) − N(a) = m,R(a−) = 0)

×P (N(c) − N(b) = j | N(b) − N(a) = m,R(a−) = 0)
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=

∞∑
j=0

P (N(d) − N(c) = k | N(c) − N(a) = m + j,R(a−) = 0)

×P (N(c) − N(b) = j | N(b) − N(a) = m,R(a−) = 0)

Using proposition 6.7 twice:

=

∞∑
j=0

Γ(α−1 + m + j + k)
Γ(α−1 + m + j)k!

(
μ(c) − ν(a)
μ(d) − ν(a)

)α−1+m+ j (
μ(d) − μ(c)
μ(d) − ν(a)

)k

× Γ(α
−1 + m + j)

Γ(α−1 + m) j!

(
μ(b) − ν(a)
μ(c) − ν(a)

)α−1+m (
μ(c) − μ(b)
μ(c) − ν(a)

) j

=
Γ(α−1 + m + k)
Γ(α−1 + m)k!

(
μ(b) − ν(a)
μ(d) − ν(a)

)α−1+m (
μ(d) − μ(c)
μ(d) − ν(a)

)k

×
∞∑
j=0

Γ(α−1 + m + j + k)
Γ(α−1 + m + k) j!

(
μ(c) − μ(b)
μ(d) − ν(a)

) j

And using negative binomial power series of equation [2.6] finally yields:

=
Γ(α−1 + m + k)
Γ(α−1 + m)k!

(
μ(b) − ν(a)
μ(d) − ν(a)

)α−1+m (
μ(d) − μ(c)
μ(d) − ν(a)

)k (
1 − μ(c) − μ(b)
μ(d) − ν(a)

)−(α−1+m+k)

=
Γ(α−1 + m + k)
Γ(α−1 + m)k!

(
μ(b) − ν(a)

μ(d) − μ(c) + μ(b) − ν(a)

)α−1+m (
μ(d) − μ(c)

μ(d) − μ(c) + μ(b) − ν(a)

)k
�

6.4.6. Conditional distribution of N(a−) given N(b) − N(a) and
R(a−) = 0

We conclude this chapter with the conditional counterpart of proposition
4.4 given R(a−) = 0, that will be useful later on when building the LEYP2s
likelihood. We consider first the discretized problem.
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Proposition 6.9.– The conditional distribution of
∑n

j=1 D j given Dn+1 and
R(an) = 0 is negative binomial:

n∑
j=1

D j | Dn+1 = dn+1,R(an) = 0 ∼ NB
⎛⎜⎜⎜⎜⎜⎜⎝α−1 + dn+1,

μn+1 −∑n
j=1

(∏n
i= j φi
)
Δμ j

μn+1

⎞⎟⎟⎟⎟⎟⎟⎠
Proof.–

We first consider the conditional distribution of:

n⋂
j=1

D j | Dn+1 = dn+1,R(an) = 0

and use Bayes theorem to calculate:

P

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n⋂

j=1

D j = d j | Dn+1 = dn+1,R(an) = 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

P
(
R(an) = 0 | ⋂n+1

j=1 D j = d j
)

P
(⋂n

j=1 D j = d j | Dn+1 = dn+1
)

P (R(an) = 0 | Dn+1 = dn+1)

As R(an) is completely determined by
⋂n

j=1 Dj = d j:

=
P
(
R(an) = 0 | ⋂n

j=1 D j = d j
)

P
(⋂n+1

j=1 D j = d j
)

P (R(an) = 0 | Dn+1 = dn+1) P (Dn+1 = dn+1)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

ψ j

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i= j

φi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
d j
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(α

−1 +
∑n+1

j=1 d j)

Γ(α−1)
∏n+1

j=1 d j!

(
1
μn+1

)α−1 n+1∏
j=1

(
Δμ j

μn+1

)dj

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

n∏
j=1

ψ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1 ⎛⎜⎜⎜⎜⎜⎜⎝ 1 + Δμn+1

μn+1 −∑n
j=1

(∏n
i= j φi
)
Δμ j

⎞⎟⎟⎟⎟⎟⎟⎠
−(α−1+dn+1)

×
⎛⎜⎜⎜⎜⎜⎜⎝Γ(α−1 + dn+1)
Γ(α−1)dn+1!

(
1

1 + Δμn+1

)α−1 (
Δμn+1

1 + Δμn+1

)dn+1
⎞⎟⎟⎟⎟⎟⎟⎠
−1

=
Γ(α−1 +

∑n+1
j=1 d j)

Γ(α−1 + dn+1)
∏n

j=1 dj!

(
1
μn+1

)α−1 n∏
j=1

⎛⎜⎜⎜⎜⎜⎜⎝
(∏n

i= j φi
)
Δμ j

μn+1

⎞⎟⎟⎟⎟⎟⎟⎠
d j (
Δμn+1

μn+1

)dn+1
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×
⎛⎜⎜⎜⎜⎜⎜⎜⎝μn+1 −

n∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i= j

φi

⎞⎟⎟⎟⎟⎟⎟⎟⎠Δμ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
α−1 ⎛⎜⎜⎜⎜⎜⎜⎝μn+1 −∑n

j=1

(∏n
i= j φi
)
Δμ j

Δμn+1

⎞⎟⎟⎟⎟⎟⎟⎠
dn+1

=
Γ(α−1 +

∑n+1
j=1 d j)

Γ(α−1 + dn+1)
∏n

j=1 dj!

⎛⎜⎜⎜⎜⎜⎜⎝μn+1 −∑n
j=1

(∏n
i= j φi
)
Δμ j

μn+1

⎞⎟⎟⎟⎟⎟⎟⎠
α−1+dn+1

n∏
j=1

⎛⎜⎜⎜⎜⎜⎜⎝
(∏n

i= j φi
)
Δμ j

μn+1

⎞⎟⎟⎟⎟⎟⎟⎠
d j

The joint distribution of
⋂n

j=1 D j | Dn+1 = dn+1,R(an) = 0 is thus negative
multinomial:

n⋂
j=1

D j | Dn+1 = dn+1,R(an) = 0 ∼ NM
⎛⎜⎜⎜⎜⎜⎜⎜⎝α−1 + dn+1,

⎛⎜⎜⎜⎜⎜⎜⎝
(∏n

i= j φi
)
Δμ j

μn+1

⎞⎟⎟⎟⎟⎟⎟⎠
j=1,...,n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and, from proposition 2.3:

n∑
j=1

D j | Dn+1 = dn+1,R(an) = 0 ∼ NB
⎛⎜⎜⎜⎜⎜⎜⎝α−1 + dn+1, 1 −

∑n
j=1

(∏n
i= j φi
)
Δμ j

μn+1

⎞⎟⎟⎟⎟⎟⎟⎠
�

Passing to the limit (n → ∞ while max j=1,...,n
(
a j − a j−1

)
→ 0+), and

setting in the above:

a0 = 0, an = a, an+1 = b,

yields the following proposition.

Proposition 6.10.– The conditional distribution of N(a−) given N(b) − N(a)
and R(a−) = 0 is negative binomial:

N(a−) | N(b) − N(a) = m,R(a−) = 0 ∼ NB
(
α−1 + m,

μ(b) − ν(a)
μ(b)

)

Proof.–

The proposition is a straightforward consequence of proposition 6.9. �





7

LEYP2s Likelihood and Inference

In order to be able to estimate LEYP2s parameters from actual failure and
decommissioning data, we have to build the likelihood function of the
parameters, as we did in section 5.1 in the case of the simple LEYP model.
Within LEYP2s framework, we have to consider both failure N(t) and
decommissioning R(t) processes conditioned on R(a−), i.e. the survival of the
considered object until the observation window [a, b]. The likelihood of joint
processes N(t) and R(t) is defined as the product of the likelihood related to
N(t), the observation of which is censored by R(t), by the likelihood related to
R(t), the intensity of which depends on N(t).

Definition 7.1.–

L(θ) = π
t∈[a,b]

{
E
(
dN(t) | N[a,t[,R(a−)

)ΔN(t) (1 − E
(
dN(t) | N[a,t[,R(a−)

))1−ΔN(t)

×E
(
dR(t) | N[a,t[,R(a−)

)ΔR(t) (1 − E
(
dR(t) | N[a,t[,R(a−)

))1−ΔR(t)
}
[7.1]

with:

ΔN(t) = N(t) − N(t−), ΔR(t) = R(t) − R(t−)

Thus, we have to find closed analytical forms for both quantities:

E (dN(t) | N(t−) − N(a),R(a−) = 0)

E (dR(t) | N(t−) − N(a),R(a−) = 0)

Recurrent Event Modeling Based on the Yule Process: Application to Water Network
Asset Management, First Edition. Yves Le Gat.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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We begin with the following proposition related to the conditional intensity
of the failure process.

Proposition 7.1.–
E (dN(t) | N(t−) − N(a) = m,R(a−) = 0) = (α−1 + m)d ln (μ(t) − ν(a))

Proof.–

Using the law of total probability:

E (dN(t) | N(t−) − N(a) = m,R(a−) = 0)

=

∞∑
k=0

E (dN(t) | N(t−) − N(a) = m,R(a−) = 0,N(a−) = k)

× P (N(a−) = k | N(t−) − N(a) = m,R(a−) = 0)

=

∞∑
k=0

(1 + α(m + k)λ(t)dt) P (N(a−) = k | N(t−) − N(a) = m,R(a−) = 0)

= (1 + αm + αE (N(a−) | N(t−) − N(a) = m,R(a−) = 0)) λ(t)dt

And using proposition 6.10 yields:

= (1 + αm)
(
1 +

ν(a)
μ(t) − ν(a)

)
λ(t)dt

= (1 + αm)
μ(t)λ(t)dt
μ(t) − ν(a)

= (α−1 + m)
dμ(t)

μ(t) − ν(a) �

The following proposition relates to the conditional intensity of the
decommissioning process.

Proposition 7.2.–

E (dR(t) | N(t−) − N(a) = m,R(a−) = 0)

=

(
ψ(t) +

φ(αmμ(t) + ν(a))
α(μ(t) − ν(a))

)
dt
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Proof.–

Using the law of total probability:

E (dR(t) | N(t−) − N(a) = m,R(a−) = 0)

=

∞∑
k=0

E (dR(t) | N(t−) − N(a) = m,R(a−) = 0,N(a−) = k)

× P (N(a−) = k | N(t−) − N(a) = m,R(a−) = 0)

=

∞∑
k=0

((ψ(t) + φ(m + k)) dt) P (N(a−) = k | N(t−) − N(a) = m,R(a−) = 0)

=
[
ψ(t) + φm + φE (N(a−) | N(t−) − N(a) = m,R(a−) = 0)

]
dt

And using proposition 6.10 yields:

=

(
ψ(t) + φm + φ(α−1 + m)

ν(a)
μ(t) − ν(a)

)
dt

�

We are now able to establish an explicit analytical formula for LEYP2s
likelihood, by applying propositions 7.1 and 7.2 in definition 7.1. To this end,
we consider the likelihood related to a single technical object which is
supposed to have been observed within age interval [a, b], in which it
underwent m failures at ages t j, j = 1, . . . ,m1, and was at b either still in
service, i.e. R(b) = 0 (and obviously ΔR(b) = 0 too), or decommissioned, i.e.
ΔR(b) = 1.

Proposition 7.3.– The likelihood of the theoretical LEYP2s process with
parameter θ given m observed failures within [a, b] and possible
decommissioning at b is:

L(θ) =αmΓ(α
−1 + m)
Γ(α−1)

(μ(a) − ν(a))α
−1

(μ(b) − ν(a))α−1+m

m∏
j=1

μ(t) jλ(t j)

×
(
ψ(b) +

φ(αmμ(b) + ν(a))
α(μ(b) − ν(a))

)ΔR(b)

1 By convention, t0 = a and tm+1 = b.
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× exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
∫ b

a
ψ(t)dt −

m∑
j=0

∫ t j+1

t j

φ(α jμ(t) + ν(a))
α(μ(t) − ν(a))

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Proof.–

For the first of the four terms within product integral in definition 7.1,
related to m failure times, we obtain:

π
t∈[a,b]

E
(
dN(t) | N[a,t[,R(a−)

)ΔN(t)

=

m∏
j=1

E
(
dN(t j) | N(t j−) − N(a),R(a−)

)

=

m∏
j=1

(1 + α( j − 1))
μ(t j)λ(t j)
μ(t j) − ν(a)

= αmΓ(α
−1 + m)
Γ(α−1)

m∏
j=1

μ(t j)λ(t j)
μ(t j) − ν(a)

For the second term, related to inter-failure times:

π
t∈[a,b]

(
1 − E

(
dN(t) | N[a,t[,R(a−)

))1−ΔN(t)

=

m∏
j=0
π

t∈[t j,t j+1[

(1 − E (dN(t) | N(t−) − N(a),R(a−)))

=

m∏
j=0

exp
⎛⎜⎜⎜⎜⎝−∫ t j+1

t j

(α−1 + j)d ln (μ(t) − ν(a))
⎞⎟⎟⎟⎟⎠

=

m∏
j=0

(
μ(t j) − ν(a)
μ(t j+1) − ν(a)

)α−1+ j

=
(μ(a) − ν(a))α

−1

(μ(b) − ν(a))α−1+m

m∏
j=1

(
μ(t j) − ν(a)

)
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For the third term, related to the case where the object is decommissioned
at b:

π
t∈[a,b]

E
(
dR(t) | N[a,t[,R(a−)

)ΔR(t)

= E (dR(b) | N(b−) − N(a),R(a−))ΔR(b)

=

(
ψ(b) +

φ(αmμ(b) + ν(a))
α(μ(b) − ν(a))

)ΔR(b)

And for the fourth term, related to the case where the object is still in service
at b:

π
t∈[a,b]

(
1 − E

(
dR(t) | N[a,t[,R(a−)

))1−ΔR(t)

=

m∏
j=0
π

t∈[t j,t j+1[

(1 − E (dR(t) | N(t−) − N(a),R(a−)))

=

m∏
j=0

exp
⎛⎜⎜⎜⎜⎝−∫ t j+1

t j

(
ψ(t) +

φ(α jμ(t) + ν(a))
α(μ(t) − ν(a))

)
dt
⎞⎟⎟⎟⎟⎠

= exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
∫ b

a
ψ(t)dt −

m∑
j=0

∫ t j+1

t j

φ(α jμ(t) + ν(a))
α(μ(t) − ν(a))

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�

For practical applications, we will consider, as in section 5.1, the
log-likelihood related to a collection of n objects, assumed to undergo
independent failure and decommissioning processes:

ln L(θ) =
n∑

i=1

mi lnα + ln Γ(α−1 + mi) − ln Γ(α−1)

+ α−1 ln(μ(ai) − ν(ai)) − (α−1 + mi) ln(μ(bi) − ν(ai))

+ I[mi>0]

mi∑
j=1

(
ln λ(ti j) + αΛ(ti j)

)

+ ΔR(bi) ln
(
ψ(bi) +

φ(αmiμ(bi) + ν(ai))
α(μ(bi) − ν(ai))

)
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−
∫ bi

ai

ψ(t)dt −
mi∑
j=0

∫ ti j+1

ti j

φ(α jμ(t) + ν(ai))
α(μ(t) − ν(ai))

dt [7.2]

7.1. Validation of the estimation procedure for LEYP2s

The log-likelihood computation formula [7.2] looks to be somewhat
complicated, and this raises the question of whether an optimal value of the
parameter θ can be easily found or not, by using the Nelder–Mead optimization
procedure (see section 5.2.5). As for many statistical estimation problems,
this question does not seem to be easily answered from a theoretical point of
view. The practical implementation of LEYP2s seems nevertheless to deliver
interesting results, which will be illustrated in Chapter 8. In order to gain some
confidence in our estimation procedure, we will carry out the following steps
on a theoretical example:

– generate a pseudo-random failure and decommissioning dataset,
according to a given LEYP2s parameter;

– check parameter estimates with respect to theoretical values;

– check convexity of log-likelihood function in a reasonably broad
neighborhood around the estimates.

7.1.1. Constrained and selective decommissioning survival
functions

Until now, the function ψ(t) that drives constrained decommissioning has
been left unspecified in LEYP2s in definition 6.1. We will see later in Chapter
8 that the Weibull hazard function turns out to be a good choice:

ψ(t) = ψ0ψ1tψ1−1 [7.3]

with ψ0 � 0 and ψ1 � 0.

The constrained decommissioning survival function is then:

S C(t) = P (RC(t) = 0) = exp
(
−ψ0tψ1

)
[7.4]
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The selective decommissioning survival function conditional to failure
times can be directly deduced from definition 6.1, with T j standing as usual
for the jth failure time, and by convention tN(t−)+1 = t:

S S (t | N(s)s<t) = P
(
RS (t) = 0 | T j = t j, j = 1, . . . ,N(t−)

)

= exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
N(t−)∑

j=1

jφ
(
t j+1 − t j

)⎞⎟⎟⎟⎟⎟⎟⎟⎠ [7.5]

7.1.2. Random failure and decommissioning data generation

The random simulation of failure and decommissioning events consists first
of setting theoretical parameter values. The values displayed in Table 7.1 have
been chosen because they are realistic with respect to what can be observed
for water network segments (see Chapter 8). Regression parameters β1, β2 and
β3, respectively, mimic the effect of covariates Z1 = log-transform of segment
length (m), Z2 = pipe diameter (mm) and Z3 an indicator variable for segment
location under roadways (Z3 = 1) versus under sidewalks (Z3 = 0).

Label Value

ψ0 0.8
ψ1 2.0
φ 2.0
α 3.0
δ 1.3
β0 -2.2
β1 0.5
β2 -0.0024
β3 0.2

Table 7.1. LEYP2s theoretical parameter values

The installation of 10,000 network segments is simulated as being
uniformly distributed over the years 1870–1970, whereas the observation
window spans the years 1985–2015 (i.e. D1 = 1985 and D2 = 2015). Segment
lengths (log-transformed into covariate Z1) follow a truncated exponential
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distribution between 20 m and 500 m with an expectation of 30 m . Pipe
diameters (covariate Z2) follow a truncated exponential distribution between
100 mm and 1,000 mm, discretized by a 100 mm step, with an expectation of
150 mm. Segment location under roadways (covariate Z3) is randomly set to 1
with a probability of 0.5.

�
Observation window︷������������������������︸︸������������������������︷

0 a b t
∗
t1 · · · ∗t j · · · ∗tm

New object
Covariates:
Zj = Z j(u j), j ∈ {1, 2, 3}
Date installed: D0 = D0(u4)
Observation window:
a = D1 − D0, b = D2 − D0

Failures: t0 = a, k = 0, j = 0

New failure

tk+1 = Λ
−1
(
Λ(tk+1)−ln u5

1+αk

)
k = k + 1

tk > b?1 0

Decommissioning

tC = S −1
C (u6)

tS = S −1
S (u7)

tD = tC ∧ tS

tD > a?1 0

Object recording:
b = b ∧ tD
Failure recording:
{t j | a � t j � b}
m = max j

tk � a?1 0

Observed failure:
j = j + 1
t j = tk

Legend:
Sequences of pseudo-random numbers: ui, i ∈ {1, . . . , 7} ∼ U[0,1]
Fixed calendar dates of observation window: D1,D2
Failure times: tk, t j Decommissioning times: tC, tS , tD
Constrained and selective survival functions: S C(t), S S (t | {tk < t})

Figure 7.1. Random simulation of LEYP2s failure and
decommissioning data
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Figure 7.2. Constrained decommissioning survival curve

The simulation algorithm is shown in Figure 7.1. Four main steps can be
distinguished:

– the first step intitializes a new segment and randomly valuates its
installation year D0 (and then observation ages a and b), as well as its length,
diameter and location;

– the second step relates to simple LEYP failure simulations, which are
stopped as soon as the kth failure time exceeds b;

– the third step simulates the age tD at decommissioning, which is
the minimum of both random ages at decommissioning tC for either
constraint/opportunity reason, or tS motivated by repeated failures; the
constrained and selective decommissioning survival functions S C(t) and S S (t)
are, illustrated by Figures 7.2 and 7.3, respectively;
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Figure 7.3. Selective decommissioning survival curve

– the fourth step discards segments decommissioned before a (segment
left-truncation) and, concerning segments kept, discards failures undergone
before a (failure left-truncation) and failures undergone beyond b (failure right-
censoring).

Around 4,000 segments are decommissioned, due to random
left-truncation. The average simulated length-weighted failure rate within the
observation window is 0.185 km−1.yr−1. The distribution of the simulated
number of failures per segment m is displayed in Table 7.2, which illustrates
the high failure concentration on a few segments, typical of LEYP, and more
generally of negative binomial distribution. The average simulated
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length-weighted decommissioning rate is 0.016 yr−1, 2,283 segments being
decommissioned before 2015, i.e. right-censored.

m 0 1 2 3 4 5 6 7
Count 4 834 762 216 85 41 24 4 3

Table 7.2. Distribution of the simulated number of failures per segment

7.1.3. Checking parameter estimate accuracy

After convergence of Nelder–Mead optimization algorithm, the estimation
results displayed in Table 7.3 are obtained. All estimates are significantly
different from the reference values, which, respectively, characterize:

– no constrained decommissioning for ψ0 = 0;

– constrained decommissioning independent of age for ψ1 = 1;

– no selective decommissioning for φ = 0;

– NHPP-like behaviour for α = 0;

– absence of ageing for δ = 1;

– absence of covariate effects for β1 = 0, β2 = 0 and β3 = 0 (the test is
meaningless concerning β0 which is a simple scaling factor).

Label Estimate Std. Dev. Ref. Chi2 (DF) P-Value

ψ0 7.7199e-01 1.3674e-02 0 3.1789e+03 (1) 0.0000
ψ1 2.0088e+00 6.2371e-02 1 2.6158e+02 (1) 0.0000
φ 1.9680e+00 5.3852e-02 0 1.3342e+03 (1) 0.0000
α 3.1160e+00 7.4961e-02 0 1.7268e+03 (1) 0.0000
δ 1.2089e+00 3.7422e-02 1 3.1175e+01 (1) 0.0000
β0 -2.2007e+00 1.5447e-02 0 2.0298e+04 (1) 0.0000
β1 4.8094e-01 6.7503e-03 0 5.0763e+03 (1) 0.0000
β2 -2.3200e-03 8.8314e-05 0 6.9009e+02 (1) 0.0000
β3 1.9667e-01 2.8419e-02 0 4.7894e+01 (1) 0.0000

Table 7.3. Parameter estimates and significance
tests for LEYP2s model – synthetic data
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Note that the estimated standard-deviations of parameter estimates are
quite small compared to estimate magnitudes; this is attributable both to the
accuracy of the estimation procedure and to the high sample size used.
Table 7.4 shows that all estimates are close to their theoretical counterparts,
which are most often included in the confidence interval of estimates or very
close to it.

Label Theoretical Estimate Lower bound Upper bound

ψ0 0.8 0.772 0.745 0.799
ψ1 2.0 2.009 1.887 2.131
φ 2.0 1.968 1.862 2.074
α 3.0 3.116 2.969 3.263
δ 1.3 1.209 1.136 1.282
β0 -2.2 -2.201 -2.231 -2.170
β1 0.5 0.481 0.468 0.494
β2 -0.0024 -0.0023 -0.0025 -0.0021
β3 0.2 0.197 0.141 0.252

Table 7.4. LEYP2s parameter estimates, with 95% confidence interval,
compared to theoretical values – synthetic data

Remark 7.1.– This kind of numerical simulations has been repeatedly carried
out by the author, and with various theoretical parameters, which always
happen to be reasonably well estimated by log-likelihood maximization.
This leads better confidence in the computational model estimation
procedure. �

7.1.4. Checking log-likelihood convexity

The random simulation has also been used to graphically assess the shape of
the log-likelihood function. Figure 7.4 displays one graph for each parameter,
obtained by making its value vary in a rather broad neighborhood around its
estimate, and setting all other parameter values at their estimated value. The
graphs allow us to check the apparent convexity of the log-likelihood function,
which explains the accuracy and rather quick convergence of the estimation
procedure. This also validates the relevance of the box-constrained adaptation
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implemented in the Nelder–Mead algorithm to ensure the constraints ψ0 � 0,
ψ1 � 1, φ � 0, α > 0 and δ � 1 are matched.
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Case Study Application
of the LEYP2s Model

8.1. Lausanne water utility

Lausanne is a medium-sized European city, located on the edge of Lake
Geneva in Switzerland. The water utility eauservice is in charge of the drinking
water network, a public company controlled by the Lausanne municipality.

Due to the technical level of its staff, eauservice keeps the Lausanne water
network in good operational condition, and supplies a high-quality service, in
matters of water quality, service continuity and pressure, to the 360,000
inhabitants of its 17 municipalities. Eauservice has for a long time
emphasized its will to keep its network management method at the cutting
edge of technological and scientific developments, which particularly led, in
the beginning of 2000, to its collaboration within the CARE-W European
project, which aimed at aiding water network rehabilitation decisions (see
[HER 03] and [SAE 05]).

Collaborating with eauservice we were able to gain access to high-quality
technical data, which is illustrated in this chapter.

8.2. Lausanne water supply network

The Lausanne water network is 721 km long, mainly composed of 93 km
in gray cast iron (GCI), and 515 km in ductile iron (DI); these figures are from
2013, and only concern the supply network (transport pipelines are excluded).

Recurrent Event Modeling Based on the Yule Process: Application to Water Network
Asset Management, First Edition. Yves Le Gat.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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As illustrated by Figures 8.1 and 8.2, respectively, GCI pipes were installed
between 1870 and 1969, and DI pipes since 1965.
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Figure 8.1. Installation year distribution of Lausanne
gray cast iron pipes
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Figure 8.2. Installation year distribution of Lausanne ductile iron pipes

The network is precisely described by geographical information system
databases, which are carefully updated on a daily basis. The network is
subdivided into segments, which are defined as pipelines homogeneous with
respect to their installation year, material and diameter, and most often
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bounded by valves. Note that segment length can vary, and typically ranges
from 5 to 500 m.

A water network is a burried infrastructure, and this feature is particularly
important regarding the reliability study of its pipes, as these components are
not directly observable. Failure occurrences therefore, play a pivotal role.

8.3. Lausanne network segment failure and decommissioning
data

All failure (pipe leaks or breaks that led to repairs) and decommissioning
(pipe structural rehabilitations, replacements or relocations) events are
reported on a daily basis, and resulting data can be made available in
electronic format for statistical studies. The data processed for the purpose of
this book span from January 1st 2001 to December 31st 2013, and are
exhaustive with respect to the network segments. The present study focuses
on GCI and DI pipes.
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Figure 8.3. Observed annual failure rate of
Lausanne gray cast iron pipes

Figures 8.3 and 8.4, respectively, display the annual variation of the failure
rate for GCI and DI pipes. The comparison of both graphs suggests that the
average failure rate of DI pipes (0.102 /km/year) is four times less than that
of GCI pipes (0.414 /km/year). The LEYP2s modeling of failure intensity in



100 Recurrent Event Modeling Based on the Yule Process

section 8.4 will provide some elements of explanation, especially concerning
the respective effects of the nature of material, aging and past failures.
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Figure 8.4. Observed annual failure rate of Lausanne ductile iron pipes
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Figure 8.5. Observed annual decommissioning rate of
Lausanne gray cast iron pipes

Figures 8.5 and 8.6, respectively, display the annual variation of the
decommissioning rate for GCI and DI pipes. The decommissioning pressure
is apparently 10 times higher on GCI pipes (0.052/year versus 0.0055/year),
which reflects the eauservice proactive policy of GCI pipe elimination.
Roadwork opportunities are indeed systematically used to replace GCI
segments by DI segments. This is a key point to keep in mind when
considering the GCI survival curves in section 8.7.

8.4. Model parameter estimates

LEYP2s model parameters have been estimated separately for GCI and DI
network segments, the failure and decommissioning events of which were
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Figure 8.6. Observed annual decommissioning rate of
Lausanne ductile iron pipes

Material Segments Failures Decommissionings

GCI 2, 248 685 1, 269
DI 7, 071 598 719

Table 8.1. Numbers of observed segments, failure and
decommissioning events per material – Lausanne water utility data

2001–2013

exhaustively recorded from 2001 to 2013. Table 8.3 displays the numbers of
observed segments, failure and decommissioning events for both materials.

The description of network segments in the Lausanne water utility
database contains exhaustive information about their length (m), pipe
diameter (mm), service pressure (bar), presence of internal lining (0/1),
presence of supply connections (0/1) and presence of cathodic protection
(0/1). This information was introduced as covariates into the Cox factor of the
LEYP2s intensity function, as presented in section 5.2.3. LEYP2s parameter
estimates are presented in Tables 8.3 and 8.4, respectively, both for materials
GCI and DI.

Cathodic protection was never found to be significant, whereas the presence
of supply connections was significant for sole GCI model, and internal lining
for sole DI model.
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Label Estimate Std. Dev. Ref. Chi2 (DF) P-Value

ψ0 3.9104e+00 7.6773e-02 0 2.5930e+03 (1) 0.0000
ψ1 2.1912e+00 9.5288e-02 1 1.5628e+02 (1) 0.0000
φ 2.7171e+00 1.1084e-01 0 6.0050e+02 (1) 0.0000
α 2.0662e+00 8.4924e-02 0 5.9138e+02 (1) 0.0000
δ 1.1367e+00 7.5763e-02 1 3.2537e+00 (1) 0.0713
Intercept -1.3968e+00 2.5825e-02 0 2.9255e+03 (1) 0.0000
ln(Length) 3.2762e-01 8.9087e-03 0 1.3524e+03 (1) 0.0000
Diameter -2.3732e-03 1.8574e-04 0 1.6325e+02 (1) 0.0000
Pressure 6.8424e-02 3.8392e-03 0 3.1764e+02 (1) 0.0000
Supply 1.3727e-01 3.1604e-02 0 1.8866e+01 (1) 0.0000

Table 8.2. Parameter estimates (calibration years 2001–2013) and
significance tests for LEYP2s model – Lausanne gray cast iron data

Label Estimate Std. Dev. Ref. Chi2 (DF) P-Value

ψ0 2.0977e+00 3.4270e-02 0 3.7431e+03 (1) 0.0000
ψ1 1.9658e+00 2.9957e-02 1 1.0395e+03 (1) 0.0000
φ 2.5662e+00 1.9831e-01 0 1.6732e+02 (1) 0.0000
α 2.3481e+00 1.2497e-01 0 3.5276e+02 (1) 0.0000
δ 3.0480e+00 2.3857e-02 1 7.3697e+03 (1) 0.0000
Intercept 3.1926e-01 3.9733e-02 0 6.4560e+01 (1) 0.0000
ln(Length) 3.8558e-01 1.1129e-02 0 1.2003e+03 (1) 0.0000
Diameter -5.1757e-03 1.7491e-04 0 8.7562e+02 (1) 0.0000
Pressure 3.8318e-02 4.1365e-03 0 8.5809e+01 (1) 0.0000
Lining 1.1606e+00 1.1829e-01 0 9.6265e+01 (1) 0.0000

Table 8.3. Parameter estimates (calibration years 2001–2013) and
significance tests for LEYP2s model – Lausanne ductile iron data

Segment length was found to significantly influence the failure intensity,
but raised at power between 0.3 and 0.4; this result is compliant with what is
usually observed in such studies (see [LEG 00] or [LEG 14]). We should a
priori intuitively expect a parameter estimate close to 1, but this does not
happen because segment length also carries information about pipe
environment, as segments installed in a dense city center are generally
shorter, and more subject to environmental stresses (e.g. vibrations) than these
installed in peripheral areas.
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Larger pipe diameter tends to significantly reduce the failure intensity for
two reasons:

– large diameter pipes are designed with a thicker pipe wall than smaller
diameter pipes;

– the mechanical behavior of large diameter pipes tends to be that of a ring,
instead of that of a beam for smaller diameters, hence more prone to circular
breaks when subjected to differential settlements in their embedding soil.

High-service pressure is logically found to significantly increase failure
intensity for both GCI and DI pipes.

Pipe aging has a marked impact for both materials, as δ parameter is always
found to be significantly greater than 1. This effect appears to be, however,
much stronger for DI segments, which is undoubtedly due to an observation
bias: all observable GCI pipes are obviously much older, and likely to have
already been selected on their robustness, whereas this selection process is
still in progress for observable DI pipes. This consideration illustrates a limit of
LEYP2s model to completely correct the selective survival bias, when based on
a short and recent observation window, which is always the case when studying
infrastructures that were partially installed a very long time ago.

For both materials, the Yule parameter α is found to be close to 2 or
slightly higher, which characterizes the significant tendency of pipe failures to
concentrate on a minority of segments. This makes the use of the LEYP2s
model very efficient in helping to implement selective decommissioning of
pipes. This usage may nevertheless have the paradoxical effect on the long
term to increase the weight of the selective survival bias in the failure data,
and hence will make model calibration more difficult. This effect is apparent
in the reduced predictive power of the GCI model compared to that of DI,
illustrated by Figures 8.9 and 8.10, presented in section 8.6.

Parameter φ obtains close estimates for both GCI (φ = 2.7) and DI (φ = 2.6)
models, which suggests similar selective decommissioning policies for both
materials. In the matter of constrained decommissioning, parameter estimates
ψ1 are close to 2, but ψ0 estimate for GCI (ψ0 = 3.9) is almost twice that of DI
(ψ0 = 2.1), which confirms the voluntarist policy of GCI elimination already
mentioned above in section 8.3.
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8.5. Model goodness of fit assessment

The comparison, in Table 8.5, for both GCI and DI models, of the total
number of failures observed within the calibration window (2001–2013) to the
expected ones, accompanied with their 95% confidence intervals (see section
5.5.2), does not reveal any significant bias.

Material Observed failures Expected failures Expected CI95%

GCI 685 731.4 [652.7, 810.1]
DI 598 596.9 [528.6, 665.2]

Table 8.4. Number of failures between 2001 and 2013, observed
versus expected, with 95% confidence interval
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Figure 8.7. Empirical failure rate versus LEYP2s
intensity – Lausanne gray cast iron data

Empirical versus expected failure rates are compared using the method
presented in section 5.4, and the results are displayed in Figures 8.7 and 8.8.
The goodness of fit appears to be satisfactory, except for GCI segments whose
age exceeds 100 years, and for which the observable sample size is much
reduced.
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Figure 8.8. Empirical failure rate versus LEYP2s
intensity – Lausanne ductile iron data

8.6. Model validation

GCI and DI LEYP2s models are validated using the method presented in
section 5.5. The models are calibrated using the reduced observation window
(2001–2011), and model predictions are compared to observations within the
validation window (2012–2013). The resulting Lorenz curves are displayed
in Figures 8.9 and 8.10. As explained in section 8.4, the predictive efficiency
appears to be somewhat weaker in the case of GCI model compared to DI
model, for which the area under Lorenz curve is quite high (0.88).

The same bias assessment as in section 8.5 has been carried out, with the
results displayed in Tables 8.5 and 8.6. Predictions appear to be with slightly
underestimated in the GCI case, and slightly overestimated for the DI model.
These biases may be due to the reduced number of available validation years,
or due to climatic effects that generate interannual fluctuations in the failure
intensity, as suggested by Figures 8.3 and 8.4. A possible solution to improve
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the model robustness lies in time-dependent covariates introduction in the
LEYP2s framework, which will be discussed further in Chapter 9.

Window Observed failures Expected failures Expected CI95%

2001–2011 589 619.1 [548.6, 689.7]
2012–2013 96 75.5 [57.5, 93.5]

Table 8.5. Number of failures, observed versus expected,
with 95% confidence interval, within calibration and validation

windows, for GCI pipes

Window Observed failures Expected failures Expected CI95%

2001–2011 487 487.3 [426.6, 547.9]
2012–2013 111 136.6 [112.5, 160.7]

Table 8.6. Number of failures, observed versus expected,
with 95% confidence interval, within calibration and validation

windows, for DI pipes
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Figure 8.9. Lorenz curve related to LEYP2s model
calibration years 2001–2011 versus validation years

2012–2013 – Lausanne gray cast iron data
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Figure 8.10. Lorenz curve related to LEYP2s model
calibration years 2001–2011 versus validation years

2012–2013 – Lausanne ductile iron data
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Figure 8.11. Decomposition of LEYP2s survival into constrained
and selective parts – Lausanne gray cast iron data
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8.7. Service lifetime

As explained in sections 6.2 and 7.1.2, an important feature of LEYP2s
lies in its ability to model the survival function as the product of a constrained
survival function, given by [7.4], and a selective survival function, given by
[7.5]. This decomposition is illustrated by Figures 8.11 and 8.12. GCI and DI
are not observed in the same range of ages (beyond 50 years for GCI, below
50 years for DI), but constrained decommissioning seems to prevail in both
cases; extrapolating Figure 8.12 suggests that selective and constrained
decommissioning could become more balanced, but this concerns DI pipe
ages that are not yet observed.
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Figure 8.12. Decomposition of LEYP2s survival into constrained and
selective parts – Lausanne ductile iron data

Available GCI and DI decommissioning data also allow us to compare the
LEYP2s survival curves with their empirical counterparts, estimated by the
Kaplan–Meier method (see [AND 93]), which is adapted to take the
left-truncation into account. Using similar notations as in [7.2], the
Kaplan–Meier survival curve is calculated as:

Ŝ KM(t) =
∏
s�t

(
1 − ds

Ys

)
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with:

ds = #{i : bi = s,ΔR(bi) = 1}
Ys = #{i : ai � s � bi}

The variance of Ŝ KM(t) can be estimated by the Greenwood’s formula:

V̂arŜ KM(t) = Ŝ KM(t)2
∑
s�t

ds

Ys(Ys − ds)

Provided that the sample size is large enough for each observed
decommissioning time, a 95% confidence interval is given by:

Ŝ KM(t)
exp
⎛⎜⎜⎜⎜⎝±1.96V̂arŜ KM(t)1/2

Ŝ KM(t) ln Ŝ KM(t)

⎞⎟⎟⎟⎟⎠
The Kaplan–Meier survival curves, accompanied by their 95% confidence

bands, are compared in Figures 8.13 and 8.14 with their expected LEYP2s
counterparts. The fit is reasonably good, which allows us to place some trust
in the relevance of the decommissioning model.
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Lausanne gray cast iron data
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Conclusion and Outlook

Our presentation of the linear extension of the Yule process (LEYP)
model, and of its adaptation to account for selective survival (LEYP2s), as
well as the case study application, have mainly considered the infrastructure
asset management (IAM) of water networks from a reliability angle. We will
give in this concluding chapter some supplements concerning the software
implementation of the LEYP model, and model enhancement needs aroused
by experience feedbacks from water utilities. We will then envisage the
application of the LEYP2s model to IAM decision, helping from an extended
angle, by considering a risk approach.

9.1. Software implementation: Casses

The LEYP model has been applied since 2008 by several water utilities in
Europe and North America. Putting this into practice has been greatly
facilitated by the provision for free of the software Casses. As presented by
Ranaud [REN 12], Casses does not just provide a statistical analysis tool, but
also features a whole bunch of failure and segment description data
exploration tools. The use of Casses proves to be beneficial not only for
improving the annual renovation work programming, but also for inciting
water utilities to complete and enhance their information system, thus
initiating a potential virtuous circle in water utility management practices.

Recurrent Event Modeling Based on the Yule Process: Application to Water Network
Asset Management, First Edition. Yves Le Gat.
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9.2. Model enhancement needs

LEYP model practical implementation has also revealed potential
shortcomings, which, besides the necessity of LEYP2s enhancement, mainly
pertain to the lack of flexibility of the aging function in λ(t) and the
impossibility in the current version to use time-dependent covariates.

9.2.1. More flexible analytical form for the failure intensity function

As defined in [5.4], the aging factor consists of a power function of time
δtδ−1. This involves both a continuous increase in the failure intensity with
age, which in some applications may be somewhat irrealistic, as emphasized
by Eisenbeis [EIS 94], and also an intensity of aging independent of the
characteristics of the technical objects. Two ways of improvement can then
be envisaged for future research work:

– either making the δ parameter dependent on covariates;

– or adapting a more flexible aging function, different from a power
function.

A different aging function could be, for example:

λ(t) =
(
1 − exp(−tδ1eZ

T
1 β1 )
)δ2

eZ
T
2 β2 [9.1]

The analytical form of [9.1], on the one hand, is much more complicated,
but allows, on the other hand, to split the covariates into one set Z1 that
modulates the aging intensity (the shape of λ(t)), and another set Z2 that
keeps the Proportional Hazard Model (PHM) property. Moreover, this
analytical form [9.1] ensures that λ(t) does not increase indefinitely with age
but rather reaches a plateau.

9.2.2. Time-dependent covariates

As shown by Kleiner-Rajani [KLE 02], water network failures can be
strongly influenced by climatic effects. This phenomenon has been
extensively studied by Babykina [BAB 10] (see also [BAB 14]) in the LEYP
model framework. A major conclusion is that introducing time-dependent
covariates, namely climate-related covariates, into the covariates vector Z in
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[5.4] results in better LEYP parameter estimates, particularly concerning α
and δ parameters.

A good illustration can be found in [CLA 14], related to the introduction
of a frost-related covariate into the LEYP model, with an application by
Lyonnaise des Eaux (a French water company) to the water utility network
failure data for Bordeaux, France. Table 9.1 shows the LEYP parameter
estimated with ductile iron and steel pipe failure data, when introducing (or
not) a time-dependent frost-related covariate into the model; these results
suggest that a frost-related covariate helps to better assess the effect of aging
(δ is significantly increased, probably by mitigating the effect of past failures
as α is decreased), as well as the effects of service pressure and connecting
pipe density. Failure number predictions appear as a consequence to be more
accurate, as shown by Figure 9.1.
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Figure 9.1. Annual numbers of failure observed for all materials of
Bordeaux water utility network, compared to LEYP predictions, with and

without a time-dependent covariate (from [CLA 14])



114 Recurrent Event Modeling Based on the Yule Process

Estimates without Estimates with
Label frost-related covariate frost-related covariate

(P-value) (P-value)

α 6.91 (0.000) 5.77 (0.000)
δ 1.12 (0.019) 1.25 (0.000)
β0 -3.93 (0.000) -4.24 (0.000)
β1 (lnlength) 0.53 (0.000) 0.55 (0.000)
β2 (Pipe diameter) -0.001 (0.740) -0.002 (0.095)
β3 (Service pressure) -0.059 (0.740) 0.257 (0.095)
β4 (Ground corrosivity) 0.540 (0.000) 0.543 (0.000)
β5 (Connection density) 2.279 (0.008) 2.676 (0.001)
β6 (Frost) 0.070 (0.000)

Table 9.1. LEYP parameter estimates with and without time-dependent
(frost-related) covariate (from [CLA 14])

A similar introduction of time-dependent covariates into the LEYP2s model
would be undoubtedly beneficial, and forthcoming research works will have to
endeavor to implement this improvement.

9.3. LEYP2s model as element of IAM decision helping

Some central practical questions to be answered in the field of IAM
decision-making are:

– what are the renovation efforts to be annually made in order to maintain a
given infrastructure performance level in the medium term, say in the next 10
years?

– what is the optimal allocation of the annual renovation effort among the
infrastructure elements in the short term, say in the next year or next 2 years?

The first question is of strategic interest, i.e. in the medium term, and arises
at a global spatial scale of the infrastructure; it eventually consists of defining
the annual renovation rates, and related budgets, to be implemented in the next
10 years. Whereas the second question is of tactical interest, i.e. in the short
term, at the local scale of infrastructure elements, and consists of optimally
spending the annual budget fixed at the aforementioned strategic level. These
considerations have three important consequences:
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– the predictions of the failure model have to be accurate in the short-term
at the infrastructure element scale;

– the predictions have to be as unbiased as possible in the mid- or long-term
at a more global scale;

– comparing IAM strategies involves to simulate infrastructure failures and
renovations in the long term (i.e. beyond 50 years), and thus to couple the
failure model with a service lifetime model.

9.3.1. Accounting for vulnerability to failures: toward a risk
approach

From the sole reliability angle, LEYP2s provide a relevant modeling tool,
which is nevertheless insufficient per se. The question of infrastructure
performance is indeed pivotal in IAM, and involves considering the
vulnerability tied to infrastructure elements, as presented by Large [LAR 15].

In the case of a water network, the failure of a given network segment
entails water supply disruptions that affect users directly connected to the
segment, as well as users connected to other segments, the hydraulic of which
may depend on the failed segment; all users are, moreover, not equally
sensitive to water supply disruption, as their economic activity (or health)
may depend more or less dramatically on water supply. The failure of a pipe
can also damage its structural environment (e.g. basement flooding) and
neighboring infrastructures, and the subsequent repair work involves
nuisances (road traffic disruption and noise).

Depending on the hydraulic importance of the failed pipe and the
socioeconomic and environmental characteristics of the failed pipe
neighborhood, the extent of the failure impact can be quantified, and a
vulnerability measure can then be assigned to each network segment. Most
advanced water utilities have such vulnerability data well and accurately
formalized within their information system. This information has moreover
already been used for years to build the annual renovation work planning of
the water network, the renovation priorities being determined according to the
failure risk of the network segments; the term risk must here be understood as
the product of the failure probability and vulnerability measure.



116 Recurrent Event Modeling Based on the Yule Process

The observed service lifetime distributions, formalized by proposition 7.2
and studied in section 8.7, are therefore likely to bear some dependency upon
the segment vulnerability. A major stake of forthcoming research works will
consist of making function ψ(t) and parameter φ of definition 6.1 depend on
vulnerability, thus making the LEYP2s model compliant with a risk-based
IAM approach.
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Appendix A

Product Integration

In real analysis, product integration plays a role for products similar to that
played by Riemann–Stiltjes integration for sums. We will illustrate its
construct and calculation through an example, which is used in Chapters 5
and 7, for a LEYP and LEYP2s likelihood calculation.

We consider to this end a time interval [s, t[ partitioned into n subintervals,
as illustrated by Figure A.1. Without loss of generality for our purpose, we
consider subintervals [ti−1, ti[, i = 1, . . . , n of equal lengths (t − s)/n.

�
s = t0 t1 t2 . . . ti−1 ti . . . tn−1 tn = t

Figure A.1. Partition of time interval [s, t[

We consider a real function F(t) which is continuously differentiable, and
calculate the discrete product:

n∏
i=1

(1 − (F(ti) − F(ti−1)))

Passing to the limit for n → ∞ allows us to define the following product
integral:

π
u∈[s,t]

(1 − dF(u)) = lim
n→∞

n∏
i=1

(1 − (F(ti) − F(ti−1)))
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We can now establish the following useful proposition.

Proposition A.1.–

π
u∈[s,t]

(1 − dF(u)) = exp
(
−
∫ t

s
dF(u)

)

Proof.–

The proof is based on the following property of the ln function:

lim
x→0+

ln(1 − x) = −x

We can then write:

π
u∈[s,t]

(1 − dF(u))

= lim
n→∞ eln

∏n
i=1(1−(F(ti)−F(ti−1)))

= lim
n→∞ e

∑n
i=1 ln(1−(F(ti)−F(ti−1)))

= lim
n→∞ e−

∑n
i=1(F(ti)−F(ti−1))

= e−
∫ t

s dF(u)

�



Appendix B

An Algebraic Identity

The following proposition states the algebraic identity used to prove
proposition 3.2:

Proposition B.1.–

−
m−1∑
k=0

1
m∏

l=0,l�k

(αl − αk)

=
1

m∏
l=0,l�m

(αl − αm)

[B.1]

Proof.– Let f () be any function, and D0 = 1, D1 = x−α0, D2 = (x−α0)(x−α1),
. . . , Dm = (x − α0)(x − α1) . . . (x − αm−1) the first m Newton polynomials,
the real-valued sequence S = {α j, j = 0, 1, . . . ,m − 1} being included in a
bounded interval, and assumed to be increasing (without loss of generality for
our purpose).

We recall the following definition of the Lagrange interpolating polynomial
of f () on S :

LS ( f ) =
m∑

i=0

Δi(α0, . . . , αi)Di

where the divided differences Δi(α0, . . . , αi) of f () with respect to S are defined
by recursion:

Δ0(α0) = f (α0)
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Δ1(α0, α1) =
f (α0) − f (α1)
α0 − α1

· · ·

Δi(α0, . . . , αi) =
Δi−1(α0, . . . , αi−1) − Δi−1(α1, . . . , αi)

α0 − αi

The proof is based on the following classical result, related to divided
differences:

Δi(α0, . . . , αi) =
i∑

k=0

f (αk)
i∏

l=0,l�k

(αk − αl)

[B.2]

To that end, we choose f () such as f (αi) = 1, ∀i ∈ {0, 1, . . . ,m − 1}.
equation [B.2] becomes then at order m:

Δm(α0, . . . , αm) =
m∑

k=0

1
m∏

l=0,l�k

(αk − αl)

=

m∑
k=0

(−1)m

m∏
l=0,l�k

(αl − αk)

Furthermore, except at order 0, all divided differences cancel and we find:

m∑
k=0

1
m∏

l=0,l�k

(αl − αk)

= 0

or, equivalently:

−
m−1∑
k=0

1
m∏

l=0,l�k

(αl − αk)

=
1

m∏
l=0,l�m

(αl − αm)
�
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