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Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts and
interpretations emerge quite spontaneously and these are then discussed, used,
discarded or subsumed into the prevailing subject paradigm. Sometimes these
innovative concepts coalesce into a new sub-discipline within the broad subject
tapestry of control and signal processing. This preliminary battle between old and
new usually takes place at conferences, through the Internet and in the journals of
the discipline. After a little more maturity has been acquired by the new concepts
then archival publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when
sufficient material has evolved for the topic to be taught as a specialised tutorial
workshop or as a course to undergraduate, graduate or industrial engineers.
Advanced Textbooks in Control and Signal Processing are designed as a vehicle
for the systematic presentation of course material for both popular and innovative
topics in the discipline. It is hoped that prospective authors will welcome the
opportunity to publish a structured and systematic presentation of some of the
newer emerging control and signal processing technologies in the textbook series.

It is always interesting to look back at how a particular field of control systems
theory developed. The impetus for change and realization that a new era in a
subject is dawning always seems to be associated with short, sharp papers that
make the academic community think again about the prevalent theoretical
paradigm. In the case of the evolution of robust control theory, the conference
papers of Zames (circa. 1980) on robustness and the very short paper of Doyle on
the robustness of linear quadratic Gaussian control systems seem to stand as
landmarks intimating that control theory was going to change direction again. And
the change did come; all through the 1980s came a steady stream of papers re-
writing control theory, introducing system uncertainty, H,, robust control and p-
synthesis as part of a new control paradigm.

Change, however did not come easily to the industrial applications community
because the new theories and methods were highly mathematical. In the early
stages even the classical feedback diagram which so often opened control
engineering courses was replaced by a less intuitively obvious diagram. Also it
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was difficult to see the benefits to be gained from the new development.
Throughout the 1990s the robust control theory and methods consolidated and the
first major textbooks and software toolboxes began to appear. Experience with
some widely disseminated benchmark problems such as control design for
distillation columns, the control design for hard-disk drives, and the inverted-
pendulum control problem helped the industrial community see how to apply the
new method and the control benefits that accrued.

This advanced course textbook on robust control system design using
MATLAB® by Da-Wei Gu, Petko Petkov and Mihail Konstantinov has arrived at a
very opportune time. More than twenty years of academic activity in the robust
control field forms the bedrock on which this course book and its set of insightful
applications examples are developed. Part I of the volume presents the theory — a
systematic presentation of: systems notation, uncertainty modelling, robust design
specification, the H,, design method, H,, loop shaping, p-analysis and synthesis
and finally the algorithms for providing the low-order controllers that will be
implemented. This is a valuable and concise presentation of all the necessary
theoretical concepts prior to their application which is covered in Part II.

Inspired by the adage “practice makes perfect”, Part II of the volume comprises
six fully worked-out extended examples. To learn how to apply the complex
method of H,, design and p-synthesis there can be no surer route than to work
through a set of carefully scripted examples. In this volume, the examples range
from the academic mass-damper-spring system through to the industrially relevant
control of a distillation column and a flexible manipulator system. The benchmark
example of the ubiquitous hard-disk drive control system is also among the
examples described. The MATLAB® tools of the Robust Control Toolbox, the
Control System Toolbox and Simulink®™ are used in these application examples.
The CD-ROM contains all the necessary files and instructions together with a pdf
containing colour reproductions of many of the figures in the book.

In summary, after academic development of twenty years or so, the robust
control paradigm is now fully fledged and forms a vital component of advanced
control engineering courses. This new volume in our series of advanced control
and signal processing course textbooks on applying the methods of H, and p-
synthesis control design will be welcomed by postgraduate students, lecturers and
industrial control engineers alike.

M.J. Grimble and M.A. Johnson
Glasgow, Scotland, U.K.
February 2005



Preface

Robustness has been an important issue in control-systems design ever since
1769 when James Watt developed his flyball governor. A successfully designed
control system should be always able to maintain stability and performance
level in spite of uncertainties in system dynamics and/or in the working en-
vironment to a certain degree. Design requirements such as gain margin and
phase margin in using classical frequency-domain techniques are solely for the
purpose of robustness. The robustness issue was not that prominently consid-
ered during the period of 1960s and 1970s when system models could be much
more accurately described and design methods were mainly mathematical op-
timisations in the time domain. Due to its importance, however, the research
on robust design has been going on all the time. A breakthrough came in
the late 1970s and early 1980s with the pioneering work by Zames [170] and
Zames and Francis [171] on the theory, now known as the Ho, optimal control
theory. The H, optimisation approach and the p-synthesis/analysis method
are well developed and elegant. They provide systematic design procedures
of robust controllers for linear systems, though the extension into nonlinear
cases is being actively researched.

Many books have since been published on H., and related theories and
methods [26, 38, 65, 137, 142, 145, 174, 175]. The algorithms to implement the
design methods are readily available in software packages such as MATLAB®
and Slicot [119]. However, from our experience in teaching and research
projects, we have felt that a reasonable percentage of people, students as
well as practising engineers, still have difficulties in applying the H., and re-
lated theory and in using MATLAB® routines. The mathematics behind the
theory is quite involved. It is not straightforward to formulate a practical de-
sign problem, which is usually nonlinear, into the Hs, or p design framework
and then apply MATLAB® routines. This hinders the application of such a
powerful theory. It also motivated us to prepare this book.

This book is for people who want to learn how to deal with robust control-
system design problems but may not want to research the relevant theoretic
developments. Methods and solution formulae are introduced in the first part
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of the book, but kept to a minimum. The majority of the book is devoted to
several practical design case studies (Part II). These design examples, ranging
from teaching laboratory experiments such as a mass-damper-spring system to
complex systems such as a supersonic rocket autopilot and a flexible-link ma-
nipulator, are discussed with detailed presentations. The design exercises are
all conducted using the new Robust Control Toolbox v3.0 and are in a hands-
on, tutorial manner. Studying these examples with the attached MATLAB®
and Simulink® programs (170 plus M- and MDL-files) used in all designs will
help the readers learn how to deal with nonlinearities involved in the Séstem,
how to parameterise dynamic uncertainties and how to use MATLAB™ rou-
tines in the analysis and design, etc.. It is also hoped that by going through
these exercises the readers will understand the essence of robust control system
design and develop their own skills to design real, industrial, robust control
systems.

The readership of this book is postgraduates and control engineers, though
senior undergraduates may use it for their final-year projects. The material
included in the book has been adopted in recent years for MSc and PhD
engineering students at Leicester University and at the Technical University
of Sofia. The design examples are independent of each other. They have been
used extensively in the laboratory projects on the course Robust and Optimal
Control Systems taught in a masters programme in the Technical University
of Sofia.

The authors are indebted to several people and institutions who helped
them in the preparation of the book. We are particularly grateful to The
MathWorks, Inc. for their continuous support, to Professor Sigurd Skoges-
tad of Norwegian University of Science and Technology who kindly provided
the nonlinear model of the Distillation Column and to Associate Professor
Georgi Lehov from Technical University of Russe, Bulgaria, who developed
the uncertainty model of the Flexible-Link Manipulator.

Using the CD ROM

The attached CD ROM contains six folders with M- and MDL-files intended
for design, analysis and simulation of the six design examples, plus a pdf file
with colour hypertext version of the book. In order to use the M- and MDL-
files the reader should have at his (her) disposition of MATLAB® v7.0.2 with
Robust Control Toolbox v 3.0, Control System Toolbox v6.1 and Simulink®
v6.1. Further information on the use of the files can be found in the file
Readme.m on the disc.
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Introduction

Robustness is of crucial importance in control-system design because real engi-
neering systems are vulnerable to external disturbance and measurement noise
and there are always differences between mathematical models used for design
and the actual system. Typically, a control engineer is required to design a
controller that will stabilise a plant, if it is not stable originally, and satisfy
certain performance levels in the presence of disturbance signals, noise inter-
ference, unmodelled plant dynamics and plant-parameter variations. These
design objectives are best realised via the feedback control mechanism, al-
though it introduces in the issues of high cost (the use of sensors), system
complexity (implementation and safety) and more concerns on stability (thus
internal stability and stabilising controllers).

Though always being appreciated, the need and importance of robustness
in control-systems design has been particularly brought into the limelight dur-
ing the last two decades. In classical single-input single-output control, robust-
ness is achieved by ensuring good gain and phase margins. Designing for good
stability margins usually also results in good, well-damped time responses, i.e.
good performance. When multivariable design techniques were first developed
in the 1960s, the emphasis was placed on achieving good performance, and not
on robustness. These multivariable techniques were based on linear quadratic
performance criteria and Gaussian disturbances, and proved to be success-
ful in many aerospace applications where accurate mathematical models can
be obtained, and descriptions for external disturbances/noise based on white
noise are considered appropriate. However, application of such methods, com-
monly referred to as the linear quadratic Gaussian (LQG) methods, to other
industrial problems made apparent the poor robustness properties exhibited
by LQG controllers. This led to a substantial research effort to develop a the-
ory that could explicitly address the robustness issue in feedback design. The
pioneering work in the development of the forthcoming theory, now known as
the Hoo optimal control theory, was conducted in the early 1980s by Zames
[170] and Zames and Francis [171]. In the Ho, approach, the designer from the
outset specifies a model of system uncertainty, such as additive perturbation
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and/or output disturbance (details in Chapter 2), that is most suited to the
problem at hand. A constrained optimisation is then performed to maximise
the robust stability of the closed-loop system to the type of uncertainty cho-
sen, the constraint being the internal stability of the feedback system. In most
cases, it would be sufficient to seek a feasible controller such that the closed-
loop system achieves certain robust stability. Performance objectives can also
be included in the optimisation cost function. Elegant solution formulae have
been developed, which are based on the solutions of certain algebraic Riccati
equations, and are readily available in software packages such as Slicot [119]
and MATLAB®.

Despite the mature theory ([26, 38, 175]) and availability of software pack-
ages, commercial or licensed freeware, many people have experienced difficul-
ties in solving industrial control-systems design problems with these H., and
related methods, due to the complex mathematics of the advanced approaches
and numerous presentations of formulae as well as adequate translations of
industrial design into relevant configurations. This book aims at bridging the
gap between the theory and applications. By sharing the experiences in in-
dustrial case studies with minimum exposure to the theory and formulae, the
authors hope readers will obtain an insight into robust industrial control-
system designs using major Hs, optimisation and related methods.

In this chapter, the basic concepts and representations of systems and
signals will be discussed.

1.1 Control-system Representations

A control system or plant or process is an interconnection of components to
perform certain tasks and to yield a desired response, i.e. to generate desired
signal (the output), when it is driven by manipulating signal (the input). A
control system is a causal, dynamic system, i.e. the output depends not only
the present input but also the input at the previous time.

In general, there are two categories of control systems, the open-loop sys-
tems and closed-loop systems. An open-loop system uses a controller or control
actuator to obtain the design response. In an open-loop system, the output
has no effect on the input. In contrast to an open-loop system, a closed-loop
control system uses sensors to measure the actual output to adjust the input
in order to achieve desired output. The measure of the output is called the
feedback signal, and a closed-loop system is also called a feedback system.
It will be shown in this book that only feedback configurations are able to
achieve the robustness of a control system.

Due to the increasing complexity of physical systems under control and
rising demands on system properties, most industrial control systems are no
longer single-input and single-output (SISO) but multi-input and multi-output
(MIMO) systems with a high interrelationship (coupling) between these chan-
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nels. The number of (state) variables in a system could be very large as well.
These systems are called multivariable systems.

In order to analyse and design a control system, it is advantageous if a
mathematical representation of such a relationship (a model) is available. The
system dynamics is usually governed by a set of differential equations in either
open-loop or closed-loop systems. In the case of linear, time-invariant systems,
which is the case this book considers, these differential equations are linear
ordinary differential equations. By introducing appropriate state variables and
simple manipulations, a linear, time-invariant, continuous-time control system
can be described by the following model,

z(t) = Az(t) + Bu(t)
y(t) = Cz(t) + Du(t) (1.1)

where z(t) € R™ is the state vector, u(t) € R™ the input (control) vector, and
y(t) € RP the output (measurement) vector.

With the assumption of zero initial condition of the state variables and us-
ing Laplace transform, a transfer function matrix corresponding to the system
in (1.1) can be derived as

G(s):=C(sl, —A)'B+D (1.2)

and can be further denoted in a short form by

6 = [4tp] (13)

It should be noted that the H., optimisation approach is a frequency-
domain method, though it utilises the time-domain description such as (1.1)
to explore the advantages in numerical computation and to deal with mul-
tivariable systems. The system given in (1.1) is assumed in this book to be
minimal, ¢.e. completely controllable and completely observable, unless de-
scribed otherwise.

In the case of discrete-time systems, similarly the model is given by

xz(k+1) = Az(k) + Bu(k)
y(k) = Cx(k) + Du(k) (1.4)

or

Tyl = Axy, + Buy,
yr = Cag + Duy,

with a corresponding transfer function matrix as

G(s):=C(zI, — A 'B+D (1.5)

B
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1.2 System Stabilities

An essential issue in control-systems design is the stability. An unstable sys-
tem is of no practical value. This is because any control system is vulnerable
to disturbances and noises in a real work environment, and the effect due
to these signals would adversely affect the expected, normal system output
in an unstable system. Feedback control techniques may reduce the influence
generated by uncertainties and achieve desirable performance. However, an
inadequate feedback controller may lead to an unstable closed-loop system
though the original open-loop system is stable. In this section, control-system
stabilities and stabilising controllers for a given control system will be dis-
cussed.

When a dynamic system is just described by its input/output relation-
ship such as a transfer function (matrix), the system is stable if it generates
bounded outputs for any bounded inputs. This is called the bounded-input-
bounded-output (BIBO) stability. For a linear, time-invariant system mod-
elled by a transfer function matrix (G(s) in (1.2)), the BIBO stability is guar-
anteed if and only if all the poles of G(s) are in the open-left-half complex
plane, i.e. with negative real parts.

When a system is governed by a state-space model such as (1.1), a stability
concept called asymptotic stability can be defined. A system is asymptotically
stable if, for an identically zero input, the system state will converge to zero
from any initial states. For a linear, time-invariant system described by a
model of (1.1), it is asymptotically stable if and only if all the eigenvalues of
the state matrix A are in the open-left-half complex plane, i.e. with positive
real parts.

In general, the asymptotic stability of a system implies that the system
is also BIBO stable, but not vice versa. However, for a system in (1.1), if
[A, B, C, D] is of minimal realisation, the BIBO stability of the system implies
that the system is asymptotically stable.

The above stabilities are defined for open-loop systems as well as closed-
loop systems. For a closed-loop system (interconnected, feedback system), it is
more interesting and intuitive to look at the asymptotic stability from another
point of view and this is called the internal stability [20]. An interconnected
system is internally stable if the subsystems of all input-output pairs are
asymptotically stable (or the corresponding transfer function matrices are
BIBO stable when the state space models are minimal, which is assumed in
this chapter). Internal stability is equivalent to asymptotical stability in an
interconnected, feedback system but may reveal explicitly the relationship
between the original, open-loop system and the controller that influences the
stability of the whole system. For the system given in Figure 1.1, there are
two inputs r and d (the disturbance at the output) and two outputs y and u
(the output of the controller K).

The transfer functions from the inputs to the outputs, respectively, are

T, = GK(I+GK)™!
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d

+
u
7+ e K + Y

Fig. 1.1. An interconnected system of G and K

Tya=GI+KG)™
Tw = K(I+GK)™!
Tw=-KG(I+KG)™* (1.6)
Hence, the system is internally stable if and only if all the transfer functions
in (1.6) are BIBO stable, or the transfer function matrix M from {2} to [Z]
is BIBO stable, where

Mo GK(I +GK)! G(I+KG)! (1.7)
| KUI+GK)!-KG(I+KG)™! ’
The stability of (1.7) is equivalent to the stability of
[ I-GK(I+GK)™! G(I+KQG)™! (1.8)
o KI+GK)'T-KG(I+KG)™! '

By simple matrix manipulations, we have

A= (I+GK)"'G(I+KG)™!
- {K(I+GK)‘1 (I+KG)—1]

_ [é —ﬂ_l (1.9)

Hence, the feedback system in Figure 1.1 is internally stable if (1.9) is
stable.

It can be shown [20] that if there is no unstable pole/zero cancellation
between G and K, then any one of the four transfer functions being BIBO
stable would be enough to guarantee that the whole system is internally stable.

1.3 Coprime Factorisation and Stabilising Controllers

Consider a system given in the form of (1.2) with [A, B, C, D] assumed to be

minimal. Matrices (M(s), N(s)) € Hoo ((M(s), N(s)) € Hoo), where Hoo
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denotes the space of functions with no poles in the closed right-half complex
plane, constitute a left (right) coprime factorisation of G(s) if and only if

(i) M (M) is square, and det(M)(det(M)) #0 .
(ii) the plant model is given by

G=M1N=NMY) (1.10)
(iif) There exists (V, U)((V,U)) € Heoo such that

MV + NU =1 (1.11)
(UN+VM =1

Transfer functions (or rational, fractional) matrices are coprime if they
share no common zeros in the right-half complex plane, including at the infin-
ity. The two equations in (iii) above are called Bezout identities ([97]) and are
necessary and sufficient conditions for (M N ) (M, N)) being left coprime
(right coprime), respectively. The left and right coprime factorisations of G(s)
can be grouped together to form a Bezout double identity as the following

VU|[M-U
Lo - i
For G(s) of minimal realisation (1.2) (actually G is required to be stabilis-

able and detectable only), the formulae for the coprime factors can be readily
derived ([98]) as in the following theorem.

Theorem 1.1. Let constant matrices F' and H be such that A + BF and
A+ HC are both stable. Then the transfer function matrices M and N (M
and N ) defined in the following constitute a left (right) coprime factorisation

Uwgﬂﬂg}:[AthZ%;HD—@ (1.13)
A+ BF|B
N(s)| _
bﬂﬁ}_ CzpFe (1.14)

Furthermore, the following U(s), V(s), U(s) and V(s) satisfy the Bezout
double identity (1.12),

[Wg?@ﬂ:[AZﬁC§B+H€ (1.15)
A+ BF|H
Us)] _
o
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It can be easily shown that the pairs (U, V) and (U, V) are stable and
coprime. Using (1.9), it is straightforward to show the following lemma.

Lemma 1.2.
K:=vVU=vuv"! (1.17)

1s a stabilising controller, i.e. the closed-loop system in Figure 1.6 is internally
stable. u

Further, the set of all stabilising controllers for G = M~*N = NM~! can
be obtained in the following Youla Parameterisation Theorem ([98, 167, 168]).

Theorem 1.3. The set of all stabilising controllers for G is
{(V+QN)T' U +QM): Q€ Ho} (1.18)
The set can also be expressed as

{(U+MQ)V+NQ)™: Q€eHs} (1.19)

1.4 Signals and System Norms

In this section the basic concepts concerning signals and systems will be re-
viewed in brief. A control system interacts with its environment through com-
mand signals, disturbance signals and noise signals, etc. Tracking error signals
and actuator driving signals are also important in control systems design. For
the purpose of analysis and design, appropriate measures, the norms, must
be defined for describing the “size” of these signals. From the signal norms,
we can then define induced norms to measure the “gain” of the operator that
represents the control system.

1.4.1 Vector Norms and Signal Norms

Let the linear space X be F™, where F = R for the field of real numbers, or
F = C for complex numbers. For © = |21, z2, ..., xm]T € X, the p-norm of the
vector x is defined by

l-norm |zl =X, |z, for p=1

p-norm  |zf, = (3., |mi|p)1/p Jfor 1<p<oo

oco-norm  ||zf|eo = maxi<i<m |z , for p= o0

When p =2, ||z||2 is the familiar Euclidean norm.

When X is a linear space of continuous or piecewise continuous time scalar-
valued signals z(t), t € R, the p-norm of a signal z(t) is defined by
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l-norm  ||zf|; := [~ |=(t)|dt, for p=1

0o 1/p
p-norm |z|, = (f_oo \x(t)|pdt) yfor 1< p<oo
oo-norm  ||z|leo 1= sup,er |z(t)] , for p=o0

The normed spaces, consisting of signals with finite norm as defined corre-
spondingly, are called L'(R), LP(R) and L°(R), respectively. From a signal
point of view, the 1-norm, ||z||; of the signal x(¢) is the integral of its absolute
value. The square of the 2-norm, ||z||3, is often called the energy of the signal
x(t) since that is what it is when x(¢) is the current through a 1 Q resistor.
The oo-norm, |||/, is the amplitude or peak value of the signal, and the
signal is bounded in magnitude if z(t) € L>(R).

When X is a linear space of continuous or piecewise continuous vector-
valued functions of the form z(t) = [z1(), z2(t), -+, zm(t)]", t € R, we may
have

LL(R) = {x(t) : [l = (17 X0 etlrar) " < oo
m . p — i= 1 ’
for 1 <p<oo}

L (R) = {o(t)  [e]loo = supyer 2(8)]loo < o0}

Some signals are useful for control systems analysis and design, for exam-
ple, the sinusoidal signal, z(t) = Asin(wt+¢), t € R. It is unfortunately not a
2-norm signal because of the infinite energy contained. However, the average
power of z(t)

1T,
lim — t)dt
750 2T [ Tx ®)
exists. The signal x(t) will be called a power signal if the above limit exists.
The square root of the limit is the well-known r.m.s. (root-mean-square) value

of z(t). It should be noticed that the average power does not introduce a norm,
since a nonzero signal may have zero average power.

1.4.2 System Norms

System norms are actually the input-output gains of the system. Suppose
that G is a linear and bounded system that maps the input signal u(t) into
the output signal y(t), where v € (U, | - |lv), ¥ € (Y] - |ly)- U and Y are the
signal spaces, endowed with the norms | - ||y and || - ||y, respectively. Then
the norm, maximum system gain, of G is defined as

1Gully

1G]] := sup (1.20)
w0 lullo
or
Il = sup [|Gully = sup |[|Gully
lullo=1 [lullu<1

Obviously, we have
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|Gully < (1G]] - [[ullv
If G; and Gs are two linear, bounded and compatible systems, then

1G1Gal < 1G]] - (|G-

G|l is called the induced norm of G with regard to the signal norms || - ||s
and ||+ ||y . In this book, we are particularly interested in the so-called co-norm
of a system. For a linear, time-invariant, stable system G: L2 (R) — LZ(R),
the co-norm, or the induced 2-norm, of G is given by

[Glloc = sup [|G(jw)|l2 (1.21)
wER

where ||G(jw)||2 is the spectral norm of the p X m matrix G(jw) and G(s) is
the transfer function matrix of G. Hence, the oo-norm of a system describes
the maximum energy gain of the system and is decided by the peak value
of the largest singular value of the frequency response matrix over the whole
frequency axis. This norm is called the H,.-norm, since we denote by H, the
linear space of all stable linear systems.
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Modelling of Uncertain Systems

As discussed in Chapter 1, it is well understood that uncertainties are un-
avoidable in a real control system. The uncertainty can be classified into two
categories: disturbance signals and dynamic perturbations. The former in-
cludes input and output disturbance (such as a gust on an aircraft), sensor
noise and actuator noise, etc. The latter represents the discrepancy between
the mathematical model and the actual dynamics of the system in operation.
A mathematical model of any real system is always just an approximation
of the true, physical reality of the system dynamics. Typical sources of the
discrepancy include unmodelled (usually high-frequency) dynamics, neglected
nonlinearities in the modelling, effects of deliberate reduced-order models, and
system-parameter variations due to environmental changes and torn-and-worn
factors. These modelling errors may adversely affect the stability and perfor-
mance of a control system. In this chapter, we will discuss in detail how dy-
namic perturbations are usually described so that they can be well considered
in system robustness analysis and design.

2.1 Unstructured Uncertainties

Many dynamic perturbations that may occur in different parts of a system can,
however, be lumped into one single perturbation block A, for instance, some
unmodelled, high-frequency dynamics. This uncertainty representation is re-
ferred to as “unstructured” uncertainty. In the case of linear, time-invariant
systems, the block A may be represented by an unknown transfer function
matrix. The unstructured dynamics uncertainty in a control system can be
described in different ways, such as is listed in the following, where G (s)
denotes the actual, perturbed system dynamics and G,(s) a nominal model
description of the physical system.
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1. Additive perturbation:

> G,

Fig. 2.1. Additive perturbation configuration

Gp(s) = Go(s) + A(s)

2. Inverse additive perturbation:

G, -

Fig. 2.2. Inverse additive perturbation configuration

(Gp(s)) ™" = (Gols) ™" + As)

3. Input multiplicative perturbation:

A

Y

Fig. 2.3. Input multiplicative perturbation configuration

»(Y > GO —

(2.1)

(2.2)
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Gp(s) = Go(s)[I + A(s)]

4. Output multiplicative perturbation:

Y GO

Fig. 2.4. Output multiplicative perturbation configuration

Gp(s) = [I + A(5)]Go(s)

5. Inverse input multiplicative perturbation:

A <

Go

Fig. 2.5. Inverse input multiplicative perturbation configuration

(Gp(5)) ™" = [T+ A(s)[(Gol(s)) ™

6. Inverse output multiplicative perturbation:

(Gp(s)) ™ = (Gol(s) [T + As)]

7. Left coprime factor perturbations:

Gp(s) = (M + Ag) " (N + Ag)

8. Right coprime factor perturbations:

Gpls) = (N + An)(M + Apy) ™

15
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\J

— G, 5

Fig. 2.6. Inverse output multiplicative perturbation configuration

» Ay o< Aji
¢
~ + ~
> N J» M! >

Fig. 2.7. Left coprime factor perturbations configuration

AM A o AN

- -

i»@—» M! > N =y

Fig. 2.8. Right coprime factor perturbations configuration

The additive uncertainty representations give an account of absolute error
between the actual dynamics and the nominal model, while the multiplicative
representations show relative errors.

In the last two representations, (M, N)/(M, N) are left /right coprime fac-
torizations of the nominal system model G,(s), respectively; and (Ay, Ag)
/(Anr, An) are the perturbations on the corresponding factors [101].

The block A (or, (A, Ag) /(Am, An) in the coprime factor perturba-
tions cases) is uncertain, but usually is norm-bounded. It may be bounded by
a known transfer function, say g[A(jw)]< d(jw), for all frequencies w, where
0 is a known scalar function and 7] denotes the largest singular value of a
matrix. The uncertainty can thus be represented by a unit, norm-bounded
block A cascaded with a scalar transfer function d(s).
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It should be noted that a successful robust control-system design would
depend on, to certain extent, an appropriate description of the perturbation
considered, though theoretically most representations are interchangeable.

Example 2.1

The dynamics of many control systems may include a “slow” part and a “fast”
part, for instance in a dc motor. The actual dynamics of a scalar plant may
be

GP(S) = ggainGslow (S)Gfast(s)
where, ggain is constant, and
1 1
= ) G as - N
1370 Ol = 707

In the design, it may be reasonable to concentrate on the slow response part
while treating the fast response dynamics as a perturbation. Let A, and A,
denote the additive and multiplicative perturbations, respectively. It can be
easily worked out that

Aa(s) = Gp - ggainGslow = ggainGslow(Gfast - ]-)

Gslow(s) « SS 1.

_ —asT
= I (T (1 + asT)
Gp — JeainGsl —asT
A, (s) = —op — Ymainbrslow _ o TAS
(S) ggainGslow fast 1 —+ asT

The magnitude Bode plots of A, and A, can be seen in Figure 2.9, where
Jgain is assumed to be 1. The difference between the two perturbation rep-
resentations is obvious: though the magnitude of the absolute error may be
small, the relative error can be large in the high-frequency range in comparison
to that of the nominal plant.

2.2 Parametric Uncertainty

The unstructured uncertainty representations discussed in Section 2.1 are
useful in describing unmodelled or neglected system dynamics. These com-
plex uncertainties usually occur in the high-frequency range and may include
unmodelled lags (time delay), parasitic coupling, hysteresis and other nonlin-
earities. However, dynamic perturbations in many industrial control systems
may also be caused by inaccurate description of component characteristics,
torn-and-worn effects on plant components, or shifting of operating points,
etc. Such perturbations may be represented by variations of certain system
parameters over some possible value ranges (complex or real). They affect the
low-frequency range performance and are called “parametric uncertainties”.
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Bode plot (Magnitude)

-20 S - = 5 . Solid line:-absolute error -+ - .

€ Dashed line: relative error

Magnitude (dB)

-100

-120

140 il il il 1 il il il
10° 10° 107 10° 10" 10 10 10 10

Frequency (rad/s)

Fig. 2.9. Absolute and relative errors in Example 2.1

Example 2.2

A mass-spring-damper system can be described by the following second-order,
ordinary differential equation
d?x(t) dx(t)

+c

dt? dt

+ ka(t) = £(2)

where, m is the mass, ¢ the damping constant, k the spring stiffness, x(¢) the
displacement and f(t) the external force. For imprecisely known parameter
values, the dynamic behaviour of such a system is actually described by

d*x(t)

dt?

dx(t)
dt

(Mo + 0m) + (o + 6¢) + (ko + o) z(t) = f(2)
where, m,, ¢, and k, denote the nominal parameter values and 6,,, d. and g
possible variations over certain ranges.

By defining the state variables x; and x5 as the displacement variable and
its first-order derivative (velocity), the 2nd-order differential equation (2.2)

may be rewritten into a standard state-space form

l‘.lzig
1

m0+6m
y=1o

Tg = [—(ko + 0x)w1 — (o + Oc)w2 + f]
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k0+ Sk

Fig. 2.10. Analogue block diagram of Example 2.2

Further, the system can be represented by an analogue block diagram as
in Figure 2.10.

Notice that moi 5 can be rearranged as a feedback in terms of n% and &y, .
Figure 2.10 can be redrawn as in Figure 2.11, by pulling out all the uncertain

variations.

2
5 e
+
) ko
+
d z
3 5 3

Fig. 2.11. Structured uncertainties block diagram of Example 2.2

Let z1, 29 and z3 be 3, o and x1, respectively, considered as another,
fictitious output vector; and, dq, ds and d3 be the signals coming out from the
perturbation blocks 6,,, d. and d, as shown in Figure 2.11. The perturbed
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system can be arranged in the following state-space model and represented as
in Figure 2.12.

. dy
] [0 1 [m 00 0 0

[a‘?z} [fo ﬁ:’} [wz]+[—1—1—1] b +L{ ]f
" " m ) :

ko Co 1
Z1 “m. “m., T —-1-1-1 d1 .
zo | = 0 1 [x } +10 0 O do |+ | 0 |f
z3 1 0 2 0 0 O d3 0
_ Z1
y=[10] ]2 (29)
5 0
A= "g, <
0 °9,
d
1 o
d= d2 z= z2

Fig. 2.12. Standard configuration of Example 2.2

The state-space model of (2.9) describes the augmented, interconnection
system M of Figure 2.12. The perturbation block A in Figure 2.12 corresponds
to parameter variations and is called “parametric uncertainty”. The uncertain
block A is not a full matrix but a diagonal one. It has certain structure,
hence the terminology of “structured uncertainty”. More general cases will be
discussed shortly in Section 2.4.

2.3 Linear Fractional Transformations

The block diagram in Figure 2.12 can be generalised to be a standard configu-
ration to represent how the uncertainty affects the input/output relationship
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of the control system under study. This kind of representation first appeared
in the circuit analysis back in the 1950s ([128, 129]). It was later adopted in the
robust control study ([132]) for uncertainty modelling. The general framework
is depicted in Figure 2.13.

BN
A

Fig. 2.13. Standard M-A configuration

The interconnection transfer function matrix M in Figure 2.13 is parti-
tioned as

M= |:M11 M12}

M21 M22

where the dimensions of M;p; conform with those of A. By routine manipula-
tions, it can be derived that

z= [MQQ + Mo A(T — M11A)71M12} w
if (I — My, 4) is invertible. When the inverse exists, we may define
F(M,A) = My + My AT — My A)~ My,

F(M,A) is called a linear fractional transformation(LFT) of M and A.
Because the “upper”loop of M is closed by the block A, this kind of linear
fractional transformation is also called an upper linear fractional transfor-
mation(ULFT), and denoted with a subscript u, i.e. F, (M, A), to show the
way of connection. Similarly, there are also lower linear fractional transforma-
tions(LLF'T) that are usually used to indicate the incorporation of a controller
K into a system. Such a lower LFT can be depicted as in Figure 2.14 and
defined by

Fi((M,K) = My + Mo K(I — My K)™* Moy

With the introduction of linear fractional transformations, the unstruc-
tured uncertainty representations discussed in Section 2.1 may be uniformly
described by Figure 2.13, with appropriately defined interconnection matrices
Ms as listed below.
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w z
—> —
M
u ¥

K |

Fig. 2.14. Lower LFT configuration

1. Additive perturbation:

M= [OI ] (2.10)

2. Inverse additive perturbation:

G, G,
o o ] (2.11)

3. Input multiplicative perturbation:

M= [OG é] (2.12)

4. Output multiplicative perturbation:

0G,
M = [I Go] (2.13)
5. Inverse input multiplicative perturbation:
-1 I
e[ ] 10
6. Inverse output multiplicative perturbation:
-1G,
M = [—I GJ (2.15)
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7. Left coprime factor perturbations:

M= ch} d (216)
MGt G,

where G, = ]\Zf(; IN¢, a left coprime factorisation of the nominal plant;
and, the perturbed plant is G, = (Mg + Ay;) ' (Ne + Ag).
8. Right coprime factor perturbations:

[—Mg" 0] Mg

M=1"1c 1 q,

(2.17)

where G, = NgM¢ ™!, a right coprime factorisation of the nominal plant;
and, the perturbed plant is G, = (Ng + An) (Mg + Ap) 7L

In the above, it is assumed that [I — M7;4] is invertible. The perturbed
system is thus
Gp(s) = Fu(M, A)
In the coprime factor perturbation representations, (2.16) and (2.17), A =
[Ay Ag] and A = ﬁj\v/[ , respectively. The block A in (2.10)—(2.17) is

supposed to be a “full” matrix, i.e. it has no specific structure.

2.4 Structured Uncertainties

In many robust design problems, it is more likely that the uncertainty scenario
is a mixed case of those described in Sections 2.1 and 2.2. The uncertainties
under consideration would include unstructured uncertainties, such as un-
modelled dynamics, as well as parameter variations. All these uncertain parts
still can be taken out from the dynamics and the whole system can be rear-
ranged in a standard configuration of (upper) linear fractional transformation
F(M,A). The uncertain block A would then be in the following general form

A=diag(oi11,, -, 05, A1, Af] 6, € C,A; € C™X™i (2.18)

where >0 7 + 2521 m; = n with n is the dimension of the block A. We
may define the set of such A as A. The total block A thus has two types of
uncertain blocks: s repeated scalar blocks and f full blocks. The parameters §;
of the repeated scalar blocks can be real numbers only, if further information
of the uncertainties is available. However, in the case of real numbers, the
analysis and design would be even harder. The full blocks in (2.18) need not
be square, but by restricting them as such makes the notation much simpler.
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When a perturbed system is described by an LFT with the uncertain block
of (2.18), the A considered has a certain structure. It is thus called “structured
uncertainty”. Apparently, using a lumped, full block to model the uncertainty
in such cases, for instance in Example 2.2, would lead to pessimistic analysis
of the system behaviour and produce conservative designs.
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Robust Design Specifications

A control system is robust if it remains stable and achieves certain perfor-
mance criteria in the presence of possible uncertainties as discussed in Chap-
ter 2. The robust design is to find a controller, for a given system, such that
the closed-loop system is robust. The H., optimisation approach and its re-
lated approaches, being developed in the last two decades and still an active
research area, have been shown to be effective and efficient robust design
methods for linear, time-invariant control systems. We will first introduce in
this chapter the Small-Gain Theorem, which plays an important role in the
'H oo optimisation methods, and then discuss the stabilisation and performance
requirements in robust designs using the H., optimisation and related ideas.

3.1 Small-gain Theorem and Robust Stabilisation

The Small-Gain Theorem is of central importance in the derivation of many
stability tests. In general, it provides only a sufficient condition for stability
and is therefore potentially conservative. The Small-Gain Theorem is applica-
ble to general operators. What will be included here is, however, a version that
is suitable for the H, optimisation designs, and in this case, it is a sufficient
and necessary result.

Consider the feedback configuration in Figure 3.1, where G1(s) and Ga(s)
are the transfer function matrices of corresponding linear, time-invariant sys-
tems. We then have the following theorem.

Theorem 3.1. [21] If G1(s) and Ga(s) are stable, i.e. G1 € Hoo, G2 € Hoo,
then the closed-loop system is internally stable if and only if

||G1G2Hoo <1 and ||G2G1||Oo <1
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+
Gl
+
+
+
GZ

Fig. 3.1. A feedback configuration

A closed-loop system of the plant G and controller K is robustly stable if it
remains stable for all possible, under certain definition, perturbations on the
plant. This implies, of course, that K is a stabilising controller for the nominal
plant G, since we always assume that the perturbation set includes zero (no
perturbation). Let us consider the case of additive perturbation as depicted
in Figure 3.2, where A(s) is the perturbation, a “full” matrix unknown but
stable.

<

Fig. 3.2. Additive perturbation configuration

It is easy to work out that the transfer function from the signal v to
uis Tyy = —K(I + GK)~!. As mentioned earlier, the controller K should
stabilise the nominal plant G. Hence, from the Small-Gain theorem, we have
the following theorem.

Theorem 3.2. [1/, 109] For stable A(s), the closed-loop system is robustly
stable if K(s) stabilises the nominal plant and the following holds

IAK(I + GK) ™ Y|so < 1
and

|K(I+GK) 'Alls < 1
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or, in a strengthened form,

1
[[Aloo

IK(I +GK) Yo < (3.1)

The second condition becomes necessary, when the unknown A may have all
phases. |

If required to find a controller to robustly stabilise the largest possible set
of perturbations, in the sense of co-norm, it is then clear that we need to solve
the following minimisation problem

min  ||[K(I +GK) s (3.2)

K stabilising

In many cases, we may have a priori knowledge of the perturbation, say,
T(A(jw)) <T(Wa(jw)) forall weR

Then, we may rewrite the perturbation block as

A(s) = A(s)Wa(s)

where A(s) is the unit norm perturbation set. Correspondingly, the robust
stabilisation condition becomes

[WoK (I +GK) oo < 1
and the optimisation problem

min  ||[WoK(I +GK) ™|« (3.3)

K stabilising

Robust stabilisation conditions can be derived similarly for other pertur-
bation representations discussed in Chapter 2 and are listed below (G, is
replaced by G for the sake of simplicity).

1. Inverse additive perturbation:

1

G+ KG) ™Y < (3.4)
[PAY(P®
2. Input multiplicative perturbation:
1
IKGU +KG) oo < 37— (3.5)
3. Output multiplicative perturbation:
1
IGK (I + GE) ™Yo < (3.6)

1Al
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4. Inverse input multiplicative perturbation:

1
(I + KG) oo < (3.7)
[PAY(ES
5. Inverse output multiplicative perturbation:
1
(I +GE) oo < (3.8)
Ao

The cases of perturbation on coprime factors will be discussed in Chapter

Remark:

In the above discussion, the stability of the perturbation block has been as-
sumed. Actually, the conclusions are also true if the perturbed systems have
the same number of closed right-half plane poles as the nominal system does
(see [96]). If even this is not satisfied, then we will have to use the coprime
factor perturbation models, as will be discussed in Chapter 5.

Robust stabilisation is an important issue not just as a design requirement.
As a matter of fact, the H, design and related approaches first formulate the
stability as well as performance design specifications as a robust stabilisation
problem and then solve the robust stabilisation problem to find a controller.

3.2 Performance Consideration

Figure 3.3 depicts a typical closed-loop system configuration, where G is the
plant and K the controller to be designed. r, y, u, e, d, n are, respectively,
the reference input, output, control signal, error signal, disturbance and mea-
surement noise. With a little abuse of notations, we do not distinguish the
notations of signals in the time or frequency domains. The following relation-
ships are immediately available.

y=I+GK) 'GKr + (I+GK)'d — (I+GK) 'GKn
u=KI+GK)'r - KI+GK)'d — K(I+GK) 'n
e=(I+GK)'r — I+GK)™'d — (I+GK)'n

Assume that the signals r, d, n are energy bounded and have been nor-
malised, i.e. lying in the unit ball of Lo space. We, however, do not know what
exactly these signals are. It is required that the usual performance specifica-
tions, such as tracking, disturbance attenuation and noise rejection, should be
as good as possible for any r, d or n whose energy does not exceed 1. From the
discussions in Chapter 1 on signal and system norms, it is clear that we should
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+L +n

Fig. 3.3. A closed-loop configuration of G and K

minimise the co-norm, the gain, of corresponding transfer function matrices.
Hence, the design problem is that over the set of all stabilising controller K,
(i.e. those K's make the closed-loop system internally stable), find the optimal
one that minimises

e for good tracking,
11 +GK)™

e for good disturbance attenuation,
11 +GK)

e for good noise rejection,
| = (I+GE)'GK||o

e for less control energy,
IK(I+GK)

It is conventional to denote S := (I + GK)~!, the sensitivity function, and
T := (I + GK)"'GK, the complementary sensitivity function.

In general, weighting functions would be used in the above minimisation
to meet the design specifications. For instance, instead of minimising the sen-
sitivity function alone, we would aim at solving

min - ||W1SWalleo
K stabilising
where Wj is chosen to tailor the tracking requirement and is usually a high-
gain low-pass filter type, W, can be regarded as a generator that characterises
all relevant disturbances in the case considered. Usually, the weighting func-
tions are stable and of minimum phase.

3.3 Structured Singular Values

Systems with uncertain dynamics can all be put in the standard M — A config-
uration of Figure 2.13. The robust stabilisation conditions derived in Section
3.1 are sufficient and necessary conditions for unstructured uncertainties, i.e.
A is a full block and will have all phases. In the case of structured uncertainty
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(Section 2.4), these robust stabilization results could be very conservative. To
deal with structured uncertainties, we need to introduce the so-called struc-
tured singular values (SSV).

In fact, these robust stabilisation results, such as that in Theorem 3.2, can
be equivalently written as [14, 109]

det [I — M (jw)A(jw)] # 0, Vw € R, VA (3.9)

where the nominal (closed-loop) system M (s) is assumed to be stable as usual.

This condition for robust stability is sufficient and necessary even for struc-
tured uncertainty A. Roughly speaking, in order to have the closed-loop sys-
tem robustly stable, all the uncertainties of a known structure of (2.18) should
be small enough not to violate the condition (i.e. not make I — M (jw)A(jw)
singular at any frequency w). On the other hand, for a given M with a fixed
controller K and a known structure of the uncertainties, the smallest “size” of
the uncertainty that makes I — M (jw)A(jw) singular at some frequency w
describes how robustly stable the controller K is in dealing with such struc-
tured uncertainties. This measurement is the so-called structured singular
values (SSV) introduced below.

First, as in Section 2.4, we define the structure of uncertainty of (2.18)
and repeat here for convenience,

A= {diag[dllrl, BRI 68]7‘3’ Aq, e, Af] :0; €C, Aj S ijxmj} (310)

where > ;i + Z;;l m; = n with n is the dimension of the block A. We
also assume the set of A is bounded. And, we may thus define a normalised
set of structured uncertainty by

BA:={A: 5(A) <1, Aec A} (3.11)

Definition 3.3. For M € C™*", the structured singular value ur(M) of M
with respect to A is the number defined such that ,uzl(M) is equal to the
smallest T(A) needed to make (I — M A) singular (rank deficiency). That is

pAt (M) = gleig{a(A) . det(I — MA) =0} (3.12)

If there is no A € A such that det(I — MA) =0, then ua(M):=0. =

When M is an interconnected transfer matrix as in Figure 2.13, the struc-
tured singular value, with respect to A, is defined by

pa(M(s)) = sup pa(M(jw)) (3.13)

Correspondingly, the uncertainty set may be defined as

M(A) :={A(")) e RHw : A(jw) € A for all w e R} (3.14)
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When the uncertainty structure is fixed, we may omit the subscript A of
pua(M) for brevity.

The reciprocal of the structured singular value denotes a frequency-
dependent stability margin ([18, 132]). The robust stability result with regard
to structured uncertainty is now given in the following theorem.

Theorem 3.4. [23] Let the nominal feedback system (M(s)) be stable and
Let 8 > 0 be an uncertainty bound, i.e. |Allcc < B,V A(-) € M(A). The

perturbed system of Figure 2.3 is robustly stable, with respect to A, if and
only if pua(M(s)) < % ]

It is obvious that if the uncertainty lies in the unit ball BA, the robust
stability condition is then pa(M(s)) < 1.

pa(M(s)) is frequency dependent and is calculated at “each” frequency
over a reasonable range in practical applications.

In the literature, pa(M(s)) is sometimes redefined as || M|, for an inter-
connected transfer function matrix M (s). This notation is convenient; how-
ever, it should be clear that it is not a norm. It does not satisfy the three
basic properties of a norm. Also, it depends on M(s) as well as the uncer-
tainty structure of A.

The structured singular value plays an important role in robust design. As
became clear in the early parts of this chapter, the H., optimisation approach
can deal with robust stabilisation problems with regard to unstructured un-
certainties and can achieve nominal performance requirements. In the case of
structured uncertainty, Theorem 3.4 gives a sufficient and necessary condition
for robust stabilisation. Furthermore, the robust performance design can also
be transformed into a robust stabilisation problem with regard to structured
uncertainties, as will be described in Chapter 6. However, the computation of
the structured singular value is not an easy task. It is still an open topic and
requires further research.

A few properties of the structured singular value and its computation are
listed below. Interested readers are referred to [23, 32, 33, 120, 121, 122, 175]
for details. Coded routines for the p computation are available in software
packages MATLAB® [9] and Slicot [119].

Let p(-) denote the spectral radius of a square matrix. By direct manipu-
lations, we have the following lemma.

Lemma 3.5. For a square, constant matrix M,

pM) = max p(MA)

The following properties of u can also be easily derived.

o ulaM)=la| -u(M), YaeC
o det(I — MA)#0, YA € BA <= u(M) < 1
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o fA={0l,:6€C} (s=1,f=0;r1=n) — u(M)=p(M)
o fA=C""(s=0,f=1,m =n)= u(M)=05(M)

In the above, s, f and n are dimensions of the uncertainty set A as defined
in (3.10).
Further, we have the following lemma.

Lemma 3.6.
p(M) < (M) <7(M)

Lemma 3.6 gives upper and lower bounds for p(M). They are, however,
not particularly useful for the computation of (M), because the gap between
p(M) and (M) could be arbitrarily large. More accurate bounds are needed
and these can be obtained by using some transformations on M that may
change the values of p(M) and (M) but not change u(M). The following
two constant matrix sets are introduced for this purpose.

Define

U={UeA: UU"=1,}

and
D = {D = diag [Dl,-~-7Ds,d1]m1,-~-7dflmf] :
D; e C"*" D; = D} > 0,d; > 0}

The matrix sets U and D match the structure of A. U is of a (block-)
diagonal structure of unitary matrices and for any D € D and A € A, D
(D~1) commutes with A. Furthermore, for any A € A, U € U, and D € D,
we have
o U'cU UAc A, AU € A, and 5(UA) =5(AU) =5(A)

DAD'=A, DAD™!' € A, and 5(DAD™!) =5(A4)

More importantly, we have
p(MU) < u(MU) = (M) = f(DMD™Y) < 5(DMD™Y)  (3.15)

In the above, u(MU) = pu(M) is derived from det(I — MA) = det(I —
MUU*A) and U*A € A, 5(U*A) =5(A). Also, u(M) = p(DM D~1) can be
seen from det(I — DM D~ 'A) = det(I — DMAD™!) = det(I — MA).

The relations in (3.15) directly lead to the following theorem.

Theorem 3.7.

< < inf & -1
max p(MU) < p(M) < inf 5(DMD™)
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Theorem 3.7 provides tighter upper and lower bounds on p(M). In [23], it
was shown that the above lower bound is actually an equality,

MU) = u(M
max p(MU) = p(M)
Unfortunately, this optimisation problem is not convex. p(MU) may have
multiple local maxima. Direct computation of maxycy p(MU) may not find
a global maximum. On the other hand, the upper bound of p (M) in Theorem
3.7 is easier to find, since (DM D~!) is convex in InD ([25, 139]). However,
this upper bound is not always equal to pu(M). For the cases of 2s+ f < 3, it
can be shown that
M) = inf 5(DMD™*

p(M) = inf 7( )
The problem of calculating p(M) is therefore reduced to an optimal diagonal
scaling problem. Most algorithms proposed so far for the structured singular
values compute this upper bound.
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A control system is robust if it remains stable and achieves certain perfor-
mance criteria in the presence of possible uncertainties as discussed in Chap-
ter 2. The robust design is to find a controller, for a given system, such that
the closed-loop system is robust. The H,, optimisation approach, being de-
veloped in the last two decades and still an active research area, has been
shown to be an effective and efficient robust design method for linear, time-
invariant control systems. In the previous chapter, various robust stability
considerations and nominal performance requirements were formulated as a
minimisation problem of the infinitive norm of a closed-loop transfer function
matrix. Hence, in this chapter, we shall discuss how to formulate a robust de-
sign problem into such a minimisation problem and how to find the solutions.
The H,, optimisation approach solves, in general, the robust stabilisation
problems and nominal performance designs.

4.1 Mixed Sensitivity H., Optimisation

Every practising control engineer knows very well that it will never be ap-
propriate in any industrial design to use just a single cost function, such as
those formulated in Chapter 3. A reasonable design would use a combination
of these functions. For instance, it makes sense to require a good tracking as
well as to limit the control signal energy, as depicted in Figure 4.1. We may
then want to solve the following mixed sensitivity (or, so-called S over KS)
problem,

(I+GK)™!

K(I +GK)~! (4.1)

min
K stabilising

This cost function can also be interpreted as the design objectives of nom-
inal performance, good tracking or disturbance attenuation, and robust sta-
bilisation, with regard to additive perturbation.
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Fig. 4.1. A mixed sensitivity consideration

In order to adopt a unified solution procedure, the above cost function
(4.1) can be recast into a standard configuration as in Figure 4.2. This can
be obtained by using the LFT technique introduced in Chapter 2 and by
specifying/grouping signals into sets of external inputs, outputs, input to the
controller and output from the controller, which of course is the control signal.
Note that in Figure 4.2 all the external inputs are denoted by w, z denotes
the output signals to be minimised/penalised that includes both performance
and robustness measures, y is the vector of measurements available to the
controller K and u the vector of control signals. P(s) is called the generalised
plant or interconnected system. The objective is to find a stabilising controller
K to minimise the output z, in the sense of energy, over all w with energy
less than or equal to 1. Thus, it is equivalent to minimising the H,,-norm of
the transfer function from w to z.

P(s)

K(s)

Fig. 4.2. The standard H configuration

Partitioning the interconnected system P as:
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_ | P11(s) Pra(s)
Pls) = [ ) et

it can be obtained directly
z = [Pll + Png(I - PQQK)ilpzl]w
= fl(P, K)w

where F;(P, K) is the lower linear fractional transformation of P and K. The
design objective now becomes

min | F(PK)| (4.2)

K stabilising

and is referred to as the Hy, optimisation problem.
Referring to the problem in (4.1), it is easy to derive its standard form

by defining w = r, z = il} = Z , y = e and u = u. Consequently, the
2
interconnected system
I -G
pP=|0 1 (4.3)
I -G
where we may set
I -G
el el
Py =1 Py = -G

Other mixed cases of cost transfer function matrices such as S over T,
S over T over KS, etc., can be dealt with similarly to formulate into the
standard configuration. In practical designs, it is often necessary to include
(closed-loop) weights with these cost functions. For instance, instead of (4.1),
we may have to consider with z; = Wie and 25 = Wau,

Wi(l+GK)™!

WokK (I + GK)~! (4.4)

min
K stabilising

These weighting functions can be easily absorbed into the interconnected
system P(s), as in this case,

Wy —W1G
P=|0 W, (4.5)
I -G



38 4 Hoo Design

4.2 2-Degree-Of-Freedom H., Design

Among control-system design specifications, reference-signal tracking is often
a requirement. The output of a designed control system is required to fol-
low a preselected signal, or in a more general sense, the system is forced to
track, for instance, the step response of a specified model (infinite-time model
following task). A 2-degree-of-freedom(2DOF’) control scheme suits naturally
this situation. The idea of a 2DOF scheme is to use a feedback controller
(K3) to achieve the internal and robust stability, disturbance rejection, etc.,
and to design another controller (K;) on the feedforward path to meet the
tracking requirement, which minimises the difference between the output of
the overall system and that of the reference model. 2DOF control schemes
were successfully applied in some practical designs ([67, 87, 114]).

Figure 4.3 shows one structure of these 2DOF control schemes. In this
configuration, in addition to the internal stability requirement, two signals
e and u are to be minimised. The signal e shows the difference between the
system output and the reference model output. u is the control signal and also
is related to robust stability in the additive perturbation case. In Figure 4.3,
two weighting functions are included to reflect the trade-off between and/or
characteristics of these two penalised signals.

Z;

S— W, —

Fig. 4.3. A 2DOF design configuration

The configuration of Figure 4.3 can be rearranged as the standard config-

. . . . oz | Whe |
uration of Figure 4.2 by defining w = r, z = L/J = |:W2U:|’ Yy = [y] and
u = u. Note that in this configuration, K = [K; — K3|. Consequently, the
interconnected system
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WM, WG
_ 0 W
P= I 0
0 G
where we may set
-WiM, WiG
S B I S A
I 0
Py = [0} Py = [G]

4.3 Ho Suboptimal Solutions

The solution to the optimisation problem (4.2) is not unique except in the
scalar case ([175, 59]). Generally speaking, there are no analytic formulae for
the solutions. In practical design, it is usually sufficient to find a stabilising
controller K such that the Ho,-norm of the closed-loop transfer function is
less than a given positive number, i.e.,

[F (P, K)|oe <y (4.6)

where v > 7, = milgstabitising || Fi(P, K)| . This is called the Ho subop-
timal problem. When certain conditions are satisfied, there are formulae to
construct a set of controllers that solve the problem (4.6). The solution set is
characterised by a free parameter @(s), which is stable and of co-norm less
than ~.

It is imaginable that if we successively reduce the value of v, starting from
a relatively large number to ensure the existence of a suboptimal solution, we
may obtain an optimal solution. It should, however, be pointed out here that
when ~ is approaching its minimum value 7, the problem would become more
and more ill-conditioned numerically. Hence, the “solution” thus obtained
might be very unreliable.

4.3.1 Solution Formulae for Normalised Systems

Let the state-space description of the generalised (interconnected) system P
in Figure 4.2 be given by

i(t) = Az(t) + Brw(t) + Boult)
Z(t) == le(t) + an(t) + Dlg’u(t)
y(t) = 021,‘(75) + Dglw(t)

where x(t) € R™ is the state vector, w(t) € R™ the exogenous input vector,
u(t) € R™2 the control input vector, z(t) € RP* the error (output) vector, and
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y(t) € RP? the measurement vector, with p; > mg and py < my. P(s) may be
further denoted as

—Pll(s) P12(8)
P(S) - _Pgl(s) PQQ(S):l

(4.7)

Note that in the above definition it is assumed that there is no direct link
between the control input and the measurement output, i.e. Dao = 0. This
assumption is reasonable because most industrial control systems are strictly
proper and the corresponding P(s) would have a zero D in a sensible design
configuration. The case of a nonzero direct term between u(t) and y(t) will
be, however, considered in the next subsection for the sake of completeness.

The H solution formulae use solutions of two algebraic Riccati equa-
tions(ARE). An algebraic Riccati equation

ETX+XE-XWX+Q=0

where W = W7 and Q = QT, uniquely corresponds to a Hamiltonian matrix
E -W
—-Q - ET
solves the ARE and is such that £ — WX is a stable matrix. The stabilising
solution is denoted as

. The stabilising solution X, if it exists, is a symmetric matrix that

. E -W
X :=Ric {—Q —ET}
Define
2
o T _ Y Im1 0
Rn = Dl* Dl* |: 0 0:|
and
~ 21, 0
R, = D*lDfl |:’Y 0P1 0:|
where

D
Di.= (D Dra] and Da=|plt]

Assume that R,, and R,, are nonsingular. We define two Hamiltonian ma-
trices H and J as
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— A 0 B -1 T T
b ][ 517

J::[ A0 0}—[ ' }R;l[D*lBlTC]

—Ble —A —BlDfl

Let
X :=Ric (H)
Y :=Ric (J)

Based on X and Y, a state feedback matrix F' and an observer gain matrix
L can be constructed, which will be used in the solution formulae,

Fn

F;
F = —Rrjl(DHTCﬁ + BTX) =: {F;] = | o
Fy

L= 7(B1D*1T +YOT)R;1 = [Ll LQ] =: [Lll L12 LQ}

where Fy, Fy, Fi1 and Fio are of my,mo, my — pa and po rows, respectively,
and Ly, Lo, L1; and Lqs of p1,p2, p1 — ms and ms columns, respectively.
Glover and Doyle [48] derived necessary and sufficient conditions for the
existence of an H, suboptimal solution and further parameterised all such
controllers. The results are obtained under the following assumptions.

Al (A, By) is stabilisable and (Co, A) detectable;

0
A2 Dip=| ;| and Do = [0 1, ];
A3 {A —Jwl By ] has full column rank for all w;
Ci1 Dia
A4 A= jul By has full row rank for all w.
Co Dy

D111 D112
Di121 Di122
has ms rows and py columns, the solution formulae are given in the following
theorem.

Together with appropriate partition of D1 = [ ] , where Di199

Theorem 4.1. [175] Suppose P(s) satisfies the assumptions A1 — A4.
(a) There exists an internally stabilising controller K(s) such that
|Fi(P, K)|loo <7 if and only if

(1)

v > max(@[Di111, Di112],@[Di111”, Diiai )

and
(1) there exist stabilising solutions X > 0 and Y > 0 satisfying the two ARFEs
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corresponding to the Hamiltonian matrices H and J, respectively, and such
that

p(XY) <~?
where p(-) denotes the spectral radius.
(b) Given that the conditions of part (a) are satisfied, then all rational, in-

ternally stabilising controllers, K(s), satisfying || Fi(P, K)|lc < v are given
by

K(s) = F1(M,®)

for any rational P(s) € Heo such that ||P(s)||cc < 7, where M(s) has the
realisation

and
D11 = —Diioi Dy T (73 — D1 D1 ¥) 7t Ditie — Dirag

Dis € R™2Xm2 gnd Dy, € RP2XP2 gre any matrices (e.g. Cholesky factors)
satisfying

D1oDE, =T — D119y (42T — Dyt " Dignt) ' D ©

]ngle =1~ D1112T(’72I — D1111D1111T)71D1112
and

By = Z(By + L12) D1
Cy = =Dy (Cy + Fa)

By = —ZLy+ ByD'Dyy

= —ZLy+ Z(By + L12) D1y
él = F5 + Ellbgllég

=F — bu(cz + Fi2)
A=A+ BF+B,D;'Cy
=A+ BF — B1(02 + Fi2)
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where
Z=(I-y2vXx)!
|

When &(s) = 0 is chosen, the corresponding suboptimal controller is called
the central controller that is widely used in the H., optimal design and has

the state-space form
Al B ]
K,(s) =
(#) [Cl Dy

In the assumptions made earlier, A2 assumes that the matrices D2 and
Dy are in normalised forms and the system P(s) is thus a so-called normalised
system. When these two matrices are of full rank but not necessarily in the
normalised forms will be discussed later.

4.3.2 Solution to S-over-K S Design

The mixed sensitivity optimisation S-over-K .S is a common design problem in
practice. The problem is formulated as in (4.1) or (4.4), and the interconnected
system is in (4.3) or (4.5). In this case, the second algebraic Riccati equation is
of a special form, i.e. the constant term is zero. We list the solution formulae
for this special design problem here.

For simplicity, we consider the suboptimal design of (4.1). That is, for a
given 7, we want to find a stabilising controller K (s) such that,

| i+ Gy

<7

oo

The interconnected system in the standard configuration is

L -G Al 0 -B
CTI[LTT O

P=|0 In|= P
I —o 0J|L0] [Im
P clrn o

where we assume that G(s) has m inputs and p outputs, and

co- (8

It is clear that v must be larger than 1 from the assumption (a)/(i) of
Theorem 4.1, because the 2-norm of the constant matrix Di; of the above
P(s) is 1. In this case, the two algebraic Riccati equations are
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ATX + XA - XBB'X + (1 -~ 'cTC =0
AY +Y AT —yCTCy =0
And, the formula of the central controller is

A-BBTX — (1-4"2)"'2YCTC|2YC"

Ko= BTX 0

where Z = (I —y72Y X)~ L.
The formulae for all suboptimal controllers are

K(s) = Fi(M,®)
with M (s) having the state-space realisation

A-BBTX — (1-42)"'2YCTC|2YCT —ZB
M(s) = BTX 0 In
—(1-y72)"1C I, 0

and &(s) € Hoo, such that [P <.

4.3.3 The Case of D33 # 0

When there is a direct link between the control input and the measurement
output, the matrix Dao will not disappear in (4.7). The controller formulae
for the case Doy # 0 are discussed here.

As a matter of fact, the Doy term can be easily separated from the rest of
the system as depicted in Figure 4.4. A controller K (s) for the system with
zero Dog will be synthesised first, and then the controller K (s) for the original
system can be recovered from K(s) and Dy by

K(s) = K(s)(I + Do K (s)) "

The state-space model of K (s) can be derived as

K(s) = A — BgDay(I + D Dy2) *C|Bi (I + D2 Dg) ™"
(I + DgDyy) 'Ok ‘DK(I+D22DK)71

0= [ciion]

where we assume that
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P(s)

Y

S
)
[\S]

Fig. 4.4. The case of nonzero Das

4.3.4 Normalisation Transformations

In general, the system data given would not be in the normalisation form as
discussed in Section 4.3.1, though D15 will be of full column rank and Dy of
full row rank, respectively, for any realistic control systems. In order to apply
the results in Theorem 4.1, certain transformations must be used first. Using
the singular value decomposition(SVD) or otherwise, we may find orthonormal
matrices Uyo, Via, Usr and Vaq, such that

0
Ura D12V = [2 } (4.8)
12
Uz1 D1V = [0 Xy | (4.9)
where Y15 : mo X mg and X1 @ po X po are nonsingular. Furthermore, we have
_ 0
UQDHVEEmlz{I] (4.10)
25 U Doy Vi) = [0 1] (4.11)

The right-hand sides of the above equations are now in the normalised form.
When p; > ms and ps < mq, the matrices U2 and Va1 can be partitioned
as

| Uar
Uiz = {Uuz} (4.12)

| Veur
[l s
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with Ui : (p1 — ma) X p1, Uiz : ma X p1, Va1 @ (m1 — p2) X my and Voo :
Pp2 X mjq. .

The normalisation of P(s) into P(s) is based on the above transformations
and shown in Figure 4.5.

21 = T 21
i P(s) 7
e |
| |
| |
i 212 2721 i
I [ I
| |
i 1
I T |
i " Uy, l
| | i
| |
i u y |

|
| |
| |
| |
| |
| |
| |
|
|
|

Fig. 4.5. Normalisation configuration

Given P(s), the state-space form of P(s) is obtained as follows

By = B VL
By = BVL S
Ci = Uy

Cy = 55,1 Us1 Cy
Ui21D11Vihy Ui21 D11Vl
Ui22D11Vihy Ui22 D11 Vih,

Dy1 = UpaD11 Vi = [

— 0 _

D12 = |:I] = U12D12V1€E121
Doy = [0 1] = 55,'Us1 D1 V5§

Since V51 and Uj5 are orthonormal, the infinitive norms of the transfer function

matrices from w to z and from W to Z are the same, i.e. ||Tow||lco = ||T5w|] o>
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with obviously K (s) = Vi5 X5 K(s)X5,'Us1, where K (s) is a suboptimal so-
lution with regard to P(s).

4.3.5 Direct Formulae for H., Suboptimal Central Controller

Based on the transformations discussed in the last subsection and by further
manipulations, direct solution formulae can be derived for the general, non-
normalised system data (4.7) [57].

We first discuss the two algebraic Riccati equations that are essential in
the computations of H., suboptimal controllers. The conclusion is a little
surprising: the two AREs remain the same with matrices in the normalised
system data (matrices with bars) replaced by corresponding matrices in the
general form (matrices without bars) of P(s). This is obtained by the following
routine matrix manipulations,

—T—
C,C, =cTuLu,c, =cTfc,

B BVE B, Vb2 }
,6{51* | —CTULUwDu VS, —CTULUL D1 VE S

[ B J[VE o
~ | -Cf'Dy. 0 VLYo
— T I Vo1 DT UL,
Di. Dy = | o_

b | X Ve DRUT,
[Vay 0
|0 X5 Vie

:| [U12D11V21; U12D12V1€21_21}

T
Dl*TDl* |:V21 0 :|

0 VEZL
where
Dy := [ D11 D12 (4.14)

Thus,

Voo 0O Vi 0 ]
R, = _ R _
{ 0 ElzTVH] { 0 ‘/17212121

with

2
R:=D."D, — P (I)ml 8} (4.15)

Consequently, the Hamiltonian H defined for normalised system data is given
by

_ A 0o ] B o -
H_[—OITC1 —AT} [—C{DIJR [ Df.Ci BT (4.16)

Similarly, the Hamiltonian J is given by
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NEADREAEEES

—B1B1T —A —BlD*T1
where
Dy,
D, =
= o]
and
2
> T |7 I, 0
R —D*ID*I |: 0 0:|
with

. Us 0 - [UL 0 ]
R, = _ R _
{ 0 2211(]21} { 0 ULx;"

(4.17)

(4.18)

(4.19)

Hence, we have shown that the two AREs are exactly the same and so
we may, in the following, let X and Y be the stabilising solutions of the two

ARESs corresponding to the general system data.

Another pair of matrices used in Theorem 4.1 may also be defined from

the solutions X and Y,

Fy
L:=—(BiDa" +YCHR™' = [L; L]

Fi=-RDy.TC, + BTX) =: {Fl]

(4.20)

(4.21)

with Fy :mq X n, Fy : mg X n,L1 :n X p; and Lo : n X po. It is easy to check

that
= Voo O
F = F
{ 0 212‘/12}
and
Fi1 = Vo1 Fy
Fiy = Vo2 Fy

Fay = X13ViaFy

Similarly, we have

- UL o
L_L[ 0 UL

and
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Ly = LUy,
Liy = L1UL,
Ly = LyUj; Yo
Using the above results and Theorem 4.1, with further manipulations, we

can get the following corollary. Note that the assumption A2 is relaxed to the
general case

A2 Dy is of full column rank and Dy of full row rank

Also, note that for the sake of simplicity, only the formulae for the central
suboptimal controller is given. Formulae for all suboptimal controllers can be
derived accordingly.

Corollary 4.2. Suppose P(s) satisfies the assumptions A1 — A4.
(a) There exists an internally stabilising controller K (s) such that
IF{(P, K)||oo < 7 if and only if
()
v > maI{E(Ulngll),E(Dll‘/vgjljl)} (422)
where Uyg1 and Va11 are as defined in (4.12) and (4.13), and

(ii) there exist solutions X > 0 and Y > 0 satisfying the two AREs corre-
sponding to (4.16) and (4.17), respectively, and such that

p(XY) < +? (4.23)
where p(e) denotes the spectral radius.

(b) Given that the conditions of part (a) are satisfied, then the central Hoo
suboptimal controller for P(s) is given by

K= [

Dg = —7*(Ur22D12) " 'Ur22(v*1 = D11 Vih Va1 DY Uy  Uror) ™!

D11V (D1 Vo) ! (4.24)
Bi = —Z Ly — (Bs + L1D12) D] (4.25)
Cx = Iy — Dg(Cy + Doy 1) (4.26)
Ag = A+ BF — Bg(Cy + Dy FY) (4.27)

where

where
Z=(I-~72%vXx)! (4.28)

and Uyo, Vo1, F and L are as defined in (4.8) and (4.12), (4.9) and (4.13),
(4.20), and (4.21), respectively. [ |
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Remark:

The above corollary addresses the general case of p; > mo and py < my.
There are three special cases of the dimensions in which the solution formulae
would be simpler.

Case 1:  p; = mg and ps < my.
In this case, the orthogonal transformation on D5 is not needed. The
condition (a)/(i) in Corollary 4.2 is reduced to v > (D11 V4, ), and

Dk = _szlDllvzqiz(Dsz%)fl

Case 2:  p; > mg and ps = my.
In this case, the orthogonal transformation on Ds; is not needed. The
condition (a)/(i) in Corollary 4.2 is reduced to v > &(Uy21D11), and

Dy = —(Ui22D12) 'Ui22 D11 Dyt

Case 3:  p; = msg and ps = my.
In this case, both orthogonal transformations are not needed. The condi-
tion (a)/(4) in Corollary 4.2 is reduced to any positive v, and

Dg = —D7, D11 Dy

Another special case is when D17 = 0, in which the central controller is simply
given by

_ [A+ BF + ZLy(Cy + D1 F1)|—Z Lo
- F, | 0

K(s)

4.4 Formulae for Discrete-time Cases

In this section, formulae for H., solutions in discrete-time cases ([53, 60]) will
be given. Consider a generalised, linear, discrete-time system, described by
the equations

Tpy1 = Axp + Brwy, + Bouy,
2z, = Crxp + Diiwy, + Disuy (429)
Yr = Coxp + Doywy + Daguy,

where x; € R" is the state vector, wi € R™! is the exogenous input vector
(the disturbance), ug € R™2 is the control input vector, z; € RP? is the error
vector, and y; € RP? is the measurement vector, with p; > msy and py < my.
The transfer function matrix of the system will be denoted by
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[ Pul2) Pual2)
P() = | pyy(2) Pﬁ(z)]

(4.30)

Similar to the continuous-time case, the H., suboptimal discrete-time con-
trol problem is to find an internally stabilising controller K (z) such that, for
a prespecified positive value 7,

[ Fe(P, K)o <y (4.31)

We need the following assumptions.

A1l (A, By) is stabilisable and (Cs, A) is detectable;

_ eI®
A2 A—el By has full column rank for all © € [0, 2);
Ci Di
_ J®
A3 {A "l By } has full row rank for all © € [0, 27).
Co Dy

We shall also assume that a loop-shifting transformation that enables us
to set Dos = 0 has been carried out. The general case (Dsg # 0) will be dealt
with at the end of this section.

Note that the method under consideration does not involve reduction of
the matrices D15 and Ds; to some special form, as is usually required in the
design of continuous-time H, controllers.

Let
_ |G _ | D1 D12
O b)
and define

Ln, O
1 0 B 1 0 = I 0
J — p1 , J — mi , J — mi
{ 0 —2I,, } { 0 —2L, } { 0 —+2I,, }

Let X be the solution to the discrete-time Riccati equation

Ql
ol

Xoo=C JCO+ATX A~ LTR7'L (4.32)

where

T
R=D'JD+BTX. B = [Rl Ry ]

Ry Rs
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L=D"JC+BTX A= El}
2

Assume that there exists an mq X mo matrix Vi such that
VisVia = R
and an my X m; matrix Vo1 such that
Vi Va1 = =y 72V, V=R, — RFR;'Ry < 0
Define the matrices

B At | Bt]BtQ
[AtBt}:_ —— |-
. Ctl | Qtn?tm

Ctz | Dt21Dt22

VisR3'(Ly — RoV™'Ly) | ViaR3 'RVt 1
Cy — D21V‘1Lv | D21‘/2;1 0

where
Ly =1L —RIR;'Ly

Let Z,, be the solution to the discrete-time Riccati equation
Zso = ByJBY 4+ A1 Zoo AT — M S, M (4.33)

in which

Sy = DyJD¥ + C,ZoCF =: |:St1 St2]

SE S,
Mt = BtthT +AtZOOO;T = [Mthtz]

Equations (4.32) and (4.33) are referred as the X-Riccati equation and Z-
Riccati equation, respectively.
A stabilising controller that satisfies

[1Fe(P, K)o <y

exists, if and only if ([53])
1. there exists a solution to the Riccati equation (4.32) satisfying

Xoo >0

V<O

such that A — BR™'L is asymptotically stable;
2. there exists a solution to the Riccati equation (4.33) such that
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Lo >0
Si, — 81, 8;,'SE <0

with Ay — M.S; e? asymptotically stable. ]
In this case, a controller that achieves the objective may be given by ([53])

Epp1 = Apdy + Boug + My, Sy, (yk — Croe)
Vigug = _Ctljjk - StQSt_gl(yk - Ct2':i:k)
that yields

Ky = (4.34)
Ay = BoVi5' (Cy — 81,5 Cuy) — My, S C,y | = Ba Vi3 ' S1, S5 + Mo, S
_‘/151(0151 - St25t;10t2) ‘ _VIEIStQSgl

This is the so-called central controller that is widely used in practice.

Consider now the general case of Dyy # 0. Suppose

2 Ak Ek
ls =
[ Ck| Dy ]

is a stabilising controller for Doy set to zero, and satisfies

00 -
17 (P~ [0 oy | ) I <7

Then
Fy(P,K(I + D32K)™Y) = Piy + PiaK(I + Dog K — Poo K) ™' Py
R
In this way, a controller K for
v (5]
yields a controller K = K (I 4+ Dy K)~! for P. It may be shown that

_ Ay, — ByDao (I, + DkD22)_1ék‘Bk — By Doy (I, + DiDoo) ' Dy

K
(I, + DiDa3) " 1Cy, | (I, + DeDa2) "Dy,

In order to find K from K we must exclude the possibility of the feedback
system becoming ill-posed, i.e. det(I + K (00)Dag) = 0.
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‘H~ Loop-shaping Design Procedures

In the previous chapter the H., optimisation approach was introduced that
formulated robust stabilisation and nominal performance requirements as
(sub)optimisation problems of the H., norm of certain cost functions. Several
formulations of cost function are applicable in the robust controller design,
for instance, the weighted S/KS and S/T design methods. The optimisation
of S/KS, where S is the sensitivity function and K the controller to be de-
signed, could achieve the nominal performance in terms of tracking or output
disturbance rejection and robustly stabilise the system against additive model
perturbations. On the other hand, the mixed sensitivity optimisation of S/T,
where T is the complementary sensitivity function, could achieve robust sta-
bility against multiplicative model perturbations in addition to the nominal
performance. Both of them are useful robust controller design methods, but
the model perturbation representations are limited by the condition on the
number of right-half complex plane poles. Also, there may exist undesirable
pole-zero cancellations between the nominal model and the H., controllers
([138]). In this chapter, an alternative way to represent the model uncertainty
is introduced. The uncertainty is described by the perturbations directly on
the coprime factors of the nominal model ([153, 154]). The H., robust sta-
bilisation against such perturbations and the consequently developed design
method, the H, loop-shaping design procedure (LSDP) ([100, 101]), could
relax the restrictions on the number of right-half plane poles and produce no
pole-zero cancellations between the nominal model and controller designed.
This method does not require an iterative procedure to obtain an optimal
solution and thus raises the computational efficiency. Furthermore, the H,
LSDP inherits classical loop-shaping design ideas so that practising control
engineers would feel more comfortable to use it.
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5.1 Robust Stabilisation Against Normalised Coprime
Factor Perturbations

Matrices (M, N) € HZ, where M1 denotes the space of functions with no

00

poles in the closed right-half complex plane, constitute a left coprime factori-
sation of a given plant model G if and only if

(i) M is square, and det(M)# 0 .
(ii) the plant model is given by

G=M"'N (5.1)
(iif) There exists (V, U) € HZL such that
MV + NU =1 (5.2)
A left coprime factorisation of a plant model G as defined in (5.1) is nor-
malised if and only if
NN~ + MM~ = I, Vs (5.3)

where N~ (s) = N7 (—s), etc.
For a minimal realisation of G(s),

G(s) = D+C(sI — A)"'B

A state-space construction for the normalised left coprime factorisation can
be obtained in terms of the solution to the generalised filter algebraic Riccati
equation

(A-BD'R'C)Z + Z(A—- BD"R'C)" - ZCTR™'CZ
+ B(I-D'R'D)BT =0 (5.5)

where R := I+ DDT and Z > 0 is the unique stabilising solution. If
H=—(ZCT + BDT)R™!, then

A+ HC|B+HD H
R—l QC‘R—l 2D R—l 2

[N M]:= (5.6)

is a normalised left coprime factorisation of G such that G = M~!N.

The normalised right coprime factorisation can be defined similarly and a
state-space representation can be similarly obtained in terms of the solution
to the generalised control algebraic Riccati equation [101],

(A-BS'DTC)TX + X(A—- BS™'DTC) - XBS™'BTX
+CT(1-DS'DTYC =0 (5.7)
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where S := I+ D7D and X > 0 is the unique stabilising solution.
A perturbed plant transfer function can be described by

Ga = (M+A;)"Y(N+Ag)

where (A,;, Ag) are unknown but stable transfer functions that represent the
uncertainty (perturbation) in the nominal plant model. The design objective
of robust stabilisation is to stabilise not only the nominal model G, but the
family of perturbed plants defined by

Ge={(M+Ay) (N + Ag) : [, Axl < €}

where € > 0 is the stability margin. Using a feedback controller K as shown
schematically in Figure 5.1 and the Small-Gain Theorem, the feedback system
(M, N, K, e) is robustly stable if and only if (G, K) is internally stable and

(I - GK) .
=ashan 1l =

——————————————————————————————————————————————

i |
o Ay e Ag
1 l
1 |
| |
i i
1 + 1
—— N + M e
i i
| |
b e e e ——————————————————— 1
K |«

Fig. 5.1. Robust stabilisation with regard to coprime factor uncertainty

To maximise the robust stability of the closed-loop system given in Figure
5.1, one must minimise

|-

oo

The lowest achievable value of v for all stabilising controllers K is

= inf
o K stabilizing

[ﬂ (I-GK)"'M™

oo
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and is given in [101] by

Yo = (1~ [N M]|F)~"/? (5.9)
where || - ||z denotes the Hankel norm. From [101]
IIN M = Amar (ZX(T+ ZX)71) (5.10)

where Apax(-) represents the maximum eigenvalue, hence from (5.9),
Yo = (1 4 Amax (ZX))1/? (5.11)

From [101], all controllers optimising 7 are given by K = UV ~!, where U
and V are stable and are right coprime factorisations of K, and where

]+ [V]] - amns

This is a Hankel approximation problem and can be solved using an algorithm
developed by Glover [46].
A controller that achieves a v > 7 is given in [101] by

A+ BF +~+*(L")"'ZC*(C + DF)|y*(LY)~tzc™
BTX | -DT

o { (5.12)

where F = —S~YDTC + BTX)and L= (1 -~} + X Z.

However, if v = 7,, then L = XZ — A\pax(X Z)I, which is singular, and
thus (5.12) cannot be implemented. This problem can be resolved using the
descriptor system [134, 135]. A controller that achieves a vy > 7, can be given
in the descriptor form by

Ko —LTs+ LT (A+ BF) +~+*2C*(C + DF)|y*zC”*
- BTX | —DT

(5.13)

5.2 Loop-shaping Design Procedures

In the classical control systems design with single-input-single-output (SISO)
systems, it is a well-known and practically effective technique to use a com-
pensator to alter the frequency response (the Bode diagram) of the open-
loop transfer function so that the unity feedback system will achieve sta-
bility, good performance and certain robustness. Indeed, these performance
requirements discussed in Chapter 3 can be converted into corresponding
frequency requirements on the open-loop system. For instance, in order to
achieve good tracking, it is required that ||(I + GK)™!||s should be small.
That is 7((I + GK)™(jw)) < 1, for w over a low-frequency range, since the
signals to be tracked are usually of low frequency. This in turn implies that
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o(GK(jw)) > 1, for w over that frequency range. Similar deductions can be
applied to other design-performance specifications.

However, a direct extension of the above method into multivariable sys-
tems is difficult not only because multi-input and multi-output (MIMO) are
involved but also due to the lack of phase information in MIMO cases that
makes it impossible to predict the stability of the closed-loop system formed
by the unity feedback. However, based on the robust stabilisation against
perturbations on normalised coprime factorisations, a design method, known
as the Hs loop-shaping design procedure (LSDP), has been developed [100].
The LSDP method augments the plant with appropriately chosen weights so
that the frequency response of the open-loop system (the weighted plant) is
reshaped in order to meet the closed-loop performance requirements. Then a
robust controller is synthesised to meet the stability.

— K(0)2(0) < W G

Ks WZ

Fig. 5.2. One-degree-of-freedom LSDP configuration

This loop-shaping design procedure can be carried out in the following
steps.

(i) Using a precompensator, Wi, and/or a postcompensator, Ws, as depicted
in Figure 5.2, the singular values of the nominal system G are modified to
give a desired loop shape. Usually, the least singular value of the weighted
system should be made large over the low-frequency range to achieve
good performance such as the tracking, the largest singular value is small
over the high-frequency range to deal with unmodelled dynamics, and
the bandwidth affects the system response speed, while the slope of the
singular values near the bandwidth frequency should not be 