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Preface

This monograph presents our recent results on the proportional-integral-
derivative (PID) controller and its design, analysis, and synthesis. The fo-
cus is on linear time-invariant plants that may contain a time delay in
the feedback loop. This setting captures many real-world practical and in-
dustrial situations. The results given here include and complement those
published in Structure and Synthesis of PID Controllers by Datta, Ho, and
Bhattacharyya [10]. In [10] we mainly dealt with the delay-free case.

The main contribution described here is the efficient computation of the
entire set of PID controllers achieving stability and various performance
specifications. The performance specifications that can be handled within
our machinery are classical ones such as gain and phase margin as well as
modern ones such as H,, norms of closed-loop transfer functions. Finding
the entire set is the key enabling step to realistic design with several design
criteria. The computation is efficient because it reduces most often to lin-
ear programming with a sweeping parameter, which is typically the propor-
tional gain. This is achieved by developing some preliminary results on root
counting, which generalize the classical Hermite-Biehler Theorem, and also
by exploiting some fundamental results of Pontryagin on quasi-polynomials
to extract useful information for controller synthesis. The efficiency is im-
portant for developing software design packages, which we are sure will
be forthcoming in the near future, as well as the development of further
capabilities such as adaptive PID design and online implementation. It is
also important for creating a realistic interactive design environment where
multiple performance specifications that are appropriately prioritized can
be overlaid and intersected to telescope down to a small and satisfactory
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controller set. Within this set further design choices must be made that
reflect concerns such as cost, size, packaging, and other intangibles beyond
the scope of the theory given here.

The PID controller is very important in control engineering applications
and is widely used in many industries. Thus any improvement in design
methodology has the potential to have a significant engineering and eco-
nomic impact. An excellent account of many practical aspects of PID con-
trol is given in PID Controllers: Theory, Design and Tuning by Astrom
and Hagglund [2], to which we refer the interested reader; we have chosen
to not repeat these considerations here. At the other end of the spectrum
there is a vast mathematical literature on the analysis of stability of time-
delay systems which we have also not included. We refer the reader to the
excellent and comprehensive recent work Stability of Time-Delay Systems
by Gu, Kharitonov, and Chen [15] for these results. In other respects our
work is self-contained in the sense that we present proofs and justfications
of all results and algorithms developed by us.

We believe that these results are timely and in phase with the resurgence
of interest in the PID controller and the general rekindling of interest in
fixed and low-order controller design. As we know there are hardly any
results in modern and postmodern control theory in this regard while such
controllers are the ones of choice in applications. Classical control theory
approaches, on the other hand, generally produce a single controller based
on ad hoc loop-shaping techniques and are also inadequate for the kind
of computer-aided multiple performance specifications design applications
advocated here. Thus we hope that our monograph acts as a catalyst to
bridge the theory-practice gap in the control field as well as the classical-
modern gap.

The results reported here were derived in the Ph.D. theses of Ming-Tzu
Ho, Guillermo Silva, and Hao Xu at Texas A&M University and we thank
the Electrical Engineering Department for its logistical support. We also
acknowledge the financial support of the National Science Foundation’s
Engineering Systems Program under the directorship of R. K. Baheti and
the support of National Instruments, Austin, Texas.

Austin, Texas G. J. Silva
College Station, Texas A. Datta
College Station, Texas S. P. Bhattacharyye

October 2004
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Introduction

In this chapter we give a quick overview of control theory, explaining why
integral feedback control works, describing PID controllers, and summariz-
ing some of the currently available techniques for PID controller design.
This background will serve to motivate our results on PID control, pre-
sented in the subsequent chapters.

1.1 Introduction to Control

Control theory and control engineering deal with dynamic systems such as
aircraft, spacecraft, ships, trains, and automobiles, chemical and industrial
processes such as distillation columns and rolling mills, electrical systems
such as motors, generators, and power systems, and machines such as nu-
merically controlled lathes and robots. In each case the setting of the control
problem is

1. There are certain dependent variables, called outputs, to be con-
trolled, which must be made to behave in a prescribed way. For in-
stance it may be necessary to assign the temperature and pressure at
various points in a process, or the position and velocity of a vehicle,
or the voltage and frequency in a power system, to given desired fixed
values, despite uncontrolled and unknown variations at other points
in the system.

2. Certain independent variables, called inputs, such as voltage applied
to the motor terminals, or valve position, are available to regulate
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and control the behavior of the system. Other dependent variables,
such as position, velocity, or temperature, are accessible as dynamic
measurements on the system.

3. There are unknown and unpredictable disturbances impacting the
system. These could be, for example, the fluctuations of load in a
power system, disturbances such as wind gusts acting on a vehicle,
external weather conditions acting on an air conditioning plant, or
the fluctuating load torque on an elevator motor, as passengers enter
and exit.

4. The equations describing the plant dynamics, and the parameters
contained in these equations, are not known at all or at best known
imprecisely. This uncertainty can arise even when the physical laws
and equations governing a process are known well, for instance, be-
cause these equations were obtained by linearizing a nonlinear system
about an operating point. As the operating point changes so do the
system parameters.

These considerations suggest the following general representation of the
plant or system to be controlled.

l disturbances
control SDynamlc outputs to be
inputs ystem or controlled
Plant

l measurements

FIGURE 1.1. A general plant.

In Fig. 1.1 the inputs or outputs shown could actually be representing a
vector of signals. In such cases the plant is said to be a multivariable plant
as opposed to the case where the signals are scalar, in which case the plant
is said to be a scalar or monovariable plant.

Control is exercised by feedback, which means that the corrective control
input to the plant is generated by a device that is driven by the available
measurements. Thus the controlled system can be represented by the feed-
back or closed-loop system shown in Fig. 1.2.

The control design problem is to determine the characteristics of the
controller so that the controlled outputs can be

1. Set to prescribed values called references;
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l disturbances
controlled
—»! Plant
outputs
_ y
reference | Controller |« measurements
inputs

FIGURE 1.2. A feedback control system.

2. Maintained at the reference values despite the unknown disturbances;

3. Conditions (1) and (2) are met despite the inherent uncertainties and
changes in the plant dynamic characteristics.

The first condition above is called tracking, the second, disturbance rejec-
tion, and the third, robustness of the system. The simultaneous satisfaction
of (1), (2), and (3) is called robust tracking and disturbance rejection and
control systems designed to achieve this are called robust servomechanisms.

In the next section we discuss how integral and PID control are useful
in the design of robust servomechanisms.

1.2 The Magic of Integral Control

Integral control is used almost universally in the control industry to design
robust servomechanisms. Integral action is most easily implemented by
computer control. It turns out that hydraulic, pneumatic, electronic, and
mechanical integrators are also commonly used elements in control systems.
In this section we explain how integral control works in general to achieve
robust tracking and disturbance rejection.

Let us first consider an integrator as shown in Fig. 1.3.

u(t) ——» Integrator p—m> V(9

FIGURE 1.3. An integrator.

The input-output relationship is

y(t) = K/o u(t)dT 4+ y(0) (1.1

or dy ~
= = Ku(t) (1.2)
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where K is the integrator gain.
Now suppose that the output y(¢) is a constant. It follows from (1.2) that

dy

—Z=0= . 1.3
o 0=Ku)Vt>0 (1.3)

Equation (1.3) proves the following important facts about the operation
of an integrator:

1. If the output of an integrator is constant over a segment of time, then
the input must be identically zero over that same segment.

2. The output of an integrator changes as long as the input is nonzero.

The simple fact stated above suggests how an integrator can be used
to solve the servomechanism problem. If a plant output y(t) is to track
a constant reference value r, despite the presence of unknown constant
disturbances, it is enough to

a. attach an integrator to the plant and make the error

e(t) =7 —y(t)
the input to the integrator;

b. ensure that the closed-loop system is asymptotically stable so that
under constant reference and disturbance inputs, all signals, including
the integrator output, reach constant steady-state values.

This is depicted in the block diagram shown in Fig. 1.4. If the system

l disturbances
' Y _» Plant » )
l_ ~ Ym _
Controller | +
<« |ntegrator |« <—r

FIGURE 1.4. Servomechanism.

shown in Fig. 1.4 is asymptotically stable, and the inputs r and d (distur-
bances) are constant, it follows that all signals in the closed loop will tend
to constant values. In particular the integrator output v(t) tends to a con-
stant value. Therefore by the fundamental fact about the operation of an
integrator established above, it follows that the integrator input tends to
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zero. Since we have arranged that this input is the tracking error it follows
that e(t) = r — y(t) tends to zero and hence y(¢) tracks r as t — co.

We emphasize that the steady-state tracking property established above
is very robust. It holds as long as the closed loop is asymptotically stable
and is (1) independent of the particular values of the constant disturbances
or references, (2) independent of the initial conditions of the plant and
controller, and (3) independent of whether the plant and controller are
linear or nonlinear. Thus the tracking problem is reduced to guaranteeing
that stability is assured. In many practical systems stability of the closed-
loop system can even be ensured without detailed and exact knowledge of
the plant characteristics and parameters; this is known as robust stability.

We next discuss how several plant outputs y1(t),y2(t), - .., ym(t) can be
pinned down to prescribed but arbitrary constant reference values r1,72,. ..,
Tm in the presence of unknown but constant disturbances di,d,...,dq.
The previous argument can be extended to this multivariable case by at-
taching m integrators to the plant and driving each integrator with its
corresponding error input e;(¢) = r; — y;(¢),7 = 1,...,m. This is shown in
the configuration in Fig. 1.5.

Inte-
grator

Controller | Inte- |
grator

Inte-
grator

A

FIGURE 1.5. Multivariable servomechanism.

Once again it follows that as long as the closed-loop system is stable,
all signals in the system must tend to constant values and integral action
forces the e;(t),7 = 1,...,m to tend to zere asymptotically, regardless
of the actual values of the disturbances dj,j = 1,...,¢. The existence
of steady-state inputs ui,us,...,u, that make y; = r;,i = 1,...,m for
arbitrary 73,4 = 1,...,m requires that the plant equations relating y;,? =
1,...,mtou;,j=1,...,r be invertible for constant inputs. In the case of
linear time-invariant systems this is equivalent to the requirement that the
corresponding transfer matrix have rank equal to m at s = 0. Sometimes
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this is restated as two conditions: (1) r > m or at least as many control
inputs as outputs to be controlled and (2) G(s) has no transmission zero
at s = 0.

In general, the addition of an integrator to the plant tends to make the
system less stable. This is because the integrator is an inherently unstable
device; for instance, its response to a step input, a bounded signal, is a
ramp, an unbounded signal. Therefore the problem of stabilizing the closed
loop becomes a critical issue even when the plant is stable to begin with.

Since integral action and thus the attainment of zero steady-state error is
independent of the particular value of the integrator gain K, we can see that
this gain can be used to try to stabilize the system. This single degree of
freedom is sometimes insufficient for attaining stability and an acceptable
transient response, and additional gains are introduced as explained in the
next section. This leads naturally to the PID controller structure commonly
used in industry.

1.3 PID Controllers

In the last section we saw that when an integrator is part of an asymp-
totically stable system and constant inputs are applied to the system, the
integrator input is forced to become zero. This simple and powerful princi-
ple is the basis for the design of linear, nonlinear, single-input single-output,
and multivariable servomechanisms. All we have to do is (1) attach as many
integrators as outputs to be regulated, (2) drive the integrators with the
tracking errors required to be zeroed, and (3) stabilize the closed-loop sys-
tem by using any adjustable parameters.

As argued in the last section the input zeroing property is independent
of the gain cascaded to the integrator. Therefore this gain can be freely
used to attempt to stabilize the closed-loop system. Additional free pa-
rameters for stabilization can be obtained, without destroying the input
zeroing property, by adding parallel branches to the controller, processing
in addition to the integral of the error, the error itself and its derivative,
when it can be obtained. This leads to the PID controller structure shown
in Fig. 1.6.

As long as the closed loop is stable it is clear that the input to the
integrator will be driven to zero independent of the values of the gains.
Thus the function of the gains &y, k;, and kq is to stabilize the closed-loop
system if possible and to adjust the transient response of the system.

In general the derivative can be computed or obtained if the error is
varying slowly. Since the response of the derivative to high-frequency inputs
is much higher than its response to slowly varying signals (see Fig. 1.7),
the derivative term is usually omitted if the error signal is corrupted by
high-frequency noise.
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. Differ- ol k
entiator g
I Inte- _
et "1 grator = K u(t)
> kp

FIGURE 1.6. PID controller.

> ot |
signal entiator response to signal
. Differ- ”lll“”l '
noise entiator response to noise

FIGURE 1.7. Response of derivative to signal and noise.

In such cases the derivative gain k4 is set to zero or equivalently the
differentiator is switched off and the controller is a proportional-integral or
PI controller. Such controllers are most common in industry.

In subsequent chapters of the book we solve the problem of stabilization
of a linear time-invariant plant by a PID controller. Both delay-free systems
and systems with time delay are considered. Our solutions uncover the
entire set of stabilizing controllers in a computationally tractable way.

In the rest of this introductory chapter we briefly discuss the currently
available techniques for PID controller design. Many of them are based on
empirical observations. For a comprehensive survey on tuning methods for
PID controllers, we refer the reader to [2].

1.4 Some Current Techniques for PID Controller
Design

1.4.1 The Ziegler-Nichols Step Response Method
The PID controller we are concerned with is implemented as follows:
Cls) =k, + % + kys (14)

where &, is the proportional gain, k; is the integral gain, and kg is the
derivative gain. In real life, the derivative term is often replaced by ﬁ’f%,



8 1. Introduction

where T, is a small positive value that is usually fixed. This circumvents
the problem of pure differentiation when the error signals are contaminated
by noise.

The Ziegler-Nichols step response method is an experimental open-loop
tuning method and is only applicable to open-loop stable plants. This
method first characterizes the plant by two parameters A and L obtained
from its step response. A and L can be determined graphically from a mea-
surement of the step response of the plant as illustrated in Fig. 1.8. First,
the point on the step response curve with the maximum slope is determined
and the tangent is drawn. The intersection of the tangent with the vertical
axis gives A, while the intersection of the tangent with the horizontal axis
gives L. Once A and L are determined, the PID controller parameters are

-
~.

point of maximum slope
-7

Y

J
{

FIGURE 1.8. Graphical determination of parameters A and L.

then given in terms of A and L by the following formulas:

1.2
=T

0.6
W= AR

0.6
kd = T.

These formulas for the controller parameters were selected to obtain an
amplitude decay ratio of 0.25, which means that the first overshoot decays
to i—th of its original value after one oscillation. Intense experimentation
showed that this criterion gives a small settling time.
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1.4.2 The Ziegler-Nichols Frequency Response Method

The Ziegler-Nichols frequency response method is a closed-loop tuning
method. This method first determines the point where the Nyquist curve
of the plant G(s) intersects the negative real axis. It can be obtained ex-
perimentally in the following way: Turn the integral and differential actions
off and set the controller to be in the proportional mode only and close the
loop as shown in Fig. 1.9. Slowly increase the proportional gain k, until
a periodic oscillation in the output is observed. This critical value of k, is
called the ultimate gain (k,). The resulting period of oscillation is referred
to as the ultimate period (T,). Based on k, and T, the Ziegler-Nichols
frequency response method gives the following simple formulas for setting
PID controller parameters:

kp, = 0.6k,
1.2
b o L2k
Ty
kg = 0.075k,T,. (1.5)
LN kp > G(s) >
Proportional Plant
controller

FIGURE 1.9. The closed-loop system with the proportional controller.

This method can be interpreted in terms of the Nyquist plot. Using
PID control it is possible to move a given point on the Nyquist curve
to an arbitrary position in the complex plane. Now, the first step in the
frequency response method is to determine the point ("Elzv 0) where the
Nyquist curve of the open-loop transfer function intersects the negative
real axis. We will study how this point is changed by the PID controller.
Using (1.5) in (1.4), the frequency response of the controller at the ultimate
frequency w, is

2
Cjwy) = 0.6k, —j ( ; 5“) + 5(0.075ky Tywy,)

= 0.6k, (1 + j0.4671) [since Tyw, = 27 .

From this we see that the controller gives a phase advance of 25 degrees at
the ultimate frequency. The loop transfer function is then

Gloop(jwy) = G(jwy)C(jwy) = —0.6(1 + j0.4671) = —0.6 — 50.28 .
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Thus the point (—— 0) is moved to the point (-0.6, -0.28). The distance
from this point to the critical point is almost 0.5. This means that the
frequency response method gives a sensitivity greater than 2.

The procedure described above for measuring the ultimate gain and ul-
timate period requires that the closed-loop system be operated close to
instability. To avoid damaging the physical system, this procedure needs to
be executed carefully. Without bringing the system to the verge of insta-
bility, an alternative method was proposed by Astrom and Hagglund using
relay to generate a relay oscillation for measuring the ultimate gain and ul-
timate period. This is done by using the relay feedback configuration shown
in Fig. 1.10. In Fig. 1.10, the relay is adjusted to induce a self-sustaining
oscillation in the loop.

= d
r=0 + I—- u_ Gs) y:
_ —‘-d
Relay Plant

FIGURE 1.10. Block diagram of relay feedback.

Now we explain why this relay feedback can be used to determine the
ultimate gain and ultimate period. The relay block is a nonlinear element
that can be represented by a describing function. This describing function
is obtained by applying a sinusoidal signal asin{wt) at the input of the
nonlinearity and calculating the ratio of the Fourier coefficient of the first
harmonic at the output to a. This function can be thought of as an equiv-
alent gain of the nonlinear system. For the case of the relay its describing
function is given by

N(@) = 22

where @ is the amplitude of the sinusoidal input signal and d is the relay
amplitude. The conditions for the presence of limit cycle oscillations can be
derived by investigating the propagation of a sinusoidal signal around the
loop. Since the plant G(s) acts as a low pass filter, the higher harmonics
produced by the nonlinear relay will be attenuated at the output of the
plant. Hence, the condition for oscillation is that the fundamental sine
waveform comes back with the same amplitude and phase after traversing
through the loop. This means that for sustained oscillations at a frequency
of w, we must have

G(jw)N{a) = —-1. (1.6)

This equation can be solved by plotting the Nyquist plot of G(s) and the
line —ﬁa). As shown in Fig. 1.11, the plot of _ﬁ—fﬁ is the negative real

axis, so the solution to (1.6) is given by the two conditions:
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Y im Ggw)

N(a)

—_—

‘\/.\ Re 'G(jw)

w=w,

G(w)

FIGURE 1.11. Nyquist plots of the plant G(jw) and the describing function

—_1_
N(a)"®

, am

Gl = 5

a 1

i

and arg G(jw,) = -—m.

The ultimate gain and ultimate period can now be determined by mea-
suring the amplitude and period of the oscillations. This relay feedback
technique is widely used in automatic PID tuning.

Remark 1.1 Both Ziegler-Nichols tuning methods require very little knowl-
edge of the plants and simple formulas are given for controller parameter
settings. These formulas are obtained by extensive simulations of many
stable and simple plants. The main design criterion of these methods is to
obtain a quarter amplitude decay ratio for the load disturbance response. As
pointed out by Astrom and Hagglund [2], little emphasis is given to measure-
ment noise, sensitivity to process variations, and setpoint response. Even
though these methods provide good rejection of load disturbance, the result-
ing closed-loop system can be poorly damped and sometimes can have poor
stability margins.

1.4.8 PID Settings using the Internal Model Controller
Design Technique

The internal model controller (IMC) structure has become popular in pro-
cess control applications. This structure, in which the controller includes an
explicit model of the plant, is particularly appropriate for the design and
implementation of controllers for open-loop stable systems. The fact that
many of the plants encountered in process control happen to be open-loop
stable possibly accounts for the popularity of IMC among practicing engi-
neers. In this section, we consider the IMC configuration for a stable plant
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G(s) as shown in Fig. 1.12. The IMC controller consists of a stable IMC
parameter Q(s) and a model of the plant G(s), which is usually referred to
as the internal model. F(s) is the IMC filter chosen to enhance robustness
with respect to the modelling error and to make the overall IMC parameter
Q(s)F(s) proper. From Fig. 1.12 the equivalent feedback controller C(s) is

___FERe)
- F(5)Q()G0)

The IMC design objective considered in this section is to choose Q(s) which

C(s)

Internal Model Controller

..............................

_ | internal Model
”~
G®

FIGURE 1.12. The IMC configuration.

minimizes the Lo norm of the tracking error r — y, i.e., achieves an Ho-
optimal control design. In general, complex models lead to complex IMC
Hy-optimal controllers. However, it has been shown that, for first-order
plants with deadtime and a step command signal, the IMC Hj-optimal
design results in a controller with a PID structure. This will be clearly
borne out by the following discussion.

Assume that the plant to be controlled is a first-order model with dead-
time:

k e—Ls
14+ Ts

The control objective is to minimize the Lo norm of the tracking error due
to setpoint changes. Using Parseval’s Theorem, this is equivalent to choos-
ing Q(s) for which min ||[1 — G(s)Q(s)]R(s)||2 is achieved, where R(s) = 1
is the Laplace transform of the unit step command.

Approximating the deadtime with a first-order Padé approximation, we

have

G(s) =

1—%3

1+§s'

~Ls ~

The resulting rational transfer function of the internal model G(s) is given
by
A ko 1-%s
G(s) = ——~—32—.
(s) (1+Ts)1+Ls
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Choosing Q(s) to minimize the Hy norm of [1 — G(s)Q(s)]R(s), we obtain

1+Ts

Qs) = —=.

Since this Q(s) is improper, we choose
1
F =
(s) 14 As

where A > 0 is a small number. The equivalent feedback controller be-
comes

F(s)Q(s)
1 - F(s)Q(s)G(s)
(L+Ts)(1+ Ls)
ks(L+ X+ 2s)
(1+Ts)(1+ Ls)

= ks(L+X) (L.7)

C(s) =

From (1.7) we can extract the following parameters for a standard PID
controller:

i 2T + L
’ 2k(L+ )
1
ki = ———
k(L + )
Lo _TL
¢ 2k(L+A)

Since a first-order Padé approzimation was used for the time delay, ensuring
the robustness of the design to modelling errors is all the more important.
This can be done by properly selecting the design variable A to achieve the
appropriate compromise between performance and robustness. Morari and
Zafiriou [31] have proposed that a suitable choice for A is A > 0.2T and
A > 0.25L.

Remark 1.2 The IMC PID design procedure minimizes the Lo norm of
the tracking error due to setpoint changes. Therefore, as expected, this de-
sign method gives good response to setpoint changes. However, for lag dom-
wmant plants the method gives poor load disturbance response because of the
pole-zero cancellation inherent in the design methodology.

1.4.4 Dominant Pole Design: The Cohen-Coon Method

Dominant pole design attempts to position a few poles to achieve certain
control performance specifications. The Cohen-Coon method is a dominant
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pole design method. This tuning method is based on the first-order plant
model with deadtime:

k —Ls
G(s) = T T
The key feature of this tuning method is to attempt to locate three domi-
nant poles, a pair of complex poles and one real pole, such that the ampli-
tude decay ratio for load disturbance response is 0.25 and the integrated
error f0°° e(t)dt is minimized. Thus, the Cohen-Coon method gives good
load disturbance rejection. Based on analytical and numerical computa-
tion, Cohen and Coon gave the following PID controller parameters in
terms of k, T, and L:

1.35(1 — 0.82b)

K a(l —b)
N 1.35(1 — 0.82b)(1 — 0.39b)
’ aL(l - b)(2.5 — 2b)
., _ 1.35L(0.37—0.37b)
4 = a(1—b)
where
kL
“© = 7
L
= 7

Note that for small b, the controller parameters given by the above formulas
are close to the parameters obtained by the Ziegler-Nichols step response
method.

1.4.5 New Tuning Approaches

The tuning methods described in the previous subsections are easy to use
and require very little information about the plant to be controlled. How-
ever, since they do not capture all aspects of desirable PID performance,
many other new approaches have been developed. These methods can be
classified into three categories.

Time Domain Optimization Methods

The idea behind these methods is to choose the PID controller parameters
to minimize an integral cost functional. Zhuang and Atherton [53] used an
integral criterion with data from a relay experiment. The time-weighted
system error integral criterion was chosen as

Jn(8) = /0 ” t"e?(0,t)dt
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where 6 is a vector containing the controller parameters and e(8,t) repre-
sents the error signal. Experimentation showed that for n = 1, the controller
obtained produced a step response of desirable form. This gave birth to the
integral square time error (ISTE) criterion. Another contribution is due to
Pessen [36], who used the integral absolute error (IAE) criterion:

J(0) = /0 " le(6,1)\dt

In order to minimize the above integral cost functions, Parseval’s Theo-
rem can be invoked to express the time functions in terms of their Laplace
transforms. Definite integrals of the form encountered in this approach have
been evaluated in terms of the coefficients of the numerator and denomina-
tor of the Laplace transforms (see [32]). Once the integration is carried out,
the parameters of the PID controller are adjusted in such a way as to min-
imize the integral cost function. Recently Atherton and Majhi [3] proposed
a modified form of the PID controller (see Fig. 1.13). In this structure an
internal proportional-derivative (PD) feedback is used to change the poles
of the plant transfer function to more desirable locations and then a PI
controller is used in the forward loop. The parameters of the controller are
obtained by minimization of the ISTE criterion.

da(y

n____+ + Y- u)) o

——-»(B—» Pl Plant

PD -

FIGURE 1.13. PI-PD feedback control structure.

Frequency Domain Shaping

These methods seek a set of controller parameters that give a desired fre-
quency response. Astrom and Hagglund [2] proposed the idea of using a set
of rules to achieve a desired phase margin specification. In the same spirit,
Ho, Hang, and Zhou [24] developed a PID self-tuning method with spec-
ifications on the gain and phase margins. Another contribution by Voda
and Landau [48] presented a method to shape the compensated system
frequency response.
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Optimal Control Methods

This new trend has been motivated by the desire to incorporate several con-
trol system performance objectives such as reference tracking, disturbance
rejection, and measurement noise rejection. Grimble and Johnson [14] in-
corporated all these objectives into an LQG optimal control problem. They
proposed an algorithm to minimize an LQG-cost function where the con-
troller structure is fixed to a particular PID industrial form. In a similar
fashion, Panagopoulos, Astrom, and Hagglund [35] presented a method to
design PID controllers that captures demands on load disturbance rejec-
tion, set point response, measurement noise, and model uncertainty. Good
load disturbance rejection was obtained by minimization of the integral
control error. Good set point response was obtained by using a structure
with two degrees of freedom. Measurement noise was dealt with by filter-
ing. Robustness was achieved by requiring a maximum sensitivity of less
than a specified value.

1.5 Integrator Windup

An important element of the control strategy discussed in Section 1.2 is
the actuator, which applies the control signal u to the plant. However,
all actuators have limitations that make them nonlinear elements. For in-
stance, a valve cannot be more than fully opened or fully closed. During
the regular operation of a control system, it can very well happen that the
control variable reaches the actuator limits. When this situation arises, the
feedback loop is broken and the system runs as an open loop because the
actuator will remain at its limit independently of the process output. In
this scenario, if the controller is of the PID type, the error will continue
to be integrated. This in turn means that the integral term may become
very large, which is commonly referred to as windup. In order to return to
a normal state, the error signal needs to have an opposite sign for a long
period of time. As a consequence of all this, a system with a PID controller
may give large transients when the actuator saturates.

The phenomenon of windup has been known for a long time. It may occur
in connection with large setpoint changes or it may be caused by large
disturbances or equipment malfunction. Several techniques are available to
avoid windup when using an integral term in the controller. We describe
some of these techniques in this section.

1.5.1 Setpoint Limitation

The easiest way to avoid integrator windup is to introduce limiters on
the setpoint variations so that the controller output will never reach the
actuator bounds. However, this approach has several disadvantages: (a) it
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leads to conservative bounds; (b) it imposes limitations on the controller
performance; and (c) it does not prevent windup caused by disturbances.

1.5.2 Back-Calculation and Tracking

This technique is illustrated in Fig. 1.14. If we compare this figure to
Fig. 1.6, we see that the controller has an extra feedback path. This path
is generated by measuring the actual actuator output u(t) and forming the
error signal e;(t) as the difference between the output of the controller v(t)
and the signal «(¢). This signal es(¢) is fed to the input of the integrator
through a gain 1/T;.

Differentiator kg
?
kp vy Actuator >u()
e(t)
» i Integrator ) = +
es(t)
s
Tt

FIGURE 1.14. Controller with antiwindup.

When the actuator is within its operating range, the signal es(t) is zero.
Thus it will not have any effect on the normal operation of the controller.
When the actuator saturates, the signal e4(t) is different from zero. The
normal feedback path around the process is broken because the process
input remains constant. However, there is a new feedback path around the
integrator due to es(t) # 0 and this prevents the integrator from winding
up. The rate at which the controller output is reset is governed by the
feedback gain 1/T;. The parameter T; can thus be interpreted as the time
constant that determines how quickly the integral action is reset. In general,
the smaller the value of T, the faster the integrator is reset. However, if the
parameter T; is chosen too small, spurious errors can cause saturation of
the output, which accidentally resets the integrator. Astrom and Hagglund

[2] recommend T; to be larger than % and smaller than k%

1.5.8 Conditional Integration

Conditional integration is an alternative to the back-calculation technique.
It simply consists of switching off the integral action when the control is
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far from the steady state. This means that the integral action is only used
when certain conditions are fulfilled, otherwise the integral term is kept
constant. We now consider a couple of these switching conditions.

One simple approach is to switch off the integral action when the control
error e(t) is large. Another one is to switch off the integral action when
the actuator saturates. However, both approaches have a disadvantage: the
controller may get stuck at a nonzero control error e(t) if the integral term
has a large value at the time of switch off.

Because of the previous disadvantage, a better approach is to switch
off integration when the controller is saturated and the integrator update
is such that it causes the control signal to become more saturated. For
example, consider that the controller becomes saturated at its upper bound.
Integration is then switched off if the control error is positive, but not if it
is negative.

1.6 Contribution of this Book

In concluding this chapter, it is important to point out that in addition
to the approaches discussed above, there are many other approaches for
tuning PID controllers [2]|. Despite this, for plants having order higher
than two, there is no approach that can be used to determine the set of
all stabilizing PID gain values. The principal contribution of this book to
the PID literature is the development of a methodology that provides a
complete answer to this long-standing open problem for both delay-free
plants as well as for plants with time delay. For the former class of plants,
the results were first reported in [10]. In this book, we give results for
determining, in a computationally efficient way, the complete set of PID
controllers that stabilize a given linear time-invariant plant and achieve
prescribed levels of performance. These results apply to plants with and
without time delay. In going from delay-free plants to plants with time
delays, one has to transition from the realm of polynomials to that of quasi-
polynomials. When considering the latter, the early results of Pontryagin
are very useful.

1.7 Notes and References

The Ziegler-Nichols methods were first presented in [54]. The alternative
method using relay feedback is described in [1]. The relay feedback tech-
nique in Section 1.4.2 and its applications to automatic PID tuning can
be found in the works of Astrom and Hagglund [1, 2]. For a better under-
standing of describing functions, the book by Khalil [27] is recommended.
For a more detailed explanation of the IMC structure and its applications
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in process control, the reader is referred to [31]. The Cohen-Coon method
can be found in [9]. A complete description of antiwindup techniques can
be found in [2]. Needless to say there is an extensive literature covering all
aspects of PID control. We have not attempted to be complete in citing this
literature. Instead, we have tried to cite all relevant publications related to
the new results given in this book.
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The Hermite-Biehler Theorem and its
(Generalization

In this chapter we introduce the classical Hermite-Biehler Theorem for Hur-
witz polynomials. We also present several generalizations of this theorem
that are useful for solving the problem of finding the set of proportional
(P), PI, and PID controllers that stabilize a given finite-dimensional linear
time-invariant system.

2.1 Introduction

The problem of determining conditions under which all of the roots of a
given real polynomial lie in the open left half of the complex plane plays an
important role in the theory of stability of linear time-invariant systems.
A polynomial for which such a property holds is said to be Hurwitz. Many
conditions have been proposed for ascertaining the Hurwitz stability of a
given real polynomial without determining the actual roots. Results of this
nature were first obtained by Routh, Hurwitz, and Hermite in the 19th
century.

In this chapter, we introduce another well-known result: the classical
Hermite-Biehler Theorem. This theorem states that a given real polyno-
mial is Hurwitz if and only if it satisfies a certain interlacing property. This
result has played an important role in studying the parametric robust sta-
bility problem. However, when a given polynomial is not Hurwitz stable,
the Hermite-Biehler Theorem does not provide any information about the
root distribution of the polynomial. Recent research has produced several
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generalizations of the Hermite-Biehler Theorem applicable to the case of
real polynomials that are not necessarily Hurwitz. Some of these gener-
alizations will be introduced in this chapter and used in later chapters to
solve the important problem of finding the set of stabilizing PID controllers
for a system described by a rational transfer function.

The chapter is organized as follows. In Section 2.2, we provide a state-
ment of the Hermite-Biehler Theorem as well as a useful equivalent charac-
terization. Section 2.3 contains important generalizations of the Hermite-
Biehler Theorem. These generalizations, which are essentially root counting
formulas, will be used in later chapters to solve the PID stabilization prob-
lem for finite-dimensional linear time-invariant systems.

2.2 The Hermite-Biehler Theorem for Hurwitz
Polynomials

In this section, we state the classical Hermite-Biehler Theorem, which pro-
vides necessary and sufficient conditions for the Hurwitz stability of a given
real polynomial. Before stating the theorem, we establish some notation.

Definition 2.1 Let §(s) = 69+ 618+ - -+ 0p,8™ be a given real polynomial
of degree n. Write

5(s) = e(s2) + 56,(5%)
where 6.(s?), s6,(s%) are the components of §(s) made up of the even and
odd powers of s respectively. For every frequency w € R, denote

6(jw) = p(w) + jg(w)

where p(w) = §(—w?), q(w) = wi,(—w?). Let we,, We,, - .. denote the non-
negative real zeros of be(—w?) and let wo,, Wo,, - .. denote the non-negative
real zeros of §,(—w?), both arranged in ascending order of magnitude.

Theorem 2.1 (Hermite-Biehler Theorem) Let §(s) = dg+015+---+
dns™ be a given real polynomial of degree n. Then §(s) is Hurwitz stable
if and only if all the zeros of 6.(—w?), 6,(—w?) are real and distinct, o
and dp—1 are of the same sign, and the non-negative real zeros satisfy the
following interlacing property

0 < wey < Woy < Wey < Wop < o2+ (2.1)

This important theorem is based on the fact that a Hurwitz polynomial
0(s) satisfies the monotonic phase increase property, that is, the phase of
§(jw) is a continuous and strictly increasing function of w on (—o0, +00).
Moreover, using this property, we can show that the parametric plot of
0(jw) = p(w) + jg(w) in the 6(jw)-plane must move strictly counterclock-
wise and go through n quadrants in turn as w increases from 0 to 400 [5].
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Figure 2.1 illustrates the admissible plots of §(jw) for a Hurwitz polynomial
o(s).

Im{8(w)] Im[8(e)]

/— = \
> \0\ ‘_/ o 0)”3>Re[wm)]

@ 8 >0 (b) 8 <0

FIGURE 2.1. The monotonic phase increase property for a Hurwitz polynomial.

The following example illustrates the application of Theorem 2.1 to verify
the Hurwitz stability of a real polynomial.

Example 2.1 Consider the real polynomial
5(s) = 57 + 458 + 115° 4+ 295% + 365% + 6152 + 345 + 36
Then
6(jw) = p(w) + jg(w)

where

p(w) —40% + 29w* — 61w? 4 36

qw) = w(—w® 411w — 36w +34) .
The plots of p(w) and q(w) are shown in Fig. 2.2. They show that the

polynomial 8(s) satisfies the interlacing property. To wverify that 6(s) is
indeed a Hurwitz polynomial, we solve for the roots of 6(s):

—0.0477 1+ 1.98835 —0.2008 £ 1.42007
—0.2898 + 1.19575 —2.9233.

We see that all the roots of 5(s) are in the left half plane so that 6(s) is
Hurwitz. A

We now present some alternative characterizations of the Hermite-Biehler
Theorem that will be used subsequently. We first introduce the standard
signum function sgn : R — {—1,0,1} defined by

-lifz < 0
sgnfz] = 0ifz=0
lifz > 0
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FIGURE 2.2. The interlacing property for a Hurwitz polynomial.

Lemma 2.1 Let 6(s) = 8p + 618 + -+ + 8,8™ be a given real polynomial
of degree n. Let we,, we,,... denote the non-negative real zeros of the even
part of §(jw), and let wo,, we,,

. denote the non-negative real zeros of the
odd part of 6(jw), both arranged in ascending order of magnitude. Then the
following conditions are equivalent:

(i) 8(s) is Hurwitz stable

(i) 6, and 8,_1 are of the same sign and

sgn(do] - {sgn[p(0)] — 2sgnlp(we, )] + 2sgn[p(wo, )] + - --
Jr(—fl)"“1 -;sgn[p(wom_l)] + (=1)™ - sgnfp(c0)l},

(2.2)
sgndo] - {sgnlp(0)] — 2sgnfp(w,,)] + 2sgnlp(wo,)] +

+(=1)™"" - 2sgn(p(wo,,_,)] + (~1)™ - 2sgn{p(wo... )1}
forn=2m+1
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(#1) 6n and dp—1 are of the same sign and

;

sgn[do] - {2sgnlg(we, )] — 2sgnfg(we, )] + 2sgng(we; )] + -+

+(=1)™2 - 2sgng(we,,_,)] + (~1)™* - 2sgnfg(we,. )]},
forn=2m

n = (2.3)

sgnfo] - {2sgnlg(we, )] — 2sgnlg(we, )] + 2sgnlg(we, )] + - -

+(=1)™! - 2sgnlg(we,, )] + (=1)™ - sgng(c0)]},
forn=2m+1

Proof.
(1) (i) « (i)

We first show that (i) = (ii).
From Fig. 2.1, it is clear that

[ for n=2m

sgn[do] - sgn[p(0)] > 0
—sgn[do] sgn[p(wo, )] > 0 (2.4)
(~1)™sgn[8] - sgnfp(wer )] > 0
(—=1)™sgn{dy] - sgn[p(cc)] > 0

and

( forn=2m+1
sgn[do] - sgn{p(0)] > 0
“Sgn[%] . Sgn[p(wm )] >0

(—1)™Tsgn[fo] - sgnlp(wo,,_,)] > 0
(=1)™sgn(do] - sgn[p(wo,,)] > 0.

From (2.4) and (2.5), it follows that (2.2) holds.

(it) = (1)
Let w,, = 0 and for n = 2m, define w,,, = co. Equation (2.2)
holds if and only if [p(w,,_, )] and [p(w,,)] are of opposite signs
forl =1, 2, ---, m. By the continuity of p{w), there exists at
least one we € R, wo,_, < We < Wo, such that p(we) = 0.
Moreover, since the maximum possible number of non-negative
real roots of p(-) is m, it follows that there exists one and only
one we € (Wo,_,, Wo,) such that p(w.) = 0, thereby leading us
to the interlacing property (2.1).
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(2) (i) < (i)

The proof of (2) follows along the same lines as that of (1).

|
The interlacing property in Theorem 2.1 gives a graphical interpretation
of the Hermite-Biehler Theorem while Lemma 2.1 gives an equivalent ana-
lytical characterization. Note that from Lemma 2.1 if 6(s) is Hurwitz stable
then all the zeros of p(w) and g(w) must be real and distinct, otherwise (2.2)
and (2.3) will fail to hold. Furthermore, the signs of p(w) at the successive
zero crossings of q(w) must alternate. This is also true for the signs of ¢(w)
at the successive zero crossings of p(w).

Example 2.2 Consider the same polynomial as in Frample 2.1:

6(s) = 57 +45% + 115° + 295* + 365° + 6152 + 345 + 36 .

Then
§(jw) = p(w) + jg(w)

where

plw) = —4wb+ 290 — 610w° + 36

gw) = w(—w®+11w* - 36w* +34).
We have

We; =1, we, = 1.5, wey =2

we, = 1.2873, w,, = 1.8786, w,, = 2.4111

and

sgn[p(0)] = 1, sgn[p(w,,)] = —1, sgn[p(w,,)] = 1, sgnjp(ws, )] = —1.
Now §(s) is of degree n = 7 which is odd and
sgno] - [sgn[p(0)] — 2sgnp(wo, )] + 2sgn[p(wo, )] — 2sgn{p(wo;)l] =7

which shows that (2.2) holds.
Also, we have

Sgn{‘](wh)] =1, Sgn[Q(w62 )] = -1, Sgn[‘l(wes )] =1, Sgn[‘](oo)] =-1
so that
sgn[do] - [2sgn[g(we, )] — 2sgnlg(we, )] + 2sgnlg(we, )] — sgnlg(co)]] = 7.

Once again, this checks with (2.8). A
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2.3  Generalizations of the Hermite-Biehler
Theorem

Consider §(jw) = p(w) + jq(w) where p(w) and q(w) are as illustrated in
Fig. 2.3. From this figure we know that the polynomial 4(s) is not a Hurwitz
polynomial because it fails to satisfy the interlacing property since w,,,
Woy s Wog, Wo, are successive roots of g(w) between 0 and w,,. However, we

0 0.5 1 1.5 2 25 3 35 4 45 5
w {rad/sec)

FIGURE 2.3. Interlacing property fails for non-Hurwitz polynomials.

would like to extract, if possible, more information from these plots beyond
whether or not §(s) is Hurwitz. This has motivated research with the goal
of obtaining generalized versions of the Hermite-Biehler Theorem for not
necessarily Hurwitz polynomials. In this section, we present some of these
generalizations, which are useful for solving special cases of the fixed-order
stabilization problem. As a preliminary step to the Generalized Hermite-
Biehler Theorems, we introduce some notation and definitions. To this end,
let C denote the complex plane, C~ the open left half plane, and C* the
open right half plane.
Consider a real polynomial §(s) of degree n:

5(s) = So+b15+828%+ - 468", 5 €R,i=0,1,...,n, 6, #O
such that §(jw) # 0, Vw € (—o0, 00) .
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Let p(w) and g(w) be two functions defined pointwise by p(w) = Re[6(jw)],
q(w) = Im[6(jw)]. With this definition, we have

8(jw) = p(w) + jg(w) Vw .

Furthermore,
N M}
O(w) = L6(jw) = arctan L)(w) .
Let A§°f denote the net change in the argument #(w) as w increases from
0 to oo and let I() and r(d) denote the numbers of roots of §(s) in C~ and
C* respectively. The following lemma shows a fundamental relationship
betweeen the net accumulated phase of §(jw) and the difference between

the numbers of roots of the polynomial in C~ and C*.

Lemma 2.2 Let §(s) be a real polynomial with no imaginary azis roots.
Then

AP0 = Z(1(8) = r(3)) -

Proof. Each C™ root contributes +% and each C* root contributes —% to
the net change in argument. ]

We now define, mainly for notational convenience, the imaginary and real
signatures associated with a real polynomial. These definitions are useful
because they facilitate an elegant statement of the generalizations of the
Hermite-Biehler Theorem.

Definition 2.2 Let §(s) be any given real polynomial of degree n with k
denoting the multiplicity of a root at the origin. Define

p(w) q(w)

W)= e =
ps(w) A1)t g (w) T+w??

LetO=wy < w1 < wy < -+ <wm_1 be the real, non-negative, distinct
finite zeros of qs(w) with odd multiplicities, and define wy, = co. Then the
imaginary signature o;(8) of 8(s) is defined by

{sgn[p{"” (wo)] — 2sgnlpy(wn)] + 2sgnlpy(ws)] + - -
+(=1)™"" - 2sgn[ps(wm—1)] + (~1)™sgnps (wm)]}
«(=1)™ Lsgn[g(c0)]

oi(§) = if n is even (2.6)

{sen[p® (wo)] - 2sgnlps (wr)] + 2sgnps(wa)] + - -
+(=1)™1 - 25gnp s (wm-1)]} - (—1)™ sgnlg(co)]
if n is odd

k Kk
where p} )(wo) = i}—k[pf(w)][wzwo.
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Definition 2.3 Let 6(s) be any given real polynomial of degree n with k
denoting the multiplicity of a root at the origin. Let ps(w), qf(w) be as in
the last definition, and let 0 < w; < we < -+ < wp—1 be the real, non-
negative, distinct finite zeros of ps(w) with odd multiplicities, and define
wo =0, wy, = 00. Then the real signature o,.(8) of §(s) is defined by

[ {senlg!® (wo)] — 2sgnlgs(w1)] + 2sgnlgs (wa)] + -
+H(-1ym12. sgn[qff<wm_1)]} - (~1)™sgn[p(co)]

or(6) = (2.7)
{sgnlg{" (wo)] — 2sgngy(wr)] + 2sgnlgs(wa)] + -+
+(~1)™12 - sgalgg (wm—1)] + (~1)™sgnlgs (wm)]} - (-1)™

{ -sgn[p(o0)] if n is odd

k k
where qj(, )(wg) = %[[Qf(&))]lwzw().

With these definitions, we now present several generalizations of Theo-
rem 2.1 applicable under progressively less restrictive conditions.

2.3.1 No Imaginary Azis Roots

In this subsection, we focus on real polynomials with no imaginary axis
roots. Let p(w), q(w), ps(w), ¢r(w) be as already defined and let

O=wy) < w1 < wy < -+ < Wn—1

be the real, non-negative distinct finite zeros of gs(w) with odd multiplici-
ties, and define w,, = co. ‘
Then we can make the following simple observations:

1. If w;, wiy1 are both zeros of gf(w) then

A8 = = [senlps(w)] — sealps (wira)]] -senlas ] - (28)

2. If w; is a zero of gf(w) while w; 41 is not a zero of gy(w), a situation
possible only when w;1 = oo is a zero of ps(w) and n is odd, then

X T
A0 = Zsgnlps(wy)] - senlas ()] (2.9)
3. We also have
sgnlgs(wih )] = —senfgr ()], i=10,1,2,....,m—2.  (2.10)

Equation (2.8) above is obvious while (2.10) simply states that g¢(w) changes
sign when it passes through a zero of odd multiplicity. Equation (2.9), on
the other hand, is a special case of (2.8) for the case where p¢(wit+1) = 0.
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Using (2.10) repeatedly, we obtain
sglgs(W)] = (1)1 - senlgp(wm )],
i=0,1,...,m—1. (2.11)

Substituting (2.11) into (2.8), we see that if w;, ws+1 are both zeros of gf(w)
then

T
5 [senlps(wi)] —senlps (wir)]]

(=)™ sgnlgs (wa 1)) - (212)

The above observations enable us to state and prove the following.

Wit1 —
AL+ =

Theorem 2.2 Let §(s) be a given real polynomial of degree n with no roots
on the jw azis, that is, the normalized plot §¢(jw) = py(w) + jgr(w) does
not pass through the origin. Then

1(8) — r(6) = 0;(8) (2.13)

and

1(6) — r(6) = 0,(5) . (2.14)

Proof. We note that under the conditions of this theorem, £k = 0 in
Definition 2.2 so that p;k) (wo) = pglwo). First let us suppose that n
is even. Then w,, = oo is a zero of gf(w). By repeatedly using (2.12)
to determine AZ°6, applying Lemma 2.2, and then using the fact that
sgnlgs(wr_1)] = sgnfg(co)], it follows that 1(8) — r(8) is equal to the first
expression in (2.6). Hence (2.13) holds for n even.

Next let us consider the case in which n is odd. Then w,, = o is not a
zero of ¢s(w). Hence,

m—2

Y ALHe+ AR 6

1

ALO

.
=]

3
I\

[gulps(wi)] - sgulps (wir)]] - (=1)™ " *sgnlgs(wy, )]

i
™
bol 3

i
=

+558n(ps (wm—1)] - sgnlgs(wy,_y)]
(using (2.12) and (2.9)) . (2.15)

Applying Lemma 2.2, and then using the fact that sgn[qf(w;_l)] =
sgn[g(o0)], it follows that [(§) — r(8) is equal to the second expression in
(2.6). Hence (2.13) also holds for n odd.

The proof for (2.14) is omitted here since it follows along the same lines
as that of (2.13). Notice that in (2.14), the expression for [(§) — () is
determined using the values of the frequencies where d7(jw) crosses the
imaginary axis. |

SE!
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Remark 2.1 Theorem 2.2 generalizes Lemma 2.1, parts (i1) and (iii) to
the case of not necessarily Hurwitz polynomials. It is precisely in this sense
that Theorem 2.2 is a generalization of the Hermite-Biehler Theorem.

2.8.2 Roots Allowed on the Imaginary Axis FExcept at the
Origin
In this subsection, we extend Theorem 2.2 so that §(s) is now allowed to

have nonzero imaginary axis roots.

Theorem 2.3 Lei §(s) be a given real polynomial of degree n with no roots

at the origin. Then
1(8) — r(d) = 0;(d) (2.16)

and
(&) —r(6) = o, (0) . (2.17)

Proof. We present here the proof of (2.16) since that of (2.17) follows along
similar lines. &(s) can be factored as

§(s) = 0o(s)3e(5)8" (5)

where §,(s) contains all the jw axis roots of 4(s) with odd multiplicities,
de(s) contains all the jw axis roots of §(s) with even multiplicities, while
6*(s) has no jw axis roots. ,(s) and d.(s) must necessarily be of the form

So(s)= I (®+ad)™,

10=1,2,3,
where o, > 0, n;, >0, n,, isodd, oy < g < ---, and
3 2 2 \nq,
be(s) = H (8% + B;, )",
1e=1,2,3,--

where 8;, > 0, n;, > 0, n;_ is even.

The proof is carried out in two steps. First we show that multiplying 6*(s)
by 8(s) has no effect on (2.13). Thereafter, we use an inductive argument
to show that multiplying 0c(s)0*(s) by d,(s) also does not affect (2.13).
Step I. Definel

bo(s) = be(s)6*(s)
= [T + 2o,

!Note that in this proof 8g(s), 81(s), ..., x(s), etc., represent particular polynomials
that should not be confused with the coefficients of §(s) defined earlier.
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We want to show that y(s) satisfies (2.16).
Define

(jw) = p"(w)+ig (W)
So(jw) = polw)+jq(w)

so that p*(w), po{w), ¢*(w), go(w) are related by

po(w) = JJ(-w?+B82)Mp(w) (2.18)
ww) = [J(=*+8)"q" (W) (2.19)
ie
Let0 =wy < w1 < wp < --- < wpy_1 be the real, non-negative, distinct

finite zeros of ¢} (w) with odd multiplicities. Also define wy, = co. First let
us assume that §*(s) is of even degree. Then, from Theorem 2.2, we have

W(6") = (") = oi(6")

{sgn[p}(wo)] — 2sgnp}(w1)] + 2sgnlpf(ws)] + -

+(=1)™""2sgn[p} (wm-1)] + (~1)™sgn[p}(wm)]}
«(=1)™ 'sgn[g*(c0)].

From (2.19), it follows that w;, ¢ = 0,1,..., m — 1 are also the real,

non-negative, distinct finite zeros of qo,(w) with odd multiplicities. Fur-
thermore, from (2.18) and (2.19}), we have

Sgn[p;(w‘l)] = Sgn[p0f(wi)}’ t=0,1,...,m
sgn[g*(00)] = sgnfgo(c0)]-

Since

1(60) — r(d0) = 1(8") —r(67)

it follows that (2.16) is true for dy(s) of even degree. The fact that (2.16) is
also true for dy(s) of odd degree can be verified by proceeding along exactly

the same lines.
Step II: Proof by Induction. Let the induction index j be equal to 1
and consider

Bi(s) = (s +ad)™ [](* + B2)e6%(s)

= (5% + )™ 8(s). (2.20)

Define
61(jw) = p1(w) + jq1(w)
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so that p1(w), po{w), ¢1(w), go(w) are related by

pr(w) = (-4 a2)™ po(w) (2.21)
@(w) = (—w2 + o)™ go(w). (2.22)
Let 0 =wy < wi < wy < -++ < wpy-1 be the real, non-negative,

distinct finite zeros of g ;(w) with odd multiplicities. Also define wmy, = 0o.
First let us assume that dy(s) has even degree. Then from Step I
1(60) —r(80) = 0i(o)
= {sgn[po, (wo)] — 2sgn(po, (w1)] + 2sgn(po, (w2)] + - --
+(~1)™"2sgn(po, (wm-1)] + (~1)™sgnlpo, (wm)]}
«(=1)™*sgn[go(c0)]. (2.23)
From (2.22), it follows that w;, i =0, 1, ..., m — 1; o are the real, non-

negative, distinct finite zeros of ¢;,(w) with odd multiplicities. Let us as-
sume that w; < oq < wj1. Then from (2.21) and (2.22), we have

sgnggf ngi% = sgn[p[lé (w(i)],)]i = O,ll, .1. .l, l )
sgnfpo, (wi)] = —sgn[pr,(wi)], i=1+1,1+2 ..., m
senlpr, ()] — 0 (2.24)
sgnfgo(o0)] = —sgn|q1(c0)].
Since {(d1) — r(d1) = l(do) — 7(J0), using (2.23), (2.24), we obtain
Wor) —r(61) = {sgn[pi,(wo)] — 2sgnp1,(w1)] + 2sgn[p1, (w2)]

+- 4 (= 1)'2sgnlpy, ()] + (1) 2sen(pr, (0a)]
+(_1)l+225gn[p1f(wl+1)] +oee
+(=1)™2sgnlp1, (Wm-1)] + (=1)" sgnpy, (wm)]}
«(=1)"sgnlg1(o0)]
= 0i(8)
which shows that (2.16) is true for d1(s) of even degree. The fact that (2.16)
holds for 4;(s) of odd degree can be verified likewise. This completes the

first step of the induction argurment.
Now let § = k and consider

k

8(s) = [ +ad)me [[(s®+B2)™e6(s). (2.25)

to=1 e
Assume that (2.16) is true for &;(s) (inductive assumption). Then

k+1

[T (% + a2y [J(s* + 8Ly 67(s)

to=1 ie

= (" +af1)"™ 5 (s). (2.26)

It

Sk+1(s)
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Define

Sp(jw) = pr(w)+ jgk(w)
Opr1(jw) = prt1(w) + i1 (w)

so that pr1(w), pe(w), ge+1(w), qx(w) are related by

Prri(w) = (~w?+ag)"pe(w) (2.27)
1) = (W’ +ap )" ge(w). (2.28)
Let 0 =wy < wi < wg < -+ < wmp-1 be the real, non-negative,

distinct finite zeros of g ; {w) with odd multiplicities. Also define wy, = co.
First let us assume that dg(s) is of even degree. Then from the inductive
assumption, we have

0k) = (k) = ouldk)

{sgn[px, (wo)] — 2sgn[pk, (w1)] + 2sgn(px, (w2)}
+-+- + (=1)™ 12sgnlpk, (Wm—1)] + (-1)™

sgn[pr, (wm)]} - (~1)™ 'sgnlge(c0)]- (2.29)
Now from (2.28), it follows that w;, ¢ =0, 1, ..., m — 1; ak41 are the real,

non-negative, distinct finite zeros of qi+1 f(w) with odd multiplicities. Let
us assume that w; < agy; < wiy1. Then from (2.27) and (2.28), we have

sgn[pe, (wi)] = sgn[prra,(wi)), i=0,1,...,1

sgnfpr, (wi)] = —sgnfppy1, (wi)], i=1+1,...,m (2.30)
sgn[prt1, (k+1)] = 0 _ '

sgnlge(oo)] = —sgn[gei1(00)].

Since [(6x+1) — r(0k+1) = {(6k) — r(Jk), using (2.29), (2.30), we obtain

[0k41) = 7(dk+1) = {sgnlpr+1,(wo)] — 2sgnfprr1, (w1)]
+25gn[prr1, (w2)] + -+ + (—1)'2sgnlpri1, (wi)]
+(=1)"*" - 2sgnper1, (ak+41)]
+(=1)"*22sgnpr1, (win)] + -
+(=1)"2sgn[pes1, (Wm—-1)] + (1)
sg0[Pe+1, (wm)]} - (—1)™sgnlge+1(c0)]
= 0i(0k+1) (2.31)
which shows that (2.16) is true for dx41(s) of even degree. The fact that

(2.16) is true for dx+1(s) of odd degree can be similarly verified. This com-
pletes the induction argument and hence the proof. ]
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2.8.8 No Restriction on Root Locations

Theorem 2.3 presented in the last subsection requires that the polynomial
d(s) have no roots at the origin. In this subsection, we show that such
restrictions can be removed.

Theorem 2.4 Let §(s) be a given real polynomial of degree n. Then
1(8) — r(d) = 0y(d) (2.32)

and

1(6) — r(8) = o, (9). (2.33)
Moreover, §(s) is Hurwitz if and only if 0;(8) = o,(8) = n.

Proof. A proof is presented only for the first part of the theorem. The
proof for the second part is similar and is therefore omitted. If 4(s) has no
roots at the origin, then (2.32) follows from Theorem 2.3. Let us assume
that 6(s) has a root of multiplicity k& at the origin. Then we can write

5(s) = s%6*(s)

where §*(s) is a real polynomial of degree n* with no roots at the origin.
Define

§*(jw) = p'w)+ig W)
6(jw) = plw)+jqw).

The proof can be completed by considering four different cases, namely
k=4l,k=4l+4+1, k=4l +2, and k = 4] + 3. These four cases correspond
to the four different ways in which multiplication by (jw)* affects the real
and imaginary parts of *(jw). Due to the fact that each of these cases is
handled by proceeding along similar lines, we do not treat all of the cases
here. Instead, we focus on a representative case, say k = 441, and provide
a detailed treatment for it.

For k =41 + 1, we have

6(jw) = pw)+jg9(w)
— —w4l+1q*(w)+jw4l+lp*(w).
First let us assume that n* is even. Then, from Theorem 2.3, we have
1(6) —r(d") = op(6)
—{2sgn[q}(w1)] — 2sgnlg}(wa)] + - -

+(_1)m_225gn[q}(wm—1)]}
«(=1)™sgn[p*(c0)] (2:34)
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where 0 < w; < w2 < --- < wy,-1 are the real, non-negative, distinct
finite zeros of p}(w) with odd multiplicities.
Define wg := 0. Since

p(w) — _w4l+1q*(w)
P (W) = —(4l+1)!g"(wo) =0
¢w) = w'™lp*(w) and
P (o) = pHD ()
we have
sgnlp{* D (wo)] = 0 (2.35)
sgnlgf(w;)] = -—sgnfps(wy)), i=1,2,...,m (2.36)
sgafp’(c0)] = sgnla(oo)] (2.37)

Since n* is even and k = 4{ + 1, it follows that n is odd. Moreover, since
(8) —r(8) = I(¢*) — r(6%),
using (2.34), (2.35), (2.36), (2.37), we have

1(0) —r(8) = {sgnpl¥ (wo)] — 2sgnlps(wn)] + 2senpy(ws)] + -+
+(=1)™ 12sgnlps (wm-1)]} - (—1)™ Lsgnlg(co)]

which shows that (2.32) holds for §(s) of odd degree. The fact that (2.32)
also holds for §(s) of even degree or equivalently n* odd can be verified by
proceeding along exactly the same lines. a

Remark 2.2 In view of the above theorem, it is clear that for any real
polynomial 5(s), the value of the real signature o,(8) is equal to the value
of the imaginary signature ;(8) and each is in fact equal to 1(6)—r(6). Thus
either of them could be referred to as the signature o(8) of 8(s) with the
subscript “r” or %7 indicating the formula that is being used in a particular
situation to compute the value.

Example 2.3 Consider the real polynomial
5(s) = 3>+ 1)%(s? +5)(s — 3) (s> +s+1)
of degree n = 12. Substituting s = jw, we have
6(jw) = p(w) + jg(w)

where
p(w) = w? — 5w — 3w + 17w8 — 10w?
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and
gw) = 2w — 17w° + 430" — 43w® + 150>,

The real, positive finite zeros of qf(w) with odd multiplicities are wy =
1.2247 and wy = 2.2361. Also define wy = 0 and w3 = co. Since §(s) is of
even degree and with a root at the origin of multiplicity 3, from formula
(2.6), it follows that

oi(0) = {Sgn[P§f3) (wo)] — 2sgn[ps(w1)] + 2sgnlps(w2)] — sgnlps(ws)]}
«(=1)sgn[g(c0)] -

Then, we have
sgn[pffg)(wo)} = 0,sgn[ps(w1)] = —1,sgn[ps(ws)] = 0 and sgnlps(ws)] = 1.

Hence,
0i(6) =0+24+0—-1=1.

This agrees with the value for [(§) — r(6) = 2 — 1 obtained from visual
inspection of the factored form of 4(s), so Theorem 2.4 is verified. Finally,
since 0;(8) # 12, the polynomial is non-Hurwitz. A

2.4 Notes and References

The proof of the classical Hermite-Biehler Theorem can be found in {13].
For an alternative proof using the Boundary Crossing Theorem the reader
is referred to [5]. The generalizations of the Hermite-Biehler Theorem pre-
sented in Section 2.3 are due to Ho, Datta, and Bhattacharyya [17]. A
formula for 1(6) — () appeared first in [34], for the case of polynomials
with no roots on the imaginary axis and at most one root at the origin.
Most of the material presented in this chapter is based on [10].
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PI Stabilization of Delay-Free Linear |
Time-Invariant Systems

In this chapter we utilize the Generalized Hermite-Biehler Theorem pre-
sented in the previous chapter to give a solution to the problem of feedback
stabilization of a given finite-dimensional linear-time invariant plant by a
constant gain controller and by a PI controller. In each case the complete
set of stabilizing solutions is found.

3.1 Introduction

In this chapter we first provide a complete analytical solution to the prob-
lem of stabilizing a given plant described by a rational transfer function
using a constant gain (or zeroth order) controller. The solution derived in
this chapter is based on the Generalized Hermite-Biehler Theorem devel-
oped in Chapter 2. This solution along with some illustrative examples are
presented in Section 3.2. In Section 3.3 we derive a computational char-
acterization of all stabilizing PI controllers. This characterization is in a
quasi-closed form and can be used to optimize various performance criteria
when the controller structure is constrained to be of the PI type.

The results of this chapter fill an important gap in control theory. In part,
they are motivated by the limitations of modern optimal control techniques,
which cannot accommodate constraints on the controller order or structure
into their design methods. Because of this fact, techniques such as Hj or
H, cannot currently be used for designing optimal or robust PI controllers.
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3.2 A Characterization of All Stabilizing Feedback
Gains

In this section we utilize the Generalized Hermite-Biehler Theorem to give
a solution to the problem of feedback stabilization of a given linear time-
invariant plant by a constant gain controller. Even though this problem
can be solved using classical approaches such as the Nyquist stability cri-
terion and the Routh-Hurwitz criterion, it is not clear how to extend these
methods to the more complicated cases where PI or PID controllers are
involved. By using the Generalized Hermite-Biehler Theorem, an elegant
procedure is developed that can be extended to the aforementioned cases.

C(s) G(s)

CONTROLLER PLANT

FIGURE 3.1. Feedback control system.

To this end, consider the feedback system shown in Fig. 3.1. Here 7 is
the command signal, y is the output,
N(s)

¢ =5

is the plant to be controlled, N(s) and D(s) are coprime polynomials,
and C(s) is the controller to be designed. In the case of constant gain
stabilization,

C(s) =k
so that the closed-loop characteristic polynomial 6(s, k) is given by
0(s, k) = D(s) + kN(s) . (3.1)

Our objective is to determine those values of k, if any, for which the closed-
loop system is stable, that is, 4(s, k) is Hurwitz.
If we now consider the even-odd decompositions of N(s) and D(s)

N(s) = N(s?)+sN,(s?)
D(s) = Do(s?) + sD,(s%)

then, (3.1) can be rewritten as

8(s,k) = [EN(s) + De(s%)] + s[kNo(s%) + Do(s%)] -
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It is clear from this expression that both the even as well as the odd parts
of &(s, k) depend on k. This creates difficulties when trying to use Lemma
2.1 to ensure the Hurwitz stability of §(s, k). To overcome this problem, we
will now construct a polynomial for which only the even part depends on
k, and to which Theorem 2.4 is applicable.

Suppose that the degree of D(s) is n while the degree of N(s) is m and
m < n. Define

N*(s) := N(—s) = No(s%) — sN,(s%).
Multiplying (s, k) by N*(s) we obtain the following result.
Lemma 3.1 §(s, k) is Hurwitz if and only if
o5(8(s, k)N*(s)) = n — ({N(s)) — r(N(s)))- (3.2)

Proof. Since l(a(s) - b(s)) = I(a(s)) + I(b(s)) and r(a(s) - b(s)) = r(a(s)) +
r(b(s)), we have

1(6(s, k)N"(s)) — r(8(s, k)N*(s))

I

1(6(s, k) —r(d(s, k)
+(N™(s)) = r(N”
1(6(s,k)) —r(6(s, k)
+UN(=8)) — (N (=s))
1((s, k))»— r(d(s,k))
—(U(N(s)) = r(N(s)))-

)
()
)

i

Now, (s, k) of degree n is Hurwitz if and only if [(6(s,k)) = n and
r(8(s, k)) = 0. Furthermore, from Theorem 2.4

oi(6(s, k)N™(s)) = 1(3(s, k)N*(s)) — r(8(s, k)N"(s))-
Thus

0i(8(s, K)N™(s)) = n — (I((N(s)) — r(N(s))) -
u
In order to solve our stabilization problem, we need to determine those
values of k, if any, for which (3.2) holds. Notice that in this expression, the
values of n and I(N(s)) — r(N(s)) are known and fixed.
Using the even-odd decompositions of N(s) and D(s) we have

5(s,k)N*(s) = h1(s?) + kha(s?) + 591(s?)

where

De(sz)N (52) 2D0( YN (s )
Ne(5%)Ne(s%) — s> No(s?)No(5%)
Ne(sz)DO(Sz) - 8(32)N (3 )-

hl(sz)
h2(82)

91(s%)
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Substituting s = jw, we obtain

6(Jw, k) N*(jw) = plw, k) +jg(w) (3.3)
where
plw,k) = p1(w) + kp2(w) (3.4)
p1(w) = [De(—w?)Ne(—w?) +w?Do(—w®)No(—w?)]  (3.5)
p2(w) = {Ne(‘wz)Ne(‘w2)+w2N0(—w2)N0(—“"2)] (3.6)

qw) = wNe(=w?)Do(~w?) = De(-w*)No(—w?)] . (3.7)
Also, define

_ _ pwk)
prlek) = ey
g(w)
(1+w2) ™

g5(w) =

Note that the zeros of the imaginary part ¢{w) are independent of k. For
clarity of presentation, we first introduce some definitions before formally
stating the main result of this section.

Definition 3.1 Let the integers m, n and the function qf(w) be as already
defined. Let 0 =wg < wy < wy < -+ < wi_1 be the real, non-negative,
distinct finite zeros of qs(w) with odd multiplicities. Define a sequence of
numbers ig, 11,12, -,1; as follows:

()

. sgn[pgf”)(O)] if N*(s) has a zero of
tg = multiplicity k, at the origin
@ otherwise

where o € {—1,1} and

nw)
plf(w) = (min)
3

T (1+w?)

(i5) Fort=1,2,...,1—1:

. _{ 0 i N*(juw) =0
1t =

o  otherwise ’

(i)

P fn+m is even
10 ifn+misodd
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With ig, 11, . .. defined in this way, we define the stringZ : N — R as the
following sequence of numbers:

I:= {io,il,...,il} .

Define A to be the set of all possible strings T that can be generated to
satisfy the preceding requirements.

Next we introduce the “imaginary signature” y(Z) associated with any
element 7 € A. This definition is motivated by Theorem 3.1 to follow.

Definition 3.2 Let the integers m, n and the functions q(w), qs(w) be
as already defined. Let 0 = wy < w; < wy < -+ < w1 be
the real, non-negative, distinct finite zeros of qs(w) with odd multiplicities.
Also define w; = 0o. For each string T = {ig,11,...} in A, let v(Z) denote
the “imaginary signature” associated with the string T defined by

Y(T) := [io — 261 + 2ig + -+ + (=1)' 71241 + (=1)4y) - (1) *sgnlg(c0)] -
(3.8)

Remark 3.1 Note that if we make the identification ig = sgn[p(fk")(O, k)],
iy = sgn[ps(we, k)] for t # 0, then the imaginary signature of (s, k)N*(s)
as determined from (2.6) is the same as the quantity v(I) defined above.
Hence, referring to v(Z) as the “imaginary signature” of I is appropriate
terminology.

Definition 3.3 The set F* of feasible strings for the constant gain stabi-
lization problem is defined as

F* ={T € Ay(T) =n— (I(N(s)) = r(N(s)))} -

The following example illustrates these definitions.

Example 3.1 From (3.3), we have
§(jw, kYN*(jw) = p(w, k) + ja(w)

where
p(w, k) = p1(w) + kp2(w).

Now suppose, for example, that 6(s,k) is of degree n = 6, the degree of
N*(s) ism =4, and l{N(s)) —r(N(s)) = 2. Let q(w) have three real, non-
negative, distinct finite zeros wg, wi, we with odd multiplicities, let ws = oo
and sgn[(g(o0)] = 1. Also let N*(jw;) # 0 for i =0,1,2, so that N*(s) has
no zeros on the imaginary axis.
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Since m + n = 10 is even, the strings T will have the structure {ig, %1, iz,
iz}, where iy € {—1,1}, t = 0,1,2,3. The set A of all possible strings T
with this structure is

,—1,-1,-1} {1,-1,-1,-1} )
,—1,-1,1}  {1,-1,-1,1}

- ,—1,1,—1} {1,_1,1,—1}
~1,-1,1,1} {1,-1,1,1}
1,-1,-1}  {1,1,-1,-1}
,1,-1,1} {1,1,-1,1}
1,1,-1} {1,1,1,~1}

1 171} {1’17171} J

Since
(—1)%"Ysgn[g(co)] = 1,
it follows using Definition 3.2 that the imaginary signature of every string
T is given by
’Y(I) =19 — 2i1 + 2ip — i3 .
From Lemma 3.1, we have §(s, k) is Hurwitz if and only if
0i(6(s, k)N*(s)) = n—(UN(s)) —r(N(s))) =
Thus the set F* of strings that have v(T) = 4 is given by

F* ={{-1,-1,1,-1},{1,-1,1,1}}.

Therefore, the constant gain stabilization problem now reduces to the prob-
lem of determining the values of k, if any, such that sgnlps(w;, k)] = i;,
J=0,1, 2, 3 and {ip,i1,i2,i3} € F*. A

We are now ready to state the main result of this section.

Theorem 3.1 (Constant Gain Stabilization) The constant gain feed-
back stabilization problem is solvable for a given plant with rational transfer
function G(s) if and only if the following conditions hold:

(i) F* is not empty, i.e., at least one feasible string exists
and

(i) there exists a string T = {ig,i1,...} € F* such that
L) < U
{trﬁi}%}( t) {t121<n0}( t)

where

L o= B T s 0

Wt

p2(wt)
p1{wr)
p2(wr)

07’7:t€ ,Z't
z <0
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p1(we), polwe) are given by (8.5) and (3.6), respectively, and
wo, Wi, Wa, ... are as already defined.

Furthermore, if the above conditions are satisfled by the feasible strings
11,1a,...,Is € F*, then the set of all stabilizing gains is given by K =
Us—_1 K, where

Kr:< max (L), (t)) r=12,...,s

{t:it >0,7;tEIT-} {t te <0 it EI }
Proof. From (3.2), we know that (s, k) is Hurwitz if and only if
4(8(s, k)N*(s)) = n — (I(N(s)) — r(N(s)))-
Thus §(s, k) is Hurwitz if and only if 7 € F*, where (see Definition 3.3)
F* ={T € A/¥(I) =n— (UN(s)) — r(N()))}
and

T = {io,i1,...}
sgnfp{™ (wo, k)]

9 =

iy = Sgn[pf(wjak)L forj=1,2,...,0-1
i = sgn[ps(wi, k)] if n+m is even
LT 0 if n 4+ m is odd

Let us now counsider two different cases.

Case 1: N*(s) does not have any zeros on the imaginary axis. In this case,
for all stabilizing values of the gain k, 8(s, k) N*(s) will also not have any
zeros on the jw axis so that i; € {-1,1} for j = 0,1,2,...,l — 1, and
4 € {~1,0,1}. Next we consider the two different possibilities:

(a) If i; > 0, then the stability requirement is
p1{wy) + kpa(w;) > 0.
From (3.6), we note that
p2(w) = [N(jw)|*.

Since N*(s) does not have any zeros on the jw axis, it follows that
p2(w;) > 0. Hence

k> ;’;E:j;; (3.9)

(b) If i; < 0, then the stability requirement is

pl(wj) -+ kpg(wj) < 0.



46 3. PI Stabilization of Delay-Free Linear Time-Invariant Systems
Once again, since pa(w;) > 0, it follows that

k < —%%. (3.10)

Case 2: N*(s) has one or more zeros on the jw axis including a zero of
multiplicity k, at the origin. In this case, for all stabilizing values of the gain
k, 6(s,k)N*(s) will also have the same set of jw-axis zeros. Furthermore,
it is clear that these zero locations will be a subset of {wg,w1,...,wi—1}.
Since the location of these zeros depends on N*(s) and is independent of
the gain %, it is reasonable to expect that such a zero, at wy, say, will not
impose any additional constraint on k. Instead it will only mandate that
im € T be constrained to a particular value. We next proceed to establish
rigorously these facts. We consider two possibilities:

(a) m # 0. Here N*(s) has a zero at jw,, where wy,, # 0. This implies
that
Ne(~wh) = No(~wi) =0

so that from (3.5), (3.6) we obtain
p1(wm) =0 and p2(wm) =0.
Thus from (3.4), it follows that
p(wm, k) =0.
Thus ¢,, = 0 independent of k¥ and this constraint on Z was already
incorporated into the definition of A.
(b) m = 0. Here N*(s) has a zero at the origin of multiplicity k,. Since
N*(jw) = Ne(~w?) = jwNo(~w?)

it follows that N (~w?) and wN,(—w?) must each have zeros at the
origin of multiplicity at least k,. Thus from (3.6), we see that pa(w)
will have a zero at the origin of multiplicity 2k, so that for &, > 1,

kn
p¥(0) =o.

Since i
P (0.8) = p57(0) + kel (0)

it follows that for &, > 1

pg™(0,) = p57(0)
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independent of k. Thus, although no constraints on k appear, we must
have

io = sgnfp{®~) (0)].

Once again, we note that this condition has been explicitly incorpo-
rated into the definition of the set A.

Of the two cases discussed above, only Case 1 imposes constraints on
k as given by (3.9) and (3.10). This leads us to the conclusion that each
i; > 0 in the string Z € F* contributes a lower bound on k while each
i; < 0 contributes an upper bound on k. Thus, if the string 7 € F* is to
correspond to a stabilizing & then we must have

Cmax|-Bled] o [ome) (3.11)
t€Z,is >0 p2(wt) it€Z,i; <0 pz(wt)

which is condition (ii) in the theorem statement. This completes the proof
of the necessary and sufficient conditions for the existence of a stabilizing
k. The set of all stabilizing ks is now determined by taking the union of all
ks that are obtained from all the feasible strings that satisfy (ii). n

Remark 3.2 Since

_ N(s)  Ne(s?) 4 sNo(s%)
C8) = B(s) = Do(s3) 5 5Dy (%)
we have
1 _ D (—w?) + jwD,(—w?)
G(jw) Ne(—w?) + jwNo(—w?)
— [De(_‘UQ) + jWDO(_w2)][Ne(“w2) - jWNO(“WQ)]
[Ne(=w?) + jwNo(—w?)][Ne(~w?) — jwNo(~w?)]
_ [De("wz)Ne(—WQ) + wQDO(—w2)NO(—w2)]
[Ne(—WQ)Ne(_wQ) + w2No(_w2)No(_w2)]

. W[Ne(=w?) Dy(~w?) — De(—w?)No(—w?)]
[Ne(=w?)Ne(—w?) + w2 No(—w?)No(—w?)]
p1(w) + jg(w)

pa(w)

Since q(we) = 0 for finite wy, it follows that for all such frequencies

_hw) 1
p2(wt) G(jws)

Remark 3.3 It is appropriate to point out here that Theorem 3.1 parts (i)
and (i) do provide a characterization of all plants that are stabilizable by a
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constant gain. Also note that a necessary condition for F* to be nonempty
is that for m + n even,

B (l(N(S)g — (N (s)))]

and for m +n odd,

In — (UN(s)) —r(N(s)) + 1

>
bz 2

The following examples illustrate the usefulness of Theorem 3.1 when
solving the constant gain stabilization problem.

Example 3.2 Consider a system described by

D(s) = s*'455°+10s>+45+6
N(s) = §*+3s+25-2.

The closed-loop characteristic polynomial is
0(s, k) = D(s) + kN(s) .
Here N,(s%) = 3s% — 2 and N,(s?) = s? + 2, so that

N*(s) = N(~s) = N(s?) — sNo(s?).

Therefore
5(s,k)N*(s) = (—2s%+14s* —10s* - 12)
+k(—s5 + 55 —165% +4)
+5(—5% 4+ 35 — 24s5% — 20)
so that
§(jw, E)N™(jw) = p1(w) + kp2(w) + jq(w)
with
p1(w) = 2w8 + 14w? + 10w? — 12
p2(w) = wb+5wh+ 16w +4
qw) = ww®+ 3w + 24w? — 20).

The real, non-negative, distinct finite zeros of qf(w) with odd multiplicities
are
wo = 0, Wy = 0.8639.
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Since n +m = 7, which is odd, and N*(s) has no roots on the jw axis,
from Definition 8.1, the set A becomes

. {—1,—1,0} {1,—1,0}
4 = {{—1,1,0} {1,1,0} }

Since I(N(s)) — r(N(s)) = 1 and (—1)""'sgn[g(c0)] = —1, it follows using
Definition 3.3 that every string T = {ig, i1, ta} € F* must satisfy

—(io — 21y +i2) =3.

Hence F* = {I,} where Ty = {-1,1,0}. Furthermore,

Up = — 1(w0) - 3
pa(wo) ’

L =Pl o150
p2(wi)

Hence from Theorem 8.1, we have

K; = (-0.2139,3) for I, .
Therefore §(s, k) is Hurwitz for k € (—0.2139, 3). A
Example 3.3 [10] Consider the constant gain stabilization problem with

D(s) = %4 11s* 4225 4 605> +47s + 25
N(s) = s*+6s®+125%+ 5454 16.

The closed-loop characteristic polynomial is
8(s,k) = D(s) + kN(s) .
Here N.(s?) = s* 4+ 1252 + 16 and N,(s%) = 652 + 54 so that

N*(s) = N(—8) = No(5?) — sN,(s?).

Therefore
5(5,k)N*(s) = (5s%+6s% —549s* — 127852 + 400)
+k(s® — 1258 — 4725 — 253252 + 256)
+5(s® — 3258 — 6275 — 247457 — 598)
so that

S(jw,kE)N*(jw) = p1(w)+ kpa(w) + jg(w)
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with
pi(w) = 5w®— 6wt — 549w + 1278w% + 400
po(w) = w®+120w8 — 4720w + 2532w + 256
qw) = w(w®+ 328 - 627w* + 2474w? — 598).

The real, non-negative, distinct finite zeros of qp(w) with odd multiplicities
are
wp =0, w; =0.50834, wy = 2.41735, w3 = 2.91515.

Since n + m = 9, which is odd, and N*(s) has no roots on the jw azis,
from Definition 3.1, the set A becomes

( {-1,-1,-1,-1,0} {1,-1,-1,-1,0} )
{-1,-1,-1,1,0}  {1,-1,-1,1,0}
{-1,-1,1,-1,0}  {1,-1,1,-1,0}

4 - {-1,-1,1,1,0} {1,-1,1,1,0}

- {-1,1,-1,-1,0}  {1,1,-1,-1,0}
{-1,1,-1,1,0} {1,1,-1,1,0}
{-1,1,1,-1,0} {1,1,1,- ,0}
{-1,1,1,1,0} {1,1,1,1,0} J

Since I(N(s)) — r(N(s)) = 4 and (—1)'"!sgn[q(c0)] = —1, it follows using
Definition 3.3 that every string T = {iq, i1, t2, i3, 14} € F* must satisfy

—(ig — 201 + 2ig — i3 +14) = 1.

Hence F* = {I,I5, I3} where

I, = {1,-1,-1,1,0}
IZ = {17171a170}
I; = {1,1,-1,-1,0}.
Furthermore,

_pwo)  _ e0sg
pz(wo)

_mn) e
p2(w1)

_piwa) g ks
Pz(w2)

_Pws) 59 49300,
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Hence from Theorem 8.1, we have

K1 = @ fO’f’ I]
K2 = (2249390, OO) fOT Ig
K3 = (—0.78898, 2.50345) for Is.

Therefore &(s, k) is Hurwitz for k € (—0.78898, 2.50345) U (22.49390, o).
A

3.3 Computation of All Stabilizing PI Controllers

In this section, we show how the results developed in Section 3.2 for the
constant gain stabilization problem can be extended to solve the problem of
PI stabilization. As in the previous case, we consider the feedback control
system shown in Fig. 3.1. Now the controller being used is of the PI type
so C(s) is given by

. ki__ki-f-kps
C(s)—kp+s— P

The closed-loop characteristic polynomial is then
0(s, kp, ki) = sD(s) + (ki + kps)N(s).

Let n be the degree of §(s, kyp, k;) and m be the degree of N (s). The problem
of stabilization using a PI controller is to determine the values of k, and k;
for which the closed-loop characteristic polynomial (s, kp, k;) is Hurwitz.

Clearly, k, and k; both affect the even and odd parts of (s, kp, k;).
Motivated by the approach used in Section 3.2, we now proceed to construct
a new polynomial whose even part depends on k; and odd part depends on
k. Consider the even-odd decompositions

N(s) = N.(s?)+ sN,(s%)
D(s) = De(s*) +sD,(s%).
Define
N*(s) = N(—s) = Ne(s?) — sN,(s?).
Multiplying 6(s, kp, ki) by N*(s) and examining the resulting polynomial,
we obtain
Uo(s, kp, ki)N*(s)) — 7(6(s, kp, ki) N*(s)) = 1(o(s, kp, ke))
—r(8(s, kp, ki)
—(U(N(s)) —r(N(s))) -
3(s, kp, k;) of degree n is Hurwitz if and only if 1(8(s, kp, k;)) = n and

T((s, kp, ki)) = 0. Therefore, in view of Theorem 2.4, we have the following
result.
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Lemma 3.2 §(s, kp, k;) is Hurwitz if and only if
0i(3(s, kp, k)N*() =m = (U(N () = r(N(s)) . (312)
Our task now is to determine those values of k,, k; for which (3.12) holds.
It can be verified that
5(s, kp kON*(5) = [2(Ne(s2)Da(5?) — De(s)No(s*))
+ki(Ne(s?)Ne(s?) - 52N, (5%)No(s%))]
+3[De(32)Ne(52) - S2Do(32)No(52)
+kp(No(82)Ne(s2) — s2No(s?)No(5%))] -(3.13)
Substituting s = jw, we obtain
5(jw, kpy IN*(jw) = plw, ki) + ja(w, ky)
where

plw, ki) = pi1(w)+ kipa(w)

9w, kp) q1(w) + kpga(w)
p1(w) —w? (Ne(—w?) Do(—w?) = De(—w?)No(-w?))
P2(w) = Ne(—w?)Ne(—w?) + w2 No(—w?) No(—w?))
q1(w) W(De(—w?)Ne(—w?) + w? Do(~w?) No(—w?))
2W) = w(Ne(-w?)Ne(—w?) + w? No(~w?)No(—w?)).

Also, define

Il

p(wa kt)
(1 4 w?)="
Q(wv kp)

qr(w kp) = ———Fr.
f( P) (1+w2) 2

pf(wa kz) =

From these expressions, we first note that &;, k, appear affinely in p(w, k;),
q(w, kp) respectively. Moreover, for every fixed k, the zeros of g(w, kp) do
not depend on k;, and so the results of Section 3.2 are applicable in this case.
Thus, by sweeping over all real k, and solving a constant gain stabilization
problem at each stage, we can determine the set of all stabilizing (kp, k;)
values for the given plant.

However, there is no need to sweep over all real values of the parameter
ky. As will be shown briefly, the range of k, values over which the sweeping
needs to be carried out can be considerably reduced in many cases. Recall
from Remark 3.3 that for a fixed k,, a necessary condition for the existence
of a stabilizing k; value is that the number of real, non-negative, distinct
finite zeros of odd multiplicities of g(w, kp) be at least

In — (L(N(s)) = (N (s))l

2 if m + n is even
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- In — (N (s)) = r(N(s))] + 1

2
Such a necessary condition can be checked by first rewriting g(w, kp) as
follows:

fm4+nisodd.

aw, k) = wlUW) + VW) (3.14)
where
Uw) = De(—w2)Ne(—w2)+w2Do(—w2)No(—w2)
Vw) = Ne(—wQ)Ne(—wQ)+w2No(——w2)No(—w2).

From (3.14), we see that g(w, k,) has at least one real non-negative root at
the origin. Now applying the root locus ideas that will be presented shortly,
we can determine the real root distributions of ¢{w, kp) corresponding to
different ranges of k,. Then, using the fact that n — (I(N(s)) — r(N(s))) is
known, one can identify the ranges of k, for which g(w, kp) does not satisfy
the necessary condition stated above. Such k, ranges do not need to be
swept over and can, therefore, be safely discarded.

‘Before we proceed further, let us consider the problem of determining
the root locus of U(w) + &,V (w) = 0, where U(w) and V(w) are real and
coprime polynomials and &, varies from —oo to +00. We now make the
following observations:

1. The real breakaway points on the root loci of U(w) + kpV(w) = 0
correspond to a real multiple root and must, therefore, satisfy

Viw
) e vese

dw U?(w)
The real breakaway points are the real zeros of the above equation.

2. Let k1 < ko < -+ < k, be the distinct, finite, values of k, correspond-
ing to the real breakaway points w;, 7 = 1,2,..., z, on the root loci of
U(w)+ kpV{w) = 0. Also define kg = —oco and k,+3 = +00. Then wj,
j=1,2,..., 2, are the multiple real roots of U(w) + kpV{w) = 0 and
the corresponding values of k, are k;, j = 1,2,...,2. We note that
for kp € (kj, k;j+1), the real roots of U(w) + kpV{(w) = 0 are simple
and the number of real roots is invariant.

3. If U(0) + k,V(0) # 0, for all k, € (kj,k;41), then the distribution
of the real roots of U(w) + kpV(w) = 0 with respect to the origin is
invariant over this range of k, values.

Using these root locus ideas we can narrow the sweeping range for the
controller parameter k.

We now present a simple example to illustrate the detailed calculations
involved in determining the stabilizing (ky, k;) values for a given plant.
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Example 3.4 Consider the problem of choosing stabilizing PI gains for
the plant G(s) = %’lé)l where

D(s) s° 4+ 351 + 295% + 1557 — 35 + 60
N(s) = s*+6s2~2s+1.

The closed-loop characteristic polynomial is
8(s, kp, ki) = sD(s) + k;N(s) + kpsN(s).

The even-odd decompositions of the polynomials N(s) and D(s) are given
by

D(s) = Dg(s?)+sD,(s?)

N(s) = N(s?)+sN,(s?)
where
De(s?) = 3s* + 1552 + 60 No(s?) =652+ 1
Do(s?) = 5* +29s* - 3 No(s?) = 52 — 2.
Now

N*(s) = N(—=s)=Ns?) —sN,(s?)
(652 +1) — s(s> = 2).

Therefore, from (8.18) we obtain

5(s,kp, ki)N*(s) = [s%(3% +1665* — 195% + 117) + k;(—s® + 40s*
+85% +1)] + s|(—5® — 9s° + 1545* + 3695 + 60)
+kp(—5® + 4051 4 857 +1)]

so that

8(jw, kp, k)N (jw) = [p1(w) + kip2(w)] + Jlg1 (w) + Kpga(w)]

with
p(w) = 3w®—166w’ —19w? — 1170°
pe(w) = W®4+40wt-8%+1
@w) = —w®+ 90" + 15405 — 369w + 60w
@w) = W +40w® -8w® +w.

We now use the root locus ideas introduced earlier to specify the range of
ky values over which the sweeping should be carried out. From (8.14) we
have

9w, kp) = wlU(w) + kpV ()]
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where
Ulw) = —w®4 908+ 154w* — 369w° + 60
Vw) = wb+40w* —8w?+1.
Now av 118}
Uw) M - v(w)