International Series in
Operations Research & Management Science

Joe Zhu Editor

a
Envelopment
Analysis

A Handbook of Empirical Studies and
Applications

@ Springer



International Series in Operations Research
& Management Science

Volume 238

Series Editor

Camille C. Price

Stephen F. Austin State University, TX, USA
Associate Series Editor

Joe Zhu

Worcester Polytechnic Institute, MA, USA
Founding Series Editor

Frederick S. Hillier
Stanford University, CA, USA

More information about this series at http://www.springer.com/series/6161






Joe Zhu
Editor

Data Envelopment Analysis

A Handbook of Empirical Studies
and Applications

@ Springer



Editor

Joe Zhu

International Center for Auditing and Evaluation
Nanjing Audit University

Nanjing, P.R., China

School of Business

Worcester Polytechnic Institute
Worcester, MA, USA

ISSN 0884-8289 ISSN 2214-7934  (electronic)
International Series in Operations Research & Management Science
ISBN 978-1-4899-7682-6 ISBN 978-1-4899-7684-0  (eBook)

DOI 10.1007/978-1-4899-7684-0
Library of Congress Control Number: 2015959708

© Springer Science+Business Media New York 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

This handbook complements Handbook on Data Envelopment Analysis (eds,
W.W. Cooper, L.M. Seiford, and J. Zhu, 2011, Springer), Data Envelopment
Analysis: A Handbook of Modeling Internal Structures and Networks (eds,
W.D. Cook and J. Zhu, 2014, Springer), and Data Envelopment Analysis:
A Handbook of Models and Methods (ed. J. Zhu, 2015, Springer). Data envelop-
ment analysis (DEA) is a “data-oriented” approach for evaluating the performance
of a set of entities called decision-making units (DMUs) whose performance is
categorized by multiple metrics. These performance metrics are classified or termed
as inputs and outputs under DEA. Although DEA has a strong link to production
theory in economics, the tool is also used for benchmarking in operations manage-
ment, where a set of measures is selected to benchmark the performance of
manufacturing and service operations. In the circumstance of benchmarking, the
efficient DMUs, as defined by DEA, may not necessarily form a “production
frontier,” but rather lead to a “best-practice frontier”” (Cook, Tone, and Zhu, 2014).

Over the years, we have seen a variety of DEA empirical applications. This
handbook aims to compile state-of-the-art empirical studies and applications using
DEA. It includes a collection of 18 chapters written by DEA experts.

Chapter 1, by Chen, Gregoriou, and Rouah, examines the performance of chief
executive officers (CEOs) of US banks and thrifts. The authors find evidence that
best-practice CEOs who have a DEA efficiency score of one are rewarded with
higher compensation compared to underperforming CEOs who have a DEA effi-
ciency score greater than one. They also find DEA efficiency score to be a highly
significant predictor of CEO compensation.

Chapter 2, by Yu and Chen, is dedicated to describe the network operational
structure of transportation organizations and the relative network data envelopment
analysis model. Route-based performance evaluation, environmental factors, unde-
sirable outputs, and multi-activity framework are incorporated into their
application.
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Chapter 3, by Hu and Chang, demonstrates how to use different types of DEA
models to compute the total-factor energy efficiency scores with an application to
energy efficiency.

Chapter 4, by Growitsch, Jamasb, Miiller, and Wissner, explores the impact of
incorporating customers’ willingness to pay for service quality in benchmarking
models on cost efficiency of distribution networks.

Chapter 5, by Volz, provides a brief review of previous applications of DEA to
the professional baseball industry followed by two detailed applications to Major
League Baseball.

Chapter 6, by Cummins and Xie, examines efficiency and productivity of US
property-liability (P-L) insurers using DEA. The authors estimate pure technical,
scale, cost, revenue, and profit efficiency over the period 1993-2011. Insurers’
adjacent year total-factor productivity changes, and their contributing factors are
also investigated.

Chapter 7, by Premachandra, Zhu, Watson, and Galagedera, presents a two-stage
network DEA model that decomposes the overall efficiency of a decision-making
unit into two components and demonstrates its applicability by assessing the
relative performance of 66 large mutual fund families in the USA over the period
1993-2008.

Chapter 8, by Basso and Funari, presents a comprehensive review of the
literature of DEA models for the performance assessment of mutual funds along
with an empirical application on real market data, considering different risk mea-
sures. The authors consider different holding periods, which include both a period
of financial crisis and one of financial recovery.

Chapter 9, by Hwang and Chang, discusses the management strategies formu-
lation of the international tourist hotel industry in Taiwan based on the efficiency
evaluation. The result of this chapter provides useful information for future busi-
ness management needs of managers and can be served as valuable reference to the
relevant authority of tourism.

Chapter 10, by Chen, Zhu, Yu, and Noori, presents a novel use of the two-stage
network DEA to evaluate the sustainable product design performances. A two-stage
network DEA model is developed for sustainable design performance evaluation
with an “industrial design module” and a “bio design module.” Test results show
that sustainable design does not need to mean compromise between traditional and
environmental attributes.

Chapter 11, by Chen and Ang, highlights limitations of some DEA environmen-
tal efficiency models, including directional distance function and radial efficiency
models, under weak disposability assumption and various return-to-scale technol-
ogies. The empirical results show that the directional distance function and radial
efficiency models may generate spurious efficiency estimates, and thus it must be
with caution when they are used for decision support.

Chapter 12, by Thanassoulis, De Witte, Johnes, Johnes, Karagiannis, and
Portela, reviews applications of DEA in secondary and tertiary education, focusing
on the opportunities that this offers for benchmarking at institutional level.
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Chapter 13, by Sexton, Comunale, Higuera, and Stickle, measures the relative
performance of New York State school districts in the 2011-2012 academic year
and provided detailed alternative improvement pathways for each district.

Chapter 14, by Iyer and Grewal, provides an introductory chapter as prelude to
Chap. 15, by Grewal, Levy, Mehrotra, and Sharma, and Chap. 16, by Grewal, Iyer,
Kamakura, Mehrotra, and Sharma. Both Chaps. 15 and 16 provide detailed appli-
cations of DEA in marketing.

Chapter 17, by O’Donnell, shows how to decompose a new total-factor produc-
tivity index that satisfies all economically relevant axioms from index theory with
an application to US agriculture.

This handbook concludes with Chap. 18, by Liu, Lu, and Lu. This unique study
conducts a DEA research front analysis. The large amount of DEA literature makes
it difficult to use any traditional qualitative methodology to sort out the matter.
Thus, this study applies a network clustering method to group the literature through
a citation network established from the DEA literature over the period 2000-2014.
The findings are helpful in many ways, including identifying coherent topics or
issues addressed by a group of research articles in recent years.

I hope that this handbook, along with other aforementioned DEA handbooks,
can serve as a reference for researcher and practitioners using DEA and as a guide
for further development of DEA. I am indebted to the many DEA researchers
worldwide for their continued effort in pushing the DEA research frontier. Without
their work, many of the DEA models, approaches, and applications would not exist.
I would like to thank the support from the Priority Academic Program Development
of Jiangsu Higher Education Institutions in China.

Worcester, MA, USA Joe Zhu
October 2015
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Chapter 1
Efficiency Persistence of Bank and Thrift
CEOs Using Data Envelopment Analysis

Yao Chen, Greg N. Gregoriou, and Fabrice Douglas Rouah

Abstract We examine the performance of chief executive officers (CEOs) of
U.S. banks and thrifts. We apply Data Envelopment Analysis (DEA) to measure
the performance of CEOs on a yearly basis over the 1997-2004 period, and find
evidence that best-practice CEOs who have a DEA efficiency score of one are
rewarded with higher compensation compared to under-performing CEOs who
have a DEA efficiency score greater than one. We find DEA efficiency score to
be a highly significant predictor of CEO compensation, even after adjusting for firm
size. In addition, we find that DEA efficiency scores of CEOs have decreased over
the observation period. We also find that best-practice CEOs tend to be persistent on
a yearly basis, but we find little evidence of multi-period persistence. The results of
this study can serve as a benchmark for CEOs wishing to evaluate their perfor-
mance relative to their peers, and as a new measure of CEO performance.

Keywords Chief executive officers (CEOs) » Data envelopment analysis (DEA)
 Performance ¢« Compensation ¢ Thrifts

This chapter is based upon Chen, Y., G. N. Gregoriou, and F. D. Rouah (2009), “Efficiency
persistence of bank and thrift CEOs using data envelopment analysis”, Computers and Operations
Research, Vol. 36, Issue 5, 1554—1561. with permission from Elsevier. Professor Yao Chen thanks
the Priority Academic Program Development of the Jianhsu Higher Education Institutions (China)
for their support of this work.
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1.1 Introduction

This chapter examines how the compensation of CEOs of U.S. banks and thrifts
depends on the performance of CEOs in allocating the resources of their firm, over
the 1997-2004 period. The mandate of the CEO of a large banking institution can be
very daunting, especially considering the wide range of products banks and thrifts
now offer, which range from credit cards, loans, and investments in stocks, bonds
and mutual funds. Compensation is higher and more varied than ever before, with
more than 90 % of CEOs at large U.S. companies receiving stock options according
to Watson Wyatt Worldwide (2006). Not surprisingly, salaries and bonuses have
come under a great deal of scrutiny by shareholders, activists, and the media, since
many firms have performed sub-optimally despite the lucrative compensation pack-
ages being awarded to CEOs and other firm executives. There is, however, some
evidence that the compensation structure of bank CEOs is somewhat different than
that of CEOs in other sectors, and that stock compensation in the banking industry is
lower, on average, than in other sectors (Houston and James 1995).

While in theory compensation packages are intended to incite firm executives
(CEOs) to act in the best interest of their shareholders, it is often argued that in
practice, compensation packages are excessively high and are not related to per-
formance. In numerous academic studies, the relationship between performance
and compensation is explored only with traditional regression models. Our study
goes one step further by examining the yearly performance of bank CEOs using
data envelopment analysis (DEA), and whether this performance is persistent over
time. The CEO performance in the current study is defined by the DEA model used
and is characterized by multiple performance measures.

DEA was developed by Charnes et al. (1978) to assess the efficiency of decision
making units (DMU) that have multiple inputs and outputs. DEA has advantages
over traditional parametric techniques—such as regression—that are worth
pointing out. Regression models assume that the relationship between executive
compensation and performance is linear and subject to arbitrary fluctuations and
predicted values from such a model are constructed relative to the average perfor-
mance of all CEOs. In contrast, DEA examines each CEO uniquely, by generating
individual performance (efficiency) scores that are relative to the entire sample
under investigation. Misspecification is a recurring problem in regression analysis.
However, misspecification is not a concern with DEA models, since DEA creates a
best practices frontier based on peer comparisons within the sample. Furthermore,
studies such as that by Gregoriou and Rouah (2003) find common factors among
variables that are often linked with CEO compensation in banks, which can lead to
problems of multicollinearity in regression models. DEA on the other hand can
handle multiple performance measures (called inputs and outputs) in a single
mathematical model without the need for the specification of tradeoffs among
multiple measures related to CEO performance. DEA has been demonstrated to
be a valuable instrument for performance evaluation and benchmarking (see, for
example, Zhu (2014) and Cooper et al. 2004)).



1 Efficiency Persistence of Bank and Thrift CEOs Using Data Envelopment Analysis 3

Data on CEO compensation is collected yearly, so applying longitudinal analysis
is difficult, especially when few data points are available. Many studies of CEO
compensation are therefore cross-sectional. In this study, we examine the relation-
ship between compensation and performance, but also investigate whether
best-practice CEOs who have a DEA score of one are rewarded with higher
compensation, and attempt to identify longitudinal persistence in performance as
measured in the DEA efficiency scores. We propose that DEA efficiency can serve
as an additional metric for measuring CEO performance. For some CEOs, best
performance may occur only sporadically, while others may be DEA efficient year
after year. Establishing persistence among CEOs can help identify star executives,
those that understand how their banking institution works and the measures needed
to provide a greater revenue stream and a higher net income.

The chapter is organized as follows. The next section provides a literature
review, followed by the sections describing the data and methodology. This is
followed by the empirical results and a discussion of our findings. The final section
concludes.

1.2 Literature Review

CEO compensation has been the subject of academic research since the early 1990s.
While the results of existing studies are varied, many find a strong and significant
association between CEO compensation and bank performance (Sigler and
Porterfield 2001). Hall and Liebman (1998) and Lambert and Larcker (1987) find
a significant relationship between CEOs and firm value, but Kerr and Bettis (1987)
do not come across any such relationship. Other studies, such as those by Agarwal
and Mandelker (1987), Core et al. (1999), Guay and Core (1999), Joyce (2001) and
Murphy (1998), for example, uncover a weak correlation between executive com-
pensation and firm performance. There is further evidence by Sigler and Porterfield
(2001) that an increase in bank revenue leads to an increase in CEO compensation,
while MclIntyre and Rao (1993) discover an association between compensation and
return to shareholders. In addition, Bosworth et al. (2003) observe that large banks
are more efficient than small ones, a finding supported by Bliss and Rosen (2001),
who further detect a link between firm size and CEO compensation. On the other
hand, Lambert and Larcker (1987) and Banker and Datar (1989) conclude that there
is no definite relationship between accounting measures and compensation or
between market returns and compensation. Early and highly quoted papers by
Murphy (1985) and Coughlan and Schmidt (1985) detect significant relationships
between stock market performance and CEO compensation. These studies, how-
ever, are conducted before the deregulation of U.S. banks and thrifts by the Reagan
administration in the early 1980s.

One difficulty faced by these and other studies is that CEO performance is
somewhat difficult to define and measure, and that compensation packages
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frequently create agency' problems. Hence, some authors have proposed compen-
sation plans that could help induce CEOs to act in the best interest of their firm and
alleviate these problems. Gibbons and Murphy (1990) suggest that CEO compen-
sation be based on a stock market index that whereby the stock option’s exercise
price is linked to the performance of the index. A landmark study by Jensen and
Murphy (1990) identify that changes in incentive contracts and accounting profits
align the interest of CEOs with those of the shareholders. Furthermore, Hall and
Murphy (2000) find a strong correlation between unexercised options of CEOs and
bank performance relative to their peer group. Although, Hall (2001) further finds
that stock options are not an efficient tool for motivating CEOs to enhance firm
performance, Ofek and Yermack (2000) demonstrate that CEOs unload their shares
of their compensation package immediately after receiving the restricted stock
options.” CEOs may find that it is optimal to cash options after the time restriction,
but in so doing may signal to shareholders that their performance is mediocre and
could therefore be replaced. This is consistent with the finding of Hall (2001) that
many stock options are not very effective in motivating CEOs to improve firm
performance. As suggested by Jesuthasan et al. (2000) firms could alleviate agency
problems by linking stock option prices to realized future growth in the industry,
which would encourage CEO performance. Chen et al. (2009) suggest that effi-
ciency could serve as an additional measure of CEO performance, and that com-
pensation could be linked to how efficiently the CEO is able to use the resources of
the firm to generate revenue and maximize profit.

1.3 Data and Methodology

To examine the performance of CEOs of U.S. banks and thrifts, we use the SNL
Executive Compensation database, which contains yearly data collected from
nearly 3000 private and public banking institutions. We use data covering the
period January 1997 to December 2004. SNL obtains secondary data from industry
sources such as Business Week or Forbes, and Securities and Exchange Commis-
sion (SEC) documentation available on company websites. Our dataset initially
consists of 3213 bank and thrift CEOs, but we only examine CEOs that are at their
present position at December 2004, thus reducing the number of CEOs to 283.
A handful of CEOs were dropped each year because of insufficient data. Table 1.1
presents yearly descriptive statistics on the CEOs in our sample, including option-
adjusted compensation, and the revenue, expenses, and income of their banking

' Agency problems are present when information is asymmetric, i.e., information known only by
insiders of the firm.

2For example, a stock option granted to a CEO having an exercise price of $5 is considered
worthless when the stock trades at $2, but a restricted stock option with the same exercise price and
trades at $2 then it has only lost 40 % of its value.
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Table 1.1 Descriptive statistics of CEOs and firms, by year

CEO
compensation Firm revenue Firm expense | Firm income
Number ($000) ($M) M) (M)
of observation | Mean S.D. Mean |S.D. Mean |S.D. |Mean |S.D.
1997 | 220 507 818 89 359 51 209 22 89
1998 | 233 588 927 102 395 57 225 24 88
1999 | 249 685 1018 122 414 70 232 |30 108
2000 | 260 797 1826 165 560 93 316 |41 144
2001 | 274 973 2,21 310 1545 173 925 66 272
2002 | 271 1002 1786 262 975 136 482 68 254
2003 | 270 1068 2049 280 1067 148 535 75 300
2004 | 268 1207 2342 322 1150 | 171 585 93 358
All 2045 869 1764 212 931 116 509 54 231

Number of observations in the sample, and mean and standard deviation (S.D.) of CEO compen-
sation (in thousands), firm revenue (in millions), firm expenses (in millions), and firm income
(in millions), from 1997 to 2004 yearly, and for all years combined (last row)

institutions. It shows both CEO compensation and firm income to have doubled
over the observation period, while firm expense has not risen nearly as dramatically.
At first glance, it appears that the increase in CEO compensation is justified, in light
of the large rise in the income of their firms and the ability of the CEOs to keep
expenses under control.

Data envelopment analysis is a relatively new technique that has been applied to
measure efficiency in various areas of research, including hedge funds (Gregoriou
and Zhu 2005) and banks (Seiford and Zhu 1999; Paradi et al. 2004). We apply
DEA to relate a set of banking inputs, which are the resources available to the CEO,
to a set of outputs, which are the performance measures of the CEO’s firm. DEA
uses these inputs and outputs to calculate an efficiency score for each CEO. The
most efficient CEOs are those that use the least amount of input to produce the
greatest amount of output. CEOs achieving an efficiency score of 1.0 are deemed
efficient and are located on the best-practice frontier.

The best way to evaluate the long-run performance of CEOs is to mix
CEO-specific variables with firm variables measured over the long term. Tradition-
ally, CEOs of major public corporations have a long-term approach to profit
maximization and have a moral responsibility to maximize shareholder wealth
through good judgment and proper strategic vision, which can help avoid the
deterioration of corporate profits. Since the majority of investors are long-term
investors, they are likely to be concerned about the performance of CEOs over long
time periods. By evaluating the persistency of CEO performance over time, we
address these concerns and recommend that efficiency scores can serve as a metric
for CEO compensation. Many studies have used assets, deposits, revenue, net
income and number of employees as factors related to bank performance efficiency
(see for example, Seiford and Zhu 1999). The mix of input variables used in this
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study demonstrates that option-adjusted compensation of CEOs and firm variables
are able to identify how those CEOs that can generate profits for their firms.

We reproduce the definitions of inputs and outputs from the www.snl.com
database. The first input we use is option adjusted compensation which includes
base salary, annual bonus, options, and other compensation, as recorded by the
Securities and Exchange Commission in the bank’s filings. Total option adjusted
compensation includes the estimated value of options granted to the CEO during the
period. The second input is non-interest expense, which represents the total
non-interest expense excluding nonrecurring items and minority interest expense.
Noninterest expenses largely consist of data processing costs, occupancy charges,
and personnel making these areas important for CEOs to use cost cutting measures.

The third input is the sum of all assets (total assets) which includes short-term
assets such as cash, investments, inventory, and receivables and long-term assets,
for example, property and equipment owned by the bank at period-end identify how
aggressive the CEO’s expansion strategy in this area. The fourth input is the
deposits of the bank which consist of the total interest and non-interest-bearing
deposits at period end, including passbook, checking, NOW, time and any other
deposit in a federally insured bank or thrift. This input gages if the CEO is
successful in his strategy to attract new clients to increase growth of the bank’s
dollar assets.

The fifth input is the number of total full service locations at period end and
identifies if the CEO has undertaken a project to continue and open-up full service
branches year after. Finally, the sixth and final input is the number of employees on
a full-time equivalent basis at period end which should detect if there are more full
time employees at branches due to increased business.

We select two outputs firm revenue and net income as the two outputs since we
take into account the direct relationship between input variables and output vari-
ables. Outputs are the result of processing inputs, and measure how efficiently a
CEO has attained his or her goals. Revenue includes nonrecurring revenue and is
net of interest expense for banks, thrifts, lenders, federal home loan banking system,
investment companies, asset managers and brokers/dealers.

The second output is net income, which includes total revenue, net of total
expense, income taxes, minority interest, extraordinary items and other after-tax-
adjustments. These input and output variables will help us to determine which
CEOs are good at minimizing expenses or maximizing the revenue and net income
of their firms—those that are skillful cost-cutters and concerned with the
bottom line.

We select these inputs and outputs because CEOs typically have a tendency to
cost cut, increase revenue, and increase profits. Moreover, management stability
should be reflected in their DEA efficiency scores, so that best-practice (or DEA
efficient) CEOs should stay with their firms longer than under-performing CEOs.

In this study, the CEOs are the DMUs. Suppose the jth CEO (j =1, ..., n) uses
iinputs (i = 1, ..., m) to produce r outputs (r = 1, ...,s). We define x;; to be the
quantity of input i that CEO j uses to produce the quantity y,; of output . Each CEO
uses m different inputs to generate s different outputs. We presume that x; > 0,
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¥yj = 0, and that each CEO has at least one positive input value and one positive
output value. In this study, n = 277, m = 3, and s = 2.

DEA optimization uses the values x;; and y,; to select values of input and output
weights for a CEO. The efficiency score 6* of a CEQ is the solution to the following
problem

max6

subject to

n
E ljxijgx,-o i:1,2,...,m;
J=1

n
ley,j >0y, r=12,...,5

j=1
2 >0 j=12....n

In these constraints x;, is the amount of input i used by CEQOy, y,¢ is the amount of
output r produced by CEQO,, and CEO, is the CEO under evaluation in the
optimization. This model used in this chapter is the output-oriented constant returns
to scale (CRS) model developed by Charnes et al. (1978). We use an output oriented
model since we are assessing CEO performance. Using the CRS model controls for
size and we compare each CEO with all other CEOs in the sample. The output-
oriented CRS model is equivalent to the input-oriented CRS model. Therefore, the
use of the above model tries to determine which CEOs are good at minimizing
expenses or maximizing the revenue and net income of their firms.

In the above model, the optimal value 6* is the (DEA) efficiency for a CEO
under evaluation. If 8 = 1, the CEO is deemed efficient or a best-practice, but if
6 > 1, the CEO is inefficient or under-performing.

1.3.1 CEO Compensation, Efficiency, and Persistence

We propose that efficient CEOs are rewarded with higher compensation. To test
this assertion, we run a regression model of compensation on DEA score, but
controlling for firm size, since the CEOs of larger firms also earn larger salaries.
Firm expenses, income, and revenue can all be used to proxy firm size. Because of
the high degree of correlation between these measures,” however, we use only firm
expense. Expense is chosen because one of the primary concerns of managers is to
reduce the expenses of their firm. If efficiency plays a role in explaining CEO

The correlation between expenses, revenue, and income is at least 0.90 each year.
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compensation, then the DEA score should come out significant in regressions, even
after controlling for firm expenses. Hence we run the model

Yie = & + Bi, DEAi + po, Expi + P3, EXPziz + &ir

where

y;; = compensation earned by CEO i during year ¢,
DEA,;;=DEA score of CEO i during year ¢,
Exp;;=Expenses of firm i during year ¢,

and where, for each year ¢, a,, f#1,, >, and s, are regression coefficients and ¢;; is
an error term. We except S, < 0 since our hypothesis is that efficiency and
compensation are positively related. We also expect f,, > 0 since we expect
compensation to be positively related to the size of the firm. We also include the
square of expenses because we expect decreasing returns to scale for compensation
with firm size. Hence we expect f3, < 0.

To test whether efficiency is persistent from 1 year to the next, we define five
states of DEA scores as follows: State 1: 6" = 1; State 2: 1 < 0" < 1.3; State 3:
13<6" < 1.5; State 4: 1.5 < 0" < 1.7; and State 5: 0 > 1.7. Note that State
1 corresponds to DEA efficiency. We then define the transition matrix P of dimen-
sion 5 x 5, with elements p;; denoting the conditional probability of being in state
jin 1 year, given that the CEO was in state i the previous year

p;="Pr [CEO in state j in year t + 1 [CEO in state i in year t] .

The model we are proposing is a Markov chain with a finite number of states.
Hence, in building this transition matrix, we make the assumption that yearly DEA
scores are Markovian, so that the probability of the CEO being in state j during year
t + 1 depends only on what state the CEO was in year ¢, and not in the state during
years prior to year t. We also assume that DEA scores evolve yearly and remain
constant in any given year.

The transition probabilities are estimated by grouping transitions from all CEOs
and during all years together, and calculating the proportion of observed transitions
from state i to state j. If CEOs are persistent from 1 year to the next, this would be
reflected in a large value of pss. We also obtain the steady state probabilities of the
matrix, which helps to assess the long-run probability of CEOs being efficient.
These probabilities p = (py,p,,P3,P4,P5) are the row elements of the matrix
obtained by multiplying P with itself infinitely many times. The vector p can be
obtained as the solution of the linear system pP = p.

As an alternate way to evaluate persistence, we regress current yearly DEA scores
on past yearly scores. Hence assume that current yearly DEA scores are driven by the
autoregressive relationship, as specified by the following AR(1) model

DEA;; = a+ B DEA; -1 + vis
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where DEA;, = DEA score for CEO i in year ¢,

DEFEA,; ;_ =DEA score for CEO i in year t — 1,
Vit = Eit — @ Vi,t—1,
Eir ~ N(Ov 6)7

Efficiency persistence is indicated by a positive regression coefficient, namely
B> 0.

Finally, to evaluate how well the DEA scores compares against a benchmark for
evaluating compensation we calculate the correlation between DEA scores and (i)
observed compensation, (if) compensation predicted by our regression model, and
(iii) firm income as a proportion of firm revenue. If DEA is a good predictor of
compensation, these correlations should all be large and significant.

1.4 Empirical Results

Table 1.2 presents the frequency distribution of the DEA score, 8%, by year and over
the entire observation period. The mean score was 1.49 over the period, with low
variability. We find that the proportion of efficient CEOs to decrease slightly.
In 1997, 10 % (22/220) were efficient, but by 2004 this had dropped to 7.5 %
(20/268). We also find a slight increase in the yearly median efficiency scores,
which suggests that banking CEOs became less efficient over the observation period.

Table 1.3 presents the yearly simple DEA efficiency scores 8* of each CEO in
our sample. For each CEO, we calculate the number of times the CEO reaches

Table 1.2 Frequency distributions of simple DEA scores, by year

Efficiency score 1997 | 1998 | 1999 |2000 [2001 |[2002 |2003 |2004 |All
1 22 23 24 20 20 20 21 20 170
1-1.3 45 55 56 44 47 27 36 30 340
1.3-14 28 36 39 27 47 11 37 31 256
1.4-1.5 36 40 33 31 44 20 37 34 275
1.5-1.6 36 28 42 31 41 26 49 52 305
1.6-1.7 24 23 20 33 28 26 35 32 221
1.7-1.8 12 14 13 24 23 42 23 26 177
>1.8 17 14 22 50 24 929 32 43 301
Number of scores | 220 233 249 260 274 271 270 268 2045
Mean 1.42 1.41 1.42 1.52 1.45 1.67 1.49 1.54 1.49
Median 1.44 1.40 141 1.53 1.44 1.71 1.51 1.53 1.49
Standard Dev. 026 |026 027 (030 (026 (035 027 [030 |0.30
Min 1 1 1 1 1 1 1 1 1
Max 218 224 222 |236 |213 |257 |240 |259 |2.60

Simple DEA scores for CEOs, from 1997 to 2004 yearly, and for all years combined. The top part
presents the frequency distribution of DEA scores, and the second part presents the number of
scores, the mean score, median, standard deviation, minimum, and maximum
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Table 1.4 Transition matrix of simple DEA scores

Score in year ¢ + 1
1 (1, 1.3] (1.3, 1.5] (1.5, 1.7] >1.7 Total
Score 1 0.77 0.21 0.01 0.0 0.01 1.0
in year ¢ (111) (30) (1) 0) (1) (143)
(1, 1.3] 0.08 0.61 0.22 0.06 0.03 1.0
(25) (182) (66) (19) (8) (300)
(1.3, 1.5] 0.00 0.10 0.51 0.26 0.12 1.0
(1) (46) (232) (119) (53) (451)
(1.5, 1.7] 0.00 0.02 0.23 0.45 0.29 1.0
(1) (8) (101) (194) (127) (431)
>1.7 0.00 0.01 0.08 0.29 0.62 1.0
(0) 3) (32) (116) (250) 401
Total 138 269 432 448 439 1726

Transition matrix of DEA scores from year ¢, to year ¢t + 1, for all CEOs combined. Entries are
transition probabilities, with the number of transitions in parentheses

efficiency, and divide by the number of years the CEO appears in our sample, which
produces the proportion of years under observation for which the CEO is efficient.
Hence, C. Hanson, N.W. Lazares, S. Levis, and R.N. Wayne each appear every year
in the sample, and are a best-practice each year, so their proportions are each 100 %.
These are the CEOs that show the best possible efficiency persistence in the sample.
E.S. Rady is deemed as best-practice each year under observation, so his proportion
is also 100 %, but he is missing during 1998 in our sample. The next three CEOs are
efficient roughly 88 % of the time, and the proportion decreases rapidly thereafter.
The other CEOs, however, are on the best-practice frontier less than 50 % of the
years under observation. Our sample consists of 283 CEOs, but there is missing data
in some of the years. The number of CEOs with non-missing data range from 220 in
1997 to 274 in 2001. Over the entire sample of 283 CEOs, 241 (85 %) were never
able to achieve best-practice in any of the years. The rest (42) achieved a score of
6" =1 at least once during the eight years.

Given these results, it is useful to investigate whether the presence of efficient
scores originate from the same CEOs continuing to be efficient from 1 year to the
next, indicating the ability of CEOs to persist in their best-practice performance. In
Table 1.4 we present a transition matrix of scores from 1 year to the next, for all
years and all CEOs in our sample, and using the same classifications for 8* that
appear in Table 1.2. The matrix shows a clear tendency for DEA scores to persist
from one period to the next, as indicated by the large proportions of entries along
the diagonal. For example, a CEO with a score of @ = 1in 1 year has a 77 % chance
(111 transitions out of a possible 143) of being best-practice in the following year,
and only a 1 % chance of having a score §° > 1.7. Unfortunately, persistence is also
evident among the CEOs with low scores, but is not as strong. A CEO with a score
of " > 1.7 in 1 year has a 62 % chance of having the same low score in the next
year. The steady state probabilities of this transition matrix are p; = 0.0451,
p, = 0.1067, p; =0.2419, p, = 0.2931, and p5; = 0.3133. Hence, the long-run
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Table 1.5 Auto regression of current DEA scores on past scores

Variable Estimate Standard error t-statistic p-value

Intercept (@) 0.286 0.023 12.5 <0.0001
Past DEA score (3) 0.821 0.015 55.3 <0.0001
AR(1) parameter (¢) —0.347 0.023 —-154 <0.0001

Yearly regression of current yearly DEA score on past yearly score. Entries are regression
coefficients, standard errors, ¢-statistics, and p-values. The R-squared is 0.64 and the Durbin-
Watson test statistic is 2.17

prospect for CEO efficiency is poor. Indeed, the long-run chance of a CEO being
efficient (" = 1) is only 4.5 %, while long-run probability that a CEO is in the
lowest state (0" > 1.7) is 31.3 %. Clearly, the steady state probabilities increase
with worsening DEA score. This means that in the long run, CEOs have a much
greater change of being highly inefficient that efficient.

As an alternative method to examine yearly persistence, we regress current
yearly DEA scores on past yearly scores. The results are presented in Table 1.5.
They suggest persistence in yearly scores, as indicated by positive and significant f
coefficients for past scores. This implies that good scores tend to be followed by
good scores, but that bad scores tend to be followed by bad scores. For example, a
CEO with a score of 8 = 1 during 1 year can be expected to have a score of
roughly @ = 1.13 in the second year (0.347 4 0.780 x 1). Similarly, a poor score of
6" =2 can be expected to be followed by a score of only 8" = 1.9 the following
year. The positive relationship between current and past yearly scores is illustrated
in Fig. 1.1. The figures shows a positive relationship between current and past
scores, which is consistent with the argument of score persistence and illustrates
that low scores in 1 year tend to be followed by low scores the next year, and
similarly for high scores.

Table 1.6 presents the results of the regression model of compensation on DEA
score and firm expense. As expected, f,, > 0 and 5, < 0 for all years, implying a
concave relation between compensation and firm size. The coefficient for DEA
score (f3,) is negative for all years, but fails to achieve significance at the 10 % level
or better in 1997 and 2000. This implies that during most years, a low DEA score
was associated with a large compensation, irrespective of the size of the firm. The
relationship between DEA score and compensation is especially strong in 2001 and
2002. After 2002, however, the relationship is weaker. From 2002 onwards, it
appears that efficiency did not play as important a role in determining CEO
compensation as it did in previous years. The adjusted R* from the regressions
are all reasonably high.

Finally, in Table 1.7 we present the yearly correlations of the DEA score with
CEO compensation, with compensation predicted from the regression model, and
with the proportion of income to revenue. Table 1.7 indicates that all of the
correlations are negative, and all are highly significant. Hence, DEA and compen-
sation are negatively related. This implies that high compensation is awarded to
efficient CEOs. Income/Revenue and DEA are also negatively related, which
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Fig. 1.1 Scatter plot of current simple DEA scores on past scores, 1997 to 2004. Scatter plot of
yearly simple DEA score in year ¢ (y-axis) and in year —1 (x-axis)

Table 1.6 Regression of compensation, by year

Intercept DEA score x 100 | Expense ($M) | Expense” ($M?)

a P Pa Pa Adjusted R”
1997 6872%* —26.4 54.3%%% —0.0176%** 0.37
1998 9336% —39.6%* 43,7 —0.0068%%* 0.52
1999 | 12,348 —57 4% 44 3k —0.0075%%* 0.56
2000 | 4459 —11.9 70.6%%* —0.0114%#%* 0.65
2001 16,800%*%* —83.2%%* 36.2%%* —0.0015%%** 0.82
2002 | 24,643%%* —110.9%%%* 33.0%%** —0.0025%%** 0.57
2003 15,027%%%* —57.9% 30.7%%* —0.0008 0.56
2004 | 16,462%** —61.9% 29.9%#* 0.0009 0.62
All 13,577%%** —57.1%%* 34 B#** —0.0014%#** 0.62

Yearly regression of CEO compensation (in hundreds of thousands) on DEA score (multiplied by
100), expense of the firm (in millions_), and expenses squared (in millions squared). Entries are

regression coefficients. O and " refer to coefficients significant at the 1, 5, and 10 %,

respectively. The last row is the regression for the entire 1997 to 2004 period

implies that DEA can serve as a alternate benchmark of CEO compensation.
Finally, predicted compensation and DEA are negatively related, which implies
that our model does a good job at capturing the relationship between compensation
and DEA score. This suggests that DEA scores perform well when compared to a
benchmark for CEO compensation.
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Table 1.7 Correlation analysis, by year

Correlation of DEA Score with
Year Compensation Predicted compensation Income/Revenue
1997 —0.33%#* —0.53%%* —0.447#%*
1998 —0.34##* —0.46%#* —0.54%%*
1999 —0.43%#* —0.57##* —0.54%%*
2000 —0.37%%* —0.45%%* —0.47%%*
2001 —0.38%#* —0.42%%% —0.52%%%*
2002 —0.48%#* —0.63%%* —0.43%%*
2003 —0.32%%* —0.42%%* —0.42%%*
2004 —0.34H#* —0.43%#* —0.54#%*
All —0.32%#* —0.41%%* —0.44#%%

Yearly correlation of DEA score with compensation, with compensation predicted from the
regression model of Table 1.6, and with the proportion of firm income to firm revenue. Entries
are Pearson correlations for each year 1997-2004, and the last row are correlations for all years
combined. ***, ™, and " refer to correlations significant at the 1, 5, and 10 %, respectively

1.5 Discussion

CEOs with efficiency scores equal to unity (¢0° = 1) lie on the best-practice frontier,
and no other CEOs are able to generate better output level given the same number of
inputs, or to generate the same output level using less amount of inputs. CEOs with
the highest scores are assumed to possess the greatest amount of inefficiency. The
magnitude of their scores can help identify how much effort a CEO would need to
achieve best-practice. For example, a score of @ = 1.5implies that the CEO is 67 %
efficient at using inputs to produce outputs. The CEO would need to diminish inputs
by one third to be considered best-practice. Hence, many CEOs that attain an
efficiency score near unity would likely need to make only minor corrections to
their inputs to be considered efficient. But CEOs with scores well above " = 1.5
are notably far from the best-practice frontier These CEOs would need to put
considerable effort into their input modifications to attain efficiency. But even
CEOs with high scores may be able to attain best-practice performance if they
can reduce their inputs while increasing their outputs. In summary, DEA provides a
realistic representation of each CEOs degree of underperforming performance, and
can provide a valuable gauge for CEOs hoping to attain best performance.

Our AR(1) regression model of current DEA scores on past DEA scores does not
restrict predicted DEA scores to be one or greater. Hence, in theory, it is possible to
obtain nonsensical scores less than one. None of our predicted scores fell below
one, however.

In our investigation of yearly performance persistence, we find a probability of
p1; = 0.77that a CEO represents best-practice in 1 year can achieve best-practice in
the next year. The long term probability of being best-practice, however, is much
lower (p; = 0.0451), and multi-period persistence is much less likely. Indeed, in
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Table 1.3 we find only four CEOs to have maintained their best-practice status year
after year during the entire examination period. Hence, while some CEOs may be
able to repeat their best performance from 1 year to the next, most are unable to
maintain their best-practice status over longer time periods.

In our yearly regressions, we find evidence that best-practice performance is
rewarded with higher compensation, but most for years prior to 2003. From 2003
onward, the relationship between DEA score and compensation is weaker. We find
also that many CEOs are under-performing in terms of minimizing expenses and
maximizing revenue and net income, which implies that they may not be justifying
their large compensation packages.

1.6 Conclusion

This Chapter uses DEA to identify best-practice CEOs and to examine whether or
not their compensation is warranted. We find evidence that DEA efficiency plays a
role in explaining CEO compensation. We find little evidence of long-term perfor-
mance persistence, however, so the large compensation packages paid out to CEOs
year after year do not seem justified in most cases. The protest frequently put
forward by shareholders activists, the media, and the public that CEOs often earn
hefty compensation even when their firms incur large losses, seems defensible. Yet
we find that a small number of CEOs do maintain their best-practice performance
year after year. The efficiency score produced by DEA can serve to benchmark
CEO performance, allowing CEOs to compare themselves to their peers in the
banking industry, and helping shareholders and other agents decide whether the
compensation packages of their CEOs are reasonable.
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Chapter 2
Assessment of Transportation Performance:
A Network Structure

Ming-Miin Yu and Li-Hsueh Chen

Abstract Performance measurement is a popular activity of organizations in the
transportation sector. Various studies on the performance of transportation organi-
zations with the utilization of data envelopment analysis models have been com-
mon. However, based on the unstorable characteristics of transportation services,
conventional data envelopment analysis models are not suitable, and then network
data envelopment analysis models are proposed. This chapter is dedicated to
describe the network operational structure of transportation organizations and the
relative network data envelopment analysis model. In order to be closer to real
operational situations, four operational characteristics, which are route-based per-
formance evaluation, environmental factors, undesirable outputs, multi-activity
framework, are discussed and incorporated into the network data envelopment
analysis model, respectively.

Keywords Transportation ¢ Network DEA < Route-based performance
evaluation « Environmental factors ¢ Undesirable outputs ¢ Multi-activity
framework
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2.1 Introduction

The performance measures of the delivery of the primary services of transportation
organizations have been the traditional subject of whatever performance studies
were made in the past. There are many ways to scrutinize performance in the
transportation sector. In early periods, the usually used measures of performance
are ratio indicators, such as vehicle hours per employee, vehicle kilometers per
active vehicle, passengers per revenue vehicle hour, and revenue vehicle hours per
dollar operating cost (Mackie and Nash 1982; Lee 1989; Fielding 1992). Ratio
analysis typically involves the use of a number of performance indicators which
consider only a subset of inputs used by a decision-making unit (DMU) and
sometimes only a subset of outputs. In single-input single-output contexts, a partial
measure of performance is a meaningful, easy to use measure of performance.

However, this is not the case where multiple inputs and/or outputs are involved
(Hensher 1992). To the extent that a DMU may increase performance with respect
to one input at the expense of reducing the performance of other inputs, the
difficulty stems from the fact that each partial measure of performance reflects
only one input and one output level, and it is also difficult to portray the overall
gains/ losses in performance (Thanassoulis et al. 1996). Furthermore, it could
provide a misleading indication of overall performance when considered in isola-
tion. In recent years, various studies on the theoretical and empirical measurement
of performance in the transportation sector with the utilization of the data envel-
opment analysis (DEA) model have been generated by researchers. There is a large
stream of literature on a single-stage DEA. In a regularly studied situation within
this context, it is assumed that a transportation organization’s inputs are
transformed from a single operation process into their final outputs. Some of
those studies focus on production efficiency (e.g., Tulkens 1993; Oben 1994;
Kerstens 1996; Nolan et al. 2001; Cowie 2002; Karlaftis 2003; Graham 2008),
while some are interested in the measurement of operational efficiency (e.g.,
Tofallis 1997; Cowie and Asenova 1999; Adler and Golany 2001; Boame 2004;
Yu 2007), and others invested both in a single model (e.g., Viton 1998; McMullen
and Noh 2007).

While evaluating the performance in the transportation sector, it is worth noting
that, unlike the production and consumption processes of the manufacturing sector,
a transportation service cannot be stored, and therefore the output consumed (the
final output), such as passenger-km, may vary considerably from the output pro-
duced (the intermediate output), such as vehicle-km, in a transportation system.
Specifically, the consumed services occur concurrently with the produced services.
If the produced output is not consumed, it is lost (Tomazinis 1975) (e.g., if a bus
runs during the period at half capacity, the bus system cannot store the other half of
its inventory (Karlaftis 2004)). This perishability of the produced services and the
fact that only a proportion of the produced services are actually consumed is often
neglected in performance measures of transportation organizations (Borger
et al. 2002). If these unique unstorable characteristics of transportation services
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are justified, then it is vitally important to obtain valid estimates of performance of
transportation organizations that include them. Hence, an adequate performance
measurement for a transportation organization should consider the network struc-
ture that services are produced and consumed concurrently, and interactions in this
structure.

In addition, other operational issues, such as route-based performance evalua-
tion, environmental factors, undesirable outputs, multi-activity framework, etc.,
will also impact the assessment of performance in the transportation sector. In
order to construct a more reasonable performance measurement for transportation
organizations, these four issues mentioned above will also be explored and incor-
porated into the network structure.

The remainder of this chapter is organized as follows. In the second section, we
describe the transportation performance; the specifications of the network DEA
model in transportation appear in the third section; in the fourth section, we explore
other issues for transportation applications; the fifth section provides three exam-
ples; and concluding remarks are given in the final section.

2.2 Transportation Performance

Since transportation services cannot be stored, the output consumption may be
substantially different from the output production. For instance, an airline uses
aircraft, employees, and fuel to provide service products, flights, and seat-miles,
which are produced and sold to passengers concurrently. Once the service products
are not consumed (that is, seats are not sold), they are wasted. So service products
function as intermediate inputs (the intermediate outputs in the production process)
and used internally in consumption process. To accommodate unstorable charac-
teristics, Fielding et al. (1985) introduced three performance indicators for a transit
system: cost efficiency, service effectiveness, and cost effectiveness. They defined
cost efficiency as the ratio of outputs to inputs, service effectiveness as the ratio of
consumption to outputs, and cost effectiveness as the ratio of consumption to
inputs. Hence, cost effectiveness is the integration of cost efficiency and service
effectiveness measures. This transit performance concept is portrayed in Fig. 2.1.
However, the definition of “cost efficiency” used by Fielding et al. (1985) could
cause some confusion, because, in the economic theory and DEA context, cost
efficiency is defined by the product of technical efficiency and allocative efficiency.
If the input factor prices are not available, it would be more appropriate to use the
terms of production efficiency, service effectiveness and operational effectiveness
instead of cost efficiency, service effectiveness and cost effectiveness, respectively.
Most studies about performance measurement used separate models to measure
the interrelated processes, and evaluate sub-process efficiency independently (Chu
et al. 1992; Viton 1998; Nolan et al. 2002; Lan and Lin 2003, 2005; Karlaftis 2004;
Chiou and Chen 2006). They distinguished the production process from the con-
sumption process, from which one can gain more insight into the firms’ operations.
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Fig. 2.1 Transit performance concept

However, since outputs are consumed concurrently with their production, measur-
ing the performance of the transportation organizations using two models is likely
to be unreasonable. In addition, these models mentioned above assume different
production technologies without interacting each other and cannot deal formally
with intermediate products. It ignores effects of the inter-relationship between
sub-processes and then yields an incomplete version of operational performance
measurement (Sheth et al. 2007). In any realistic situation, the transportation sector
has a feature of unstorable series, which means that intermediate products are
presented both in production and consumption processes. Usually, the feature
within a transportation organization’s operation should take into account all the
complex and interrelated flows between these two processes. Assuming that trans-
portation frequencies are given by a particular schedule for serving their passen-
gers, inefficiency occurs when the actual level of input consumption, for a given
level of provided capacity (e.g., frequencies and/or seat-miles), exceeds the optimal
level of input requirement as specified by the production function. This observed
production inefficiency, however, does not mean service ineffectiveness, since a
transportation organization could search for better ways to maximize its ridership to
raise its service effectiveness. In other words, service effectiveness may be seen as
how a transportation organization efficiently transforms capacity provided to rid-
ership in the consumption process. In making performance comparisons, they must
take into account the multistage representation of the technology, otherwise the
performance measures would reflect not merely differences in efficiency but also
the relative efficiency by which individual processes and the whole operation
system are operating. In addition, for a transportation organization which is obliged
to provide a stable timetable in a given time period, it implies that if the
predetermined timetable is violated, then the violation may result in the waste/
decrease of input costs and the loss/gain of consumed outputs with respect to some
referenced efficient transportation organizations since the changes in the timetable
may increase or reduce cost and/or passengers may feel comfortable/uncomfortable
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Fig. 2.2 Performance evaluation in the network structure

using it. Hence, a transportation organization possesses a network structure
including a set of interdependent technologies in the whole operational process.
By separating the effects of the complex and interrelated technologies, we can
explore if the source of observed performance differs. Identification of such sources
is essential to the implementation of operational policies and management strate-
gies designed to improve performance. Therefore, it seems more realistic and
reasonable to use a unified network model to estimate the performance of trans-
portation organizations. This performance evaluation in network structure is shown
in Fig. 2.2.

2.3 Network Data Envelopment Analysis in Transportation

Traditionally, DEA has treated each DMU as a “black box” by considering only the
inputs consumed and final outputs produced by this “black box” (Fire and
Grosskopf 2000). However, in most real situations, the DMUs may perform several
different functions and can also be separated into different components in series. In
such situations, some components play important roles in producing outputs
through the use of intermediate outputs obtained from their previous components.
In this case, the conventional DEA model cannot impose restrictions on the inter-
relationships among intermediate products when measuring the DMU’s overall
performance together with that of its components. If this “black box” consists of
a set of sub-units which are connected serially, then such an approach provides no
insights regarding the inter-relationships among the components’ inefficiencies and
cannot provide specific process guidance to DMU managers to help them improve
the DMU’s efficiency.
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In transportation organizations, the operational process in a DMU usually
contains two processes in which some outputs produced in former process are
used as inputs in a latter process. Fire and Grosskopf (1996, 2000) proposed a
network DEA model for measuring performance of those DMUs with multiple
processes. The object of this proposed method was to provide a solution to deal with
a weakness, which treats the operational process as a “black box”, in the conven-
tional DEA model. In order to represent production and consumption processes in a
transportation organization’s operating technology, a network DEA model based on
the directional distance function proposed by Luenberger (1992) is constructed as
below.

We denote inputs for the production process by x© ERf:. Here inputs x are
employed in the production process (P) to produce intermediate outputs,
m'P>€) ERE, where (P, C) represents the intermediate output of P flowing into the
consumption process (C). Intermediate outputs from the production process act as
intermediate inputs to the consumption process. The intermediate products are
produced in production and consumed in consumption processes concurrently,
resulting in final outputs y© €R f . To formulate a network DEA model, we need
to introduce intensity variables Z;J and z€, j=1,...,J, for production and con-
sumption processes of each DMU j, respectively. Hence, the network DEA model
has a production possibility set and a consumption possibility set, A”, and A€, which
can be defined as follows:

AP = {(XP m C)) . m® ) can be produced from xp}, (2.1)

A€ = {(m(P’ ), yc> : ¥ can be produced from m" C)}. (2.2)

If A” is the smallest set which satisfies the convexity, the constant returns to
scale, free disposability, and minimum extrapolation postulates (Tsai and Mar
Molinero 2002), subject to the condition that each input—output observations
(a7, mP€)) € A" then the input set in the production process, P*(m" ), for
each m® © can be defined as P” (mP ) = {xF: (xF, mPC))eA"}. Similarly,
the output set in the consumption process, P<(m'" <), for each m™ < can be
defined as P€ (m<P’ C)) = {yc : (m<P’ C), yc) GAC}.

An overall network operational possibility set in terms of the input and output set
is defined as follows:
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TN{(XP, m®C), yc) : Xj:zfxt‘;gxf, a=1,..., A,

=1
J
Sfml O >m 9, b=1,..., B,
=1
J
> VG 2yi d=1..... D, (23)
=1
J
szcm}(;) A < 1(7P C), b=1, , B,

We introduce two functions: ﬂf of, m® ) and ﬁf(m(P O yc), which provide
measures of how efficient a firm & is in production process and consumption
process, respectively. The efficiency score of each part could be calculated as
follows:

B, mP-O) = gP (P, mP-©)

24
=max{p{ : (1 —p)x" P’ (m" ), p¢ >0}, 24

B(m(P, 0, yC) :ﬁkC<m(P, 0), yC)

(2.5)

= max{ﬁkc : (1 +ﬂ,§)yC€PC(m(P’ C)), ﬂkc > O}.
For an illustration of the network performance measurement, we choose to
evaluate firm k relative to the network technology (2.3) by means of a directional
distance function. The objective function of the network model is taken as the form:

Max p*=wlpl +wipf, (2.6)

where f and f¢ are the performance scores of production and consumption
processes, respectively; w? and wf are positive numbers which represent the
relative importance of these processes respectively, and wf +w = 1.

In the network DEA model, we can identify these two sub-technologies. Hence,
(2.6) is subject to these following constraints:

The production process consists of

-

2xl < (L=pB)xh, a=1,..., A, (2.6.1)

j=1
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J
Sidml > w9 b=1,..., B, (2.6.2)
j=1

L >0,20>0, j=1,...,J. (2.6.3)

The consumption process is given by,

J
S fml D <mpp 9 b=1,..., B, (2.6.4)
j=1
J
y5 > (0+B)yg. d=1,..., D, (2.6.5)
J=1
BE =0, z£ >0, j=1,....J, (2.6.6)

The network directional distance function in (2.6) is zero if and only if the
transportation organization’s production process is technically efficient, and its
consumption process is simultaneously serviced effectively. However, its value is
greater than zero if and only if the transportation organization is technically
inefficient in at least one of the two processes. The network DEA model has several
attractive features compared to the conventional one. In particular, it provides
individual managers with specific information regarding the sources of inefficiency
within their DMUs.

2.4 Other Issues for Transportation Applications

In order to resemble the real operational characteristics of transportation orga-
nizations, besides the network structure of transportation services, other opera-
tional issues must be considered. In this section, we mention four issues that
transportation organizations often confront, but not all are included. These four
issues are:

¢ Route-based performance evaluation
» Environmental factors

¢ Undesirable outputs

e Multi-activity framework
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2.4.1 Route-Based Performance Evaluation

Most studies measure the performance of transportation organizations from a whole-
company perspective. They treat individual firms as individual DMUs. However,
different transportation organizations may operate different routes, such as opera-
tional routes vary among different shipping companies or airlines, even in the same
country. A whole-company perspective may lead to a different operational bench-
mark. In order to avoid heterogeneity, some studies have used the route-based
performance evaluation to substitute for the company-based performance evaluation
(Chiou and Chen 2006; Lin et al. 2010; Yu and Chen 2011; Chiou et al. 2012).

2.4.2 Environmental Factors

Since firms run in different environments, their operation outcome will be affected by
the environmental factors that they face. If environmental factors are ignored,
performance measures would be seriously biased against firms that generate a
misleading performance evaluation profile. For example, the population at the airport
would affect its outputs. Higher utilization of an airport does not guarantee more
efficient management, since some of the effects may be caused by higher population
around the airport. It is appropriate to adjust for environmental conditions before
credible results could be presented. Although, environmental factors usually cannot
be controlled by the administrator, they may influence how we measure efficiency in
the use of capacity. Standard DEA assumes that the assessed units are operated in
similar operational environments (Golany and Roll 1989). Often the assumption of
homogeneous environments is violated. Hence, it is essential that, if the model is to be
used in this manner, factors which establish the operational environments need to be
incorporated into the model. A number of different approaches have been developed
to overcome this weakness (Syrjanen 2004). In this section, the approach introduced
by Banker and Morey (1986) is described.

According to Banker and Morey (1986), a DMU should be compared with its
peers under a similar operational environment. In order to capture the effects of
environmental factors on the production and consumption process, we include the
environmental variables as non-discretionary inputs by adding the following con-
straints into the network DEA model illustrated in Sect. 2.3:

J

szeff;geﬁ, f=1,...,F, (2.6.7)
=1

J
D zfel<el g=1,....G, (2.6.8)

j=1

where e €R f and ¢ eRf represent environmental factors f and g associated only
with the production and consumption processes of firm j, respectively.
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2.4.3 Undesirable Outputs

Since undesirable outputs are often produced together with desirable outputs, the
more complete performance evaluation of a transportation organization should
consider the trade-off between the utilization of desirable output and the control
of undesirable output. For example, aircraft noise has the greatest influence on the
community surrounding the airport (Morrell and Lu 2000). If the effect of aircraft
noise is ignored, the rank of airport performance in capacity utilization may be
severely distorted. Thus, when the efficiency of airports is evaluated, the provision
of desirable outputs like the number of passengers should be credited, but the
provision of undesirable outputs like noise pollution should be penalized.

Following Fire et al. (1989) and Chung et al. (1997), we use a directional
distance function to construct the efficiency measurement model that simulta-
neously credits a decrease in undesirable outputs and an increase in desirable
outputs. Let uCGRf denote an undesirable output vector in the consumption
process. Since, in the consumption process, DMUs seek to increase the desirable
outputs and decrease the undesirable outputs simultaneously, the objective function
of the network model still is (2.6). However, in the consumption process, an
additional constraint must be added to present the deflation of undesirable outputs.
This constraint is written as the form:

J
> zfug = (1= p)uf. h=1,..., H, (2.6.9)

By applying the objective function identified in (2.6) and the constraints iden-
tified in Equations (2.6.1)—(2.6.9), we could compute the efficiency of transporta-
tion organizations based on the network structure with these undesirable outputs.

2.4.4 Multi-activity Framework

In many instances, organizations of any complexity typically consist of a number of
individually identifiable units (Beasley 2003). For example, within a bus transit
firm/railway company these units may correspond to various transportation ser-
vices. Bus transit firms/railway companies may operate both highway and urban
bus services/passenger and freight transportation services, what is efficient in a
highway bus service/passenger transportation service may not be efficient in an
urban bus service/freight transportation service, and thus different efficiency ratings
for various activities should be distinguished. Units are linked by allocating
resources, such as management labor and mechanics, to individual activities. The
total amount of resources that the firm can allocate will be limited and unseparated.
To allocate those unseparated shared resources is plainly important in a number of
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firms. However, the conventional DEA model evaluates the efficiency that a DMU
transforms inputs into outputs. It assumes that a DMU is equally efficient in all its
activities. Hence, the problem of a firm’s efficiency which faces different produc-
tion functions using shared inputs needs to be solved.

Many studies have been engaged to deal with this shared input problem in a
practical organizational standpoint and a cost perspective (Golany et al. 1993;
Golany and Tamir 1995; Beasley 1995, 2003; Mar Molinero 1996; Thanassoulis
1996; Fire et al. 1997, 2002; Mar Molinero and Tsai 1997; Tsai and Mar Molinero
1998, 2002; Cook and Kress 1999; Cook et al. 2000). The multi-activity DEA
model, a novel refinement of the conventional DEA approaches, for the joint
determination of efficiencies in the DEA context, was proposed by Beasley
(1995) and subsequently revised by Mar Molinero (1996) and Tsai and Mar
Molinero (1998, 2002). Specifically, the multi-activity model is used to evaluate
efficiencies of organizations that engage in several activities simultaneously and
some inputs and outputs are utilized and produced among all the activities.

In order to capture characteristics of the multi-activity model based on the
network structure, we construct a multi-activity network DEA model by taking
the railway companies, which generally provide passenger and freight transporta-
tion services in the production process, as example. A schematic of the performance
evaluation in multi-activity network structure for a particular railway company is
depicted in Fig. 2.3. In Fig. 2.3, the production process is divided into two
sub-processes by passenger and freight transportation activities and those shared
inputs are allocated to these two sub-processes.

Similarly, suppose there are J railway companies to be evaluated. We denote that

PP eR! and mPP 9 eRY are (dedicated) inputs and intermediate outputs

Operation system

| o - = = = = e |
b - i
. : H |
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Fig. 2.3 Performance evaluation in the multi-activity network structure
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associated solely with the passenger production process (PP), x'* € RL and m(PP+ ©)
ERQI are (dedicated) inputs and intermediate outputs associated solely with the
freight production process (FP), but x*FS €R+M are shared inputs associated in part
with PP and in part with FP. Railway companies use (dedicated and shared) inputs
to produce intermediate outputs in the production process. The intermediate prod-
ucts are consumed in consumption processes to produce final outputs, y© ERf .In
the situation where there are inputs associated with both activities, we assume that
these shared inputs can be apportioned between PP and FP. In this way, each joint
input contributes to the determination of the passenger efficiency and the freight
efficiency in the production process. Assuming that the proportions of the shared
inputs assigned to each one of the said activities are app and 1 — app. Thus the
objective function of the multi-activity network DEA model is revised as follows:

Max p* = wiP P + wiPBEP 4 wCBE, (2.7)

where gEF and B measure the maximum deflation of inputs in the passenger and
freight production processes, respectively; ¢ measure the maximum inflation of
outputs in the consumption processes; wi”, wi” and w¢ are positive numbers which
represent the relative importance of these activities/processes respectively, and
wh? + wiP + wE = 1. Equation 2.7 is subject to the following constraints:

The passenger production process is given by

J
S < (=) i=1, (27.1)
j=1
J
S > mit O =1, N, (2.7.2)
j=1

o0 >0, Z" >0, j=1,...,J. (2.7.3)

The freight production process is given by

J

20 < (1=p")l 1=1,..., L, (2.7.4)
j=1
3 FP, C FP, C)
Sl >l g =1, 0, (2.7.5)
j=1

D=0, P >0, j=1,....J. (2.7.6)
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The consumption process consists of

J
PP, C PP, C
szcmij ) < m,gk ), n=1,..., N, (2.7.7)
j=1
L (FP, C) (FP, C)
> zfmy O <mpm Y g=1,..., 0, (2.7.8)
j=1
J
> 5= (148G d=1,.... D, (2.7.9)
Jj=1
BE =0, z£ >0, j=1,....J, (2.7.10)

Equations 2.7.11 and 2.7.12 represent the allocation of shared inputs to the
passenger and freight production processes:

J
Z A0S < (1= )appxly®s, m=1,....M (2.7.11)

mk

J
D (1 —app)f TS < (1= BE) (1 —app)®, m=1,....M  (2.7.12)
j=1

PP FP

where z; and z represent intensity variables for passenger production, freight

productlon and consumptlon processes of each DMU j, respectively.

The objective function in (2.7) takes a value of zero if and only if the railway
company’s PP is technically efficient, its FP is technically efficient, and its con-
sumption process is simultaneously serviced effectively. However, its value is
greater than zero if and only if the railway company is technically inefficient at
least one of the two sub-processes or the service is ineffective.

2.5 Examples

In this section, we provide related three cases to illustrate applications in empirical
studies. First, a route-based performance evaluation in a network DEA model will
be described. Next, a case that incorporates environmental factors and multiple
activities into a network DEA model will be explored. Finally, we will investigate a
multi-activity DEA model with these undesirable outputs.
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2.5.1 Route-Based Network DEA Model’

To explore a route-based performance evaluation in a network DEA model, an
example of 15 domestic air routes operated by a Taiwanese domestic airline in 2001
is applied. The performance of an air routes also can be divided into production
efficiency (PE), service effectiveness (SE) and operational effectiveness (OE).

2.5.1.1 The Data

The input—output framework on the network model is depicted in Fig. 2.4. Input—
output variables of an air routes are illustrated as follows:

1. Output: Number of passenger-miles.
2. Inputs: Personnel cost, fuel cost and aircraft cost.
3. Intermediate output: Number of seat-miles.

2.5.1.2 Empirical Results

Table 2.1 gives us a clear and complete picture of relative performance for the
sample’s air routes in three performance dimensions. It follows that for an air route
to be able to locate on the overall operational effectiveness frontier, it needs to
achieve both full production efficiency and service effectiveness. Hence, it can be
found that there is a possibility of improvement for all air routes since their
operational effectiveness scores are all less than unity. Table 2.1 also indicates
that the average air routes’ production efficiency, service effectiveness and opera-
tional effectiveness are 0.829, 0.833 and 0.689, with a standard deviation of 0.139,
0.099 and 0.135, respectively. It is worth mentioning that the scores of production
efficiency and service effectiveness must be used together to identify which pro-
cesses need to be improved. For example, the operational effectiveness of air routes
TSA-KHH and TSA-MZG are about the same (their scores are 0.740 and 0.739,

Number of

seat-miles

Inputs:

1. Personnel cost Number of

Production Consumption
2. Fuel cost passenger-miles
process process

3. Aircraft cost

Fig. 2.4 Input—output variables in a network model

! Adapted from Yu and Chen (2011).



2 Assessment of Transportation Performance: A Network Structure 31

Table 2.1 Efficiency and effectiveness scores of the network model

Service

PE SE OE Length | Aircraft Seats | Market area

TSA-KHH |1.000 |0.740 |0.740 |183 MD-90 155 | Business Inland
M a3 1 ©

TSA-TNN (0975 |0.645 |0.629 | 164 MD-90 155 | Business Inland

3) (15) 1 (®)
TSA-TXG |[0.625 |0.807 |0.504 | 77 DHS8-300 56 Business Inland
(14) (10) (14)
TSA-CYI 0.780 |0.780 |0.609 | 128 DHS-300 56 Recreation | Inland
(10) (11) (11)

TSA-TTT 0.895 |0.684 |0.612 | 161 MD-90/ 155/ | Recreation | Inland
(@) (14) (10) DHS-300 56

TSA-MZG [0.908 |0.814 |0.739 | 156 MD-90/ 155/ | Recreation | Offshore
6) ) (@) DH8-300 56

TXG-MZG [0.778 |0.775 [0.603 | 82 DHS-300 56 Recreation | Offshore
(11) (12) (12)

CYI-MZG |0.588 |0.830 |0.488 | 52 MD-90/ 155/ | Recreation | Offshore
(15) ®) (15) DHB8-300 56

TNN-MZG [0.636 |0.905 |0.576 | 56 MD-90/ 155/ | Recreation | Offshore
(13) 5) (13) DHS-300 56

KHH-MZG |0.696 |0.881 |0.614 85 MD-90/ 155/ | Recreation | Offshore
(12) 6) ) DHS8-300 56

TSA-KNH [0.910 |0.938 |0.853 | 196 MD-90/ 155/ | Recreation | Offshore
5) 2) 3) DHS-300 56

TXG-KNH |0.819 |[1.000 |0.819 |146 MD-90/ 155/ | Recreation | Offshore
) (1) ) DHS-300 56

CYI-KNH |0.894 [0.845 |0.755 | 145 DHS8-300 56 Recreation | Offshore
() (@) )
TNN-KNH [0.932 |0.933 |0.869 | 155 DHS8-300 56 Recreation | Offshore
) 3) 2)

KHH-KNH | 1.000 [0.922 |0.922 |183 MD-90/ 155/ | Recreation | Offshore
(1) “) (1) DH8-300 56

Max 1.000 |1.000 |0.922

Min 0.588 |0.645 |0.488

Mean 0.829 |0.833 |0.689

SD 0.139 |0.099 |0.135

Notes: Resources of the attributes of each air route are from Chiou and Chen (2006)

respectively). However, the activities they need to improve to achieve operational
effectiveness frontier are different. Air route TSA-KHH, with production efficiency
score = 1.000 and service effectiveness score =(0.740, only needs to expand its
consumed output 35.1 % (1/0.740) to the service effectiveness frontier and then it
will achieve operational effectiveness frontier. On the other hand, air route
TSA-MZG, with production efficiency score =0.908 and service effectiveness
score =0.814, needs to contract its input 9.2 % (1 —0.908) and expand its con-
sumed output 22.8 % (1/0.814) simultaneously to achieve operational effectiveness.
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This is a possible indication that inferior production efficiency and/or service
effectiveness cause operational ineffectiveness on air routes.

Next to the column of operational effectiveness score, Table 2.1 also shows some
of the operational information including route length, aircraft type, operational
market, and service areas for each air route. As indicated, there are five routes serving
major inland cities and ten routes connecting these cities to two offshore cities. From
the operational effectiveness point of view, offshore air routes are performing better
on average in comparison to the inland air routes in the sample. In particular, the top
five routes with higher operational effectiveness scores all belong to the offshore air
routes. However, we should stress that the better performance of offshore air routes
than inland air routes might not mainly come from the better management of the
decision makers of those routes, but may be the result of limited substitution in
transportation modes and the increasing demand from the tourism market offshore.

As for route length, long air routes perform better than short ones. This is intuitive,
since one can easily realize that the longer the route is, the higher performance will
be. First, bigger aircraft with more seats in general are used to serve longer distance
travel. Secondly, shorter routes in general spend a longer proportion of their time in
ground operations than long flights. The current results suggest that the sample airline
needs to focus on improving performance of those short air routes. The above results
show that the operational effectiveness of air routes is to a lesser extent due to the
market types and to a greater extent due to the length and service area of air routes in
the Taiwan domestic air transportation market.

Lastly, as it appears in Table 2.1, the use of different types of aircraft seems to
show some effects on the air routes’ service effectiveness but not production
efficiency measure, since air routes operating with mixed types of aircraft appear
to be more service effective than those using a single type of aircraft, while mixed
type air routes do not perform better in production efficiency. A possible explana-
tion is that a higher loading factor can be achieved if different types of aircraft are
alternatively dispatched to serve peak demand (MD-90) and off-peak demand
(DHS8-300), while the benefits from lower operating cost does not guarantee better
production efficiency. This implies that air routes operations need to meet the
obligation of providing a fixed timetable of flights. This result recommends that
the sample airline alternatively dispatch different types of aircraft to serve varying-
demand routes to increase its air routes’ service effectiveness.

2.5.2 Multi-activity DEA Model with Environmental Factors
and Undesirable Output’

We provide an example for 24 Taiwan’s multimode bus transit firms in 2001 that
incorporate environmental factors (E) and undesirable output (U) into a multi-activity

2 Adapted from Yu and Fan (2006).
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DEA (MDEA) model to analyze the highway bus effectiveness (HBE), urban bus
effectiveness (UBE) and operational effectiveness (OE) of each bus transit firm.
All these firms operated both highway bus service (HB) and urban bus service (UB).

2.5.2.1 The Data

The input—output framework on the multi-activity model is portrayed in Fig. 2.5.
Input—output variables of individual activities of a bus transit firm are illustrated as

follows:

1. Dedicated inputs of highway bus service: Drivers, vehicles, fuel and network

length in the highway bus sector.
2. Desirable output of highway bus service: Passenger-km.

3. Dedicated inputs of urban bus service: Drivers, vehicles, fuel and network

length in the urban bus sector.
4. Desirable output of urban bus service: Passengers.

Dedicated inputs:
1. Drivers
2. Vehicles
3. Fuel
4. Network length

Shared input:
Management,
cperating and
technical staff

Dedicated inputs:

1. Drivers
2. Vehicles
3. Fuel
4. Network length

Envircnmental variable:
Long-haul transportation demand

Desirable outputs:
Passenger-kms

HB service process

Undesirable cutput:
Accident cost

Desirable outputs:
Passengers

UB service process

Envircnmental variable:
Short-haul transportation demand

Fig. 2.5 Input—output variables in a multi-activity model
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5. Shared input for highway and urban bus services: Management, operating and
technical staff.

6. Undesirable output for highway and urban bus services: Accident cost.

7. Environmental variable of highway bus service: Long-haul transportation
demand.

8. Environmental variable of urban bus service: short-haul transportation demand.

2.5.2.2 Empirical Results

For each firm, four overall operational effectiveness measures have been calculated
by different DEA models, as shown in Table 2.2. Note that all the operational
effectiveness scores should be less than or equal to unity and that a higher score
indicates a more effective status. The first column is the overall operational
effectiveness obtained from a conventional DEA model. These conventional indi-
ces diverge from 0.523 to 1.0 with a mean level of 0.952. The number and
percentage of the fully operationally effective units is 17 and 70.83 % of the
24 bus firms. As the second column indicates, the overall operational effectiveness
indices obtained from the multi-activity DEA model 1 have larger mean value
ranges, from 0.421 to 1.0, with a mean overall operational effectiveness of 0.850.
Moreover, only four out of 24 firms are operationally effective. Column 5 reports
the overall operational effectiveness scores obtained from the multi-activity DEA
model 2 which includes an environmental factor, but ignores undesirable output
side effects. As can be noted, the estimated effectiveness diverges substantially
from 0.570 to 1.0 with a mean value of 0.898. Of the 24 bus firms analyzed, only
five are deemed effective. The results of column 8§ are obtained from the multi-
activity DEA model 3 in which the overall operational effectiveness of a firm is
evaluated on the basis of its ability to increase desirable outputs and reduce inputs
and undesirable output simultaneously. The overall operational effectiveness scores
vary from 0.576 to 1.0 with a mean effectiveness score of 0.884. The number and
percentage of the fully operationally effective units increases to 7 and 29.17 % of
the 24 bus firms as the undesirable output is included. If we concentrate on the
highway bus service, ten of the bus firms exhibit operationally effective behavior
that is superior to the rest. With regards to urban transit, a maximum level of
effectiveness is achieved by nine firms, with bus firms that are operationally
effective in each of the two services coinciding in only seven cases.

These above results imply that the conventional DEA operational effectiveness
measure may be seriously misleading if it ignores the operational effectiveness of
firms, which carry out various activities whilst sharing common resources. In
addition, for those bus firms where environmental factors and undesirable output
are important, the illustration shows that different multi-activity DEA models lead
to different results. The multi-activity DEA model 3 provides a deep structure that
more fully takes the shared inputs, environmental factors and undesirable output
into consideration.
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2.5.3 Multi-activity Network DEA Model
with Environmental Factors®

Furthermore, the operational process of a multimode bus transit firms can be
divided into two sub-processes: production and consumption processes. In addition,
the production process includes two activities: highway bus service (HB) and urban
bus service (UB). Hence, we also apply this example for multimode bus transit
firms to illustrate the performance obtained from multi-activity network DEA
model, but, in this section, the used model incorporates multiple activities, multiple
processes and environmental factors to analyze the highway bus efficiency, urban
bus efficiency, production efficiency, service effectiveness and operational effec-
tiveness of each bus transit firm. The data set used in the measurement of perfor-
mance in Taiwan’s bus transit system comprised a sample of 23 firms located all
over the island in 2001 and 2002. All these firms operated both highway bus service
and urban bus service.

2.5.3.1 The Data

The input—output framework on the multi-activity network model is represented in
Fig. 2.6. Input—output variables and environmental variables of individual activities
and processes of a bus transit firm are illustrated as follows:

1. Dedicated inputs of highway bus production service: Drivers, vehicles, fuel and
network length in the highway bus sector.
2. Intermediate output of highway bus production service: Vehicle-kms in the
highway bus sector.
3. Dedicated inputs of urban bus production service: Drivers, vehicles, fuel and
network length in the urban bus sector.
4. Intermediate output of urban bus production service: Vehicle-kms in the urban
bus sector.
. Dedicated input in consumption process: Sales staff.
. Output in consumption process: Passenger-kms and passengers.”
. Shared input for highway and urban bus production services: Mechanics.
. Shared input for highway bus production service, urban bus production service
and consumption process: Management employees.
9. Environmental variables: Population density and car ownership.

o0 3 N

3 Adapted From Yu and Fan (2009).

*The passenger-km are not available for UB service, so the number of passengers is used as a
proxy variable in this paper. It is more appropriate to use passenger-kms as final output variables.



2 Assessment of Transportation Performance: A Network Structure

Environmental variable:
Population density

Dedicated inputs:

1. Drivers
2. Vehicles
3. Fuel
4. Network
length

HB production
process
Intermediate
output:
Vehicle-kms

Shared input:

Mechanics

Dedicated

input:

Sales staff

Shared input:
Management

employees

Consumption

process

Dedicated inputs:
1. Drivers
2. Vehicles
3. Fuel
4. Network

Intermediate
output:

Vehicle-kms
UB production

process

length

Environmental variable:

Population density

Fig. 2.6 Input—output variables in a multi-activity network model

2.5.3.2 Empirical Results

37

Outputs:
1. Passenger
-kms

2. Passengers

Environmental
variable:

Car ownership

In this section, we present estimates of performance measures based on the all-in-
one multi-activity network DEA model, and three separate conventional DEA
models. It is worth noting that the production efficiency, service effectiveness and
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Table 2.3 Efficiency and effectiveness scores of the multi-activity network model

Highway bus Urban bus Production Service Operational
efficiency efficiency efficiency effectiveness effectiveness
(1 =p" a-p /8] a+50 (14 B)

Max | 1.000 1.000 1.000 2.502 1.837

Min |0.613 0.514 0.738 1.000 1.000

Mean | 0.894 0.864 0.879 1.160 1.141

SD 0.103 0.141 0.073 0.329 0.171

Notes: (1) Each of the efficiency or effectiveness scores is the mean of the estimated values of
H U
2 years® observations; (2) 7 = 1 — (/%) and (3) i, = 0.256 +0.258Y + 0.55¢

operational effectiveness estimated by the multi-activity network DEA model
imply that those performance measures are not independent. The results of multi-
activity network DEA are summarized in Table 2.3. If the value of the production
efficiency is equal to unity, this denotes that it is “efficient”, whereas values less
than 1 indicate that it is “inefficient”. On the other hand, if the value of the service
effectiveness or operational effectiveness is equal to unity, this denotes that it is
“effective”, whereas values greater than 1 denote that it is “ineffective”.

In the first two columns, the highway bus efficiency and urban bus efficiency,
and in the fourth column, the service effectiveness, are evaluated on the basis of
their ability to share common inputs among different activities, and to determine
simultaneously their efficiency and effectiveness. With regard to the average
production efficiency, the means of highway and urban bus efficiencies are lower
than 1, indicating that there was inefficient in the production process for the sample
as a whole. When the mean of service effectiveness score is greater than 1, in this
case 1.160, this denotes an “ineffective” score for the sample as a whole. This
service effectiveness may be explained by the inability of firms to expand ridership,
as the vehicle-km provision cannot be reduced under the same environment. The
average operational effectiveness was also greater than 1 (1.141), indicating that the
sample as a whole was “ineffective”. For efficient firms that are efficient in regard
to their production but not consumption processes, it is implied that they operate
ineffectively, and hence there is further improvement in terms of service effective-
ness. The managers could pay more attention to increasing the utilization of the
produced service to improve their service effectiveness. For firms that are ineffi-
cient in their production processes but effective in their consumption processes, it
implies that they are not production efficient. This could mean that firms should
reduce their input proportions with respect to their frontiers in order to determine
the improvement needed in each activity to catch up with the frontier firms.

Based on the comparison, efficiency and effectiveness measurements are exam-
ined, and are depicted in Table 2.4. The production efficiency index in the multi-
activity network model has slightly lower efficiency score, and only 3 of the
23 firms are operating on the production frontier, while 9 of the 23 are operating
efficiently on the production frontier under the conventional model. With respect to
service effectiveness, the results reveal a relatively lower effectiveness score (lower
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Table 2.4 Descriptive statistics of the conventional and multi-activity network models’ perfor-
mance scores and the results of the test of significance

All Production | Service Operational
samples efficiency | effectiveness | effectiveness

Multi-activity network model

Number of firms 69 23 23 23
Number of efficient or effective 12 3 8 1
scores

Number of inefficient or ineffective |57 20 15 22
scores

Mean of efficiency or effectiveness | — 0.879 1.160 1.141
scores

Conventional model

Number of firms 69 23 23 23
Number of efficient or effective 21 9 6 6
scores

Number of inefficient or ineffective |48 14 17 17
scores

Mean of efficiency or effectiveness | — 0.965 1.237 1.144
scores

Correlations

Network vs. conventional | 0.901 ‘ 0.471 | 0.935 ‘ 0.858
Test of significance
p-value 10.003%F 0.000°*  |0.097* | 0.885

Notes: “*” and “**” mean significant at the 10 % and 5 % level of significance, respectively

effectiveness score represents more effective) than the conventional DEA model.
As to operational effectiveness, the results also indicate that the average effective-
ness score is relatively lower (representing more effective).

In order to provide statistically robust findings about these transit firms’ respec-
tive performances, paired difference experiments are applied. This experiment is
conducted to verify whether the sample firms for the two kinds of models were
drawn from the same performance populations for the three measures, respectively.
The significance of paired comparisons is that it is based on a two-tailed test at the
0.05 acceptance level. As shown in Table 2.4, the test of significance yielded a p-
value of 0.000 of production efficiency, which shows a statistically significant
difference in terms of production efficiency. However, the statistical test confirmed
that the service effectiveness and operational effectiveness measures were not
significantly different, having p-values of 0.097 and 0.885, respectively. On the
other hand, the statistical test for the entire sample, which pooled the three measures
in a set, yielded a p-value of 0.003 which reveals a significant difference between
the two models at the 5 % acceptance level. The results of the statistical tests for the
two models may imply that the significant difference in production efficiency
estimated by the mixed structure network and conventional models gave rise to
the significant differences in the overall samples for these three measures, even
though the differences between the service effectiveness and operational
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effectiveness measures estimated by these two models are generally insignificant.
Therefore some more means are applied for further comparison.

The results obtained from the multi-activity network and the conventional
models are quite different in terms of efficient or effective units. In general, the
multi-activity network model is more demanding than the conventional one. This is
explained by the following two facts. First, the achievement of a better degree of
efficiency or effectiveness in the multi-activity network model requires that good
productive and consumption matching behaviors are demonstrated on the part of
the two services (HB and UB) as well as between the production and consumption
processes, respectively. However, with the conventional model, it is possible that
there are compensations between the two production activities and one consump-
tion process in such a way that one firm will always achieve the production frontier
provided that, in global terms, it demonstrates behavior which is superior to the rest,
even if such superiority is not demonstrated in all the activities (services) it carries
out. Second, a representation of both production and consumption processes in a
unified framework is allowed in the multi-activity network model, and hence the
three measures interact to determine the performance, while with the conventional
model the three measures are calculated independently, even though there is a high
degree of correlation between individual scores (service and operational effective-
ness) obtained from the multi-activity network DEA model and those derived from
the conventional DEA model. This indicates that the multi-activity network DEA
model provides a nearly coincident result in terms of service and operational
effectiveness, while it is worth noting that production efficiency is quite different.
It is more reasonable to use the results of the multi-activity network DEA model for
gauging the transit firms’ performance, since the potential benefit of this model is
that it provides the possibility of looking deeply into the production and consump-
tion processes. This shows that by considering the multiple activities and unstorable
characteristics of transit services in the network model, firms may not only compare
their performances with those of peer groups under practical and realistic condi-
tions, but the inter-related effects caused by the various activities and processes
may also be considered.

2.6 Conclusions

In this chapter, we describe a network graph of operational structure in the trans-
portation sector to represent the operational characteristics of transportation ser-
vices, and apply this concept to construct a network DEA model that illustrates the
operational behavior in the sense of maximization of consumed outputs and min-
imization of initial inputs. To document its practicality, the network DEA model
provides a deeper structure that takes unstorable characteristics of transportation
services into consideration. Since the focus of the chapter is on providing a more
reasonable performance measurement in the transportation sector and how the DEA
model can be applied practically, we further incorporate route-based performance
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evaluation, environmental factors, undesirable outputs and multi-activity frame-
work into the network DEA model, respectively. These models can provide the
sources of inefficiency within a transportation organization. Identification of such
sources can help managers to design the implementation of operational policies and
management strategies to improve performance. In addition, we have provided
three relative applications in transportation organizations to illustrate the selection
of inputs and outputs as well as the results.
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Chapter 3

Total-Factor Energy Efficiency and Its
Extensions: Introduction, Computation
and Application

Jin-Li Hu and Tzu-Pu Chang

Abstract This chapter demonstrates how to use different types of DEA models to
compute the total-factor energy efficiency (TFEE) scores, including CCR, Russell,
QFI, SBM, DF, and DDF models. The TFEE is a disaggregate input efficiency
index. Moreover, the TFEE framework which uses cross-section data can be
extended to the total-factor energy productivity (TFEP) growth index by following
Malmgquist, Leunberger, and Malmquist-Leunberger models which use panel data.
Finally, the regional data of Chinese regions during 2010-2011 with inputs and
desirable as well as undesirable outputs are used for illustrating the computation of
TFEE and TFEP scores.

Keywords Input efficiency ¢ Output efficiency « Radial adjustment « Slack-based
measure (SBM) ¢ Fixed inputs ¢ Malmquist productivity index e Leunberger
productivity index

3.1 Introduction

Energy efficiency, defined as economic/physical output divided by energy input, is
a well-known indicator to realize how energy inputs are efficiently used. However,
there is a mainly drawback of this conventional indicator, that is traditional energy
efficiency indicator only takes account of energy as single input. In other words,
this indicator may neglect the substitution or complement among energy and other
inputs, such as labors and capital (Chang and Hu 2010). As a result, it may obtain a
plausible result if we use the partial factor energy efficiency indicator.
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To deal with above-mentioned issue, several researches have attempted to
establish advanced measures over the past decade. Hu and Wang (2006), one of
famous literatures on this subject, first propose a total-factor energy efficiency
(TFEE) to calculate energy efficiency under a total-factor framework. TFEE is a
relative efficiency index of energy usage and easy to understand and extend.
Basically, the nature of this measure is to compute a ratio of target (efficient)
energy input to actual energy input based on multiple inputs and outputs.

The next question is, however, how to find out the amount of target/efficient
energy input. In fact, data envelopment analysis (DEA), a non-parametric fron-
tier-based method, must be an appropriate technique for this concern. As we
know, DEA is not only a tool for investigating decision making units’ (DMU)
performance/efficiency, but a tool for finding target/efficient inputs and outputs.
More specifically, DEA can calculate input and output slacks, which is the
amounts deviate from efficient frontier. Following this method, the excess
energy input is deemed a kind of input slack and target/efficient energy input
can be measured by the difference between actual energy input and slack.
Actually, TFEE is built and computed by DEA approach in Hu and Wang
(2006). With similar concepts, a large number of studies use DEA to construct
kinds of energy efficiency index (e.g., Shi et al. 2010; Wei et al. 2009; Zhou
and Ang 2008).

The original DEA model, as initially proposed by Charnes et al. (1978), is built
on the work of Farrell (1957). Over the past three decades, DEA has been rapidly
developed and applied in many research fields, such as banking and economic
issues. Of course, DEA is also well accepted as a major tool for energy efficiency
analysis. For details, Zhou et al. (2008) provide an outstanding survey. Their paper
reviews a total of 100 studies published from 1983 to 2006 and discusses several
relevant technical issues of DEA in energy efficiency research.

In terms of our paper, we focus on how to apply DEA approach to calculate
energy efficiency. Along with the progress of DEA methodology, several exten-
sions of basic DEA models have been introduced under different restrictions and
assumptions (e.g., Ouellette and Vierstraete 2004; Zhou et al. 2006). Therefore, this
paper not only introduces some advanced DEA models in energy efficiency field,
but discusses the link between TFEE and these models. Furthermore, we will
present an application of China’s energy efficiency issue to show how to obtain
energy efficiency from each DEA model. It is believed that this paper can benefit
researchers, policy makers and students who are interested in energy efficiency
study by using DEA approach.

The remainder of this paper is organized as follows. Section 3.2 illustrates the
concepts of total-factor input and output efficiency. Section 3.3 introduces several
DEA models related to energy efficiency issue. Section 3.4 provides an application
of how to compute provincial energy efficiency in China through incorporating
different kinds of DEA models. Section 3.5 discusses some extended research
issues and Sect. 3.6 concludes this paper.
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3.2 The Concept of Total-Factor Input and Output
Efficiency

As mentioned above, traditional energy efficiency indicator is a partial factor
measurement that disregards other important input factors. Thus, a total-factor
indicator of energy use is useful and needed. Hu and Wang (2006) introduce
total-factor energy efficiency index and overcome possible bias in traditional
energy efficiency indicator. There are third key features of this index: first, TFEE
can cope with multiple inputs and outputs, meaning that it considers a total-factor
framework. Second, TFEE rescales traditional energy efficiency to a number
ranging from zero to unity based on the production frontier in each period. Third,
target energy input can be detected that is more important for policy makers.

By definition, TFEE is a ratio of target energy input to actual energy input.
Because actual energy input is always greater than or equal to target energy input,
TFEE must be smaller than unity. That is,

Target Energy Input

<1. 3.1
~ Actual Energy Input — (3.1)

In addition, excess energy input is denoted as the gap between target energy
input and actual energy input is a kind of slack. Thus, total energy slack, ranging
from zero to positive infinite, is equal to actual energy input minus target energy
input. Then, (3.1) can be illustrated by

Total Energy Slack <1

0<1- <
Actual Energy Input

(3.2)

It is undoubted that the idea of TFEE is very simple and easy to understand.
Generally speaking, on the one hand, TFEE is a special case of total-factor input
efficiency if we only emphasize the efficient energy input. In other words, one can
focus on other type of input variable and calculate the total-factor input efficiency
of what is interested in. For example, Hu et al. (2006) investigate the total-factor
water efficiency in regions of China through the foregoing concept.

On the other hand, obviously, we can derive a total-factor desirable output
efficiency index. It is noted that actual desirable output is always small than or
equal to target desirable output. Hence, a reciprocal representation of (3.1) would
range from zero to unity. Then, total-factor desirable output efficiency is defined as:

Actual Desirable Output
~— Target Desirable Output —

(3.3)

Accordingly, total-factor desirable output efficiency can also be represented by

Total Desirable Output Slack
Target Desirable Output

0<1 -

<1, (3.4)
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because total desirable output slack is equal to target desirable output minus actual
desirable output. However, in the real world, undesirable outputs are inevitably
produced within economic activities, especially in energy consumption process.
It means that as people use energy input to generate economic outputs or other kinds
of desirable outputs, they also produce some types of undesirable outputs such as
carbon dioxide and sulfur dioxide. Therefore, a total-factor undesirable output
efficiency index should be established indeed.

It is not surprising that total-factor undesirable output efficiency can be
constructed following aforementioned idea.' The fact that the concept of total-
factor undesirable output efficiency is similar to total-factor input efficiency because
of minimization consideration. That is, actual undesirable output must be greater
than or equal to target undesirable output and total undesirable output slack is greater
than or equal to zero. Hence, total-factor undesirable output efficiency is represented

Target Undesirable Output
~ Actual Undesirable Output —

(3.5)

or

Total Undesirable Output Slack

0<1- -
Actual Undesirable Output

(3.6)

Herein, we have briefly demonstrated the concept of total-factor input and output
efficiency measures. Actually, total-factor input and output efficiency indices can
explicitly tell us how much amounts of targets or abatements of interested inputs
and outputs are. It is considered that these measures are very important and useful
for policy makers and the governments. Moreover, the next step is to calculate
target values or total slacks of inputs/outputs. This paper focuses on total-factor
energy efficiency and introduces several basic and advanced DEA models to deal
with this job in the following section.

3.3 DEA Models for Energy Efficiency Study

Since the works of Charnes et al. (1978) and Banker et al. (1984), there has
experienced a vigorous expansion of DEA methodology. For instance, the effi-
ciency measure of DEA models can be calculated by one of radial, non-radial,
slack-based, and directional distance function models.? In the following subsec-
tions, therefore, present paper will introduce three groups of commonly used and
well accepted DEA models related to energy efficiency issues.

1 Zhou et al. (2010) construct a total-factor carbon emission performance measurement of which
the concept is similar to our total-factor undesirable output efficiency.

2Zhou et al. (2008) present a clear structure of DEA models. According to their survey, a DEA
model can be characterized by its reference technology and efficiency measure.
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At first, let us illustrate the general notations that are used in all models. Assume
that there are N DMUs that may involve countries, regions, sectors, etc. These
DMUs consume energy and M non-energy inputs to produce R desirable outputs
and K undesirable outputs.” Hence, the energy input and m-th non-energy input
variable of the o-th DMU are represented by e, and x,,,, respectively. Moreover, the
r-th desirable output and k-th undesirable output variable of the o-th DMU are
represented by y,, and uy,, respectively. Sequentially, we discuss the linkage
between these models and the concept of total-factor energy efficiency as follows.

3.3.1 Proportional Adjustment Models Without
Undesirable Outputs

The first category of energy-related DEA models is traditional proportional adjust-
ment models without undesirable outputs. This paper introduces three kinds of
models according to different assumption: the first one assumes all inputs can be
radially adjusted, which is known as radial DEA model. The second one assumes all
inputs can be proportionally adjusted with different ratios, which is known as
non-radial DEA model. The third model assumes only energy can be adjusted
and other inputs are quasi-fixed.

3.3.1.1 All Inputs Can Be Radially Adjusted

Based on the assumption of all inputs can be radially adjusted, there are two
classical and widely used DEA models which are proposed by Charnes
et al. (1978) and Banker et al. (1984), respectively. The former model is also called
by CCR model and the latter is known as BCC model. The major feature of these
models is that the adjustments of all inputs can be proportionally contracted without
decreasing the amounts of current outputs. However, these two models have a
distinct property on returns to scale (RTS), indicating that CCR model presents
constant returns to scale (CRS), while BCC model exhibits variant returns to scale
(VRS).

Hu and Wang’s original TFEE is built and computed by an input-oriented CCR
model. Accordingly, the linear programming (LP) problem for the o-th DMU can
be solved by

3 Most of energy efficiency studies using country-level data only take total energy consumption as
energy input. However, several literatures use disaggregated energy inputs to analyze region- or
sector-level data. For example, Honma and Hu (2008) investigate total-factor energy efficiency of
11 energy inputs of regions in Japan. For simplicity, we choose total energy consumption as only
one energy input to illustrate energy-related DEA models. One can straightforward extend these
models with multiple energy inputs indeed.
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0" = mind
N
S.t. Z/l,,en < Be,,
n=1
N
anxm,, < Oxpo,s m=1,2,...,M, (3.7)
n=1
N
> Yo = Yy r=1,2,...,R,
n=1

>0, n=12,...,N.

Equation 3.7 shows the input-oriented CCR model in envelopment form of
which 6 is a scalar and 4, is an N x 1 vector of constants.* The optimal solution,
0, yields an efficiency score for the o-th DMU. It is noted that, however, CCR
model ignores the presence of non-radial slacks and results in a weak efficiency
measure (Cooper et al. 2011). It also implies that we cannot obtain target energy
input (or total energy input slack) from (3.7) directly. For this concern, Ali and
Seiford (1993) propose a second stage LP problem to maximize the sum of
non-radial slacks. Instead of the two-stage DEA method, moreover, Coelli (1998)
suggests a multi-stage DEA method to acquire non-radial slacks.

Assume s, is the non-radial slack of energy input calculated by either two- or
multi-stage DEA. (1-0) X ¢, is equal to the radial slack of energy input. Then total
energy slack would be the sum of radial and non-radial slacks and target energy
input is equal to actual energy input minus total energy slack. Hence, Hu and
Wang’s TFEE based on CCR model is represented by

Qxeo—s;_l_(l—e)xeo—ks;

€o €o

CCR-type TFEE =

(3.8)

In line with original TFEE measure, Wei et al. (2009) investigate provincial
energy efficiency in China. In addition, Hu and Kao (2007) apply the CCR-type
TFEE to calculate energy-saving targets for APEC economies. With regard to BCC
model, there is an additional constraint Z:;l A, = 1 which is appended to (3.7),

indicating that the production frontier is allowed VRS technology. Unfortunately,
to our best knowledge, none research studies TFEE using BCC model.

4CCR and BCC models can be represented in multiplier form or envelopment form. Coelli
et al. (2005) suggest that the envelopment form involves fewer constraints than the multiplier
form. Therefore, envelopment form is generally preferred to solve the linear programming
problem and used in our study instead of multiplier form.
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3.3.1.2 All Inputs Can Be Proportionally Adjusted
with Different Ratios

As has been noted above, the weak efficiency problem in CCR model causes a
difficulty in obtaining target energy input. Although Ali and Seiford (1993) and
Coelli (1998) provide solutions to the problem, both of them have corresponding
disadvantages (Coelli et al. 2005). Therefore, a group of DEA models which allows
all inputs for proportional contracting with different ratios is built (Fire
et al. 1994b). Rather than using a Farrell efficiency measure in CCR model, Fire
and Lovell (1978) propose a famous DEA model based on a Russell efficiency
measure.’ Specifically, the Russell measure is well-behaved with less restrictive
assumptions than Farrell measure (for details, see Fire and Lovell 1978). Thus,
Russell efficiency measure usually has a higher discriminating power than Farrell
efficiency measure.

According to our assumption mentioned above, we have a dataset consisting of
(M + 1) inputs (energy consumption and M non-energy inputs). Hence, input-
oriented Russell efficiency measure for the o-th DMU can be computed by follow-
ing LP problem:

1 (&
mlnM T 1(};9%4‘95»)

N
s.t. Zlnen < 0.e,,
n=1

X (3.9)
lnxmn ngxmos m = 1,2, oM,

n=1

N

Z/lnyrn Zyr(w r = 1,2, ...,R,

n=1

A >0, n=1,2,...,N.

Since (3.9) considers non-equally proportional adjustment of each input, this
model can avoid the weak efficiency problem and obtain the strong efficiency
scores. In terms of the concept of TFEE, the target energy input is defined as
0. x e, and total energy input slack is equal to (1—86,) X e,. Therefore, a Russell-
type TFEE can be represented as:

5 Other well-known extended DEA models with similar characteristics are the Zieschang measure
and the asymmetric Fiare measure (see De Borger and Kerstens 1996).
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> 1-6
Russell — type TFEE = Oc x 0 _ 1— A =6) xe =0,. (3.10)

€o €o

It is noteworthy that Fire and Lovell’s Russell efficiency measure looks for the
minimum arithmetic mean of proportional decreases in all inputs. One can easily
extend this model to a more general setting. For example, instead of the minimum
arithmetic mean of object function in (3.9), Zhu (1996) suggests some weighted
object functions that reflect the preference structure of DMUs.

There are several studies using the concept of Russell-type TFEE to investigate
energy efficiency. For instance, Zhou and Ang (2008) construct an energy effi-
ciency performance index based on Russell measure to evaluate the energy effi-
ciency performances of 21 OECD countries. In addition, Herniandez-Sancho
et al. (2011) apply Russell measure to calculate energy efficiency of wastewater
treatment plants in Spain.

3.3.1.3 Only Energy Can Be Radially Adjusted

There is a critical issue about the assumption of adjustment recently, i.e., can all
inputs be decreased through either radial or non-radial adjustment? Theoretically,
above-mentioned DEA models assume that all inputs can be freely and instantly
adjusted to their target levels. However, in the real world, not all inputs can adjust to
their optimal levels due to adjustment costs, regulation and indivisibilities
(Ouellette and Vierstraete 2004). This is also a major concern as studying in energy
efficiency field. From policy makers and the government’s perspective, for exam-
ple, no one is willing to cut employment level and reduce capital stocks along with
decreasing excess energy consumption.

To deal with this issue, Ouellette and Vierstraete (2004) propose a modified
DEA model under a quasi-fixed inputs assumption. With respect to energy effi-
ciency study, the quasi-fixed inputs DEA model would set that only energy input
can be adjusted and other inputs are quasi-fixed in the short-run. Under this setting,
the o-th DMU’s efficiency score can be solved by following LP problem:

min 6
N
s.t. Z/l,,en < be,,
n=1
N
> ko < Ko m=12,... M, (3.11)
n=1
N
Zﬂnym > Voo r=12,...,R,

n=1
>0, n=12,...,N.
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Actually, (3.11) is very similar to CCR model shown in (3.7) but non-energy
inputs are not allowed for adjusting in quasi-fixed inputs DEA model. Because this
model does not radially adjust all inputs, moreover, the weak efficiency problem
can be avoided. Therefore, based on the concept of TFEE, the target energy input is
defined as 6 x e,, and total energy input slack is equal to (1—6) x e,. The TFEE
under a quasi-fixed inputs assumption is

er()_l (1-0)xe,

€o €o

QFI-type TFEE = =0 (3.12)

Practically, quasi-fixed inputs assumption is closer to the reality than CCR
model because labor and capital inputs may not be freely adjusted in short-run.
As a result, for energy efficiency study, this measure has become very popular
recently. For instance, Shi et al. (2010) consider a DEA model of fixing non-energy
inputs to evaluate Chinese regional industrial energy efficiency. Zhou and Ang
(2008) also introduce an energy efficiency performance index under a quasi-fixed
inputs assumption.

In sum, this subsection briefly introduces three kinds of proportional adjustment
DEA models and the relationship between these models and total-factor energy
efficiency index. It is worth noting that the CCR-type TFEE is the easiest for
understanding and can be computed through some free software, such as DEAP.
However, as discussed above, there are two illogical assumptions of the CCR-type
TFEE as for investigating energy issues. One is that why we can assume all inputs
are adjusted with an equal weight and the other is that why we can assume all inputs
can be freely adjusted. To deal with these shortcomings, the Russell-type TFEE
relaxes the former assumption and the QFI-type TFEE further relaxes both of two
assumptions indeed. In addition, the QFI-type and Russell-type TFEEs have higher
discriminating powers than the CCR-type TFEE. Therefore, it is suggested that, in
the future works, the CCR-type TFEE should not be used in energy efficiency field.
Moreover, we would consider that the QFI-type is better than the Russell-type
TFEE because the assumption of QFI-type TFEE is closer to the real world.

3.3.2 Slack-Based Models Without Undesirable Outputs

The second category of energy-related DEA models is traditional slack-based
models (SBM) without undesirable outputs. Besides the Russell efficiency measure
introduced above, the SBM models are also known as one famous kind of
non-radial DEA models. Particularly, the SBM models directly deal with slacks,
such as input excess and output shortfall, rather than proportional adjustment ratios.
Therefore, according to the definition of TFEE index, the SBM models can calcu-
late total energy slack and then find out target energy input more efficiently.

The term—slack-based model—is formally proposed by Tone (2001). In the
earlier literature, Charnes et al. (1985) firstly introduce an additive DEA model
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rather than traditional radial model (such as CCR and BCC models) to account for
all sources of inefficiency. Pastor et al. (1999) propose an enhanced Russell
measure which is defined as a combination of the input and output Russell mea-
sures. They also express the corresponding formulas in terms of total slacks.
Sequentially, with similar idea, Tone (2001) defines SBM DEA and shows that
the SBM can be deemed as a product of input and output inefficiencies.

The original SBM DEA proposed by Tone (2001) is a non-oriented or both-
oriented efficiency measure which deals with total slacks both in inputs and outputs.
Hence, as noted in his paper, SBM-efficient is full efficient and presents a higher
discriminating power than CCR model. According to the definition, non-oriented
SBM can be formulated as the following fractional program:

1 M o5 s
- — mo e
M+1 (rnz_:lxmg + eg)

p* = min
NO 1 1 i S;F
R =1 Yro
N
s.t. 2.,76,1 =€, —S,,
2 ‘ (3.13)
N
Z/lnxmn:xrno_sa, m:1,2,...,M,
n=1
N
Z’lnyl'n:yro+ S;Ls r=12,...,R,
n=1

n>0,5,>0,5,>0 5" >0,n=12,...,N.

where py,, is non-oriented SBM efficiency score. s, is total slack in energy input;
s, and s} indicate the excess in the m-th input and shortfall in the r-th output,
respectively. With respect to computational aspect, non-oriented SBM can be
transformed into a linear program using Charnes and Cooper’s transformation
(Pastor et al. 1999; Tone 2001). However, the corresponding LP is inconvenient
for obtaining TFEE score since the optimal solution of LP should be transferred to
the optimal solution of fractional program mentioned above.

Accordingly, we introduce an easier way to calculate TFEE in SBM DEA as
follows. Tone (2011) introduces a weighted-SBM DEA model which assigns
weight to each slack variable in the objective function. The model is more flexible
for researchers to allot relative importance of all inputs and outputs. In case we are
only interested in energy efficiency (or total energy slack), we can assign all weight
to energy input and then construct an input-oriented weighted-SBM DEA. There-
fore, this input-oriented weighted-SBM DEA can be directly solved by the follow-
ing LP problem:
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Based on the definition in (3.2), p; denotes not only input-oriented SBM
efficiency but also TFEE score indeed. Hence, we define SBM-type TFEE as

SBM-type TFEE = p = 1 — ¢ . (3.15)

o

As discussed earlier, SBM-type TFEE can quickly tell us the amount of total
energy slack (s, ) and target energy input (e, — s, ). We consider that SBM-type
TFEE would be more appropriate for policy makers because it intuitively points out
how much energy is wasted. With respect to related literature, Zhou et al. (2006)
establish their environmental performance indicator based on SBM efficiency
measures. Choi et al. (2012) apply a SBM DEA model to calculate potential
reduction of energy use for 30 provinces in China.

3.3.3 DEA Models with Energy Use and Pollutant Emissions

As discussed in Sect. 3.2, in the real production process, undesirable outputs would
be produced together with desirable outputs. For example, Fére et al. (1996) inves-
tigate United States electric utilities’ efficiency and indicate that these utilities are
also a major contributor to sulfur dioxide, carbon dioxide and nitrogen oxide
emissions. Hence, how to evaluate energy use and pollutant emissions simulta-
neously in a DEA model has become an attractive issue. Accordingly, this subsec-
tion will introduces the third group of energy-related DEA models that incorporate
the reduction of energy input and pollutant outputs simultaneously.

With respect to undesirable outputs such as pollutant emissions, there are two
theoretical concerns about the feasible technology in traditional DEA models. First,
conventional DEA models only allow increases in outputs and decreases in inputs,
meaning that decreases in undesirable outputs are restricted. To deal with this restric-
tion, hence, some papers treat the undesirable outputs as inputs or use data translation
to reverse the undesirable outputs in DEA models (Seiford and Zhu 2002).
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Second, traditional DEA models assume that inputs and outputs are strongly (freely)
disposable. However, the reduction of undesirable outputs should be costly in the real
production process. Therefore, Fire et al. (1989) assume a weak disposability of
undesirable outputs instead of strong disposability. Sequentially, Fére et al. (1996),
Fiére and Grosskopf (2004) and Fire et al. (2004) propose an environmental technol-
ogy which imposes weak disposability and null-jointness properties on the undesirable
outputs. Now, their works have been widely applied to evaluate energy or environ-
mental efficiency as considering pollutant emissions (Zhou et al. 2008).

Regarding calculation aspect, we briefly introduce two commonly-used DEA
models with undesirable outputs to compute TFEE. The first model proposed by
Fiére et al. (1996) is based on Shephard input distance function (DF). However,
the original model assumes the proportional scaling of all inputs that would be
similar to a Farrell efficiency measure. To approach the reality, we assume only
energy input can be adjusted that is consistent with quasi-fixed inputs assump-
tion. Hence, the o-th DMU’s efficiency score can be solved by following LP
problem:

-1 .
Di(emxmmyroa Mka) =mmn p

N
s.t. Zﬂnen < pe,,
n=1

N

Z/lnxmn < Xmos m=12,...,M,

! (3.16)
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It is noted that (3.16) is quite similar to (3.11) introduced above. The only differ-
ence between these two models is that (3.16) copes with undesirable outputs
imposed weak disposability and null-jointness properties. A ratio of the optimal
solution of (3.16) to that of (3.11) is defined as an environmental performance
indicator (Fare et al. 1996). Moreover, according to the definition of TFEE,
therefore, the DF-type TFEE can be shown as:

_yU=pxe (3.17)

€o €o

DF-type TFEE = 222
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Aside from Shephard’s distance function approach, Fire and Grosskopf (2004)
use a more general approach—directional distance function proposed by Chung
et al. (1997) to solve the LP problem. In fact, directional distance function (DDF)
allows us to expand good outputs and contract undesirable outputs simultaneously.
If we focus on an output-oriented concern, such as total-factor undesirable output
efficiency, directional distance function must be more appropriate than Shephard’s
distance function. Turns to energy efficiency issue, with respect to input-oriented
directional distance function approach, the o-th DMU’s efficiency score can be
solved by following optimization problem:

Di(emxmm))ro; ulm;ge) =max f
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where g, denote the directional vector for energy input. On one hand, if we take
g. = e,, the optimal solution, , can be interpreted as the proportional contraction in
energy to stand onto the efficient frontier. On the other hand, if we take g.,=1,
would be denoted the number of decreases in energy input, i.e., total energy slack.
Therefore, for example, we set g.=e, and then the DDF-type TFEE can be
represented as the following equation:

DDF-type TFEE = 2 =P %€ _ 1 _ 4 (3.19)
e

It is obvious that the DF-type TFEE will be equal to the DDF-type TFEE under a
quasi-fixed inputs assumption even though their objective functions are not the
same. However, the setting of directional distance function is more general and
distance function is a special case (Fiare and Grosskopf 2004). In addition, one can
apply slack-based DEA models to solve the LP problem with undesirable outputs
and obtain its TFEE, such as the work of Zhou et al. (2006). But, Fare and
Grosskopf (2010) introduce a generalized directional distance function approach
and show that SBM DEA is a special case of the generalized DDF model. Because
we adopt a quasi-fixed inputs assumption, the generalized DDF model should be in
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line with traditional DDF model. Then, the DDF-type TFEE will be consistent with
the SBM-type one modelling undesirable outputs under a quasi-fixed inputs
assumption.

3.4 An llustration of Regional Energy Efficiency in China

Section 3.3 has introduced a variety of DEA models to calculate different types of
TFEE indices. Accordingly, there are four types of TFEE indices without undesir-
able output, including CCR-type, Russell-type, QFI-type and SBM-type TFEE
indices. In addition, we also present two types of TFEE indices with undesirable
output, i.e., DF-type and DDF-type TFEE indices, respectively. Therefore, this
section further uses Chinese regional data in 2010 to demonstrate and discuss the
results among kinds of TFEEs. Following Hu and Wang (2006), we use four input
variables consisting energy consumption, labor employment, capital stock and total
sown area of farm crops. Two output variables are collected which are provincial
GDP (desirable output) and sulfur dioxide emission (undesirable output) in this
illustration. Table 3.1 lists data for our application including 29 DMUs using four
inputs to produce two outputs. It is noted that 29 provinces and municipalities in
China in 2010 are considered since Chongqing is regarded as a part of Sichuan and
Tibet’s energy consumption is unavailable.

Table 3.2 shows the computation results for six TFEE indices. Actually, we can
discuss the results from three aspects. First, among columns two to five (DEA
models without undesirable outputs), the number of efficient DMUs is the lowest
by using Russell-type TFEE index. It is not surprising that Russell-type TFEE has
the highest discriminating power since it allows all inputs can be adjusted with
non-equally proportions. Second, as we compute the range of each TFEE index (one
minus the minimum TFEE), QFI- and SBM-type TFEEs present the largest range
among DMUs’ TFEE. It means that QFI- and SBM-type TFEEs still have higher
discriminating power although the number of efficient DMUs using these indices is
not the smallest. Notice that under a quasi-fixed inputs assumption, TFEEs obtained
from QFI and SBM DEA models will be exactly the same. As a result, we can
conclude that CCR model may overestimate DMUs’ TFEE performance.

Third, after we take into account SO, emission (the last two columns of
Table 3.2), the number of efficient DMUs increases and the range of TFEE
decreases. It is suggested that the discriminating power of DF- and DDF-type
TFEEs are lower than other models without SO, emission. The gap between
efficient and inefficient Chinese provinces narrows when SO, emission is denoted
as an undesirable output. One possible explanation is that we may overestimate
(underestimate) the TFEE of efficient (inefficient) provinces if we neglect pollutant
outputs in DEA models. This finding is consistent with the work of Li and Hu
(2012). Furthermore, this result implies that total-factor undesirable output effi-
ciency would be a critical challenge in China.
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Table 3.1 Data of regions in China in 2010
GDP Energy Labor Capital Farm
(100 million (10,000 | (10,000 (100 million | area

ID RMB) SO, (ton) | tce) person) RMB) (1000 ha)
Beijing 14,114 115,050 6954 970 2254 317
Tianjin 9224 235,150 6818 329 1072 459
Hebei 20,394 1,233,780 |27,531 814 2406 8718
Shanxi 9201 1,249,201 | 16,808 565 756 3764
Inner 11,672 1,394,100 | 16,820 465 2156 7003
Mongolia

Liaoning 18,457 1,022,207 | 20,947 1030 955 4074
Jilin 8668 356,310 8297 515 1056 5221
Heilongjiang | 10,369 490,164 | 11,234 754 692 12,156
Shanghai 17,166 358,100 |11,201 736 7764 401
Jiangsu 41,425 1,050,488 | 25,774 2061 4492 7620
Zhejiang 27,7122 678,342 | 16,865 1642 1996 2485
Anhui 12,359 532,076 9707 770 265 9053
Fujian 14,737 409,051 9809 786 776 2271
Jiangxi 9451 557,072 6355 545 1340 5458
Shandong 39,170 1,537,818 | 34,808 1593 4334 10,818
Henan 23,092 1,338,701 |21,438 1127 2065 14,249
Hubei 15,968 632,582 | 15,138 962 898 7998
Hunan 16,038 801,311 | 14,880 878 660 8216
Guangdong | 46,013 1,050,508 | 26,908 2352 2734 4525
Guangxi 9570 903,826 7919 558 649 5897
Hainan 2065 28,810 1359 161 97 834
Sichuan 25,111 1,850,356 | 25,748 1562 747 12,838
Guizhou 4602 1,148,830 8175 324 264 4889
Yunnan 7224 500,702 8674 647 78 6437
Shaanxi 10,123 778,649 8882 482 1332 4186
Gansu 4121 551,785 5923 318 1190 3995
Qinghai 1350 143,431 2568 96 112 547
Ningxia 1690 310,752 3681 108 169 1248
Xinjiang 5437 588,487 8290 387 507 4759

Note: (1) All monetary values are 2010 prices; (2) In fact, the analyzed data is rounded off to the
second digit after the decimal point

We further compute the Spearman’s rank correlation among six models and
present the result in Table 3.3. Four TFEE indices without SO, emission highly and
positively correlate to each other, indicating that the rank of provincial TFEE
among models is accordant even though these models suppose different assump-
tions. In addition, the correlation between TFEE indices with and without SO,
emission is weaker (around 0.5), showing that the rank is shuffled as we consider
pollutant outputs in DEA models.
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Table 3.2 Total-factor energy efficiency scores of Chinese regions in 2010 for six measures

ID Area |CCR Russell QFI SBM DF DDF
Beijing E 1.000 1.000 1.000 1.000 1.000 1.000
Tianjin E 1.000 1.000 1.000 1.000 1.000 1.000
Hebei E 0.559 0.433 0.516 0.516 0.690 0.690
Shanxi C 0.454 0.320 0.309 0.309 1.000 1.000
Inner Mongolia w 0.513 0.513 0.482 0.482 1.000 1.000
Liaoning E 0.609 0.515 0.555 0.555 1.000 1.000
Jilin C 0.726 0.611 0.566 0.566 0.648 0.648
Heilongjiang C 0.732 0.540 0.534 0.534 0.614 0.614
Shanghai E 1.000 0.755 1.000 1.000 1.000 1.000
Jiangsu E 0.977 0.940 0.959 0.959 0.977 0.977
Zhejiang E 0.989 0.961 0.942 0.942 1.000 1.000
Anhui C 1.000 1.000 1.000 1.000 1.000 1.000
Fujian E 1.000 0.879 1.000 1.000 1.000 1.000
Jiangxi C 0.877 0.870 0.819 0.819 1.000 1.000
Shandong E 0.864 0.658 0.775 0.775 0.846 0.846
Henan C 0.890 0.630 0.654 0.654 0.816 0.816
Hubei C 0.878 0.617 0.634 0.634 0.695 0.695
Hunan C 1.000 0.630 1.000 1.000 1.000 1.000
Guangdong E 1.000 1.000 1.000 1.000 1.000 1.000
Guangxi w 0.870 0.707 0.697 0.697 1.000 1.000
Hainan E 0.990 0.888 0.986 0.986 1.000 1.000
Sichuan w 1.000 0.649 1.000 1.000 1.000 1.000
Guizhou w 0.518 0.329 0.336 0.336 1.000 1.000
Yunnan w 1.000 1.000 1.000 1.000 1.000 1.000
Shaanxi w 0.809 0.667 0.703 0.703 1.000 1.000
Gansu w 0.495 0.407 0.343 0.343 0.744 0.744
Qinghai w 0.406 0.308 0.296 0.296 0.614 0.614
Ningxia w 0.389 0.268 0.251 0.251 0.724 0.724
Xinjiang w 0.571 0.384 0.363 0.363 0.598 0.598
# of Efficient DMU 9 5 9 9 18 18

Note: E, W and C indicate east, west and central areas in China, respectively

Table 3.3 Spearman rank correlation matrix for six efficiency measures

CCR Russell QFI SBM DF DDF
CCR 1.000
Russell 0.877 1.000
QFI 0.981 0.901 1.000
SBM 0.981 0.901 1.000 1.000
DF 0.533 0.558 0.587 0.587 1.000
DDF 0.533 0.558 0.587 0.587 1.000 1.000
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3.5 Further Extended Topics

3.5.1 Selection of Input and Output Variables

The first related topic is how to select relevant inputs and outputs. In the review
paper, Zhou et al. (2008) provide some suggestions about screening procedures and
the number of input and output variables. However, there has been a growing body
of researches investigating energy efficiency issue over the past decades. Due to
their diverse research objects, there is no unique criterion to select inputs and
outputs. Therefore, we collect around 30 application papers published in famous
energy-related journals after 2008. It is noted that these articles investigate either
energy efficiency or undesirable output efficiency performance. We further classify
these articles based on the following attributes: type of DMUs, output and input
variables, and DEA models. As a result, the features of collected papers are listed in
Table 3.4.

According to Table 3.4, we can briefly summarize two conclusions about the
selection of input and output variables. First, output variables are clearly different
on the basis of type of DMUs. More specifically, in case the studies apply country or
regional (i.e., provinces, states and prefectures) level data, economic outputs should
be better than physical outputs. However, if the DMUs are plants, farms or
factories, physical outputs would be more appropriate, such as electricity produc-
tion and crop yield. Second, whatever types of DMUs are analyzed, all of labor
force, capital stock and energy consumption should be contained in the inputs list if
possible. Because both of labor and capital are traditional input factors in the theory
of production, they are essentials to evaluate total-factor energy efficiency index
indeed. It is worth noting that a few researches only use energy consumption as
input variable due to their limited number of DMUs (e.g., Sueyoshi and Goto 2013;
Zhou et al. 2008).

3.5.2 Total-Factor Energy Productivity Growth

The second extended topic discusses about the dynamic analysis of TFEE index,
i.e., total-factor energy productivity growth. As introduced above, TFEE compares
DUMSs’ relative energy efficiency at particular one time point. Chang and Hu (2010)
argue that TFEE cannot completely depict the dynamic pattern of energy usage due
to the neglect of technical change. Hence, we briefly introduce three commonly-
used productivity indices to compute total-factor energy productivity change.

The first well-known index is the Malmquist productivity index. Fare
et al. (1994a) apply DEA methodology with output distance function to estimate
the Malmquist productivity index. Fire et al. (1994c) further decompose Malmquist
productivity index into two components, i.e., technical change and efficiency
change. In terms of energy productivity growth, however, an input-oriented
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Table 3.4 Literature of DEA models with their specific features

Authors/Year | Type of DMUs Output Inputs Method
Banaeian and | Iranian corn Corn yield Labor, machinery, diesel CCR
Zangeneh producers fuel, chemical fertilizers,
(2011) farmyard manure,
chemicals, water, seeds
Bian and Chinese provinces | GDP, COD, Labor, capital, energy, SBM,
Yang (2010) Nitrogen, SO, | water DDF
Blomberg Swedish pulp and | Output of pulp | Labor, oil, electricity CCR
et al. (2012) paper mills and paper
Chang and Hu | Chinese provinces | GDP Capital, labor, energy, farm | DDF
(2010) area
Chang Chinese transpor- | CO, emis- Labor, fixed capital invest- | SBM
et al. (2013) tation sector in sions, value- ment, energy consumption
provincial level added
Choi Chinese provinces | GDP, CO, Capital, labor, energy SBM
et al. (2012) emission
Fallahi Iranian power Net electricity | Employees, fuel, electricity | CCR
et al. (2011) electric generation | produced used, capacity, operational
companies time
Guo Chinese provinces | GDP, CO, Capital, labor, energy used | DF,
et al. (2011) emission SBM
Hernandez- Spanish wastewa- | Suspended Energy, staff, reagents, Russell
Sancho ter treatment solids, COD waste management, main-
et al. (2011) plants tenance, other
Honma and Japanese Total income 11 energy inputs, labor, CCR
Hu (2008) prefectures private and public capital
Honma and Japanese Total income 11 energy inputs, labor, DF
Hu (2009) prefectures private and public capital
Iribarren, Spanish wind Electricity Concrete, steel, working SBM
et al. (2013) farms hours, epoxy resin, oil
Khoshroo Iranian grape Grape yield Labor, machinery, CCR,
et al. (2013) farmers chemicals, farmyard BCC
manure, diesel, electricity,
water
Li and Hu Chinese provinces | GDP, CO,, Labor, capital, energy SBM
(2012) SO,
Liu Thermal power Net electricity | Electricity used, heating CCR
et al. (2010) plants in Taiwan produced value of total fuels,
installed capacity
Mandal and Indian cement Value of Labor, capital, energy, DDF
Madheswaran | industry in state ex-factory materials
(2010) level products, CO,
Mousavi- Iranian apple Apple yield Labor, machinery, diesel CCR
Avval farmers fuel, chemicals, FYM,
et al. (2011) chemical fertilizer, water,
electricity

(continued)
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Table 3.4 (continued)
Authors/Year | Type of DMUs Output Inputs Method
Mukherjee Indian Gross value of | Labor, capital, energy, CCR,
(2008a) manufacturing manufacturing | materials QFI
sector in state production
level
Mukherjee U.S. manufactur- | Gross output Labor, capital, energy, QFI
(2008b) ing sectors materials, services
Shi Chinese industry Industrial Fixed assets, industrial QFI
et al. (2010) in provincial level | value added, energy consumption, labor,
industrial
waste gas
Song BRICS countries GDP Labor, capital formation CCR
et al. (2013) rate, energy consumption
Sueyoshi and | Japanese Fossil Power genera- | Coal, oil, LNG, employees, | QFI,
Goto (2011) fuel power tion, CO, generation capacity SBM
generations emission
Sueyoshi and | U.S. coal-fired Annual net Employees, total cost of SBM
Goto (2012) power plants generation, plant, total non-fuel O&M,
SO,, NOx, fuel consumption
CO,
Sueyoshi and | Ten industrial Electricity, Combustible, nuclear, SBM
Goto (2013) countries CO, Hydro + renewables
Wu Chinese industry Industrial Capital, labor, energy DF
et al. (2012) in provincial level | value added,
CO,
Zhang 23 developing GDP Labor, energy, capital stock | CCR
et al. (2011) countries
Zhang Korean fossil fuel | Gross electric- | Capital, fossil fuel, labor DDF
et al. (2013) electricity ity generation,
generation CO, emissions
Zhou and Ang |21 OECD GDP, CO, Capital stock, labor force, Russell,
(2008) countries coal, oil, gas, other energy | QFI,
DF,
SBM
Zhou Eight world GDP, CO, Energy consumption DF
et al. (2008) regions emissions
Zhou Electricity genera- | Electricity fossil fuel consumption DDF
et al. (2012) tion of generated, CO,
129 countries emissions
Zhou Chinese power Electricity pro- | Energy consumption, labor, | SBM

et al. (2013)

industry

duction, SO,
NOx, CO,

fixed assets investment

Malmquist productivity index should be more appropriate than an output-oriented
one. Honma and Hu (2009) propose a total-factor energy productivity index through
using an input-oriented Malmquist productivity index. With respect to computa-
tional aspect, their proposed index is solved by (3.7) and (3.8) introduced above that
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assumes all inputs can be radial adjusted. Of course, under a quasi-fixed inputs
assumption, one can use (3.11) to solve corresponding input distance functions.
Besides, Zhou et al. (2010) focus on the productivity growth of undesirable output
and introduce a total-factor carbon performance measure in the same manner.

In fact, there is a major problem in Malmquist productivity index if undesirable
outputs are presented in DEA models. That is, Shephard’s distance function cannot
satisfy the environmental technology that seeks to increase desirable outputs and
decrease undesirable outputs simultaneously. Therefore, Chambers et al. (1996)
construct a Luenberger productivity index based on directional distance functions
which can be solved by DEA methodology.® Regards to energy issue, Chang and
Hu (2010) introduce a total-factor energy productivity index using the Luenberger
productivity index to analyze the energy productivity growth in China. Although
their index assumes all inputs can be radial adjusted, one can solve the
corresponding input directional distance functions by aforementioned (3.18)
under a quasi-fixed inputs assumption.

The third index, so-called Malmquist-Luenberger productivity index proposed
by Chung et al. (1997), combines the features of the Malmquist and Luenberger
productivity indices. Specifically, the Malmquist-Luenberger index is based on
directional distance functions and has both of multiplicative and additive structures;
see Chung et al. (1997) for details. Because of the well behavioral assumption, the
Malmquist-Luenberger index has been adopted in evaluating environmental pro-
ductivity with undesirable outputs. Recently, both He et al. (2013) and Wang
et al. (2013) apply a total-factor Malmquist-Luenberger energy productivity to
investigate the energy productivity issue in China. In addition, since the
Malmquist-Luenberger index is constructed by directional distance functions, one
can solve those functions by using foregoing (3.18) indeed.

Finally, we also present an application of energy productivity change using
Chinese provincial data from 2010 to 2011. It is noted that input and output
variables are identical to Table 3.1 and all monetary values are 2010 prices.” The
results obtained for the Malmquist, Luenberger and Malmquist-Luenberger indices
are shown in Table 3.5.

Column two of Table 3.5 reports total-factor energy productivity changes using
the Malmquist index without considering SO, emission. Accordingly, 23 of
29 provinces present positive energy productivity growth during the period
2010-2011. Sichuan has the highest total-factor energy productivity growth rate
(80.1 %), while Qinghai is the worst one (—25.2 %). However, as shown in the last
two columns, the results obtained for Luenberger and Malmquist-Luenberger
indices are quite different from Malmquist index. If we consider SO, emission in
DEA models, only 11 provinces represent increases in total-factor energy produc-
tivity. Hunan is the worst performer, while the growth rate of Sichuan becomes a

Due to the flexibility of directional distance function, Boussemart et al. (2003) suggest that the
Luenberger productivity index is more appropriate than the Malmquist productivity index.

"The Chinese provincial data in 2011 is available on request to author.
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Table 3.5 Total-factor energy productivity growth for three indices of regions in China
(2010-2011)

ID Area Malmquist Luenberger Malmquist-Luenberger
Beijing E 0.038 —0.071 —0.075
Tianjin E 0.021 —0.024 —0.025
Hebei E 0.168 0.106 0.126
Shanxi C 0.230 —0.013 —0.015
Inner Mongolia w 0.185 —0.029 —0.030
Liaoning E 0.796 0.055 0.062
Jilin C 0.317 0.038 0.059
Heilongjiang C 0.255 0.028 0.045
Shanghai E 0.076 —0.091 —0.096
Jiangsu E 0.317 0.027 0.028
Zhejiang E 0.278 —0.039 —0.040
Anhui C 0.243 —0.010 —0.010
Fujian E 0.168 —0.043 —0.044
Jiangxi C —0.099 —0.023 —0.021
Shandong E 0.188 0.071 0.082
Henan C 0.094 —0.009 —0.010
Hubei C 0.438 0.030 0.043
Hunan C —0.187 —0.174 —0.174
Guangdong E 0.001 —0.120 —0.118
Guangxi w 0.175 —0.144 —0.142
Hainan E 0.376 —0.079 —0.082
Sichuan w 0.801 —0.067 —0.070
Guizhou w 0.457 —0.142 —0.124
Yunnan w 0.020 0.071 0.079
Shaanxi w —0.238 0.000 0.000
Gansu w 0.108 0.023 0.030
Qinghai w —0.252 —0.017 —0.027
Ningxia w —0.058 0.147 0.188
Xinjiang W —0.152 0.030 0.047

Note: E, W and C indicate east, west and central areas in China, respectively

negative number. In addition, only 12 provinces have the same sign of energy
productivity changes among three kinds of measures. These results echo the
conclusion of Table 3.3 that we may overestimate the energy productivity changes
in China if we ignore pollutant outputs in DEA models.

3.6 Concluding Remarks

Rather than traditional partial factor energy efficiency index, this paper introduces
the concept of total-factor energy efficiency (TFEE) index and how to compute it
through DEA methodology. This paper presents six well-known DEA models with
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different assumptions and discusses the link between TFEE and these models.
Specifically, four of them are standard DEA models which do not consider unde-
sirable outputs, while other two models assume environmental technology with
undesirable outputs in order to meet the real energy consumption process. More-
over, an application of China’s energy efficiency using each DEA model is illus-
trated in this paper. It is found that the TFEE index is sensitive to whether
undesirable outputs are presented in DEA models. We suggest that this finding is
reasonable since undesirable outputs are inevitably produced along with energy
consumption.

This paper further discusses two extended topics in energy efficiency research.
First, we review around 30 pieces of literature published recently and summarize
how to select relevant input and output variables. Second, with respect to a dynamic
analysis, we demonstrate three commonly-used productivity indices with or with-
out undesirable outputs to calculate total-factor energy productivity growth
between two periods. Therefore, it is believed that this paper is useful for
researchers and policy makers who have interest in energy efficiency issues.

References

Ali Al, Seiford LM (1993) The mathematical programming approach to efficiency analysis. In:
Fried HO, Lovell CAK, Schmidt SS (eds) The measurement of productive efficiency: tech-
niques and applications. Oxford University Press, New York, pp 120-159

Banaeian N, Zangeneh M (2011) Study on energy efficiency in corn production of Iran. Energy
36:5394-5402

Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale
inefficiencies in data envelopment analysis. Manage Sci 30:1078-1092

Bian Y, Yang F (2010) Resource and environment efficiency analysis of provinces in China: a
DEA approach based on Shannon’s entropy. Energ Policy 38:1909-1917

Blomberg J, Henriksson E, Lundmark R (2012) Energy efficiency and policy in Swedish pulp and
paper mills: a data envelopment analysis approach. Energ Policy 42:569-579

Boussemart JP, Briec W, Kerstens K, Poutineau JC (2003) Luenberger and Malmquist productiv-
ity indices: theoretical comparisons and empirical illustration. Bull Econ Res 55:391-405

Chang TP, Hu JL (2010) Total-factor energy productivity growth, technical progress, and effi-
ciency change: an empirical study of China. Appl Energy 87:3262-3270

Chang YT, Zhang N, Danao D, Zhang N (2013) Environmental efficiency analysis of transporta-
tion system in China: a non-radial DEA approach. Energ Policy 58:277-283

Chambers RG, Fire R, Grosskopf S (1996) Productivity growth in APEC countries. Pac Econ Rev
1:181-190

Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur
J Oper Res 2:429-444

Charnes A, Cooper WW, Golany B, Seiford LM, Stutz J (1985) Foundations of data envelopment
analysis for Pareto-Koopmans efficient empirical production functions. J Econometrics
30:91-107

Choi Y, Zhang N, Zhou P (2012) Efficiency and abatement costs of energy-related CO, emissions
in China: a slacks-based efficiency measure. Appl Energy 98:198-208

Chung YH, Fire R, Grosskopf S (1997) Productivity and undesirable outputs: a directional
distance function approach. J Environ Manage 51:229-240



3 Total-Factor Energy Efficiency and Its Extensions: Introduction. . . 67

Coelli TJ (1998) A multi-stage methodology for the solution of oriented DEA models. Oper Res
Lett 23:143-149

Coelli TJ, Rao DSP, O’Donnell CJ, Battese GE (2005) An introduction to efficiency and produc-
tivity analysis, 2nd edn. Springer, New York

Cooper WW, Seiford LM, Zhu J (2011) Data envelopment analysis: history, models, and inter-
pretations. In: Cooper WW, Seiford LM, Zhu J (eds) Handbook on data envelopment analysis,
2nd edn. Springer, New York, pp 1-39

De Borger B, Kerstens K (1996) Radial and nonradial measures of technical efficiency: an
empirical illustration for Belgian local government. J Product Anal 7:41-62

Fallahi A, Ebrahimi R, Ghaderi SF (2011) Measuring efficiency and productivity change in power
electric generation management companies by using data envelopment