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Foreword

It has been more than 40 years since the publication in 1975 of the definitive book,
Theory of Optimal Search, which dealt almost exclusively with the stationary target
search problem. Since then the theory has advanced to encompass search for targets
that move even as the search proceeds, and computers have developed sufficient
capability to employ the improved theory. The problem of how to search for moving
targets arises every day in military, rescue, law enforcement, and border patrol
operations. In this book the authors document and explain this expanded theory
of search and show how it can be applied.

Shortly after 1975, Scott Brown, Alan Washburn, Lawrence Stone, and others
began the development of a theory for solving optimal search for moving target
problems along with algorithms for computing optimal search plans. This theory is
applicable to problems where the target does not react to or anticipate the efforts
of the searcher. It assumes that search effort can be spread over the search area
without constraint except on the total amount of effort. When the searcher’s path is
constrained so that where search is applied at one time restricts where it can applied
at the next, these results do not apply. For years progress on this NP-complete class
of constrained searcher path problems was slow and difficult; the ability to solve
these problems was limited by the daunting computation complexity of finding
solutions. Recently, Johannes Royset and others have taken advantage of advances
in solving mixed-integer programs and optimal control problems to formulate and
solve constrained searcher path problems that involve multiple searchers and targets
as well as realistic operational constraints. Chapters 1, 2, 3, 4, 5, and 6 collect and
present the results of the work since 1975 in an accessible fashion with examples
that demonstrate how to apply the results to realistic problems.

This book begins with a review of basic results in optimal search for a stationary
target. It then develops the theory of optimal search for a moving target, providing
algorithms for computing optimal plans and examples of their use. Next, it develops
methods for computing optimal search plans involving multiple targets and multiple
searchers with realistic operational constraints on searcher movement. These results

v
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vi Foreword

all assume that the target does not react to the search. In the final chapter, there is
a brief overview of mostly military problems where the target tries to avoid being
found as well as rescue or rendezvous problems where target and searcher attempt
to cooperate.
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Chapter 1
Introduction

The problem of how to search for a moving target1 arises every day. Search
problems arise in military, rescue, law enforcement, and border patrol operations. In
military operations, the searchers may be aircraft looking for suspected individuals
or downed pilots in an area of interest. The U. S. Navy has a long history of
planning searches for adversarial submarines. Park rangers may search for lost
hikers. Almost every day someone is lost in a wilderness or rural area, and volunteer
search and rescue groups plan and execute searches to find them – Koester (2008).
In a damaged or burning building, fire fighters and ground robots may search for
trapped individuals. Law enforcement officers may act as searchers when looking
for criminals. Near national borders, the searchers may be border patrols seeking
illegal immigrants. The searchers may also be Coast Guard cutters and helicopters
scanning the ocean for smugglers.

The development of a formal theory of search was begun by Bernard O. Koop-
man and his colleagues during World War II in the U.S. Navy’s Operations Evalua-
tion Group. These results were collected and summarized in Koopman (1946) which
was initially a classified document. Koopman (1956a, b, 1957) published a series of
papers based on Koopman (1946) that presented the mathematical foundations of
search theory. In subsequent years, the theory was expanded and extended to a wide
range of problems involving both stationary and moving targets. See Benkoski et al.
(1991) for a survey of this work. By now this theory has been embodied in various

1We refer to the search object as the target even though it may be benign, for example a person lost
in the woods.
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2 1 Introduction

software suites for search plans and operations. For example the U. S. Coast Guard
regularly uses the Search And Rescue Optimal Planning System (SAROPS) to plan
searches for people and boats missing at sea – Kratzke et al. (2010).

Examples There have been a number of high-profile searches for stationary and
moving targets. The following are examples in which formal search planning played
an important role:

• The nuclear submarine, USS Scorpion, was lost in May 1968 on its way from the
Azores to its home port of Norfolk, Virginia. The search for Scorpion lasted from
May until October 1968 when the submarine was found on the ocean bottom. The
methods used to plan this search are discussed in Richardson and Stone (1971).

• The SS Central America, a ship carrying gold and passengers from San Francisco
to New York, sank in 1857. In 1988 after 2 years of searching the ocean bottom,
the ship was found at a depth of 8000 ft. In 1989 1 t of gold was recovered from
the wreck. See Stone (1992).

• Air France flight, AF 447, disappeared in the early morning hours of June 1, 2009
in a remote part of the Atlantic Ocean near the equator. The underwater wreckage
was found on April 3, 2001 almost 2 years after the plane disappeared. See Stone
et al. (2014).

• SAROPS was used to plan the search for a fisherman who fell overboard 40 miles
off the tip of Long Island in the early morning hours of July 24, 2013. He
drifted for almost 12 h before he was found alive and rescued by a Coast Guard
helicopter. See Tough (2014).

• Using search planning software based on the methods described in Chap. 3, the
U. S. Navy doubled its success rate when searching for Soviet submarines during
the cold war. Unfortunately, documentation of these searches is classified.

The following are two unsuccessful searches that might have benefitted from
better planning:

• Steve Fossett disappeared on September 3, 2007 in a remote area of Nevada
during a solo flight in a small aircraft. An intense search conducted by both
private parties and multiple government agencies was unsuccessful. Fossett’s
wreck was discovered in the eastern Sierra Nevada mountains by a hiker almost
1 year later. Keller (2009) describes an independent effort to direct search efforts
using search theory and optimization techniques and discusses why it was not
successful.

• On July 1, 1986, 9-year old Andrew Warburton left his relatives’ house in Nova
Scotia, where his parents were staying, to join friends at a swimming hole in the
woods a short distance from the house. After an extensive search he was found
dead from exposure on July 8 about 4 km from the house. This search is a tragic
example of poor and unsystematic search planning. See the Montreal Gazette
(1986).

http://dx.doi.org/10.1007/978-3-319-26899-6_3
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Expectations In this book the reader will find derivations of the main results in
optimal search for moving targets and algorithms for computing optimal plans.
Examples of using these algorithms to find optimal plans are presented along with
discussions of numerical complexity, references to tools and software, and links to
MATLAB code that implements some of the algorithms.

1.1 Search Problem

Finding the optimal search plan for a moving target often relies on being able to find
optimal search plans for stationary targets, so in Chap. 2 we begin with the problem
of search for a stationary target. We formulate the problem in Bayesian terms. For a
stationary target there is a prior distribution on the target’s location. We usually think
of the target’s location as being somewhere in a region of two or three dimensional
space or in a set of cells. For the moment let’s consider the situation where the target
is located in one of a set of cells. We have a sensor (e.g., our eye) that can detected
the target and a certain amount of search effort (e.g., time) available to detect the
target. There is a detection function that relates the amount of time that we search
(look) in a cell to the probability of detecting the target given it is in that cell. The
basic stationary search problem is to allocate the available search effort among the
cells to maximize the probability of detecting the target.

For a moving target, we specify a probability distribution on the target’s initial
location and provide a probabilistic description of how the target moves through
space. This determines the target’s motion model, i.e., the probability distribution
on the set of possible target paths over the time period of interest. Let T be the time
available for search. At each time t D 0; : : : ;T; the target is located in a one of
the cells, and just before time t C 1 , it can move to another cell as determined by
the target motion model. We have a limited amount of search effort available at each
time. The basic moving target search problem is to find an allocation of search effort
in space and time that maximizes the probability of detecting the target by time T
while satisfying the search effort constraints.

Except for Chap. 7, we assume that the target’s motion is independent of the
search effort. The target can move, but it does not react to the search. This is called
a one-sided search problem. In addition, Chaps. 2, 3 and 5 assume that the placement
of search effort is unconstrained. For example, if search is placed in a cell at time
t, the search at time t C 1 can be in any cell in the search space. If search effort is
continuous, it is infinitely divisible over the search space at no cost to the searcher.
The case where the placement of search effort at time t constrains where search
effort can be placed at time tC1 presents an interesting and difficult search problem
called the constrained searcher path problem. This problem is addressed in Chaps.
4 and 6.

The following sections describe the contents of the chapters.

http://dx.doi.org/10.1007/978-3-319-26899-6_2
http://dx.doi.org/10.1007/978-3-319-26899-6_7
http://dx.doi.org/10.1007/978-3-319-26899-6_2
http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_5
http://dx.doi.org/10.1007/978-3-319-26899-6_4
http://dx.doi.org/10.1007/978-3-319-26899-6_6
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1.2 Chapter 2: Search for a Stationary Target

Optimal search for a stationary target is covered extensively in Stone (2007).
Chapter 2 provides an overview of the basic results in this area. These results are
sufficient to allow the reader to use and understand this book without having to refer
to Stone (2007). This chapter defines the search space and prior distribution on target
location in discrete and continuous space. It discusses search sensors and some basic
notions of detection modeling, including lateral range curves, sweep widths, and
detection functions. It develops methods for finding search plans that maximize the
probability of detecting the target by a fixed time and explores related optimal search
problems such as minimizing the mean time to find the target. It presents algorithms
that may be used to compute optimal plans for stationary targets in most cases.

Stone (2007) extends the results presented in this chapter primarily in the
generality of its results and by covering topics such as optimal search and stop,
search in the presence of false targets, and approximation of optimal plans.

1.3 Chapter 3: Search for a Moving Target in Discrete Space
and Time

The simplest moving target problems are those that take place in discrete space and
time. The target state space is a set of J cells, for example a two-dimensional grid of
cells. There is a probability distribution on the target’s location at time t D 0. The
target motion model specifies, in a probabilistic fashion, how the target moves from
a cell at time t to a cell at time t C 1.

At each time t D 0; : : : ;T we have a fixed amount m(t) of search effort available.
Effort may be available in discrete glimpses or in continuous amounts. A search
allocation specifies the amount of search effort f (j, t) to be spent in cell j at time t
for t D 0; : : : ;T and j D 1; : : : ; J:

This chapter presents necessary and sufficient conditions for a discrete-time-and-
space search plan to maximize probability of detection by time T. Such plans are
called T-optimal. When the detection function is exponential, the necessary and
sufficient conditions can be stated in terms of optimal search for a stationary target
as follows. If f * is a T-optimal plan, then for each t D 0; : : : ;T; the allocation of
effort at time t, f � .�; t/ ; is an optimal allocation of m(t) effort for the stationary
target problem whose distribution is obtained by conditioning on the failure of the
search at all times other than t.

In this case one can find a T-optimal search plan by finding a sequence of optimal
stationary target plans, and this chapter presents an efficient algorithm for doing
this. In theory, the algorithm requires one to solve an infinite number of stationary
target problems to construct moving target plans that converge to the T-optimal
search plan. To alleviate this problem, this chapter shows how to compute an upper
bound on how far from optimal the present plan in the sequence is. Usually, moving

http://dx.doi.org/10.1007/978-3-319-26899-6_2
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target plans obtained through solving this sequence of optimal stationary target
plans converge quickly to a plan that is close to optimal.

The algorithm for finding T-optimal plans proceeds by going forward from time
t D 0 to time t D T finding optimal allocations for a stationary target at those
times and constructing a moving target plan from them. It then goes back to t D 0

and repeats the process. We call this a Forward And Backward (FAB) algorithm.
Chapter 3 finishes with a more general version of this FAB algorithm that applies to
a range of search-related problems.

1.4 Chapter 4: Path Constrained Search in Discrete Time
and Space

This chapter considers search problems where the targets move according to Markov
or conditionally deterministic models and there are one or more searchers whose
movements are constrained. In particular if a searcher is in cell j at time t, there is
a restricted set F.j/ to which it can move at time t C 1; i.e., the searcher’s path is
constrained. In the case of a single searcher and single target, the chapter presents
a branch and bound algorithm for finding T-optimal plans. The chapter proceeds
to more complex and operationally realistic problems where there are multiple
searchers and multiple targets, for example, multiple drones looking for multiple
targets. The searchers as well as the targets can have different characteristics. For
this class of problems, a more general and flexible mathematical programming
approach is developed. Using this approach, a number of examples are computed
to illustrate the types of problems that can be solved by this method.

1.5 Chapter 5: Search for Moving Targets in Continuous
Space

In Chap. 5, the search space is continuous, e.g., the plane. In continuous space,
search plans are specified in terms of search density functions and probability
distributions are specified by probability density functions. For discrete time, we
find necessary and sufficient conditions for a T-optimal plan. When the detection
function is exponential, we show that a necessary and sufficient condition for a
search plan f * to be T-optimal is that f � .�; t/ is an optimal allocation of m(t) effort
for the stationary target whose distribution is obtained by conditioning on the failure
of the search at all times other than t. As in Chap. 3, this leads to an algorithm for
finding T-optimal plans that proceeds by solving a sequence of stationary target
problems which can be solved by the methods in Chap. 2.

The remainder of the chapter considers continuous-space search problems in
continuous time and more general payoff functions than probability of detection.

http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_5
http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_2
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It finds necessary and sufficient conditions for this more general class of payoff
functions. It identifies, as special cases, all the payoff functions mentioned in
Chap. 3 including minimizing mean time to detection and the class of FAB payoff
functions.

1.6 Chapter 6: Constrained Search in Continuous Time
and Space

In many search applications such as those involving the use of drones to search
for moving targets such as smugglers trying to cross a border or the use of
unmanned underwater vehicles to detect transiting submarines trying to penetrate
a barrier, it is natural to consider search paths in continuous time and space. In most
instances, the search platforms will have constraints on their speed, turn radius,
and other performance parameters. In these cases we are faced with the problem
of finding optimal search paths in continuous time and space subject to constraints.
This chapter addresses this problem as an uncertain optimal control problem and
develops approximate solutions that may be found using standard optimization
solvers. This approach is illustrated with a number of examples involving one or
more searchers and targets.

1.7 Chapter 7: Search Games

There are three possibilities for the attitude of the target of search. The first
possibility is that the target does not care whether it is found or not, or does not know
that a search is being conducted, or is not sentient. This is the most important of the
three possibilities, and is covered in the previous chapters. A second possibility
is that the target would prefer not to be found. This is often the case in military
applications, and is the subject of Sect. 7.2. The applicable theory for this case is
that of two-person zero-sum games. The third possibility is that the target would like
to be found, and is aware that a search is being conducted for it. The target and the
searcher now have the same goal, but are unable to communicate. This is the theory
of rendezvous search that is summarized in Sect. 7.3.
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Chapter 2
Search for a Stationary Target

Many algorithms for computing optimal search plans for a moving target rely on
being able to compute optimal plans for a stationary target. This chapter provides
an overview of the standard models and results for optimal search for a stationary
target. It discusses search sensors and some basic notions of detection modeling,
including lateral range curves, sweep widths, and detection functions. It defines the
search space and the prior distribution on target location in discrete and continuous
space. It develops methods for finding search plans that maximize the probability
of detecting the target by a fixed time and explores related optimal search problems
such as minimizing the mean time to find the target. It presents algorithms that may
be used to compute optimal plans in most cases. Optimal search for a stationary
target is covered more extensively in Stone (2007).

2.1 Prior Distributions

We assume there is a prior distribution on the target’s location. This distribution
captures our knowledge and uncertainty about the target’s location. Typically this
distribution includes subjective as well as objective information whose uncertainties
have been expressed in terms of probability distributions.

We usually think of the target’s location as being somewhere in a region of two
or three dimensional space or in a set of cells. First let’s consider the situation where
the target is located in one of a set of cells. The cells most often refer to physical
locations, but that is not necessary.

© Springer International Publishing Switzerland 2016
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10 2 Search for a Stationary Target

2.1.1 Discrete Prior Distributions

A discrete prior is a probability distribution on a set of J cells. For simplicity, we
assume that the number of cells is finite and that the cells are numbered j D 1; : : : ; J:
The cells can represent discrete locations or cells in a grid; they can represent any
situation where the target can be in one of a finite set of locations. We use the term
cell generically to mean any of these possibilities. A discrete prior specifies the
probability p(j) that the target is in cell j for j D 1; : : : ; J; and we assume

XJ

jD1p.j/ D 1:

Even when the target search space is continuous, it is often convenient to
impose a grid of cells on the space and approximate the underlying target location
distribution with a cellular one as was done in the search for the SS Central America,
which sank off the coast of South Carolina during a September hurricane in 1857.
The ship was carrying passengers and a large amount of gold bars and coins from
San Francisco to New York. Figure 2.1 shows the probability map prepared for

Fig. 2.1 Probability map for the location of the SS Central America. The probabilities are
multiplied by 1000. Pluses indicate cells with probabilities between 0 and 0.001. The Ellen and
Marine are ships that were in the vicinity of the Central America when it sank. Herndon was the
Captain of the Central America and Badger a passenger. They both provided estimates for the
location where the ship sank
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the successful search for this wreck. Stone (1992) developed this map by using a
Monte Carlo simulation with 12,000 points to estimate the location of the wreck.
The ocean bottom was gridded into 4 nmi by 4 nmi cells. The simulation was based
on historical information on the location of the wreck in ships, logs, newspaper
reports, and accounts of surviving passengers. The number of points in each cell
was divided by 12,000 to produce the probability in that cell.

The U. S. Coast Guard uses the Search and Rescue Optimal Planning System
(Kratzke et al. (2010)) to plan maritime searches for people and ships missing at
sea. The probability maps produced by this system are gridded for display purposes
with the cells color-coded to represent the probabilities in the grid cells.

2.1.2 Continuous Prior Distributions

Prior distributions on continuous spaces such as those on regions of two or three-
dimensional space are specified in terms of a probability density function. When the
search space S is the plane, two standard priors are the uniform and the Gaussian
distributions.

Uniform Prior The uniform prior distribution over a region R in the plane with
area A is given by

pu.x/ D
�
1=A for x 2 R
0 otherwise: (2.1)

Gaussian Many times a search begins with an uncertain estimate of the target’s
last known location based on sensor report such as a radar measurement or a visual
sighting. Experience and testing has shown that errors in the measurements from
many sensors have a Gaussian or normal distribution. As a result, the uncertainty
in the last known location is often modeled by a bivariate normal probability
distribution.

For convenience we use the (x1, x2) coordinate system with (0, 0) at the mean
of distribution and oriented so that the distribution of the target’s x1 coordinate is
independent of its x2 coordinate. Let �1 and �2 be the standard deviations of the
distributions on these two coordinates. The prior density function for the target’s
location is

pG .x1; x2/ D 1

2��1�2
exp

�
�1
2

�
x21
�21

C x22
�22

��
for .x1; x2/ 2 S: (2.2)

Figure 2.2 shows a plot of this probability density function for the special case where
�1 D �2. This is called a circular normal density function.
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Fig. 2.2 Circular normal density function. Distances are in units of �1 D �2

2.2 Detection Models

To allocate search effort optimally, we must have a model for the probability of
detection as a function of effort. In general one has to consider the possibility of
false alarms, but for this discussion we assume that our sensor produces no false
detections, that is, only true detections are reported. In this section we give a brief
overview of some basic detection models. Detection modeling is discussed in more
detail in Koopman (1946, 1956a, b, 1980) and Washburn (2014). See Stone (2007)
Chap. 6 for a discussion of false alarms in search problems.

Let us begin by considering search in a rectangular region of area A. Suppose
that we are searching with a sensor that has detection range R and that the sensor
has perfect detection capability within this range. If the sensor passes within range
R of the target, it will detect the target with probability 1. This is called a definite
range law of detection. In this case,

W D 2R (2.3)

is the sweep width of the sensor. It is the width swept “clean” by the sensor as it
moves through the search region. If the sensor searches over a path of length l in
the rectangle, then search effort (swept area) is lW, and the search effort density (or
coverage) is lW/A.

http://dx.doi.org/10.1007/978-3-319-26899-6_6
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2.2.1 Detection Functions

Suppose the sensor performs a parallel track search as shown in Fig. 2.3 with paths
spaced exactly W distance apart. Then the probability of detecting the target as
a function of search effort density given the target is in the rectangular region is
shown by the straight line in Fig. 2.4. Once the effort density reaches one, no further
increase in detection probability is possible.

Often it is not possible to place the search tracks exactly one sweep width apart so
that unintended gaps and overlaps occur. This will degrade the detection probability.
In the limit, as our ability to place the effort where desired degrades, we come to
a situation where each increment of search effort is placed according to a uniform
distribution over the rectangle and is independent of where the previous increments
have been placed. However, we still assume that all effort falls within the rectangle.
This limiting case yields the exponential detection function which is shown in
Fig. 2.4 and derived below. This function is also called the random search function

Fig. 2.3 Parallel track search
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or formula. Generally, the effectiveness of a parallel track search falls between the
definite range and exponential detection functions. This will be the case for the
inverse cube detection function derived in Sect. 2.2.2

Derivation of the Exponential Detection Function The derivation of the expo-
nential detection function was first given by Koopman (1946, 1956b). The mathe-
matical assumptions yielding the exponential detection function are the following.

• The location of each small increment of search effort follows a uniform distribu-
tion over the rectangle, and disjoint increments are distributed independently.

• No effort falls outside the rectangle.

Let b(l) be the detection probability resulting from a search of track length l. Let
h be a small increment of search effort (track length). Then

.1 � b.l//
hW

A

is the probability of failing to detect the target with effort l but succeeding on the
next increment h. Thus

b .l C h/ D b.l/C .1 � b.l// hW
A and

b0.l/ D lim
h!0

b.lCh/�b.l/
h D .1 � b.l// W

A

Since b.0/ D 0, the above differential equation has the well-known solution

b.l/ D 1 � exp .�lW=A/ for l � 0: (2.4)

In terms of the search density z D lW=A and (2.4) becomes

b.z/ D 1 � e�z for z � 0 (2.5)

which is the exponential detection function in Fig. 2.4.
Although the assumptions under which the exponential detection function is

proved are somewhat artificial, it provides a useful lower bound on the effectiveness
of a search in which we apply search effort uniformly over a rectangle. This is
illustrated in Fig. 2.5 where we have plotted the fraction of the rectangle covered by
a parallel path search with a sensor with a definite range law of detection and sweep
width W D 2R as in (2.3). There are 100 paths, and the intended spacing of the paths
is equal to W, but we assume that the placement of each path has an independent
Gaussian error with mean 0 and standard deviation � . We performed Monte Carlo
trials to compute the fraction of the rectangle covered by one or more of the paths.
The dark line shows the expected fraction of the rectangle covered while the lighter
lines indicate the standard deviation of the results from the mean. One can see that
as � /W reaches 5, the expected fraction of the rectangle covered becomes close to
1 � e�1 D 0:63 as predicted by (2.5).
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2.2.2 Lateral Range Functions

To define the lateral range function, we imagine a sensor passing a target while
following a long, straight-line path as shown in Fig. 2.6. The range r at the point
of closest approach of the track to the target is the lateral range. Lateral ranges are
signed so that if the target is to the right of sensor as in the figure, the lateral range
is positive. Let ld(r) be the probability of detecting the target when the sensor passes
at lateral range r. Using the lateral range curve, we extend the definition of sweep
width given in (2.3) to be

W D
Z 1

�1
ld.r/dr: (2.6)
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A sensor with a definite range law has the following lateral range function.

ld.r/ D
�
1 for � R � r � R
0 otherwise

and sweep width W D 2R as in (2.3).
One can show that the proof of the exponential detection function applies to

sensors with the more general definition of sweep width given in (2.6).

Inverse Cube Lateral Range Function The inverse cube lateral range function
was developed by Koopman (1946) and his colleagues to model visual detection
of ship wakes. It is used by the U. S. Coast Guard, IAMSAR (2008), as one of its
standard detection models for visual search. Koopman (1946, 1956b) derives this
lateral range function under the following assumptions; see also Washburn (2014).

• The observer is at height h above the target which is on the ocean surface.
• The observer detects the target by seeing its wake.
• The instantaneous probability of detection � is proportional to the solid angle ˛ˇ

subtended by the wake from the observer as shown in Fig. 2.7.

The solid angle subtended by a wake represented by the rectangle with sides of
length a and b is the product of the angles ˛ and ˇ where the angles are measured
in radians. Looking at the left-hand side of Fig. 2.7, we see that ˛ D c=s and by
similar triangles that c=a D h=s so that ˛ D ah=s2. Since ˇ D b=s, we see that the
solid angle is

˛ˇ D abh

s3
D Ah

s3
D Ah

.h2 C r2/3=2
(2.7)
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Fig. 2.7 Solid angle subtended by a wake of width a and length b
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where A D ab is the area of the rectangle. Since � is proportional to the solid angle,
we have for some constant k

� D kAh

.h2 C r2/3=2
;

and when r is much larger than h

� � kAh

r3
: (2.8)

The constant k is determined by considerations such as sea state, visibility, and type
of target.

Let � (t) be the instantaneous detection rate at time t so that � (t)dt is the detection
probability in a small increment of time dt. We further suppose that detection is
independent over disjoint time intervals. Let p(t1, t2) be the probability of detection
over time [t1, t2] and q .t1; t2/ D 1 � p .t1; t2/. Then

q .t1; t C dt/ D q .t1; t/ .1 � �.t/dt/ ;

so that

dq .t1; t/

dt
D ��.t/q .t1; t/ :

Solving this differential equation, we obtain,

q .t1; t/ D exp

�
�
Z t

t1

�.t/dt

�
and p .t1; t/ D 1 � exp

�
�
Z t

t1

�.t/dt

�
: (2.9)

Suppose the observer passes the target at lateral range r0. For simplicity we
choose an (x, y) coordinate system so that the observer’s path goes from �1 to
1 on the y - axis at speed v and the target is located at (r0, 0). Let the observer’s
position at time t be (0, vt). From (2.8) we have

Z 1

�1
�.t/dt D

Z 1

�1
kAh

�
r20 C .vt/2

�3=2 dt D 2kAh

vr20
: (2.10)

So the probability of detecting the target at least once on a track which passes at
lateral range r0 is

ld .r0/ D 1 � exp

��2kAh

vr20

�
: (2.11)
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This is the “inverse cube” lateral range function. The inverse cube name refers to
the detection rate which is proportional to the inverse cube of the range of the target
from the sensor.

Inverse Cube Sweep Width From (2.11) we can compute the sweep width W for
an inverse cube lateral range function by

W D
Z 1

�1
ld .r0/ dr0 D

Z 1

�1

�
1 � exp

��2kAh

vr20

��
dr0 D 2

p
2�kAh=v: (2.12)

See Koopman (1956b).

Inverse Cube Detection Function Let us return to the rectangular search region
shown in Fig. 2.3 and consider a large number of long parallel search tracks that
are spaced a distance D apart. Again let’s choose the coordinate system so that the
tracks are parallel to the y - axis. The probability of detecting a target on a single
track depends only on the x coordinate of the target’s location and the value of the x
coordinate of the track. Let iD be the x coordinate of the i th track so that the lateral
range of the track to the a target at x is r0 D x � iD. Assume that detection on
one track is independent of that on any other. From (2.11) and (2.12) we have the
probability of failing to detect a target at x on track i is

exp

��2kAh

vr20

�
D exp

� �W2

4�.x � iD/2

�

and the probability of failing to detect on all tracks is

exp

�
�
X1

iD�1
W2

4�.x � iD/2

�
D exp

 
��
4

�
W

D

�2
csc

��x

D

�!
(2.13)

where the value of the infinite sum is found by the method described in Koopman
(1956b). If the distribution on the target’s location is uniform over the rectangle, the
probability of detection is

b .W=D/ D 1 � 1

D

Z D

0

exp

 
��
4

�
W

D

�2
csc

��x

D

�!
dD D 2ˆ

�r
�

2

W

D

�
� 1

(2.14)

where ˆ is the cumulative distribution function for a Gaussian distribution with
mean 0 and the variance 1; see Koopman (1956b). Taking z D W=D as search
density, we obtain the inverse cube detection function in Fig. 2.4 which falls between
the definite-range and exponential detection function.

When the Coast Guard uses this detection function, the search planner refers to
a set of tables (see Coast Guard (2010, Appendix H)) which give sweep width for
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visual search as a function of the type of search object, visibility, sea state, altitude,
and speed of the searching aircraft. The choice of sweep width implicitly determines
the value of k in (2.12).

2.3 Optimal Search for a Stationary Target

The basic problem of optimal search for a stationary target has the following
elements.

• A prior distribution on a discrete or continuous search space
• A detection function relating search effort (density) to probability of detection
• A function that specifies the allocation of search effort (search plan)
• A goal of finding the allocation that maximizes the probability of detecting the

target subject to a constraint on cost.

2.3.1 Discrete Search Space: Continuous Effort

In this section we derive the solution to the optimal stationary target search problem
for discrete state space and continuous effort. We begin by defining the elements of
this problem in a mathematical fashion.

Prior Distribution The prior distribution is given by p(j), the probability that the
target is cell j for j D 1; : : : ; J with

XJ

jD1p.j/ D 1: (2.15)

For convenience we assume p.j/ > 0 for j D 1; : : : ; J:

Detection Function For each cell j, there is a detection function

b .j; z/ D Pr fdetecting target with effort z j target in cell jg for z � 0:

Let b0(j, z) be the derivative of b(j, z) with respect to z. We assume that b0(j, z) is
a positive, continuous, and strictly decreasing function of z with b0 .j; z/ < 1: We
call this a decreasing-rate detection function.

Cost Function The cost of applying z effort in cell j is c(j)z where c.j/ > 0 for
j D 1; : : : ; J: Frequently, c.j/ D 1 in which case the cost constraint is on effort.

Rate of Return Function For j D 1; : : : ; J, define the rate of return function as

� .j; z/ D b0 .j; z/ p.j/=c.j/ for z � 0: (2.16)
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Since b0(j, z) is a positive, continuous, and strictly decreasing function of z, the
rate of return function shares these properties. A decreasing rate of return function
means that each new increment of search effort applied to the cell j produces a
smaller ratio of increase in detection probability to increase in cost. In economics,
this is called a decreasing rate of return. The decreasing rate of return property is
common to most detection functions, e.g., the exponential detection function.

Allocation Function A search plan is an allocation function f (j), j D 1; : : : ; J;
where f (j) is the amount of search effort allocated to cell j. We require that f .j/ � 0

for all j. Let F be the set of allocation functions.

For an allocation f we compute the probability of detection by

P.f / D
XJ

jD1b .j; f .j// p.j/ (2.17)

and the cost by

C.f / D
XJ

jD1c.j/f .j/: (2.18)

Optimal Allocation Let K > 0 be a constraint on cost. Then f � 2 F is optimal for
cost K if

C
	
f �
 � K and P

	
f �
 � P.f / for all f 2 F for which C.f / � K: (2.19)

2.3.1.1 Discrete-Space Lagrangian Optimization

The concept of rate of return is crucial for finding optimal search plans. In this
section we show how to find optimal plans for decreasing-rate detection functions
by allocating effort so that the rate of return for the next small increment of effort
is equal to a common value across all cells receiving search effort and equal to or
lower than that value for cells receiving no effort. We will designate this rate of
return by �.

Fix a rate of return � > 0. For each cell j, find f�.j/ � 0 such that � .j; f�.j// D �

if that is possible. If this not possible, then � .j; 0/ < �; and we set f�.j/ D 0. In
summary, f� satisfies the following conditions.

� .j; f�.j// D b0 .j; f�.j// p.j/=c.j/ D � if f�.j/ > 0
� � if f�.j/ D 0:

(2.20)

Because of the decreasing-rate property of b, we can show that f� is an optimal
search allocation for cost C(f�). We will do this below. By choosing different values
of � we can generate optimal plans for different costs. If we want to find an optimal
plan for cost K, we need to find a � such that C .f�/ D K: If b is a decreasing-rate
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detection function, then C(f�) will be a decreasing function of � which means one
can easily find the desired value of � by a numerical one-dimensional search.

In the following discussion we develop an algorithm for finding optimal search
plans for any desired cost and provide an example where we can solve for the
optimal allocation function explicitly. We first show that f� is optimal for cost C(f�).
The proof of optimality depends on a Lagrange multiplier argument, where the rate
of return � is used as the Lagrange multiplier.

Define the discrete-space pointwise Lagrangian l by

l .j; z; �/ D b .j; z/ p.j/� �c.j/z for j D 1; : : : ; J; z � 0; and � > 0: (2.21)

Then

l0 .j; z; �/ D b0 .j; z/ p.j/� �c.j/ (2.22)

is the derivative of l(j, z,�) with respect to z.

Theorem 2.1: Lagrangian Optimization Theorem for Discrete Space
and Continuous Effort Suppose the allocation f � 2 F maximizes the pointwise
Lagrangian for some � > 0; i.e., for all 1 � j � J

l
	
j; f �.j/; �


 � l .j; z; �/ for z � 0: (2.23)

Then f * is optimal for cost C(f *).

Proof Let f be any allocation in F such that C.f / � C .f �/. By (2.23)

l
	
j; f �.j/; �


 � l .j; f .j/; �/ for 1 � j � J;

and it follows that

XJ

jD1l
	
j; f �.j/; �


 �
XJ

jD1l .j; f .j/; �/
P .f �/ � �C .f �/ � P.f /� �C.f /
P .f �/ � P.f / � � ŒC .f �/� C.f /� � 0:

Thus f * is optimal for cost C(f *). This proves the theorem.

Corollary 2.1 Suppose b is a deceasing-rate detection function. If for some � > 0,
the allocation f � 2 F satisfies

l0
	
j; f �.j/; �


 D 0 for f �.j/ > 0

� 0 for f �.j/ D 0 for j D 1; : : : ; J;
(2.24)

then f * is optimal for cost C(f *).
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Proof Since b is a decreasing-rate detection function, l(j, z,�) is a concave function
of z for z � 0: If f �.j/ > 0, then by (2.24), the derivative l0(j, f * (j),�) is 0 at
an interior point of the interval Œ0;1/, and this point is the maximum of l(j, z,�)
for z � 0: If f �.j/ D 0; then since b0 is decreasing it follows from (2.24) that
l0 .j; z; �/ � 0 for z � 0 and the maximum of the Lagrangian occurs at the end point
z D 0: Thus f * maximizes the pointwise Lagrangian and is optimal for cost C(f *).

Bounded Allocation Functions There may be times when there is an upper bound
B > 0 on the search effort that can be placed in a cell. In this case we can employ
the discrete-space Lagrangian optimization in modified form. Let FB be the set of
allocation functions f such that

0 � f .j/ � B for j D 1; : : : ; J:

Theorem 2.10: Lagrangian Optimization Theorem for Discrete Space
and Bounded Continuous Effort Suppose the allocation f � 2 FB maximizes
the pointwise Lagrangian for some � > 0; i.e., for all 1 � j � J

l
	
j; f �.j/; �


 � l .j; z; �/ for 0 � z � B: (2.25)

Then f * is optimal for cost C(f *) over f 2 FB:

Corollary 2.10 Suppose b is a deceasing-rate detection function. If for some � > 0,
the allocation f � 2 FB satisfies

l0 .j; f �.j/; �/ � 0 for f �.j/ D B
D 0 for 0 < f �.j/ < B
� 0 for f �.j/ D 0 for j D 1; : : : ; J;

(2.26)

then f * is optimal for cost C(f *).

The proofs of Theorem 2.10 and Corollary 2.10 are straight-forward extensions of
the proofs of Theorem 2.1 and Corollary 2.1.

The Lagrangian Optimization Theorem given above and the continuous space
form given in Sect. 2.3.3 are due to Everett (1963). Chapter II of Stone (2007)
shows that conditions (2.23) are also necessary for optimality for decreasing-rate
detection functions.

2.3.1.2 Optimal Plan: Discrete Space, Continuous Effort

We now present an algorithm for computing the optimal search plan for discrete-
space, continuous-effort search with a decreasing-rate detection function. Since
the detection function is decreasing-rate, it is concave and one can use standard
constrained optimization routines such as the ones provided by MATLAB to find
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optimal plans. We present the method below because it provides insight into the
nature of the optimal plan and generalizes easily to a continuous search space.

If b is a decreasing-rate detection function, then � .j; �/ is a continuous, strictly
decreasing function. Observe that,

� .j;1/ � lim
z!1� .j; z/ D 0 for 1 � j � J:

As a result, the inverse function ��1 .j; �/ exists and is defined on .0; � .j; 0/� : It
satisfies

�
	
j; ��1 .j; �/


 D � for 0 < � � � .j; 0/ and 1 � j � J: (2.27)

For convenience define ��1 .j; �/ D 0 for � > � .j; 0/ : Now let

f�.j/ D ��1 .j; �/ for 0 < � < 1 and 1 � j � J: (2.28)

Then f� satisfies

l0 .j; f�.j/; �/ D 0 for f�.j/ > 0
� 0 for f�.j/ D 0;

and by Corollary 2.1, f� is optimal for cost C(f�).
We can now generate optimal plans by the use of (2.28). To do this we define

K .�/ D
XJ

jD1c.j/�
�1 .j; �/ for � > 0: (2.29)

One can verify that K is a continuous function of � with following properties

K .�/ D 0 for � � �max � max
j

� .j; 0/

lim
�!0

K .�/ D 1:

Furthermore K is strictly decreasing from 1 to 0 as � increases from 0 to �max, so
the inverse function K�1 exists and is defined on .0;1/ : It satisfies

K�1.K/ D � such that C .f�/ D K for � > 0: (2.30)

Thus, for any cost K > 0, we may set � D K�1.K/ and obtain a plan f� from (2.28)
that is optimal for cost K.

Bounded Allocation Functions If the allocation functions are bounded by B > 0,
then we can use the method described above to find an optimal plan f � 2 FB for
cost K by modifying ��1 as follows. Define

��1
B .j; �/ D min

˚
B; ��1 .j; �/

�
for 0 < � � � .j; 0/ :
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Clearly ��1 D ��1
B when B D 1: With this in mind, we can replace ��1 by ��1

B
in (2.29) and solve for the optimal plan FB with this modified definition of K. If
B < 1, then there will be a maximum amount of effort that can be allocated to the
search.

Usually one has to compute K numerically to find the � that produces K .�/ D
K and obtain f� in (2.32). Section 5.2 of Washburn (2014) gives an algorithm for
finding � in a finite number of steps when the detection function is exponential and
B D 1: Since K is decreasing, a simple one-dimensional search can be used to find
the necessary �.

Optimal Allocation for Cost K We now summarize the method described above
for finding optimal allocations.

Algorithm
Optimal Search Plan for Cost K � JB

Discrete Space, Continuous Effort

Assume b is a decreasing-rate detection function. Let 0 < B � 1.
Define

� .j; z/ D b0 .j; z/ p.j/=c.j/ for 0 � z � B and 1 � j � J

K .�/ D
XJ

jD1c.j/�
�1
B .j; �/ for � > 0:

(2.31)

Compute

� D K�1.K/ and
f�.j/ D ��1 .j; �/ for 0 < � < 1 and 1 � j � J:

(2.32)

Then f� is optimal within FB for cost K.

2.3.1.3 Optimal Plan: Discrete Space, Exponential Detection Function

In this example, we are able to compute the optimal plan analytically. Suppose Aj >

0 is the area of cell j and Wj > 0 is the sweep width of the sensor in cell j. Let

b .j; z/ D 1� exp
	�Wjz=Aj



for z � 0; 1 � j � J:

be the detection function where z is measured in units of track length. For
convenience of notation, let

˛j D Wj=Aj for 1 � j � J:

The ratio ˛j may be thought of as an efficiency coefficient. Search is more
efficient or effective in cells with higher values of ˛j. We have

http://dx.doi.org/10.1007/978-3-319-26899-6_5


2.3 Optimal Search for a Stationary Target 25

� .j; z/ D p.j/
c.j/ ˛j exp

	�˛jz



and

��1 .j; �/ D � 1
˛j

h
ln
�

c.j/
˛jp.j/

�
�iC (2.33)

where

aC D
�

a if a � 0

0 otherwise:

Order the cells so that

p.1/

c.1/
˛1 � p.2/

c.2/
˛2 � � � � � p.J/

c.J/
˛J : (2.34)

If one thinks about the optimal search developing in time, then search begins in
cell 1, which has the highest rate of return, and continues solely in that cell until it
reaches the effort z where

p.1/

c.1/
˛1 exp .�˛1z/ D p.2/

c.2/
˛2; (2.35)

i.e., when

z D 1

˛1
Œln .˛1p.1/c.2//� ln .˛2p.2/c.1//� : (2.36)

Search then expands into cell 2 so that additional effort z1 and z2 in cells 1 and 2
satisfies

�
p.1/

c.1/
˛1 exp .�˛1z/

�
e�˛1z1 D

�
p.2/

c.2/
˛2

�
e�˛2z2 (2.37)

to maintain the equality of the rates of return. This implies ˛1z1 D ˛2z2. Search
will continue this way until it expands into the third cell after which the incremental
effort will be added to each cell in inverse proportion to ˛j for j D 1; 2; 3: If the
search is unsuccessful, this process will continue until cell j is receiving increments
of effort that are proportional to 1/˛j for j D 1; : : : ; J:

Let

yj D ln
	
˛jp.j/c .j C 1/


 � ln
	
˛jC1p .j C 1/ c.j/



for 1 � j � J � 1: (2.38)

From the discussion above we can see that yj/˛j is the amount of effort placed in
cell j before the search expands to cell j C 1 and that

1

˛j

Xi

kDj
yk for 1 � j � i
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is the total effort allocated to cell j before the search expands to cell i C 1: From this
we calculate that

Xi

jD1
1

˛j

Xi

kDj
yk

is the total effort place in all cells before search expands to cell i C 1: The cost of
this effort is

G.i/ D
Xi

jD1
c.j/

˛j

Xi

kDj
yk for 1 � i � J � 1: (2.39)

To find an allocation f * that is optimal for cost 0 < K � G .J � 1/ ; set G.0/ D 0

and find the value of i for which G .i � 1/ < K � G.i/. Set

a D K � G .i � 1/

G.i/ � G .i � 1/ :

Then

f �.j/ D
8
<

:

1
˛j

Xi�1
kDj

yk C a

˛j
yi for 1 � j � i

0 for j > i:
(2.40)

is optimal for cost K. In (2.40) we follow the convention that the sum over an empty
set of indices is 0.

If K > G .J � 1/, set

a D .K � G .J � 1// =
XJ

jD1c.j/=˛j:

Then f * defined below is optimal for cost K. Specifically,

f �.j/ D 1

˛j

XJ�1
kDj

yk C a

˛j
for 1 � j � J: (2.41)

We summarize this method of finding optimal allocations in the following
algorithm description.

Algorithm
Optimal Search Plan for Cost K

Discrete Space, Exponential Detection Function, B D 1
Let ˛j D Wj=Aj; and order the cells so that

p.1/

c.1/
˛1 � p.2/

c.2/
˛2 � � � � � p.J/

c.J/
˛J : (2.42)

(continued)
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Compute

yj D ln
	
˛jp.j/c .j C 1/


� ln
	
˛jC1p .j C 1/ c.j/



for 1 � j � J � 1:

Set G.0/ D 0; and compute

G.i/ D
Xi

jD1
c.j/

˛j

Xi

kDj
yk for 1 � i � J � 1: (2.43)

If G .i � 1/ < K � G.i/ for some 1 � i � J � 1; set

a D K � G .i � 1/

G.i/� G .i � 1/ and

f �.j/ D
8
<

:

1
˛j

Xi�1
kDj

yk C a

˛j
yi for 1 � j � i

0 for j > i:

Then f * is optimal for cost K.
If K > G .J � 1/ ; set

a D K � G .J � 1/
XJ

jD1c.j/=˛j

and

f �.j/ D 1

˛j

XJ�1
kDj

yk C a

˛j
for 1 � j � J:

Then f * is optimal for cost K.

The algorithm given above is due to Charnes and Cooper (1958).

Leveling the Posterior Distribution In the case where all the cost coefficients
c(j) are equal to a common value c and the efficiency parameters ˛j are equal to a
common value ˛, the cells are ordered from highest prior probability to lowest and
(2.35) becomes

p.1/ exp .�˛z/ D p.2/: (2.44)

The left-hand side of (2.44) is proportional to the posterior probability of
the target being in cell 1 given failure to detect the target with z search effort.
Correspondingly (2.38) becomes

yj D ln p.j/ � ln p .j C 1/ for 1 � j � J � 1; (2.45)
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so that yj/˛ becomes the amount of effort placed in cell j before search expands to
cell jC1: The optimal search can be described as beginning in the highest probability
cell and then expanding the search to the next highest cell when the posterior
probability in cell 1 equals the posterior probability in cell 2. As search continues,
equal increments are added to all cells receiving search until the common posterior
in these cells fall to the value in the highest unsearched cell. The search proceeds
to level the posterior distribution given failure to detect in all cells receiving search.
Those not receiving search have a lower posterior probability of containing the target
than the ones receiving search effort.

2.3.2 Discrete Search Space and Effort

In this section we derive the solution to the optimal stationary target search problem
for discrete state space and discrete search effort when the detection function is
decreasing-rate. The state space is the set of J cells as in Sect. 2.3.1 with a prior
probability distribution on target location specified by p(j) for j D 1; : : : ; J:

Detection Function Effort is allocated to cells in discrete looks. There is a
detection function

b .j; k/ D Pr fdetecting target on or before the kth look j target in cell jg
for k D 0; 1; : : : and 1 � j � J:

We assume b .j; 0/ D 0: Let

b0 .j; k/ D b .j; k/ � b .j; k � 1/ for k � 1 and 1 � j � J:

We use the notation b0 here and l0 below to indicate the discrete counterpart of a
derivative.

If b0(j, k) is a strictly decreasing function of k for 1 � j � J, then we call b a
decreasing-rate detection function. As an example, the detection function defined
in Sect. 2.3.2.2 has a strictly decreasing rate of return.

Cost Function The cost of applying k looks in cell j is c(j)k where c.j/ > 0 for
0 � 1 � J:

Rate of Return Function For j D 1; : : : ; J, define the rate of return function as

� .j; k/ D b0 .j; k/ p.j/=c.j/ for k � 1: (2.46)

Allocation Function A search plan is an allocation function f (j), j D 1; : : : ; J
where f (j) is the number of looks allocated to cell j. We require that f .j/ � 0 for all
j. Let F be the set of allocation functions.
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For an allocation f we compute the probability of detection P(f ) and cost C(f ) as
in (2.17) and (2.18).

Optimal Allocation The allocation f � 2 F is optimal for cost K if

C
	
f �
 � K and P

	
f �
 � P.f / for all f 2 F for which C.f / � K: (2.47)

Pointwise Lagrangian Define the pointwise Lagrangian l for discrete space and
effort by

l .j; k; �/ D b .j; k/ p.j/� �c.j/k for 1 � j � J; k D 0; 1; : : : ; and � > 0: (2.48)

The derivative l0 is defined as

l0 .j; k; �/ D b0 .j; k/ p.j/� �c.j/: (2.49)

Theorem 2.2. Lagrangian Optimization Theorem for Discrete Space and Effort
Suppose the allocation f � 2 F maximizes the pointwise Lagrangian for some � > 0;
i.e., for all 1 � j � J

l
	
j; f �.j/; �


 � l .j; k; �/ for k D 0; 1; : : : : (2.50)

Then f * is optimal for cost C(f *).

Proof The proof of this theorem is the same as for Theorem 2.1 in Sect. 2.3.1.1.

Corollary 2.2 If for some � > 0, the allocation f � 2 F satisfy satisfies

l0 .j; k; �/ � 0 for 1 � k � f �.j/
� 0 for k > f �.j/ for j D 1; : : : ; J; (2.51)

then f * is optimal for cost C(f *).

Proof Suppose we have a � > 0 and a search plan f * that satisfies (2.51).

(Note that when f �.j/ D 0; only the second line in (2.51) applies.) Observe that

b
	
j; f �.j/



p.j/� �c.j/f �.j/ D

Xf �.j/

kD1
�
b0 .j; k/ p.j/� �c.j/



(2.52)

where we follow the convention that a sum from k D 1 to 0 is 0. Consider any
allocation f 2 F. For each j, there are two possibilities. First, suppose f .j/ > f �.j/.
Then

Œb .j; f �.j// p.j/� �c.j/f �.j/� � Œb .j; f .j// p.j/� �c.j/f .j/�

D �
Xf .j/

f �.j/C1
�
b0 .j; k/ p.j/� �c.j/


 � 0
(2.53)
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because by (2.51) all the terms in the sum on the right-hand side of (2.53) are less
than or equal to 0. Thus

b
	
j; f �.j/



p.j/� �c.j/f �.j/ � b .j; f .j// p.j/� �c.j/f .j/: (2.54)

If f .j/ � f �.j/; then a similar argument shows that (2.54) holds. Thus f * maximizes
the pointwise Lagrangian, and the conditions of Theorem 2.2 hold. As a result, f *
is optimal for C(f *).

Observe that if b is a decreasing-rate detection function and f * satisfies

� .j; k/ � � for 1 � k � f �.j/
� � for k > f �.j/ for j D 1; : : : ; J; (2.55)

then f * satisfies (2.51) and is optimal for cost C(f *).

2.3.2.1 Optimal Plan for Discrete Space and Effort
with a Decreasing-Rate Detection Function

We now present an algorithm for finding optimal plans for a decreasing-rate
detection function. If we have function of two variables such as ®(j, n), we use the
notation ' .�; n/ to indicate the function of one variable obtained by holding the
second fixed at n.

Algorithm
Optimal Search Plan for Discrete Space and Effort

Suppose b is a decreasing-rate detection function. We construct an optimal
plan '� .�; n/ for any number of looks n in a recursive fashion as follows.

Set '� .j; 0/ D 0 for 1 � j � J; and suppose we have found '� .�; n � 1/ :
Find jn such that

�
	
jn; '

� .jn; n � 1/C 1

 � �

	
j; '� .j; n � 1/C 1



for 0 � j � J: (2.56)

Set

'� .j; n/ D
�
'� .j; n � 1/C 1 for j D jn
'� .j; n � 1/ for j ¤ jn:

(2.57)

Then '� .�; n/ will be optimal for n looks.

To see that '� .�; n/ is optimal for n looks, we show that f � D '� .�; n/ satisfies
(2.55) for �n D � .jn; '� .jn; n// :

Since b is decreasing-rate, we see from (2.56) that (2.55) holds for j D jn when
� D �n: We show by induction on n that (2.55) holds for j ¤ jn when � D �n:

Clearly (2.55) holds for n D 1: For n > 1, suppose (2.55) holds for n � 1; and note
that '� .j; n/ D '� .j; n � 1/ for j ¤ jn: Thus for j ¤ jn;
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�
	
j; '� .j; n/


 D �
	
j; '� .j; n � 1/
 � �n�1 � �n for 1 � k � '� .j; n/ :

From (2.56) and the fact that b is decreasing-rate, it follows that � .j; '� .j; n// � �n

for k > '� .j; n/ for j ¤ jn and (2.55) is satisfied.

2.3.2.2 Example for Discrete Space and Effort

As in Sect. 2.3.1.2, one can numerically solve for the optimal allocation in the
example below by using a standard integer optimization routine. In this section, we
present an explicit method for finding optimal allocations to give the reader insight
into the nature of the optimal plan and provide an alternative to using a solver.

Suppose that each look in cell j has probability qj of detecting the target given it
is in that cell for 1 � j � J and that each look provides an independent opportunity
to detect the target. Then

b .j; k/ D 1 � 	
1 � qj


k
for k � 0 and b0 .j; k/ D qj

	
1 � qj


k�1
for k � 1:

Note that b is a decreasing-rate detection function because b0(j, k) is a strictly
decreasing function of k for all j. As a result, the rate of return function �, shown
below, is likewise strictly decreasing.

� .j; k/ D p.j/b0 .j; k/
c.j/

D p.j/qj
	
1 � qj


k�1

c.j/
:

Following the algorithm above, we construct the optimal plan '� .�; n/ for n
looks recursively. Set '� .j; 0/ D 0 for 1 � j � J; and suppose we have found
'� .�; n � 1/ : Obtain '� .�; n/ by finding jn such that

p .jn/ qjn

	
1 � qjn


'�.jn;n�1/

c .jn/
� p.j/qj

	
1 � qj


'�.j;n�1/

c.j/
for 1 � j � J

and setting

'� .j; n/ D
�
'� .j; n � 1/C 1 for j D jn
'� .j; n � 1/ for j ¤ jn:

One can think about the optimal plan as being executed one look at a time. It
proceeds by placing its next look in the cell with the highest rate of return given the
previous unsuccessful looks. If c.j/ D c and qj D q for all j, then the optimal plan
proceeds by placing its next look in the cell with the highest posterior probability
given failure of the previous looks to detect the target.
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2.3.3 Continuous Search Space and Effort

In this section we derive the solution to the optimal stationary target search problem
for a continuous search space S and continuous effort. We begin by defining the
elements of this problem in a mathematical fashion.

Prior Distribution The search space S is continuous. It is typically a subset of the
usual two or three-dimensional space. The prior distribution is given by a probability
density function p defined on S. The probability that the target is in a subset R of
S is

Z

R
p.x/dx (2.58)

and the probability the target is in S is 1.

Detection Function There is a detection function b defined as follows. For x 2 S,

b .x; z/ D Pr fdetecting target with effort density z j target at xg for z � 0:

Let b0(x, z) be the derivative of b(x, z) with respect to z. We assume that b0(x, z) is a
positive, continuous, and strictly decreasing function of z. We call this a decreasing-
rate detection function.

The notion of detection function for continuous spaces is somewhat idealized.
We assume the probability of detecting a target located at x depends on the effort
density in a small neighborhood of x with the dependence given by b .x; �/ : If effort
is measured by swept area, then effort density at x is the ratio of swept area in a
small neighborhood of x to the area of that neighborhood. In the idealized model,
effort density is the limit of this ratio as the area of the neighborhood approaches 0.

Cost Function The cost of applying z effort density at x 2 S is c(x)z where c.x/ > 0
for x 2 S:

Rate of Return Function For x 2 S, define the rate of return function by

� .x; z/ D b0 .x; z/ p.x/=c.x/ for z � 0: (2.59)

Since b0(x, z) is a positive, continuous, and strictly decreasing function of z, the rate
of return function shares these properties.

Allocation Function A search plan is an allocation function f (x) for x 2 S where
f (x) is the search effort density allocated to point x. We require that 0 � f .x/ < 1
for all x. Let F be the set of allocation functions and let

FB D ff 2 F W 0 � f .x/ � B for x 2 Sg for 0 < B < 1:

We define F1 D F:
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For an allocation f, we compute its probability of detection and cost by

P.f / D
Z

S
b .x; f .x//p.x/dx (2.60)

C.f / D
Z

S
c.x/f .x/dx: (2.61)

2.3.3.1 Continuous-Space Lagrangian Optimization

This section presents the continuous versions of the Lagrangian optimization results
in Sect. 2.3.1.1.

The Case Where B < 1: If the bound B < 1; define the continuous-space
pointwise Lagrangian l by

l .x; z; �/ D b .x; z/ p.x/� �c.x/z for x 2 S; 0 � z � B; and � > 0: (2.62)

Define

l0 .x; z; �/ D b0 .x; z/ p.x/� �c.x/ (2.63)

which is the derivative of l(x, z,�) with respect to z.

Theorem 2.3: Lagrangian Optimization Theorem for Continuous Space Sup-
pose the allocation f � 2 FB maximizes the pointwise Lagrangian for some � > 0;

i.e.,

l
	
x; f �.j/; �


 � l .x; z; �/ for 0 � z � B and x 2 S (2.64)

Then f * is optimal in FB for cost C(f *).

Proof The proof is analogous to the one given in Theorem 2.1 with integration over
S replacing summation over j.

Corollary 2.3 Suppose b is a deceasing-rate detection function. If for some � > 0,
the allocation f � 2 FB satisfies

l0 .x; f �.x/; �/ � 0 for f �.x/ D B
D 0 for 0 < f �.x/ � B
� 0 for f �.x/ D 0;

for x 2 S; (2.65)

then f * is optimal for cost C(f *).

Proof The proof of this corollary is analogous to the proof of Corollary 2.1.
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The Case Where B D 1: If the bound B D 1; then minor modifications are
needed to accommodate the restriction that we can’t have z D 1: Specifically
(2.64) and (2.65) become

l
	
x; f �.j/; �


 � l .x; z; �/ for 0 � z < 1 and x 2 S (2.65a)

l0 .x; f �.x/; �/ D 0 for 0 < f �.x/ < 1
� 0 for f �.x/ D 0

for x 2 S: (2.66a)

Measure Theory Considerations Those familiar with measure theory, will rec-
ognize that some assumptions are required to insure that the functions f 2 FB are
integrable. To guarantee this, we assume that all functions are Borel measurable. In
practice, this places no restriction on the functions p, c, b, or f.

In addition, they will recognize that we can weaken the assumptions that (2.64)
and (2.65) hold for all x 2 S by assuming that they hold for almost every x 2 S; and
the theorem and corollary remain true. This will be true for most of the statements
that involve for x 2 S; but we will not remark on it further.

Remark Theorem 2.1.5 in Stone (2007) shows that the satisfaction of (2.64) for
almost every x 2 S is a necessary and sufficient condition for an optimal search plan
for any Borel measureable detection function. This means that for a decreasing-
rate detection function, the conditions in (2.65) are necessary for f � 2 FB to be
T-optimal for cost C(f *).

2.3.3.2 Optimal Plan: Continuous Space, Continuous Effort

As in Sect. 2.3.1.2, the inverse function ��1 .x; �/ exists and is defined on .0; � .x; 0/�.
By definition

�
	
x; ��1 .x; �/


 D � for 0 < � � � .x; 0/ : (2.66)

As before we extend the definition of ��1 .x; �/ so that ��1 .x; �/ D 0 for � > � .x; 0/
and define

��1
B .x; �/ D min

˚
B; ��1

B .x; �/
�

f�.x/ D ��1
B .x; �/ for 0 < � < 1 and x 2 S: (2.67)
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Then f� satisfies

l0 .x; f�.x/; �/ � 0 for f�.x/ D B
D 0 for 0 < f�.x/ < B
� 0 for f�.x/ D 0

(2.68)

and maximizes the continuous pointwise Lagrangian for �. By Theorem 2.3, f� is
optimal in FB for cost C(f�). As in Sect. 2.3.1.2, we define

K .�/ D
Z

S

c.x/f�.x/dx for � > 0 and

K�1.K/ for 0 < K < 1
(2.69)

where K�1 satisfies

K�1.K/ D � such that C .f�/ D K for � > 0: (2.70)

Thus, for any cost K > 0, we may set � D K�1.K/ and obtain a plan f� from (2.67)
that is optimal for cost K. When B < 1, there may be an finite upper bound on the
cost C(f ) for f 2 FB:

Optimal Allocation for Cost K We summarize this method of finding optimal
plans as follows.

Algorithm
Optimal Search Plan for Cost K

Continuous Space, Continuous Effort

Let b be a decreasing-rate detection function.
Define

� .x; z/ D b0 .x; z/ p.x/=c.x/ for z � 0 and x 2 S

K .�/ D
Z

S
c.x/��1

B .x; �/ dx for � > 0:
(2.71)

Compute

� D K�1.K/ and
f�.x/ D ��1

B .x; �/ for x 2 S:
(2.72)

Then f� is optimal in FB for cost K.

As noted in Sect. 2.3.1.2, usually one has to compute K numerically to find the
� that produces K .�/ D K and obtain f� in (2.67). Since K is decreasing, a simple
linear search will produce the desired �.
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2.3.3.3 Optimal Plan: Bivariate Normal Prior, Exponential Detection
Function, B D 1

This example presents a case in which the optimal plan may be found explicitly.

Prior The search space S is the plane and x D .x1; x2/ : The prior distribution on
target location is given by

pG .x1; x2/ D 1

2��1�2
exp

�
�1
2

�
x21
�21

C x22
�22

��
for .x1; x2/ 2 S: (2.73)

A plot of this function is shown in Fig. 2.2 for the case where �1 D �2: This is
called a circular normal distribution.

Detection Function The search is conducted by a sensor that moves at speed v and
has sweep width W. The detection function is exponential with

b .x; z/ D 1 � exp .�Wvz/ for x 2 S and z � 0 (2.74)

where z is search effort density measured in time searched per unit area. Note that
Wvz has units of swept area per unit area.

Cost Cost is measured in search time, and c.x/ D 1 for x 2 S. C(f ) is the search
time required to execute allocation f. If T is the amount of search time available,
then T is the cost constraint.

Optimal Plan for Time T To find the optimal plan for search time T, we compute

� .x; z/ D b0 .x; z/ pG.x/ D Wve�WvzpG.x/ D Wve�Wvz

2��1�2
e�r2.x/=2

where

r2.x/ D x21
�21

C x22
�22

and x D .x1; x2/ : (2.75)

For any real number a, define aC D max f0; ag : Solving for f�(x) such that
� D � .x; f�.x// D b0 .x; f�.x// pG.x/; we obtain

f�.x/ D 1

Wv

�
ln

�
Wv

2��1�2�

�
� r2.x/=2

�C
: (2.76)

To compute K(�), make the change of variables x1=�1 D br cos � and x2=�2 D
br sin �: Setting r0 .�/ D Œ2 ln .Wv=2��1�2�/�

1=2; we have
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K .�/ D 2��1�2
Wv

Z r0.�/

0

�
ln

�
Wv

2��1�2�

�
�br2=2

�
brdbr

D ��1�2
Wv

h
ln
�
2��1�2�

Wv

�i2
:

(2.77)

Using (2.77), we find � to satisfy T D K .�/ and obtain the optimal plan f �
T D f�

for T search time from (2.76). The result is

f �
T .x/ D

8
ˆ̂<

ˆ̂:

1
Wv

��
WvT
��1�2

� 1
2 � r2.x/

2

�
for r2.x/ � 2

�
WvT
��1�2

� 1
2

0 for r2.x/ > 2
�

WvT
��1�2

� 1
2
:

(2.78)

As an example, consider a circular normal prior with mean at (0, 0) and �1 D
�2 D p

2: Assume W D v D 1. Figures 2.8 and 2.9 show the optimal search
density f *

T and the posterior given failure to detect for T D 20:

In Fig. 2.9, we see that the posterior density has been leveled in the region
where search has been applied. In the region where no search has been applied,
the posterior density is lower than in the searched region. This is characteristic
of optimal plans for exponential detection functions that don’t depend on x such
as the one used for this example. If we think about search effort as being applied
incrementally in time, the effort begins in the high probability region and expands
out from that as the posterior in that region is reduced. This behavior does not hold

Fig. 2.8 Optimal search density at T D 20
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Fig. 2.9 Posterior probability density at time T D 20 given failure to detect

if the exponential detection function varies with x or if the detection function is not
exponential as we shall see in Sect. 2.3.4.

Probability of Detection by Time T Examining (2.78), we see that the optimal
plan f *

T calls for an increasing amount of effort to be placed at each point x as T
increases. Let us define a search plan ® in space and time so that ®(x, T) gives the
total search density that accumulates at x by time T in plan ®. Express the plan f *

T in
the polar coordinates used for the computation of K(�) in (2.77), namely x1=�1 D
br cos � and x2=�2 Dbr sin �; so that

f �
T .br/ D

8
<̂

:̂

1
Wv

��
WvT
��1�2

� 1
2 �br

2

2

�
forbr2 � 2

�
WvT
��1�2

� 1
2

0 forbr2 > 2
�

WvT
��1�2

� 1
2

for 0 � � � 2�: (2.79)

Under this transformation of variables, the prior density pG becomes

bpG .br; �/ D 1

2�
exp�br2=2 for 0 � � � 2�; br � 0: (2.80)

Set

'� ..br; �/ ;T/ D f �
T .br/ for 0 � � � 2�; br � 0 and T � 0: (2.81)
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Then the probability of detection by time T, P .'� .�;T// ; is calculated by

P .'� .�;T// D
Z 2�

0

Z 1

0

1

2�
e�br2=2

h
1 � exp

�
�Wv'�

�
.br; �/ ;T

���i
brdbrd�

D 1 �
Z 1

0

e�br2=2 exp
	�Wvf �

T .br/


brdbr:

(2.82)

Let H D .Wv=��1�2/
1=2 and R2.T/ D 2H

p
T , then

Wvf �
T .br/ D

�
H

p
T �br2=2 for 0 �br � R.T/

0 otherwise;

and

P .'� .�;T// D 1 �
Z R.t/

0

e�H
p

Tbrdbr �
Z 1

R.t/
e�br2=2brdbr

D 1 � e�H
p

T
�

H
p

T C 1
�

for T � 0:

(2.83)

Mean Time to Detection Suppose we implement the time and space search plan
® * given in (2.81) so that at each time T we obtain the detection probability given
by (2.83). An integration by parts shows that the mean time to detect the target is

	
	
'�
 D

Z 1

0

t
dP .'� .�; t//

dt
dt D

Z 1

0

�
1 � P

	
'� .�; t/

 dt D 6��1�2

Wv
: (2.84)

Furthermore, since ® * maximizes P .'� .�; t// for all t � 0; it minimizes the
mean time to detection.

The optimal allocation in (2.78) was originally found by Koopman (1946, 1957).

2.3.4 Optimal Plans with Uncertain Sweep Width

In the above example, we assumed that the sweep width W of the sensor is known.
In some situations there is uncertainty about the sweep width. There may be
uncertainty about the search sensor performance because it has not been tested
against the target of interest, or we may not know the condition of the target,
which can affect sensor performance. In this section we present an example of
optimal search with uncertain sweep width in the case where the sweep width has
a gamma distribution. This example is based on work in Richardson and Belkin
(1972). Optimal search with uncertain sweep width is discussed in more detail and
generality in Sect. 2.3 of Stone (2007).



40 2 Search for a Stationary Target

Uncertain Sweep Width Model We model uncertainty in sweep width by specify-
ing a probability distribution on sweep width W. This distribution can be discrete or
continuous, but for the discussion here, we will assume that the uncertainty in sweep
width is modeled by a probability density function. We assume that no information
about the sweep width is obtained during the search except through failure to detect
the target.

Pr fW D wg D g.w/ for w � 0 (2.85)

where we use Pr to mean probability density.

Detection Function For each value of w, there is a decreasing-rate detection
function bw(x, z). This is the conditional detection function. The one that holds
conditioned on W D w. The unconditional detection function is given by

b .x; z/ D
Z 1

0

bw .x; z/ g.w/dw: (2.86)

Optimal Plan Section 2.3 of Stone (2007) shows that if bw(x, z) is a decreasing-rate
detection function for all w, then the unconditional detection function b(x, z) defined
in (2.86) is also a decreasing-rate detection function. (In Stone (2007) this is called
a regular detection function.) As a result, we may find optimal plans for uncertain
sweep width by calculating the unconditional detection function and computing the
optimal plans from (2.31) and (2.32) for discrete spaces or from (2.71) and (2.72)
for continuous spaces. We now provide an example of computing the optimal plan
for uncertain sweep width.

Example: Optimal Plan for a Gamma-Distributed Uncertain Sweep Width For
this example we assume that the sweep width has an gamma distribution, i.e.,

Pr fW D wg D g.w/ D w˛�1ˇ˛e�ˇw


 .˛/
for w � 0 (2.87)

where ˛ > 0; ˇ > 0 and � is the standard gamma function for which 
 .˛/ D
.˛ � 1/Š for integer values of ˛. The mean of a gamma distribution is ˛/ˇ and the
variance is ˛/ˇ2. The ratio of the standard deviation to the mean is 1=

p
˛ which

approaches 0 as ˛ ! 1:

Examples of gamma densities are shown in Fig. 2.10 were we have held the mean
fixed at 1 and let ˛ increase. The resulting densities become more peaked about the
mean as ˛ increases. This reflects a situation with a fixed mean for the sweep width,
and a range of possible uncertainties.

We assume the conditional detection function is

bw .x; z/ D 1 � e�wvz given W D w: (2.88)
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Fig. 2.10 Gamma densities with mean ˛=ˇ D 1

The conditional detection function is the same as the exponential detection
function in (2.74) with W D w: From (2.87), we calculate

b .x; z/ D
Z 1

0

.1 � e�wvz/ g.w/dw D 1 �
�
1C vz

ˇ

��˛
for z � 0

and

b0 .x; z/ D v˛ˇ˛.ˇ C vz/�.˛C1/ for z � 0: (2.89)

From (2.89) we obtain

� .x; z/ D pG.x/v˛ˇ
˛.ˇ C vz/�.˛C1/ for z � 0;

and for � > 0

��1 .x; �/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

ˇ

v

2
664

 
pG.x/v˛=�ˇ

!1
�

.˛ C 1/
� 1

3
775 for pG.x/ � �ˇ= .v˛/

0 for pG.x/ < �ˇ= .v˛/ :
(2.90)

Let

D D 2��1�2ˇ

v˛
:
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Then we may rewrite (2.90) as

��1 .x; �/ D

8
ˆ̂<

ˆ̂:

ˇ

v

2

4
�

pG.x/v˛=�ˇ
�1
�

.˛ C 1/ � 1
3

5 for r2.x/ � �2 ln .D�/

0 for r2.x/ > �2 ln .D�/ :
(2.91)

Making the change of variables x1=�1 Dbr cos � and x2=�2 Dbr sin � that we used
in (2.77), we obtainbpG in (2.80) and from (2.90), we have

K .�/ D 2��1�2

Z p�2 ln.D�/

0

ˇ

v

2
64
�bpG .br / v˛
�1�2ˇ�

�1
�

.˛ C 1/ � 1

3
75brdbr

D ˛D
Z p�2 ln.D�/

0

2
6664

0

@e�br 2=2

D�

1

A

1
�

.˛ C 1/

� 1

3
7775brdbr

D ˛ .˛ C 1/D
h
.D�/�1=.˛C1/ C ln.D�/

˛C1 � 1
i

for 0 < � � 1=D:

(2.92)

From (2.72) and (2.91), we can express the optimal time and space search plan
b'� for uncertain sweep width in terms of �.t/ D K�1.t/ as follows.

b'� .x; t/ D

8
ˆ̂<

ˆ̂:

ˇ

v

2

4
�

e�r2.x/=2=D�.t/
�1
�

.˛ C 1/ � 1

3

5 for r2.x/ � �2 ln .D�.t//

0 for r2.x/ > �2 ln .D�.t//
(2.93)

where r2.x/ D x21=�
2
1 C x22=�

2
2 as before.

We now compute the optimal uncertain-sweep-width plan for time T D 20 in the
case where ˛ D ˇ D 2, �1 D �2 D p

2; and v D 1. This example is the same as the
one in Sect. 2.3.3.3, except that the certain sweep W D 1 of that example is replaced
with an uncertain sweep width having a gamma distribution with parameters ˛ D 2;

ˇ D 2; and mean 1. This distribution has the probability density function given by
the ˛ D 2 curve in Fig. 2.10.

Since we do not have an explicit form for K�1; we solve (2.92) numerically
to obtain the value �(20) for which K .�.20// D 20: We use this value in (2.93)
to compute the optimal uncertain-sweep-width search density which is shown in
Fig. 2.11 It looks similar to the optimal certain-sweep-width search density in
Fig. 2.8 for T D 20 and W D 1: However, the radius at which the density for the
certain-sweep-width plan reaches 0 is 2.67; whereas the density for the uncertain-
sweep-width plan reaches 0 at radius 2.8. One effect of the uncertainty in sweep
width is to increase the spread of the search area, at least initially. See Belkin (1975).



2.3 Optimal Search for a Stationary Target 43

Fig. 2.11 Optimal search density for uncertain sweep width:T D 20;˛ D ˇ D 2;�1 D �2 Dp
2;v D 1

Figure 2.12 shows the posterior target probability density given failure to detect
by T D 20: This posterior is not level in the region where search has taken place as
is the case for the certain sweep width example.

Mean Time to Detection for Optimal Uncertain Sweep Width Plan Following
the method given in Sect. 2.3 of Stone (2007), we may calculate the mean time to
detection for the optimal uncertain sweep width plan and find

	
	
b'�
 D

�
2��1�2ˇ

v˛

	
3˛C1
˛�1



for ˛ > 1

1 for 0 < ˛ � 1:
(2.94)

To see the effect of uncertain sweep width on mean time to detection, let us set
W D ˛=ˇ in (2.84) to obtain the mean time to detect for a plan with known sweep
equal to the mean of the gamma sweep width distribution. Doing this we obtain

	
	
'�
 D 6��1�2ˇ

˛v
for ˛ > 1:

From this we obtain

	 .b'�/
	 .'�/

D 1

3

�
3˛ C 1

˛ � 1

�
� 1 for ˛ > 1 (2.95)
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Fig. 2.12 Posterior target probability density given failure to detect:T D 20;˛ D ˇ D 2;�1 D
�2 D p

2;v D 1

and see that one pays a penalty in mean time to detection for uncertainty in the
sweep width. Notice that as ˛ ! 1 in (2.95), 	 .b'�/ =	 .'�/ ! 1: This reflects
the fact that as ˛ increases, the spread of the gamma distribution about its mean
decreases more and more.

2.3.5 Uniformly Optimal Search Plans

So far we have discussed plans that are optimal for a fixed cost or search time. Often
we do not know the exact length of time available for search. In this case, it would be
desirable to follow a search allocation in space and time that produces the maximum
detection probability at each time t � 0:

Suppose that M.t/ � 0 total search effort (cost) is available for t � 0;where M is
an increasing function of t. We define the class ˚(M) of continuous space and time
allocation functions as follows:

' 2 ˆ.M/ if and only if
' .x; t/ � 0 for x 2 S; t � 0

' .x; t/ is an increasing function of t for x 2 SZ

S
' .x; t/ dx D M.t/ for t � 0:

(2.96)
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For discrete space, we have an analogous definition.

' 2 ˆ.M/ if and only if
' .j; t/ � 0 for j D 1; : : : ; J; t � 0

' .j; t/ is an increasing function of t for 1 � j � JXJ

jD1' .j; t/ D M.t/ for t � 0:

(2.97)

A plan '� 2 ˆ.M/ is uniformly optimal in ˚(M) if and only if

P
	
'� .�; t/
 is optimal for cost M.t/ for all t � 0: (2.98)

The algorithms for finding optimal search plans in Sects. 2.3.1.2 and 2.3.3.2
provide a method of finding uniformly optimal plans for discrete and continuous
search spaces when search effort is continuous and the detection function has a
decreasing rate.

Uniformly Optimal Plan: Discrete Space, Continuous Effort Assume that the
detection function is a decreasing-rate detection function. Following (2.31) and
(2.32), we let

� .M.t// D K�1 .M.t// for t � 0

'� .j; t/ D ��1 .j; � .M.t/// for 1 � j � J and t � 0:
(2.99)

Since M is increasing, �(M(t)) is a decreasing function of t. As a result, '� .j; �/
is an increasing function of t for 1 � j � J: In addition,

XJ

jD1' .j; t/ D M.t/ for t � 0;

so that '� 2 ˆ.m/: By the construction of ® *, using the algorithm in (2.31) and
(2.32),

P
	
'� .�; t/
 is optimal for cost M.t/ for all t � 0;

and ® * is uniformly optimal in ˚(M).

Uniformly Optimal Plan: Continuous Space, Continuous Effort Assume that
the detection function is decreasing-rate. Following (2.71) and (2.72), we let

� .M.t// D K�1 .M.t// for t � 0

'� .x; t/ D ��1 .x; � .M.t/// for x 2 X and t � 0
(2.100)

to obtain the plan ® * which is uniformly optimal in ˚(m).

As we have noted above, a uniformly optimal plan minimizes the mean time
(cost) to detection. Theorem 2.4.6 of Stone (2007) shows that a uniformly optimal
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plan exists for a continuous space, continuous effort search whenever the detection
function b(x, z) is an increasing, continuous function of z and c(x) equals a constant
c > 0 for x 2 X: The same result does not hold for a discrete space search. To
guarantee the existence of a uniformly optimal plan for discrete space, one must
add the assumption that b .j; �/ is concave for 1 � j � J:

Uniformly Optimal Plan: Discrete Space and Effort The plan ® * constructed in
Sect. 2.3.2.1 is uniformly optimal within the class of plans that allocate one look at
each time period. Thus ® * minimizes the expect cost to detect the target.

2.4 Defective Prior Distributions

In some cases, we may not be sure that the target is in the search region. In this case,
it is appropriate to have a prior that sums or integrates to a probability, p0 < 1: The
optimal search plan for a defective prior is the same as the one we would obtain by
scaling the defective prior so that it sums or integrates to 1. The difference is that the
success probability is scaled down by the factor p0. Thus one can use the algorithms
given in this chapter to find optimal plans for defective priors by simply scaling
the prior to sum or integrate 1 and applying the algorithm to the rescaled prior. As
mentioned above, the resulting probability of success needs to be multiplied by p0

to account for the fact the target may not be in the search region.

2.5 Summary

This chapter has presented the basic results on optimal search for a stationary target.
Section 2.1 presented examples of prior distributions on discrete and continuous
state spaces. Section 2.2 defined detection functions, lateral range functions,
and sweep width. It derived the exponential and inverse cube detection models.
Section 2.3 defined the basic problem of optimal search for a stationary target
and developed algorithms for computing optimal plans for searches involving
decreasing-rate detection functions in the case of continuous effort for both discrete
and continuous state spaces and in the case of discrete effort for discrete state spaces.
Section 2.3.4 showed that these algorithms can be extended to the case where the
sweep width of the sensor is uncertain. Examples of optimal plans were found for a
bivariate normal distribution in the case of an exponential detection function with a
known sweep width and for the case with an uncertain sweep width. Section 2.3.5
defined uniformly optimal plans and showed that the algorithms for computing
optimal plans for decreasing-rate detection functions can be used to compute
uniformly optimal plans. Uniformly optimal plans specify search allocations in
space and time. They maximize detection probability at each time and therefore
minimize mean time to detection.
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2.6 Notes

Stone (2007) covers a much wider range of stationary target problems than are
presented here and goes into more detail about their properties. As an example,
it shows that for concave detection functions, incrementally optimal search plans
are totally optimal. This means that if a search is planned in increments in such
a fashion that each increment of effort is allocated to maximize the increase in
detection probability given the failure of the previous increments, then the plan that
results from these increments will be optimal for the total effort in the increments.
In the case of a continuous state space, incrementally optimal is totally optimal for
any detection function.

In the case of discrete effort, Stone (2007) finds optimal whereabouts plans. A
whereabouts plans specifies a sequence of cells in which to search. If this search
does not detect the target, the plan is allowed to guess one cell for the location of
the target. If the plan either detects the target or guesses right, it succeeds. Chapter 5
considers optimal search and stop problems where there is a cost to searching and
a reward if the target is found. The goal is to find a plan that tells the searcher
where to search and when to stop in order to maximize expected return. There is
a chapter devoted to approximating optimal plans with simpler ones that are more
operationally feasible than optimal ones. There is also a chapter on optimal search
in the presence of false targets. The notes that accompany the chapters give credit
for the results in search for stationary targets and provide some history. Washburn
(2006) investigates piled-slab plans that are simpler to implement than the optimal
ones but that still provide good approximations to the detection probability of the
optimal plan.
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Chapter 3
Search for a Moving Target in Discrete Space
and Time

This chapter develops methods for finding optimal search plans for a target that
is moving in discrete space and time. In the case where the detection function is
exponential, optimal moving target plans can be obtained by computing a sequence
of optimal stationary target plans. The algorithm developed to find these plans is a
special case of the more general Forward-And-Backward (FAB) algorithm which is
also presented in this chapter.

3.1 Continuous Effort Search Problem

For convenience, we consider the search to take place over an interval of time [0, T].
We represent times by integers so that search times t are numbered t D 0; : : : ;T:
The increments between times t and t C 1 for t D 0; : : : ;T � 1 need not be equal.
The discrete state space is the set of J cells as in Chap. 2.

Prior Distribution The prior distribution for a moving target problem in discrete
space and time specifies the target’s motion through space and time as a stochastic
process X D fX.t/; t D 0; : : : ;Tg where X(t) is the target’s state (cell) at time t.
Let ! D .!0; : : : ; !T/ be a sample path of the process, i.e., !t is the cell the target
occupies at time t for t D 0; : : : ;T: Let ˝ be the set of sample paths of X and let p
be the probability distribution on the paths. Specifically,

p .!/ D Pr f! D .!0; : : : ; !T/ is the target’s pathg for ! 2 � (3.1)
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where

X

!2�
p .!/ D 1:

Continuous Effort Search Plan A continuous effort search plan is a space-time
search allocation f where f (j, t) is the effort placed in cell j at time t. We suppose
that m.t/ � 0 search effort is available for t � 0: We define the class F(m) of
continuous-effort, discrete-space-and-time search plans as follows.

f 2 F.m/ if and only if
0 � f .j; t/ < 1 for 1 � j � J and t D 0; : : : ;TXJ

jD1f .j; t/ D m.t/ for t D 0; : : : ;T:
(3.2)

There may be an upper bound B on the search density. In this case we define the
class FB(m) of search plans where

f 2 FB.m/ if and only if
f 2 F.m/
f .x; t/ � B for x 2 S and t D 0; : : : ;T:

(3.3)

If B D 1, then FB.m/ D F.m/:

Detection Function The probability of detecting the target, given it follows path
!, is a function of the weighted total search effort that “falls on” the target as it
follows the path !. The function


 .f ; !; t/ D
Xt

sD0W .!s; s/ f .!s; s/ for ! 2 �; t D 0; : : : ;T (3.4)

accumulates the weighted search effort over [0, t] for the path ! where the weight
W(j, s) represents the relative detectability or sweep width for the target given it is
located in cell j at time s. There is a detection function b such that

b .
 .f ; !; t// D Pr fdetecting the target by time tjtarget follows path !g (3.5)

Probability of Detection The probability of detection by time t for a plan f 2
FB.m/ is

P .f ; t/ D E Œb .
 .f ; !; t//� for t D 0; : : : ;T (3.6)

where E[ ] indicates expectation over the probability distribution p on the sample
paths of X. We can write (3.6) as

P .f ; t/ D
X

!2�
p .!/ b

�Xt

sD0W .!s; s/ f .!s; s/
�

for f 2 F.m/: (3.7)
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T-Optimal Plan A plan f � 2 FB.m/ is T-optimal if and only if

P
	
f �;T


 � P .f ;T/ for f 2 FB.m/: (3.8)

In most cases, we cannot construct a moving target plan that is uniformly optimal.
This means that the plan that is optimal for T C �T is not an extension of the
T-optimal plan. One has to choose the time at which he wishes the plan to be
optimal. This makes it more difficult to find plans that minimize mean time to
detection.

3.1.1 Necessary and Sufficient Conditions for a T-Optimal
Plan: Continuous-Effort, Decreasing-Rate Detection
Function

In this section we find necessary and sufficient conditions for a plan f � 2 FB.m/ to
be T-Optimal when b is a decreasing-rate detection function.

Restatement of Optimization Problem Let us consider a space-time allocation
plan f as a J .T C 1/ vector where each component takes values in Œ0;1/ : To obtain
the necessary and sufficient conditions for a plan to be T-Optimal, it is convenient
to restate the T-optimal search problem in a more standard form. Namely,

Find f to

maximize P .f ;T/ (3.9)

Subject to the following constriants

0 � f .j; t/ � B for j D 1; : : : ; J and t D 0; : : : ;TXJ

jD1f .j; t/ D m.t/ for t D 0; : : : ;T:
(3.10)

Since b is a decreasing-rate detection function, it is concave on Œ0;1/. As a
result, each term in (3.7) is concave, and P(f, T) is a concave function of f for
f 2 Fb.m/: Since the constraints in (3.10) are linear and P .�;T/ is concave and
differentiable, the Karush-Kuhn-Tucker conditions (Bertsekas 1999 Chap. 3) are
satisfied. These conditions yield the following result.

Theorem 3.1: Discrete Space and Time Optimality Conditions Assume b is
a decreasing-rate detection function. Then f � 2 FB.m/ solves the optimization
problem in (3.9)–(3.10) if and only if there exists a vector (�0, : : : ,�T ) with positive
components such that for t D 0; : : : ;T

@P .f �;T/
@f .j; t/

� �t if f � .j; t/ D B

D �t if 0 < f � .j; t/ < B for j D 1; : : : ; J:
� �t if f � .j; t/ D 0

(3.11)
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3.1.2 Bound on Optimal Plan: Continuous-Effort,
Decreasing-Rate Detection Function

In this section we find an upper bound on the probability of detection for the
T-optimal plan. This bound will be useful in providing a stopping criterion for
algorithms that find approximations to optimal plans. The bound relies on the
observation that if b is a decreasing-rate detection function then

b .z2/ � b .z1/ � b0 .z1/ .z2 � z1/ for z1; z2 � 0: (3.12)

Let f1; f2 2 FB.m/ be two allocation functions. Then from (3.12)

P .f2;T/ � P .f1;T/ D E Œb .
 .f2; !;T//� � E Œb .
 .f1; !;T//�

� E
�
b0 .
 .f1; !;T// .
 .f2; !;T/ � 
 .f1; !;T//



: (3.13)

Expanding the right-hand side of (3.13), we obtain

E Œb0 .
 .f1; !;T// .
 .f2; !;T/ � 
 .f1; !;T//�

D
XT

tD0E
�
b0 .
 .f1; !;T//W .!t; t/ .f2 .!t; t/ � f1 .!t; t//



:

(3.14)

Let Ejt indicate expectation conditioned on X.t/ D j and pt.j/ D Pr fX.t/ D jg
for j D 1; : : : ; J; t D 0; : : : ;T: Define

D .f ; j; t/ D Ejt
�
b0 .
 .f ; !;T//



pt.j/W .j; t/ for f 2 F.m/: (3.15)

Observe that D .f ; j; t/ � 0: Since

E Œb0 .
 .f1; !;T//W .!t; t/ .f2 .!t; t/ � f1 .!t; t//�

D
JX

jD1
Ejt Œb0 .
 .f1; !;T//� pt.j/W .j; t/ .f2 .j; t/ � f1 .j; t// ;

we can write (3.14) as

E Œb0 .
 .f1; !;T// .
 .f2; !;T/ � 
 .f1; !;T//�
D
XT

tD0
XJ

jD1D .f1; j; t/ .f2 .j; t/ � f1 .j; t//:
(3.16)

Let

�.t/ D
(

min
jD1;:::;JD .f1; j; t/ if f1 .j; t/ > 0 for some j

0 otherwise

�.t/ D
(

max
jD1;:::;JD .f1; j; t/ if f1 .j; t/ < B for some j

�.t/ otherwise

for t D 0; : : : ;T: (3.17)
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Let

T D ft W f1 .j; t/ D B for j D 1; : : : ; Jg :

Note that for t 2 T ; �.t/ D �.t/; and since f1; f2 2 FB.m/; m.t/ D BJ and f1 .j; t/ D
f2 .j; t/ D B for j D 1; : : : ; J: From (3.16) and (3.17), we have

E Œb0 .
 .f1; !;T// .
 .f2; !;T/ � 
 .f1; !;T//�

D
X

t…T

XJ

jD1D .f1; j; t/ .f2 .j; t/ � f1 .j; t//

�
X

t…T

XJ

jD1
h
�.t/f2 .j; t/ � �.t/f1 .j; t/

i

D
X

t…T

�
�.t/ � �.t/

�
m.t/

D
XT

tD0
�
�.t/ � �.t/

�
m.t/: (3.18)

From (3.13) and (3.18), we have

P .f2;T/ � P .f1;T/ �
XT

tD0
�
�.t/ � �.t/

�
m.t/ � �.f1/ for f1; f2 2 FB.m/:

(3.19)

Notice the right-hand side of (3.19) does not depend on f2. Thus if f � 2 FB.m/ is
T-optimal then

P
	
f �;T


 � P .f ;T/C�.f / for any f 2 FB.m/:

We can now state the upper bound theorem obtained by Washburn (1981).

Theorem 3.2 If b is an decreasing-rate detection function and f � 2 FB.m/ is T-
optimal, then

P
	
f �;T


 � P .f ;T/C�.f / for any f 2 FB.m/ (3.20)

where

�.f/ D
XT

tD0
�
�.t/ � �.t/

�
m.t/:

3.2 Optimal Plans: Continuous-Effort, Exponential
Detection Function

When the detection function is exponential, we can show that finding a T-optimal
search plan is equivalent to solving a sequence of stationary target problems. This
means we can use the algorithms developed in Chap. 2 for stationary targets to find
optimal plans for moving targets.

http://dx.doi.org/10.1007/978-3-319-26899-6_2
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Suppose the detection function b.z/ D 1 � e�z for z � 0 and f * is T-optimal in
FB(m). Then for any t we can rewrite (3.7) as

1 � P .f �;T/ D
JX

jD1

X

f!W!tDjg
p .!/ exp

�
�
XT

sD0W .!s; s/ f � .!s; s/
�

D
JX

jD1
e�W.j;t/f �.j;t/

X

f!W!tDjg
p .!/ exp

0

@�
X

s¤t

W .!s; s/ f � .!s; s/

1

A:
(3.21)

Let

q .j; t; f / D
X

f!W!tDjg
p .!/ exp

0

@�
X

s¤t

W .!s; s/ f .!s; s/

1

A: (3.22)

Then (3.21) becomes

1 � P
	
f �;T


 D
JX

jD1
e�W.j;t/f �.j;t/q

	
j; t; f �
 for t D 0; : : : ;T: (3.23)

Note that q(j, t, f *) equals the probability that the target is in cell j at time t and is
not detected by the search at any time other than t. Thus q .�; t; f �/ is proportional
to the posterior probability distribution Qq .�; t; f �/ on the target’s location at time t
given failure to detect at all times other than t. If f * is T-optimal, then obviously
it minimizes the failure probability 1 � P .f �;T/ : From (3.23) it is clear that
f � .�; t/ must minimize the failure probability for the stationary target search with
distribution Qq .�; t; f �/ and effort m(t) for t D 0; : : : ;T:

Now suppose that f * is a moving target plan in FB(m) such that f � .�; t/ is an
optimal stationary target plan for Qq .�; t; f �/ for m(t) effort for t D 0; : : : ;T: From
the discussion of defective distributions in Sect. 2.4, we know that f * is also optimal
for q .�; t; f �/ : Define

Q .t; g/ D 1 �
XJ

jD1e
�W.j;t/g.j/q

	
j; t; f �
 for t D 0; : : : ;T: (3.24)

Then Q(t, g) is the probability of detection produced by the stationary target plan g
applied to the distribution q .�; t; f �/ : Since f � .�; t/ maximizes this probability, we
have from Theorem 3.1 (applied to a single time period search) that there is a �t > 0

such that

@Q .t; f � .�; t//
@g.j/

D W .j; t/ e�W.j;t/f �.j;t/q .j; t; f �/ � �t if f � .j; t/ D B
D �t if 0 < f � .j; t/ < B
� �t if f � .j; t/ D 0: (3.25)

http://dx.doi.org/10.1007/978-3-319-26899-6_2
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From (3.7), we have

@P.f �;T/
@f .j;t/ D W .j; t/

X

f!W!tDjg
p .!/ exp

�
�
XT

sD0W .!s; s/ f � .!s; s/
�

D W .j; t/ e�W.j;t/f �.j;t/q .j; t; f �/ : (3.26)

The summation in (3.26) includes only those paths that are in cell j at time t because
P does not depend on f (j, t) for the other paths. Equations (3.25) and (3.26) imply
that conditions (3.11) hold for t D 0; : : : ;T which in turn implies that f * is T-
optimal within FB(m). We now state these results as a theorem.

Theorem 3.3 Assume b is an exponential detection function. Then a necessary and
sufficient condition for f � 2 FB.m/ to be a T-optimal plan is that f � .�; t/ is the
optimal stationary target plan for cost m(t) for the distribution Qq .�; t; f �/ ; which is
the posterior probability distribution on the target’s location at time t given failure
to detect at all times other than t, for t D 0; : : : ;T:

3.2.1 T-Optimal Search Plan Recursion
for a Continuous-Effort, Exponential Detection Function

For the case of a continuous-effort, exponential detection function, Brown (1980)
derived the following recursion and proved that it converges to the T-Optimal plan.
He also showed that the solution is unique.

Let
� .�; t; f / D optimal plan for m(t) effort for the stationary target distribution

q .�; t; f / :
Each step of the algorithm focuses on a single time t and computes the plan

� .�; t; f / : For B D 1; computation of this plan may be done efficiently by the
Charnes and Cooper algorithm given in Sect. 2.3.1.3 or by the algorithm given in
Sect. 5.2 of Washburn (2014). If B < 1; one can use the method in Sect. 2.3.1.2.

Let

f R
t .�; s/ D

�
f .�; s/ for s ¤ t
� .�; t; f / for s D t:

(3.27)

Then P
	
f R
t ;T


 � P .f ;T/ : This follows from the fact that � .�; t; f / minimizes the
failure probability for the distribution q .�; t; f / and that

1 � P .f ;T/ D
JX

jD1
e�W.j;t/f .j;t/q .j; t; f /

�
JX

jD1
e�W.j;t/�.j;t;f /q .j; t; f / D 1 � P

	
f R
t ;T



: (3.28)

http://dx.doi.org/10.1007/978-3-319-26899-6_2
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Brown’s algorithm produces a sequence of plans with increasing detection
probabilities that converge to the optimal plan as the number of steps goes to infinity.
This statement is proved below. The following recursion stops after a finite number
steps determined by a user-specified, small number "

T-Optimal Search Plan Recursion
for a Continuous-Effort, Exponential Detection Function

1. Let f0 .j; t/ D 0 for j D 1; : : : ; J and t D 0; : : : ;T:
2. Let " > 0 be a tolerance.
3. Set k D 0:

4. Set s D k Œmod .T C 1/� ; i.e., s is the integer remainder after dividing k
by T C 1:

5. Compute � .�; s; fk/ ; the optimal plan for q .�; s; fk/ for m(s) effort.

6. Set fkC1 .�; t/ D
�

fk .�; t/ for t ¤ s
� .�; s; fk/ for t D s:

7. If s D T; compute �.fkC1/ : If this is less than " stop; P .fkC1/ is within "
of optimal.

8. Otherwise set k D k C 1; and go back to step 4.

Since we start the recursion with f0 .j; t/ D 0 for j D 1; : : : ; J and t D 0; : : : ;T;
the first pass through the recursion from k D 0 to T produces fT , the myopic
search plan. At each time t, this plan generates the maximum increase in detection
probability given the failure of the search effort at all times s < t. This plan is
usually not T-optimal but is often close to optimal.

Since each allocation fkC1 increases P .fkC1;T/ compared to P(fk, T), it follows
that P(fk, T) approaches a limit P as k ! 1: Since the space of search plans FB(m)
is closed and bounded, there is a subsequence

˚
fk.n/I n D 1; 2 : : :

�
of the plans fk

that converges to a plan f � 2 FB.m/. It follows that P .f �;T/ D P:
The allocation f * satisfies the necessary and sufficient conditions of

Theorem 3.3. To see this we let � t be the operator that replaces a plan f 2 F.m/
with f R

t given in (3.27), i.e.,„t.f / D f R
t and suppose that the conditions fail for some

t 2 Œ0;T� : Then we can strictly increase P(f *, T) by reallocating the effort at time t
to obtain � t(f *) such that P .„t .f �/ ;T/ > P .f �;T/ D P. Define „ D „0 � � �„T :

Then P .„ .f �/ ;T/ > P .f �;T/ : However, by the continuity of �

P
	
„
	
f �
 ;T


 D P
�

lim
n!1„

	
fk.n/



;T
�

D lim
n!1P

	
fk.n/CTC1;T


 D P (3.29)

which is a contradiction. Therefore the conditions of Theorem 3.3 hold and f *
maximizes P(f, T) for f 2 FB.m/:

Computing Washburn’s Bound From (3.15) and the fact that the detection
function is exponential, we have that
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D .f ; j; t/ D W .j; t/Ejt

h
exp

�
�
XT

tD0W .!t; t/ f .!t; t/
�i

pt.j/

D W .j; t/
X

f!W!tDjg
p .!/ exp

�
�
XT

tD0W .!t; t/ f .!t; t/
�

D W .j; t/ e�W.j;t/f .j;t/
X

f!W!tDjg
p .!/ exp

0

@�
X

s¤t

W .!s; s/ f .!s; s/

1

A

D W .j; t/ e�W.j;t/f .j;t/q .j; t; f / :

(3.30)

Computing

�.t/ D
(

min
fjWf .j;t/>0g

W .j; t/ e�W.j;t/f .j;t/q .j; t; f / if q .j; t; f / > 0 for some j

0 otherwise

�.t/ D
(

max
fjWf .j;t/<Bg

W .j; t/ e�W.j;t/f .j;t/q .j; t; f / if q .j; t; f / < B for some j

�.t/ otherwise;

(3.31)

we obtain

�.f / D
XT

tD0
�
�.t/ � �.t/

�
m.t/: (3.32)

Calculating �(fk) requires one to compute q .�; t; fk/ for t D 0; : : : ;T: In the
following sections, we present two implementations of Brown’s recursion that
provide methods of computing q .�; t; fk/ : Experience has shown that Brown’s
algorithm typically produces a plan that is close to optimal after a few iterations
though [0, T]. The reason is that the algorithm starts with the myopic plan which is
often close to optimal.

3.2.2 Implementing Brown’s Recursion for an Exponential
Detection Function

The recursion below implements Brown’s algorithm for an exponential detection
function with the stopping rule based on Washburn’s bound.

Implementation of T-Optimal Search Plan Recursion
for a Continuous-Effort, Exponential Detection Function

1. Set p0 .!/ D Pr f!g for ! 2 � and
f0 .j; t/ D 0 for j D 1; : : : ; J and t D 0; : : : ;T:

2. Let " > 0 be a tolerance, and set k D 0:

3. Set s D k Œmod .T C 1/� :

(continued)
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4. Compute

rk .!/ D pk .!/ exp .W .!s; s/ fk .!s; s//

D p0 .!/ exp

0

@�
X

t¤s

W .!t; t/ fk .!t; t/

1

A for ! 2 � (3.33)

and

q .j; s; fk/ D
X

f!W!sDjg
rk .!/ for j D 1; : : : ; J: (3.34)

5. Compute �k .�; s/ ; the optimal plan for m(s) effort for q .�; s; fk/ ; and set

fkC1 .�; t/ D
�

fk .�; t/ for t ¤ s
�k .�; s/ for t D s

and

pkC1 .!/ D rk .!/ exp .�W .!s; s/ fkC1 .!s; s// for ! 2 �: (3.35)

6. If s D T, compute�.fkC1/ : If it is less than ", stop.
7. Otherwise set k D k C 1, and return to step 3.

Note that q .�; t; fk/ is a defective distribution. However, by the comments in Sect.
2.4, the algorithms in Chap. 2 may be applied in step 5 to find plans for defective
distributions. In the recursion, (3.34) follows from (3.22), and�.fkC1/ is computed
from (3.31) and (3.32). One can verify that (3.35) in step 5 produces

pkC1 .!/ D p0 .!/ exp
�
�
XT

tD0W .!t; t/ fkC1 .!t; t/
�

for n D 1; : : : ;N:

To compute �.fkC1/ in step 6, we use (3.30) which requires us to compute
q .�; t; fkC1/ for t D 0; : : : ;T:

Approximating the Distribution of p on � The recursion given above requires
almost no restrictions on the motion model other than being able to calculate the
probability p(!) of each sample path ! 2 �: The number of possible sample paths
over [0, T] is N D JTC1; so in principal, we can calculate p(!) for all ! 2 ˝: If this
is impractical because the state space is too large or the distribution too complex, we
can approximate the probability distribution p on � by simulating a large number
N of sample paths from the process and replacing the original distribution with this
large but finite number of sample paths.

The approach presented above is restricted to discrete time and space. However,
in continuous time and space search problems, it is often convenient to impose a
discrete time and space grid to approximate the continuous problem. One way to
impose a discrete grid on a continuous problem is the following.

http://dx.doi.org/10.1007/978-3-319-26899-6_2
http://dx.doi.org/10.1007/978-3-319-26899-6_2
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Suppose the target’s motion is a modeled by a continuous space and time
stochastic process fX.t/I t � 0g. We can approximate this process by generating
a large number N of sample paths from the process. This is usually done by a
simulation that produces equally weighted sample paths ! each with p .!/ D 1=N:
These sample paths develop in continuous space and time. Next one discretizes
time into instants, s0, s1, : : : . Usually the increments siC1 � si for i D 0; 1 : : : are
all equal, but this is not necessary. We impose a grid of J cells on the search space.
For each simulated path !, we compute !si ; the cell containing the target at time
si, for i D 0; 1 : : : . Replace ! by its discretized sampled path .!s0 ; !s1 ; : : : / : These
N discretized sample paths produce a discrete and time and space approximation to
the distribution on the set of continuous time and space paths.

Now, fix a time horizon sT and represent the TC1 time instants by t D 0; 1; : : : ;T
where t D i corresponds to time instant si. We employ the approximation that the
target is stationary between t and tC1 for t D 0; : : : ;T: Let m(t) be the search effort
available in the increment Œt; t C 1/ for t D 0; : : : ;T. Our goal is to find a T-optimal
allocation within F(m). If the detection function is exponential, we can find the
T-optimal plan by applying Brown’s algorithm in the manner described above. The
resulting allocation will be an approximation to the optimal continuous space and
time plan. The quality of the approximation will depend on the number of sample
paths and how fine the space and time grids are. See Chap. 5 in Shapiro et al. (2009)
for a discussion of the statistical properties of solutions obtained based on Monte
Carlo sampling of target paths.

Crisan (2001) shows that when the target state space S is l-dimensional Cartesian,
the distribution of the state of the N sample paths at a given time t will converge to
the true continuous space distribution as N ! 1 in the following sense. If � t is the
true measure at time t and �N

t is the measure produced by the N sample paths at time
t, then for any bounded continuous function f on S,

E

2

4

ˇ̌
ˇ̌
ˇ̌
Z

S

f .x/d�t �
Z

S

f .x/d�N
t

ˇ̌
ˇ̌
ˇ̌

3

5 ! 0 as N ! 1:

3.2.3 Example: T-Optimal and Myopic Search Plans

In this section we compare a T-optimal plan to a myopic one for a search for a boat.
The example is a bit simplistic, but it is useful for illustrating the difference between
these two plans.

The target, possibly a drug smuggling boat, is known to have left port at the
point (0, 0) at time t D 0 hrs: There are two possible scenarios for the motion of the
target, each of which has equal weight. In scenario 1, the boat travels toward a port at
(0, 480) moving at approximately 20 kn. In scenario 2, the boat heads east-northeast
at about 20 kn.

http://dx.doi.org/10.1007/978-3-319-26899-6_5
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Fig. 3.1 Target location distributions – dark cells indicate high probability

Figure 3.1 shows the target distribution resulting from the two scenarios at the
times 6, 12, and 18 h. The part of the distribution corresponding to scenario 1 shows
the target heading north to the port at (0, 480). In this scenario, the distribution starts
at (0, 0) and heads north while spreading out in the east-west direction until 12 h
at which time it starts to condense and eventually ends up at (0, 480) at 24 h. The
part of the distribution corresponding to scenario 2 spreads out and moves in an east-
northeasterly direction. To compute these distributions, we simulated 50,000 equally
weighted target paths in continuous space and time, 25,000 for each scenario. At the
search times we imposed a grid of cells 20 nm by 20 nm on a side. We replaced the
position of each particle with the index of the cell it is in at the search times. This
produced the set of paths in discrete time and space that we used for the motion
model for this example. We summed the probability of the paths in each cell at the
search times to produce Fig. 3.1.

We have 3000 nm2 of search effort (swept area) available at each of the times 6,
12, and 18 h, and the detection function is exponential with

b.z/ D 1 � e�z=400 nm2

for z � 0

for all times and cells where z is the search effort in a cell and 400 nm2 is the area of
a cell. To find the myopic and T-optimal plan for this search, we assume that effort
can be distributed instantaneously over space at these times. More realistically, there
will be path constraints on how the search can be applied. Finding optimal plans
under searcher path constraints is the topic of Chap. 4.

Figure 3.2 shows the myopic and T-optimal search plans for T D 24 hrs at the
three search times. To compute these plans, we used the algorithm for continuous
effort and an exponential detection function given at the beginning of Sect. 3.2.2. We
set " D 0:00001; and in 10 iterations the Washburn bound fell below this value. This
produced a detection probability 0.68 for the myopic plan and 0.76 for the T-optimal
plan. Looking at Fig. 3.2, we see that the myopic plan concentrates on scenario 1
and doesn’t look ahead to see that the scenario 2 distribution is spreading out. The
T-optimal plan takes this into account and puts most of its effort on scenario 2 at
times 6 and 12 h while waiting until 18 h to apply substantial search to scenario 1.

http://dx.doi.org/10.1007/978-3-319-26899-6_4
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Fig. 3.2 Myopic and T-optimal search plans – dark cells indicate high effort

3.2.4 Implementing Brown’s Recursion
for a Continuous-Effort, Exponential Detection
Function and Markov Motion Model

In this section we assume that X is a Markov process with transition function 
 . In
this case,

p0.j/ D Pr fX.0/ D jg for j D 1; : : : ; J and


t .i; j/ D Pr
n
X .t C 1/ D j

ˇ̌
ˇX.t/ D i

o
for t D 0; : : : ;T � 1: (3.36)

From (3.36), we have

p .!/ D Pr fX.t/ D !t; t D 0; : : : ;Tg D p0 .!0/
YT�1

tD0 
t .!t; !tC1/ for ! 2 �:
(3.37)

When the target motion model is Markovian, there is an efficient way to compute
q .�; s; fk/ for step 5 in Brown’s algorithm. Let
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R .j; t; f /

D
X

f!W!tDjg
p0 .!0/ 
0

�
!0; !1

�
� � �
t�1 .!t�1; j/ exp

�
�
Xt�1

sD0 � W .!s; s/ f .!s; s/

�

(3.38)

S .j; t; f /

D
X

f!W!tDjg

t

�
j; !tC1

�
� � �
T�1 .!T�1; !T/ exp

�
�
XT

sDtC1 � W .!s; s/ f .!s; s/
�
:

(3.39)

Then for any allocation f,

q .j; t; f / D R .j; t; f / S .j; t; f / for j D 1; : : : ; J; t D 0; : : : ;T: (3.40)

An efficient algorithm for performing the T-optimal search plan recursion for
continuous effort and a Markov motion model is given below. This algorithm was
developed by Brown (1980).

The functions R and S are computed as part of the recursion. R(j, t, f ) is the
probability of the target reaching state j at time t without being detected by the
allocation f at the times 0 to t � 1. Similarly, S(j, t, f ) is the probability of the target
not being detected at times t C 1 through T given it started in cell j at time t. Their
product is the probability of the target being in cell j at time t and failing to be
detected by the allocation f at any time other than t. Thus their product is equal to
q(j, t, f ). Computation of R and S provides and efficient way of computing q(j, t, f ).
The functions R and S are often called the reach and survive functions.

Implementation of T-Optimal Search Plan Recursion
for a Continuous-Effort, Exponential Detection Function

and Markov Motion Model

1. Let f0 .j; t/ D 0 for j D 1; : : : ; J and t D 0; : : : ;T:

2. Set

S .j; t; f0/ D 1 for j D 1; : : : ; J and t D 0; : : : ;T
R .j; 0; f0/ D p0.j/ for j D 1; : : : ; J:

3. Set k D 0; and let " > 0 be tolerance.
4. Set s D k Œmod .T C 1/� :

5. Compute

q .j; s; fk/ D R .j; s; fk/ S .j; s; fk/ for j D 1; : : : ; J and
�k .�; s/ ; the optimal plan for q .�; s; fk/ :

(continued)
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6. Set

fkC1 .�; t/ D
�

fk .�; t/ for t ¤ s
�k .�; s/ for t D s:

7. If s < T; compute

R .j; s C 1; fkC1/ D
JX

iD1
R .i; s; fk/ e�W.i;s/�.i;s;fk/
s .i; j/ for j D 1; : : : ; J;

set k D k C 1; and return to step 4.

8. If s D T; compute�.fkC1/. If it is less than " stop.
9. If s D T; and �.fkC1/ > "; set

S .j;T; fkC1/ D 1 and R .j; 0; fkC1/ D p0.j/ for j D 1; : : : ; J;

and for t D T � 1; : : : ; 0; and j D 1; : : : ; J; compute

S .j; t; fkC1/ D
XJ

iD1
t .j; i/e
�W.i;tC1/fkC1.i;tC1/S .i; t C 1; fkC1/

10. Set k D k C 1 and return to step 4.

3.2.5 Extensions of the Optimal Detection Problem

The results obtained above can be extended in a number of ways.

Optimal Survivor Search In some cases, particularly for problems involving
people lost at sea or in a wilderness area, maximizing probability of detection is not
the main goal. Instead, the goal is to detect the person while they are still alive. This
problem can be handled by a straight-forward extension of the optimal detection
search. One adds a J C 1st state, person dead, to the target state space and sets
W .J C 1; t/ D 0 for t D 0; : : : ;T: The target motion model is extended to consider
the possibility that the search object may die (transition to state J C 1) as time
and exposure increases. This is particularly critical for people in the water. When
the water is cold, hypothermia can overcome a person quickly. There are tables
developed by the Coast Guard that give the probability of dying as function time
and water temperature. When this possibility is included in the “motion” model for
the search object and the sweep width for state J C 1 set to 0, then maximizing the
probability of detection by time T is equivalent to maximizing the probability of
finding the person alive by time T and the methods of this section apply to finding
the optimal survivor search plan.
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Optimal Defensive Search In optimal defensive search, one is trying to detect the
target before it reaches a certain state. The state might represent launching an attack.
The solution to this problem is similar to that for the survivor search problem. Add
or designate a set of states that you are trying to prevent the target from reaching.
Model the target’s motion so that the states in this set are trapping states. Once the
target enters a trapping state, it stays there. Set the sweep equal to 0 in these states.
The plan that maximizes the probability of detection by time T also maximizes the
probability of detecting the target before it enters one of the trapping states.

Optimal Whereabouts Search In a whereabouts search, one succeeds by detect-
ing the target by time T, or if the target is not detected, then the searcher is allowed
to guess one of the cells in the whereabouts grid. If the target is in the guessed cell,
the search succeeds. Each cell in the whereabouts grid consists of a set of cells in
the target state space. The set of target state cells in one whereabouts grid cell does
not overlap with the set of target state cells in any other whereabouts grid cell.

Supposed there are NW whereabouts cells. The solution to the optimal where-
abouts search is computed by solving NW optimal detection search problems as
follows. For n D 1; : : : ;NW ; let S(n) be the set of target state cells that comprise the
n th whereabouts cell. A whereabouts plan consists of a pair (f, n) where f 2 FB.m/
and 1 � n � NW : The plan proceeds by performing the search f and if that fails to
detect the target, guessing the whereabouts cell S(n). Let

Pn .f ;T/ D probability of detecting target by time T with
plan f given the target is not in S.n/ at time T:

Then the probability of success for plan (f, n) is

PW .f ;T; n/ D Pn .f ;T/ .1 � Pr fX.T/ 2 S.n/g/C Pr fX.T/ 2 S.n/g : (3.41)

Given we have decided to choose the n th whereabouts cell, the plan f .n/ 2 FB.m/
that maximizes Pn(f, T) will maximize PW(f, T, n) for f 2 FB.m/: Thus we find the
optimal whereabouts plan by finding the n * such that

PW

�
f .n�/;T; n�

�
D max

1�n�NW

PW
	
f .n/;T; n



:

To find f (n) we must construct the target motion process X.n/ D
n
X
ˇ̌
ˇX.T/ … S.n/

o
.

In the general discrete space and time case where the motion process is defined in
terms of sample path probabilities as in (3.1), the process X(n) is obtained by deleting
all samples paths for which X.T/ 2 S.n/ and renormalizing the probabilities on
the remaining sample paths to add to 1. If the detection function is exponential,
then we can find f (n) by the algorithm in Sect. 3.2.2. If the target motion process is
Markovian, then we can construct X(n) by setting
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.n/
T�1 .i; j/ D

�
�.i/
T�1 .i; j/ for j … S.n/
0 for j 2 S.n/

for i D 1; : : : ; J

where � (i) is a positive constant such that

�.i/
X

j…S.n/



.n/
T�1 .i; j/ D 1 for i D 1; : : : ; J:

Replacing �T�1 by 
.n/T�1 in (3.36) yields the process X(n) and the plan f (n) can be
found using the algorithm in Sect. 3.2.4.

3.3 Discrete-Effort Search Problems

The model for discrete-effort search problems is the same as for the continuous-
effort problems defined as in Sect. 3.1 with the exception that search effort must be
allocated in discrete looks.

Discrete-Effort Search Plan A discrete-effort search plan is a space-time search
allocation f where f (j, t) specifies the number of looks in cell j at time t.

We assume that m.t/ � 0 looks are available for t � 0:We define the class Fd(m)
of discrete-effort search plans as follows:

f 2 Fd.m/ if and only if
f .j; t/ 2 f0; 1; : : : g for 1 � j � J and t D 0; : : : ;TXJ

jD1f .j; t/ D m.t/ for t D 0; : : : ;T:

The other definitions in Sect. 3.1 remain the same for discrete-effort searches
except that the class of plans F(m) is replaced by Fd(m).

3.3.1 Necessary Conditions for a T-Optimal Discrete-Effort
Plan When the Detection Function Is Exponential

In this section, we derive the analog of the necessary conditions given in Theorem
3.3 for the case where the discrete effort detection function is exponential. Because
the set of plans Fd(m) is not convex, these conditions are not sufficient.

When the detection function is exponential, the probability of detecting the target
with allocation f 2 Fd.m/ by time t given it follows path ! is

b .
 .f ; !; t// D 1 � exp
�
�
Xt

sD0W .!s; s/ f .!s; s/
�
: (3.42)
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Let

ˇ .j; s/ D 1 � e�W.j;s/ for s D 0; : : : ;T; j D 1; : : : ; J:

Equation (3.42) is equivalent to assuming that, given the target is in cell j at time s, a
look in that cell has an independent opportunity to detect with probability ˇ(j, s).
Obviously, if one starts by specifying ˇ(j, s), then one can obtain the detection
function in (3.42) by setting W .s; j/ D � ln .1 � ˇ .j; s// for s D 0; : : : ;T and
j D 1; : : : ; J:

We now state the analog of the necessary conditions of Theorem 3.3 for discrete-
effort, exponential detection functions.

Theorem 3.4 Assume b is a discrete-effort, exponential detection function. Then a
necessary condition for f � 2 Fd.m/ to be a T-optimal plan is that f � .�; t/ be the
optimal stationary target plan for cost m(t) for the distribution Qq .�; t; f �/ ; which is
the posterior probability distribution on the target’s location at time t given failure
to detect at all times other than t, for t D 0; : : : ;T:

Proof Suppose that f � 2 Fd.m/ is a T-optimal plan. From (3.23), we have

1 � P
	
f �;T


 D
JX

jD1
e�W.j;t/f �.j;t/q

	
j; t; f �
 for t D 0; : : : ;T:

Since f � 2 Fd.m/ is T-optimal, it minimizes 1 � P .f �;T/ ; and f � .�; t/ must
minimize the probability of failure for the stationary target search with probability
distribution q .�; t; f �/ among plans with m(t) looks for t D 0; : : : ;T: Thus f � .�; t/
is the optimal stationary target plan for cost m(t) for the distribution Qq .�; t; f �/ for
t D 0; : : : ;T: This proves the theorem. This result was obtained by Washburn (1980)

One can employ the recursion given below (3.28) to generate a sequence of
discrete-effort plans and continue this recursion until no change in the plan occurs
during a complete cycle through [0, T]. The resulting plan will satisfy the necessary
conditions of Theorem 3.4, but the plan may not be optimal because the recursion
may have found a local rather than a global optimum. To try to overcome this, one
can employ several different starting allocations in addition to the one that produces
the myopic plan for the first pass. However, to be guaranteed of obtaining an optimal
plan, one must use a nonlinear integer program solver.

3.3.2 Nonlinear Integer Programming Formulation

We can formulate the problem of finding a T-optimal plan as a nonlinear integer
program. There are nonlinear, integer-programming solvers that are capable of
solving large integer programs, so this may be a viable approach for some problems.
Finding a T-optimal plan is equivalent to solving the following nonlinear, integer
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program.

Find f to

maximize P .f ;T/ D
X

!2�
p .!/ b

�XT

tD0W .!t; t/ f .!t; t/
�

(3.43)

Subject to the following constraints
f .j; t/ 2 f0; 1; : : : g for j D 1; : : : ; J and t D 0; : : : ;TXJ

jD1f .j; t/ D m.t/ for t D 0; : : : ;T:
(3.44)

If b is exponential, then the above program is equivalent to

Find f to

minimize
X

!2�
p .!/ exp

�
�
XT

tD0W .!t; t/ f .!t; t/
�

(3.45)

Subject to the constraints in (3.44).

If the number of sample paths in � is large, it may not be practical to solve the
above program. In this case one can replace � with a sample of N paths chosen
in a fashion similar to that discussed in Sect. 3.2.2. The number N must be chosen
large enough to provide a good representation of the target motion process but small
enough to allow for solution of the resulting program.

3.4 Forward and Backward Algorithm

This section generalizes Brown’s recursion from Sect. 3.2 to the Forward And
Backward (FAB) algorithm developed by Washburn (1983). The FAB algorithm
applies to more general payoff functions than probability of detection. These more
general functions involve linear combinations of detection functions.

As an example, suppose we wish to minimize mean time to complete a search.
A search completes when the target is detected or at time T C 1 if the target is not
detected. The mean time to completion is not the mean time to detection since for
completion we quit at time T if we have not detected the target. We can approximate
minimizing the mean time to detection by taking T to be large.

For a search plan let M(f ) be the mean time to completion using this plan. Since

P .f ; t/ D
X

!2�
p .!/ b .
 .!; t; f //;

one can verify that
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M.f / D
XT

tD1t ŒP .f ; t/ � P .f ; t � 1/�C .T C 1/ Œ1 � P .f ;T/�

D T C 1C
XT

tD0 ŒtP .f ; t/ � .t C 1/P .f ; t/�

D
XT

tD0 .1 � P .f ; t//

(3.46)

and that (3.46) holds even when T D 1: It follows that

�M.f / D �
X

!2�
p .!/

XT

tD0 Œ1 � b .
 .!; t; f //�: (3.47)

For a continuous-effort, exponential detection function, the FAB algorithm,
described below, finds a plan to minimize M(f ) by finding f to maximize �M.f /:

FAB Payoff Functions For f 2 F; define

L .f ; !/ D aTC1 .!/C
XT

tD0at .!/ b .
 .!; t; f // for ! 2 �;
bP.f / D E ŒL .f ; !/� :

(3.48)

We call payoff functions that are in the form (3.48), FAB payoff functions. The
coefficients at for t D 0; : : : ;T C 1; are functions of the target’s sample path. As
an example they can depend on the target state at time t, or they can depend on the
whole path of the target. They can also be constants.

If we set aTC1 D � .T C 1/ and at D 1 for t D 0; : : : ;T; then bP.f / becomes
the negative of the mean time to complete a search with plan f. If we set at D 0

for t D 0; : : : ;T � 1; aT D 1, and aTC1 D 0; thenbP.f / becomes the probability of
detecting the target by time T.

Suppose that are our search is limited to [0, T] and we receive a rewardbr.t/ if we
detect the target at time t. If we don’t detect by time T, we obtain rewardbr .T C 1/ :

Ifbr is a decreasing function of time, we show, at the end of this section that the
expected reward obtained by a search plan is a FAB payoff function. This expected
reward function is obtained by setting

at.t/ Dbr.t/ �br .t C 1/ for t D 0; : : : ;T; and
aTC1 Dbr .T C 1/ :

Theorem 3.5: Discrete Space and Time Optimality Conditions for FAB Payoff
Functions Assume b is a continuous-effort, decreasing-rate detection function. Let
L(f,!) defined in (3.48) be a concave function of f where at; t D 0; : : : ;T are non-
negative. By the Kuhn-Tucker-Karush Theorem, a necessary and sufficient condition
for f � 2 FB.m/ to satisfy

bP
	
f �
 �bP.f / for f 2 FB.m/
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is the existence of a vector (�0, : : : ,�T ) with positive components such that for
t D 0; : : : ;T

@bP.f �/

@f �.j;t/ � �t if f � .j; t/ D B

D �t if 0 < f � .j; t/ < B
� �t if f � .j; t/ D 0:

for j D 1; : : : ; J: (3.49)

Calculating @bP.f /=@f .j; t/. Since

bP.f / D E ŒL .b; f ; !/� D
X

!2�
p .!/ L .b; f ; !/; (3.50)

we can write @bP.f /=@f .j; t/ more explicitly as follows.

@bP.f /
@f .j; t/

D
X

!2�
p .!/

@L .b; f ; !/

@f .j; t/

D
X

!2�
p .!/

TX

sD0
as .!/b

0 .
 .!; s; f //
@
 .!; s; f /

@f .j; t/

D
X

f!W!tDjg
p .!/

TX

sDt

as .!/b
0 .
 .!; s; f //W .j; t/:

(3.51)

The summation in the last line of (3.51) excludes paths for which !t ¤ j
because those terms do not depend on f (j, t). By the same reasoning, the terms in
the summation corresponding to times s < t are equal to 0.

Define pt.j/ D Pr fX.t/ D jg ; and let Ejt indicate expectation conditioned on
X.t/ D j: We can write (3.51) in the form

@bP.f /
@f .j; t/

D W .j; t/Ejt

"
TX

sDt

as .!/ b0 .
 .!; s; f //
#

pt.j/: (3.52)

3.4.1 Bound on FAB Payoff Function for Continuous-Effort,
Decreasing-Rate Detection Functions

We generalize the Washburn bound obtained in Sect. 3.1.2 to FAB payoff functions.
Recall that if b is a continuous-effort, decreasing-rate detection function then

b .z2/� b .z1/ � b0 .z1/ .z2 � z1/ :

Suppose f1; f2 2 F.m/, then
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bP .f2/ �bP .f1/
D E

hXT

tD0at .!/ b .
 .!; t; f2//
i

� E
hXT

tD0at .!/ b .
 .!; t; f1//
i

� E
hXT

tD0at .!/ b0 .
 .!; t; f1//
Xt

sD0W .!s; s/ .f2 .!s; s/ � f1 .!s; s//
i
:

(3.53)

From (3.53), we have

bP .f2/ �bP .f1/
� E

"
TX

tD0

tX

sD0
at .!t/ b0 .
 .!; t; f1//W .!s; s/ .f2 .!s; s/ � f1 .!s; s//

#

D E

"
TX

sD0

TX

tDs

at .!t/ b0 .
 .!; t; f1//W .!s; s/ .f2 .!s; s/ � f1 .!s; s//

#

D
TX

sD0
E

"
W .!s; s/

TX

tDs

at .!t/ b0 .
 .!; t; f1// .f2 .!s; s/ � f1 .!s; s//

#
:

(3.54)

We can expand the last line of (3.54) to obtain

bP .f2/ �bP .f1/
�

TX

sD0

JX

jD1

X

f!W!sDjg
W .j; s/Ejs

"
TX

tDs

at .!t/ b0 .
 .!; t; f1// .f2 .j; s/ � f1 .j; s//

#

D
XT

sD0
XJ

jD1D .f1; j; s/ .f2 .j; s/ � f1 .j; s//

(3.55)

where

D .f ; j; t/ D W .j; t/Ejt

"
TX

sDt

as .!s/b0 .
 .!; s; f //
#

pt.j/

D W .j; t/
X

f!W!tDjg
p .!/

XT

sDt
as .!s/ b0 .
 .!; s; f //:

(3.56)

Defining � .f1; t/ and � .f1; t/ as in (3.17), we have by (3.55) and the proof of
Theorem 3.2

bP .f2/ �bP .f1/ �
XT

tD0
�
� .f1; t/ � � .f1; t/

�
m.t/ � �.f1/ : (3.57)

so that for f * that maximizesbP.f / over f 2 FB.m/; we have

bP
	
f �
 �bP.f /C�.f / for any f 2 FB.m/ (3.58)

which provides a useful upper bound onbP .f �/ :
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Exponential Detection Function Suppose b.z/ D 1� e�z for z � 0: For f 2 F; let

˛ .f ; !; r/ D ar .!/ e�
.!;r;f / for ! 2 �; r D 0; : : : ;T: (3.59)

For j D 1; : : : ; J; s D 0; : : : ;T; define

d .f ; j; s/ D eW.j;s/f .j;s/
X

f!W!sDjg
p .!/

TX

rDs

˛ .f ; !; r/: (3.60)

Let A D
XTC1

tD0 E Œat .!/�: Then for f 2 F;

A �bP.f / D
XJ

jD1e
�W.j;s/f .j;s/d .f ; j; s/: (3.61)

From (3.56) and (3.51), we have

D .f ; j; s/ D @bP.f /
@f .j; s/

D W .j; s/ e�W.j;s/f .j;s/d .f ; j; s/ : (3.62)

3.4.2 FAB Algorithm for an Exponential Detection Function

Below we state the FAB recursion for a continuous-effort, exponential detection
function. We assume that at is non-negative for t D 0; : : : ;T C 1 so that bP.f / in
(3.48) is a concave function of f 2 F. This ensures that the assumptions of Theorem
3.5 are satisfied.

FAB Algorithm
for a Continuous-Effort, Exponential Detection Function

1. Let f0 .j; t/ D 0 for j D 1; : : : ; J and t D 0; : : : ;T:
2. Let " > 0 be small number, and set k D s D 0:

3. For r D 0; : : : ;T; set

˛ .f0; !; r/ D ar .!/ for ! 2 �
d .f0; j; r/ D

X

f!W!rDjg
p .!/

XT

uDr
˛ .f0; !; u/ for j D 1; : : : ; J:

4. Find �k .�; s/ to minimize

XJ

jD1e
�W.j;s/�k.j;s/d .fk; j; s/ (3.63)

subject to �k .j; s/ � 0 for j D 1; : : : ; J; and
XJ

jD1�k .j; s/ D m.s/:

(continued)
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5. Set

fkC1 .�; t/ D
�

fk .�; t/ for t ¤ s
�k .�; s/ for t D s:

6. If s D T; compute�.fkC1/ : If this is less than " stop.
7. Otherwise, for ! 2 ˝; set

˛ .fkC1; !; r/ D
�

eW.!s;s/.fk.!s;s/��k.!s;s//˛ .fk; !; r/ for r � s
˛ .fk; !; r/ for 0 � r < s:

(3.64)

8. Then set sC D s C 1Œmod .T C 1/�; and compute

d
	
fkC1; j; sC
 D eW.j;sC/fkC1.j;sC/

X

f!W!sCDjg
p .!/

TX

rDsC

˛ .fkC1; !; r/ for j D 1; : : : ; J:

9. Set k D k C 1; s D sC and go back to step 4.

In step 6, we compute �.fkC1/ by the use of (3.62). Step 7 of the algorithm
removes the effect of the old allocation fk .�; s/ at time s and accounts for the effect
of the new allocation �k .�; s/ on ˛(fk,!, r) for r � s to obtain ˛ .fkC1; !; r/ :

For B D 1; we can accomplish step 4, by normalizing d .fk; �; s/ to a probability
distribution and finding �k .�; s/ by using the Charnes and Cooper algorithm given in
Sect. 2.3.1.3 or the algorithm given in Sect. 5.2 of Washburn (2014). If B < 1; we
can use the algorithm in Sect. 2.3.1.2.

In step 6, the algorithm checks Washburn’s bound after each pass through the
times from 0 to T to see if the stopping criterion has been reached. If it has, the plan
fkC1 is within " of the optimal plan. The bound is easily computed using (3.62).

From (3.61) we see that each allocation fkC1 increases the payoff bP .fkC1/
compared to bP .fk/ : It follows that bP .fk/ approaches a limit P as k ! 1: Since
the space of search plans FB(m) is compact, there is a subsequence of plans that
converges to a plan f � 2 FB.m/ andbP .f �/ D P:

It follows that for each s D 0; : : : ;T there is a �s > 0 such that

@bP.f �/

@f .j;s/ � �s if f � .j; s/ D B

D �s if 0 < f � .j; s/ < B
� �s if f � .j; s/ D 0

for j D 1; : : : ; J: (3.65)

To see this we suppose that (3.65) does not hold for some time s. Then we could
strictly increase bP .f �/ by reallocating the effort at time s as in step 4 to obtain

http://dx.doi.org/10.1007/978-3-319-26899-6_2
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Fig. 3.3 Plan that minimizes mean time to completion – dark cells indicate high effort

f R
s 2 FB.m/ such that bP

	
f R
s



> bP .f �/ D P: However, an argument similar to

that given in Sect. 3.2.1 shows this is not possible. Therefore (3.65) holds for s D
0; : : : ;T; and the necessary and sufficient conditions of Theorem 3.1 are satisfied
which means f * maximizesbP.f / for f 2 FB.m/:

3.4.3 Example: Minimizing Mean Time to Completion

In this example, we apply the FAB algorithm to find the plan that minimizes mean
time to completion for the search scenario in the example in Sect. 3.2.3.

For the problem described in Sect. 3.2.3, we applied the FAB algorithm for
continuous effort and exponential detection function given above. We set " D
0:00001 and iterated until the Washburn bound fell below ". This required 8
iterations. Figure 3.3 shows the resulting plan which is similar to the myopic plan
in Fig. 3.2. The mean time for the optimal completion plan is 13.47 h compared to
13.61 h for the myopic plan and 15.92 h for the T-optimal plan. By contrast, the
probability of detection for the optimal completion plan is 0.71 compared to 0.76
for the T-optimal plan and 0.68 for the myopic plan. In this example, the optimal
completion plan appears to be a compromise between detecting the target as early
as possible and reaching the highest detection probability by time T.

3.4.4 FAB Algorithm for Continuous-Effort, Exponential
Detection Function and Markov Target Motion

This section presents the special case of the FAB algorithm that was developed by
Washburn (1983) for Markov target motion.

As in Sect. 3.2.4, we assume that X is a Markov process with transition function

 . Specifically,
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p0.j/ D Pr fX.0/ D jg for j D 1; : : : ; J and


t .i; j/ D Pr
n
X .t C 1/ D j

ˇ̌
ˇX.t/ D i

o
for t D 0; : : : ;T � 1: (3.66)

We make the additional assumption that at(!) does not depend on !s for s < t for
t D 0; : : : ;T:

We now define, in a recursive fashion, functions R and S which are the analogs
of the reach and survive functions defined for the Markov target motion version of
Brown’s algorithm. For f 2 F and j D 1; : : : ; J; let

R .j;T; f / D EjT ŒaT .!/�

and for t D T � 1; : : : ; 0

R .j; t; f / D Ejt Œat .!/�C
XJ

iD1
t .j; i/ e�W.i:tC1/f .i;tC1/R .i; t C 1; f /:

(3.67)

For f 2 F and j D 1; : : : ; J; let

S .j; 0; f / D p0.j/
and for t D 1; : : : ;T

S .j; t; f / D
XJ

iD1
t�1 .i; j/ e�W.i;t�1/f .i;t�1/S .i; t � 1; f /:

(3.68)

From the above definitions and the assumption that for t D 0; : : : ;T; at(!) does not
depend on !s for s < t; we have

R .j; t; f / D Ejt

2
6664
XT

sDt
as .!/ e

�
sX

rDtC1
W .!r; r/ f .!r; r/

3
7775

S .j; t; f / D Ejt
�
e�
.!;t�1;f /
 pt.j/:

Let A D
XTC1

tD0 E Œat .!/�: Observe that for any t D 0; : : : ;T;

A �bP.f / D E

�Xt�1
sD0as .!/ e�
.!;s;f /

�
C E

hXT

sDt
as .!/ e�
.!;s;f /i (3.69)

and that the first term on the right-hand side of (3.69) does not depend on f .�; t/. We
can write the second term as
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E

"
XT

sDt
as .!/ e

�
.!;s;f /

�#

D XJ

jD1
pt.j/Ejt

hXT

sDt
as .!/ e�
.!;s;f /

i

D XJ

jD1
e�W.j;t/f .j;t/pt.j/Ejt

2

66664

XT

sDt
as .!/ e

�

t�1X

rD0

W .!; r/ f .!; r/

e

�

sX

rDtC1

W .!; r/ f .!; r/

3

77775
:

By the Markov property,

E

"
XT

sDt
as .!/ e

�
.!;s;f /
�#

D
XJ

jD1e
�W.j;t/f .j;t/pt.j/Ejt

h
e�
.!;t�1;f /iEjt

2

66664

XT

sDt
as .!s/ e

�
sX

rDtC1
W .!; r/ f .!; r/

3

77775

D
XJ

jD1e
�W.j;t/f .j;t/S .j; t; f /R .j; t; f / :

(3.70)

We now state the FAB algorithm for Markovian target motion.

FAB Algorithm for Markovian Target Motion
and a Continuous-Effort, Exponential Detection Function

1. Let f0 .j; t/ D 0 for j D 1; : : : ; J and t D 0; : : : ;T:
2. Let " > 0 be small number, set k D s D 0; and let

S .j; 0; f / D p0.j/ for j D 1; : : : ; J and f 2 F:

3. For f D fk and j D 1; : : : ; J; compute

R .j;T; f / D EjT ŒaT .!/� ;

and for t D T � 1; : : : 0;

R .j; t; f / D Ejt Œat .!/�C
XJ

iD1
t .j; i/ e�W.i:tC1/f .i;tC1/R .i; t C 1; f /:

4. Find �k .�; s/ to minimize

(continued)
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XJ

jD1e
�W.j;s/�k.j;s/S .j; s/R .j; s/

subject to �k .j; s/ � 0 for j D 1; : : : ; J; and
XJ

jD1�k .j; s/ D m.s/:

5. Set

fkC1 .�; t/ D
�

fk .�; t/ for t ¤ s
�k .�; s/ for t D s:

6. If s D T; compute �.fkC1/ : If this is less than " stop. If �.fkC1/ > "; set
s D 0; k D k C 1; and go to step 3.

7. Otherwise set s D s C 1; k D k C 1, compute

S .j; s; fk/ D
XJ

iD1
t�1 .i; j/ e�W.i;s�1/fk.i;s�1/S .i; s � 1; fk/ for j D 1; : : : ; J;

and go to step 4.

By virtue of (3.69) and (3.70), the allocation fkC1 found in steps 4 and 5 has the
property that

A �bP .fkC1/ � A �bP .fk/ (3.71)

so thatbP .fkC1/ �bP .fk/ for k D 0; 1; : : : ; and

lim
k!1

bP .fk/ DbP
	
f �


where f * maximizesbP.f / for f 2 FB.m/: This last fact follows from an argument
similar to the one given in Sect. 3.2.1.

Maximizing Expected Reward We have shown above that the probability of
detection by time T and the negative of mean time to completion are FAB payoff
functions. We now show that maximizing expected reward is a FAB payoff function
under certain conditions.

Suppose that we obtain reward r(j, t) if we detect the target at time t and in state
j for t D 0; : : : ;T and rewardbr .T C 1/ if we do not detect the target by time T. The
expected reward from searching with plan f is
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where we define b
�


�
!;�1; f

�
D 0 and r .!TC1; t C 1/ Dbr .T C 1/ : If we set

at .!/ D r .!t; t/ � r .!tC1; t C 1/ for t D 0; : : : ;T;

and

aTC1 .!/ Dbr .T C 1/ for ! 2 �;

then

bR.f / D E
hXT

tD0at .!/ b
�


�
!; t; f

�i
Cbr .T C 1/

is a FAB payoff function.
If b.z/ D 1 � e�z and at is non-negative for t D 0; : : : ;T; thenbR.f / is concave

and we can use the FAB algorithm to find a plan f * to maximizebR.f / over FB(m).
If in addition, the target motion is Markovian, then we may use the Markovian
version of the FAB algorithm. Note that the coefficients at have distributions that
are independent of X(s) for s < t given X(t). To employ this version of the algorithm
we calculate

Ejt Œat .!/� D r .j; t/C
XJ

iD1
t .j; i/ r .i; t C 1/ for j D 1; : : : ; J; t D 0; : : : ;T:

If we take r .!; t/ D t for t D 0; : : : ;T C 1, then at .!/ D �1 for t D 0; : : : ;T;
aTC1 .!/ D T C 1 andbR.f / is the negative of the mean time to complete the search
with plan f.

3.5 Summary

This chapter defines the optimal search for a moving target problem for discrete
space and time target motion models. Section 3.1 defines the continuous-effort
version of this problem. In the case of a continuous-effort, decreasing-rate detection
function, Sect. 3.1.1 finds necessary and sufficient conditions for a plan to be
T-optimal within the class FB(m) of search plans which allocate m(t) effort for
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t D 0; : : : ;T: It also finds a bound on the probability of detection for the T-optimal
plan that can be used to decide when an algorithm has found a plan that is “close
enough” to optimal.

Section 3.2 finds algorithms for computing T-optimal plans for a continuous-
effort, exponential detection function. This section shows that T-optimal plans may
be found by solving a sequence of stationary target problems of the type solved
in Chap. 2. The algorithms are recursive and converge to the optimal plan as the
number of iterations approach infinity. The bound found in Sect. 3.1.1 is easily
computed as part of the recursion and is used to provide a stopping rule for the
algorithms. The first pass of the recursion through the times t D 0; : : : ;T produces
the myopic plan. This plan allocates effort at time t to maximize the increase in
detection probability given failure to detect before time t. Generally the myopic
plan is not T-optimal, but it is often close, which means that the recursion tends
to converge rapidly to an almost T-optimal plan. A special form of the recursion
is given for Markovian target motion. At the end of the section, extensions of the
optimal detection search are discussed, including optimal survivor search, optimal
defensive search, and optimal whereabouts search.

Section 3.3 finds necessary conditions for the discrete effort search problem.
Section 3.4 introduces the FAB algorithm. This algorithm is an extension of the
optimal detection search algorithms given in Sect. 3.2 to more general payoff
functions such as minimizing mean time to complete a search or maximizing the
expected reward from a search. Two versions of the FAB algorithm are presented,
one for general target motion and one for Markovian target motion.

3.6 Notes

In 1975 when the first edition of Stone (2007) was published, there were limited
results on optimal search for a moving target. Pollock (1970); Dobbie (1974), and
Iida (1972) solved two cell problems. Washburn (1975) used a version of the FAB
algorithm to solve a 67 cell approximation to the problem of detecting of a target
moving according to a diffusion process. The solution converged to a necessary
condition for optimality. It was not known at that time that the condition was
also sufficient. There were a number of results that obtained necessary conditions.
See Lions (1971), Hellman (1972), and Saretsalo (1973). In addition, one could
obtain explicit solutions for a class of target motion models called conditionally
deterministic. See Stone and Richardson (1974).

Brown (1977), (1980) found necessary and sufficient conditions for a T-optimal
search plan for a continuous-effort exponential detection function and an arbitrary
discrete space and time target motion process. The conditions state that a plan
f � 2 F.m/ is T-optimal if and only if for each t D 0; : : : ;T; f .�; t/ is the optimal
allocation of m(t) effort for the stationary target problem of detecting a target whose
distribution is given by the posterior distribution on the target’s location at time t
given failure to detect by the plan f * at all times other than t. Brown outlined an
iterative algorithm that converges to the T-optimal plan as the number of iterations

http://dx.doi.org/10.1007/978-3-319-26899-6_2
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goes to infinity. In the case of a Markovian target model, he presented an efficient
implementation of the recursive algorithm. The FAB algorithm in Washburn (1983)
is a generalization of Brown’s algorithm for Markov target motion. Washburn
(1981) found the upper bound given in Sect. 3.1.1 that is used in the stopping rule
for the iterative algorithms given in this chapter.
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Chapter 4
Path-Constrained Search in Discrete
Time and Space

In some practical situations, a searcher might have difficulties with implementing
an optimal search plan of the form stipulated in the previous chapters. The plan
might call for an instantaneous shift of search effort from one time period to the
next. If the searcher requires a significant amount of time to carry out this shift,
a relatively fast moving target would “get ahead” of the searcher. This situation
is especially prevalent in robotic searches of buildings, where transit from room
to room accounts for the majority of time expenditure, and searches using low-
speed unmanned aerial systems, where the ratio of searcher speed to target speed
is low. In this chapter, we describe methods for computing optimal search plans
while accounting for real-world constraints on the agility of the searcher. In fact,
we consider multiple searchers, each providing a discrete search effort, as well as
multiple targets. The chapter starts, however, with the simpler situation of a single
searcher looking for a single target. We formulate the optimal search problem as that
of finding the optimal searcher path and describe a branch-and-bound algorithm
for its solution. We proceed by generalizing the formulation to account for a
searcher that operates at different “altitudes” with a more complex sensor. We
also describe algorithmic enhancements that both handle the more general situation
and provide computational speed-ups. The chapter then addresses the situation
with multiple searchers, first of identical types and second of different types and
also with multiple targets. These generalizations are most easily handled within
a mathematical programming framework, which facilitates the consideration of a
multitude of constraints including those related to airspace deconflication and also
allows the leverage of well-developed optimization solvers for the determination
of optimal searcher plans. The chapter ends with a description of some algorithms
behind these solvers, with an emphasis on cutting-plane methods. Throughout the
chapter we remain in the context of discrete time and space search.
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4.1 Path-Based Formulation and Solution
for Single Searcher

This section provides an introduction to the subject of path-constrained search.
We consider the simplest possible situation: a single searcher moves between a
discrete set of cells. In each discrete time period, the searcher examines the cell
it occupies with the hope of finding a target that similarly moves between the cells.
The searcher cannot move freely between cells, but must in each time period select
a next cell to move to from a subset of cells. Since the subset might be the cells
physically adjacent to the current cell, the sequence of cells visited by the searcher
can be thought of as a path in space. We start with the formulation of the problem
of finding the path that maximizes the probability of detecting the target and then
proceed with algorithms and enhancements.

4.1.1 Path-Centered Formulation

As in previous chapters, we let the search take place in a finite set of cells J D
f1; : : : ; Jg and over a finite set of time periods T D f1; 2; : : : ;Tg. We let t D 0

represent the time prior to search and set T0 D f0g [ T . There is one target
occupying one cell in each time period. We assume that the target moves according
to a Markov chain with transition probability matrix � with elements � .j; j0/,
j; j0 2 J . Specifically, � .j; j0/ is the probability that a target occupying cell j in time
period t occupies cell j0 in time period t C 1. We refer to this as a Markovian target
model. Although, this model is quite flexible and offers significant computational
advantages as will be clear below, it assumes independence between moves. In
Sect. 4.2, we examine a more general (and also computationally more costly) target
movement model used by the U.S. Coast Guard’s decision aid SAROPS; see Kratzke
et al. (2010).

We consider one searcher that during each time t 2 T0 occupies a cell. When
in a cell j, the searcher can only move to any cell “adjacent” to j as defined by the
forward star F .j/ 	 J . By convention, j 2 F .j/ and the searcher can therefore
remain in its current cell. We assume there is no transit time between adjacent
cells. The situation with nonzero transit time between cells can be modeled, at
least approximately, by introducing artificial cells, and also by the more general
formulations in Sect. 4.2. We denote the searcher’s cell prior to time period 1 by
j0 2 J .

The searcher is equipped with one imperfect sensor. Each time period t 2 T , the
searcher’s sensor takes one “look” in the cell. The probability that one look for the
target in cell j during time period t detects the target, given it is actually in the cell,
is g.j; t/ 2 Œ0; 1/. We refer to this probability as the glimpse-detection probability.
The sensor returns no false positives.



4.1 Path-Based Formulation and Solution for Single Searcher 83

For any t 2 T and jl 2 J , l D 0; 1; 2; : : : ; t, with jl 2 F .jl�1/ for all l D
1; 2; : : : ; t, let the sequence fjlgt

lD0 denote a directed j0-jt subpath. If t D T, then
the directed j0-jt subpath is a directed j0-jt path that extends across the time horizon.
When no misunderstanding can arise, we refer to a directed j0-jt (sub)path as a
(sub)path. Since jl 2 F .jl�1/, the (sub)path is a sequence of adjacent cells that is
considered feasible for the searcher to visit and is therefore a candidate search plan.

In this notation, the searcher moves from j0 to some jT along a directed j0-jT path.
The searcher occupies only one cell j 2 J each time period, and stays at the same
cell or moves to another cell in F .j/ for the next time period. Consequently, the
searcher is path constrained.

For any t 2 T , let

q.�; t/ D Œq.1; t/; q.2; t/; : : : ; q.J; t/�; (4.1)

where q.j; t/ is the probability that the target occupies cell j 2 J during time period
t 2 T and the target is not detected before t. The initial target distribution q.�; 1/ is
assumed known. For example, q.j; 1/ D 1 and q.j0; 1/ D 0 for j0 ¤ j, which implies
that the target is certainly in cell j at time 1. Even in this case the search plan could
be nontrivial as there might be no guarantee that the searcher detects the target in
the first time period and after that the movement of the target might be uncertain.

We refer to q.�; t/ as the undetected target distribution, but note that q.�; t/ is
not a probability mass function and might be considered a “defective probability
distribution.” We stress that q.j; t/ differs from the probability that the target
occupies cell j 2 J during time period t 2 T given that the target is not detected
before t. The latter probability represents the Bayesian posterior probability of target
location at the beginning of time period t. However, as seen in the next paragraphs,
it is not necessary to consider that probability.

We express the probability of detection directly in terms of q.�; �/. In this notation,
the probability of detection in cell j during time period t and no prior detections
becomes

q.j; t/g.j; t/: (4.2)

Since q.�; t/ is the undetected target distribution at the beginning of time period
t, it depends on searches up to time period t � 1. Specifically, if cell j is searched
during time period t, then

q.�; t C 1/ D Œq.1; t/; ::; q.j � 1; t/; q.j; t/.1� g.j; t//; q.j C 1; t/; ::; q.J; t/��: (4.3)

Given a path P D fjtgT
tD0, the T events “detection during time period t and

target is not detected before t,” t D 1; 2; : : : ;T, are mutually exclusive. Hence, in
view of (4.2), the probability of detection along P , denoted P.P/, becomes

P.P/ D
TX

tD1
q.jt; t/g.jt; t/: (4.4)
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The challenge is then how to efficiently compute P.P/ for a large number of
(relevant) paths and to ensure that the paths not examined are inferior. This is the
subject dealt with next, which then leads to an algorithm for finding a path that
maximizes this probability.

Example of Path-Constrained Search

We consider a simple example with an area of interest divided into four cells
numbered 1–4 from the top-left to the bottom-right. It is known that the target in
time period 1 is in cell 2 with probability 0.6 and in cell 3 with probability 0.4.
Consequently,

q.�; 1/ D Œ0 0:6 0:4 0�:

The target moves vertically with probability 0.8 and horizontally with probability
0.2. The target cannot remain in the same cell for two consecutive time periods.
This gives a Markov transition matrix

� D

2
664

0 0:2 0:8 0

0:2 0 0 0:8

0:8 0 0 0:2

0 0:8 0:2 0

3
775 :

Consequently,

q.�; 1/� D Œ0:440 0 0 0:560�;

which gives the probability distribution of the target during time period 2 in the
absent of information collected from search.

Now suppose that we have one searcher occupying cell 1 at time period 0. It can
move vertically or horizontally, but not diagonally. Thus,

F .1/ D f1; 2; 3g;F .2/ D f1; 2; 4g;F .3/ D f1; 3; 4g;F .4/ D f2; 3; 4g:

We let the time horizon T D 2. Then, the searcher has the following possible paths
for time periods 0,1,2:

f1; 1; 1g; f1; 1; 2g; f1; 1; 3g; f1; 2; 1g; f1; 2; 2g; f1; 2; 4g; f1; 3; 1g; f1; 3; 3g; f1; 3; 4g;

Let the glimpse-detection probability g.j; t/ D 0:9 for all j and t. The probability
q.�; 2/ (see (4.3)) depends on the cell in which search took place during time period
1. We consider all three possibilities:

search cell 1 at t D 1 W q.�; 2/ D Œ0 � .1 � 0:9/ 0:6 0:4 0�� D Œ0:440 0 0 0:560�;

search cell 2 at t D 1 W q.�; 2/ D Œ0 0:6 � .1 � 0:9/ 0:4 0�� D Œ0:332 0 0 0:128�;

search cell 3 at t D 1 W q.�; 2/ D Œ0 0:6 0:4 � .1 � 0:9/ 0�� D Œ0:152 0 0 0:488�:
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The probability of detection along the nine paths are therefore (see (4.4)):

path f1; 1; 1g W 0 � 0:9C 0:44 � 0:9 D 0:396;

path f1; 1; 2g W 0 � 0:9C 0 � 0:9 D 0;

path f1; 1; 3g W 0 � 0:9C 0 � 0:9 D 0;

path f1; 2; 1g W 0:6 � 0:9C 0:332 � 0:9 D 0:839;

path f1; 2; 2g W 0:6 � 0:9C 0 � 0:9 D 0:540;

path f1; 2; 4g W 0:6 � 0:9C 0:128 � 0:9 D 0:655;

path f1; 3; 1g W 0:4 � 0:9C 0:152 � 0:9 D 0:497;

path f1; 3; 3g W 0:4 � 0:9C 0 � 0:9 D 0:360;

path f1; 3; 4g W 0:4 � 0:9C 0:488 � 0:9 D 0:799:

We see that path f1; 2; 1g is optimal with probability of detection of 0.839. It is
interesting to note that this search plan first attempts to detect the target in cell 2,
which is the most likely location for the target at that time. Second, the search plan
prescribes cell 1, which is not the most likely location of the target at t D 2. The
target is in cell 1 with probability 0.44 and cell 4 with probability 0.560. However,
given that the searcher did not detect the target during time period 1 in cell 2, we
view it less likely that the target was even in cell 2 at that time. It becomes more
likely that the target actually was in cell 3 during time period 1. Specifically, the
probability that the target is in cell 1 during time period 2 and the target was not
detected during time period 1 is q.1; 2/ D 0:332. For cell 4 we have similarly that
q.4; 2/ D 0:128. In view of this calculation, it is clear that moving back to cell 1 for
time period 2 is better than moving to cell 4. In fact, it is optimal.

4.1.2 Branch-and-Bound Algorithm

It is clear that an algorithm for maximizing P.P/ can be based on enumerating
paths and checking the associated probability of detection. However, the number of
possible paths is typically astronomical. Even in the limited case of F .j/ consisting
of only five cells (maybe cell j as well as the four cells immediately north, south,
east, and west of j in a regular grid) and a time horizon of T D 12, there are more
than 244 million possible paths. A branch-and-bound algorithm enumerates a subset
of these paths and uses bounds to conclude that those not examined must have no
higher probability of detection; see Rardin (1997) for an elementary introduction
to branch-and-bound algorithms. The simplest version of such an algorithm is
described next. Section 4.1.4 provides several enhancements.
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4.1.2.1 Basic Algorithm

Given a subpath fjlgt
lD0, t 2 T , we let Np.jt; t/ denote an upper bound on the

probability of detection along any path that starts with the subpath fjlgt
lD0. We note

that to simplify the notation we specify only the last cell jt in the notation Np.jt; t/
even though the quantity could depend on the whole subpath fjlgt

lD0. Possible ways
of computing such an upper bound are given below and indeed will become the
central challenge in a branch-and-bound algorithm. We define

K .t/ to be the set of triplets of the form .jt; t; Np.jt; t//; (4.5)

representing one-cell extensions of fjlgt�1
lD0 yet to be explored. The first element jt

refers to the next cell to visit and the second element t is the time period1 to visit
cell jt.

The upper bound Np.jt; t/ is the sum of three parts. Let dt.jt; t/ be an upper bound
on the probability of detection during time periods t C 1; t C 2; : : : ;T and no
detection along subpath fjlgt

lD0 given that the searcher is at jt during time period
t. The two other parts are the probability of detection along the subpath fjlgt�1

lD0 and
the probability of detection during t. Hence,

Np.jt; t/ D P.fjlgt�1
lD0/C q.jt; t/g.jt; t/C dt.jt; t/: (4.6)

We also let Op denote the largest detection probability of all the examined paths at a
given stage of the algorithm. In this notation, a branch-and-bound algorithm takes
the following form where details about bound calculations are presented below.

Basic Branch-and-Bound Algorithm.

Step 0. Set t D 0;K .0/ D f.j0; 0; 1/g, and Op D 0.
Step 1. If K .t/ is empty, replace t by t � 1. Else, go to Step 3.
Step 2. If t D 0, stop: the last saved path is optimal and Op is its probability

of detection. Else, go to Step 1.
Step 3. Remove from K .t/ the triplet .jt; t; Np.jt; t// with the largest bound

Np.jt; t/.
Step 4. If Np.jt; t/ � Op, go to Step 1. (Current subpath is fathomed.)
Step 5. If t < T, then for each cell j 2 F .jt/, calculate a bound dtC1.j; tC1/

as well as Np.j; t C 1/, see (4.6), and add .j; t C 1; Np.j; t C 1// to K .t C 1/.
Replace t by t C 1 and go to Step 3. Else, let Op D Np.jt; t/ and save the
incumbent path fjlgT

lD0, and go to Step 1.

1This information is currently redundant but the notation is convenient in later generalizations.
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The algorithm starts with a single element in K .0/, which is immediately
removed in Step 3. Step 4 is at first not invoked and the algorithm moves to Step 5.
Here, a bound is computed for every cell to which the searcher might move from its
initial cell j0 and the set K .1/ is populated. The time is advanced to t D 1 and the
algorithm moves to Step 3. There the most promising extension is examined first,
i.e., the one with the largest bound. Presumably, a large bound indicates that the
probabilities of detection along the corresponding paths are high. Of course, there
is no guarantee that this is actually the case, but the rule is reasonable. Step 4 is
again skipped and we move to Step 5. This process is repeated until the algorithm
has constructed a path across the time horizon and t D T in Step 5. This path then
becomes the incumbent path whose probability of detection is the best seen thus
far. The algorithm then moves to Step 1, where either additional elements of K .t/
are examined or time is reduced. In the absence of Step 4, this process would have
led to a complete enumeration of all paths. However, Step 4 inserts a check that
prevents an extension of a subpath whose bound is no greater than the probability
of detection for the incumbent path. Since the bound provides an optimistic view of
what can be achieved by extending the subpath, every extension of such a subpath
must result in a probability of detection that is no greater than that of the incumbent.
Any extension of such a subpath can therefore be ignored. This “fathoming” of a
subpath may reduce the amount of path enumeration dramatically. In any case, the
algorithm terminates with an optimal path.

Clearly, a tight bound dt.jt; t/ increases the number of times the algorithm
fathoms and reduces the computing time. We here only describe the simplest idea
for computing such a bound and defer to Sect. 4.1.4 for enhancements.

4.1.2.2 Mean Bound Calculation

The only challenge with computing the bound in (4.6) is associated with the last
term on the right-hand side. The two first terms on that side are, of course, known at
the relevant step of the algorithm. We rely on the relationship between probabilities
and expectations as described next.

An upper bound dt.jt; t/ on the probability of detection during time periods
t C 1; t C 2; : : : ;T and no detection along subpath fjlgt

lD0 given that the searcher
is at jt during time period t is furnished by the largest possible expected number of
detections during time periods t C 1; t C 2; : : : ;T. This fact is most easily realized
by observing that the expected number of detections is simply the sum of the
probabilities of detection in each time period. If the path is known, each term in this
sum is simply a product of glimpse-detection probability and the probability that
the target is in the corresponding cell. The latter is given by the Markov transition
matrix � and the initial probability distribution q.�; 1/.

Two complications arise, however. First, the bound dt.jt; t/ should account for the
fact that no detection along subpath fjlgt

lD0 has taken place. This provides, indirectly,
additional information about the location of the target. Second, there are typically
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many ways of extending the subpath to a path, and we need to consider the one
with the largest expected number of detections. We overcome these challenges in
the manner described next.

We let qg.j; t/ be the probability that the target occupies cell j during time period
t and not detected along the subpath fjlgt

lD0, t 2 T , i.e.,

qg.�; t/ D Œq.1; t/; : : : ; q.jt � 1; t/; q.jt; t/.1 � g.jt; t//; q.jt C 1; t/; : : : ; q.J; t/�:

(4.7)

We use subscript g to indicate that qg.�; t/ is obtained from q.�; t/ by applying
the glimpse-detection probability corresponding to the last cell in fjlgt

lD0. For any
integer s > t, s; t 2 T , we also define

q� .�; sI t/ D qg.�; t/� s�t: (4.8)

As seen, q� .j; sI t/ is the probability that the target occupies cell j during time period
s and no detection along subpath fjlgt

lD0. In contrast to q.�; s/, q� .�; sI t/ ignores the
effect of search after time period t. The probabilities q� .j; sI t/, j 2 J , provides
a revised estimate of where the target is at time s, utilizing the (nondetection)
information collected up to time t. This takes care of the first issue described above.
If the subpath is simply fj0g, i.e., t D 0, we define for notational convenience
q� .�; sI 0/ D q.�; 1/� s�1, for any s 2 T , and q� .j; tI t/ D 0 for all j 2 J
and t 2 T0. Consequently, q� .�; sI 0/ specifies the probabilities for the target
location in the absence of information from search. These probabilities represent our
knowledge about time period s prior to any search. In contrast, q� .�; sI t/ represents
the updated information after searching the subpath fjlgt

lD0 unsuccessfully.
To deal with the second challenge of how to determine the extension of the

subpath fjlgt
lD0 to a path that has the largest expected number of detections we

construct a time-expanded network. Each cell j 2 J is duplicated T times to define
the nodes hj; ti, t 2 T . Let N be the set of all such nodes as well as the nodes
n0 D hj0; 0i and On D hOj;T C 1i representing the searcher’s prior position and final
position, respectively. Here, Oj is an artificial terminal cell. Two nodes n D hj; t � 1i
and n0 D hj0; ti, j; j0 2 J and t D 2; 3; : : : ;T, are connected with an arc .n; n0/ if
and only if j0 2 F .j/. Moreover, the node n0 D hj0; 0i is connected with an arc to
a node n0 D hj0; 1i, j0 2 J , if and only if j0 2 F .j0/; and every node n D hj;Ti,
j 2 J is connected with an arc to On. Let A be the set of all arcs. For any integer
t � TC1 and nodes nl D hjl; li 2 N ; l D 0; 1; : : : ; t, such that .nl�1; nl/ 2 A for all
l D 1; 2; : : : ; t, we let the sequence fnlgt

lD0 denote a subpath in the time-expanded
graph .N ;A /.

For some t 2 f0; 1; : : : ;T � 1g, suppose that a subpath fjlgt
lD0 is given. Then, we

endow each arc .n; n0/ D .hj; si; hj0; s C 1i/ 2 A , s D t; t C 1; : : : ;T � 1, in the
time-expanded graph .N ;A / with a “reward”

cn;n0 D q� .j
0; s C 1I t/g.j0; s C 1/; (4.9)
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where � .j; j0/ is the j-j0 element of the Markov transition matrix � . We set cn;On D 0

for all .n; On/ 2 A . In view of (4.8), we see that cn;n0 is the probability of detection
during time period sC1 and no detection along subpath fjlgt

lD0. We refer to .N ;A /

with arc rewards given by (4.9) as the time-expanded network.
We can show that given the subpath fjlgt

lD0 the optimal value of the longest-path
problem in the time-expanded network from node hjt; ti to node hOj;T C 1i, using
the rewards in (4.9) as “arc length,” provides an upper bound on the probability
of detection during time periods t C 1; t C 2; : : : ;T and no detections along the
subpath fjlgt

lD0 given that the searcher is at jt during time period t. It represents
the expected number of detections during time periods t C 1; t C 2; : : : ;T given no
detections along the subpath fjlgt

lD0 and that the searcher is at jt during time period
t. We denote this bound by dt.jt; t/ and refer to it as the dynamic bound as it needs
to be recomputed every time the current subpath is extended in the basic algorithm.
The bound is called the mean bound.

Since the time-expanded network is acyclic, the longest-path problem can be
solved in polynomial calculation time with a standard shortest-path algorithm
(Ahuja et al. 1993, pp. 77–79). We observe that to compute dt.jt; t/ given the subpath
fjlgt

lD0, it is only necessary to generate the part of the graph .N ;A /, and the
corresponding arc rewards, “after” time t and within reach from node hjt; ti, since
the longest path starts at node hjt; ti.

4.1.3 Model Enhancements

There are several possible extensions of the model of the previous subsection.
We here describe two possibilities that are practically useful. The first one allows
the searcher to operate in a different space than the target. For example, the
target might operate in an area on the ground while the searcher moves about
in the 3-dimensional airspace above the area. This provides substantial modeling
flexibility.

The second enhancement makes the glimpse-detection probability dependent on
the previous as well as the current cell the searcher occupies. This dependence may
arise if adjusting search pattern and/or altitude, refocusing a sensor, and becoming
familiar with a new cell have a significant detrimental effect on the searcher’s
capability to detect a target. In addition, this dependance allows us to account
indirectly for small transit times (much less than the length of a time period) between
cells by reducing the glimpse-detection probability from its nominal value if the
searcher just moved into a cell. For example, suppose that the real-world travel time
from cell j0 to j is 1 min. To model this situation (approximately), we would normally
require a time period of (approximately) 1-min duration. However, this may result
in a large number of time periods and long computing times. Alternatively, we can
define a longer time period, say 10 min, and let the glimpse-detection probability in
cell j be somewhat reduced if a searcher’s previous cell were j0 as compared to if it
were j. This will reflect the fact that a searcher coming from cell j0 has only 9 min
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to search j compared to 10 min if the searcher had already been present in j. Hence,
we avoid adopting a fine time discretization with resulting high computational cost.

Each cell j 2 J is associated with a set H D f1; 2; : : : ;Hg, which can be
thought of as various altitudes above the cell. However, the meaning will vary with
the application setting. For simplicity we let H be independent of j, but this is only
for notational convenience. For any j 2 J and h 2 H , we refer to the cell-altitude
pair hj; hi as a waypoint where the searcher can “loiter” and carry out search of cell
j. We model the area of operations for the searcher by a directed network .V ;E /,
with set of vertices V and set of directed edges E , in which vertices v D hj; hi 2
V represent waypoints and directed edges e D .v; v0/ 2 E represent transition
between waypoints v; v0 2 V . The searcher can only transit between two waypoints
that are “adjacent” to each other. Let F .v/ 	 V be the set of vertices that are
adjacent to v 2 V . We refer to F .v/ as the forward star of vertex v. We adopt the
convention that v 2 F .v/ for all v 2 V . Then, the set of edges E D f.v; v0/ 2
V 
 V j v0 2 F .v/g.

During each time period t 2 T , the searcher is at a particular vertex (waypoint).
We assume there is no transit time between waypoints. Hence, .v; v0/ 2 E simply
represents search at waypoint v followed by search at waypoint v0 in the next time
period. As above, the situation with nonzero transit time between waypoints can be
modeled, at least approximately, by introducing artificial vertices.

Let � W V ! J be the function that specifies the cell with which a vertex is
associated, i.e., cell �.v/ is searched from vertex v. We denote the searcher’s vertex
prior to time period 1 by v0 2 V .

For any t 2 T and vl 2 V , l D 0; 1; 2; : : : ; t, such that .vl�1; vl/ 2 E for all
l D 1; 2; : : : ; t, let the sequence fvlgt

lD0 denote a directed v0-vt subpath. If t D T,
then the directed v0-vt subpath is a directed v0-vt path that extends across the time
horizon. When no misunderstanding can arise, we refer to a directed v0-vt (sub)path
as a (sub)path. In this notation, the searcher flies from v0 to some vT along a directed
v0-vT path. The searcher occupies only one vertex v 2 V each time period, and stays
at the same vertex or moves to another vertex in F .v/ for the next time period.

We let g.v; v0; t/ be the probability that the searcher at waypoint v0 detects the
target during time period t, given that the target occupies cell j during t, with
�.v0/ D j, and that the searcher was at waypoint v during t � 1. Again, we call
g.v; v0; t/ a glimpse-detection probability. Since we now allow for the glimpse-
detection probability to depend on the vertex and not only the cell, we can capture
situations where the sensor performance depends on a factor such as searcher
altitude. Moveover, the glimpse-detection probability also depends on the previous
vertex with possible benefits described above.

In this notation, the probability of detection at waypoint v0 during time period t
and no prior detections becomes

q.�.v0/; t/g.v; v0; t/ (4.10)

given search at waypoint v during time period t � 1.
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Similar to above, if cell j0 is searched from waypoint v0 during time period t, then

q.�; t C 1/ D Œq.1; t/; ::; q.j0 � 1; t/; q.j0; t/.1 � g.v; v0; t//; q.j0 C 1; t/; ::; q.J; t/��;

(4.11)

where v is the searcher’s vertex during time period t � 1.
Given a path P D fvtgT

tD0, the T events “detection during time period t and
target is not detected before t,” t D 1; 2; : : : ;T, are mutually exclusive. Hence, in
view of (4.10), the probability of detection along P , again denoted P.P/, becomes

P.P/ D
TX

tD1
q.�.vt/; t/g.vt�1; vt; t/: (4.12)

As in the simpler case above, the challenge then becomes how to efficiently compute
P.P/ for a large number of (relevant) paths and to ensure that the paths not
examined must be inferior.

4.1.4 Algorithmic Improvements

The above model enhancements certainly require algorithmic adjustments. More-
over, we also would like to consider algorithmic improvements that could speed
up calculations regardless of these modeling changes. We next describe some of
the possibilities. The remained of this section can be skip by a reader that is less
interested in algorithmic details.

4.1.4.1 Algorithmic Framework

We start by giving an extension of the basic algorithm that applies to the enhanced
model. In essence, we only need to replace cells by vertices. Given a subpath fvlgt

lD0,
t 2 T , we let Np.vt; t/ denote an upper bound on the probability of detection along
any path that starts with the subpath fvlgt

lD0. Similar to before we define K .t/ to
be the set of triplets of the form .vt; t; Np.vt; t// representing extensions of fvlgt�1

lD0 yet
to be explored. The first element vt refers to the next vertex to visit and the second
element t is the time period to visit vertex vt. The upper bound Np.vt; t/ consists of
three parts. Let dt.vt; t/ be an upper bound on the probability of detection during
time periods t C 1; t C 2; : : : ;T and no detection along subpath fvlgt

lD0 given that
the searcher is at vt during time period t. The two other parts are the probability of
detection along the subpath fvlgt�1

lD0 and the probability of detection during t. Hence,

Np.vt; t/ D P.fvlgt�1
lD0/C q.�.vt/; t/g.vt; t/C dt.vt; t/: (4.13)

In this notation, the enhanced branch-and-bound algorithm takes the following form.
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Enhanced Branch-and-Bound Algorithm.

Step 0. Set t D 0;K .t/ D f.v0; 0; 1/g, and Op D 0.
Step 1. If K .t/ is empty, replace t by t � 1. Else, go to Step 3.
Step 2. If t D 0, stop: the last saved path is optimal and Op is its probability

of detection. Else, go to Step 1.
Step 3. Remove from K .t/ the triplet .vt; t; Np.vt; t// with the largest

Np.vt; t/.
Step 4. If Np.vt; t/ � Op, go to Step 1. (Current subpath is fathomed.)
Step 5. If t < T, then for each v 2 F .vt/, calculate dtC1.v; t C 1/ and

Np.v; t C 1/, and add .v; t C 1; Np.v; t C 1// to K .t C 1/. Replace t by t C 1

and go to Step 3. Else, let Op D Np.vt; t/ and save the path fvlgT
lD0, and go to

Step 1.

We describe various bounding techniques next.

4.1.4.2 Enhanced Dynamic Bound Calculations

We can easily extend the dynamic bound to the present case. Similar to the above
development, we let qg.j; t/ be the probability that the target occupies cell j during
time period t and no detected along the subpath fvlgt

lD0, t 2 T , i.e.,

qg.�; t/ D (4.14)

Œq.1; t/; : : : ; q.�.vt/ � 1; t/; q.�.vt/; t/.1 � g.vt�1; vt; t//; q.�.vt/C 1; t/; : : : ; q.J; t/�:

For any integer s > t, s; t 2 T , we let q� .�; sI t/ be defined as above.
We construct a time-expanded graph from the network .V ;E / as follows. Each

vertex v 2 V is duplicated T times to define the nodes hv; ti, t 2 T . Let N be
the set of all such nodes as well as the nodes n0 D hv0; 0i and On D hOv;T C 1i
representing the searcher’s prior position and final position, respectively. Here, Ov is
an artificial terminal vertex. Two nodes n D hv; t � 1i and n0 D hv0; ti, v; v0 2 V
and t D 2; 3; : : : ;T, are connected with an arc .n; n0/ if and only if .v; v0/ 2 E .
Moreover, the node n0 D hv0; 0i is connected with an arc to a node n0 D hv0; 1i,
v0 2 V , if and only if .v0; v0/ 2 E ; and every node n D hv;Ti, v 2 V is connected
with an arc to On. Let A be the set of all arcs. For any integer t � T C 1 and nodes
nl D hvl; li 2 N ; l D 0; 1; : : : ; t, such that .nl�1; nl/ 2 A for all l D 1; 2; : : : ; t, we
let the sequence fnlgt

lD0 denote a subpath in the time-expanded graph .N ;A /.
For some t 2 f0; 1; : : : ;T � 1g, suppose that a subpath fvlgt

lD0 in the original
graph .V ;E / is given. Then, we endow each arc .n; n0/ D .hv; si; hv0; s C 1i/ 2 A ,
s D t; t C 1; : : : ;T � 1, in the time-expanded graph .N ;A / with a “reward”
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cn;n0 D
�

q� .�.v
0/; s C 1I t/ � q� .�.v/; sI t/

�
min

v002R.v/
g.v00; v; s/

�
� .v; v0/

�
g.v; v0; s C 1/;

(4.15)

where � .v; v0/ is the �.v/-�.v0/ element of the Markov transition matrix � and
R.v/ 	 V is the reverse star of v, i.e., R.v/ D fv00 2 V j .v00; v/ 2 E g. The
“min” in the formula ensures that the arc reward cn;n0 is independent of the previous
vertex v00, which would have ruin the longest-path structure of the bound calculation
problem: cn;n0 would no longer only depend on the head and tail of the arc .n; n0/.
Hence, it becomes necessary to use this conservative estimate.

We also set cn;On D 0 for all .n; On/ 2 A . In view of the above development, we
see that cn;n0 is the probability of detection during time period sC1 and no detection
along subpath fvlgt

lD0 and no detection during time period s. We refer to .N ;A /

with arc rewards given by (4.15) as the time-expanded network.
With this reward, the bound calculation remains a longest-path problem in an

acyclic graph and it can be shown using the same arguments as in Lau et al. (2008)
that this enhanced dynamic bound dt.vt; t/ computed from (4.15) indeed is an upper
bound on the probability of detection during time periods t C 1; t C 2; : : : ;T and
no detection during the subpath fvlgt

lD0 given that the searcher is at vt during time
period t.

4.1.4.3 Static Bound Calculations

In this subsection, we consider an alternative and in fact simpler bound than the
(enhanced) dynamic bound dt.vt; t/.

The (Enhanced) Branch-and-Bound Algorithm with the dynamic bound requires
one longest-path calculation in a time-expanded network for each vertex in the for-
ward star of the current vertex to compute the required bounds dt.vt; t/ (see Step 5).
This is aligned with the traditional approach of branch-and-bound algorithms where
a bound is reoptimized before each branching. In the present case, the reoptimization
corresponds to the longest-path calculation and requires computing the arc rewards
cn;n0 , see (4.15). As an alternative, one can use a static bound, computable prior to
any branching as described next.

The dynamic bound dt.vt; t/ requires knowledge of the current subpath fvlgt
lD0

as (4.15) depends on q� .�; �I t/. Suppose that we ignore that subpath information and
compute the optimal value of the longest-path problem as in the case of dt.vt; t/,
but now with q� .�; �I t/ in (4.15) replaced by q� .�; �I 0/. Then, as we prove in
Theorem 4.1 below, this value is an upper bound on the probability of detection
during time periods t C 1; t C 2; : : : ;T, given that the searcher is at vt during time
period t. Hence, that value is also an upper bound on the probability of detection
during time periods t C 1; t C 2; : : : ;T and no detection along the subpath fvlgt

lD0,
given that the searcher is at vt during time period t. We refer to that value as the
static bound and denote it by d0.vt; t/, where the subscript 0 indicates that the trivial
subpath fv0g is used in (4.15) with t D 0 instead of the subpath fvlgt

lD0. We note
that cn;n0 in (4.15) with subpath fv0g is effectively the probability of detection at
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vertex v0 during time period s C 1 and no detection at vertex v during time period
s. Since d0.vt; t/ is independent of the current subpath used to reach the vertex vt it
can be computed in advance for all nodes hv; ti 2 N , and dynamical computation
of bounds is not required. Consequently, the arc rewards (4.15) and bounds are
computed only once. We observe that it is not necessary to carry out a longest-
path calculation from each node hv; ti 2 N to h Ov;T C 1i to obtain d0.v; t/. It
is more efficient to carry out the longest-path calculations backward from node
h Ov;T C1i to all nodes. This calculation simply amounts to applying once a shortest-
path algorithm to the time-expanded network with arc lengths equal to the negative
rewards.

In Step 5 of the Enhanced Branch-and-Bound Algorithm, we now simply use
d0.vt; t/ instead of dt.vt; t/. Thus, the modified algorithm does not require any
longest-path calculation in Step 5. All bound calculations are done prior to Step 0.
Clearly, the modified approach results in a weaker bound and more branching
attempts are typically needed. However, the additional branching attempts may be
compensated by shorter per-iteration computing times. The empirical evidence in
Sato and Royset (2010) indeed points in that direction.

4.1.4.4 Directional Static Bound

We also derive a stronger static bound motivated by the classical approach to handle
turn-radius constraints in vehicle routing problems as pioneered by Caldwell (1961).

In the longest-path calculations for the static bound, the reward of arc
.hv; si; hv0; s C 1i/ is, effectively, the probability of detection at vertex v0 during
time period s C 1 and no detection at vertex v during time period s. We strengthen
the static bound if we redefine the arc reward to be, effectively, the probability
of detection at vertex v0 during time period s C 1 and no detection at vertex v
during time period s and no detection at the vertex visited during time period
s � 1. However, redefining the arc reward to depend not only on the arc’s head
and tail nodes, but also on a previous node ruins the longest-path structure of the
bound-calculation problem.

A similar situation arises in vehicle routing problems for vehicles with turn-
radius constraints or penalties. The classical approach to handle that situation is
to duplicate each node a number of times equal to the number of nodes in the
node’s reverse star. An arc in the resulting “node-expanded” network then carries
information about three nodes, not only two, and a desirable network structure of
the problem can be maintained. Fortunately, it is often practical to carry out such a
node-expansion approach in the present context because the number of nodes in the
reverse star is typically quite moderate. Hence, we proceed along the stated lines and
develop a node-and-time expanded network, in which the improved static bound can
be calculated by solving a longest-path problem. We refer to this improved bound
as the directional static bound.

For any n0 2 N , let R.n0/ 	 N be the reverse star of n0, i.e., R.n0/ D fn 2
N j.n; n0/ 2 A g. Then, for any n; n0 2 N nfOng such that .n; n0/ 2 A , we define an
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expanded node � D hn; n0i. We do not expand the end node, so we set O� D On. Let �
be the set of all expanded nodes. Two expanded nodes �; � 0 2 � are connected by
an expanded arc .�; � 0/ if � D hn; n0i and � 0 D hn0; n00i. Let the set of all expanded
arcs be ˝ .

We endow each expanded arc in the node-and-time expanded graph .�;˝/ with
a reward similar to (4.15). To derive the exact form of this reward, we need the
following building blocks. For any v; v0 2 V and t 2 T , let Mt.v; v

0/ be a J-by-J
identity matrix with the �.v0/-th diagonal element set equal to 1�g.v; v0; t/. We also
let � .v0/ be the �.v0/-th column of the Markov transition matrix � .

From (4.12) and the recursive application of (4.11), we see that the probability
of detection along a path fvlgT

lD0 is

P.fvlgT
lD0/ D q.�.v1/; 1/g.v0; v1; 1/C

q.�; 1/M1.v0; v1/� .v2/g.v1; v2; 2/C
q.�; 1/M1.v0; v1/�M2.v1; v2/� .v3/g.v2; v3; 3/C

q.�; 1/M1.v0; v1/�M2.v1; v2/�M3.v2; v3/� .v4/g.v3; v4; 4/C
:::

q.�; 1/M1.v0; v1/�M2.v1; v2/�M3.v2; v3/ � : : : � �MT�1.vT�2; vT�1/

� .vT/g.vT�1; vT ;T/ ;

(4.16)

which gives insight into a class of bounds on the probability of detection including
the static bound d0.vt; t/. If we replace Mt.�; �/ by the identity matrix in (4.16), we
find that

P.fvlgT
lD0/ � q.�.v1/; 1/g.v0; v1; 1/C

q.�; 1/� .v2/g.v1; v2; 2/C
q.�; 1/� � .v3/g.v2; v3; 3/C (4.17)

q.�; 1/� � � .v4/g.v3; v4; 4/C
:::

q.�; 1/� T�2� .vT/g.vT�1; vT ;T/:

In (4.17), the “reward” received during a time period is simply the probability of
detection during that time period and depends only on the current and previous
vertices. Hence, it is possible to compute an upper bound on the optimal probability
of detection by finding a path fvlgT

lD0 that maximizes the right-hand side in (4.17).
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This calculation amounts to a longest-path problem. If we replace each Mt.�; �/ by
the identity matrix everywhere except the last matrix of each line in (4.16), we obtain

P.fvlgT
lD0/ � q.�.v1/; 1/g.v0; v1; 1/C

q.�; 1/M1.v0; v1/� .v2/g.v1; v2; 2/C
q.�; 1/�M2.v1; v2/� .v3/g.v2; v3; 3/C (4.18)

q.�; 1/� �M3.v2; v3/� .v4/g.v3; v4; 4/C
:::

q.�; 1/� T�2MT�1.vT�2; vT�1/� .vT/g.vT�1; vT ;T/:

Now, the reward received during each time period also depends on the searcher’s
position two time periods ago and the problem of finding a path that maximizes the
right-hand side is no longer a longest-path problem. However, the bound remains
valid with the following minor modification, where the maximization of a matrix
with a single element different from zero or one is simply the maximization of that
element:

P.fvlgT
lD0/ � q.�.v1/; 1/g.v0; v1; 1/C

q.�; 1/
�

max
v2R.v1/

M1.v; v1/

�
� .v2/g.v1; v2; 2/C

q.�; 1/�
�

max
v2R.v2/

M2.v; v2/

�
� .v3/g.v2; v3; 3/C (4.19)

q.�; 1/� �
�

max
v2R.v3/

M3.v; v3/

�
� .v4/g.v3; v4; 4/C

:::

q.�; 1/� T�2
�

max
v2R.vT�1/

MT�1.v; vT�1/
�
� .vT/g.vT�1; vT ;T/:

After this modification, we see that the reward during each time period only depends
on the current and previous vertices. Hence, again, it is possible to compute an upper
bound on the optimal probability of detection by solving a longest-path problem. In
fact, this is exactly the approach to the static bound and it can be shown that the
reward in the longest-path problem cn;n0 , see (4.15), can be deduced from (4.19).
Specifically, when the current subpath in (4.15) is fv0g, we have for arc .n; n0/ D
.hv; si; hv0; s C 1i/ 2 A that

cn;n0 D q.�; 1/� s�1
�

max
v002R.v/

Ms.v
00; v/

�
� .v0/g.v; v0; s C 1/:
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Using similar arguments, we define the directional static bound as follows.
Clearly,

P.fvlgT
lD0/ � q.�.v1/; 1/g.v0; v1; 1/C

q.�; 1/M1.v0; v1/� .v2/g.v1; v2; 2/C

q.�; 1/
�

max
v2R.v1/

M1.v; v1/

�
�M2.v1; v2/� .v3/g.v2; v3; 3/C

q.�; 1/�
�

max
v2R.v2/

M2.v; v2/

�
�M3.v2; v3/� .v4/g.v3; v4; 4/C

:::

q.�; 1/� T�3
�

max
v2R.vT�2/

MT�2.v; vT�2/
�
�MT�1.vT�2; vT�1/� .vT/g.vT�1; vT ;T/:

(4.20)

Hence, we can compute an upper bound on the optimal probability of detection by
finding a path fvlgT

lD0 that maximizes the right-hand side of (4.20). This calculation
amounts to a longest-path problem in the node-and-time expanded graph .�;˝/.
The arc reward in this longest-path problem is deduced from (4.20). Specifically, an
expanded arc .�; � 0/ D .hn00; ni; hn; n0i/ 2 ˝ , with n00 D hv00; s � 1i, n D hv; si, and
n0 D hv0; s C 1i, is endowed with the reward

c�;�0 D q.�; 1/� s�2
�

max
v0002R.v00/

Ms�1.v000; v00/
�
�Ms.v

00; v/� .v0/g.v; v0; s C 1/:

We refer to the node-and-time expanded graph .�;˝/ with the arc rewards c�;�0

from (4.21) as the node-and-time expanded network. Since the node-and-time
expanded graph is acyclic, longest-path problems are solvable by standard shortest-
path algorithms.

In view of the above discussion, we obtain the following result.

Theorem 4.1. For any v0 2 V and t 2 T , let

(i) d0.v0; t/ be the value of the longest-path from node hv0; ti to node On in the time-
expanded graph .N ;A / with arc rewards given by (4.20), and

(ii) ı0.v; v0; t/ be the value of the longest-path from expanded node hhv; t�1i; hv0 tii
to expanded node O� in the node-and-time expanded graph .�;˝/ with arc
rewards given by (4.21).

Then, both d0.v0; t/ and ı0.v; v0; t/ are upper bounds on the probability of detection
during time periods t C 1; t C 2; : : : ;T for any path fvlgT

lD0 with vt�1 D v and
vt D v0. Moreover, ı0.v; v0; t/ � d0.v0; t/.
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We refer to ı0.v; v0; t/ as the directional static bound and see from Theorem 4.1
that it is at least as strong as the static bound. Clearly, building the node-and-
time expanded graph .�;˝/, computing the associated rewards, and calculating
the longest-paths take some computing time. However, the process is only carried
out once before the start of the Enhanced Branch-and-Bound Algorithm and the
computed bounds are stored for later use. Hence, the time for computing the
directional static bounds remains small compared to the overall run time. Empirical
evidence in Sato and Royset (2010) indicates that implementing the directional static
bound is beneficial.

4.2 Mathematical Programming Formulations

Although it might be conceptually possible to extend the above path-centered
formulations of the previous section to multiple searchers, multiple targets, and
additional constraints, it is usually easier to formulate the more general path-
constrained searcher problems as mathematical programs. A significant benefit
of this approach is that a large number of well-developed (general purpose)
mathematical programming algorithms become available. Therefore, at least in
many cases, one avoids the need for developing specialized algorithms, a significant
practical benefit. Section 4.3 provides background on mathematical programming
algorithms. We start, however, with formulation of path-constrained search prob-
lems as mathematical programs. We divide the exposition in two parts: first we deal
with a group of identical searchers and a single target and second address the full
problem with different types of searchers, many targets, and additional constraints.

4.2.1 Homogeneous Searchers and Single Target

As above, we let the search take place in a finite set of cells J D f1; : : : ; Jg and
over a finite set of time periods T D f1; 2; : : : ;Tg. We let t D 0 represent the
time prior to search and set T0 D f0g [ T . We consider a single target and the
quantity !t 2 J denotes the (random) cell that the target occupies during time
t 2 T . The vector of cells ! D .!1; !2; : : : ; !T / gives a possible path for the target
and p.!/ denotes the given probability that the target takes that path. The set ˝
denotes the collection of all possible paths with positive probability p.!/ and, of
course,

P
!2˝ p.!/ D 1. In practice, ˝ and p.!/ are generated using Monte Carlo

sampling from (complex) target motion models (as in U.S. Coast Guard’s decision
aid SAROPS; see Kratzke et al. 2010) or defined implicitly by Markov transition
matrices. We consider both ways of specifying target movement and refer to the
former way as a conditional target model and, as before, to the latter way as a
Markovian target model. Although not as general, a Markovian target model offers
computational benefits as we see in Sects. 4.2.1.3 and 4.3.3.
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It is trivial to extend the current framework to situations with a target that may
not be present and a target that enters and leaves an area during the time horizon by
adding dummy cells. However, we omit details to avoid complicating the notation.

There are S identical searchers with z.j; 0/ searchers occupy cell j in time period
0. During each time t 2 T0, each searcher occupies a cell or is in transit between
cells. When occupying a cell j, a searcher may select to move to any cell “adjacent”
to j as defined by the forward star F .j/ 	 J . We also let R.j/ 	 J denote the
reverse star of cell j, which represents the set of cells from which a searcher can
reach cell j in one move. By convention, j 2 F .j/ and j 2 R.j/. A searcher requires
d.j; j0/ time periods to move from cell j to cell j0 2 F .j/ and to search cell j0 for one
time period. Since the time to search the “destination” cell j0 is included in d.j; j0/,
we have that d.j; j0/ � 1 for all j; j0 and d.j; j0/ D 1 only if the time to move from j
to j0 is zero. Naturally, a move can also take one or more time periods, during which
the searcher is unable to search.

We let Z.j; j0; t/ denote the number of searchers that occupy cell j in time period
t 2 T0 and that move to cell j0 next, and let Z denote the vector with components
Z.j; j0; t/, j; j0 2 J , and t 2 T0. We refer to Z as a search plan.

We assume that every searcher is equipped with one imperfect sensor. Each time
period t 2 T in which a searcher occupies a cell, the searcher’s sensor takes one
“look” in the cell for the target. When a searcher is in transit between cells, the
sensor is inactive. If the target and a searcher occupy cell j in time period t and j0 is
the searcher’s previous cell, then the probability that the searcher’s look during time
period t detects the target is g.j0; j; t/ 2 Œ0; 1/. As before, we refer to this probability
as the glimpse-detection probability.

We assume that the glimpse-detection probabilities are independent across all the
searchers’ looks. Recall that Z.j0; j; t � d.j0; j// is the number of searchers that are
present in cell j and that reached that cell from cell j0. Clearly, to arrive at cell j for
time t, these searchers need to have departed cell j0 at time t � d.j0; j/. Hence, given
search plan Z, the probability that no searcher detects the target in cell j in time
period t, given that the target occupies cell j at that time, equals

Y

j02R.j/

Œ1 � g.j0; j; t/�Z.j0 ;j;t�d.j0 ;j//

D exp

0

@�
X

j02R.j/

˛.j0; j; t/Z.j0; j; t � d.j0; j//

1

A ; (4.21)

where for all j 2 J , j0 2 R.j/, and t 2 T ,

˛.j0; j; t/ D � lnŒ1 � g.j0; j; t/� (4.22)

is the detection rate. The detection rate can often be determined by the models
described in Chap. 2.

We seek to find a search plan Z such that the probability that no searcher detects
the target is minimized subject to constraints on Z, especially those that ensure that
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Z does not violate the requirement that each searcher must move according to the
forward start and obey the given travel times between cells. The next subsections
provide mathematical programming formulations of this problem.

4.2.1.1 Nonlinear Optimization Model

The problem of minimizing the nondetection problem takes the form of a mixed-
integer nonlinear program.

Model SP1:

Indices
j; j0 cells (j; j0 2 J D f1; : : : ; Jg).
t time periods (t 2 T0 D f0g [ T , T D f1; : : : ;Tg).
! path of target (! 2 ˝).

Sets
F .j/ � J forward star of cell j for searchers.
R.j/ � J reverse star of cell j for searchers.

Parameters
˛.j0; j; t/ detection rate in cell j in time period t against the target for a

searcher that previously occupied j0.

.j; t; !/ 1 if cell j is on target path ! in time period t, otherwise 0.
z.j; 0/ number of searchers that occupy cell j in time

period 0.
p.!/ probability that the target takes path !.
d.j; j0/ number of time periods needed for a searcher to

move directly from cell j to cell j0 and search j0.

Decision Variables
Z.j; j0; t/ number of searchers that occupy cell j in time

period t and that move to cell j0 next. (Z denotes the
vector with components Z.j; j0; t/, j; j0 2 J ; t 2 T0.)

Y.j; t/ number of searchers that occupy cell j in time period t.
(Y denotes the vector with components Y.j; t/; j 2 J ; t 2 T .)

Function
f .Y/ nondetection probability of target given Y

D
X

!2˝
p.!/ exp

0

@�
X

j2J ;t2T

.j; t; !/˛.j; t/Y.j; t/

1

A : (4.23)
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Formulation

min f .Y/

s:t:
X

j02R.j/

Z.j0; j; t � d.j0; j// D
X

j02F .j/

Z.j; j0; t/ 8 j 2 J ; t 2 T (4.24)

X

j02F .j/

Z.j; j0; 0/ D z.j; 0/ 8 j 2 J (4.25)

X

j02R.j/

Z.j0; j; t � d.j0; j// D Y.j; t/ 8 j 2 J ; t 2 T (4.26)

Z.j; j0; t/ � 0 8 j; j0 2 J ; t 2 T0 (4.27)

Y.j; t/ 2 f0; 1; 2; : : : ; Sg 8 j 2 J ; t 2 T (4.28)

The objective function f in (4.23) aims to minimize the nondetection probability
and is convex and continuously differentiable. However, the restriction of Y.j; t/ to
integers makes SP1 a mixed-integer nonlinear program with a convex relaxation.
Constraints (4.24) ensure route continuity for each searcher. Specifically, the right-
hand side of (4.24) gives the total number of searchers in cell j at time t. The
sum over j0 accounts for all the possible cells these searchers might move to next.
The left-hand side of (4.24) accounts for where these searcher came from. Each
one of them must have been in cell j0 immediately prior to arriving in cell j. To
ensure that they arrived in cell j for time t, they departed j0 at time t � d.j0; j/. The
constraints (4.25) implement the initial conditions for the searchers.

Since SP1 is in the class of mixed-integer nonlinear programs, it is clear that
general purpose solvers such as Bonmin (COIN-OR 2009), DICOPT (Grossmann
et al. 2008), and even the Microsoft Excel Solver apply. In Sect. 4.3, we describe
the algorithms behind such solvers. Next, we discuss two reformulations of SP1,
which are mixed-integer linear programs. This enables the application of a larger
collection of optimization solvers and often computational savings. We stress that
there is no approximation introduced in these reformulations. The first linearization
is applicable in the case of a conditional target model with a moderate number
of possible target paths. The second linearization is limited to the situation with
a Markovian target model.

4.2.1.2 Linearization for Conditional Target Model

The objective function in SP1 is a finite sum of exponential functions over all
possible target paths; see (4.23). We here make the additional assumption that the
detection rate is constant over all cells and time periods and simply write ˛. Then,
each exponential function has as argument an integer multiple of ˛ between 0 and
ST, where S is the number of searchers. Hence, the objective function in SP1 can
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equivalently be represented by a piecewise linear functions, with a finite number of
pieces. This observation leads to the first linearization of SP1, where some indices,
sets, parameters, and variables are as in SP1.

Model SP1-L:

Additional Indices
i number of looks on a target path .i D 0; 1; : : : ; ST/:
Additional Variables
U.!/ auxiliary variable representing nondetection

probability given target path !.

Formulation

min
X

!2˝
p.!/U.!/

s:t: e�i˛.1C i � ie�˛/C 1

˛
e�i˛.e�˛ � 1/

X

j2J ;t2T

.j; t; !/˛Y.j; t/ � U.!/ 8 !; i

(4.29)

and (4.24)–(4.28)

SP1-L is a mixed-integer linear program. Constraints (4.29) ensure that the opti-
mal solution results in a value of U.!/ that is exactly the conditional nondetection
probability given that the target follows path !. Specifically,

exp

0

@�
X

j2J ;t2T

.j; t; !/˛Y.j; t/

1

A (4.30)

is simply a function of the form exp.�˛z/, with z D P
j2J ;t2T 
.j; t; !/Y.j; t/.

Since 
.j; t; !/ is binary and Y.j; t/ is a nonnegative integer no larger than S, z can
only take on a finite number of values. In fact, it suffices to consider z between 0 and
ST. Noninteger values of z are immaterial. Hence, we can replace exp.�˛z/ by the
piecewise linear function that coincides with exp.�˛z/ for z D 0; 1; : : : ; ST. Each
affine piece in this function is of the form given on the left-hand side of (4.29). Using
a standard technique for converting a piecewise linear function into a collection of
affine constraints leads to (4.29).

The other constraints in SP1-L are identical to those in SP1. The number of
constraints and variables in SP1-L grows linearly in the number of possible target
paths and, hence, the formulation may become difficult to solve for large numbers
of such paths. This motivates a second linearization of SP1.
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4.2.1.3 Linearization for Markovian Target Model

The second linearization of SP1, denoted by SP1-LM, assumes a Markovian target
model where the target at time t 2 T moves according to a transition probability
matrix �t with elements �t.j; j0/, j; j0 2 J . Specifically, �t.j; j0/ is the probability
that a target occupying cell j in time period t occupies cell j0 in time period t C1. As
we see below, it is not necessary to enumerate all possible target paths in the case of
a Markovian target model.

We derive SP1-LM from SP1 by introducing an “information state” Q.j; t/which
equals the probability that the target occupies cell j in time period t and that the target
has not been detected prior to t. Given this information state and a search plan with
s searchers occupying cell j in time period t, the probability of detection in cell j
in time period t and no prior detection, is simply Q.j; t/.1 � expŒ�s˛.j; t/�/, where
˛.j; t/ is the detection rate of each searcher in cell j in time period t. Suppose that a
search plan is described by the binary variables

V.j; t; s/ D 1 if s searchers occupy cell j in time period t, and 0 otherwise. (4.31)

Then, the probability of detection over the full time horizon becomes

X

t2T

X

j2J
Q.j; t/

 
1 � exp

"
�˛.j; t/

SX

sD1
sV.j; t; s/

#!
: (4.32)

The information state Q.j; t/ depends on the search plan as follows. Clearly,
Q.j; 1/ D p.j; 1/, the given probability that the target occupies cell j initially.
Moreover, it follows from the definition of Q.j; t/ and the assumption of a
Markovian target model that

Q.j; t C 1/ D
X

j02J
�t.j

0; j/Q.j0; t/ exp

"
�˛.j0; t/

SX

sD1
sV.j0; t; s/

#
(4.33)

for all j 2 J and t D 1; 2; : : : ;T � 1. While the expressions (4.32) and (4.33) are
nonlinear, they can be linearized as shown in the following formulation; see further
explanation below the model statement.

Model SP1-LM:

Additional Indices
s number of searchers in a cell (s 2 S D f1; : : : ; Sg).

Additional Parameters
˛.j; t/ detection rate in cell j in time period t for any searcher.
�t.j; j0/ probability that a target that occupies cell j in time period t

occupies cell j0 in time period t C 1.
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p.j; t/ probability that the target occupies cell j in time
period t, i.e., p.j; t/ D P

j0 p.j0; t � 1/�t�1.j0; j/,
t D 2; 3; : : : ;T, p.j; 1/ given.

Additional Variables
Q.j; t/ probability that the target occupies cell j in time period t

and target not detected prior to t.
R.j; t; s/ auxiliary variable that equals Q.j; t/.1 � e�s˛.j;t// if V.j; t; s/D1

and otherwise 0.
V.j; t; s/ 1 if there are s searchers that occupy cell j in time period t

and otherwise 0.
W.j; t/ auxiliary variable that equals Q.j; t/e�s˛.j;t/ if V.j; t; s/ D 1

and otherwise Q.j; t/.

Formulation

min 1 �
X

t2T

X

j2J

X

s2S
R.j; t; s/ (4.34)

s:t: R.j; t; s/ � p.j; t/.1 � e�s˛.j;t//V.j; t; s/ 8 j 2 J ; t 2 T ; s 2 S (4.35)

R.j; t; s/ � .1 � e�s˛.j;t//Q.j; t/ 8 j 2 J ; t 2 T ; s 2 S (4.36)

Q.j; tC1/D
X

j02J
�t.j

0; j/W.j0; t/ 8 j 2 J ; tD1; : : : ;T�1 (4.37)

W.j; t/ � Q.j; t/ 8 j 2 J ; t 2 T (4.38)

W.j; t/ � e�s˛.j;t/Q.j; t/C p.j; t.1 � e�s˛.j;t//.1 � V.j; t; s//

8 j 2 J ; t 2 T ; s 2 S (4.39)

Q.j; 1/ D p.j/ 8 j 2 J (4.40)

Q.j; t/ � p.j; t/ 8 j 2 J ; t 2 T0 (4.41)
X

j02R.j/

Z.j0; j; t � d.j0; j// D
X

s

sV.j; t; s/ 8 j 2 J ; t 2 T (4.42)

X

s2S
V.j; t; s/ � 1 8 j 2 J ; t 2 T (4.43)

.4.24/; .4.25/

Q.j; t/;R.j; t; s/;W.j; t/;Z.j; j0; t/ � 0 8 j; j0 2 J ; t 2 T ; s 2 S(4.44)

V.j; t; s/ 2 f0; 1g 8 j 2 J ; t 2 T ; s 2 S (4.45)
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The objective function (4.34) in SP1-LM gives the probability of nondetec-
tion; its correctness follows from (4.32). However, since (4.32) is nonlinear, we
linearize it using the auxiliary variable R.j; t; s/, which equals Q.j; t/.1 � e�s˛.j;t//

if V.j; t; s/ D 1 and equals 0 otherwise. This linearization is accomplished using
constraints (4.35) and (4.36). This is a “big-M” type of formulation (see Rardin
1997, pp. 642–643) where any constant at least as large as Q.j; t/ would suffice in
front of .1 � e�s˛.j;t// in (4.35). Recall that Q.j; t/ is the probability that the target
occupies cell j in time period t and target not detected prior to t. Moreover, recall
that p.j; t/ is the probability that the target occupies cell j in time period t. Hence,
p.j; t/ � Q.j; t/ for all j; t. Consequently, we set the “big-M” in (4.35) to p.j; t/. We
also use p.j; t/ to bound the range of Q.j; t/ in (4.41).

The evolution of the information state is also nonlinear; see (4.33). In SP1-
LM, we linearize that expression by means of the auxiliary variable W.j; t/ and
constraints (4.37)–(4.39). Note that W.j; t/ equals Q.j; t/e�s˛.j;t/ if V.j; t; s/ D 1 and
equals Q.j; t/ otherwise. The initial target location is accounted for in (4.40). The
binary variable V.j; t; s/ relates to Z.j; j0; t/ in (4.42) and (4.43).

4.2.2 Heterogenous Searchers and Multiple Targets

We next extend the above formulation of SP1 to the case of multiple searchers
of different types, multiple targets, additional constraints. We start with additional
notation.

There are K independent targets present with each target k 2 K D f1; 2; : : : ;Kg
occupying one cell in each time period. The quantity !k;t 2 J denotes the
(random) cell that target k occupies during time t 2 T . The vector of cells
!k D .!k;1; !k;2; : : : ; !k;T / denotes a possible path for target k and pk.!k/ denotes
the given probability that target k takes that path. The set ˝k denotes the collection
of all possible paths for target k with positive probability pk.!k/ and, of course,P

!k2˝k
pk.!k/ D 1 for all k.

There are L classes of searchers with each class l 2 L D f1; 2; : : : ;Lg
containing Sl identical searchers. During each time t 2 T0, each searcher occupies a
cell or is in transit between cells. When occupying a cell j, a searcher of class l may
select to move to any cell “adjacent” to j as defined by the forward star Fl.j/ 	 J .
We also let Rl.j/ 	 J denote the reverse star of cell j, which represents the set of
cells from which a searcher of class l can reach cell j in one move. By convention,
j 2 Fl.j/ and j 2 Rl.j/. A searcher of class l requires dl.j; j0/ time periods to move
from cell j to cell j0 2 Fl.j/ and to search cell j0 for one time period. Since the time
to search the “destination” cell j0 is included in dl.j; j0/, we have that dl.j; j0/ � 1 for
all l; j; j0 and dl.j; j0/ D 1 only if the time to move from j to j0 is zero. Naturally, a
move can also take one or more time periods, during which the searcher is unable
to search.
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We let Zl.j; j0; t/ denote the number of searchers of class l that occupy cell j in
time period t 2 T0 and that move to cell j0 next, and let Z denote the vector with
components Zl.j; j0; t/, l 2 L , j; j0 2 J , and t 2 T0. We refer to Z as a search plan.

The probability that one look for a target by a searcher in a cell detects the
target, given that the target currently occupies the cell, may depend on the searcher
class (is it a high- or low-quality searcher?), the target’s characteristic (is it shiny or
camouflaged?), the cell (is it forested or open?) and time of day (is it bright mid-
day or dark midnight?). Specifically, if target k and a searcher of class l occupy
cell j in time period t and j0 is the searcher’s previous cell, then the probability that
the searcher’s look during time period t detects the target is gl;k.j0; j; t/ 2 Œ0; 1/. As
above, we refer to this probability as the glimpse-detection probability.

We retain the assumption that the glimpse-detection probabilities are independent
across all the searchers’ looks. Hence, given search plan Z, the probability that no
searcher detects target k in cell j in time period t, given that target k occupies cell j
at that time, equals

Y

l2L

Y

j02Rl.j/

Œ1 � gl;k.j
0; j; t/�Zl.j0;j;t�dl.j0;j//

D exp

0

@�
X

l2L

X

j02Rl.j/

˛l;k.j
0; j; t/Z.l; j0; j; t � dl.j

0; j//

1

A ; (4.46)

where for all l 2 L , j 2 J , j0 2 Rl.j/, t 2 T , and k 2 K ,

˛l;k.j
0; j; t/ D � lnŒ1 � gl;k.j

0; j; t/� (4.47)

is the detection rate.
We seek to minimize, by choice of a search plan Z, the probability of not

detecting the target with the largest nondetection probability during the time
horizon. Another possibility is to minimize the sum of the nondetection probabilities
across the targets. This implies only minor changes to the below formulation.
The latter choice places less emphasis on the “least detectable” target and usually
distributes search effort more evenly across the targets. The former choice, however,
ensures that no target is “ignored” with a corresponding low detection probability.

The choice of search plan is subject to the route constraints induced by the
forward and reverse stars Fl.j/ and Rl.j/, the given initial condition that zl.j; 0/
searchers of class l occupy cell j in time period 0, and deconflication constraints
related to the maximum number of searchers that can occupy a cell at any time
and other operational requirements. We let nj be the maximum number of searchers
allowed to occupy cell j during any one time period t 2 T . Moreover, for each
possible move between two cells for a searcher, we define a corresponding set of
incompatible moves between cells that would cause interference if carried out by
another searcher. Specifically, if a searcher of class l moves from cell j to cell j0
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starting in time period t, then the set D.l; j; j0; t/ gives all quadruples of searcher
classes, cell pairs, and time periods that are incompatible with that searcher’s move.

One can easily incorporate essentially any other conceivable constraint with little
difficulty. Though, these additions might result in additional computing times. We
omit further details and simply reference Rardin (1997) for an accessible introduc-
tion to formulation of mathematical programs and to Sato and Royset (2010) for
possible types of additional constraints related to risk and fuel consumption.

The formulation then take the form of a mixed-integer nonlinear program.

Model SPX:

Indices
j; j0 cells (j; j0 2 J D f1; : : : ; Jg).
t time periods (t 2 T0 D f0g [ T , T D f1; : : : ;Tg).
l searcher class (l 2 L D f1; : : : ;Lg).
k target (k 2 K D f1; : : : ;Kg).
!k path of target k (!k 2 ˝k).

Sets
Fl.j/ � J forward star of cell j for searcher of class l.
Rl.j/ � J reverse star of cell j for searcher of class l.
D.l; j; j0; t/ set of quadruples .l0; j00; j000; t0/ incompatible with a searcher

of class l that moves from j to j0 starting in time period t.

Parameters
˛l;k.j0; j; t/ detection rate in cell j in time period t against target k for a

searcher of class l when the searcher previously occupied j0.

.j; t; !k/ 1 if cell j is on target path !k in time period t, otherwise 0.
zl.j; 0/ number of searchers of class l that occupy cell j in time

period 0.
Sl number of searchers of class l.
pk.!k/ probability that target k takes path !k.
dl.j; j0/ number of time periods needed for a searcher of class l to

move directly from cell j to cell j0 and search j0.
nj maximum number of searchers that occupy cell j in a time

period.
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Decision Variables

Zl.j; j0; t/ number of searchers of class l that occupy cell j in time
period t and that move to cell j0 next. (Z denotes the vector
with components Zl.j; j0; t/, l 2 L ; j; j0 2 J ; t 2 T0.)

Yk.j; t/ auxiliary variable representing total detection rate applied to
cell j against target k in time period t. (Yk denotes the vector
with components Yk.j; t/, j 2 J ; t 2 T .)

Functions
fk.Yk/ nondetection probability of target k

D
X

!k2˝k

pk.!k/ exp

0

@�
X

j2J ;t2T

.j; t; !k/Yk.j; t/

1

A : (4.48)

Formulation

min max
k2K fk.Yk/ (4.49)

s:t:
X

j02Rl.j/

Zl.j
0; j; t � dl.j

0; j//D
X

j02Fl.j/

Zl.j; j
0; t/ 8 l2L ; j2J ; t2T (4.50)

X

j02Fl.j/

Zl.j; j
0; 0/Dzl.j; 0/ 8 l2L ; j2J (4.51)

X

l2L

X

j02Rl.j/

˛l;k.j
0; j; t/Zl.j

0; j; t � dl.j
0; j//DYk.j; t/ 8 j2J ; t2T ; k2K (4.52)

X

l2L

X

j02Rl.j/

Zl.j
0; j; t � dl.j

0; j// � nj 8 j 2 J ; t 2 T (4.53)

Zl.j; j
0; t/C Zl0.j

00; j000; t0/ � 1 8 l 2 L ; j; j0 2 Fl.j/; (4.54)

t 2 T0; .l
0; j00; j000; t0/ 2 D.l; j; j0; t/

Zl.j; j
0; t/ 2 f0; 1; 2; : : : ; Slg 8 l 2 L ; j; j0 2 J ; t 2 T0 (4.55)

Yk.j; t/ � 0 8 j 2 J ; t 2 T ; k 2 K : (4.56)

The decision variable Yk.j; t/ could be eliminated by substitution using (4.52),
but is included for notational simplicity. We obtain the nondetection probability
for target k in (4.48) from (4.46) by application of the total probability theorem
and the fact that detection in cell j in time period t can occur only if the target
occupies that cell at that time. The objective function (4.49) aims to minimize
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the largest nondetection probability. The objective function of SPX is convex
and the nondetection probabilities fk.Yk/; k 2 K , are convex and continuously
differentiable.

Constraints (4.50) and (4.51) ensure route continuity for each searcher and initial
conditions as in SP1. Deconfliction constraints (4.53) and (4.54) limit the number of
searchers that can occupy cell j to at most nj in any time period t 2 T and exclude
moves in conflict with each other, respectively.

We observe that SPX prescribes the “best” search plan prior to detection of the
first target. In the presence of multiple targets, one might want to explicitly account
for events after the first detection and possibly deviate from the plan stipulated by
SPX. However, this leads to stochastic dynamic programs, which are computation-
ally extremely expensive to solve and are beyond the scope of this text. The present
objective of minimizing the probability of not detecting the target with the largest
nondetection probability during the time horizon is a reasonable surrogate. Another
tractable surrogate could be to minimize a nonnegatively weighted sum of the
nondetection probabilities. Of course, in the case of a single target this complication
evaporates.

Since SPX is in the class of mixed-integer nonlinear programs, it is clear that we
still can apply general purpose solvers such as Bonmin (COIN-OR 2009), DICOPT
(Grossmann et al. 2008), and the Microsoft Excel Solver.

Conceptually, it is possible to linearize SPX in a similar manner as described
above for SP1. SP1-L, which linearizes SP1 in the case of a conditional target
model, generalizes easily to a linear model equivalent to SPX if all detection rates
˛l;k.j0; j; t/ in SPX are rational numbers. In that case, all detection rates SPX can
be expressed as an integer multiple of a number, say, ˛. Hence, Yk.j; t/ could be
expressed as ˛ times an auxiliary integer variable. Similar to the approach leading to
SP1-L, the exponential terms in fk.Yk/ could then be expressed by piecewise-linear
functions. Standard techniques for linearizing piecewise-linear functions would then
lead to a mixed-integer linear program. If ˛l;k.j0; j; t/ differs substantially across
different elements of L , J , T , and K , ˛ would need to be relatively small.
Hence, the piecewise-linear functions may involve a large number of pieces and
the resulting mixed-integer linear program may be large.

Under the same assumption on the detection rates and given a Markovian
target model, SP1-LM generalizes to a linear model equivalent to SPX through a
redefinition of s. While s gives the number of searchers occupying a cell during one
time period in SP1-LM, the new linear model would require s to represent ˛total=˛,
where ˛total denotes the sum of the detection rates of all searchers occupying a cell
in a time period. This sum may be larger than the number of searchers occupying
the cell as each searcher would have a detection rate of �˛, where � is a positive
integer. Since this linearization effectively assigns a binary variable to each possible
value of the total detection rate applied to a cell, the resulting mixed-integer linear
program may become large.



110 4 Path-Constrained Search in Discrete Time and Space

In view of the above discussion, we see that linearizations of SPX tend to be
of reasonable size and practical value when all detection rates ˛l;k.j0; j; t/ can be
expressed as small integer multiples of ˛. For example, this is the case when all
detection rates equals 1 � ˛ for some ˛ > 0.

4.3 Mathematical Programming Algorithms for Path
Optimization

Optimization solvers for (convex) mixed-integer nonlinear programs such as SPX
rely on the principle of branch-and-bound and/or cutting planes. The first approach
is based on the observation that if the integer variables are allowed to take on
real values or are fixed to specific values, then the resulting optimization model
is convex. Since convex optimization models are usually easily solved by well-
developed algorithms, branch-and-bound algorithms for mixed-integer nonlinear
programs solve a sequence of such convex models utilizing intermediate results to
guide selection of which integer variables to fix and which ones to allow to be real
valued. The expectation is that not all combinations of possible integer values for
the variables need to be examined before a (near-)optimal solution is found.

Solvers relying on cutting planes consider sequences of mixed-integer linear
programs that are obtained from the original nonlinear model through linear
approximations, called cutting planes, of nonlinear functions. Numerical results in
Royset and Sato (2010) indicate that approaches based on cutting planes tend to be
computationally superior in the case of two or more searchers. For a single searcher,
certain branch-and-bound algorithms are typically faster, but only if implemented
with care as described in Sect. 4.1. We therefore focus on cutting planes methods
here.

4.3.1 Cutting Plane Methods

The standard cutting-plane algorithm for convex (mixed-integer) programs sequen-
tially builds and minimizes successively better piecewise-linear approximations of a
convex function. The linear approximations are constructed using first-order Taylor
expansion of nonlinear functions. In the case of SPX, the nondetection probabilities

fk.Yk/ D
X

!k2˝k

pk.!k/ exp

0

@�
X

j2J ;t2T

.j; t; !k/Yk.j; t/

1

A (4.57)

are the only nonlinear functions. We need the partial derivatives
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@fk.Yk/

@Yk.j; t/
D �

X

!k2˝k

pk.!k/
.j; t; !k/ exp

0

@�
X

j02J ;t02T

.j0; t0; !k/Yk.j

0; t0/

1

A :

(4.58)

The collection of such partial derivatives comprise the gradient rfk.Yk/. A cutting
plane algorithm then takes the following form.

Cutting Plane Algorithm (Obtains near-optimal solutions of SPX)

Data. Relative optimality tolerances ı; ıI � 0; I D 0; 1; 2; : : :.
Step 0. Set the lower bound, � , on the optimal value of SPX to 0; set the

upper bound, � , on the optimal value of SPX to 1; and set I D 1 and
Y1 D 0.

Step 1. For each k, calculate fk.YI
k/ and rfk.YI

k/. If maxk fk.YI
k/ < � , then

set � D maxk fk.YI
k/.

Step 2. If � � � � ı�, then stop.
Step 3. Solve

PI W min �

s:t: fk.Y
i
k/C rfk.Y

i
k/

>.Yk � Yi
k/ � � 8 k 2 K ; i D 1; 2; : : : ; I(4.59)

(4.50)–(4.56)

to near optimality. That is, determine a lower bound � IC1 and a feasible

solution .�
IC1
;YIC1;ZIC1/ of PI such that �

IC1 � �IC1 � ıI�
IC1.

Step 4. If �IC1 > � , then set � D � IC1.
Step 5. If � � � � ı�, then stop. Else, replace I by I C 1, and go to Step 1.

We note that Step 3 involves solving a mixed-integer linear program, for which there
are efficient and robust solvers. The Cutting Plane Algorithm is guaranteed to solve
SPX to optimality if ı D 0 and ıI D 0 for all I. Fixing ıI > 0 (i.e., accepting near-
optimal solutions of PI) does not guarantee convergence, but does often improve
computational speed.

4.3.2 Cutting Plane Refinement

The cutting plane (4.59) can be strengthened whenever Yk.j; t/ is an integer multiple
of a real number that is common across all j and t. We describe the possibility in
the context of SP1, with detection rates that are all ˛. In SP1, the nonlinearity is
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associated with f .Y/ and we therefore focus on that function. In particular, we take
advantage of the special structure of f .Y/ and the integrality of Y.j; t/ to construct an
improved linearization of f .Y/. The strengthened “cut” uses finite differences of the
objective function f .Y/ by considering the perturbation from Y.j; t/ to Y.j; t/C 1

while keeping all other variables fixed. Theorem 4.2 formalizes this discussion,
using�.j; t/ to denote a ST-dimensional binary vector in which the .j; t/-component
is 1 and the other components are all 0.

Theorem 4.2. For any ST-dimensional nonnegative integer vectors Y and OY,

f . OY/C
X

j2J ;t2T
Œf . OY C�.j; t// � f . OY/�ŒY.j; t/ � OY.j; t/� � f .Y/: (4.60)

Proof. Let a! be a ST-dimensional vector defined by components 
.j; t; !/˛ and
b! D � ln p.!/. Then, a! � 0 and b! � 0. Hence, f .Y/ D P

! f!.Y/, where
f!.Y/ D exp.�a!Y�b!/, and the result holds if f!. OY/CPj2J ;t2T .f!. OYC�.j; t//�
f!. OY//.Y.j; t/ � OY.j; t// � f!.Y/ for all !. Consequently, we need to show that
f!. OY/Œ1CP

j2J ;t2T .exp.�˛!.j; t//� 1/.Y.j; t/� OY.j; t//� exp.�a!.Y � OY//� � 0

for an arbitrary target path ! 2 ˝ . Let ˇ D exp.�˛/, and let N denote the set of
the cell-time pairs .j; t/ 2 J 
T such that 
.j; t; !/ D 1 (i.e., such that cell j is on
path ! in time period t). Now, we only need to show that �.ˇ/ D .1�ˇ/kCˇk � 1,
where k D P

.j;t/2N .Y.j; t/� OY.j; t//. We find that d�.ˇ/=dˇ D 0 for ˇ D 1. Hence,
it follows from convexity of �.�/ on .0;1/ that �.�/ has a minimum value of 1 for
any k.

We refer to (4.60) as a secant cut, which can then be utilized in the Cutting Plane
Algorithm. Specifically, one replace (4.59) by

f .Yi/C
X

j2J ;t2T
.f .Yi C�.j; t// � f .Yi//.Y.j; t/ � Yi.j; t// � � 8 i D 1; 2; : : : ; I;

(4.61)

together with the other simplifications of SP1 as compared to SPX. We refer to
Royset and Sato (2010) for further details, and also empirical evidence that secant
cuts reduce the computing times with a factor of 0.5. As an example, on a low-end
laptop (of 2010), the Cutting Plane Algorithm with secant cuts obtains near-optimal
solutions of SP1, with 5 % relative optimality gap, in less than 15 min of calculation
time for problem instances with three searchers, 81 cells, and 10 time periods.

4.3.3 Cutting Plane Calculations for Markovian Target Model

A cutting-plane algorithm requires efficient means for evaluating fk.Yk/, rfk.Yk/, as
well as the finite difference in (4.61). Clearly, if the cardinality of˝k becomes high,
for example millions of paths, the computational cost associated with evaluating
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these expressions becomes significant and possibly prohibitively high. However, in
the case of a Markovian Target Model the computations can be carried out efficiently
as described next. To keep the exposition simple, we focus on the setting of SP1,
with a common detection rate ˛.

Given a search plan Y, let �Y.j; t/ be the probability that the target occupies cell
j in time period t and that it is not detected in time periods 1, 2, . . . , t � 1, and
let �Y.j; t/ denote the probability that the target is not detected in time periods
t C 1, t C 2, . . . , T given that it occupies cell j in time period t. Let �Y.t/ D
Œ�Y .1; t/; �Y.2; t/; : : : ; �Y .J; t/�, and let �Y.t/ D Œ�Y .1; t/; �Y .2; t/; : : : ; �Y.J; t/�. We
define �Y.j; 1/ D p.j; 1/, the probability that the target is cell j at time 1, and
�Y.j;T/ D 1 for any cell j 2 J . Thus, �Y.t/ and �Y.t/ may be calculated
recursively by

�Y.t/DŒ�Y .1; t�1/ exp.�˛Y.1; t�1//; : : : ; �Y .J; t�1/ exp.�˛Y.J; t�1//��t�1;

(4.62)

and

�Y.t/DŒ�Y .1; tC1/ exp.�˛Y.1; tC1//; : : : ; �Y.J; tC1/ exp.�˛Y.J; tC1//�� >
t ;

(4.63)

where �t is the transition matrix of the Markovian target model. In this notation, for
any t 2 T , we find that

f .Y/ D
X

j2J
�Y.j; t/ exp.�˛Y.j; t//�Y .j; t/; (4.64)

and components of rf .Y/ are

@f .Y/

@Y.j; t/
D �˛�Y.j; t/ exp.�˛Y.j; t//�Y .j; t/: (4.65)

The calculation of finite differences f .Y C�.j; t// � f .Y/ follows similarly:

f .Y C�.j; t// � f .Y/

D
X

j02J
�Y.j

0; t/Œexp.�˛Y.j0; t/ � ˛�.j; t// � exp.�˛Y.j0; t//��Y .j
0; t/

D �Y.j; t/Œexp.�˛.Y.j; t/ C 1//� exp.�˛Y.j; t//��Y .j; t/: (4.66)

Thus, f .Y/ and its gradient and finite difference can be evaluated with moderate
computational effort.
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4.4 Example: Search for Four Targets

We illustrate SPX with a problem instances with J D 81 cells; see Fig. 4.1. We
consider four targets that follow Markovian target models. At time period one, one
target occupies each of the cells 5, 15, 20, and 66 (marked with diamonds in Fig. 4.1;
cells are numbered left-to-right and from top-to-bottom). After each time period, a
target remains in its current cell or moves to a cell directly above, below, left, or right
of the current cell if such a cell exists. The probabilities of a target remaining in a cell
from one time period to the next is 0.4, 0.3, 0.2, and 0.1, respectively, for the four
targets; the probability of moving to any of the other allowable cells is equal. Hence,
the target that initially occupies cell 5 moves slowly, the target that initially occupies
cell 66 moves quickly, and the other two targets move at intermediate speeds.

We consider two classes of airborne searchers and set the travel time dl.j; j0/ D
maxf1; round.ı.j; j0/=�l/g, where round.a/ is the nearest integer to a, ı.j; j0/ is the
distance between j and j0 measured as the Euclidean norm between the centers of the
cells, and �l is the speed of searchers of class l; �1 D 1, �2 D 2 cells per time period.
Moreover, we let the forward stars Fl.j/ D F 1.j/ [ F 2

l .j/; l D 1; 2, where F 1.j/
equals the set consisting of j and the four cells sharing a side with j, if they exist,
and F 2

l .j/ equals the set of all cells j0 with dl.j; j0/ 2 Œ3; 5�, if they exist. Hence, a
searcher can after a time period either proceed and search “locally” (i.e., select a
cell in F 1.j/) or transit for several time periods to a distant cell (i.e., select a cell in
F 2

l .j/). The reverse stars Rl.j/; l D 1; 2, are defined similarly.
We consider three scenarios with variable glimpse-detection probability and

number of searchers as summarized in Table 4.1. In scenario 1, two searchers of
class 1 occupy cell 1 in time period 0 and one searcher of class 2 initially occupies
cell 81. The glimpse-detection probability of a searcher of the first class is 0.50

Fig. 4.1 Area of interest with
diamonds indicating initial
location for moving targets,
asterisks indicating
difficult-to-search cells, and
circles indicating initial
locations of searchers. The
number of searchers is
proportional to the radius of a
circle

Time period 0
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Table 4.1 Scenarios defining problem instances of SPX. Columns marked with j D j0

(j ¤ j0) give glimpse-detection probability for a searcher that occupy (not occupy) the
current cell previously. An asterisk indicates a column with glimpse-detection probability
for difficult-to-search cells; see Fig. 4.2

Number of Glimpse-detection probability

searchers Searcher class 1 Searcher class 2

Scenario S1 S2 j D j0 j ¤ j0 j D j0* j ¤ j0* j D j0 j ¤ j0 j D j0* j ¤ j0*

1 2 1 0:50 0:29 0:29 0:16 0:29 0:16 0:16 0:09

2 4 2 0:50 0:29 0:29 0:16 0:29 0:16 0:16 0:09

3 20 10 0:07 0:03 0:03 0:02 0:03 0:02 0:02 0:01

if the searcher occupied the current cell in the last time period (j D j0), but the
searcher’s detection rate is reduced with a factor 0.5 if the searcher just moved into
the cell (j ¤ j0). In view of (4.47), this implies a glimpse-detection probability of
0.29; see Table 4.1. This reduction accounts for the effect, which we have observed
in field experiments with actual drones (see Kress and Royset 2008; Royset and
Reber 2009), that a searcher often wastes some search time transiting from one cell
to another even if the cells are adjacent. Using the model flexibility of SPX, we
incorporate this effect without resorting to a fine time discretization.

When a searcher occupies one of the cells marked with an asterisk in Fig. 4.1, all
detection rates are reduced by a factor of 0.5. These cells represent areas with poor
search conditions and consequently low detection rates. This results in a glimpse-
detection probability of 0.29 when j D j0 and 0.16 when j ¤ j0. For the class-2
searcher, the detection rate is reduced with a factor of 0.5 compared to class 1 in all
situations, with resulting glimpse-detection rates given in Table 4.1.

Scenario 2 is identical to scenario 1 except it has four class-1 searchers and two
class-2 searchers. Scenario 3 is identical to scenario 1 except that there are 20 class-1
searchers and 10 class-2 searchers, and the detection rate is reduced with a factor of
0.1 in all situations. The last row of Table 4.1 gives the resulting glimpse-detection
probabilities. We note that the total detection rate of the searchers in scenario 3 is
identical to that of those in scenario 1. Scenario 3, however, allows more flexibility
as the search effort can be spread more widely.

We consider both the situations with and without deconfliction constraints (4.53)
and (4.54). In these scenarios, deconfliction amounts to ensuring that at most one
searcher occupies a cell each time period and that a searcher is not allowed to move
from a cell j to an adjacent cell j0 2 F 1.j/when another searcher makes the opposite
move from j0 to j. We assume that transit to a distance cell (i.e., a cell j0 2 F 2

l .j/)
takes place by flying at high altitude, while search is carried out at low altitude. In
SPX, we incorporate these constraints by setting nj D 1 for all j and D.l; j; j0; t/ D
f.l0; j00; j000; t0/ j l0 2 L ; j00 D j0; j000 D j; t0 D tg whenever j0 2 F 1.j/; j0 ¤ j and
otherwise D.l; j; j0; t/ D ;. Since searchers transiting between distance cells can
be separated easily by altitude, we allow the routes of such searchers to cross each
other as well as to cross over searchers occupying cells.
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Fig. 4.2 Optimal searcher
location during time period 8
for scenario 3, T D 8, and no
deconfliction constraints. The
radius of a circle is
proportional to the number of
searchers occupying the
corresponding cell during
time period 8 (cells 4, 7, 12,
14, 16, 20, 24, 38, 55, 66, 67,
and 75 contain 1, 2, 1, 3, 4, 1,
3, 1, 4, 7, 2, and 1 searchers,
respectively). Diamonds
indicate initial location for
moving targets and asterisks
indicate difficult-to-search
cells

Time period 8

Table 4.2 shows lower and upper bounds on the optimal value of SPX as well as
the corresponding relative optimality gaps after 15 and 60 min of calculation time
of the Cutting Plane Algorithm with T D 8, 10, and 12 as obtained with a low-end
laptop (of 2010); see Royset and Sato (2010) for details. Columns 4 and 5 present the
results for the case with no deconfliction constraints, while columns 6 and 7 include
deconfliction constraints. Interestingly, the algorithm solves problem instances with
more searchers (scenario 3) quicker than those with fewer searchers (scenario 1) as
the linearizations of the nonlinear functions tend to be more accurate in those cases.
We also find longer time horizons to be more difficult, primarily due to the weaker
cuts in the case of smaller nondetection probabilities.

Deconfliction constraints restrict SPX and result in an increase in the optimal
value. In scenarios 1 and 2, the change is small due to the relatively low number
of searchers. Deconfliction constraints increase the optimal value with about 0.05
in scenario 3 where 30 searchers are present. Hence, deconfliction constraints
effectively force the searchers to give up 0.05 in probability of detection.

Figure 4.2 illustrates the optimal location of searchers in time period 8 for
scenario 3, T D 8, and no deconfliction constraints. The radius of a circle is
proportional to the number of searchers located in the corresponding cell during
time period 8 (see figure caption). We observe that multiple searchers focus on a rel-
atively small number of cells with high probability of containing targets. Figure 4.3
illustrates the same situation but for the case with deconfliction constraints.

Table 4.3 further examines the upper bounds (UB) on the optimal value of SPX
and corresponding relative optimality gaps in scenario 3 as T increases. As in
Table 4.2, we find a worsening in solution quality as T increases. However, the
increase is moderate and essentially insignificant for the case with deconfliction
constraints. One is able to obtain near-optimal solutions even for long time horizons.
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Table 4.2 Lower and upper bounds on the optimal value of SPX as
well as relative optimality gaps after 15 and 60 min of calculation
times of Cutting Plane Algorithm for scenarios 1–3 with and without
deconfliction constraints. The time in seconds to reach optimality is
reported in brackets when zero gap is achieved within 60 min

No deconfliction Deconfliction

After After After After

Scenario T Measure 15 min 60 min 15 min 60 min

Lower bound 0:851 0:858 0.852 0:858

1 8 Upper bound 0:874 0:866 0.873 0:866

Relative gap 0:027 0:010 0.024 0:010

Lower bound 0:719 0:727 0.721 0:731

2 8 Upper bound 0:752 0:752 0.774 0:760

Relative gap 0:046 0:035 0.072 0:040

Lower bound 0:837 0:837 0.888

3 8 Upper bound 0:837 0:837 0.888

Relative gap 0:001 0:000 0 [390]

Lower bound 0:777 0:796 0.781 0:801

1 10 Upper bound 0:833 0:833 0.842 0:842

Relative gap 0:072 0:047 0.079 0:052

Lower bound 0:626 0:635 0.628 0:636

2 10 Upper bound 0:710 0:703 0.711 0:711

Relative gap 0:133 0:108 0.132 0:117

Lower bound 0:788 0:788 0.840 0:840

3 10 Upper bound 0:789 0:789 0.841 0:841

Relative gap 0:002 0:002 0.001 0:000

Lower bound 0:726 0:742 0.727 0:742

1 12 Upper bound 0:818 0:818 0.815 0:815

Relative gap 0:127 0:103 0.121 0:099

Lower bound 0:543 0:554 0.543 0:551

2 12 Upper bound 0:675 0:664 0.654 0:654

Relative gap 0:243 0:199 0.206 0:189

Lower bound 0:745 0:745 0.797 0:797

3 12 Upper bound 0:748 0:747 0.799 0:799

Relative gap 0:004 0:003 0.003 0:002

Interestingly, deconfliction constraints reduce optimality gaps in these instances
even though they increase the model size.

In summary, we see that in these rather realistic scenarios involving 30 searchers
divided in two classes with different speed and sensor quality, four targets of variable
characteristics, deconfliction constraints, 81 inhomogeneous cells, and a long time
horizon of up to 42 periods, one can obtain a 6 % near-optimal solution in 60 min
on a low-end laptop (of 2010).
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Fig. 4.3 Optimal searcher
location during time period 8
for scenario 3, T D 8, and
deconfliction constraints. A
dot indicates one searcher

Time period 8

Table 4.3 Upper bounds
(UB) on the optimal value of
SPX as well as relative
optimality gaps after 60 min
of calculation times of
Cutting Plane Algorithm for
scenario 3 with varying T,
and with and without
deconfliction constraints

No deconfliction Deconfliction

T UB Rel. gap UB Rel. gap

10 0:789 0:002 0:841 0:000

14 0:709 0:004 0:760 0:002

18 0:643 0:006 0:691 0:002

22 0:587 0:012 0:629 0:002

26 0:539 0:023 0:576 0:004

30 0:513 0:087 0:527 0:005

34 0:476 0:117 0:483 0:009

38 0:447 0:181 0:445 0:022

42 0:410 0:234 0:411 0:060

4.5 Notes

Stewart (1979, 1980) appear to be the first papers to deal with path-constrained
search in discrete time and space. These early studies as well as Eagle and Yee
(1990), Martin (1993), Dell et al. (1996), Washburn (1998) and Lau et al. (2008)
focus on the development of specialized branch-and-bound algorithms for finding
an optimal path for a searcher. Bounds in these algorithms are obtained by replacing
the probability of detection with, effectively, the expected number of detections; see
Dell et al. (1996), Washburn (1998) and Lau et al. (2008). Alternatively, bounds can
be obtained by assuming that the searcher can divide its effort among multiple cells
each time period as in Eagle and Yee (1990). The presentation in Sect. 4.1 relies on
Sato and Royset (2010).

The formulation SPX of the constrained search optimization problem as well as
SP1, SP1-L, and SP1-LM are taken from Royset and Sato (2010). A precursor
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to SPX with a single target, no deconflication constraints, and simpler glimpse-
detection probabilities is found in Stewart (1979). We reference Pietz and Royset
(2013) alternative mathematical programming models for search that avoid dis-
cretizing the area of interest into cells.

The cutting-plane algorithm of Sect. 4.3 is a direct application of general methods
in the optimization literature; see, e.g., Kelley (1960), Duran and Grossmann (1986),
Westerlund and Pettersson (1995) and Bonami et al. (2008). The efficient procedure
for computing f .Y/ and its gradient in Sect. 4.3.3 is due to Brown (1980).

There are numerous heuristic algorithms for estimating solutions of constrained
search problem such as local search and genetic algorithms, see Dell et al. (1996),
cross-entropy method, see Sato (2008), myopic optimization with a receding-
horizon, see Dell et al. (1996), Grundel (2005), Wong et al. (2005) and Riehl et al.
(2007), sequential optimization of each searcher, see Stewart (1979), Wong et al.
(2005) and Hollinger and Singh (2008), and decentralized optimization by each
searcher, see Bourgult et al. (2003), Yang et al. (2004) and Wong et al. (2005).
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Chapter 5
Search for Moving Targets in Continuous Space

In Chap. 3, we found optimal search allocations for problems that take place
in discrete space and time. For the most part, algorithms for computing these
allocations are limited to exponential detection functions.

This chapter develops methods for finding optimal plans for search problems in
discrete or continuous time that take place in continuous space. Sections 5.1, 5.2
and 5.3 consider discrete time searches. Section 5.2 finds optimal detection search
plans for exponential detection functions. Section 5.3 finds optimal search plans for
decreasing-rate detection functions. Section 5.4 considers a more general class of
payoff functions with search-effort like constraints. The effort allocations take place
in continuous or discrete time over a continuous space. This class of payoff functions
encompasses detection functions as well as the FAB payoff functions defined in
Chap. 3. We find necessary and sufficient conditions for optimal plans for these
payoff functions.

5.1 Search Problem: Discrete Time

As in previous chapters, the search takes place in discrete time over the interval
[0, T]. The times are represented by the integers t D 0; : : : ;TI the increments
between times t and t C 1 need not be equal for all t. For convenience we will
use the notation [0, T] to stand for the “interval” of integers from 0 to T when time
is discrete. The target search space S is continuous and is usually a subset of 2 or
3-dimensional space.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-3-319-
26899-6_5) contains supplementary material, which is available to authorized users.
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Prior Distribution on Target Motion The prior distribution on target motion is
specified by a stochastic process X D fX.t/; t D 0; : : : ;Tg where X.t/ 2 S for
t D 0; : : : ;T: Let ! D .!0; : : : ; !T / denote a sample path of the process so that !t

is the target’s state at time t. Let� be the set of sample paths and p be the probability
density function on �.

Search Plans A search plan is a space-time allocation f defined on S 
 Œ0;T�where
f (x, t) is the effort density applied to x at time t. As in Chap. 3 we suppose that m(t)
search effort is available at time t and define the class F(m) of continuous-space,
discrete-time search plans as follows.

f 2 F.m/ if and only if
0 � f .x; t/ < 1 x 2 S and t D 0; : : : ;T
Z

S

f .x; t/dx D m.t/ for t D 0; : : : ;T:
(5.1)

There may be an upper bound B on the search density. In this case we define the
class FB(m) of search plans where

f 2 FB.m/ if and only if
f 2 F.m/
f .x; t/ � B for x 2 S and t D 0; : : : ;T:

(5.2)

If B D 1, then FB.m/ D F.m/:

Detection Function As in Chap. 3, the probability of detecting the target, given it
follows path !, is a function of the weighted total search effort density that “falls
on” the target as it follows that path. The function


 .f ; !; t/ D
Xt

sD0W .!s; s/ f .!s; s/ for ! 2 �; t D 0; : : : ;T (5.3)

accumulates the weighted search effort density over [0, t] for the path ! where the
weight W(x, s) represents the relative detectability or sweep width for the target
given it is located at x at time s. There is a detection function b such that

b .
 .f ; !; t// D Pr fdetecting the target by time tjtarget follows path !g : (5.4)

Probability of Detection The probability of detection by time t is

P .f ; t/ D E Œb .
 .f ; !; t//� for t D 0; : : : ;T (5.5)

where E Œ�� indicates expectation over the probability distribution p on the sample
paths of X.

http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
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T-Optimal Plan A plan f � 2 FB.m/ is T-optimal if and only if

P
	
f �;T


 � P .f ;T/ for f 2 FB.m/: (5.6)

In most cases, we cannot construct a moving target plan that is uniformly optimal.
This means that the plan that is optimal for T C �T is not an extension of the
T-optimal plan. One has to choose the time at which he wishes the plan to be
optimal. This makes it more difficult to find plans that minimize mean time to
detection.

5.1.1 Bound on Optimal Plan: Decreasing-Rate
Detection Function

One can easily adapt the argument in Sect. 3.1.2 to find an upper bound on the
probability of detection for the T-optimal plan when the search space is continuous.
As in Chap. 3, this bound will be useful in providing a stopping criterion for
algorithms that find approximations to optimal plans.

Suppose b is a decreasing-rate detection function. Let Ext indicate expectation
conditioned on X.t/ D x; and pt(x) be the probability density for X.t/ D x: Let
f1; f2 2 FB.m/ be two allocation functions. Because b is a decreasing-rate detection
function, we have

P .f2;T/ � P .f1;T/ D E Œb .
 .f2; !;T//� � E Œb .
 .f1; !;T//�

� E Œb0 .
 .f1; !;T// .
 .f2; !;T/ � 
 .f1; !;T//� :
(5.7)

Define

D .f ; x; t/ D Ext
�
b0 .
 .f ; !;T//



pt.x/W .x; t/ for f 2 F.m/: (5.8)

Following the proof in Sect. 3.1.2 and replacing summation over j D 1; : : : ; J with
integration over S we obtain

E Œb0 .
 .f1; !;T// .
 .f2; !;T/ � 
 .f1; !;T//�
D
XT

tD0

Z

S
D .f1; x; t/ .f2 .x; t/ � f1 .x; t// dx

(5.9)

so that by (5.7)

P .f2;T/ � P .f1;T/ �
XT

tD0

Z

S
D .f1; x; t/ .f2 .x; t/ � f1 .x; t// dx: (5.10)

The inequality in (5.7) holds for any concave detection function b provided that b0 is understood
to be the subgradient of b.

http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
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Let

œ.t/ D sup
x2S

D .f1; x; t/ and œ.t/ D inf
fxWf1.x;t/>0g

D .f1; x; t/ for t D 0; : : : ;T: (5.11)

In the case, where f1 .x; t/ D 0 for x 2 S; we set œ.t/ D 0: From (5.10) we have

P .f2;T/ � P .f1;T/ �
XT

tD0

Z

S

h
œ.t/f2 .x; t/ � œ.t/f1 .x; t/

i
dx

D
XT

tD0
�
œ.t/ � œ.t/

�
m.t/ � �.f1/:

(5.12)

Notice that the right-hand side of the second line of (5.12) does not depend on f2.
Thus if f � 2 FB.m/ is T-optimal, then

P
	
f �;T


 � P .f ;T/C�.f / for any f 2 FB.m/:

We can now state the upper bound theorem obtained by Washburn (1981).

Theorem 5.1. If b is an decreasing-rate detection function and f � 2 FB.m/ is T-
optimal, then

P
	
f �;T


 � P .f ;T/C�.f / for any f 2 FB.m/ (5.13)

where

�.f / D
XT

tD0
�
œ.t/ � œ.t/

�
m.t/:

Measure Theory Considerations Those readers familiar with measure theory will
realize that we have to interpret sup and inf as ess sup and ess inf in (5.11).

5.2 T-Optimal Plan: Exponential Detection Function,
Discrete Time

In this section we find necessary and sufficient conditions for a plan to be T-
optimal when the detection function is exponential and time is discrete. Using these
conditions, we extend Brown’s recursion in Sect. 3.2.1 for finding a T-optimal plan
in discrete space and time to continuous space and discrete time. We finish with a
discussion of a method for implementing this recursion in an approximate fashion.

http://dx.doi.org/10.1007/978-3-319-26899-6_3
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5.2.1 Necessary and Sufficient Conditions for a T-Optimal
Plan: Exponential Detection Function

As in Chap. 3, we show that when the detection function is exponential, finding a
T-optimal plan is equivalent to solving a sequence of stationary target problems.
The proof will be similar to the one given in Sect. 3.2, but since the search space is
continuous rather than discrete, we cannot rely on the Kuhn-Tucker-Karush theorem
to provide necessary and sufficient conditions for optimality.

Theorem 5.1. Assume b is an exponential detection function. Then a necessary and
sufficient condition for f � 2 FB.m/ to be a T-optimal plan is that for t D 0; : : : ;T;
f � .�; t/ is the optimal stationary target plan for cost m(t) for the distribution
Qq .�; t; f �/ ; which is the posterior probability distribution on the target’s location
at time t given failure to detect at all times other than t.

Proof. Since b.z/ D 1�e�z;we have from (5.3) and (5.5) that for any t D 0; : : : ;T;

1 � P .f ;T/ D E Œexp .�
 .f ; !;T//� D E
h
exp

�
�
XT

sD0W .!s; s/ f .!s; s/
�i

D
Z

S
Ext

h
exp

�
�
XT

sD0W .!s; s/ f .!s; s/
�i

pt.x/dx

D
Z

S
e�W.x;t/f .x;t/Ext

2

4exp

0

@�
X

s¤t

W .!s; s/ f .!s; s/

1

A

3

5pt.x/dx

D
Z

S
e�W.x;t/f .x;t/q .x; t; f / dx

(5.14)

where

q .x; t; f / D Ext

2

4exp

0

@�
X

s¤t

W .!s; s/ f .!s; s/

1

A

3

5 pt.x/: (5.15)

One can see that q(x, t, f ) is the probability density that the target is in state x at time
t and not detected by the search at any time other than t. In addition, from (5.8) and
(5.15) we obtain

http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
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D .f ; x; t/ D Ext
�
b0 .
 .f ; !;T//



pt.x/W .x; t/

D Ext

h
exp

�
�
XT

sD0W .!s; s/ f .!s; s/
�i

pt.x/W .x; t/

D e�W.x;t/f .x;t/Ext

2

4exp

0

@�
X

s¤t

W .!s; s/ f .!s; s/

1

A

3

5 pt.x/W .x; t/

D W .x; t/ e�W.x;t/f .x;t/q .x; t; f / for f 2 FB:

(5.16)

Necessity Suppose f � 2 FB.m/ is a T-optimal plan. Since q .�; t; f �/ is proportional
to Qq .�; t; f �/ ; it is clear from (5.14) that f � .�; t/ must minimize the failure proba-
bility (i.e., maximize detection probability) for the stationary target problem with
distribution q .�; t; f �/ among plans with cost m(t) for t D 0; : : : ;T: This shows
that maximizing detection probability for the stationary target problem defined by
Qq .�; t; f �/ for t D 0; : : : ;T is a necessary condition for T-optimality.

Sufficiency Suppose that f � .�; t/ maximizes the detection probability for the
stationary target search corresponding to Qq .�; t; f �/ (and therefore q .�; t; f �/) among
plans in FB with effort m(t) for t D 0; : : : ;T:

Recall from Sect. 2.3.3.1 that the pointwise Lagrangian l is defined by

l .x; z; œ/ D b .x; z/ p.x/� œc.x/z for x 2 S; 0 � z � B; and œ > 0

and that its derivative with respect to z is defined by

l0 .x; z; œ/ D b0 .x; z/ p.x/� œc.x/:

Since c.x/ D 1 and b .x; z/ D 1 � e�W.x;t/z for t D 0; : : : ;T, the derivative becomes

l0 .x; z; œ/ D W .x; t/ e�W.x;t/zp.x/� œ: (5.17)

The remark made after Theorem 2.3 notes that conditions (2.65) are necessary and
sufficient for a stationary target plan f � .�; t/ to be optimal for its cost m(t). For the
problem considered here, these conditions become

W .x; t/ e�W.x;t/f �.x;t/q
	
x; t; f �
 � œt for f � .x; t/ D B

D œt for 0 < f � .x; t/ < B

� œt for f � .x; t/ D 0:

(5.18)

http://dx.doi.org/10.1007/978-3-319-26899-6_2
http://dx.doi.org/10.1007/978-3-319-26899-6_2
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By (5.16) we may write (5.18) as

D .f �; x; t/ � œt for f � .x; t/ D B
D œt for 0 < f � .x; t/ < B
� œt for f � .x; t/ D 0:

(5.19)

Since f � .�; t/ is T-optimal, it must satisfy (5.19) for t D 0; : : : ;T: By (5.10) and
(5.19), we have

P .f ;T/ � P .f �;T/ �
XT

tD0

Z

S
D
	
f �; x; t


 	
f .x; t/ � f � .x; t/



dx

�
XT

tD0�t

Z

S

	
f .x; t/ � f � .x; t/



dx D 0:

(5.20)

where the inequality in the last line of (5.20) follows by breaking the integral over
S into the sum of integrals over S1, S2, and S3 where

S1 D fx W f � .x; t/ D Bg ; S2 D fx W 0 < f � .x; t/ < Bg ; S3 D fx W f � .x; t/ D 0g :

On the set S1, D .f �; x; t/ � œt > 0 and f .x; t/ � f � .x; t/ D B; so

Z

S1

D
	
f �; x; t


 	
f .x; t/ � f � .x; t/



dx �

Z

S1

œt
	
f .x; t/ � f � .x; t/



dx:

On the set S2, D .f �; x; t/ D œt; so

Z

S2

D
	
f �; x; t


 	
f .x; t/ � f � .x; t/



dx D

Z

S2

œt
	
f .x; t/ � f � .x; t/



dx;

and on the set S3, 0 � D .f �; x; t/ � œt; and f .x; t/ � f � .x; t/ D 0; so

Z

S3

D
	
f �; x; t


 	
f .x; t/ � f � .x; t/



dx �

Z

S3

œt
	
f .x; t/ � f � .x; t/



dx:

The sum of these three integrals yields the inequality in the last line of (5.20). The
equality in this line follows from the fact that f ; f � 2 FB.m/: Thus

P .f ;T/ � P
	
f �;T



for f 2 FB.m/

which proves sufficiency and completes the proof of Theorem 5.1.
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5.2.2 Recursion for Finding T-Optimal Plan
for an Exponential Detection Function

The following version of Brown’s recursion is identical to the one in Sect. 3.2.1
except that the target state space is continuous rather than discrete.

T-Optimal Search Plan Recursion
for a Continuous-Effort, Exponential Detection Function

1. Let f0 .x; t/ D 0 for x 2 S and t D 0; : : : ;T:
2. Let " > 0 be a tolerance.
3. Set k D 0:

4. Set s D k Œmod .T C 1/� ; i.e., s is the integer remainder after dividing k by
T C 1.

5. Compute � .�; s; fk/ ; the optimal plan for q .�; s; fk/ with m(s) effort.
6. Set

fkC1 .�; t/ D
�

fk .�; t/ for t ¤ s
� .�; s; fk/ for t D s:

7. If s D T; compute �.fkC1/ : If this is less than " stop; P .fkC1/ is within "
of optimal.

8. Otherwise set k D k C 1; and go back to step 4.

Since the recursion starts with f0 .�; t/ D 0 for t D 0; : : : ;T; the first pass through
the recursion from k D 0 to T produces the myopic search plan, the one that
maximizes the increase in detection probability at each time increment. Since each
allocation fkC1 increases the detection probability compared to fk, for k D 0; 1; : : : ,
P(fk, T) approaches a limit P as k ! 1. Thus we can obtain a plan as close to
optimal as we please. If we reach a step k in the recursion where fkCTC1 D fk; then
fk satisfies the necessary and sufficient conditions for optimality and is an optimal
plan.

Implementing the Recursion We can implement the above recursion in an
approximate fashion by replacing the target motion process by a discrete number of
sample paths. To do this, we draw a large number N of sample paths from the target
motion process. This is usually done by a simulation that produces sample paths !
each with p .!/ D 1=N: These sample paths develop in continuous space and time.
We impose a grid of J cells on the search space and make the further approximation
that we will restrict ourselves to plans that place effort uniformly within any given
cell. In effect we can allocate effort to a cell but not to a portion of a cell. For
each simulated path !, we compute b!t; the cell containing the target at time t, for

http://dx.doi.org/10.1007/978-3-319-26899-6_3
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t D 0; : : : ;T: Replace ! by its discretized sampled path b! D .b!0;b!1; : : : / : We
then use these N discretized sample to paths produce the distribution of the target’s
location in the grid for each time t. Note, the target motion is still in continuous space
and time; we are simply obtaining a cellular approximation to the target distribution
at the search times. One can now use the algorithm given in Sect. 3.2.2 to compute
an approximation to the T-optimal plan. See Chap. 5 in Shapiro et al. (2009) for a
discussion of the statistical properties of solutions obtained based on Monte Carlo
sampling of target paths.

5.3 T-Optimal Plan: Decreasing-Rate Detection Function,
Discrete Time

In this section we extend the methods used to find T-optimal plans for exponential
detection functions to the class of decreasing-rate detections functions. As before,
time is discrete.

5.3.1 Necessary and Sufficient Conditions for a T-Optimal
Plan: Decreasing-Rate Detection Function

The necessary and sufficient conditions given in (5.26) below are stated in terms of
the following stationary target problem. From (5.3) and (5.5), we have

P .f ;T/
DE Œb .
 .f ; !;T//�

DE

2

4b

0

@W .!t; t/ f .!t; t/C
X

s¤t

W .!s; s/ f .!s; s/

1

A

3

5

D
Z

S

Ext

2

4b

0

@W .x; t/ f .x; t/C
X

s¤t

W .!s; s/ f .!s; s/

1

A

3

5pt.x/dx for t D 0; : : : ;T:

(5.21)

Define

ˇf .x; t; z/ D Ext

2

4b

0

@W .x; t/ z C
X

s¤t

W .!s; s/ f .!s; s/

1

A

3

5 for x 2 S and z � 0:

(5.22)

http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_5
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Since ˇf .x; t; �/ is the sum of concave functions, it is concave. Since b0.0/ < 1 and
b0(u) is a decreasing function of u, we have .b .u C h/� b.u// =h � b0.0/ for all
u; h > 0: Thus we can use the dominated convergence theorem to compute

ˇ0
f .x; t; z/ D Ext

2

4b0
0

@W .x; t/ z C
X

s¤t

W .!s; s/ f .!s; s/

1

A

3

5W .x; t/ for x 2 S:

(5.23)

Observe that ˇf .x; t; �/ is a decreasing-rate detection function. Let GB be the set of
stationary target search plans g W S ! Œ0;B� : If B D 1;then g W S ! Œ0;1/ :

Define

bPf .t; g/ D
Z

S
ˇf .x; t; g.x// pt.x/dx for g 2 GB (5.24)

Finding g 2 GB to maximizebPf .t; g/ ; subject to a constraint on effort, is a stationary
target problem with probability distribution pt(x) and detection function ˇf .x; t; �/
for x 2 S: From (5.21) and (5.22), we have

P .f ;T/ DbPf .t; f .�; t// for t D 0; : : : ;T and f 2 FB.m/: (5.25)

Theorem 5.2. If b is a decreasing-rate detection function, then both (5.26) and
(5.27) below are necessary and sufficient conditions for f � 2 FB.m/ to be T-optimal.

bPf .t; f � .�; t// �bPf .t; g/ for g 2 GB such that
Z

S

g.x/dx D m.t/

for t D 0; : : : ;T:

(5.26)

For t D 0; : : : ;T; there exists a �t � 0; such that

D .f �; x; t/ � œt for f � .x; t/ D B
D œt for 0 < f � .x; t/ < B
� œt for f � .x; t/ D 0 for x 2 S:

(5.27)

Proof. We first prove necessity.

Necessity Suppose f � 2 FB.m/ is T-optimal. Statement (5.26) follows by contra-
diction. Suppose that for some t, there is a g 2 GB such that

Z

S

g.x/dx D m.t/ and bPf .t; g/ >bPf
	
t; f � .�; t/
 :
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Then we could define

f .�; s/ D
�

g for s D t
f � .�; s/ for s ¤ t

such that f 2 FB.m/ and P .f ;T/ > P .f �;T/ which contradicts the T-optimality of
f *. Thus (5.26) holds for t D 0; : : : ;T:

Since (5.26) holds, we have that f � .�; t/ is an optimal stationary target plan for
m(t) effort for the stationary target distribution given by pt(x) and decreasing rate
detection function ˇf .x; t; �/ for x 2 S: By the remark after Corollary 2.3, conditions
(2.65) are necessary for the optimality a stationary target plan in GB. In terms of this
stationary target problem, these conditions become

ˇ0
f � .x; t; f � .x; t// pt.x/ � œt for f � .x; t/ D B

D œt for 0 < f � .x; t/ < B
� œt for f � .x; t/ D 0 for x 2 S:

(5.28)

By (5.8) and (5.23), ˇ0
f � .x; t; f � .x; t// pt.x/ D D .f �; x; t/ and (5.27) follows.

Sufficiency Suppose conditions (5.27) hold. Note that these are the same condi-
tions as in (5.19). With this in mind, we can use the portion of the proof of Theorem
5.1 that starts at the second sentence after (5.19) to prove that f * is T-optimal.

Suppose conditions (5.26) hold. Then as we have shown above, conditions (5.27)
must hold and f * is T-optimal. This proves the theorem.

5.3.2 Recursion for T-Optimal Plan for a Decreasing-Rate
Detection Function

The recursion for finding a T-optimal plan for a decreasing-rate detection function
requires solving a solving a sequence of stationary target problems that involve
maximizing bPf .t; g/ defined in (5.24) over allocations g with effort m(t). For
these problems, the stationary target distribution is pt(x) and detection function is
ˇf .x; t; �/ for x 2 S as given in (5.22).

For f 2 FB.m/; let � .�; t; f / be the allocation in GB such that

Z

S
� .x; t; f / dx D m.t/

and

bPf .t; � .�; t; f // �bPf .t; g/ for g 2 GB such that
Z

S
g.x/dx D m.t/:

(5.29)

Since ˇf .x; t; �/ is a decreasing-rate detection function, � .�; t; f / can be found by the
algorithm in Sect. 2.3.3.2.

http://dx.doi.org/10.1007/978-3-319-26899-6_2
http://dx.doi.org/10.1007/978-3-319-26899-6_2
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The recursion given below is the same as the one in Sect. 5.2.2 with exception
of step 5 where the plan obtained is the optimal plan for the payoff function
bPf .s; �/ rather than the plan that maximizes the probability of detecting the target
for the stationary target distribution that is the posterior probability density on target
location at time s given failure to detect at all times other than s.

As in Sect. 5.2.2, the first pass through times t D 0; : : : ;T in the recursion
produces the myopic plan. Also P .fkC1;T/ � P .fk;T/ for k D 0; 1; : : : : This
follows from the definition of fkC1 .�; t/ and (5.25). By the proof given in Sect. 5.2.2,
P(fk, T) approaches a limit P as k ! 1; and this limit is P *, the detection
probability for the T-optimal plan.

T-Optimal Search Plan Recursion
for a Decreasing-Rate Detection Function

1. Let f0 .x; t/ D 0 for x 2 S and t D 0; : : : ;T:
2. Let " > 0 be a tolerance.
3. Set k D 0:

4. Set s D k Œmod .T C 1/� ; i.e., s is the integer remainder after dividing k by
T C 1.

5. Compute � .�; s; fk/ ; the allocation that maximizesbPf .s; �/ in (5.29).
6. Set

fkC1 .�; t/ D
�

fk .�; t/ for t ¤ s
� .�; s; fk/ for t D s:

7. If s D T; compute �.fkC1/ : If this is less than " stop; P .fkC1/ is within "
of optimal.

8. Otherwise set k D k C 1; and go back to step 4.

Implementing the Recursion As in Sect. 5.2.2, we can implement the above
recursion by approximating the target motion process. To do this we draw a large
number N of sample paths from the target motion process. This is usually done by
a simulation that produces sample paths ! each with p .!/ D 1=N: These sample
paths develop in continuous space and discrete time. We impose a grid of J cells
on the search space. For each simulated path !, we computeb! t; the cell containing
the target at time t,for t D 0; : : : ;T: Replace ! by its discretized sampled path
b! D .b!0;b!1; : : : / : Let b� be the set of these N discretized sample paths. There are
two approximations involved in using b�: The first is approximating the continuum
of paths in � with a finite discrete set b�: The second is in restricting ourselves to
allocations that have a constant value over the cells in the grid chosen. The choice of
the grid does not affect the motion of the paths in b�:We are simply recording which
grid cell they fall into at each time. The quality of this approximation will depend
on the number of sample paths N and the size of the grid cells. The algorithm below
finds a T-optimal plan for this approximation.
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Implementation of T-Optimal Search Plan Recursion
for a Decreasing-Rate Detection Function

1. Set 
 .b!/ D 0 for b! 2 b� and f0 .j; t/ D 0 for j D 1; : : : ; J and t D
0; : : : ;T:

2. Let " > 0 be a tolerance, and set k D 0:

3. Set s D k Œmod .T C 1/� :

4. Compute


s .b!/ D 
 .b!/ � W .b!s; s/ fk .b!s; s/ for b! 2 b�; (5.30)

and for j D 1; : : : ; J; compute

r0 .j; s; z/ D W .j; s/
X

n
b!Wb!sDj

o
Pr fb!g b0 .W .j; s/ z C 
s .b!// for z � 0:

(5.31)

5. Find �k .�; s/ ; the plan with m(s) effort that maximizesbPfk .s; �/ ; by finding
�s and �k .�; s/ ; such that

r0 .j; s; �k .j; s// � œt for �k .j; s/ D B
D œt for 0 < �k .j; s/ < B
� œt for �k .j; s/ D 0 for j D 1; : : : ; J

and XJ

jD1�k .j; s/ D m.s/:

(5.32)

6. Set

fkC1 .�; t/ D
�

fk .�; t/ for t ¤ s
�k .�; s/ for t D s:

7. Set 
 .b!/ D 
s .b!/C W .b!s; s/ fkC1 .b!s; s/ forb! 2 b�:
8. If s D T, compute �.fkC1/ : If it is less than ", stop. Otherwise set k D

k C 1; and return to step 3.

Step 5, may be accomplished by a numerical search on �t as follows. For each
value of �t considered, find g W f1; : : : ; Jg ! Œ0;B� that satisfies (5.32) and compute

mg.s/ D
XJ

jD1g.j/:
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If mg.s/ > m.s/; increase the value of �t. If it is less, decrease it. Continue until
mg.s/ D m.s/: To calculate�.fkC1/ in step 8, we use (5.8) to compute

D .fkC1; j; t/ D W .j; t/
X

n
b!Wb! tDj

o
Pr fb!g b0 .
 .b!// for j D 1; : : : ; J; t D 0; : : : ;T:

(5.33)

5.3.3 Example: Inverse Cube Detection Function

In this section, we return to the example in Sect. 3.2.3 where we compared the T-
optimal plan to the myopic one for a search for a boat. In Sect. 3.2.3, we assume that
the detection function is exponential. For this example, we will assume an inverse
cube detection function.

In this example, the target, possibly a drug smuggling boat, is known to have left
port at the point (0, 0) at time t D 0 hrs: There are two possible scenarios for the
motion of the target, each of which has equal weight. In scenario 1, the boat travels
toward a port at (0, 480) moving at approximately 20 kn. In scenario 2, the boat
heads east-northeast at about 20 kn.

Figure 3.1 of Chap. 3, which is reproduced below as Fig. 5.1, shows the target
distribution resulting from the two scenarios at the times 6, 12, and 18 h. The part
of the distribution corresponding to scenario 1 shows the target heading north to the
port at (0, 480). In this scenario, the distribution starts at (0, 0) and heads north while
spreading out in the east–west direction until 12 h at which time it starts to condense
and eventually ends up at (0, 480) at 24 h. The part of the distribution corresponding
to scenario 2 spreads out and moves in an east-northeasterly direction. To compute
these distributions, we simulated 50,000 equally weighted target paths in continuous
space and time, 25,000 for each scenario. At the search times we imposed a grid of
cells 20 nm by 20 nm on a side. This grid of cells represents the grid on which
we can allocate search effort. That is we are restricted to plans whose allocation of
effort to a cell in this grid must be uniform over the points in that cell. This is a

450

400

350

300

250

200

150

100

nm

t = 6 hrs t = 12 hrs t = 18 hrs

100 200 300 400
nm

100 200 300 400
nm

100 200 300 400

50

nm

450

400

350

300

250

200

150

100

50

nm

450

400

350

300

250

200

150

100

50

nm

Fig. 5.1 Target location distributions–dark cells indicate high probability

http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
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reasonable restriction for most searches. Thus the class of allocations over which
we optimize are those that allocate effort to grid cells but not to portions of a cell.
To accommodate this restriction, we replaced the position of each particle with the
index of the cell it is in at the search times. This produces the distribution of the
target’s location in these cells at the time of the searches. Note, we have not changed
the continuous time and space character of the target motion model. We have simply
limited the class of allowable search plans.

As in Sect. 3.2.3, there are 3000 nm2 of search effort (swept area) available at
each of the times 6, 12, and 18 h, and the detection function is inverse cube with

b.z/ D 2ˆ

�r
�

2
z

�
� 1 D

r
2

�

Z p
�
2 z

0

e�y2=2dy and b0.z/ D e��z2=4 for z � 0

(5.34)

for all times and cells where z is the search effort density in a cell, i.e., the swept
area of search effort allocated to a cell divided by 400 nm2, the area of a cell. As in
Chap. 3, we assume that effort can be distributed instantaneously over space at the
search times.

We used the algorithm for a decreasing-rate detection function given above to
calculate the T-optimal plan for 18 h. Figures 5.2 and 5.3 show the myopic and
T-optimal search plans for T D 18 hrs at the three search times. To compute these
plans, we set " D 0:01; and in 8 iterations the Washburn bound fell below this value.
This produced a detection probability 0.77 for the myopic plan and 0.86 for the T-
optimal plan. Looking at Fig. 5.2, we see that the myopic plan allocates substantial
effort to scenario 1 at times 6 and 12 h and doesn’t look ahead to see that the scenario
2 distribution is spreading out. In Fig. 5.3, the T-optimal plan takes this into account
and applies most of its effort to scenario 2 at times 6 and 12 h while waiting until
18 h to apply substantial effort to scenario 1.

The detection probabilities that are obtained in Sect. 3.2.4 for the myopic and
T-optimal plans for the exponential detection function are 0.68 and 0.76, about 0.1
lower than with the inverse cube detection function. Looking at Fig. 2.4 which shows
a plot of these two detection functions, we see that the inverse cube function lies
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Fig. 5.2 Myopic plan at 6, 12, and 18 h

http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_2


136 5 Search for Moving Targets in Continuous Space

nm

nm

0 100 200 300 400
0

100

200

300

400

nm
nm

0 100 200 300 400
0

100

200

300

400

nm

nm

0 100 200 300 400
0

100

200

300

400
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above the exponential. It is a more efficient detection function, and the optimization
is able to take advantage of that to produce higher detection probabilities with the
same amount of effort. Qualitatively, the plans look similar.

Computing the T-optimal plan (in MATLAB) for the inverse cube detection
function with decreasing-rate algorithm took about 100 times longer than with
algorithm for the exponential detection function given in Chap. 3. For comparison,
we also applied the MATLAB optimization function “fmincon” to the problem in
this example. The function fmincon obtained an answer very similar to one found
here, but it took 10 times as long as the algorithm for a decreasing rate detection
function. The advantage of fmincon is that is a standard optimization routine and
does not have to be handcrafted as the decreasing-rate algorithm does. For a one-
time use, a standard optimization function such as fmincon might be preferred in
spite of its longer run time.

5.3.4 Optimal Multi-type Search

This section presents an extension of the optimal detection problem to multi-type
search. In a multi-type search, the target’s state is (i, x) where i 2 I is the target
type and x is the target position in the standard two or three-dimensional space. In a
search and rescue problem at sea, possible types of targets could be

i D 1; live person in raftI i D 2; live person in waterI i D 3; dead person:
(5.35)

The sweep width for the target depends on type as well as position and time.
In particular, if the person is in a raft, the sweep width for visual detection is
substantially larger than if he is in the water. If the person is dead, we can set the
sweep width equal to 0 so that maximizing detection probability is equivalent to
maximizing probability of detecting the target alive as was noted in Sect. 3.2.5.

http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
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The extension to multi-type search is handled by adding a component corre-
sponding to target type to the state space X : Specifically we set X D I 
 S where I
is the set of target types and S is the set of possible target positions. The sweep width
W can depend on i as well as x and t. However, the search allocations depend only
on the x component of target state. That is, we cannot allocate effort to position and
target type, only to position. A target path ! specifies both target type and position
over time, and target type can change over time on a path. It is convenient to write
!t D .i .!t/ ; x .!t// so that target type and position at time t are explicitly indicated.
The definition of 
 in (5.3) becomes


 .f ; !; t/ D
Xt

sD0W
�

i .!s/ ; x .!s/ ; s
��

f .x .!s/ ; s/ for ! 2 �; t D 0; : : : ;T:

Define

b̌
f .i; x; t; z/ D Eixt

2

4b

0

@W .i; x; t/ z C
X

s¤t

W .i .!s/ ; x .!s/ ; s/ f .x .!s/ ; s/

1

A

3

5

(5.36)

and

b̌0
f .i; x; t; z/

D Eixt

2

4b0
0

@W .i; x; t/ z C
X

s¤t

W .i .!s/ ; x .!s/ ; s/ f .x .!s/ ; s/

1

A

3

5W .i; x; t/

for i 2 I; x 2 S and z � 0

(5.37)

where Eixt[ ] indicates expectation conditioned on the target being at position x and
of type i at time t. For convenience we write x 2 S in place of the more precise but
cumbersome notation x such that .i; x/ 2 X :

Let pt .i; x/ D Pr fX.t/ D .i; x/g : Then (5.22) and (5.23) become

ˇf .x; t; z/ D
X

i2I

b̌
f .i; x; t; z/ pt .i; x/ (5.38)

and

ˇ0
f .x; t; z/ D

X

i2I

b̌0
f .i; x; t; z/ pt .i; x/ for x 2 S; t D 0; : : : ;T; z � 0: (5.39)

If b is a decreasing-rate detection function, then ˇf (x, t, z) as given in (5.38) will be
one also, and the necessary and sufficient conditions of Theorem 5.2 apply.
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In the implementation of the decreasing-rate detection function algorithm, we
must modify the computation of 
s .b!/ and r0 in step 4 as follows


s .b!/ D 
 .b!/� W .i .!s/ ; x .!s/ ; s/ fk .x .!s/ ; s/
and

r0 .j; s; z/ D
X

i2I

W .i; j; s/
X

n
b!Wb!sD.i;j/

o
Pr fb!g b0 .W .i; j; s/ z C 
s .b!//: (5.40)

The computation of 
 .b!/ in step 7 of the Implementation of the T-Optimal Search
Plan Recursion must be similarly modified to be


 .b!/ D 
s .b!/C W .i .b!s/ ; x .b!s/ ; s/ fkC1 .x .b!s/ ; s/ : (5.41)

Example: Exponential Detection Function In this example, we consider a multi-
type search in which there are three target types as given in (5.35) and the detection
function b is exponential. Since b is exponential, r0 in (5.40) becomes

r0 .j; s; z/ D
X

i2I

W .i; j; s/ e�W.i;j;s/z
X

n
b!Wb!sD.i;j/

o
Pr fb!g e�
s

�
b!
�

(5.42)

and for the computation of the Washburn bound in step 8, D .fkC1; j; t/ becomes

D .fkC1; j; t/ D r0 .j; t; fkC1 .j; t// for j D 1; : : : ; J; t D 0; : : : ;T: (5.43)

A distress call reports that at time t D 0 a person was either in the water or
a raft at location (0, 0). This position report is characterized by a circular normal
uncertainty with mean (0, 0) and standard deviation � D 1:0 nm in any direction.
The search planner estimates equal probability that the person is in the water or a
raft. The raft will drift generally northward due to winds and currents at about 2 kn.
The drift of the person in the water (PIW) is not affected by the wind but will drift
northward due to the current at about 1 kn. As a result, the uncertainty in the location
of the raft spreads about twice as fast as the uncertainty in the location of the PIW.
There is a possibility that the person will die from exposure (hypothermia) if he is
not found quickly enough. This possibility is modeled by the following transition
mechanism using the states in (5.35). At time t D 0 the search object (target) is in
state i D 1 or i D 2 each with probability 0.5. There are no transitions for the first
5 h. After that there is an exponential distribution on the time at which the person
will die, i.e., transition to state i D 3: For the person in the raft this distribution has a
rate of 0.001 deaths per hours. For the PIW the rate is 0.15 deaths per hour reflecting
the fact that a person in the water is more likely to die from hypothermia than the
one in a raft. There are no transitions out of state i D 3: There are 2 h of search
by helicopter available at times 6, 12, and 18 h. The helicopter searches at 90 kn
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Fig. 5.4 Distributions of raft and PIW locations at times 6, 12, and 18 h. Green indicates PIW
positions; red indicates raft positions. Black indicates particles that have died

yielding 180 nm of track length as the amount of search effort available at each of
these times. The sweep width is 3 nm for the raft and 1 nm for the PIW reflecting
the fact that it is easier to detect a raft than a PIW.

We wish to find a plan that maximizes the probability of detecting the person
alive PA rather than maximizing the probability of detection PD, dead or alive. To
do this we set the sweep width equal 0 for state 3 and calculate the T-optimal plan
for this search. We call this the optimal survivor search plan.

Figure 5.4 shows the distributions for the raft and the PIW at times 6, 12, and 18 h
represented by a sample of 500 particles from the 5000 equally weighted sample
paths (particles) used for this example. The raft positions are indicated by red dots,
the PIW by green dots. Black dots indicate particles that have died, i.e., transitioned
to state 3. Figure 5.5 shows the fraction of particles alive in the two scenarios at
times 6, 12, and 18 h.

Figures 5.6 and 5.7 show the optimal survivor search and the optimal detection
search plans. We have PA D 0:44 for the optimal survivor search compared to
PA D 0:39 for the optimal detection search. Observe that the optimal survivor
search plan concentrates on the PIW in the early stages of the search when there
is a higher probability of the PIW being alive. The optimal detection search expends
most of it effort on the raft at 6 h before this distribution spreads out and then
concentrates its search on the PIW. This produces a detection probability of 0.53
but a probability 0.39 of detecting the person alive which is more than ten percent
below the probability for the optimal survivor search.

5.4 Optimal Plans for More General Payoff Functions

This section considers a class of problems with more general payoff functions
that involve finding either discrete or continuous time allocation functions with
search-like constraints that maximize the payoff function. These problems include
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Fig. 5.6 Optimal survivor search plan yields PA D 0:43:Darker colors indicate higher search
densities

as special cases those considered in Sects. 5.1, 5.2 and 5.3. The concave FAB
payoff functions defined in Chap. 3 are a special case of these more general payoff
functions defined below. The results given in this section are a special case of those
in Stromquist and Stone (1981).

The results and proofs in this section are more abstract and technical than
those in the previous sections of this chapter and will involve Borel measurability

http://dx.doi.org/10.1007/978-3-319-26899-6_3
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assumptions. While Borel measurability is necessary for mathematical correctness,
it imposes no constraint on functions that are used in applications. In particular all
functions arising in applications will be Borel measureable.

5.4.1 Class of Problems

Let [0, T] denote either the continuous interval of times from 0 to T or the set
t D 0; : : : ;T: Let � denote the measure on [0, T]. If [0, T] is continuous, this is
Lesbesque measure. If [0, T] is discrete, � is the counting measure on f0, : : : , Tg. If
a W Œ0;T� ! .�1;1/ is a Borel measureable function, then

Z T

0

a.t/d�

will indicate either integration or summation depending on whether time is contin-
uous or discrete.

Let F be the set of Borel measurable functions f W S 
 Œ0;T� ! Œ0;1/ : There is
a Borel measureable cost function c W S 
 Œ0;T� ! .0;1/ and constraint function
m W Œ0;T� ! Œ0;1/ : Define FB

C.m/ to be the set of functions f 2 F such that

f .x; t/ � B for x 2 S; t 2 Œ0;T�Z

S

c.x:t/f .x; t/ dx � m.t/ for t 2 Œ0;T� (5.44)

and FB(m) to be set of f 2 FB
C.m/ such that

Z

S

c.x:t/f .x; t/ dx D m.t/ for t 2 Œ0;T� : (5.45)



142 5 Search for Moving Targets in Continuous Space

We assume that B is large enough that (5.45) is satisfied for some f 2 FB
C.m/: Let

FC.m/ D FC1.m/ and F.m/ D F1.m/:
Let U be a real-valued payoff functional defined on FC.m/. An allocation f � 2

FB.m/ is optimal in FB(m) if and only if

U
	
f �
 � U.f / for f 2 FB.m/:

The functional U is concave if and only if for any f1; f2 2 FB
C.m/;

U ..1 � "/ f1 C "f2/ � .1 � "/U .f1/C "U .f2/ for 0 � " � 1:

5.4.1.1 Gateaux Differential

For f 2 FC.m/ let K(f ) be the set of Borel measureable functions h W S
 Œ0;T� !
.�1;1/ such that f C "h 2 FC.m/ for sufficiently small positive ". Define the
Gateaux differential of U at f in direction h by

U0 .f ; h/ D lim
"!0C

1

"
ŒU .f C "h/� U.f /� (5.46)

when the limit exists. Suppose there is a Borel measureable function D .f ; �; �/ W
S 
 Œ0;T� ! .�1;1/ such that for every h 2 K.f /

U0 .f ; h/ D
Z T

tD0

Z

S
D .f ; x; t/ h .x; t/ dxdt: (5.47)

Then D .f ; �; �/ is the kernel of the Gateaux differential of U at f.

5.4.1.2 Upper Bound

For concave functionals that have a Gateaux differential with a kernel, there is a
natural generalization of the Washburn bound. If U has a Gateaux differential U0 at
f 2 FC

B with kernel D .f ; �; �/ ; then for t 2 Œ0;T� ; we define

œ .f ; t/ D ess sup
x2S

D .f ; x; t/

c .x; t/
and œ .f ; t/ D ess inf

fx2S Wf1.x;t/>0g
D .f ; x; t/

c .x; t/
(5.48)

where we set œ .f ; t/ D 0 if the measure of the set fx 2 S W f .x; t/ > 0g is 0.
Stromquist and Stone (1981) show that the functions œ .f ; �/ and œ .f ; �/ are Boreal
measurable.
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Theorem 5.3. If U is a concave functional on FB(m) that has a Gateaux differential
U0 with kernel D .f1; �; �/ at f1 2 FB.m/; then for any f2 2 FB.m/;

U .f2/� U .f1/ � U0 .f1; f2 � f1/ : (5.49)

If in addition � .f1; t/ and � .f1; t/ are finite and non-negative for a.e. t 2 Œ0;T� ; then

U .f2/� U .f1/ � �.f1/ D
Z T

tD0

�
œ .f1; t/ � œ .f1; t/

�
m.t/dt: (5.50)

Proof Since U is concave,

U0 .f1; f2 � f1/ D lim
"!0C

1
"
ŒU ..1 � "/ f1 C "f2/� U .f1/�

� lim
"!0C

1
"
Œ.1 � "/U .f1/C "U .f2/� U .f1/�

D lim
"!0C

1
"
Œ" .U .f2/� U .f1//� D U .f2/� U .f1/

which proves the left-hand inequality in (5.49). Since U has a kernel at f1, we have
from (5.48) and left-hand inequality in (5.49) that

U .f2/ � U .f1/ �
TZ

tD0

Z

S
D .f1; x; t/ .f2 .x; t/ � f1 .x; t// dxd�

�
TZ

tD0
œ .f1; t/

Z

S
c .x; t/ f2 .x; t/ dxd�

�
TZ

tD0
œ .f1; t/

Z

S
c .x; t/ f1 .x; t/ dxd�

�
TZ

tD0

�
œ .f1; t/ � œ .f1; t/

�
m.t/d� D �.f1/

which proves the theorem.

5.4.2 Necessary and Sufficient Conditions

In Theorems 5.4 and 5.5, we find necessary and sufficient conditions for f � 2 FB.m/
to be optimal in FB(m). The proof of Theorem 5.5 employs measure theory concepts
and considerations not addressed in previous chapters.
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Theorem 5.4. Suppose U is a concave functional defined on FB
C.m/ having a

Gateaux differential U0 at f � 2 FB.m/ with kernel D .f �; �; �/ : Then the following
conditions are sufficient for f * to be optimal in FB(m). There exists a Borel
measurable function � W Œ0;T� ! Œ0;1/ such that

D .f �; x; t/ � œ.t/c .x; t/ for f � .x; t/ D B
D œ.t/c .x; t/ for 0 < f � .x; t/ < B
� œ.t/c .x; t/ for f � .x; t/ D 0

(5.51)

for a.e. .x; t/ 2 S 
 Œ0;T� :
Proof. By (5.49) and the assumption that U has a Gateaux differential U0 at f � 2
FB.m/ with kernel D .f �; �; �/, we have for f 2 FB.m/

U.f /� U .f �/ � U0 .f �; f � f �/

D
Z T

tD0

Z

S
D
	
f �; x; t


 	
f .x; t/ � f � .x; t/



dxd�

�
Z T

tD0
œ.t/

Z

S

	
c .x; t/ f .x; t/ dx � c .x; t/ f � .x; t/



dxd� D 0:

(5.52)

The equality in the last line of (5.52) follow from f �; f 2 FB.m/: The inequality
follows from breaking the integral over S into the sum of integrals over S1, S2, and
S3 as follows.

S1 D fx W f � .x; t/ D Bg ; S2 D fx W 0 < f � .x; t/ < Bg ; S3 D fx W f � .x; t/ D 0g :

On the set S1, D .f �; x; t/ � œ.t/c .x; t/ > 0 and f .x; t/ � f � .x; t/ D B; so

Z

S1

D
	
f �; x; t


 	
f .x; t/ � f � .x; t/



dx �

Z

S1

œ.t/c .x; t/
	
f .x; t/ � f � .x; t/



dx:

On the set S2, D .f �; x; t/ D œ.t/c .x; t/ ; so

Z

S2

D
	
f �; x; t


 	
f .x; t/ � f � .x; t/



dx D

Z

S2

œ.t/c .x; t/
	
f .x; t/ � f � .x; t/



dx;

and on the set S3, 0 � D .f �; x; t/ � œ.t/c .x; t/ ; and f .x; t/ � f � .x; t/ D 0; so

Z

S3

D
	
f �; x; t


 	
f .x; t/ � f � .x; t/



dx �

Z

S3

œ.t/c .x; t/
	
f .x; t/ � f � .x; t/



dx:

This shows that (5.52) holds and proves sufficiency.
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Theorem 5.5. Suppose U is a functional defined on FC.m/ having a Gateaux
differential U0 at f � 2 FB.m/ with kernel D .f �; x; t/ � 0 for a.e. .x; t/ 2 S 
 Œ0;T� :
Then the following conditions are necessary for f * to be optimal in FB(m). There
exists a Borel measurable function œ W Œ0;T� ! Œ0;1/ such that

D .f �; x; t/ � œ.t/c .x; t/ for f � .x; t/ D B
D œ.t/c .x; t/ for 0 < f � .x; t/ < B
� œ.t/c .x; t/ for f � .x; t/ D 0

(5.53)

for a.e. .x; t/ 2 S 
 Œ0;T� :
Proof. Let � denote the measure on [0, T] and 	 the measure on S. Define

œl
	
f �; t


 D
(

ess inf
x2S

D.f � ;x;t/
c.x;t/ if 	 fx W f � .x; t/ > 0g > 0

0 otherwise

œu
	
f �; t


 D
(

ess sup
x2S

D.f � ;x;t/
c.x;t/ if 	 fx W f � .x; t/ < Bg > 0

�l .f �; t/ otherwise:

By Lemma 1 of Stromquist and Stone (1981), œu .f �; �/ and œl .f �; �/ are Borel
measureable functions. Let R D ft W œu .f �; t/ > œl .f �; t/g : We consider two cases,
�.R/ D 0 and �.R/ > 0:

If �.R/ D 0; we set œ.t/ D œu .f �; t/ D œl .f �; t/ : If f � .x; t/ D B; the inequality
in line 1 of (5.53) is satisfied because œ.t/ D œl .f �; t/ : If 0 < f � .x; t/ < B; the
equality is satisfied because œ.t/ D œu .f �; t/ D œl .f �; t/ : If f � .x; t/ D 0; the
inequality in line 3 of (5.53) is satisfied because œ.t/ D œu .f �; t/ : Thus conditions
(5.53) are satisfied.

If �.R/ > 0; we show that we can find an f 2 FB.m/ such that U.f / > U .f �/
which contradicts the assumption that f * is optimal in FB(m). Since D .f �; x; t/ � 0;

we have 0 � œl .f �; t/ < 1: Define

v.t/ D
�
1
2
.œu .f �; t/C œl .f �; t// if œu .f �; t/ < 1

œl .f �; t/C 1 if œu .f �; t/ D 1

and

A D
n
.x; t/ W t 2 R; f � .x; t/ < B; and D.f � ;x;t/

c.x;t/ > v.t/
o

C D
n
.x; t/ W t 2 R; f � .x; t/ > 0; and D.f �;x;t/

c.x;t/ < v.t/
o
:

(5.54)

Let At D fx W .x; t/ 2 Ag and Ct D fx W .x; t/ 2 Cg : Both 	(At) and 	(Ct) are
positive for t 2 R: Let



146 5 Search for Moving Targets in Continuous Space

c.t/ D
Z

Ct

c .x; t/ f � .x; t/ dx;

˛.t/ D
Z

At

c .x; t/min

�
B;

c.t/

	 .At/ c .x; t/

�
dx for t 2 R:

Note that ˛.t/ � c.t/: Define

h .x; t/ D

8
<̂

:̂

�f � .x; t/ ˛.t/=c.t/ for .x; t/ 2 C

min
n
B; c.t/

	.At/c.x;t/

o
for .x; t/ 2 A

0 otherwise:

(5.55)

Note that
Z

S
c .x; t/ h .x; t/ dx D 0 for t 2 R: (5.56)

From (5.55) and (5.56) we have that for 0 � " � 1; 0 � f � C "h � B and
f � C "h 2 FB.m/: Thus we may compute

U0 .f �; h/ D
Z T

0

Z

S
D
	
f �; x; t



h .x; t/ dxd�

D
Z T

0

Z

S

	
D
	
f �; x; t


 � v.t/c .x; t/
 h .x; t/ dxd�
(5.57)

where the second equality follows from (5.56). The integrand in the second line of
(5.57) is zero unless .x; t/ 2 A or C. If .x; t/ 2 A; then

D
	
f �; x; t


 � v.t/c .x; t/ > 0 and h .x; t/ > 0:

If .x; t/ 2 C; then

D
	
f �; x; t


 � v.t/c .x; t/ < 0 and h .x; t/ < 0:

In either case the integrand is positive and U0 .f �; h/ > 0: It follows from the
definition of the Gateaux differential that for sufficiently small " > 0;U .f � C "h/ >
U .f �/which contradicts the assumption that f * is optimal in Fb(m). Hence we must
have 	.R/ D 0; and the theorem is proved.

5.4.3 Special Cases

One of the advantages of this more general approach, which uses Gateaux differen-
tials, is that the sufficient conditions for exponential and decreasing rate detection
functions are special cases of Theorem 5.4 and the necessary conditions, for B D 1
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are special cases of Theorem 5.5. The extension to multi-type target search is also a
special case. In all these cases, the payoff function, probability of detection by time
T, is a concave functional defined on FB(m) where c .x; t/ D 1 for .x; t/ 2 S 
 Œ0;T� :
To find necessary and sufficient conditions for an optimal plan, one need only
calculate the kernel function D .f ; �; �/ for f 2 FB.m/ and apply the conditions of
Theorem 5.4 or 5.5.

Decreasing Rate Detection Functions As an example, let us compute the Gateaux
differential for P(f, T) given by (5.5) when b is a decreasing rate detection function.
In this case b has a bounded derivative, and we assume the sweep width W(x, t) is
bounded. Using the definition of Gateaux differential P0 of P and the dominated
convergence theorem to interchange expectation and limit, yields

P0 .f ; h/
D lim

"!0C
1
"

fP .f C "h;T/� P .f ;T/g

D lim
"!0C

1
"

(
E

"
b

 
TX

tD0
W .!t; t/ .f .!t; t/C "h .!t; t//

!

�b

 
TX

tD0
W .!t; t/ f .!t; t/

!#)

D E

"
b0
 

TX

sD0
W .!s; s/ f .!s; s/

!
TX

tD0
W .!t; t/ h .!t; t/

#

D E

"
TX

tD0
W .!t; t/ b0

 
TX

sD0
W .!s; s/ f .!s; s/

!
h .!t; t/

#
:

Conditioning on X.T/ D x, we obtain

P0 .f ; h/ D
Z

Ext

"
TX

tD0
W .!t; t/ b0

 
TX

sD0
W .!s; s/ f .!s; s/

!
h .!t; t/

#
pt.x/dx

D
TX

tD0

Z

S

Ext

"
b0
 

TX

sD0
W .!s; s/ f .!s; s/

!#
pt.x/W .x; t/ h .x; t/ dx:

Thus

D .f ; x; t/ D Ext

"
b0
 

TX

sD0
W .!s; s/ f .!s; s/

!#
pt.x/W .x; t/ for f 2 FB.m/

(5.58)

as in (5.8), and we see that the sufficient conditions (5.27) in Theorem 5.2 are a
special case of Theorem 5.4 and the necessary conditions of Theorem 5.2 are a
special case of the those in Theorem 5.5. However, the conditions of Theorems 5.4
and 5.5 apply to continuous as well as discrete time.
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Notice that there are very few conditions on the stochastic process that models
target motion. It does not have to be a diffusion process or a Markov process. What is
required is that the sample paths be Borel measureable and the kernel of the Gateaux
differential in (5.58) exist for a.e. .x; t/ 2 S 
 Œ0;T� : Neither of these conditions is
very restrictive. Note also that the necessary and sufficient conditions apply for any
decreasing-rate detection function, not just an exponential one.

Exponential Detection Functions In the case where b is an exponential detection
function, (5.58) becomes

D .f ; x; t/ D Ext

"
exp

 
�

TX

sD0
W .!s; s/ f .!s; s/

!#
pt.x/W .x; t/

D e�W.x;t/f .x;t/Ext

2

4exp

0

@�
X

s¤t

W .!s; s/ f .!s; s/

1

A

3

5 pt.x/W .x; t/

D W .x; t/ e�W.x;t/f .x;t/q .x; t; f /
(5.59)

which leads by Theorem 5.4 to the sufficient conditions

W .x; t/ e�W.x;t/f �.x;t/q
	
x; t; f �
 � œtc .x; t/ for f � .x; t/ D B

D œtc .x; t/ for 0 < f � .x; t/ < B

� œtc .x; t/ for f � .x; t/ D 0 for x 2 S:

(5.60)

The sufficient conditions of Theorem 5.1 follows readily from these conditions.
Again the conditions in Theorem 5.1 apply to only discrete time whereas the
conditions resulting from Theorems 5.4 and 5.5 apply to continuous and discrete
time motion models.

Multi-Type Search If W depends on target type as in Sect. 5.3.4, then (5.58)
becomes

D .f ; x; t/ D
X

i2I

Eixt

"
b0
 

TX

sD0
W .i .!s/ ; x .!s/ ; s/ f .x .!s/ ; s/

!#
W .i; x; t/ pt .i; x/

(5.61)

from which we obtain D .f ; x; t/ D ˇ0
f .x; t; f .x; t// as defined in (5.39). As a result,

the necessary and sufficient conditions for optimal multi-type search are extended
to continuous as well as discrete time.
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5.4.4 FAB Payoff Functions

In this section, we use Theorem 5.4 to extend the discrete time and space optimality
conditions obtained in Theorem 3.5 for FAB payoff functions to continuous space.

As in Chap. 3,

L .f ; !/ D atC1 .!/C
XT

tD0at .!/ b .
 .!; t; f // for ! 2 �
bP.f / D E ŒL .f ; !/� :

(5.62)

The difference from Chap. 3 is that the search space is continuous rather than
discrete.

Corollary 5.6. Suppose b is a decreasing-rate detection function. Then by setting
c .x; t/ D 1 and

D
	
f �; x; t


DW .x; t/Ext

"
TX

sDt

as .!/ b0
�


�
!; s; f �

�#
pt.x/ for x 2 S; tD0; : : : ;T;

conditions (5.53) become necessary for f � 2 FB.m/ to satisfy bP .f �/ � bP.f / for
f 2 FB.m/: If in addition, L(f,!) is a concave function of f, then conditions (5.51)
are also sufficient for f � 2 FB.m/ to satisfybP .f �/ �bP.f / for f 2 FB.m/:

Proof. Computing the Gateaux differential ofbP.f /; we find that its kernel is

D .f ; x; t/ D W .x; t/Ext

"
TX

sDt

as .!/ b0
�


�
!; s; f

�#
pt.x/ for x 2 S; t D 0; : : : ;T:

By Theorem 5.5, conditions (5.53) are necessary for f � 2 Fb.m/ to satisfybP .f �/ �
bP.f / for f � 2 FB.m/:

If L(f,!) is a concave function of f, so isbP.f /: Then by Theorem 5.4, conditions
(5.51) are sufficient for f � 2 FB.m/ to satisfy bP .f �/ � bP.f / for f 2 FB.m/: This
proves the corollary.

5.4.5 Optimal Resource Extraction with Uncertain Reserves

Theorems 5.4 and 5.5 can be applied to situations that are not related to search.
Lipshutz and Stone (1992) applied versions of these theorems to find optimal
resource extraction rates when the total amount of the resource available for
extraction is uncertain. They considered the problem in both discrete and continuous
time.

http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
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Discrete Time The amount A of resource available is uncertain. This uncertainty
is modeled by a distribution function G where Pr fA � ag D G.a/ for a � 0: For
convenience, we will use

H.a/ D 1 � G.a/ for a � 0:

Let r(t, u, w) be the return we obtain when extracting the amount u of resource at
time t given that w amount of resource has already been extracted. An extraction
plan is given by a function f W Œ1;T� ! Œ0;1/ where f (t) is the amount of
resource extracted at time (period) t. There can be a bound B on the amount of
resource extracted in single time period. Let ı be the discount rate on future income.
The expected discounted return R(f ) for plan f is computed by

R.f / D
TX

tD1
e�ıtr .t; f .t/;Z .t � 1//H .Z.t// (5.63)

where

Z.t/ D
tX

sD1
f .s/ for t D 1; : : : ;T and Z.0/ D 0:

In (5.63) we assume that if the resource runs out during an extraction period, the
return is 0 for that period. The objective is to find f * to maximize R.

Let ri and rii denote the first and second partial derivative of r with respect to the
i th variable. We assume that r .t; 0;w/ D 0; r2 .t; 0;w/ > 0; and r22‘ .t; u;w/ < 0

for t D 1; : : : ;T and u � 0: The last two conditions imply that r .t; �;w/ is concave
and has decreasing rate of return. If R is concave, we can use Theorem 5.4 to obtain
sufficient conditions for a plan f * to be optimal. Since there is no cost constraint,
we have �.t/ D 0 for t D 1; : : : ;T in (5.51). Calculating the kernel of the Gateaux
differential of R, we obtain

D .f ; t;Z.t//
D e�ıt Œr2 .t; f .t/;Z .t � 1//� r3 .t; f .t/;Z .t � 1//�H .Z.t//

C
TX

sDt

e�ıs
h
r3 .s; f .s/;Z .s � 1//H .Z.s//C r

�
s; f .t/;Z .s � 1/H0 .Z.s//

i
:

The following version of conditions (5.51) are sufficient for f * to be an optimal
extraction plan

D .f �; t;Z.t// � 0 for f �.t/ D B
D 0 for 0 < f �.t/ < B
� 0 for f �.t/ D 0 for t D 1; : : : ;T:

(5.64)
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Lipshutz and Stone present an algorithm for computing optimal extraction plans
and give a number of examples of optimal plans under different assumptions on the
bound B, discount rate ı, distributions on resources, and time varying rate of return
function.

Continuous Time For the continuous time version of this problem, r(t, u, w)
becomes the instantaneous rate of return at time t when extracting at rate u and
w is the resource that has already been extracted. The function f specifies a rate of
extraction and

Z.t/ D
Z t

sD0
f .s/ds:

We seek to maximize

R.f / D
Z T

0

e�ıtr .t; f .t/;Z.t//H .Z.t// dt

In the special case where B D T D 1; r .t; u;w/ D �.u/ (i.e., r depends only on
u), and �0.0/ D 1; Lipshutz and Stone use a version of Theorem 5.5 to prove the
following result due to Loury (1978). The optimal extraction plan f * satisfies

e�ıt�0 	f �.t/

 D E

�
e�ıt � .f � .�//

f � .�/

ˇ̌
ˇ̌ �R � t

�
(5.65)

where �R is the random time at which the resource runs out using f *. Equation
(5.65) says that in an optimal plan, the discounted marginal rate of return at time t
is equal to the expected value of the discounted average rate of return at the time
extraction stops. Lipshutz and Stone also prove a more general version of this result.

5.5 Summary

We have extended the discrete time and space results of Chap. 3 to their analogous
results for discrete time and continuous space in Sects. 5.1. 5.2 and 5.3. Section 5.3
presents an algorithm for calculating the T-optimal plan for a decreasing rate
detection function. Section 5.4 considers a class of problems with more general
payoff functions that involve finding either discrete or continuous time allocation
functions with search-like constraints that maximize the payoff function. These
problems include as special cases those considered in Sects. 5.1, 5.2 and 5.3 as
well as extending them to continuous time. The FAB payoff functions defined in
Chap. 3 are a special case of these payoff functions. Section 5.4 finds necessary and
sufficient conditions for a function f � 2 FB.m/ to be optimal.

http://dx.doi.org/10.1007/978-3-319-26899-6_3
http://dx.doi.org/10.1007/978-3-319-26899-6_3
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5.6 Notes

Hellman (1972) obtained necessary conditions for an optimal search plan for a
target whose motion is a diffusion process (Markov process with continuous sample
paths) when the detection function is exponential. Saretsalo (1973) extended these
necessary conditions to continuous time and space Markov processes, again when
the detection function is exponential. Pershimo (1976, 1977) and Stone (1977)
obtained necessary and sufficient conditions for a class of search problems called
conditionally deterministic.

Brown (1977, 1980) applied the Karush-Kuhn-Tucker conditions to the problem
of finding optimal plans for targets that move in discrete space and time when the
detection function is exponential. By writing these conditions in a suitable form, he
observed that the optimal plan for this moving target problem has the interesting
property that if one selects a time t and conditions on failure at all times other than
t (both before and after t), the optimal plan allocates the effort at time t so as to
maximize the detection probability for the stationary target problem that one obtains
from the conditioning. Since there are efficient methods for finding optimal plans for
stationary targets, especially when the detection function is exponential, Brown was
able to take advantage of this fact to devise an iterative algorithm that maximizes
the probability of detecting the target in the interval [0, T]. This algorithm applies
to target motions that are modeled by a mixture of discrete-time-and-space Markov
chains and is very efficient (see Brown 1980). When search effort can be applied
only in discrete looks and when detection on each look is independent of detection
on any other look, Washburn (1980) gives an algorithm for finding search plans
that satisfy a necessary condition for optimality. This algorithm is a discrete effort
analog of Brown’s algorithm.

In Stone et al. (1978), algorithms were devised for arbitrary discrete-time target
motions and exponential detection functions. Stone (1979) generalized the neces-
sary and sufficient conditions of Brown (1980) to target motions that are modeled
by an arbitrary stochastic process with any mixture of discrete or continuous space
or time. This generalization also applies to decreasing-rate detection functions.

All of the above results apply to the problem of finding a plan that maximizes
the probability of detecting a target at time T, although Stone et al. (1978) also
consider a payoff related to mean time to detection. In Stromquist and Stone (1981),
the necessary and sufficient conditions for optimal detection search are generalized
to a wider class of constrained optimization problems which include problems not
related to search as well as numerous search-related ones. Washburn (1983) presents
the FAB algorithm which is a generalization of the algorithms in Brown (1980) and
Washburn (1980). FAB applies to finding optimal search allocations for payoffs in
addition to maximizing the probability of detection by time.

The results and developments described above have two complementary sides,
theoretical and practical. On the theoretical side is a set of necessary and often
sufficient conditions for optimal plans for detecting moving targets and for more
general optimization problems, specifically Brown (1980), Washburn (1980), Stone
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(1979), and Stromquist and Stone (1981). On the practical side is a set of efficient
algorithms for calculating optimal search plans for moving targets (i.e., Brown
(1980); Stone et al. (1978); Discenza and Stone (1981); Washburn (1983)). Typi-
cally, these algorithms are developed from the necessary and sufficient conditions
mentioned above. Benkoski et al. (1991) give an excellent review of the search
literature as of 1991. Missing from this review are the developments since 1991
in optimal constrained path search, many of which are discussed in Chaps. 4 and 6.
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Chapter 6
Constrained Search in Continuous Time
and Space

As we recall from Chap. 4, search applications might require the consideration
of constraints on the agility of the searcher. For example, in the development of
real-time controllers for autonomous systems it becomes essential to account for
their often limited speed, turn radii, and other performance characteristics. When
such systems need to be controlled on a very fine time scale, it becomes natural
to formulate these problems in continuous time. Consequently, we are faced with
the problem of optimal search in continuous time and space subject to constraints.
This chapter provides an introduction to the subject through the formulation of
several search situations as uncertain optimal control problems. Although there are
computational challenges associated with the solution of uncertain optimal control
problems, they are not unsurmountable. In fact, we include a section with examples
that illustrate today’s capabilities and demonstrate that practically useful solutions
can be obtained in tens of minutes by standard optimization solvers. We also provide
an introduction to the theory supporting such problems.

6.1 Formulation of Constrained Search Problems

We start with the formulation of constrained search problems in successively
more complex situations. In Sect. 6.1.1, we consider a single searcher looking
for a single target. We next consider multiple searchers and multiple targets in
Sect. 6.1.2. Section 6.1.3 deals with finding an optimal trajectory for searchers
patrolling a channel. We end in Sect. 6.1.4 with the statement of a generic optimal
control problem that incorporates most of the previous cases as well as required
approximations. The generic problem furnishes a framework for analysis pursued
in a later section.
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6.1.1 Search for a Single Target

We consider a planning horizon Œ0;T� during which a target follows the stochastic
process X D fX.t/ W 0 � t � Tg, with n-dimensional sample paths. Since X
describes the “state” of the target, n might be larger than the dimension of the
two- or three-dimensional physical space in which it operates. We assume that the
underlying probability space is known such that a formulation in terms of paths is
practically useful. That is, we let fX.t; !/ W 0 � t � Tg be the path of the target
under realization ! 2 ˝ and assume that the probability measure P on the sample
space˝ is given. In practice,˝ might contain N realizations specifying N possible
target paths, perhaps generated by Monte Carlo simulation.

We seek to optimize the m-dimensional state fy.t/ W 0 � t � Tg of a searcher
that is looking for the target. Since we often consider velocity and other factors in
addition to physical location, m is usually larger than two or three. The searcher is
equipped with a sensor modelled by a nonnegative detection rate r that is defined
such that r.x; y/�t approximates the probability of the searcher in state y detecting
the target in state x during a small time interval Œt; t C �t/. The detection rate
reflects the sensor effectiveness and we typically have that r.x; y/ is some decreasing
function in the “distance” between x and y.

Next, we consider a particular realization ! 2 ˝ and derive the probability of
not detecting the target given its path fX.t; !/ W 0 � t � Tg and a searcher trajectory
fy.t/ W 0 � t � Tg. Let q.t; !/ be the probability that this trajectory fails to detect
the target during Œ0; t� given this target path. We assume that events of detection
in non-overlapping time intervals are all independent, so we can calculate q.t; !/
recursively using the difference equation1

q.t C�t; !/ D q.t; !/ .1 � .r.X.t; !/; y.t//�t C o.�t/// ; q.0; !/ D 1; (6.1)

which becomes the parameterized differential equation

Pq.t; !/ D d

dt
q.t; !/ D �q.t; !/r.X.t; !/; y.t//; q.0; !/ D 1; (6.2)

as �t ! 0, with solution

q.t; !/ D exp

�
�
Z t

0

r.X.s; !/; y.s//ds

�
: (6.3)

1Recall that if a function f defined on the real line is o.x/, then limx!0
f .x/

x D 0.
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Consequently, the probability that the searcher fails to detect the target during
Œ0;T�, accounting for the uncertain !, becomes

EŒq.T; !/� D
Z

exp

�
�
Z T

0

r.X.t; !/; y.t//dt

�
dP.!/: (6.4)

Our goal is to find a trajectory for the searcher that minimizes this expression. We
assume that the motion of the searcher is governed by the differential equation

Py.t/ D h.y.t/; u.t//; t 2 Œ0;T�; y.0/ D y0; (6.5)

where y0 is the m-dimensional vector of initial conditions for the searcher and u.t/
is an mu-dimensional vector of control input to the searcher at time t, which could
be the rate of change of the heading of the searcher. The function h describes the
response of the searcher to the control u. A search coordinator selects the initial
condition y0 within a given constraint set Y and control input fu.t/ W 0 � t � Tg for
the searcher, which for all times must be within a given constraint set U. Further
constraints on the control input, for example depending on the current searcher
state, are also possible, but omitted here; see for example Polak (1997, Chapter 4)
and to a limited extent Sect. 6.1.3. Note that we are not directly optimizing the
searcher’s trajectory, as in previous chapters, but rather the inputs that determine it.
The solution of (6.5), which we assume exists and is unique, then gives the
state fy.t/ W 0 � t � Tg of the searcher and an associated probability of failed
search EŒq.T; !/� according to (6.4).

As for all infinite-dimensional problems, one needs to pay attention to the space
in which the control is assumed to reside. At this point, we omit the technical details,
which will be discussed in Sect. 6.3.

Given closed and convex constraint sets U and Y for controls and initial
conditions, respectively, the constrained search problem takes the form

find control u.t/ 2 U; t 2 Œ0;T�; and initial condition y0 2 Y

that minimize EŒq.T; !/�

subject to Py.t/ D h.y.t/; u.t//; t 2 Œ0;T�; y.0/ D y0:

The control constraints might reflect the maximum rate of change of heading that
can be applied at a given point in time. The initial conditions could be fixed,
reducing Y to a singleton, or reflect the possible locations from which the searcher
might start its search. We notice that the objective function EŒq.T; !/� depends
directly on the searcher trajectory fy.t/ W 0 � t � Tg (see (6.4)), but only indirectly
on the control input and initial condition through the differential equation (6.5).
This search problem captures numerous applications and offers modeling flexibility
through choices of detection rate r, target movement X, and searcher motion
model h. Moreover, it provides a stepping stone towards generalizations involving
multiple searchers and targets as seen next.



158 6 Constrained Search in Continuous Time and Space

6.1.2 Search for Multiple Targets Using Multiple Searchers

The extension to multiple searchers and targets introduces additional notation, but
otherwise involves few complications. We consider a collection of targets K D
f1; 2; : : : ;Kg as well as a group of searchers L D f1; 2; : : : ;Lg. The kth target
follows the stochastic process Xk D fXk.t/ W 0 � t � Tg, with n-dimensional
sample paths. Again, we let P be the probability measure on the underlying sample
space ˝ , assumed common to all targets. We let fyl.t/ W 0 � t � Tg be the
m-dimensional trajectory of the lth searcher. This searcher is equipped with a sensor
characterized by the nonnegative detection rate rk;l against the kth target. As our
notation emphasizes, searcher trajectories do not depend on the detection history;
that is, we do not deal with situations where a searcher needs to follow (track) a
target it finds for some time before it can proceed with search for other targets.

Following the development in Sect. 6.1.1, we find that given ! 2 ˝ , target path
fXk.t; !/ W 0 � t � Tg, and searcher trajectory fyl.t/ W 0 � t � Tg, the probability
that the lth searcher fails to detect the kth target during Œ0; t� is

qk;l.t; !/ D exp

�
�
Z t

0

rk;l.Xk.s; !/; yl.s//ds

�
: (6.6)

We assume that the searchers make independent detection attempts and can simul-
taneously detect multiple targets. Thus, the probability that no searcher detects any
target during the time period Œ0;T�, given! 2 ˝ , target paths fXk.t; !/ W 0 � t � Tg
k 2 K, and searcher trajectories fyl.t/ W 0 � t � Tg, l 2 L, is the product

Y

k2K

Y

l2L
exp

�
�
Z T

0

rk;l.Xk.t; !/; yl.t//dt

�

D exp

 
�
Z T

0

X

k2K

X

l2L
rk;l.Xk.t; !/; yl.t//dt

!
:

The searchers might be linked in some manner and we therefore assume that they
are governed by the potentially coupled dynamical system

Py.t/ D h.y.t/; u.t//; t 2 Œ0;T�; y.0/ D y0; (6.7)

where

y.t/ D .y1.t/; : : : ; yL.t// and u.t/ D .u1.t/; : : : ; uL.t// (6.8)

are Lm-dimensional and Lmu-dimensional vectors, respectively, with ul.t/ being the
control input at time t for the lth searcher. We assume that the differential equation
has a unique solution for all (relevant) control input and initial conditions.
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Again considering constraint sets U and Y, both assumed to closed and convex,
the constrained multi-searcher multi-target problem that minimizes the probability
that no searcher detects any target takes the form

find control u.t/ 2 U; t 2 Œ0;T�; and initial condition y0 2 Y

that minimize
Z

exp

 
�
Z T

0

X

k2K

X

l2L
rk;l.Xk.t; !/; yl.t//dt

!
dP.!/

subject to Py.t/ D h.y.t/; u.t//; t 2 Œ0;T�; y.0/ D y0:

An optimal solution of this problem tends to put emphasis on the targets that are
most easily detected. The result is that “total failure,” i.e., not a single detection,
is made less likely. As an example of a situation where this might be desirable,
consider the search for two insurgency leaders of the same organization. Although
the capture of both leaders would have been ideal, the capture of one still allows
for subsequent interrogations and possibly valuable intelligence gathering about
the structure and facilities of the organization. Consequently, one might be willing
to give up some chances for capturing both in return for increased probability of
finding at least one.

Another possibility is to consider the expected number of targets detected as
derived next. Given ! 2 ˝ , the probability that at least one searcher detects the kth
target is simply

1 � exp

 
�
Z T

0

X

l2L
rk;l.Xk.t; !/; yl.t//dt

!
:

Consequently, given ! 2 ˝ , the expected number of targets detected becomes

X

k2K

(
1 � exp

 
�
Z T

0

X

l2L
rk;l.Xk.t; !/; yl.t//dt

!)
:

The problem of maximizing the expected number of targets detected then takes the
form

find control u.t/ 2 U; t 2 Œ0;T�; and initial condition y0 2 Y

that maximize
Z X

k2K

(
1 � exp

 
�
Z T

0

X

l2L
rk;l.Xk.t; !/; yl.t//dt

!)
dP.!/

subject to Py.t/ D h.y.t/; u.t//; t 2 Œ0;T�; y.0/ D y0:

In contrast to the previous formulation, an optimal solution here tends to spread the
search effort across most of the targets. This objective function might be appropriate
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when searching for multiple drug smuggling boats as the total tonnage of drug
captured is often the measure of success in counterdrug operations. Several other
possible objective functions, for example involving groups of target types, are easily
derived using similar principles.

6.1.3 Patrolling a Channel

A situation that allows for some specialization of the previous section, but also
some extensions, is that of search for a single target that will pass straight down
a channel at constant speed w some time in the future. The searchers are unaware of
when the target will pass down the channel, which is assumed to be of constant
width, but have some knowledge about the distance from the channel sides as
specified by a probability density function. The goal is to construct trajectories for a
group of searchers to be followed indefinitely, typically of the form back-and-forth
across the channel, that minimize the probability that the target is not detected. The
searchers are required to stay “near” a particular point in the channel and cannot
venture up and down the channel. This problem traces its origin to World War 2
where the channel was the Straight of Gibraltar, searchers were Allied aircraft, and
targets were German submarines. In this section, we formulate the channel patrol
problem in a form similar to the constrained multi-searcher multi-target problem
of Sect. 6.1.2 and make sure to account for the turn-radius and other performance
characteristics of the searchers, which is critical in a narrow channel. As above, we
let yl.t/ be the m-dimensional state of the lth searcher at time t.

We derive the expression for the probability of no detection in two steps. First,
we write the probability of no detection of a single stationary target during a fixed
time period Œ0;T�. Second, we extend that expression to the situation at hand with a
single moving target in a channel and an infinite time horizon. We end with remarks
about a situation involving many targets.

We start by assuming, temporarily, that the target is stationary and located at
x D .x1; x2/; an extension beyond two dimensions is routine but omitted here. Let
rl.x; yl.t// be the detection rate of the lth searcher at time t, given that the target
is located at x. Then, similar to above, the probability that the lth searcher fails to
detect the target during Œ0;T� becomes

Z
exp

�
�
Z T

0

rl.x; yl.t//ds

�
�.x/dx; (6.9)

where � is the (prior) probability density of the target location. The extension from
a stationary target over a finite time horizon to a target that moves straight down a
channel at constant speed and an infinite time horizon is accomplished by a linear
transformation and other adjustments as described next.
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We imagine the position of the target fixed on an infinitely long conveyor belt that
moves down the channel at the speed of the target, w. Hence, the target is stationary
relative to the conveyor belt and the formula derived above is applicable with minor
changes in interpretation. Let zl.t/ be the m-dimensional state of the lth searcher
at time t relative to the conveyor belt. We adopt a coordinate system such that the
channel is aligned in the direction of the second axis and the target moves down. We
utilize subscripts to denote components of vectors. Thus, yl

1.t/ is the first component
of the state vector of the lth searcher at time t, which is assumed to represent the
location of the searcher along the first axis, i.e., its placement across the channel.
Moreover, yl

2.t/ is the second component of the state vector and gives the location
of the searcher along the second axis, i.e., its placement up and down the channel
We assume that the searchers have limited freedom of movement up and down the
channel so that yl

2.t/must be near zero for all t as specified below. Moreover, at time
zero, the target has still not passed the searchers. Since the conveyor belt moves
down at speed w, we have that for all l 2 L,

zl
2.t/ D yl

2.t/C wt

zl
i.t/ D yl

i.t/; for i D 1; 3; 4; : : : ;m:
(6.10)

For example, if the lth searcher is stationary at yl
1.t/ D yl

2.t/ D 0 in the channel for
all t, it still moves along the conveyor belt in the vertical direction with zl

2.t/ D wt.
We insist that each searcher carries out a trajectory that repeats itself every T > 0

time units, i.e., the state of the searcher at times t D 0;T; 2T, etc., are identical. This
might be operationally convenient, but is also a framework that helps us overcome
the challenges associated with an infinite time horizon. We refer to yl.t/ and zl.t/ as
the absolute and relative states of the lth searcher at time t, respectively.

Suppose that the channel has width W and that we slice the conveyor belt
into segments of length wT. The area of each segment is W times wT. Since
the target is stationary relative to the conveyor belt, it will be located in a single
segment for all t 2 Œ0;1/. In contrast, the searchers will maintain yl

2.t/ near zero,
l D 1; 2; : : : ;L, and therefore will advance from segment to segment. Suppose
that the target is located in the segment on which the searchers are also located
during Œ.k � 1/T; kT� for a positive integer k, i.e., the target is located somewhere in
the area Œ0;W� 
 Œ.k � 1/wT; kwT�. We assume that the searchers’ sensors rapidly
deteriorate as the distance between the target and the searchers increases. Thus, it
suffices to only consider the time period Œ.k � 1/T; kT� and ignore the effect of
search before and after this period when the searchers are anyhow well ahead of
the target and well behind the target, respectively. In other words, despite the fact
that the searchers will search indefinitely, they effectively have only “one shot” at
detecting the target and that is during the time period when the target passes by their
point of patrol. (In the case of a long-range sensor that violates this assumption, the
expressed derived below is an upper bound on the probability of failed detection.)
Hence, without loss of generality, we consider the time period Œ0;T� and assume that
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the target passes the searchers during that time, i.e., the target is fixed to the “first”
segment of the conveyor belt with coordinates in Œ0;W�
Œ0;wT�. The location of the
target on this segment is still unknown. We assume that there is a known probability
density �1 on Œ0;W� that quantifies the (prior) knowledge about the target’s cross-
channel location. However, there is no knowledge about when the target will pass
the searchers. Thus, every along-channel location in Œ0;wT� is as likely as any other.

In view of the above discussion, it follows that given a trajectory fzl.t/;
0 � t � Tg, repeated indefinitely, the probability that the lth searcher fails to detect
the target during time period Œ0;1/ is

Z wT

0

Z W

0

exp

�
�
Z T

0

rl.x; zl.t//dt

�
�1.x1/dx1.1=wT/dx2: (6.11)

Since this formula is based on the consideration of only a single segment,
If the searchers have no prior knowledge of the across-channel position of the

target, then one can assume a uniform distribution, i.e., �1.x1/ D 1=W for all
x1 2 Œ0;W�. Note that we abuse the notation rl for detection rate slightly, by using
it to represent the detection rate function both in the absolute and in the relative
positions.

Since we assume that detection by one searcher is independent of detection by
any other searcher, it follows straightforwardly that the probability that no searcher
detects the target during time period Œ0;1/ is

Z wT

0

Z W

0

exp

 
�
Z T

0

X

l2L
rl.x; zl.t//dt

!
�1.x1/dx1.1=wT/dx2: (6.12)

As above, we assume that the searchers’ motion satisfies the differential equation

Py.t/ D h.y.t/; u.t//; t 2 Œ0;T�; y.0/ D y0; (6.13)

where again the vectors

y.t/ D .y1.t/; : : : ; yL.t// and u.t/ D .u1.t/; : : : ; uL.t// (6.14)

include (absolute) states and controls for all the searchers. Since the probability
of no detection is given in terms of relative states z.t/, we translate these absolute
dynamics into relative dynamics as follows. In view of the transformation (6.10),
we find that (6.13) translates into

2

6664

Pz1.t/ � we
Pz2.t/ � we

:::

PzL.t/ � we

3

7775 D h

0

BBB@

2

6664

z1.t/� wte
z2.t/� wte

:::

zL.t/ � wte

3

7775 ; u.t/

1

CCCA
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where e D .0; 1; 0; : : : 0/> is the m-dimensional column vector that ensures
that w and wt are subtracted from the second component of Pzl.t/ and zl.t/,
respectively. Thus, the dynamics of the searchers, in terms of the relative state, are
concisely given as

Pz.t/ D g.z.t/; u.t//; t 2 Œ0;T�; z.0/ D z0 D y0; (6.15)

where

g.z.t/; u.t// D h

0

BBB@

2

6664

z1.t/ � wte
z2.t/ � wte

:::

zL.t/ � wte

3

7775 ; u.t/

1

CCCAC

2

6664

we
we
:::

we

3

7775 :

In contrast to the prior sections, where the search duration T is fixed, here it is
natural to let the searchers optimize T as it is simply a parameter that determines the
search trajectories. Recall that the search continues indefinitely and that T simply
represents the cycle time of the trajectories. (The endurance of the searchers is
not a factor as we assume, for example, that searchers are seamlessly replaced
periodically.) A priori, it is unclear whether a large or small T is beneficial. Since
the searchers are required to return to the same location every T time units, a small T
might restrict the motion of the searchers such that, for example, they fail to search
the edges of the channel. In addition, since we are only accounting for search taking
place on the segment on which the target is fixed, a small T with a correspondingly
short segment length might not be optimal as sensors’ ability of looking up and
down the channel might not be fully utilized. A large T might also be detrimental
as the restrictions on motion up and down the channel could cause the searchers to
follow intricate search patterns to avoid searching the same area excessively. The
examples in Sect. 6.2.2 illustrate these effects.

The optimal channel patrol problem therefore takes the following form:

find control u.t/ 2 U; t 2 Œ0;T�; initial condition y0 2 Y; and time T that minimize

Z wT

0

Z W

0

exp

 
�
Z T

0

X

l2L
rl.x; zl.t//dt

!
�1.x1/dx1.1=wT/dx2

subject to Pz.t/ D g.z.t/; u.t//; t 2 Œ0;T�; z.0/ D z0 D y0 (6.16)

z.T/ D 
.z0/

zmin.t;T/ � z.t/ � zmax.t;T/ t 2 Œ0;T�
Tmin � T � Tmax;

where 
.z0/ imposes a requirement on the end state of z, possibly being simply

.z0/ D z0, zmin.t;T/ and zmax.t;T/ bound the state of the searchers, for example
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to remain within the channel and not to venture up and down the channel, and Tmin

and Tmax limit the duration of a search cycle; see Sect. 6.2.2 for concrete instances.
In the optimal channel patrol problem, there is made no assumption about when

the target will pass the searchers. If there is knowledge of that kind, for example that
the target will pass between times t1 and t2, then it suffices to consider a conveyor
belt of finite length and it becomes natural to let T D t2 � t1 or a multiple thereof.
The situation then resembles that in Sect. 6.1.2, but with a single target.

In the case of multiple targets passing down the channel, again with no knowl-
edge about when, it might be meaningful to minimize the fraction of targets not
detected during Œ0;1/. If we assume that the targets are uniformly distributed over
the conveyor belt according to a spatial Poisson process, then the optimal channel
patrol problem again applies because the objective function can be reinterpreted as
the fraction of targets not detected. In this case, that fraction relates to the ratio of
the rate at which the searchers examine new area on the conveyor belt to the rate at
which new area appears.

6.1.4 Optimal Control in an Uncertain Environment

It is beneficial to develop a generic problem that captures many practical situations
and provides a vehicle for theoretical studies. In this section, we formulate such a
problem, make connections with the concrete cases of Sects. 6.1.1, 6.1.2, and 6.1.3,
and hint at a solution approach. Section 6.3 gives theoretical foundations for this
problem.

We consider a probability space .˝;˙;P/ and an uncertain dynamical system
that for every ! 2 ˝ is given by

Px.t; !/ Dh.x.t; !/; u.t/; !/; t 2 Œ0; 1�; x.0; !/ D� C �.!/; (6.17)

where � is an n-dimensional vector representing the adjustable portion of the initial
condition, fu.t/ W 0 � t � 1g is an m-dimensional control input, � is the
random portion of the initial condition, which can be thought of as noise, and h
describes the behavior of the system. The resulting n-dimensional state is denoted by
fx.t/ W 0 � t � 1g. In this generic setting, x might represent the state of both targets
and searchers, with usually a limited ability to “control” the targets through choice
of u. We note that the formulation permits uncertainty in the searcher motion, which
is often practically important as environmental conditions and dynamical models
are often uncertain.

We aim to optimally select control u and the deterministic initial condition � such
that the end state x.1; !/ is favorable on average as quantified by a real-valued func-
tion F. Specifically, the optimal control problem under uncertainty takes the form

find an initial state and control pair � D .�; u/ that minimize (6.18)

J.�/ D
Z

F.x�.1; !/; !/dP.!/

subject to constraints u.t/ 2 U for all t and � 2 �;
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where x� is the solution of (6.17) under � D .�; u/, which is assumed to be unique,
and U and � are given compact and convex sets.

We note that the apparent limitation to a finite time horizon of Œ0; 1� as well
as an objective involving only the end time is not critical. It is well known that
a problem on any time horizon and also a free-time problem can be converted to
one on Œ0; 1� by scaling time and other minor modifications. Moreover, a “running
cost” is easily converted to a problem with only end-time cost by introducing an
additional state; see for example Polak (1997, p. 493) and, in particular, Chung
et al. (2011) for details about the optimal channel patrol problem. Consequently,
the optimal control problem under uncertainty covers a wide range of search and
related applications, including those involving uncertainty about the motion of the
searchers. The probability P might therefore describe both uncertainty about targets
as well as searchers.

The problem in (6.18) is typically only approachable through approximations
since even the computation of the objective function for given � requires approxi-
mate numerical methods. We sketch an algorithmic framework that relies on Monte
Carlo sampling for evaluation of the expectation in the objective function. This leads
to a sequence of approximate standard optimal control problems that can be solved
using well-develop algorithms.

We start by constructing a sequence of approximating problems. For a given
sample size N, let f!1; !2; � � � ; !Ng be an independent P-distributed sample. We
approximate the objective function J by the sample average

JN.�/ D 1

N

NX

iD1
F
	
x�.1; !i/; !i/: (6.19)

Then, an approximate problem takes the form

find an initial state and control pair � D .�; u/ that minimize (6.20)

JN.�/; subject to constraints u.t/ 2 U for all t and � 2 �:

The evaluation of F
	
x�.1; !i/; !i/ for all i D 1; 2; : : : ;N is manageable since it

involves the solution of the N dynamical systems

Px.t; !i/ Dh.x.t; !i/; u.t/; !/; t 2 Œ0; 1�; x.0; !i/ D� C �.!i/; (6.21)

which are all subject to the same � and control input u. In fact, (6.20) is a standard
optimal control problem for which there are many solvers such as DIDO (see
Elissar Global 2015). These solvers often rely on discretization of time and
the solution of large-scale nonlinear optimization problems; see for example
Polak (1997, Chapter 4) and Ross and Karpenko (2012). Section 6.2 provides
some details about such nonlinear optimization problems. In Sect. 6.3, we provide
a glimpse into the theoretical foundations that justify solving (6.20) instead of the
actual problem (6.18).
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6.2 Examples of Constrained Search

We present two examples that illustrate solutions of constrained search problems.
The first example considers a single searcher faced with a target following a complex
motion model. The second example is a series of instances of the optimal channel
patrol problem in Sect. 6.1.3. We follow the solution approach laid out above
by approximating the expectation in the objective function of (6.18). In the first
example, we use Monte Carlo simulation to construct this approximation and in the
second example we use numerical integration. In both cases, this approach results in
large-scale nonlinear optimization problems that are solved by SNOPT (Gill et al.
1998). Since these problems are nonconvex, the obtained search trajectories can
only be expected to be locally optimal. The possibility of “poor” locally optimal
solutions can be mitigated somewhat by selecting “good” initial trajectories and/or
restarting the solver from multiple initial trajectories.

6.2.1 Search for Target with Complex Motion

A single searcher is attempting to detect a target moving across the rectangle R D
Œ�20; 20�
 Œ�10; 10� during the time horizon Œ0; 75�. The searcher has an imperfect
sensor and a limited turn rate. Specifically, the searcher is assumed to travel with
constant velocity v D 1 and the ability to change the heading with a rate of at most
umax D 0:25 radians per unit time. Thus, the dynamics of the searcher are given by

Py1.t/ Dv cos y3.t/; Py2.t/ Dv sin y3.t/; (6.22)

Py3.t/ Du.t/ ju.t/j � umax for all t 2 Œ0; 75�:

where .y1; y2/ represents the position of the searcher, y3 is the heading angle, and
the control u is the turning rate.

We next turn to the movement of the target. The framework allows for nearly
any target motion model and only requires that there is a mechanism for generating
sample target paths. Here, we adopt a transparent but still relatively complex model
with polynomial target paths. For each ! D .!1; !2; � � � ; !10/, we define the 2-
dimensional target path X.t; !/ by

X1.t; !/ D !1 C !2t C 1

2
!3t

2 C 1

6
!4t

3 C 1

24
!5t

4;

X2.t; !/ D !6 C !7t C 1

2
!8t

2 C 1

6
!9t

3 C 1

24
!10t

4:
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Let

A D
(
! W !1 2 Œ0; 20�; !6 2 Œ�10; 10�; !2; !7 2

�
�1
4
;
1

4

�
;

!3; !8 2
�
� 1

40
;
1

40

�
; !4; !9 2

�
� 1

800
;
1

800

�
; !5; !10 2

�
� 1

20;000
;

1

20;000

�)

and

B D f! W X.t; !/ 2 R for all t 2 Œ0; 75�;
PX1.t; !/ < 0 for all t 2 Œ0; 75�g:

Note that B is the set of ! for which the corresponding target path is in the rectangle
R, and is moving from right to left, for all times t 2 Œ0; 75�. The parameters in A are
selected such that the target paths in a sample are reasonably different; see Fig. 6.1
for examples of paths. We set ˝ D A \ B and P the uniform distribution on ˝ .
This relatively complex target motion is not easily handled except by sampling, the
approach we adopt below.

We model the detection rate using a Poisson Scan Model that reasonably well
captures the performance of radar and sonar-based sensors; see Washburn (2014,
Chapter 3) for details. Thus, the detection rate is given by

r.X.t; !/; y.t// D ˇˆ
�F � DkX.t; !/ � .y1.t/; y2.t//k2 � b

�

�
; (6.23)

where ˆ is the standard normal cumulative distribution function, ˇ D 1 is the scan
opportunity rate, F D 20 is a sensor parameter, � D 10 reflects the variability in
the received signal strength, and DkX.t; !/ � .y1.t/; y2.t//k2 C b models the signal
loss; see Figure 4.5 on page 93 of Wagner et al. (1999). As usual, k � k denotes the
Euclidean norm. We use b D 20 and D D 1.

The problem then becomes that of minimizing

E

�
exp

�
�
Z 75

0

r.X.t; !/; y.t//dt
��
; (6.24)

subject to the dynamics (6.22), which is in the form of the constrained search
problem in Sect. 6.1.1.

We construct an approximation with N D 5000 sample points drawn according
to P. The resulting approximate problem is solved using an LGL-pseudospectral
method with 54 nodes in the time domain; see for example Ross and Karpenko
(2012) for algorithm details. This yields a (5000 � 54 D 270;000)-dimensional
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Fig. 6.1 Optimized trajectory (solid line) for a searcher attempting to detect a target following one
of 5000 possible paths (10 illustrated by dotted lines). The searcher starts at .0; 0/ at time t D 0.
The arrows in the figure indicate the direction of travel along the trajectories

nonlinear optimization problem. The total computing time is 35 min on an Intel
Core i7-4700HQ laptop with 2.40 GHz and 16 GB RAM.

Figure 6.1 illustrates 10 of the 5000 target paths as dotted lines. The optimized
searcher trajectory is given by the solid lines. The top portion of the figure gives
the situation for the first 37.5 time units and the bottom portion for the remaining
time. We see that the searcher, starting at the origin, which is not optimized, begins
by moving to the right to “meet” the target, then turns around with the goal of
“following” the target as it progresses from right to left.

6.2.2 Channel Patrol

We consider the optimal channel patrol problem defined in Sect. 6.1.3 and discuss
several instances involving one, two, and three searchers.
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6.2.2.1 Implementation Details

We consider searchers that each follow the dynamics of Sect. 6.2.1 with umax D 1

and v D 1. We utilize the formulation in (6.16) and ensure that the absolute location
and heading of each searcher at time T is the same as at time 0. In the case of a
single searcher, this is enforced by the function


.z0/ D .z0;1; z0;2 � wT; z0;3 C 2n�/> (6.25)

for some n D 0; 1; 2; : : :, where z0 D .z0;1; z0;2; z0;3/> is the initial condition
consisting of the location and heading of the searcher. Thus the constraint z.T/ D

.z0/ guarantees that the searcher trajectory is closed. The integer n is a variable
that determines the number of 360-degree rotations that are required during a patrol
cycle and hence, as we will shortly see, partially determines the shape of the
trajectory. For n D 0, the requirement becomes that any rotation must be associated
with a corresponding rotation “back” as for example takes place when a searcher
follows a figure-eight shape. The searcher might start with a clockwise rotation
that is later compensated with equal counter-clockwise rotation. If n D 1, then
the requirement becomes that the net total rotation must be 360 degrees as will be
the case for a search that follows a racetrack-shaped trajectory. Ideally, we would
have liked n to be freely determined by an optimization algorithm, but this would
lead to mixed-integer programming and significant computational challenges. We
overcome this issue by solving the problem for the various values n D 0; 1; 2; : : :. In
fact, it soon becomes apparent that one can expect the largest probability of detection
for the values n D 0; 1; too many rotations become counterproductive.

We also impose constraints that ensure that the searchers remain within the width
of the channel, i.e., horizontally in the interval Œ0;W�. Vertically, we ensure that
the searchers do not venture too far up or down the channel and remain within
the interval Œ��; ��, for some � > 0. We let the searchers start with any heading
anywhere in the channel as long as the vertical coordinate is zero.

We set the channel width W D 20, where one unit of length equals 1000 yards,
and the target speed w D 3. We assume that one unit of time equals 0.1 h. Hence,
the target and searchers (v D 1) move at approximately 15 knots and 5 knots,
respectively. Moreover, the limits on the control ensure that the searchers change
their headings with at most one radian per 0.1 h. We always use Tmin D 5 and hence
do not consider patrol cycles of shorter duration than 0.5 h. We vary Tmax.

We use the detection rate function (6.23) with parameters ˇ D 1, F D 70,
b D 60, D D 0:5, and � D 5. If not stated otherwise, we assume that the distribution
of the target’s x1-location is uniform, i.e., �1.x1/ D 1=W.

Since the sample space ˝ in this case is a rectangular subset of R
2, we

approximate the expectation in the objective function using numerical integration
instead of by Monte Carlo sampling as the former is typically more accurate in
low dimensions such as here. The resulting approximation again leads to a standard
optimal control problem, which we solve using the Euler method for discretization
and SNOPT for optimization; see details in Chung et al. (2011).

Next we describe the results of several numerical studies.
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6.2.2.2 One Searcher

Table 6.1 provides numerical results for a single searcher, i.e., L D 1, for several
values of the number of rotations n (see (6.25)), vertical trajectory constraint � ,
and maximum patrol-cycle duration Tmax. In cases 1–3, � D W=10 D 2, i.e., the
searcher cannot move vertically more than two units above or below its starting
point. Moreover, in cases 1–3, the patrol-cycle duration is limited to Tmax D 25.
Case 1 requires the searcher to return to the same heading at the end of the patrol
cycle (i.e., no rotation is allowed and n D 0 in (6.25)) forcing the optimized
trajectory to have a “bow-tie” shape, as displayed in Fig. 6.2 (solid line). Figure 6.2
also displays the initial trajectory prior to optimization (dotted line). The arrows in
Fig. 6.2 as well as all other figures indicate the direction of travel for the searcher.
Large white and black triangles denote initial positions and headings before and

Table 6.1 Summary of numerical results for a
single searcher and varying number of rotations
n (see (6.25)), vertical range � , and patrol-cycle
duration limit Tmax. T� and P� are optimized
patrol-cycle duration and probability of detec-
tion, respectively

Case n � Tmax T� P�

1 0 W=10 25 24:001 0:43348

2 1 W=10 25 23:568 0:43300

3 2 W=10 25 25:000 0:43243

4 0 W=5 15 15:000 0:42462

5 1 W=5 15 15:000 0:42620
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Fig. 6.2 Case 1: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single
searcher with no rotation (n D 0 in (6.25)). The arrows indicate direction of travel for the searcher.
The white triangle denotes initial position and heading before the optimization, and the black
triangle denotes the one after optimization
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after optimization, respectively. Since the searcher’s sensor range is roughly 5 units,
the optimized trajectory is stretched out so that the sensor effectively reaches both
sides of the channel. The initial trajectory has probability of detection 0.42145 and
duration of a patrol cycle is 15, while the corresponding optimized numbers are
0.43348 and 24.001 as listed under T� and P� in Table 6.1. We note that in contrast
to problems with a fixed time horizon, where usually it is optimal to search for
the maximum allowed time, here we might very well prefer a patrol-cycle duration
T that is strictly smaller than the maximum allowed Tmax. The reason is that we
assume that the patrol cycle is repeated indefinitely and a patrol cycle of duration T
is not assessed over time interval Œ0;Tmax�, but over Œ0;T�.

Figure 6.3 illustrates the “coverage” of the channel in Case 1. Specifically,
it displays the probability of no detection at various relative locations along the
conveyor belt. In the left portion of Fig. 6.3, giving the probabilities for the initial
trajectory, large areas are not “covered” and thereby allowing the target a high
chance of success. For the optimized trajectory (right portion), the situation is
somewhat improved. In particular, the optimized trajectory makes it less likely that
the target can slip through at the edges.

Case 2 in Table 6.1 is identical to Case 1 but requires a net total rotation of 360
degrees at the end of one patrol cycle (i.e., n D 1). Hence, the searcher must return
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Fig. 6.3 Case 1: Coverage of channel before (left) and after (right) optimization in relative
locations as measured by the probability of no detection. Shades of gray represent different
probability levels with black being 0 and white 1
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Fig. 6.4 Case 2: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single
searcher with 360-degree rotation (n D 1 in (6.25))
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Fig. 6.5 Case 3: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single
searcher with 720-degree rotation (n D 2 in (6.25))

to a heading shifted 360 degrees from the initial heading, which excludes a “bow-
tie” type trajectory, but is compatible with a “racetrack” type trajectory. Figure 6.4
shows the corresponding initial trajectory (dotted line, probability of detection is
0.42587) and optimized trajectory (solid line, probability of detection is 0.43300).
We note that the optimized probability of detection is slightly worse for n D 1 than
for n D 0, 0.43348 versus 0.43300.

Case 3 in Table 6.1 is identical to Case 1 but requires two rotations (i.e., n D 2),
which rules out both “bow-tie” and “racetrack” type trajectories. In this case, the
initial heading must be shifted by 720 degrees and hence the searcher makes two
loops as shown in Fig. 6.5. (We note that the initial trajectory has n D 1.) The
probability of detection is again slightly worse than for n D 0 and n D 1. Since the
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Fig. 6.6 Case 4: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single
searcher with no rotation (n D 0 in (6.25)) and restriction on patrol-cycle duration
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Fig. 6.7 Case 5: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single
searcher with 360-degree rotation (n D 1 in (6.25)) and restriction on patrol-cycle duration

probability of detection seems to decrease as the number of rotations increases, we
will, as a heuristic, restrict ourselves to the problems with n D 0 and 1.

In Cases 1 and 2, the patrol-cycle duration limit Tmax is not active. In Cases 4 and
5 this limit is reduced to 15 and also the vertical movement restriction � is relaxed
to W=5 D 4. We see from Table 6.1 that these changes impose a restriction on
the searcher and the probability of detection worsens. Figures 6.6 and 6.7 show the
resulting trajectories. We see that the worsened probability of detection is caused
by the fact that the shorter patrol-cycle duration prevents the searcher from reaching
the sides of the channel.

We also consider a situation (Case 6) where the distribution of the target’s
x1-location is not uniform. Suppose that �1.x1/ D 2x1=W. Hence, we assume that
the target is more likely to travel down the channel near the right side than the
left side. Figure 6.8 shows the optimized trajectory for this case with no rotation
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Fig. 6.8 Case 6: Initial trajectory (dotted line) and optimized trajectory (solid line) of a single
searcher with no rotation (n D 0 in (6.25)) and right-leaning triangular target-location distribution

Table 6.2 Summary of
numerical results for a single
searcher, varying target speed
w, and number of rotations n
(see (6.25)), with � D W=10
and Tmax D 25. T� and P�

are optimized values of
patrol-cycle duration and
probability of detection,
respectively

Case w n T� P�

1 3 0 24:001 0:43348

2 1 23:568 0:43300

7 2 0 23:578 0:49725

8 1 23:178 0:49514

9 1 0 24:177 0:65767

10 1 24:434 0:64077

11 0.5 0 25:000 0:88680

12 1 25:000 0:86413

required (n D 0), � D W=10, and Tmax D 25. We see that in this case the searcher
prefers a “double figure eight” trajectory close to the right side of the channel. The
optimized trajectory has duration 25:000 and significantly improves the probability
of detection to 0.61374 from the initial probability of detection of 0.42449.

We return to the situation with a uniform target distribution and consider the
effect of variable target speed. Table 6.2 presents Cases 7–12 involving different
target speeds and numbers of rotation. We assume that detection rate is as above,
even though a slower target may be quieter and therefore harder to detect under
certain circumstance. In all of these cases � D W=10 and Tmax D 25. Rows two
and three of Table 6.2 restate the results for Cases 1 and 2 from Table 6.1, in which
the target speed w D 3, for ease of comparison. Rows four and five give results for
w D 2. Naturally, as the target speed reduces, the probability of detection increases,
while the shapes of trajectories remain qualitatively similar (Fig. 6.9). This effect is
further observed for Cases 9 and 10 (w D 1) and for Cases 11 and 12 (w D 0:5). We
note that in all cases the constraint of no rotation (n D 0) results in better probability
of detection than the requirement of a 360-degree rotation (n D 1). These results are
qualitatively different from the “idealized” results obtained in Wagner et al. (1999,
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Fig. 6.9 Zoomed-in solution trajectories with varying w and n D 0 (see (6.25)). For ease of
comparison, the trajectories are slightly translated so that the crossing points of the trajectories are
at the origin

Table 6.3 Summary of numerical results
for two searchers, varying number of rota-
tions n (see (6.25)), and vertical range
� . T� and P� are the optimized patrol-
cycle duration and probability of detection,
respectively. For all cases in the table the
patrol-cycle duration limit Tmax D 25

Case n � T� P�

13 0 W=10 25:000 0:82037

14 1 W=10 11:633 0:79340

15 0,1 W=10 25:000 0:81234

16 0 W=5 25:000 0:82354

17 1 W=5 25:000 0:81594

Chapter 9), which do not account for turn radius constraints of the searcher. There
we see that a “back-and-forth” trajectory similar to the one in Fig. 6.4 (n D 1), but
with no constraints on the turn radius, is better than a “bow-tie” trajectory similar
to that in Fig. 6.2 (n D 0) whenever v=w is less than 1:8. Since Cases 1, 2, 7–10
involve smaller v=w ratios, the “idealized” results would lead to the conclusion that
a “back-and-forth” trajectory would be best. However, our numerical results show
that the bow-tie trajectory (n D 0) is better when the searcher is constrained by its
turn radius.

6.2.2.3 Two Searchers

Next we consider two searchers, i.e., L D 2, and five additional cases as summarized
in Table 6.3. In all of these cases the patrol-cycle duration limit Tmax D 25. Rows
two and three of Table 6.3 give the optimized patrol-cycle duration and probability
of detection for no rotation (n D 0) and 360-degree rotation (n D 1), respectively,
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Fig. 6.10 Case 13: Initial trajectories (dotted line) and optimized trajectories (solid line) of two
searchers with no rotation (n D 0 in (6.25))
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Fig. 6.11 Case 14: Initial trajectories (dotted line) and optimized trajectories (solid line) of two
searchers with 360-degree rotation (n D 1 in (6.25))

using � D W=10. Figures 6.10 and 6.11 give the corresponding trajectories. We see
again that no rotation (Case 13) results in better probability of detection. Figure 6.10
shows that the optimized trajectories are similar to “figure eights,” even though the
initial trajectories are similar to the infinity symbol. This effect is caused by the
narrowness of the channel. The two searchers obtain better probability of detection
and less overlap in their “coverage” by moving along the channel instead of across.
The probability of detection for the initial trajectory is 0.78003 and improves to
0.82037 after optimization.

We observe that the trajectories in Fig. 6.10 are different for the two searchers,
which may be counterintuitive as the distribution of the target’s x1-location is
uniform. Additional calculations show that the trajectories in Fig. 6.10 yield a
larger probability of detection (0.82037) than patrol plans consisting of identical
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Fig. 6.12 Case 14: Coverage of channel before (left) and after (right) optimization similar to
Fig. 6.3

but translated trajectories for both searchers. If the right-most searcher mimics
the left-most searcher in Fig. 6.10, but on the right side of the channel, then the
probability of detection deteriorates to 0.81630. If the left-most searcher mimics
the right-most searcher, then the probability of detection deteriorates to 0.81472.
The probabilities deteriorate further when the searchers carry out identical but
mirror-imaged trajectories obtained by taking the trajectory of the left-most searcher
and reconstructing its mirror image across the vertical line in the middle of the
channel for the right-most searcher. These results provide new insight that is not
easily obtained using the idealized calculations of Wagner et al. (1999, Chapter 9).

The optimized trajectories of Case 14 with the constraint of one rotation (i.e.,
n D 1) (see Fig. 6.11) yield a probability of detection of 0.79340, which is worse
than in Case 13 (i.e., n D 0). Figure 6.12 illustrates the coverage of the channel in
this case. We note that the initial trajectory (left portion of Fig. 6.12) leaves some
locations poorly covered. The optimized trajectory is somewhat better in that regard
as shown by the right portion of Fig. 6.12.

We also examined the configuration with one searcher constrained to no rotation
(n D 0) and the other one to a 360-degree rotation (n D 1), and denote it by Case
15; see Fig. 6.13. However, the resulting probability of detection (0.81234) is worse
than in Case 13.

Cases 16 and 17 in Table 6.3 show results similar to those for Cases 13 and 14,
but for � D W=5. With this relaxation ofthe vertical movement constraint for the
searchers, we obtain slightly better probability of detection. The relaxation allows
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Fig. 6.13 Case 15: Initial trajectories (dotted line) and optimized trajectories (solid line) of two
searchers with no rotation (n D 0) and one rotation (n D 1) in (6.25) and relaxed vertical trajectory
constraint
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Fig. 6.14 Case 16: Initial trajectories (dotted line) and optimized trajectories (solid line) of two
searchers with no rotation (n D 0 in (6.25)) and relaxed vertical trajectory constraint

for more complicated patrol trajectories as shown in Figs. 6.14 and 6.15. We see
that the searchers stagger vertically their trajectories to avoid overlap and therefore
increase the probability of detection. While not easily seen from Figs. 6.14 and 6.15,
the searchers also synchronize their progress along their trajectories so that when
one searcher moves to the left, say, then the other tends to move to the left also
to fill the gap between the searchers. Figures 6.16 and 6.17 illustrate this effect
by showing the coverage map and the relative locations of the searchers during
t 2 Œ0;T� for Case 17, respectively. Such insight about the coordination between
multiple searchers cannot be reached through single-searcher analysis. The initial
trajectories in Case 17 result in a probability of detection of 0.77806, which is
improved to 0.81594 after optimization.
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Fig. 6.15 Case 17: Initial trajectories (dotted line) and optimized trajectories (solid line) of two
searchers with 360-degree rotation (n D 1 in (6.25)) and relaxed vertical trajectory constraint
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Fig. 6.16 Case 17: Coverage of channel before (left) and after (right) optimization similar to
Fig. 6.3
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Fig. 6.17 Case 17: Relative locations for two searchers with absolute location given in Fig. 6.15

y1

0 2 4 6 8 10 12 14 16 18 20

y 2

-4

-3

-2

-1

0

1

2

3

4

Fig. 6.18 Case 18: Initial trajectories (dotted line) and optimized trajectories (solid line) of three
searchers with no rotation (n D 0 in (6.25)) constraint

6.2.2.4 Three Searchers

Finally, we consider three searchers briefly, for the single case of Tmax D 25,
� D W=10, and no rotation constraint (n D 0). The optimized probability of
detection is 0.94086, improved from 0.90335 for the initial trajectories, and the
optimized patrol-cycle duration is T� D 25:000. Figures 6.18 and 6.19 display the
initial and optimized trajectories in absolute locations and in terms of coverage,
respectively. We see that the shape of each trajectory is quite similar to the ones in
Case 13 for two searchers; see Fig. 6.10. We note that for two and three searchers the
optimized trajectories tend to become quite intricate, especially when the searchers
are tightly constrained vertically with � D W=10 and no rotation is required (n D 0).
This effect is caused by the fact that multiple searchers make it suboptimal for each
searcher to search across the whole channel. This would have caused substantial
overlap between the searchers and a lower probability of detection. Hence, each
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Fig. 6.19 Case 18: Coverage of channel before (left) and after (right) optimization similar to
Fig. 6.3

searcher is effectively confined to a smaller area of operations. Even in the smaller
area, the searchers tend to prefer longer patrol-cycle durations and the constraint
T � Tmax is often active. Longer patrol-cycle durations are usually preferable as the
constraint that the searcher’s relative final state must match its relative initial state
(possibly with a rotational shift) imposes a restriction on the searcher and the longer
duration allows more “free” movement between those “boundary conditions.”

6.3 Theoretical Foundations

In this section, we summarize the theoretical foundations of a solution approach
for (6.18) through the solution of the approximate problems (6.20). A rigorous
treatment requires definition of spaces of controls and other technical details. Thus,
we here assume that the reader is familiar with some functional analysis, but shy
away from a comprehensive treatment such as those in Phelps (2015), Phelps et al.
(2016), and Foraker et al. (2015a).
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6.3.1 Preliminaries

We adopt the L2-topology and let Lm
2 Œ0; 1� be the space of all functions v W Œ0; 1� !

R
m such that kvk22 D R 1

0
kv.t/k2dt < 1, where k � k is the usual Euclidean norm.

The initial-condition and control pairs are assumed to reside in a subspace of the
Hilbert space

H2 D R
n 
 Lm

2 Œ0; 1�;

where the inner product and norm on H2 are defined for any � D .�; u/; �0 D
.� 0; u0/ 2 H2 by

h�; �0iH2 D h�; � 0i C hu; u0i2;

with h�; � 0i being the inner product for finite-dimensional vectors and hu; u0i2 DR 1
0 hu.t/; u0.t/idt. Therefore the norm in H2 is given by

k�k2H2 D k�k2 C kuk22:

The control u.t/ is constrained to be in a compact convex subset U 	 R
m for

every t 2 Œ0; 1� and the initial condition � is in a compact, convex sets � 	 R
n. The

set of admissible controls is then

U D fu 2 Lm
2 Œ0; 1� W u.t/ 2 U for every t 2 Œ0; 1�g:

Thus, the set of all admissible state-control pairs for this problem is given by

H D � 
 U:

The set-up captures many practical applications including situations where the
control input needs to be a discontinuous function of time as in the case of “bang-
bang” control. More general constraints on u that depend on the state can be handled
through penalties and incorporated into the objective function; see Polak (1997,
Chapter 4) for an explicit treatment of such “state constraints.” We refer to the
optimal control problem under uncertainty given in (6.18) with these constraints
as Problem OCPU.

6.3.2 Optimality Conditions

In this section we develop an optimality condition for Problem OCPU using an
infinite-dimensional extension of the following classical result: if x� 2 R

n is optimal
for the problem min f .x/ subject to x 2 C, with f continuously differentiable and C
convex, then
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min
x2C

rf .x�/>.x � x�/C .1=2/kx � x�k2 D 0I (6.26)

see Polak (1997, Section 1.1.1). The first step in such a development is to find
derivative expressions of the objective function with respect to the decision variable
� D .�; u/, consisting of the initial condition and control pairs.

A set of mild assumptions needs to be impose to ensure that for each ! 2 ˝

the dynamical system (6.17) in Problem OCPU has a unique solution x�.�; !/ with
the terminal state x�.1; !/ being continuously differentiable with respect to �. A
bounded solution is guaranteed if there is no finite escape time for any !, which
holds for input-to-state stable systems and systems for which h in (6.17) is globally
Lipschitz continuous or satisfies a linear growth condition in the state variable.
Differentiability of h and the criterion function F in (6.18) with respect to control
and states as well as integrability with respect to!, especially of Lipschitz constants,
ensure the required existence, uniqueness, and smoothness of the solution of the
dynamical system (6.17) as well as smoothness in � of F.x�.1; !/; !/ for each !;
see Phelps et al. (2016) for details.

Focusing on the properties of the objective function in Problem OCPU as a
function of the decision variable � D .�; u/, we let  W H 
˝ ! R be given by

 .�; !/ D F.x�.1; !/; !/:

Thus,

J.�/ D E
�
 .�; !/



and JN.�/ D 1

N

NX

iD1
 .�; !i/:

We proceed by finding expressions for the (L2-Frechet) derivatives of the objective
functions J and JN , and first state such derivatives for  with respect to its first
argument. In the following, we use hx and hu for the Jacobian of h with respect to x
and u, respectively. A subscript assigned to r indicates the variables with respect to
which a gradient is taken.

We then find that for any ! 2 ˝ ,  .�; !/ has a Gateaux differential given by

D .�I ı�I!/ D hr� .�; !/; ı�iH2

at � D .�; u/, where ı� is the direction of change in decision. The gradient

r� .�; !/ D 	r� .�; !/;ru .�; !/

>

has two parts. The first part corresponds to derivatives with respect to initial
conditions and is given by

r� .�; !/ D z�.0; !/:
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The second part gives derivatives with respect to the control u and takes the form

ru .�; !/.s/ D h>
u .x

�.s; !/; u.s/; !/z�.s; !/; s 2 Œ0; 1�:

Both are expressed in terms of the solution z�.s; !/ to the adjoint equation

Pz.s; !/ D �h>
x .x

�.s; !/; u.s/; !/z.s; !/ for s 2 Œ0; 1/; (6.27)

z.1; !/ D rxF.x�.1; !/; !/: (6.28)

The gradient r� .�; !/ is Lipschitz continuous and  .�; !/ has a Frechet differ-
ential equal to D .�I ı�I!/ at � 2 H. These facts combined with the Dominated
Convergence Theorem and Fubini’s Theorem establish that J has a Frechet differ-
ential DJ.�I ı�/ given by

DJ.�I ı�/ D hrJ.�/; ı�iH2

with a Lipschitz continuous gradient of the form

rJ.�/ D E
�r� .�; !/



: (6.29)

Analogously to (6.26), we define an optimality function � W H ! .�1; 0�

given by

�.�/ D min
�02H

DJ.�I �0 � �/C 1

2
k�0 � �k2H2 ; (6.30)

which is clearly nonpositive due to the fact that DJ.�I �0 � �/ C 1
2
k�0 � �k2H2 D 0

if �0 D �. Moreover, one can show that � is continuous and equals to zero at every
local minimizer of Problem OCPU; see Phelps et al. (2016) for specific details
and Polak (1997) and Royset and Wets (2015) for general treatments of optimality
functions. Consequently, �.�/ D 0 is an optimality condition for Problem OCPU.
In the next section, we give an algorithm that generates a sequence of initial-
conditions and control pairs f�k D .�k; uk/g1

kD1 with accumulation points that indeed
satisfy this optimality condition.

6.3.3 Algorithm and Its Convergence

In Sect. 6.1.4, we alluded to a solution approach for Problem OCPU as given in
(6.18) through the solution of the approximate problems (6.20). We now provide
theoretical foundations for such an approach.

Although a naive implementation might involve the solution of a single approx-
imate problem (6.20) for an appropriately large sample size N, there is ample
empirical and some theoretical evidence that computing speeds can be improved
by approximately solving a sequence of approximate problems with increasing N.
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The main reason for this effect is that significant progress towards an optimal
solution can be made by considering inexpensive approximate problems with low
N and that the solution of refined but costly approximations with high N can be
warm-started by an earlier solution. We refer to Pasupathy (2010), Royset (2013),
and Royset and Szechtman (2013) for further discussions on the subject of gradually
increasing the sample size.

To adopt an algorithmic approach based on gradually increasing the sample
size and the approximate solution of the corresponding approximate problems, we
need to have a manner of quantifying the level of accuracy in a solution of an
approximate problem. We turn to optimality functions for this purpose, which can
be derived analogously to the optimality function � given above. Specifically, under
mild assumptions we find that JN has a Gateaux differential DJN.�I ı�/ given by

DJN.�I ı�/ D hrJN.�/; ı�iH2 ;

with a Lipschitz continuous gradient given by

rJN.�/ D 1

N

NX

iD1
r� .�; !

i/: (6.31)

The optimality functions �N W H ! .�1; 0� are then given by

�N.�/ D min
�02H

DJN.�I �0 � �/C 1

2
k�0 � �k2H2 : (6.32)

We can show that �N is continuous and equals to zero at every local minimizer of
the approximate problem (6.20); see Phelps et al. (2016). Consequently, �N.�/ D 0

is an optimality condition for (6.20) and the value �N.�/ quantifies in some sense
the level of accuracy of �, with lower numbers indicating poorer accuracy. We are
then ready to state the algorithm:

OCPU Algorithm.

Step 1. Select a sequence of integers N D fN1;N2; : : :g such that Nk ! 1
as k ! 1, and tolerances f�Ng1

ND1, with �N � 0 for all N and �N ! 0.
Initiate the iteration counter by setting k D 1.

Step 2. Obtain an approximate solution �k for (6.20) under sample size Nk

that satisfies �Nk.�k/ � ��Nk .
Step 3. Replace k by k C 1 and go to Step 2.

Step 2 of the algorithm can be carried out by well-developed standard optimal
control solvers such as DIDO (see Elissar Global 2015). Of course, numerous
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implementation details remain for example related to choices of sample size, �N ,
and optimal control solver, but a discussion along those lines are beyond the scope
of this text. Some indications are given in Sect. 6.2.

It is possible to establish that every accumulation point � of a sequence f�kgN
kD1

generated by the algorithm satisfies the optimality condition �.�/ D 0. Conse-
quently, even if (6.18) is never directly considered in the algorithm, convergence to a
solution can still be achieved. A heuristic argument for this fact is that the increasing
sample size (under independent sampling) ensures that lim supN!1 �N.�N/ � �.�/

for any sequence f�Ng1
ND1 converging to a point �. Moreover, the fact that �Nk ! 0

as k ! 1 implies that Step 2 of the algorithm drives �Nk.�k/ up to zero. Since
also � is a nonpositive function, we obtain that �.�/ D 0. In addition, we know
that every accumulation point of a sequence of globally optimal solutions of (6.20),
under sample sizes fNkg1

kD1, must be a globally optimal solution of (6.18). Precise
statements of these facts are given in Phelps et al. (2016).

6.4 Notes

The first attempt to consider a searcher whose motion is the solution of a controlled
differential equation appears to be Lukka (1974). Initially, this was carried out in
the context of a stationary target, but soon extended to conditional deterministic
target motion (Lukka 1977a,b). Still, the searcher dynamics needed to belong
to special classes and the focus was on necessary optimality conditions. The
1980s saw numerous extensions (Ohsumi 1984, 1986; Ohsumi and Mangel 1985;
Sunahara et al. 1982a,b) especially in the development of sufficient conditions,
which culminated with Ohsumi (1991); see Mangel (1988) for a summery of models
and further references and Vereshchagin et al. (1980), Mangel (1981), Ohsumi
(1989), and Ohsumi (1991) for early computational methods.

The models in Sect. 6.1 are based on Foraker (2011), Chung et al. (2011), and
Foraker et al. (2015a). The numerical results in Sect. 6.2 are taken from Chung
et al. (2011) and Phelps et al. (2016). Extensive numerical simulations are found
in Foraker (2011), Phelps (2015), and Foraker et al. (2015b).

The consideration of searchers governed by nearly arbitrary dynamical systems
was pioneered in Foraker (2011) (see also Foraker et al. 2015a) and Phelps
et al. (2016), the latter serves as the basis for Sect. 6.3. The optimality conditions
developed there follow the pioneering work of E. Polak on L2-variations and
consistent approximations Polak (1997, Chapters 3 and 4), which naturally lead to
implementable algorithms as illustrated in this chapter. A parallel development in
the tradition of Pontryagin, also for general dynamical systems, is given in Phelps
et al. (2014).
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Chapter 7
Search Games

So far in this book we have essentially assumed that the target is either indifferent to
the outcome or unable to influence it. Any uncertainty about target location has been
in accord with a stochastic model of some kind that the searcher understands. If there
is uncertainty about initial location, as in Chap. 2, then a probability distribution for
that location has been given. If there is also uncertainty about subsequent movement,
as in later chapters, then a probability law for that motion has also been given. But
the target of search might have an opinion about whether being found is actually
a desirable outcome, and might also be able to influence it. In this chapter we will
consider the target to be sentient, making his choices about location and movement
to either discourage detection (Sect. 7.1) or encourage it (Sect. 7.2). The searcher
will know the target’s capabilities, but not his habits or intentions, so probability
laws for the target’s location and movement will be missing.

There is a large literature on this subject. Our goal is merely to introduce the
main concepts and give some examples. See Alpern and Gal (2003) for a more
comprehensive treatment and extensive references.

7.1 Uncooperative Targets

In this section we model search as a two-person zero-sum (TPZS) game where
the searcher desires detection while the target wishes to avoid it. To emphasize
the target’s opposition he will be renamed as the “hider”. There is no possibility
for cooperation because the goals of the two decision makers are exactly opposite.
Hide-and-Seek games played by children are an example. There are many examples
involving military forces or terrorists where the outcome has more serious impli-
cations. A good reference for TPZS games in general is Washburn (2014a), which
includes a chapter on search games.
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7.1.1 TPZS Theory

The primary theoretical conclusion that we need is that, in games where each side
has only a finite number of alternatives or “strategies” (the Game Theoretic term) to
choose from, a solution will always exist if mixed strategies are permitted where the
decision maker surrenders his choice to some kind of a randomization mechanism.
To be precise, let the payoff when player 1 chooses strategy i and player 2 chooses
strategy j be aij; all of these payoffs are assumed to be accurately known to both
sides. We will always understand that the payoff is to player 1; that is, player 1 is
the maximizing player and player 2 is the minimizing player. Then in an m 
 n
game, there will always exist mixed strategies x D .x1; : : : ; xm/ for player 1 and
y D .y1 : : : ; yn/ for player 2 and a number v such that

.1/

mX

iD1
aijxi � v for all j; and .2/

nX

jD1
aijyj � v for all i (7.1)

(see Sect. 17.6 of von Neumann and Morgenstern (1944)). The first set of inequali-
ties states that the average payoff will be at least v no matter what player 2 does, as
long as player 1 randomizes according to x. The second set states that the average
payoff will be at most v no matter what player 1 does, as long as player 2 randomizes
according to y. Together, these two statements establish v as the “value of the game”
in the sense that either player can guarantee that average payoff, regardless of what
the other player does. The two optimal mixed strategies x and y are in equilibrium
in the sense that neither player, upon discovering the other’s mixed strategy, has
any positive motivation to change his own. It should be understood that the two
randomizations are done essentially simultaneously; that is, neither player knows
what the other player is going to do before making his own choice. That said, the
optimal mixtures x and y do not themselves have to be kept secret or concealed from
the adversaries.

The fundamental theorem (7.1) has been known since 1928 when von Neumann
first proved it, but its truth is neither intuitive nor welcome for many human decision
makers. A good illustration of this is the game “Rock-Paper-Scissors” where the
outcome is either C1 (player 1 wins) �1 (player 2 wins) or 0 (a tie because both
players have chosen the same strategy). With strategies numbered as in the name of
the game, the payoff matrix is

	
aij

 D

2

4
0 �1 C1

C1 0 �1
�1 C1 0

3

5 (7.2)

It is easy to verify that both optimal mixed strategies are (1, 1, 1)/3; that is, each
player should simply choose a strategy at random. If either player does so, the aver-
age payoff will be 0 regardless of what the other player does. A complete neophyte,
armed with a die, can achieve a tie on the average against any other player, no matter
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how experienced. In other words, von Neumann has essentially spoiled the game by
giving simple instructions for achieving its value against any other player. In spite
of this observation, in 2016 there is still a society (www.worldrps.com) devoted to
playing Rock-Paper-Scissors and even designating an annual champion. It seems to
be a human fascination to try to predict the actions of others, even when randomiza-
tion makes this impossible. Of course one could always prohibit the use of dice or
other randomization devices in choosing strategies. Perhaps the World RPS society
does that. We will not do so here, however, so von Neumann’s theorem applies.

When the number of strategies for either player is infinite, there are examples
of TPZS games that do not have solutions. A simple example is for each player to
choose a number in the open interval (0,1), with the winner being the one who picks
the larger number. That game has no solution because there is no largest number in
that interval. All of the examples formulated below are solvable, however.

7.1.2 Games Without Movement

In this subsection the hider can choose his initial location, but must then stay there.
Many such games have been solved, but only a few examples will be given here
because this book is mainly concerned with targets that can move.

Our first example “Oneshot” has both parties simply choosing one of n cells.
Suppose cell i has conditional detection probability pi, and that detection happens
with probability pi if searcher and hider both choose cell i, or otherwise does not
happen. For n D 3 the payoff matrix, which is as always known to both sides, is

2

4
p1 0 0

0 p2 0

0 0 p3

3

5 (7.3)

The solution of this game has both players making the probability of choosing cell
i be inversely proportional to pi; that is

x D y D .c=p1; c=p2; c=p3/ ; (7.4)

where c is whatever constant is required to make the probabilities sum to 1. If p D
.1; 0:5; 0:2/, then c D 1=7 and the value of the game is also 1/7. The solution
of even this simple game is somewhat surprising, since both sides are most likely
to choose the cell with the smallest conditional detection probability. This makes
sense for the hider, but may be counterintuitive for the searcher. Indeed, were we
to formulate a search problem where the hider is equally likely to choose any cell,
the best strategy for the searcher would be to emphasize the cell with the largest
conditional detection probability, rather than the smallest. What we are calling an
“optimal” mixed strategy for the searcher is sensitive to the assumption that the hider
is aware that he is playing a game, and is therefore not equally likely to choose any

http://www.worldrps.com/
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cell. In search games, it is not unusual for the searcher to emphasize doing what he is
worst at. Dear reader, if you are telling yourself that you would nonetheless choose
the cell with the biggest detection probability (the first cell) if you were somehow
forced to play this game, then consider the following facts:

1. always searching the first cell will always fail if the hider discovers your strategy,
2. using the optimal mixed strategy guarantees you 1/7, even if the hider discovers

that you are using that strategy, and
3. the hider can guarantee a detection probability of at most 1/7 no matter what

you do.

Search games where the searcher continuously distributes his time over the cells
can also be formulated and sometimes solved, even though the number of strategies
for player 1 is infinite. Consider a game that is the same as the search problem
considered in Sect. 2.3.1.3, except that now the hider can choose any cell to hide
in, rather than being constrained by a given distribution. Let y D .y1; : : : yn/ be
the mixed strategy chosen by the hider, who is player 2 here because he wishes to
minimize the detection probability. Also let c.i/ D 1 and b .i; z/ D 1�exp .�˛iz/ for
all i; that is, we are considering a random search problem where all cells are equally
costly to search, but where some cells are more difficult to search than others. If the
searcher’s allocation of search time to cells is x D .x1; : : : ; xn/, we require that all
components of x be nonnegative and x1 C � � �C xn � K, where K is the total amount
of time available for search. The probability of detection when x is matched against
the hider’s mixed strategy y is

A .x; y/ �
nX

iD1
yi .1 � exp .�˛ixi//: (7.5)

One attractive strategy for the searcher is to equalize the detection probability in all
cells, since equalization takes away the hider’s flexibility in choosing a cell. This
idea leads to making xi D c=˛i, where c D K= .1=˛1 C � � � C 1=˛n/, and to a lower
bound on the game value of v D 1 � exp .�c/. This lower bound turns out to be
the value of the game; that is, equalization is optimal for the searcher and there is
no need for him to consider mixed strategies. We have not yet found the optimal
y, but there nonetheless exists a y such that A .x; y/ � v for all feasible x, even if
the searcher knows y. This game turns out to be a rare example of a game being
easier to solve than the corresponding optimization problem—compare the simple
expression for v above with the operations required to find the detection probability
in Sect. 2.3.1.3.

Lest the reader conclude from the above two examples that optimal strategies can
always be intuited, consider the following payoff matrix

	
aij

 D

2

4
0:3 0:1 0

0:2 0:8 0:3

0 0:1 0:5

3

5 (7.6)
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This might represent a situation where the searcher can detect the hider even if the
searcher guesses the wrong cell, as long as the guess isn’t too wrong. The general
technique for solving games of this sort is Linear Programming. After applying that
technique, we find that x D .0:25; 0:75; 0/, y D .0:75; 0; 0:25/ and v D 0:225.
The searcher never searches in cell 3, and the hider never hides in cell 2. Neither of
these characteristics is obvious a priori; indeed, it is often difficult to predict which
strategies will be unused in a TPZS game. This difficulty led to serious doubts, prior
to von Neumann’s proof, about whether the fundamental theorem was actually true.

Search games need not be square. The hider might have his choice of five
locations, for example, while the searcher has his choice of three sensor types.
Linear Programming can be used to solve all of them.

The search space can also be continuous. A famous continuous example is the
“Hiding in a disk” (HDG) game in Ruckle (1983). A detection radius d is given,
and both parties select a point in the unit disk. Let z be the distance between the
two points. The searcher wins if and only if z < d. We might expect the value of the
game to be d2, the ratio of the covered area to the area of the unit circle, but the value
isn’t quite that large because some of the searched area will often lie outside the unit
circle. The exact value of the game is known only for certain values of d. The value
is 1/7, for example (not 1/4) when d D 1=2. The hider can guarantee this by first
selecting any six equally spaced points on the circumference, and then randomly
choosing to hide at one of those six or at the center with probability 1/7 each. There
is no way to include two of those points in the interior of a circle with radius 1/2
(see Fig. 7.1), so with only one look the searcher cannot do better than 1/7.

The complicating feature in HDG is edge effects. To avoid that problem, restrict
both sides to the circumference of the unit circle, with d being the length (not the
area) covered by the searcher. The value of that game is exactly d/� . One could also
avoid edge effects by replacing the unit disk with the unit sphere.

Fig. 7.1 The HDG disk is
shown as a solid circle. The
dashed circles show two
not-quite-successful attempts
to include two of the seven
stars in the interior of a circle
with half the radius of the
disk. It can’t be done
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7.1.3 Games Extended in Time

We now permit the hider to move from one place to another, perhaps in addition
to being able to choose his initial location. Time is involved, so the hider selects
a “track” rather than a “position”. The searcher also generally moves from place to
place, often having multiple chances at detection. The number of strategies available
to the two sides explodes exponentially, as does the associated payoff matrix, so
the usefulness of Linear Programming as a general purpose solution technique
diminishes. Nonetheless, von Neumann’s theorem still applies, and a variety of
games have been considered and at least partially solved.

7.1.3.1 Unrestricted Motion

It is often the case that things simplify in the extremes, and search games are no
exception. One extreme is where neither side can move, as in Sect. 7.1.2. The other
extreme is where motion on both sides is completely unrestricted.

Consider NShot, which is simply Oneshot repeated N times with searcher
and hider each able to select any cell at each time. At each time the hider can
guarantee that the detection probability will not exceed v, the value of Oneshot, no
matter where the searcher looks. By choosing his positions independently at each
opportunity as in Oneshot, the hider can guarantee that the chance of at least one
detection out of N tries will not exceed 1 � .1 � v/N : A similar argument for the
searcher, who is also unrestricted, establishes that this quantity is the value of the
game. The same argument works for any detection game that is repeated with both
sides able to select a strategy independently on each play. If it is possible for both
sides to select a strategy independently on each play, then it is also optimal for them
to do so. However, independence may not be possible if the movement of at least
one of the players is restricted between plays.

7.1.3.2 Restricted Searcher Movement

Isaacs (1965) introduced the Princess and Monster (P&M) game as a prototype for
searching for a mobile hider in a restricted area. The frantic Princess is located
within the unit disk, moving about while a blind Monster searches for her. The
Monster’s speed is limited to V, and he will detect the Princess if the distance
between them ever gets to be as small as d, a capture distance much less than 1.
The Princess is also blind, but can move as fast as she wants as long as she does
not leave the unit disk, and can start anywhere within the unit disk. The payoff is
the average amount of time for the Monster to detect the Princess, so the Princess
is player 1, the maximizer. P&M generalizes Ruckle’s HDG to allow movement by
both players.

Even though both sides have infinitely many strategies, we might try to guess or
at least bound the value of P&M. The Monster’s sweep width is 2d, so the rate at
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which he can cover area is at most 2Vd. The area of the unit disk is � , so it will
take the Monster � � �=.Vd/ to cover the disk once. If he finds the Princess at the
midway point, on the average, then the payoff would be � /2; in fact, the Princess
could guarantee a time at least that large by simply hiding at a random point in the
disk and never moving. But if she could spoil the Monster’s attempted sanitization
by moving about, thereby making his search random, rather than exhaustive, then
the average time to detection would be twice as large (�). But the Princess must be
careful not to move too much, since finding the Monster is just as bad as vice versa.
We are left wondering where the value of P&M is in the interval [� /2, �], and what
the Princess should do by way of movement.

Gal (1979) gives asymptotically optimal strategies for the two sides and an
approximate value of � for the P&M game. An optimal strategy for the Princess
has her connecting a sequence of dots that are selected independently and uniformly
in the disk. At each dot she pauses for a carefully selected amount of time before
moving on to the next dot. Thus the Princess moves slowly, but still fast enough to
introduce some unpredictable independence into her sequence of positions.

Lalley and Robbins (1988) give an appealing optimal strategy for the Monster.
The strategy is a diffuse reflection wherein he constantly moves at top speed,
reflecting randomly from the boundary of the region in the same manner as light
reflects from a diffuse surface. That strategy has the property of equalizing the
amount of time spent in all parts of the region, and is therefore an attractive
candidate for motion that covers a region “randomly and uniformly” at constant
speed. Regardless of how the Princess moves, this strategy guarantees a detection
time of at most � .

The net result of all this maneuvering by Princess and Monster is that the time to
detection is approximately an exponential random variable with mean � , which is
what the Princess hoped to accomplish by moving. This is as close as game theory
gets to making fairy tales come true. Capture is inevitable, unfortunately, so the
Princess can only delay it as long as possible. If the P&M unit disk is replaced by
any compact convex set with area A in two dimensions, then the value of the game is
known to be � � A=.Vd/, with the Monster’s diffuse reflection strategy still being
optimal.

Alpern and Gal (2003) describe many other search games played in bounded
regions that involve a mobile hider and a mobile searcher with restricted speed. They
all share the property that the game’s value is inversely proportional to the searcher’s
speed and independent of the hider’s speed, provided the hider’s speed meets a
certain lower threshold. The hider wants to move around just enough to prevent
an exhaustive search—there is no hope of a complete escape when the region is
bounded.

The above games all assume that the hider is just as ignorant of the searcher’s
position as vice versa, but there are real situations where the searcher’s activity
reveals his own position to the hider, who can sometimes make good use of the
information. Imagine a discrete-time game based on four cells arranged cyclically
in a square. Both players can choose any cell initially. The game ends when both
choose the same cell, and the payoff is the time when the game ends. The hider
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has an advantage in that he can observe the location of the searcher after any
unsuccessful look. If both players are free to choose any cell at each time, we
have a repeated version of Oneshot whose value is 4—the searcher is so mobile
that information about the previously searched cell is of no value to the hider. But
suppose instead that the searcher is restricted to moving at most one cell in either
direction, so that the cell diagonally opposite the most recent choice is not available
for his next choice. The modified game will go on forever, since an undetected
hider can always move to the cell diagonally opposite the searcher’s most recent
choice. The hider could do this even if his own movements were restricted like the
searcher’s. This is an extreme example—there is a great deal of difference between 4
and infinity—but it serves our purpose of illustrating the importance of information
in a search game.

Actual solutions of search games where the hider has an information advantage
are rare. For example consider the P&M game where the Princess at all times knows
the direction to the Monster, call the game P&MC. Nobody knows its value, even
approximately, except that it surely exceeds the value of P&M. This is unfortunate,
since P&MC resembles certain real-world situations where the searcher employs an
active sensor. An active sensor will generally be detected by its target long before
detecting it, thus revealing a direction to the sensor.

7.1.3.3 Restricted Hider Movement

A simple example would be to require the hider to start at the origin of the two-
dimensional plane, maneuvering as he wishes over the interval [0,T] as long as his
speed never exceeds U. At the final time T the searcher can search once at any
point in the plane, succeeding if and only if the point that he chooses is within D of
the hider at that time. Since the hider’s position is irrelevant except at time T, and
since he can clearly be anywhere within a circle of radius UT at time T, his strategy
amounts to picking a point in the circle and then (it doesn’t matter how) going there.
In fact, this game is equivalent to HDG with d D D=.UT/. In this game the hider
would clearly prefer a larger speed limit, or better yet to have no speed limit at all.
However, there are also search games where the hider moves only because the rules
force him to do so.

Suppose the hider is required to move from point A to point B, and that there are
n routes from A to B, any one of which the searcher can interdict. If the searcher
chooses route i and the hider also chooses that route, then the detection probability
is pi. This game amounts to Oneshot where the “cells” are routes. If the hider’s
mission did not require him to move, he could remain safe at A. More generally,
the requirement to move makes the hider vulnerable to ambushes. Garnaev et. al.
(1997) describe the solution of a generalized game where the hider moves from A
to B over a network while the searcher makes repeated attempts to detect him.

While allowing both players complete freedom of motion results in simply
playing the one-move game repeatedly, games where only one of the players has
complete freedom can be surprisingly complex. Suppose there are only two cells to
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hide in, with p1 and p2 being the conditional detection probabilities. The searcher
has complete freedom, but the hider must remain stationary once he chooses a cell.
To make the game simple suppose p1 D 1, and let the payoff be the expected number
of looks required for detection. An attractive strategy for the searcher would be to
look once in cell 1, and then (failing detection on the first look) look in cell 2 until
detection occurs. The average number of looks required is 1 if the hider hides in cell
1, or 1 C 1=p2 if the hider hides in cell 2. However attractive, that strategy is not
optimal for the searcher. If he followed it consistently then the hider would learn to
hide in cell 2, and if the hider hides in cell 2, then the searcher should look in cell 2
first, rather than cell 1—there cannot be an equilibrium where the searcher always
looks in cell 1 first. We can still solve the game by capitalizing on the fact that the
hider has only two strategies. If p2 D 0:5, for example, the game value is 2.4, with
the searcher’s only two active strategies being to look in cell 1 on the second or
third look (construct a 2 
 2 payoff matrix to verify this statement). Our point here
is that the game is more subtle than it might first appear. Now complicate the game
by letting p1 be arbitrary, or by considering more than two cells. Even enumerating
the searcher’s strategies becomes a formidable task, let alone solving the game. This
game has not been solved in general. Bram (1963) describes what is known of the
solution.

An exercise here would be to solve NShot with p D .1; 0:5/. The reciprocal of
the value of that game should exceed 2.4 because hider’s motion is unrestricted in
NShot. Does it?

Bram’s game simplifies, of course, if all of the conditional detection probabilities
are 1. Ruckle (1983) names this the Search on a Complete Graph (SCOM) game.
With n cells there are n strategies for the hider and n-factorial strategies for the
searcher, since he can search the cells in the order of any permutation. With 10
cells that would be 3,628,800 strategies, so writing out SCOM as a matrix game
and applying Linear Programming is not attractive. Nonetheless the game is simple
enough that we can intuit the solution. An optimal strategy for the hider is to pick a
cell at random. As long as the searcher never searches a cell twice, this guarantees
that the number of looks required is equally likely to be any number between 1 and
n, or .n C 1/ =2 on the average. It will take even longer if the searcher repeats a cell.
An optimal mixed strategy for the searcher is to randomly choose any one of the
permutations, but there are simpler mixed strategies that are also optimal. He can
always choose the permutation (1, : : : , n), for example, as long as he is careful to
start his search at a randomly selected point in the permutation and search the cells
cyclically.

The same idea (always use the same permutation, but start at a random point
within it) is also effective in a continuous game resembling SCOM that is played
on a connected graph where the nodes are connected by arcs, the sum of the lengths
of which is L, and where the hider can hide at any point on any arc. The searcher
can start anywhere, but must then move over the arcs at speed V until he finds the
hider. An Eulerian path is a sequence of arcs that eventually returns to the same
point after covering every other point without duplication. Some graphs have such
paths (a Fig. 8, for example), and some don’t (most trees). As long as the graph has
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an Eulerian path, it is optimal for the searcher to pick a random point on it and move
around the path until he finds the hider. The value of that game is L/(2V), half the
length of time for a complete circuit.

7.1.3.4 Restricted Searcher and Hider

Ruckle (1983) describes several multi-look games other than SCOM where there is
no overlook probability and the hider cannot move. They are played on graphs, with
the hider choosing a node of the graph and remaining there while the searcher moves
over the arcs between looks. One of them is Search on a CYClic graph (SCYC)
where the nodes are arranged on a circle and the searcher, after selecting any node
for his initial search, can only move to one of the two neighbors of the node most
recently searched. The searcher’s cyclic optimal strategy in SCOM is still playable
in SCYC, so the two games turn out to have the same solution. In fact we could even
restrict the searcher to move clockwise without changing the value of the game—as
long as we only forbid him to use strategies that he doesn’t want to use anyway, he
will not complain.

The SCYC game changes essentially if the hider’s motion is restricted like the
searcher’s to only neighboring cells. Ruckle (1983) names this the Cyclic Pursuit
Game (CPG) game, and has offered a reward to anyone who can solve it. So far
the reward has gone unclaimed. Why should such an easily described game be so
difficult to solve? The problem is that there are infinitely many strategies for both
sides, and the game does not possess the kind of symmetry that makes it possible to
guess the form of the optimal strategies. Consider the searcher strategy of employing
his SCYC strategy in CPG. The hider can defeat this by playing the same strategy—
even if the searcher flips a coin to decide which way to go, there is still a good chance
that the searcher will follow the hider around the cycle indefinitely. Bounds for the
game value have been obtained by having the players move in random walks, but
the bounds are not equal.

Another famous game involving restricted motion is the Flaming Datum prob-
lem, named after a situation in WWII where a submarine has just torpedoed a
merchant ship. The “flaming datum” marks a spot where the submarine once was
when pursuing destroyers arrive sometime later in pursuit of the submarine. In the
abstract we have a TPZS game with three parameters, namely the time late � , the
submarine’s top speed U, and the aggregate sweep rate of the destroyers S. Typically
S would be computed by multiplying the destroyer’s speed by a sweepwidth,
perhaps summing if multiple ships are involved, but the details are not important.
How should the two parties maneuver, and what is the resulting probability of
detection?

The Flaming Datum problem has never been solved, but we can at least
approximate its value. First define the Farthest-on-circle (FOC) to be the gradually
expanding circle that defines the limit of the hider’s position. The area of the FOC
at time t after the flaming datum is created is A.t/ � �.Ut/2. If the searcher were
able to constantly search randomly within the FOC, effectively scattering confetti at
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rate S, then the detection rate would be �.t/ � S=A.t/ regardless of how the hider
moves within the FOC. Here we use the word “rate” in the sense of a continuous
time Markov process. If the hider were able to make his position always uniform
within the FOC, as well as independent from time to time, he could guarantee the
same thing regardless of how the searcher searches. In other words, those tactics for
searcher and hider are in equilibrium, with the implied probability of detection for
a search from � to T being

p.T/ D 1 � exp
�

�
TZ

�

�.t/dt
�

D1 � exp

�
� S

�U2

�
1

�
� 1

T

��
(7.7)

Note that this expression does not approach 1 as T approaches infinity—the FOC
expands with the square of time while the area searched goes up only linearly with
time, so continued search eventually becomes hopeless.

We seemingly have an unexpectedly simple solution to a game that is both
complex and important. The only problem is that neither of the recommended tactics
is feasible. Searching randomly is not feasible for a searcher whose track must be
continuous, and similarly there is no way for a hider whose track must be continuous
to make his position “independent from time to time”. Even so, the same tactics are
also infeasible in P&M, but are known to lead to the correct solution in that game.
An additional argument in favor of formula (7.7) is Fig. 7.2 (Washburn (1978)),
which shows the results of 295 replications of an experiment using Navy officers
to play both searcher and hider. The theoretical prediction in that figure is formula
(7.7) with S D VW. It fits the experimental cumulative distribution function rather
well.

7.2 Cooperative Targets

In this section we assume that the lost target desires detection, perhaps even more so
than the searcher, so we will cease referring to the target as a “hider”. The problem
is to achieve near coincidence of the positions of the two parties. The problem might
better be described as one of “rendezvous” rather than “search”, and we shall use
that term at times. Seemingly this agreement of interest should simplify the problem
of finding optimal tactics, but that is not the case. Much of the difficulty is traceable
to vagueness in the concept of “being lost”. After all, many a child has been found
by his frantic parents, only to report that he doesn’t understand all the fuss because
he was never lost in the first place.

There are two points of view one can take about searching for a cooperative
target, symmetric and asymmetric. The asymmetric case is the simpler of the two
because it leads to a clear notion of who is the target and who is the searcher. This
case is analyzed in Sect. 7.2.1. The more difficult symmetric case is taken up in
Sect. 7.2.2.
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Fig. 7.2 Results of a Flaming Datum experiment

7.2.1 The Asymmetric Case

Here we consider problems where the roles of target and searcher are clear. The
difficulty to be resolved is that the searcher does not know where the target is, even
if the target does. We assume that the target is aware of the searcher’s uncertainty
and will help to resolve it by facilitating detection.

For the most part we will assume that the searcher’s sensor is better than the
target’s, in which case a single detection distance d suffices, but suppose for a
moment that the opposite is true. If the target first detects the searcher, then the
question arises as to what the target can do to facilitate detection by the searcher.
“Become more visible” is the obvious answer. Jump up and down, make noise or
build a smoky fire, wave your arms, turn on your transponder, use a mirror to reflect
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the sun in the searcher’s eyes, release a dye packet, etc. These tactics are so obvious
that they do not require much thought or coordination. Target motion is another
matter. The obvious tactic of moving directly toward the searcher (pursuit) is not
necessarily the best one, especially if the searcher is making an exhaustive search.
Exhaustive searches tend to be characterized by long straight segments where the
searcher’s motion is predictable, in which case the target would be better off to
follow an intercept course, rather than a pursuit course, or possibly even move away
from the searcher in order to be close to him on the next segment. The effect of
following an intercept course is to effectively increase the searcher’s sweep width,
which is of course beneficial. The quantitative details about optimal tactics and the
resulting increase in sweep width can be found in Washburn (2014b, pp. 11–13).

From here on we suppose that the searcher’s sensors are superior, in which case
a single detection distance d suffices. For an example of a typical problem, assume
that the target is lost within some two-dimensional region S with area A, “lost”
meaning that the target is equally likely to be anywhere. The search will continue
until the distance between the two is smaller than d. The target can move, limited
only by a top speed U, and similarly the searcher can move at top speed V. Let
random variable T be the time required for detection. What should the two parties
do to minimize E(T)?

The standard answer to this question is that the target should not move at all
while the searcher conducts an exhaustive search of the region. This tactic for the
target is employed so often that it has a name: “Wait for Mommy” or WFM. The
sweep rate is 2Vd, so detection will surely happen by time � � A=.2Vd/, and E(T)
is half of that. The main virtue of WFM is that it permits an exhaustive search by
the searcher. If U were larger than V it would of course be better for the “target” to
conduct an exhaustive search while the searcher uses WFM, but we assume V � U:
If the target were instead to move around at speed U, the likely effect would be
to turn the searcher’s efforts into a random search and thereby double the mean
time to detection. It is true that motion by the target would result in some dynamic
enhancement of the searcher’s speed, but dynamic enhancement is a small effect
compared to the effect of turning an exhaustive search into a random search.

WFM gets wide use in the real, two-dimensional world. Human children are
sometimes explicitly instructed to use WFM in the event of becoming lost. Other
species also employ WFM with youngsters, especially when the tactic has the
additional advantage of making the youngster difficult for predators to find. Also,
animals that are normally solitary occasionally have a need to find each other for
mating. In such cases sometimes one sex will move around a lot while the other
does not, which is sort of WFM. Characteristic of all of these situations is that the
roles of searcher and target are clear.

WFM is not as attractive in one dimension. Suppose both parties are placed
independently and uniformly at random in the unit interval, each with unit speed.
One attractive rendezvous strategy would be for both to move left toward the origin,
waiting there for the other if necessary. That would guarantee rendezvous, but why
wait at the origin? If the target gets there first, he could shorten the rendezvous
time by heading back toward the other end, shortly meeting the searcher who
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must have started out farther away from the origin. Of course the searcher should
do the same thing – call this strategy “Reflect Left” or RL. It turns out that RL
minimizes the mean time to rendezvous, although of course it is tied with “reflect
right” (RR), which would work just as well. The mean time to rendezvous is 1/3,
whereas it would be 2/3 without the reflection. In fact RL is optimal in more general
circumstances. For one thing it happens to be symmetric, so it is also the solution
to the symmetric rendezvous problem. Also the initial locations do not have to
be uniform or even identical—as long as both initial positions are biased towards
the origin, by which we mean specifically that the two density functions are each
decreasing, use of RL (but not RR now) by both parties is the optimal joint strategy
(RR is optimal if the locations are biased towards the other end).

The unit interval benefits from having two recognizable endpoints to reflect from,
but what if the endpoints were joined together and not recognizable, so that the
unit interval becomes a circle with unit circumference (imagine a tropical island
where movement is possible only on the beach)? RL and RR are no longer feasible
strategies, but it doesn’t follow that WFM should replace one of them. With the
target using WFM, the average time to detection will be 1/2, half of the time for
the searcher to go all the way around the circle. If instead the target moves at top
speed in the direction opposite to the searcher, the beneficial effect will be as if the
searcher’s speed is increased to 2, thus reducing the mean rendezvous time to 1/4. In
this one-dimensional world, children might get instructed to always move clockwise
when lost, while mommy remembers to always go counterclockwise. Of course
much depends on getting the direction right—if the target accidentally moves in the
same direction as the searcher, rendezvous might never happen! A target who does
not know which direction is clockwise would be better off using WFM, rather than
flipping a coin to decide which way to go. In fact WFM resurfaces as being optimal
if there is no common notion of “clockwise”, with mommy travelling around the
circle until rendezvous.

7.2.2 The Symmetric Case

Here we assume symmetry between all the parties who are trying to rendezvous.
In two dimensions imagine two parachutists trying to locate each other, or two
astronauts separated on the surface of a small planet. The problem also can occur,
and in fact frequently does occur in one dimension. Two backpackers sometimes
become separated on a trail, with at least one of them being uncertain whether he is
in front of or behind the other. What should they do to restore contact?

The constraining feature in the symmetric case is that both parties must follow
the same policy, although variation can to some extent be achieved through the use
of randomization. This unfortunate constraint could of course have been eliminated
if only the parties had anticipated the possibility of becoming separated, but we
assume that is not the case. The use of randomization turns out not only to be
permitted, but (as we shall see) desired, which makes this an odd branch of analysis.
Randomization is never needed in single-person decision problems. The previous
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chapters use the Theory of Probability on almost every page, but at no point
does the searcher himself ever do anything random. The Random Search Formula
owes its genesis to a skeptical attitude toward the efficiency of search, rather than
to a deliberate attempt to search randomly. Randomization is also not needed in
rendezvous problems when asymmetric strategies are permitted. However, we will
find randomization to be an essential part of symmetric optimal strategies, although
the reason here is different than is Sect. 7.l. In TPZS games the role of randomization
is to introduce some unpredictability. In symmetric rendezvous problems, the role
is to introduce some accidental asymmetry. Symmetric problems are in general
more difficult than the equivalent asymmetric problems. For example, the symmetric
solution of the circular rendezvous problem introduced at the end of Sect. 7.2.1 is
still unknown—see Alpern and Gal (2003), Sect. 12.3 for a discussion.

We make only passing reference to one important symmetric strategy, that being
to head for a notable landmark and just wait there until the other party does the same
thing. That strategy depends on the existence of a unique landmark that cannot be
lost by either party. In the rest of this subsection we will suppose that such landmarks
do not exist. We will also assume that the two parties cannot create visible tracks on
the landscape as they move, a simplifying feature that is often at odds with reality.

7.2.2.1 A Two-Dimensional Problem

Return to the same two-dimensional problem considered in Sect. 7.2.1, but this time
symmetrically with U D V . The time required for an exhaustive search is � . If we
could just tell one of the parties to use WFM while the other searches exhaustively,
the mean time to detection would be � /2, but we cannot do that because those tactics
are not symmetric. One symmetric solution would be to have both parties search
“exhaustively”. Assume that the effect of that would be to turn the two exhaustive
searches into a random search with an enhanced speed that is 27 % higher than V
(see Koopman (1956) for justification of this percentage), so that the mean time to
detection would be � /1.27. This time is disappointingly large, since we might have
hoped that 1.27 would be closer to 2 than to 1, but we can possibly improve on it by
using randomization.

The best randomized strategy is certainly not to tell each party to flip a coin to
decide whether to use WFM or search exhaustively. That policy is symmetric, but
the mean time to detection would include 25 % of infinity because both parties
might choose WFM. However, consider the class of strategies where the probability
of searching exhaustively in each period of length � is p, and where the decision
is repeated independently in each period, if necessary. The parameter p is to be
adjusted to minimize the mean time to detection. There are three possible cases in
each period. They are, with probabilities in [],

1. both parties choose WFM [.1 � p/2]
2. both parties search exhaustively [p2]
3. one uses WFM while the other searches exhaustively [2p .1 � p/]
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Let 	 be the unconditional mean time to detection. The simplest of the three
cases is the first, since we know that detection will not happen in that period, so
the additional time to detection will be � C 	. That statement is easy to make,
but its truth depends on recognizing that the situation after failure is identical to
the original situation—we are employing the Renewal Theorem. We also know that
detection will surely happen in case 3, the additional time required being � /2, on the
average. This leaves only case 2.

In case 2, the additional time required is t, should detection happen at time t
before � , or else � C 	 if detection does not happen in that period. Let � D 1:27=�

be the detection rate, so that f .t/ D � exp .��t/ is the density function of the time
to detection. Then the additional time to detection in case 2 is

�Z

0

tf .t/dt C
1Z

�

.� C 	/ f .t/dt D �
1 � .1C ��/ exp .���/

��
C .� C 	/ exp .���/ :

(7.8)

Since �� D 1:27, (7.8) is equivalent to 0:567�C0:281	. Taking account of all three
cases, we have

	 D .1 � p/2 .� C 	/C p2 .�=2/C 2p .1 � p/ .0:567� C 0:281	/ : (7.9)

We can solve (7.9) for 	 and then adjust p to make 	 as small as possible. The
best value for p turns out to be 0.82, at which point 	 D �=1:39. The mean
rendezvous time in practice might be larger because we have not dealt with the
possibility that the two parties will have different estimates of � or the origin of
time. Putting aside those reservations, we have an upper bound of � /1.39 on the
minimal rendezvous time. This is disappointing, since 1.39 is still rather far from 2.
A truly optimal symmetric strategy, if one exists, is unknown. It should be clear that
a high price is being paid for symmetry. The two parties would be much better off
if the roles of searcher and target had been established before loss occurred.

Given that the optimal symmetric strategy will usually involve randomization,
it should come as no surprise that only a few rendezvous problems have actually
been solved in the sense that the minimizing symmetric strategy is known. One
of them—rendezvous on the unit interval—was mentioned in Sect. 7.2.1 A discrete
counterpart would have two labeled, recognizable cells, say “Left” and “Right”, with
each party occupying one of them and able to move to the other cell in unit time. The
best symmetric strategy is “stay where you are in the Left cell, or otherwise move
to the Left cell”, or of course Left could be replaced by Right in describing that
strategy. If the two parties start out in different cells, the rendezvous time with that
symmetric strategy is one time unit, which is clearly minimal. The situation changes
if the cells are not recognizable, but the best rendezvous strategy is still known. It is
“flip a coin at each time to decide whether to move or stay put”. Rendezvous will
occur in two time units, on the average, and it is not possible to improve on that
figure. Note that the ends of the unit interval were implicitly assumed to be labeled
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in Sect. 7.2.1; the rendezvous problem would be significantly different if one of the
parties did not have a reliable sense of direction.

7.2.2.2 Rendezvous Problems on the Whole Line

Here we consider problems where both parties are initially located on the line, and
the problem is to achieve coincidence. For a simple case assume that UD0 and VD1.
Since the target’s speed is 0, the fact that he desires detection is irrelevant and we
have a single-person optimization problem where randomized tactics are not needed.
Given a density function for the location of the target, how should the searcher
move in order to minimize the expected time to detection? This problem is called
the Linear Search Problem (LSP), and it has a long history starting with Bellman
(1963), who introduced it. The best tactic for the searcher is always a zigzag path
with increasingly long legs, so the problem amounts to determination of the optimal
leg lengths. If the initial distribution of the target’s position is standard unit normal,
then the minimal time to rendezvous is known to be either 2.16 if the searcher can
choose his starting point, or 2.90 if the searcher is forced to start at the origin. In
the former case the searcher’s best starting point is�1.57 (rather far out on the flank
of the unit normal), after which he next proceeds to 2.74 before turning back towards
the origin (Washburn (1995)). In fact he will probably not have to turn back towards
the origin, since his chances of finding the target on his first leg are 0.94.

Having disposed of the case where U D 0, consider next the symmetric case
where both parties have unit speed, and to make things really simple suppose that
the initial distance between the two parties is for some reason known to be exactly 2.
This problem would be trivial if the two parties knew who was on the left and who
was on the right (the detection time would be 1 after each moves towards the other),
but they do not. It would also be simple if we could use asymmetric strategies. We
could advise the target to use WFM and the searcher to first move 2 units one way
and then 4 units the other way. The mean time to detection would be 4, the average
of 2 and 6. However, only symmetric strategies are permitted, and the parties do not
know who is on the left and who is on the right.

One symmetric strategy would be for each party to pick a random direction and
then move one step forward followed by one step backward, repeated as often as
necessary. This strategy is distance-preserving in the sense that, if rendezvous does
not happen, the situation will be exactly as at the beginning, with the two parties
being separated by 2. Rendezvous will happen only if the party on the right goes
left while the party on the left goes right, which happens with probability ¼, or
otherwise the situation will not have changed. Therefore the mean time to detection
satisfies the renewal equation

	 D .1=4/ 1C .3=4/ .2C 	/ ; (7.10)

the solution of which is 	 D 7. A better distance-preserving strategy is to move
one step forward and two steps backwards, which can be shown to have a mean
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time to detection of 5, a significant improvement but still not as small as 4. The best
known symmetric strategy is considerably more complicated and has a mean time
to detection of 4.40 (Baston 1999). All of these strategies are distance-preserving,
a large analytic advantage because it enables application of the Renewal Theorem
as in (7.10). However, it is not known whether the best strategy is in fact distance-
preserving, or even what the best distance-preserving strategy is.

If our plan was to first quickly dispose of the problem where the initial distance
is exactly 2 before moving on to problems where the initial distance distribution is
more general, then the plan has not worked out. Even the problem where the initial
distance is known exactly turns out to be difficult when only symmetric strategies
are permitted (in fact even the asymmetric problem is difficult; Alpern and Beck
(1999)). The problem of finding optimal symmetric strategies seems to be difficult in
general, and there are indications that the optimal strategies, even if they eventually
become known, will involve randomization and be so complicated that at least one
of the parties involved would in the real world be incompetent for performance. This
is unfortunate, since rendezvous problems do occur in the real world.

The reader deserves at least something practical for having read all this way, so
here is some advice if you happen to be a backpacker. The situation is that your
partner hikes faster than you do, so he has preceded you on the trail with a promise
to wait for you somewhere. Since parting, you have hiked for an hour without seeing
him, and have begun to suspect that he might actually be behind you. Perhaps he left
the trail for some reason, and you passed him there, or perhaps he took a wrong turn
and has yet to realize it. You have the food and he has the tent, so both of you
are going to be miserable if you don’t find each other before nightfall. Like most
backpackers, you have not previously discussed this situation with your partner.
What should you do? The answer is PUT DOWN YOUR PACK! Don’t hide it
behind a tree, but put it right beside the trail where your partner will surely see
it if he passes that way. If you can, make a directional arrow on the ground before
pursuing your search, planning to periodically return to your pack and reverse the
arrow as you explore the other direction. You will be better at searching without
having a pack to carry, and the pack will play WFM while you are away from it. If
you find your partner’s pack, then move it to the other side of the trail, thus revealing
to him that you have been there while you go to fetch your own pack. If you find
that your own pack has been moved, then rejoice because the problem is nearly over.
That strategy is symmetric, so, if we can just get everybody to read this book, you
can count on your partner doing the same thing.
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