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• Propositions and arguments 
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Introduction 

For the student 

There are many different reasons to study logic. Logic is the theory of good reasoning. 
Studying logic not only helps you to reason well, but it also helps you understand how 
reasoning works. 

Logic can be done in two ways—it can be formal and it can be philosophical. This 
book concentrates on both aspects of logic. So, we’ll be examining the techniques that 
logicians use in modelling good reasoning. This ‘modelling’ is formal and technical, just 
like the formal modelling you see in other disciplines, such as the physical and social 
sciences and economics. 

The philosophical aspects of logic are also important, because we try not only to 
model good reasoning, but also to understand why things work the way they do—or to 
understand why things don’t work. So, we will not only learn formal techniques, we will 
also analyse and interpret those techniques. 

So, the techniques of logic are abstract and rigorous. They’re abstract, since we 
concentrate on particular properties of reasoning that are relevant to our goals. They’re 
rigorous, since we try to define all of the terms we use, and we take our definitions 
seriously. The goal is for us to understand what we are doing as much as possible. 

The techniques of formal logic can be used in many different ways. The things we 
learn can be applied in philosophy, mathematics, computing, linguistics, and many other 
domains. Logic is important for philosophy as reasoning and argumentation form a core 
part of philosophy. Logic is important in mathematics because the formalisation of logic 
is important when it comes to the study of mathematical theories and mathematical 
structures: in fact, many of the techniques we will be looking at arose in the study of 
mathematics. Logic is important in computing because the process of describing a 
problem or process to be implemented in a computer is a problem of formalisation. 
Furthermore, the kinds of algorithms or recipes we use in solving problems in logic are 
useful in problems that can be found in computing. Logic is important in linguistics 
because the formal languages used in the study of logic provide helpful models for 
linguistic theories. 

So, logic has its place in many different disciplines. More generally even than that, 
learning logic helps you to learn how to be precise and rigorous in any area of study. 

This book is a self-contained introduction to logic. You should not have to read 
anything else in order to get a well-rounded introduction to logic. However, other books 
will complement the introduction you will find here. Here are some useful books that 
complement the approach to logic I have taken. (Numbers in square brackets are 
references to entries in the bibliography.) 
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• Logic with Trees, by Colin Howson [12] is an introductory text that also uses trees as its 
fundamental tool in introducing logical consequence. It complements this text nicely: 
use Howson’s book for different explanations of trees and how they work. 

• Beginning Logic by E.J.Lemmon [15]. This is an excellent introductory text. It is 
probably the best introduction to truth tables and natural deduction in print (despite 
being over 30 years old). Lemmon’s approach concentrates on natural deduction 
(introduced in our Chapter 7) instead of truth tables and trees, which we use here. 

• First-Order Logic by Raymond Smullyan [29] is a more technical book than this one. If 
you are interested in seeing more of what can be done with trees, this is the book to 
use. 

• Thinking About Logic by Stephen Read [21] is a helpful approach to the philosophical 
issues discussed in this course, and many more besides. 

• Modern Logic by Graeme Forbes [6] is a longer book than this. It is also an introduction 
to logic that incorporates formal and philosophical issues. I recommend it to students 
who want to explore issues further. 

• Intermediate Logic by David Bostock [2] covers similar ground to this book, but in 
more depth. If you wish to explore the issues here further, Bostock’s book is a good 
guide, once you are familiar with the basic concepts of this text. (Unlike Forbes, 
Bostock presumes you have a basic grasp of formal logic.) 

• Computability and Logic by George Boolos and Richard Jeffrey [1] is an advanced text 
that covers material on computability, the fundamental theorems of first-order 
(predicate) logic (such as Gödel’s incompleteness theorems, compactness and the 
Löwenheim-Skolem theorems), second-order logic and the logic of provability. 

• A New Introduction to Modal Logic by George Hughes and Max Cresswell [13] is an 
introduction to modal logic, the logic of necessity and possibility, discussed in Chapter 
6. 

• My book An Introduction to Substructural Logics [22] gives an introduction to relevant 
logics (and logics like them) that are mentioned in Chapters 6 and 7. It is a great deal 
more technical than this book. 

I hope you find this text a useful introduction to logic! 

For the instructor 

There are many books on logic. The distinctive aspect of this book is its integrated nature 
as both formal and philosophical. It introduces students to the flavour of current work in 
logic in the early twenty-first century. This text is flexible; it can be used in many ways. 
Here are just a few of the ways the text can be used in teaching an introductory logic unit. 

• A term of 8–10 weeks: Use Chapters 1–4 to introduce propositional logic and Chapters 
8–10 for an introduction to predicate logic. These chapters constitute the formal core 
of the book. Alternatively, if you want to give the students an introduction to the 
formal and philosophical study of logic, you could use Chapters 1–7. 

• A semester of 12 or 13 weeks: Use Chapters 1–4 and 8–10 as the formal skeleton of the 
course, and use as many of the other chapters as you desire to fill in the philosophical 
implications. I have found (teaching this material both at Macquarie University and at 
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the University of Melbourne) that adding Chapter 5 Vagueness and Bivalence, Chapter 
6 Conditionals, Chapter 11 Identity and Functions and Chapter 13 Free Logic makes a 
good single-semester course. Other chapters can be added instead to suit local 
conditions. 

• A full year: Use the whole book. This can be done flexibly, with the formal core and 
some extra chapters used as the main curriculum, with other chapters used as the basis 
for optional extra assignment work. Each of the ‘optional’ chapters comes with a 
number of references that can be used for extra reading. 

I am convinced that logic is best studied by keeping the formal and philosophical aspects 
together. Logic is not a completed science, and teaching it as if it is one gives students the 
mistaken impression that all of the important issues have been decided and all of the 
important questions have been given definitive answers. This is a misrepresentation of 
the state of the art. Interesting issues arise not just at the far-reaching abstractions of 
advanced mathematical logic, but also at the fundamental issues covered in an 
introductory course. It is good to bring these issues out in the open, not only so that 
students get a truer picture of the state of the discipline, but also so that they might be 
attracted to study the area further! 

This book has many influences. My approach to the formal account of prepositional 
and predicate logic stands in the heritage of Raymond Smullyan [29]. The technique of 
trees (or tableaux) for predicate logic is suited to an introductory text for a number of 
reasons. 

• Unlike most other proof systems, trees are mechanical. Natural deduction systems and 
their relatives usually require you to have a ‘bright idea’ to complete a proof. With 
trees, bright ideas undoubtedly help, but they are not necessary. Grinding through the 
rules will invariably yield a result if one is there to be had. 

• Trees give you simple soundness and completeness proofs. The Lindenbaum Lemma is 
not required to provide a complete and consistent set of sentences, with witnesses for 
quantifiers; out of which you make an interpretation. The set of sentences and the 
witnesses for the quantifiers are given by the tree method itself. This means that an 
introductory text can state and prove soundness and completeness results in a manner 
intelligible to the introductory student. This is important, as soundness and 
completeness arguments are at the heart of logic as it is actually studied. 

• Trees, contrary to much popular opinion, do formalise a natural way of reasoning. 
Traditional ‘axiom and rule’ systems formalise the demonstration of validity by taking 
various assumptions as given, and providing rules to get new truths from old. The 
argument is valid if the conclusion can be derived from the premises and the axioms, 
by way of the rules. This is an important style of reasoning, but it is not the only one. 
Trees formalise another style, which could be called the explication of possibilities. To 
test to see if an argument is valid, you assume that the premises are true and that the 
conclusion is not true, and you explore how this might be. If there is no way for this to 
happen, the argument is valid. If there is some possibility, the argument is not. This is 
just as much a style of reasoning as by ‘axioms and rules’. 

The approach to trees used here is also used in Bostock’s Intermediate Logic [2] and 
Howson’s Logic with Trees [12], so students can refer to these books for more examples. 
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Solutions to the exercises in this text are not printed in the book, but are available on 
the World Wide Web at the following address: 

http://consequently.org/logic/ 

This means that students can look up solutions for themselves, so it would be unwise to 
set these exercises for assessment. If you would like help in writing other questions for 
assessment in a unit based on this text, contact me at greg@consequently.org. Of course, 
I also welcome any comments or suggestions to help improve the content of this book. 

I hope you find this text a useful introduction to logic! 
Logic is many things:  

a science, an art,  
a toy, a joy,  

and sometimes a tool.  
—Dorothy Grover and Nuel Belnap 
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PART 1 
Prepositional logic 



 

Chapter 1 
Propositions and arguments 

Logic is all about reasons. Every day we consider possibilities, we think about what 
follows from different assumptions, what would be the case in different alternatives, and 
we weigh up competing positions or options. In all of this, we reason. Logic is the study 
of good reasoning, and in particular, what makes good reasoning good. 

To understand good reasoning, we must have an idea of the kinds of things we reason 
about. What are the things we give reasons for? We can give reasons for doing something 
rather than something else (these are reasons for actions) or for liking some things above 
other things (these are reasons for preferences). In the study of logic, we do not so much 
look at these kinds of reasoning: instead, logic concerns itself with reasons for believing 
something instead of something else. For beliefs are special. They function not only as 
the outcome of reasoning, but also as the premises in our reasoning. So, we start with the 
following question: What are the sorts of things we believe? What are the things we 
reason with? 

Propositions 

We will call the things we believe (or disbelieve) propositions. The particular name is not 
important here, but the distinction between propositions and other sorts of things is 
important. We express propositions by using sentences. If I ask you what I believe about 
something, you will most likely respond by using some sentence or other. Of course 
expressing propositions is but one of the things we do with sentences. We do lots of other 
things with sentences too—we ask questions, we express feelings, desires and wishes, we 
command and request. In the midst of this diversity, the acts of stating and believing are 
central to the practice of reasoning, so propositions are at the heart of reasoning and 
logic. We are interested in claims about the way things are, and reasons for them, so 
propositions, which express how we take things to be, or how we take things not to be (or 
which express matters upon which we are undecided), are the focus of logic. 

We will illustrate the difference between sentences that express propositions and those 
that do not by exhibiting the contrast. Here are some examples of sentences expressing 
propositions: 

I am studying logic. If you like, I will cook dinner tonight. 
Queensland has won the Sheffield Shield. 
The moon is made of green cheese. Most wars are horrible. 
2+7=9. The mind is not the brain. 
Euthanasia is justifiable in some circumstances. 



There’s no business like show business. That hurts! 

Each sentence in this list is the kind of thing to which we might assent or dissent. We 
may agree or disagree, believe or disbelieve, or simply be undecided, about each of these 
claims. 

The following sentences, on the other hand, do not express propositions: 

Go away! Please pass the salt. Hello. 
What is the capital of Tanzania? Ouch! 

These sentences do not express propositions—they are not declarative, as they are not the 
sort of thing that we can believe or disbelieve, or reason with. These parts of speech 
perform other functions, such as expressing emotions, greeting, asking questions or 
making requests. 

We express propositions to describe the way things are (or, at least, to describe how 
things seem to us). Propositions are the sorts of things that can be true or false. Our 
descriptions are successful, or they are not. In the study of logic, we are interested in 
relationships between propositions, and the way in which some propositions can act as 
reasons for other propositions. These reasons are what we call arguments. 

Arguments 

In everyday situations, arguments are dialogues between people. In logic, we do not study 
all of the features of these dialogues. We concentrate on the propositions people express 
when they give reasons for things. For us, an argument is a list of propositions, called the 
premises, followed by a word such as ‘therefore’, or ‘so’, and then another proposition, 
called the conclusion. This is best illustrated by an example: 
If everything is determined, people are not free. Premise 

People are free. Premise 

So not everything is determined. Conclusion 

We will examine good arguments (like this one), in order to to give an account of why 
they are good. 

One important way for an argument to be good is for the premises to guarantee the 
conclusion. That is, if the premises are true then the conclusion has to be true. Instead of 
simply calling arguments like this ‘good’ (which is not particularly helpful, as there are 
other ways arguments can be good), we will call them valid. So, to summarise: 

An argument is valid if and only if whenever the premises are true, so is the conclusion. 
In other words, it is impossible for the premises to be true while at the same time the 

conclusion is false. 

It seems clear that our argument about determinism and freedom is valid. If the two 
premises are true, the conclusion invariably follows. If the conclusion is false—if not 
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everything is determined—then one of the premises must be false. Either people are not 
free, or people can be free despite determinism. 

This shows how valid arguments are important. They not only give us reasons to 
believe their conclusions—if you already believe the premises—they also exhibit 
connections between propositions that are important even if we do not believe the 
conclusions. If you believe everything is determined then you must reject one of the 
premises of our argument. The validity of the argument will not force you into one 
position or the other—it will instead help you to see what options are open to you. 

There are other ways for arguments to be good. For example, consider the following 
argument. 

If people are mammals, they are not cold-blooded. 
People are cold-blooded. 
So people are not mammals. 

This is clearly a valid argument, but no-one in their right mind would believe the 
conclusion. That’s because the premises are false. (Well, the second premise is false—but 
that’s enough. One premise being false is enough for the argument to be bad in this 
sense.) This gives us an idea for another definition: 

An argument is sound, just in the case where it is valid, and, in addition, the premises are 
all true. So, the conclusion of a sound argument must also be true. 

Soundness appeals to more than mere validity. More than logical connections between 
premises and conclusion are required for an argument to be sound: soundness appeals 
also to the truth of the matter. The conclusion of a sound argument is always true. This is 
of course not the case for valid arguments. Some valid arguments have true conclusions 
and others have false conclusions. 

Of course, if we disagree about the truth of the premises of an argument, this can lead 
to disagreement about the argument’s soundness. If we have a valid argument for which 
we are uncertain about the truth of the premises, it follows that we ought to be uncertain 
about the soundness of the argument too. 

There are yet more ways for arguments to be good or bad. One that we will not 
consider in this book is the issue of inductive strength or weakness. Sometimes we do not 
have enough information in our premises to guarantee the conclusion, but we might 
make the conclusion more likely than it might be otherwise. We say that an argument is 
inductively strong if, given the truth of the premises, the conclusion is likely. An 
argument is inductively weak if the truth of the premises does not make the conclusion 
likely. The study of inductive strength and weakness is the study of inductive logic. We 
will not explore inductive logic in this book. We will concentrate on what is called 
deductive logic—the study of validity of arguments. 
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Argument forms 

Consider the two arguments we saw in the previous section. These arguments share 
something very important: their shape, or structure. We say the argument has the 
following form: 

If p then not q 
q 
Therefore, not p 

Both of our arguments have this form. The first argument has got exactly this shape. If 
we let p stand for ‘everything is determined’ and q stand for ‘people are free’ then we get 
the original argument back, more or less. I say ‘more or less’ because you must do a little 
fiddling to get the exact wording of the original argument. The fiddling is not hard, so I 
will not pause to examine it here. 

The second argument has the same shape. In this case p stands for ‘people are 
mammals’ and q stands for the (less plausible) proposition ‘people are cold-blooded’. 
This form of the argument is important, as any choice of propositions for p and q will 
make a valid argument. For example, when we choose ‘utilitarianism is true’ for p and 
‘we should always keep our promises’ for q, we have this instance: 

If utilitarianism is true, we should not always keep our promises. 
We should always keep our promises. 
So utilitarianism is not true. 

Find other example arguments for yourself by choosing other propositions for p and q. 

In general, a prepositional form is found by replacing ‘sub-propositions’ inside a given 
proposition by letters. The result is said to be a form of the original proposition. 

For example, ‘If p then it will rain’ is a form of ‘If it is cloudy then it will rain’, for we 
have replaced ‘it is cloudy’ by p. Similarly, ‘If p then q’ is a form of ‘If it is cloudy then 
it will rain’, as we have replaced q by ‘it will rain’. 

Given a prepositional form, we say that a sentence is an instance of that form if we get 
the sentence (or a sentence with the same meaning) by replacing the single letters by 
sentences. 

So, ‘If it is cloudy then it will rain’ is an instance of ‘if p then q’. ‘If Queensland bat first, 
they will score well’ is also an instance of ‘if p then q’, where p is replaced by 
‘Queensland bat first’ and q is replaced by ‘Queensland will score well’. (It is better to 
choose this over ‘they will score well’, as this sentence will mean other things in different 
contexts.) 

In prepositional forms, we can repeat the same letter. For example ‘maybe p and 
maybe not p’ is a perfectly decent form, with instances ‘maybe he will, and maybe he 
won’t’ and ‘maybe Queensland will win, and maybe Queensland will not win’. In these 
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cases, we must substitute the same sentence for each instance of the one letter. Finally, an 
argument form is made up of prepositional forms as premises, and another propositional 
form as conclusion. An instance is found by replacing each instance of each letter by the 
one sentence. 

When every instance of an argument form is valid, we call it a valid argument form, 
for the obvious reasons. If an argument is of a form that we know is valid then we know 
that the argument is valid. So, given a valid argument form, you can construct valid 
arguments to your heart’s content. Valid arguments can be constructed out of valid 
argument forms, and formal logic is the study of argument forms. Our study of logic will 
concentrate on the study of forms of arguments. 

Be warned—an argument can be an instance of an invalid form, while still being valid. 
As an example, our arguments are valid, but they also have the following form: 

If p then q 
r 
Therefore, s 

which is not a valid form. This form has plenty of invalid instances. Here is one: 

If you are the Pope, you are Catholic. 
Two is an even number. 
Therefore, the moon is made of green cheese. 

This argument is not valid, since the premises are true and the conclusion is false. 
However, this form has valid instances. Our original argument is given by letting p be 
‘everything is determined’, q be ‘people are not free’, r be ‘people are free’ and s be ‘not 
everything is determined’. This is a perfectly decent instance of our form. The argument 
is valid, but the form is not. This is not a problem for the idea of forms—it simply shows 
us that this new form is not descriptive or specific enough to account for the validity of 
the original argument. That argument is valid, but this second form is not specific enough 
to exhibit that validity. Our original form is specific enough. 

Summary 

So, to sum up, we have the following facts about validity and argument forms. 

• For an argument to be valid, in any circumstance in which the premises are true, so is 
the conclusion. 

• For an argument to be invalid, there has to be some possibility in which the premises are 
true and the conclusion is not true. 

• An argument form exhibits some of the structure of an argument. 
• If an argument has a particular form, that argument is said to be an instance of that 

argument form. 
• An argument form is valid if and only if every instance of that form is valid. 
• An instance of a valid argument form is always a valid argument. 
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• Instances of invalid forms may be valid. 

Further reading 

For much more on the difference between sentences that express propositions and those 
that do not, see A.C.Grayling’s An Introduction to Philosophical Logic, Chapter 2 [8]. 

Mark Sainsbury’s book Logical Forms is an introduction to logic that focuses on 
logical forms [25]. The exact boundary between logical form and non-logical form is a 
matter of a great deal of debate. Gila Sher’s book The Bounds of Logic [26] is a technical 
discussion of the boundary between logical form and other notions of form that might not 
be appropriately called ‘logical’. 

Exercises 

Each set of exercises is divided into two sections. Basic questions reinforce the ideas and 
concepts of the chapter. Advanced questions extend the material to other areas, and are 
harder. Attempt each basic question, until you have mastered the material. Then go on to 
the advanced questions. 

Basic 
{1.1} Which of these sentences express propositions? What do the other sentences express? 

(Examples might be questions, commands, exclamations, wishes.) 

1 Sydney is north of Melbourne. 

2 Is Edinburgh in Scotland? 

3 The moon is made of swiss cheese. 

4 Did you see the eclipse? 

5 What an eclipse! 

6 Would that I were good at logic. 

7 Look at the eclipse. 

8 I wish that I were good at logic. 

9 7+12=23 

10 If you get Kelly you will be rewarded. 

{1.2} Consider the following argument forms: 

  Modus Ponens Modus Tollens 

  If p then q If p then q 

  p not q 

  Therefore q Therefore not p 
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  Hypothetical Syllogism Affirming the Consequent 

  If p then q If p then q 

  If q then r q 

  Therefore if p then r Therefore p 

  Disjunctive Syllogism Disjunction Introduction 

  Either p or q If p then r 

  Not p If q then r 

  Therefore q Therefore if either p or q then r 

  In these argument forms, instances are found by substituting propositions for p, q and r. 
Which of these argument forms are valid? Of the forms that are invalid, find instances that 
are not valid, and instances that are valid. 

{1.3} Consider the following arguments: 

  1 Greg and Caroline teach PHIL137. Caroline teaches Critical Thinking and PHIL132. 
Therefore Greg teaches PHIL137 and Caroline teaches PHIL132. 

  2 Greg and Caroline teach PHIL137. Caroline and Catriona teach PHIL 132. Therefore Greg 
teaches PHIL137 but not PHIL132. 

  3 Greg teaches PHIL137 and PHIL280. Caroline teaches PHIL137. Therefore Greg and 
Caroline teach PHIL137. 

  For each argument, which of the following forms does it exhibit? 

  1 p and q, r and s; therefore t 

  2 p, q; therefore r 

  3 p and q, q and r; therefore p and r 

Advanced 
{1.4} It is not always easy to tell whether or not a sentence expresses a proposition. What do you 

think of these? 

  1 2+the Pacific Ocean=Beethoven 

  2 The present King of France is bald.1 

  3 This sentence is false. 

  4 This sentence is true. 

  5 ‘Twas brillig, and the slithy toves did gyre and gimble in the wabe.’ 

  Do they express propositions? If so, are they true, or are they false? Or are they something 
else? Opinions diverge on strange cases like these—what do you think? 

{1.5} Does every invalid argument form have valid instances? 

{1.6} Does every valid argument possess a valid form? 
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It is undesirable to believe a proposition  
when there is no ground whatever  

for supposing it true.  
—Bertrand Russell 

Note 
1 France has no king at present. 
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Chapter 2 
Connectives and argument forms 

As you saw in the last chapter, arguments have different forms, and we can use forms of 
arguments in our study of validity and invalidity of arguments. The forms of an argument 
bring to light a kind of structure exhibited by the argument. Different sorts of forms 
expose different sorts of structure. The first kind of structure we will examine is the 
structure given by prepositional connectives. These connectives give us ways to construct 
new propositions out of old propositions. The connectives form the ‘nuts and bolts’ in 
many different argument forms. The resulting theory is called propositional logic and it 
will be the focus of the first half of this book. 

Conjunction and disjunction 

Consider the two propositions 

An action is good when it makes people happy. 
Keeping your promises is always good. 

You might believe both of these propositions. You can assert both in one go by asserting 
their conjunction: 

An action is good when it makes people happy, and keeping your 
promises is always good. 

This is a single proposition—you may believe it or reject it, or simply be undecided. It is 
a special proposition, because it is related to two other propositions. It is said to be the 
conjunction of the original propositions. The conjunction is true just when both conjuncts 
are true. If either of the original propositions is false, the conjunction is false. 

More generally, given two propositions p and q, their conjunction is the proposition 
p&q   

The original propositions p and q are the said to be the conjuncts of p&q. We use the 
ampersand symbol ‘&’ as a handy shorthand for ‘and’ when describing forms of 
propositions. 

Sometimes a sentence uses the word ‘and’ to connect parts of speech other than 
phrases. For example the ‘and’ in the sentence 

Justice and tolerance are valuable. 



connects the words justice and tolerance, and these words do not (by themselves) express 
propositions. However, the sentence is still a kind of conjunction. At the very least, it 
seems to have the same meaning as the conjunction of the two sentences 

Justice is valuable. Tolerance is valuable. 

because saying Justice and tolerance are valuable is a shorter way of saying the more 
long winded Justice is valuable and tolerance is valuable. 

However, you must be careful! Sometimes sentences feature the word ‘and’, without 
expressing conjunctions of propositions. For example, sometimes an ‘and’ does not join 
different propositions, but it joins something else. For example, if I say 

Colleen and Errol got married. 

this is not a conjunction of two propositions. It certainly is not the conjunction of the 
propositions Colleen got married and Errol got married, since that proposition 

Colleen got married and Errol got married. 

means something else. That conjunction does not say that Colleen and Errol married each 
other, whereas (at least in the colloquial speech familiar to me) to say Colleen and Errol 
got married is to say that they did marry each other. 

Furthermore, sometimes we use ‘and’ to join two propositions and it still does not 
express a simple conjunction. Sometimes we use ‘and’ to indicate a kind of order 
between the two propositions. For example, the two sentences 

I went out and had dinner. I had dinner and went out. 

say very different things. The first indicates that you went out and then had dinner. The 
second indicates that you had dinner and then went out. These are not propositional 
conjunctions in our sense, because making sure that ‘I had dinner’ and that ‘I went out’ 
are true is not enough to make it true that ‘I went out and had dinner’. For that, we 
require the right kind of order. 

For one last example of an ‘and’ that is not a conjunction, consider this case: a woman 
points a gun at you, and says 

One false move and I shoot. 

She is saying that if you make a false move, she will shoot. The conjunction of the two 
propositions, on the other hand, asserts that you will make one false move, and that she 
will shoot. This is obviously a different claim (and a different threat). 

It is a matter of some art to determine which ‘and’ claims really are conjunctions and 
which are not. We will not pursue this point here. Instead, we will look at other ways to 
combine propositions to form new ones. 
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We can assert that (at least) one of a pair of propositions is true by asserting their 
disjunction. For example, in the case of the good being what makes people happy, and the 
goodness of keeping your promises, you might think that keeping your promises is 
probably a good thing. But you’ve been reading the work of some utilitarians who make 
it seem pretty plausible to you that the good is grounded in human happiness. You’re 
undecided about the merits of utilitarianism, but you can at least claim this disjunction: 

Either an action is good when it makes people happy, or keeping your 
promises is always good. 

because you think that keeping promises is mostly good, and the only way that it could be 
bad is in those cases where keeping a promise prevents human happiness. 

Given two propositions p and q, we write their disjunction as The original 
propositions p and q are said to be the disjuncts of The disjunction is true 
just when either of the disjuncts is true. 

Disjunctions can be inclusive or exclusive. An inclusive disjunction leaves open the 
possibility that both disjuncts are true, while an exclusive disjunction rules out this 
possibility. The difference can be made explicit like this: 

Either an action is good when it makes people happy, or keeping your 
promises is always good (and possibly both). 

This is inclusive. You assert this when you think that utilitarianism might rule out the 
goodness of keeping promises, but it might not. Perhaps keeping promises does, on the 
whole, make people happier than they would otherwise be. 

If you think this is not a possibility then you can assert the exclusive disjunction: 

Either an action is good when it makes people happy, or keeping your 
promises is always good (and not both). 

In our study of connectives, we will use inclusive disjunction more than exclusive 

disjunction, so we will read as the inclusive disjunction of the propositions p 
and q. (The symbol comes from the Latin vel for ‘or’.) 

Conditionals and biconditionals 

Conjunctions combine pairs of propositions by asserting that both are true, and 
disjunctions combine them by asserting that at least one is true. Another way to combine 
propositions is to assert connections between them. For example, in your study of 
utilitarianism, you might conclude not that utilitarianism is true, or that it is false (you’re 
not convinced of either side here), but you are convinced that: 
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If an action is good when it makes people happy then keeping your 
promises is always good. 

More generally, given two propositions p and q, I can assert the conditional proposition 
‘if p then q’. The original proposition p is the antecedent, and q is the consequent of the 
conditional. We give the two parts different names because they perform different 
functions in the complex proposition. The proposition ‘if p then q’ is very different from 
the proposition ‘if q then p’. 

With conditionals, you have to watch out. The following all assert the same kind of 
connection between p and q, despite the different phrasing and ordering: 

If p then q If p, q q if p p only if q 

In each of these forms of sentences, p is the antecedent and q is the consequent. Here is a 
technique for remembering this fact: ‘If p’ signals that p is the antecedent of a 
conditional, whether it occurs at the beginning or the end of a sentence. So, ‘if p then q’ 
and ‘q, if p’ assert the same kind of connection between p and q. They both say that under 
the conditions that p occurs, so does q. On the other hand, ‘only if q’ signals that q is the 
consequent. If p is true only if q is true, then if p is true, so is q. 

Think of examples. If you know that if p then q, then once you find out that p is true, 
you know that q is true too. ‘Only if is the other way around. If you know that p only if q, 
then finding out that p still tells you that q is true too. So ‘p only if q’ has the same effect 
as ‘if p then q’. 

This does not mean that the forms ‘if p then q’ and ‘p only if q’ have exactly the same 
significance in all circumstances. If I say ‘p only if q’, I might signal that q is some kind 
of condition for p. For example, when I say 

I go to the beach only if it is fine. 

I am saying that fine weather is a condition for going to the beach. It sounds a little more 
surprising to say 

If I go to the beach, it is fine. 

for in this case it sounds as if I am saying that my going to the beach makes it fine. It 
sounds as if the relation of dependence goes in the other direction. However, in each case, 
I go to the beach is the antecedent, and it is fine is the consequent, for in either case, if I 
am at the beach, it follows that it is fine. 

Whatever words we use to express conditionals, we will write a conditional statement 
with antecedent p and consequent q as 

   

The antecedent is the condition under which the outcome (the consequent) occurs. 
We can indicate that a two-way connection holds between propositions by asserting a 

biconditional statement: 
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An action is good when it makes people happy if and only if keeping your 
promises is always good. 

Given two propositions p and q, the proposition p if and only if q is their biconditional. 
We call p and q its left-hand and right-hand expressions respectively. For symbolism, we 
write the biconditional as 

p≡q   

Note that the biconditional p≡q has the same meaning as & the 
conjunction of the two conditionals and  

In written English, you can abbreviate ‘if and only if by the shorter ‘iff’. This is still 
read aloud as ‘if and only if. I will use this abbreviation in the rest of the book. 

Negation 

One last way to form new propositions from old is provided by negation. We can assert 
the negation of a proposition simply by using a judiciously placed ‘not’. Here is an 
example: 

Keeping your promises is not always good. 

This is the negation of 

Keeping your promises is always good. 

You have to be careful in where you place the ‘not’ in a proposition in order to negate it. 
What we want is a proposition that simply states that the original proposition is false. We 
get a different proposition if we place the ‘not’ somewhere else. If I say 

Keeping your promises is always not good. 

I say something much stronger than the original negation. I’m saying that keeping 
promises is always bad—it is never good. This goes much further than simply denying 
the claim that keeping your promises is always a good thing. 

In general, given a proposition p, you can express the negation of p by saying ‘it’s not 
the case that p’. This is cumbersome, but it works in every case. We say that this 
proposition is the negation of p, and the original proposition p is the negand of the 
negation. We write the negation of p as 

~p   

Strictly speaking, negation is not a connective, as it does not connect different 
propositions. It is an operator, as it operates on the original proposition to provide 
another. However, we will abuse the terminology just a little, and call each of 
conjunction, disjunction, negation, the conditional and the biconditional connectives. 
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There are many more connectives that can be used to build propositions from others. 
Examples are ‘I believe that…’, ‘Max hopes that…’, ‘It is possible that…’, 
‘…because…’, and many many more. We will concentrate on the connectives already 
seen, for they form the core of a lot of our reasoning, and they are, by far, the simplest 
connectives to deal with. In Chapter 6 we will look a little at operators for possibility and 
necessity, but for now we focus on the connectives we have already considered: 
conjunction, disjunction, the conditional and biconditional, and negation. 

A Language of forms 

To summarise what we have seen so far, we have symbols for each of the prepositional 
connectives (Table 2.1). We can use these connectives to form the basis for a formal 
language, a language of forms, to describe the structure of arguments. We use a basic 
stock of symbols to represent propositions. There is nothing special about the particular 
symbols we use, as long as we have enough of them, and as long as we don’t use any of 
the connectives as symbols standing for propositions (that would be too confusing). We 
will always use lower-case letters, and if that isn’t enough, we  

Table 2.1 Prepositional connectives 

Name Reading Symbol 

Conjunction …and… & 

Disjunction …or…  
Conditional if…then…  
Biconditional …if and only if… ≡ 

Negation not ~ 

will resort to lower-case letters subscripted by numbers. So, here are some examples: 
p q j k r3 s14   

These symbols are called atomic propositions, or atomic formulas, because they have no 
significant parts. (As far as we are con-cerned, p14 has nothing more to do with p15 than it 
has to do with q. Each atomic proposition is unrelated to all others.) They are atoms. 

We then use the connectives to form new propositions from old, using a number of 
rules. The rules go like this: 

• Any atomic formula is a formula. 
• If A is a formula, so is ~A. 

• If A and B are formulas, so are (A&B), and (A≡B).
• Nothing else is a formula. 

So, things like 
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are all formulas, as they are built up from the atomic formulas by way of the rules. For 
example: 

• p and q are formulas (they are atoms). 
• So, (p&q) is a formula (it is a conjunction of the two formulas p and q). 
• r is a formula (it is an atom). 

• So, is a formula (it is a conditional made up of two formulas: (p&q) 
and r). 

The other two example formulas are built up using the rules in a similar way. We 
sometimes call these formulas well formed to contrast with collections of symbols that 
are not formulas. 

The following expressions are built from the atomic formulas using the connectives 
and negation, but they are not formulas, because they cannot be built up using the 
formation rules: 

   

The first, p~, is not a formula, since a negation always attaches to a formula on its left. 
The second, (p&q&r), is not a formula, since the rule for introducing conjunctions always 
wraps parentheses around the conjuncts. To form a three-place conjunction, you must use 
either (p&(q&r)) or ((p&q)&r). 

The case of the other two non-formulas is similar. The biconditional should be used 
between other formulas, not prefixing them, and in the last example, we should either 
bracket (p≡q) or  

We say that a formula is complex if and only if it is not atomic. Complex formulas 
always involve connectives, and we say that the main connective of a complex formula is 
the connective that was last added in its construction. An atomic formula has no main 
connective, since it contains no connectives at all. 

The main connectives of each of the formulas displayed above are given in Table 2.2. 
Finally, to save us from writing too many pairs of parentheses, we will ignore the 

outermost set of parentheses in any formula, if the main connective is not a negation. So, 
we write 

   

That completes the definition of formulas. We will use formulas to define argument 
forms, and to study them. 
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Table 2.2 Main connectives of displayed 
formulas 

Formula Main connective 

  

 
~ 

  

More argument forms 

We have just considered different forms of propositions made out of other propositions. 
These are called complex propositions. And a proposition that is not complex is said to be 
atomic. Given an argument, we can find its most descriptive propositional argument form 
by analysing the structure of its propositions. We do this by forming a dictionary of the 
atomic propositions in the argument, and rewriting the argument in terms of these atomic 
propositions. An example will illustrate the process. Take the argument: 

If the dog ran away, the gate was open. 
If the gate was open, Anne didn’t close it. 
Therefore, if Anne closed the gate, the dog did not run away. 

The atomic propositions in this argument are 

The dog ran away. The gate was open. Anne closed the gate. 

All the propositions in the argument are made out of these atomic propositions using our 
connectives. So, we let atomic formulas stand for these propositions. We can make a 
dictionary to record the letters standing for each proposition: 

r=The dog ran away 
o=The gate was open 
c=Anne closed the gate 

  

Then we have the following argument form: 

 

  

This argument form exhibits the shape of the original argument. Let’s do another 
example. We will find the most descriptive form of this argument: 

If you’re going to the party, Max won’t come. 
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If Max comes to the party, I’ll have a good time if Julie’s there too. 
Therefore, if you’re going to the party but Julie’s not, I won’t have a 

good time. 

We formulate the dictionary of atomic propositions, choosing letters as appropriate: 
p=You’re going to the party 
m=Max comes to the party 
g=I’ll have a good time 
j=Julie is at the party 

  

We then have the following form: 

 

  

This example is more difficult. We had to ‘massage’ the atomic propositions to make the 
dictionary. For example, j is Julie is at the party not Julie’s there too. Second, we have 
read the ‘but’ in the conclusion as a conjunction. We formalise you’re going to the party 
but Julie’s not as p&~j; literally, you are going to the party and it is not the case that Julie 
is at the party. Despite all these changes, we have not done too much violence to the 
original argument to read it in this way.1 Once we have argument forms, we use the 
techniques of formal logic to study the forms. 

There is much more that can be said about finding forms of arguments. However, we 
will go on to actually analyse argument forms in the next chapter. To get more experience 
in discerning forms, go through the exercises. 

Summary 

Here is the formal language we have defined: 

• We have a stock of atomic formulas, written using lower-case letters. 
• If A and B are formulas, their conjunction (A&B) is a formula. (A&B) is read ‘A and B’. 
• If A and B are formulas, their disjunction is a formula. is read ‘A 

or B’. Disjunctions may be inclusive (A or B or both) or exclusive (A or B but not 
both). 

• If A and B are formulas, their conditional is a formula. is read ‘if 
A then B’. A is the antecedent and B is the consequent of the conditional. 

• If A and B are formulas, their biconditional (A≡B) is a formula. (A≡B) is read ‘A if and 
only if B’, and ‘if and only if is often abbreviated as ‘iff’. 

• If A is a formula, then its negation ~A is also a formula. ~A is read ‘it is not the case that 
A’, or simply ‘not A’. 

• A atomic proposition is a proposition that is not a conjunction, disjunction, conditional, 
biconditional or negation. 
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• You can find the most descriptive propositional form of an argument by forming a 
dictionary of the atomic propositions in the argument, and then rewriting the argument 
in terms of these atomic propositions, replacing each atomic proposition in the 
argument by an atomic formula. 

Exercises 
{2.1} For each of the following negations, find its negand: 

  1 Greg is not in town. 

  2 Fred is not very smart. 

  3 Minh isn’t a bad student. 

  4 Not every car is fuel-efficient. 

  5 That car is neither red nor a diesel. 

{2.2} For each of the following conjunctions, find both conjuncts: 

  1 It is −5 degrees and the clouds are grey. 

  2 He was tired but he wanted to keep going. 

  3 Although the waves were breaking, the surf was low. 

  4 In spite of there being a strike, the power was not cut. 

  5 Fred and Jack are not mechanics. 

{2.3} For each of the following disjunctions, find both disjuncts: 

  1 Either Eric is there or Yukiko is there. 

  2 The car is either white or yellow. 

  3 Brian is doing a Ph.D. or a Masters degree. 

  4 Either it rains or it doesn’t. 

  5 I’ll have coffee or tea. 

{2.4} For each of the following conditionals, find the antecedent and the consequent: 

1 If it is raining, I’ll walk home. 

2 If you look outside, you’ll see the nice garden I planted. 

3 If I’m tired, I don’t do my logic very well. 

4 I do logic well only if I’m awake. 

5 I do logic well if I’m awake. 

6 You will pass if you work hard. 

7 The world’s future is assured only if we get rid of nuclear weapons. 

8 The world’s future is assured if we get rid of nuclear weapons. 
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9 If Oswald didn’t shoot Kennedy, someone else did. 

10 If Oswald hadn’t shot Kennedy, someone else would have. 

{2.5} For each of the following complex propositions, determine what kind of proposition it is, 
and the sub-propositions that went into its construction. If these propositions are complex, 
continue the process until you get to atomic propositions. (For example, for the proposition 
Max is a PHIL134 student and he isn’t doing badly, we analyse it like this: It is a con-
junction, with conjuncts Max is a PHIL134 student and Max is not doing badly. Max is a 
PHIL134 student is atomic. Max is not doing badly is a negation, with the negand Max is 
doing badly.) 

  1 Christine is happy if she is not thinking about her thesis. 

  2 I don’t know if she’s coming to the party. 

  3 If Theodore is enrolled in PHIL134, and he passes, he can go on to do advanced logic 
subjects. 

  4 If Theodore isn’t enrolled in PHIL134, or if he doesn’t pass, then he cannot go on to do 
advanced logic subjects. 

  5 I believe, and you know, that you are either going to leave the party early or make a scene. 

{2.6} Use the dictionary 

  y=Yukiko is a linguist 

  c=Christine is a lawyer 

  p=Pavlos is a logician 

and translate the following formulas: 

1 ~y 

2  
3 ~y≡c 

4 
 

5 
 

6 y&c 

7 ~(y&p) 

8 ~(y≡c) 

9 ~~c 

10 
 

11  
12 y≡p 

13  
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14 
 

15 
 

{2.7} Translate the following sentences into formulas (using the same dictionary): 

1 Christine is not a lawyer. 

2 Yukiko is a linguist and Pavlos is a logician. 

3 If Pavlos is a logician then Yukiko is a linguist. 

4 Either Pavlos is a logician or Yukiko is not a linguist. 

5 It’s not the case that both Pavlos is a logician and Christine is a lawyer. 

6 Yukiko is a linguist only if both Pavlos is a logician and Christine is not a lawyer. 

7 Christine is a lawyer if either Yukiko is a linguist or Pavlos is not a logician. 

8 Yukiko is a linguist if and only if either Pavlos is a logician or Christine is not a lawyer. 

9 Either Pavlos is a logician, or Yukiko is a linguist only if Christine is a lawyer. 

10 Either Pavlos is a logician or Yukiko is a linguist, only if Christine is a lawyer. 

{2.8} Which of the following are well-formed formulas? 

1 ~p 

2 p~~ 

3 
 

4 
 

5  
6 ~~r 

7  
8 

 
9 ~p&q 

10 p&~p 

I am not a crook.  
—Richard Nixon 

Note 
1 If there is any more information in you’re going to the party but Julie’s not over and above 

you are going to the party and it is not the case that Julie is at the party, it is probably to be 
found in our expectations of this conjunction being surprising, and not in any more facts 
about who is at the party and what might happen. 
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Chapter 3 
Truth tables 

In the last chapter, we introduced a formal language, to describe the structure of 
arguments. We will now use this formal language to analyse argument forms. To do this, 
we will examine how each connective interacts with truth and falsity, since the truth and 
falsity of the premises and conclusions of arguments are involved so intimately with the 
validity of arguments. 

Truth tables 

We can now go some way in finding how the connectives work in arguments, by noting 
that propositions are the sort of things that can be true, or false. And the truth value of a 
complex proposition depends crucially on the truth value of the propositions out of which 
it is made. 

To take a simple example, if p is true then its negation, ~p is false. And if p is false 
then ~p is true. Writing this in a table, with 1 to stand for true and 0 for false, we get this 
table: 
p ~p 

0 1 

1 0 

In this table, the two rows represent the two different possibilities for the truth of p. In the 
first row (or the first case as we will sometimes say), p is false. In that case, ~p is true. In 
the second row, p is true, so in that case, ~p is false. 

Negation is simplest, as it is a one-place connective. The other connectives have two 
places, as they combine two propositions. Given two propositions, p and q, there are four 
different cases of truth and falsity: 
p q 

0 0 

0 1 

1 0 

1 1 

If p is false, there are two possibilities for q. On the other hand, if p is true, there are two 
possibilities for q. That makes 2×2=4. (Similarly, given three propositions, p, q and r, 
there are eight different possibilities, since there are the four for p and q, com-bined with 
r being true, and the same four, combined with r being false. More generally, given n 
different propositions, there are 2×2×…×2 (n times), which is 2n different cases.) 



Anyway, back to the other connectives. Let’s start with conjunc-tion. The conjunction 
p&q is true just when p and q are both true, and it is false otherwise. So, the table for 
conjunction goes like this: 
p q p&q 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

The only row in which the conjunction p&q is true is the row in which both p and q are 
true. In all other rows, the conjunction is false. 

The disjunction, is true just when at least one of p and q are true. Recall that 
we treat disjunction as inclusive. If both disjuncts are true then the whole disjunction is 
true. If just one disjunction is true then the whole disjunction is true. So, we have this 
table: 
p q  
0 0 0 

0 1 1 

1 0 1 

1 1 1 

The only row in which the disjunction is false is the row in which both disjuncts are false. 
Before going on to consider the other connectives, let’s see how we can use truth 

tables to deal with more complex propositions. Let’s consider the formula ~(p&~q). This 
is the negation of the conjunction p&~q, which is the conjunction of the atomic formula p 
with the negation ~q. The truth value of this formula depends on the values of p and q, so 
there are four different cases to consider. We start with a table like this, which displays 
the atomic formulas to the left, to indicate the four different cases. 
p q ~ (p & ~ q) 

0 0   

0 1   

1 0   

1 1   

To calculate this truth value of the complex proposition, we first must calculate the value 
of ~q in terms of the value of q. So, we repeat the values of q under where it occurs here, 
and then we write the values of ~q under the negation sign, which is the main connective 
of the negation ~q. This gives us the next stage of the production of the table: 
p q ~ (p & ~ q) 
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0 0       1 0 

0 1       0 1 

1 0       1 0 

1 1       0 1 

Now, equipped with the values of ~q in each case, we can calculate the value of the 
conjunction p&~q in each case. We repeat the value of p under the ‘p’ occurring in the 
proposition, and then we use this value together with the value of ~q, to find the value of 
the conjunction, using the table for the conjunction. We write the value of the 
conjunction, in each case, under the ampersand. This gives us the following table: 
p q ~ (p & ~ q) 

0 0   0 0 1 0 

0 1   0 0 0 1 

1 0   1 1 1 0 

1 1   1 0 0 1 

The third row is the only case in which p and ~q are both true, so it is the only case in 
which the conjunction p&~q is true. To complete the table, we negate the value of p&~q 
and write the result under the negation sign, the main connective of the whole formula:  
p q ~ (p & ~ q) 

0 0 1 0 0 1 0 

0 1 1 0 0 0 1 

1 0 0 1 1 1 0 

1 1 1 1 0 0 1 

We have written this in boldface to indicate that this column provides the value of the 
whole proposition in each different case. This technique can be generalised to provide the 
truth values of formulas as complex as you please. For formulas containing three 
different atomic formulas, we have a table of eight rows, for formulas containing four 
atomic formulas, we have sixteen rows, and so on. Each row of the table represents a 
different possibility or case. No matter what truth value had by the atomic propositions p, 
q, r and so on, the corresponding row of the truth table tells you the truth value of the 
complex formula made up of those atomic formulas. 

Now, to complete our definition of truth tables for complex formulas, we need to see 
the tables for the conditional and the biconditional. These cases are a little more involved 
than those for the other connectives. 

The conditional has the same truth table as the complex proposition ~(p&~q). 
We have already seen this table. This proposition is false only when p is true and q is 
false, and it is true in each other case. 
p q  
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0 0 1 

0 1 1 

1 0 0 

1 1 1 

The conditional has this truth table because the conditional is intimately 
connected to ~(p&~q). Consider the two following lines of reasoning. 

• If is true then if p is true, q must be true (that is what a conditional says, after 
all), so you do not have p true and q false, so p&~q is not true, and consequently, 
~(p&~q) is true. 

• Conversely, if ~(p&~q) is true, consider what happens if p is true. In that case, you 
don’t have q false, since p&~q is not true (that is what we have assumed: ~(p&~q) is 
true). So, if you don’t have q false, q must be true. So if p is true, so is q. In other 
words, is true. 

According to these two small arguments has the same truth value as ~(p&~q), 
and so is false only when p is true and q is false. A conditional is false if and only 
if there is an explicit counterexample—that is, if and only if the antecedent is true, and 
the consequent is false. 

In Chapter 6, we will discuss the interpretation of the conditional further, as not 
everyone is happy with this analysis. For now, however, we will use this truth table for 
the conditional. The conditional defined in this way is often called the material 
conditional, to make clear that alternate definitions for the conditional are possible. 

The only remaining connective is the biconditional. The biconditional p≡q acts like 
the conjunction of and As a result, it is false if p is true and q is false, or 
if p is false and q is true. It is true otherwise. So, it has this table:  
p q p ≡ q 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

In this table, p ≡ q is true if and only if p and q have the same truth value. 
Before going on to see how we can use truth tables to evaluate argument forms, let’s 

see another example of a truth table for a complex proposition, this time for 

 
p q ((p ≡ q & p)  q 

0 0 0 1 0 0 0 1 0 

0 1 0 0 1 0 0 1 1 
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1 0 1 0 0 0 1 1 0 

1 1 1 1 1 1 1 1 1 

We have used exactly the same technique to construct this table. First we find the values 
for p≡q, given the values of p and q. Then we can find the values of the conjunction 
(p≡q)&p. Finally, we combine this value with that of q, to get the truth value of the entire 
proposition, in each row. This is the column in boldface. 

You will notice that this proposition is special. No matter what values p and q have, 
the proposition is always true. We call such a proposition a 
tautology. Now matter how things are, a tautology is true. 

We call a proposition that is false in every row a contradiction, or we will call it 
inconsistent. Here is an example contradiction with its truth table:  
p q ((p  q) & p) & ~ q 

0 0 0 1 0 0 0 0 1 0 

0 1 0 1 1 0 0 0 0 1 

1 0 1 0 0 0 1 0 1 0 

1 1 1 1 1 1 1 0 0 1 

If a proposition is neither a tautology nor a contradiction, there are some cases in which it 
is true and some cases in which it is false. These are called contingent propositions. 

The general method for making truth tables for propositions is given in Box 3.1. 
Each row of the truth table represents a way the world could be. To make sure we 

represent all possible circumstances, we distri-bute every possible combination of truth 
values (true and false) to each atomic proposition. Then the values of more complex 
propositions are built up from the values of simpler propositions. If a proposition has the 
value ‘true’ no matter what the value of the atomic propositions then it must be true, no 
matter what the world is like. It is a tautology. Conversely, if it cannot be true, it is a 
contradiction. If it could be true, and it could be false, it is a contingency. 

In the rest of this book, we will call each row of a truth table an evaluation of the 
formulas. We say that an evaluation satisfies a formula when the formula is assigned the 
value 1. It follows that tautologies are satisfied in every evaluation, contradictions are 
satisfied in no evaluation, and contingencies are sometimes satis-fied and sometimes not.  

Box 3.1 Construction of truth tables for propositions 

• Write the proposition in question, and list its atomic propositions to one side. 
• Draw enough rows (2n for n atomic propositions) and put the different combinations of 

0s and 1s under the atomic propositions. 
• Repeat these columns under the atomic propositions in the formula. 
• Then work outwards using the rules. 
• The column containing the main connective gives the value of the formula. This is the 

final column. 
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• If the final column contains no zeros, then the proposition is always true, it is a 
tautology. 

• If the final column contains no ones, the proposition is never true, and it is is a 
contradiction, it is inconsistent, 

• If it is neither of these, it is sometimes true and sometimes false, and then it is said to be 
contingent. 

Truth tables for arguments 

You also can use truth tables and evaluations to examine argument forms. To do this, you 
make one table evaluating the premises and the conclusion of the argument. This will 
give you a list of all of the different possibilities pertaining to the premises and the 
conclusion, and you will be able to use this to check if there is any possibility in which 
the premises are true and the conclusion is false. 

Here is an evaluation of the argument form therefore p≡q:  
p q p  q q  p p ≡ q 

0 0 0 1 0 0 1 0 0 1 0 

0 1 0 1 1 1 0 0 0 0 1 

1 0 1 0 0 0 1 1 1 0 0 

1 1 1 1 1 1 1 1 1 1 1 

In this case, the argument form is valid, since the only cases in which the premises are 
both true (shown here in the first and the fourth rows) are cases in which the conclusion 
is also true. Using the technical terminology of the previous section, any evaluation that 
satisfies both of the premises also satisfies the conclusion. We symbolise this as follows: 

   

The symbol ‘╞’ records the validity of the argument form. We say that the premises 
entail the conclusion. 

If X is a set of formulas and A is a formula then X entails A (written ‘X╞A’) if and only 
if every evaluation satisfying every formula in X also satisfies A. Or, equivalently, there 
is no evaluation that satisfies X that does not also satisfy A. 

Truth tables also give us the tools for exhibiting the invalidity of argument forms. 
Consider the argument form that proceeds from the premises and ~p to the 
conclusion ~q. The table looks like this: 
p q p  q ~ p ~ q 

0 0 0 1 0 1 0 1 0 

0 1 0 1 1 1 0 0 1 

1 0 1 0 0 0 1 1 0 
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1 1 1 1 1 0 1 0 1 

In this table, we do have a case in which the premises are true and the conclusion false. 
The second row provides an evaluation that satisfies both premises, but fails to satisfy the 
conclusion. We register the invalidity of the argument form with a slashed ‘╞’. We write 

   

to say that the premises do not entail the conclusion. The truth table gives us more 
information than the mere invalidity of the argument. It also provides an evaluation in 
which the premises are true and the conclusion false. The second row is such an 
evaluation. We write the evaluation like this: 

p=0 q=1   

This evaluation is a counterexample to the argument form. It gives us a way to make the 
premises true and the conclusion false. 

Let us consider a longer example. We will show that 

   

In other words, we will show that the argument form from and 
to is valid. The table has eight rows, as the argument form has three atomic 
formulas: 
p q r ~ p  (q  r) ~ q  r p  r 

0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 

0 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 

0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 

0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 

1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 

1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 

1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 

1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 

The table has two rows in which the conclusion is false: rows 5 and 7. In row 5, the 
second premise is false, and in row 7, the first premise is false, so there is no evaluation 
satisfying both premises that does not also satisfy the conclusion. 

Before we depart truth tables, it is interesting to note that tables give us a decision 
procedure for the valid argument forms in the propositional calculus. Given any (finite) 
argument form, we can find in a finite (but perhaps very long) time whether or not it is 
valid. Not every system of rules for determining validity has this property. 
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Finding evaluations quickly 

For all the good things about truth tables, it is obvious that making the truth tables of big 
formulas or for long arguments takes up a lot of time and space. Try this one, for 
example: 

 
  

It would take 28=256 rows, which is a lot more than I am willing to do. Once we know 
that it is possible in practice to decide whether or not something is a tautology (or an 
argument form is valid), the thing to do is to get better ways of doing it. And one way 
that is often (but not always) an improvement on truth tables is called the method of 
assigning values (MAV). The rationale is straightforward: to show that an argument form 
is valid (or that a formula is a tautology—we will consider this as a zero-premise 
argument for the moment), we must show that there is no evaluation in which the 
premises are true and the conclusion false. So, to show that, try to find such an 
evaluation. If there is one, it is not valid. If there isn’t, it is valid. The method goes like 
this: 

• Put a 0 under the main connective of the conclusion and a 1 under the main connective 
of the premises (if any). 

• Then, work inward to the atomic propositions—put down the values of any other 
propositions that are forced by the ones you already have. If nothing is forced, write 
down two rows—one for each possibility. 

• If you can complete this process, you have a counterexample to the validity of the 
argument. If not—that is, if you find you are forced to assign both 0 and 1 to some 
proposition—you know that it is valid. 

Here is an example: we will test the argument from 
to We write down the premise and the 

conclusion, with a line below, with a ‘1’ under the main connective of the premise, and a 
‘0’ under the main connective of the conclusion: 
((p  q) & (q  r)) & (r  s) (r & s)  p 

              1             0   

Then this forces more values. The conjunction in the premise is true, so both of its 
conjuncts are true. The conditional in the con-clusion is false, so we must have the 
antecedent true and the consequent false: 
((p  q) & (q  r)) & (r  s) (r & s)  p 

      1       1   1     1   0 0 

Then, other values are forced too. The p in the conclusion is false, so it must be false in 

the premise too. Similarly, the conjunction is true, so both 
conjuncts must be true. Similarly, r&s must be true, so both r and s are true:  
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((p  q) & (q  r)) & (r  s) (r & s)  p 

0 1   1   1   1   1   1 1 1 0 0 

The truth of r and s gives us values to distribute in the premises. These values are 
compatible with  being true. (If we already knew that had to be false, we 
couldn’t proceed, and then we’d know that the argument was valid, as we wouldn’t be 
able to find a counterexample.) We can then let q be either true or false—it doesn’t 
matter which. My choice is false, and we have the following completed table: 
((p  q) & (q  r)) & (r  s) (r & s  p 

0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 

So, the argument is not valid, as we have an evaluation satisfying the premise, but not the 
conclusion:  

p=0 q=0 r=1 s=1   

Here is another case of MAY, this time testing the argument from p≡q and 

to q≡r. We proceed as before, starting off by trying to set the 
premises as true and the conclusion false: 
p ≡ q (q & r) ≡ (p  r) q ≡ r 

  1         1         0   

But now, we have some choices. No other value is forced by the values we have. For 
example, to make q≡r false, we can either make q true and r false, or vice versa. So, we 
need two rows: 
p ≡ q (q & r) ≡ (p  r) q ≡ r 

  1 1 1   0 1     0 1 0 0 

  1 0 0   1 1     1 0 0 1 

The values for q and r in each row then tell us the values of q&r. The value of q gives us 
the value of p too, since p≡q is set as true. So, our two cases look like this: 
p ≡ q (q & r) ≡ (p  r) q ≡ r 

1 1 1 1 0 0 1 1   0 1 0 0 

0 1 0 0 0 1 1 0   1 0 0 1 

Now we are in trouble! Given the values of p and r, is true in each row. However, 

we want to be true, while having q&r false. We are stuck. There 
is no evaluation we can give to meet our demands. We mark this by writing ‘×’ in 
the spot:  
p ≡ q (q & r) ≡ (p  r) q ≡ r 
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1 1 1 1 0 0 1 1 × 0 1 0 0 

0 1 0 0 0 1 1 0 × 1 0 0 1 

This shows that there is no evaluation that makes p≡q and both 
true while making q≡r false. It follows that the argument is valid. We have 

   

This completes our tour of truth tables and the method of assigning values. You now have 
the basic tools required to check lots of different argument forms for validity. Try the 
exercises to practise your skills. 

Summary 

• To form a truth table for a formula, or an argument form, write down all the formulas in 
a row, with the atomic formulas occuring in these formulas to the left. 

• Under the top row, add 2n rows, where n is the number of atomic formulas. Then put all 
the different combinations of 0s and 1s under the atomic propositions to the left. 

• Repeat these columns under the atomic propositions in each formula. 
• Then work outwards using the truth tables for each connective. You must remember 

these rules! 
• If you are testing one formula, the column containing the main connective of the 

formula is its value. If this column is all 1s, the formula is a tautology. If it is all 0s, 
the formula is a contradiction. Otherwise, it is contingent. 

• If you are testing an argument form, the form is valid if and only if in every row in 
which the premises are true, so is the conclusion. It is invalid if and only if there is 
some row in which each premise is true and the conclusion is false. 

• Each row of a truth table is an evaluation of the formulas. An argument form is valid if 
and only if there is no evaluation according to which the premises are true and the 
conclusion is false. Or equivalently, every evaluation satisfying the premises also 
satisfies the conclusion. 

• We write ‘X╞ A’ to indicate that the argument form from X to A is valid. 
• The method of assigning values is a technique for finding evaluations more quickly than 

listing all of them in a truth table. To test whether a formula is a tautology, you 
attempt to construct an evaluation that makes the formula false. If there is (at least) 
one, the formula is not a tautology. If there isn’t one, the formula is a tautology. 

• To test an argument form using the method of assigning values, try constructing an 
evaluation making the premises true and the conclusion false. If there is (at least) one, 
the argument form is invalid. If there isn’t one, the argument form is valid. 
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Exercises 

Basic 
{3.1} Work out truth tables for the formulas in Exercise 2.6 in the previous chapter. You may not 

want to do all of them, but do them until you get the hang of them. 

{3.2} Which of 

and are tautologies? 

{3.3} Two formulas are said to be equivalent iff they have the same truth value under any 
evaluations. In other words, if you do a combined truth table for both propositions, they 
have the same value in each row. 

  1 Show that p and ~~p are equivalent. 

  2 Show that p&q and q&p are equivalent. 

  3 Show that and are equivalent. 

  4 Are any of and equivalent? 

  5 Are any of and equivalent? 

{3.4} Test these argument forms. Before testing them, note down your intuitive judgement of the 
validity of the argument. Then, compare your estimation with the result you get by truth 
tables (or MAV). Is there ever a conflict between your intuitive judgement and the result of 
truth tables? In these cases, can you explain the difference? 

1 therefore q 

2 p, q therefore p≡q 

3 p&q therefore p≡q 

4 therefore q 

5 p, q therefore p&q 

6 p therefore  

7 p≡q, p≡~q therefore ~p 

8 therefore  

9 therefore ~p 

10 ~~p therefore p 

11 therefore  
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12 therefore  

13 p therefore  

14 therefore  

15 p therefore  

16 therefore  

17 therefore  

18 therefore  

19 therefore  

20 therefore  

{3.5} A radio commercial states: ‘If you’re thinking of orange juice but you’re not thinking of 
Orange Blossom, then you’re just not thinking of orange juice.’ The advertisers seem to 
think that it follows that if you’re thinking of orange juice, then you’re thinking of Orange 
Blossom. Does this follow? (Hint: Let j stand for ‘You’re thinking of orange juice’ and let b 
stand for ‘You’re thinking of Orange Blossom’. Test the resulting argument for validity.) 

{3.6} ‘We can’t make life better for the starving without spending money on the problem. 
Therefore, if we spend money on the 

  problem, we can make life better for the starving.’ Is this argument valid? Symbolise it and 
check its form. 

{3.7} Immanuel Kant wrote: ‘If a moral theory is studied empirically then examples of conduct 
will be considered. And if examples of conduct are considered, principles for selecting 
examples will be used. But if principles for selecting examples are used, then moral theory 
is not being studied empirically. Therefore, moral theory is not studied empirically.’ Is this 
argument valid? Symbolise it and check its form. 

{3.8} ‘I will get a pet or buy a cuckoo clock. If I get a pet, I will get a monkey. I will buy a 
cuckoo clock only if I meet a persuasive clock salesman. Therefore, I won’t both not get a 
monkey and not meet a persuasive clock salesman.’ Is this argument valid? Symbolise it 
and check its form. 

{3.9} ‘If it rains this afternoon only if I don’t need to water my plants then it rains this afternoon. 
Therefore, it rains this afternoon.’ Is this argument valid? Symbolise it and check its form. 

{3.10} If Josh works hard, he’ll be able to buy a car, and if Emily studies hard, she’ll be able to 
get a degree. Therefore, if Josh works hard, Emily will be able to get a degree, or if Emily 
studies hard, Josh will be able to buy a car.’ Is this argument valid? Symbolise it and check 
its form. 

{3.11} When we introduced disjunction, we noticed that sometimes it is used inclusively and 
sometimes it is used exclusively. We have seen the truth table for inclusive disjunction. 
Does exclusive disjunction have a truth table? If so, what is it? 
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Advanced 
{3.12} Look back at your answers to Exercises 3.5–3.10. In any case, did you think that the 

translation into logical form made the argument valid when it was really invalid, or invalid 
when it was really valid? Can you think of any reasons that might explain this? 

{3.13} A connective (write it as ‘•’ for the moment) is definable in terms of other connectives if 
and only if there is some expression involving those other connectives that is equivalent to 
p•q. 

  1 Show that inclusive disjunction is definable in terms of conjunction and negation, by 
showing that is equivalent to ~(~p&~q). 

  2 Define exclusive disjunction in terms of &, and ~. 

  3 Define exclusive disjunction in terms of & and ~. 

  4 Show that all of our connectives are definable in terms of & and ~. 

  5 Show that all of our connectives are definable in terms of and ~. 

  6 Show that not every connective is definable in terms of &, and  

  7 The ‘Sheffer stroke’ is defined with the table 

p q p|q 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

  (You can read p|q as ‘not both p and q’.) Show that every connective we have seen in this 
chapter is definable in terms of the Sheffer stroke. 

  8 List all possible truth tables of two-place connectives. There should be 24=16, as there 
are two choices in each of the four slots of the table. Give names for each that somehow 
reflect their operations on truth values. Show that each connective in this list is definable 

by the Sheffer stroke, and by any of the sets {&, ~}, and  

  9 Show that not every connective is definable in terms of ≡ and ~. 

{3.14} Work out truth tables for 

Substitute arbitrary propositions 

  for p, q and r (e.g. I’ll become a world-famous logician, Queensland has won the Sheffield 
Shield…). What does this tell you about as a translation of conditionals? Which of 
these formulas should come out as tautologies for the English conditional? 

{3.15} Which of the following statements are correct? Explain and justify your answers in each 
case. In each statement, X and Y are sets of formulas, and A, B and C are each single 
formulas. So, you should read X╞ A as ‘any evaluation satisfying everything in X also 
satisfies A’ and Y, A╞ B as ‘any evaluation satisfying everything in Y as well as A also 
satisfies B’. 
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1 If X╞A and Y, A╞B then X, Y╞B. 

2 
If X╞A then  

3 If X, A╞B and X, ~A╞B then X╞B. 

4 If X, A╞B then  

5 If then X, A╞B. 

6 
If then X╞~A. 

7 If X, A╞C and X, B╞C then  

8 If X, A&B╞C then X, A╞C or X, B╞C. 

9 If X, A╞C or X, B╞C then X, A&B╞C. 

10 If X, A╞B and X, A╞B then X╞A≡B. 

True and False are attributes of speech, not of things.  
And where speech is not,  

there is neither Truth nor Falsehood.  
—Thomas Hobbes 
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Chapter 4 
Trees 

Although the method of assigning values is a great improvement on truth tables, it too 
can get out of control. It often is difficult to keep track of what is going on, and you don’t 
get too much of an idea of why the argument is valid or invalid—all you get is one 
counterexample, if there is one. We will introduce another method for evaluating 
arguments that is as quick and efficient as the method of assigning values, but is much 
easier to handle, and that gives you more information about the argument form you are 
considering. The structures we will use are called analytic tableaux, or, more simply, 
trees. 

To introduce trees, it is helpful to get a good grip on the way validity of arguments 
works. The notation ‘╞’ for validity is important, and there is a little more that we can do 
with this idea of the consequence relation between premises and conclusions. Let’s first 
summarise the definition: 

X╞A if and only if any evaluation satisfying everything in X also satisfies A.

Or equivalently, if you prefer a negative statement, we have 

X╞A if and only if there is no evaluation satisfying everything in X that doesn’t satisfy A. 

Now, this works for any collection X of formulas. In particular, it works when X is empty. 
We write this as ‘╞A’. What does this mean? Well, it means that any evaluation 
satisfying everything in the empty set also satisfies A. Well, satisfying everything in the 
empty set is really easy. (After all, there is nothing in the empty set for an evaluation to 
make false!) So ‘╞A’ has this definition: 

╞A if and only if any evaluation satisfies A.

So, ╞A if and only if A is a tautology. That is one use of ‘╞’. Another use is when we 
leave out the formula A. Here, X╞ holds if and only if there’s no evaluation satisfying 
everything in X that doesn’t satisfy…what? There’s nothing to satisfy in the conclusion. 
So we have this definition: 

X╞ if and only if there is no evaluation satisfying everything in X.

So, X╞ if and only if the set X is unsatisfiable. The guiding idea of trees is this result: 

X╞A if and only if X, ~A╞



If the argument from X to A is valid then there is no evaluation making the premises X 
true and the conclusion A false. Therefore, there is no evaluation satisfying all of X and 
also ~A, so X, ~A╞. Conversely, if X, ~A╞ then there is no evaluation making the 
premises X true and the conclusion A false, and so the argument is valid. We have X╞A. 

The idea behind trees 

The method for trees goes like this: to test an argument, put the premises of the argument 
and the negation of the conclusion in a list. We want to see if this list can be satisfied—if 
the propositions cannot be true together, the argument is valid; if they can be true 
together, the argument is not valid. So, trees test for satisfaction. To illustrate the 

technique of trees, we will test the argument from and to 
We do this by writing down in a list the formulas we wish to be satisfied in order to show 
that the argument is invalid: 

 

  

Now we examine what must be done to make all these formulas true. The simplest 
consequence is this: to make true, must be true, and r must be 
false. In general, a conditional is false when A is true and B is false, so 

is true, just when A and ~B are true. So, in our case, we can add and 
~r to our list of things to satisfy. We do this by extending the list with a vertical line, 
adding the new propositions: 

 

  

We also tick to indicate that it has been processed, and that we have 
done everything required to ensure that it is true. Now, look at the disjunction 
To make this true, we must make either r true or ~q true. This gives us two possibilities, 
and to indicate this, we branch the tree like this: 
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We have ticked as we have processed this formula and there is nothing else we 
can do with it. The tree now has two branches. The left branch goes from the top down to 
r, and the right branch goes from the top down to ~q. If we can satisfy either of these lists 
of formulas, the argument is invalid. Now, one of the branches is unsatisfiable, since it 
contains a contradiction. The left branch contains both r and ~r, and there is no way we 
will be able to satisfy both of these formulas. As a result, we say that this branch is 
closed, and we indicate that with a cross at the bottom. 

Now we can continue the tree. We must deal with and To make 
true, we must make either p false (which means making ~p true) or q true. The 

tree branches again. We split the tree under every open branch. Here the only open 
branch is the left one: 

 

  

Again, the right branch closes, this time because we have the contradictory pair q and ~q. 
The left branch remains open. To complete the tree, we must process the disjunction 

This is simple. The tree splits again, with p in one branch and q in the other: 
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Both of the new branches close, as both p and ~p feature in the left branch, and q and ~q 
feature in the right branch. 

As a result, there is no way to satisfy each of the formulas and 

So, the argument from and to is valid. 
The completed tree for an argument gives you a picture of the reasoning used to show 

that the argument is valid (or to show that it is invalid). Trees are more ‘clever’ than truth 
tables, as they do not use the ‘brute force’ technique of listing all the different 
possibilities and checking the premises and conclusion in each possibility. Trees are more 
informative than MAV, because a completed tree gives you a record of the reasoning 
used. A completed tree is a proof. 

Let’s look at another example, before going on to define the tree rules precisely. To 
test to see whether a formula is a tautology, you check to see whether its negation is 
satisfiable. We want to show that this negated formula cannot be true. Here is an 
example, testing the formula  
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We start this tree with the negated formula, at the top. To 
make this true, we make the antecedent true and the consequent p false. So 

we added and ~p. Then, we process the conjunction: 
Conjunctions are straightforward: you ensure that both conjuncts are true. So, we add 

and q to our tree. Finally, we process the conditional and for this we 
ensure either that ~p is true (the left branch) or that q is true (the right branch). Both 
branches of the tree stay open, and we indicate this with the vertical arrow at the bottom 
of the branches. 

Both branches are said to be completed, and both are open. Therefore, both represent 

ways to satisfy the formula Select a branch (I have chosen the 
left one), and read up that branch to find each atomic formula occurring by itself in the 
branch. These atomic formulas have to be true in the possibility in question. In the left 
branch, we have q. We do not have p occurring by itself. (If we did, it would close the 
branch with the ~p.) So, in our evaluation, we make q true. Since ~p occurs in the branch, 
we make p false. These are the only atomic formulas in the branch, so the open branch on 
the left gives us the evaluation 

p=0 q=1   

And indeed, this evaluation does not satisfy the formula 
Therefore, it is not a tautology. 

Tree rules 

The tree rules consist in the rules for resolving each kind of formula, and the rules for 
developing branches and closing them. First, we examine the resolving rules. 

Double negation 

To resolve a formula of the form ~~A, extend any open branch in which the formula 
occurs with the formula A. We write this in shorthand as 

 

  

Conjunction 

To resolve a formula of the form A&B, extend any open branch in which the formula 
occurs with the formulas A and B. We write this as 
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Negated conjunction 

To resolve a formula of the form ~(A&B), extend any open branch in which the formula 
occurs with two new branches, one containing ~A and the other ~B. We write this as 

 

  

Disjunction 

To resolve a formula of the form extend any open branch in which the formula 
occurs with two new branches, one containing A and the other, B. We write this as 

 

  

Negated disjunction 

To resolve a formula of the form extend any open branch in which the 
formula occurs with the formulas ~A and ~B. We write this as 

 

  

Conditional 

To resolve a formula of the form extend any open branch in which it occurs 
with two new branches, one containing ~A and the other containing B. We write this as 
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Negated conditional 

To resolve a formula of the form extend any open branch in which the 
formula occurs with the formulas A and ~B. We write this as 

 

  

Biconditional 

To resolve a formula of the form A≡B, extend any open branch in which the formula 
occurs with two new branches, one containing A and B and the other ~A and ~B. We 
write this as 

 

  

Negated biconditional 

To resolve a formula of the form ~(A≡B), extend any open branch in which the formula 
occurs with two new branches, one containing A and ~B and the other ~A and B. We 
write this as 

 

  

Each of these rules makes sense, given the truth table definitions of the connectives. If 
the formula to be resolved is true then one of the possibilities below it has to be true also. 
This will help you remember the rules. 

Closure 

A branch is closed when it contains a formula and its negation (the formula need not be 
atomic). A branch that is not closed is said to be open. 

Partially developed trees 

A partially developed tree for a set X of formulas is a tree starting with those formulas X 
(at the top), and in which some of the formulas have been resolved, in accordance with 
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the resolving rules. Therefore, each formula in the tree is either in the set X or follows 
from formulas higher up in the tree by way of the resolving rules. 

Completed trees 

A completed tree for a set X of formulas is a partially developed tree in which, in every 
open branch, every formula has been resolved. (Note that we do not require that formulas 
in closed branches be resolved. If the branch is closed, we need not worry about resolving 
formulas that occur only in that branch, as that branch cannot be satisfied.) 

New notation 

We write ‘X├’ to indicate that a completed tree for X closes. We write to indicate 
that a completed tree for X remains open. We can write ‘X├A’ as shorthand for ‘X, ~A├’ 
to indicate that a tree for the argument from X to A closes. (You might have noticed a 
problem with this definition: X├ means ‘a completed tree for X closes’, means ‘a 
completed tree for X doesn’t close’. What happens if some completed trees close, and 
others remain open? The rules give you flexibility in the order of applying the rules. 
Maybe some orders will give you a closed tree, and with others the tree remains open! 
Fortunately for us, and fortunately for the definition, this never happens. The order in 
which rules are applied makes no difference to whether the tree closes or not. In fact, in 
the section after next, we will show that if one completed tree for X closes, all do. And 
conversely, if one completed tree for X stays open, all do. So, our definition makes 
sense.) 

Trees are a good technique for propositional logic if and only if ╞ and ├ coincide. We 
will check that this is the case soon—but before  

Box 4.1 
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that, let’s look at some more trees, to understand how to develop them efficiently and 
quickly. 

Our first example is a pair of trees. Both show that 
The trees are presented in Box 4.1. In the tree on the left 

(branching early), we resolve the formulas in the order in which they appear. In the tree 
on the right (branching late), we apply the linear rules before the branching ones. You 
will see that both trees have the same depth. However, the tree with deferred branching 
has fewer formulas in total (17, compared with 13). 

The moral of this example is clear: if you want your tree to close without growing too 
much, defer your branching as much as possible. Call rules that split the tree branching 
rules, and call the remaining rules linear rules. We then have the following moral: 

Use the linear rules before the branching rules.

This moral is merely a word of advice. It is not a hard-and-fast rule, for only time and 
space is to be gained by keeping it. Using branching rules before linear rules will not 
result in a different answer—it will usually only lead to a more roundabout way of 
getting to that answer. 

There is another lesson to learn from this pair of trees. If a branch closes, there is no 
need to resolve all of the formulas in that branch. In the leftmost branch of both trees, we 
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did not resolve ~~p. Instead of resolving it, we used it to close with ~p. This closed the 
branch earlier than it would have otherwise. 

If you think the tree will close, apply rules that lead to closures.

This word of advice may sometimes conflict with the advice to use linear rules before 
branching rules. You may find yourself in a situation where applying a branching rule 
will result in a closure (perhaps of both branches), and this might well close the whole 
tree. In that case, it is clearly in your interest to apply this branching rule before any 
linear rules. 

To illustrate these lessons further, we will test the argument from 

and to The tree is shown in Box 
4.2. This tree develops linearly until we process Then the left 
branch contains and r&s. The first piece of advice would have us then process 
r&s, but instead we follow the second piece of advice, to branch as both of these 
result in an immediate closure. The rest of the tree is processed in the same way. The 
rightmost branch remains open, and, as a result, we have an evaluation in which the 
premises are true and the conclusion false. Reading the values off the open branch 
indicated, we have 

Evaluation: p=0 q=0 r=1 s=0   

You can check for yourself that this evaluation indeed makes the premises true and the 
conclusion false. (It is a very good idea to do this whenever you complete a tree. If you 
made a mistake in the  

Box 4.2 
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tree rules, you are likely to find it if the evaluation is wrong and you checked it.) 
Our final example is shown in Box 4.3. This tree shows how much branching must 

sometimes be done, even when we follow our own two words of advice. Here, the only 

linear rule to apply is the negated conditional Every other rule must 
branch, and to close the tree, every other rule must be applied. The resulting tree is rather 
large. It has nine different branches, while a truth table for this argument would only have 
eight rows! However, this tree is not really more complex than the corresponding truth 
table. A truth table for this argument would have eight rows, and 8×15= 120 entries, and 
we must also calculate values for 8×6=48 entries  

Box 4.3 
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for the six connectives that appear. In contrast, this tree contains only 29 formulas, and 
we only performed only 8 resolving rules and 9 closures to complete the tree. The tree 
takes up more space on the page, but you are less likely to make a mistake in creating the 
tree than in the truth table. There are only 8 rules applied, as opposed to the 120 zeros and 
ones to be written in the truth table. 

These examples should be enough to show you how to apply the tree rules correctly 
and to give you some idea of how to apply them efficiently. There are plenty of exercises 
at the end of this chapter for you to apply these skills. Before we get to the exercises, 
however, we must verify that the tree method gives the same results as truth tables. 

Why the tree method works 

We want to show that ╞ and ├ come to the same thing. That is, we want to show first that 
if X├A (i.e. if the tree for X, ~A closes) then X╞ A (i.e., any evaluation satisfying 
everything in X also satisfies A), and second that this goes in reverse: if X╞A then X├A. 
Since X├A comes to the same thing as X, ~A├, and since X╞A comes to the same thing 
as X, ~A╞, we can restrict ourselves to the case of satisfiability on the one hand and open 
trees on the other. That is, we will convince ourselves of two important facts: 

Fact 1 

If X is satisfiable then, in any totally developed tree for X, some branch remains open. 

That is, if then  
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Fact 2 

If in some totally developed tree for X, some branch remains open then X is satisfiable. 

That is, if then  
These two facts together have the nice consequence of proving that the order in which 

you apply the tree rules is irrelevant when it comes to closure of trees. By Fact 2, if some 
tree for X stays open then X is satisfiable. Then, by Fact 1, it follows that every tree for X 
remains open. Now we will prove both facts. 

Proof of fact 1 

If X is satisfiable, there is some evaluation that makes true every formula in X. We will 
call the evaluation I, and for any formula A made up of the atomic formulas that appear in 
X, we will write ‘I(A)’ for the truth value that I assigns to A. Since X is satisfiable, if A is 
a sentence in X then I(A)=1. If A is the negation of a sentence in X then I(A)=0. Other 
sentences might be assigned 1 and others might be assigned 0. The important fact about 
evaluations is that for no sentence A at all do we have I(A)=1 and I(~A)=1. If I(A)=1 then 
I interprets ~A as false: I(~A)=0. Conversely, if I interprets ~A as true (so I(~A)=1) then 
we must have I(A)=0. 

We will show that in a completed tree for X, there is some branch in which every 
formula is satisfied by the evaluation I. It follows that this branch is open, since it can 
contain no contradictory pair of formulas A and ~A, as these have to be satisfied by I. So, 
if we find such a branch, we are done: our tree contains an open branch. 

Finding such a branch is quite simple. You start at the top of the tree, with the 
formulas in X. These are each satisfied by I, since that is what we assumed. Now, for 
each rule that is applied to extend the tree, at least one of the branches generated will give 
us formulas that are satisfied by I, provided that the formula resolved is also satisfied by 
I. We take the rules one at a time. 

If we resolve a double negation ~~A then we know that I(~~A)= 1. The rule adds A to 
the branch, but we can see that I(A)=1 too. 

If we resolve a conjunction A&B then we know that I(A&B)= 1. We add A and B to 
the branch, but clearly I(A)=1 and I(B)=1, so these formulas are satisfied too. If we 
resolve a negated conjunction ~(A&B) then we have I(~(A&B))=1, and so I(A&B)=0. We 
have two branches, one containing ~A and the other ~B. Now, since I(A&B)=0, we must 
have either I(A)=0 or I(B)=0 (to make a conjunction false, you must make one of the 
conjuncts false). Therefore, we must have either I(~A)=1 or I(~B)=1. So, at least one of 
~A and ~B is satisfied by I. Pick the branch that is satisfied by I and continue from there. 

The other connective rules work in the same way. If we resolve a disjunction 
then we have We have two branches, one containing A and the other B. 

Now, since we must have either I(A)=1 or I(B)=1, so at least one of A 
and B is satisfied by I. Pick the branch that is satisfied by I and continue from there. If we 

resolve a negated disjunction then we know that We add 
~A and ~B to the branch, but since we must have I(A)=0 and I(B)=0, we have I(~A)=1 
and I(~B)=1, so these formulas are satisfied too. 
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If we resolve a conditional then we have We have two 

branches, one containing ~A and the other B. Now, since we must have 
either I(A)=0 or I(B)=1, so at least one of ~A and B is satisfied by I. Pick the branch 
satisfied by I and continue from there. If we resolve a negated conditional 
then we know that We add A and ~B to the branch, but since we must 
have I(A)=1 and I(~B)=1, these formulas are satisfied too. 

Finally, for a biconditional A≡B, we have I(A≡B)=1. We have two branches, one 
containing A and B and the other containing ~A and ~B. Now, since I(A≡B)=1, I must 
assign A and B the same truth value. If the value is 1, pick the left branch; if the value is 
0, pick the right one. For a negated biconditional ~(A≡B), we have I(A≡B)=0, and I 
assigns A and B different values. The tree has two branches, one containing A and ~B, 
and the other ~A and B. One of these is satisfiable. 

This completes the demonstration that, however the tree develops, we can always 
choose a branch satisfied by the evaluation I. Therefore, this branch will not close, and 
the tree remains open. We have established Fact 1. 

We have actually established a little more than Fact 1. We have shown that any 
evaluation satisfying X will be found by any tree for X, in the sense that each evaluation 
satisfying X will have at least one branch such that each formula in that branch is satisfied 
by that evaluation. It follows that, in some sense, trees contain all the information 
contained in truth tables. They will find all the evaluations satisfying a formula—not just 
some of them. (However, some branches might be satisfied by more than one evaluation. 
Take the case of a tree for It has one branch including p, and another with q. 
There are three different evaluations of the atoms p and q that satisfy the disjunction, but 
only two open branches! This is because the p branch is satisfied by the evaluation (p= 1 
and q=0) and the evaluation (p=1 and q=1). This second evaluation satisfies the right 
branch too, along with (p=0 and q=1). The three evaluations are represented by two open 
branches.) 

Now we must turn to Fact 2. If a tree for X remains open then we can construct an 
evaluation satisfying all of the formulas in X. 

Proof of fact 2 

It turns out that it is quite a bit easier to prove something slightly stronger than this fact. 
We will show that if you have an open branch in a totally developed tree for X then there 
is an evaluation satisfying every formula in that branch. This proves the result, since the 
formulas in X are sitting at the top of the tree, and they appear in every branch. 

So, take your open branch. Call it O for the moment. Make an evaluation of 
propositions by assigning the following truth values to atomic formulas: I(p)=1 if p is in 
the branch O, and I(p)=0 if ~p is in the branch O. I(p) can be whatever you like if neither 
p nor its negation appears in the branch O. (This definition does give us an evaluation, 
since the branch is not closed: we don’t have p and ~p in the one branch. Therefore, we 
can assign our truth values consistently.) 

We will show that this definition works, by showing for every formula A, if A is in O 
then I(A)=1 and if ~A is in O then I(A)=0. 
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The style of reasoning we will use is often called a proof by induction. This technique 
exploits the fact that every formula is built (by the connectives) out of atomic formulas. 
Given this fact, if you want to show that something holds of every formula, it is enough 
to show two things. First, that it holds of atomic formulas, and second, that if it holds of 
some formulas, it holds of the formulas you can make out of them too. If you can prove 
these two things, your property holds of every formula whatsoever. Let me illustrate with 
a simple example. We can conclusively prove that every formula has the same number of 
left parentheses as right parentheses. (This is obvious by glancing at the rules, but 
spelling out the proof is a good example of induction.) The item we want to prove is 
called the hypothesis. The hypothesis holds for atomic formulas, because each atomic 
formula has no left parentheses and no right parentheses. So, we have proved the first 
part, or what we might call the base case of the induction. For the second part, we show 
that if the hypothesis holds for a collection of formulas, it holds for each of the formulas 
we can make out of them, too. We can make formulas either by using negation or by 
using a two-place connective: &, or ≡. In the case of negation, whatever the 
formula A is like, its negation ~A has the same number of left parentheses as A, and the 
same number of right parentheses as A too. So, if A has the same number of left and right 
parentheses, so does ~A. In the case of combining two formulas together, such as (A&B), 
if A has n left and n right parentheses, and B has m left and m right parentheses, then the 
conjunction (A&B) has 1+ n+m left parentheses and n+m+1 right parentheses. So the 
conjunction (or disjunction, conditional or biconditional) also has the same number of left 
and right parentheses. The result is proved. (It holds for the atoms. It holds for the 
formulas you can make up out of atoms using any one connective. It holds for the 
formulas you can make using these too. It holds for ones you can make out of this new 
bunch. And so on…) 

Now let us continue with our proof: The hypothesis for this proof is this fact about the 
formula A in the open branch O: if A is in O then I(A)=1, and if ~A is in O then I(A)=0. 
We show that it holds for all formulas by first showing that it holds for atomic formulas. 
Then, to show that it holds in general, we suppose that it holds for some formulas, and we 
show that it holds for formulas you can make out of them. Then the hypothesis holds for 
any formula whatsoever. The hypothesis holds for the atomic formulas, since that is the 
way we defined I. If p is in O then I(p)=1. If ~p is in O then I(p)=0. 

If the formula is a conjunction then if A&B is in O then, since we applied the 
conjunction rule to A&B, A and B are in O. So I(A) =1 and I(B)=1, and as a result, 
I(A&B)=1 too. If ~(A&B) is in O then either ~A is in O or ~B is in O. As a result, either 
I(A)=0, or I(B)=0, and in either case I(A&B)=0, as desired. 

If the formula is a disjunction then if is in O then, since we applied the 
disjunction rule to either A or B is in O. So I(A) =1 or I(B)=1, and in either case, 

too. If is in O then both ~A and ~B are in O, and as a result, 
both I(A)=0, and I(B)=0, giving as desired. 

If the formula is a conditional then if is in O then, since we applied the 
implication rule to either ~A or B is in O. So I(A)=0 or I(B)=1, and in either 
case, too. If is in O then both A and ~B are in O, and as a 
result, both I(A)=1, and I(B)=0, giving as desired. 
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For the biconditional, if A≡B is in O then either A and B are in O or ~A and ~B are in 
O, and as a result, both I(A)=I(B), giving I(A≡B)=1, as desired. If ~(A≡B) is in O then 
either A and ~B are in O or ~A and B are in O, and as a result, I(A) differs from I(B), 
giving I(A≡B)=0, as desired. 

The only other formula left to consider is a double negation. If ~~A is in O then so is 
A. So, I(A)=1, which gives I(~A)=0, and I(~~A)=1, which is what we want. 

This deals with every kind of formula to be seen in our branch. Every formula in the 
branch is satisfied by I. As a result, the set X sitting atop the branch is satisfiable. This 
completes the proof of Fact 2. 

These two facts jointly constitute what is often called a soundness and completeness 
proof for trees. Trees are a sound account for logic, as you cannot prove anything using 
trees which is not valid according to truth tables. Trees never go wrong (if X├ then X╞). 
Trees are a complete account of logic, as you can prove anything using trees that is valid 
according to truth tables. Trees are always right. 

Summary 

• X╞A if and only if X, ~A╞. An argument from X to A is valid if and only if X together 
with ~A is unsatisfiable. 

• Trees test for satisfiability. A tree for a set of formulas explores whether the set of 
formulas can be made true together. 

• If a tree for X closes, we write ‘X├’. If a tree for X remains open, we write  
• We write ‘X╞A’ as shorthand for ‘X, ~A╞’. A tree shows the argument from X to A to 

be valid if and only if the tree for X, ~A closes. 
• Tree rules can be applied in any order, and you will get the same result each time. 

However, it is often good to delay the application of branching rules to get a smaller 
tree as a result. 

• The tree method is sound. If X├A then X╞A. That is, if an argument is valid according 
to trees, it is valid according to truth tables too. 

• The tree method is complete. If X╞A then X├A. That is, if an argument is valid 
according to truth tables, it is also valid according to trees. 

Colin Howson’s Logic with Trees [12] is an excellent introductory text featuring trees as 
its central motif. Another useful text is Bostock’s Intermediate Logic [2]. Use Howson’s 
book if you want more help getting used to trees, and use Bostock’s if you want to 
explore trees more and to see how they compare with other techniques in formalising 
logic. 

Smullyan’s First-Order Logic [29] is a tour de force on the technique, and contains 
many insights into the use of trees. This book rewards detailed study. 

Exercises 

Basic 
{4.1} Test all of the arguments from the exercises in Chapter 3 using trees. What are the

Trees     55

�



advantages or disadvantages of using trees? In what cases do trees give you a quicker result? 
In what cases do trees take longer than truth tables or MAV? 

{4.2} Find two tree rules appropriate for exclusive disjunction. (What do you do with an exclusive 
disjunction, and what do you do with a negated inclusive disjunction?) 

{4.3} Find tree rules for the Sheffer stroke (see Exercise 3.13). 

Advanced 
{4.4} Prove soundness and completeness results for the tree rules for exclusive disjunction and the 

Sheffer stroke. 

{4.5} Construct a new system of trees that uses the Sheffer stroke as the only connective in the 
language. This will require a radical reconstruction of the technique, as you no longer have 
negated connectives to treat differently to connectives. Every formula is either atomic or of 
the form A|B. What rules apply to formulas of the form A|B? How do branches close? 

{4.6} Let’s say that the size of a tree is the number of formulas occurring in the tree. Let’s say that 
the size of a truth table is the number of truth values that get written down. Show that there 
is a formula such that any tree showing that it is a tautology has a greater size than that of a 
truth table showing that it is a tautology. 

{4.7} Write a computer program that generates a tree for an argument specified by the user. Try to 
make it efficient, so that it produces a short tree when one is there to be found. 

Indeed, history is nothing more than a  
tableau of crimes and misfortunes.  

—Voltaire 
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Chapter 5 
Vagueness and bivalence 

The theory of logical consequence constructed so far is powerful and useful. It is elegant 
in its simplicity, but far-reaching in its power and its breadth. There are also some 
important problems for interpreting and using this account. In this chapter, we will look 
at one class of problems, which stem from the assumption that each proposition is 
assigned either the value ‘true’ or the value ‘false’. This is the doctrine of bivalence 
(‘bivalent’ means ‘has two values’). The first problem stems from the vagueness inherent 
in our use of language. 

The problem of vagueness 

Consider a long strip, shading continuously from scarlet at the left end to lemon yellow at 
the right end. It is divided into 10,000 regions—enough that any two adjacent regions 
look identical to you. Let r1 be the proposition ‘region 1 looks red to you’, where region 1 
is the leftmost patch, r2 is ‘region 2 looks red to you’, and so on, up to r10,000. Because any 
two adjacent patches are indiscernibly different in colour, is true. So is 

and and so on, up to Region 5,000 probably does 
not look red to you. It will be some kind of orange if the strip shades evenly from red to 
yellow. Nonetheless, region 5,000 and region 5,001 do not differ in appearance to your 
eye, so you can agree that if region 5,000 is red, so is region 5,001. Therefore 

is true. The other conditionals are just as true. Now, because 
the leftmost edge is scarlet, r1 is true. Therefore each of the premises in the following 
argument is true: 

   

But this argument is valid, as you can check. It follows that the lemon-yellow end of the 
strip also looks red to you. 

Enough of strips of colour. Consider a heap of grains of sand. Take away one solitary 
grain from the heap—you still have a heap, for one grain of sand is not enough to make 
the transition from heap to non-heap. So, if a pile of 10,000 grains of sand makes a heap 
(call this statement h10,000) then a pile of 9,999 grains also makes a heap. So, 

is true. Similarly, is true, and so on. Given that 10,000 
grains does make a heap, it follows via the argument 

   

that one solitary grain of sand makes a heap. 
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Similar lines of reasoning can be given to prove that no matter how little hair one has, 
one isn’t bald (after all, removing one hair doesn’t make you bald), that chickens have 
always existed (whatever is the parent of a chicken must also be a chicken), and that you 
are always a child (there is no day of transition between childhood and non-childhood). 
These are all called sorites arguments.1 The problem they pose is called the sorites 
paradox because we seem to have a valid argument from obviously true premises to an 
obviously false conclusion. 

How should we handle sorites arguments? They are genuine problems for the 
following reasons: 

• The premises seem true. 
• The argument seems valid. 
• The conclusion seems false. 

At this point, you might smell a rat. After all, we are using logic on what are vague 
notions. There seems to be no sharp borderline between red and yellow, heap and non-
heap, bald and hairy, chicken and non-chicken, and child and adult, yet the technique of 
truth tables assumes that there is a sharp borderline. Any evaluation of propositions 
assumes that each proposition is assigned the value true or the value false. This seems to 
be in tension with the idea of applying logic to vague concepts. 

Alternatives 

What response are we to make of this? There seem to be a number of different responses 
to make (I owe this typology to John Slaney [27]): 

1 Deny that the problem is legitimately set up. That is, hold that logic does not apply to 
vague expressions. 

2 Accept that logic does legitimately apply here but hold that this particular argument is 
invalid. 

3 Accept both that logic applies in such cases and that the argument is valid, but deny one 
of the premises. 

4 Accept the argument and the premises, and hence embrace the conclusion also. 

This seems to exhaust the options. Any response to the sorites paradoxes must respond 
along one of these four general lines. Each of these responses has its own difficulties, and 
this is why the sorites paradoxes are so difficult and yet so important to our 
understanding of logic. In the rest of this section, we will examine each line of response. 

Option 1 has a heritage in philosophical circles, at the turn of the twentieth century in 
the work of philosophical logicians such as Frege and Russell. However, it is increasingly 
difficult to maintain, for the number of non-vague expressions seems rather small, and is 
perhaps limited to (parts of) mathematics. If Option 1 is to be taken, logic has an 
exceedingly limited application. 

It may be tempting to say that logic has only to do with the precise, but the 
consequence seems to be that reasoning has no place in discourse about the vague. That is 
an extremely radical position. If I cannot reason about colour, shapes and sizes, baldness 
and heaps, species terms, and any other vague concept, I cannot do a lot of reasoning at 
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all. Surely there is some standard by which to measure our reasoning, even when it uses 
vague concepts. Something must tell us that the sorites argument is unsound. If not, then 
we must reject the use of vague terms altogether. 

Option 4 seems similar in thrust. If I hold that what looks yellow also looks red, that 
single grains of sand make heaps, that hirsute people are bald, then I am rejecting the 
standard use of vague concepts. This position is clearly very hard to maintain. It would 
seem to follow that nearly everything is true. 

Options 2 and 3 are more mainstream, and seem to be the predominant views on 
vagueness. 

Option 2 is plausible. The sorites arguments do seem quite fishy, and it is tempting to 
say that they are invalid. There are cases where the premises are true and the conclusion 
false. To model this, you must reject the traditional two-valued truth-table definition of 
logical consequence. Richer models must be used to give evaluations that make the 
premises true and the conclusion false. 

One approach that attempts to do this is commonly called fuzzy logic. According to 
this account, truth values aren’t simply 0 or 1—they can be any number between 0 and 1. 
Propositions can be more or less true. Truth values come in ‘shades of grey’, with 
propositions being rather true (say, around 0.7), middling (around 0.5), not true at all 
(around 0.2), as well as genuinely true (1) and genuinely false (0), and all shades in 
between. 

The logical connectives are still operations on truth values, but they are more complex 
now that you have more values to use. A negation ~A has (on the standard view) a value 
of 1 minus the value of A. A conjunction A&B has the smaller of the two values of A and 
B. A standard account of implications is that is false only to the extent of how 
much falser B is than A. So, if B is truer than A then has value 1. If A is 0.5 and 
B is 0.3 then is 0.8=1−0.2, as you suffer a drop of 0.2 in going from the 
antecedent to the consequent. 

The argument forms involved in sorites paradoxes are simply extended versions of 
modus ponens (from p, to derive q), and this argument form is about as well 
attested as any argument form can get. To take this line, you must be very careful to 
ensure that you do not throw out the logical baby with the sorites bathwater. 

A fuzzy logic approach to the sorites argument can go like this. The proposition r1 is 
just true (has value 1) and r10,000 is just false (has value 0). Each conditional 
has a value that is very very close to 1, since the values of the proposition ri decrease as i 
goes from 1 up to 10,000, and the value of a conditional is the drop in truth value from 
the antecedent to the consequent. So the premises are all either completely true or very 
close to it. The conclusion, on the other hand, is completely false. The argument is then 
invalid, as the truth (near enough) of the premises does not make the conclusion 
anywhere near true. 

This view has its proponents. However, it also has its own difficulties. One is that 
vague propositions, on this approach, don’t seem to be really vague. Take our series of 
10,000 colour patches. It will still be true that there’s some patch i such that ri takes a 
value of 1 (it’s really true) and ri+1 takes a value of slightly less than 1 (it’s just a tad less 
than really true). So, there is a last really truly red patch. This is a strange conclusion to 
have. We seem to reject first-order borderlines, only to reinstate them at the next level. 
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There is no sharp borderline between red and non-red, but there is a sharp borderline 
between really red and not really red. 

Another odd consequence is the fact that since every sentence gets a value between 0 
and 1, for every pair of vague propositions, one is truer than the other, or they have the 
same degree of truth. That may be fine for the same property (any two things are either 
exactly as red as each other or one is redder than the other), but for comparing different 
properties, it sounds silly. What does it mean to say that I’m tall to exactly the same 
degree as something is red? And while I am complaining, I may as well ask this: What 
does it mean to say that I am tall to degree 0.234205466453…? What could numbers so 
precise mean anyway? 

There are other ways to develop Option 2, but that has been enough to give you a 
flavour of the style of response that is possible. Let’s move on to the only remaining 
response. 

Option 3 is perhaps the orthodoxy in philosophical circles. It has all the advantages of 
not having to modify your logical theories, but it has the disadvantage of requiring us to 
pinpoint a false premise in an exceedingly plausible-looking bunch. In current research, 
there seem to be two main ways to develop this option. One way to do this is called the 
method of supervaluations (due originally to Bas van Fraassen [7]). According to this 
account, our concept ‘red’ does not pin down the location of the borderline between red 
and yellow. There is a range of acceptable borderlines, each as good as the other. We run 
our argument through many times, at each time, sharpening the borderline at a different 
place. If it is valid on all of these sharpenings, it works, and if it is invalid at some 
sharpening, it fails. Furthermore, if a statement is true on all sharpenings, it is true; if it is 
false on all sharpenings, it is false; and if it is true on some and false on some others, it 
suffers from a ‘truth-value gap’. This is because our original concept ‘red’ is vague. It is 
not able to decide on whether or not this statement was true. 

Undoubtedly, this proposal has some ‘ring of truth’ about it. According to the 
proposal, one of the premises are false (for, on every sharpening, one premise is false), 
but which one is never determinate. If this satisfies you as a solution then you are in good 
company. It might fail where it makes statements such as ‘there is a patch such that it is 
red, and the next one is not’ or ‘there is a day such that on that day you are a child, but on 
the next, you are not’ true. These statements seem to be false, and they also seem to be 
against the spirit of the supervaluational account—after all, it is motivated by the idea 
that more than one borderline is possible. So, it seems worthwhile to search for an 
alternative scheme for analysing the problem of vagueness. 

One such alternative is called epistemicism. It has been championed by Timothy 
Williamson, in his excellent book, Vagueness [31]. Williamson bites the bullet, and holds 
that there is a real borderline between red and non-red, there is a single last day on which 
you are young, and a single first day on which you are old (these might not be the same 
day, of course). So much is a logical consequence of the fact that you are young when 
you are born, and you are not young when you are 80 years of age. Instead of attempting 
to do away with the borderlines as given by supervaluations, epistemicism states that they 
are there, but that the distinctive mark of vagueness is that these borderlines are 
unknowable. Something is ‘epistemic’ if it has to do with knowledge; hence, 
epistemicism is appropriately so-called, because, for epistemicism, borderline cases of 
red are those that we cannot know to be red or know to be non-red. 
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How is this plausible? One can reason like this: nothing except for our own practices 
in using the language is there to pin down the concepts ‘red’, ‘young’, ‘bald’ and others 
like them. Our faculties for discrimination pick out these concepts. This means that 
certain canonical cases are known to be red, and others are known to be not red. Our 
practices of discrimination ensure that there is a borderline, but our own capacities do not 
allow us to discern that borderline, because we are not able to determine such fine 
distinctions. Furthermore, the kinds of practices involving discriminating colours ensure 
that if we can tell that x is red, and if x is sufficiently similar in colour to y then y is red 
too. It follows that we cannot know what all the red things are, for this has a borderline, 
and we would not be able to discriminate between things close to the borderline. 

What does the epistemicist say about the sorites argument? For the epistemicist, not all 
premises of the sorites argument are true. There is a last red patch. There is a pile of 
grains that makes a heap, but that is not a heap when one is removed. However, we have 
no way (and perhaps can have no way) to determine which colour patch or which number 
of grains is the borderline. 

You may not agree with epistemicism (or with any of the other positions on the way to 
treat vagueness), but when evaluating positions you must remember that for each of the 
different accounts of how logic works, the values taken by propositions (such as 1 or 0, or 
the more extensive range of values in fuzzy logic) represent truth and falsity (and perhaps 
things in between), and not our own states of knowledge. We all agree that we are 
ignorant of some truths, and this means that some things might be true even though we do 
not know them to be true. If this is the case then, at least some times, propositions have a 
value 1 without that value representing the fact that it is known. The standard two-valued 
picture does not rule out ignorance or undecidability in analysing every proposition as 
being true or false. Ignorance and undecidability can remain when we say that it could be 
that something is true without our knowledge of that fact. 

There is much more that can be said (and has been said) on this topic. The case is by 
no means closed. Consult some of the texts mentioned at the end of this chapter to 
explore the issues further. 

Other problems with bivalence 

Of course, vagueness is not the only problem to press against the doctrine of bivalence. 
There are many more. Here are just a few: 

Paradox 

Propositions such as ‘this sentence is not true’ (this is the liar paradox) and ‘the set of 
non-self-membered sets is self-membered’ (this is Russell’s paradox) raise problems for 
the principle of bivalence. It seems impossible to consistently assign these propositions 
truth values. If ‘this sentence is not true’ is true then what it says is wrong, so it is not 
true. This is just what it says, so it is true. So, if it is true, it is not true; and if it is not true, 
it is true. What are we to say about this? Is it a proposition? Is it true? Is it not true? There 
is no simple answer to this. 
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Non-denoting terms 

What should we say about claims that purport to refer to objects when there really is no 
object to which to refer. An example is ‘The present king of France is bald’. France has 
no king at present, so the term ‘the present king of France’ does not denote. It is a non-
denoting term. Is the proposition including the term true? Surely not. There is no present 
king of France to be bald, so it cannot be true. But is it false? If I say that the present king 
of France is not bald then I am just as surely talking about the present king of France. 
Neither response seems appropriate. (We will discuss this difficulty in Chapter 12, when 
we get some more logical material under our belt to use to analyse what might be going 
on.) 

Presupposition failure 

Non-denoting terms are an example of a more general problem of presupposition failure. 
We seem to have a presupposition that our terms pick out objects. When that 
presupposition fails, we have problems interpreting claims involving those terms. Other 
sorts of presupposition failure also seem to generate tension with the principle of 
bivalence. For example, if I presuppose that you have been involved in domestic 
violence, and I ask you ‘have you stopped beating your spouse’, then no ‘yes/no’ 
response seems appropriate if you have never beaten your spouse. (Let alone if you do 
not have a spouse.) In these cases, ‘I have stopped beating my spouse’ seems neither true 
(as you have not even started) or false (for you are not continuing to beat him or her). 

Future contingents 

A final example dates back to Aristotle, who noted that we are loath to assign truth values 
to what we might call future contingents [18]. These are statements about the future, such 
as ‘There will be a sea battle tomorrow’, which may become true, and may become false. 
There is a long-standing tradition to treat these as neither true nor false now but somehow 
awaiting the assignment of their truth value. 

Further reading 

Chapter 7 in Read’s Thinking About Logic [21] is a helpful short survey of the issues 
surrounding vagueness. Williamson’s book Vagueness [31] is not only a spirited defence 
of epistemicism, but also a fair-minded generous overview of competing positions. Jan 
Łukasiewicz (a Polish logician who worked in the first half of the twentieth century) is 
responsible for what are probably the most popular truth tables involving more than two 
values. His essay ‘On determinism’ [18] in his collected works is a readable account 
motivating three-valued tables for future contingents. The tables for conjunction, 
disjunction, implication and negation are as follows: 
p q p&q   ~p 

0 0 0 0 1 1 
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0 1/2 0 1/2 1 1 

0 1 0 1 1 1 

1/2 0 0 1/2 1/2 1/2 

1/2 1/2 1/2 1/2 1 1/2 

1/2 1 1/2 1 1 1/2 

1 0 0 1 0 0 

1 1/2 1/2 1 1/2 0 

1 1 1 1 1 0 

His infinitely valued logic has been popularised as fuzzy logic. 
Slaney’s ‘Vagueness revisited’ [27] is hard to find, but is perhaps the most 

sophisticated non-classical approach to vagueness. It attempts to circumvent the obvious 
difficulties with fuzzy logic. (If you cannot get ‘Vagueness revisited’, a little of the 
approach can be found in his ‘A general logic’ [28].) 

For further criticism of fuzzy logic, consult Susan Haack’s Deviant Logic, Fuzzy Logic 
[10]. 

Exercises 

Basic 
{5.1} A formula is said to be an Ł3 tautology if and only if it has a value 1 under every evaluation 

in the three-valued truth tables given above. Each of the following formulas is a two-valued 
tautology. Which are Ł3 tautologies? 

  

 

Advanced 
{5.2} Explain how you can use Lukasiewicz’s three-valued logic to model statements about the 

future. What seems to ‘fit badly’ in such a modelling? 

{5.3} Explain how you could use supervaluations to model statements about the future. What 
seems to ‘fit badly’ in such a modelling? 

Everything that can be thought at all  
can be thought clearly.  

—Ludwig Wittgenstein 
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Note 
1’Sorites’ comes from the Greek word soros, meaning ‘heap’. ‘Sorites’ is pronounced sor-eye-

tees. 
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Chapter 6 
Conditionality 

Whenever you first see truth tables, one connective is more troublesome than any of the 
others: implication. The conditional is false only when p is true and q is false. 
This does not seem to fit with the way that we use ‘if’. What can be said about this? 

The paradoxes of material implication 

The validity of argument forms like these 

   

follows immediately from the truth table rules for The problem with these argument 
forms is that they seem to have many invalid instances. Consider the argument from p to 

One instance is the inference from I am alive to if I am dead, I am alive. The 
premise is true, but the conclusion seems manifestly false. People are not alive when they 
are dead. Other instances lead you from it’s Tuesday to if it’s Wednesday it’s Tuesday, 
from John Howard is Prime Minister of Australia to if John Howard is loses the election, 
John Howard is Prime Minister of Australia. 

The second form, from p to fares no better. Instances lead you from I’m 
alive to if I’m not alive, I’m famous, or to if I’m not alive, everyone is happy, and, equally 
well, to if I’m not alive, everyone is sad. Each of these instances seems to lead one from 
truth to falsehood. 

These argument forms are so troubling that they have been given a name—the 
paradoxes of material implication. There are more paradoxes than these two. The next 
argument form is also valid: 

   

However, this argument also seems to have many invalid instances. Consider a case in 
which two switches must be thrown to turn on a light. The premise is 

If switch 1 is on, and switch 2 is on, then the light is on. 

The argument form indicates that we can infer 

Either if switch 1 is on, the light is on, or if switch 2 is on, the light is on. 

But this seems false. Both switches must be on for the light to be on—neither is sufficient 
in itself. 
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Another bizarre example is the tautology 

   

Pick three propositions at random. By this tautology, it follows that either if the first of 
your propositions is true, so is the second, or if the second is true, so is your third—no 
matter how unrelated these propositions might be. For example: Either, if the Pope is a 
Catholic, Queensland wins the Sheffield Shield, or if Queensland wins the Sheffield 
Shield, the moon is made of green cheese. Is that true? 

Given the paradoxes of material implication, there are two broad responses that could 
be made. 

• The truth table for is a good model for the truth values of conditionals. We then 
should attempt to explain why the paradoxes seem odd. 

• The truth table for is not a good model for the truth values of conditionals. The gap 
between and ‘if’ then explains why the paradoxes seem so odd. 

This chapter will examine both kinds of response to the paradoxes of material 
implication. 

Truth and assertibilily 

The most popular response that maintains that really does give us the truth table of 
the conditional does this by exploiting the distinction between truth and assertibility. A 
proposition is true if what it says is the way things are. A proposition is assertible if it is 
appropriate or reasonable to assert. These two notions come apart drastically. H.P.Grice, 
in his ‘Logic and conversation’ [9] gave an account of the rules governing assertibility in 
conversation. Most of his rules are common sense. You ought to make assertions you 
believe to be true, and not make assertions you believe to be untrue. Of course, what I 
believe to be true might not in fact be true (I am not infallible). Therefore, some things 
might be assertible but not true. Similarly, there are many things that are true but that I do 
not believe (I do not have an opinion on everything). Therefore, some things are true that 
are not assertible. 

For our purposes, the difference between truth and assertibility is most important when 
we consider Grice’s maxim of relevance. I ought not say more than is necessary, and I 
ought not say less than is necessary. If someone asks me how far it is to Canberra, and the 
context makes clear that they are planning to drive there, then if I quote the distance 
down to the last millimetre, I am being needlessly overinformative. I am saying more 
than is required. On the other hand, if I indicate that the distance is somewhere between 
50 and 5,000 kilometres, when I know very well that it is around 300 kilometres, then I 
am being much less informative than required. In neither case is what I am saying untrue. 
However, in both cases what I say is not assertible. 

Then, the response continues: The inference from p to seems odd because we 
hardly ever assert on the grounds that p. If I am asked 
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Did Queensland win the Sheffield Shield? 

and I respond 

If I’m going out to dinner tonight they did. 

purely on the grounds that they did win, the questioner will think I’m being stupid. I have 
broken the maxim of relevance. Of course, if I knew that they did win, according to the 
classical account of ‘if’, my statement is actually true. It is just not appropriate. The only 
conditions in which it is appropriate to assert is when I am neither sure that p is 
false nor sure that q is true. For, in these cases, I ought to assert ~p or I ought to assert q. 
It is needlessly uninformative to merely assert  

This account attempts to explain our hesitancy at the inference from p to and 
that from p to (At least, it explains it in cases when we know or believe the 
premise of the argument. It is less clear that it explains our hesitancy to infer in 
cases where we merely suppose p to be true.) However, it seems clear that this argument 
cannot stay as it is here. In the same conversational situation as in the previous example, 
the questioner would think I was equally crazy to say 

Either I’m going out to dinner tonight or they did. 

but we have nothing like the same quarrel with the inference q therefore Our 
hesitancy at inferring from q is much stronger than our hesitancy at inferring 

from q (at least, once we make it clear that disjunction is read inclusively and not 
exclusively). 

One development of the Gricean response is given by Frank Jackson, who argues that 
the assertibility of a conditional varies with the conditional probability Pr(q|p) 
(this is the probability that q obtains, given that p obtains).1 Jackson argues that, given the 
special role that conditionals play in our own reasoning (such as in dealing with 
hypothetical situations, and their use in the context of limited information), conditionals 
ought to be robust in the context of increasing information, and that this motivates the 
definition of its assertibility in terms of conditional probability. The details of Jackson’s 
argument do not concern us here. 

This response tells us something significant about the difference between conditionals 
and disjunction. As the probability of q goes up, so does that of However, as the 
probability of q goes up, it does not always follow that the probability Pr(q|p) rises. (If it 
is more likely that Queensland wins the Sheffield Shield, it does not follow that it is more 
likely that they win the Sheffield Shield given that the team is stricken with influenza.) 

However, even though Jackson’s account of assertibility of conditionals does clarify 
things considerably, it does not at all deal with the assertibility of propositions in which 

conditionals are embedded. The proposition is a tautology, and 
hence has a probability 1. It does not seem assertible. Something must be said about the 
assertibility of disjunctions of conditionals, and other embeddings of conditionals. This 
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theory does well for ‘bare’ conditionals, but this is only a very small part of the complex 
way conditionals function in language. 

Possibilities 

In Section 3.1, we argued that the conditional ‘if p then q’ had the same truth table as the 
negated conjunction ~(p&~q). Let me repeat the argument here, but I shall now write ‘if 
p then q’ as ‘p→ q’, to make clear that we are not necessarily assuming the material 
conditional, but arguing that the conditional we use is the material conditional. Here is 
the argument: 

• If p→q is true then if p is true, q must be true (that is what a conditional says, after all) 
so you do not have p true and q false, so p&~q is not true, and consequently ~(p&~q) 
is true. 

• Conversely, if ~(p&~q) is true, consider what happens if p is true. In that case, you 
don’t have q false, since p&~q is not true (that is what we have assumed: ~(p&~q) is 
true.) So, if you don’t have q false, q must be true. So, if p is true, so is q. In other 
words, p→q is true. 

This is quite a powerful argument. If we wish to reject the identification of → with we 
must block this argument somewhere. Most people agree with the first part of the 
argument. If the antecedent of a conditional is true and the consequent is false then the 
whole conditional is false. Conversely, if the conditional p→q is true then it is not the 
case that p and ~q. So, we ought to have 

p→q╞~(p&~q)   

The problems arise with the second part of the argument, where we attempt to move from 
~(p&~q) to p→q. Let’s run through that argument, with an example in mind. Let p be I’m 
dead and let q be I’m alive. Then ~(p&~q) is certainly true (I’m not both dead and not 
alive) but p→q seems false (it’s not true that if I’m dead, I’m alive). With this example in 
mind, we will hopefully see where the argument breaks down. 

The reasoning starts: 

• If ~(p&~q) is true, consider what happens if p is true. Well, what happens when p is 
true is that I’m dead. So, that is the case I must consider. The reasoning continues. 

• In that case, you don’t have q false, since p&~q is not true (that is what we have 
assumed…). This seems wrong. In the situations in which I am dead, we do have q 
false. The reasoning presumes that we can still call on the truth of our original 
assumption ~(p&~q) in a situation in which we have assumed that p is true. That is not 
appropriate in the example we are considering. If I am dead, it is no longer true that 
I’m not both dead and not alive. 

So, to derive q in this case, we must have more than simply ~(p& ~q). For we wish to use 
~(p&~q) not only in our original situation, but also in the alternative situation we have 
hypothesised. The assumption we have made must be robust, in the sense that it survives 
into the new context in the discourse. One analysis of the conditional that attempts to 
make use of this observation says that the conditional p→q should be defined as 
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□~(p&~q)   

where ‘□’ is a new one-place connective of necessity. □~(p&~q)□ says that it is not 
merely an accident that ~(p&~q). We have ~(p&~q) not only in our situation, but in other 
possible situations too. 

The connective □ is not truth-functional. That is, the truth of □A does not depend 
merely on the truth value of A. The connective is said to be a modal operator, as it gives 
us a different mode for a proposition to be true, or asserted. Some propositions p might be 
true, while □p is false (p might be true by accident). Other propositions p might be true 
with □p true. The value of □p depends on more than just the value of p. If we want to use 
a connective like □, we must expand the way formulas are interpreted. 

One way to do this is to read □p as ‘no matter how things are, p is true’, and to take 
the talk of ways things are rather literally. A modal evaluation is not just an assignment 
of truth values to propositions. It is an assignment of truth values to propositions in 
different states. We will follow the general convention and call these states worlds. Every 
evaluation comes with a set W of worlds at which propositions are true or false. We write 

   

to indicate that A is true in world w and that A is not true in world w respectively. Note 
that we now have three similar symbols: ╞, ├ and now ╟. The first two relate sets of 
formulas to formulas: ‘X╞A’ says that any evaluation satisfying X satisfies A too, and 
‘X├ A’ says that the tree for X, ~A closes—that is, we have a proof that A follows from X. 
This new symbol is read like this: ‘w╟A’ means that the formula A is true at the world w. 

Given some collection W of worlds, we define our evaluation by first setting the truth 
values of the atomic propositions in each world. This is done completely arbitrarily. 
Then, we use the same rules as before for each connective. For conjunction, disjunction 
and negation, we have the following evaluation conditions: 

• w╟A&B if and only if w╟A and w╟B. 
• if and only if w╟A or w╟B. 
• w╟~A if and only if  

This is just a fancy new way of rewriting what we have already seen in truth tables. A 
conjunction is true (at world w) if and only if both conjuncts are true (at world w). A 
disjunction is true (at world w) if and only if either disjunct is true (at world w). A 
negation is true (at world w) if and only if the negand is not true (at world w). The only 
innovation comes with our new connectives, □ and →: 

• w╟□A if and only if for every υ in W, υ╟A. 
• w╟A→B if and only if for every υ in W, either or υ╞B. 

The connective □ models necessity. A formula □A is true if and only if A is true in every 
world in the evaluation. This makes the conditional robust. A conditional A→B is true in 
a world now when there is no world where A is true and B is false; or equivalently, if in 
every world, if A is true, so is B. 

Here is an example evaluation. Our set W has three worlds, w1, w2 and w3: 
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w1 w2 w3 

p p ~p 

q ~q ~q 

The diagram indicates the atomic formulas true at each world. For example, q is true at 
w1 but not at w2 or w3. Now, □p is false at w1 (and at every world) since p is not true at 
every world (it fails at w3). Similarly, □q is false at every world, since q is false at w2. The 
material conditional is true at w1, since p and q are both true there. However, it 
fails at w2. It follows that p→q is false at w1 (and at every world). So, we have 

   

We have a case (w1) where q is true, but it doesn’t follow that p→q is true. The fact that 
there is another possibility (w2) in which p holds but q fails is enough to ensure that the 
conditional p→q also fails. Similarly, 

   

since we have w3╟~p and The other paradox of material implication also fails 
when the material conditional is replaced by the arrow. 

We have just constructed a simple modelling for the modal logic called S5 in the 
literature. The conditional defined is often called the strict conditional, to differentiate it 
from the weaker material conditional. 

To be specific, we will call our modal evaluations S5 evaluations. Given S5 
evaluations, we can define an expanded notion of consequence: 

X╞A iff for every S5 evaluation, for every world, if every element of X is true at that 
world, so is A. 

For example, with this definition and the evaluation given above, we have shown that 

   

We can also show that 
□A, □B╞□(A&B)   

by reasoning like the following. Take any S5 evaluation you like, and suppose that w is 
some world in that evaluation, in which w╟ □A and w╟□B. We want to show that 
w╟□(A&B). To do that, we must check that in every world υ in that evaluation, υ╟A&B. 
Well, since w╟□A, we have u╟A, for any world u, and hence υ╟A. Similarly, since 
w╟□B, we have u╟B, for any world u, and hence υ╟B. As a result, υ╟A&B, as we 
wished to show. Therefore, we have □A, □B╞□(A&B) as desired. 

Here is another example. We will show that 
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If it is necessary that either p or q, it does not follow that it is necessary that p or that it is 
necessary that q. To do this, we try to construct a evaluation with a world w where 

while For this, we need and 

Therefore, there must be some world in which p fails, and some world in 
which q fails. However, since in every world, we have either p or q. 
But this is not hard to arrange. In world w, we have p but not q. In world υ, we have q but 
not p. The evaluation looks like this. 

w υ 

p ~p 

~q q 

This is enough to show that  
We have seen one example of relative evaluations, at which propositions are given 

truth values relative to some context or other. Once we start down this road, a wide range 
of possibilities open up. Temporal logics allow relativisation to times. Spatial logics 
allow relativisation to locations. Logics of belief and knowledge allow relativisation to 
different belief sets. The introduction of evaluations using worlds for modal logics has 
resulted in an explosion of different formal logics for different purposes. 

It seems clear that these evaluations do something right when it comes to modelling 
conditionals. However, as they stand, they leave something to be desired. One problem 
stems from the tight connection between necessity and the conditional. In our 
evaluations, we have 

p→q╞□(p→q) p→q╞(p&r)→q   

If p implies q, it follows that p must imply q. This seems too strong. It is true that if I 
work hard, I enjoy it. It does not follow that things must be like that. There are situations 
in which I work hard and I don’t enjoy it, but these situations are reasonably out of the 
ordinary. 

Similarly, if p→q, it seems that it need not be the case that (p& r)→q. If I drink 
coffee, I like the taste. It doesn’t follow that if I drink coffee and you put petrol in it, I 
like the taste. 

David Lewis in his Counterfactuals [16], gives an analysis of conditionals that 
attempts to meet these kinds of objections. For Lewis, worlds come ordered by a relation 
of similarity, and a conditional is true here if in similar worlds where the antecedent is 
true, so is the consequent. So, on this account, you might have p→ q, without □(p→q). In 
worlds close to here where p is true, q is also true. It does not follow that in worlds close 
to anywhere else, if p is true, so is q. Similarly, we can have p→q (since the nearby p-
worlds are also q-worlds) but not (p&r)→q. The nearby p&r worlds are further away, and 
hence not counted in the previous conditional. Therefore q might fail at these worlds. 
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Relevance 

There are problems of relevance that beset even the most sophisticated modal accounts of 
conditionals. On any account of consequence seen so far, we have 

   

These are called the paradoxes of entailment. Some people consider these to be 
paradoxical since, in both cases, the premise has nothing to do with the conclusion. 

You must go right back to the definition of validity: 

An argument is valid if and only if whenever the premises are true, so is the conclusion. 
In other words, it is impossible for the premises to be true while at the same time the 
conclusion is false. 

Well, according to this definition, or at least according to the second part of it, the 
argument from p&~p to q is valid: because it is impossible for p&~p to be true while q is 
false—for p&~p can’t be true! It’s a contradiction. Similarly, the argument from p to 

is ‘valid’ in this sense, because can’t be false. 
You can see that this definition doesn’t give us any connection between the premises 

of an argument and its conclusion. According to this definition, the premises alone can 
ensure that an argument is valid! It’s no wonder that our techniques make these 
paradoxes valid. 

So, to reject the paradoxes of entailment, you have to use a different definition of 
validity. You have to say something like this: 

An argument is relevantly valid just in the case whenever the premises are true, then as a 
result of that the conclusion is true. 

Now this needs a lot of work. (What does ‘as a result of that’ mean?) But an account like 
this, if it can be made to make sense, will reject the paradoxes. If p is true then it need not 
follow as a result of the truth of p that is true. Similarly, it is hard to see that if 
p&~p were true then, as a result of that, q turns out to be true too. (To be sure, if q were p 
or ~p, the inference would work, but these are special cases.) 

On the other hand, if p is true then, as a result of that, is certainly true. 
Similarly, if p&q is true then, as a result of that, p must be true. The result looks a bit like 
the logic we’ve already seen, but it’s a bit different. 

This general area is called relevant logic, for, according to this analysis, the premises 
of an argument must be relevant to its conclusion in order to be valid. A lot of work has 
gone on in this area since the 1950s. 

So, that’s one sort of difficulty people have had with the formalism we’ve been 
studying. It doesn’t turn out to be a crucial objection to the formalism—it merely says 
that there is another interesting sense of Valid’ that the classical story doesn’t capture. If 
this is to be pursued, you must abandon (or at least modify) the equivalence between 
X╞A and X, ~A╞. 
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Further reading 

Grice’s pioneering ‘Logic and conversation’ [9] is widely available in Jackson’s edited 
collection Conditionals [14]. This collection includes a range of papers that encompass 
the debate over truth conditions and assertibility conditions for conditionals, as well as 
modal accounts of the conditional. 

Hughes’ and Cresswell’s A New Introduction to Modal Logic [13] and Chellas’ Modal 
Logic [3] both provide sure footed introductions to modal logics. Lewis’ On the Plurality 
of Worlds [17] is an in-depth analysis of the philosophical issues involved in talk of 
modal logic. Chapters 3 and 4 of Read’s Thinking about Logic [21] and Restall’s 
Introduction to Substructural Logics [22] give an introduction to the formal and 
philosophical issues that arise in the study of relevant logics. 

Exercises 

Basic 
{6.1} Verify each of the following: 

  

 
{6.2} Let ◊ be possibility. ◊A is defined to be ~□~A, and so w╟ ◊A if and only if in some world υ, 

υ╟A. Show that and that 

 
{6.3} Construct an S5 evaluation in which the ‘lightbulb and switches’ paradox fails. Construct an 

evaluation that verifies that 

  
 

  Use this evaluation to explain what is going on in terms of possible states of the electrical 
circuitry involved in the 

  lighting. Hint: Think of the different worlds as different states of the electrical system. 

Advanced 
{6.4} A modality is a string of symbols constructed out of ~ and □, such as ~□ and □~□□. Two 

modalities are equivalent if and only if the results of prefixing them to an atomic formula 
are equivalent. (For example, □ and □□ are equivalent, because □p and □□p are equivalent.) 
Show that there are exactly six non-equivalent modalities in S5. 

{6.5} Write ◊p&◊~p as Cp. You could say that Cp means ‘p is contingent’; that is, p can be true,
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and p can be false. Are there any interesting logical laws involving C? One example might 
be ╞~CCp: it is not contingent that it is contingent that p. 

Under the category of Relation  
I place a single maxim, namely ‘Be relevant’.  

—H.P.Grice 

Note 
1 For the mathematically minded, Pr(q|p) is the probability Pr(p& q) divided by the probability 

Pr(p), at least in the case where Pr(p) is not equal to zero. 
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Chapter 7 
Natural deduction 

Before turning to Predicate Logic in the second part of the book, we will look at one 
more way to present the logic of propositions. A system of natural deduction gives you a 
way to develop proofs of formulas, from basic proofs that are known to be valid. 

Conjunction, disjunction and negation 

The rules tell us how to build up complex arguments from basic arguments. The basic 
arguments are simple. They are of the form 

X├A   

whenever A is a member of the set X. We write sets of formulas by listing their members. 
So A├A and A, B, C├B are two examples. 

To build up complex arguments from simpler arguments, you use rules telling you 
how each connective works. We have one kind of rule to show you how to introduce a 
connective, and another kind of rule to show you how to eliminate a connective once you 
have it. Here are the rules for conjunction: 

 

  

The rules follow directly from the way we use conjunction. The introduction rule (&I) 
says that if A follows from X, and if B follows from Y too, then the conjunction A&B 
follows from X and Y together. The elimination rules (&E1,2) say that if something entails 
a conjunction, then it also entails each conjunct. 

For implication, we have two rules: 

 

  

These rules are of fundamental importance for natural deduction systems, as they connect 

the entailment relation (├) to implication. The implication introduction rule states 
that if X together with A entails B, then X entails the conditional  
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So, one way to prove a conditional is to assume the antecedent, in order to prove the 
consequent. This is enough to prove the conditional. Conversely, the implication 
elimination rule states that if some set X entails and another set Y entails 
A, then applying the information in X (which gives ) to that in Y (which gives 
A) gives us the consequent B. So, taking X and Y together gives us all we need for B. 

Before going on to see how these rules are used in proofs, we will see the rules for 
disjunction: 

 

  

The introduction rules are straightforward enough. If A is entailed by X then so is 
Similarly, if B is entailed by X then so is The elimination rule is more 

interesting. If follows from Y, if A (with X) gives C, and if B (with X) also gives 
C, then Y—which gives also gives C (provided you’ve got both X too). This is 
a form of argument by cases. If you know that and if A gives you C and B gives 
you C too, then you have C, either way. 

Given the rules, we can construct proofs. A proof of X├A is a tree (this time in the 
usual orientation, with the root at the bottom) with X├A as the root, in which the leaves 
are axioms, and in which each step is an instance of a rule. Here is an example: 

 

  

In this proof, each step is indicated with a horizontal line, labelled with the name of the 
rule used. The leaves are all axioms, as you can see. The proof demonstrates that 

 
Each step of the proof follows from the previous steps by way of the rules. However, I 

constructed the proof in reverse. I know that I wanted to prove that 

To do this, I knew that I had just to prove 
(To prove assume A with X, and prove 

B.) Then it is clear that we can prove A&C├B, since A&C├A, and we are 
done. 
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We can also present proofs in list form, in which each line is either an axiom or 
follows from earlier elements in the list by way of the rules: 
1  Ax. 

2 
 

Ax. 

3 A├A Ax. 

4 
  

5   
6   
7   
8 

  

In this proof, we have annotated each line with an indication of the lines to which it 
appeals and the rules used in the derivation. This presentation encodes exactly the same 
information as the tree. It is often easier to produce a proof in list form at first, as you can 
go ‘down the page’ as opposed to horizontally across it as the proof gets more complex. 
Also, in a list proof, you can make assumptions that are not used further in the proof, 
which can be helpful in producing the proof. However, once the proof is produced, 
representing it as a tree provides a more direct representation of the dependencies 
between the steps. 

Let’s see another example to give you some more ideas of how proofs are produced. 
Let’s prove 

   

To do this, we know that we will have to assume and also A&C 
and B to deduce D. But these together will give us D rather simply. By A&C, we get A, 

and this gives us A&C also gives us C and B, which then give B&C, 
which then gives D. So, let’s wrap this reasoning up in a proof:  

1 
 

Ax. 

2 A&C╞A&C Ax. 

3 B├B Ax. 

4 A&C├A 2(&E) 

5 
  

6 A&C├C 2(&E) 

7 A&C, B├B&C 3, 6(&I) 

8 
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9   
10 

  

This proof explicitly represents the informal reasoning in the paragraph above. 

Negation 

The rules so far only give us a fragment of our language. We have conjunction, 
implication and disjunction. To add the negation rules, it is helpful to first add a 
proposition ┴ (called the falsum), which is always evaluated as false. This is governed by 
the simple elimination rule 

 

  

Since ┴ is always false, it does not have an introduction rule. Given ┴, we can define 
negation rules simply: 

 

  

If X together with A entails ┴ then we know that X and A can’t be true together, so if X is 
true, A is false: that is, ~A is true. That is the introduction rule for negation. To exploit a 
negation, if X entails ~A, and if Y entails A, then it follows that X and Y cannot be true 
together. That is, they jointly entail ┴. These rules govern the behaviour of negation. 
(You might have noticed that these rules just define ~A as equivalent to It is 
instructive to check using truth tables that ~A and are equivalent.) These rules 
allow us to prove a great many of the usual properties of negation. For example, it is 
simple to prove that a double negation of a formula follows from that formula, A├~~A: 
1 A├A Ax. 

2 ~A├~A Ax. 

3 A, ~A├┴ 1, 2(~E) 

4 A├~~A 3(~I) 

Similarly, the rule of contraposition, has a direct proof: 
1  Ax. 

2 A├A Ax. 

3   
4 ~B├~B Ax. 
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5  3, 4(~E) 

6  5(~I) 

7   

However, the rules for negation cannot prove everything valid in truth tables. For 
example, there is no way to prove a formula from its double negation. (It is instructive to 
try to prove ~~A├A. Why is it impossible with these rules? Similarly, the converse of 
contraposition, is valid in truth tables, but cannot be proved 
using the natural deduction rules we have so far.) To give us the full power of truth 
tables, we have an extra rule 

 

  

This is called the double negation elimination rule (DNE). With the rule, we get ~~A├A 
(apply the rule to the axiom ~~A├~~A and you have your result) and much more. The 
full power of truth tables is modelled by these rules. As another example, here is a 
tautology, the law of the excluded middle. It is straightforward to show that is 
a tautology in truth tables. It is a great deal more difficult to prove it using our natural 
deduction system. 
1 A╞A Ax. 

2   
3 

 
Ax. 

4 
 

2, 3(~E) 

5 
 

4(~I) 

6 
  

7 
 

3, 6(~E) 

8  7(~I) 

9  8(DNE) 

Typically, proofs that require (DNE) are more complex than proofs that do not require it. 
In general, if you are attempting to prove something that requires the use of (DNE), you 
should try to prove its double negation first, and then use (DNE) to get the formula 
desired. 

Natural deduction systems provide a different style of proof to that constructed using 
trees. In a tree for X├A, we attempt to see how we could have X and ~A. If there is some 
consistent way to do this, the argument is not valid. If there is none, the argument is 
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valid. On the other hand, natural deduction systems construct a derivation of A on the 
basis of X. The resulting derivation is very close to an explicit ‘proof such as you will see 
in mathematical reasoning. But natural deduction systems have deficiencies. If something 
is not provable, the natural deduction system does not give you any guidance as to how to 
show that. Trees give you worthwhile information for both valid and invalid arguments. 

We will not pursue these systems of proof theory any further. To find out more about 
natural deduction, consult some of the readings mentioned below. 

Further reading 

Lemmon [15] is still the best basic introduction to this form of natural deduction. 
Prawitz’s original account [20] is immensely readable, and goes into the formal 
properties of normalisation. For a more up-to-date summary of work in natural deduction 
and other forms of proof theory, consult Troelstra and Schwichtenberg’s Basic Proof 
Theory [30]. 

The system of logic without (DNE) is called intuitionistic logic. The philosophical 
underpinning of intuitionistic logic was developed by L.E.J.Brouwer in the first decades 
of the twentieth century. For Brouwer, mathematical reasoning was founded in acts of 
human construction (our intuition). Brouwer did not think that a formal system could 
capture the notion of mathematical construction, but nevertheless a logic of intuitionism 
was formalised by Heyting (see Intuitionism: An Introduction [11]). The rule (DNE) fails, 
since ~A holds when you have a construction showing that A cannot be constructed or 
proved. This is a refutation of A. Thus ~~A means that you have a demonstration that 
there cannot be a refutation of A. This does not necessarily give you a positive 
construction of A. Similarly, you may have neither a refutation of A nor a construction of 
A, so fails as well. Intuitionistic logic is important not only in the philosophy 
of mathematics and the philosophy of language (see the work of Michael Dummett [4], 
who uses the notion of verification or construction in areas other than mathematics), but 
also in the study of the computable and the feasible. 

These natural deduction systems are easy to modify in order to model relevant logics. 
We modify the rules to reject the axiom X £A, and accept only the instances A £A (the 
other elements of X might be irrelevant to the deduction of A). Then, there is no way to 
deduce A£B→A, since the B was not used in the deduction of A. It is also possible to 
make the number or the order of the use of assumptions important. Slaney’s article ‘A 
general logic’ [28] is a short essay on this approach to logic, and it is taken up and 
explored in my Introduction to Substructural Logics [22]. 

Exercises 

Basic 
{7.1} Prove these, not using (DNE): 
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{7.2} Prove these, using (DNE): 

  

 

Advanced 
{7.3} Show that the natural deduction rules without (DNE) (that is, the rules for intuitionistic 

logic) are sound for the following three-valued truth tables: 

p q p&q   ~p 

0 0 0 0 1 1 

0 n 0 n 1 1 

0 1 0 1 1 1 

n 0 0 n 0 0 

n n n n 1 0 

n 1 n 1 1 0 

1 0 0 1 0 0 

1 n n 1 n 0 

1 1 1 1 1 0 

  To do this, show that if X├A can be proved by the natural deduction system then X╞A holds 
in the three-valued table. (For X╞A to hold, we require that in any evaluation in which the 
premises are assigned 1, so is the conclusion.) Show, then, that none of the argument forms 
in Exercise 7.2 are provable without (DNE), by showing that they do not hold in these three-
valued tables. 

{7.4} Show that these three-valued tables are not complete for intuitionistic logic. Find an 
argument that cannot be proved valid in the natural deduction system, but that is valid 
according to the three-valued tables. 

{7.5} Show that the three-valued Łukasiewicz tables are not sound for intuitionistic logic. Find 
something provable in intuitionistic logic that is not provable in the three-valued 
Łukasiewicz tables. 

Nothing prevents us from being natural  
so much as the desire  

to appear so.  
—Duc de la Rochefoucauld 
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PART 2 
Predicate logic 



 

Chapter 8 
Predicates, names and quantifiers 

Prepositional logic, which you know well by now, can establish the validity of many 
argument forms. As such, it is a very useful tool. However, some arguments are 
obviously valid, and yet cannot be shown to be so by the methods we’ve used. For 
example, the argument 

All male philosophers have beards. 
Socrates is a male philosopher. 
Therefore, Socrates has a beard. 

is valid. If all male philosophers have beards, and if Socrates is a male philosopher, then 
it follows that he has a beard. If Socrates does not have a beard, then either he isn’t a 
male philosopher or he is a counterexample to the claim that all male philosophers have 
beards. So, if the conclusion is false, one of the premises is false. 

However, the most descriptive prepositional form of this argument is just ‘p, q, 
therefore r’, which is as invalid as any argument form can be. We require some new 
methods to expose the structure of these sorts of arguments. We want a language that will 
show that this argument has a form. The right kind of form might be something like this: 

All Fs are Gs. 
a is an F. 
Therefore, a is a G. 

This form is valid. We would like to extend our language in such a way as to make forms 
like these available. There is a way of doing this, and the resulting language is called the 
predicate calculus. The logic is called predicate logic, or sometimes first-order logic. 
The rest of this chapter will involve putting together the language. Only after this will we 
be able to use it to discover valid argument forms. 

Names and predicates 

If our language is going to uncover a form responsible for the validity of our argument 
involving Socrates, it must do two things. It has to be able to name things (such as 
Socrates) and it has to be able to describe them (such as saying that he has a beard). We 
will take these one at a time. We start with names. 
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In a language such as English, a proper name is a simple expression that serves to pick 
out an individual thing. For example ‘five’, ‘India’ and ‘Richard Nixon’ are all proper 
names. They name a number, a country and a past president of the USA respectively. 
(Note that I used quotation marks to help name the names. India is a country, but ‘India’ 
is not a country. It is a name for a country. Similarly, five is a number, but ‘five’ is a 
name of a number.) We will use the letters ‘a’, ‘b’, ‘c’,…, for proper names in our 
language of argument forms. We also call proper names simply names or constants in the 
rest of this book. (Since we are now using these letters for names, we must set aside some 
letters for atomic propositions. We will use letters from a to o to stand for objects, and if 
this is not enough, we subscript them with numbers, such as b23, c3088 and so on. For 
atomic propositions, we will now use p, q and r, together with these letters subscripted by 
numbers.) 

Next, we must have a way to describe the things we have named. We use predicates to 
do this. Basically, a predicate is an expression that results in a sentence when a number of 
names are inserted in the appropriate places. For example, 

…is a multiple of ten… …is slightly mad …is taller than… …is a 
multiple of… …loves… …is between…and… 

are all predicates. The first and second of these examples use one name to make a 
sentence, so they are called monadic. The third, fourth and fifth use two names, and are 
dyadic. The last predicate ‘is between’ requires three names, and is triadic. We will use 
uppercase letters such as ‘F’, ‘G’ and so on as predicate letters. 

You can think of names as naming objects, and predicates as ascribing properties and 
relations. A name such as a names an object (a person, a number, a country, or whatever 
else), a monadic predicate such as F ascribes a property (such as the property of being 
mad, or being a multiple of ten, or the property of being fun to visit, or whatever else), a 
dyadic predicate such as G ascribes a two-place relation (such as loving, being bigger 
than, being next to, and whatever else), triadic predicates ascribe three place relations, 
and so on. 

With this up our sleeve, we can form simple propositions combining names and 
predicates: 

India is big Bi 

John loves Mary Ljm 

John and Mary love each other Ljm&Lmj 

John and Mary love themselves Ljj&Lmm 

Mary’s love for John is not reciprocated Lmj&~Ljm 

If Mary loves John, John doesn’t love Mary  

Note that our propositions Bi, and Ljm, and so on, now have their own structure. The 
first, predicates ‘bigness’ of India. The second says that John loves Mary. These 
expressions are propositions with structure, but their structure is not like the structure of 
complex propositions, such as conjunctions, disjunctions and negations. The structure is 
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not made by combining propositions. Instead, it is made by mixing predicates and names. 
That said, however, these complexes are still propositions, and so they can be combined 
with all the machinery of the previous part of this text. So, we can conjoin, disjoin, negate 
and conditionalise these propositions to make new ones, as the other examples show. 

Quantifiers 

In this way, we can describe some more of the structure of the argument about Socrates, 
male philosophers and having beards. But the first premise—all male philosophers have 
beards—is not of the subject-predicate form. It doesn’t talk about any particular male 
philosopher, but rather all male philosophers. It uses a structure called a quantifier. Other 
examples are 

Some male philosophers have beards. Most logic students are intelligent. 
At least seven people have been on the moon. Quite a few Australians 

live in poverty. 

In each of these sentences, we are talking about a quantity of objects—all, some, most, at 
least seven or quite a few. In the predicate calculus, we will use two quantifiers: the 
universal quantifier, which talks about all objects, and the existential quantifier, which 
talks about at least one object. 

To introduce these quantifiers, we will start with a simple case. Suppose I say there is 
a male philosopher who has a beard. First, to say Socrates is a male philosopher who has 
a beard, I say 

(Ma&Pa)&Ba   

where a names Socrates, M is the predicate ‘is male’, p is the predicate ‘is a philosopher’, 
and B is the predicate ‘has a beard’. To say Greg is a male philosopher who has a beard, 
you say 

(Mb&Pb)&Bb   

where b names Greg. To say someone is a male philosopher with a beard, you might be 
tempted to say 

(Mx&Px)&Bx   

where x names someone. But it won’t do to leave things like this, since I might say there 
is a male philosopher who has a beard and there is a male philosopher who doesn’t have a 
beard. We cannot say this by saying 

((Mx&Px)&Bx)&((Mx&Px)&~Bx)   

because the philosopher with the beard and the philosopher without the beard are 
different people. We use different names for different ‘someones’, or we use a technique 
for indicating where in the formula we can make a choice of who the ‘someone’ is. 
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It is difficult to determine when we get to choose the ‘someone’. Suppose you say 
‘someone is a male philosopher with a beard’ and that I want to deny it. (Perhaps I think 
all male philosophers are beardless, for some reason.) What does the following formula 
say? 

~((Mx&Px)&Bx)   

This is the negation of what you said, but it might not say what I want to say. It could 
mean 

It’s not the case that someone is a male philosopher with a beard, 

but it could just as well mean 

Someone is not a male philosopher with a beard. 

which says something much weaker. It all hinges on where the choice of x is made. In the 
first interpretation, we do the negation first, and I say that no choice can be made for x 
that makes (Mx& Px)&Bx true. In the second, I make the choice first, and then I do the 
negation: so I say that some choice can be made for x that makes ~((Mx&Px)&Bx) true. 

Now we can start to define our language with quantifiers. To do this, we first add to 
the language a stock of variables x, y, z (subscripted with numbers if we run out, as 
usual). Then we add an existential quantifier for each variable x. This means ‘here 
is where I make the choice for x’. (It is called the existential quantifier as it says there 
exists an object with the required properties.) I will illustrate this with a few examples: 

   

means someone is a male philosopher with a beard, while 

   

means someone is a male philosopher without a beard. In both these examples, the 
quantifier has a wide scope as it determines the behaviour of the whole formula. In many 
cases, the quantifier can occur inside other connectives: 

   

This formula says that it is not the case that some male philosopher has a beard. We 
negate the claim that there is a choice for x that can be made to make (Mx&Px)&Bx true. 
This differs from 

   

which just says that there is some choice for x that makes ~((Mx& Px)&Bx) true. Our 
language has more than one variable because we sometimes must make a choice of one 
thing, dependent on the choice of another. For example, if I say 

Some philosopher knows a lawyer 
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I can go halfway to formalising this by saying 

 
  

where Px is x is a philosopher. Now if K is the two-place predicate for ‘knows’ and L is 
the one-place predicate for ‘is a lawyer’, how do we formalise x knows a lawyer? It 
cannot be 

   

as this says ‘some lawyer knows him or herself’. We use a new variable to choose the 
lawyer, as we need to talk about the philosopher and the lawyer at the same time. For x 
knows a lawyer, we can use 

   

as this says ‘there is a lawyer that x knows’, which comes to the same thing. Putting the 
whole thing together, we get 

   

which says some philosopher knows a lawyer, as we wished. 
We can use the existential quantifier to do more than just formalise statements 

asserting the existence of various things. We can also deny such statements, and this 
gives us a way to talk about things in general. For example, when I say 

I say that there isn’t a male philosopher with a beard. In 
other words, no male philosophers have beards. Or equivalently, every male philosopher 
is beardless. We have a way of talking in generality. Any proposition of the form 

   

says that not anything has property F. This is equivalent to a proposition saying 

Everything doesn’t have property F 

We write this using a new quantifier 

   

which is equivalent to The universal quantifier also marks a point 
at which a choice for x is made. With an existential quantifier, you say that some choice 
for x works. With a universal quantifier, you say that every choice for x works. So, my 

claim which says that no male philosophers have beards, 
is equivalent to this claim, using a universal quantifier: 
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This says that everything is not a male philosopher with a beard. But we can go further. 

~((Mx&Px)&Bx) is equivalent to so our claim can be formalised 
like this: 

   

This says that for any choice for x, if x is a male philosopher then x doesn’t have a beard. 
This means that no male philosophers have beards, which is what we said the first time. 

To sum up: We have added two things to our language. First, variables such as x, y 
and z and quantifiers to represent both points in formulas at which 
instances can be chosen for variables and the kinds of choices that are made. These, 
together with names and predicates, form the heart of the predicate calculus. Our 
language looks like this: 

• p, q, r, p1, q2, r3, etc.,…are atomic formulas. 
• x, y, z, x1, y2, z3, etc.,…are variables. 
• a, b, c, a1, b2, c3, etc.,…are names. 
• Capital letters such as F, G and H are predicates. For each predicate, there is a number 

that tells us the arity of the predicate. Monadic predicates have arity 1, dyadic 
predicates have arity 2, and so on. 

• If F is a predicate of arity n, and a1,…, an are names, then F a1 …an is a formula. 
• If A is a formula then so is ~A. 

• If A and B are formulas then (A&B), and (A≡B). 
• Given a formula A and name a, and any variable x, we will call the result of replacing 

all occurrences of a in A by x: ‘A(a:= x)’. (This is not a formula, but it is on the way to 
becoming a formula. It needs an instruction to tell you how to treat the free variable x.) 

• If A is a formula, if a is a name and if x is a variable then and 

are both formulas. 

The scope of the quantifier in the formula is the displayed 
instance A(a:=x). Similarly, the scope of the quantifier in the formula 

is the displayed instance A(a:=x). 
Here is how the rules are used in generating a fomula. Let’s take F to be a monadic 

predicate and G a dyadic predicate. Then (Fa& Gab) is a formula. So, replacing the a in 
this formula by x (so this is (Fa&Gab)(a:=x)), we get (Fx&Gxb). Note that this is not a 
formula, because it contains the variable x without any corresponding quantifier. To get a 
formula, we bind that x with a quantifier. I’ll choose an existential quantifier, and we get 

the formula The scope of the quantifier in this formula is 
(Fx&Gxb). 

In the way that we have defined the language, (Fx&Gxb) is not a formula. The only 
way that variables enter our language is under the scope of a quantifier. A variable 
outside the scope of a quantifier is said to be free. Inside the scope of a quantifier, it is 
bound. 
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Translation 

It is important to be able to translate to and from the predicate calculus. The first thing to 
do is to discover the names and predicates used in the English text. For example, say we 
wish to formalise this argument: 

Everyone loves something. 
If you love something you think about it. 
Therefore everyone thinks about something. 

Here there are three predicates. We will use the one-place P for ‘is a person’, L is two-
place, and stands for ‘loves’. Lxy will be read ‘x loves y’. And T is also two-place, for 
‘thinks about’. To formalise the argument, we’ll take each proposition one-by-one. The 
first says everyone loves something. ‘Everyone’ means ‘every person’, and that’s a 
universally quantified claim. Everyone loves something is  

 
  

If you choose any object at all, if it is a person, then it loves something. Now to say that x 
loves something, we say 

   

We can choose something (call it y) such that x loves it. We used a different variable to 
talk about this thing, as we must talk about it and the person at the same time. So, 
everyone loves something is 

   

Similarly, everyone thinks about something can be translated as 

   

This can be read as follows. Choose anything at all. If it is a person then there is 
something that this person thinks about. That translates everyone thinks about something 
suitably well. Finally, we have: If you love something you think about it. This is a harder 
sentence to translate, since it does not wear its form so explicitly. 

To translate it, think about the claim it makes. It is stating a general rule. If you (or 
anyone) love something, you think about it. It applies to any person, and to any thing they 
think about. So, you can choose the person and the thing first. The condition is that the 
person loves the thing: 

   

If you choose x and y, and x is a person and x loves y, then···and the rest says that the 
person x thinks about the thing y. So we can fill in the gap: 
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It is important to realise that when we say ‘something’, sometimes it is an existential 
quantifier (I like something) and sometimes it is a universal quantifier (If I like 
something, I think about it). To tell what sort of quantifier is used, you have to think 
about what sorts of choices are being made. 

Table 8.1 gives are some more examples of English sentences and their translations 
into the predicate calculus. 

Table 8.1 English sentences and their 
translations into the predicate calculus 

English Predicate calculus 

All dogs are mammals  
Some cats are mammals  
Max loves everyone  
Someone loves everyone 

 
Everyone loves someone 

 

Summary 

The language of the predicate calculus has names to refer to objects, and predicates to 
represent properties and relations. 

• The existential quantifier enables us to talk about things without having names for 
them. states that there is some object with the property F; 

means that there is some object that has both property G and 
property H. 

• The universal quantifier enables us to form generalisations about objects. 
states that all objects have property F; means that 

everything that has property G also has property H. 

Exercises 

Basic 
{8.1} Use the dictionary: 

  a=Anthea; b=Brian; 

  Gx=x is a geologist; Hx=x is a hairdresser; 
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  Px=x is a person; Lxy=x is larger than y 

What do the following formulas say, translated into English? 

1 Ga 

2 ~Hb 

3  
4 Ha&Hb 

5 Hb&Gb 

6 ~Gb 

7  
8 Lab 

9 ~Lba 

10 
 

11 
 

12 
 

13 
 

14 
 

15 
 

16 
 

17 
 

18 
 

19 
 

20 
 

{8.2} Translate the following sentences (where no-one is ‘no person’ and someone is ‘some 
person’): 

1 Brian is a person. 

2 If Brian is a hairdresser then he is not a geologist. 

3 If Brian is not a geologist, neither is Anthea. 

4 No-one is a geologist. 

5 Everyone is a geologist. 

6 If anything is a geologist, it is a person. 
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7 Some geologists are people. 

8 Some people are geologists. 

9 Some geologists are hairdressers. 

10 Some hairdressers are not people. 

11 Some non-people are not geologists. 

12 Some hairdressers are both geologists and people. 

13 If Anthea is a geologist then she is larger than someone. 

14 If anything is a geologist, it is larger than some hairdresser. 

15 Anything that is both a geologist and a hairdresser is not a person. 

16 Some geologists are larger than any hairdresser. 

17 Any person is not both a geologist and a hairdresser. 

18 Anyone is larger than a geologist. 

19 Any geologist is larger than every hairdresser. 

20 Any hairdressers larger than a geologist are larger than some hairdresser. 

21 At least one geologist is larger than at least one hairdresser. 

22 At least one geologist is larger than every hairdresser. 

23 Every hairdresser is larger than both Anthea and Brian. 

24 If everything larger than Anthea is larger than Brian then Anthea is larger than Brian. 

25 If anything larger than Anthea is a geologist then Anthea is larger than any hairdresser. 

26 Anthea is larger than a hairdresser only if she is larger than a geologist too. 

27 Some people are larger than all hairdressers. 

28 Some hairdressers are larger than no geologists. 

29 A person is a geologist only if he/she is larger than Brian and not larger than Anthea. 

30 Any hairdresser larger than a geologist is larger than every person. 

{8.3} In Exercise 8.1, indicate the scope of the quantifiers in the formulas by drawing an arrow 
from the quantifier to the variables the quantifier binds in its scope. 

{8.4} Find forms for these arguments. 

1 Brian studies linguistics. Brian belongs to the rockclimber’s club. So Brian both studies 
linguistics and belongs to the rockclimber’s club. 

2 Someone studies linguistics. Someone belongs to the rockclimber’s club. Therefore, someone 
both studies linguistics and belongs to the rockclimber’s club. 

3 Every solid is soluble in some liquid or other. Therefore, there is a liquid in which every solid 
is soluble. 

4 Only secretaries and administrators are eligible for the Clean Desk Prize. Ian is eligible for the
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Clean Desk Prize. Therefore Ian is a secretary and an administrator. 

5 Whatever exists is material. Therefore, exactly one of the following two claims is true: (1) 
nothing is material; (2) some material things are mental, and all mental things are material. 

6 There is a man in town who shaves all men in town who do not shave themselves. Therefore 
there is a man in town who shaves himself. 

7 Horses are animals. Therefore, heads of horses are heads of animals. 

8 The square root of a perfect square is a natural number. No natural number is a fraction. The 
square root of a natural number other than a perfect square is not a fraction. Therefore the 
square root of a natural number is not a fraction. 

9 If nobody contributes to Oxfam then there is someone who dies of hunger. Therefore, there is a 
person who dies of hunger if he or she does not contribute to Oxfam. 

10 Charles Dodgson (who wrote Alice in Wonderland under the pen-name ‘Lewis Carroll’) was a 
logician. This is one of his exercises: Nobody who really appreciates Beethoven fails to keep 
silence while the Moonlight Sonata is being played. Guinea pigs are hopelessly ignorant of 
music. No one who is hopelessly ignorant of music ever keeps silence while the Moonlight 
Sonata is being played. Therefore guinea pigs never really appreciate Beethoven. 

Advanced 
{8.5} Euclid’s Elements contain many proofs in geometry and arithmetic. One of them is a proof 

that there are infinitely many primes. This is a summary: If there is a greatest prime then 
there is a second number [namely, one more than the product of all of the primes] that is 
greater than the greatest prime, and if this second number is not a prime then [since every 
number has a prime divisor] there is a third number [a prime divisor of this number] that is a 
prime number and is greater than the greatest prime. Therefore, there is no greatest prime.’ 
Formalise this argument. (This is not easy, but it can be done, using only the predicates ‘is a 
number’, ‘is greater than’ and ‘is prime’. Don’t translate the material in square brackets—
that is there to give you an idea of what is going on.) 

{8.6} There is more than one way to define the language of predicate logic. Sometimes people 
allow variables not bound by any quantifier to appear in formulas. These are called free 
variables. Can you think of any reasons why we would allow free variables into our 
formulas? Can you think of any reasons you might want to avoid free variables in formulas? 

Philosophers never balance between profit and honesty,  
because their decisions are general,  

and neither their passions  
nor imaginations  

are interested in the objects.  
—David Hume 
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Chapter 9 
Models for predicate logic 

The language of the predicate calculus is not much use without a way of interpreting 
formulas in that language. We know how to express things in the language, but we have 
no way of testing argument forms or finding models to make formulas true or false. It is 
the task of this chapter to introduce models that enable us to do just that. 

Domains and extensions 

In the first half of the book, when we didn’t worry about predicates, names, variables and 
quantifiers, evaluations for our propositions were simple. You could find a ‘way things 
could be’ by assigning truth values to the atomic propositions. 

Now there is more to do. We must interpret each of the names and each of the 
predicates. We must know how to deal with the variables and the quantifiers. Our 
language is richer and has more structure. It follows that our evaluations have to grow to 
catch up and do more. 

A model for the language of predicate calculus is made up of a number of things: 

A model of the predicate calculus has a domain. This is a non-empty set D of objects. 

The domain is the collection of objects being discussed. If we are talking about numbers, 
the domain might be the set {0, 1, 2, 3,…} of numbers. If we are talking about the 
university, it might be the collection of lecturers and students and administrative staff. If 
we are talking about the whole world, the domain might include everything: cabbages 
and kings, tables and chairs, electrons, and galaxies, economies and symphonies. 

Nothing in the language is interpreted directly by the domain. Instead, the domain 
underlies the interpretation of everything in the language. First, we evaluate each of the 
names in the language: 

In a model, every name a is interpreted by an object I(a) from the domain D. 
The object I(a) is said to be the denotation of a, or the interpretation of a. 

So, if my domain is the little set 
[Descartes, Kant]   

of two philosophers, and if my language has two names, a and b, I can have four different 
interpretations of those names. In one interpretation, I might have 



I(a)=Descartes I(b)=Kant   

So a names Descartes and b names Kant. Or I might use the names the other way around: 
I(a)=Kant I(b)=Descartes   

Or a and b might name Descartes, leaving Kant without a name in our language: 
I(a)=Descartes I(b)=Descartes   

This is a permissible interpretation of the names. Nothing dictates that different names 
should name different objects (people give other people more than one name—think of 
your different nicknames) or that every object must have a name. There is one remaining 
interpretation for our language in this domain: 

I(a)=Kant I(b)=Kant   

That explains how names are interpreted in our domains. Now for predicates. Take the 
example of the one-place predicate ‘is a philosopher’. Formalise it by P. Consider the 
domain 

{Descartes, Kant, Einstein}   

The predicate P divides this domain into two groups: the philosophers and the non-
philosophers. Descartes and Kant are philosophers, while Einstein was not. So, for each 
person in the domain, you have a truth value 1 or 0, recording if the person is a 
philosopher or not: 
  I(P) 

Descartes 1 

Kant 1 

Einstein 0 

This table gives you the denotation or interpretation of the predicate P. The predicate P is 
interpreted by a distribution of truth values to objects in the domain. Had things gone 
differently—had Kant decided not to go into philosophy, and had Einstein thought that 
physics was not for him, we might have had a different distribution of truth values: 
  I(P) 

Descartes 1 

Kant 0 

Einstein 1 

Each such distribution of values to objects is an interpretation, or a denotation of a one-
place predicate. Each one-place predicate is interpreted in this way. 

Now consider two-place predicates, such as ‘…read things written by…’. We know 
that Kant read things written by Descartes, but not vice versa. I don’t know who Einstein 
read, but perhaps he read things written by Descartes and not Kant. Each person here read 
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things they wrote themselves. But neither Kant nor Descartes read anything written by 
Einstein. So, to interpret the two-place predicate R, we have a table: 

I(R) Descartes Kant Einstein 

Descartes 1 0 0 

Kant 1 1 0 

Einstein 1 0 1 

You read the table by looking at the values at the intersections of rows and columns. To 
check whether Kant read any Descartes, you look at the intersection of the Kant row with 
the Descartes column. The value is 1, so, according to this table, Kant read Descartes. So, 
in general, two-place predicates are interpreted by assigning truth values to ordered pairs 
of objects. The order in the pair counts. The issue of whether Descartes read Einstein is 
very different to the issue of whether Einstein read Descartes. 

Three-place predicates are interpreted by assignments of truth values to ordered triples 
of objects. One three-place predicate is ‘…prefers…to…’ These are harder to represent 
on the page, for obvious reasons, so I will not give you any examples in table form. We 
will not see many three-place predicates, so this is no great loss. If we wish to interpret a 
five-place predicate, we call an ordered list of five things a 5-tuple. In general, an ordered 
list of n things is called an n-tuple. We move now to our general rule for interpreting 
predicates: 

Each n-ary predicate F is interpreted by an assignment of truth values to all ordered n-
tuples from the domain D. 

To test out these ideas, let’s look at one simple model. Our language has two names, a 
and b, one monadic predicate, P, and a dyadic predicate, R. The domain has three objects, 
d, k and e (which are shorthand for the longer names of these people). We interpret the 
names and predicates like this: 
  I(a)=d   I(P)   I(R) d k e 

D={d, k, e}   d 1   d 1 0 0 

  I(b)=k k 1   k 1 1 0 

    e 0   e 1 0 1 

What propositions can we make in this language? Here is a simple one: 
Pa   

That proposition says that the person named by a has the property picked out by P. Who 
is the person named by a? It’s d (Descartes). The property picked out by P is represented 
in the I(P) table. Here, the d row contains a 1, so the person named out by a has the 
property picked out by P. Pa is true. 

A similar line of reasoning shows that Pb is true too. Therefore, the formulas 
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are false true and false, respectively. We can evaluate formulas using the logical 
connectives in the usual way. 

Two-place predicates work in just the same sort of way. The formula 
Rab   

is false, since the entry in the table contains a zero. The formulas 

   

all come out as true under this interpretation, as you can check for yourself. This gives us 
some general rules for determining truth in a model: 

• Fa1…an true iff I(F) assigns 1 to  
•~A is true iff A is not true. 
• A&B is true iff A is true and B is true. 
• is true iff A is true or B is true. 
• is true iff A is not true or B is true. 
• A≡B is true iff either A and B are both true, or A and B are both false. 

These rules collect together what we already know. 

Quantifiers 

In our language, ‘everyone reads Descartes’ is formalised as 

   

and this is true in our model, for every object is paired with d by the relation I(R). (Look 
at the d column in the I(R) table.) However, explaining this fact in general is hard. In 
general, the truth of a complex formula depends on the truth of the formulas used to 
construct it. What formulas are used to construct Some instances of this are 

Raa Rba   

which say Descartes reads Descartes and Kant reads Descartes. But there is no way to say 
Einstein reads Descartes in our language, since we have no way of naming Einstein. 

The easiest way to remedy this situation is to add a name for Einstein. We already 
have a perfectly good name for Einstein: ‘e’ is used in describing the domain. We will 
therefore use ‘e’ as the name in our language. In fact, whenever we have a domain such 
as 

{d, k, e}   

we will add to the language a new name for each object in the domain (that way, we are 
always sure to have a name for each object, no matter what other names the language 
has): 

d k e   
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We will write the domain elements in sans serif and their names in italics. For writing on 
paper, you can write the domain elements with underlines, like this: {d, k, e}. The new 
names we add for each domain element will be called their standard names. The standard 
name for a domain element always denotes that domain element. For example, I(k)=k and 

I(e)=e. Then, to test a quantified formula, such as you check every instance 
of the formula. An instance is found by taking away the quantifier, and replacing every 
variable bound by that quantifier (here an x) by a standard name. The instances of 

are 
Rda Rka Rea   

Here, every instance is true. Therefore, the universally quantified formula is true. Let’s 
look at a slightly more complex proposition: If you read Kant, you’re a philosopher. This 
is formalised as 

   

How do you evaluate this? The universal quantifier says holds for any 
object in the domain. So, it is true iff each of  

   

are true. And, you can check that they are. The only false instance of Px is Pe, and in this 
case, Reb is false too (Einstein doesn’t read Kant), so each instance of is 
true, and so the universally quantified formula is true. 

Here are the general rules for evaluating quantified formulas. We have already seen 
the universal quantifier rule, and the existential quantifier rule is similar. 

• is true iff A(x:=a) is true for each a in the domain D. 

• is true iff A(x:=a) is true for some a in the domain D. 

A universally quantified formula is true just when every instance is true. An existentially 
quantified formula is true just when some instance is true. 

The final nuance in these rules involves being clear on how instances are formed. I 
have said that the instances of a quantified formula such as are to be found by 
stripping the formula of the quantifier and replacing x by a name: you end up with 
A(x:=a). This is true, but only some instances of x in A have to be replaced. 

You must replace only those instances that are bound by the outside quantifier in 

Here is an example. Take the following formula: 

   

One of its instances is but the formula is not an 
instance, as the second Fx in the original formula is bound by the inside universal 
quantifier, and not the outside existential quantifier. 

We will wrap up this section with one more example, of a more complex formula: 
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This says that if you read Descartes then there’s a philosopher who reads you. This is a 
formula with nested quantifiers. The quantifier is in the scope of the outer 

quantifier, The formula is a universally quantified formula (that is its main 
operator), so we check its instances first. They are 

 

  

The first thing to note is that the antecedents of these conditionals are true (everyone 
reads Descartes). So, for these instances to be true, we want the consequents to be true 
too. Let’s take these one at a time. The first is 

   

and its instances are 
Pd&Rdd Pk&Rkd Pe&Red   

We want at least one instance to be true, and in this case the first two are, so 
is true. The second formula, has these 

instances: 
Pd&Rdk Pk&Rkk Pe&Rek   

and in this case the second instance is true, so our formula is true. The last formula is 

and its instances are 
Pd&Rde Pk&Rke Pe&Ree   

and here no instance is true. The first two instances are false, as Rde and Rke are false 
(neither Descartes nor Kant read Einstein) and the last instance is false, as Pe is false 
(Einstein is not a philosopher). So is false, and, as a result,  

is false. This is an instance of our original formula 

   

which is therefore also false. 

This explanation of the falsity of was extremely 
long-winded. There is a shorter way to do this when the domain is finite. You can 
translate out the quantifiers, to get a formula equivalent to it, that has no quantifiers at all. 
The rules are simple: 

In a finite domain, is equivalent to the conjunction of its instances, and is 
equivalent to the disjunction of its instances. 
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So, take our formula The conjunction of its 
instances is the formula 

 

  

(I have bracketed to the right. You could just as well have bracketed the conjunction to 
the left, or in any order you like. The order of conjunctions does not matter, as they are 
all equivalent.) This formula contains three existential quantifiers, which become 
disjunctions, like this: 

 

  

You can then read off the evaluation the values for each atomic formula, and then use the 
standard truth-table rules to calculate the value of the whole formula. 

Sometimes the ‘translation’ method does not work. If the domain in question is 
infinite, there is no way to unpack each quantifier into a corresponding propositional 
formula. The quantifiers must be evaluated by hand. Here is an example. Suppose I am 
reasoning about numbers, and my domain is 

D= {0, 1, 2, 3, 4,…}   

the collection of all finite counting numbers. The dyadic predicate S might be interpreted 
as ‘smaller than’. It has the following table: 

I(R) 0 1 2 3 4 … 

0 0 1 1 1 1 … 

1 0 0 1 1 1 … 

2 0 0 0 1 1 … 

3 0 0 0 0 1 … 

4 0 0 0 0 0 … 

· · · · · · · 

I can only write up some of the table, but hopefully you get the idea. We use the symbols 
0 1 2 3 4…   

as names for the numbers, instead of letters, as these are perfectly good names in this 
context. Now, to evaluate the formula 
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we check if every instance of S0x is true. Now this is simple: not every instance is true, as 

S00 is one instance that is false. As a result, is false. For a more complex 
example, take 

   

This is true just when the instances 

   

are all true. That is, where n is any of 0, 1, 2,…, the instance 

   

must be true. But, for that, some instance of Sny must be true. And that is easy—pick a 
bigger number than n for y. That ensures that is true, for any n, and so 

is true in our model. 
For one last example, consider the formula 

   

This is true if and only if every instance 

   

is true, for every number l, m and n. (We have processed all three universal quantifiers in 
one go.) But if you have any three numbers, if the first is smaller than the second, and the 
second is smaller than the third, the first must be smaller than the third. Therefore, any of 
these instances must be true, and so is the original formula. 

Our definition of truth (or satisfaction) in models gives us exactly the same definition 
of validity as with prepositional logic: 

X╞A if and only if every model satisfying each formula in X also satisfies A. 

The unfortunate truth with predicate logic is that testing this is much more difficult, as 
there are many more models to check. To show that X╞A, you must show that there is no 
model satisfying X, ~A. That means, no model on a domain of size 1, or of size 2, or 3, or 
4…and once you have exhausted the finite domains, you should check all the infinite 
ones too. 

Constructing models 

If I have an argument form, and I want to show that it is invalid, I construct a model in 
which the premises are true and the conclusion is false. In this section, we will see a 
simple method to do that. We will first choose how big our domain is, and then see 
whether we can construct a model using that domain to make the premises true and the 
conclusion false. 
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If the domain you choose is a small one, you can construct an interpretation by 
translating the quantifiers away. For example, to check the argument from 

to in the two-element domain {a, b}, we introduce 
standard names a and b for the objects, and we replace the quantifiers in the premise and 

the conclusion. The premise becomes 

   

which then becomes Similarly, the conclusion 

becomes 

   

Now, to find a model (on this domain) in which the premise is true and the conclusion is 
false, we just work with the equivalent prepositional forms. The tree for this argument is 
presented in Box 9.1. The tree has two open branches. Both open branches contain 
different ways to make the premise true and the conclusion false. The left open branch 
gives us 

~Rab Rbb ~Rba Raa   

Box 9.1 

(reading from bottom to top) and the right open branch gives us 
~Rbb Rba ~Raa Rab   

Logic     102



The two branches give us two different models. We take these propositions and use them 
to give us the interpretations of the two-place predicate R. We get two different tables for 
I(R). The left branch gives us the first interpretation and the right branch gives us the 
second. 
I(R) a b   I(R) a b 

a 1 0   a 0 1 

b 0 1   b 1 0 

Both tables give us models satisfying the premise but not the conclusion. Translating out 
a formula is quite tedious, especially when you have a moderately large number of 
names. (Actually, anything over two seems to be tedious enough.) Another way to test an 
argument in a fixed domain size is by way of trees. You can add some simple tree rules 
for each quantifier, using the assumption that the domain has a given size. 

Existential 

To resolve a formula of the form extend every open branch in which the formula 

occurs with new branches, each containing an instance of In the case with a 
domain with three objects, {a, b, c} we have 

 

  

The rationale of this rule is simple. If is true then some instance of A must be 
true. We have one branch for each possibility. 

Negated existential 

To resolve a formula of the form extend every open branch in which the 
formula occurs with every negated instance of In the case with a domain with 
three objects, {a, b, c}, we have 

 

  

The rationale here is similar. If is true then no instance of A is true, and hence 
every instance of ~A is true. The universal rules are similar. 
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Universal 

To resolve a formula of the form extend every open branch in which the 
formula occurs by each instance of In the case with a domain with three objects, 
{a, b, c}, we have 

 

  

Negated universal 

To resolve a formula of the form extend all of the open branches in which the 

formula occurs with branches for each of the negated instances of In the case 
with a domain with three objects, {a, b, c} we have  

 

  

Let’s use these rules in an example, testing the argument from and 
to in a four-element model is presented in Box 9.2. The tree closes, 

so there is no counter-example to this argument in a domain of size four. (At the end of 
this tree, I have taken some liberties to make the tree shorter than it would have been had 
I applied the rules literally. Take the branching to ~Fb and Gb under ~Gb. In this case, 
we should have also included the branches to ~Fa and Ga that also occurred under ~Ga. 
After all, these come from processing and, as the rules indicate, one must 
place the result of processing a formula in every open branch in which the formula 
occurs. In this case, I didn’t, because inserting ~Fa and Ga into other branches would add 
nothing except complexity. The branches here each close, and ~Fa and Ga would do 
nothing to help that. The case would be very different if the tree were not to close. If that 
were the case, one would have to apply the rules religiously, at least in a single open 
branch.) 

Box 9.2 
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When finite domains suffice 

Knowing that there is no counterexample to the argument in a domain of size four is 
reassuring, but it does not tell us that the argument is valid. We would have to check 
domains of other sizes too. In the next chapter, we will introduce tree rules for quantifiers 
that do not presuppose any particular domain size, and that will give us a method for 
checking validity of arguments in first-order logic. 

To round off this chapter, we will see that there is one case where testing in a finite 
model suffices for showing that an argument is valid. If your argument is monadic (that 
means that each of the predicates in the argument is monadic) and there are n different 
predicates in the argument then we can test the argument in a finite domain and be sure 
that if there is no counterexample in this domain, there is no counterexample at all. 

An argument form containing n monadic predicates is valid iff it has no counterexample 
in a domain with 2n elements. 

Why is this? This works because each of the n predicates divides the domain up into two 
classes: those with that property and those without. There are n predicates, so the domain 
is divided into two pieces n times over, so there are 2n different sorts of things an object 
can be. 
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To be more precise, suppose we have an interpretation I on the domain D that satisfies 
everything in X, but not the formula A. Call two domain elements a and b in D mates if 
each predicate in the language assigns the same truth value to both a and b. The domain 
D is divided into at most 2n sets of mates. Create a new domain D* by selecting one 
element from each set of mates. D* has at most 2n elements. For each old element b in D, 
let its representative be the one of its mates that is selected to go into the new domain D*. 
We will create a new interpretation I* on this new domain D* that satisfies exactly the 
same formulas as I does. The rules are simple: 

•I*(F) assigns the same value to a that I(F) does. 
• If I(c)=a then I*(c)=b, where b is a’s representative. 

Then, in general, Fa is true (according to I) if and only if Fb is true (according to I*), 
where b is the representative of a. It follows that for any formula A, I(A)=I*(A), so, since 
we started with a model that was a counterexample to the argument, this new model on 
the domain D* is also a counterexample, but it now has a domain with no more than 2n 
objects. (If the domain D* has fewer than 2n objects, we may duplicate an object a 
number of times to make up the numbers to ensure that the domain has exactly 2n objects. 
A duplicate of an object in a model is another object that satisfies exactly the same 
predicates as the earlier object. Adding duplicates to a model does not affect the truth or 
falsity of formulas in the model.) 

Applying this result in the case of the argument from and 

we can see that the argument is valid, as the tree shows that 
there is no counterexample in a four-element domain. 

Summary 

• A model of the predicate calculus has a domain; a non-empty set D of objects. 
• In a model, every name a is interpreted by an object I(a) from the domain D. 
• Each n-ary predicate F is interpreted by an assignment I(F) of truth values to all ordered 

n-tuples from the domain D. 

• is true in a model if and only if each of its instances are true. Therefore, in a 
finite domain, is equivalent to the conjunction of its instances. 

• is true in a model if and only if at least one of its instances is true. Therefore, in 

a finite domain, is equivalent to the disjunction of its instances. 
• X╞A if and only if every model satisfying each formula in X also satisfies A. 
• An argument form containing n monadic predicates is valid iff it has no counterexample 

in a domain with 2n elements. 
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Exercises 

Basic 
{9.1} Given the following model with the domain D={a, b, c}: 

  I(F) I(G)   I(T) a b c 

a 0 1   a 0 1 0 

b 1 1   b 1  0 1 

c 1 0   c 0 1 0 

  
 

  evaluate the following formulas: 

  1  

  2  

  3  

  4  

  5  

{9.2} Given the domain 

  D={1, 2, 3,…} 

  interpret the predicates S ‘smaller than’ and D ‘divides’ as follows: 

I(S) 1 2 3 4 …   I(D) 1 2 3 4 … 

1 0 1 1 1 …   1 1 1 1 1 … 

2 0 0 1 1 …   2 0 1 0 1 … 

3 0 0 0 1 …   3 0 0 1 0 … 

4 0 0 0 0 …   4 0 0 0 1 … 

. . . . .     . . . . .   

  (Dmn is true if m divides evenly into n.) Which of the following formulas are true? 

1 
 

2 
 

3 
 

4 
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5 
 

6 
 

7 
 

8 
 

9 
 

10 
 

{9.3} Test the following formulas in two-element domains, using any technique you wish. Which 
are true in each model? Which are false in some? For those that have counter-examples, 
present a counterexample as a table of values for F and G. 

1 
 

2 
 

3  
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

 

{9.4} Test the following arguments in three-element worlds. For any that are not valid, present the 
counterexample in a table. 

1 therefore  

2 therefore  

3 therefore  

4 therefore  

5 therefore  

6 therefore  
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7 therefore  

8 therefore  

9 therefore  

10 therefore  

Advanced 
{9.5} How many different assignments of names are there from a language with 3 names, into a 

domain of 4 objects? How many different assignments are there from a language of n names 
into a domain of m objects? 

{9.6} How many different models are there of a 3-place predicate in a domain of 2 objects? How 
many different models are there of a n-place predicate in a domain of m objects? 

{9.7} How many different models are there in a language with n names, m monadic predicates and 
j dyadic predicates in a domain of k objects? 

{9.8} Find a sentence that is satisfied in every finite model, but that is not satisfied in some 
infinite model. Hint: It must feature at least a two-place predicate. 

It’s a small world after all.  
—Walt Disney 
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Chapter 10 
Trees for predicate logic 

Working with finite models is tedious—especially when you have three or more 
predicates, and you have to expand quantifiers with eight constants. And furthermore, the 
method isn’t going to be definitive with arguments containing any predicates of arity 
greater than 1. So, we need another method to deal with quantifiers. There is a method 
that works—trees. When we use trees to evaluate arguments, we construct the model as 
we go. We don’t have to decide in advance how many objects there are in the model. We 
can ‘introduce new objects’ as required. 

Tree rules for quantifiers 

There is a simple extension of trees that can cope with quantifiers. All we need add are 
extra rules for the quantifiers. 

Existential 

To resolve a formula of the form extend any open branch in which the formula 
occurs with an instance of A using a new name that has not occurred in the branch before. 

 

  

The rationale of this rule is simple. If is true then some instance of A must be 
true. We have no idea which object does the job, and we cannot presume we’ve seen a 
name for this object already. So, we use a new name, and we are safe. If there is a model 
satisfying then this model can also satisfy A(x:=a), because we can choose the 
interpretation of the new name a to be an object picked out by A. 

Negated existential 

Given a formula of the form you can extend any open branch in which the 
formula occurs by any instance of A, for any name you wish. 



 

  

The rationale here is similar. If is true then nothing is truly described by A, and 
hence everything is ~A. I can’t assume I have all of the names at my disposal when I get 
to work with the formula so whenever a new name is added to the branch, I 
can add a new instance of ~A to that branch. 

The universal rule works on the same principle. 

Universal 

Given a formula of the form you can extend any open branch in which the 
formula occurs by any instance of A, for any name you wish: 

 

  

The negated universal rule is just like the existential rule: 

Negated universal 

To resolve a formula of the form extend any open branch in which the formula 
occurs with an instance of ~A using a new name that has not yet occurred in the branch. 

 

  

As you can see, the rules come in two different kinds. We will call the existential 
quantifier rule and the negated universal quantifier rule particular rules. You use them 
once only. They introduce a new name to the tree, for a particular object. 

In the same vein, we will call the universal quantifier rule and the negated existential 
rule general rules. These rules can be used repeatedly. You are allowed to form instances 
of and as often as you like. They apply generally to all objects in the 
domain. 

We will treat general rules and particular rules differently when creating trees, much 
in the same way as treating branching rules differently to linear rules. 

Let’s use the rules to test an argument. We will test the argument from 
and to As before, you start the tree with the 

premises and the negated conclusion. Here is the top of the tree as we start: 
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These three formulas are all complex, so we have a choice of rules to apply. General rules 

apply to the first formula and the last formula and a 
particular rule applies to the middle formula  

We will apply the particular rule first, as it will give us a name to use to substitute into 
the other universal rules we will use later. So, we resolve the existential quantifier, using 
a name new to the branch. The name a hasn’t been used yet, so we make the substitution 
and extend the branch as follows: 

 

  

Once we extended the tree with ~Ga, we ticked the original formula off, to 
indicate that we have exhausted its content. We have placed an a after the tick to indicate 
that we have resolved the formula by substituting the name a. This reminds us that we 
cannot use a to resolve any other particular rules, as a is now in the branch. 

On the other hand, we can substitute a in general rules, as these apply to every object 
in the domain. In fact, that is what we will do now. We have a at our disposal, so we will 
substitute it into the universal quantifier at the top of the tree: 

 

  

We indicate that we have substituted a into the formula at the top of the tree by writing 
‘\a’ after the formula. This reminds us that we no longer have to substitute a into this 
formula. For our next move, let’s substitute a into the negated existential formula 
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We get the formula ~~Fa, and we write ‘\a’ on the third line to indicate that we have 
substituted the a on this line. Now, we could process ~~Fa, but that would be a waste of 
time, as we can get a closure immediately by resolving the conditional  

 

  

So, the tree closes, and the argument form is valid. The reasoning is perfectly general, as 

it applies in any model. The tree tells us that if is true, there must be some 
object with the property ~G. Call the object a. Now, since  holds of every 
object, it holds of a, so we have And we want to try to make 
true, so we must make ~~Fa true too. These three requirements are inconsistent, so there 
is no way to make the three formulas true, in any model, on a domain of any size. The 
reasoning works no matter how large the domain. 

This tree is much simpler than the tree used in the previous chapter to test the 
argument in a three-element model. Our tree is smaller, and it is more general. It shows 
that the argument has no counterexample in any model. 
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Let’s use the rules to show that is a tautology. That means, it 
is true in every model, no matter how large or small. To show that this must be the case, 
we try to find a model in which it is false. The tree is simple: 

 

  

The first step was to apply the particular rule to the negated universal quantifier. This 

gave us a new name a, and we learned that must be true. This is a 
negated conditional, so, to make that true, Fa and must be true. But this 
negated existential is inconsistent with what we already know! We have Fa, but 
substituting a into gives us ~Fa, a contradiction. Therefore this formula is true 
in every model. So we know that it is a tautology. This is fortunate, because the formula 
ought to be a tautology. It says that for anything you care to choose, if it’s got property F 
then something has property F. That sounds like the kind of thing that ought to be true in 
every model. 

When trees don’t close 

Let’s look at a tree that doesn’t close. The tree for 

is presented in Box 10.1. This tree does not close:  

Box 10.1 
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the middle branch is open. Furthermore, the middle branch is complete, in the sense of 
the following definition: 

An open branch in a tree is complete iff every resolvable formula has been resolved, and 
every name in the branch has been sub-stituted into every general formula in the branch. 
(Furthermore, some name has been substituted into each general formula in the branch.) 

What does this mean? One way of thinking about it is this: a com-plete open branch in a 
tree is a world unto itself. For every existentially quantified formula in the 
branch, there is a (named) object a occuring in the branch such that A(x:=a) is in the 

branch. Similarly, for every universally quantified formula in the branch, and for 
every name a in the branch, the formula A(x:=a) is also in the branch. This branch 
describes a coherent, consistent and complete possibility, requiring nothing else to make 
every-thing in that branch true. 

In our example tree, the only general formula is and this has had 
both names a and b substituted into it. (The extra condition in parentheses has been added 
to deal with a special case that comes up next. Ignore it for the moment.) 

The middle branch in our tree is complete. So, we will read off the atomic formulas in 
that branch to create a model. The names are a and b, so we will make our domain D={a, 
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b}. The interpretation for F and G is read off the branch by looking at the atomic 
formulas. The branch contains Fa and ~Fb, ~Ga and Gb. This tells us that our 
interpretation for F and G looks like this: 
  I(F) I(G) 

a 1 0 

b 0 1 

This interpretation suffices to make the premise of the argument true (there is an F and 
there is a G) but to make the conclusion false (there is no object which is both an F and a 
G). So, trees work with predicate logic in just the same way as with propositional logic. 
Closed trees give you valid arguments, and complete open branches give you 
counterexamples. 

The parallel with propositional logic is not perfect, however. Sometimes your tree will 
never stop. The rules just make you keep going and going and going. What should you do 
in these sorts of situations? Let’s see an example. 

Is the formula satisfiable? We will check this by creating a tree for it. 
The tree is given here: 

 

  

The first interesting thing about this tree is that we had to invent a name to substitute into 
the universal quantifier at the top of the tree to get the tree going. This is permissible, as 
we know that any domain must have at least one object. So, we can give that object a 
name (here it is a) and continue from there. This happens in general: if you have a general 
formula in a branch, the branch is not completed until you have substituted at least one 
name into the formula. 

The next striking thing about this tree is the fact that it goes on forever. Any 
completed branch (and this tree will only ever have one branch) must be infinite. The 
infinite branch given by completing the tree is reasonably simple to understand. It helps if 
we use different names instead of a, b, c,…, as we will use infinitely many names. If we 
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use different names, a1, a2, a3, a4, etc., you can see that the branch will contain each of 
these formulas: 

La1a2 La2a3 La3a4… Lan an+1…   

The name a1 is the first to be substituted into Then, given 
we get a new name, a2. This goes back into the universal quantifier, to give us 

and the process repeats …, which eventually gives us an, and and 
hence a new name an+1, which goes back into the universal quantifier, and the process 
continues ad infinitum. 

We can summarise the information contained in the tree in a table like this: 
I(L) a1 a2 a3 … 

a1         

a2   1     

a3     1   

·         

The 1s in the table are given by the formulas Lanan+1 in the branch. The other entries in 
the table are left blank, as we are given no information one way or the other about them. 
It is consistent with this branch to have La1a1, and it is also consistent to have ~La1a1. 
So, this table contains all of the information given by the open branch. Any interpretation 
consistent with that table will make the formula true. For example, we 
can construct an interpretation by making all other values false: 
I(L) a1 a2 a3 … 

a1 0 1 0   

a2 0 0 1   

a3 0 0 0 · 

·         

This is an interpretation that makes our original formula true. Another interpretation 
makes all the other values true. 
I(L) a1 a2 a3 … 

a1 1 1 1   

a2 1 1 1   

a3 1 1 1 · 

·         

This satisfies the original formula equally well. There are even simpler ways of making 
the formula true. For example, there is no need for the objects a1, a2, a3,…amed by the 

Trees for predicate logic     117

�



names a1, a2, a3,… to be different. In this last interpretation, each is related by L to every 
other object. As far as the interpretation goes, each object an is indistinguishable from 
any other, so we may as well have the following one-element interpretation: 
I(L) a1 

a1 1 

In general, given a completed branch of a tree, you ought to find the pattern in the branch, 
and display the information given explicitly in that branch by a table. Then, you can 
construct any interpretation consistent with that information to satisfy the formulas in that 
branch. This includes using one object for more than one name in the branch, provided 
that the information known about the different ‘objects’ is consistent. We will consider 
one more example to explain this last constraint. Here we test the consistency of the 

formula This is very similar to the case we have already 
seen. The tree for this formula is given below. (This time I have used names a1, 
a2,…because I knew it would continue forever.) 

 

  

Logic     118



This tree also continues indefinitely. A completed branch now contains 
La1a2 ~La2a1 La2a3 ~La3a2 La3a4 ~La4a3···Lanan+1 ~Lan+1an   

In table form, we get this information about any interpretation: 
I(L) a1 a2 a3 a4 … 

a1   1       

a2 0   1     

a3   0   1   

a4     0     

·           

Any interpretation that fills in the blanks in this table will satisfy the formula 

So, populating the rest of the table with zeros gives us one 
interpretation: 

I(L) a1 a2 a3 a4 … 

a1 0 1 0 0   

a2 0 0 1 0   

a3 0 0 0 1   

a4 0 0 0 0   

·           

We can still get a finite model by noticing that not every name an need name a different 
object. But we have to be careful. We know that a1 and a2 must name different objects, 
since we have La1a2 and ~La2a1. Similarly, a1 and a3 name different objects, as La1a2 but 
~La3a2; and in general, an, an+1 and an+2 must name different objects. This is the only 
requirement we must satisfy. There is nothing that tells us that a1 and a2 must name 
different objects, or that a2 and a5 must. In fact, we can identify every third an to get a 
very compact table: 

I(L) a1 a2 a3 

a1 0 1 0 

a2 0 0 1 

a3 1 0 0 

This is the smallest domain in which the formula can be 
satisfied. 
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Why the tree method works 

The tree method works in the following two senses. 

Fact 1 

If X is satisfiable then, in any totally developed tree for X, some branch remains open. 

That is, if then This is the soundness theorem. If an inference can be proved 
valid using trees, it is valid. 

Fact 2 

If, in some totally developed tree for X, some branch remains open then X is satisfiable. 

Therefore, if then This is the completeness theorem. If an inference is valid, 
it can be proved so using trees. 

These facts are the same as those we proved for prepositional logic. They jointly 
demonstrate that trees for predicate logic are a good match for the models we have 
defined. Proving these facts is not much more difficult than in the prepositional case, and 
I will complete this chapter with demonstrations of both of these facts. 

Proof of fact 1 

If X is satisfiable, there is some model that makes true every formula in X. We will use I 
to name the interpretation function of this model, and, for any formula A made up out of 
the atomic formulas that appear in X, we will write ‘I(A)’ for the truth value I assigns to 
A. Since X is satisfiable, if A is a sentence in X, I(A)=1. If A is the negation of a sentence 
in X, I(A)=0. 

As in the propositional case, we will show that in a completed tree for X, there is some 
branch in which every formula is satisfied by an interpretation I. It follows that this 
branch is open, since it can contain no contradictory pair of formulas A and ~A, as they 
are both satisfied by I. So, if we find such a branch, we are done: our tree contains an 
open branch. 

Finding such a branch is quite simple. You start at the top of the tree, with the 
formulas in X. These are each satisfied by I, since that is what we assumed. Now, for 
each rule that is applied to extend the tree, at least one of the branches generated will give 
us formulas that are satisfied by I, provided that the formula resolved is also satisfied by 
I. The propositional connectives work in just the same way as before. The only new work 
is as a result of the quantifiers. Here, we must expand the interpretation as we go along, 
as we add names to the language. We will now prove that if I satisfies all formulas in a 
partially completed branch then there is an interpretation I* that might extend I, which 
satisfies one of the branches extending the partially completed branch. 

If we resolve a existential quantifier then, since the formula appears in the 
branch, we know that The rule adds A(x:=a) to the branch, where a is a 
name new to the branch. The name a is not interpreted by I0, so we extend I to interpret a. 
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We get a new interpretation I0 that agrees with I on all of the old language, and assigns a 
to some element in the domain D. What should we choose as I0(a)? We want to make 
sure that I0(A(x:=a))= 1. This is simple: we know that  so there is some 
object c in the domain A where I(A(x:=c))=1. So, we let I0(a)=c, and this ensures that 
I0(A(x:=a))=1 too, as a is interpreted in the same way as c, as naming the object c. 

If we resolve a negated universal quantifier then we have 
The rule adds ~A(x:=a) to the branch, where a is a name new to the branch. Again, a is 
not interpreted by I, so we extend I to an interpretation I0 that also gives a referent to a. 
We want to make sure that I0(~A(x:=a))=1. This is simple: we know that 

so there is some object c in the domain A where I(A(x:=c))=0. So, we 
let I0(a)=c, and this ensures that I0(~A(x:= a))=1 too, as a is interpreted in the same way 
as c, as naming the object c. 

If we apply the rule to a universal quantifier then, we have 
The rule adds A(x:=a) for any name a we like. Since we know that 
I(A(x:=a))=1 for any name we like, and hence the added formula A(x:=a) is also satisfied 
by I. There is no need to extend our interpretation I in this case. 

If we apply the rule to a negated existential quantifier then we know that 
The rule adds ~A(x:=a) for any name a we like. Since 

we know that I(A(x:=a))=0 for any name we like, and hence the added formula ~A(x:=a) 
is also satisfied by I. There is no need to extend I in this case either. 

So, if the formulas at X at the top of the tree are satisfied by an interpretation I, there is 
some open branch in the tree that is also satisfied by an interpretation. That interpretation 
is not necessarily the same as I, as it might be an extension of I, designed to interpret the 
new names introduced by the particular rules applied in the branch. So, the tree remains 

open: if then  

Proof of fact 2 

Suppose a completed branch in a tree for X remains open. We wish to construct an 
interpretation satisfying X, and everything in that branch. The construction is similar to 
the propositional case. Take the domain of the interpretation to be the names appearing in 
the branch. If a is a name in the branch, we interpret a as referring to itself: I(a)=a. We 
fix the interpretations of the predicates similarly. 

If Fa1…an is in the branch, I(F) assigns true to If ~Fa1…an is in the 

branch, I(F) assigns false to (Any value can be applied if neither Fa1…an 
nor its negation is in the branch.) This is a consistent model as the branch is not closed. 

We prove by induction on the formulas in the branch that if A is in the branch, I(A)=1, 
and if ~A is in the branch, I(A)=0. The atomic formulas Fa1…an and ~Fa1…an work 
because I was defined to make them work. The propositional connectives work because 
the situation is unchanged from the propositional case. 

For a universal quantifier, if is in the branch then A(x:= a) is in that branch for 
every name a appearing in that branch (the branch is complete). By hypothesis, 
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I(A(x:=a))=1 for each a, so too, by the interpretation rule for the 
universal quantifier. 

For a negated universal quantifier, if is in the branch then ~A(x:=a) is in the 
branch for some name a appearing in that branch. By hypothesis, I(A(x:=a))=0 for this a, 
so too, by the interpretation rule for the universal quantifier. 

The cases for the existential quantifier and for its negation are no different to these, 
and I leave them for you to verify. The result shows that I satisfies every formula in the 
branch, and hence the formulas X at the top of the branch are all satisfied by I. In other 

words: if then  
As a result, trees fit models hand-to-glove. 
Now you have enough material to go away and analyse any predicate calculus 

argument form, using trees. There are no rules as to what order to do things in, but here 
are some hints to help make sure your proofs remain as small and manageable as they can 
be: 

• Remember to always work on main connectives! 
• Do the propositional rules first, if possible. Especially if they do not branch. 
• Then do the particular instantiation rules. 
• Do the general instantiation rules when it looks as if making a substitution will be 

interesting—for example, it will close off this branch, or will give you a model. 
• Once you have a branch that looks as if it goes on forever, try to find a pattern in what 

goes into the branch, and summarise that in a table. 
• Use that table to construct your model. Compress it into a smaller model if you prefer. 

Howson’s Logic with Trees [12] has good examples of trees for quantifiers. For much 
more of the theory of trees for predicate logic, you cannot go past Raymond Smullyan’s 
First-Order Logic [29]: it is filled with insights and Smullyan has an unsurpassed depth 
of understanding of the tree method. 

Exercises 

Basic 
{10.1} Test the following formulas, using trees. Are any tautologies? For those that are not, 

present counterexamples. 

1 
 

2 
 

3 
 

4 
 

5 
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6 
 

7 
 

8 
 

9 
 

10 
 

{10.2} Test these argument forms for validity, using trees. Present counterexamples to any invalid 
argument forms you find. 

  1  

  2 

 
  

3  

  4 

 
  5 

 
{10.3} Test all of the arguments formalised in Exercise 8.4. 

{10.4} Construct an appropriate dictionary to formalise the following arguments, and test the 
resulting formalisations for validity: 

  1 PS is an axiomatic system. All of the theorems of PS are tautologies. No prepositional 
variable is a tautology. All axiomatic systems of which no prepositional variables are 
theorems are post-consistent. Therefore, PS is post-consistent. 

  2 If every decision is to be referred to the central authority then some programmes will be 
delayed. But all programmes have received approval, and nothing is to be delayed that has 
received approval. So, it follows that not every decision is to be referred to the central 
authority. 

  3 Whatever is true is not false and whatever is not false is true. If anything is false then no-
one knows it. John knows something (and John is a person). So, something is true. 

{10.5} A dyadic relation R is said to be reflexive iff symmetric iff 

and transitive iff 

Show that not all reflexive and 
symmetric relations are transitive by showing that 
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  Similarly, show that not all reflexive transitive relations are symmetric, and that not all 

symmetric transitive relations are reflexive. 

{10.6} A dyadic relation R is said to have no dead ends iff Show that all 
symmetric, transitive relations without dead ends are also reflexive by showing that 

  

 

Advanced 
{10.7} Consider the following two propositions: 

   
  which you can read with the following dictionary: 

  Mx=x is male; Fx=x is female; 

  Oxy=x is the mother of y; Axy=x is the father of y 

  It should be clear that the two propositions are consistent and seem true. Every male person 
has a mother (who is female), and every female person has a father (who is male). 
Construct a model that satisfies these propositions, using a 

  tree. In particular, explain what a completed tree for the two propositions looks like. 

{10.8} Prove that in any closed tree, only a finite number of formulas have been resolved. This is 
König’s lemma: any finite forking tree (any fork in the tree splits to a finite number of 
descendants) with finite branches is itself finite. This is in fact rather hard to prove. König 
proved it like this. Take a finite forking tree with infinitely many points in the tree. We 
show that it has an infinite branch as follows: 

  • Call a point in the tree good if it has an infinite number of descendants. 

  • The root of the tree is good. 

  • If a point in the tree is good, one of its children (immediate descendants) is good. 

  • Therefore there is an infinite branch in the tree. 

  Go through this proof and explain each step. 

{10.9} Using the previous result, show that if X├A then there is a finite subset X* of X where X*├ 
A. This is the compactness theorem for predicate logic. 

The golden rule is that there  
are no golden rules.  

—George Bernard Shaw 
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Chapter 11 
Identity and functions 

The language of predicate logic is all well and good as it stands—it is a vast improvement 
over prepositional logic—but there are still some things you cannot say. Say we have two 
names ‘Clark Kent’ and ‘Superman’, and we want to express the fact that they refer to the 
same person. We say it like this: 

Clark Kent is Superman. 

There is no way to say this simply in the language of first-order logic as we have it. The 
is in Clark Kent is Superman is not the same sort of is as appears in Clark Kent is a 
reporter. We cannot say Sc where S is the predicate is Superman and c is the name Clark 
Kent, for Superman is a name, just like Clark Kent is. There’s nothing in the language 
that tells us that two names name the same thing. We must use a new predicate to ascribe 
the ‘relation’ that Clark Kent and Superman bear to each other in virtue of being the same 
person. (You can, of course, add a new two-place predicate I to the language for identity, 
and add premises to your arguments to govern the behaviour of I. But to do this would be 
to say that the argument ‘Clark Kent is Superman, Clark Kent is over 2 metres tall, 
therefore Superman is over 2 metres tall’ is invalid as it stands. It seems as if ‘is’ is not 
the sort of connective you must define every time you use it.)  

Similarly, there is no way to say that two things are different. You can’t say that there 
are two dogs in the room by saying 

   

since this will be true even if there’s only one dog in the room. How can we extend our 
language to help us express such basic things as these? 

Identity 

We introduce a new predicate into our language to deal with such statements—it is a 
dyadic predicate written as ‘=’. We write it ‘infix’ instead of ‘prefix’ because you are 
much more used to seeing ‘a=b’ than seeing ‘=ab’. The formula 

a=b   

is true in a model just when a and b name the same object in that model, and it is false 
otherwise. 

For the negation of a=b, we will not write ‘~a=b’, which might be confusing. We will 
write ~(a=b), or, even better, 

a≠b   

�



This is true in a model just when a and b name different objects in that model. Let’s see 
how identity works in a particular model. Here is a model we have already seen: 
  I (a)=d   I (P)   I (R) d k e 

D={d, k, e}   d 1   d 1 0 0 

  I (b)=k k 1   k 1 1 0 

    e 0   e 1 0 1 

In this language, we can state more things than in the language without identity. For 
example, we can state that Everyone reads someone else. This is said by 

   

This is false, since it is not true that for any person in the domain, there is someone else 
who they read. The instance 

   

is false, since every instance 
Rdd&d≠d Rdk&d≠k Rde&d≠e   

is false. The first is false since d≠d is false; the second and third are false as Rdk and Rde 
are both false. 

We can also state the claim: If you are read by everyone, you’re Descartes. This is said 
by 

   

This formula says: take anyone you like (this is x); then if everyone reads x, x must be 
identical to d. This is true in our model: the instances are: 

   

The first instance is true because d=d is true. For the second and the third to be true, 
and must be false. These are both false because instances Rdk and 

Rde are false. 
Now, to test arguments involving identity, we must have some tree rules featuring 

identity. The rules are of a similar form to others. We have a negated identity rule, and an 
identity rule. The negated identity rule is simple: Since all self-identities are true, a 
negated self-identity closes a branch: 

A formula a≠a closes a branch in which it occurs.

The other rule we require—the identity rule—can be motivated like this: If a=b is true, 
and we have something true of a, then that thing is also true of b, since a and b are the 
same thing. Let A be a formula in which a appears. A(a:=b) is a formula you get when 
you replace some instance of a in A by b. Our rule is then: 
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If a=b and A are in a branch, we can place A (a:=b) in that branch too.

Note that this does not resolve the formulas a=b or A, for they can be used again. 

We will use these rules to prove that  

 

  

This tree applies the identity rules straightforwardly. We get a=b and b≠a. These do not 
immediately close the branch, since b≠a is the negation of b=a, and that is a different 
formula from a=b. (Proving that b=a amounts to the same thing as a=b is what we are 
trying to prove in this tree. It will do no good to just assume it!) So, we apply the identity 
rule to a=b and b=a. Using a=b, we can replace the a in b≠a by a b. This then gives us 
b≠b, which closes the branch, and hence the whole tree. 

Trees with identity that close are very much like trees without identity that close. 
There is one extra wrinkle in dealing with trees with identity that do not close. We must 
ensure that the identity predicate on the domain is interpreted by the identity relation on 
that domain. This means that we may not always take the domain constructed from the 
model to just have one object per name, as the following example shows. Here is an 
example of a tree that does not close—we test 

below: 
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And this branch is open. To deal with the open branch and to construct a countermodel, 
you must understand how to cope with identity. That’s rather simple. In a model, identity 
is always denoted by the identity relation. In other words I(=) relates two objects in the 
domain just when they’re the same object. So, how do you construct a countermodel from 
an open branch? You do that by picking out names as domain elements, just as before, 
except for when some names denote the same object in the model. In that case, you just 
choose one of the constants to be a domain element, and it stands for all of the others too. 
Here, the open branch gives us three names: a, b, c. However, we know that b=c. So, the 
names form two cliques: 

{a} {b, c}   

To construct the model, you take a representative from each clique to form the domain. 
Any property had by one member is had by all members. (This is no problem, since if 
b=c and some property holds of b, it must hold of c too, by virtue of the identity rule for 
trees.) So, in our case, the facts known of the model go as follows: 

I(R) a b 

a 0 1 

b 1   

We have Rba, since we have Rca, and b=c. We do not have Rbb (or its negation), as none 
of Rbb, Rcb, Rbc or Rcc appears in the branch. This is the information given by the 
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branch, and it follows that either interpretation given to extend this by placing a 0 or a 1 
in that space will do as an interpretation that makes the formula false. Therefore, it is not 
a tautology. 

Translating some common quantifiers 

In everyday language, we don’t only use the quantifiers ‘every’ and ‘some’. We also say 
things like ‘at least 3’, or ‘at most 40’ or ‘exactly 3088’. We can express these using our 
own quantifiers along with equality. Here’s how it goes. 

At least n things are F is translated as 

   

In other words, there are n things that are F, where no pair taken from them is identical. 
For example, there are at least three logic students is translated as 

   

At most n things are F is translated as  

 

  

In other words, if we have ‘n+1 things’ that are F then we have at least double-counted: 
at least two of them are the same. For example, there are at most two logic students is 
translated as 

   

You can put these two together to say that exactly n things are F. This can be translated 
as the conjunction of at least n things are F and at most n things are F. 

A final case that is a little simpler than the general case for exactly n is the case for 
exactly one thing is F. This can be translated as follows: 

   

In other words, it can be read as saying two things. 

• There is something with property F. 
• Anything with property F is identical to that thing.

If both are true then there must be exactly one thing with property F. If the first is false 
then there is not exactly one thing with property F, since there is nothing with property F. 
If the first is true but the second is false then there is not exactly one thing with property 
F, because there are more things with that property. So, our translation works. 

As a final example, there is exactly one Indonesian logic student is translated as 
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Exercise 11.8 asks you to use these definitions to show how basic facts about arithmetic 
can be derived from logic. 

Functions 

Sometimes—especially when you are modelling mathematical theories—predicates, 
names and identity are not sufficient to straightforwardly express all that we want to 
express. Suppose we are reasoning about numbers. We are able to add them and subtract 
them, multiply them and divide them. We have names for numbers, and addition, 
subtraction, multiplication and division are names for functions, which, when given 
numbers, return more numbers. 

There is no straightforward way to represent functions in the language we have so far. 
It is technically possible to represent the addition function by the three-place predicate S 
where 

Sxyz   

means ‘adding x to y gives you z’. Then you must state conditions that make S represent a 
genuine function: we have to state that for any x and y you like, there’s exactly one z 
where Sxyz. We’ve already seen how to do this: 

   

This says that, given any two inputs x and y, there is an output z, and any output from x 
and y must be equal to z. This is enough to make S represent a genuine function. 
However, dealing with a three-place predicate S is just too difficult. If we want to say that 
for any numbers x, y and z, x+(y+z)=(x+y)+z, we say 

   

which doesn’t look a great deal like what we are trying to say. 
An easier way to deal with this is to be explicit about functions, and to allow symbols 

that represent functions into our language. A function symbol is like a predicate, in that it 
has an arity, but it differs from a predicate, because a predicate applied to a number of 
names gives us a formula. A function symbol applied to a number of names gives us 
another name. For example, if f is a unary function symbol, and a and b are names, so are 

fa fb ffa fffb   

Since a is a name, fa is a name. Since fa is a name, ffa is a name too. Similarly, if g is a 
two-place function symbol then 

gab gfab gfaffb   

are all names too. Sometimes, given repeated function applications, it helps to use 
parentheses to clarify how the order of expression works. Each of the names displayed 
above is 

g(a, b) g(f(a), b) g(f(a), f(f(b)))   
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But these parentheses are, strictly speaking, irrelevant. Provided that the arity of each 
function symbol is known, there is exactly one way to understand each of the 
parentheses-free names. 

So, sum and product are both two-place functions. We often give them special 
names,+ and ×, and we often write them ‘infix’, between the names to which they apply, 
instead of before them. This is merely a notational convenience. Given these names, if a 
and b are names in our language, the following are also names: 

a+b a+(b×c) ((a×a)×b)+b(a×b)+(b×a)   

Function symbols are interpreted by functions on the domain. If f is a monadic function 
symbol and g a dyadic function symbol, and the domain D= {a, b, c}, then we can 
interpret function symbols in a little table: 
  I(f)   I(g) a b c 

a b   a a b c 

b c   b b c a 

c c   c c a b 

In this interpretation, we have f(a)=b, f(b)=c and f(c)=c. The tables tell you the output 
value for every input value in the domain. Similarly, we have g(a, a)=a, g(a, b)=b, g(b, 
c)=c, and so on. The square table is read in row-column pairs to get the output of the 
function I(g) from every input pair. 

There is no need to modify any of our tree rules or to add any in order to use function 
symbols in trees.1 Once function symbols are added to the language, the existing tree 
rules determine how they operate. Here is a tree testing 

 

 

  

In this tree, we see some of the distinctives of using function symbols. If a is a name, and 
f a one-place function symbol, then f(a) is a name too. We were able to substitute f(a) in 

the general formula in order to close the tree. 
However, not only is f(a) a name, so is f(f(a)), f(f(f(a))), and so on, ad infinitum. As a 

result, any tree featuring function symbols already has an infinite number of names. If 
there are any general formulas to be used in a branch, that branch must be infinite if 
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completed. There are very few simple open trees featuring function symbols. Here is one 

to show you how they look—this tree tests  

 

  

 

  

The branch is open, and it continues forever. The objects named in the tree are a, f(a), 
ff(a), fff(a),…. And the information in the tree is summarised by this table: 
I(L) a1 a2 a3 a4 …     I(f) 

a1   1         a1  a2 

a2 0   1        a2 a3 

a3   0   1     a3 a4 

a4     0       a4 a5 

·             . . 

In this interpretation, we have an infinite domain {a1, a2, a3,…}, and f is interpreted by a 
function that takes each domain element into the next one along in the list. Any 
interpretation that fills out the rest of the table will make the premise of the argument true 
and the conclusion false. One way to make the domain smaller is to use the trick we used 
in the last chapter: pay attention to what is explicitly said about what objects cannot be 
the same. Here we know that a1 and a3 are different, since a1 is related by L to a2, but a3 is 
not related by L to a2. Similarly, a2 cannot be the same object as a4, and a3 differs from a5, 
and so on. One way to arrange this is to identify every third object. We get this table: 
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I(L)  a1 a2 a3     I(f) 

a1 0 1 0   a1 a2 

a2 0 0 1   a2 a3 

a3 1 0 0   a3 a1 

There is a lot more that can be done with these extensions of our language. For more 
details, see the exercises. 

Summary 

• Identity is a special two-place relation, holding between x and y if and only if x and y 
are the same thing. 

• We use the two-place relation ‘=’ to represent identity. 
• In a tree, a formula of the form a≠a closes a branch. 
• In a tree, if a branch contains a=b and a formula containing a, you can add to that 

branch the formula given by replacing any number of instances of a in that formula by 
b. 

• We can use identity to represent numerical quantifiers such as at least n, at most n and 
exactly n. 

• Function symbols represent functions, in our languages. Each function symbol is 
interpreted by a function. For example, a two-place function symbol is interpreted as a 
function from pairs of objects in the domain to objects in the domain. 

• Function symbols use no new tree rules. 

Exercises 

Basic 
{11.1} Use the dictionary 

  a=Alphonzo 

  b=Bernadette 

  c=Candide 

  Px=x is a person 

  Rx=x is rich 

  Sxy=x is smaller than y 

  Wxy=x works for y 

to translate the following formulas: 

1 a=b 

2 (a=b&a≠c) 
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3 
 

4  
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 
 

{11.2} Using the same dictionary, formalise these expressions: 

1 Alphonzo is rich but Candide is not. 

2 Somebody who is rich is smaller than Candide. 

3 Somebody other than Candide is smaller than Alphonzo. 

4 Everyone is smaller than someone. 

5 Everyone is smaller than someone other than themselves. 

6 Everyone other than Alphonzo works for someone. 

7 No-one (except Bernadette) works for Alphonzo. 

8 There are at least two people. 

9 There are at most three people. 

10 There is exactly one person who works for Alphonzo. 

{11.3} Test the following formulas. Find counterexamples to any that are not tautologies. 

  1  

  2  

  3  

  4  

  5  

{11.4} Test the following arguments, and find counterexamples to those that are not valid: 

  1 therefore Ga 

  2 therefore  

Logic     134



{11.5} Formalise and test these arguments: 

  1 At most two frogs are blue; therefore at most three frogs are blue. 

  2 At least two frogs are blue; therefore at least three frogs are blue. 

{11.6} Show that a=b├f(a)=f(b). Does the converse hold? That is, does f(a)=f(b)├a=b? 

Advanced 
{11.7} We have represented exactly n things are F as the conjunction of at most n things are F 

and at least n things are F. The resulting formula contains 2n+1 quantifiers. Show that 
this is too wasteful by finding a more economical representation: one that uses only n+1 
quantifiers. 

{11.8} Show that basic arithmetic follows from the definitions of numerical quantifiers. That is, 
show that if at least n things are F, and m things are G, and nothing is both F and G, then 
at least n+m things are either F or G. Show that if at most n things are F, and at most m 
things are G, then at most n+m things are either F or G. 

{11.9} How can you use numerical quantifiers to prove things about multiplication in the way we 
have used them for addition? 

{11.10} You can formalise ‘number theory’ directly. The theory Robinson’s Arithmetic has seven 
axioms, in the language with identity, the one-place function symbol s (the successor 
function), the name 0, and two two-place function symbols+(sum) and×(product), both 
written infix. 

  1  

  2  

  3  

  4  

  5  

  6  

  7  

  The first three axioms say respectively: no two numbers have the same successor; zero is not a 
successor; and every number other than zero is a successor. The next two axioms dictate the 
behaviour of sum, and the last two the behaviour of product. Call the set of the seven axioms RA. 
In this language, we can use 1 as a shorthand for s(0), 2 as a shorthand for s(s(0)), and so on. 
Prove the following results: 

  1 RA├2+2=4. 

  2 RA├2+2≠5 

  3 RA├2×3=6 
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  4 RA├2×3≠5 

  5  

  (The last question is remarkably more difficult than the first four. For this, you must construct a 

model of all of RA that doesn’t true too.) 

All animals are equal  
but some animals are more equal than others.  

—George Orwell 

Note 
1 You must remember, however, that with the positive existential and negative universal rules, 

you introduce new names, not new function symbols. If you learn that then you 
are entitled to say Ga (where a is a new name)—you are of course not entitled to deduce 
Gf(a), for that would be to assume something about the object with property G, namely that 
it is also the result of applying the function f to some object. That might not be the case. 
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Chapter 12 
Definite descriptions 

Names in our languages pick out objects. In our formal language, this job is done by 
names, which are completely atomic (they have no significant parts) or are given by 
applying function symbols to other names. There is no other class of referring expressions 
in our language. 

This seems like an odd fit. We have shown how for formulas, the meanings 
(interpretations) of complex formulas are made up out of the meanings of simpler 
formulas. It seems that things should work like this for referring expressions too. There 
seem to be descriptions that pick out objects, in virtue of the predicates in those 
descriptions. Descriptions such as the tallest person in the room or the cause of that 
disease seem to act like referring expressions, and it seems that the structure and meaning 
of the description determines the referent, which is picked out by that description. This 
fact is not recognised by the language we have so far. There is no way to get a name that 
depends in any way on a predicate. 

Furthermore, descriptions seem to feature in some paradoxes, or strange phenomena, 
which ought to be clarified. Here are just two ways that descriptions seem odd when 
compared with other names or terms in our language. 

Failures of bivalence 

Descriptions seem to mandate failures of bivalence. For example, the present king of 
France is bald is not true, as France does not have a king at present. Similarly, the 
present king of France is not bald is not true, for the same reason. This is unlike other 
names, for which one of a is bald and a is not bald are true (except, perhaps, for reasons 
of the vagueness of the term bald. Please ignore that for the moment, or, if you can’t, 
please pick a precise predicate). It would be good to have some explanation of why 
descriptions allow such things. 

Non-existence claims 

Along similar lines, descriptions enable us to claim that certain things do not exist. It 
makes perfect sense to say there is no present king of France, and furthermore, it is true. 
We can’t do this with names in our language. Every name denotes an object in the 
domain, and so each name refers to an object that exists (at least in the sense of the 
existential quantifier). 

What can we do about descriptions? Can we clarify these issues? 
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Russell’s solution 

Bertrand Russell came up with a nice solution to these puzzles, by giving an analysis of 
descriptions in terms of the language we already have at hand. His solution was given in 
1905 [24] and it is an enduring testimony to the way that formal logic can be used to 
enlighten some rather difficult issues. 

Recall that we can translate exactly one thing is F as  

   

A definite description is a term in the language such as ‘the F’. Russell analysed definite 
descriptions using our translation of exactly one thing is F 

In normal discourse, when there is exactly one thing with property F, it is common to 
describe the object in question as ‘the F’—for example, we talk about 

The Prime Minister of Australia 
The person who last climbed Mt Everest 
The thing I’m trying to remember 

and many other things like that. Russell noticed that when we do talk in this way, we are 
presupposing a number of things. We are presupposing that there is something that 
satisfies the description (there is a Prime Minister of Australia) and we are presupposing 
that there is at most one of them (there is no more than one Prime Minister of Australia). 
If the first condition were not met then any talk of the F would be mistaken, as there 
would be nothing fitting the bill. If the second condition were not met, the talk would still 
be mistaken: we should talk about an F, not the F. So, Russell went ahead and used these 
facts to give an analysis of definite descriptions. 

Russell’s analysis goes like this: whenever I say that the F is a G, I am stating that 

• There is an F. 
• There is no more than one F. 
• That thing with property F also has property G. 

So, to say the F is a G formally, I am stating the following: 

   

Something has property F, nothing else has that property, and this thing has property G 
too. We will introduce a bit of notation as a shorthand. We write that formula for the F is 
a G in shorthand as 

(Ix)(Fx, Gx)   

We can use this to translate claims involving definite descriptions. For example, the 
claim The Prime Minister is in the Liberal Party, and is short becomes 

(Ix)(Px, Lx&Sx)   

where P, L and S stand for the obvious properties. Of course, we could have translated 
this as 
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(Ix)(Px, Lx)&(Ix)(Px, Sx)   

which comes to the same thing. 
The Prime Minister is shorter than the Deputy Prime Minister is more complex to 

translate. A halfway translation is 
(Ix)(Px, x is shorter than the deputy P.M.)   

Now, if Sxy is x is shorter than y, and Dx is x is a Deputy P.M., then how can we say x is 
shorter than the deputy P.M.? We say the deputy P.M. is F by saying (Iy)(Dy, Fy) (y is a 
better variable to choose than x, now that x is in use). What is the property F had by the 
deputy P.M.? The property we want is x being shorter than him. So, the property we need 
for Fy is Sxy. We get, in full, 

(Ix)(Px, (Iy)(Dy, Sxy))   

Complex translations involving definite descriptions are not always easy. You should 
ask, given an object described by a definite description: How is it described? This goes in 
the first slot. And: What property does it have? This goes in the second slot. 

We can create tree rules for (Ix) by writing out the tree rules for its definition. The (Ix) 
rule is  

 

  

And the negated (Ix) rule is 

 

  

And this rule can be applied for any name a. We can use these rules to test the argument 
form ‘if the F is G, then there is an F’: 
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The next tree is more complex—it shows that from (Ix)(Fx, Gx) you can deduce 
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Russell’s analysis of definite descriptions has given us a way to analyse terms that use 
predicates in their construction. The analysis tells us how these terms are related to other 
parts of our language. The analysis also gives us specific answers to the two problems 
noted earlier: 

Failures of bivalence 

For example, the present king of France is bald is not true, as France does not have a 
king at present. This is explained because (Ix)(Kx, Bx) fails, since there is nothing with 
property K. Similarly, the present king of France is not bald is not true, as (Ix)(Kx, ~Bx) 
fails, as there is nothing with property K. However, this is not a real failure of the law of 
the excluded middle, as the negation of (Ix)(Kx, Bx) is not (Ix)(Kx, ~Bx), but ~(Ix)(Kx, 
Bx). This formula is true. 

Nonexistence claims 

‘There is no present king of France’ is not saying of an object that it does not exist. It is 
saying that there is nothing with the property of being a present king of France: 

This is not a problem. 
Definite descriptions, for Russell, are not referring expressions in the way that names 

are. They are descriptions, which are implicit existential quantifications. The puzzles 
about failures of excluded middles and non-existence claims fade away when they are 
properly understood. The apparatus of formal logic has helped clarify the structure of this 
part of our language. 

Nuances 
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Russell’s analysis of definite descriptions is certainly clarifying, but like all simple 
philosophical analyses, it is limited. The analysis gets some uses of definite descriptions 
right, but others it gets wrong. 

Limited domains 

First, the analysis says nothing about restrictions on the domain. I might say the top logic 
student will win a prize. I don’t mean the top logic student but the top logic student in my 
class this year. Typically, our descriptions don’t pin down one thing, unless we restrict 
the domain of quantification in some way. Russell’s account gives us no insight into how 
that is done. 

Referential uses 

Second, sometimes people use definite descriptions to describe things, and succeed, even 
though the predicates used don’t describe the object referred to. For example, at a party, I 
might talk about the man in the corner drinking the martini, and you nod, and we talk 
about him. We succeed in referring to him, even if he’s not drinking a martini! If it 
happened to be a glass of water, my description failed to describe him correctly, but the 
mere fact that you and I both thought it was a martini was enough to ‘fix the referent’. 
Russell’s account gives us no insight into how this works, and in fact, it seems to get this 
account completely wrong. According to Russell, all of my claims involving ‘the man in 
the corner drinking the martini’ are false if there is no such man, or, worse, are referring 
to someone else, if there happens to be another man in the corner who (unbeknownst to 
us) is actually drinking a martini. More must be said about definite descriptions to 
explain how this phenomenon works. 

Further reading 

Russell’s original paper [24] is still excellent reading. An extended discussion of 
Russell’s analysis is found in Miller’s Philosophy of Language [19]. 

Chapter 8 of Bostock’s Intermediate Logic [2] and Chapter 4 of Grayling’s 
Introduction to Philosophical Logic [8] also contain good discussions of definite 
descriptions. 

Exercises 
{12.1} With the dictionary 

  a=Alphonzo 

  b=Bernadette 

  c=Candide 

  Vx=x is a Vice-Chancellor 
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  Lx=x is a Lord Mayor 

  Fx=x is flies 

  Hx=x is a horse 

  Sxy=x is swifter than y 

translate the following, using the I shorthand for definite descriptions: 

1 The Vice-Chancellor flies. 

2 The Lord-Mayor is a horse. 

3 The flying horse is swifter than Bernadette. 

4 Alphonzo is a Lord Mayor. 

5 Alphonzo is the Lord Mayor. 

6 Candide is swifter than the non-flying horse. 

7 The flying horse is swifter than the horse that does not fly. 

8 The flying horse is swifter than a horse that does not fly. 

9 Everything other than the flying horse is swifter than the flying horse. 

10 Alphonzo is swifter than the Vice-Chancellor, but Bernadette is swifter than the flying horse. 

{12.2} Translate away the definite description connectives in your answers to the previous 
question, using Russell’s analysis of definite descriptions. 

{12.3} Test the following argument forms for validity, presenting any counterexample you find. 

  1 (Ix)(Fx, Gx)&(Ix)(Fx, Hx) therefore (Ix)(Fx, Gx&Hx) 

  2 (Ix)(Fx&Gx, Hx) therefore (Ix)(Fx, Hx) 

  3 (Ix)(Fx, Gx) therefore  

  4 (Ix)(Fx, ~Gx) therefore ~(Ix)(Fx, Gx) 

  5 Fa, (Ix)(Fx, Gx) therefore (Ix)(Fx, x=a) 

{12.4} What does it mean to say (Ix)(Fx, Fx)? 

When in the chronicle of wasted time  
I see descriptions of the fairest wights.  

—William Shakespeare 
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Chapter 13 
Some things do not exist 

Existential import and predicates 

According to the syllogistic logic of Aristotle, the following arguments are valid: 

All tigers are dangerous. 
So some tigers are dangerous. 

No liars are honest. 
So some liars are not honest. 

Aristotle’s syllogistic logic dominated logical theory in Western civilisation for over 
2,000 years. According to the predicate logic we have considered, both arguments have 
the invalid forms 

 

  

The reason for the difference is straightforward. For syllogistic logic, an assumption was 
made that every category is inhabited. That is, every predicate has something in its 
extension. If all tigers are dangerous, pick one of the tigers. It is dangerous. Therefore 
some tiger is dangerous. Similarly, if no liars are honest, pick one of the liars. He or she 
is dishonest. If there is no such tiger, or no such liar, the premises are true and the 
conclusion false. 

Now you might ask how we could have learned the predicates ‘liar’ or ‘tiger’ if there 
weren’t any of the required creatures to describe. So, you might think that the assumption 
that all our categories are inhabited is a good one. There seem to be other cases where 
this assumption fails. Assume that Newton’s physics is correct. Then the premise of this 
argument is true, but the conclusion is false: 

Any bodies unaffected by external forces move uniformly. 
So some body unaffected by external forces moves uniformly. 

The premise is given by Newton’s laws of motion. Anything unaffected by external 
forces moves in one direction with constant velocity. The conclusion is false since every 
object exerts a (possibly very small) gravitational force on every other object. The 
property ‘a body unaffected by external forces’ is empty. The argument is invalid. 



This diagnosis—that invalidity can come about by uninhabited predicates—is the one 
given by predicate logic. Any counter-example to either predicate argument form will be 
one in which F is interpreted as an empty property. 

We say that Aristotle’s syllogistic logic carries existential import because each of its 
categories or predicates is assumed to be inhabited. Predicate logic has no existential 
import for predicates because the formula 

   

is not a tautology. The fact that we have a predicate F does not mean that the predicate is 
inhabited. 

Existential import and names 

Predicate logic is not without some existential import. Predicate logic has existential 
import for names. The formula 

   

is a tautology, for any name a. This means that names are assumed to refer to existing 
objects. We allow empty predicates, but we do not allow empty names. This may or may 
not be a problem. One way in which it might be a problem seems to be the fact that many 
of us think that one of the following two sentences is true, and the other false: 

There is something that is identical to John Howard. 
There is something that is identical to Santa Claus. 

The first of these is true and the second false. Assuming that John Howard and Santa 

Claus are both names, both of these sentences have the form So, we have 
some choices to make: 

• Santa Claus exists. 
• Santa Claus is not a name, and so There is something that is identical to Santa Claus 

does not have the form  

• is not a tautology. 

The first of these options might be appealing in the case of Santa Claus. However, it is 
hard to maintain that for every name there is something that exists that bears that name. 
At least some of Pegasus, Sherlock Holmes, Bilbo Baggins, Mickey Mouse and 
Superman do not exist. So, we can safely leave that option behind. 

The second option holds that things that look like names, but that do not refer to 
objects, are not really names at all. We have already seen this sort of analysis in the 
previous chapter. Russell took it that a description such as the Prime Minister of Australia 
is not really a referring expression like a name, but really an existential quantification, 
which picks out an object by way of the predicates involved in the description. ‘The 
Prime Minister of Australia is short’ is a grammatically well-formed statement, even if 
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Australia is going without a prime minister at the moment. There is no requirement that 
all our descriptions pick out objects. 

Russell’s analysis can be extended to deal not only with expressions that are explicitly 
descriptions. It can be used to apply to names too. The description theory of names holds 
that every name is really a hidden description. For example, when I use John Howard I 
might mean 

That person named ‘John Howard’ by his parents, who appears in the 
news a lot at the moment. 

No doubt, a more sophisticated account of what description is in play could be given. The 
important thing to see is how this goes when dealing with names (like Santa Claus) that 
do not pick out existing objects. The name Santa Claus can be paired with this 
description: 

That fat man who often wears red with white fur who lives at the North 
Pole and gives presents at Christmas to everyone. 

There is no doubt that some description like this is closely tied to the name Santa Claus. 
However, if we go on to analyse the definite description in the way Russell did, the 
following two sentences are both false: 

Santa Claus lives in the North Pole. 
Santa Claus lives in Nashville, with Elvis. 

They are both false because there is no such person fitting the Santa Claus description. 
However, there is a sense in which these two claims are different. At least, according to 
the standard mythology about Santa Claus, the first is true and second is false. Perhaps 
there is a way of maintaining the difference between the two claims, by reading them as 
shorthand for the following two claims: 

According to mythology, Santa Claus lives in the North Pole. 
According to mythology, Santa Claus lives in Nashville, with Elvis. 

The first is certainly true and the second is certainly false. This strategy (which we might 
call the hidden prefix strategy) does well in these cases, and in many others. 

According to Greek mythology, Pegasus is a flying horse. 
According to the Conan Doyle stories, Sherlock Holmes lived in Baker 

Street. 

According to Greek mythology, Pegasus has seventy-two heads. 
According to the Conan Doyle stories, Sherlock Holmes was a jazz 

singer. 
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The third and fourth of these claims are false. What is true of these fictional characters 
seems to be what the stories say about them—and what you can deduce from what is in 
the stories. 

For all that success, some have found problems with the hidden prefix strategy. Many 
want to say that sentences that mix up fictions might still be true: 

Pegasus could fly higher than Sherlock Holmes. 
John Howard is shorter than Hercules. 

The first claim here mixes up two different fictions. There is no mythology or story 
including both Pegasus and Sherlock Holmes. So why are some people tempted to say 
that this is true? Similarly, the second claim mixes up mythology and reality. Hercules 
was tall (but non-existent). John Howard is not tall. He is shorter than Hercules. 
However, that claim ‘crosses the boundaries’ between fiction and reality. 

Some have thought that these problems, with both the description theory and the 
hidden prefix accounts, are so bad that we should look for another strategy. We must find 
an account of logic that allows names that do not denote. 

Now one way to do this, without introducing a grammatical difference in the way we 
treat proper names, is what has been called free logic. The logic is free of existential 
import. A name doesn’t have to pick out an existing object in order to function as a name. 
The language is the same as with standard predicate logic, except for the introduction of a 
new one-place predicate: E!. E!a is true when a exists. Or, more formally, E!a is true 
when the name a denotes an (existing) object. So, if a stands for Pegasus and b stands for 
John Howard then presumably E!a is false, but E!b is true. 

Models 

The version of free logic we will use has a domain, and predicates (and function symbols 
and identity, if you like) just like standard predicate logic. The predicate E! is treated just 
like any other predicate. It divides the existent objects from the non-existent objects. Here 
is an example model: 
  I(H) I(F) I(E!)   I(S) a b c d 

a 1 1 0   a 0 0 0 0 

b 1 0 1   b 1 0 0 0 

c 0 0 1   c 1 1 0 1 

d 0 1 0   d 1 1 0 0 

In this model, H is shorthand for is a horse, F for flies and S for is shorter than. The 
objects a, b, c and d are respectively Pegasus, Phar Lap (a famous Australian racehorse), 
John Howard and Superman. This should explain the distribution of truth values in the 
tables. Ha and Hb are true, as Pegasus and Phar Lap are horses, Fa and Fd are true, 
because both Pegasus and Superman fly. The S table ensures that John Howard is shorter 
than Superman, who is shorter than Phar Lap, who is shorter than Pegasus. The only new 
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thing is the interpretation of E!. Pegasus and Superman don’t exist. Therefore, E!a and 
E!d fail. 

This means that we ought to modify the interpretation of the existential quantifier to 

match this. We do not want to say that there exists a flying horse. 

fails, so we must say that Fa & Ha is not an appropriate instance of 
The appropriate instances of an existential quantifier are substitutions of names where we 
know that the names denote. 

It follows that is false, as is In this model, 

there is no flying non-horse either. In fact, in this model, is false, as no 
appropriate instances (here the only appropriate instances are Fb and Fc) are true. Phar 
Lap might gallop very fast, but he does not fly. 

This interpretation of the existential quantifier fixes the interpretation of the 
universal quantifier too, if we take to be equivalent to Everything is 
A just when nothing is not A. is true just when every appropriate instance of A is 
true. So, is true in this model, since all (existing) horses do not fly. 

Some have thought that it might be good to have more liberal quantifiers that range 
over all objects in the domain, instead of just the existing ones. We will look at how you 
might do this after we give tree rules for the system of free logic as we have defined it. 

Tree rules 

The rules for all of the connectives remain as they were. The rules for the quantifiers are 
modified slightly, to deal with the existence predicate: 

Existential 

To resolve a formula of the form extend any open branch in which the formula 
occurs with an instance of A using a new name that has not occurred in the branch before, 
and also add that this name denotes an object: 

 

  

Negated existential 

Given a formula of the form and a name a, you can extend any open branch in 
which the formula occurs by two branches—one containing ~E!a and the other 
containing ~A(x:=a): 
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The universal rule works on the same principle. 

Universal 

Given a formula of the form and a name a, you can extend any open branch in 
which the formula occurs by any two branches—one containing ~E!a, and the other 
containing A(x:=a): 

 

  

The negated universal rule is just like the existential rule: 

Negated universal 

To resolve a formula of the form extend any open branch in which the 
formula occurs with ~A(x:=a) and E!a, using a new name a: 

 

  

So, means that there exists some object a such that A(x:=a), and means 
that for any name a you like, A(x:=a) is true, or there is no object a. This seems to make 
sense, given our talk of Pegasus. We can treat these as proper names, and still agree that 
all horses don’t fly, and that Pegasus is a flying horse. It’s just that Pegasus is a non-
existent flying horse. To check that this works out, we’ll test the argument from 

and Ha to ~Fa: 
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The tree stays open. We have a model making the premise true and the conclusion false: 
  I(H) I(F) I(E!) 

a 1 1 0 

In this model Ha is true, and ~Fa is clearly false. More interesting is the issue of whether 

is true. It is—because all of its appropriate instances are true, or, 
more clearly, because none of its appropriate instances are false, since it has no instance 
here. In the domain, the only object we have is a, and it does not exist. Therefore, we 
have no instances to make our universally quantified premise false, and, as a result, it is 
true. 

We will end this section with one more example. Box 13.1 shows a tree to test the 

argument with premises and and conclusion 
As one would hope, the tree closes, and the argument form is valid. 

Nuances 

The system of free logic discussed here has many desirable properties. However, there is 
more to be done to make it a satisfactory theoretical device. Here are some of the issues 
that we ought to address, and which point to further modifications of the theory. 

Box 13.1 
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Bivalence 

According to this account of free logic and non-existence, either Sherlock Holmes had 
blood type AB or he did not have this type. As far as I can tell, the Conan Doyle stories 
do not actually tell us Holmes’ blood type. There does not seem to be any reason for 
preferring one type over another, yet the interpretation of free logic assumes that, for 
every predicate, either it or its negation applies to each object—including the non-
existent ones. Exercise 13.3 asks you to look at a modification of the tree rules that 
allows you to reject when a does not denote. 

Definite descriptions 

Definite descriptions seem to apply in the case of non-existent objects too. For example, 
the following claim seems to be true: 

Santa Claus is the fat man who often wears red with white fur who lives at 
the North Pole and gives presents at Christmas to everyone. 
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If I read it using Russell’s analysis of definite descriptions, it comes out as false, as there 
is no fat man who often wears red with white fur…. So Russell’s account of definite 
descriptions does not fit well with free logic as it stands. 

Inner and outer quantification 

One way to deal with this is to expand the language yet further, to allow for two sorts of 
quantification. The fat man living at the North Pole, who gives away presents, does not 
exist, but there is a fat man living at the North Pole who gives away presents. This may 
sound strange, but if we allow a new quantifier into our language (Sx), where (Sx)Fx 
(read as ‘something is F’) is true just when some instance of Fx is true (whether or not 

this instance is an appropriate one) then (Sx)Fx can be true, even though fails. 
Similarly, we can have (Ax)Fx to be interpreted as saying that every instance of Fx is 
true. Then (Sx)(Fx& Hx) is true, as some horse flies (namely, Pegasus) and 

fails, as not all horses do not fly. This two-sorted kind of 
quantification is called inner and outer quantifiers. The inner quantifiers are the original 

and as these range over the inner domain of existing things. The new 
quantifiers (Ax) and (Sx) range over the outer domain of all things, existent and non-
existent. 

The intended interpretation 

Once we start down this track, however, we face real difficulties in understanding our 
own models. What are these things that appear in the outer domain in the semantics? Are 
they concepts? If so, which concepts? Are they non-existent objects? If so, how do we 
tell how many of them there are? When we talk about existence, there is some kind of 
theoretical constraint that can be applied—such as Ockham’s razor, and other theoretical 
constraints that help us decide when to say that something exists. It is very hard to see 
what can be said about demarcating the outer domain. 

Further reading 

Chapter 5 of Read’s Thinking about Logic [21], Chapter 8 of Bostock’s Intermediate 
Logic [2] and Chapter 4 of Grayling’s An Introduction to Philosophical Logic [8] all have 
useful things to say about free logic. Richard Routley’s article ‘Some things do not exist’ 
[23] is a defence of the quantification over non-existent objects, or outer quantification. 

Exercises 

Basic 
{13.1} Using the rules of free logic, test these arguments: 
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  1 therefore  

  2 therefore  

  3 E!a therefore ~Fa 

{13.2} Show that once we have a language containing outer quantification and E!, the inner 

quantifiers are also definable. That is, show that is equivalent to 

and is equivalent to  

Advanced 
{13.3} To cope with the problem of the previous exercise, modify the rules of free logic so that 

Fa1…an closes with ~Fa1…an only when a1 to an all exist. What does the resulting logic 
look like? Is the result any better or worse than standard free logic? 

{13.4} Prove the tree rules sound and complete for the models of free logic. 

{13.5} Show that if an argument (without E!) is valid in free logic then it is valid in traditional 
predicate logic too. (There are two ways of doing this. You could use the fact that any 
model of traditional predicate logic is also a model of free 

  logic. Or you could show that if a tree closes using the rules of free logic then the 
corresponding tree using the rules of traditional predicate logic also closes.) 

{13.6} Show that free logic can be interpreted inside traditional predicate logic in the following 
way. For each formula, A define At like this. Select a new predicate E, then define 
inductively 

  

 
  So the translation keeps everything the same, except for modifying the quantifiers. (This is 

called restricting the quantifiers by E—instead of saying that something is A, we say that 
some E is A; instead of saying that everything is A, we say that every E is A.) 
Show that Xt├At in classical logic if and only if X├A is valid in free logic. 

{13.7} Construct tree rules for outer quantification, and show that they too are sound and 
complete for the interpretation of free logic with outer quantifiers. 

The brilliant Cerebus  
discovered three different kinds of dragon:  
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the mythical, the chimerical  
and the purely hypothetical.  

They were all, one might say, non-existent,  
but each non-existed in an entirely different way.  

—Stanislaw Lem 
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Chapter 14 
What is a predicate? 

We will introduce the topic of this chapter by considering an argument. 

An argument 

Here is an argument, due to René Descartes, designed to show that reality is not merely 
material—there are some immaterial things too. 

I can now imagine that my material body is not now existing. 
I can not now imagine that I am not now existing. 
Therefore, I am not now my material body. 

This is an argument for dualism, the view that the universe contains immaterial things 
(souls, minds, gods, and things like that) as well as material things (bodies, tables, chairs, 
trees, and so on). Read the argument closely. Do you think it is valid? Do you think it is 
sound? Try formalising the argument. Is the form valid? 

What can we say about Descartes’ argument? Before examining the form of the 
argument, let’s look at the premises. 

Premise 1 

Here is how Descartes can reason to justify the first premise. Knowledge of material 
things comes through the senses. I can imagine that I am tricked by an evil demon with 
great powers, who gives me false sensations. Everything I hear, see, smell, feel, taste and 
touch might be the result of this trickery! The appearances might not correspond to any 
external reality at all. So, I can imagine my material body not now existing. 

Premise 2 

Descartes could reason like this to justify the second premise. In order for me to imagine 
that I do not exist, I have to think about the issue. I have to do the imagining. But if I am 
thinking about the issue, I must exist in order to be doing the thinking. So, I cannot now 
imagine that I am not now thinking. (This is the famous cogito ergo sum: ‘I think, 
therefore I am’.) 

These two lines of reasoning are used by Descartes to justify the premises. They are 
very interesting in their own right, but we will not pause to examine these any further. To 
be sure of the soundness of the argument, you must examine the premises, but you also 
need to examine the validity of the argument, and it is to this that we now turn. 

�



To check the validity, we can formalise the argument, and then test it using trees or 
whatever other technique we have at hand. Its form seems simple: 

Fa, ~Fb therefore a=b   

where a names my body, b names me and ‘Fx’ is ‘I can now imagine x not existing’. This 
form is certainly valid. Its validity comes from the rule for identity. If a=b and Fa, I can 
deduce Fb. 

Understanding the argument 

However, things are not that simple. It is important to understand whether or not our 
translation is adequate to the task of explaining the validity of this argument. There seems 
to be good reason to believe, in this case, that it doesn’t. A common objection made to 
the Dualist argument, an objection made by Gottfried Leibniz, goes like this. The 
argument doesn’t really have this translation, since what I can imagine about a thing isn’t 
a property of that thing. It is rather a property of me and of my cognitive capacity. If we 
want to use ‘property’ in this wide sense, to allow my thoughts about objects to be 
properties of those objects, then we have problems with our rules for identity. For 
instance, consider this argument: 

I can now imagine that Mark Twain is not Samuel Clemens. 
I can not now imagine that Samuel Clemens is not Samuel Clemens. 
Therefore, Mark Twain is not Samuel Clemens. 

Translating this argument into forms, we have the same form as for Descartes’ argument. 
Fa, ~Fb, therefore a=b. In this case, the conclusion seems straightforwardly false: Mark 
Twain is (or was) Samuel Clemens! It is not that there are two different people: Mark 
Twain on the one hand and the Samuel Clemens. (Samuel Clemens is alone in the 
room—how many people are there? Two? Surely not.) However, the premises seem true. 
I can imagine a situation in which Mark Twain is not Samuel Clemens. I cannot imagine 
a situation in which the Samuel Clemens is not Samuel Clemens. What is the matter with 
the argument? 

Opaque contexts 

There seems to be a tension between admitting that statements of the form 

I cannot imagine that x exists. 
I cannot imagine that x is not Samuel Clemens. 

and others like them are genuine predications of x. According to the definition I gave of 
predicates in Chapter 8, these are one-place predicates, because when we substitute a 
name in for x, we get a sentence. There is no doubt that this does not fit well with the 
definition of identity. The problem is one of substitution. The truth or falsity of ‘I cannot 
imagine that x exists’ depends not only on what object is substituted in the expression, 
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but also on the way the object is presented. Here is another example that illustrates the 
point: 

Superman is called x because of his amazing powers. 

If I substitute the name Superman in this expression, I get a true statement. If I substitute 
the name Clark Kent in this expression, I get a false statement, even though Clark Kent 
and Superman name the same person. 

Which statements are true of both Clark Kent and Superman? The following all seem 
true: 

x works for a newspaper. 
x knows Lois Lane. 
x flies through the skies. 
x rescues people in distress. 
x can be made weak with judicious uses of kryptonite. 
You saw x rescue my friends. 

Once we know that Clark Kent and Superman are the same person, each of these 
statements seem true if we plug in the name Superman or Clark Kent. They may not seem 
to be true to someone who does not know that fact, but that doesn’t mean that they are 
not true. The last sentence is an interesting case. Suppose you saw Superman rescue my 
friends. It follows that you saw Clark Kent rescue my friends even if you did not 
recognise that it was Clark Kent. Sometimes we see things that happen, without being 
able to describe them completely. 

These statements all seem true when you substitute one name and false when you 
substitute the other: 

x is widely known to work for a newspaper. 
Lois Lane thinks x is stronger than Clark Kent. 
I told you that x has amazing powers. 
You saw that x rescued my friends. 

Clark Kent is widely known to work for a newspaper. Superman is not so widely known 
to work for a newspaper. Lois Lane (at least when she was ignorant of Clark’s identity) 
thought that Superman was stronger than Clark Kent, but she certainly didn’t think that 
Clark was stronger than himself. I might have told you that Superman has amazing 
powers, but I certainly didn’t tell you that Clark Kent has amazing powers. You might 
have seen that Superman rescued my friends, but you didn’t see that Clark Kent did, 
because you did not recognise that he and Superman are one and the same person. 

There is a pattern occurring. Each of the problematic sentences relies in some way or 
other on the particulars of language and the way Superman (Clark Kent) is described, and 
in people’s beliefs about him. Being widely known to work for a newspaper is not 
genuinely a property of a person. It is a property of a person, given a particular 
description of that person. The truth of the claim can vary, not only as the person 
changes, but also as the way they are described changes. This sentence is at most a wide 
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predication of a property of Superman (Clark Kent), not a narrow predication, which 
picks out a property that he has, invariant of how he is described. 

This problem is often described as one of substitution into intentional contexts (or 
quantification into intentional contexts, when it is a variable over which we quantify). We 
are substituting names into belief contexts, knowledge contexts, and other contexts in 
which we are describing what people think, know, have heard or recognise. (These are 
called intentional contexts, because the characteristic property of ‘aboutness’ is often 
called the intentionality of these mental states.) In each case, we want information not 
only about which object is in question, but also the way that the object is presented or 
described. These are general contexts into which names can be substituted to form 
propositions, but they are not predicates in the narrow sense. 

In general, a context into which a name can be substituted to form a proposition but 
that depends not only on the thing denoted is called opaque. Belief and knowledge 
statements and other intentional terms give rise to opaque contexts, but there are other 
opaque contexts that are not intentional. We have some trivial examples involving 
quotation marks: 

‘x’ contains eight letters. 

Substituting Superman for x gives us a truth. Substituting Clark Kent gives us a 
falsehood. This gives us an opaque context involving no mental states. 

There is no widely accepted general theory concerning the division between opaque 
contexts and those that are not opaque (these are sometimes called transparent). To tell 
the difference, substitute different names for the same object, to check to see if any 
difference is registered. The distinction is very important, for our assumption in 
developing predicate logic is that all predicates are transparent. To formalise an argument 
properly using predicate logic, this assumption must hold. If it does not, then the 
formalisation is incorrect. 

This brings us back to Descartes’ argument for dualism. We have formalised it as a 
simple argument from Fa and ~Fb to a=b, where Fx is I can now imagine x not existing. 
It seems that we have reason to believe that this context is opaque. My capacity to 
imagine x’s existence or non-existence depends on how x is described or presented to me. 
If that is the case then the formalisation fails to adequately describe the argument. The 
validity of the argument form from Fa and ~Fb to a=b tells us nothing about Descartes’ 
argument. To show that his argument is valid, much more must be done. 

Further reading 

See Chapter 4 of Read’s Thinking about Logic [21], and Chapter 3 of Grayling’s 
Introduction to Philosophical Logic [8] for more on substitution into opaque contexts. 
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Exercises 

Basic 
{14.1} Divide the following forms into those that narrowly predicate and those that only widely 

predicate (that is, sort them out into transparent and opaque contexts), and explain your 
answers in each case (in each case, substitute in names for x): 

  1 x runs very fast. 

  2 x is famous for running very fast. 

  3 x is Prime Minister. 

  4 x caused the Titanic to sink. 

  5 x is very old. 

  6 I am sick and tired of x. 

  7 x did that well. 

  8 I can’t tell the difference between x and y. 

  9 I know x. 

{14.2} Why might it be bad to formalise I think that something bit me as where Tx is ‘I 
think that x bit me’? 

Advanced 
{14.3} Some people think that the problem of quantifying in odd contexts is not restricted to 

beliefs or other things involving people. Try this argument: 

  Necessarily, 9 is bigger than 7. 
9 is the number of planets. 
Therefore, necessarily, the number of planets is bigger than 7. 

  Is this valid? If so, does it prove that there must be more than seven planets? If it isn’t 
valid, why isn’t it? 

Chi Wen Tzu always thought three times before taking action.  
Twice would have been enough.  

—Confucius 
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Chapter 15 
What is logic? 

Sometimes the answers you get with classical logic are odd, and not for reasons of 
vagueness or relevance, and not because of non-denoting terms, or opaque contexts. Here 
is an example: 

The Prime Minister collects clocks. 
Anyone who collects clocks has to be slightly mad. 
Therefore, someone is slightly mad. 

We can use the dictionary 
Mx=x is a Prime Minister 
Cx=x collects clocks 
Sx=x is slightly mad 
Px=x is a person 

  

to find the form. The argument has (Ix)(Mx, Cx) and as 

premises, and the conclusion is It is straightforward to show that it is 
invalid. One counterexample can be found here: 

  I(M) I(C) I(P) I(S) 

a 1 1 0 1 

What does the counterexample mean? One assumption in the model is that the Prime 
Minister is not a person. However, the Prime Minister is a person—and in fact, the Prime 
Minister must be a person. That is how Australia’s constitution is written: you cannot be a 
prime minister without being a citizen, and you cannot be a citizen without being a 
person. So, the counterexample is not a possible state of affairs. This is why we might 
think that the argument is valid. There’s no way for the premises to be true and the 
conclusion to be false. So, is it valid or not? 

There is no general agreement on this issue. There are two major lines of thought, and 
I will consider them in turn. 

Logic as invariance under permutation 

First, there is the ‘No’ case. According to the ‘No’ case, the argument is not valid 
because we can construct a counterexample. We have displayed two different 
counterexamples. Logic has to do with the validity of the form of the argument, and the 



form is what we discovered. According to this view, the validity of the argument is due to 
the form the argument takes:  

An argument is valid if and only if there is no counterexample to the argument under any 
interpretation of the non-logical symbols occurring in the argument. 

So, to test for the validity of the argument, you take away all of the non-logical parts of 
the argument (anything other than the connectives, quantifiers and identity), replacing the 
rest by schematic letters. The search for a counterexample to the argument is then a 
search for how we might interpret the non-logical parts of the argument in order to make 
the premises true and the conclusion false. If we cannot find any way to do this, the 
argument is valid. If we can find such a way, the argument is not valid. 

Here is another example. The proposition ‘It is raining or it is not raining’ is a 
tautology because it has the form and any instance of this form is true. There is 
no way to substitute any proposition in for p in the statement to get a falsehood. 
For if p is true, is true, and if p is not true, ~p is true, and hence is true. 

So, according to this account of logical validity, each model is a reinterpretation of the 
non-logical parts of the argument. If no matter how the non-logical parts are 
reinterpreted, you never have the premises true and the conclusion false, the argument is 
valid. This view can be summarised simply: 

Logical validity is truth preservation in virtue of logical form.

If truth is preserved from the premises to the conclusion of the argument, in virtue of the 
form, then the argument is valid. 

To get the conclusion from the premises in our original argument, you have to use 
something other than the form of the argument. You must appeal to the meanings of 
Prime Minister and of ‘person’—specifically, that any Prime Minister is a person. But 
that gives us a way to repair the argument. If we add a new premise, namely 

the new argument is valid. 
This new proposition we add is called an enthymeme. It is a ‘hidden premise’, which 

everyone agrees with, and which when added to the premises of an argument will render 
the argument valid. 

There are a number of significant virtues of this account of logical validity: 

A good fit with logical practice 

This account fits well with what we do in practice in formal logic. We take the formal 
structure of the argument, and we reinterpret the non-logical parts of the argument in any 
way we see fit. 

No mysterious necessity 

Any account of logic has to postulate some degree of necessity. The premises have to get 
you to the conclusion in general. This is achieved in this account of logic, not by 
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postulating a mysterious notion of necessity, but by requiring that the argument preserve 
truth, no matter how the non-logical language is interpreted. The necessity of logic is a 
matter of its generality. 

Topic neutrality 

Logic is topic-neutral. It applies to anything we can talk about. The fact that logical 
validity is explicitly defined in terms of arbitrary substitutions of terms means that this 
account of logic is well placed to explain that fact about the generality and topic 
neutrality of logical validity. 

Logic as necessary truth preservation 

Not everyone is happy with this account of validity. According to the ‘Yes’ case, all this 
talk about enthymemes is merely fixing up what formal logic gets wrong. According to 
this view, logic is not primarily about form—for a slogan: 

Logical validity is a matter of necessary truth preservation.

This definition of validity says nothing about forms. For this account of validity, formal 
techniques are at most a useful tool for giving us insight into what may or may not be 
possible. On this account, anything that is formally valid will be valid, but not everything 
that is formally invalid is really invalid. Not every model will represent a genuine 
possibility. Models are tools that bring possibilities to light. In our case, the model to 
make the premises true and the conclusion false isn’t a possibility, because of the 
connection between being Prime Minister and being a person. Once we have ruled out 
that kind of model, the tree shows us that the argument is valid. There is no way for the 
premises to be true and the conclusion false. In other cases, a formal construction of a 
counterexample will bring to light something we recognise to be a possibility, and in 
these cases we will see that the argument is invalid. At heart, on this view, logic is a tool 
to be used. 

This view has a number of advantages too: 

No need for a logical/non-logical distinction 

There is no general agreement as to what a distinction between logical and non-logical 
connectives might be. If validity is a matter of necessary truth preservation, there are 
valid inferences that depend on the nature of all sorts of other connectives, such as 
necessity and possibility, counterfactual conditionals, temporal operators such as 
‘yesterday’ and ‘tomorrow’, colour terms, and many other things. Each term has its part 
to play in validity. There is no distinction between the logical and the non-logical, except 
that the commonly used logical connectives are simpler to work with. 

Closer fit with pre-theoretical practice 
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Before we theorised about logical validity, we had a sense that valid arguments were 
those that made the conclusion sure, given the premises. This view makes that pre-
theoretic belief explicit. The way to show that an argument is invalid is to show that you 
could have the premises true and the conclusion false. It is not to show that if you 
interpreted one term by something very much different, you get a counterexample. That 
seems irrelevant to the task of judging the validity of an argument. 

Finally, we should note that there are a number of problems remaining with both 
views. For the view that takes validity to be necessary truth preservation, much more has 
to be said about the nature of necessity and how we could ever come to know that 
something is necessary or that something is possible. For the first view, you must modify 

the account to deal with the quantifiers. The sentence contains no non-
logical vocabulary at all. It is true. There is no reinterpretation of any non-logical 
vocabulary possible, so it should be a tautology, according to the letter of the law. 
However, it is not, as we could have a domain of one object. To use the reinterpretation 
strategy, not only must we reinterpret the non-logical terms, but we also need to be able 
to reinterpret the ranges of the quantifiers. 

Despite this disagreement about the logical validity, there is a great deal of agreement 
about the usefulness of logical techniques. Disagreement is strongest on the issue of how 
those techniques work. 

Further Reading 

This topic is very much a current research issue in the philosophy of logic. Chapter 2 of 
Read’s Thinking about Logic [21] and Chapter 2 of Grayling’s An Introduction to 
Philosophical Logic [8] provide helpful introductions to the debate. John Etchemendy’s 
The Concept of Logical Consequence [5] is a clear and extended treatment of the issue. 

‘Contrariwise,’ continued Tweedledee,  
‘If it was so, it might be;  

and if it were so, it would be:  
but as it isn’t, it ain’t.  

That’s logic.’  
—Lewis Carroll 
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