

Administrator
File Attachment
2000dfd5coverv05b.jpg

Logic

Logic is a comprehensive introduction to the major concepts and techniques involved in
the study of logic. It explores both formal and philosophical logic and examines the ways
in which we can achieve good reasoning. The methods of logic are essential to an
understanding of philosophy and are also crucial in the study of mathematics, computing,
linguistics and in many other domains.

Individual chapters include:

• Propositions and arguments
• Truth tables
• Trees
• Conditionality
• Natural deduction
• Predicate, names and quantifiers
• Definite descriptions

Logic is an exceptionally clear introduction to the subject and is ideally suited to students
taking an introductory course in logic.

Greg Restall is Associate Professor in Philosophy at Melbourne University, Australia.

Fundamentals of Philosophy
Series editor: John Shand

This series presents an up-to-date set of engrossing, accurate and lively introductions to
all the core areas of philosophy. Each volume is written by an enthusiastic and
knowledgeable teacher of the area in question. Care has been taken to produce works that
while even-handed are not mere bland expositions, and as such are original pieces of
philosophy in their own right. The reader should not only be well informed by the series,
but also experience the intellectual excitement of being engaged in philosophical debate
itself. The volumes serve as an essential basis for the under-graduate courses to which
they relate, as well as being accessible and absorbing for the general reader. Together
they comprise an indispensable library of living philosophy.

Published:

Greg Restall
Logic

Richard Francks
Modern Philosophy

Dudley Knowles
Political Philosophy

Piers Benn
Ethics

Alexander Bird
Philosophy of Science

Stephen Burwood, Paul Gilbert and Kathleen Lennon
Philosophy of Mind

Colin Lyas
Aesthetics

Alexander Miller
Philosophy of Language

Forthcoming:

Suzanne Stern-Gillet
Ancient Philosophy

Logic
 An introduction

Greg Restall

LONDON AND NEW YORK

First published 2006 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN 270
Madison Ave, New York, NY 10016

Routledge is an imprint of the Taylor & Francis Group
This edition published in the Taylor & Francis e-Library, 2006.

 “To purchase your own copy of this or any of Taylor & Francis or Routledge's collection of
thousands of eBooks please go to www.eBookstore.tandf.co.uk.”

© 2006 Greg Restall

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or
by any electronic, mechanical, or other means, now known or hereafter invented, including

photocopying and recording, or in any information storage or retrieval system, without permission
in writing from the publishers.

British Library Cataloguing in Publication Data A catalogue record for this book is available from
the British Library

Library of Congress Cataloging in Publication Data Restall, Greg, 1969– Logic: an
introduction/Greg Restall. p. cm.—(Fundamentals of philosophy) Includes bibliographical
references and index. 1. Logic. I. Title. II. Series. BC108.R47 2005 160–dc22 2005015389

ISBN 0-203-64537-5 Master e-book ISBN

ISBN 0-203-69367-1 (Adobe e-Reader Format)
ISBN 10:0-415-40067-8 (hbk)
ISBN 10:0-415-40068-6 (pbk)

ISBN 13:9-78-0-415-40067-1 (hbk)
ISBN 13:9-78-0-415-40068-8 (pbk)

ISBN 0-203-64537-5 Master e-book ISBN

ISBN 0-203-69367-1 (Adobe e–Reader Format)
ISBN 0-415-40067-8 (Print Edition)

To my teachers, and to my students.

Contents

 Acknowledgements ix

 Introduction 1

PART 1 Propositional logic 5

1 Propositions and arguments 6

2 Connectives and argument forms 14

3 Truth tables 26

4 Trees 40

5 Vagueness and bivalence 57

6 Conditionality 65

7 Natural deduction 75

PART 2 Predicate logic 82

8 Predicates, names and quantifiers 83

9 Models for predicate logic 94

10 Trees for predicate logic 110

11 Identity and functions 125

12 Definite descriptions 137

13 Some things do not exist 144

14 What is a predicate? 155

15 What is logic? 160

 Bibliography 164

 Index 167

Acknowledgements

Many people have contributed to this book. I thank my students, who never fail to come
up with new insights each time I teach this material. Two students from my 1998 class,
Alicia Moss and David Wilson, went above and beyond the call of duty in collating
embarrassingly long lists of errors in the early drafts of this manuscript. I owe special
thanks to James Chase, who used a draft of this text in an introductory logic course and
who provided many of the exercises and examples. My research assistant Robert
Anderson helped find some errors and infelicities of expression in the final draft.

I thank my own teachers, especially Rod Girle, Graham Priest and John Slaney. They
will each find some of their ideas and attitudes reflected in this text. I will be pleased if I
am as able to inspire and enthuse others as my teachers have been able to inspire and
enthuse me. Finally, thanks to my family: First, to Christine Parker, whose love and
companionship has taught me more than I can express in words. Second, to Zachary Luke
Parker Restall, who has been learning to reason just as I have been finishing writing this
book.

Greg Restall
The University of Melbourne

greg@consequently.org
March 2003

Introduction

For the student

There are many different reasons to study logic. Logic is the theory of good reasoning.
Studying logic not only helps you to reason well, but it also helps you understand how
reasoning works.

Logic can be done in two ways—it can be formal and it can be philosophical. This
book concentrates on both aspects of logic. So, we’ll be examining the techniques that
logicians use in modelling good reasoning. This ‘modelling’ is formal and technical, just
like the formal modelling you see in other disciplines, such as the physical and social
sciences and economics.

The philosophical aspects of logic are also important, because we try not only to
model good reasoning, but also to understand why things work the way they do—or to
understand why things don’t work. So, we will not only learn formal techniques, we will
also analyse and interpret those techniques.

So, the techniques of logic are abstract and rigorous. They’re abstract, since we
concentrate on particular properties of reasoning that are relevant to our goals. They’re
rigorous, since we try to define all of the terms we use, and we take our definitions
seriously. The goal is for us to understand what we are doing as much as possible.

The techniques of formal logic can be used in many different ways. The things we
learn can be applied in philosophy, mathematics, computing, linguistics, and many other
domains. Logic is important for philosophy as reasoning and argumentation form a core
part of philosophy. Logic is important in mathematics because the formalisation of logic
is important when it comes to the study of mathematical theories and mathematical
structures: in fact, many of the techniques we will be looking at arose in the study of
mathematics. Logic is important in computing because the process of describing a
problem or process to be implemented in a computer is a problem of formalisation.
Furthermore, the kinds of algorithms or recipes we use in solving problems in logic are
useful in problems that can be found in computing. Logic is important in linguistics
because the formal languages used in the study of logic provide helpful models for
linguistic theories.

So, logic has its place in many different disciplines. More generally even than that,
learning logic helps you to learn how to be precise and rigorous in any area of study.

This book is a self-contained introduction to logic. You should not have to read
anything else in order to get a well-rounded introduction to logic. However, other books
will complement the introduction you will find here. Here are some useful books that
complement the approach to logic I have taken. (Numbers in square brackets are
references to entries in the bibliography.)

�

• Logic with Trees, by Colin Howson [12] is an introductory text that also uses trees as its
fundamental tool in introducing logical consequence. It complements this text nicely:
use Howson’s book for different explanations of trees and how they work.

• Beginning Logic by E.J.Lemmon [15]. This is an excellent introductory text. It is
probably the best introduction to truth tables and natural deduction in print (despite
being over 30 years old). Lemmon’s approach concentrates on natural deduction
(introduced in our Chapter 7) instead of truth tables and trees, which we use here.

• First-Order Logic by Raymond Smullyan [29] is a more technical book than this one. If
you are interested in seeing more of what can be done with trees, this is the book to
use.

• Thinking About Logic by Stephen Read [21] is a helpful approach to the philosophical
issues discussed in this course, and many more besides.

• Modern Logic by Graeme Forbes [6] is a longer book than this. It is also an introduction
to logic that incorporates formal and philosophical issues. I recommend it to students
who want to explore issues further.

• Intermediate Logic by David Bostock [2] covers similar ground to this book, but in
more depth. If you wish to explore the issues here further, Bostock’s book is a good
guide, once you are familiar with the basic concepts of this text. (Unlike Forbes,
Bostock presumes you have a basic grasp of formal logic.)

• Computability and Logic by George Boolos and Richard Jeffrey [1] is an advanced text
that covers material on computability, the fundamental theorems of first-order
(predicate) logic (such as Gödel’s incompleteness theorems, compactness and the
Löwenheim-Skolem theorems), second-order logic and the logic of provability.

• A New Introduction to Modal Logic by George Hughes and Max Cresswell [13] is an
introduction to modal logic, the logic of necessity and possibility, discussed in Chapter
6.

• My book An Introduction to Substructural Logics [22] gives an introduction to relevant
logics (and logics like them) that are mentioned in Chapters 6 and 7. It is a great deal
more technical than this book.

I hope you find this text a useful introduction to logic!

For the instructor

There are many books on logic. The distinctive aspect of this book is its integrated nature
as both formal and philosophical. It introduces students to the flavour of current work in
logic in the early twenty-first century. This text is flexible; it can be used in many ways.
Here are just a few of the ways the text can be used in teaching an introductory logic unit.

• A term of 8–10 weeks: Use Chapters 1–4 to introduce propositional logic and Chapters
8–10 for an introduction to predicate logic. These chapters constitute the formal core
of the book. Alternatively, if you want to give the students an introduction to the
formal and philosophical study of logic, you could use Chapters 1–7.

• A semester of 12 or 13 weeks: Use Chapters 1–4 and 8–10 as the formal skeleton of the
course, and use as many of the other chapters as you desire to fill in the philosophical
implications. I have found (teaching this material both at Macquarie University and at

Logic 2

the University of Melbourne) that adding Chapter 5 Vagueness and Bivalence, Chapter
6 Conditionals, Chapter 11 Identity and Functions and Chapter 13 Free Logic makes a
good single-semester course. Other chapters can be added instead to suit local
conditions.

• A full year: Use the whole book. This can be done flexibly, with the formal core and
some extra chapters used as the main curriculum, with other chapters used as the basis
for optional extra assignment work. Each of the ‘optional’ chapters comes with a
number of references that can be used for extra reading.

I am convinced that logic is best studied by keeping the formal and philosophical aspects
together. Logic is not a completed science, and teaching it as if it is one gives students the
mistaken impression that all of the important issues have been decided and all of the
important questions have been given definitive answers. This is a misrepresentation of
the state of the art. Interesting issues arise not just at the far-reaching abstractions of
advanced mathematical logic, but also at the fundamental issues covered in an
introductory course. It is good to bring these issues out in the open, not only so that
students get a truer picture of the state of the discipline, but also so that they might be
attracted to study the area further!

This book has many influences. My approach to the formal account of prepositional
and predicate logic stands in the heritage of Raymond Smullyan [29]. The technique of
trees (or tableaux) for predicate logic is suited to an introductory text for a number of
reasons.

• Unlike most other proof systems, trees are mechanical. Natural deduction systems and
their relatives usually require you to have a ‘bright idea’ to complete a proof. With
trees, bright ideas undoubtedly help, but they are not necessary. Grinding through the
rules will invariably yield a result if one is there to be had.

• Trees give you simple soundness and completeness proofs. The Lindenbaum Lemma is
not required to provide a complete and consistent set of sentences, with witnesses for
quantifiers; out of which you make an interpretation. The set of sentences and the
witnesses for the quantifiers are given by the tree method itself. This means that an
introductory text can state and prove soundness and completeness results in a manner
intelligible to the introductory student. This is important, as soundness and
completeness arguments are at the heart of logic as it is actually studied.

• Trees, contrary to much popular opinion, do formalise a natural way of reasoning.
Traditional ‘axiom and rule’ systems formalise the demonstration of validity by taking
various assumptions as given, and providing rules to get new truths from old. The
argument is valid if the conclusion can be derived from the premises and the axioms,
by way of the rules. This is an important style of reasoning, but it is not the only one.
Trees formalise another style, which could be called the explication of possibilities. To
test to see if an argument is valid, you assume that the premises are true and that the
conclusion is not true, and you explore how this might be. If there is no way for this to
happen, the argument is valid. If there is some possibility, the argument is not. This is
just as much a style of reasoning as by ‘axioms and rules’.

The approach to trees used here is also used in Bostock’s Intermediate Logic [2] and
Howson’s Logic with Trees [12], so students can refer to these books for more examples.

Introduction 3

�

Solutions to the exercises in this text are not printed in the book, but are available on
the World Wide Web at the following address:

http://consequently.org/logic/

This means that students can look up solutions for themselves, so it would be unwise to
set these exercises for assessment. If you would like help in writing other questions for
assessment in a unit based on this text, contact me at greg@consequently.org. Of course,
I also welcome any comments or suggestions to help improve the content of this book.

I hope you find this text a useful introduction to logic!
Logic is many things:

a science, an art,
a toy, a joy,

and sometimes a tool.
—Dorothy Grover and Nuel Belnap

Logic 4

PART 1
Prepositional logic

Chapter 1
Propositions and arguments

Logic is all about reasons. Every day we consider possibilities, we think about what
follows from different assumptions, what would be the case in different alternatives, and
we weigh up competing positions or options. In all of this, we reason. Logic is the study
of good reasoning, and in particular, what makes good reasoning good.

To understand good reasoning, we must have an idea of the kinds of things we reason
about. What are the things we give reasons for? We can give reasons for doing something
rather than something else (these are reasons for actions) or for liking some things above
other things (these are reasons for preferences). In the study of logic, we do not so much
look at these kinds of reasoning: instead, logic concerns itself with reasons for believing
something instead of something else. For beliefs are special. They function not only as
the outcome of reasoning, but also as the premises in our reasoning. So, we start with the
following question: What are the sorts of things we believe? What are the things we
reason with?

Propositions

We will call the things we believe (or disbelieve) propositions. The particular name is not
important here, but the distinction between propositions and other sorts of things is
important. We express propositions by using sentences. If I ask you what I believe about
something, you will most likely respond by using some sentence or other. Of course
expressing propositions is but one of the things we do with sentences. We do lots of other
things with sentences too—we ask questions, we express feelings, desires and wishes, we
command and request. In the midst of this diversity, the acts of stating and believing are
central to the practice of reasoning, so propositions are at the heart of reasoning and
logic. We are interested in claims about the way things are, and reasons for them, so
propositions, which express how we take things to be, or how we take things not to be (or
which express matters upon which we are undecided), are the focus of logic.

We will illustrate the difference between sentences that express propositions and those
that do not by exhibiting the contrast. Here are some examples of sentences expressing
propositions:

I am studying logic. If you like, I will cook dinner tonight.
Queensland has won the Sheffield Shield.
The moon is made of green cheese. Most wars are horrible.
2+7=9. The mind is not the brain.
Euthanasia is justifiable in some circumstances.

There’s no business like show business. That hurts!

Each sentence in this list is the kind of thing to which we might assent or dissent. We
may agree or disagree, believe or disbelieve, or simply be undecided, about each of these
claims.

The following sentences, on the other hand, do not express propositions:

Go away! Please pass the salt. Hello.
What is the capital of Tanzania? Ouch!

These sentences do not express propositions—they are not declarative, as they are not the
sort of thing that we can believe or disbelieve, or reason with. These parts of speech
perform other functions, such as expressing emotions, greeting, asking questions or
making requests.

We express propositions to describe the way things are (or, at least, to describe how
things seem to us). Propositions are the sorts of things that can be true or false. Our
descriptions are successful, or they are not. In the study of logic, we are interested in
relationships between propositions, and the way in which some propositions can act as
reasons for other propositions. These reasons are what we call arguments.

Arguments

In everyday situations, arguments are dialogues between people. In logic, we do not study
all of the features of these dialogues. We concentrate on the propositions people express
when they give reasons for things. For us, an argument is a list of propositions, called the
premises, followed by a word such as ‘therefore’, or ‘so’, and then another proposition,
called the conclusion. This is best illustrated by an example:
If everything is determined, people are not free. Premise

People are free. Premise

So not everything is determined. Conclusion

We will examine good arguments (like this one), in order to to give an account of why
they are good.

One important way for an argument to be good is for the premises to guarantee the
conclusion. That is, if the premises are true then the conclusion has to be true. Instead of
simply calling arguments like this ‘good’ (which is not particularly helpful, as there are
other ways arguments can be good), we will call them valid. So, to summarise:

An argument is valid if and only if whenever the premises are true, so is the conclusion.
In other words, it is impossible for the premises to be true while at the same time the

conclusion is false.

It seems clear that our argument about determinism and freedom is valid. If the two
premises are true, the conclusion invariably follows. If the conclusion is false—if not

Propositions and arguments 7

�

everything is determined—then one of the premises must be false. Either people are not
free, or people can be free despite determinism.

This shows how valid arguments are important. They not only give us reasons to
believe their conclusions—if you already believe the premises—they also exhibit
connections between propositions that are important even if we do not believe the
conclusions. If you believe everything is determined then you must reject one of the
premises of our argument. The validity of the argument will not force you into one
position or the other—it will instead help you to see what options are open to you.

There are other ways for arguments to be good. For example, consider the following
argument.

If people are mammals, they are not cold-blooded.
People are cold-blooded.
So people are not mammals.

This is clearly a valid argument, but no-one in their right mind would believe the
conclusion. That’s because the premises are false. (Well, the second premise is false—but
that’s enough. One premise being false is enough for the argument to be bad in this
sense.) This gives us an idea for another definition:

An argument is sound, just in the case where it is valid, and, in addition, the premises are
all true. So, the conclusion of a sound argument must also be true.

Soundness appeals to more than mere validity. More than logical connections between
premises and conclusion are required for an argument to be sound: soundness appeals
also to the truth of the matter. The conclusion of a sound argument is always true. This is
of course not the case for valid arguments. Some valid arguments have true conclusions
and others have false conclusions.

Of course, if we disagree about the truth of the premises of an argument, this can lead
to disagreement about the argument’s soundness. If we have a valid argument for which
we are uncertain about the truth of the premises, it follows that we ought to be uncertain
about the soundness of the argument too.

There are yet more ways for arguments to be good or bad. One that we will not
consider in this book is the issue of inductive strength or weakness. Sometimes we do not
have enough information in our premises to guarantee the conclusion, but we might
make the conclusion more likely than it might be otherwise. We say that an argument is
inductively strong if, given the truth of the premises, the conclusion is likely. An
argument is inductively weak if the truth of the premises does not make the conclusion
likely. The study of inductive strength and weakness is the study of inductive logic. We
will not explore inductive logic in this book. We will concentrate on what is called
deductive logic—the study of validity of arguments.

Logic 8

Argument forms

Consider the two arguments we saw in the previous section. These arguments share
something very important: their shape, or structure. We say the argument has the
following form:

If p then not q
q
Therefore, not p

Both of our arguments have this form. The first argument has got exactly this shape. If
we let p stand for ‘everything is determined’ and q stand for ‘people are free’ then we get
the original argument back, more or less. I say ‘more or less’ because you must do a little
fiddling to get the exact wording of the original argument. The fiddling is not hard, so I
will not pause to examine it here.

The second argument has the same shape. In this case p stands for ‘people are
mammals’ and q stands for the (less plausible) proposition ‘people are cold-blooded’.
This form of the argument is important, as any choice of propositions for p and q will
make a valid argument. For example, when we choose ‘utilitarianism is true’ for p and
‘we should always keep our promises’ for q, we have this instance:

If utilitarianism is true, we should not always keep our promises.
We should always keep our promises.
So utilitarianism is not true.

Find other example arguments for yourself by choosing other propositions for p and q.

In general, a prepositional form is found by replacing ‘sub-propositions’ inside a given
proposition by letters. The result is said to be a form of the original proposition.

For example, ‘If p then it will rain’ is a form of ‘If it is cloudy then it will rain’, for we
have replaced ‘it is cloudy’ by p. Similarly, ‘If p then q’ is a form of ‘If it is cloudy then
it will rain’, as we have replaced q by ‘it will rain’.

Given a prepositional form, we say that a sentence is an instance of that form if we get
the sentence (or a sentence with the same meaning) by replacing the single letters by
sentences.

So, ‘If it is cloudy then it will rain’ is an instance of ‘if p then q’. ‘If Queensland bat first,
they will score well’ is also an instance of ‘if p then q’, where p is replaced by
‘Queensland bat first’ and q is replaced by ‘Queensland will score well’. (It is better to
choose this over ‘they will score well’, as this sentence will mean other things in different
contexts.)

In prepositional forms, we can repeat the same letter. For example ‘maybe p and
maybe not p’ is a perfectly decent form, with instances ‘maybe he will, and maybe he
won’t’ and ‘maybe Queensland will win, and maybe Queensland will not win’. In these

Propositions and arguments 9

�

cases, we must substitute the same sentence for each instance of the one letter. Finally, an
argument form is made up of prepositional forms as premises, and another propositional
form as conclusion. An instance is found by replacing each instance of each letter by the
one sentence.

When every instance of an argument form is valid, we call it a valid argument form,
for the obvious reasons. If an argument is of a form that we know is valid then we know
that the argument is valid. So, given a valid argument form, you can construct valid
arguments to your heart’s content. Valid arguments can be constructed out of valid
argument forms, and formal logic is the study of argument forms. Our study of logic will
concentrate on the study of forms of arguments.

Be warned—an argument can be an instance of an invalid form, while still being valid.
As an example, our arguments are valid, but they also have the following form:

If p then q
r
Therefore, s

which is not a valid form. This form has plenty of invalid instances. Here is one:

If you are the Pope, you are Catholic.
Two is an even number.
Therefore, the moon is made of green cheese.

This argument is not valid, since the premises are true and the conclusion is false.
However, this form has valid instances. Our original argument is given by letting p be
‘everything is determined’, q be ‘people are not free’, r be ‘people are free’ and s be ‘not
everything is determined’. This is a perfectly decent instance of our form. The argument
is valid, but the form is not. This is not a problem for the idea of forms—it simply shows
us that this new form is not descriptive or specific enough to account for the validity of
the original argument. That argument is valid, but this second form is not specific enough
to exhibit that validity. Our original form is specific enough.

Summary

So, to sum up, we have the following facts about validity and argument forms.

• For an argument to be valid, in any circumstance in which the premises are true, so is
the conclusion.

• For an argument to be invalid, there has to be some possibility in which the premises are
true and the conclusion is not true.

• An argument form exhibits some of the structure of an argument.
• If an argument has a particular form, that argument is said to be an instance of that

argument form.
• An argument form is valid if and only if every instance of that form is valid.
• An instance of a valid argument form is always a valid argument.

Logic 10

• Instances of invalid forms may be valid.

Further reading

For much more on the difference between sentences that express propositions and those
that do not, see A.C.Grayling’s An Introduction to Philosophical Logic, Chapter 2 [8].

Mark Sainsbury’s book Logical Forms is an introduction to logic that focuses on
logical forms [25]. The exact boundary between logical form and non-logical form is a
matter of a great deal of debate. Gila Sher’s book The Bounds of Logic [26] is a technical
discussion of the boundary between logical form and other notions of form that might not
be appropriately called ‘logical’.

Exercises

Each set of exercises is divided into two sections. Basic questions reinforce the ideas and
concepts of the chapter. Advanced questions extend the material to other areas, and are
harder. Attempt each basic question, until you have mastered the material. Then go on to
the advanced questions.

Basic
{1.1} Which of these sentences express propositions? What do the other sentences express?

(Examples might be questions, commands, exclamations, wishes.)

1 Sydney is north of Melbourne.

2 Is Edinburgh in Scotland?

3 The moon is made of swiss cheese.

4 Did you see the eclipse?

5 What an eclipse!

6 Would that I were good at logic.

7 Look at the eclipse.

8 I wish that I were good at logic.

9 7+12=23

10 If you get Kelly you will be rewarded.

{1.2} Consider the following argument forms:

 Modus Ponens Modus Tollens

 If p then q If p then q

 p not q

 Therefore q Therefore not p

Propositions and arguments 11

�

 Hypothetical Syllogism Affirming the Consequent

 If p then q If p then q

 If q then r q

 Therefore if p then r Therefore p

 Disjunctive Syllogism Disjunction Introduction

 Either p or q If p then r

 Not p If q then r

 Therefore q Therefore if either p or q then r

 In these argument forms, instances are found by substituting propositions for p, q and r.
Which of these argument forms are valid? Of the forms that are invalid, find instances that
are not valid, and instances that are valid.

{1.3} Consider the following arguments:

 1 Greg and Caroline teach PHIL137. Caroline teaches Critical Thinking and PHIL132.
Therefore Greg teaches PHIL137 and Caroline teaches PHIL132.

 2 Greg and Caroline teach PHIL137. Caroline and Catriona teach PHIL 132. Therefore Greg
teaches PHIL137 but not PHIL132.

 3 Greg teaches PHIL137 and PHIL280. Caroline teaches PHIL137. Therefore Greg and
Caroline teach PHIL137.

 For each argument, which of the following forms does it exhibit?

 1 p and q, r and s; therefore t

 2 p, q; therefore r

 3 p and q, q and r; therefore p and r

Advanced
{1.4} It is not always easy to tell whether or not a sentence expresses a proposition. What do you

think of these?

 1 2+the Pacific Ocean=Beethoven

 2 The present King of France is bald.1

 3 This sentence is false.

 4 This sentence is true.

 5 ‘Twas brillig, and the slithy toves did gyre and gimble in the wabe.’

 Do they express propositions? If so, are they true, or are they false? Or are they something
else? Opinions diverge on strange cases like these—what do you think?

{1.5} Does every invalid argument form have valid instances?

{1.6} Does every valid argument possess a valid form?

Logic 12

It is undesirable to believe a proposition
when there is no ground whatever

for supposing it true.
—Bertrand Russell

Note
1 France has no king at present.

Propositions and arguments 13

�

Chapter 2
Connectives and argument forms

As you saw in the last chapter, arguments have different forms, and we can use forms of
arguments in our study of validity and invalidity of arguments. The forms of an argument
bring to light a kind of structure exhibited by the argument. Different sorts of forms
expose different sorts of structure. The first kind of structure we will examine is the
structure given by prepositional connectives. These connectives give us ways to construct
new propositions out of old propositions. The connectives form the ‘nuts and bolts’ in
many different argument forms. The resulting theory is called propositional logic and it
will be the focus of the first half of this book.

Conjunction and disjunction

Consider the two propositions

An action is good when it makes people happy.
Keeping your promises is always good.

You might believe both of these propositions. You can assert both in one go by asserting
their conjunction:

An action is good when it makes people happy, and keeping your
promises is always good.

This is a single proposition—you may believe it or reject it, or simply be undecided. It is
a special proposition, because it is related to two other propositions. It is said to be the
conjunction of the original propositions. The conjunction is true just when both conjuncts
are true. If either of the original propositions is false, the conjunction is false.

More generally, given two propositions p and q, their conjunction is the proposition
p&q

The original propositions p and q are the said to be the conjuncts of p&q. We use the
ampersand symbol ‘&’ as a handy shorthand for ‘and’ when describing forms of
propositions.

Sometimes a sentence uses the word ‘and’ to connect parts of speech other than
phrases. For example the ‘and’ in the sentence

Justice and tolerance are valuable.

connects the words justice and tolerance, and these words do not (by themselves) express
propositions. However, the sentence is still a kind of conjunction. At the very least, it
seems to have the same meaning as the conjunction of the two sentences

Justice is valuable. Tolerance is valuable.

because saying Justice and tolerance are valuable is a shorter way of saying the more
long winded Justice is valuable and tolerance is valuable.

However, you must be careful! Sometimes sentences feature the word ‘and’, without
expressing conjunctions of propositions. For example, sometimes an ‘and’ does not join
different propositions, but it joins something else. For example, if I say

Colleen and Errol got married.

this is not a conjunction of two propositions. It certainly is not the conjunction of the
propositions Colleen got married and Errol got married, since that proposition

Colleen got married and Errol got married.

means something else. That conjunction does not say that Colleen and Errol married each
other, whereas (at least in the colloquial speech familiar to me) to say Colleen and Errol
got married is to say that they did marry each other.

Furthermore, sometimes we use ‘and’ to join two propositions and it still does not
express a simple conjunction. Sometimes we use ‘and’ to indicate a kind of order
between the two propositions. For example, the two sentences

I went out and had dinner. I had dinner and went out.

say very different things. The first indicates that you went out and then had dinner. The
second indicates that you had dinner and then went out. These are not propositional
conjunctions in our sense, because making sure that ‘I had dinner’ and that ‘I went out’
are true is not enough to make it true that ‘I went out and had dinner’. For that, we
require the right kind of order.

For one last example of an ‘and’ that is not a conjunction, consider this case: a woman
points a gun at you, and says

One false move and I shoot.

She is saying that if you make a false move, she will shoot. The conjunction of the two
propositions, on the other hand, asserts that you will make one false move, and that she
will shoot. This is obviously a different claim (and a different threat).

It is a matter of some art to determine which ‘and’ claims really are conjunctions and
which are not. We will not pursue this point here. Instead, we will look at other ways to
combine propositions to form new ones.

Connectives and argument forms 15

�

We can assert that (at least) one of a pair of propositions is true by asserting their
disjunction. For example, in the case of the good being what makes people happy, and the
goodness of keeping your promises, you might think that keeping your promises is
probably a good thing. But you’ve been reading the work of some utilitarians who make
it seem pretty plausible to you that the good is grounded in human happiness. You’re
undecided about the merits of utilitarianism, but you can at least claim this disjunction:

Either an action is good when it makes people happy, or keeping your
promises is always good.

because you think that keeping promises is mostly good, and the only way that it could be
bad is in those cases where keeping a promise prevents human happiness.

Given two propositions p and q, we write their disjunction as The original
propositions p and q are said to be the disjuncts of The disjunction is true
just when either of the disjuncts is true.

Disjunctions can be inclusive or exclusive. An inclusive disjunction leaves open the
possibility that both disjuncts are true, while an exclusive disjunction rules out this
possibility. The difference can be made explicit like this:

Either an action is good when it makes people happy, or keeping your
promises is always good (and possibly both).

This is inclusive. You assert this when you think that utilitarianism might rule out the
goodness of keeping promises, but it might not. Perhaps keeping promises does, on the
whole, make people happier than they would otherwise be.

If you think this is not a possibility then you can assert the exclusive disjunction:

Either an action is good when it makes people happy, or keeping your
promises is always good (and not both).

In our study of connectives, we will use inclusive disjunction more than exclusive

disjunction, so we will read as the inclusive disjunction of the propositions p
and q. (The symbol comes from the Latin vel for ‘or’.)

Conditionals and biconditionals

Conjunctions combine pairs of propositions by asserting that both are true, and
disjunctions combine them by asserting that at least one is true. Another way to combine
propositions is to assert connections between them. For example, in your study of
utilitarianism, you might conclude not that utilitarianism is true, or that it is false (you’re
not convinced of either side here), but you are convinced that:

Logic 16

If an action is good when it makes people happy then keeping your
promises is always good.

More generally, given two propositions p and q, I can assert the conditional proposition
‘if p then q’. The original proposition p is the antecedent, and q is the consequent of the
conditional. We give the two parts different names because they perform different
functions in the complex proposition. The proposition ‘if p then q’ is very different from
the proposition ‘if q then p’.

With conditionals, you have to watch out. The following all assert the same kind of
connection between p and q, despite the different phrasing and ordering:

If p then q If p, q q if p p only if q

In each of these forms of sentences, p is the antecedent and q is the consequent. Here is a
technique for remembering this fact: ‘If p’ signals that p is the antecedent of a
conditional, whether it occurs at the beginning or the end of a sentence. So, ‘if p then q’
and ‘q, if p’ assert the same kind of connection between p and q. They both say that under
the conditions that p occurs, so does q. On the other hand, ‘only if q’ signals that q is the
consequent. If p is true only if q is true, then if p is true, so is q.

Think of examples. If you know that if p then q, then once you find out that p is true,
you know that q is true too. ‘Only if is the other way around. If you know that p only if q,
then finding out that p still tells you that q is true too. So ‘p only if q’ has the same effect
as ‘if p then q’.

This does not mean that the forms ‘if p then q’ and ‘p only if q’ have exactly the same
significance in all circumstances. If I say ‘p only if q’, I might signal that q is some kind
of condition for p. For example, when I say

I go to the beach only if it is fine.

I am saying that fine weather is a condition for going to the beach. It sounds a little more
surprising to say

If I go to the beach, it is fine.

for in this case it sounds as if I am saying that my going to the beach makes it fine. It
sounds as if the relation of dependence goes in the other direction. However, in each case,
I go to the beach is the antecedent, and it is fine is the consequent, for in either case, if I
am at the beach, it follows that it is fine.

Whatever words we use to express conditionals, we will write a conditional statement
with antecedent p and consequent q as

The antecedent is the condition under which the outcome (the consequent) occurs.
We can indicate that a two-way connection holds between propositions by asserting a

biconditional statement:

Connectives and argument forms 17

�

An action is good when it makes people happy if and only if keeping your
promises is always good.

Given two propositions p and q, the proposition p if and only if q is their biconditional.
We call p and q its left-hand and right-hand expressions respectively. For symbolism, we
write the biconditional as

p≡q

Note that the biconditional p≡q has the same meaning as & the
conjunction of the two conditionals and

In written English, you can abbreviate ‘if and only if by the shorter ‘iff’. This is still
read aloud as ‘if and only if. I will use this abbreviation in the rest of the book.

Negation

One last way to form new propositions from old is provided by negation. We can assert
the negation of a proposition simply by using a judiciously placed ‘not’. Here is an
example:

Keeping your promises is not always good.

This is the negation of

Keeping your promises is always good.

You have to be careful in where you place the ‘not’ in a proposition in order to negate it.
What we want is a proposition that simply states that the original proposition is false. We
get a different proposition if we place the ‘not’ somewhere else. If I say

Keeping your promises is always not good.

I say something much stronger than the original negation. I’m saying that keeping
promises is always bad—it is never good. This goes much further than simply denying
the claim that keeping your promises is always a good thing.

In general, given a proposition p, you can express the negation of p by saying ‘it’s not
the case that p’. This is cumbersome, but it works in every case. We say that this
proposition is the negation of p, and the original proposition p is the negand of the
negation. We write the negation of p as

~p

Strictly speaking, negation is not a connective, as it does not connect different
propositions. It is an operator, as it operates on the original proposition to provide
another. However, we will abuse the terminology just a little, and call each of
conjunction, disjunction, negation, the conditional and the biconditional connectives.

Logic 18

There are many more connectives that can be used to build propositions from others.
Examples are ‘I believe that…’, ‘Max hopes that…’, ‘It is possible that…’,
‘…because…’, and many many more. We will concentrate on the connectives already
seen, for they form the core of a lot of our reasoning, and they are, by far, the simplest
connectives to deal with. In Chapter 6 we will look a little at operators for possibility and
necessity, but for now we focus on the connectives we have already considered:
conjunction, disjunction, the conditional and biconditional, and negation.

A Language of forms

To summarise what we have seen so far, we have symbols for each of the prepositional
connectives (Table 2.1). We can use these connectives to form the basis for a formal
language, a language of forms, to describe the structure of arguments. We use a basic
stock of symbols to represent propositions. There is nothing special about the particular
symbols we use, as long as we have enough of them, and as long as we don’t use any of
the connectives as symbols standing for propositions (that would be too confusing). We
will always use lower-case letters, and if that isn’t enough, we

Table 2.1 Prepositional connectives

Name Reading Symbol

Conjunction …and… &

Disjunction …or…
Conditional if…then…
Biconditional …if and only if… ≡

Negation not ~

will resort to lower-case letters subscripted by numbers. So, here are some examples:
p q j k r3 s14

These symbols are called atomic propositions, or atomic formulas, because they have no
significant parts. (As far as we are con-cerned, p14 has nothing more to do with p15 than it
has to do with q. Each atomic proposition is unrelated to all others.) They are atoms.

We then use the connectives to form new propositions from old, using a number of
rules. The rules go like this:

• Any atomic formula is a formula.
• If A is a formula, so is ~A.

• If A and B are formulas, so are (A&B), and (A≡B).
• Nothing else is a formula.

So, things like

Connectives and argument forms 19

�

are all formulas, as they are built up from the atomic formulas by way of the rules. For
example:

• p and q are formulas (they are atoms).
• So, (p&q) is a formula (it is a conjunction of the two formulas p and q).
• r is a formula (it is an atom).

• So, is a formula (it is a conditional made up of two formulas: (p&q)
and r).

The other two example formulas are built up using the rules in a similar way. We
sometimes call these formulas well formed to contrast with collections of symbols that
are not formulas.

The following expressions are built from the atomic formulas using the connectives
and negation, but they are not formulas, because they cannot be built up using the
formation rules:

The first, p~, is not a formula, since a negation always attaches to a formula on its left.
The second, (p&q&r), is not a formula, since the rule for introducing conjunctions always
wraps parentheses around the conjuncts. To form a three-place conjunction, you must use
either (p&(q&r)) or ((p&q)&r).

The case of the other two non-formulas is similar. The biconditional should be used
between other formulas, not prefixing them, and in the last example, we should either
bracket (p≡q) or

We say that a formula is complex if and only if it is not atomic. Complex formulas
always involve connectives, and we say that the main connective of a complex formula is
the connective that was last added in its construction. An atomic formula has no main
connective, since it contains no connectives at all.

The main connectives of each of the formulas displayed above are given in Table 2.2.
Finally, to save us from writing too many pairs of parentheses, we will ignore the

outermost set of parentheses in any formula, if the main connective is not a negation. So,
we write

That completes the definition of formulas. We will use formulas to define argument
forms, and to study them.

Logic 20

Table 2.2 Main connectives of displayed
formulas

Formula Main connective

~

More argument forms

We have just considered different forms of propositions made out of other propositions.
These are called complex propositions. And a proposition that is not complex is said to be
atomic. Given an argument, we can find its most descriptive propositional argument form
by analysing the structure of its propositions. We do this by forming a dictionary of the
atomic propositions in the argument, and rewriting the argument in terms of these atomic
propositions. An example will illustrate the process. Take the argument:

If the dog ran away, the gate was open.
If the gate was open, Anne didn’t close it.
Therefore, if Anne closed the gate, the dog did not run away.

The atomic propositions in this argument are

The dog ran away. The gate was open. Anne closed the gate.

All the propositions in the argument are made out of these atomic propositions using our
connectives. So, we let atomic formulas stand for these propositions. We can make a
dictionary to record the letters standing for each proposition:

r=The dog ran away
o=The gate was open
c=Anne closed the gate

Then we have the following argument form:

This argument form exhibits the shape of the original argument. Let’s do another
example. We will find the most descriptive form of this argument:

If you’re going to the party, Max won’t come.

Connectives and argument forms 21

�

If Max comes to the party, I’ll have a good time if Julie’s there too.
Therefore, if you’re going to the party but Julie’s not, I won’t have a

good time.

We formulate the dictionary of atomic propositions, choosing letters as appropriate:
p=You’re going to the party
m=Max comes to the party
g=I’ll have a good time
j=Julie is at the party

We then have the following form:

This example is more difficult. We had to ‘massage’ the atomic propositions to make the
dictionary. For example, j is Julie is at the party not Julie’s there too. Second, we have
read the ‘but’ in the conclusion as a conjunction. We formalise you’re going to the party
but Julie’s not as p&~j; literally, you are going to the party and it is not the case that Julie
is at the party. Despite all these changes, we have not done too much violence to the
original argument to read it in this way.1 Once we have argument forms, we use the
techniques of formal logic to study the forms.

There is much more that can be said about finding forms of arguments. However, we
will go on to actually analyse argument forms in the next chapter. To get more experience
in discerning forms, go through the exercises.

Summary

Here is the formal language we have defined:

• We have a stock of atomic formulas, written using lower-case letters.
• If A and B are formulas, their conjunction (A&B) is a formula. (A&B) is read ‘A and B’.
• If A and B are formulas, their disjunction is a formula. is read ‘A

or B’. Disjunctions may be inclusive (A or B or both) or exclusive (A or B but not
both).

• If A and B are formulas, their conditional is a formula. is read ‘if
A then B’. A is the antecedent and B is the consequent of the conditional.

• If A and B are formulas, their biconditional (A≡B) is a formula. (A≡B) is read ‘A if and
only if B’, and ‘if and only if is often abbreviated as ‘iff’.

• If A is a formula, then its negation ~A is also a formula. ~A is read ‘it is not the case that
A’, or simply ‘not A’.

• A atomic proposition is a proposition that is not a conjunction, disjunction, conditional,
biconditional or negation.

Logic 22

• You can find the most descriptive propositional form of an argument by forming a
dictionary of the atomic propositions in the argument, and then rewriting the argument
in terms of these atomic propositions, replacing each atomic proposition in the
argument by an atomic formula.

Exercises
{2.1} For each of the following negations, find its negand:

 1 Greg is not in town.

 2 Fred is not very smart.

 3 Minh isn’t a bad student.

 4 Not every car is fuel-efficient.

 5 That car is neither red nor a diesel.

{2.2} For each of the following conjunctions, find both conjuncts:

 1 It is −5 degrees and the clouds are grey.

 2 He was tired but he wanted to keep going.

 3 Although the waves were breaking, the surf was low.

 4 In spite of there being a strike, the power was not cut.

 5 Fred and Jack are not mechanics.

{2.3} For each of the following disjunctions, find both disjuncts:

 1 Either Eric is there or Yukiko is there.

 2 The car is either white or yellow.

 3 Brian is doing a Ph.D. or a Masters degree.

 4 Either it rains or it doesn’t.

 5 I’ll have coffee or tea.

{2.4} For each of the following conditionals, find the antecedent and the consequent:

1 If it is raining, I’ll walk home.

2 If you look outside, you’ll see the nice garden I planted.

3 If I’m tired, I don’t do my logic very well.

4 I do logic well only if I’m awake.

5 I do logic well if I’m awake.

6 You will pass if you work hard.

7 The world’s future is assured only if we get rid of nuclear weapons.

8 The world’s future is assured if we get rid of nuclear weapons.

Connectives and argument forms 23

�

9 If Oswald didn’t shoot Kennedy, someone else did.

10 If Oswald hadn’t shot Kennedy, someone else would have.

{2.5} For each of the following complex propositions, determine what kind of proposition it is,
and the sub-propositions that went into its construction. If these propositions are complex,
continue the process until you get to atomic propositions. (For example, for the proposition
Max is a PHIL134 student and he isn’t doing badly, we analyse it like this: It is a con-
junction, with conjuncts Max is a PHIL134 student and Max is not doing badly. Max is a
PHIL134 student is atomic. Max is not doing badly is a negation, with the negand Max is
doing badly.)

 1 Christine is happy if she is not thinking about her thesis.

 2 I don’t know if she’s coming to the party.

 3 If Theodore is enrolled in PHIL134, and he passes, he can go on to do advanced logic
subjects.

 4 If Theodore isn’t enrolled in PHIL134, or if he doesn’t pass, then he cannot go on to do
advanced logic subjects.

 5 I believe, and you know, that you are either going to leave the party early or make a scene.

{2.6} Use the dictionary

 y=Yukiko is a linguist

 c=Christine is a lawyer

 p=Pavlos is a logician

and translate the following formulas:

1 ~y

2
3 ~y≡c

4

5

6 y&c

7 ~(y&p)

8 ~(y≡c)

9 ~~c

10

11
12 y≡p

13

Logic 24

14

15

{2.7} Translate the following sentences into formulas (using the same dictionary):

1 Christine is not a lawyer.

2 Yukiko is a linguist and Pavlos is a logician.

3 If Pavlos is a logician then Yukiko is a linguist.

4 Either Pavlos is a logician or Yukiko is not a linguist.

5 It’s not the case that both Pavlos is a logician and Christine is a lawyer.

6 Yukiko is a linguist only if both Pavlos is a logician and Christine is not a lawyer.

7 Christine is a lawyer if either Yukiko is a linguist or Pavlos is not a logician.

8 Yukiko is a linguist if and only if either Pavlos is a logician or Christine is not a lawyer.

9 Either Pavlos is a logician, or Yukiko is a linguist only if Christine is a lawyer.

10 Either Pavlos is a logician or Yukiko is a linguist, only if Christine is a lawyer.

{2.8} Which of the following are well-formed formulas?

1 ~p

2 p~~

3

4

5
6 ~~r

7
8

9 ~p&q

10 p&~p

I am not a crook.
—Richard Nixon

Note
1 If there is any more information in you’re going to the party but Julie’s not over and above

you are going to the party and it is not the case that Julie is at the party, it is probably to be
found in our expectations of this conjunction being surprising, and not in any more facts
about who is at the party and what might happen.

Connectives and argument forms 25

�

Chapter 3
Truth tables

In the last chapter, we introduced a formal language, to describe the structure of
arguments. We will now use this formal language to analyse argument forms. To do this,
we will examine how each connective interacts with truth and falsity, since the truth and
falsity of the premises and conclusions of arguments are involved so intimately with the
validity of arguments.

Truth tables

We can now go some way in finding how the connectives work in arguments, by noting
that propositions are the sort of things that can be true, or false. And the truth value of a
complex proposition depends crucially on the truth value of the propositions out of which
it is made.

To take a simple example, if p is true then its negation, ~p is false. And if p is false
then ~p is true. Writing this in a table, with 1 to stand for true and 0 for false, we get this
table:
p ~p

0 1

1 0

In this table, the two rows represent the two different possibilities for the truth of p. In the
first row (or the first case as we will sometimes say), p is false. In that case, ~p is true. In
the second row, p is true, so in that case, ~p is false.

Negation is simplest, as it is a one-place connective. The other connectives have two
places, as they combine two propositions. Given two propositions, p and q, there are four
different cases of truth and falsity:
p q

0 0

0 1

1 0

1 1

If p is false, there are two possibilities for q. On the other hand, if p is true, there are two
possibilities for q. That makes 2×2=4. (Similarly, given three propositions, p, q and r,
there are eight different possibilities, since there are the four for p and q, com-bined with
r being true, and the same four, combined with r being false. More generally, given n
different propositions, there are 2×2×…×2 (n times), which is 2n different cases.)

Anyway, back to the other connectives. Let’s start with conjunc-tion. The conjunction
p&q is true just when p and q are both true, and it is false otherwise. So, the table for
conjunction goes like this:
p q p&q

0 0 0

0 1 0

1 0 0

1 1 1

The only row in which the conjunction p&q is true is the row in which both p and q are
true. In all other rows, the conjunction is false.

The disjunction, is true just when at least one of p and q are true. Recall that
we treat disjunction as inclusive. If both disjuncts are true then the whole disjunction is
true. If just one disjunction is true then the whole disjunction is true. So, we have this
table:
p q
0 0 0

0 1 1

1 0 1

1 1 1

The only row in which the disjunction is false is the row in which both disjuncts are false.
Before going on to consider the other connectives, let’s see how we can use truth

tables to deal with more complex propositions. Let’s consider the formula ~(p&~q). This
is the negation of the conjunction p&~q, which is the conjunction of the atomic formula p
with the negation ~q. The truth value of this formula depends on the values of p and q, so
there are four different cases to consider. We start with a table like this, which displays
the atomic formulas to the left, to indicate the four different cases.
p q ~ (p & ~ q)

0 0

0 1

1 0

1 1

To calculate this truth value of the complex proposition, we first must calculate the value
of ~q in terms of the value of q. So, we repeat the values of q under where it occurs here,
and then we write the values of ~q under the negation sign, which is the main connective
of the negation ~q. This gives us the next stage of the production of the table:
p q ~ (p & ~ q)

Truth tables 27

�

0 0 1 0

0 1 0 1

1 0 1 0

1 1 0 1

Now, equipped with the values of ~q in each case, we can calculate the value of the
conjunction p&~q in each case. We repeat the value of p under the ‘p’ occurring in the
proposition, and then we use this value together with the value of ~q, to find the value of
the conjunction, using the table for the conjunction. We write the value of the
conjunction, in each case, under the ampersand. This gives us the following table:
p q ~ (p & ~ q)

0 0 0 0 1 0

0 1 0 0 0 1

1 0 1 1 1 0

1 1 1 0 0 1

The third row is the only case in which p and ~q are both true, so it is the only case in
which the conjunction p&~q is true. To complete the table, we negate the value of p&~q
and write the result under the negation sign, the main connective of the whole formula:
p q ~ (p & ~ q)

0 0 1 0 0 1 0

0 1 1 0 0 0 1

1 0 0 1 1 1 0

1 1 1 1 0 0 1

We have written this in boldface to indicate that this column provides the value of the
whole proposition in each different case. This technique can be generalised to provide the
truth values of formulas as complex as you please. For formulas containing three
different atomic formulas, we have a table of eight rows, for formulas containing four
atomic formulas, we have sixteen rows, and so on. Each row of the table represents a
different possibility or case. No matter what truth value had by the atomic propositions p,
q, r and so on, the corresponding row of the truth table tells you the truth value of the
complex formula made up of those atomic formulas.

Now, to complete our definition of truth tables for complex formulas, we need to see
the tables for the conditional and the biconditional. These cases are a little more involved
than those for the other connectives.

The conditional has the same truth table as the complex proposition ~(p&~q).
We have already seen this table. This proposition is false only when p is true and q is
false, and it is true in each other case.
p q

Logic 28

0 0 1

0 1 1

1 0 0

1 1 1

The conditional has this truth table because the conditional is intimately
connected to ~(p&~q). Consider the two following lines of reasoning.

• If is true then if p is true, q must be true (that is what a conditional says, after
all), so you do not have p true and q false, so p&~q is not true, and consequently,
~(p&~q) is true.

• Conversely, if ~(p&~q) is true, consider what happens if p is true. In that case, you
don’t have q false, since p&~q is not true (that is what we have assumed: ~(p&~q) is
true). So, if you don’t have q false, q must be true. So if p is true, so is q. In other
words, is true.

According to these two small arguments has the same truth value as ~(p&~q),
and so is false only when p is true and q is false. A conditional is false if and only
if there is an explicit counterexample—that is, if and only if the antecedent is true, and
the consequent is false.

In Chapter 6, we will discuss the interpretation of the conditional further, as not
everyone is happy with this analysis. For now, however, we will use this truth table for
the conditional. The conditional defined in this way is often called the material
conditional, to make clear that alternate definitions for the conditional are possible.

The only remaining connective is the biconditional. The biconditional p≡q acts like
the conjunction of and As a result, it is false if p is true and q is false, or
if p is false and q is true. It is true otherwise. So, it has this table:
p q p ≡ q

0 0 1

0 1 0

1 0 0

1 1 1

In this table, p ≡ q is true if and only if p and q have the same truth value.
Before going on to see how we can use truth tables to evaluate argument forms, let’s

see another example of a truth table for a complex proposition, this time for

p q ((p ≡ q & p) q

0 0 0 1 0 0 0 1 0

0 1 0 0 1 0 0 1 1

Truth tables 29

�

1 0 1 0 0 0 1 1 0

1 1 1 1 1 1 1 1 1

We have used exactly the same technique to construct this table. First we find the values
for p≡q, given the values of p and q. Then we can find the values of the conjunction
(p≡q)&p. Finally, we combine this value with that of q, to get the truth value of the entire
proposition, in each row. This is the column in boldface.

You will notice that this proposition is special. No matter what values p and q have,
the proposition is always true. We call such a proposition a
tautology. Now matter how things are, a tautology is true.

We call a proposition that is false in every row a contradiction, or we will call it
inconsistent. Here is an example contradiction with its truth table:
p q ((p q) & p) & ~ q

0 0 0 1 0 0 0 0 1 0

0 1 0 1 1 0 0 0 0 1

1 0 1 0 0 0 1 0 1 0

1 1 1 1 1 1 1 0 0 1

If a proposition is neither a tautology nor a contradiction, there are some cases in which it
is true and some cases in which it is false. These are called contingent propositions.

The general method for making truth tables for propositions is given in Box 3.1.
Each row of the truth table represents a way the world could be. To make sure we

represent all possible circumstances, we distri-bute every possible combination of truth
values (true and false) to each atomic proposition. Then the values of more complex
propositions are built up from the values of simpler propositions. If a proposition has the
value ‘true’ no matter what the value of the atomic propositions then it must be true, no
matter what the world is like. It is a tautology. Conversely, if it cannot be true, it is a
contradiction. If it could be true, and it could be false, it is a contingency.

In the rest of this book, we will call each row of a truth table an evaluation of the
formulas. We say that an evaluation satisfies a formula when the formula is assigned the
value 1. It follows that tautologies are satisfied in every evaluation, contradictions are
satisfied in no evaluation, and contingencies are sometimes satis-fied and sometimes not.

Box 3.1 Construction of truth tables for propositions

• Write the proposition in question, and list its atomic propositions to one side.
• Draw enough rows (2n for n atomic propositions) and put the different combinations of

0s and 1s under the atomic propositions.
• Repeat these columns under the atomic propositions in the formula.
• Then work outwards using the rules.
• The column containing the main connective gives the value of the formula. This is the

final column.

Logic 30

• If the final column contains no zeros, then the proposition is always true, it is a
tautology.

• If the final column contains no ones, the proposition is never true, and it is is a
contradiction, it is inconsistent,

• If it is neither of these, it is sometimes true and sometimes false, and then it is said to be
contingent.

Truth tables for arguments

You also can use truth tables and evaluations to examine argument forms. To do this, you
make one table evaluating the premises and the conclusion of the argument. This will
give you a list of all of the different possibilities pertaining to the premises and the
conclusion, and you will be able to use this to check if there is any possibility in which
the premises are true and the conclusion is false.

Here is an evaluation of the argument form therefore p≡q:
p q p q q p p ≡ q

0 0 0 1 0 0 1 0 0 1 0

0 1 0 1 1 1 0 0 0 0 1

1 0 1 0 0 0 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1

In this case, the argument form is valid, since the only cases in which the premises are
both true (shown here in the first and the fourth rows) are cases in which the conclusion
is also true. Using the technical terminology of the previous section, any evaluation that
satisfies both of the premises also satisfies the conclusion. We symbolise this as follows:

The symbol ‘╞’ records the validity of the argument form. We say that the premises
entail the conclusion.

If X is a set of formulas and A is a formula then X entails A (written ‘X╞A’) if and only
if every evaluation satisfying every formula in X also satisfies A. Or, equivalently, there
is no evaluation that satisfies X that does not also satisfy A.

Truth tables also give us the tools for exhibiting the invalidity of argument forms.
Consider the argument form that proceeds from the premises and ~p to the
conclusion ~q. The table looks like this:
p q p q ~ p ~ q

0 0 0 1 0 1 0 1 0

0 1 0 1 1 1 0 0 1

1 0 1 0 0 0 1 1 0

Truth tables 31

�

1 1 1 1 1 0 1 0 1

In this table, we do have a case in which the premises are true and the conclusion false.
The second row provides an evaluation that satisfies both premises, but fails to satisfy the
conclusion. We register the invalidity of the argument form with a slashed ‘╞’. We write

to say that the premises do not entail the conclusion. The truth table gives us more
information than the mere invalidity of the argument. It also provides an evaluation in
which the premises are true and the conclusion false. The second row is such an
evaluation. We write the evaluation like this:

p=0 q=1

This evaluation is a counterexample to the argument form. It gives us a way to make the
premises true and the conclusion false.

Let us consider a longer example. We will show that

In other words, we will show that the argument form from and
to is valid. The table has eight rows, as the argument form has three atomic
formulas:
p q r ~ p (q r) ~ q r p r

0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0

0 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1

0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0

0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1

1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0

1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1

1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0

1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1

The table has two rows in which the conclusion is false: rows 5 and 7. In row 5, the
second premise is false, and in row 7, the first premise is false, so there is no evaluation
satisfying both premises that does not also satisfy the conclusion.

Before we depart truth tables, it is interesting to note that tables give us a decision
procedure for the valid argument forms in the propositional calculus. Given any (finite)
argument form, we can find in a finite (but perhaps very long) time whether or not it is
valid. Not every system of rules for determining validity has this property.

Logic 32

Finding evaluations quickly

For all the good things about truth tables, it is obvious that making the truth tables of big
formulas or for long arguments takes up a lot of time and space. Try this one, for
example:

It would take 28=256 rows, which is a lot more than I am willing to do. Once we know
that it is possible in practice to decide whether or not something is a tautology (or an
argument form is valid), the thing to do is to get better ways of doing it. And one way
that is often (but not always) an improvement on truth tables is called the method of
assigning values (MAV). The rationale is straightforward: to show that an argument form
is valid (or that a formula is a tautology—we will consider this as a zero-premise
argument for the moment), we must show that there is no evaluation in which the
premises are true and the conclusion false. So, to show that, try to find such an
evaluation. If there is one, it is not valid. If there isn’t, it is valid. The method goes like
this:

• Put a 0 under the main connective of the conclusion and a 1 under the main connective
of the premises (if any).

• Then, work inward to the atomic propositions—put down the values of any other
propositions that are forced by the ones you already have. If nothing is forced, write
down two rows—one for each possibility.

• If you can complete this process, you have a counterexample to the validity of the
argument. If not—that is, if you find you are forced to assign both 0 and 1 to some
proposition—you know that it is valid.

Here is an example: we will test the argument from
to We write down the premise and the

conclusion, with a line below, with a ‘1’ under the main connective of the premise, and a
‘0’ under the main connective of the conclusion:
((p q) & (q r)) & (r s) (r & s) p

 1 0

Then this forces more values. The conjunction in the premise is true, so both of its
conjuncts are true. The conditional in the con-clusion is false, so we must have the
antecedent true and the consequent false:
((p q) & (q r)) & (r s) (r & s) p

 1 1 1 1 0 0

Then, other values are forced too. The p in the conclusion is false, so it must be false in

the premise too. Similarly, the conjunction is true, so both
conjuncts must be true. Similarly, r&s must be true, so both r and s are true:

Truth tables 33

�

((p q) & (q r)) & (r s) (r & s) p

0 1 1 1 1 1 1 1 1 0 0

The truth of r and s gives us values to distribute in the premises. These values are
compatible with being true. (If we already knew that had to be false, we
couldn’t proceed, and then we’d know that the argument was valid, as we wouldn’t be
able to find a counterexample.) We can then let q be either true or false—it doesn’t
matter which. My choice is false, and we have the following completed table:
((p q) & (q r)) & (r s) (r & s p

0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0

So, the argument is not valid, as we have an evaluation satisfying the premise, but not the
conclusion:

p=0 q=0 r=1 s=1

Here is another case of MAY, this time testing the argument from p≡q and

to q≡r. We proceed as before, starting off by trying to set the
premises as true and the conclusion false:
p ≡ q (q & r) ≡ (p r) q ≡ r

 1 1 0

But now, we have some choices. No other value is forced by the values we have. For
example, to make q≡r false, we can either make q true and r false, or vice versa. So, we
need two rows:
p ≡ q (q & r) ≡ (p r) q ≡ r

 1 1 1 0 1 0 1 0 0

 1 0 0 1 1 1 0 0 1

The values for q and r in each row then tell us the values of q&r. The value of q gives us
the value of p too, since p≡q is set as true. So, our two cases look like this:
p ≡ q (q & r) ≡ (p r) q ≡ r

1 1 1 1 0 0 1 1 0 1 0 0

0 1 0 0 0 1 1 0 1 0 0 1

Now we are in trouble! Given the values of p and r, is true in each row. However,

we want to be true, while having q&r false. We are stuck. There
is no evaluation we can give to meet our demands. We mark this by writing ‘×’ in
the spot:
p ≡ q (q & r) ≡ (p r) q ≡ r

Logic 34

1 1 1 1 0 0 1 1 × 0 1 0 0

0 1 0 0 0 1 1 0 × 1 0 0 1

This shows that there is no evaluation that makes p≡q and both
true while making q≡r false. It follows that the argument is valid. We have

This completes our tour of truth tables and the method of assigning values. You now have
the basic tools required to check lots of different argument forms for validity. Try the
exercises to practise your skills.

Summary

• To form a truth table for a formula, or an argument form, write down all the formulas in
a row, with the atomic formulas occuring in these formulas to the left.

• Under the top row, add 2n rows, where n is the number of atomic formulas. Then put all
the different combinations of 0s and 1s under the atomic propositions to the left.

• Repeat these columns under the atomic propositions in each formula.
• Then work outwards using the truth tables for each connective. You must remember

these rules!
• If you are testing one formula, the column containing the main connective of the

formula is its value. If this column is all 1s, the formula is a tautology. If it is all 0s,
the formula is a contradiction. Otherwise, it is contingent.

• If you are testing an argument form, the form is valid if and only if in every row in
which the premises are true, so is the conclusion. It is invalid if and only if there is
some row in which each premise is true and the conclusion is false.

• Each row of a truth table is an evaluation of the formulas. An argument form is valid if
and only if there is no evaluation according to which the premises are true and the
conclusion is false. Or equivalently, every evaluation satisfying the premises also
satisfies the conclusion.

• We write ‘X╞ A’ to indicate that the argument form from X to A is valid.
• The method of assigning values is a technique for finding evaluations more quickly than

listing all of them in a truth table. To test whether a formula is a tautology, you
attempt to construct an evaluation that makes the formula false. If there is (at least)
one, the formula is not a tautology. If there isn’t one, the formula is a tautology.

• To test an argument form using the method of assigning values, try constructing an
evaluation making the premises true and the conclusion false. If there is (at least) one,
the argument form is invalid. If there isn’t one, the argument form is valid.

Truth tables 35

�

Exercises

Basic
{3.1} Work out truth tables for the formulas in Exercise 2.6 in the previous chapter. You may not

want to do all of them, but do them until you get the hang of them.

{3.2} Which of

and are tautologies?

{3.3} Two formulas are said to be equivalent iff they have the same truth value under any
evaluations. In other words, if you do a combined truth table for both propositions, they
have the same value in each row.

 1 Show that p and ~~p are equivalent.

 2 Show that p&q and q&p are equivalent.

 3 Show that and are equivalent.

 4 Are any of and equivalent?

 5 Are any of and equivalent?

{3.4} Test these argument forms. Before testing them, note down your intuitive judgement of the
validity of the argument. Then, compare your estimation with the result you get by truth
tables (or MAV). Is there ever a conflict between your intuitive judgement and the result of
truth tables? In these cases, can you explain the difference?

1 therefore q

2 p, q therefore p≡q

3 p&q therefore p≡q

4 therefore q

5 p, q therefore p&q

6 p therefore

7 p≡q, p≡~q therefore ~p

8 therefore

9 therefore ~p

10 ~~p therefore p

11 therefore

Logic 36

12 therefore

13 p therefore

14 therefore

15 p therefore

16 therefore

17 therefore

18 therefore

19 therefore

20 therefore

{3.5} A radio commercial states: ‘If you’re thinking of orange juice but you’re not thinking of
Orange Blossom, then you’re just not thinking of orange juice.’ The advertisers seem to
think that it follows that if you’re thinking of orange juice, then you’re thinking of Orange
Blossom. Does this follow? (Hint: Let j stand for ‘You’re thinking of orange juice’ and let b
stand for ‘You’re thinking of Orange Blossom’. Test the resulting argument for validity.)

{3.6} ‘We can’t make life better for the starving without spending money on the problem.
Therefore, if we spend money on the

 problem, we can make life better for the starving.’ Is this argument valid? Symbolise it and
check its form.

{3.7} Immanuel Kant wrote: ‘If a moral theory is studied empirically then examples of conduct
will be considered. And if examples of conduct are considered, principles for selecting
examples will be used. But if principles for selecting examples are used, then moral theory
is not being studied empirically. Therefore, moral theory is not studied empirically.’ Is this
argument valid? Symbolise it and check its form.

{3.8} ‘I will get a pet or buy a cuckoo clock. If I get a pet, I will get a monkey. I will buy a
cuckoo clock only if I meet a persuasive clock salesman. Therefore, I won’t both not get a
monkey and not meet a persuasive clock salesman.’ Is this argument valid? Symbolise it
and check its form.

{3.9} ‘If it rains this afternoon only if I don’t need to water my plants then it rains this afternoon.
Therefore, it rains this afternoon.’ Is this argument valid? Symbolise it and check its form.

{3.10} If Josh works hard, he’ll be able to buy a car, and if Emily studies hard, she’ll be able to
get a degree. Therefore, if Josh works hard, Emily will be able to get a degree, or if Emily
studies hard, Josh will be able to buy a car.’ Is this argument valid? Symbolise it and check
its form.

{3.11} When we introduced disjunction, we noticed that sometimes it is used inclusively and
sometimes it is used exclusively. We have seen the truth table for inclusive disjunction.
Does exclusive disjunction have a truth table? If so, what is it?

Truth tables 37

�

Advanced
{3.12} Look back at your answers to Exercises 3.5–3.10. In any case, did you think that the

translation into logical form made the argument valid when it was really invalid, or invalid
when it was really valid? Can you think of any reasons that might explain this?

{3.13} A connective (write it as ‘•’ for the moment) is definable in terms of other connectives if
and only if there is some expression involving those other connectives that is equivalent to
p•q.

 1 Show that inclusive disjunction is definable in terms of conjunction and negation, by
showing that is equivalent to ~(~p&~q).

 2 Define exclusive disjunction in terms of &, and ~.

 3 Define exclusive disjunction in terms of & and ~.

 4 Show that all of our connectives are definable in terms of & and ~.

 5 Show that all of our connectives are definable in terms of and ~.

 6 Show that not every connective is definable in terms of &, and

 7 The ‘Sheffer stroke’ is defined with the table

p q p|q

0 0 1

0 1 1

1 0 1

1 1 0

 (You can read p|q as ‘not both p and q’.) Show that every connective we have seen in this
chapter is definable in terms of the Sheffer stroke.

 8 List all possible truth tables of two-place connectives. There should be 24=16, as there
are two choices in each of the four slots of the table. Give names for each that somehow
reflect their operations on truth values. Show that each connective in this list is definable

by the Sheffer stroke, and by any of the sets {&, ~}, and

 9 Show that not every connective is definable in terms of ≡ and ~.

{3.14} Work out truth tables for

Substitute arbitrary propositions

 for p, q and r (e.g. I’ll become a world-famous logician, Queensland has won the Sheffield
Shield…). What does this tell you about as a translation of conditionals? Which of
these formulas should come out as tautologies for the English conditional?

{3.15} Which of the following statements are correct? Explain and justify your answers in each
case. In each statement, X and Y are sets of formulas, and A, B and C are each single
formulas. So, you should read X╞ A as ‘any evaluation satisfying everything in X also
satisfies A’ and Y, A╞ B as ‘any evaluation satisfying everything in Y as well as A also
satisfies B’.

Logic 38

1 If X╞A and Y, A╞B then X, Y╞B.

2
If X╞A then

3 If X, A╞B and X, ~A╞B then X╞B.

4 If X, A╞B then

5 If then X, A╞B.

6
If then X╞~A.

7 If X, A╞C and X, B╞C then

8 If X, A&B╞C then X, A╞C or X, B╞C.

9 If X, A╞C or X, B╞C then X, A&B╞C.

10 If X, A╞B and X, A╞B then X╞A≡B.

True and False are attributes of speech, not of things.
And where speech is not,

there is neither Truth nor Falsehood.
—Thomas Hobbes

Truth tables 39

�

Chapter 4
Trees

Although the method of assigning values is a great improvement on truth tables, it too
can get out of control. It often is difficult to keep track of what is going on, and you don’t
get too much of an idea of why the argument is valid or invalid—all you get is one
counterexample, if there is one. We will introduce another method for evaluating
arguments that is as quick and efficient as the method of assigning values, but is much
easier to handle, and that gives you more information about the argument form you are
considering. The structures we will use are called analytic tableaux, or, more simply,
trees.

To introduce trees, it is helpful to get a good grip on the way validity of arguments
works. The notation ‘╞’ for validity is important, and there is a little more that we can do
with this idea of the consequence relation between premises and conclusions. Let’s first
summarise the definition:

X╞A if and only if any evaluation satisfying everything in X also satisfies A.

Or equivalently, if you prefer a negative statement, we have

X╞A if and only if there is no evaluation satisfying everything in X that doesn’t satisfy A.

Now, this works for any collection X of formulas. In particular, it works when X is empty.
We write this as ‘╞A’. What does this mean? Well, it means that any evaluation
satisfying everything in the empty set also satisfies A. Well, satisfying everything in the
empty set is really easy. (After all, there is nothing in the empty set for an evaluation to
make false!) So ‘╞A’ has this definition:

╞A if and only if any evaluation satisfies A.

So, ╞A if and only if A is a tautology. That is one use of ‘╞’. Another use is when we
leave out the formula A. Here, X╞ holds if and only if there’s no evaluation satisfying
everything in X that doesn’t satisfy…what? There’s nothing to satisfy in the conclusion.
So we have this definition:

X╞ if and only if there is no evaluation satisfying everything in X.

So, X╞ if and only if the set X is unsatisfiable. The guiding idea of trees is this result:

X╞A if and only if X, ~A╞

If the argument from X to A is valid then there is no evaluation making the premises X
true and the conclusion A false. Therefore, there is no evaluation satisfying all of X and
also ~A, so X, ~A╞. Conversely, if X, ~A╞ then there is no evaluation making the
premises X true and the conclusion A false, and so the argument is valid. We have X╞A.

The idea behind trees

The method for trees goes like this: to test an argument, put the premises of the argument
and the negation of the conclusion in a list. We want to see if this list can be satisfied—if
the propositions cannot be true together, the argument is valid; if they can be true
together, the argument is not valid. So, trees test for satisfaction. To illustrate the

technique of trees, we will test the argument from and to
We do this by writing down in a list the formulas we wish to be satisfied in order to show
that the argument is invalid:

Now we examine what must be done to make all these formulas true. The simplest
consequence is this: to make true, must be true, and r must be
false. In general, a conditional is false when A is true and B is false, so

is true, just when A and ~B are true. So, in our case, we can add and
~r to our list of things to satisfy. We do this by extending the list with a vertical line,
adding the new propositions:

We also tick to indicate that it has been processed, and that we have
done everything required to ensure that it is true. Now, look at the disjunction
To make this true, we must make either r true or ~q true. This gives us two possibilities,
and to indicate this, we branch the tree like this:

Trees 41

�

We have ticked as we have processed this formula and there is nothing else we
can do with it. The tree now has two branches. The left branch goes from the top down to
r, and the right branch goes from the top down to ~q. If we can satisfy either of these lists
of formulas, the argument is invalid. Now, one of the branches is unsatisfiable, since it
contains a contradiction. The left branch contains both r and ~r, and there is no way we
will be able to satisfy both of these formulas. As a result, we say that this branch is
closed, and we indicate that with a cross at the bottom.

Now we can continue the tree. We must deal with and To make
true, we must make either p false (which means making ~p true) or q true. The

tree branches again. We split the tree under every open branch. Here the only open
branch is the left one:

Again, the right branch closes, this time because we have the contradictory pair q and ~q.
The left branch remains open. To complete the tree, we must process the disjunction

This is simple. The tree splits again, with p in one branch and q in the other:

Logic 42

Both of the new branches close, as both p and ~p feature in the left branch, and q and ~q
feature in the right branch.

As a result, there is no way to satisfy each of the formulas and

So, the argument from and to is valid.
The completed tree for an argument gives you a picture of the reasoning used to show

that the argument is valid (or to show that it is invalid). Trees are more ‘clever’ than truth
tables, as they do not use the ‘brute force’ technique of listing all the different
possibilities and checking the premises and conclusion in each possibility. Trees are more
informative than MAV, because a completed tree gives you a record of the reasoning
used. A completed tree is a proof.

Let’s look at another example, before going on to define the tree rules precisely. To
test to see whether a formula is a tautology, you check to see whether its negation is
satisfiable. We want to show that this negated formula cannot be true. Here is an
example, testing the formula

Trees 43

�

We start this tree with the negated formula, at the top. To
make this true, we make the antecedent true and the consequent p false. So

we added and ~p. Then, we process the conjunction:
Conjunctions are straightforward: you ensure that both conjuncts are true. So, we add

and q to our tree. Finally, we process the conditional and for this we
ensure either that ~p is true (the left branch) or that q is true (the right branch). Both
branches of the tree stay open, and we indicate this with the vertical arrow at the bottom
of the branches.

Both branches are said to be completed, and both are open. Therefore, both represent

ways to satisfy the formula Select a branch (I have chosen the
left one), and read up that branch to find each atomic formula occurring by itself in the
branch. These atomic formulas have to be true in the possibility in question. In the left
branch, we have q. We do not have p occurring by itself. (If we did, it would close the
branch with the ~p.) So, in our evaluation, we make q true. Since ~p occurs in the branch,
we make p false. These are the only atomic formulas in the branch, so the open branch on
the left gives us the evaluation

p=0 q=1

And indeed, this evaluation does not satisfy the formula
Therefore, it is not a tautology.

Tree rules

The tree rules consist in the rules for resolving each kind of formula, and the rules for
developing branches and closing them. First, we examine the resolving rules.

Double negation

To resolve a formula of the form ~~A, extend any open branch in which the formula
occurs with the formula A. We write this in shorthand as

Conjunction

To resolve a formula of the form A&B, extend any open branch in which the formula
occurs with the formulas A and B. We write this as

Logic 44

Negated conjunction

To resolve a formula of the form ~(A&B), extend any open branch in which the formula
occurs with two new branches, one containing ~A and the other ~B. We write this as

Disjunction

To resolve a formula of the form extend any open branch in which the formula
occurs with two new branches, one containing A and the other, B. We write this as

Negated disjunction

To resolve a formula of the form extend any open branch in which the
formula occurs with the formulas ~A and ~B. We write this as

Conditional

To resolve a formula of the form extend any open branch in which it occurs
with two new branches, one containing ~A and the other containing B. We write this as

Trees 45

�

Negated conditional

To resolve a formula of the form extend any open branch in which the
formula occurs with the formulas A and ~B. We write this as

Biconditional

To resolve a formula of the form A≡B, extend any open branch in which the formula
occurs with two new branches, one containing A and B and the other ~A and ~B. We
write this as

Negated biconditional

To resolve a formula of the form ~(A≡B), extend any open branch in which the formula
occurs with two new branches, one containing A and ~B and the other ~A and B. We
write this as

Each of these rules makes sense, given the truth table definitions of the connectives. If
the formula to be resolved is true then one of the possibilities below it has to be true also.
This will help you remember the rules.

Closure

A branch is closed when it contains a formula and its negation (the formula need not be
atomic). A branch that is not closed is said to be open.

Partially developed trees

A partially developed tree for a set X of formulas is a tree starting with those formulas X
(at the top), and in which some of the formulas have been resolved, in accordance with

Logic 46

the resolving rules. Therefore, each formula in the tree is either in the set X or follows
from formulas higher up in the tree by way of the resolving rules.

Completed trees

A completed tree for a set X of formulas is a partially developed tree in which, in every
open branch, every formula has been resolved. (Note that we do not require that formulas
in closed branches be resolved. If the branch is closed, we need not worry about resolving
formulas that occur only in that branch, as that branch cannot be satisfied.)

New notation

We write ‘X├’ to indicate that a completed tree for X closes. We write to indicate
that a completed tree for X remains open. We can write ‘X├A’ as shorthand for ‘X, ~A├’
to indicate that a tree for the argument from X to A closes. (You might have noticed a
problem with this definition: X├ means ‘a completed tree for X closes’, means ‘a
completed tree for X doesn’t close’. What happens if some completed trees close, and
others remain open? The rules give you flexibility in the order of applying the rules.
Maybe some orders will give you a closed tree, and with others the tree remains open!
Fortunately for us, and fortunately for the definition, this never happens. The order in
which rules are applied makes no difference to whether the tree closes or not. In fact, in
the section after next, we will show that if one completed tree for X closes, all do. And
conversely, if one completed tree for X stays open, all do. So, our definition makes
sense.)

Trees are a good technique for propositional logic if and only if ╞ and ├ coincide. We
will check that this is the case soon—but before

Box 4.1

Trees 47

�

that, let’s look at some more trees, to understand how to develop them efficiently and
quickly.

Our first example is a pair of trees. Both show that
The trees are presented in Box 4.1. In the tree on the left

(branching early), we resolve the formulas in the order in which they appear. In the tree
on the right (branching late), we apply the linear rules before the branching ones. You
will see that both trees have the same depth. However, the tree with deferred branching
has fewer formulas in total (17, compared with 13).

The moral of this example is clear: if you want your tree to close without growing too
much, defer your branching as much as possible. Call rules that split the tree branching
rules, and call the remaining rules linear rules. We then have the following moral:

Use the linear rules before the branching rules.

This moral is merely a word of advice. It is not a hard-and-fast rule, for only time and
space is to be gained by keeping it. Using branching rules before linear rules will not
result in a different answer—it will usually only lead to a more roundabout way of
getting to that answer.

There is another lesson to learn from this pair of trees. If a branch closes, there is no
need to resolve all of the formulas in that branch. In the leftmost branch of both trees, we

Logic 48

did not resolve ~~p. Instead of resolving it, we used it to close with ~p. This closed the
branch earlier than it would have otherwise.

If you think the tree will close, apply rules that lead to closures.

This word of advice may sometimes conflict with the advice to use linear rules before
branching rules. You may find yourself in a situation where applying a branching rule
will result in a closure (perhaps of both branches), and this might well close the whole
tree. In that case, it is clearly in your interest to apply this branching rule before any
linear rules.

To illustrate these lessons further, we will test the argument from

and to The tree is shown in Box
4.2. This tree develops linearly until we process Then the left
branch contains and r&s. The first piece of advice would have us then process
r&s, but instead we follow the second piece of advice, to branch as both of these
result in an immediate closure. The rest of the tree is processed in the same way. The
rightmost branch remains open, and, as a result, we have an evaluation in which the
premises are true and the conclusion false. Reading the values off the open branch
indicated, we have

Evaluation: p=0 q=0 r=1 s=0

You can check for yourself that this evaluation indeed makes the premises true and the
conclusion false. (It is a very good idea to do this whenever you complete a tree. If you
made a mistake in the

Box 4.2

Trees 49

�

tree rules, you are likely to find it if the evaluation is wrong and you checked it.)
Our final example is shown in Box 4.3. This tree shows how much branching must

sometimes be done, even when we follow our own two words of advice. Here, the only

linear rule to apply is the negated conditional Every other rule must
branch, and to close the tree, every other rule must be applied. The resulting tree is rather
large. It has nine different branches, while a truth table for this argument would only have
eight rows! However, this tree is not really more complex than the corresponding truth
table. A truth table for this argument would have eight rows, and 8×15= 120 entries, and
we must also calculate values for 8×6=48 entries

Box 4.3

Logic 50

for the six connectives that appear. In contrast, this tree contains only 29 formulas, and
we only performed only 8 resolving rules and 9 closures to complete the tree. The tree
takes up more space on the page, but you are less likely to make a mistake in creating the
tree than in the truth table. There are only 8 rules applied, as opposed to the 120 zeros and
ones to be written in the truth table.

These examples should be enough to show you how to apply the tree rules correctly
and to give you some idea of how to apply them efficiently. There are plenty of exercises
at the end of this chapter for you to apply these skills. Before we get to the exercises,
however, we must verify that the tree method gives the same results as truth tables.

Why the tree method works

We want to show that ╞ and ├ come to the same thing. That is, we want to show first that
if X├A (i.e. if the tree for X, ~A closes) then X╞ A (i.e., any evaluation satisfying
everything in X also satisfies A), and second that this goes in reverse: if X╞A then X├A.
Since X├A comes to the same thing as X, ~A├, and since X╞A comes to the same thing
as X, ~A╞, we can restrict ourselves to the case of satisfiability on the one hand and open
trees on the other. That is, we will convince ourselves of two important facts:

Fact 1

If X is satisfiable then, in any totally developed tree for X, some branch remains open.

That is, if then

Trees 51

�

Fact 2

If in some totally developed tree for X, some branch remains open then X is satisfiable.

That is, if then
These two facts together have the nice consequence of proving that the order in which

you apply the tree rules is irrelevant when it comes to closure of trees. By Fact 2, if some
tree for X stays open then X is satisfiable. Then, by Fact 1, it follows that every tree for X
remains open. Now we will prove both facts.

Proof of fact 1

If X is satisfiable, there is some evaluation that makes true every formula in X. We will
call the evaluation I, and for any formula A made up of the atomic formulas that appear in
X, we will write ‘I(A)’ for the truth value that I assigns to A. Since X is satisfiable, if A is
a sentence in X then I(A)=1. If A is the negation of a sentence in X then I(A)=0. Other
sentences might be assigned 1 and others might be assigned 0. The important fact about
evaluations is that for no sentence A at all do we have I(A)=1 and I(~A)=1. If I(A)=1 then
I interprets ~A as false: I(~A)=0. Conversely, if I interprets ~A as true (so I(~A)=1) then
we must have I(A)=0.

We will show that in a completed tree for X, there is some branch in which every
formula is satisfied by the evaluation I. It follows that this branch is open, since it can
contain no contradictory pair of formulas A and ~A, as these have to be satisfied by I. So,
if we find such a branch, we are done: our tree contains an open branch.

Finding such a branch is quite simple. You start at the top of the tree, with the
formulas in X. These are each satisfied by I, since that is what we assumed. Now, for
each rule that is applied to extend the tree, at least one of the branches generated will give
us formulas that are satisfied by I, provided that the formula resolved is also satisfied by
I. We take the rules one at a time.

If we resolve a double negation ~~A then we know that I(~~A)= 1. The rule adds A to
the branch, but we can see that I(A)=1 too.

If we resolve a conjunction A&B then we know that I(A&B)= 1. We add A and B to
the branch, but clearly I(A)=1 and I(B)=1, so these formulas are satisfied too. If we
resolve a negated conjunction ~(A&B) then we have I(~(A&B))=1, and so I(A&B)=0. We
have two branches, one containing ~A and the other ~B. Now, since I(A&B)=0, we must
have either I(A)=0 or I(B)=0 (to make a conjunction false, you must make one of the
conjuncts false). Therefore, we must have either I(~A)=1 or I(~B)=1. So, at least one of
~A and ~B is satisfied by I. Pick the branch that is satisfied by I and continue from there.

The other connective rules work in the same way. If we resolve a disjunction
then we have We have two branches, one containing A and the other B.

Now, since we must have either I(A)=1 or I(B)=1, so at least one of A
and B is satisfied by I. Pick the branch that is satisfied by I and continue from there. If we

resolve a negated disjunction then we know that We add
~A and ~B to the branch, but since we must have I(A)=0 and I(B)=0, we have I(~A)=1
and I(~B)=1, so these formulas are satisfied too.

Logic 52

If we resolve a conditional then we have We have two

branches, one containing ~A and the other B. Now, since we must have
either I(A)=0 or I(B)=1, so at least one of ~A and B is satisfied by I. Pick the branch
satisfied by I and continue from there. If we resolve a negated conditional
then we know that We add A and ~B to the branch, but since we must
have I(A)=1 and I(~B)=1, these formulas are satisfied too.

Finally, for a biconditional A≡B, we have I(A≡B)=1. We have two branches, one
containing A and B and the other containing ~A and ~B. Now, since I(A≡B)=1, I must
assign A and B the same truth value. If the value is 1, pick the left branch; if the value is
0, pick the right one. For a negated biconditional ~(A≡B), we have I(A≡B)=0, and I
assigns A and B different values. The tree has two branches, one containing A and ~B,
and the other ~A and B. One of these is satisfiable.

This completes the demonstration that, however the tree develops, we can always
choose a branch satisfied by the evaluation I. Therefore, this branch will not close, and
the tree remains open. We have established Fact 1.

We have actually established a little more than Fact 1. We have shown that any
evaluation satisfying X will be found by any tree for X, in the sense that each evaluation
satisfying X will have at least one branch such that each formula in that branch is satisfied
by that evaluation. It follows that, in some sense, trees contain all the information
contained in truth tables. They will find all the evaluations satisfying a formula—not just
some of them. (However, some branches might be satisfied by more than one evaluation.
Take the case of a tree for It has one branch including p, and another with q.
There are three different evaluations of the atoms p and q that satisfy the disjunction, but
only two open branches! This is because the p branch is satisfied by the evaluation (p= 1
and q=0) and the evaluation (p=1 and q=1). This second evaluation satisfies the right
branch too, along with (p=0 and q=1). The three evaluations are represented by two open
branches.)

Now we must turn to Fact 2. If a tree for X remains open then we can construct an
evaluation satisfying all of the formulas in X.

Proof of fact 2

It turns out that it is quite a bit easier to prove something slightly stronger than this fact.
We will show that if you have an open branch in a totally developed tree for X then there
is an evaluation satisfying every formula in that branch. This proves the result, since the
formulas in X are sitting at the top of the tree, and they appear in every branch.

So, take your open branch. Call it O for the moment. Make an evaluation of
propositions by assigning the following truth values to atomic formulas: I(p)=1 if p is in
the branch O, and I(p)=0 if ~p is in the branch O. I(p) can be whatever you like if neither
p nor its negation appears in the branch O. (This definition does give us an evaluation,
since the branch is not closed: we don’t have p and ~p in the one branch. Therefore, we
can assign our truth values consistently.)

We will show that this definition works, by showing for every formula A, if A is in O
then I(A)=1 and if ~A is in O then I(A)=0.

Trees 53

�

The style of reasoning we will use is often called a proof by induction. This technique
exploits the fact that every formula is built (by the connectives) out of atomic formulas.
Given this fact, if you want to show that something holds of every formula, it is enough
to show two things. First, that it holds of atomic formulas, and second, that if it holds of
some formulas, it holds of the formulas you can make out of them too. If you can prove
these two things, your property holds of every formula whatsoever. Let me illustrate with
a simple example. We can conclusively prove that every formula has the same number of
left parentheses as right parentheses. (This is obvious by glancing at the rules, but
spelling out the proof is a good example of induction.) The item we want to prove is
called the hypothesis. The hypothesis holds for atomic formulas, because each atomic
formula has no left parentheses and no right parentheses. So, we have proved the first
part, or what we might call the base case of the induction. For the second part, we show
that if the hypothesis holds for a collection of formulas, it holds for each of the formulas
we can make out of them, too. We can make formulas either by using negation or by
using a two-place connective: &, or ≡. In the case of negation, whatever the
formula A is like, its negation ~A has the same number of left parentheses as A, and the
same number of right parentheses as A too. So, if A has the same number of left and right
parentheses, so does ~A. In the case of combining two formulas together, such as (A&B),
if A has n left and n right parentheses, and B has m left and m right parentheses, then the
conjunction (A&B) has 1+ n+m left parentheses and n+m+1 right parentheses. So the
conjunction (or disjunction, conditional or biconditional) also has the same number of left
and right parentheses. The result is proved. (It holds for the atoms. It holds for the
formulas you can make up out of atoms using any one connective. It holds for the
formulas you can make using these too. It holds for ones you can make out of this new
bunch. And so on…)

Now let us continue with our proof: The hypothesis for this proof is this fact about the
formula A in the open branch O: if A is in O then I(A)=1, and if ~A is in O then I(A)=0.
We show that it holds for all formulas by first showing that it holds for atomic formulas.
Then, to show that it holds in general, we suppose that it holds for some formulas, and we
show that it holds for formulas you can make out of them. Then the hypothesis holds for
any formula whatsoever. The hypothesis holds for the atomic formulas, since that is the
way we defined I. If p is in O then I(p)=1. If ~p is in O then I(p)=0.

If the formula is a conjunction then if A&B is in O then, since we applied the
conjunction rule to A&B, A and B are in O. So I(A) =1 and I(B)=1, and as a result,
I(A&B)=1 too. If ~(A&B) is in O then either ~A is in O or ~B is in O. As a result, either
I(A)=0, or I(B)=0, and in either case I(A&B)=0, as desired.

If the formula is a disjunction then if is in O then, since we applied the
disjunction rule to either A or B is in O. So I(A) =1 or I(B)=1, and in either case,

too. If is in O then both ~A and ~B are in O, and as a result,
both I(A)=0, and I(B)=0, giving as desired.

If the formula is a conditional then if is in O then, since we applied the
implication rule to either ~A or B is in O. So I(A)=0 or I(B)=1, and in either
case, too. If is in O then both A and ~B are in O, and as a
result, both I(A)=1, and I(B)=0, giving as desired.

Logic 54

For the biconditional, if A≡B is in O then either A and B are in O or ~A and ~B are in
O, and as a result, both I(A)=I(B), giving I(A≡B)=1, as desired. If ~(A≡B) is in O then
either A and ~B are in O or ~A and B are in O, and as a result, I(A) differs from I(B),
giving I(A≡B)=0, as desired.

The only other formula left to consider is a double negation. If ~~A is in O then so is
A. So, I(A)=1, which gives I(~A)=0, and I(~~A)=1, which is what we want.

This deals with every kind of formula to be seen in our branch. Every formula in the
branch is satisfied by I. As a result, the set X sitting atop the branch is satisfiable. This
completes the proof of Fact 2.

These two facts jointly constitute what is often called a soundness and completeness
proof for trees. Trees are a sound account for logic, as you cannot prove anything using
trees which is not valid according to truth tables. Trees never go wrong (if X├ then X╞).
Trees are a complete account of logic, as you can prove anything using trees that is valid
according to truth tables. Trees are always right.

Summary

• X╞A if and only if X, ~A╞. An argument from X to A is valid if and only if X together
with ~A is unsatisfiable.

• Trees test for satisfiability. A tree for a set of formulas explores whether the set of
formulas can be made true together.

• If a tree for X closes, we write ‘X├’. If a tree for X remains open, we write
• We write ‘X╞A’ as shorthand for ‘X, ~A╞’. A tree shows the argument from X to A to

be valid if and only if the tree for X, ~A closes.
• Tree rules can be applied in any order, and you will get the same result each time.

However, it is often good to delay the application of branching rules to get a smaller
tree as a result.

• The tree method is sound. If X├A then X╞A. That is, if an argument is valid according
to trees, it is valid according to truth tables too.

• The tree method is complete. If X╞A then X├A. That is, if an argument is valid
according to truth tables, it is also valid according to trees.

Colin Howson’s Logic with Trees [12] is an excellent introductory text featuring trees as
its central motif. Another useful text is Bostock’s Intermediate Logic [2]. Use Howson’s
book if you want more help getting used to trees, and use Bostock’s if you want to
explore trees more and to see how they compare with other techniques in formalising
logic.

Smullyan’s First-Order Logic [29] is a tour de force on the technique, and contains
many insights into the use of trees. This book rewards detailed study.

Exercises

Basic
{4.1} Test all of the arguments from the exercises in Chapter 3 using trees. What are the

Trees 55

�

advantages or disadvantages of using trees? In what cases do trees give you a quicker result?
In what cases do trees take longer than truth tables or MAV?

{4.2} Find two tree rules appropriate for exclusive disjunction. (What do you do with an exclusive
disjunction, and what do you do with a negated inclusive disjunction?)

{4.3} Find tree rules for the Sheffer stroke (see Exercise 3.13).

Advanced
{4.4} Prove soundness and completeness results for the tree rules for exclusive disjunction and the

Sheffer stroke.

{4.5} Construct a new system of trees that uses the Sheffer stroke as the only connective in the
language. This will require a radical reconstruction of the technique, as you no longer have
negated connectives to treat differently to connectives. Every formula is either atomic or of
the form A|B. What rules apply to formulas of the form A|B? How do branches close?

{4.6} Let’s say that the size of a tree is the number of formulas occurring in the tree. Let’s say that
the size of a truth table is the number of truth values that get written down. Show that there
is a formula such that any tree showing that it is a tautology has a greater size than that of a
truth table showing that it is a tautology.

{4.7} Write a computer program that generates a tree for an argument specified by the user. Try to
make it efficient, so that it produces a short tree when one is there to be found.

Indeed, history is nothing more than a
tableau of crimes and misfortunes.

—Voltaire

Logic 56

Chapter 5
Vagueness and bivalence

The theory of logical consequence constructed so far is powerful and useful. It is elegant
in its simplicity, but far-reaching in its power and its breadth. There are also some
important problems for interpreting and using this account. In this chapter, we will look
at one class of problems, which stem from the assumption that each proposition is
assigned either the value ‘true’ or the value ‘false’. This is the doctrine of bivalence
(‘bivalent’ means ‘has two values’). The first problem stems from the vagueness inherent
in our use of language.

The problem of vagueness

Consider a long strip, shading continuously from scarlet at the left end to lemon yellow at
the right end. It is divided into 10,000 regions—enough that any two adjacent regions
look identical to you. Let r1 be the proposition ‘region 1 looks red to you’, where region 1
is the leftmost patch, r2 is ‘region 2 looks red to you’, and so on, up to r10,000. Because any
two adjacent patches are indiscernibly different in colour, is true. So is

and and so on, up to Region 5,000 probably does
not look red to you. It will be some kind of orange if the strip shades evenly from red to
yellow. Nonetheless, region 5,000 and region 5,001 do not differ in appearance to your
eye, so you can agree that if region 5,000 is red, so is region 5,001. Therefore

is true. The other conditionals are just as true. Now, because
the leftmost edge is scarlet, r1 is true. Therefore each of the premises in the following
argument is true:

But this argument is valid, as you can check. It follows that the lemon-yellow end of the
strip also looks red to you.

Enough of strips of colour. Consider a heap of grains of sand. Take away one solitary
grain from the heap—you still have a heap, for one grain of sand is not enough to make
the transition from heap to non-heap. So, if a pile of 10,000 grains of sand makes a heap
(call this statement h10,000) then a pile of 9,999 grains also makes a heap. So,

is true. Similarly, is true, and so on. Given that 10,000
grains does make a heap, it follows via the argument

that one solitary grain of sand makes a heap.

�

Similar lines of reasoning can be given to prove that no matter how little hair one has,
one isn’t bald (after all, removing one hair doesn’t make you bald), that chickens have
always existed (whatever is the parent of a chicken must also be a chicken), and that you
are always a child (there is no day of transition between childhood and non-childhood).
These are all called sorites arguments.1 The problem they pose is called the sorites
paradox because we seem to have a valid argument from obviously true premises to an
obviously false conclusion.

How should we handle sorites arguments? They are genuine problems for the
following reasons:

• The premises seem true.
• The argument seems valid.
• The conclusion seems false.

At this point, you might smell a rat. After all, we are using logic on what are vague
notions. There seems to be no sharp borderline between red and yellow, heap and non-
heap, bald and hairy, chicken and non-chicken, and child and adult, yet the technique of
truth tables assumes that there is a sharp borderline. Any evaluation of propositions
assumes that each proposition is assigned the value true or the value false. This seems to
be in tension with the idea of applying logic to vague concepts.

Alternatives

What response are we to make of this? There seem to be a number of different responses
to make (I owe this typology to John Slaney [27]):

1 Deny that the problem is legitimately set up. That is, hold that logic does not apply to
vague expressions.

2 Accept that logic does legitimately apply here but hold that this particular argument is
invalid.

3 Accept both that logic applies in such cases and that the argument is valid, but deny one
of the premises.

4 Accept the argument and the premises, and hence embrace the conclusion also.

This seems to exhaust the options. Any response to the sorites paradoxes must respond
along one of these four general lines. Each of these responses has its own difficulties, and
this is why the sorites paradoxes are so difficult and yet so important to our
understanding of logic. In the rest of this section, we will examine each line of response.

Option 1 has a heritage in philosophical circles, at the turn of the twentieth century in
the work of philosophical logicians such as Frege and Russell. However, it is increasingly
difficult to maintain, for the number of non-vague expressions seems rather small, and is
perhaps limited to (parts of) mathematics. If Option 1 is to be taken, logic has an
exceedingly limited application.

It may be tempting to say that logic has only to do with the precise, but the
consequence seems to be that reasoning has no place in discourse about the vague. That is
an extremely radical position. If I cannot reason about colour, shapes and sizes, baldness
and heaps, species terms, and any other vague concept, I cannot do a lot of reasoning at

Logic 58

all. Surely there is some standard by which to measure our reasoning, even when it uses
vague concepts. Something must tell us that the sorites argument is unsound. If not, then
we must reject the use of vague terms altogether.

Option 4 seems similar in thrust. If I hold that what looks yellow also looks red, that
single grains of sand make heaps, that hirsute people are bald, then I am rejecting the
standard use of vague concepts. This position is clearly very hard to maintain. It would
seem to follow that nearly everything is true.

Options 2 and 3 are more mainstream, and seem to be the predominant views on
vagueness.

Option 2 is plausible. The sorites arguments do seem quite fishy, and it is tempting to
say that they are invalid. There are cases where the premises are true and the conclusion
false. To model this, you must reject the traditional two-valued truth-table definition of
logical consequence. Richer models must be used to give evaluations that make the
premises true and the conclusion false.

One approach that attempts to do this is commonly called fuzzy logic. According to
this account, truth values aren’t simply 0 or 1—they can be any number between 0 and 1.
Propositions can be more or less true. Truth values come in ‘shades of grey’, with
propositions being rather true (say, around 0.7), middling (around 0.5), not true at all
(around 0.2), as well as genuinely true (1) and genuinely false (0), and all shades in
between.

The logical connectives are still operations on truth values, but they are more complex
now that you have more values to use. A negation ~A has (on the standard view) a value
of 1 minus the value of A. A conjunction A&B has the smaller of the two values of A and
B. A standard account of implications is that is false only to the extent of how
much falser B is than A. So, if B is truer than A then has value 1. If A is 0.5 and
B is 0.3 then is 0.8=1−0.2, as you suffer a drop of 0.2 in going from the
antecedent to the consequent.

The argument forms involved in sorites paradoxes are simply extended versions of
modus ponens (from p, to derive q), and this argument form is about as well
attested as any argument form can get. To take this line, you must be very careful to
ensure that you do not throw out the logical baby with the sorites bathwater.

A fuzzy logic approach to the sorites argument can go like this. The proposition r1 is
just true (has value 1) and r10,000 is just false (has value 0). Each conditional
has a value that is very very close to 1, since the values of the proposition ri decrease as i
goes from 1 up to 10,000, and the value of a conditional is the drop in truth value from
the antecedent to the consequent. So the premises are all either completely true or very
close to it. The conclusion, on the other hand, is completely false. The argument is then
invalid, as the truth (near enough) of the premises does not make the conclusion
anywhere near true.

This view has its proponents. However, it also has its own difficulties. One is that
vague propositions, on this approach, don’t seem to be really vague. Take our series of
10,000 colour patches. It will still be true that there’s some patch i such that ri takes a
value of 1 (it’s really true) and ri+1 takes a value of slightly less than 1 (it’s just a tad less
than really true). So, there is a last really truly red patch. This is a strange conclusion to
have. We seem to reject first-order borderlines, only to reinstate them at the next level.

Vagueness and bivalence 59

�

There is no sharp borderline between red and non-red, but there is a sharp borderline
between really red and not really red.

Another odd consequence is the fact that since every sentence gets a value between 0
and 1, for every pair of vague propositions, one is truer than the other, or they have the
same degree of truth. That may be fine for the same property (any two things are either
exactly as red as each other or one is redder than the other), but for comparing different
properties, it sounds silly. What does it mean to say that I’m tall to exactly the same
degree as something is red? And while I am complaining, I may as well ask this: What
does it mean to say that I am tall to degree 0.234205466453…? What could numbers so
precise mean anyway?

There are other ways to develop Option 2, but that has been enough to give you a
flavour of the style of response that is possible. Let’s move on to the only remaining
response.

Option 3 is perhaps the orthodoxy in philosophical circles. It has all the advantages of
not having to modify your logical theories, but it has the disadvantage of requiring us to
pinpoint a false premise in an exceedingly plausible-looking bunch. In current research,
there seem to be two main ways to develop this option. One way to do this is called the
method of supervaluations (due originally to Bas van Fraassen [7]). According to this
account, our concept ‘red’ does not pin down the location of the borderline between red
and yellow. There is a range of acceptable borderlines, each as good as the other. We run
our argument through many times, at each time, sharpening the borderline at a different
place. If it is valid on all of these sharpenings, it works, and if it is invalid at some
sharpening, it fails. Furthermore, if a statement is true on all sharpenings, it is true; if it is
false on all sharpenings, it is false; and if it is true on some and false on some others, it
suffers from a ‘truth-value gap’. This is because our original concept ‘red’ is vague. It is
not able to decide on whether or not this statement was true.

Undoubtedly, this proposal has some ‘ring of truth’ about it. According to the
proposal, one of the premises are false (for, on every sharpening, one premise is false),
but which one is never determinate. If this satisfies you as a solution then you are in good
company. It might fail where it makes statements such as ‘there is a patch such that it is
red, and the next one is not’ or ‘there is a day such that on that day you are a child, but on
the next, you are not’ true. These statements seem to be false, and they also seem to be
against the spirit of the supervaluational account—after all, it is motivated by the idea
that more than one borderline is possible. So, it seems worthwhile to search for an
alternative scheme for analysing the problem of vagueness.

One such alternative is called epistemicism. It has been championed by Timothy
Williamson, in his excellent book, Vagueness [31]. Williamson bites the bullet, and holds
that there is a real borderline between red and non-red, there is a single last day on which
you are young, and a single first day on which you are old (these might not be the same
day, of course). So much is a logical consequence of the fact that you are young when
you are born, and you are not young when you are 80 years of age. Instead of attempting
to do away with the borderlines as given by supervaluations, epistemicism states that they
are there, but that the distinctive mark of vagueness is that these borderlines are
unknowable. Something is ‘epistemic’ if it has to do with knowledge; hence,
epistemicism is appropriately so-called, because, for epistemicism, borderline cases of
red are those that we cannot know to be red or know to be non-red.

Logic 60

How is this plausible? One can reason like this: nothing except for our own practices
in using the language is there to pin down the concepts ‘red’, ‘young’, ‘bald’ and others
like them. Our faculties for discrimination pick out these concepts. This means that
certain canonical cases are known to be red, and others are known to be not red. Our
practices of discrimination ensure that there is a borderline, but our own capacities do not
allow us to discern that borderline, because we are not able to determine such fine
distinctions. Furthermore, the kinds of practices involving discriminating colours ensure
that if we can tell that x is red, and if x is sufficiently similar in colour to y then y is red
too. It follows that we cannot know what all the red things are, for this has a borderline,
and we would not be able to discriminate between things close to the borderline.

What does the epistemicist say about the sorites argument? For the epistemicist, not all
premises of the sorites argument are true. There is a last red patch. There is a pile of
grains that makes a heap, but that is not a heap when one is removed. However, we have
no way (and perhaps can have no way) to determine which colour patch or which number
of grains is the borderline.

You may not agree with epistemicism (or with any of the other positions on the way to
treat vagueness), but when evaluating positions you must remember that for each of the
different accounts of how logic works, the values taken by propositions (such as 1 or 0, or
the more extensive range of values in fuzzy logic) represent truth and falsity (and perhaps
things in between), and not our own states of knowledge. We all agree that we are
ignorant of some truths, and this means that some things might be true even though we do
not know them to be true. If this is the case then, at least some times, propositions have a
value 1 without that value representing the fact that it is known. The standard two-valued
picture does not rule out ignorance or undecidability in analysing every proposition as
being true or false. Ignorance and undecidability can remain when we say that it could be
that something is true without our knowledge of that fact.

There is much more that can be said (and has been said) on this topic. The case is by
no means closed. Consult some of the texts mentioned at the end of this chapter to
explore the issues further.

Other problems with bivalence

Of course, vagueness is not the only problem to press against the doctrine of bivalence.
There are many more. Here are just a few:

Paradox

Propositions such as ‘this sentence is not true’ (this is the liar paradox) and ‘the set of
non-self-membered sets is self-membered’ (this is Russell’s paradox) raise problems for
the principle of bivalence. It seems impossible to consistently assign these propositions
truth values. If ‘this sentence is not true’ is true then what it says is wrong, so it is not
true. This is just what it says, so it is true. So, if it is true, it is not true; and if it is not true,
it is true. What are we to say about this? Is it a proposition? Is it true? Is it not true? There
is no simple answer to this.

Vagueness and bivalence 61

�

Non-denoting terms

What should we say about claims that purport to refer to objects when there really is no
object to which to refer. An example is ‘The present king of France is bald’. France has
no king at present, so the term ‘the present king of France’ does not denote. It is a non-
denoting term. Is the proposition including the term true? Surely not. There is no present
king of France to be bald, so it cannot be true. But is it false? If I say that the present king
of France is not bald then I am just as surely talking about the present king of France.
Neither response seems appropriate. (We will discuss this difficulty in Chapter 12, when
we get some more logical material under our belt to use to analyse what might be going
on.)

Presupposition failure

Non-denoting terms are an example of a more general problem of presupposition failure.
We seem to have a presupposition that our terms pick out objects. When that
presupposition fails, we have problems interpreting claims involving those terms. Other
sorts of presupposition failure also seem to generate tension with the principle of
bivalence. For example, if I presuppose that you have been involved in domestic
violence, and I ask you ‘have you stopped beating your spouse’, then no ‘yes/no’
response seems appropriate if you have never beaten your spouse. (Let alone if you do
not have a spouse.) In these cases, ‘I have stopped beating my spouse’ seems neither true
(as you have not even started) or false (for you are not continuing to beat him or her).

Future contingents

A final example dates back to Aristotle, who noted that we are loath to assign truth values
to what we might call future contingents [18]. These are statements about the future, such
as ‘There will be a sea battle tomorrow’, which may become true, and may become false.
There is a long-standing tradition to treat these as neither true nor false now but somehow
awaiting the assignment of their truth value.

Further reading

Chapter 7 in Read’s Thinking About Logic [21] is a helpful short survey of the issues
surrounding vagueness. Williamson’s book Vagueness [31] is not only a spirited defence
of epistemicism, but also a fair-minded generous overview of competing positions. Jan
Łukasiewicz (a Polish logician who worked in the first half of the twentieth century) is
responsible for what are probably the most popular truth tables involving more than two
values. His essay ‘On determinism’ [18] in his collected works is a readable account
motivating three-valued tables for future contingents. The tables for conjunction,
disjunction, implication and negation are as follows:
p q p&q ~p

0 0 0 0 1 1

Logic 62

0 1/2 0 1/2 1 1

0 1 0 1 1 1

1/2 0 0 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1 1/2

1/2 1 1/2 1 1 1/2

1 0 0 1 0 0

1 1/2 1/2 1 1/2 0

1 1 1 1 1 0

His infinitely valued logic has been popularised as fuzzy logic.
Slaney’s ‘Vagueness revisited’ [27] is hard to find, but is perhaps the most

sophisticated non-classical approach to vagueness. It attempts to circumvent the obvious
difficulties with fuzzy logic. (If you cannot get ‘Vagueness revisited’, a little of the
approach can be found in his ‘A general logic’ [28].)

For further criticism of fuzzy logic, consult Susan Haack’s Deviant Logic, Fuzzy Logic
[10].

Exercises

Basic
{5.1} A formula is said to be an Ł3 tautology if and only if it has a value 1 under every evaluation

in the three-valued truth tables given above. Each of the following formulas is a two-valued
tautology. Which are Ł3 tautologies?

Advanced
{5.2} Explain how you can use Lukasiewicz’s three-valued logic to model statements about the

future. What seems to ‘fit badly’ in such a modelling?

{5.3} Explain how you could use supervaluations to model statements about the future. What
seems to ‘fit badly’ in such a modelling?

Everything that can be thought at all
can be thought clearly.

—Ludwig Wittgenstein

Vagueness and bivalence 63

�

Note
1’Sorites’ comes from the Greek word soros, meaning ‘heap’. ‘Sorites’ is pronounced sor-eye-

tees.

Logic 64

Chapter 6
Conditionality

Whenever you first see truth tables, one connective is more troublesome than any of the
others: implication. The conditional is false only when p is true and q is false.
This does not seem to fit with the way that we use ‘if’. What can be said about this?

The paradoxes of material implication

The validity of argument forms like these

follows immediately from the truth table rules for The problem with these argument
forms is that they seem to have many invalid instances. Consider the argument from p to

One instance is the inference from I am alive to if I am dead, I am alive. The
premise is true, but the conclusion seems manifestly false. People are not alive when they
are dead. Other instances lead you from it’s Tuesday to if it’s Wednesday it’s Tuesday,
from John Howard is Prime Minister of Australia to if John Howard is loses the election,
John Howard is Prime Minister of Australia.

The second form, from p to fares no better. Instances lead you from I’m
alive to if I’m not alive, I’m famous, or to if I’m not alive, everyone is happy, and, equally
well, to if I’m not alive, everyone is sad. Each of these instances seems to lead one from
truth to falsehood.

These argument forms are so troubling that they have been given a name—the
paradoxes of material implication. There are more paradoxes than these two. The next
argument form is also valid:

However, this argument also seems to have many invalid instances. Consider a case in
which two switches must be thrown to turn on a light. The premise is

If switch 1 is on, and switch 2 is on, then the light is on.

The argument form indicates that we can infer

Either if switch 1 is on, the light is on, or if switch 2 is on, the light is on.

But this seems false. Both switches must be on for the light to be on—neither is sufficient
in itself.

�

Another bizarre example is the tautology

Pick three propositions at random. By this tautology, it follows that either if the first of
your propositions is true, so is the second, or if the second is true, so is your third—no
matter how unrelated these propositions might be. For example: Either, if the Pope is a
Catholic, Queensland wins the Sheffield Shield, or if Queensland wins the Sheffield
Shield, the moon is made of green cheese. Is that true?

Given the paradoxes of material implication, there are two broad responses that could
be made.

• The truth table for is a good model for the truth values of conditionals. We then
should attempt to explain why the paradoxes seem odd.

• The truth table for is not a good model for the truth values of conditionals. The gap
between and ‘if’ then explains why the paradoxes seem so odd.

This chapter will examine both kinds of response to the paradoxes of material
implication.

Truth and assertibilily

The most popular response that maintains that really does give us the truth table of
the conditional does this by exploiting the distinction between truth and assertibility. A
proposition is true if what it says is the way things are. A proposition is assertible if it is
appropriate or reasonable to assert. These two notions come apart drastically. H.P.Grice,
in his ‘Logic and conversation’ [9] gave an account of the rules governing assertibility in
conversation. Most of his rules are common sense. You ought to make assertions you
believe to be true, and not make assertions you believe to be untrue. Of course, what I
believe to be true might not in fact be true (I am not infallible). Therefore, some things
might be assertible but not true. Similarly, there are many things that are true but that I do
not believe (I do not have an opinion on everything). Therefore, some things are true that
are not assertible.

For our purposes, the difference between truth and assertibility is most important when
we consider Grice’s maxim of relevance. I ought not say more than is necessary, and I
ought not say less than is necessary. If someone asks me how far it is to Canberra, and the
context makes clear that they are planning to drive there, then if I quote the distance
down to the last millimetre, I am being needlessly overinformative. I am saying more
than is required. On the other hand, if I indicate that the distance is somewhere between
50 and 5,000 kilometres, when I know very well that it is around 300 kilometres, then I
am being much less informative than required. In neither case is what I am saying untrue.
However, in both cases what I say is not assertible.

Then, the response continues: The inference from p to seems odd because we
hardly ever assert on the grounds that p. If I am asked

Logic 66

Did Queensland win the Sheffield Shield?

and I respond

If I’m going out to dinner tonight they did.

purely on the grounds that they did win, the questioner will think I’m being stupid. I have
broken the maxim of relevance. Of course, if I knew that they did win, according to the
classical account of ‘if’, my statement is actually true. It is just not appropriate. The only
conditions in which it is appropriate to assert is when I am neither sure that p is
false nor sure that q is true. For, in these cases, I ought to assert ~p or I ought to assert q.
It is needlessly uninformative to merely assert

This account attempts to explain our hesitancy at the inference from p to and
that from p to (At least, it explains it in cases when we know or believe the
premise of the argument. It is less clear that it explains our hesitancy to infer in
cases where we merely suppose p to be true.) However, it seems clear that this argument
cannot stay as it is here. In the same conversational situation as in the previous example,
the questioner would think I was equally crazy to say

Either I’m going out to dinner tonight or they did.

but we have nothing like the same quarrel with the inference q therefore Our
hesitancy at inferring from q is much stronger than our hesitancy at inferring

from q (at least, once we make it clear that disjunction is read inclusively and not
exclusively).

One development of the Gricean response is given by Frank Jackson, who argues that
the assertibility of a conditional varies with the conditional probability Pr(q|p)
(this is the probability that q obtains, given that p obtains).1 Jackson argues that, given the
special role that conditionals play in our own reasoning (such as in dealing with
hypothetical situations, and their use in the context of limited information), conditionals
ought to be robust in the context of increasing information, and that this motivates the
definition of its assertibility in terms of conditional probability. The details of Jackson’s
argument do not concern us here.

This response tells us something significant about the difference between conditionals
and disjunction. As the probability of q goes up, so does that of However, as the
probability of q goes up, it does not always follow that the probability Pr(q|p) rises. (If it
is more likely that Queensland wins the Sheffield Shield, it does not follow that it is more
likely that they win the Sheffield Shield given that the team is stricken with influenza.)

However, even though Jackson’s account of assertibility of conditionals does clarify
things considerably, it does not at all deal with the assertibility of propositions in which

conditionals are embedded. The proposition is a tautology, and
hence has a probability 1. It does not seem assertible. Something must be said about the
assertibility of disjunctions of conditionals, and other embeddings of conditionals. This

Conditionality 67

�

theory does well for ‘bare’ conditionals, but this is only a very small part of the complex
way conditionals function in language.

Possibilities

In Section 3.1, we argued that the conditional ‘if p then q’ had the same truth table as the
negated conjunction ~(p&~q). Let me repeat the argument here, but I shall now write ‘if
p then q’ as ‘p→ q’, to make clear that we are not necessarily assuming the material
conditional, but arguing that the conditional we use is the material conditional. Here is
the argument:

• If p→q is true then if p is true, q must be true (that is what a conditional says, after all)
so you do not have p true and q false, so p&~q is not true, and consequently ~(p&~q)
is true.

• Conversely, if ~(p&~q) is true, consider what happens if p is true. In that case, you
don’t have q false, since p&~q is not true (that is what we have assumed: ~(p&~q) is
true.) So, if you don’t have q false, q must be true. So, if p is true, so is q. In other
words, p→q is true.

This is quite a powerful argument. If we wish to reject the identification of → with we
must block this argument somewhere. Most people agree with the first part of the
argument. If the antecedent of a conditional is true and the consequent is false then the
whole conditional is false. Conversely, if the conditional p→q is true then it is not the
case that p and ~q. So, we ought to have

p→q╞~(p&~q)

The problems arise with the second part of the argument, where we attempt to move from
~(p&~q) to p→q. Let’s run through that argument, with an example in mind. Let p be I’m
dead and let q be I’m alive. Then ~(p&~q) is certainly true (I’m not both dead and not
alive) but p→q seems false (it’s not true that if I’m dead, I’m alive). With this example in
mind, we will hopefully see where the argument breaks down.

The reasoning starts:

• If ~(p&~q) is true, consider what happens if p is true. Well, what happens when p is
true is that I’m dead. So, that is the case I must consider. The reasoning continues.

• In that case, you don’t have q false, since p&~q is not true (that is what we have
assumed…). This seems wrong. In the situations in which I am dead, we do have q
false. The reasoning presumes that we can still call on the truth of our original
assumption ~(p&~q) in a situation in which we have assumed that p is true. That is not
appropriate in the example we are considering. If I am dead, it is no longer true that
I’m not both dead and not alive.

So, to derive q in this case, we must have more than simply ~(p& ~q). For we wish to use
~(p&~q) not only in our original situation, but also in the alternative situation we have
hypothesised. The assumption we have made must be robust, in the sense that it survives
into the new context in the discourse. One analysis of the conditional that attempts to
make use of this observation says that the conditional p→q should be defined as

Logic 68

□~(p&~q)

where ‘□’ is a new one-place connective of necessity. □~(p&~q)□ says that it is not
merely an accident that ~(p&~q). We have ~(p&~q) not only in our situation, but in other
possible situations too.

The connective □ is not truth-functional. That is, the truth of □A does not depend
merely on the truth value of A. The connective is said to be a modal operator, as it gives
us a different mode for a proposition to be true, or asserted. Some propositions p might be
true, while □p is false (p might be true by accident). Other propositions p might be true
with □p true. The value of □p depends on more than just the value of p. If we want to use
a connective like □, we must expand the way formulas are interpreted.

One way to do this is to read □p as ‘no matter how things are, p is true’, and to take
the talk of ways things are rather literally. A modal evaluation is not just an assignment
of truth values to propositions. It is an assignment of truth values to propositions in
different states. We will follow the general convention and call these states worlds. Every
evaluation comes with a set W of worlds at which propositions are true or false. We write

to indicate that A is true in world w and that A is not true in world w respectively. Note
that we now have three similar symbols: ╞, ├ and now ╟. The first two relate sets of
formulas to formulas: ‘X╞A’ says that any evaluation satisfying X satisfies A too, and
‘X├ A’ says that the tree for X, ~A closes—that is, we have a proof that A follows from X.
This new symbol is read like this: ‘w╟A’ means that the formula A is true at the world w.

Given some collection W of worlds, we define our evaluation by first setting the truth
values of the atomic propositions in each world. This is done completely arbitrarily.
Then, we use the same rules as before for each connective. For conjunction, disjunction
and negation, we have the following evaluation conditions:

• w╟A&B if and only if w╟A and w╟B.
• if and only if w╟A or w╟B.
• w╟~A if and only if

This is just a fancy new way of rewriting what we have already seen in truth tables. A
conjunction is true (at world w) if and only if both conjuncts are true (at world w). A
disjunction is true (at world w) if and only if either disjunct is true (at world w). A
negation is true (at world w) if and only if the negand is not true (at world w). The only
innovation comes with our new connectives, □ and →:

• w╟□A if and only if for every υ in W, υ╟A.
• w╟A→B if and only if for every υ in W, either or υ╞B.

The connective □ models necessity. A formula □A is true if and only if A is true in every
world in the evaluation. This makes the conditional robust. A conditional A→B is true in
a world now when there is no world where A is true and B is false; or equivalently, if in
every world, if A is true, so is B.

Here is an example evaluation. Our set W has three worlds, w1, w2 and w3:

Conditionality 69

�

w1 w2 w3

p p ~p

q ~q ~q

The diagram indicates the atomic formulas true at each world. For example, q is true at
w1 but not at w2 or w3. Now, □p is false at w1 (and at every world) since p is not true at
every world (it fails at w3). Similarly, □q is false at every world, since q is false at w2. The
material conditional is true at w1, since p and q are both true there. However, it
fails at w2. It follows that p→q is false at w1 (and at every world). So, we have

We have a case (w1) where q is true, but it doesn’t follow that p→q is true. The fact that
there is another possibility (w2) in which p holds but q fails is enough to ensure that the
conditional p→q also fails. Similarly,

since we have w3╟~p and The other paradox of material implication also fails
when the material conditional is replaced by the arrow.

We have just constructed a simple modelling for the modal logic called S5 in the
literature. The conditional defined is often called the strict conditional, to differentiate it
from the weaker material conditional.

To be specific, we will call our modal evaluations S5 evaluations. Given S5
evaluations, we can define an expanded notion of consequence:

X╞A iff for every S5 evaluation, for every world, if every element of X is true at that
world, so is A.

For example, with this definition and the evaluation given above, we have shown that

We can also show that
□A, □B╞□(A&B)

by reasoning like the following. Take any S5 evaluation you like, and suppose that w is
some world in that evaluation, in which w╟ □A and w╟□B. We want to show that
w╟□(A&B). To do that, we must check that in every world υ in that evaluation, υ╟A&B.
Well, since w╟□A, we have u╟A, for any world u, and hence υ╟A. Similarly, since
w╟□B, we have u╟B, for any world u, and hence υ╟B. As a result, υ╟A&B, as we
wished to show. Therefore, we have □A, □B╞□(A&B) as desired.

Here is another example. We will show that

Logic 70

If it is necessary that either p or q, it does not follow that it is necessary that p or that it is
necessary that q. To do this, we try to construct a evaluation with a world w where

while For this, we need and

Therefore, there must be some world in which p fails, and some world in
which q fails. However, since in every world, we have either p or q.
But this is not hard to arrange. In world w, we have p but not q. In world υ, we have q but
not p. The evaluation looks like this.

w υ

p ~p

~q q

This is enough to show that
We have seen one example of relative evaluations, at which propositions are given

truth values relative to some context or other. Once we start down this road, a wide range
of possibilities open up. Temporal logics allow relativisation to times. Spatial logics
allow relativisation to locations. Logics of belief and knowledge allow relativisation to
different belief sets. The introduction of evaluations using worlds for modal logics has
resulted in an explosion of different formal logics for different purposes.

It seems clear that these evaluations do something right when it comes to modelling
conditionals. However, as they stand, they leave something to be desired. One problem
stems from the tight connection between necessity and the conditional. In our
evaluations, we have

p→q╞□(p→q) p→q╞(p&r)→q

If p implies q, it follows that p must imply q. This seems too strong. It is true that if I
work hard, I enjoy it. It does not follow that things must be like that. There are situations
in which I work hard and I don’t enjoy it, but these situations are reasonably out of the
ordinary.

Similarly, if p→q, it seems that it need not be the case that (p& r)→q. If I drink
coffee, I like the taste. It doesn’t follow that if I drink coffee and you put petrol in it, I
like the taste.

David Lewis in his Counterfactuals [16], gives an analysis of conditionals that
attempts to meet these kinds of objections. For Lewis, worlds come ordered by a relation
of similarity, and a conditional is true here if in similar worlds where the antecedent is
true, so is the consequent. So, on this account, you might have p→ q, without □(p→q). In
worlds close to here where p is true, q is also true. It does not follow that in worlds close
to anywhere else, if p is true, so is q. Similarly, we can have p→q (since the nearby p-
worlds are also q-worlds) but not (p&r)→q. The nearby p&r worlds are further away, and
hence not counted in the previous conditional. Therefore q might fail at these worlds.

Conditionality 71

�

Relevance

There are problems of relevance that beset even the most sophisticated modal accounts of
conditionals. On any account of consequence seen so far, we have

These are called the paradoxes of entailment. Some people consider these to be
paradoxical since, in both cases, the premise has nothing to do with the conclusion.

You must go right back to the definition of validity:

An argument is valid if and only if whenever the premises are true, so is the conclusion.
In other words, it is impossible for the premises to be true while at the same time the
conclusion is false.

Well, according to this definition, or at least according to the second part of it, the
argument from p&~p to q is valid: because it is impossible for p&~p to be true while q is
false—for p&~p can’t be true! It’s a contradiction. Similarly, the argument from p to

is ‘valid’ in this sense, because can’t be false.
You can see that this definition doesn’t give us any connection between the premises

of an argument and its conclusion. According to this definition, the premises alone can
ensure that an argument is valid! It’s no wonder that our techniques make these
paradoxes valid.

So, to reject the paradoxes of entailment, you have to use a different definition of
validity. You have to say something like this:

An argument is relevantly valid just in the case whenever the premises are true, then as a
result of that the conclusion is true.

Now this needs a lot of work. (What does ‘as a result of that’ mean?) But an account like
this, if it can be made to make sense, will reject the paradoxes. If p is true then it need not
follow as a result of the truth of p that is true. Similarly, it is hard to see that if
p&~p were true then, as a result of that, q turns out to be true too. (To be sure, if q were p
or ~p, the inference would work, but these are special cases.)

On the other hand, if p is true then, as a result of that, is certainly true.
Similarly, if p&q is true then, as a result of that, p must be true. The result looks a bit like
the logic we’ve already seen, but it’s a bit different.

This general area is called relevant logic, for, according to this analysis, the premises
of an argument must be relevant to its conclusion in order to be valid. A lot of work has
gone on in this area since the 1950s.

So, that’s one sort of difficulty people have had with the formalism we’ve been
studying. It doesn’t turn out to be a crucial objection to the formalism—it merely says
that there is another interesting sense of Valid’ that the classical story doesn’t capture. If
this is to be pursued, you must abandon (or at least modify) the equivalence between
X╞A and X, ~A╞.

Logic 72

Further reading

Grice’s pioneering ‘Logic and conversation’ [9] is widely available in Jackson’s edited
collection Conditionals [14]. This collection includes a range of papers that encompass
the debate over truth conditions and assertibility conditions for conditionals, as well as
modal accounts of the conditional.

Hughes’ and Cresswell’s A New Introduction to Modal Logic [13] and Chellas’ Modal
Logic [3] both provide sure footed introductions to modal logics. Lewis’ On the Plurality
of Worlds [17] is an in-depth analysis of the philosophical issues involved in talk of
modal logic. Chapters 3 and 4 of Read’s Thinking about Logic [21] and Restall’s
Introduction to Substructural Logics [22] give an introduction to the formal and
philosophical issues that arise in the study of relevant logics.

Exercises

Basic
{6.1} Verify each of the following:

{6.2} Let ◊ be possibility. ◊A is defined to be ~□~A, and so w╟ ◊A if and only if in some world υ,

υ╟A. Show that and that

{6.3} Construct an S5 evaluation in which the ‘lightbulb and switches’ paradox fails. Construct an

evaluation that verifies that

 Use this evaluation to explain what is going on in terms of possible states of the electrical
circuitry involved in the

 lighting. Hint: Think of the different worlds as different states of the electrical system.

Advanced
{6.4} A modality is a string of symbols constructed out of ~ and □, such as ~□ and □~□□. Two

modalities are equivalent if and only if the results of prefixing them to an atomic formula
are equivalent. (For example, □ and □□ are equivalent, because □p and □□p are equivalent.)
Show that there are exactly six non-equivalent modalities in S5.

{6.5} Write ◊p&◊~p as Cp. You could say that Cp means ‘p is contingent’; that is, p can be true,

Conditionality 73

�

and p can be false. Are there any interesting logical laws involving C? One example might
be ╞~CCp: it is not contingent that it is contingent that p.

Under the category of Relation
I place a single maxim, namely ‘Be relevant’.

—H.P.Grice

Note
1 For the mathematically minded, Pr(q|p) is the probability Pr(p& q) divided by the probability

Pr(p), at least in the case where Pr(p) is not equal to zero.

Logic 74

Chapter 7
Natural deduction

Before turning to Predicate Logic in the second part of the book, we will look at one
more way to present the logic of propositions. A system of natural deduction gives you a
way to develop proofs of formulas, from basic proofs that are known to be valid.

Conjunction, disjunction and negation

The rules tell us how to build up complex arguments from basic arguments. The basic
arguments are simple. They are of the form

X├A

whenever A is a member of the set X. We write sets of formulas by listing their members.
So A├A and A, B, C├B are two examples.

To build up complex arguments from simpler arguments, you use rules telling you
how each connective works. We have one kind of rule to show you how to introduce a
connective, and another kind of rule to show you how to eliminate a connective once you
have it. Here are the rules for conjunction:

The rules follow directly from the way we use conjunction. The introduction rule (&I)
says that if A follows from X, and if B follows from Y too, then the conjunction A&B
follows from X and Y together. The elimination rules (&E1,2) say that if something entails
a conjunction, then it also entails each conjunct.

For implication, we have two rules:

These rules are of fundamental importance for natural deduction systems, as they connect

the entailment relation (├) to implication. The implication introduction rule states
that if X together with A entails B, then X entails the conditional

�

So, one way to prove a conditional is to assume the antecedent, in order to prove the
consequent. This is enough to prove the conditional. Conversely, the implication
elimination rule states that if some set X entails and another set Y entails
A, then applying the information in X (which gives) to that in Y (which gives
A) gives us the consequent B. So, taking X and Y together gives us all we need for B.

Before going on to see how these rules are used in proofs, we will see the rules for
disjunction:

The introduction rules are straightforward enough. If A is entailed by X then so is
Similarly, if B is entailed by X then so is The elimination rule is more

interesting. If follows from Y, if A (with X) gives C, and if B (with X) also gives
C, then Y—which gives also gives C (provided you’ve got both X too). This is
a form of argument by cases. If you know that and if A gives you C and B gives
you C too, then you have C, either way.

Given the rules, we can construct proofs. A proof of X├A is a tree (this time in the
usual orientation, with the root at the bottom) with X├A as the root, in which the leaves
are axioms, and in which each step is an instance of a rule. Here is an example:

In this proof, each step is indicated with a horizontal line, labelled with the name of the
rule used. The leaves are all axioms, as you can see. The proof demonstrates that

Each step of the proof follows from the previous steps by way of the rules. However, I

constructed the proof in reverse. I know that I wanted to prove that

To do this, I knew that I had just to prove
(To prove assume A with X, and prove

B.) Then it is clear that we can prove A&C├B, since A&C├A, and we are
done.

Logic 76

We can also present proofs in list form, in which each line is either an axiom or
follows from earlier elements in the list by way of the rules:
1 Ax.

2

Ax.

3 A├A Ax.

4

5
6
7
8

In this proof, we have annotated each line with an indication of the lines to which it
appeals and the rules used in the derivation. This presentation encodes exactly the same
information as the tree. It is often easier to produce a proof in list form at first, as you can
go ‘down the page’ as opposed to horizontally across it as the proof gets more complex.
Also, in a list proof, you can make assumptions that are not used further in the proof,
which can be helpful in producing the proof. However, once the proof is produced,
representing it as a tree provides a more direct representation of the dependencies
between the steps.

Let’s see another example to give you some more ideas of how proofs are produced.
Let’s prove

To do this, we know that we will have to assume and also A&C
and B to deduce D. But these together will give us D rather simply. By A&C, we get A,

and this gives us A&C also gives us C and B, which then give B&C,
which then gives D. So, let’s wrap this reasoning up in a proof:

1

Ax.

2 A&C╞A&C Ax.

3 B├B Ax.

4 A&C├A 2(&E)

5

6 A&C├C 2(&E)

7 A&C, B├B&C 3, 6(&I)

8

Natural deduction 77

�

9
10

This proof explicitly represents the informal reasoning in the paragraph above.

Negation

The rules so far only give us a fragment of our language. We have conjunction,
implication and disjunction. To add the negation rules, it is helpful to first add a
proposition ┴ (called the falsum), which is always evaluated as false. This is governed by
the simple elimination rule

Since ┴ is always false, it does not have an introduction rule. Given ┴, we can define
negation rules simply:

If X together with A entails ┴ then we know that X and A can’t be true together, so if X is
true, A is false: that is, ~A is true. That is the introduction rule for negation. To exploit a
negation, if X entails ~A, and if Y entails A, then it follows that X and Y cannot be true
together. That is, they jointly entail ┴. These rules govern the behaviour of negation.
(You might have noticed that these rules just define ~A as equivalent to It is
instructive to check using truth tables that ~A and are equivalent.) These rules
allow us to prove a great many of the usual properties of negation. For example, it is
simple to prove that a double negation of a formula follows from that formula, A├~~A:
1 A├A Ax.

2 ~A├~A Ax.

3 A, ~A├┴ 1, 2(~E)

4 A├~~A 3(~I)

Similarly, the rule of contraposition, has a direct proof:
1 Ax.

2 A├A Ax.

3
4 ~B├~B Ax.

Logic 78

5 3, 4(~E)

6 5(~I)

7

However, the rules for negation cannot prove everything valid in truth tables. For
example, there is no way to prove a formula from its double negation. (It is instructive to
try to prove ~~A├A. Why is it impossible with these rules? Similarly, the converse of
contraposition, is valid in truth tables, but cannot be proved
using the natural deduction rules we have so far.) To give us the full power of truth
tables, we have an extra rule

This is called the double negation elimination rule (DNE). With the rule, we get ~~A├A
(apply the rule to the axiom ~~A├~~A and you have your result) and much more. The
full power of truth tables is modelled by these rules. As another example, here is a
tautology, the law of the excluded middle. It is straightforward to show that is
a tautology in truth tables. It is a great deal more difficult to prove it using our natural
deduction system.
1 A╞A Ax.

2
3

Ax.

4

2, 3(~E)

5

4(~I)

6

7

3, 6(~E)

8 7(~I)

9 8(DNE)

Typically, proofs that require (DNE) are more complex than proofs that do not require it.
In general, if you are attempting to prove something that requires the use of (DNE), you
should try to prove its double negation first, and then use (DNE) to get the formula
desired.

Natural deduction systems provide a different style of proof to that constructed using
trees. In a tree for X├A, we attempt to see how we could have X and ~A. If there is some
consistent way to do this, the argument is not valid. If there is none, the argument is

Natural deduction 79

�

valid. On the other hand, natural deduction systems construct a derivation of A on the
basis of X. The resulting derivation is very close to an explicit ‘proof such as you will see
in mathematical reasoning. But natural deduction systems have deficiencies. If something
is not provable, the natural deduction system does not give you any guidance as to how to
show that. Trees give you worthwhile information for both valid and invalid arguments.

We will not pursue these systems of proof theory any further. To find out more about
natural deduction, consult some of the readings mentioned below.

Further reading

Lemmon [15] is still the best basic introduction to this form of natural deduction.
Prawitz’s original account [20] is immensely readable, and goes into the formal
properties of normalisation. For a more up-to-date summary of work in natural deduction
and other forms of proof theory, consult Troelstra and Schwichtenberg’s Basic Proof
Theory [30].

The system of logic without (DNE) is called intuitionistic logic. The philosophical
underpinning of intuitionistic logic was developed by L.E.J.Brouwer in the first decades
of the twentieth century. For Brouwer, mathematical reasoning was founded in acts of
human construction (our intuition). Brouwer did not think that a formal system could
capture the notion of mathematical construction, but nevertheless a logic of intuitionism
was formalised by Heyting (see Intuitionism: An Introduction [11]). The rule (DNE) fails,
since ~A holds when you have a construction showing that A cannot be constructed or
proved. This is a refutation of A. Thus ~~A means that you have a demonstration that
there cannot be a refutation of A. This does not necessarily give you a positive
construction of A. Similarly, you may have neither a refutation of A nor a construction of
A, so fails as well. Intuitionistic logic is important not only in the philosophy
of mathematics and the philosophy of language (see the work of Michael Dummett [4],
who uses the notion of verification or construction in areas other than mathematics), but
also in the study of the computable and the feasible.

These natural deduction systems are easy to modify in order to model relevant logics.
We modify the rules to reject the axiom X £A, and accept only the instances A £A (the
other elements of X might be irrelevant to the deduction of A). Then, there is no way to
deduce A£B→A, since the B was not used in the deduction of A. It is also possible to
make the number or the order of the use of assumptions important. Slaney’s article ‘A
general logic’ [28] is a short essay on this approach to logic, and it is taken up and
explored in my Introduction to Substructural Logics [22].

Exercises

Basic
{7.1} Prove these, not using (DNE):

Logic 80

{7.2} Prove these, using (DNE):

Advanced
{7.3} Show that the natural deduction rules without (DNE) (that is, the rules for intuitionistic

logic) are sound for the following three-valued truth tables:

p q p&q ~p

0 0 0 0 1 1

0 n 0 n 1 1

0 1 0 1 1 1

n 0 0 n 0 0

n n n n 1 0

n 1 n 1 1 0

1 0 0 1 0 0

1 n n 1 n 0

1 1 1 1 1 0

 To do this, show that if X├A can be proved by the natural deduction system then X╞A holds
in the three-valued table. (For X╞A to hold, we require that in any evaluation in which the
premises are assigned 1, so is the conclusion.) Show, then, that none of the argument forms
in Exercise 7.2 are provable without (DNE), by showing that they do not hold in these three-
valued tables.

{7.4} Show that these three-valued tables are not complete for intuitionistic logic. Find an
argument that cannot be proved valid in the natural deduction system, but that is valid
according to the three-valued tables.

{7.5} Show that the three-valued Łukasiewicz tables are not sound for intuitionistic logic. Find
something provable in intuitionistic logic that is not provable in the three-valued
Łukasiewicz tables.

Nothing prevents us from being natural
so much as the desire

to appear so.
—Duc de la Rochefoucauld

Natural deduction 81

�

PART 2
Predicate logic

Chapter 8
Predicates, names and quantifiers

Prepositional logic, which you know well by now, can establish the validity of many
argument forms. As such, it is a very useful tool. However, some arguments are
obviously valid, and yet cannot be shown to be so by the methods we’ve used. For
example, the argument

All male philosophers have beards.
Socrates is a male philosopher.
Therefore, Socrates has a beard.

is valid. If all male philosophers have beards, and if Socrates is a male philosopher, then
it follows that he has a beard. If Socrates does not have a beard, then either he isn’t a
male philosopher or he is a counterexample to the claim that all male philosophers have
beards. So, if the conclusion is false, one of the premises is false.

However, the most descriptive prepositional form of this argument is just ‘p, q,
therefore r’, which is as invalid as any argument form can be. We require some new
methods to expose the structure of these sorts of arguments. We want a language that will
show that this argument has a form. The right kind of form might be something like this:

All Fs are Gs.
a is an F.
Therefore, a is a G.

This form is valid. We would like to extend our language in such a way as to make forms
like these available. There is a way of doing this, and the resulting language is called the
predicate calculus. The logic is called predicate logic, or sometimes first-order logic.
The rest of this chapter will involve putting together the language. Only after this will we
be able to use it to discover valid argument forms.

Names and predicates

If our language is going to uncover a form responsible for the validity of our argument
involving Socrates, it must do two things. It has to be able to name things (such as
Socrates) and it has to be able to describe them (such as saying that he has a beard). We
will take these one at a time. We start with names.

�

In a language such as English, a proper name is a simple expression that serves to pick
out an individual thing. For example ‘five’, ‘India’ and ‘Richard Nixon’ are all proper
names. They name a number, a country and a past president of the USA respectively.
(Note that I used quotation marks to help name the names. India is a country, but ‘India’
is not a country. It is a name for a country. Similarly, five is a number, but ‘five’ is a
name of a number.) We will use the letters ‘a’, ‘b’, ‘c’,…, for proper names in our
language of argument forms. We also call proper names simply names or constants in the
rest of this book. (Since we are now using these letters for names, we must set aside some
letters for atomic propositions. We will use letters from a to o to stand for objects, and if
this is not enough, we subscript them with numbers, such as b23, c3088 and so on. For
atomic propositions, we will now use p, q and r, together with these letters subscripted by
numbers.)

Next, we must have a way to describe the things we have named. We use predicates to
do this. Basically, a predicate is an expression that results in a sentence when a number of
names are inserted in the appropriate places. For example,

…is a multiple of ten… …is slightly mad …is taller than… …is a
multiple of… …loves… …is between…and…

are all predicates. The first and second of these examples use one name to make a
sentence, so they are called monadic. The third, fourth and fifth use two names, and are
dyadic. The last predicate ‘is between’ requires three names, and is triadic. We will use
uppercase letters such as ‘F’, ‘G’ and so on as predicate letters.

You can think of names as naming objects, and predicates as ascribing properties and
relations. A name such as a names an object (a person, a number, a country, or whatever
else), a monadic predicate such as F ascribes a property (such as the property of being
mad, or being a multiple of ten, or the property of being fun to visit, or whatever else), a
dyadic predicate such as G ascribes a two-place relation (such as loving, being bigger
than, being next to, and whatever else), triadic predicates ascribe three place relations,
and so on.

With this up our sleeve, we can form simple propositions combining names and
predicates:

India is big Bi

John loves Mary Ljm

John and Mary love each other Ljm&Lmj

John and Mary love themselves Ljj&Lmm

Mary’s love for John is not reciprocated Lmj&~Ljm

If Mary loves John, John doesn’t love Mary

Note that our propositions Bi, and Ljm, and so on, now have their own structure. The
first, predicates ‘bigness’ of India. The second says that John loves Mary. These
expressions are propositions with structure, but their structure is not like the structure of
complex propositions, such as conjunctions, disjunctions and negations. The structure is

Logic 84

not made by combining propositions. Instead, it is made by mixing predicates and names.
That said, however, these complexes are still propositions, and so they can be combined
with all the machinery of the previous part of this text. So, we can conjoin, disjoin, negate
and conditionalise these propositions to make new ones, as the other examples show.

Quantifiers

In this way, we can describe some more of the structure of the argument about Socrates,
male philosophers and having beards. But the first premise—all male philosophers have
beards—is not of the subject-predicate form. It doesn’t talk about any particular male
philosopher, but rather all male philosophers. It uses a structure called a quantifier. Other
examples are

Some male philosophers have beards. Most logic students are intelligent.
At least seven people have been on the moon. Quite a few Australians

live in poverty.

In each of these sentences, we are talking about a quantity of objects—all, some, most, at
least seven or quite a few. In the predicate calculus, we will use two quantifiers: the
universal quantifier, which talks about all objects, and the existential quantifier, which
talks about at least one object.

To introduce these quantifiers, we will start with a simple case. Suppose I say there is
a male philosopher who has a beard. First, to say Socrates is a male philosopher who has
a beard, I say

(Ma&Pa)&Ba

where a names Socrates, M is the predicate ‘is male’, p is the predicate ‘is a philosopher’,
and B is the predicate ‘has a beard’. To say Greg is a male philosopher who has a beard,
you say

(Mb&Pb)&Bb

where b names Greg. To say someone is a male philosopher with a beard, you might be
tempted to say

(Mx&Px)&Bx

where x names someone. But it won’t do to leave things like this, since I might say there
is a male philosopher who has a beard and there is a male philosopher who doesn’t have a
beard. We cannot say this by saying

((Mx&Px)&Bx)&((Mx&Px)&~Bx)

because the philosopher with the beard and the philosopher without the beard are
different people. We use different names for different ‘someones’, or we use a technique
for indicating where in the formula we can make a choice of who the ‘someone’ is.

Predicates, names and quantifiers 85

�

It is difficult to determine when we get to choose the ‘someone’. Suppose you say
‘someone is a male philosopher with a beard’ and that I want to deny it. (Perhaps I think
all male philosophers are beardless, for some reason.) What does the following formula
say?

~((Mx&Px)&Bx)

This is the negation of what you said, but it might not say what I want to say. It could
mean

It’s not the case that someone is a male philosopher with a beard,

but it could just as well mean

Someone is not a male philosopher with a beard.

which says something much weaker. It all hinges on where the choice of x is made. In the
first interpretation, we do the negation first, and I say that no choice can be made for x
that makes (Mx& Px)&Bx true. In the second, I make the choice first, and then I do the
negation: so I say that some choice can be made for x that makes ~((Mx&Px)&Bx) true.

Now we can start to define our language with quantifiers. To do this, we first add to
the language a stock of variables x, y, z (subscripted with numbers if we run out, as
usual). Then we add an existential quantifier for each variable x. This means ‘here
is where I make the choice for x’. (It is called the existential quantifier as it says there
exists an object with the required properties.) I will illustrate this with a few examples:

means someone is a male philosopher with a beard, while

means someone is a male philosopher without a beard. In both these examples, the
quantifier has a wide scope as it determines the behaviour of the whole formula. In many
cases, the quantifier can occur inside other connectives:

This formula says that it is not the case that some male philosopher has a beard. We
negate the claim that there is a choice for x that can be made to make (Mx&Px)&Bx true.
This differs from

which just says that there is some choice for x that makes ~((Mx& Px)&Bx) true. Our
language has more than one variable because we sometimes must make a choice of one
thing, dependent on the choice of another. For example, if I say

Some philosopher knows a lawyer

Logic 86

I can go halfway to formalising this by saying

where Px is x is a philosopher. Now if K is the two-place predicate for ‘knows’ and L is
the one-place predicate for ‘is a lawyer’, how do we formalise x knows a lawyer? It
cannot be

as this says ‘some lawyer knows him or herself’. We use a new variable to choose the
lawyer, as we need to talk about the philosopher and the lawyer at the same time. For x
knows a lawyer, we can use

as this says ‘there is a lawyer that x knows’, which comes to the same thing. Putting the
whole thing together, we get

which says some philosopher knows a lawyer, as we wished.
We can use the existential quantifier to do more than just formalise statements

asserting the existence of various things. We can also deny such statements, and this
gives us a way to talk about things in general. For example, when I say

I say that there isn’t a male philosopher with a beard. In
other words, no male philosophers have beards. Or equivalently, every male philosopher
is beardless. We have a way of talking in generality. Any proposition of the form

says that not anything has property F. This is equivalent to a proposition saying

Everything doesn’t have property F

We write this using a new quantifier

which is equivalent to The universal quantifier also marks a point
at which a choice for x is made. With an existential quantifier, you say that some choice
for x works. With a universal quantifier, you say that every choice for x works. So, my

claim which says that no male philosophers have beards,
is equivalent to this claim, using a universal quantifier:

Predicates, names and quantifiers 87

�

This says that everything is not a male philosopher with a beard. But we can go further.

~((Mx&Px)&Bx) is equivalent to so our claim can be formalised
like this:

This says that for any choice for x, if x is a male philosopher then x doesn’t have a beard.
This means that no male philosophers have beards, which is what we said the first time.

To sum up: We have added two things to our language. First, variables such as x, y
and z and quantifiers to represent both points in formulas at which
instances can be chosen for variables and the kinds of choices that are made. These,
together with names and predicates, form the heart of the predicate calculus. Our
language looks like this:

• p, q, r, p1, q2, r3, etc.,…are atomic formulas.
• x, y, z, x1, y2, z3, etc.,…are variables.
• a, b, c, a1, b2, c3, etc.,…are names.
• Capital letters such as F, G and H are predicates. For each predicate, there is a number

that tells us the arity of the predicate. Monadic predicates have arity 1, dyadic
predicates have arity 2, and so on.

• If F is a predicate of arity n, and a1,…, an are names, then F a1 …an is a formula.
• If A is a formula then so is ~A.

• If A and B are formulas then (A&B), and (A≡B).
• Given a formula A and name a, and any variable x, we will call the result of replacing

all occurrences of a in A by x: ‘A(a:= x)’. (This is not a formula, but it is on the way to
becoming a formula. It needs an instruction to tell you how to treat the free variable x.)

• If A is a formula, if a is a name and if x is a variable then and

are both formulas.

The scope of the quantifier in the formula is the displayed
instance A(a:=x). Similarly, the scope of the quantifier in the formula

is the displayed instance A(a:=x).
Here is how the rules are used in generating a fomula. Let’s take F to be a monadic

predicate and G a dyadic predicate. Then (Fa& Gab) is a formula. So, replacing the a in
this formula by x (so this is (Fa&Gab)(a:=x)), we get (Fx&Gxb). Note that this is not a
formula, because it contains the variable x without any corresponding quantifier. To get a
formula, we bind that x with a quantifier. I’ll choose an existential quantifier, and we get

the formula The scope of the quantifier in this formula is
(Fx&Gxb).

In the way that we have defined the language, (Fx&Gxb) is not a formula. The only
way that variables enter our language is under the scope of a quantifier. A variable
outside the scope of a quantifier is said to be free. Inside the scope of a quantifier, it is
bound.

Logic 88

Translation

It is important to be able to translate to and from the predicate calculus. The first thing to
do is to discover the names and predicates used in the English text. For example, say we
wish to formalise this argument:

Everyone loves something.
If you love something you think about it.
Therefore everyone thinks about something.

Here there are three predicates. We will use the one-place P for ‘is a person’, L is two-
place, and stands for ‘loves’. Lxy will be read ‘x loves y’. And T is also two-place, for
‘thinks about’. To formalise the argument, we’ll take each proposition one-by-one. The
first says everyone loves something. ‘Everyone’ means ‘every person’, and that’s a
universally quantified claim. Everyone loves something is

If you choose any object at all, if it is a person, then it loves something. Now to say that x
loves something, we say

We can choose something (call it y) such that x loves it. We used a different variable to
talk about this thing, as we must talk about it and the person at the same time. So,
everyone loves something is

Similarly, everyone thinks about something can be translated as

This can be read as follows. Choose anything at all. If it is a person then there is
something that this person thinks about. That translates everyone thinks about something
suitably well. Finally, we have: If you love something you think about it. This is a harder
sentence to translate, since it does not wear its form so explicitly.

To translate it, think about the claim it makes. It is stating a general rule. If you (or
anyone) love something, you think about it. It applies to any person, and to any thing they
think about. So, you can choose the person and the thing first. The condition is that the
person loves the thing:

If you choose x and y, and x is a person and x loves y, then···and the rest says that the
person x thinks about the thing y. So we can fill in the gap:

Predicates, names and quantifiers 89

�

It is important to realise that when we say ‘something’, sometimes it is an existential
quantifier (I like something) and sometimes it is a universal quantifier (If I like
something, I think about it). To tell what sort of quantifier is used, you have to think
about what sorts of choices are being made.

Table 8.1 gives are some more examples of English sentences and their translations
into the predicate calculus.

Table 8.1 English sentences and their
translations into the predicate calculus

English Predicate calculus

All dogs are mammals
Some cats are mammals
Max loves everyone
Someone loves everyone

Everyone loves someone

Summary

The language of the predicate calculus has names to refer to objects, and predicates to
represent properties and relations.

• The existential quantifier enables us to talk about things without having names for
them. states that there is some object with the property F;

means that there is some object that has both property G and
property H.

• The universal quantifier enables us to form generalisations about objects.
states that all objects have property F; means that

everything that has property G also has property H.

Exercises

Basic
{8.1} Use the dictionary:

 a=Anthea; b=Brian;

 Gx=x is a geologist; Hx=x is a hairdresser;

Logic 90

 Px=x is a person; Lxy=x is larger than y

What do the following formulas say, translated into English?

1 Ga

2 ~Hb

3
4 Ha&Hb

5 Hb&Gb

6 ~Gb

7
8 Lab

9 ~Lba

10

11

12

13

14

15

16

17

18

19

20

{8.2} Translate the following sentences (where no-one is ‘no person’ and someone is ‘some
person’):

1 Brian is a person.

2 If Brian is a hairdresser then he is not a geologist.

3 If Brian is not a geologist, neither is Anthea.

4 No-one is a geologist.

5 Everyone is a geologist.

6 If anything is a geologist, it is a person.

Predicates, names and quantifiers 91

�

7 Some geologists are people.

8 Some people are geologists.

9 Some geologists are hairdressers.

10 Some hairdressers are not people.

11 Some non-people are not geologists.

12 Some hairdressers are both geologists and people.

13 If Anthea is a geologist then she is larger than someone.

14 If anything is a geologist, it is larger than some hairdresser.

15 Anything that is both a geologist and a hairdresser is not a person.

16 Some geologists are larger than any hairdresser.

17 Any person is not both a geologist and a hairdresser.

18 Anyone is larger than a geologist.

19 Any geologist is larger than every hairdresser.

20 Any hairdressers larger than a geologist are larger than some hairdresser.

21 At least one geologist is larger than at least one hairdresser.

22 At least one geologist is larger than every hairdresser.

23 Every hairdresser is larger than both Anthea and Brian.

24 If everything larger than Anthea is larger than Brian then Anthea is larger than Brian.

25 If anything larger than Anthea is a geologist then Anthea is larger than any hairdresser.

26 Anthea is larger than a hairdresser only if she is larger than a geologist too.

27 Some people are larger than all hairdressers.

28 Some hairdressers are larger than no geologists.

29 A person is a geologist only if he/she is larger than Brian and not larger than Anthea.

30 Any hairdresser larger than a geologist is larger than every person.

{8.3} In Exercise 8.1, indicate the scope of the quantifiers in the formulas by drawing an arrow
from the quantifier to the variables the quantifier binds in its scope.

{8.4} Find forms for these arguments.

1 Brian studies linguistics. Brian belongs to the rockclimber’s club. So Brian both studies
linguistics and belongs to the rockclimber’s club.

2 Someone studies linguistics. Someone belongs to the rockclimber’s club. Therefore, someone
both studies linguistics and belongs to the rockclimber’s club.

3 Every solid is soluble in some liquid or other. Therefore, there is a liquid in which every solid
is soluble.

4 Only secretaries and administrators are eligible for the Clean Desk Prize. Ian is eligible for the

Logic 92

Clean Desk Prize. Therefore Ian is a secretary and an administrator.

5 Whatever exists is material. Therefore, exactly one of the following two claims is true: (1)
nothing is material; (2) some material things are mental, and all mental things are material.

6 There is a man in town who shaves all men in town who do not shave themselves. Therefore
there is a man in town who shaves himself.

7 Horses are animals. Therefore, heads of horses are heads of animals.

8 The square root of a perfect square is a natural number. No natural number is a fraction. The
square root of a natural number other than a perfect square is not a fraction. Therefore the
square root of a natural number is not a fraction.

9 If nobody contributes to Oxfam then there is someone who dies of hunger. Therefore, there is a
person who dies of hunger if he or she does not contribute to Oxfam.

10 Charles Dodgson (who wrote Alice in Wonderland under the pen-name ‘Lewis Carroll’) was a
logician. This is one of his exercises: Nobody who really appreciates Beethoven fails to keep
silence while the Moonlight Sonata is being played. Guinea pigs are hopelessly ignorant of
music. No one who is hopelessly ignorant of music ever keeps silence while the Moonlight
Sonata is being played. Therefore guinea pigs never really appreciate Beethoven.

Advanced
{8.5} Euclid’s Elements contain many proofs in geometry and arithmetic. One of them is a proof

that there are infinitely many primes. This is a summary: If there is a greatest prime then
there is a second number [namely, one more than the product of all of the primes] that is
greater than the greatest prime, and if this second number is not a prime then [since every
number has a prime divisor] there is a third number [a prime divisor of this number] that is a
prime number and is greater than the greatest prime. Therefore, there is no greatest prime.’
Formalise this argument. (This is not easy, but it can be done, using only the predicates ‘is a
number’, ‘is greater than’ and ‘is prime’. Don’t translate the material in square brackets—
that is there to give you an idea of what is going on.)

{8.6} There is more than one way to define the language of predicate logic. Sometimes people
allow variables not bound by any quantifier to appear in formulas. These are called free
variables. Can you think of any reasons why we would allow free variables into our
formulas? Can you think of any reasons you might want to avoid free variables in formulas?

Philosophers never balance between profit and honesty,
because their decisions are general,

and neither their passions
nor imaginations

are interested in the objects.
—David Hume

Predicates, names and quantifiers 93

�

Chapter 9
Models for predicate logic

The language of the predicate calculus is not much use without a way of interpreting
formulas in that language. We know how to express things in the language, but we have
no way of testing argument forms or finding models to make formulas true or false. It is
the task of this chapter to introduce models that enable us to do just that.

Domains and extensions

In the first half of the book, when we didn’t worry about predicates, names, variables and
quantifiers, evaluations for our propositions were simple. You could find a ‘way things
could be’ by assigning truth values to the atomic propositions.

Now there is more to do. We must interpret each of the names and each of the
predicates. We must know how to deal with the variables and the quantifiers. Our
language is richer and has more structure. It follows that our evaluations have to grow to
catch up and do more.

A model for the language of predicate calculus is made up of a number of things:

A model of the predicate calculus has a domain. This is a non-empty set D of objects.

The domain is the collection of objects being discussed. If we are talking about numbers,
the domain might be the set {0, 1, 2, 3,…} of numbers. If we are talking about the
university, it might be the collection of lecturers and students and administrative staff. If
we are talking about the whole world, the domain might include everything: cabbages
and kings, tables and chairs, electrons, and galaxies, economies and symphonies.

Nothing in the language is interpreted directly by the domain. Instead, the domain
underlies the interpretation of everything in the language. First, we evaluate each of the
names in the language:

In a model, every name a is interpreted by an object I(a) from the domain D.
The object I(a) is said to be the denotation of a, or the interpretation of a.

So, if my domain is the little set
[Descartes, Kant]

of two philosophers, and if my language has two names, a and b, I can have four different
interpretations of those names. In one interpretation, I might have

I(a)=Descartes I(b)=Kant

So a names Descartes and b names Kant. Or I might use the names the other way around:
I(a)=Kant I(b)=Descartes

Or a and b might name Descartes, leaving Kant without a name in our language:
I(a)=Descartes I(b)=Descartes

This is a permissible interpretation of the names. Nothing dictates that different names
should name different objects (people give other people more than one name—think of
your different nicknames) or that every object must have a name. There is one remaining
interpretation for our language in this domain:

I(a)=Kant I(b)=Kant

That explains how names are interpreted in our domains. Now for predicates. Take the
example of the one-place predicate ‘is a philosopher’. Formalise it by P. Consider the
domain

{Descartes, Kant, Einstein}

The predicate P divides this domain into two groups: the philosophers and the non-
philosophers. Descartes and Kant are philosophers, while Einstein was not. So, for each
person in the domain, you have a truth value 1 or 0, recording if the person is a
philosopher or not:
 I(P)

Descartes 1

Kant 1

Einstein 0

This table gives you the denotation or interpretation of the predicate P. The predicate P is
interpreted by a distribution of truth values to objects in the domain. Had things gone
differently—had Kant decided not to go into philosophy, and had Einstein thought that
physics was not for him, we might have had a different distribution of truth values:
 I(P)

Descartes 1

Kant 0

Einstein 1

Each such distribution of values to objects is an interpretation, or a denotation of a one-
place predicate. Each one-place predicate is interpreted in this way.

Now consider two-place predicates, such as ‘…read things written by…’. We know
that Kant read things written by Descartes, but not vice versa. I don’t know who Einstein
read, but perhaps he read things written by Descartes and not Kant. Each person here read

Models for predicate logic 95

�

things they wrote themselves. But neither Kant nor Descartes read anything written by
Einstein. So, to interpret the two-place predicate R, we have a table:

I(R) Descartes Kant Einstein

Descartes 1 0 0

Kant 1 1 0

Einstein 1 0 1

You read the table by looking at the values at the intersections of rows and columns. To
check whether Kant read any Descartes, you look at the intersection of the Kant row with
the Descartes column. The value is 1, so, according to this table, Kant read Descartes. So,
in general, two-place predicates are interpreted by assigning truth values to ordered pairs
of objects. The order in the pair counts. The issue of whether Descartes read Einstein is
very different to the issue of whether Einstein read Descartes.

Three-place predicates are interpreted by assignments of truth values to ordered triples
of objects. One three-place predicate is ‘…prefers…to…’ These are harder to represent
on the page, for obvious reasons, so I will not give you any examples in table form. We
will not see many three-place predicates, so this is no great loss. If we wish to interpret a
five-place predicate, we call an ordered list of five things a 5-tuple. In general, an ordered
list of n things is called an n-tuple. We move now to our general rule for interpreting
predicates:

Each n-ary predicate F is interpreted by an assignment of truth values to all ordered n-
tuples from the domain D.

To test out these ideas, let’s look at one simple model. Our language has two names, a
and b, one monadic predicate, P, and a dyadic predicate, R. The domain has three objects,
d, k and e (which are shorthand for the longer names of these people). We interpret the
names and predicates like this:
 I(a)=d I(P) I(R) d k e

D={d, k, e} d 1 d 1 0 0

 I(b)=k k 1 k 1 1 0

 e 0 e 1 0 1

What propositions can we make in this language? Here is a simple one:
Pa

That proposition says that the person named by a has the property picked out by P. Who
is the person named by a? It’s d (Descartes). The property picked out by P is represented
in the I(P) table. Here, the d row contains a 1, so the person named out by a has the
property picked out by P. Pa is true.

A similar line of reasoning shows that Pb is true too. Therefore, the formulas

Logic 96

are false true and false, respectively. We can evaluate formulas using the logical
connectives in the usual way.

Two-place predicates work in just the same sort of way. The formula
Rab

is false, since the entry in the table contains a zero. The formulas

all come out as true under this interpretation, as you can check for yourself. This gives us
some general rules for determining truth in a model:

• Fa1…an true iff I(F) assigns 1 to
•~A is true iff A is not true.
• A&B is true iff A is true and B is true.
• is true iff A is true or B is true.
• is true iff A is not true or B is true.
• A≡B is true iff either A and B are both true, or A and B are both false.

These rules collect together what we already know.

Quantifiers

In our language, ‘everyone reads Descartes’ is formalised as

and this is true in our model, for every object is paired with d by the relation I(R). (Look
at the d column in the I(R) table.) However, explaining this fact in general is hard. In
general, the truth of a complex formula depends on the truth of the formulas used to
construct it. What formulas are used to construct Some instances of this are

Raa Rba

which say Descartes reads Descartes and Kant reads Descartes. But there is no way to say
Einstein reads Descartes in our language, since we have no way of naming Einstein.

The easiest way to remedy this situation is to add a name for Einstein. We already
have a perfectly good name for Einstein: ‘e’ is used in describing the domain. We will
therefore use ‘e’ as the name in our language. In fact, whenever we have a domain such
as

{d, k, e}

we will add to the language a new name for each object in the domain (that way, we are
always sure to have a name for each object, no matter what other names the language
has):

d k e

Models for predicate logic 97

�

We will write the domain elements in sans serif and their names in italics. For writing on
paper, you can write the domain elements with underlines, like this: {d, k, e}. The new
names we add for each domain element will be called their standard names. The standard
name for a domain element always denotes that domain element. For example, I(k)=k and

I(e)=e. Then, to test a quantified formula, such as you check every instance
of the formula. An instance is found by taking away the quantifier, and replacing every
variable bound by that quantifier (here an x) by a standard name. The instances of

are
Rda Rka Rea

Here, every instance is true. Therefore, the universally quantified formula is true. Let’s
look at a slightly more complex proposition: If you read Kant, you’re a philosopher. This
is formalised as

How do you evaluate this? The universal quantifier says holds for any
object in the domain. So, it is true iff each of

are true. And, you can check that they are. The only false instance of Px is Pe, and in this
case, Reb is false too (Einstein doesn’t read Kant), so each instance of is
true, and so the universally quantified formula is true.

Here are the general rules for evaluating quantified formulas. We have already seen
the universal quantifier rule, and the existential quantifier rule is similar.

• is true iff A(x:=a) is true for each a in the domain D.

• is true iff A(x:=a) is true for some a in the domain D.

A universally quantified formula is true just when every instance is true. An existentially
quantified formula is true just when some instance is true.

The final nuance in these rules involves being clear on how instances are formed. I
have said that the instances of a quantified formula such as are to be found by
stripping the formula of the quantifier and replacing x by a name: you end up with
A(x:=a). This is true, but only some instances of x in A have to be replaced.

You must replace only those instances that are bound by the outside quantifier in

Here is an example. Take the following formula:

One of its instances is but the formula is not an
instance, as the second Fx in the original formula is bound by the inside universal
quantifier, and not the outside existential quantifier.

We will wrap up this section with one more example, of a more complex formula:

Logic 98

This says that if you read Descartes then there’s a philosopher who reads you. This is a
formula with nested quantifiers. The quantifier is in the scope of the outer

quantifier, The formula is a universally quantified formula (that is its main
operator), so we check its instances first. They are

The first thing to note is that the antecedents of these conditionals are true (everyone
reads Descartes). So, for these instances to be true, we want the consequents to be true
too. Let’s take these one at a time. The first is

and its instances are
Pd&Rdd Pk&Rkd Pe&Red

We want at least one instance to be true, and in this case the first two are, so
is true. The second formula, has these

instances:
Pd&Rdk Pk&Rkk Pe&Rek

and in this case the second instance is true, so our formula is true. The last formula is

and its instances are
Pd&Rde Pk&Rke Pe&Ree

and here no instance is true. The first two instances are false, as Rde and Rke are false
(neither Descartes nor Kant read Einstein) and the last instance is false, as Pe is false
(Einstein is not a philosopher). So is false, and, as a result,

is false. This is an instance of our original formula

which is therefore also false.

This explanation of the falsity of was extremely
long-winded. There is a shorter way to do this when the domain is finite. You can
translate out the quantifiers, to get a formula equivalent to it, that has no quantifiers at all.
The rules are simple:

In a finite domain, is equivalent to the conjunction of its instances, and is
equivalent to the disjunction of its instances.

Models for predicate logic 99

�

So, take our formula The conjunction of its
instances is the formula

(I have bracketed to the right. You could just as well have bracketed the conjunction to
the left, or in any order you like. The order of conjunctions does not matter, as they are
all equivalent.) This formula contains three existential quantifiers, which become
disjunctions, like this:

You can then read off the evaluation the values for each atomic formula, and then use the
standard truth-table rules to calculate the value of the whole formula.

Sometimes the ‘translation’ method does not work. If the domain in question is
infinite, there is no way to unpack each quantifier into a corresponding propositional
formula. The quantifiers must be evaluated by hand. Here is an example. Suppose I am
reasoning about numbers, and my domain is

D= {0, 1, 2, 3, 4,…}

the collection of all finite counting numbers. The dyadic predicate S might be interpreted
as ‘smaller than’. It has the following table:

I(R) 0 1 2 3 4 …

0 0 1 1 1 1 …

1 0 0 1 1 1 …

2 0 0 0 1 1 …

3 0 0 0 0 1 …

4 0 0 0 0 0 …

· · · · · · ·

I can only write up some of the table, but hopefully you get the idea. We use the symbols
0 1 2 3 4…

as names for the numbers, instead of letters, as these are perfectly good names in this
context. Now, to evaluate the formula

Logic 100

we check if every instance of S0x is true. Now this is simple: not every instance is true, as

S00 is one instance that is false. As a result, is false. For a more complex
example, take

This is true just when the instances

are all true. That is, where n is any of 0, 1, 2,…, the instance

must be true. But, for that, some instance of Sny must be true. And that is easy—pick a
bigger number than n for y. That ensures that is true, for any n, and so

is true in our model.
For one last example, consider the formula

This is true if and only if every instance

is true, for every number l, m and n. (We have processed all three universal quantifiers in
one go.) But if you have any three numbers, if the first is smaller than the second, and the
second is smaller than the third, the first must be smaller than the third. Therefore, any of
these instances must be true, and so is the original formula.

Our definition of truth (or satisfaction) in models gives us exactly the same definition
of validity as with prepositional logic:

X╞A if and only if every model satisfying each formula in X also satisfies A.

The unfortunate truth with predicate logic is that testing this is much more difficult, as
there are many more models to check. To show that X╞A, you must show that there is no
model satisfying X, ~A. That means, no model on a domain of size 1, or of size 2, or 3, or
4…and once you have exhausted the finite domains, you should check all the infinite
ones too.

Constructing models

If I have an argument form, and I want to show that it is invalid, I construct a model in
which the premises are true and the conclusion is false. In this section, we will see a
simple method to do that. We will first choose how big our domain is, and then see
whether we can construct a model using that domain to make the premises true and the
conclusion false.

Models for predicate logic 101

�

If the domain you choose is a small one, you can construct an interpretation by
translating the quantifiers away. For example, to check the argument from

to in the two-element domain {a, b}, we introduce
standard names a and b for the objects, and we replace the quantifiers in the premise and

the conclusion. The premise becomes

which then becomes Similarly, the conclusion

becomes

Now, to find a model (on this domain) in which the premise is true and the conclusion is
false, we just work with the equivalent prepositional forms. The tree for this argument is
presented in Box 9.1. The tree has two open branches. Both open branches contain
different ways to make the premise true and the conclusion false. The left open branch
gives us

~Rab Rbb ~Rba Raa

Box 9.1

(reading from bottom to top) and the right open branch gives us
~Rbb Rba ~Raa Rab

Logic 102

The two branches give us two different models. We take these propositions and use them
to give us the interpretations of the two-place predicate R. We get two different tables for
I(R). The left branch gives us the first interpretation and the right branch gives us the
second.
I(R) a b I(R) a b

a 1 0 a 0 1

b 0 1 b 1 0

Both tables give us models satisfying the premise but not the conclusion. Translating out
a formula is quite tedious, especially when you have a moderately large number of
names. (Actually, anything over two seems to be tedious enough.) Another way to test an
argument in a fixed domain size is by way of trees. You can add some simple tree rules
for each quantifier, using the assumption that the domain has a given size.

Existential

To resolve a formula of the form extend every open branch in which the formula

occurs with new branches, each containing an instance of In the case with a
domain with three objects, {a, b, c} we have

The rationale of this rule is simple. If is true then some instance of A must be
true. We have one branch for each possibility.

Negated existential

To resolve a formula of the form extend every open branch in which the
formula occurs with every negated instance of In the case with a domain with
three objects, {a, b, c}, we have

The rationale here is similar. If is true then no instance of A is true, and hence
every instance of ~A is true. The universal rules are similar.

Models for predicate logic 103

�

Universal

To resolve a formula of the form extend every open branch in which the
formula occurs by each instance of In the case with a domain with three objects,
{a, b, c}, we have

Negated universal

To resolve a formula of the form extend all of the open branches in which the

formula occurs with branches for each of the negated instances of In the case
with a domain with three objects, {a, b, c} we have

Let’s use these rules in an example, testing the argument from and
to in a four-element model is presented in Box 9.2. The tree closes,

so there is no counter-example to this argument in a domain of size four. (At the end of
this tree, I have taken some liberties to make the tree shorter than it would have been had
I applied the rules literally. Take the branching to ~Fb and Gb under ~Gb. In this case,
we should have also included the branches to ~Fa and Ga that also occurred under ~Ga.
After all, these come from processing and, as the rules indicate, one must
place the result of processing a formula in every open branch in which the formula
occurs. In this case, I didn’t, because inserting ~Fa and Ga into other branches would add
nothing except complexity. The branches here each close, and ~Fa and Ga would do
nothing to help that. The case would be very different if the tree were not to close. If that
were the case, one would have to apply the rules religiously, at least in a single open
branch.)

Box 9.2

Logic 104

When finite domains suffice

Knowing that there is no counterexample to the argument in a domain of size four is
reassuring, but it does not tell us that the argument is valid. We would have to check
domains of other sizes too. In the next chapter, we will introduce tree rules for quantifiers
that do not presuppose any particular domain size, and that will give us a method for
checking validity of arguments in first-order logic.

To round off this chapter, we will see that there is one case where testing in a finite
model suffices for showing that an argument is valid. If your argument is monadic (that
means that each of the predicates in the argument is monadic) and there are n different
predicates in the argument then we can test the argument in a finite domain and be sure
that if there is no counterexample in this domain, there is no counterexample at all.

An argument form containing n monadic predicates is valid iff it has no counterexample
in a domain with 2n elements.

Why is this? This works because each of the n predicates divides the domain up into two
classes: those with that property and those without. There are n predicates, so the domain
is divided into two pieces n times over, so there are 2n different sorts of things an object
can be.

Models for predicate logic 105

�

To be more precise, suppose we have an interpretation I on the domain D that satisfies
everything in X, but not the formula A. Call two domain elements a and b in D mates if
each predicate in the language assigns the same truth value to both a and b. The domain
D is divided into at most 2n sets of mates. Create a new domain D* by selecting one
element from each set of mates. D* has at most 2n elements. For each old element b in D,
let its representative be the one of its mates that is selected to go into the new domain D*.
We will create a new interpretation I* on this new domain D* that satisfies exactly the
same formulas as I does. The rules are simple:

•I*(F) assigns the same value to a that I(F) does.
• If I(c)=a then I*(c)=b, where b is a’s representative.

Then, in general, Fa is true (according to I) if and only if Fb is true (according to I*),
where b is the representative of a. It follows that for any formula A, I(A)=I*(A), so, since
we started with a model that was a counterexample to the argument, this new model on
the domain D* is also a counterexample, but it now has a domain with no more than 2n
objects. (If the domain D* has fewer than 2n objects, we may duplicate an object a
number of times to make up the numbers to ensure that the domain has exactly 2n objects.
A duplicate of an object in a model is another object that satisfies exactly the same
predicates as the earlier object. Adding duplicates to a model does not affect the truth or
falsity of formulas in the model.)

Applying this result in the case of the argument from and

we can see that the argument is valid, as the tree shows that
there is no counterexample in a four-element domain.

Summary

• A model of the predicate calculus has a domain; a non-empty set D of objects.
• In a model, every name a is interpreted by an object I(a) from the domain D.
• Each n-ary predicate F is interpreted by an assignment I(F) of truth values to all ordered

n-tuples from the domain D.

• is true in a model if and only if each of its instances are true. Therefore, in a
finite domain, is equivalent to the conjunction of its instances.

• is true in a model if and only if at least one of its instances is true. Therefore, in

a finite domain, is equivalent to the disjunction of its instances.
• X╞A if and only if every model satisfying each formula in X also satisfies A.
• An argument form containing n monadic predicates is valid iff it has no counterexample

in a domain with 2n elements.

Logic 106

Exercises

Basic
{9.1} Given the following model with the domain D={a, b, c}:

 I(F) I(G) I(T) a b c

a 0 1 a 0 1 0

b 1 1 b 1 0 1

c 1 0 c 0 1 0

 evaluate the following formulas:

 1

 2

 3

 4

 5

{9.2} Given the domain

 D={1, 2, 3,…}

 interpret the predicates S ‘smaller than’ and D ‘divides’ as follows:

I(S) 1 2 3 4 … I(D) 1 2 3 4 …

1 0 1 1 1 … 1 1 1 1 1 …

2 0 0 1 1 … 2 0 1 0 1 …

3 0 0 0 1 … 3 0 0 1 0 …

4 0 0 0 0 … 4 0 0 0 1 …

.

 (Dmn is true if m divides evenly into n.) Which of the following formulas are true?

1

2

3

4

Models for predicate logic 107

�

5

6

7

8

9

10

{9.3} Test the following formulas in two-element domains, using any technique you wish. Which
are true in each model? Which are false in some? For those that have counter-examples,
present a counterexample as a table of values for F and G.

1

2

3
4

5

6

7

8

9

10

{9.4} Test the following arguments in three-element worlds. For any that are not valid, present the
counterexample in a table.

1 therefore

2 therefore

3 therefore

4 therefore

5 therefore

6 therefore

Logic 108

7 therefore

8 therefore

9 therefore

10 therefore

Advanced
{9.5} How many different assignments of names are there from a language with 3 names, into a

domain of 4 objects? How many different assignments are there from a language of n names
into a domain of m objects?

{9.6} How many different models are there of a 3-place predicate in a domain of 2 objects? How
many different models are there of a n-place predicate in a domain of m objects?

{9.7} How many different models are there in a language with n names, m monadic predicates and
j dyadic predicates in a domain of k objects?

{9.8} Find a sentence that is satisfied in every finite model, but that is not satisfied in some
infinite model. Hint: It must feature at least a two-place predicate.

It’s a small world after all.
—Walt Disney

Models for predicate logic 109

�

Chapter 10
Trees for predicate logic

Working with finite models is tedious—especially when you have three or more
predicates, and you have to expand quantifiers with eight constants. And furthermore, the
method isn’t going to be definitive with arguments containing any predicates of arity
greater than 1. So, we need another method to deal with quantifiers. There is a method
that works—trees. When we use trees to evaluate arguments, we construct the model as
we go. We don’t have to decide in advance how many objects there are in the model. We
can ‘introduce new objects’ as required.

Tree rules for quantifiers

There is a simple extension of trees that can cope with quantifiers. All we need add are
extra rules for the quantifiers.

Existential

To resolve a formula of the form extend any open branch in which the formula
occurs with an instance of A using a new name that has not occurred in the branch before.

The rationale of this rule is simple. If is true then some instance of A must be
true. We have no idea which object does the job, and we cannot presume we’ve seen a
name for this object already. So, we use a new name, and we are safe. If there is a model
satisfying then this model can also satisfy A(x:=a), because we can choose the
interpretation of the new name a to be an object picked out by A.

Negated existential

Given a formula of the form you can extend any open branch in which the
formula occurs by any instance of A, for any name you wish.

The rationale here is similar. If is true then nothing is truly described by A, and
hence everything is ~A. I can’t assume I have all of the names at my disposal when I get
to work with the formula so whenever a new name is added to the branch, I
can add a new instance of ~A to that branch.

The universal rule works on the same principle.

Universal

Given a formula of the form you can extend any open branch in which the
formula occurs by any instance of A, for any name you wish:

The negated universal rule is just like the existential rule:

Negated universal

To resolve a formula of the form extend any open branch in which the formula
occurs with an instance of ~A using a new name that has not yet occurred in the branch.

As you can see, the rules come in two different kinds. We will call the existential
quantifier rule and the negated universal quantifier rule particular rules. You use them
once only. They introduce a new name to the tree, for a particular object.

In the same vein, we will call the universal quantifier rule and the negated existential
rule general rules. These rules can be used repeatedly. You are allowed to form instances
of and as often as you like. They apply generally to all objects in the
domain.

We will treat general rules and particular rules differently when creating trees, much
in the same way as treating branching rules differently to linear rules.

Let’s use the rules to test an argument. We will test the argument from
and to As before, you start the tree with the

premises and the negated conclusion. Here is the top of the tree as we start:

Trees for predicate logic 111

�

These three formulas are all complex, so we have a choice of rules to apply. General rules

apply to the first formula and the last formula and a
particular rule applies to the middle formula

We will apply the particular rule first, as it will give us a name to use to substitute into
the other universal rules we will use later. So, we resolve the existential quantifier, using
a name new to the branch. The name a hasn’t been used yet, so we make the substitution
and extend the branch as follows:

Once we extended the tree with ~Ga, we ticked the original formula off, to
indicate that we have exhausted its content. We have placed an a after the tick to indicate
that we have resolved the formula by substituting the name a. This reminds us that we
cannot use a to resolve any other particular rules, as a is now in the branch.

On the other hand, we can substitute a in general rules, as these apply to every object
in the domain. In fact, that is what we will do now. We have a at our disposal, so we will
substitute it into the universal quantifier at the top of the tree:

We indicate that we have substituted a into the formula at the top of the tree by writing
‘\a’ after the formula. This reminds us that we no longer have to substitute a into this
formula. For our next move, let’s substitute a into the negated existential formula

Logic 112

We get the formula ~~Fa, and we write ‘\a’ on the third line to indicate that we have
substituted the a on this line. Now, we could process ~~Fa, but that would be a waste of
time, as we can get a closure immediately by resolving the conditional

So, the tree closes, and the argument form is valid. The reasoning is perfectly general, as

it applies in any model. The tree tells us that if is true, there must be some
object with the property ~G. Call the object a. Now, since holds of every
object, it holds of a, so we have And we want to try to make
true, so we must make ~~Fa true too. These three requirements are inconsistent, so there
is no way to make the three formulas true, in any model, on a domain of any size. The
reasoning works no matter how large the domain.

This tree is much simpler than the tree used in the previous chapter to test the
argument in a three-element model. Our tree is smaller, and it is more general. It shows
that the argument has no counterexample in any model.

Trees for predicate logic 113

�

Let’s use the rules to show that is a tautology. That means, it
is true in every model, no matter how large or small. To show that this must be the case,
we try to find a model in which it is false. The tree is simple:

The first step was to apply the particular rule to the negated universal quantifier. This

gave us a new name a, and we learned that must be true. This is a
negated conditional, so, to make that true, Fa and must be true. But this
negated existential is inconsistent with what we already know! We have Fa, but
substituting a into gives us ~Fa, a contradiction. Therefore this formula is true
in every model. So we know that it is a tautology. This is fortunate, because the formula
ought to be a tautology. It says that for anything you care to choose, if it’s got property F
then something has property F. That sounds like the kind of thing that ought to be true in
every model.

When trees don’t close

Let’s look at a tree that doesn’t close. The tree for

is presented in Box 10.1. This tree does not close:

Box 10.1

Logic 114

the middle branch is open. Furthermore, the middle branch is complete, in the sense of
the following definition:

An open branch in a tree is complete iff every resolvable formula has been resolved, and
every name in the branch has been sub-stituted into every general formula in the branch.
(Furthermore, some name has been substituted into each general formula in the branch.)

What does this mean? One way of thinking about it is this: a com-plete open branch in a
tree is a world unto itself. For every existentially quantified formula in the
branch, there is a (named) object a occuring in the branch such that A(x:=a) is in the

branch. Similarly, for every universally quantified formula in the branch, and for
every name a in the branch, the formula A(x:=a) is also in the branch. This branch
describes a coherent, consistent and complete possibility, requiring nothing else to make
every-thing in that branch true.

In our example tree, the only general formula is and this has had
both names a and b substituted into it. (The extra condition in parentheses has been added
to deal with a special case that comes up next. Ignore it for the moment.)

The middle branch in our tree is complete. So, we will read off the atomic formulas in
that branch to create a model. The names are a and b, so we will make our domain D={a,

Trees for predicate logic 115

�

b}. The interpretation for F and G is read off the branch by looking at the atomic
formulas. The branch contains Fa and ~Fb, ~Ga and Gb. This tells us that our
interpretation for F and G looks like this:
 I(F) I(G)

a 1 0

b 0 1

This interpretation suffices to make the premise of the argument true (there is an F and
there is a G) but to make the conclusion false (there is no object which is both an F and a
G). So, trees work with predicate logic in just the same way as with propositional logic.
Closed trees give you valid arguments, and complete open branches give you
counterexamples.

The parallel with propositional logic is not perfect, however. Sometimes your tree will
never stop. The rules just make you keep going and going and going. What should you do
in these sorts of situations? Let’s see an example.

Is the formula satisfiable? We will check this by creating a tree for it.
The tree is given here:

The first interesting thing about this tree is that we had to invent a name to substitute into
the universal quantifier at the top of the tree to get the tree going. This is permissible, as
we know that any domain must have at least one object. So, we can give that object a
name (here it is a) and continue from there. This happens in general: if you have a general
formula in a branch, the branch is not completed until you have substituted at least one
name into the formula.

The next striking thing about this tree is the fact that it goes on forever. Any
completed branch (and this tree will only ever have one branch) must be infinite. The
infinite branch given by completing the tree is reasonably simple to understand. It helps if
we use different names instead of a, b, c,…, as we will use infinitely many names. If we

Logic 116

use different names, a1, a2, a3, a4, etc., you can see that the branch will contain each of
these formulas:

La1a2 La2a3 La3a4… Lan an+1…

The name a1 is the first to be substituted into Then, given
we get a new name, a2. This goes back into the universal quantifier, to give us

and the process repeats …, which eventually gives us an, and and
hence a new name an+1, which goes back into the universal quantifier, and the process
continues ad infinitum.

We can summarise the information contained in the tree in a table like this:
I(L) a1 a2 a3 …

a1

a2 1

a3 1

·

The 1s in the table are given by the formulas Lanan+1 in the branch. The other entries in
the table are left blank, as we are given no information one way or the other about them.
It is consistent with this branch to have La1a1, and it is also consistent to have ~La1a1.
So, this table contains all of the information given by the open branch. Any interpretation
consistent with that table will make the formula true. For example, we
can construct an interpretation by making all other values false:
I(L) a1 a2 a3 …

a1 0 1 0

a2 0 0 1

a3 0 0 0 ·

·

This is an interpretation that makes our original formula true. Another interpretation
makes all the other values true.
I(L) a1 a2 a3 …

a1 1 1 1

a2 1 1 1

a3 1 1 1 ·

·

This satisfies the original formula equally well. There are even simpler ways of making
the formula true. For example, there is no need for the objects a1, a2, a3,…amed by the

Trees for predicate logic 117

�

names a1, a2, a3,… to be different. In this last interpretation, each is related by L to every
other object. As far as the interpretation goes, each object an is indistinguishable from
any other, so we may as well have the following one-element interpretation:
I(L) a1

a1 1

In general, given a completed branch of a tree, you ought to find the pattern in the branch,
and display the information given explicitly in that branch by a table. Then, you can
construct any interpretation consistent with that information to satisfy the formulas in that
branch. This includes using one object for more than one name in the branch, provided
that the information known about the different ‘objects’ is consistent. We will consider
one more example to explain this last constraint. Here we test the consistency of the

formula This is very similar to the case we have already
seen. The tree for this formula is given below. (This time I have used names a1,
a2,…because I knew it would continue forever.)

Logic 118

This tree also continues indefinitely. A completed branch now contains
La1a2 ~La2a1 La2a3 ~La3a2 La3a4 ~La4a3···Lanan+1 ~Lan+1an

In table form, we get this information about any interpretation:
I(L) a1 a2 a3 a4 …

a1 1

a2 0 1

a3 0 1

a4 0

·

Any interpretation that fills in the blanks in this table will satisfy the formula

So, populating the rest of the table with zeros gives us one
interpretation:

I(L) a1 a2 a3 a4 …

a1 0 1 0 0

a2 0 0 1 0

a3 0 0 0 1

a4 0 0 0 0

·

We can still get a finite model by noticing that not every name an need name a different
object. But we have to be careful. We know that a1 and a2 must name different objects,
since we have La1a2 and ~La2a1. Similarly, a1 and a3 name different objects, as La1a2 but
~La3a2; and in general, an, an+1 and an+2 must name different objects. This is the only
requirement we must satisfy. There is nothing that tells us that a1 and a2 must name
different objects, or that a2 and a5 must. In fact, we can identify every third an to get a
very compact table:

I(L) a1 a2 a3

a1 0 1 0

a2 0 0 1

a3 1 0 0

This is the smallest domain in which the formula can be
satisfied.

Trees for predicate logic 119

�

Why the tree method works

The tree method works in the following two senses.

Fact 1

If X is satisfiable then, in any totally developed tree for X, some branch remains open.

That is, if then This is the soundness theorem. If an inference can be proved
valid using trees, it is valid.

Fact 2

If, in some totally developed tree for X, some branch remains open then X is satisfiable.

Therefore, if then This is the completeness theorem. If an inference is valid,
it can be proved so using trees.

These facts are the same as those we proved for prepositional logic. They jointly
demonstrate that trees for predicate logic are a good match for the models we have
defined. Proving these facts is not much more difficult than in the prepositional case, and
I will complete this chapter with demonstrations of both of these facts.

Proof of fact 1

If X is satisfiable, there is some model that makes true every formula in X. We will use I
to name the interpretation function of this model, and, for any formula A made up out of
the atomic formulas that appear in X, we will write ‘I(A)’ for the truth value I assigns to
A. Since X is satisfiable, if A is a sentence in X, I(A)=1. If A is the negation of a sentence
in X, I(A)=0.

As in the propositional case, we will show that in a completed tree for X, there is some
branch in which every formula is satisfied by an interpretation I. It follows that this
branch is open, since it can contain no contradictory pair of formulas A and ~A, as they
are both satisfied by I. So, if we find such a branch, we are done: our tree contains an
open branch.

Finding such a branch is quite simple. You start at the top of the tree, with the
formulas in X. These are each satisfied by I, since that is what we assumed. Now, for
each rule that is applied to extend the tree, at least one of the branches generated will give
us formulas that are satisfied by I, provided that the formula resolved is also satisfied by
I. The propositional connectives work in just the same way as before. The only new work
is as a result of the quantifiers. Here, we must expand the interpretation as we go along,
as we add names to the language. We will now prove that if I satisfies all formulas in a
partially completed branch then there is an interpretation I* that might extend I, which
satisfies one of the branches extending the partially completed branch.

If we resolve a existential quantifier then, since the formula appears in the
branch, we know that The rule adds A(x:=a) to the branch, where a is a
name new to the branch. The name a is not interpreted by I0, so we extend I to interpret a.

Logic 120

We get a new interpretation I0 that agrees with I on all of the old language, and assigns a
to some element in the domain D. What should we choose as I0(a)? We want to make
sure that I0(A(x:=a))= 1. This is simple: we know that so there is some
object c in the domain A where I(A(x:=c))=1. So, we let I0(a)=c, and this ensures that
I0(A(x:=a))=1 too, as a is interpreted in the same way as c, as naming the object c.

If we resolve a negated universal quantifier then we have
The rule adds ~A(x:=a) to the branch, where a is a name new to the branch. Again, a is
not interpreted by I, so we extend I to an interpretation I0 that also gives a referent to a.
We want to make sure that I0(~A(x:=a))=1. This is simple: we know that

so there is some object c in the domain A where I(A(x:=c))=0. So, we
let I0(a)=c, and this ensures that I0(~A(x:= a))=1 too, as a is interpreted in the same way
as c, as naming the object c.

If we apply the rule to a universal quantifier then, we have
The rule adds A(x:=a) for any name a we like. Since we know that
I(A(x:=a))=1 for any name we like, and hence the added formula A(x:=a) is also satisfied
by I. There is no need to extend our interpretation I in this case.

If we apply the rule to a negated existential quantifier then we know that
The rule adds ~A(x:=a) for any name a we like. Since

we know that I(A(x:=a))=0 for any name we like, and hence the added formula ~A(x:=a)
is also satisfied by I. There is no need to extend I in this case either.

So, if the formulas at X at the top of the tree are satisfied by an interpretation I, there is
some open branch in the tree that is also satisfied by an interpretation. That interpretation
is not necessarily the same as I, as it might be an extension of I, designed to interpret the
new names introduced by the particular rules applied in the branch. So, the tree remains

open: if then

Proof of fact 2

Suppose a completed branch in a tree for X remains open. We wish to construct an
interpretation satisfying X, and everything in that branch. The construction is similar to
the propositional case. Take the domain of the interpretation to be the names appearing in
the branch. If a is a name in the branch, we interpret a as referring to itself: I(a)=a. We
fix the interpretations of the predicates similarly.

If Fa1…an is in the branch, I(F) assigns true to If ~Fa1…an is in the

branch, I(F) assigns false to (Any value can be applied if neither Fa1…an
nor its negation is in the branch.) This is a consistent model as the branch is not closed.

We prove by induction on the formulas in the branch that if A is in the branch, I(A)=1,
and if ~A is in the branch, I(A)=0. The atomic formulas Fa1…an and ~Fa1…an work
because I was defined to make them work. The propositional connectives work because
the situation is unchanged from the propositional case.

For a universal quantifier, if is in the branch then A(x:= a) is in that branch for
every name a appearing in that branch (the branch is complete). By hypothesis,

Trees for predicate logic 121

�

I(A(x:=a))=1 for each a, so too, by the interpretation rule for the
universal quantifier.

For a negated universal quantifier, if is in the branch then ~A(x:=a) is in the
branch for some name a appearing in that branch. By hypothesis, I(A(x:=a))=0 for this a,
so too, by the interpretation rule for the universal quantifier.

The cases for the existential quantifier and for its negation are no different to these,
and I leave them for you to verify. The result shows that I satisfies every formula in the
branch, and hence the formulas X at the top of the branch are all satisfied by I. In other

words: if then
As a result, trees fit models hand-to-glove.
Now you have enough material to go away and analyse any predicate calculus

argument form, using trees. There are no rules as to what order to do things in, but here
are some hints to help make sure your proofs remain as small and manageable as they can
be:

• Remember to always work on main connectives!
• Do the propositional rules first, if possible. Especially if they do not branch.
• Then do the particular instantiation rules.
• Do the general instantiation rules when it looks as if making a substitution will be

interesting—for example, it will close off this branch, or will give you a model.
• Once you have a branch that looks as if it goes on forever, try to find a pattern in what

goes into the branch, and summarise that in a table.
• Use that table to construct your model. Compress it into a smaller model if you prefer.

Howson’s Logic with Trees [12] has good examples of trees for quantifiers. For much
more of the theory of trees for predicate logic, you cannot go past Raymond Smullyan’s
First-Order Logic [29]: it is filled with insights and Smullyan has an unsurpassed depth
of understanding of the tree method.

Exercises

Basic
{10.1} Test the following formulas, using trees. Are any tautologies? For those that are not,

present counterexamples.

1

2

3

4

5

Logic 122

6

7

8

9

10

{10.2} Test these argument forms for validity, using trees. Present counterexamples to any invalid
argument forms you find.

 1

 2

3

 4

 5

{10.3} Test all of the arguments formalised in Exercise 8.4.

{10.4} Construct an appropriate dictionary to formalise the following arguments, and test the
resulting formalisations for validity:

 1 PS is an axiomatic system. All of the theorems of PS are tautologies. No prepositional
variable is a tautology. All axiomatic systems of which no prepositional variables are
theorems are post-consistent. Therefore, PS is post-consistent.

 2 If every decision is to be referred to the central authority then some programmes will be
delayed. But all programmes have received approval, and nothing is to be delayed that has
received approval. So, it follows that not every decision is to be referred to the central
authority.

 3 Whatever is true is not false and whatever is not false is true. If anything is false then no-
one knows it. John knows something (and John is a person). So, something is true.

{10.5} A dyadic relation R is said to be reflexive iff symmetric iff

and transitive iff

Show that not all reflexive and
symmetric relations are transitive by showing that

Trees for predicate logic 123

�

 Similarly, show that not all reflexive transitive relations are symmetric, and that not all

symmetric transitive relations are reflexive.

{10.6} A dyadic relation R is said to have no dead ends iff Show that all
symmetric, transitive relations without dead ends are also reflexive by showing that

Advanced
{10.7} Consider the following two propositions:

 which you can read with the following dictionary:

 Mx=x is male; Fx=x is female;

 Oxy=x is the mother of y; Axy=x is the father of y

 It should be clear that the two propositions are consistent and seem true. Every male person
has a mother (who is female), and every female person has a father (who is male).
Construct a model that satisfies these propositions, using a

 tree. In particular, explain what a completed tree for the two propositions looks like.

{10.8} Prove that in any closed tree, only a finite number of formulas have been resolved. This is
König’s lemma: any finite forking tree (any fork in the tree splits to a finite number of
descendants) with finite branches is itself finite. This is in fact rather hard to prove. König
proved it like this. Take a finite forking tree with infinitely many points in the tree. We
show that it has an infinite branch as follows:

 • Call a point in the tree good if it has an infinite number of descendants.

 • The root of the tree is good.

 • If a point in the tree is good, one of its children (immediate descendants) is good.

 • Therefore there is an infinite branch in the tree.

 Go through this proof and explain each step.

{10.9} Using the previous result, show that if X├A then there is a finite subset X* of X where X*├
A. This is the compactness theorem for predicate logic.

The golden rule is that there
are no golden rules.

—George Bernard Shaw

Logic 124

Chapter 11
Identity and functions

The language of predicate logic is all well and good as it stands—it is a vast improvement
over prepositional logic—but there are still some things you cannot say. Say we have two
names ‘Clark Kent’ and ‘Superman’, and we want to express the fact that they refer to the
same person. We say it like this:

Clark Kent is Superman.

There is no way to say this simply in the language of first-order logic as we have it. The
is in Clark Kent is Superman is not the same sort of is as appears in Clark Kent is a
reporter. We cannot say Sc where S is the predicate is Superman and c is the name Clark
Kent, for Superman is a name, just like Clark Kent is. There’s nothing in the language
that tells us that two names name the same thing. We must use a new predicate to ascribe
the ‘relation’ that Clark Kent and Superman bear to each other in virtue of being the same
person. (You can, of course, add a new two-place predicate I to the language for identity,
and add premises to your arguments to govern the behaviour of I. But to do this would be
to say that the argument ‘Clark Kent is Superman, Clark Kent is over 2 metres tall,
therefore Superman is over 2 metres tall’ is invalid as it stands. It seems as if ‘is’ is not
the sort of connective you must define every time you use it.)

Similarly, there is no way to say that two things are different. You can’t say that there
are two dogs in the room by saying

since this will be true even if there’s only one dog in the room. How can we extend our
language to help us express such basic things as these?

Identity

We introduce a new predicate into our language to deal with such statements—it is a
dyadic predicate written as ‘=’. We write it ‘infix’ instead of ‘prefix’ because you are
much more used to seeing ‘a=b’ than seeing ‘=ab’. The formula

a=b

is true in a model just when a and b name the same object in that model, and it is false
otherwise.

For the negation of a=b, we will not write ‘~a=b’, which might be confusing. We will
write ~(a=b), or, even better,

a≠b

�

This is true in a model just when a and b name different objects in that model. Let’s see
how identity works in a particular model. Here is a model we have already seen:
 I (a)=d I (P) I (R) d k e

D={d, k, e} d 1 d 1 0 0

 I (b)=k k 1 k 1 1 0

 e 0 e 1 0 1

In this language, we can state more things than in the language without identity. For
example, we can state that Everyone reads someone else. This is said by

This is false, since it is not true that for any person in the domain, there is someone else
who they read. The instance

is false, since every instance
Rdd&d≠d Rdk&d≠k Rde&d≠e

is false. The first is false since d≠d is false; the second and third are false as Rdk and Rde
are both false.

We can also state the claim: If you are read by everyone, you’re Descartes. This is said
by

This formula says: take anyone you like (this is x); then if everyone reads x, x must be
identical to d. This is true in our model: the instances are:

The first instance is true because d=d is true. For the second and the third to be true,
and must be false. These are both false because instances Rdk and

Rde are false.
Now, to test arguments involving identity, we must have some tree rules featuring

identity. The rules are of a similar form to others. We have a negated identity rule, and an
identity rule. The negated identity rule is simple: Since all self-identities are true, a
negated self-identity closes a branch:

A formula a≠a closes a branch in which it occurs.

The other rule we require—the identity rule—can be motivated like this: If a=b is true,
and we have something true of a, then that thing is also true of b, since a and b are the
same thing. Let A be a formula in which a appears. A(a:=b) is a formula you get when
you replace some instance of a in A by b. Our rule is then:

Logic 126

If a=b and A are in a branch, we can place A (a:=b) in that branch too.

Note that this does not resolve the formulas a=b or A, for they can be used again.

We will use these rules to prove that

This tree applies the identity rules straightforwardly. We get a=b and b≠a. These do not
immediately close the branch, since b≠a is the negation of b=a, and that is a different
formula from a=b. (Proving that b=a amounts to the same thing as a=b is what we are
trying to prove in this tree. It will do no good to just assume it!) So, we apply the identity
rule to a=b and b=a. Using a=b, we can replace the a in b≠a by a b. This then gives us
b≠b, which closes the branch, and hence the whole tree.

Trees with identity that close are very much like trees without identity that close.
There is one extra wrinkle in dealing with trees with identity that do not close. We must
ensure that the identity predicate on the domain is interpreted by the identity relation on
that domain. This means that we may not always take the domain constructed from the
model to just have one object per name, as the following example shows. Here is an
example of a tree that does not close—we test

below:

Identity and functions 127

�

And this branch is open. To deal with the open branch and to construct a countermodel,
you must understand how to cope with identity. That’s rather simple. In a model, identity
is always denoted by the identity relation. In other words I(=) relates two objects in the
domain just when they’re the same object. So, how do you construct a countermodel from
an open branch? You do that by picking out names as domain elements, just as before,
except for when some names denote the same object in the model. In that case, you just
choose one of the constants to be a domain element, and it stands for all of the others too.
Here, the open branch gives us three names: a, b, c. However, we know that b=c. So, the
names form two cliques:

{a} {b, c}

To construct the model, you take a representative from each clique to form the domain.
Any property had by one member is had by all members. (This is no problem, since if
b=c and some property holds of b, it must hold of c too, by virtue of the identity rule for
trees.) So, in our case, the facts known of the model go as follows:

I(R) a b

a 0 1

b 1

We have Rba, since we have Rca, and b=c. We do not have Rbb (or its negation), as none
of Rbb, Rcb, Rbc or Rcc appears in the branch. This is the information given by the

Logic 128

branch, and it follows that either interpretation given to extend this by placing a 0 or a 1
in that space will do as an interpretation that makes the formula false. Therefore, it is not
a tautology.

Translating some common quantifiers

In everyday language, we don’t only use the quantifiers ‘every’ and ‘some’. We also say
things like ‘at least 3’, or ‘at most 40’ or ‘exactly 3088’. We can express these using our
own quantifiers along with equality. Here’s how it goes.

At least n things are F is translated as

In other words, there are n things that are F, where no pair taken from them is identical.
For example, there are at least three logic students is translated as

At most n things are F is translated as

In other words, if we have ‘n+1 things’ that are F then we have at least double-counted:
at least two of them are the same. For example, there are at most two logic students is
translated as

You can put these two together to say that exactly n things are F. This can be translated
as the conjunction of at least n things are F and at most n things are F.

A final case that is a little simpler than the general case for exactly n is the case for
exactly one thing is F. This can be translated as follows:

In other words, it can be read as saying two things.

• There is something with property F.
• Anything with property F is identical to that thing.

If both are true then there must be exactly one thing with property F. If the first is false
then there is not exactly one thing with property F, since there is nothing with property F.
If the first is true but the second is false then there is not exactly one thing with property
F, because there are more things with that property. So, our translation works.

As a final example, there is exactly one Indonesian logic student is translated as

Identity and functions 129

�

Exercise 11.8 asks you to use these definitions to show how basic facts about arithmetic
can be derived from logic.

Functions

Sometimes—especially when you are modelling mathematical theories—predicates,
names and identity are not sufficient to straightforwardly express all that we want to
express. Suppose we are reasoning about numbers. We are able to add them and subtract
them, multiply them and divide them. We have names for numbers, and addition,
subtraction, multiplication and division are names for functions, which, when given
numbers, return more numbers.

There is no straightforward way to represent functions in the language we have so far.
It is technically possible to represent the addition function by the three-place predicate S
where

Sxyz

means ‘adding x to y gives you z’. Then you must state conditions that make S represent a
genuine function: we have to state that for any x and y you like, there’s exactly one z
where Sxyz. We’ve already seen how to do this:

This says that, given any two inputs x and y, there is an output z, and any output from x
and y must be equal to z. This is enough to make S represent a genuine function.
However, dealing with a three-place predicate S is just too difficult. If we want to say that
for any numbers x, y and z, x+(y+z)=(x+y)+z, we say

which doesn’t look a great deal like what we are trying to say.
An easier way to deal with this is to be explicit about functions, and to allow symbols

that represent functions into our language. A function symbol is like a predicate, in that it
has an arity, but it differs from a predicate, because a predicate applied to a number of
names gives us a formula. A function symbol applied to a number of names gives us
another name. For example, if f is a unary function symbol, and a and b are names, so are

fa fb ffa fffb

Since a is a name, fa is a name. Since fa is a name, ffa is a name too. Similarly, if g is a
two-place function symbol then

gab gfab gfaffb

are all names too. Sometimes, given repeated function applications, it helps to use
parentheses to clarify how the order of expression works. Each of the names displayed
above is

g(a, b) g(f(a), b) g(f(a), f(f(b)))

Logic 130

But these parentheses are, strictly speaking, irrelevant. Provided that the arity of each
function symbol is known, there is exactly one way to understand each of the
parentheses-free names.

So, sum and product are both two-place functions. We often give them special
names,+ and ×, and we often write them ‘infix’, between the names to which they apply,
instead of before them. This is merely a notational convenience. Given these names, if a
and b are names in our language, the following are also names:

a+b a+(b×c) ((a×a)×b)+b(a×b)+(b×a)

Function symbols are interpreted by functions on the domain. If f is a monadic function
symbol and g a dyadic function symbol, and the domain D= {a, b, c}, then we can
interpret function symbols in a little table:
 I(f) I(g) a b c

a b a a b c

b c b b c a

c c c c a b

In this interpretation, we have f(a)=b, f(b)=c and f(c)=c. The tables tell you the output
value for every input value in the domain. Similarly, we have g(a, a)=a, g(a, b)=b, g(b,
c)=c, and so on. The square table is read in row-column pairs to get the output of the
function I(g) from every input pair.

There is no need to modify any of our tree rules or to add any in order to use function
symbols in trees.1 Once function symbols are added to the language, the existing tree
rules determine how they operate. Here is a tree testing

In this tree, we see some of the distinctives of using function symbols. If a is a name, and
f a one-place function symbol, then f(a) is a name too. We were able to substitute f(a) in

the general formula in order to close the tree.
However, not only is f(a) a name, so is f(f(a)), f(f(f(a))), and so on, ad infinitum. As a

result, any tree featuring function symbols already has an infinite number of names. If
there are any general formulas to be used in a branch, that branch must be infinite if

Identity and functions 131

�

completed. There are very few simple open trees featuring function symbols. Here is one

to show you how they look—this tree tests

The branch is open, and it continues forever. The objects named in the tree are a, f(a),
ff(a), fff(a),…. And the information in the tree is summarised by this table:
I(L) a1 a2 a3 a4 … I(f)

a1 1 a1 a2

a2 0 1 a2 a3

a3 0 1 a3 a4

a4 0 a4 a5

· . .

In this interpretation, we have an infinite domain {a1, a2, a3,…}, and f is interpreted by a
function that takes each domain element into the next one along in the list. Any
interpretation that fills out the rest of the table will make the premise of the argument true
and the conclusion false. One way to make the domain smaller is to use the trick we used
in the last chapter: pay attention to what is explicitly said about what objects cannot be
the same. Here we know that a1 and a3 are different, since a1 is related by L to a2, but a3 is
not related by L to a2. Similarly, a2 cannot be the same object as a4, and a3 differs from a5,
and so on. One way to arrange this is to identify every third object. We get this table:

Logic 132

I(L) a1 a2 a3 I(f)

a1 0 1 0 a1 a2

a2 0 0 1 a2 a3

a3 1 0 0 a3 a1

There is a lot more that can be done with these extensions of our language. For more
details, see the exercises.

Summary

• Identity is a special two-place relation, holding between x and y if and only if x and y
are the same thing.

• We use the two-place relation ‘=’ to represent identity.
• In a tree, a formula of the form a≠a closes a branch.
• In a tree, if a branch contains a=b and a formula containing a, you can add to that

branch the formula given by replacing any number of instances of a in that formula by
b.

• We can use identity to represent numerical quantifiers such as at least n, at most n and
exactly n.

• Function symbols represent functions, in our languages. Each function symbol is
interpreted by a function. For example, a two-place function symbol is interpreted as a
function from pairs of objects in the domain to objects in the domain.

• Function symbols use no new tree rules.

Exercises

Basic
{11.1} Use the dictionary

 a=Alphonzo

 b=Bernadette

 c=Candide

 Px=x is a person

 Rx=x is rich

 Sxy=x is smaller than y

 Wxy=x works for y

to translate the following formulas:

1 a=b

2 (a=b&a≠c)

Identity and functions 133

�

3

4

5

6

7

8

9

10

{11.2} Using the same dictionary, formalise these expressions:

1 Alphonzo is rich but Candide is not.

2 Somebody who is rich is smaller than Candide.

3 Somebody other than Candide is smaller than Alphonzo.

4 Everyone is smaller than someone.

5 Everyone is smaller than someone other than themselves.

6 Everyone other than Alphonzo works for someone.

7 No-one (except Bernadette) works for Alphonzo.

8 There are at least two people.

9 There are at most three people.

10 There is exactly one person who works for Alphonzo.

{11.3} Test the following formulas. Find counterexamples to any that are not tautologies.

 1

 2

 3

 4

 5

{11.4} Test the following arguments, and find counterexamples to those that are not valid:

 1 therefore Ga

 2 therefore

Logic 134

{11.5} Formalise and test these arguments:

 1 At most two frogs are blue; therefore at most three frogs are blue.

 2 At least two frogs are blue; therefore at least three frogs are blue.

{11.6} Show that a=b├f(a)=f(b). Does the converse hold? That is, does f(a)=f(b)├a=b?

Advanced
{11.7} We have represented exactly n things are F as the conjunction of at most n things are F

and at least n things are F. The resulting formula contains 2n+1 quantifiers. Show that
this is too wasteful by finding a more economical representation: one that uses only n+1
quantifiers.

{11.8} Show that basic arithmetic follows from the definitions of numerical quantifiers. That is,
show that if at least n things are F, and m things are G, and nothing is both F and G, then
at least n+m things are either F or G. Show that if at most n things are F, and at most m
things are G, then at most n+m things are either F or G.

{11.9} How can you use numerical quantifiers to prove things about multiplication in the way we
have used them for addition?

{11.10} You can formalise ‘number theory’ directly. The theory Robinson’s Arithmetic has seven
axioms, in the language with identity, the one-place function symbol s (the successor
function), the name 0, and two two-place function symbols+(sum) and×(product), both
written infix.

 1

 2

 3

 4

 5

 6

 7

 The first three axioms say respectively: no two numbers have the same successor; zero is not a
successor; and every number other than zero is a successor. The next two axioms dictate the
behaviour of sum, and the last two the behaviour of product. Call the set of the seven axioms RA.
In this language, we can use 1 as a shorthand for s(0), 2 as a shorthand for s(s(0)), and so on.
Prove the following results:

 1 RA├2+2=4.

 2 RA├2+2≠5

 3 RA├2×3=6

Identity and functions 135

�

 4 RA├2×3≠5

 5

 (The last question is remarkably more difficult than the first four. For this, you must construct a

model of all of RA that doesn’t true too.)

All animals are equal
but some animals are more equal than others.

—George Orwell

Note
1 You must remember, however, that with the positive existential and negative universal rules,

you introduce new names, not new function symbols. If you learn that then you
are entitled to say Ga (where a is a new name)—you are of course not entitled to deduce
Gf(a), for that would be to assume something about the object with property G, namely that
it is also the result of applying the function f to some object. That might not be the case.

Logic 136

Chapter 12
Definite descriptions

Names in our languages pick out objects. In our formal language, this job is done by
names, which are completely atomic (they have no significant parts) or are given by
applying function symbols to other names. There is no other class of referring expressions
in our language.

This seems like an odd fit. We have shown how for formulas, the meanings
(interpretations) of complex formulas are made up out of the meanings of simpler
formulas. It seems that things should work like this for referring expressions too. There
seem to be descriptions that pick out objects, in virtue of the predicates in those
descriptions. Descriptions such as the tallest person in the room or the cause of that
disease seem to act like referring expressions, and it seems that the structure and meaning
of the description determines the referent, which is picked out by that description. This
fact is not recognised by the language we have so far. There is no way to get a name that
depends in any way on a predicate.

Furthermore, descriptions seem to feature in some paradoxes, or strange phenomena,
which ought to be clarified. Here are just two ways that descriptions seem odd when
compared with other names or terms in our language.

Failures of bivalence

Descriptions seem to mandate failures of bivalence. For example, the present king of
France is bald is not true, as France does not have a king at present. Similarly, the
present king of France is not bald is not true, for the same reason. This is unlike other
names, for which one of a is bald and a is not bald are true (except, perhaps, for reasons
of the vagueness of the term bald. Please ignore that for the moment, or, if you can’t,
please pick a precise predicate). It would be good to have some explanation of why
descriptions allow such things.

Non-existence claims

Along similar lines, descriptions enable us to claim that certain things do not exist. It
makes perfect sense to say there is no present king of France, and furthermore, it is true.
We can’t do this with names in our language. Every name denotes an object in the
domain, and so each name refers to an object that exists (at least in the sense of the
existential quantifier).

What can we do about descriptions? Can we clarify these issues?

�

Russell’s solution

Bertrand Russell came up with a nice solution to these puzzles, by giving an analysis of
descriptions in terms of the language we already have at hand. His solution was given in
1905 [24] and it is an enduring testimony to the way that formal logic can be used to
enlighten some rather difficult issues.

Recall that we can translate exactly one thing is F as

A definite description is a term in the language such as ‘the F’. Russell analysed definite
descriptions using our translation of exactly one thing is F

In normal discourse, when there is exactly one thing with property F, it is common to
describe the object in question as ‘the F’—for example, we talk about

The Prime Minister of Australia
The person who last climbed Mt Everest
The thing I’m trying to remember

and many other things like that. Russell noticed that when we do talk in this way, we are
presupposing a number of things. We are presupposing that there is something that
satisfies the description (there is a Prime Minister of Australia) and we are presupposing
that there is at most one of them (there is no more than one Prime Minister of Australia).
If the first condition were not met then any talk of the F would be mistaken, as there
would be nothing fitting the bill. If the second condition were not met, the talk would still
be mistaken: we should talk about an F, not the F. So, Russell went ahead and used these
facts to give an analysis of definite descriptions.

Russell’s analysis goes like this: whenever I say that the F is a G, I am stating that

• There is an F.
• There is no more than one F.
• That thing with property F also has property G.

So, to say the F is a G formally, I am stating the following:

Something has property F, nothing else has that property, and this thing has property G
too. We will introduce a bit of notation as a shorthand. We write that formula for the F is
a G in shorthand as

(Ix)(Fx, Gx)

We can use this to translate claims involving definite descriptions. For example, the
claim The Prime Minister is in the Liberal Party, and is short becomes

(Ix)(Px, Lx&Sx)

where P, L and S stand for the obvious properties. Of course, we could have translated
this as

Logic 138

(Ix)(Px, Lx)&(Ix)(Px, Sx)

which comes to the same thing.
The Prime Minister is shorter than the Deputy Prime Minister is more complex to

translate. A halfway translation is
(Ix)(Px, x is shorter than the deputy P.M.)

Now, if Sxy is x is shorter than y, and Dx is x is a Deputy P.M., then how can we say x is
shorter than the deputy P.M.? We say the deputy P.M. is F by saying (Iy)(Dy, Fy) (y is a
better variable to choose than x, now that x is in use). What is the property F had by the
deputy P.M.? The property we want is x being shorter than him. So, the property we need
for Fy is Sxy. We get, in full,

(Ix)(Px, (Iy)(Dy, Sxy))

Complex translations involving definite descriptions are not always easy. You should
ask, given an object described by a definite description: How is it described? This goes in
the first slot. And: What property does it have? This goes in the second slot.

We can create tree rules for (Ix) by writing out the tree rules for its definition. The (Ix)
rule is

And the negated (Ix) rule is

And this rule can be applied for any name a. We can use these rules to test the argument
form ‘if the F is G, then there is an F’:

Definite descriptions 139

�

The next tree is more complex—it shows that from (Ix)(Fx, Gx) you can deduce

Logic 140

Russell’s analysis of definite descriptions has given us a way to analyse terms that use
predicates in their construction. The analysis tells us how these terms are related to other
parts of our language. The analysis also gives us specific answers to the two problems
noted earlier:

Failures of bivalence

For example, the present king of France is bald is not true, as France does not have a
king at present. This is explained because (Ix)(Kx, Bx) fails, since there is nothing with
property K. Similarly, the present king of France is not bald is not true, as (Ix)(Kx, ~Bx)
fails, as there is nothing with property K. However, this is not a real failure of the law of
the excluded middle, as the negation of (Ix)(Kx, Bx) is not (Ix)(Kx, ~Bx), but ~(Ix)(Kx,
Bx). This formula is true.

Nonexistence claims

‘There is no present king of France’ is not saying of an object that it does not exist. It is
saying that there is nothing with the property of being a present king of France:

This is not a problem.
Definite descriptions, for Russell, are not referring expressions in the way that names

are. They are descriptions, which are implicit existential quantifications. The puzzles
about failures of excluded middles and non-existence claims fade away when they are
properly understood. The apparatus of formal logic has helped clarify the structure of this
part of our language.

Nuances

Definite descriptions 141

�

Russell’s analysis of definite descriptions is certainly clarifying, but like all simple
philosophical analyses, it is limited. The analysis gets some uses of definite descriptions
right, but others it gets wrong.

Limited domains

First, the analysis says nothing about restrictions on the domain. I might say the top logic
student will win a prize. I don’t mean the top logic student but the top logic student in my
class this year. Typically, our descriptions don’t pin down one thing, unless we restrict
the domain of quantification in some way. Russell’s account gives us no insight into how
that is done.

Referential uses

Second, sometimes people use definite descriptions to describe things, and succeed, even
though the predicates used don’t describe the object referred to. For example, at a party, I
might talk about the man in the corner drinking the martini, and you nod, and we talk
about him. We succeed in referring to him, even if he’s not drinking a martini! If it
happened to be a glass of water, my description failed to describe him correctly, but the
mere fact that you and I both thought it was a martini was enough to ‘fix the referent’.
Russell’s account gives us no insight into how this works, and in fact, it seems to get this
account completely wrong. According to Russell, all of my claims involving ‘the man in
the corner drinking the martini’ are false if there is no such man, or, worse, are referring
to someone else, if there happens to be another man in the corner who (unbeknownst to
us) is actually drinking a martini. More must be said about definite descriptions to
explain how this phenomenon works.

Further reading

Russell’s original paper [24] is still excellent reading. An extended discussion of
Russell’s analysis is found in Miller’s Philosophy of Language [19].

Chapter 8 of Bostock’s Intermediate Logic [2] and Chapter 4 of Grayling’s
Introduction to Philosophical Logic [8] also contain good discussions of definite
descriptions.

Exercises
{12.1} With the dictionary

 a=Alphonzo

 b=Bernadette

 c=Candide

 Vx=x is a Vice-Chancellor

Logic 142

 Lx=x is a Lord Mayor

 Fx=x is flies

 Hx=x is a horse

 Sxy=x is swifter than y

translate the following, using the I shorthand for definite descriptions:

1 The Vice-Chancellor flies.

2 The Lord-Mayor is a horse.

3 The flying horse is swifter than Bernadette.

4 Alphonzo is a Lord Mayor.

5 Alphonzo is the Lord Mayor.

6 Candide is swifter than the non-flying horse.

7 The flying horse is swifter than the horse that does not fly.

8 The flying horse is swifter than a horse that does not fly.

9 Everything other than the flying horse is swifter than the flying horse.

10 Alphonzo is swifter than the Vice-Chancellor, but Bernadette is swifter than the flying horse.

{12.2} Translate away the definite description connectives in your answers to the previous
question, using Russell’s analysis of definite descriptions.

{12.3} Test the following argument forms for validity, presenting any counterexample you find.

 1 (Ix)(Fx, Gx)&(Ix)(Fx, Hx) therefore (Ix)(Fx, Gx&Hx)

 2 (Ix)(Fx&Gx, Hx) therefore (Ix)(Fx, Hx)

 3 (Ix)(Fx, Gx) therefore

 4 (Ix)(Fx, ~Gx) therefore ~(Ix)(Fx, Gx)

 5 Fa, (Ix)(Fx, Gx) therefore (Ix)(Fx, x=a)

{12.4} What does it mean to say (Ix)(Fx, Fx)?

When in the chronicle of wasted time
I see descriptions of the fairest wights.

—William Shakespeare

Definite descriptions 143

�

Chapter 13
Some things do not exist

Existential import and predicates

According to the syllogistic logic of Aristotle, the following arguments are valid:

All tigers are dangerous.
So some tigers are dangerous.

No liars are honest.
So some liars are not honest.

Aristotle’s syllogistic logic dominated logical theory in Western civilisation for over
2,000 years. According to the predicate logic we have considered, both arguments have
the invalid forms

The reason for the difference is straightforward. For syllogistic logic, an assumption was
made that every category is inhabited. That is, every predicate has something in its
extension. If all tigers are dangerous, pick one of the tigers. It is dangerous. Therefore
some tiger is dangerous. Similarly, if no liars are honest, pick one of the liars. He or she
is dishonest. If there is no such tiger, or no such liar, the premises are true and the
conclusion false.

Now you might ask how we could have learned the predicates ‘liar’ or ‘tiger’ if there
weren’t any of the required creatures to describe. So, you might think that the assumption
that all our categories are inhabited is a good one. There seem to be other cases where
this assumption fails. Assume that Newton’s physics is correct. Then the premise of this
argument is true, but the conclusion is false:

Any bodies unaffected by external forces move uniformly.
So some body unaffected by external forces moves uniformly.

The premise is given by Newton’s laws of motion. Anything unaffected by external
forces moves in one direction with constant velocity. The conclusion is false since every
object exerts a (possibly very small) gravitational force on every other object. The
property ‘a body unaffected by external forces’ is empty. The argument is invalid.

This diagnosis—that invalidity can come about by uninhabited predicates—is the one
given by predicate logic. Any counter-example to either predicate argument form will be
one in which F is interpreted as an empty property.

We say that Aristotle’s syllogistic logic carries existential import because each of its
categories or predicates is assumed to be inhabited. Predicate logic has no existential
import for predicates because the formula

is not a tautology. The fact that we have a predicate F does not mean that the predicate is
inhabited.

Existential import and names

Predicate logic is not without some existential import. Predicate logic has existential
import for names. The formula

is a tautology, for any name a. This means that names are assumed to refer to existing
objects. We allow empty predicates, but we do not allow empty names. This may or may
not be a problem. One way in which it might be a problem seems to be the fact that many
of us think that one of the following two sentences is true, and the other false:

There is something that is identical to John Howard.
There is something that is identical to Santa Claus.

The first of these is true and the second false. Assuming that John Howard and Santa

Claus are both names, both of these sentences have the form So, we have
some choices to make:

• Santa Claus exists.
• Santa Claus is not a name, and so There is something that is identical to Santa Claus

does not have the form

• is not a tautology.

The first of these options might be appealing in the case of Santa Claus. However, it is
hard to maintain that for every name there is something that exists that bears that name.
At least some of Pegasus, Sherlock Holmes, Bilbo Baggins, Mickey Mouse and
Superman do not exist. So, we can safely leave that option behind.

The second option holds that things that look like names, but that do not refer to
objects, are not really names at all. We have already seen this sort of analysis in the
previous chapter. Russell took it that a description such as the Prime Minister of Australia
is not really a referring expression like a name, but really an existential quantification,
which picks out an object by way of the predicates involved in the description. ‘The
Prime Minister of Australia is short’ is a grammatically well-formed statement, even if

Some things do not exist 145

�

Australia is going without a prime minister at the moment. There is no requirement that
all our descriptions pick out objects.

Russell’s analysis can be extended to deal not only with expressions that are explicitly
descriptions. It can be used to apply to names too. The description theory of names holds
that every name is really a hidden description. For example, when I use John Howard I
might mean

That person named ‘John Howard’ by his parents, who appears in the
news a lot at the moment.

No doubt, a more sophisticated account of what description is in play could be given. The
important thing to see is how this goes when dealing with names (like Santa Claus) that
do not pick out existing objects. The name Santa Claus can be paired with this
description:

That fat man who often wears red with white fur who lives at the North
Pole and gives presents at Christmas to everyone.

There is no doubt that some description like this is closely tied to the name Santa Claus.
However, if we go on to analyse the definite description in the way Russell did, the
following two sentences are both false:

Santa Claus lives in the North Pole.
Santa Claus lives in Nashville, with Elvis.

They are both false because there is no such person fitting the Santa Claus description.
However, there is a sense in which these two claims are different. At least, according to
the standard mythology about Santa Claus, the first is true and second is false. Perhaps
there is a way of maintaining the difference between the two claims, by reading them as
shorthand for the following two claims:

According to mythology, Santa Claus lives in the North Pole.
According to mythology, Santa Claus lives in Nashville, with Elvis.

The first is certainly true and the second is certainly false. This strategy (which we might
call the hidden prefix strategy) does well in these cases, and in many others.

According to Greek mythology, Pegasus is a flying horse.
According to the Conan Doyle stories, Sherlock Holmes lived in Baker

Street.

According to Greek mythology, Pegasus has seventy-two heads.
According to the Conan Doyle stories, Sherlock Holmes was a jazz

singer.

Logic 146

The third and fourth of these claims are false. What is true of these fictional characters
seems to be what the stories say about them—and what you can deduce from what is in
the stories.

For all that success, some have found problems with the hidden prefix strategy. Many
want to say that sentences that mix up fictions might still be true:

Pegasus could fly higher than Sherlock Holmes.
John Howard is shorter than Hercules.

The first claim here mixes up two different fictions. There is no mythology or story
including both Pegasus and Sherlock Holmes. So why are some people tempted to say
that this is true? Similarly, the second claim mixes up mythology and reality. Hercules
was tall (but non-existent). John Howard is not tall. He is shorter than Hercules.
However, that claim ‘crosses the boundaries’ between fiction and reality.

Some have thought that these problems, with both the description theory and the
hidden prefix accounts, are so bad that we should look for another strategy. We must find
an account of logic that allows names that do not denote.

Now one way to do this, without introducing a grammatical difference in the way we
treat proper names, is what has been called free logic. The logic is free of existential
import. A name doesn’t have to pick out an existing object in order to function as a name.
The language is the same as with standard predicate logic, except for the introduction of a
new one-place predicate: E!. E!a is true when a exists. Or, more formally, E!a is true
when the name a denotes an (existing) object. So, if a stands for Pegasus and b stands for
John Howard then presumably E!a is false, but E!b is true.

Models

The version of free logic we will use has a domain, and predicates (and function symbols
and identity, if you like) just like standard predicate logic. The predicate E! is treated just
like any other predicate. It divides the existent objects from the non-existent objects. Here
is an example model:
 I(H) I(F) I(E!) I(S) a b c d

a 1 1 0 a 0 0 0 0

b 1 0 1 b 1 0 0 0

c 0 0 1 c 1 1 0 1

d 0 1 0 d 1 1 0 0

In this model, H is shorthand for is a horse, F for flies and S for is shorter than. The
objects a, b, c and d are respectively Pegasus, Phar Lap (a famous Australian racehorse),
John Howard and Superman. This should explain the distribution of truth values in the
tables. Ha and Hb are true, as Pegasus and Phar Lap are horses, Fa and Fd are true,
because both Pegasus and Superman fly. The S table ensures that John Howard is shorter
than Superman, who is shorter than Phar Lap, who is shorter than Pegasus. The only new

Some things do not exist 147

�

thing is the interpretation of E!. Pegasus and Superman don’t exist. Therefore, E!a and
E!d fail.

This means that we ought to modify the interpretation of the existential quantifier to

match this. We do not want to say that there exists a flying horse.

fails, so we must say that Fa & Ha is not an appropriate instance of
The appropriate instances of an existential quantifier are substitutions of names where we
know that the names denote.

It follows that is false, as is In this model,

there is no flying non-horse either. In fact, in this model, is false, as no
appropriate instances (here the only appropriate instances are Fb and Fc) are true. Phar
Lap might gallop very fast, but he does not fly.

This interpretation of the existential quantifier fixes the interpretation of the
universal quantifier too, if we take to be equivalent to Everything is
A just when nothing is not A. is true just when every appropriate instance of A is
true. So, is true in this model, since all (existing) horses do not fly.

Some have thought that it might be good to have more liberal quantifiers that range
over all objects in the domain, instead of just the existing ones. We will look at how you
might do this after we give tree rules for the system of free logic as we have defined it.

Tree rules

The rules for all of the connectives remain as they were. The rules for the quantifiers are
modified slightly, to deal with the existence predicate:

Existential

To resolve a formula of the form extend any open branch in which the formula
occurs with an instance of A using a new name that has not occurred in the branch before,
and also add that this name denotes an object:

Negated existential

Given a formula of the form and a name a, you can extend any open branch in
which the formula occurs by two branches—one containing ~E!a and the other
containing ~A(x:=a):

Logic 148

The universal rule works on the same principle.

Universal

Given a formula of the form and a name a, you can extend any open branch in
which the formula occurs by any two branches—one containing ~E!a, and the other
containing A(x:=a):

The negated universal rule is just like the existential rule:

Negated universal

To resolve a formula of the form extend any open branch in which the
formula occurs with ~A(x:=a) and E!a, using a new name a:

So, means that there exists some object a such that A(x:=a), and means
that for any name a you like, A(x:=a) is true, or there is no object a. This seems to make
sense, given our talk of Pegasus. We can treat these as proper names, and still agree that
all horses don’t fly, and that Pegasus is a flying horse. It’s just that Pegasus is a non-
existent flying horse. To check that this works out, we’ll test the argument from

and Ha to ~Fa:

Some things do not exist 149

�

The tree stays open. We have a model making the premise true and the conclusion false:
 I(H) I(F) I(E!)

a 1 1 0

In this model Ha is true, and ~Fa is clearly false. More interesting is the issue of whether

is true. It is—because all of its appropriate instances are true, or,
more clearly, because none of its appropriate instances are false, since it has no instance
here. In the domain, the only object we have is a, and it does not exist. Therefore, we
have no instances to make our universally quantified premise false, and, as a result, it is
true.

We will end this section with one more example. Box 13.1 shows a tree to test the

argument with premises and and conclusion
As one would hope, the tree closes, and the argument form is valid.

Nuances

The system of free logic discussed here has many desirable properties. However, there is
more to be done to make it a satisfactory theoretical device. Here are some of the issues
that we ought to address, and which point to further modifications of the theory.

Box 13.1

Logic 150

Bivalence

According to this account of free logic and non-existence, either Sherlock Holmes had
blood type AB or he did not have this type. As far as I can tell, the Conan Doyle stories
do not actually tell us Holmes’ blood type. There does not seem to be any reason for
preferring one type over another, yet the interpretation of free logic assumes that, for
every predicate, either it or its negation applies to each object—including the non-
existent ones. Exercise 13.3 asks you to look at a modification of the tree rules that
allows you to reject when a does not denote.

Definite descriptions

Definite descriptions seem to apply in the case of non-existent objects too. For example,
the following claim seems to be true:

Santa Claus is the fat man who often wears red with white fur who lives at
the North Pole and gives presents at Christmas to everyone.

Some things do not exist 151

�

If I read it using Russell’s analysis of definite descriptions, it comes out as false, as there
is no fat man who often wears red with white fur…. So Russell’s account of definite
descriptions does not fit well with free logic as it stands.

Inner and outer quantification

One way to deal with this is to expand the language yet further, to allow for two sorts of
quantification. The fat man living at the North Pole, who gives away presents, does not
exist, but there is a fat man living at the North Pole who gives away presents. This may
sound strange, but if we allow a new quantifier into our language (Sx), where (Sx)Fx
(read as ‘something is F’) is true just when some instance of Fx is true (whether or not

this instance is an appropriate one) then (Sx)Fx can be true, even though fails.
Similarly, we can have (Ax)Fx to be interpreted as saying that every instance of Fx is
true. Then (Sx)(Fx& Hx) is true, as some horse flies (namely, Pegasus) and

fails, as not all horses do not fly. This two-sorted kind of
quantification is called inner and outer quantifiers. The inner quantifiers are the original

and as these range over the inner domain of existing things. The new
quantifiers (Ax) and (Sx) range over the outer domain of all things, existent and non-
existent.

The intended interpretation

Once we start down this track, however, we face real difficulties in understanding our
own models. What are these things that appear in the outer domain in the semantics? Are
they concepts? If so, which concepts? Are they non-existent objects? If so, how do we
tell how many of them there are? When we talk about existence, there is some kind of
theoretical constraint that can be applied—such as Ockham’s razor, and other theoretical
constraints that help us decide when to say that something exists. It is very hard to see
what can be said about demarcating the outer domain.

Further reading

Chapter 5 of Read’s Thinking about Logic [21], Chapter 8 of Bostock’s Intermediate
Logic [2] and Chapter 4 of Grayling’s An Introduction to Philosophical Logic [8] all have
useful things to say about free logic. Richard Routley’s article ‘Some things do not exist’
[23] is a defence of the quantification over non-existent objects, or outer quantification.

Exercises

Basic
{13.1} Using the rules of free logic, test these arguments:

Logic 152

 1 therefore

 2 therefore

 3 E!a therefore ~Fa

{13.2} Show that once we have a language containing outer quantification and E!, the inner

quantifiers are also definable. That is, show that is equivalent to

and is equivalent to

Advanced
{13.3} To cope with the problem of the previous exercise, modify the rules of free logic so that

Fa1…an closes with ~Fa1…an only when a1 to an all exist. What does the resulting logic
look like? Is the result any better or worse than standard free logic?

{13.4} Prove the tree rules sound and complete for the models of free logic.

{13.5} Show that if an argument (without E!) is valid in free logic then it is valid in traditional
predicate logic too. (There are two ways of doing this. You could use the fact that any
model of traditional predicate logic is also a model of free

 logic. Or you could show that if a tree closes using the rules of free logic then the
corresponding tree using the rules of traditional predicate logic also closes.)

{13.6} Show that free logic can be interpreted inside traditional predicate logic in the following
way. For each formula, A define At like this. Select a new predicate E, then define
inductively

 So the translation keeps everything the same, except for modifying the quantifiers. (This is

called restricting the quantifiers by E—instead of saying that something is A, we say that
some E is A; instead of saying that everything is A, we say that every E is A.)
Show that Xt├At in classical logic if and only if X├A is valid in free logic.

{13.7} Construct tree rules for outer quantification, and show that they too are sound and
complete for the interpretation of free logic with outer quantifiers.

The brilliant Cerebus
discovered three different kinds of dragon:

Some things do not exist 153

�

the mythical, the chimerical
and the purely hypothetical.

They were all, one might say, non-existent,
but each non-existed in an entirely different way.

—Stanislaw Lem

Logic 154

Chapter 14
What is a predicate?

We will introduce the topic of this chapter by considering an argument.

An argument

Here is an argument, due to René Descartes, designed to show that reality is not merely
material—there are some immaterial things too.

I can now imagine that my material body is not now existing.
I can not now imagine that I am not now existing.
Therefore, I am not now my material body.

This is an argument for dualism, the view that the universe contains immaterial things
(souls, minds, gods, and things like that) as well as material things (bodies, tables, chairs,
trees, and so on). Read the argument closely. Do you think it is valid? Do you think it is
sound? Try formalising the argument. Is the form valid?

What can we say about Descartes’ argument? Before examining the form of the
argument, let’s look at the premises.

Premise 1

Here is how Descartes can reason to justify the first premise. Knowledge of material
things comes through the senses. I can imagine that I am tricked by an evil demon with
great powers, who gives me false sensations. Everything I hear, see, smell, feel, taste and
touch might be the result of this trickery! The appearances might not correspond to any
external reality at all. So, I can imagine my material body not now existing.

Premise 2

Descartes could reason like this to justify the second premise. In order for me to imagine
that I do not exist, I have to think about the issue. I have to do the imagining. But if I am
thinking about the issue, I must exist in order to be doing the thinking. So, I cannot now
imagine that I am not now thinking. (This is the famous cogito ergo sum: ‘I think,
therefore I am’.)

These two lines of reasoning are used by Descartes to justify the premises. They are
very interesting in their own right, but we will not pause to examine these any further. To
be sure of the soundness of the argument, you must examine the premises, but you also
need to examine the validity of the argument, and it is to this that we now turn.

�

To check the validity, we can formalise the argument, and then test it using trees or
whatever other technique we have at hand. Its form seems simple:

Fa, ~Fb therefore a=b

where a names my body, b names me and ‘Fx’ is ‘I can now imagine x not existing’. This
form is certainly valid. Its validity comes from the rule for identity. If a=b and Fa, I can
deduce Fb.

Understanding the argument

However, things are not that simple. It is important to understand whether or not our
translation is adequate to the task of explaining the validity of this argument. There seems
to be good reason to believe, in this case, that it doesn’t. A common objection made to
the Dualist argument, an objection made by Gottfried Leibniz, goes like this. The
argument doesn’t really have this translation, since what I can imagine about a thing isn’t
a property of that thing. It is rather a property of me and of my cognitive capacity. If we
want to use ‘property’ in this wide sense, to allow my thoughts about objects to be
properties of those objects, then we have problems with our rules for identity. For
instance, consider this argument:

I can now imagine that Mark Twain is not Samuel Clemens.
I can not now imagine that Samuel Clemens is not Samuel Clemens.
Therefore, Mark Twain is not Samuel Clemens.

Translating this argument into forms, we have the same form as for Descartes’ argument.
Fa, ~Fb, therefore a=b. In this case, the conclusion seems straightforwardly false: Mark
Twain is (or was) Samuel Clemens! It is not that there are two different people: Mark
Twain on the one hand and the Samuel Clemens. (Samuel Clemens is alone in the
room—how many people are there? Two? Surely not.) However, the premises seem true.
I can imagine a situation in which Mark Twain is not Samuel Clemens. I cannot imagine
a situation in which the Samuel Clemens is not Samuel Clemens. What is the matter with
the argument?

Opaque contexts

There seems to be a tension between admitting that statements of the form

I cannot imagine that x exists.
I cannot imagine that x is not Samuel Clemens.

and others like them are genuine predications of x. According to the definition I gave of
predicates in Chapter 8, these are one-place predicates, because when we substitute a
name in for x, we get a sentence. There is no doubt that this does not fit well with the
definition of identity. The problem is one of substitution. The truth or falsity of ‘I cannot
imagine that x exists’ depends not only on what object is substituted in the expression,

Logic 156

but also on the way the object is presented. Here is another example that illustrates the
point:

Superman is called x because of his amazing powers.

If I substitute the name Superman in this expression, I get a true statement. If I substitute
the name Clark Kent in this expression, I get a false statement, even though Clark Kent
and Superman name the same person.

Which statements are true of both Clark Kent and Superman? The following all seem
true:

x works for a newspaper.
x knows Lois Lane.
x flies through the skies.
x rescues people in distress.
x can be made weak with judicious uses of kryptonite.
You saw x rescue my friends.

Once we know that Clark Kent and Superman are the same person, each of these
statements seem true if we plug in the name Superman or Clark Kent. They may not seem
to be true to someone who does not know that fact, but that doesn’t mean that they are
not true. The last sentence is an interesting case. Suppose you saw Superman rescue my
friends. It follows that you saw Clark Kent rescue my friends even if you did not
recognise that it was Clark Kent. Sometimes we see things that happen, without being
able to describe them completely.

These statements all seem true when you substitute one name and false when you
substitute the other:

x is widely known to work for a newspaper.
Lois Lane thinks x is stronger than Clark Kent.
I told you that x has amazing powers.
You saw that x rescued my friends.

Clark Kent is widely known to work for a newspaper. Superman is not so widely known
to work for a newspaper. Lois Lane (at least when she was ignorant of Clark’s identity)
thought that Superman was stronger than Clark Kent, but she certainly didn’t think that
Clark was stronger than himself. I might have told you that Superman has amazing
powers, but I certainly didn’t tell you that Clark Kent has amazing powers. You might
have seen that Superman rescued my friends, but you didn’t see that Clark Kent did,
because you did not recognise that he and Superman are one and the same person.

There is a pattern occurring. Each of the problematic sentences relies in some way or
other on the particulars of language and the way Superman (Clark Kent) is described, and
in people’s beliefs about him. Being widely known to work for a newspaper is not
genuinely a property of a person. It is a property of a person, given a particular
description of that person. The truth of the claim can vary, not only as the person
changes, but also as the way they are described changes. This sentence is at most a wide

What is a predicate? 157

�

predication of a property of Superman (Clark Kent), not a narrow predication, which
picks out a property that he has, invariant of how he is described.

This problem is often described as one of substitution into intentional contexts (or
quantification into intentional contexts, when it is a variable over which we quantify). We
are substituting names into belief contexts, knowledge contexts, and other contexts in
which we are describing what people think, know, have heard or recognise. (These are
called intentional contexts, because the characteristic property of ‘aboutness’ is often
called the intentionality of these mental states.) In each case, we want information not
only about which object is in question, but also the way that the object is presented or
described. These are general contexts into which names can be substituted to form
propositions, but they are not predicates in the narrow sense.

In general, a context into which a name can be substituted to form a proposition but
that depends not only on the thing denoted is called opaque. Belief and knowledge
statements and other intentional terms give rise to opaque contexts, but there are other
opaque contexts that are not intentional. We have some trivial examples involving
quotation marks:

‘x’ contains eight letters.

Substituting Superman for x gives us a truth. Substituting Clark Kent gives us a
falsehood. This gives us an opaque context involving no mental states.

There is no widely accepted general theory concerning the division between opaque
contexts and those that are not opaque (these are sometimes called transparent). To tell
the difference, substitute different names for the same object, to check to see if any
difference is registered. The distinction is very important, for our assumption in
developing predicate logic is that all predicates are transparent. To formalise an argument
properly using predicate logic, this assumption must hold. If it does not, then the
formalisation is incorrect.

This brings us back to Descartes’ argument for dualism. We have formalised it as a
simple argument from Fa and ~Fb to a=b, where Fx is I can now imagine x not existing.
It seems that we have reason to believe that this context is opaque. My capacity to
imagine x’s existence or non-existence depends on how x is described or presented to me.
If that is the case then the formalisation fails to adequately describe the argument. The
validity of the argument form from Fa and ~Fb to a=b tells us nothing about Descartes’
argument. To show that his argument is valid, much more must be done.

Further reading

See Chapter 4 of Read’s Thinking about Logic [21], and Chapter 3 of Grayling’s
Introduction to Philosophical Logic [8] for more on substitution into opaque contexts.

Logic 158

Exercises

Basic
{14.1} Divide the following forms into those that narrowly predicate and those that only widely

predicate (that is, sort them out into transparent and opaque contexts), and explain your
answers in each case (in each case, substitute in names for x):

 1 x runs very fast.

 2 x is famous for running very fast.

 3 x is Prime Minister.

 4 x caused the Titanic to sink.

 5 x is very old.

 6 I am sick and tired of x.

 7 x did that well.

 8 I can’t tell the difference between x and y.

 9 I know x.

{14.2} Why might it be bad to formalise I think that something bit me as where Tx is ‘I
think that x bit me’?

Advanced
{14.3} Some people think that the problem of quantifying in odd contexts is not restricted to

beliefs or other things involving people. Try this argument:

 Necessarily, 9 is bigger than 7.
9 is the number of planets.
Therefore, necessarily, the number of planets is bigger than 7.

 Is this valid? If so, does it prove that there must be more than seven planets? If it isn’t
valid, why isn’t it?

Chi Wen Tzu always thought three times before taking action.
Twice would have been enough.

—Confucius

What is a predicate? 159

�

Chapter 15
What is logic?

Sometimes the answers you get with classical logic are odd, and not for reasons of
vagueness or relevance, and not because of non-denoting terms, or opaque contexts. Here
is an example:

The Prime Minister collects clocks.
Anyone who collects clocks has to be slightly mad.
Therefore, someone is slightly mad.

We can use the dictionary
Mx=x is a Prime Minister
Cx=x collects clocks
Sx=x is slightly mad
Px=x is a person

to find the form. The argument has (Ix)(Mx, Cx) and as

premises, and the conclusion is It is straightforward to show that it is
invalid. One counterexample can be found here:

 I(M) I(C) I(P) I(S)

a 1 1 0 1

What does the counterexample mean? One assumption in the model is that the Prime
Minister is not a person. However, the Prime Minister is a person—and in fact, the Prime
Minister must be a person. That is how Australia’s constitution is written: you cannot be a
prime minister without being a citizen, and you cannot be a citizen without being a
person. So, the counterexample is not a possible state of affairs. This is why we might
think that the argument is valid. There’s no way for the premises to be true and the
conclusion to be false. So, is it valid or not?

There is no general agreement on this issue. There are two major lines of thought, and
I will consider them in turn.

Logic as invariance under permutation

First, there is the ‘No’ case. According to the ‘No’ case, the argument is not valid
because we can construct a counterexample. We have displayed two different
counterexamples. Logic has to do with the validity of the form of the argument, and the

form is what we discovered. According to this view, the validity of the argument is due to
the form the argument takes:

An argument is valid if and only if there is no counterexample to the argument under any
interpretation of the non-logical symbols occurring in the argument.

So, to test for the validity of the argument, you take away all of the non-logical parts of
the argument (anything other than the connectives, quantifiers and identity), replacing the
rest by schematic letters. The search for a counterexample to the argument is then a
search for how we might interpret the non-logical parts of the argument in order to make
the premises true and the conclusion false. If we cannot find any way to do this, the
argument is valid. If we can find such a way, the argument is not valid.

Here is another example. The proposition ‘It is raining or it is not raining’ is a
tautology because it has the form and any instance of this form is true. There is
no way to substitute any proposition in for p in the statement to get a falsehood.
For if p is true, is true, and if p is not true, ~p is true, and hence is true.

So, according to this account of logical validity, each model is a reinterpretation of the
non-logical parts of the argument. If no matter how the non-logical parts are
reinterpreted, you never have the premises true and the conclusion false, the argument is
valid. This view can be summarised simply:

Logical validity is truth preservation in virtue of logical form.

If truth is preserved from the premises to the conclusion of the argument, in virtue of the
form, then the argument is valid.

To get the conclusion from the premises in our original argument, you have to use
something other than the form of the argument. You must appeal to the meanings of
Prime Minister and of ‘person’—specifically, that any Prime Minister is a person. But
that gives us a way to repair the argument. If we add a new premise, namely

the new argument is valid.
This new proposition we add is called an enthymeme. It is a ‘hidden premise’, which

everyone agrees with, and which when added to the premises of an argument will render
the argument valid.

There are a number of significant virtues of this account of logical validity:

A good fit with logical practice

This account fits well with what we do in practice in formal logic. We take the formal
structure of the argument, and we reinterpret the non-logical parts of the argument in any
way we see fit.

No mysterious necessity

Any account of logic has to postulate some degree of necessity. The premises have to get
you to the conclusion in general. This is achieved in this account of logic, not by

What is logic? 161

�

postulating a mysterious notion of necessity, but by requiring that the argument preserve
truth, no matter how the non-logical language is interpreted. The necessity of logic is a
matter of its generality.

Topic neutrality

Logic is topic-neutral. It applies to anything we can talk about. The fact that logical
validity is explicitly defined in terms of arbitrary substitutions of terms means that this
account of logic is well placed to explain that fact about the generality and topic
neutrality of logical validity.

Logic as necessary truth preservation

Not everyone is happy with this account of validity. According to the ‘Yes’ case, all this
talk about enthymemes is merely fixing up what formal logic gets wrong. According to
this view, logic is not primarily about form—for a slogan:

Logical validity is a matter of necessary truth preservation.

This definition of validity says nothing about forms. For this account of validity, formal
techniques are at most a useful tool for giving us insight into what may or may not be
possible. On this account, anything that is formally valid will be valid, but not everything
that is formally invalid is really invalid. Not every model will represent a genuine
possibility. Models are tools that bring possibilities to light. In our case, the model to
make the premises true and the conclusion false isn’t a possibility, because of the
connection between being Prime Minister and being a person. Once we have ruled out
that kind of model, the tree shows us that the argument is valid. There is no way for the
premises to be true and the conclusion false. In other cases, a formal construction of a
counterexample will bring to light something we recognise to be a possibility, and in
these cases we will see that the argument is invalid. At heart, on this view, logic is a tool
to be used.

This view has a number of advantages too:

No need for a logical/non-logical distinction

There is no general agreement as to what a distinction between logical and non-logical
connectives might be. If validity is a matter of necessary truth preservation, there are
valid inferences that depend on the nature of all sorts of other connectives, such as
necessity and possibility, counterfactual conditionals, temporal operators such as
‘yesterday’ and ‘tomorrow’, colour terms, and many other things. Each term has its part
to play in validity. There is no distinction between the logical and the non-logical, except
that the commonly used logical connectives are simpler to work with.

Closer fit with pre-theoretical practice

Logic 162

Before we theorised about logical validity, we had a sense that valid arguments were
those that made the conclusion sure, given the premises. This view makes that pre-
theoretic belief explicit. The way to show that an argument is invalid is to show that you
could have the premises true and the conclusion false. It is not to show that if you
interpreted one term by something very much different, you get a counterexample. That
seems irrelevant to the task of judging the validity of an argument.

Finally, we should note that there are a number of problems remaining with both
views. For the view that takes validity to be necessary truth preservation, much more has
to be said about the nature of necessity and how we could ever come to know that
something is necessary or that something is possible. For the first view, you must modify

the account to deal with the quantifiers. The sentence contains no non-
logical vocabulary at all. It is true. There is no reinterpretation of any non-logical
vocabulary possible, so it should be a tautology, according to the letter of the law.
However, it is not, as we could have a domain of one object. To use the reinterpretation
strategy, not only must we reinterpret the non-logical terms, but we also need to be able
to reinterpret the ranges of the quantifiers.

Despite this disagreement about the logical validity, there is a great deal of agreement
about the usefulness of logical techniques. Disagreement is strongest on the issue of how
those techniques work.

Further Reading

This topic is very much a current research issue in the philosophy of logic. Chapter 2 of
Read’s Thinking about Logic [21] and Chapter 2 of Grayling’s An Introduction to
Philosophical Logic [8] provide helpful introductions to the debate. John Etchemendy’s
The Concept of Logical Consequence [5] is a clear and extended treatment of the issue.

‘Contrariwise,’ continued Tweedledee,
‘If it was so, it might be;

and if it were so, it would be:
but as it isn’t, it ain’t.

That’s logic.’
—Lewis Carroll

What is logic? 163

�

Bibliography

[1] George Boolos and Richard Jeffrey. Computability and Logic, 3rd edn. Oxford University
Press, Oxford, 1989.

[2] David Bostock. Intermediate Logic. Oxford University Press, Oxford, 1997.
[3] Brian F.Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge, 1980.
[4] Michael Dummett. Elements of Intuitionism. Oxford University Press, Oxford, 1977.
[5] John Etchemendy. The Concept of Logical Consequence. Harvard University Press, Cambridge,

MA, 1990.
[6] Graeme Forbes. Modern Logic. Oxford University Press, Oxford, 1994.
[7] Bas van Fraassen. Presuppositions, supervaluations and free logic. In: Karel Lambert, (ed.), The

Logical Way of Doing Things. Yale University Press, New Haven, CT, 1969.
[8] A.C.Grayling. An Introduction to Philosophical Logic, 3rd edn. Blackwell, Oxford, 1997.
[9] H.P.Grice. Logic and conversation. In: P.Cole and J.L.Morgan (ed.), Syntax and Semantics:

Speech Acts, Volume 3, pages 41–58. Academic Press, New York, 1975. Reprinted in Jackson
[14].

[10] Susan Haack. Deviant Logic, Fuzzy Logic: Beyond the Formalism. Cambridge University
Press, Cambridge, 1996.

[11] Arend Heyting. Intuitionism: An Introduction. North-Holland, Amsterdam, 1956.
[12] Colin Howson. Logic with Trees: An Introduction to Symbolic Logic. Routledge, London,

1996.
[13] G.Hughes and M.Cresswell. A New Introduction to Modal Logic. Routledge, London, 1996.
[14] Frank Jackson. Conditionals. Oxford Readings in Philosophy, Oxford University Press,

Oxford, 1991.
[15] E.J.Lemmon. Beginning Logic. Nelson, London, 1965.
[16] David K.Lewis. Counterfactuals. Blackwell, Oxford, 1973.
[17] On the Plurality of Worlds. Blackwell, Oxford, 1986.
[18] Jan Łukasiewicz. On determinism. In: L.Borkowski, (ed.), Selected Works. North-Holland,

Amsterdam, 1970.
[19] Alexander Miller. Philosophy of Language. Fundamentals of Philosophy, UCL Press, London,

1998.
[20] Dag Prawitz. Natural Deduction: A Proof Theoretical Study. Almqvist and Wiksell,

Stockholm, 1965.
[21] Stephen Read. Thinking about Logic. Oxford University Press, Oxford, 1995.
[22] Greg Restall. An Introduction to Substructural Logics. Routledge, London, 2000.
[23] Richard Routley. Some things do not exist. Notre Dame Journal of Formal Logic, 7:251–276,

1966.
[24] Bertrand Russell. On denoting. Mind, 14, 1905.
[25] R.M.Sainsbury. Logical Forms: An Introduction to Philosophical Logic. Blackwell, Oxford,

1991.
[26] Gila Sher. The Bounds of Logic. MIT Press, Cambridge, MA, 1991.
[27] John K.Slaney. Vagueness revisited. Technical Report TR-ARP-15/88, Automated Reasoning

Project, Australian National University, Canberra, 1988.
[28] John K.Slaney. A general logic. Australasian Journal of Philosophy, 68:74–88, 1990.
[29] R.M.Smullyan. First-Order Logic. Springer-Verlag, Berlin, 1968. Reprinted by Dover Press,

New York, 1995.

�

[30] A.S.Troelstra and H.Schwichtenberg. Basic Proof Theory. Cambridge Tracts in Theoretical
Computer Science, Volume 43, Cambridge University Press, Cambridge, 1996.

[31] Timothy Williamson. Vagueness. Routledge, London, 1994.

Bibliography 165

�

�

Index
+ see addition
0 false 36
1 true 36
= 169
≠ 169
& see conjunction
\ 153
┴ see falsum

see quantifier, existential
≡ see biconditional

see quantifier, universal
:= 120

see conditional
→ see conditional, non-material

see disjunction
~ see negation
╞ 44, 56, 94

44, 56, 94
├ 64, 94

64
╟ 94

94
√ 57, 152
× see branch, closed
↑ see branch, open

Affirming the Consequent 17

see also conjunction
antecedent 25, 103
argument 11–6;

by cases 104;
conclusion of 11;
form 13–16;
invalid 12, 43–5;
most descriptive form 15–16, 30–2, 113;
premises of 11;
sound 12;
valid 11–12, 43–5

Aristotle 192–3
arithmetic 181–2
arity 120, 175
art 6
assertibility 90–2

�

atomic formula 28

backslash 153
baldness 56, 183
beliefs 9
Belnap, Nuel 6
biconditional 25–7;

tree rule 63
bivalence 80–1, 84–7, 108–9, 188, 201
Boolos, George 3
borderline 78, 82
Bostock, David 3, 5, 74, 190, 203
brackets 28, 176
branch 58–64;

closed 63, 153;
complete 64,161;
infinite 161;
interpretation from 161, 163–4;
open 64, 154, 161

branching rules 65
Brouwer, L.E.J. 108

Carroll, Lewis 126
Chellas, Brian 100
clique 172
colour 77–8
compactness theorem 167
completeness theorem 4, 68–9, 71- 4, 161, 163–4
conclusion 11
conditional 24–5, 88–100;

material 40–1, 93;
natural deduction rules 103;
non-material 93;
paradoxes of 88–97;
strict 95;
tree rule 62

conditional probability 101
conjunct 24
conjunction 21–2, 37;

natural deduction rules 103;
non-propositional 22;
order 22;
tree rule 61

connective 20–7;
definability 53;
main 29

consequent 25, 103
constants 84
construction 108
context;

opaque 207–10;

Index 168

�

transparent 208–10
contingent 42
contradiction 42
counterexample 44–5
Cresswell, Max 3, 100

decision procedure 45
declarative 10
definability 53
definite description 183–91;

in free logic 201–2;
limited domain 189;
referential uses 189;
Russell’s analysis 185;
shorthand 185;
tree rules 186–7

denotation 129
Descartes, René 205–6
dictionary 30–2
disjunct 23
disjunction 23–4, 38;

exclusive 23;
inclusive 24;
natural deduction rules 103;
tree rule 62

Disjunction Introduction 18
Disjunctive Syllogism 18
DNE (double negation elimination) 107, 109
Dodgson, Charles 126
domain 128–30;

finite 134–7, 139–45
infinite 139–1;
outer 202–3

double negation elimination 107, 109
double negation tree rule 61
dualism 205–7
Dummett, Michael 109

E! 196–7
entailment 98
epistemicism 82–3
Etchemendy, John 217
Euclid 127
evaluation 42–3
excluded middle, law of the 107
Exercises 17;

solutions 6
existence 192
existential import 192–3
existential quantifier (see quantfier, existential)

Index 169

�

falsum 106
Forbes, Graeme 3
form 14–16;

instance of 14–16;
invalid 16;
most descriptive 15–16, 30–2, 113;
valid 16

formal language 26
formula 28;

atomic 28;
complex 29;
ill formed 29;
well formed 28

France;
present king of 18–19, 84, 184, 188

free logic 197
Frege, Gottlob 79
function 175–7;

interpretation 176
future contingents 85
fuzzy logic 80–1

Gödel’s incompleteness theorems 3
general rules 151–2
Grayling, A.C. 16, 190, 203, 210, 217
Grice, H.P. 90, 101
Grover, Dorothy 6

Haack, Susan 86
heap 78
Heyting, Arend 108
hidden prefix strategy 196
Hobbes, Thomas 54
Howson, Colin 3, 5, 74, 164
Hughes, George 3, 100
Hypothetical Syllogism 17

identity 169–74
if…then…see conditional
if and only if see biconditional
iff 26
imagination 205–7
instance 14–16
internet 6
intuitionism 108

Jackson, Frank 91, 100
Jeffrey, Richard 3

König’s Lemma 119

Index 170

�

language;

formal 26
left-hand expression 25
Leibniz, Gottfried 207
Lemmon, E.J. 2, 108
Lewis, David 98, 100
Lindenbaum Lemma 5
linear rules 65
linguistics 1
logic:

belief 97;
deductive 13;
first order 114;
formal 1, 4;
free 197;
fuzzy 80–1, 85–6;
inductive 13;
infinitely valued 80–1;
intuitionistic 108–9;
knowledge 97;
many valued 80–1, 85–6;
modal 4, 92–8;
nature of 212–17;
not a completed science 4;
philosophical 1, 4;
predicate 114;
prepositional 4, 5;
reasons to study 1;
relevant 98–9, 109;
spatial 97;
substructural 3, 100, 109;
syllogistic 192–7;
temporal 97;
topic neutrality 215;
truth preservation 215–17

Löwenheim-Skolem theorems 3
Łukasiewicz, Jan 85–6, 110

main connective 29
method of assigning values (MAY) 46–9;

difficulties 48–9;
invalid argument 47;
valid argument 48–9

Miller, Alexander 190
model 128–33;

free logic 197–8
Modus Ponens 17
Modus Tollens 17

names 114;

Index 171

�

canonical 134;
and existential import 194;
intepretation of 129;
new 150;
proper 114

natural deduction 102–10
necessary truth preservation 215–17
necessity 95
negand 26
negated biconditional tree rule 63
negated conditional tree rule 62
negated conjunction tree rule 61
negated disjunction tree rule 62
negated existential quantifier tree rule 150;

in free logic 198–9
negated universal quantifier tree rule 151;

free logic tree rule 199
negation 26, 37;

natural deduction rules 106–7
non-denoting term 84–5, 184
nonexistence 188
normalisation 108
not see negation

objects 114, 129
Ockham’s razor 202
only if see conditional
opaque context 207–10

paradox:

entailment 98;
liar 84;
material implication 88–90;
Russell’s 84;
self-reference 84;
sorites 78–80

parentheses 28, 176
particular rules 151–2
possibilities 37–8
possibility 100–1
Prawitz, Dag 108
predicate 114–15;

arity 115, 120;
dyadic 115;
inhabited 193;
interpretation 132;
monadic 115;
triadic 115

predicate calculus 114
premise 11
presupposition failure 85

Index 172

�

probability:
conditional 101

proof 59, 102–8;
annotation 105;
list form 105;
natural deduction 102–8;
tree form 104;
tree 59

properties 114
proposition 10–1;

atomic 28, 32
quantification:

into intentional contexts 208–10
quantifier 116–18;

at least n 173;
at most n 173;
exactly n 174;
existential 117;
inner 202;
instances 121;
nested 122;
numerical 173–4;
outer 202;
scope of 121;
translating away 133–7;
universal 119
see also tree rule

quotation 210

Read, Stephen 3, 85, 71, 210, 217
relation 115
relevance 98, 109;

maxim of 90
relevant validity 99–100, 109
Restall, Greg 3, 100, 109;

email 6
right-hand expression 25
Rochefoucauld, Duc de la 110
Routley, Richard 203
rule:

conditional 103;
conjunction 103;
disjunction 104;
double negation 106;
falsum 106;
negation 106–7,
tree 61–3

Russell, Bertrand 79, 185, 190

S5 96
Sainsbury, Mark 16

Index 173

�

sand 78
satisfaction 57–9, 139
scarlet 77
Schwichtenberg, H. 108
scope 121
sea battle 85
shape see form
sharpening 82
Sheffer Stroke 53, 75
Sher, Gila 16
Slaney, John 79, 86, 109
Smullyan, Raymond 3, 5, 75, 164
sorites:

argument 77–80;
paradox 78–80

soundness 12–3;
disagreements about 13

soundness theorem 4, 68–71;
161–3.

structure see form
supervaluations 82
syllogistic logic 192–3

table, truth see truth table
tableaux see trees
tautology 42
term:

non-denoting 84–5, 184
tool 6
toy 6
translation 121–3
transparent context 208–10
tree:

advice 65–6;
branches 58;
closed 58–9, 5, 170;
completed 64, 161, 163–4;
completeness for 68–9, 71–4, 161, 163–4;
efficient 65;
existential quantifier rule 150;
finite domain 143;
free 199–201;
identity 170–1;
inefficient 65;
infinite 156–7;
motivation 57–9;
as natural 6;
notation 64;
open 63–4;
partially developed 63–4;
rationale 5;

Index 174

�

soundness of 68–71, 161–3;
with function symbols 177

tree rule:
biconditional 63;
conditional 62;
conjunction 61;
definite description 186;
disjunction 62;
double negation 61;
identity 170–1;
negated biconditional 63;
negated
conditional 62–3;
negated conjunction 61–2;
negated definite description 187;
negated disjunction 62;
negated existential quantifier 150;
negated universal quantifier 151;
universal quantifier 151

Troelstra, A.N. 108
truth 12–13, 36, 139
truth functionality 94
truth table 36–45;

arguments 43–5;
biconditional 41;
complex formula 38–9;
conditional 40;
conjunction 37;
contingent 42;
contradiction 42;
disjunction 38;
inconsistent 42;
intuitionistic 110;
invalid 44;
negation 37;
rows 37;
tautology 42;
three-valued 86;
valid 44

universal quantifier see quantifier, universal
unknowable 83

vagueness 77–84
validity 11–6, 43–5;

modal 96–7;
relevant 98–100

van Fraassen, Bas 82
variable 117–20;

bound 121;
free 121

Index 175

�

vel 23–4
Voltaire 76

W 94
w see world
website 6
Williamson, Timothy 79, 85
Wittgenstein, Ludwig 87
world 94–9;

way one can be 42

yellow 77

Index 176

�

	Book Cover
	Half-Title
	Series
	Title
	Copyright
	Dedication
	Contents
	Acknowledgements
	Introduction
	PART 1 Prepositional logic
	Chapter 1 Propositions and arguments
	Chapter 2 Connectives and argument forms
	Chapter 3 Truth tables
	Chapter 4 Trees
	Chapter 5 Vagueness and bivalence
	Chapter 6 Conditionality
	Chapter 7 Natural deduction
	PART 2 Predicate logic
	Chapter 8 Predicates, names and quantifiers
	Chapter 9 Models for predicate logic
	Chapter 10 Trees for predicate logic
	Chapter 11 Identity and functions
	Chapter 12 Definite descriptions
	Chapter 13 Some things do not exist
	Chapter 14 What is a predicate?
	Chapter 15 What is logic?
	Bibliography
	Index

