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Preface

A pre-preface note: This book is dedicated to Professor Emery N. Brown in honor of
his great scientific contributions and his 60th birthday (in parallel with a symposium
held in MIT on September 14–15, 2017). Noticing diverse scientific themes of
Emery’s work, the editors have invited Professor Rob Kass and Professor Ralph
Lydic to write their personal reflections on Emery’s scientific contributions in the
fields of neurostatistics and anesthesiology, respectively.

Reflections from Rob Kass

It is a great pleasure to begin this volume by offering a short perspective on Emery
N. Brown. There is much to admire in Emery’s research, and also much to learn
from his unique path to scientific leadership. As Emery’s students and colleagues
know, but some readers of this book may not, Emery combined his M.D., including
a fellowship and board certification in anesthesiology, with a Ph.D. in statistics,
and his professional life reflects this unusual training: he is in the operating room
one day every week, and runs his human anesthesiology studies, at Massachusetts
General Hospital (MGH), yet he teaches classes in statistics and has his main office
in the Department of Brain and Cognitive Sciences at MIT. Together with his many
collaborators, Emery has produced important new methods for analysis of neural
data, advancing knowledge in a variety of scientific subdisciplines in the process,
while his research on the mechanisms by which anesthesia produces altered states
of arousal is putting the subject on a firm foundation. Emery is the only person to
hold chaired professorships at both Harvard Medical School and MIT.

One clue in trying to understand Emery’s trajectory comes from his under-
graduate major in applied mathematics, which gave him two things: knowledge of
elementary methods in dynamical systems and an appreciation for the importance
of statistics. Emery brought these strands together in his PhD thesis work on
time series analysis for circadian rhythms data. In addition, Emery recognized
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the potential for exploiting the connection between dynamical system models
represented by differential equations, in continuous time, and certain time series
models—including, especially, state-space models—that can be considered discrete
analogues, where differential equations are replaced by difference equations. It
is hard to overstate the importance of Emery’s fundamental contribution, even
though it will someday seem obvious: dynamic neural phenomena should be
described using dynamic methods, which includes both mathematical models to aid
understanding and statistical models to guide data analysis. Emery has made this
big picture contribution, which I see as his enduring technical legacy, not through
a single discovery, but through a steady stream of cases that, taken together, form a
compelling whole. In retrospect, it is not hard to see the arc from Emery’s scientific
starting point in circadian rhythms, which he identified as a fertile subject in which
differential equations and statistical inference could be brought together to move
the science forward, to his numerous creative applications of state-space modeling
in the analysis of neural data, to his recent discoveries, enabled by biophysical and
statistical modeling, that are establishing a mechanistic neuroscience of anesthesia.

Beyond the seemingly prescient choices he made in his education, Emery has
had a rare ability to adopt good strategies for achieving worthy goals. At many key
points in his career, he has had the patience and confidence to turn away from short-
term gain and has, instead, invested his time and energy in learning what he needed
to know, and creating the environment necessary to achieve results he recognized
as truly important. This has required not only foresight and dogged persistence
but also a kind of dexterity in sidestepping the inevitable pitfalls. Emery himself
emphasized this during an informal talk he gave many years ago at Carnegie Mellon
University, to a group of underrepresented minority students: he spoke of some
unpleasant childhood experiences, which began while public schools in his home
state of Florida were segregated, and then continued when, after desegregation, he
faced instances of blatant racial discrimination. During his remarks Emery stressed
that while it is natural to be angered at such injustices, it is more productive to
find ways around the obstacles they created; he added that everyone faces obstacles
of various kinds, but the most successful among us are those who stay mindful of
their goals and stay focused on finding paths to achievement. Those words have
stayed with me as I have witnessed Emery’s uncanny mastery of circumventing
obstructions, which come in so many different forms. There is a limit to which each
of us can be like our heroes, but we would all be wise to take the advice Emery
offered to those students, and, at least in this respect, try to emulate his success.
Finally, I’d like to add that, from many, many conversations, I know how deeply
Emery cares about training at all levels. On the one hand, he has put great energy into
his courses at MIT, and into specialized short courses around the world. On the other
hand, he demonstrates sincere concern for all his many students and postdocs. This
book is a great testimony to what Emery has done for his trainees, as they review
some of their recent scientific advances, thereby giving back to him something of
lasting value, in the best intellectual spirit, and with continuing affection.
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Reflections from Ralph Lydic

It is my great pleasure to highlight selected aspects of Emery Brown’s many
contributions to anesthesia research. The editorial directives were to provide a
brief, personal perspective. Of primary importance is the fact that the future of
every discipline depends on the acquisition of new knowledge via recruitment
and retention of investigators. This Festschrift, organized by Emery’s collaborators
and former students, effectively conveys the admiration and affection with which
Emery is regarded. Emery is uniquely successful at providing novel and clinically
relevant scientific discoveries while promoting his colleagues. Emery’s ability to
create an extended scientific family powerfully supplants the dehumanizing view
of faculty and staff as a “human resource.” Emery became an Assistant Professor
of anesthesiology in 1993 and during the ensuing 24 years he has mentored
more than 200 undergraduates, graduate students, and fellows. Mentees include 28
anesthesiology residents and faculty, some of whom remain actively engaged in
research. Emery’s role as a mentor has generated an incalculably positive “return on
investment” for academic anesthesiology.

I view Emery’s anesthesia-related research as a line segment originating decades
ago from his successful mathematical modeling of sleep and circadian rhythms.
Several of Emery’s early papers are regarded as classics today. I first met Emery
in the mid-1980s when he and I were associated with different Harvard training
programs. It was kindness of Robert (Bob) McCarley that Emery and I had
our first scientific exchange. A decade earlier Bob, using Lotka-Volterra type
equations, had developed the first cellularly based, mathematical model of the
mammalian sleep cycle. About the same time, Emery was independently developing
dynamical systems models and nonlinear filtering techniques to characterize the
oscillatory properties of biological rhythms. I was recording the discharge of
dorsal raphe neurons across the sleep/wake cycle. We were keen to combine our
respective approaches. In what may be an example of excessive synaptic delay, our
collaborative plans finally matured in 2010 when Emery invited Nicholas Schiff and
me to coauthor a review for the New England Journal of Medicine. Relative to the
present volume, that review presents a structurally based story model concerning
the neural networks that generate states of anesthesia, sleep, and coma.

Anesthesia and sleep are distinctly different states of consciousness identified by
constellations of physiological and behavioral traits. Emery’s early mathematical
modeling of sleep is thematically related to his current anesthesiology research.
The present prologue was written 117 years after the first demonstration of ether
anesthesia. In contrast, modern humans have existed for about 160,000 years. The
ratio of these two numbers illustrates the small percentage of time that humans
have been able to reliably manage surgical pain. At the beginning of the current
millennium, the 6 June 2000 issue of the New England Journal of Medicine listed
anesthesia as “one of the most important medical developments of the past thousand
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years.” At present, there are approximately 60,000 cases of general anesthesia
each day in the United States. When delivered by expert caregivers, anesthesia is
remarkably safe. In no case, however, is it understood how anesthetics eliminate
waking consciousness. Understanding the mechanisms of anesthetic action will be
a significant scientific advance. At the level of clinical care, such an understanding
will help develop countermeasures that diminish or eliminate unwanted anesthetic
side effects such as nausea and vomiting, as well as inadequate pain relief currently
experienced by about half of postsurgical patients. All of the desired effects
produced by general anesthetics, sedatives, and opiates are products of the nervous
system. Thus, anesthesiology can be viewed as a branch of clinical neuroscience.
In addition, Emery’s anesthesia research has the potential to advance neurology,
sleep disorders medicine, pain medicine, and biological psychiatry. An enhanced
understanding of the neuronal mechanisms of anesthesia also is likely to contribute
to consciousness studies.

Directly relevant to the present volume is Emery’s creative application of
computational biology to problems relevant for anesthesiology. One challenge for
such a research program is complexity. Anesthetic effects on any dependent measure
vary by trait and by scale. Sources of variability include the class and amount of drug
administered, brain regions acted upon, sex, age, species, and time, to name a few.
All of these features also are subject to individual allelic variability. Obviously, a
further complexity is that traits and scales vary as a function of disease states.

Rapidly advancing technologies will help address many of the forgoing complex-
ities. For example, the 2014 Intel microprocessor containing more than 35 million
transistors per square mm will soon be surpassed by a smaller chip that triples
the number of transistors per square mm. Computational neuroscience can build
large data matrices that are ideal for novel analytic approaches, such as Jim Grey’s
“fourth science paradigm” using “big data.” Supercomputer development also holds
exciting promise for advancing computational neuroscience. The 26 June 2016 issue
of Science reported that 167 of the World’s top 500 supercomputers are in China
and have a total capacity of 211 Pflop/s compared to 165 supercomputers in the
United States with a cumulative capacity of 173 Pflop/s. I am confident that Emery’s
research, discoveries by his trainees and colleagues, and books such as this one will
continue to advance computational neuroscience that enhances anesthesia.

Pittsburgh, PA, USA Robert E. Kass
Knoxville, TN, USA Ralph Lydic
July 2017
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Chapter 1
Introduction

Zhe Chen and Sridevi V. Sarma

1.1 Background

In today’s modern age, an enormous amount of neural data have been recorded or
collected (Stevenson and Kording 2011). It remains a great challenge to process
and analyze this “big data.” By nature, neural signals are stochastic (noisy) signals
measured from dynamic processes in the brain at various spatiotemporal scales.
The term “dynamic” is emphasized because the neural signals are generated from
biophysical processes (i.e., neurons) that have memory. Neural signals are often
modeled as non-stationary stochastic processes. Unlike other physical signals,
neural signals are driven by complex behaviors of experimental subjects. In some
cases, multi-modal neural data are simultaneously collected at different spatial and
temporal scales. The development of efficient quantitative methods to characterize
these recordings and extract information that reveals underlying neurophysiological
mechanisms remains an active and important research field.

To date we have witnessed tremendous advances and growing interests in
applying statistics, signal processing, control and modeling methods to neuro-
science. Meanwhile, new applications encounter emerging problems and challenges.
Therefore, it is important to recognize these challenges and frequently exchange
innovative ideas among researchers at both computational and experimental ends as
well as those at the interface. We will review some important research topics and
progresses of applying quantitative methods for neuroscience data. The concept of
dynamics is emphasized throughout the book.

Z. Chen (�)
New York University School of Medicine, New York, NY, USA
e-mail: zhe.chen3@nyumc.org

S.V. Sarma
Johns Hopkins University, Baltimore, MD, USA
e-mail: sree@jhu.edu
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2 Z. Chen and S.V. Sarma

1.2 Statistics and Signal Processing in Neuroscience

Analysis of neurophysiological or behavioral data from neuroscience investigations
is a fundamental task in computational and statistical neuroscience (Brown et al.
2004; Kass et al. 2005). The task can be challenging when the following one or
more scenarios are present: (i) The dimensionality of the data is scaled up from an
order of tens to hundreds or even larger; (ii) The data are either super noisy with a
very low signal-to-noise (SNR) ratio or large variability (across trials or time); (iii)
The exact quantitative mapping between neural codes and the measured behavior
is always partially unknown, given partial observations of behavioral measures and
neural recordings.

The core of statistics is data science. The data are generated and collected from
neuroscience experiments at neurophysiological, imaging, or behavioral levels. In
their article “What is statistics” published in American Statistician, Brown and Kass
defined two fundamental principles for statistical thinking (Brown and Kass 2009;
Kass et al. 2014):

1. Statistical models of regularity and variability may be used to express knowledge
and uncertainty about a signal in the presence of noise, via inductive reasoning.

2. Statistical methods may be analyzed to determine how well they are likely to
perform.

The first principle focuses on the construction of statistical models, whereas the
second principle focuses on the evaluation of statistical inference procedures.
Depending on the model assumption, statistical models can be parametric,
semiparametric, or nonparametric, with a trend in growing model complexity. It
is important to stress the motto: “all models are wrong, but some are useful,” in a
sense that statistical models need to be adapted or modified according to the need,
which may or may not fully reflect the truth of data generating process.

Based on these two principles, likelihood or Bayesian methods can be developed
for neural data analysis (Pawitan 2001; Brown et al. 2003; Gelman et al. 2004;
Robert 2007). Among Bayesian inference methods, there are techniques based on
deterministic optimization (such as the Laplace method or variational method)
or stochastic sampling (such as the sequential Monte Carlo or Markov chain
Monte Carlo methods). Examples of statistical models and inference are shown in
Table 1.1.

Signal processing is a discipline that encompasses the fundamental theory,
applications, algorithms, and implementations of processing or transferring infor-

Table 1.1 Examples of statistical models and inference

Likelihood inference Bayesian inference

Parametric Linear regression, GLM Particle filter (Doucet et al. 2001)

Semiparametric Finite mixture models BARS (DiMatteo et al. 2001)

Nonparametric KDE, Kernel regression GP, Dirichlet process mixtures (Hjort et al. 2010)
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mation contained in signals. Roughly speaking, we can classify fundamental tasks
of statistical signal processing into three categories: signal recovery (examples
of such include a wide range of inverse problems such as filtering, detection,
denoising, and deconvolution), representation and visualization (examples of such
include spectral analysis, subspace identification, compression), and prediction
and control (the problem of control will be addressed separately in the next
section). The goal of neural signal processing is to combine statistics, signal
processing, and optimization methods to process neural data of diverse sources.
Unlike traditional signal processing assumptions, neural signal processing often
deals with neurophysiological signals with non-Gaussianity, non-stationarity, and
heterogeneity (Chen 2017). Over the past decades, many statistical signal processing
tools have been developed for various neuroscience applications. We will briefly
review a few important applications in this area.

1.2.1 Neural Coding

From a neural coding perspective, there are encoding and decoding phases (Fig. 1.1).
The goal of neural encoding is to elucidate the representation and transmission of
information in the nervous system (Perkel and Bullock 1968), whereas the goal
of decoding is to extract as much information about a stimulus as possible from

Fig. 1.1 Schematic diagram of neural coding and decoding analyses. (a) In the hippocampal
encoding analysis, sorted spikes from three neurons are correlated with the measured animal’s
spatial position during run behavior to construct three place receptive fields. (b) In the hippocampal
decoding analysis, sorted spikes are plugged in the designed decoding algorithm to reconstruct
animal’s spatial position in time. Adapted from (Brown et al. 2004)
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neural signals. Depending on coding strategy, neural codes can be categorized as rate
code, timing code, correlation code, or synchronous firing. At a single neuron level,
the neuronal tuning information is characterized by its receptive field (RF), which
defines how its spiking activity changes in response to a stimulus (see Fig. 1.2c
for an example). For instance, in visual systems, the neuronal tuning function
is characterized by a 2D spatiotemporal RF; whereas in auditory systems, it is
characterized as a spectrotemporal RF (STRF). In the case of auditory neurons,
the classic STRF model assumes a linear relationship between the time-dependent
neuronal response r.tk/ and the time-frequency spectrum of acoustic stimuli s.k; !/:

r.tk/ D r0 C
X

�

X

!

STRF.�; !/s.k � �; !/ (1.1)

where r0 denotes the baseline firing rate, s.k � �; !/ denotes the stimulus energy
at different tonotopic locations ! and different time delays � > 0. The strength
and nature of the influences, whether being excitatory (positive) or suppressive
(negative), is described by the STRF gain function STRF.�; !/. The traditional
method for mapping the neuronal RF is reverse correlation (Ringach and Shapley
2004); see Fig. 1.2a for an illustration. In order to characterize the response
nonlinearity and non-Gaussianity and to account for the spiking history, a so-
called linear-nonlinear Poisson (LNP) model has been developed (Fig. 1.2b), which
consists of a linear filter, followed by a pointwise static nonlinearity and a Poisson
random number generator. The LNP model is essentially a generalized linear model
(GLM). Specifically, to account for non-Poisson spiking (such as the refractory
period and bursting), one can incorporate a post-spike history filter and model the
instantaneous firing rate as (Truccolo et al. 2005; Calabrese et al. 2011)

�.tk/ D f

�
�0 C

X

f

X

�

STRF.�; !/s.k � �; !/„ ƒ‚ …
stimulus effect

C
X

l

h.l/n.k � l/„ ƒ‚ …
spike-history effect

�
(1.2)

where �0 is a constant, h.l/ is a finite-length post-spike filter, n.k � l/ denotes the
spike count in the previous l-th window before time index k, and f .�/ is a static
nonlinearity, which can be an exponential: f .u/ D exp.u/, or f .u/ D log.1 C
exp.u//, or a custom function (e.g., f .u/ D exp.u/ for u � 0 and f .u/ D 1C u C u2

2

for u > 0).
Neural population decoding is aimed to exploit various coding strategies and

extract information to reconstruct the sensory input or motor command. In the
case of rate code, neurons are generally considered to communicate information by
increasing or decreasing their firing rates. In the case of others, neuron population
can use specific spatiotemporal patterns of spiking activities and silent intervals. The
early representative work on population decoding include the “population vector”
(Georgopoulos et al. 1986), which computes the sum of preferred directions of a
population of neurons, weighted by respective spike counts, and the optimal linear
estimator (Bialek et al. 1991), which is based on a static linear regression model
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Fig. 1.2 Illustration of neural encoding. (a) Reverse correlation: the receptive field is estimated
by regressed with spikes with temporally shifted stimuli using a linear Gaussian model. (b) A
linear-nonlinear-Poisson (LNP) model for an auditory neuron. Each neuron has a stimulus filter or
STRF.�; !/, and a post-spike filter h.l/ that captures dependencies on the neuron’s own spiking
history. Summed filter output passes through a static nonlinearity f .�/ to produce the instantaneous
spike rate. (c) Spike trains of a single motor cortical neuron while a monkey performed a reaching
task in each of eight directions. Each of the eight spike rasters displays five repetitions of the reach.
Time 0 indicates initiation of movement. In this example, this neuron has preferred (greater) firing
activity when the movement was roughly in the leftward direction. Adapted from (Chen 2017) and
(Brockwell et al. 2007) with permission (Copyright: IEEE)
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between the kinematics and population firing rate. However, the strong limitation
of this model is its failure to capture temporal dynamics of population codes. Later
on, the linear state space model (i.e., Kalman filter) was subsequently proposed to
decode motor population codes (Wu et al. 2006, 2009). The Kalman filter consists
of two equations: the state equation and measurement equation (Kalman 1960). For
instance, the state equation characterizes the dynamics of motor kinematics, and the
measurement equations assume a Gaussian likelihood based on the population firing
rate. Furthermore, the linear Gaussian model was extended to Poisson-GLM with
latent variables (Lawhern et al. 2010). To date, most population coding analyses
have used decoding algorithms based on spike count observations or rate codes
(Rieke et al. 1997; Zhang et al. 1998; Zemel et al. 1998).

Another line of research in population decoding methods is built upon point
processes (Brown 2005). The pioneering application of decoding analysis at a
millisecond resolution was demonstrated in the rodent hippocampus (Brown et al.
1998), and was later extended to motor cortical areas (Truccolo et al. 2008; Shanechi
et al. 2012). Since the point process model assumes a non-Gaussian likelihood,
Gaussian approximation methods have been used to derive a recursive point process
filter (Smith and Brown 2003; Eden et al. 2004; Barbieri et al. 2004). In addition,
other numerical methods such as the particle filter or sequential Monte Carlo have
been used for population decoding methods (Brockwell et al. 2004; Ergun et al.
2007). Notably, most neural encoding models for receptive fields are parametric.
However, due to the complexity of statistical dependency between the input and
responses, parametric models are limited in their representation power. As a result,
a few nonparametric methods have been proposed (Truccolo and Donoghue 2007;
Coleman and Sarma 2010; Agarwal et al. 2016). Another Bayesian nonparametric
method is Gaussian process (GP), which has also been developed in population
decoding methods (Huys et al. 2007).

To date, most decoding methods are based upon sorted spikes. However, spike
sorting is a complex, time-consuming, and error-prone process, and it often discards
many non-clustered spikes (Lewicki 1998). To overcome this limitations, several
efforts have been dedicated to decoding unsorted ensemble spikes (Ventura 2008,
2009; Chen et al. 2012; Kloosterman et al. 2014). One idea is to treat the cell
identity as a missing variable, and assume the temporal evolution of the stimulus is
smooth, from which a maximum likelihood-based decoding method is derived using
an expectation maximization (EM) algorithm (Ventura 2008). In another approach,
information in covariates that modulate neuronal firing is exploited in addition
to spike waveform information, and this can lead to improved spike sorting and
decoding results (Ventura 2009). Yet another idea is to model the spike waveform
features by a temporal marked point process (Kloosterman et al. 2014). In the
rodent hippocampal example, we can directly map the high-dimensional features
of unsorted hippocampal spikes (denoted by vector a, which are treated as a proxy
of the unit identity) to the animal’s position (denoted by x), from which we estimate
the generalized rate function�.a; x/ using nonparametric or semiparametric density
estimation methods. This idea was further extended by incorporating temporal priors
(Deng et al. 2015).
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Finally, from a practical viewpoint, neural decoding algorithms based on contin-
uous neural signals, such as the local field potential (LFP) and electrocorticography
(ECoG), are frequently used (Zhuang et al. 2009; Bansal et al. 2012; Gilja et al.
2012; Stavisky et al. 2015). The Kalman filter, factor analysis, and the hidden
Markov model (HMM) are among the common tools for these algorithms.

1.2.2 The Inverse Problems

In neuroscience, it is often the case that neural sources are not easily within reach
to record from. This motivates the development of solving the inverse problem
for neuroscience applications. That is, we would like to infer neural activity at
the source from measurable data collected in regions that are either spatially or
functionally connected to the source. Nearly all inverse problems are ill-posed,
therefore the solutions to inverse problems are non-unique. We briefly review three
types of inverse problems in neuroscience: source localization, deconvolution, and
denoising or artifact rejection.

The first type of inverse problem is the electroencephalography (EEG) or
magnetoencephalography (MEG) source imaging or localization (see Fig. 1.3). EEG
and MEG represent two noninvasive functional brain imaging methods, whose
extracranial recordings measure electric potential differences and extremely weak
magnetic fields generated by the electric activity of the neural cells, respectively
(Wendel et al. 2009). The goal of source localization is to estimate the location and

Fig. 1.3 Illustration of source imaging. Signal processing (e.g., denoising, artifact rejection) starts
at the preprocessing step. The inverse problem attempts to locate the sources from recorded
measurements, whereas the forward problem assumes a source definition in order to calculate a
potential distribution map. From (Wendel et al. 2009)
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strengths of the current sources that generate the multichannel EEG or MEG signals
(Wu et al. 2016). Traditional signal processing methods are based on spatial filtering,
such as LORETA (Pascual-Marqui 1999). However, it is important to exploit other
constraints, such as temporal priors (Lamus et al. 2012) or sparsity priors (Babadi
et al. 2014).

The second type of inverse problem is deconvolution of imaging signals. In
human neuroscience experiments, functional magnetic resonance image (fMRI) is
a powerful technology to measure macroscopic brain activity by detecting changes
associated with blood flow. Cerebral blood flow is coupled with neuronal activation,
therefore the hemodynamic dynamics is dependent on the underlying neural
dynamics. Although the hemodynamic response is relatively slow, simultaneous
fast fMRI-EEG recordings can reveal also detect oscillatory neural activity in
human brains (Lewis et al. 2016). Since fMRI is an indirect measure that rests
upon a mapping from neuronal activity s.t/ to the blood oxygen level dependent
(BOLD) signal via hemodynamic effects, specified by a linear convolution operator
(Gitelman et al. 2003)

y.t/ D s.t/˝ h.t/C n.t/ (1.3)

where ˝ denotes convolution and n.t/ denotes the measurement. The goal of
deconvolution (i.e., unfolding the convolution process) is to reconstruct the neural
dynamics s.t/ via an estimated or measured hemodynamic response function (HRF)
h.t/. In a more general setting, the HRF can be spatiotemporal (Aquino et al.
2014), and the interaction model can be nonlinear (Penny et al. 2005). Once the
neural activity is reconstructed from multiple brain regions, one can further infer
the directional interactions or functional connectivity between those areas.

Calcium ions generate versatile intracellular signals that control key functions in
all types of neurons. Imaging calcium in neurons is particularly important because
calcium signals exert their highly specific functions in well-defined cellular sub-
compartments (Grienberger and Konnerth 2012). Today, confocal and two-photon
microscopy for calcium imaging has become a widely used tool to investigate large-
scale neuronal activity in animal’s brain. The powerful imaging tool has enabled
us to detect spatiotemporal activation patterns of neural assemblies and to uncover
neuronal population dynamics (see an illustration in Fig. 1.4). Similar to fMRI, the
goal of deconvolution is to infer neuronal spike activity from calcium imaging trace
(Vogelstein et al. 2009, 2010; Onativia et al. 2013). This process consists of a
serial of signal processing operations: spatial filtering, denoising, deconvolution,
and demixing. Developing fast and efficient algorithms for large-scale calcium
imaging data has been an active research topic (Pnevmatikakis et al. 2006; Theis
et al. 2016; Deneux et al. 2016; Rahmati et al. 2016; Friedrich et al. 2017).

This brings us to the last type of inverse problem, which is signal denoising.
Denoising is often a preprocessing step for all neural data analyses, since nearly
all neural measurements are corrupted by various sources of noise (e.g., electrical,
mechanical, movement, etc.). Recently, harmonic regression has been introduced
in neural signal processing for denoising calcium imaging data (Malik et al. 2011)
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Fig. 1.4 Detection of neuronal assemblies from calcium imaging. Top: raster plot of the z-scored
�F=F0 of 277 neurons distributed in 37 assemblies, from the total imaged population of 1025
neurons. Neurons are sorted and color-coded according to the assembly to which they belong to
(color bar on the right). Black trace on top, fluctuations of the number of active neurons in the
total imaged population; Black trace on the left, average neuronal responses to a whisker-object
contact. Bottom: activation dynamics of the detected assemblies, color-coded as in the raster plot.
From (Romano et al. 2017)

and for EEG-fMRI artifact rejection (Krishnaswamy et al. 2016). In general, the
observed signal y.t/ is modeled as the sum of two statistically independent processes
y.t/ D s.t/ C n.t/: a signal process and a noise process. The idea of harmonic
regression is to represent the signal or noise process as a harmonic series

s.t/ D �0 C
RX

rD1
Ar cos.!rt/C Br sin.!rt/ (1.4)

where order R denotes the number of harmonics, �0 is a constant, ŒAr;Br� together
define the amplitude and phase of the r-th harmonic, and! specifies the fundamental
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frequency. The residual noise (or signal) process n.t/ will be modeled as a p-
order autoregressive (AR) process. The unknown harmonic coefficients and AR
coefficients can be estimated by maximum likelihood methods (Brown et al. 2004).

1.2.3 Analysis of Plasticity or Dynamics of Single Neurons
and Populations

Neuroscience experiments often consist of multiple independent trials, and neuronal
spike activity can exhibit a large variability between trials, for reasons due to
learning, adaptation, remapping, or top-down attention. Consequently, receptive
fields of neurons are dynamic, i.e., neuronal responses to relevant stimuli change
with experience. Experience-dependent change and neural plasticity has been
documented in a number of brain regions, and characterizing such neural plasticity
is important since the plasticity may reveal neural mechanisms in learning.

Two pioneering studies that characterized dynamics from neuronal spiking
data were performed by Brown et al. (2001) and Czanner et al. (2008). In one
experiment, a rat continuously navigates along track and learns which directions
lead to reward. To track the rat’s hippocampal place fields during learning and
navigation, they derived an instantaneous steepest-descent adaptive filter algorithm
based on an instantaneous log-likelihood for point process observations, and used
the adaptive point process filter (Brown et al. 2001). Their approach was motivated
from the most popular adaptive filter algorithm (i.e., the least-mean square filter)
in signal processing, and they demonstrated that decoding of the rat’s position
improved with an adaptive filter over a static filter. In a second study, Brown and
colleagues developed a likelihood-based modeling approach for analyzing between-
trial hippocampal neuronal dynamics while monkeys performed an associative
learning task (Czanner et al. 2008).

It is worth noting that learning experiments, behavioral data generated can be
analyzed using a state-space model with a discrete observation process (Chen et al.
2010; Chen 2015). For example, a typical learning experiment consists of a sequence
of trials on which a subject executes a task correctly or incorrectly. In the behavioral
learning analysis, the objective is to estimate the learning curve, i.e. the probability
of a correct response as a function of trial number give all the entire sequence correct
and incorrect responses in the experiment. This has been formulated as a dynamic
system and the inference is given by a state-space smoothing algorithm (Wirth et al.
2003; Smith et al. 2004, 2005, 2007). This state space approach can also be extended
to behavioral experiments with mixed observations (binary and continuous) (Prerau
et al. 2009) or trivariate responses (Wong et al. 2014). In this book, Chap. 7 describes
the state-space modeling approach in detail.

At the population level, the assessment of second and higher-order neuronal
correlation is also an important task in neuroscience experiments, as coopera-
tive activity between simultaneously recorded neurons is expected to organize
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dynamically during behavior and cognition. One important approach is to estimate
time-varying spike interactions for multivariate point process observations by means
of a state-space analysis (Shimazaki et al. 2012). Another approach is to identify
the functional connectivity or (directional) Granger causality between neuronal
assemblies within or across different brain areas. Several maximum likelihood and
Bayesian methods have been developed in the literature for neural spike train data
(Okatan et al. 2005; Stevenson et al. 2009; Chen et al. 2011; Kim et al. 2011)
and EEG signals (Stokes and Purdon 2017). The functional connectivity is usually
assumed stationary within a task or trials, but an extended solution to a non-
stationary scenario has been considered (Zhou et al. 2016).

Finally, data smoothing and high-dimensional data visualization has become
an increasingly important topic in neuroscience. Exploiting temporal dynamics
structure and latent structure of neural data has proved useful in various applications
(Yu et al. 2009; Cunningham and Yu 2014; Chen et al. 2012, 2014; Ba et al. 2014;
Kobak et al. 2016).

1.3 Modeling and Control in Neuroscience

Control theory is a field that entails the analysis of dynamical systems and the
synthesis of controllers that actuate these systems to meet specific objectives (e.g.
tracking a signal, rejecting disturbances, stabilizing an unstable system). If the
actuation is done in the absence of system response measurements, then the control
system (dynamical system plus controller) is said to be open loop. If the controller
generates an actuation based on response measurements, then the control system is
said to be closed-loop. Consider the simple most widely used closed-loop control
system: a thermostat. The objective of the thermostat is to regulate the temperature
in a room at a desired set point. That is, the heat or air condition should be increased
or decreased, based on room temperature measurements, to remain steady at the
desired set point. Here, the dynamical system is the evolving room temperature,
which is actuated by heat or air conditioning, and the thermostat is the sensor that
measures the temperature, compares it to the set point, and adjusts the heat or air
conditioner.

Control theory has emerged as an important field in neuroscience because it has
become possible to more easily manipulate the chemical and electrical patterns
in the brain (the dynamical system to be controlled) with drugs that cross the
blood–brain barrier, electrical stimulation delivered through electrodes implanted
into the brain, or via light delivered through optical fibers that excites genetically
manipulated neurons. Traditionally, these actuating mechanisms are applied either
in open-loop or in closed-loop at a very slow rate. For example, a drug may be given
to a Parkinson’s disease (PD) patient to suppress movement disorders including
resting tremor, rigidity, and bradykinesia (slowness of movements). After a few days
or weeks on the medication, the patient’s responsiveness is measured. Depending on
how well the drug suppresses the patient’s symptoms, the dosage is either increased
or decreased or the medication is changed altogether (slow closed-loop control).
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More recently, deep brain stimulation (DBS) has been used in clinical practice
to suppress pathological neural network dynamics and restore behavior. DBS
works as an exogenous localized control input into the network (Benabid et al.
2009). It injects pulses of electrical current in well-defined anatomical sites, but
its effects spread throughout the network (Benabid et al. 2009; Montgomery and
Gale 2002, 2008; Perlmutter and Mink 2006). For example, in Parkinson’s disease,
a specific motor-related neuronal network exhibits pathological oscillations and
synchronization that are hypothesized to cause movement disorders described
above (Kühn et al. 2009; Gale et al. 2008, 2009; Sarma et al. 2012; Santaniello
et al. 2012). DBS applied to one structure in the motor network can suppress these
symptoms if the electrode is placed precisely and if the DBS signal parameters
are set appropriately (Benabid et al. 2009; Kuncel et al. 2006; Lang and Lozano
1998). Therapeutic stimulation, however, operates in open-loop and is typically high
in power which leads to several problems: frequent surgical battery replacements,
adverse side effects, long-term tissue damage, and non-adaptation of stimulation
parameters to patient’s needs (Butson and McIntyre 2008; Tommasi et al. 2008;
Wei and Grill 2009; Zahodne et al. 2009). Consequently, closed-loop designs have
been proposed to overcome these drawbacks. It is worth noting that DBS is also
used to suppress seizures in epilepsy patients (Sohal and Sun 2011; Colpan et al.
2007; Gluckman et al. 2001; Ehrens et al. 2015; Good et al. 2009) (see Fig. 1.5),
suppress involuntary movements in dystonia, stop ticks in Tourette’s syndrome, and
to improve outcomes for clinically depressed patients (Ressler and Mayberg 2007;
Wichmann and DeLong 2006).

An alternative to electrical stimulation that can more precisely target individual
structures and neurons is optogenetic stimulation. Here, targeted neurons are
injected with a virus that allows neurons to grow photoreceptors so that light at
specific wavelengths can either activate or inhibit action potentials. Optogenetics
has proven to be a valuable tool in neuroscience studies as networks in the brain
can be targeted and controlled to study functionality. However, despite substantial
advancements in these genetic tools, their use is largely restricted to perturbative
paradigms wherein neurons in the targeted network are stimulated en masse.

Fig. 1.5 Closed-loop control
for seizure detection and
electrical stimulation. In this
schematic diagram, the
closed-loop control
continuously steers the
epileptogenic neural network
away from seizure genesis
entirely using adaptive
stimulation patterns that
change with EEG
measurements
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Thus, there is an as yet unmet need for new methods that will allow for finer
spatial and temporal control of neural activity at single-neuron and millisecond
specificity (Grosenick et al. 2015; Ching and Ritt 2013). Ultimately, the goal is
to engineer optogenetic inputs (light-based waveforms) that, despite impinging on
many neurons simultaneously (i.e., a broadcast-type input), can control cells at
an individual level. However, neural dynamics present several nontrivial analytical
challenges that preclude the direct application of classical control theory to resolve
this goal, thus necessitating new innovations in analysis such as spiking-based
notions of controllability and reachability (Ching and Ritt 2013). In particular, the
nonlinearity of the underlying network dynamics and large scale of the networks
in question may require the use of statistical methods and model-free learning
approaches (Nandi et al. 2017), together with established optimization theory in
order to arrive at an effective and scalable solution for this type of neurostimulation
problem.

Control theory has also emerged as critical when designing brain-machine inter-
faces (BMIs) that entail brain measurements interacting with external computers
and devices. We will mention two applications here: (i) titration of anesthetic drugs
to regulate a medically induced coma and (ii) actuation of prosthetics for amputees.
A medically induced coma is a drug-induced state of profound brain inactivation
and unconsciousness used to treat refractory intracranial hypertension and to
manage treatment-resistant epilepsy. The state of coma is achieved by continually
monitoring the patient’s brain activity with an EEG and manually titrating the
anesthetic infusion rate to maintain a specified level of burst suppression, an EEG
marker of profound brain inactivation in which bursts of electrical activity alternate
with periods of quiescence or suppression. The medical coma is often required for
several days and is currently regulated by a team of nurses who monitor the EEG
24/7 (slow closed-loop control). A more rational approach would be to implement
a BMI that monitors the EEG and adjusts the anesthetic infusion rate in real time to
maintain the specified target level of burst suppression as demonstrated in (Shanechi
et al. 2013).

Other, perhaps more popular BMI systems are those for control of movement,
referred to as motor BMIs. Motor BMIs enable subjects to control external devices
or even their own limbs by directly modulating their neural activity (Schwartz et al.
2006; Lebedev and Nicolelis 2006; Donoghue 2008; Thakor 2013; Shanechi 2017).
To do so, BMIs record neural activity from motor cortical areas, use a mathematical
algorithm, termed decoder, to estimate the subject’s motor intent, use the decoded
intent to actuate and control an external device or the native limb, and provide visual
feedback of the generated movement to the subject (Fig. 1.6). Thus motor BMI
systems can be viewed as closed-loop control systems. Both noninvasive (e.g., EEG)
and invasive neural signal modalities have been used in motor BMIs. However,
the highest levels of performance have been achieved using invasive modalities,
in particular ensemble spiking activities.

A major component of the BMI system is the decoder. In the vast majority of BMI
decoders, the input is taken as the binned spike counts. Early BMIs used linear filters
such as the population vector, the optimal linear estimator (OLE), and the Wiener
filter to process binned spike counts. Later work incorporated some modeling of
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Fig. 1.6 Schematic diagram of motor BMI for prosthetic control. Neural signals are translated
into actuation of prosthetic arm and hand via a decoder which can then send feedback signals to
brain via vision and electrical stimulation of residual nerves.

movement by building linear state-space models and using a Kalman filter to process
the counts. Until recently, these decoders were trained in open loop during a training
session in which neural activity was recorded from subjects while they moved their
own arms or imagined movements. However, recent work has shown that training
the decoder during closed-loop BMI operation improves BMI performance (Taylor
et al. 2002; Velliste et al. 2008; Gilja et al. 2012; Orsborn et al. 2012; Collinger et al.
2013; Hochberg et al. 2012; Shanechi et al. 2016, 2017). In addition to binned spike
counts, BMI decoders can also use as input the binary time-series of spike events.
These binary time-series can be modeled as point processes (Brown et al. 1998; Kass
and Ventura 2001; Truccolo et al. 2005). Point process filters have been studied
in offline or numerical simulation studies (Brown et al. 1998; Eden et al. 2004;
Srinivasan et al. 2006; Shanechi et al. 2013). Recent algorithmic advances using
optimal feedback-control modeling and adaptive point process filtering have led to
closed-loop BMIs that use spikes directly at the millisecond timescale (Shanechi
et al. 2013, 2016), resulting in improved BMI performance (Shanechi et al. 2017).

By providing an experimenter-defined control system, BMIs provide a new tool
to study the brain’s control mechanisms and the sensorimotor factors affecting
them. For example, previous studies have explored the effect of sensorimotor
delays on BMI performance (Willett et al. 2013). Recently, it has been shown that
rapid sensorimotor control and feedback rates enabled by a point process filter
significantly improved BMI performance (Shanechi et al. 2017). A closed-loop
control framework could also help explain potential changes in neural representation
in BMI control, for example, in response to perturbation or as a result of learning
(Ganguly and Carmena 2009; Jarosiewicz et al. 2008; Chase et al. 2012).
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Finally, control theory has been very useful in understanding how neuronal
activity and behavior emerge from complex neural systems. In particular, feedback
control models (e.g. state-space models) are used to understand how latent variables
influence neural and behavioral measurements (our decision making work and
learning studies and more) or to simply explain how and why control systems in
the central nervous system operate the way they do.

As an example, secretion of cortisol and some hormones is stimulated by a
well-known sequence of pulsatile events governed by a natural control system.
Cortisol controls the body’s metabolism and response to inflammation and stress.
Cortisol is released in pulses from the adrenal glands in response to pulses of
adrenocorticotropic hormone (ACTH) released from the anterior pituitary; in return,
cortisol has a negative feedback effect on ACTH release (Faghih 2014). An
important question in neuroendocrine data analysis involves determining the timing
and amplitude of ACTH secretory events from concurrent time series of blood
ACTH and cortisol levels. The solution to this problem has important implications
for understanding normal and pathological neuroendocrine states. Simultaneous
recording of ACTH and cortisol is not typical, and determining the number, timing,
and amplitudes of pulsatile events from simultaneously recorded data is challenging
because of several factors: (i) stimulator ACTH pulse activity, (ii) kinematics of
ACTH and cortisol, (iii) the sampling interval, and (iv) the measurement error
(Faghih et al. 2015). By taking advantage of the sparse nature of hormone pulses
and adding more constraints for recovering hormone pulses, a solution to this can
be achieved (Faghih et al. 2014). This solution is extendable to the analysis of
pathological conditions related to cortisol as well as the analysis of concurrent
measurements of other pairs of pulsatile endocrine hormones whose interactions
are controlled through feedback loops (Faghih et al. 2015).

Considering that pulsatile cortisol release relays distinct signaling information to
target cells, it is crucial to understand the physiology underlying pulsatile cortisol
release. Understanding the underlying nature of the pulsatile release of cortisol
via mathematical formalization can be beneficial to understanding the pathological
neuroendocrine states and could lay the basis for a more rigorous physiologically
based approach for administering cortisol therapeutically (Faghih et al. 2015).
Traditional control-theoretic methods do not normally consider the intermittent
control that is observed in pulsatile control of cortisol release. A plausible solution
is to build a controller that minimizes the number of secretory events that result in
cortisol secretion, as a way of minimizing the energy required for cortisol secretion,
and maintains the blood cortisol levels within a specific circadian range while
following the first-order dynamics underlying cortisol secretion (Faghih et al. 2015).
This novel approach results in pulse control where the pulses and the obtained blood
cortisol levels have rhythms that are in agreement with the known physiology of
cortisol secretion (Faghih et al. 2015). The proposed formulation is a first step in
developing intermittent controllers for curing cortisol deficiency. It is possible to
personalize the medication and use an impulse controller to mimic the physiology
of a healthy subject so that patients maintain hormonal levels (e.g. cortisol levels)
that are similar to healthy subjects (Fig. 1.7). Furthermore, inspired by the pulse
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Fig. 1.7 Block diagram of the envisioned cortisol closed-loop controller. By considering the
patient’s time-varying cortisol demand and holding cost, and based on the circulatory cortisol levels
measured by cortisol sensor, the impulsive controller determines the timing and amount of the next
bolus of synthetic cortisol to be injected to the patient. Upon injection to the patient, circulatory
cortisol first increases reaching the patient’s holding cost, and then decays based on the patient’s
metabolism. Cortisol sensor measures the circulatory cortisol so that based on the patient’s cortisol
demand and holding cost, the controller can determine the timing and amount of the next synthetic
cortisol injection (from Dr. Rose T. Faghih)

controller proposed in this research, in BMI design, it is possible to design pulse
controllers instead of continuous controllers to improve the battery life of the brain
implant (Faghih et al. 2015).

In the above introduction, we provide examples of where control theoretic tools
are being applied in neuroscience. It is worth noting that the models used to
analyze neural systems may differ. Some are phenomenological, where the timing
between spike events or firing rates is directly modeled, while others are more
biophysically based, wherein the mechanisms of the generation of spike events or
population activity are modeled explicitly. Point process models are typically used
to characterize timing between spike events as a function of task variables (e.g.,
stimuli, behavior, spiking history), while linear time invariant models are used to
characterize continuous firing rates that also may be parameterized by task variables
(D’Aleo et al. 2017; Shenoy et al. 2013).

Biophysical-based modeling can also be described at several scales (Schliebs and
Kasabov 2014). On the microscopic level, the neuron model is described by the flow
of ions throughout the channels of the membrane potential. The flow may depend
on the presence or absence of various chemical messenger molecules. Examples of
such include the Hodgkin-Huxley (H-H) model (Hodgkin and Huxley 1952) and
the compartment models that describe separate segments of a neuron by a set of
ionic equations. On the macroscopic level, the neuron is treated as a homogeneous
unit, receiving and emitting spikes according to some defined internal dynamics.
However, the principles of how a spike is generated and carried through the synapse,
dendrite and soma are irrelevant. These models are often known as integrate-and-fire
(IF) models.

The single neuron is the fundamental building block of neural networks in
specific brain circuits. From spiking neuron models, we can further simulate a
biologically realistic neural network (Li et al. 2017). To do so, we need to further
specify the cell type (e.g., excitatory vs. inhibitory neurons, regular vs. bursting
neurons), network connectivity and synaptic strength. Notably, although the H-H
model can reproduce the biophysical mechanism more accurately, the simulation of
the model is computational costly. To efficiently simulate a large-scale network of
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spiking neurons, it is therefore preferred to use a mathematically simpler neuron
model, such as the leaky integrate-and-fire (LIF) neuron model (Knight 1972;
Abbott 1999) or the Izhikevich model (Izhikevich 2006).

Both phenomenological and biophysically based models come with pros and
cons. Biophysically based models are more realistic and describe mechanisms neu-
ronal function, but are nonlinear and more difficult to analyze. Phenomenological
models are easier to analyze but do not describe detailed mechanisms of neuronal
and neural processes. Depending on the question of interest, one may be preferred
over the other. In this book, each chapter uses a model appropriate for the study
being performed.

1.4 Roadmap

This edited volume has two aims. First, it collects recent advances in statistics, signal
processing, modeling and control methods in neuroscience. Second, it welcomes
innovative or cross-disciplinary ideas along this line of research, and discusses
important issues in neural data analysis (e.g., goodness-of-fit assessment, uncer-
tainty evaluation, prior information, curse of dimensionality, model selection, etc.).

The contributors are solicited to cover representative research areas (signal
processing, system identification, modeling and control) in important neuroscience
and anesthesiology applications. All contributors have previously trained with
Professor Emery Brown. The topics of this edited volume will include: state-
space model, likelihood and Bayesian inference, variational and Monte Carlo
methods, compressed sensing, deconvolution, system identification, EEG/MEG
inverse problem, transcranial magnetic stimulation (TMS), statistical mechanics,
neural decoding and BMIs. Research applications have covered a variety of species
including rodents, ferrets, nonhuman primates, and human subjects.

This book will be relevant to a broad audience (electrical or biomedical engi-
neers, statisticians, physicists, computer scientists, and neuroscientists), and it
can be used as complementary teaching material for graduate students in related
research fields. The book will also emphasize several important issues that will
promote rigorous neural data analysis, such as data and software sharing, proper
use of statistical assumption or statistical tests. The reader is assumed to have basic
knowledge in probability, statistics, signal processing, and control theory.

The book is divided into two parts according to the technical content of chapters.
Part I consists of five chapters (Chaps. 2 to 6). Chapter 2 by Eden and colleagues
presents a state-space analysis paradigm to characterize complex and multi-scale
neural observations. Chapter 3 by Chen discusses latent variable modeling of neural
population dynamics. Chapter 4 by Prerau and Eden proposes a distribution-based
approach to decode contexts using neurons with intermittent context-dependence.
Chapter 5 by Babadi discusses signal processing methods that integrate sparsity
and dynamics to identification and inverse problems in neuroscience. Chapter 6 by
Wu and colleagues discusses artifact rejection methods for concurrent TMS-EEG
data.
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Part II consists of six chapters (Chaps. 7 to 12). Chapter 7 by Sarma and Sacré use
dynamic models to characterize complex human behaviors and neural responses.
Chapter 8 by Shanechi discusses inference algorithms for BMIs. Chapter 9 by
Ching discusses modeling and controlling for neuronal inactivation. Chap. 10 by
Faghig presents a sparse system identification approach for physiological signals.
Chapter 11 by Shimazaki discusses a new neural engine hypothesis motivated
from statistical mechanics and information theory. Finally, Chap. 12 by Vijayan
and McCarthy discusses a mathematical modeling framework for inferring neuronal
network mechanisms underlying anesthesia-induced brain oscillations.

1.5 Further Reading

In the end note, we want to stress that by no means this edited book attempts to cover
the fast-growing field of computational and statistical neuroscience. Therefore,
as complementary materials for the current collection, interested reader may find
valuable resources from the following books:

• Chen, Z. (Ed.) (2015). Advanced state space methods for neural and clinical
data. Cambridge: Cambridge University Press.

• Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice.
Cambridge: MIT Press.

• Grün, S. & Rotter, S. (Eds.) (2010). Analysis of parallel spike trains. New York:
Springer.

• Hady, A. E. (Ed.) (2016). Closed loop neuroscience. Amsterdam: Elsevier.
• Kass, R. E., Eden, U. T. & Brown, E. N. (2014). Analysis of neural data. New

York: Springer.
• Kramer, M. A. & Eden, U. T. (2016). Case studies in neural data analysis: A

guide for the practicing neuroscientist. Cambridge: MIT Press.
• Oweiss, K. G. (Ed.) (2010). Statistical signal processing for neuroscience and

neurotechnology. Cambridge: Academic.
• Ozaki T. (2012). Time series modeling of neuroscience data. Boca Raton: CRC

Press.
• Rao, R. P. N. (2013). Brain-computer interfacing: An introduction. Cambridge:

Cambridge University Press.
• Schiff, S. J. (2012). Neural control engineering: The emerging intersection

between control theory and neuroscience. Cambridge: MIT Press.
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Chapter 2
Characterizing Complex, Multi-Scale Neural
Phenomena Using State-Space Models

Uri T. Eden, Loren M. Frank, and Long Tao

2.1 Introduction

Understanding neural encoding requires describing the relationship between the
input, or stimulus, presented to a neuron or neural circuit, and its output, or response.
Early models in many neural systems often focused on the responses of individual
neurons (Felleman and Kaas 1984; Chapin 1986; Girman et al. 1999) to simple
stimuli (Kuffler 1953; Hubel and Wiesel 1962; Rodieck 1965; Jones and Palmer
1987), assuming stationarity and treating anatomically connected brain areas in
isolation. In the past few decades there has been a massive expansion in our ability to
record neural activity: we can now record from many more neurons, across multiple
brain areas, and at multiple spatial and temporal scales. These technological
advances have enabled neuroscientists to analyze more complex neural coding and
communication properties of both stimulus and response. First, on the response side,
recent models have relaxed or removed the assumption of stationarity, admitting
models that capture response dynamics such as adaptation and plasticity (Rao and
Ballard 1997; Brown et al. 2001; Frank et al. 2002; Eden et al. 2004). Furthermore,
an increase in the number of neurons that can be simultaneously recorded has
enabled modeling not only of receptive field properties of individual neurons but
also modeling of the ways that neural populations coordinate to represent stimulus
features or to extract particular types of information from their inputs (Paninski
et al. 2004; Chapin 2004; Shanechi et al. 2012; Archer et al. 2014). Recording from
multiple brain areas has likewise permitted study of coordination on a larger scale,
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in this case between brain areas (Bullmore and Sporns 2009; Stephen et al. 2014).
Second, on the stimulus side, recent analyses have built more complex models in
which stimuli are dynamic and multidimensional. The resulting models are more
applicable to real-world situations. Finally, while many earlier encoding analyses
often focused on neural phenomena that could be described by spiking alone, more
recent studies have sought to describe phenomena that involve electrophysiological
signals at multiple spatial and temporal scales, incorporating the summed activity of
many neurons in the form of the LFP, and analyzing coordination of both LFP and
spikes across brain regions.

One illustrative example of this increase in the complexity of neural coding
analyses is the study of place specific activity in the structures of the medial
temporal lobe (MTL) of the rat. Early analyses in this domain examined the
responses of individual neurons in hippocampus to a rat’s location during simple
spatial navigation tasks. Initially, these place fields were often modeled as static and
unimodal (O’Keefe and Dostrovsky 1971; Muller et al. 1987). Subsequent analyses
incorporated additional levels of complexity, for example by integrating information
from spiking and LFP to identify phase precession of place specific spiking to the
theta rhythm of the LFP (O’Keefe and Recce 1993; Skaggs and McNaughton 1996),
by building dynamic models to capture place field plasticity during learning (Brown
et al. 2001; Frank et al. 2002; Eden et al. 2004; Huang et al. 2009), by examining
the coding properties of other signals related to spatial navigation such as velocity
and head direction (Knierim et al. 1995), by examining more complicated spatial
field structures such as grid cell patterns (Hafting et al. 2005), and by examining
coordination and neural processing across multiple areas of the MTL, as in analyses
of the entorhinal grid cell activity that gives rise to hippocampal place field structure
(O’Keefe and Burgess 2005; Fuhs and Touretzky 2006; McNaughton et al. 2006;
Solstad et al. 2006).

Two common themes underlie the evolution of experimental and analytical
approaches in this field. First is the progression from simple, static, low-dimensional
stimulus response relationships to complex, dynamic, high-dimensional representa-
tions. Understanding the mechanisms and effects of such phenomena requires the
ability to integrate information from multiple sources across neural ensembles, brain
regions, and scales. Second is the goal of identifying and estimating variables that
are difficult to observe directly. These might include the information available from
the entire active neuronal ensemble, from a particular brain region or an even more
abstract notion like the current learning state of the animal. Estimating the value of
these variables and understanding how they are transformed by neural systems is
in fact a central goal of systems neuroscience, but experimental neuroscientists are
often limited in the statistical and data analysis tools available to address directly
the associated estimation problem.

The state-space paradigm, whose application to complex neural phenomena has
been pioneered by Emery Brown and his colleagues, provides a natural statistical
modeling approach for integrating information across multiple sources and scales,
for discovering low dimensional representations of behavioral and cognitive states,
and for expressing confidence about estimates and inferences (Brown et al. 1998;
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Eden et al. 2004; Archer et al. 2014; Smith and Brown 2003; Chen et al. 2010).
State-space methods have a long history in the engineering literature, where the
observed signals are assumed to have helpful properties such as stationarity,
linearity, and Gaussianity. Their application to neural coding analyses, where signals
such as spike trains rarely have such properties, is more recent.

The fundamental idea of the state-space approach is to define two probability
models. The first describes the evolution of an unobserved dynamic signal, called
the state process. The second describes how this state affects the observed data.
Using these two models, it is often possible to derive expressions to estimate the
unobserved state as well as the parameters for both models, providing a clear path
to estimate underlying but unobservable variables from brain activity.

One early application of this paradigm was to decode movement trajectories
of a rat actively exploring its environment using spiking data from a population
of place cells (Brown et al. 1998; Zhang et al. 1998; Barbieri et al. 2004). A
place cell will increase its firing rate above baseline when the animal is in a
particular location in space, known as the cell’s place field. In this application of
the state-space paradigm, the state process represents the movement of the rat in
space, the observation model describes the place field(s) of each cell, and a point
process filter is derived to decode the rat’s movement trajectory at each instant.
This constituted a test of the fidelity of the hippocampal place code, as the decoded
spatial trajectory could be checked against the known location of the rat. Other early
methodological derivations and applications included an expectation-maximization
(EM) algorithm to estimate a dynamic cognitive learning state from binary (correct
vs. incorrect) task performance data (Smith et al. 2004; Coleman et al. 2006), and
receptive field models with dynamic parameters to track plasticity during learning
in hippocampal place fields and elsewhere (Brown et al. 2001; Frank et al. 2002;
Eden et al. 2004). In recent years, this paradigm has been adapted to address
many of the more complicated classes of phenomena described above. Some recent
applications include tracking dynamic spiking rhythms in the subthalamic nucleus
of Parkinsonian patients performing reaching tasks (Deng et al. 2013) and fitting
parameters of dynamical systems and conductance-based models of spiking neurons
(Meng et al. 2011).

In this chapter, we will review the fundamental features of the state-space
paradigm, discuss successful applications of the paradigm to various neural data
analysis problems, and introduce a novel extension of these methods to better
understand the phenomenon of hippocampal replay. We present the basic structure
of state-space models that include point-process observations and develop the filter
equations used for estimating dynamic signals from neural spiking. We then discuss
two recently published applications of this paradigm as illustration of its power and
versatility. Finally, we provide a new specification of this approach to address the
problem of identifying hippocampal ripple-replay events in the rat. Replay is defined
as the activation of a set of neurons that recapitulate patterns of activity associated
with specific behaviors in the absence of the animal executing those behavior. Ripple
replay is seen when sequences of hippocampal place cells are reactivated in patterns
that are similar to those seen during active exploration, but typically on a much
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faster timescale and when animals are still (Carr et al. 2011; Buzsáki 2015). The
goals of this new analysis are: first, to define a hippocampal replay event in terms
of a specific non-local representation of position, the rhythms in the LFP, and the
spiking patterns of a population of place cells; second, to compute, at each instant,
the probability of a replay event occurring; and third, to decode the information
content of each replay event. To address these challenges, we develop a new state-
space model that includes one state variable that indicates whether or not a replay is
occurring and another semi-latent state that is given by the rat’s observed position
during active exploration, but during replay events is considered an unobserved
process. By assuming that the place cells fire similarly during exploratory movement
and during replay, we are able to decode the replay state and the probability of replay
occurring at each instant in time. We illustrate this new method on hippocampal data
from a rat performing a spatial memory task.

The remainder of this chapter is organized as follows. In Sect. 2.2, we present the
fundamental structure of the state-space paradigm for spike train observations, and
derive a point process filter algorithm to estimate dynamic signals from spiking data.
In Sect. 2.3, we briefly highlight a couple of recent applications of the state-space
paradigm to different classes of problems. In Sect. 2.4, we discuss the hippocampal
ripple-replay estimation problem and derive a new state-space model to address
it, illustrating the result on a hippocampal dataset. In Sect. 2.5, we discuss some
reasons for the success of this state-space approach and some future directions for
these methods.

2.2 State-Space Models

The state-space paradigm is well suited to neural data analysis problems where an
observed signal is influenced by some set of unknown or unobserved factors, which
may themselves change in time. The unknown or unobserved signals are called
latent states. For example, if we record extracellularly from a neuron, we might
use a latent state to describe the dynamics of an unobserved membrane potential
and of the membrane conductance of a particular set of ions. We can use such an
approach to solve problems related to estimating the latent signals, fitting models
between the latent and observed signals, and performing statistical tests about their
relationship.

To construct a state-space model, we must define a pair of statistical models.
The first model, called the state model, describes the probabilistic dynamics of the
latent state process. The second model, called the observation model, describes how
the latent state influences the probability distribution of the observation process at
each time. In the example above of extracellularly observed spiking as a function
of a latent state for the membrane potential, the state model might be defined by a
stochastic set of Hodgkin-Huxley equations (Meng et al. 2011), and the observation
model might define the probability of observing a spike in the next instant, given
the current value of the membrane potential.
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Fig. 2.1 The state-space paradigm. An unobserved state process xk undergoes stochastic dynamics
and influences an observation process yk

To establish some mathematical notation, let xk denote the state process and yk

denote the observation process at time tk. For notational convenience, we will also
define Hk to be the past history of the observation process prior to time tk. While
we could define these processes in either continuous or discrete time, here we will
focus on a discrete time representation, in which case, Hk D y1Wk�1 represents the
collection of discrete observations between time steps 1 and k � 1.

Using this notation, we can define the state model as a conditional probability
distribution p.xkjx1Wk�1/, where x1Wk�1 represents the history of the state variable
between time steps 1 and k � 1. We typically further assume that the state is a
Markov process, which means that given the value of the state at any time, its future
values are independent of any of its past values. Mathematically, this means that
p.xkjx1Wk�1/ D p.xkjxk�1/. We will make this common assumption here, but it is
easy to extend the methods for states with longer history dependence structure.

We can similarly define the observation model using a conditional probability
distribution p.ykjxk;Hk/. Here we have assumed that the observation process
depends only on the value of the state at the current time, although it can still depend
on past values of the observation process. The influence of each of the state and
observation processes on each other is shown as a graphical model in Fig. 2.1. From
this illustration, it is clear that the state variable at each time step influences both the
observation at that time and the state at the next time step.

Here, we are particularly concerned with observations processes that include
neural spiking data. In that case, the observation process yk is equal to, or
has as a component, the number of spikes fired in a sequence of small time
intervals. We will write yk D �Nk, where �Nk is the number of spikes that
occur between times tk�1 and tk, which is called the spike increment process.
We define a neural spiking model by writing an expression for the conditional
intensity of firing, �.tjHt/, which defines the instantaneous probability of seeing
a spike around time t, �.tjHt/ D lim

�t!0
Pr.spike in Œt; t C �t/jHt/=�t (Daley and
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Vere-Jones 2003; Brown et al. 2003), as a function of the state process. Once we
have an expression for this conditional intensity, the observation distribution is
given by p.�Nkjxk;Hk/ � expflog.�.tkjHk//�Nk � �.tkjHk/�tkg (Brown et al.
2003). These state and observation models fully define the joint distribution of
these processes. They are therefore the basic building blocks for computing any
probabilities associated with these states.

For example, a common problem for state-space models is estimating the proba-
bility distribution of xk given all of the observations up to and including time tk; that
is, determining the conditional probability density p.xkjyk;Hk/. This is called the
filtering problem, and when the observations are spikes, the solution to this problem
is called a point process filter. For the state-space model of Hodgkin-Huxley spiking
described above, this would mean estimating the membrane potential and ionic
currents at each time based on all of the spiking up to that time.

We can solve the point process filter by applying Bayes’ rule to the desired
conditional probability density, p.xkj�Nk;Hk/, called the filter density, to switch
the current state and observation terms, xk and �Nk. The filter density can then be
expressed as

p.xkj�Nk;Hk/ / p.�Nkjxk;Hk/p.xkjHk/ (2.1)

The first term on the right-hand side of Eq. (2.1) is the observation distribution.
The second term, p.xkjHk/, called one-step prediction density, defines the condi-
tional probability of the state at time tk given all of the observation up to, but not
including, the most recent. This one-step prediction density can be computed using
the Chapman-Kolmogorov equation

p.xkjHk/ D
Z

p.xkjxk�1/p.xk�1j�Nk�1;Hk�1/dxk�1 (2.2)

where p.xk�1j�Nk�1;Hk�1/ in the integrand is the filter density from previous time
tk�1. Plugging (2.2) into (2.1), we get

p.xkj�Nk;Hk/ / p.�Nkjxk;Hk/

Z
p.xkjxk�1/p.xk�1j�Nk�1;Hk�1/dxk�1 (2.3)

Equation (2.3) provides an iterative formula to calculate the filter density at each
time step from the density at the previous time using the state and observation
models.

Typically, the integral in Eq. (2.3) does not have an analytical solution and we
need to solve it numerically or find a suitable approximation. When xk is a scaler
or is low dimensional, simple numerical methods such as Riemann sums might be
sufficiently accurate and computationally efficient to compute the filter density. If
xk is high dimensional, alternative methods such as Gaussian approximate solutions
(Brown et al. 1998; Eden et al. 2004; Smith and Brown 2003), and sequential Monte
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Carlo methods (Doucet et al. 2001; Ergun et al. 2007) have been used successfully
to solve point process filter problems.

2.3 Applications of the State-Space Paradigm

In the previous section, we introduced the fundamental structure of the state-space
paradigm and derived the point process filter algorithm for spike train observations.
Specific instantiations of this approach have been successfully applied to a number
of different neural coding problems, including spike train filtering and smoothing,
stimulus decoding, estimating spatially varying firing rates, and reconstructing goal-
directed hand movement, among many others. Here we will highlight two recent
applications of the state-space paradigm to neural spiking data for two very different
classes of problems.

2.3.1 Decoding Movement Trajectories from a Place Cell
Population in Hippocampus

Huang et al. used a state-space approach to decode the movement trajectories and
future turn decisions of a rat navigating through a maze from ensemble spiking
from hippocampal place cells (Huang et al. 2009). A rat was trained to navigate
up the stem of a T-shaped maze and alternate between left and right turns, before
returning to the base of the stem through one of two return arms (see Fig. 2.2b).
This decoding problem presented a number of statistical challenges: the state and
observation models needed to be designed to capture information about position
and future turn direction simultaneously, each neuron potentially had multimodal
place field structure, the track itself has a topological structure that made computing
the integrals for the point process filter challenging and led to multimodal filter
distributions.

Careful selection of the state and observation models allowed for each of these
challenges to be addressed. The state was defined using a linearization of the track,
where negative values denoted trajectories that included a left turn and positive
values denoted trajectories that included a right turn at the top of the stem. This
means that any position on the stem is coded using two values, one positive and one
negative. When the point process filter decodes a position on the stem, the sign of
the decoded value is also used to predict the future turn decision. Note that this state
process is not completely observed at every time—if we observe the rat on the stem
at time t, we don’t know whether this corresponds to a positive or negative state
value until later when the rat makes a turn. However, the state-space framework is
designed to capture states that may not be fully observable.
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Fig. 2.2 Decoding movement trajectories using a point process filter. (a) The plot of the linearized
position versus time for 1 min of the experiment. The continuous dark gray path represents the
actual position of the animal, and the discontinuous black points represent the predicted position of
the animal, with light gray being 95% confidence bounds for the estimate. The estimated positions
in black almost overlap the true positions in dark gray. (b) Actual and predicted position with 95%
confidence bounds of the animal, mapped back to the original T-maze. Adapted from Huang et al.
(2009)

An observation model was selected by setting the conditional intensity of spiking
to be a spline based function of this linearized state variable. This both allowed
the place fields to have peaks at multiple positions along the track, and to have
different rates at the same position on the stem for periods preceding right vs left
turns. The shape of this spline-based place field model was fit for each of 47 neurons
individually during a first encoding period along with an empirical model of the
rat’s movement. Then, in a second decoding phase, a point process filter was used
to estimate the distribution of the rat’s position and its next turn decision at each
time point. The decoding result shown in Fig. 2.2 demonstrates the capability of the
state-space paradigm to characterize the complicated dependence relations between
the spiking of the hippocampal population and the rat’s movements.
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2.3.2 Estimating Biophysical Neural Models from Spikes

In contrast to the first example that used a state-space model to capture the receptive
field structure of a population of neurons in response to external, behavioral signals,
Meng et al. used the state-space paradigm to estimate a dynamical model for the
internal ionic currents and membrane potential fluctuations that generate spiking
(Meng et al. 2011). Here, the goal was to estimate multiple parameters of a
stochastic Hodgkin-Huxley model directly using only the observed spike times.
This model has non-linear dynamics and possesses multiple unknown parameters
and unobserved dynamic variables, making the model fitting problem particularly
challenging.

To solve this problem, a state-space model was defined with a multivariate
state process representing the unobserved dynamical variables (membrane potential
and ionic conductances of sodium NaC and potassium KC ) as well as the fixed,
unknown model parameters. The state model reflected the nonlinear dynamics
described by the Hodgkin-Huxley differential equations. The observation model
was given by a conditional intensity that remained small until the membrane
potential component of the state approached a threshold value, at which point it
increased rapidly.

Since this model used a high dimensional state process with nonlinear dynamics,
the integral on the right-hand side of Eq. (2.3) is not simple to compute numerically.
In this case a sequential Monte Carlo (SMC) algorithm, or particle filter, was used
to estimate the filter probability distribution of the dynamic components of the state
as well as the unknown model parameters. Particle filters use random samples in
order to estimate probability distributions and perform computations on them. Each
particle represents a possible value of the state at a particular time, and has a weight
related to the likelihood of the observations given that state value. The particles are
repeatedly resampled based on these weights so that their distribution reflects the
filter probability distribution. The SMC method used here incorporated both future
and past spiking information to calculate the weight of each particle and identify
sets of model parameters that were consistent with the spiking observations.

Figure 2.3 shows an example of the estimation procedure. Here six variables
were estimated at each time point: the dynamic variables included the membrane

Fig. 2.3 Sequential parameter estimates for conductance parameters gK and gNa. The red asterisk
denotes the true values for gK and gNa. The blue dots denote the parameter values for all of the
particles. (a) The initial particle estimates are uniformly distributed in the parameter space. (b)
Distribution of particles after the second observed spike. (c) Distribution of particles after 40
spikes. Adapted from Meng et al. (2011)
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potential, and the ionic currents for NaC and KC; the fixed parameters included
the input current and the maximum conductance values for NaC and KC, called
gK and gNa respectively. In Fig. 2.3, the particle values for gK and gNa are shown
at three time points: at the start, after two observed spikes, and after 40 observed
spikes. Initially the particle estimates are uniformly distributed in the parameter
space. After the second observed spike, the parameter values of the particles begin
to concentrate in a region that contains the true values of for gK and gNa. After
40 spikes, the parameter estimates have converged to a narrow linear subspace of
parameter values that are consistent with the spike data.

2.4 Identifying Replay Event from Multimodal Information

In Sect. 2.3, we have highlighted some examples of state-space models being used
to describe complex neural phenomena and solve challenging estimation problems.
In both instances, the challenges were overcome by carefully selecting the structure
of the state and observation models so that the desired statistical relationships could
be captured. Here we illustrate the development of a new state-space algorithm,
which addresses some similar challenges as well as some new ones, associated
with a neural phenomenon of recent interest, the detection and characterization of
hippocampal replay events. As described in the Introduction section, replays are
the sequential firing patterns of hippocampal place cells that represent previous
experience and occur frequently during periods of awakeness (Buzsáki 1986;
Wilson and McNaughton 1994; Diekelmann et al. 2011; Carr et al. 2011). They
are multifaceted phenomena that involve features of multiple signals, including the
rat’s behavior (replay is thought to occur primarily during so-called sharp-wave
ripple events that are most prevalent during low speed movement and immobility),
hippocampal LFP (the presence of power in the ripple band of 150–250 Hz is often
used to detect candidate replay events), and ensemble spiking activity. During active
exploration of an environment, we might expect to see the rat’s movement velocity
fluctuate, the LFPs in hippocampus maintain a 8–12 Hz theta rhythm, and neurons
fire with place receptive field structure based on the rat’s current position. However,
during replay events, we would expect the rat to remain still, the hippocampal
LFPs to show low frequency sharp waves and high frequency ripples between 150–
250 Hz, and to see patterns of spiking that resemble patterns that occur during active
exploration but which are not directly related to the rat’s actual position (Karlsson
and Frank 2009; Davidson et al. 2009).

While in some cases, it may be easy to identify clear replay events with these
properties by eye, in other cases these events may be hard to detect. From this
description alone, it can be challenging to express one’s confidence that a particular
event is or is not an example of a replay event. Similarly, it can be challenging
to define mathematically the degree to which each component signal supports or
undermines that categorization.
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Recent research has highlighted the potential role of hippocampal replay in
learning, memory consolidation, and decision-making (Buzsáki 1986; Wilson and
McNaughton 1994; Diekelmann et al. 2011; Carr et al. 2011). Thus the ability
to detect these replay events, to define the periods over which they occur, and
to express confidence about these estimates is critical. Additionally, researchers
are often interested in decoding the information content of ripple events, that is,
reconstructing a movement trajectory along which the observed spiking patterns
might occur.

2.4.1 Defining the State-Space Model

The process of developing a state-space model to tackle this problem begins by
coming up with a structure for the state variable. In this case, we are interested
in knowing whether the brain is currently in a replay state or not, and if so, what
kind of movement trajectory might correspond to the observed replay spike pattern.
This suggests that our state variable should include two components, one binary
indicator variable, call it Ik, which defines whether a replay is occurring at time
tk, and a second continuous variable, call it xk, which will be used to express how
neurons fire during replay.

We define the binary replay indicator state Ik so that

Ik D
(
1; if a replay is occurring at time tk

0; if a replay is not occurring at time tk
(2.4)

This is a latent state process in that we cannot directly observe the value of Ik at any
moment. Instead, we will define observation models for the LFP and spiking activity
as a function of this state, and then try to estimate the probability distribution of
being in a replay state at any time.

We also need to define a continuous state variable, xk, to describe the factors that
influence spiking both in and out of the replay state. When out of the replay state,
the neurons have place fields which fire as a function of the rat’s position, mk, at
time tk. Therefore, whenever Ik D 0, we set xk D mk. During periods when Ik D 1,
we treat xk as an unobserved variable such that the spiking intensity as a function
of xk during replay is equivalent to the spiking intensity as a function of position
mk during movement. Therefore, the observation model will be the same function
of xk, whether a replay state is occurring or not. xk is observed whenever Ik D 0,
but unobserved, or latent, whenever Ik D 1. Therefore, we call xk a semi-latent
state process. One goal is to estimate the trajectory of xk through time during replay
periods.

Now that we have defined the state variables, the next step is to define a state
model for the temporal evolution of the states. For the discrete replay indicator state,
we assume that the probability of being in a replay state at time tk only depends on
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the values of the state and the rat’s movement velocity at the previous time step,
Pr.Ik D 1jIk�1; vk�1/. We model this probability using a pair of logistic models as a
function of the rat’s velocity for both possible values of Ik�1 2 f0; 1g.

For the semi-latent state xk, whenever Ik D 0, the state just follows the observed
movement trajectory of the rat. Whenever the replay indicator state switches into a
replay, we chose to make the distribution of the now unknown value of xk uniform
over the full space. Finally, when a replay state persists from one time step to the
next, we assume the state update follows a zero mean random walk with a covariance
based on the movement statistics of mk, sped up by a factor of 20 (Nádasdy et al.
1999; Lee and Wilson 2002; Davidson et al. 2009). Mathematically, we define the
semi-latent state equation as:

p.xkjxk�1; Ik; Ik�1/ D

8
ˆ̂<

ˆ̂:

ı.mk/; if Ik D 0

U.0; 200/ if Ik D 1, and Ik�1 D 0

N.xk�1; O�/ if Ik D 1, and Ik�1 D 1

(2.5)

With the state variables and state evolution model defined, the final step is to build
models for all of the observed signals as functions of the states. The observations
processes are the short time Fourier transform of the LFP in hippocampal area CA1,
yk, the rat’s velocity, vk, and the hippocampal neural spiking activity, �N.1WC/

k , at
time tk, where C is the total number of recorded neurons. We assume that the
hippocampal LFP is influenced by the binary replay indicator state, but not the semi-
latent state and define a multivariate Gaussian model, p.ykjIk/ � N .�.Ik/;˙/,
where �.Ik/ is the mean power at each frequency in and out of the replay state, and
˙ is a model covariance. We assume that the rat’s velocity follows a random walk
with a covariance that depends on the binary replay indicator state, p.vkjvk�1; Ik/ �
N .vk�1; &.Ik//, where &.Ik/ is the variability of the movement velocity in and out
of the replay state. Finally, the spiking activity of each neuron is assumed to be a
doubly stochastic Poisson process with a firing rate that depends on the value of the
semi-latent state xk, p.�Nc

k jxk/ � Poisson.�c.xk/�tk/, where �c.xk/ is the firing
rate function for neuron c as a function of xk. Recall that when Ik D 0, xk is the rat’s
position, and the firing model describes the neuron’s place field; when Ik D 0, xk

is an unobserved state, but the neural firing as a function of this unknown value of
xk remains the same (Nádasdy et al. 1999; Lee and Wilson 2002; Davidson et al.
2009).

2.4.2 A Filter to Identify and Decode Replay Events

In Sect. 2.2, we discussed a general solution to the filter problem with spike train
observations. Here, we work out the specific solution for the replay state and
multimodal observation models discussed above. One goal is to compute at each
instant the probability that a replay state is occurring, given all of the observed
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signals up to the current time, Pr.Ikjy1Wk; �N.1WC/
1Wk ; v1Wk/, where the subscript 1 W k,

indicates the set of observations up to and including time tk. Another goal is to
compute the distribution of the trajectory of the continuous replay state, xk, over
replay periods, p.xkjIk D 1; y1Wk; �N.1WC/

1Wk ; v1Wk/. Both of these can be computed

directly from the joint filter distribution, p.Ik; xkjy1Wk; �N.1WC/
1Wk ; v1Wk/. The replay state

probability is

Pr.Ikjyk; �N.1WC/
k ; vk;Hk/ D

Z
p.Ik; xkjyk; �N.1WC/

k ; vk;Hk/dxk (2.6)

where Hk D fy1Wk�1;�N.1WC/
1Wk�1; v1Wk�1g is the history of observation up to, but not

including the current time step. The continuous state density is given by

p.xkjIk D 1; yk; �N.1WC/
k ; vk;Hk/ D p.xk; Ik D 1jyk; �N.1WC/

k ; vk;Hk/

Pr.Ik D 1jyk; �N.1WC/
k ; vk;Hk/

(2.7)

We can compute the desired joint filter distribution using Bayes’ rule

p.Ik; xkjyk; �N.1WC/
k ; vk;Hk/

/ p.ykjIk; xk; �N.1WC/
k ; vk;Hk/p.�N.1WC/

k jIk; xk; vk;Hk/p.vkjIk; xk;Hk/p.Ik; xkjHk/

(2.8)

The first three terms on the right-hand side of Eq. .2.8/ are the likelihoods from
each of the observations models, the hippocampal LFP, population spiking data,
and the rat’s velocity at the current time tk conditioned on the replay states and
the observation history, respectively. These terms can be simplified using the
assumptions about our observations models discussed in the previous section.

p.Ik; xkjyk; �N.1WC/
k ; vk;Hk/

/ p.ykjIk; y1Wk�1/p.�N.1WC/
k jxk; �N.1WC/

1Wk�1/p.vkjIk; v1Wk�1//p.Ik; xkjHk/ (2.9)

The last term on the right-hand side is the one-step prediction density, which once
again can be expanded using the Chapman-Kolmogorov equation,

p.Ik; xkjHk/ D
X

Ik�1

Z

xk�1

p.xkjxk�1; Ik; Ik�1/ Pr.IkjIk�1; vk�1/

� p.Ik�1; xk�1jyk�1;�N.1WC/
k�1 ; vk�1;Hk�1/dxk�1 (2.10)

The first term on the right-hand side of Eq. (2.10), p.xkjxk�1; Ik; Ik�1/, is the semi-
latent state transition density given by Eq. (2.5). The second term, Pr.Ikj Ik�1; vk�1/,
is the replay state transition density given the animal’s most recent velocity. The
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third term, p.Ik�1; xk�1jyk�1;�N.1WC/
k�1 ; vk�1;Hk�1/, is the joint filter distribution of

the replay state and semi-latent state from previous time step. This equation tells
us how to combine the filter distribution from the previous time step with the two
components of the state model to compute the distribution of both state variables
given all but the most recent observations.

Substituting Eq. (2.10) into Eq. (2.9) we get the joint filter density of the replay
state Ik and semi-latent state xk:

p.Ik; xkjyk; �N.1WC/
k ; vk;Hk/

/ p.ykjIk; y1Wk�1/p.�N.1WC/
k jxk; �N.1WC/

1Wk�1/p.vkjIk; v1Wk�1/p.Ik; xkjHk/

�
X

Ik�1

Z

xk�1

p.xkjxk�1; Ik; Ik�1/ Pr.IkjIk�1; vk�1/

� p.Ik�1; xk�1jyk�1;�N.1WC/
k�1 ; vk�1;Hk�1/dxk�1 (2.11)

Equation (2.11) provides the solution to the filter problem for this state-space model.
The last term on the right-hand side of the equation is the filter density from
the previous time step. That gets multiplied by the two components of the state
model and integrated and summed over the previous state values to produce the
one-step prediction distribution. We then multiply by the likelihood of each of our
observations at the current time step, based on the observation models, to compute
the filter distribution at the current time step. Thus, we have an iterative method to
compute the filter distribution at each time. If we select an initial distribution for
the states at the beginning of the experiment, by iterating through Eq. (2.11) we can
compute the filter distribution at all times.

The fact that each observation likelihood contributes in a multiplicatively
separable manner means that it is easy to determine the degree to which each data
modality is contributing to the estimate at each time step. This also makes it simple
to deal with any missing data at any time, as the corresponding likelihood term can
be removed and the information from the other data sources will still be maintained.

2.4.3 Replay Identification and Decoding Example

We applied the filter algorithm developed above to data from a rat performing
a memory guided navigation task on a W-shaped maze. The data consisted of a
15.5 min trial during which the rat was required to alternate going down the center
arm and then turning left or right on subsequent trials. Six LFP channels were used,
and short time Fourier transforms of the past 20 ms were computed at each time
point. Sorted spiking activity from 17 neurons was recorded. The spike and LFP
data were down-sampled to 500 Hz resolution and the filter was computed with a
2 ms time step. For simplicity, we linearized the maze by assigning a value to each
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location based on its distance in cm to the tip of the center arm in the W-shaped
maze. We then defined each of the state and observations models as functions of
this linearized position.

As described above, we defined the binary indicator state model by setting the
probability of being in a replay state at time tk to be a logistic function related to the
rat’s movement velocity and the previous indicator state. Specifically, the form of
this model is,

logitPr.Ik D 1jIk�1 D i; vk�1/ D ˇ
.i/
0 C

MX

jD1
ˇ
.i/
j gj.vk�1/; for i 2 f0; 1g:

(2.12)

Where the gj.s/ are a set of spline basis functions that ensure a smooth relationship
between velocity and the probability of being in a replay state (Hearn et al. 2010).
The model parameters, ˇ.i/j , define the shape of this relationship, and are easily
estimated using maximum likelihood (Truccolo et al. 2005). An example of the fit
model is shown in Fig. 2.4. The left panel shows Pr.Ik D 1jIk�1 D 0; vk�1/, the
probability of switching into a replay state from a non-replay state as a function of
velocity, and the right panel shows Pr.Ik D 1jIk�1 D 1; vk�1/, the probability of
remaining in a replay state at the next time as a function of velocity. We see that
the probability of switching into a replay state in one discrete time step of 2 ms is
always small, but is highest when the rat is near 0 cm/s. There is another local peak
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Fig. 2.4 Spline-based logistic model for the binary replay indicator state. (a) The probability of
switching into a replay state in a single time step as a function of vk�1, Pr.Ik D 1jIk�1 D 0; vk�1/.
(b) The probability of remaining in a replay state for a single time step as a function of vk�1,
Pr.Ik D 1jIk�1 D 1; vk�1/. The red lines are the maximum likelihood estimates of the probability
and the black dotted lines are the upper and lower 95% confidence levels
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just below 3 cm/s, above which the probability drops off precipitously. Similarly,
the probability of staying in a replay state from one time step to the next is close to,
but below, 1 for low velocities and drops off quickly at velocities above 4 cm/s. The
state model for the continuous, semi-latent state xk was defined in Eq. (2.5), with a
value of O� D 1:56 used for the random walk variance term. Together, Eqs. (2.5) and
(2.12) define the full state model.

Next the observation models for the hippocampal spiking, LFP, and rat’s velocity
were fit. The spiking for each neuron was modeled as a point process, as described
in Sect. 2.2, with conditional intensity function

�.i/.tkjHk/ D exp

�
˛
.i/
0 C

JX

jD1
˛
.i/
j gj.xk/

�
(2.13)

where �.i/.tkjHk/ is the intensity function for the i-th neuron and gj.x/ are again a set
of spline functions, this time taken as a function of position. This choice of model
structure establishes a smooth relationship between the rat’s position and place
field firing during active exploration and a smooth relation between spiking and the
unobserved continuous state during replay. The model parameters ˛.i/j are estimated
by maximum likelihood. Note that since this model depends on a stochastic state
process but does not depend on past spiking, it is also called a doubly stochastic
Poisson model (Grandell 2006).

An example of the model fit for a single neuron is shown in Fig. 2.5. Panel A
shows the model fit in blue overlaid on an occupancy normalized histogram of
spiking vs position. The place field has a large peak centered about 80 cm from
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plot for the rescaled inter-spike intervals (ISIs), with the dotted lines being the 95% confidence
bounds for the KS statistic
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the tip of the center arm. One advantage of writing down a point process model
for neural spiking is that there are a number of natural goodness-of-fit methods to
assess the quality of these models (Truccolo et al. 2005). In panel B we provide an
example of one common goodness-of-fit assessment, a Kolmogorov-Smirnov (KS)
plot. Details about the procedure to generate this plot are available (Brown et al.
2002; Truccolo et al. 2005), but briefly, the observed interspike intervals are rescaled
according to the intensity model and compared to their expected distribution if the
model were correct. A well-fit model should stay near the 45 degree line and should
stay within the dotted confidence bounds. The KS plot in panel B shows a fairly
well-fit model, though one where further refinement is still possible.

The remaining observation models are those for the short time Fourier transform
of the LFP and for the rat’s movement velocity. As described above, the observation
model for the LFP is a multivariate Gaussian model, p.ykjIk/ � N .�.Ik/;˙/,
where �.Ik/ is the mean power at each frequency in and out of the replay state,
and ˙ is the model covariance. Maximum likelihood estimates were obtained for
�.Ik D 0/, �.Ik D 1/, and ˙ . The observation model for the rat’s movement
velocity is also a Gaussian model, p.vkjvk�1; Ik/ � N .vk�1; &.Ik//, where &.Ik D
0/ and &.Ik D 1/ are the variability of the movement velocity in and out of the
replay state, and are estimated via maximum likelihood.

Finally, we define the initial condition for the states, p.I0; x0/. We assume that
the binary state is initially known not to be in a replay state, Pr.I0 D 0/ D 1.
By definition, the density of x0jI0 D 0 is a delta function at the rat’s position m0.
Together, these define the initial joint distribution of the states. We then iteratively
compute the filter distribution at each time step based on Eq. (2.11), solving the
integral numerically using Riemann summation.

An example segment of the decoding result is shown in Fig. 2.6. Figure 2.6a
shows the posterior distribution for being in-replay state by the blue solid line.
Figure 2.6b is a heat plot of the probability distribution of the semi-latent state
jointly with the animal being in-replay state. The red solid line is the animal’s actual
linearized position. Figure 2.6c and d are a zoomed-in display of a smaller period
of Fig. 2.6a and b highlighting a single decoded replay event. We see in panel A
that the probability of being in a replay state tends to stay near 0 much of the time,
and rapidly increases to values near 1 for short periods where the spiking, LFP, and
movement observations are consistent with a replay event. During periods when the
probability of a replay is small, the filter density of xk is concentrated around the rat’s
actual position. As the probability of a replay starts to increase, the filter density
of xk is initially broadly distributed but very rapidly becomes more concentrated
about a location, that is not necessarily at the location of the rat. The center of this
filter distribution can then begin to move, as illustrated by the replay event in panel
D, showing a replay with a population spike pattern that reflects movement from
smaller to larger position values.

Figure 2.6 shows an example of a small section of time with a few clear
replay events. Over the 15.5 min dataset we examined, we were able to detect 208
such events, approximately half of which showed a clear pattern corresponding to
movement of the state variable xk. Interestingly, over 80% of these reflected a state
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Fig. 2.6 Replay decoding example. (a) Shows the filter probability of a replay event at the current
time. (b) Shows a heat plot of the joint distribution of the semi-latent state and of a replay event
occurring. The red solid line is the animal’s actual linearized position. (c) and (d) show a zoomed-
in section from (a) and (b), respectively, illustrating a single decoded replay event that represents
a trajectory beginning close to the animal’s actual position and then proceeding away from the
animal

trajectory that started close to the rat’s actual location and moved away from the
rat. We note that all of these detected replay events are detected using only past
observed information, making them appropriate for closed loop experiments where
replay events are detected during an experiment and rapidly disrupted.

2.5 Discussion

In this chapter, we considered the use of the state-space framework to help model
complex neural phenomena. In particular, this class of models is well suited
for analyzing high dimensional neural and behavioral signals that are noisy and
have rich temporal structure. These types of problems have become increasingly
prevalent in recent years, as our capacity to record neural activity and our interest in
understanding complex relations between neural signals has expanded.

The fundamental structure of the state-space model, discussed in Sect. 2.2,
provides some insight into the power of this framework. The state model is used
to describe the dynamics of a stochastic signal or set of signals that influence
neural activity or behavior. These signals can be very noisy or nearly deterministic,
their dynamics simple or elaborate, depending on the structure of this model. The
observation model is used to capture the statistical relation between these signals
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and any experimental measurements. These measurements may be scalar values or
high-dimensional vectors, have distributions that are normal or not, and be related to
the state variable through linear or highly nonlinear relationships. The challenge for
many neural analysis problems lies in how to express its components using the state-
space framework—what form the state variables should take, how they evolve, how
noisy they are, and how they influence the observed data values. Once the model has
been formulated, many tools for model fitting, model assessment, and estimation are
immediately available.

The state-space framework also has important advantages in clarity; it forces
the data analyst to define precisely what is meant by a particular state. In some
cases these state definitions come directly from measurable quantities. The model
describing the relationship between spiking and location defines a state-space
process with an observable state: the present and future location of the animal.
In other cases the state may not be directly observable, but nonetheless relates to
potentially observable parameters; the model describing the relationship between
spiking and membrane conductance falls into this category.

Alternatively, the state may represent something much more abstract, as in the
analysis of replay events. Here the state that is estimated captures both whether
the system is coding for the current local position (non-replay state) or a non-local
position (replay state) as well as the current or non-local position that is being
represented. The state-space approach forces us to define precisely what we mean
by local and non-local activity and then makes it possible to ask, across all time,
when the spiking activity is consistent with either state.

This approach has important advantages over standard analyses in the field.
Putative replay events are typically detected using a combination of somewhat
arbitrarily chosen criteria, which can include movement speed, LFP structure, and
multiunit firing rates (Foster and Wilson 2006; Karlsson and Frank 2009; Gupta
et al. 2010). Replay is then defined as events where a statistical test applied to the
underlying spiking indicates that the spiking is similar in sequential structure (albeit
on a compressed timescale) to that seen during behavior. While that approach was
critical to the initial discovery of these events, it excludes both events where a single
non-local representation might be activated as well as events where the sequential
structure is not a good match for that seen during behavior. The state-space approach
allows us to relax those constraints and to potentially discover new types of replay.
Further, the two-step process of defining a set of candidate events and then applying
a test to those events makes it difficult to know the extent to which the criteria
chosen determine the results obtained. More broadly, further extensions of the state-
space model will enable us to answer questions about the specific relationship of
replay content to the animal’s actual movement, and will help us identify potential
differences in events that do or do not contain substantial power in the ripple band
in addition to non-local spiking.

The examples in Sect. 2.3 also highlight the range of problems and applications
that the state space paradigm can be used to address. The two examples we discussed
used a similar point process filter to accomplish very different goals. In the first, the
goal was to decode a movement signal, which was treated as unobserved, and predict
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a future turn direction, which was not directly observable. The challenge here was
devising a state variable structure that could be estimated to inform both of these
components. In the second example, the goal was not strictly to estimate the state
variables corresponding to the membrane potential and ionic currents; this was just
an ancillary step toward the objective of estimating parameters of the biophysical
model. Here, the real challenge was not in setting up the state-space model, but in
performing the computations to estimate the multiple state variables and parameters
simultaneously. The first example used a very simple state model, and extracted
most of the information about the state based on the observation model. The second
example used a very simple observation model, and used a more complex state
model, including multiple variables with interacting, nonlinear dynamics, to capture
the structure in the data.

The power of the state-space approach is also illustrated by a wide array
of other neuroscience applications of state-space modeling apart from decoding
ensemble neural spike trains (Rieke et al. 1997; Brown et al. 1998; Barbieri
et al. 2004; Wu et al. 2006). For instance, tracking the dynamics and plasticity
of neural receptive field in general (Eden et al. 2004) and specifically in rat
hippocampus and entorhinal cortex (Frank et al. 2002), looking at between-trial
hippocampal neuronal dynamics in the primary motor cortex of monkeys (Czanner
et al. 2008), and transitions in neural spiking dynamics in the subthalamic nucleus
of Parkinson’s patients (Deng et al. 2013). State-space models have also been
successful at identifying specific states of neuronal ensembles, include stimulus-
driven cortical states during behavior (Jones et al. 2007; Kemere et al. 2008) and
intrinsic cortical UP/DOWN states during slow wave sleep (Chen et al. 2009).
There have been many other extensions of state-space methods in neuroscience
applications. For example, Calabrese and Paninski combined a mixture of Gaussians
model, a Kalman filter and an EM algorithm to develop a computationally efficient
method for online spike sorting (Calabrese and Paninski 2011); Pakman et al.
developed a fast `1-penalized regression method for Kalman state-space models of
the neuron voltage dynamics given noisy, subsampled voltage observations (Pakman
et al. 2014); Archer et al. extended the standard Kalman filter-smoother with a
structured Gaussian, variational posterior approximation to the posterior of much
more general, nonlinear latent variable generative models (Archer et al. 2015);
Linderman et al. combined multi-neuron point process models with flexible graph-
theoretic priors, which characterize the relationship between latent features and
neural connectivity patterns, to classify neurons and infer latent dimensions of
circuit organization from correlated spike trains (Linderman et al. 2016); many other
extensions of these methods have been explored, some of which are detailed in later
chapters of this book.

In this chapter, we primarily focused on applications of the state-space paradigm
to solve filtering problems, where only the data up to the current time are
available to the model. Solving these problems is particularly useful for closed-
loop experiments, where interventions can be triggered on the basis of the estimated
state of the system. The utility of this approach extends to other types of problems,
including cases where the entire dataset is available for state estimation (smoothing)
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or cases where the goal is to predict future states or use the state to control an
external system. The identification of replay events, for example, is likely to be
most accurate when a smoothing algorithm is applied. The relevant smoothing
algorithm would use the same state model and observation model as the filtering
algorithm, but it would calculate the smoothing probability density of the latent
state by combining both past and future information, while the filtering algorithm
only uses the observations up to current time.

There are several natural extensions of the state-space paradigm that are likely
to be useful for future analyses. First, development of more efficient algorithms
to compute non-Gaussian, multimodal posterior densities for large-scale neural
data will be important. Individual neurons frequently have complex receptive field
structures that are not well described by a single Gaussian distribution. Capturing
these multimodal receptive fields and the potentially multimodal population-level
representations requires more complex mathematical formulations and estimation
algorithms. Second, the observed distribution could be extended to characterize
more complex combinations of data types, including data from imaging experiments
where calcium or voltage transients are measured. Third, more complex and
potentially multi-layer formulations of the state model are likely to be important,
as these could allow for more complicated dependence relationships between the
observed signals and the hidden states.

More broadly, given that our eventual goal is a complete mathematical descrip-
tion of the state and information content of the system, the state-space approach
offers a natural framework to begin to construct this sort of description. It can be
applied to extract information about the internal state of neurons based on their
spiking as well as about the representational state of neural ensembles. Further,
applications to behavior allow for estimation of even more abstract variables like
the learning state or attentional state of the animal. Combining models across all of
these levels should eventually allow us to link events across single neuron, neural
ensembles and behavior into a unified framework.

Acknowledgements We thank Hannah Joo for comments and writing suggestions.
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Chapter 3
Latent Variable Modeling of Neural Population
Dynamics

Zhe Chen

3.1 Introduction

A fundamental task in neural data analysis is to discover the regularity or structure
of measured (potentially high-dimensional) neural data. Measurements of neural
activity, whether being discrete or continuous-valued, are noisy (“stochastic”)
and time-varying (“dynamic”) at various spatiotemporal scales. In neuroscience
experiments, neural activity is driven by both external behavior and internal brain
dynamics. Any behavior has a temporal dynamics, thereby the derived neural
activity is also dynamic. Even in the complete absence of behavior (e.g., during
sleep or anesthesia), the neural activity is very likely to exhibit a rich neural
dynamics. Notably, many experimental quantities are unobserved or unobservable.
For instance, due to limited recording capacity, we are only able to measure
partially observable neural populations in one or multiple brain regions. Therefore,
neurons can receive a common input from an unobserved neuron or an unobservable
modulatory input from other brain region.

Factor analysis and mixture models are two common statistical models that
employ the concept of latent variables, one for continuous latent variables (San-
thanam et al. 2009) and the other for discrete latent variables. To characterize
temporal dynamic or dependency of time series data, it is natural to extend them
using a state-space framework (Chen et al. 2010, 2013; Chen 2015b). The state
space analysis provides a general framework for analyzing stochastic dynamical
systems that are measured or observed through a stochastic process.

The latent process is often modeled as a Markov process (continuous-valued)
or Markov chain (discrete-valued). In the continuous case, the most celebrated
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continuous-valued latent process model is the linear dynamical system (LDS) or
Kalman filter, which is an extension of the factor analysis. Another extension of
factor analysis is the Gaussian process factor analysis (GPFA), which accommo-
dates more smoothing power for characterizing neural population codes (Yu et al.
2009). In the discrete case, the most widely used latent process model is the hidden
Markov model (HMM) and its many variants (depending on specific probabilistic
assumptions).

Latent variable models have been successfully used in various analyses of neural
data, such as dimensionality reduction and visualization (Cunningham and Yu
2014), decoding (Lawhern et al. 2010; Chen et al. 2014), deconvolution (Penny
et al. 2005; Vogelstein et al. 2009, 2010), denoising (Wu et al. 2011, 2016), data
exploration (Latimer et al. 2015), and interpretation of variability (Whiteway and
Butts 2017).

In this chapter, bearing the goals mentioned above, we will propose an analysis
paradigm for latent variable modeling of neural dynamics—with focus on neuronal
population spike trains from freely behaving animals. Specifically, simultaneous
recording of multiple spike trains from many neurons within one or several brain
regions offers a window into how neural circuits work in concert to generate specific
brain functions.

3.2 Latent Variable Models

3.2.1 Latent Variable

Latent variables are used to characterize unobserved random or unknown variables,
which can represent quantitative or categorical (e.g., membership) information. For
instance, in the linear regression model, the residual noise can be modeled as a latent
variable. Latent variables can be either time-invariant or time-variant. For instance,
the latent variables in the factor analysis and mixture models are time-invariant.
When the latent variables evolve in time, they become time-variant.

We consider two types of latent variables: discrete and continuous. The discrete
latent variable, denoted by S, can be either finite or infinite (but countable). The
continuous latent variable, denoted as z 2 R

m, can be either one or multi-
dimensional. The latent variables are often assumed with specific probability
distributions.

Latent variable models can be visualized by probabilistic graphical models
(Jordan and Sejnowski 2001). Either node in the graph represents a random variable,
the line (undirected) or arrow (directed) between nodes indicate the statistical
dependency, which correspond to the undirected or directed graphical models,
respectively. When the nodes are not connected, two random variables X and Y
are considered to be conditionally independent or factorial; namely, p.X;Yjpar/ D
p.Xjpar/p.Yjpar/, where par denotes the parent nodes of X and Y.
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Table 3.1 Various statistical assumptions lead to different variants of the HMM

Assumption Variant

Semi-Markovian state transition Hidden semi-Markov model (Yu 2010)

Dirichlet mixture model Hierarchical Dirichlet process-HMM (Teh et al. 2006)

Hierarchical state transition Hierarchical HMM (Fine et al. 1998)

Independent Markov chains Factorial HMM (Ghahramani and Jordan 1997)

Nonlinear time warping Markov processes on curve (Saul and Rahim 2000)

Decomposed large state space Mixed memory Markov model (Saul and Jordan 1999)

Mixtures of factor analyzers Hidden Markov factor analysis (Omigbodun et al. 2016)

3.2.2 Latent State Dynamics

When a latent variable is time-varying, we sometimes refer to it as the latent state.
The latent state dynamics describes the evolution of latent process and how the
future state depends on the present and the past states. In a general form, the
latent state dynamics is characterized by a probabilistic mapping: Pr.StjS1Wt�1/ or
f .z1Wt�1/ 7! zt.

The Markov process, named after the Russian mathematician Andrey Markov,
is a stochastic process that satisfies the Markov property. Specifically, a process
satisfies the Markov property if its future and past states are independent. In other
words, the process is “memoryless.” A Markov chain is a type of Markov process
that has either discrete state space.

In many real-world examples, the latent process is not always Markovian in
that the state durations may follow more specific probability distributions, such as
Poisson, negative binomial, lognormal, and inverse Gaussian distribution. To model
the history dependence of a Markov chain, one idea is to introduce a high-order
Markov chain (Ching et al. 2015; Lee 2011). The other idea is to introduce an
explicit-duration semi-Markov modeling for each state (Guédon 2003; Yu 2010;
Chen 2015a). In addition, making different statistical assumptions will lead to
different variants of the HMM (Table 3.1).

3.2.3 Characterization of Neuronal Population Observations

To characterize neuronal population responses, let yt D Œy1;t; : : : ; yC;t�
> denote a

C-dimensional neuronal population vector, with each element yc;t � 0 denoting the
c-th neuronal spike count at the t-th time bin; and let y1WT D fyc;tgC�T denote the
time series of C-dimensional vector yt.

A common probability distribution for neuronal responses or spike count obser-
vations is the Poisson distribution. In addition, researchers have used the negative
binomial distribution to model spike count observations with overdispersion (where
the variance is greater than the mean statistic). In some cases, for the purpose
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Table 3.2 Choices of probability distribution for the neuronal response

Distribution Range of random variables Degree of freedom

Gaussian Real-valued Mean �, variance �2

Binomial Binary 0 < p < 1

Poisson Nonnegative integer Rate � > 0

Negative binomial Nonnegative integer r > 0; 0 < p < 1

Conway–Maxwell–Poisson (Stevenson 2016) Nonnegative integer � > 0; 	 � 0

Generalized Gaussian (Gao et al. 2016) Nonnegative integer �; g.�/

of computational tractability, researchers often use a Gaussian approximation for
Poisson spike counts through a variance stabilization transformation. Table 3.2 lists
a few population probability distributions for modeling spike count observations.

3.3 Inference: Likelihood and Bayesian Approaches

The likelihood and Bayesian approaches are two fundamental methods to solve
the inference problem. The likelihood approach computes a point estimate by
maximizing the likelihood function and represents the uncertainty of estimate via
confidence intervals (Pawitan 2001). The maximum likelihood estimate (m.l.e.) is
asymptotically consistent, normal, and efficient; it is invariant to reparameterization
(i.e., functional invariance). However, the m.l.e. is known to suffer from overfitting,
and therefore model selection is required in statistical data analysis. In contrast, the
Bayesian approach models the unknowns (parameters, latent variables, and missing
data) and uncertainties with probabilities or probability densities (Gelman et al.
2004; Robert 2007).

The likelihood approach aims to optimize the likelihood function L .YjZ; �/
given the observed data Y and latent (missing) data Z and unknown parameter
� . To estimate the latent variable Z and parameter � , the iterative expectation-
maximization (EM) algorithm has been developed to maximize or increase the
likelihood (Dempster et al. 1977; Smith and Brown 2003). In the E-step, conditional
on the most recent estimate O� , update the latent variable OZ. In the M-step, conditional
on the most recent estimate OZ, update the parameter O� . In each step, the optimization
can be tackled by solving the equation @L

@Z D 0 or @L
@�

D 0. When the analytic
solution is unavailable, we can resort to Newton or gradient-based optimization
methods.

The Bayesian approach computes the full posterior of the unknowns based on the
rules of probability theory. The foundation of Bayesian inference is given by Bayes’
rule, which consists of two rules: product rule and sum rule. Bayes’ rule provides
a way to compute the conditional, joint, and marginal probabilities. Specifically, let
X and Y be two continuous random variables; the conditional probability p.XjY/ is
given by
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p.XjY/ D p.X;Y/

p.Y/
D p.YjX/p.X/R

p.YjX/p.X/dX
(3.1)

In Bayesian language, p.YjX/, p.X/, and p.XjY/ are referred to as the likelihood,
prior, and posterior, respectively. The Bayesian machinery consists of three types
of basic operations: normalization, marginalization, and expectation, all of which
involve integration. For a hierarchical Bayesian model, the prior p.X/ is further
specified by a hyperparameter 
: p.X/ D R

p.Xj
/p.
/d
. When p.Xj
/ is sharply
peaked, the integral can be replaced with the point estimate of its peak 
�. Therefore,
Eq. (3.1) is rewritten as

p.XjY/ D p.YjX/p.X/
p.Y/

D p.YjX/ R p.Xj
/p.
/d

p.Y/

� p.YjX/p.Xj
�/
p.Y/

(3.2)

This yields the empirical Bayes estimate.
In the presence of latent variables, for the joint estimation of latent state Z and

unknown parameter � , Bayesian inference aims to infer the joint posterior of the
state and the parameter using Bayes’ rule

p.Z; � jY/ � p.ZjY/p.� jY/

D p.YjZ; �/p.Z/p.�/
p.Y/

D p.YjZ; �/p.Z/p.�/R R
p.YjZ; �/p.Z/p.�/dZd�

(3.3)

where the approximation in the first step has used the so-called “mean-field
approximation.”

Given the observed random variable X, latent variable Z, and unknown parame-
ters � , Bayesian inference attempts to maximize the marginal likelihood p.Y/ (also
known as “evidence”) as follows:

p.Y/ D
Z Z Z

p.YjX;Z; �/p.X/p.Z/p.�/dXdZd� (3.4)

Direct optimization of those integrals in Bayesian estimation is often intractable.
Therefore, many approximate Bayesian methods have been proposed. A detailed
review can be found in Chen (2013). For instance, the variational Bayes (VB)
approach employs the variational approximation (Jordan et al. 1999; Beal and
Ghahramani 2006), and is also referred to as ensemble learning. Specifically, VB
aims to maximize the marginal log-likelihood or its lower bound:

log p.Y/ D log
Z

d�
Z

dXp.�/p.Z;Yj�/

D log
Z

d�
Z

dZq.Z; �/
p.�/p.Z;Yj�/

q.Z; �/
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�
Z

d�
Z

dZq.Z; �/ log
p.�/p.Z;Yj�/

q.Z; �/

D
D

log p.Z;Y; �/
E

q
C Hq.Z; �/ 	 F .q.Z; �// (3.5)

where p.�/ denotes the parameter prior distribution, p.Z;Yj�/ defines the complete
data likelihood, and q.Z; �/ is called the variational posterior distribution which
approximates the joint posterior of the unknown state and parameter p.Z; � jY/.
The term Hq represents the entropy of the variational posterior distribution q,
and F .q.Z; �// is referred to as the free energy. Maximizing the free energy
F .q.Z; �// is equivalent to minimizing the Kullback–Leibler (KL) divergence
between the variational posterior and true posterior (denoted by KL.qkp/); since the
KL divergence is nonnegative, we have F .q/ D log p.Y/ � KL.qkp/ � log p.Y/.
The optimization problem in (3.5) can be resorted to the VB-EM algorithm (Beal
and Ghahramani 2006) in a similar fashion as the standard EM algorithm (Dempster
et al. 1977).

A common (but not necessary) VB assumption is a factorial form of the posterior
q.Z; �/ D q.Z/q.�/, although one can further impose certain structure within the
parameter space. In the case of mean-field approximation, we have q.Z; �/ D
q.Z/

Q
i q.�i/. With selected priors p.Z/ and p.�/, we may maximize the free energy

by alternatively solving two equations: @F
@Z D 0 and @F

@�
D 0. Specifically, VB-EM

inference can be viewed as a natural extension of the EM algorithm, which consists
of the following two steps:

• VB-E step: Given the available information of q.�/, maximize the free energy F
with respect to the function q.Z/ and update the posterior q.Z/;

• VB-M step: Given the available information of q.Z/, maximize the free energy
F with respect to the function q.�/ and update the posterior q.�/. The posterior
update will have an analytic form provided that the prior p.�/ is conjugate to the
complete-data likelihood function (the conjugate-exponential family).

Similar to the iterative EM algorithm, the VB-EM inference has local maxima in
optimization. The EM algorithm can be viewed as a variant of the VB algorithm in
that the VB-M step replaces the point estimate (i.e., q.�/ D ı.� � �MAP/ from the
traditional M-step with a full posterior estimate. Another counterpart of the VB-EM
is the maximization-expectation (ME) algorithm (Kurihara and Welling 2009), in
which the VB-E step uses the MAP point estimate q.Z/ D ı.Z � ZMAP/), while the
VB-M step updates the full posterior.

The Markov chain Monte Carlo (MCMC) approach is referred to a class of algo-
rithms for drawing random samples from probability distributions by constructing a
Markov chain that has the equilibrium distribution as the desired distribution. The
designed Markov chain is reversible and has detailed balance. For example, given a
transition probability P, the detailed balance holds between each pair of state i and
j in the state space if and only if �iPij D �jPji (where �i D Pr.Zt�1 D i/;Pij D
Pr.Zt�1 D i;Zt D j/). The appealing use of MCMC methods for Bayesian inference
is to numerically calculate high-dimensional integrals based on the samples drawn
from the equilibrium distribution (Robert 2007).
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The most common MCMC methods are the random walk algorithms, such as the
Metropolis-Hastings (MH) algorithm and Gibbs sampling. The MH algorithm is the
simplest yet the most generic MCMC method to generate samples using a random
walk and then to accept them with a certain acceptance probability. For example,
given a random-walk proposal distribution g.Z ! Z0/ (which defines a conditional
probability of moving state Z to Z0), the MH acceptance probability A .Z ! Z0/ is

A .Z ! Z0/ D min

�
1;

p.Z0/g.Z0 ! Z/

p.Z/g.Z ! Z0/

�

which yields a simple MCMC implementation. Gibbs sampling is another popular
MCMC method that requires no parameter tuning. Given a high-dimensional joint
distribution p.Z/ D p.z1; : : : ; zn/, Gibbs sampler draws samples from the individual
conditional distribution p.zijZ�i/ in turn while holding others fixed (where Z�i

denote the n � 1 variables in Z except for zi).
Another important class of Bayesian methods is Bayesian nonparametrics (Ger-

shman and Blei 2012; Müller et al. 2015). Since nonparametric Bayesian models
accommodate a large number of degrees of freedom (infinite-dimensional parameter
space) to exhibit a rich class of probabilistic structure, such approaches are very
powerful in terms of data representation. The fundamental building blocks are
two stochastic processes: Dirichlet process (DP) and Gaussian process (GP). In
application of data clustering, partitioning and segmentation, such as spike sorting
(Wood and Black 2008), Bayesian nonparametric models define a prior distribution
over the set of all possible partitions, in which the number of clusters or partitions
may grow as the increase of the data samples in both static and dynamic settings.
The model selection issue is resolved implicitly in the process of infinite mixture
modeling, such as the Dirichlet mixture model and infinite HMM. In the application
of data smoothing or prediction, the GP defines priors for the mean function
and covariance function, where the covariance kernel determines the smoothness
and stationarity between the data points. Although Bayesian nonparametrics offer
greater flexibility for modeling complex data structures, most inference algorithms
for Bayesian nonparametric models rely on MCMC methods, which may be
computationally prohibitive for large-scale neural data analysis.

3.4 Latent Variable Models in Neural Data Analysis

3.4.1 Uncovering Neural Representations of Rodent
Hippocampal-Neocortical Population Codes

3.4.1.1 Background

Population codes derived from simultaneous recordings of ensembles of neurons
have been studied in the representation of sensory or motor stimuli and in their
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relationship to behavior. Uncovering the internal representation of such codes
remains a fundamental task in systems neuroscience. In practice, this is usually
formulated as a neural coding or decoding problem.

The rodent hippocampus plays a key role in episodic memory, spatial navigation,
and memory consolidation (O’Keefe and Dostrovsky 1971; O’Keefe and Nadel
1978). Pyramidal cells in the CA1 area of the rodent hippocampus have local-
ized receptive fields (RFs) that are tuned to the animal’s spatial location during
navigation in one-dimensional (1D) or two-dimensional (2D) environments. These
cells are referred to as place cells, and their RFs are referred to as place fields.
Place field can be used for topographic map representation, in which a topographic
map contains metric information (such as distance and orientation) between two
locations in the map. In contrast to topographic map, the hippocampus has also
been suggested in topological coding of space (Curto and Itskov 2008; Dabaghian
et al. 2011, 2012; Chen et al. 2014). From a neural data analysis point of view,
the question of our interest is that: How do we transform the temporal patterns of
spiking activity in the form of multiple time series into a spatial representation with
pattern of place fields?

3.4.1.2 Modeling Methodology

To discover latent structures of large-scale population codes, we have developed a
hidden Markov model (HMM) for analyzing hippocampal population codes during
spatial navigation (Chen et al. 2012, 2014). In a basic model (Fig. 3.1), we assume
that the latent state process follows a first-order discrete-state Markov chain fStg 2
f1; 2; : : : ;mg. We use a finite m-state HMM to characterize the temporal population
spike activity from a population of C hippocampal neurons. We assume that the
spike counts of individual place cells at discrete time index t, conditional on the
latent state St, follow a Poisson probability distribution with associated tuning curve
functions � D f�cg D f�c;ig:

p.y1WT ; S1WT j�;P;�/ D p.S1j�/
TY

tD2
p.StjSt�1;P/

TY

tD1
p.ytjSt;�/ (3.6)

where P D fPijg denotes an m-by-m state transition matrix, with Pij representing
the transition probability from state i to j; � D f�ig denotes a probability vector for
the initial state S1; and p.ytjSt;�/ D QC

cD1 Poisson.yc;tj�c;St / defines products of
Poisson distributions given the individual rate parameters.

To derive a Bayesian inference procedure, we further introduce the following
prior distributions over the parameters f�;P;�g (Chen et al. 2012):

� � Dirichelet.˛01/;

Pi;W � Dirichelet.˛01/;



3 Latent Variable Modeling of Neural Population Dynamics 61

m

… … {

{ m

state transition matrix

m 

… {
{ C

state field matrix

yt-1

……

yt+1yt

St-1
St+1St

HMM

Fig. 3.1 Finite-state hidden Markov model (HMM). The latent state fStg follows a Markov
process. The state transition is characterized by an m � m state transition matrix. Conditional on
the latent state, the population spike activity of C neurons is characterized by a Poisson distribution
characterized by a mean firing rate represented by an m � C state field matrix

˛0 � Gamma.a˛0 ; 1/;

�c;i � Gamma.a0c ; b
0
c/:

where Dirichelet denotes the Dirichlet distribution, and Gamma.a0c ; b
0
c/ denotes

the gamma distribution with shape parameter a0c and scale parameter b0c .
To accommodate automatic model selection for the unknown parameter m, we

have further developed a Bayesian nonparametric version of the HMM, the so-called
hierarchical Dirichlet process-HMM (HDP-HMM), which extends the finite-state
HMM with a nonparametric HDP prior, and inherits a great flexibility for modeling
complex data (Linderman et al. 2016). Specifically, we sample a distribution over
latent states, G0, from a DP prior, G0 � DP.�;H/, where � is the concentration
parameter and H is the base measure. We also place a prior distribution over the
concentration parameter, � � Gamma.a� ; 1/. Given the concentration, we sample
from the DP via the “stick-breaking process (STP)”: the stick-breaking weights, ˇ,
is drawn from a beta distribution:

Q̌
i � Beta.1; �/; ˇi D Q̌

i

i�1Y

jD1
.1 � Q̌

j/ (3.7)
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where ˇ1 D Q̌
1,
P1

iD1 ˇi D 1, and Beta.a; b/ defines a beta distribution with
two shape parameters a > 0 and b > 0. For inference, we use a “weak limit”
approximation in which the DP prior is approximated with a symmetric Dirichlet
prior

� � Gamma.a� ; 1/

˛0 � Gamma.a˛0 ; 1/

ˇj� � Dirichelet.�=M; : : : ; �=M/;

�j˛0;ˇ � Dirichelet.˛0ˇ1; : : : ; ˛0ˇM/;

Pi;Wj˛0;ˇ � Dirichelet.˛0ˇ1; : : : ; ˛0ˇM/:

where M denoted a truncation level for approximating the distribution over the
countably infinite number of states.

For the Poisson likelihood, we use a Gibbs sampler for parameter �. Since we
are using conjugate gamma priors, the posterior can be updated in a closed form

�c;ijy; S1WT � Gamma

�
˛0c C

TX

tD1
yc;tIŒSt D i�; ˇ0c C

TX

tD1
IŒSt D i�

�
:

Furthermore, since the priors on Pi;W and � reduce to Dirichlet distributions, we can
derive conjugate Gibbs updates for these parameters as follows:

�j˛0;ˇ � Dirichelet .˛0ˇ C 1S1 / ;

Pi;Wj˛0;ˇ � Dirichelet .˛0ˇ C ni/ ;

ni;j D
T�1X

tD1
IŒSt D i; StC1 D j�;

where 1j is a unit vector with a one in the j-th entry. Conditioned upon the firing
rates, the initial state distribution, and the transition matrix, we can jointly update
the latent states using a forward filtering, backward sampling algorithm to obtain a
full sample from p.S1WT jP;�;�/.

Regarding the firing rate hyperparameters f˛0c ; ˇ0c g for the c-th neuron, we
have proposed three methods for update (Linderman et al. 2016): (1) empirical
Bayesian, which aims to maximize the marginal likelihood of the spike counts; (2)
Hamiltonian Monte Carlo (HMC) sampling for joint posterior flog˛0c ; logˇ0c g; and
(3) sampling the scale hyperparameter ˇ0c (using a gamma prior) while fixing the
shape hyperparameter, ˛0c D 1. In practice, the second and third methods are found
to work very well.

To summarize, we have constructed a hierarchical probabilistic model for charac-
terizing population spike trains, consisting of model parameters, hyperparameters,
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and hyper prior parameters. This model is sufficiently flexible and hierarchical
Bayesian inference also enables us to impose different prior information onto the
model. More importantly, we have tested (using synthetic datasets) the robustness
of this model with respect to those hyper priors or hyperparameter optimization.

3.4.1.3 Application to Rat Hippocampal Population Codes

Hippocampal functions have been widely investigated in various rodent spatial and
nonspatial experimental tasks. In spatial tasks, freely behaving rodents are instructed
to navigate in specific spatial environments. The typical experimental paradigm is
spatial navigation followed by post-behavior sleep.

In our first illustrated example, the rat was freely foraging in an open field arena
(Fig. 3.2a). The micro-drive arrays containing multiple tetrodes were implanted
above the right dorsal hippocampus of male Long-Evans rats. The tetrodes were
slowly lowered into the brain reaching the cell layer of CA1 2–4 weeks following
the date of surgery. Recorded spikes were manually clustered and sorted to obtain
single units using a custom software. In this example, we apply the unsupervised
population decoding analysis to about 9-min recording of 49 well-isolated rat
hippocampal CA1 units. The details of experimental setup are referred to Linderman
et al. (2016). From the inferred state trajectory, we infer a two-dimensional
(2D) state space map (Fig. 3.2b), from which we further quantify the median
decoding error in time (Fig. 3.2c). In this case, the median decoding error is
around 0.10 m).

A B

C

Time bin (250 ms bin size)

x 
(c

m
)

y 
(c

m
)

Fig. 3.2 Uncovering topological representation of rat hippocampal population codes. (a) Rat’s run
trajectory in an open field arena. (b) Inferred state space map, where the mean value of the spatial
position for each latent state is shown by a black dot. The size of the dot is proportional to the
occupancy of the state. (c) Snapshots of decoded trajectories (blue) in x and y coordinates (black:
animal’s true trajectory). Figure adapted from Linderman et al. (2016)
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In our second illustrated example, a naive rat was freely foraging a circular maze.
The recording session consisted of a long (�4 h) pre-RUN sleep epoch home-cage
recording performed in a familiar room, followed by a RUN epoch (�45 min) in a
novel circular maze (https://crcns.org/data-sets/hc/hc-11/) (Grosmark and Buzsaki
2016). After the RUN epoch, the animal was transferred back to its home cage in
the familiar room where a long (�4 h) post-RUN sleep was recorded. Upon off-line
spike sorting, we observed clear place receptive fields from 77 hippocampal CA1
neurons.

In this example, we first apply unsupervised decoding analysis to the RUN data
and infer the state transition matrix P and firing rate matrix �. The number of the
latent states is automatically identified and the choice of hyperparameter priors is
determined from the predictive likelihood of held on data. Next, we can apply the
inferred structure to detect sleep-associated hippocampal memory reactivation (or
“replay”) during quiet wakefulness (QW) on the circular track, as well as during
post-RUN slow wave sleep (SWS) in a sleep box (Chen et al. 2016a). From post-
SWS epochs, we further identify candidate events for hippocampal spatial memory
reactivation. The events are selected based on hippocampal local field potential
(LFP) ripple power and hippocampal multi-unit activity (threshold>mean + 3SD).
We also impose a minimum cell activation criterion (>10% of cell population).
Among those candidate events, we temporally bin the hippocampal neuronal spikes
(20 ms) and run a population decoding analysis to detect replay events. Statistically
significant reactivation events are determined by established criteria, followed by
random shuffling operations (Chen et al. 2016a). A few representative significant
(Monte Carlo p < 0:01 or Z-score greater than 2.33) examples are shown in Fig. 3.3.

Notably, detecting the statistical significance of a trajectory sequence often relies
on the line fitting procedure (Davidson et al. 2009). To overcome the limitation of
linear weighted correlation metric (Wu and Foster 2014), we adapt the “distance
correlation” metric (Székely and Rizzo 2009), and derive a new metric called
“weighted distance correlation.” The motivation is to address the deficiency of
Pearson’s correlation in the presence of discontinuity of the trajectory (e.g., due
to linearization of a circular track or T-maze) or nonlinear relationship between two
variables (Liu et al. 2018). In comparison with the standard receptive-field based
population decoding analysis, our unsupervised population decoding allows non-
even spacing with the environment according to the sampling occupancy or spiking
data. In addition, the analysis paradigm “memory first, meaning later” (or “structure
first, content later”) provides an unbiased assessment of neural population codes
(Chen et al. 2016a; Chen and Wilson 2017).

Thus far, we have only tested our method on RUN!RUN and RUN!SLEEP.
However, our analysis paradigm is purely unsupervised and is independent of the
templates. For instance, in principle we can test the method on SLEEP!RUN or
SLEEP!SLEEP (different sleep epochs or sleep stages). Specifically, to test our
method on SLEEP!RUN, we use the detected significant memory replay events as
the training data and run the unsupervised population decoding analysis (Chen et al.
2016a). We use the inferred firing rate matrix � from SLEEP epochs and to infer the

https://crcns.org/data-sets/hc/hc-11/
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Fig. 3.3 Detecting hippocampal memory replays in offline states. (a) Quiet wakefulness (QW).
(b) Post-SWS. Temporal bin size: 20 ms. The Z-score of weighted distance correlation is shown
on the top of each panel
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Fig. 3.4 Inferred state space correspondence maps. (a) Using population spike data from RUN
epochs alone (effective number of state: 100, median decoding error: 0.05 m). (b) Using population
spike data from post-SWS epochs alone (effective number of state: 34, median decoding error:
0.16 m)

state sequence during RUN. We then compare the inferred latent state sequence with
the animal’s position (“ground truth”) to assess the state space map (Fig. 3.4) and
decoding error (median error: 0.16 m). To our surprise, despite the fact that sleep-
associated population spike data are sparse and fragmental, we are still capable of
extracting meaningful latent structure of the “place code.”
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3.4.1.4 Application to Rat Hippocampal-Neocortical Population Codes

In rodent hippocampal neural representations, the latent states correspond to spatial
sequences. In general, the latent states can be abstract or undefined a priori.
Therefore, a similar analysis can be applied to uncover neocortical population
representations, except that the derived latent states may correspond to a different
behavioral correlate. The visual cortex provides a crucial sensory input to the
hippocampus, and is a key component for the creation of spatial memories (Chen
et al. 2013). Specifically, visual and spatial inputs provide two dominant cues
in visuospatial information processing during spatial navigation (Haggerty and Ji
2015a). In this case, the latent states derived from the visual population codes may
correspond to visuospatial sequences.

In the third illustrated example, the rat navigated in a figure-“8” environment
(Fig. 3.5a), and neuronal ensemble spike activity was recorded from the rat hip-
pocampus CA1 and primary visual cortex (V1) simultaneously (Ji and Wilson
2007; Haggerty and Ji 2015b). One research question is to investigate the content
dependency between two neuronal populations. Since large percentage of V1
neurons contain high spatial information rate (Haggerty and Ji 2015a), it is expected
that the spike activity from V1 population can code spatial information.

We apply the unsupervised decoding analysis to the simultaneous CA1-V1
ensemble recording from one rat during spatial navigation in one session. Based
on two independent analyses, we infer the latent sequences SCA1

1WT and SV1
1WT separately

from respective (sorted) ensemble spikes (16 CA1 units and 21 V1 units). First,
we assess the results by the median decoding error. Surprisingly, the decoding
accuracy derived from both data sets without using behavioral measures are very
good (median decoding error: 3.68 cm for the hippocampus, 2.01 cm for the V1;
illustrations in Fig. 3.5b). The inferred number of states are 60 from V1 and 39 from
CA1, respectively.

Next, we assess the statistical dependency of neural representations between
CA1 and V1. The mutual information (MI) is a measure that quantify statistical
dependency between two discrete random variables. Comparing two inferred latent
sequences: SCA1

1WT vs. SV1
1WT (Fig. 3.5c), we compute the Shannon entropy, conditional

entropy (unit: bits): HCA1 D 4:5171;HV1 D 5:1851;HCA1jV1 D 1:5514 and

normalized mutual information (NMI): HCA1�HCA1jV1p
HCA1HV1

D 0:6128 (bootstrapped SD:
0.0059). A large value of NMI (0 � NMI � 1) indicates high statistical dependency
between two latent state sequences, which contributed by their place coding. The
additional information might be contributed by visual coding.
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Fig. 3.5 Neural representations of rat CA1-V1 population codes. (a) Rat’s run trajectory in a
figure-“8” maze. (b) Snapshots of decoded trajectories from CA1 (red) and V1 (blue) population
codes in x and y coordinates. The black curve denotes animal’s actual position. (c) Confusion
matrix map between two inferred latent state sequences SCA1

1WT and SV1
1WT

3.4.2 Detecting Onset of Acute Pain Signals

3.4.2.1 Background

In the neuroscience literature, neuroimaging and neurophysiological studies have
identified circuit changes in the primary somatosensory cortex (S1) and anterior
cingulate cortex (ACC) during pain states (Bushnell et al. 2013; Wagner et al. 2013;
Fuchs et al. 2014; Kuo and Yen 2005; Zhang et al. 2011; Vierck et al. 2013). The
use of multiple microwire arrays has enabled us to record many neurons from the S1
and ACC in freely behaving rats during an experimental protocol of acute thermal
pain (Chen et al. 2017a).

A central computational goal is to reliably detect on the onset of acute thermal
pain signals encoded by ensemble S1 and ACC responsive neurons. This can
be formulated as a change-point detection problem. Depending on the nature of
application, the detection can be off-line or on-line (sequential). To illustrate the
idea of latent variable modeling, here we discuss the off-line setting.
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3.4.2.2 Modeling Methodology

Let the latent univariate variable zt 2 R represent the unobserved common input
(e.g., pain stimulus) that drives the neuronal population firing. The data-driven
model can be described by a latent-state Poisson linear dynamical system (PLDS)
(Chen et al. 2017a)

zt D azt�1 C t (3.8)

yt � Poisson
�

exp.czt C d/�
�

(3.9)

where the state equation (3.8) is a first-order autoregressive (AR) model driven by
a zero-mean Gaussian noise process t 2 N .0; �2/. The parameters d and c are
unconstrained. Previously, we developed a variational EM algorithm to estimate the
posterior of OztjT as well as the unknown parameters (Chen et al. 2017a).

Alternatively, we transform the spike count vector using the change-of-variable,
such as Qyt D p

yt or Qyt D log.yt C 1/ such that Qyt � 0. Assuming that the
transformed variable Qyt is Gaussian, we have the linear dynamical system (LDS):

zt D azt�1 C t (3.10)

Qyt D czt C d C wt (3.11)

where wt 2 N .0; � w/ is a Gaussian noise process with zero mean and covariance
� w. Similarly, we use the EM algorithm or spectral learning algorithm to estimate
the unknown parameters fa; c,d; �; � wg (Buesing et al. 2012a). In practice, we may
fix d in Eqs. (3.9) and (3.11) with the baseline firing rate.

From the estimated latent state, we further compute the Z-score related to
the baseline: Z-score D z-mean of zbaseline

SD of zbaseline
. Under the assumption that the Z-score is

standard normally distributed, we convert it to the one-tailed P-value:

P.Z-score > OztjT / D 1 � P.Z-score � OztjT / D 1 �
Z OztjT

�1
1p
2�

e�u2=2du (3.12)

The criterion of Z-score change (or equivalent P-value) is determined by a critical
threshold for reaching statistical significance. For instance, using the significance
criterion with one-sided P-value 0.05, it is concluded that a change point occurs
when Z-score � CI > 1:65 or Z-score C CI < �1:65, where CI denotes the scaled
confidence interval derived from the standard deviation of latent variable.

3.4.2.3 Inference

Given the PLDS, we can estimate the latent variables and unknown model param-
eters by an iterative EM algorithm based on maximum likelihood estimation. In
the E-step, we compute the Gaussian smoothed posterior for the latent state zt �
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N .OztjT ;QtjT/; in the M-step, we update the parameters using the most recent state
estimate. The iteration continues until the log-likelihood value reaches to the local
maximum. Because of the non-Gaussian likelihood, the E-step in the EM algorithm
is intractable. Therefore, Laplace or variational approximation methods can be
considered (Smith and Brown 2003; Buesing et al. 2012b; Macke et al. 2012). In
our experimental investigation, we found that variational approach yielded slightly
better results in predictive likelihood, but the Laplace approach converged much
faster and obtained similar results in the state estimate (Chen et al. 2017a).

Note that we have assumed a univariate latent variable here. In general, the
latent variable can be multivariate and we can apply model selection procedures to
determine the optimal model dimensionality (Chen et al. 2017a). However, in this
specific application, our central goal is the quickest detection of change in neural
activity; therefore, a univariate latent variable is sufficient.

In off-line applications, the sufficient statistics N .OztjT ;QtjT / of the smoothed
state are used for assessing change points. In on-line applications, we can derive
recursive filtering algorithm for spike count observations (Smith and Brown 2003;
Eden et al. 2004)

Oztjt�1 D aOzt�1jt�1 (3.13)

Qtjt�1 D a2Qt�1jt�1 C �2 (3.14)

Oytjt�1 D exp.cOztjt�1 C d/� (3.15)

Q�1
tjt D Q�1

tjt�1 C c>diag.Oytjt�1/c (3.16)

Oztjt D Oztjt�1 C Qtjtc>.yt � Oytjt�1/ (3.17)

where Qtjt D VarŒOztjt� denotes the filtered state variance.

3.4.2.4 Application to Rat ACC-S1 Population Codes

In the experiment, noxious stimulation via a blue laser was applied to plantar surface
of the hind paw contralateral to the brain recording site in freely moving male
Sprague-Dawley rats (Chen et al. 2017a). The onset of noxious pain was identified
from videos (60 frame/s), indicated by the paw withdrawal. Spikes were sorted off-
line to obtain well-isolated single units from either stereotrodes or tetrodes. All
sorted single units (putative pyramidal neurons and interneurons) are included in
population analysis.

In the first illustrated example, we apply our proposed models (PLDS and LDS)
to one recording session of rat ACC during 150 mW laser stimulations. All analyses
are on the single-trial basis. The algorithm converges very fast, typically within
50–100 iterations for 15-s data. For each trial, we define the baseline as 5 s prior
to the laser onset as the baseline period. Notably, the ACC population consists of
both positive and negative responders, which show increased and decreased firing
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Fig. 3.6 Detecting acute thermal pain signals. (a) Rat recording of neuronal ensemble spike counts
from 30 ACC units under 150 mW laser stimulation (on-line sorting). Time 0 denotes the laser
onset. Bin size 50 ms. Color bar indicates spike count, with dark color representing large spike
count. (b) Estimated mean Z-score (blue curve) from the latent state Ozt . Vertical red line indicates
the animal’s paw withdrawal—an indicator of acute pain behavior. Horizontal dashed lines mark
the significant thresholds of ˙1.65. Shaded area around the red curve marks the 95% confidence
intervals. Baseline period: Œ�4;�1� s

in response to pain stimuli, respectively. Some of units do not show significant
modulation with respect to pain stimuli. As illustrated in this example (Fig. 3.6),
our approach successfully detected the “neuronal threshold for acute pain” from
ACC ensemble neurons, and the change point is identified around the onset of paw
withdrawal.

In the second illustrated example, we apply our proposed models (PLDS and
LDS) to one session with simultaneous recordings of rat S1 and ACC units during
250 mW laser stimulations. Two independent decoding analyses are carried out for
S1 and ACC recordings at each single trial, and the final decision is made based
upon integrating the detection results from two separate analyses (Fig. 3.7). In this
example, note that first, the change point is identified before the onset of paw
withdrawal using either S1 and ACC population spikes; and it is faster to cross
the significance threshold in the case of S1 population. Second, the significant
period detected from the S1 population is much longer than the significant period
detected from the ACC population. This may be due to the reason that S1 and ACC
neurons have different sensitivity or specificity to pain stimuli. To accommodate
this difference, we can design a suboptimal decision rule and adjust the detection
threshold according to their sensitivity or specificity (Hu et al. 2017).

In summary, the state space analysis provides a principled paradigm to detect
the change in neuronal ensemble spike activity. In our observations, the model-
based approach is more robust than the model-free approach, and the PLDS model
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Fig. 3.7 Detecting acute thermal pain signals. (a) Simultaneous recordings of neuronal ensemble
spike counts from the 7 S1 and 10 ACC units under 250 mW laser stimulation. Time 0 denotes
the laser onset. Bin size 50 ms. Color bar indicates spike count, with dark color representing large
spike count. (b) Estimated mean Z-score (blue curve) from the latent state Ozt. Vertical red line
indicates the animal’s paw withdrawal—an indicator of acute pain behavior. Horizontal dashed
lines mark the significant thresholds of ˙1.65. Shaded area around the red or blue curve mark the
95% confidence intervals. Baseline period: Œ�4;�1� s

performs better than the LDS (Chen et al. 2017b). For real-time applications, we can
further optimize the filtering algorithms to improve the detection speed and accuracy
(Hu et al. 2018).

3.4.3 Unfolding Motor Population Dynamics

3.4.3.1 Background

Single-neuron responses in motor cortex are complex, and there is marked disagree-
ment regarding which movement parameters are represented (Churchland et al.
2012). Therefore, it is important to discover latent structure of motor population
dynamics using statistical methods (Cunningham and Yu 2014; Aghagolzadeh and
Truccolo 2016; Feeney et al. 2017). One popular approach is to use supervised
learning for establishing encoding models for individual motor neurons, and then
use the assumed encoding model in population decoding. However, this approach
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has several drawbacks: First, we need to make strong statistical assumptions for
the neuronal encoding model. In addition, the measured movement behavior (e.g.,
kinematics) is high-dimensional, the model fitting may easily suffer from overfitting.
Second, there is often strong heterogeneity among neuronal populations. Without
prior information, it may be unwise to assume that every neuron share the same
encoding model. In contrast, the alternative approach is to use unsupervised learning
for unbiased assessment of neuronal population codes.

The latent variable approach can be viewed as a subclass of “neural trajectory”
methods, with the goal to uncover the latent neural trajectory (Buonomano and Laje
2010). One type of methods is based on trial averaging, such as principal component
analysis (PCA) or other subspace methods (Churchland et al. 2012; Ames et al.
2014). The other type of methods focus on single-trial dynamics, such as Gaussian
process factor analysis (GPFA) (Yu et al. 2009; Zhao and Park 2017), linear or
nonlinear dynamical systems (Wu et al. 2009; Lawhern et al. 2010; Gao et al. 2016),
mixture of trajectory models (Yu et al. 2007), and neural networks (Michaels et al.
2016).

Given the measured neuronal motor population spike activity, the goal of
unsupervised learning is to unfold the latent state trajectory that drives the motor
population dynamics, where the relationship between the inferred state sequence
and measured behavior can be established a posteriori. Here we employ two
unsupervised learning approaches: the first approach is based on the PLDS, where
the state is assumed to be continuous with unknown dimensionality; the second
approach is based on the HDP-HMM, where the state is assumed to be discrete
and the state transition is assumed to be Markovian. In both cases, we can slightly
differentiate assumptions on the latent state without explicitly defining what the
latent state is a priori. For illustration purpose, we will not make comprehensive
comparisons with other models here.

3.4.3.2 Simulation and Results

As an illustration, we construct the synthetic population spike data based on
known underlying relationship between the motor movement and neural population
dynamics. Specifically, the following four types of trajectory paths are assumed for

movement kinematics K
�D Œxt; yt; Pxt; Pyt� 2 R

4 (Wu and Srivastava 2011):

x.1/t D � cos.0:5�t/

y.1/t D sin.0:5�t/

x.2/t D � cos.0:5�t/

y.2/t D � sin.0:5�t/

x.3/t D 0:5.cos.�t/C 1/�t
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Fig. 3.8 Simulated trajectory and representative tuning curves. (a) Simulated movement trajectory
.xt; yt/, with four colors representing different paths. (b) Velocity of .Pxt; Pyt/ for different paths.
Solid and dashed lines denote the x and y directions, respectively. (c) Profile of neuronal firing rate

y.3/t D 0:5 sin.�t/

x.4/t D 0:5.cos.�t/C 1/�t

y.4/t D �0:5 sin.�t/

where �t is a step function. The trajectory paths are shown in Fig. 3.8. In addition,
we assume that the firing rate of the c-th neuron, �c;t, is nonlinearly modulated by a
four-dimensional instantaneous kinematic vector Œxt; yt; Pxt; Pyt�. Specifically, for the
i-th trajectory path (i D 1; 2; 3; 4), the firing rate is represented as follows:

�
.i/
c;t D bc exp.a>

c Œx
.i/
t ; y

.i/
t ; Px.i/t ; Py.i/t �/ (3.18)

We use the following setup for simulation: 40 neurons, 50 trials, with each trial of
2-s duration. We use 40 trials for training and the remaining 10 trials for testing.
Population spikes are binned into 100 ms to obtain spike count observations.

In the first method, we assume that the latent state is continuous valued. We set
the dimensionality of latent state z to 4 and employ the PLDS and EM algorithm
based on likelihood inference. Once the latent trajectory is inferred (Fig. 3.9a), we
apply the canonical correlation analysis (CCA) to assess the statistical dependency
between the linear subspaces of z and K. For two random vector variables z D
fzig and K D fKjg, CCA is aimed to find linear combinations of the fzig and fKjg
which have maximum correlation with each other. When using dim.z/ D 4, the
scatter plots of training data projected on two maximally correlated subspaces are
shown in Fig. 3.9b, where the correlation coefficients are 0.90 and 0.81, respectively.
Specifically, the maximum correlation between the latent state and the behavioral
subspace for four trajectory paths are 0.91, 0.94, 0.91 and 0.85, respectively. This
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suggests that the inferred latent variables derived from the population spike activity
capture the majority of variance of behavioral kinematics. By varying the latent state
dimensionality, it is also found that the predictive log-likelihood of testing data is
the highest when we use the true state dimensionality.

In the second method, we assume that the latent state space is discrete. We
employ the HDP-HMM with MCMC inference to characterize the simulated
population spike data. We assess the modeling performance by predicted data log-
likelihood and the predicted state sequences. Examples are shown in Fig. 3.10.
It appears that the state sequences captures the internal dynamics of periodic
movement. Since the behavioral variables (i.e., kinematics) are relatively high-
dimensional, we use a temporal clustering method known as aligned cluster analysis
(ACA) and hierarchical ACA (HACA) to label the behavioral measurement (Zhou
et al. 2013). The ACA provides a natural framework to find a low-dimensional
embedding for time series by combining the concepts of kernel k-means with
dynamic time alignment kernel. Next, from the inferred state trajectory, we compute
the NMI between the inferred latent state sequence and the clustered behavioral
sequence. Specifically, the NMI between the latent state and the clustered behavioral
sequence is 0.71 (0.66, 0.48, 0.60, and 0.75 for four trajectory paths, respectively).
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By carefully examining the correspondence map (result not shown), we find that
the majority of behavioral states are captured by 1–2 dominant HMM latent states,
whereas the most occupied HMM states represent multiple clustered behavioral
states, suggesting that it employs a conductive coding scheme to approximate
the continuous firing rate mapping function. Furthermore, from the inferred state-
firing rate matrix, we can develop new goodness-of-fit measures to characterize
the “dissimilarity” between latent state sequences induced by trial variability.
Specifically, it is found that the within-type trial variability is significantly lower
than the between-type trial variability. Detailed results will be presented elsewhere
due to space limitation.

3.5 Discussion

In this chapter, we have presented a class of latent variable models to characterize
spatiotemporal neural dynamics. Although we have illustrated our methodology
using neuronal population spike trains, this framework is rather general and can be
extended to other neurophysiological recordings, such as the LFP, EEG, and calcium
imaging data. To do so, one need to establish accurate probability distributions or
likelihood models to characterize those neural signals.

In the context of neuroscience applications, the latent variable can be viewed as
a proxy that represents a continuous variable of a specific task, whether it is referred
to animal’s spatial locations or movement kinematics in time. More generally, the
latent variable can also be used to represent an abstract memory space that drives
complex behavior. The complexity of the latent variable model is determined by



76 Z. Chen

many factors, such as the model architecture (e.g., directed graph, hierarchical
and recurrent structure), the probability distribution and statistical dependency
between random variables, temporal embedding of observations, and local or global
nonlinear mapping.

3.5.1 Model Extension

3.5.1.1 Discrete State Case

Recently, we have extended the HDP-HMM method into two directions. First,
we relax the common Markovian assumption and introduced a hidden semi-
Markov model (HSMM) that allows for greater modeling flexibility of behavioral
or neuronal dynamics. The HDP-HSMM also accommodates the HDP-HMM as a
special case. Specifically, we assume that the sojourn duration for state i, denoted
by p.dtjSt D i/, follows a parametric distribution (Chen et al. 2016b):

dtjSt D i � NegBin.r; p/

D
�

d C r � 2

d � 1
�
.1� p/rpd�1 .d D 1; 2; : : :/

where NegBin.r; p/ denotes a negative binomial distribution (discrete analog of
the gamma distribution), which reduces to the geometric distribution when r D 1

as a special case (i.e., Markovian); namely, the HMM has a geometric sojourn time
distribution such that the probability of staying in state i for d steps is Pd

ii.1 � Pii/.
Second, we introduce the concept of temporal embedding of population vector

observations to enhance the representation power of HMM or HSMM (Chen 2017).
Specifically, we construct a time-delay firing rate vector and augment the population
vector from size C to C� , where � denotes the temporal embedding length (which
can contain forward or backward direction, or both). The inference procedure with
such temporal embedding remains unchanged. At the end of inference, the newly
derived firing rate matrix Q� D f Q�cg is of size C ��m, which can be reorganized and
interpreted as an m � � spatiotemporal receptive field for the c-th neuron. When the
embedding length is 1, it reduces to the standard setup.

3.5.1.2 Continuous State Case

The LDS and PLDS models employ a continuous latent state space. There are a
few possible ways to extend the model representation. First, the log link function
in the Poisson generalized linear model can be replaced by a complex nonlinear
embedding, such as a nonlinear feedforward neural network, and the Poisson
distribution can be replaced by a generalized count distribution (Gao et al. 2016).
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Second, the network can be introduced a recurrent structure to incorporate internal
memory, which yields a wide class of recurrent latent variable model (Pachitariu
et al. 2013; Chung et al. 2016). Third, we can introduce a hierarchical structure
to yield a deep neural network (DNN) (LeCun et al. 2015; Goodfellow et al.
2016). In addition, the unsupervised latent variable method can be combined with
supervised learning to decode behavioral measures such as movement kinematics
(Aghagolzadeh and Truccolo 2016).

3.5.2 Challenges and Future Direction

3.5.2.1 From Neural Space to Behavior, and to Neural Codes

Our unsupervised learning methods provide a paradigm to identify a meaningful
latent “neural space” based on neuronal ensemble spike activity, which is further
linked to behavioral measures at a specific timescale, such as animal’s position
or movement kinematics. However, one great challenge is the lack of prior
information for choosing the representation of behavioral measures (e.g., the choice
of coordinate system, potential nonlinear transformation or interaction among the
behavioral measures), especially in the presence of high-dimensional behavioral
measurements. How to establish the “behavioral space” that is mostly relevant
to neural data remains an open question. Once the bridge is established between
the neural space and behavior, we will ultimately reveal important neural coding
principles.

3.5.2.2 Generative Models vs. Neural Networks

The stochastic HMM-type models have fundamental limitations due to its limited
representation power. First, the states are mutually exclusive. Even with infinite
number of states, it must select one of its hidden states at each time step;
therefore with m hidden states it can only remember log2 m bits about what it has
generated. Second, they have relatively constrained latent state transition structures
(characterized by P).

Unlike the probabilistic generative models (e.g., HMM, LDS and PLDS), the
recurrent or deep neural networks are mostly deterministic (with a very few
exception such as the Boltzmann machine); namely, the hidden state of the neural
network is computed as a deterministic version of probability mode. However,
because of recurrent and hierarchical structure, the deterministic neural networks
can characterize a rich distributed internal state representation and accommodate
flexible nonlinear transition operations. For instance, they can be used to model
oscillation, fixed-point or chaotic attractors (Rivkind and Barak 2017). In a special
case of one-hidden-layer restricted Boltzmann machine (RBM) network (with
Poisson observations), the model is very similar to the HMM: the binary hidden
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nodes correspond to the latent state, and the hidden-to-input connection weight
matrices correspond to (unconstrained) mean firing rate per state. Presumably,
adding more hidden layers or recurrent connections will further augment the
model’s representation power. One future research direction is to integrate the
strengths of probabilistic generative model and neural network to build a rich
repertoire of latent variable models. The neural network can be pre-trained, such
as in the DNN-HMM (Dahl et al. 2012).
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Chapter 4
What Can Trial-to-Trial Variability Tell Us?
A Distribution-Based Approach to Spike Train
Decoding in the Rat Hippocampus and
Entorhinal Cortex

Michael J. Prerau and Uri T. Eden

4.1 Introduction

4.1.1 The Neural Code

Neuroscientists have long sought to understand the neural code (Rieke et al. 1997),
the cognitive Rosetta Stone defining the language of the brain—mapping neural
spiking activity to the representation of world around and within us. In practice,
the neural code is commonly studied through electrophysiological experiments,
in which neural activity is recorded. Cells within the brain experience quick,
stereotyped changes in membrane potential called action potentials, which are
marked by a sharp peak in voltage due to a depolarization then repolarization
of the cell membrane (Dayan and Abbott 2001). In recording the time at which
this large depolarization reaches its peak, the continuous-valued voltage trace is
converted into a single event called a spike, a series of which is termed a spike train.
From these experiments, spiking data from individual neurons or ensembles of cells
are collected simultaneously with measurements of behavioral, biological, or other
factors (Moeliker 2001) germane to the experimental procedure. To explore the way
in which different intrinsic and extrinsic factors are encoded and processed within
the brain, experimental parameters can be varied in a controlled and predictable
manner, so that the relationship between the parameters and neural activity can be
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characterized. In characterizing this relationship, we can form hypotheses about the
neural code for a given system.

Measures of spiking from a single neuron under identical, repeated stimuli or
conditions produce different observed spike trains at every iteration, or experimen-
tal trial. Computational analysis of spiking activity has therefore viewed spiking
as a stochastic process (Rieke et al. 1997). Therefore, multiple experimental trials
are typically performed to characterize the spiking activity in the aggregate or to
characterize the distributional properties of the data.

4.1.2 The Neural Code in the Rat Hippocampus and
Entorhinal Cortex

One area of neuroscience in which the neural code has been widely investigated is
the representation within the medial temporal lobe of the brain of the space that an
animal navigates. In particular, many studies of the neural code have focused on
the activity of neurons within the hippocampus and entorhinal cortex (EC) of rats
during spatial navigation tasks.

4.1.2.1 Place Cells and Grid Cells

The hippocampus is a region within the medial temporal lobe, and is comprised of
the dentate gyrus and the cornu ammonis (CA), which itself is broken into subre-
gions CA1 through CA3. Functionally, the hippocampus was initially implicated as
a primary center for the processing of declarative memory (Cohen and Squire 1980;
Eichenbaum et al. 1994), that is, the recollection of specific facts or events. The
most famous example of the linkage between memory and the hippocampus was
the case study of the Henry Gustav Molaison (known clinically as H.M.), who, due
to epilepsy, underwent a bilateral temporal lobe resection, resulting in the removal
the majority of his hippocampus in both cerebral hemispheres. Studies of H.M.
showed severe anterograde amnesia and some retrograde amnesia—leaving him
with severe deficits in the formation of new memories and remembrance of only
his early childhood (Scoville and Milner 1957).

Subsequent studies of the hippocampus have suggested that, in addition to
memory, the hippocampus represents and processes information relating to spatial
location and navigation. In O’Keefe and Dostrovsky (1971), cells were identified
within the rat hippocampus that exhibited firing activity related to the spatial
location of the animal. These cells, called place cells (Eichenbaum et al. 1999;
Muller 1996; O’Keefe 1979; O’Keefe and Dostrovsky 1971; O’Keefe and Nadel
1978; Wilson and McNaughton 1993), fire whenever the animal passes through the
specific region of space to which that particular cell is tuned. The spatial receptive
field of a place cell is called a place field. In their book “The Hippocampus as
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a Cognitive Map” (1978), O’Keefe and Nadel proposed that these cells provided
a “cognitive map” for spatial knowledge (Tolman 1948). Subsequent research on
the nuances of place cell activity, however, has provided evidence which suggests
that aspects of hippocampal function are inconsistent with or insufficient for a
true hippocampal cognitive map (Eichenbaum et al. 1999). Thus, the study of the
function and dynamics of place cell activity remains an active area of research.

The EC is another region within the medial temporal lobe, and it provides the
primary input to the hippocampus, which in turn has projections back to the EC.
Initial studies of the EC showed some spatially tuned firing activity akin to that
of place fields (Mizumori et al. 1992; Quirk et al. 1992). In Fyhn et al. (2004),
however, May-Britt and Edvard Moser and colleagues discovered cells within the
dorsomedial EC that possessed multiple place fields, which completely covered the
experimental environment in a hexagonal tessellation pattern. The cells, called grid
cells, suggest an organized, Euclidean representation of space within the medial EC
(MEC), not present in the hippocampus.

4.1.2.2 Context-Dependent Activity: Understanding What’s Going On

Beyond static representations of spatial location, cells in both the hippocampus and
EC have been found to change their firing properties as a function information
related to certain sets of behavioral or experimental parameters, called contexts.
Such neurons can be said to have context-dependent neural activity, or to exhibit
differential firing.

In Wood et al. (2000), rats were trained to perform a continuous spatial
alternation task on a modified T-maze, in which they were required to alternate
between left and right-turns on the T-maze. During this task, neural spiking data was
recorded from neural ensembles in the CA1 region of the hippocampus. This study
identified neurons fired that almost exclusively during trials where the rat would
eventually turn to one of the directions and not at all during trials where the rat
would turn to the other. These cells, termed splitter cells, represent the neural code
for future turn direction through the presence or absence of spiking activity during
a given trial. Further work has expanded on the representation of behavioral context
in the hippocampus (Ainge et al. 2007; Ferbinteanu and Shapiro 2003; Frank et al.
2000; Griffin et al. 2007; Lee et al. 2006; Lipton et al. 2007; Smith and Mizumori
2006). Studies have also been able to identify cells within EC (Frank et al. 2000;
Lipton et al. 2007) that exhibit context-dependent neural activity as a function of
future turn-direction during continuous alternation tasks.

The findings from Wood et al. (2000) suggested that the neural code for future
turn direction was essentially an on/off switch, with firing preceding only one turn-
direction. Consequently, studies of context-dependent neural activity have identified
splitter cells using statistical analyses, such as the ANOVA, that look for large
differences in mean firing rate. From the standpoint of an accurate characterization
of context, the mean may not be the most appropriate descriptor of neural activity
over multiple trials for these particular regions of the brain.
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4.1.2.3 Characterizing Sparse Encoding of Context

In order to demonstrate that the information necessary for a robust encoding of
context is present within a population made of cells that sparsely encode context, we
developed a novel spike train decoding procedure, which attempts to predict context
given observed spiking data from a neural receptive field model that includes trial-
to-trial variability (Fig. 4.2a). Predominantly, spike train decoding approaches have
been used to estimate continuous-valued external stimuli, such as predicting the
hand trajectory from motor cortical spike data (Wessberg et al. 2000; Serruya et al.
2002), or reconstructing the animal’s spatial location for hippocampal population
spike data (Brown et al. 1998; Zhang et al. 1998; Barbieri et al. 2004; Johnson and
Redish 2007; Huang et al. 2009). Some previous methods for decoding discrete
experimental contexts have used Poisson mixture models of inter-spike intervals
(Wiener and Richmond 2003), likelihood ratios for mean firing rate differences
(Lipton et al. 2007), subspace clustering (Lin et al. 2005), and state-space analyses
(Johnson and Redish 2007; Huang et al. 2009).

In this chapter, we will develop likelihood-based decoding methodologies to
predict turn direction from spiking data from individual cells and ensembles from
real and simulated units. We will present two variants of the decoding procedure
based on different models of context-dependent neural activity. The first model
assumes that context is encoded only through differences in mean firing rate
(Fig. 4.2b). This model is designed to capture the scenario in which there is context-
dependent rate, and all variability comes from the stochastic nature of the spiking.
The second model, on the other hand, is designed to capture the idea that context
can be encoded through changes the distribution of the firing rate trajectories
(Fig. 4.2c). By examining the performance of these methods on simulated and
real populations of ICD neurons, we aim to gain a further understanding of the
interaction between single cell and population representations of behavioral context
within the hippocampus and EC.

4.1.3 An Inconsistent Language: Trial-to-Trial Variability
in the Hippocampus and Entorhinal Cortex

Although the neural code is often conceptualized as a single, albeit stochastic,
representation of the world in terms of a spike train, in practice it is not quite so
straightforward. For example, spiking within the hippocampus has been demon-
strated to be highly variable across experimental trials (Fenton and Muller 1998),
with neural activity changing drastically from trial to trial during repeated tasks. In
fact, even with classic splitter cells, there has yet to be reported a single cell that
fires 100% of the time during one context and never fires during the other.
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4.1.3.1 Characterizing Trial-to-Trial Variability

Given the complexity of spike-based representations, a proper characterization of
neural coding properties is vital in accurately understanding a neural system. One
prominent example of the importance of characterizing trial-to-trial variability was
a study of the macaque lateral intraparietal (LIP) area, which has a population of
neurons previously observed to smoothly increase its rate prior to a monkey making
a decision in a behavioral task (Latimer et al. 2015). While these neurons appeared
overall to smoothly be ramping up their firing rate, a more careful analysis of the
data revealed that individual neurons were in fact making large discrete jumps in
firing rate at random times across different trials.

To perform this analysis, the authors compared the fit of two competing models:
a step model of firing rate increase and a model in which the rates of the neurons
gradually ramp up. They were able to show that the step model provided a much
better fit to the data, as well as provided significantly more information than the
ramp model could. As such, properly characterizing the trial-to-trial variability of
these neurons provided a whole new way of understanding the way information
processing occurs prior to decision making.

Numerous other approaches have been for characterizing the trial-to-trial vari-
ability in the hippocampus and other regions, including parametric modeling
(Brown et al. 2001, 2004; Eden et al. 2004; Truccolo et al. 2005), history-dependent
models using descriptive statistics (Churchland et al. 2010), models of changes
in network state, or “reference frame” (Touretzky and Redish 1996; Redish and
Touretzky 1997; Touretzky and Muller 2006) with doubly stochastic Poisson state
transitions (Lansky et al. 2001; Jackson and Redish 2007), and multiplicative
models of specific components of the variability (Ventura et al. 2005).

4.1.3.2 Intermittent Context-Dependent Firing Activity in
Parahippocampal Regions

In a previous study (Prerau et al. 2014), we identified place and grid cells from the
rat CA1 and dorsocaudal medial EC (dcMEC) that exhibited statistically significant
context-dependent differences in firing rate variance (Fig. 4.1b) or in the 95th
percentile of the firing rate (Fig. 4.1c) across trials during a T-maze continuous
spatial alternation task. What value could context-dependent changes in variability
have to the brain in the encoding of information, especially since individuals
typically don’t have the luxury of observing multiple trials of a stimulus before
making a decision?

In addition to thinking about these cells as having context-dependent changes in
variance, these cells could also be said to have sparse encoding of context. This is
because they possess firing activity that is predominantly invariant, save for a small
set of trials with extreme firing rates, which occurs during only one context. Overall,
these findings suggest a hypothesis that groups of cells that sparsely encode context
could provide a robust population representation of context in the aggregate. In this
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Fig. 4.1 Examples of different types of context-dependent neural activity in the rat hippocampus
and entorhinal cortex. (a) An example of a splitter cell with context-dependent mean firing
rate, firing almost exclusively on preceding left turn trials. Cells such as these can be identified
by large context-dependent differences in the mean firing rate. (b) One example of cell that
exhibits intermittent context-dependence. It shows context-dependent changes variance, with
significantly greater trial-to-trial variability preceding right turns. (c) Another example of cell
that exhibits intermittent context-dependence. It has nearly identical behavior preceding left and
right turns, except for five elevated trials occurring preceding right turns only. These types of cells
show statistically significant context-dependent differences in the 95th percentile of firing rate
distribution. In all examples, the firing rates for three different cells are plotted as a function of
position. The firing rate trajectories are separated by trials preceding left turns (left panels, blue
curves) and preceding right turns (right panels, red curves)

scenario, each cell would cast its “vote” on context for only a few trials, and abstain
otherwise. Given enough cells covering of all trials, the population could encode
context throughout the entire experiment. We call the activity of these neurons
intermittent context-dependent (ICD) firing, as they encode context, but only on
a subset of trials.
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4.2 Modeling Trial-to-Trial Variability

4.2.1 Decoding Behavioral Context from Neural Spiking Data

Neural spike train decoding is a mathematical procedure in which an external signal
is estimated from spiking data. In this case, we wish to decode behavioral context,
which is essentially the problem of selecting to which of two discrete states (left-
turn context, right-turn context) a given spike train belongs. Previous methods for
decoding context have used likelihood ratios (Lipton et al. 2007), parametric models
(Wiener and Richmond 2003; Lin et al. 2005), or adaptations of continuous methods
(Huang et al. 2009) to predict discrete state. Herein, we develop nonparametric
models of the firing activity for each context, and use likelihood methods to predict
the behavioral context given a single unit or population spiking activity.

To decode behavioral context from neural spiking data, we must compute
Pr.contextjspikes/, the probability of a behavioral context given an observed spike
train. It follows from Bayes’ rule

Pr.contextjspikes/ D Pr.spikesjcontext/ Pr.context/

Pr.spikes/
(4.1)

Assuming each context is equally likely to occur at any given point during the
experiment, the probability of a given context is

Pr.context/ D 1

#contexts
(4.2)

A better estimate of Pr.context/ can be computed by using a model of the probability
of a correct response at each trial (Smith et al. 2004, 2005, 2007; Prerau et al.
2008, 2009). While this estimate would be highly informative, especially if the
animal performs the task accurately. Our goal here is to explore the contextual
information contained exclusively within the spiking activity, and thus we assume
equal probabilities for all contexts.

In Eq. (4.1), Pr.spikes/ is a normalization factor, and Pr.context/ is equal across
all contexts. Thus we can group those terms as a constant, and say

Pr.contextjspikes/ / Pr.spikesjcontext/ (4.3)

indicating that the probability of the context given the spikes is proportional the
probability or likelihood of the spikes as a function of the context. Thus, given a
fixed probability of Pr.context/, the decode is determined exclusively through the
computation of Pr.spikesjcontext/. We estimate this likelihood using the theory of
point process, which has been used successfully to analyze the activity of neural
data from single cells (Brillinger 1988; Barbieri et al. 2001; Kass and Ventura
2001; Brown et al. 2003) and from populations (Brillinger 1992). We present two
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methods for computing Pr.spikesjcontext/ based on models of differential firing
derived from two different types of differential firing activity. The first model is
based on splitter cells (Wood et al. 2000), which fire almost exclusively during a
single context (Fig. 4.1a), and assumes that context can be characterized through
a single trial-invariant firing rate (Fig. 4.2b). The second model is based on cells
that exhibit intermittent context-dependent activity (Fig. 4.1b, c), and assumes that
context may be characterized by capturing the trial-to-trial variability through the
distribution of possible firing rate trajectories (Fig. 4.2c).

50 100 150 200
0

2

4

6

8

10

12

50 100 150 200
0

2

4

6

8

10

12

Position Position

)z
H(

eta
R

gni riF

) z
H(

e ta
R

gniriF

mean-based view
Context 1 Context 2

50 100 150 200
0

2

4

6

8

10

12

50 100 150 200
0

2

4

6

8

10

12

Position Position

)z
H(

eta
R

g niriF

) z
H(

et a
R

gn iri F

distribution-based view
Context 1 Context 2

0 50 100 150 200
Position

To which context does this spike train belong?
a

b

c

Fig. 4.2 A schematic of two distinct views on decoding procedures, both of which attempt to
classify a spike train into one of contexts. (a) A context decoding question for an observed neuronal
spike train. (b) The first view assumes a mean-based coding of context, and thus aims to decode
the spike train given one fixed mean firing rate for each context. All variation is assumed to
be noise from the stochasticity of the spike train realization. (c) The second view assumes that
there is information within the trial-to-trial variation and uses the firing rate trajectory empirical
distribution to decode context from a given spike train
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We performed our analyses in discrete time, defined as ti D i�t, where �t is
the sampling interval, and i is a positive integer ranging from 1 to T. �Ni denotes
the spike count in the time interval Œti�1; ti/. For both models, we analyzed neural
activity as a function of xi, the animal’s linear position on the T-maze at time ti, and
divided the T-maze center into 50 equally sized spatial bins.

4.2.2 Single-Cell Decoding

4.2.2.1 Mean Firing Rate Model

The predominant view of differential firing is that there is a distinct, trial-invariant
probability of spiking for each behavioral context, which may vary as a function
of space or time (Fig. 4.2b). This viewpoint suggests that any variation observed
is due to the stochasticity in the realizations of the spiking from the probability
function, and that consequently, a good estimator of the underlying firing probability
is the mean firing rate across trials. Given this assumption, we can estimate
Pr.spikesjcontext/ by modeling this trial-invariant spiking probability function for
each context. Then, using the likelihood of the spikes given that function, we can
determine the context from which the spike train was most likely generated.

There are several parametric modeling techniques, such as generalized-linear
models (McCullagh 1984; Truccolo et al. 2005) and state-space models (Brown
et al. 1998, 2001; Eden et al. 2004; Czanner et al. 2008; Kulkarni and Paninski
2008), which may be used to build an estimate for the spiking probability function
for each context. As an intuitive and computationally accessible first approach, we
estimate O�C, the spiking probability for a given context C, by computing the mean
firing rate across the trials from that context. Using the spiking from each trial,
we use smoothed estimates of the firing rate in the time domain. Since we have
simultaneously recorded positional data for the rats, we compute the mean firing
rate for that context in each of 50 linear spatial bins on the T-maze. Thus, for any
position x on the T-maze, we define O�C.x/ as the average firing rate for context C
for the spatial bin that contains x.

To ensure that overfitting is avoided, we perform a leave-one-out cross-validation
(Efron and Gong 1983) to compute O�C.x/. This is done in the calculation of the
mean across trials by omitting the firing rate data from the trial of the spike train
to be decoded. In this way, we avoid using any data related to the spike train in the
decoding procedure.

Pr.spikesjcontext/ can also be written as L .spikesjC/, the inhomogeneous
Poisson likelihood (Snyder and Miller 1991) of the spikes given a position-
dependent firing rate O�C.x/, defined as

L .spikesjC/ D exp

� TX

iD1

�
�Ni log

� O�C.xi/�t
� � O�C.xi/�t � log.�NiŠ/

	�
(4.4)
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This likelihood integrates over time within the trial, combining the spike train data
with the firing probability, as determined by the mean firing rate, at every position
that the animal traverses.

4.2.2.2 Empirical Firing Rate Distribution Model

Another method for modeling Pr.spikesjcontext/ stems from our previous work
(Prerau et al. 2014), which suggests that, for certain cells, the structure of the trial-
to-trial firing rate variability can be highly informative about behavioral context
(Fig. 4.1b, c). An analysis of ensembles from CA1 and dcMEC found many
cells with statistically significant differences in the distribution of the firing rate
structure between left-turn and right-turn trials. Cells in both regions that failed
tests of significance for the mean firing rate exhibited significant context-dependent
differences in other statistics—most notably the rate variance or the 95th percentile.
For such cells, decoding from the mean rate would fail to capture the aspects of the
firing activity in which the contextual information may be encoded. Thus, it is useful
to devise an estimator for Pr.spikesjcontext/ that can incorporate a characterization
of the trial-to-trial variability (Fig. 4.2c).

To model the variability, we use essentially the same idea as in the mean decoding
model, but instead of having a single spiking probability function for a context,
we create a mixture model of inhomogeneous Poisson processes representing the
range of trial-to-trial variability for that context. We achieve this by marginalizing
Pr.spikesjcontext/ over the observed firing rate trajectories in that given context

Pr.spikesjcontext/ D
# context trialsX

r

Pr.spikesjcontext, rater/ Pr.rater/ (4.5)

which creates a mixture model of spiking probabilities based on the observed
firing rates. This equation, in effect, can be said to compute the probability of
the spike train given an empirical distribution of firing rate trajectories. The
quality of this estimate is based on how well the previously observed rates span
the space of possible rates. The animals ran roughly between 25 and 35 non-
error trials per context, and our previous work (Prerau et al. 2014) suggests can
produce estimates of empirical densities sufficiently accurately to compute context-
dependent differences in trial-to-trial variability.

Assuming no a priori knowledge of the distribution of firing rate as a function of
spatial trajectories across the T-maze, we set the probability of each observed firing
rate as

Pr.rate/ D 1

#trials in context
: (4.6)

To estimate Pr.spikesjcontext, rater/, we create a mixture model of inhomoge-
neous Poisson processes. We combine Eqs. (4.5) and (4.6) with the inhomogeneous
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Poisson process likelihood (Snyder and Miller 1991), and compute the log-
likelihood of a spike train from trial k given a context C, denoted as L .spikeskjC/,
which is defined by

L .spikeskjC/ D 1

R

X

r 6Dk

exp

� TX

iD1

�
�Ni log

�O�r.xi/�t
� � O�r.xi/�t � log.�NiŠ/

	�

(4.7)

where R is the number of trials in the context, and T is the number of time bins in the
trial. We define O�r.xi/ as the average firing rate of trial r within the spatial bin into
which the animal’s linear position falls at time ti. We compute O�r by first estimating
the firing rate in the time domain using a Hanning kernel smoother and the spikes
on trial r. We then use the position of the animal during trial r to translate the rate
into the position domain, and calculate the mean firing rate for trial r in each of the
50 spatial bins across the T-maze.

Similarly, we use a leave-one-out cross-validation to compute L .spikeskjC/,
omitting the firing rate data from trial k, from which the spikes are observed.

4.2.2.3 Decoding Context Probabilities

For both mean firing rate and empirical firing rate distribution models, we can use
the formulation of L .spikesjC/ to compute the probability of each context given
the observed spike train. For two different behavioral contexts C1 and C2, assuming
that each context is equally likely, we use the results from Eq. (4.4) or (4.7) and
calculate L .spikesjC1/and L .spikesjC2/ as

Pr.spikesjC1/ D L .spikesjC1/
L .spikesjC1/C L .spikesjC2/ (4.8)

Pr.spikesjC2/ D L .spikesjC2/
L .spikesjC1/C L .spikesjC2/ (4.9)

We make the prediction based on the higher likelihood ratio

Prediction D
�

C1; if Pr.spikesjC1/ > Pr.spikesjC2/
C2; if Pr.spikesjC2/ > Pr.spikesjC1/ (4.10)

which essentially uses the maximum rule:

context D arg maxfPr.spikesjC1/;Pr.spikesjC2/g (4.11)

It is possible to calculate a “running decode” of a context, which is Pr.Cjspikes/
computed at each time point in the trial. This is useful for observing how incoming
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spiking data provides information over the entire course of the trial. A running
decode is achieved by progressively computing the summation in Eqs. (4.4) and
(4.7), varying the maximum trial time from 1 through T for each context, and then
computing the probabilities Pr.spikesjC/ as a function of time or as a function of
the rat’s position at any point in time.

In summary, the process for decoding context from the spikes from a single
neuron can be structured as follows:

• Define behavioral contexts C1 and C2, two sets of experimentally related trials
and corresponding spike trains.

• Estimate firing rates for the experimental trials in each context.
• Compute Pr.spikesjcontent/ using Eq. (4.4) for the mean firing rate model or

Eq. (4.7) for the empirical firing rate model.
• The maximum trial time in Eqs. (4.4) and (4.7) may be progressively increased

from i D 1 to T to create a running decode.
• Compute Pr.spikesjC1/ and Pr.spikesjC2/ using the maximum rule (Eq. (4.11)).

4.2.3 Population Decoding

We can take advantage of the ability to record simultaneously from multiple neurons
and perform a population decode, combining information from the spiking data
from all cells to determine behavioral context. The probability for the population,
assuming an ensemble of U independent cells, is the product of the likelihoods

Lpop.spikesjC/ D
UY

uD1
L .spikesujC/ (4.12)

where spikesu denotes the spikes from a given cell u.
From the mean firing rate model (Eq. (4.4)), we rewrite the population likeli-

hood as

Lpop.spikesjC/ D
UY

uD1

�
exp


 TX

iD1

�
�Nu

i log
� O�u

C.xi/�t
� � O�u

C.xi/�t � log.�Nu
i Š/

	��

(4.13)

where�Nu
i denotes the spike count for cell u at time ti, and O�u

C.xi/ is the leave-one-
out cross-validated mean firing rate for context C at the position of the animal at
time ti.

From the empirical firing rate model (Eq. (4.7)), we rewrite the population
likelihood as
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Lpop.spikesjC/ D QU
uD1

�
1
R

P
r 6Dk exp


PT
iD1

�
�Nu

i log
� O�u

r .xi/�t
�

� O�u
r .xi/�t � log.�Nu

i Š/

	��
(4.14)

where O�u
r .xi/ is the mean firing rate for trial r at the animal’s position at time ti.

Analogous to the single cell decoding, the population probability for each
context is

Pr.spikesjC1/ D Lpop.spikesjC1/
Lpop.spikesjC1/C Lpop.spikesjC2/ (4.15)

Pr.spikesjC2/ D Lpop.spikesjC2/
Lpop.spikesjC1/C Lpop.spikesjC2/ (4.16)

To make prediction, we use the same maximum rule based on the likelihood rate
ratio.

4.3 Experimental Data

To test these algorithms, we used data from two previously published datasets. In
each experiment, Long-Evans rats were trained to perform a continuous spatial
alternation task on a modified T-maze, in which they were required to alternate
between left-turns and right-turns on the T-maze. For both datasets, we examined
the neural activity while the rat traversed the center portion of T-maze stem.

The first dataset was from the experiment described in Lipton et al. (2007).
Eight male Long-Evans rats were trained on the continuous spatial alternation
task, and spiking data was acquired from 111 cells from 10 sets of simultaneously
recorded neurons from five rats with six tetrodes aimed at dorsal CA1, and 210
cells from 10 sets of simultaneously recorded neurons from three rats with 13
tetrodes aimed at dcMEC. Each of the 20 total datasets was recorded during a
separate experimental session. The number of non-error experimental trials per
session ranged from 31 to 69, with an average of 46 trials per session. The second
dataset was from the experiment described in detail elsewhere (Huang et al. 2009;
Lee et al. 2006). We used data from ensembles of simultaneously recorded neurons
CA1 of the hippocampus from one rat during two sessions of a T-maze continuous
alternation task.

For all cells, we calculated the firing rate for the spiking activity over the span
of the T-maze for each trial with a 500 ms Hanning smoothing kernel (Parzen
1962; Dayan and Abbott 2001). Rather than select bandwidth in the traditional
ad hoc manner, the size of the Hanning window was chosen using an established
cross-validation bandwidth estimation framework (Prerau and Eden 2011). In this
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procedure, the temporal variability was determined using a cross-validation scheme
(Turlach 1993), which computes the smoother bandwidth that best predicts the
missing data. A representative set of neurons from both CA1 and dcMEC were
selected from the first dataset, and the cross-validated kernel smoother was used to
calculate the bandwidth for each neuron for each trial. In examining the distribution
of the selected bandwidths, the largest mode was found close to 500 ms. We use a
single fixed bandwidth parameter for the neural activity in these regions.

4.3.1 Single Cell Decoding

To demonstrate the single cell decoding process, we will present illustrative
examples of both the mean and empirical models as they predict context from single
trials from different cell types. The aim is to highlight the specific utility of each
model, which, by design, is tailored to decode best from the cells from which the
underlying mathematical assumptions are drawn. In each case, given the spiking
data along with the decode results, we are able to reveal the contribution each spike
or non-spike data point to the representation of context.

4.3.1.1 Decoding from a Cell with Context-Dependent Changes in Mean
Firing Rate

Figure 4.3 shows an example of a “splitter” cell recorded from the rat dcMEC
during a single trial of the continuous alternation task. This cell clearly exhibits
context-dependent differences in mean firing rate. The firing rates for 46 non-error
trials comprised of 22 from the left-turn context (Fig. 4.3a, thin blue curves) and
24 from right-turn context (Fig. 4.3b, thin red curves) are displayed as a function
of T-maze stem position. The rat’s direction of motion towards the T-maze choice-
point is represented from left to right. This particular cell fires predominantly during
the right-turn context (Fig. 4.3b), with only a 3 out of 22 non-error left-turn trials
containing any spikes (Fig. 4.3a). Consequently, the mean firing rate for the right-
turn trials (Fig. 4.3a, b, thick red curve) shows a clear receptive field, while the mean
firing rate for the left-turn trials (Fig. 4.3a, b, thick blue curve) remains very close
or equal to zero.

Figure 4.3c, d illustrates the running decode for two representative spike trains
from this cell, from the left-turn and right-turn contexts, respectively. For each
spike train, we compute running estimates of Pr.left-turnjspikes/ (blue curves) and
Pr.right-turnjspikes/ (red curves) as a function of time, mapped onto stem position,
for both the mean (dotted) and empirical (solid) models. The trial from the left-
turn context (Fig. 4.3c) has no spikes, and, for both models, Pr.left-turnjspikes/
increases and Pr.right-turnjspikes/ decreases as time progresses. For the mean firing
rate model, this is because the left-turn context mean is much lower than the right-
turn context mean or zero at all points on the stem. Thus, non-spiking implies a
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Fig. 4.3 Mean and empirical model-based decoding of spike trains from a “splitter” cell from
the rat dcMEC, possessing context-dependent changes in mean firing rate. (a, b) For both left-
turn (a, blue) and right-turn (b, red) contexts, we use the trial-to-trial firing rates (thin curves) to
compute the mean firing rates (thick curves, superimposed on both contexts). (c, d) The results
of the decoding algorithms for spiking data from a left-turn trial (black curve at 0 Hz) and a
right-turn trial (black curve), respectively. For both trials, Pr.left-turnjspikes/ (blue curves) and
Pr.right-turnjspikes/ (red curves) are computed using the mean (dotted) and empirical (solid)
model decoding algorithms. In this case, both decoding models correctly identify the context for
both trials

firing rate far closer to the left-turn context mean than to the right, and will drive
Pr.left-turnjspikes/ up and Pr.right-turnjspikes/ down every time no spikes are
observed. The same follows for the empirical model, with a non-spiking trial being
more likely in the distribution of left-turn firing rate trajectories.
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The second example spike train (Fig. 4.3d, vertical lines) comes from a right-
turn trial, and the estimated firing rate is shown (Fig. 4.3b, black curve). For both
models, Pr.left-turnjspikes/ and Pr.right-turnjspikes/ both start off at chance, and
as time/position progresses and no spike has been observed, Pr.left-turnjspikes/
increases as Pr.right-turnjspikes/ decreases, just as in the left-turn example with
no spiking. At this point, the decodes are predicting the incorrect context for the
spike train. As soon as the first spike appears, Pr.right-turnjspikes/ jumps up to
around 0.8 and Pr.left-turnjspikes/ jumps down to around 0.2 for both models.
This spike provides strong instant evidence to greatly increase the likelihood of a
right-turn trial, thus switching the probabilities such that both decodes predict the
correct outcome. Directly after the spike, the decoding algorithms are presented
with non-spike evidence, which starts to drive Pr.right-turnjspikes/ down and
Pr.left-turnjspikes/ up, because the more time observed without a spike, the more
the firing resembles like the left- turn context. The subsequent two spikes show the
same pattern of a sharp increase in Pr.right-turnjspikes/ at the spike times followed
by a very slow decrease after the spikes. With each spike, however, the decodes
become more and more certain that it is the right turn context, until at the very end,
both pick the correct context.

In both of these examples, the decodes from the mean and empirical models
each returned the correct answer. The mean firing rate model decode, was, however,
more certain than the empirical firing rate model at virtually all points. That is to
say, that the probability of the correct response was consistently higher for the mean
firing rate model than for the empirical firing rate model. For the non-spike trial
(Fig. 4.3c), the final values for Pr.left-turnjspikes/ were 0.84 and 0.72 for the mean
and empirical models, respectively. For the spiking trial (Fig. 4.3d), the final values
for Pr.right-turnjspikes/ were 0.99 and 0.94 for the mean and empirical models,
respectively. These are precisely the results we expect by design. In the case of
cells that exhibit gross changes in average firing activity, the trial-to-trial variability
provides little or no information. Therefore, for cells with gross changes in activity
between context, a difference between the context means is a more robust and proper
estimator of context probability than the differences between the overall firing rate
distributions, the tails of which may unduly inject uncertainty into the decoding
estimate.

4.3.1.2 Decoding from a Cell with Context-Dependent Changes in Firing
Rate Variance

Figure 4.4 shows an example of CA1 cell that displays context-dependent changes
in firing rate variance. The firing rates for the left-turn context (Fig. 4.4a, thin blue
curves) and right-turn context (Fig. 4.4b, thin red curves) are displayed as a function
of T-maze stem position. The rat’s direction of motion towards the T-maze choice-
point is represented from left to right. For both left-turn and right-turn contexts, the
peak of the field is around position 75 followed by a gradual decline until position
150. It is between positions 75 and 150 that the context-modulated variance is
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Fig. 4.4 Mean and empirical firing rate model-based decoding of a spike train from a cell with
context-dependent firing rate variance in the rat CA1. (a, b) For both left-turn (a, blue) and
right-turn (b, red) contexts, we use the trial-to-trial firing rates (thin curves) to compute the
mean firing rates (thick curves, superimposed on both contexts). (c) Results of the decoding
algorithms for spiking data from a left-turn trial (black curve) and a right-turn trial. For this trial,
Pr.left-turnjspikes/ (blue curves) and Pr.right-turnjspikes/ (red curves) are computed using mean
(dotted) and empirical (solid) model decoding algorithms. In this case, the empirical firing rate
model correctly identifies the context, whereas the mean firing rate model fails to differentiate
between two contexts

evident. The variance of firing rate is much larger for the left-turn context (Fig. 4.4a)
than for the right-turn context (Fig. 4.4b), in which the majority of the observed
firing rates closely track the mean.

Figure 4.4c illustrates the running decode for a representative spike train from
this cell, which comes from the left-turn context. The corresponding rate estimate
(Fig. 4.4a, black curve) is shown. We compute Pr.left-turnjspikes/ (blue curves)
and Pr.right-turnjspikes/ (red curves) as a function of time, mapped onto stem
position, for both the mean (dotted) and empirical (solid) models. For both models,
the Pr.left-turnjspikes/ and Pr.right-turnjspikes/ waver in and out for the first 5
spikes, with the probabilities getting less and less certain over time. At the 6th
spike, at position 97 the model estimates begin to greatly diverge. The estimate
from the mean firing rate model (dotted) continues to get more and more uncertain,
until the last spike drives Pr.right-turnjspikes/, incorrectly, to become greater than
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Pr.left-turnjspikes/. Conversely, the empirical model estimates (solid) become dras-
tically more certain in the correct direction after the sixth spike. The reason for the
difference in the model estimates is that both context means are practically identical
between positions 75 and 150. Consequently, the certainty in the mean decode is
extremely low. The final values of Pr.left-turnjspikes/ and Pr.right-turnjspikes/ are
0.48 and 0.52, respectively. These results suggest that for this cell, the mean provides
very little information in distinguishing between behavioral contexts, and that for
this trial, the neuron provides almost no contextual information to the population.

On the other hand, the empirical model is readily able to capture the change in
trial-to-trial variability that differentiates the neural activity between contexts, as
there is a marked difference in the between variances of the left-turn and right-
turn trial sets. Thus, the empirical firing rate model chooses the correct context
more confidently by taking advantage of information that the mean firing rate model
discards. The final values of Pr.left-turnjspikes/ and Pr.right-turnjspikes/ are 0.67
and 0.33. It follows that for trials with high or low firing rates in this region of
high variability, this neuron will predict left-turns correctly with high certainty,
intermittently providing contextual information to the population. This confirms
the findings from the bootstrap analysis (Prerau et al. 2014) providing single trial
evidence of the presence of intermittent context-dependent activity in cells in both
CA1 and dcMEC.

4.3.2 Population Decoding Analysis

To explore how information from single cells of different types can be combined to
produce a representation of context in a neural population, we used our proposed
methods to decode contexts from the recorded population spike trains. We present
results from neural population recordings from two different experimental sessions.

4.3.2.1 Full Population Decoding from Experimental Data

We examined the ability of these decoding algorithms to estimate behavioral context
from neural spike recordings from actual experimental data. To these ends, we used
both the mean and empirical decoding algorithms on the data from an ensemble of
47 units from CA1 from Huang et al. (2009). Both the mean and empirical models
decoded context from the population with very high accuracy. The mean firing rate
model’s prediction accuracy was 100% (65/65 trials), and the empirical firing rate
model’s prediction accuracy was 98.5% (64/65 trials). For both models the average
single cell decoding accuracy was about 53% and the maximum single-cell decoding
accuracy was 93.9% (61/65) for the mean firing rate model and 92.3% (60/65) for
the empirical firing rate model. These results indicate a neural population with a
few strongly predictive cells and many more weakly predictive cells, which was
indeed the case. Since in both cases the population result exceeded the maximum
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single cell results, this strongly indicates that the mean and empirical firing rate
models can adequately combine information from many cells to accurately decode
from the experimental data. From a physiological perspective, these results confirm
that robust contextual information exists within hippocampal neural populations,
and that there exists a small population of strongly differential firing cells, which
encode most of the contextual information.

4.3.2.2 Decoding from Populations of ICD Cells from CA1 and dcMEC

We next used the decoding models to explore the how multiple cells with ICD neural
activity could work together within a population to represent behavioral context. To
these ends, we selected a subpopulation of 10 ICD cells from both CA1 and dcMEC
and performed a population decoding analysis. These neurons were selected from
the entire population by removing all of the strong splitter cells (prediction accuracy
�85%), as well as the cells for which there was little or no spiking activity. From
this subset, we chose cells that appeared to exhibit intermittent context-dependent
activity, to examine how they would combine in a population analysis.

Analysis of CA1 Population

We selected a 10 unit CA1 subpopulation (Fig. 4.5a) from another session of
the same rat performing the experiment described in Huang et al. (2009). For
this session, there were 77 total non-error trials in the session, with 38 from the
left-turn context (Fig. 4.5a, left subpanels, red curves) and 39 from the right-turn
context (Fig. 4.5a, right subpanels, blue curves). We computed the single cell and
population decodes using the mean and empirical firing rate models, and computed
the corresponding prediction rates. For the mean firing rate model, the mean single-
cell prediction accuracy was 59%, and the maximum single-cell prediction accuracy
was 71% (55/77). For the empirical model, the mean single-cell prediction accuracy
rate was 56.5%, and the maximum single-cell prediction accuracy was 71% (55/77).
Both results confirm populations of individually uninformative neurons with respect
to turn direction. The population decodes produced prediction accuracy rates of 83%
(64/77) and 79% (61/77). For both models, the population prediction rate exceeded
the maximum single-cell decode, suggesting that a strong population representation
is present in CA1 within ensembles of individually poorly predicting, non-splitter
cells.

To further examine the way in which the individual cells contribute information
to population, we created mean (Fig. 4.5b) and empirical (Fig. 4.5c) firing rate model
trial-by-trial decode certainty matrices, as in the simulation, for the individual cell
decodes (left matrices), as well as for the population (right single columns). Trial
number is represented in the rows, and the cell numbers correspond to the columns.
In both matrices, there are no neurons that show high certainty at every trial, as
one would expect to see with a population of splitter cells. Rather, for each neuron,
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Fig. 4.5 Population decoding analysis from a group of simultaneously recorded CA1 cells from
the rat hippocampus. (a) The raw firing rate traces are shown from a population of 10 cells for the
left-turn (left panel, blue curves) and right turn (right panel, red curves), along with the single cell
prediction rates for the mean and empirical firing rate models, respectively. (b) Using the spike
data, we create a matrix of single cell trial prediction results for the mean (left) and empirical
(right) model decoding procedures, where each row represents a trial, and each column represents
a cell. Correct predictions of context are indicated by cyan and incorrect predictions by red, with
brightness representing the certainty. Next to each matrix, is a column showing the population
prediction of context. For this group of cells, both the mean and empirical population decoding
algorithms produced approximately the same performance

there are several trials for which the neuron is certain and correct (bright blue). This
result is precisely what we expect to see for a population of cells with ICD activity,
and mirrors the output of the simulated population analysis on the two types of ICD
cells (Fig. 4.5b, middle and right panels). This provides compelling evidence that
non-splitter neurons within CA1 show ICD through subsets of trials during which
they are certain and correct, and that populations of these individually uninformative
neurons can provide an improved representation of behavioral context.

Analysis of dcMEC Population

To analyze ICD population dynamics in dcMEC, we selected a subpopulation of 10
non-splitter cells from an ensemble from the experiment described in Lipton et al.
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(2007). For this session, there were 40 total non-error trials in the session, with 20
from the left-turn context (Fig. 4.6a, left subpanels, red curves) and 28 from the
right-turn context (Fig. 4.6a, right subpanels, blue curves). We computed the single
cell and population decodes using the mean and empirical models, and computed the
corresponding prediction rates. For the mean firing rate model, the mean single-cell
prediction accuracy was 58%, and the maximum single-cell prediction accuracy was
72.5% (29/40). For the empirical firing rate model, the mean single-cell prediction
accuracy was 58%, and the maximum single-cell prediction accuracy was 80%
(32/40). In this case, the population decodes differed greatly between models. The
mean firing rate model performed with a moderate 75% (30/40) prediction accuracy,
and gained only 2.5% accuracy improvement over the best single-cell decoding
result. These results suggest a noninformative or redundant population encoding
of behavioral context. In contrast, the empirical firing rate model’s accuracy had
90% (36/40) prediction accuracy. For this ensemble, not only did the population
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Fig. 4.6 Population decoding analysis from a group of simultaneously recorded ICD cells from
the rat dcMEC. (a) The raw firing rate traces are shown from a population of 10 cells for the
left-turn (left panel, blue curves) and right turn (right panel, red curves), along with the single
cell prediction rates for the mean and empirical firing rate models, respectively. (b) Using the
spiking data, we created a matrix of single cell trial prediction results for the mean (left) and
empirical (right) model decoding procedures, where each row represents a trial, and each column
represents a cell. Correct predictions of context are indicated by cyan and incorrect predictions by
red, with brightness representing certainty. Next to each matrix, is a column showing the population
prediction of context. For this group of cells, the empirical population model greatly outperformed
the mean firing rate model, suggesting that a population of ICD cells is more robust in representing
the context
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prediction rate show a marked increase over that of the mean firing rate model, but
the difference between population and the maximum single cell decoding accuracy
was 10% as opposed to 2.5%. These results strongly suggest that, for this dcMEC
population, there is information contained within the firing rate distribution beyond
the mean statistic that contributes to a robust encoding of behavioral context on a
population level.

To examine the way in which the individual dcMEC ICD cells contribute
information to population, we created mean (Fig. 4.6b) and empirical (Fig. 4.6c)
model trial-by-trial decode certainty matrices for the single-cell decodes (left
matrices), and for the population (right single columns). Trial number is represented
in the rows, and the cell numbers correspond to the columns. As in the CA1
population, there are no neurons that show high certainty and correctness at every
trial, as one would expect to see with a population of splitter cells. In general,
there are several trials for which each cell strongly predicts context. This provides
compelling evidence that populations of individually uninformative ICD neurons
within dcMEC can also provide a robust encoding of behavioral context.

4.4 Discussion

In this chapter, we have shown that trial-to-trial variability in neural responses does
not prevent a population from maintaining a robust representation of the signals
being encoded. Specifically, we were able to use empirical models of trial-to-
trial variability to develop decoding methodologies that predict turn direction from
spiking data from individual cells, as well as from populations of cells. The goal
of these methods was to examine the way ICD cells, which provide information
only for a few trials, work individually, as well as to understand how ensembles
of ICD cells interact to produce a population representation of behavioral context.
On a single trial level, decoding provides a story for how and when contextual
information is conveyed by a particular spike train or sets of simultaneously
recorded spike trains. Over multiple trials, decoding not only provides trial-by-
trial predictions of context, but also the certainty of those predictions. Using these
computational tools, we decoded from populations of simulated and real neurons,
and examined the prediction certainty of each individual cell, and the mechanics
of the contributions of multiple cells to the population representation of behavioral
context.

Our findings confirm that certain ICD cells in CA1 and dcMEC can act as
experts on a subset of trials, and that groups of these cells can provide a consistent
population representation of turn direction during continuous spatial alternation.
Thus, instead of the full burden of contextual information resting upon just a few
robustly encoding individual cells, the information can also be found distributed
throughout the population. Therefore, a much larger proportion of cells in these
regions encode behavioral context than was previously assumed, indicating a
potentially more prominent role of CA1 and dcMEC in processing and transmitting
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spatial trajectory information. We are confident that the decoded ICD behavior is not
simply a result of noise for two reasons. First, because we use leave-one-out cross-
validation in the decoding procedure, which requires repetition and consistency of
the neural activity beyond a single anomalous trial in order to predict correctly.
Second, in both population examples, there are many more correct and certain
trials than there are incorrect and certain trials, indicating a consistent encoding
of context.

The two models used in this analysis were designed to capture the different
methods with which splitter and ICD cells theoretically transmit information, rather
than to create an optimal decoding algorithm. For splitter cells, both models decoded
well, but the prediction certainty of the mean model was generally higher than that
the empirical. For the cells with context-modulated variance, the mean model cannot
capture the differences in firing rate variance, and is thus highly uncertain for all
trials, while the empirical can predict with certainty for the firing rate distribution
extrema. For the cells with context-dependent 95th percentiles, the mean model has
an increased mean for the context in which the elevated trials occur. Consequently,
it correctly predicts the elevated trials, yet incorrectly predicts with certainty all of
the higher firing rates from the non-elevated context. The empirical model correctly
predicts the elevated trials with great certainty and the rest with confidence near
chance. Future studies may be able to use these comparative decode certainties to
automatically determine cell-type in large-scale populations.

We have applied the decoding methods to recorded neural spike data from CA1
and dcMEC. For each region, the population of individually uninformative cells had
increased in predictive power when combined. There are some notable differences
in the nature of the population decodes for each region. For both models, the trial-
by-trial certainty matrices from CA1 (Fig. 4.5b, c) are much cleaner than those of
dcMEC (Fig. 4.6b, c). That is, for the most part, the trials in CA1 are either certain
and correct, or uncertain, whereas the single cell decodes in dcMEC contain more
certain and incorrect trials. However, when we look at the population trial-by-trial
certainty, the dcMEC population is more confident on average in its population
prediction than the CA1 population, for both models. This suggests that while some
individual dcMEC cells may provide strong incorrect information on a given trial,
the population has enough cells responding with correct information for that same
trial, thereby being robust to noise. Such a scenario falls in line with the other finding
(Jackson and Redish 2007), which suggests that the activation of neurons within
these populations does not occur at random.

In addition, there is a larger difference between the mean and empirical popula-
tion decodes for dcMEC than for CA1. A potential reason for this is that cells from
dcMEC have been shown to have strong turn-direction selectivity, whereas cells
from CA1 are more spatially selective (Lipton et al. 2007). This can be observed in
the firing rate traces. The cells in CA1 (Fig. 4.5a, e.g., cells 3 and 4) have more
distinct receptive fields than the cells in dcMEC (Fig. 4.5a, e.g., cells 5 and 6).
In addition, cells in dcMEC are more likely to be ICD, and are typically more
complex in the way in which the ICD is manifested in the firing rate structure
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(Prerau et al. 2014). Therefore, relative to CA1, there will be more cells in dcMEC
with ICD firing rate distributions for which the empirical firing rate model will
outperform the mean firing rate model.

It should be noted that decoding alone cannot determine causality between the
neural activity and behavior. In fact, it has been shown that continuous spatial
alternation is not a hippocampal-dependent task (Ainge et al. 2007), although
the hippocampus is vital when a delay between trials is introduced. However,
the accuracy with which it is possible to decode behavioral context serves as an
excellent measure of the information content within a single neuron or population.
Thus, while the contextual information within CA1 and dcMEC is not required for
continuous spatial alternation, it is certainly present there, and perhaps used in other
ways.

Within the development of this analysis, however, we found certain cells and
populations for which both methods decoded poorly or even significantly worse
than chance. On the single-cell level, these models will fail for neurons that have
non-stationary representations of context. The decoding methods assume that the
models of firing activity for each context are independent of time, and thus would
perform poorly from these cells due to model misspecification. Non-stationarity can
be modeled using state-space analyses (Frank et al. 2002; Czanner et al. 2008), and
future context-decoding algorithms can build on these methods to create models
of context that adapt over time. Another reason why single cells may decode
poorly is that they may have some robust multiple-state representations of an
external stimulus that is independent of context. Thus, by improperly specifying the
collections of data from which to build the discrete state models, the algorithms will
decode poorly. Future work may use the prediction rate of a decoding algorithm to
automatically select the two most separable trial groups. Decoding from populations
can be improved by designing algorithms that incorporate multiple models based
on various cell types. A simple solution would be to create a mixture model that
includes both individual trial and mean firing rates. Such models would be able to
accurately capture both splitter and ICD cells.

Ultimately, a large-scale analysis of populations from various regions of the
hippocampus and EC must be performed to fully understand the purpose of
intermittent context-dependent representations of behavioral context. One possible
hypothesis is that a form of multiplexing may occur, such that splitter cells in CA1
may arise from the convergence of connections from many ICD cells in dcMEC. Or
perhaps an inverse multiplexing scenario may occur, in which the information from
a splitter cell is divided amongst other cells that manifests as ICD in the target cells.
Here, we present strong evidence that information relating to behavioral context
is distributed across trials throughout individually uninformative cells within the
hippocampus and EC, which provides new insight into processing and representing
episodic memories in the brain.
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Chapter 5
Sparsity Meets Dynamics: Robust Solutions to
Neuronal Identification and Inverse Problems

Behtash Babadi

5.1 Introduction

One of the first steps in neural signal processing is the construction of forward
models. Forward models relate observed neural activity to intrinsic and extrinsic
stimuli as well as to neural states and sources. In the context of spike recordings
from neuronal networks, numerous forward models have been proposed such as
the conductance-based models (Dayan and Abbott 2001), integrate-and-fire models
(Tuckwell 1988), rate-based models (McCulloch and Pitts 1943; Rosenblatt 1958;
Werbos 1974), and the more recent statistical models based on generalized linear
models (GLMs) and point processes (Brown et al. 2004, 2001; Paninski 2004;
Paninski et al. 2007; Pillow et al. 2011; Truccolo et al. 2005) for modeling emerging
phenomena such as receptive fields. Forward models for neuroimaging modalities of
electroencephalography (EEG) and magnetoencephalography (MEG) are based on
solutions to the Maxwell’s equations over head models obtained by MRI images,
which relate the post-synaptic neuronal population activity to the out-of-scalp
electromagnetic recordings (Hämäläinen et al. 1993; Hämäläinen and Sarvas 1989;
Marin et al. 1998; Mosher et al. 1999).

From a signal processing viewpoint, forward models have two main applications.
First, when combined with models accounting for the dynamics of neuronal, dipolar,
or voxel-based networks, they can be used to infer information regarding the
function of the underlying neural systems given the observed activity and extrinsic
stimuli. We refer to these signal processing problems as Neural Identification
Problems. For instance, estimating the interaction parameters of a network of
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neurons from multi-unit recordings can be used to obtain measures of synchrony
(Kass et al. 2011), functional connectivity (Okatan et al. 2005), or Granger causality
(Kim et al. 2011).

Second, these forward models can be used as a basis for solving the so-called
Neural Inverse Problems. Neural inverse problems can be thought of as duals to
neural identification problems, where the parameters of the underlying neuronal
models are assumed to be fixed, and the observations are used to estimate extrinsic
stimuli, or intrinsic processes such as perception, decision-making, intention,
and attention. Examples of neural inverse problems include EEG/MEG source
localization (Babadi et al. 2014; Daunizeau and Friston 2007; Gramfort et al.
2012; Hämäläinen and Ilmoniemi 1994; Sato et al. 2004), trajectory decoding from
hippocampal place cells (Brown et al. 1998; Eden et al. 2004; Huang et al. 2009),
visual stimulus decoding from fMRI (Kay et al. 2008; Nishimoto et al. 2011), or
motor intention decoding from neural implants (Hochberg et al. 2006; Velliste et al.
2008).

In modern neural data applications, networks of size �104–105 neurons, dipoles,
or voxels often need to be considered in solving neural identification and inverse
problems. Considering a simple scalar interaction parameter between pairs of
neurons, dipoles, or voxels, this amounts to model parameters of the order of �108–
1010 to be estimated per time sample. Given the millisecond sampling resolution
typical of EEG/MEG or spike recordings, parameter estimation for even 1 min of
data becomes computationally infeasible. Moreover, the neural identification and
inverse problems are highly ill-posed, as there are usually far fewer number of
sensors available than the number of unknown parameters. Various sophisticated
solutions have been proposed to overcome the ill-posed nature of inverse problems
(e.g., Friston et al. (2008), Gramfort et al. (2012), Lamus et al. (2012) for EEG/MEG
inverse problems), which are successful for low data dimensions. However, they do
not scale well with the dimensions of modern-day neural data, and are particularly
not well-suited for real-time applications. With the emergence of neural prostheses
and brain-computer interface (BCI) systems, there is a growing demand for
scalable signal processing solutions, which largely remains unaddressed by existing
methods.

Analyses of neural data recorded through various modalities have revealed
three main features of these data: first, neural activity is stochastic and exhibits
significant variability across trials; second, the underlying statistics of a neural
system often undergo rapid changes in order to adapt to changing stimulus salience
and behavioral context; and third, neural signals and systems exhibit a degree
of sparsity that is manifested in different forms: place cells in the hippocampus
(Frank et al. 2004) and spectrotemporally tuned cells in the primary auditory cortex
(Depireux et al. 2001) exhibit sparsity in their tuning characteristics; brain rhythms
manifested in EEG/MEG have sparse spectrotemporal structures (Buzsaki 2006);
and spike trains can be considered as sequences of sparse events in time. Hence,
in order to gain insight into the functional mechanism of the underlying neural
system, it is crucial to develop inference algorithms that simultaneously capture
the stochasticity, dynamicity, and sparsity of neural activity. The main objective of
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this chapter is to exploit the aforementioned features of neural signals and systems
in order to construct scalable solutions to neural identification and inverse problems,
with provable performance guarantees.

5.2 State-Space Models from Robust Statistics

In what follows, we denote by yt the generic vector of neural data at time t, for
t D 1; 2; : : : ;T, where T denotes the observation length. In order to define the
neural identification and inverse problems more formally, let �t denote the set of
parameters modeling the structural or functional properties of the system at time t
and let �t denote the stimulus and other neural covariates at time t.

We model the stochastic nature of the observed data using a probability distri-
bution pobs.�/, which in general relates the observations to the system parameters,
stimuli, and other covariates. The most widely used observation model in neural
data analysis is the Gaussian model, with a corresponding quadratic log-likelihood.
In particular, in common applications to binary spiking data, the spikes are first
smoothed out through windowing to form continuous covariates to be used in least
squares procedures. Although fitting a quadratic model to data can be carried out
efficiently via least squares, it often fails to capture the likely non-Gaussian structure
of the data and the underlying dynamics.

Inspired by the seminal contributions of Brown et al. (1998, 2001, 2002, 2004),
we take the approach of constructing observation models that are informed by the
measurement mechanism as well as the underlying stochasticity and biophysical
dynamics of the neural signals and systems.

Table 5.1 shows a few examples of such observation models. The first model
pobs;1 is commonly employed to model binary neurons (Brown et al. 1998). The
second model pobs;2 captures the dynamics of a binary neuron, with a forgetting
factor mechanism that favors recent observations, as a means to account for the
temporal variability of the underlying parameters. The last model pobs;3 corresponds
to two-photon fluorescence recordings yt observed in Gaussian noise, exhibiting
autoregressive dynamics. In Sects. 5.4 through 5.6, we will use these observation
models to analyze real data and highlight the achievable performance gains obtained
by using models informed by the underlying dynamics.

Table 5.1 Examples of dynamic observation models

Observation models Biophysical motivation

log pobs;1
�fytgT

tD1

�/PT
tD1

˚
yt log

�
�t�

���t�
�

Poisson statistics with conditional intensity
�t, e.g. hippocampal place cells

log pobs;2
�fytgT

tD1

� /PT
tD1 ˇ

T�t
˚
yt log

�
�t�

�C.1� yt/ log.1� �t�/
� Bernoulli statistics with conditional

intensity �t, weighted with forgetting factor
ˇ, e.g. single neuron undergoing plasticity

log pobs;3
�fytgT

tD1

�/�PT
tD1 kyt � ayt�1k22 Autoregressive dynamics, e.g. two-photon

fluorescence traces of neuronal activity
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As summarized in Table 5.2, general identification and inverse neural problems
can be posed as maximum a posteriori (MAP) estimation problems, where pidn and
pinv are the prior probability densities used for identification and inverse parameters,
respectively.

In order to simultaneously capture the sparsity and dynamicity of data, we
construct biophysically inspired priors pinv and pidn through dynamic extensions
of priors from robust statistics (Huber 2011). Robust priors are commonly used in
regression and are known to be effective in outlier rejection and denoising data due
to their heavy-tail nature (Rousseeuw and Leroy 2005). The Laplace distribution
used is a widely used robust prior in regression, and is central to compressed sensing.
A large family of robust priors correspond to Normal/Independent distributions with
desirable analytical properties (Dempster et al. 1980) including the multivariate
Student’s t, Power-Exponential, and Stable distributions (Lange and Sinsheimer
1993).

The dynamic extension of these priors can be carried out by fusing temporal
Markovian dynamics with robust priors. Table 5.3 lists a few examples of such
extensions. p1.�/ is an extension of the multivariate Power-Exponential distribution
to the spectrotemporal domain, promoting spectral sparsity and temporal smooth-
ness of a spectrogram st, which can be used to model the spectrotemporal dynamics
of brain rhythms. p2.�/ is a mixture of Laplace and Gaussian priors, promoting

Table 5.2 Duality of identification and inverse problems under MAP estimation

Problem Known Unknown MAP estimation

Identification fyt; �tgT
tD1 f�tgT

tD1 argmax
f�tg

T
tD1

n
log pobs


fytgT

tD1

ˇ̌
ˇf�t ; �tgT

tD1

�
C log pidn

�f�tgT
tD1

�o

Inverse fyt; �tgT
tD1 f�tgT

tD1 argmax
f�tg

T
tD1

n
log pobs


fytgT

tD1

ˇ̌
ˇf�t; �tgT

tD1

�
C log pinv

�f�tgT
tD1

�o

Table 5.3 Examples of dynamic extensions of robust priors

Dynamic extensions of robust priors Biophysical motivation

log p1
�fstgT

tD1

� /
��

NX

nD1

qPT
tD1..st/n � .st�1/n/2

Sparse and smoothly varying spectrogram,
e.g. brain rhythms

log p2
�f˛tgT

t

� /
�

TX

tD1

�1
��˚˛t

��
1
C�2

��˛t � ˛t�1

��2
2

Sparse in transform domain spanned by
˚ , smoothly varying in time, e.g.
neuronal plasticity over Gabor domain

log p3
�fxtgT

tD1

� / ��
TX

tD1

kxt � axt�1k1 Sparse in space and dynamic with sparse
innovations, e.g. two-photon fluorescence
traces of ensemble neuronal spiking

log p4

f�.m;l/t gT;M;M

t;m;lD1

�
/

�PG
iD1�i

qP
m;l2gi

PT
tD1

�
�
.m;l/
t ��.m;l/t�1

�2
Group-sparse interaction induced by the
partition fgigG

iD1, smoothly varying in
time, e.g. functional connectivity
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sparsity in a transform domain spanned by ˚ and smoothness in time, which
can be used to model neuronal plasticity or spectrotemporal modulations. p3 is a
dynamic extension of the Laplace prior and captures sparsity in space as well as
the temporal innovations of the signal, and can be used to model the statistics of
two-photon fluorescence traces from ensemble neuronal activity. Finally, p4.�/ is
a dynamic extension of the Power-Exponential density induced by group-sparse
structure. Given M neurons and the partitioning of f1; 2; � � � ;Mg into fgigG

iD1, p4.�/
can account for the sparse dynamic nature of the functional connectivity parameters
f�.m;l/t gM;M

m;lD1 in ensemble neural activity.
The hyper-parameters appearing in the robust state-space models (e.g., � in

p1.�/) can be chosen based on several mechanisms. First, cross-validation techniques
can be used to choose these parameters in the absence of any prior information
(Hastie et al. 2009). Second, when prior biophysical information is available, a fully
Bayesian approach can be employed to construct hierarchical priors on the hyper-
parameters (Gelman et al. 2013). Third, analytical results can identify some of the
hyper-parameters and their scaling properties with respect to the problem dimension
for simplified models to gain insight for data applications (see Sect. 5.4.2).

Extensions of the `1 norm to time domain and 2D plane have previously appeared
in image processing/denoising literature such as the fused LASSO (Tibshirani et al.
2005) or total variation denoising (Rudin et al. 1992). Our approach is distinct in
that we explicitly model the biophysical features of the underlying neural signals
and systems using the dynamic extension of robust priors.

In what follows, we will examine three specific problems in neural data analysis
in which the sparsity and dynamics are simultaneously modeled and captured
using the preceding models: analysis of spectrotemporal receptive field plasticity
(identification problem), spike deconvolution from two-photon calcium imaging
(inverse problem), and spectrotemporal decomposition of oscillatory neural signals
(inverse problem).

5.3 Notation and Preliminaries

We denote vectors and matrices by boldface lowercase and uppercase letters,
respectively. For a vector x 2 R

M , we denote by .x/i the ith component of x.
Similarly, for a matrix A 2 R

N�M , we denote by .A/i and .A/i;j the ith column
and the .i; j/th element, respectively.

For a sparsity level L < M, we denote by L 
 f1; 2; : : : ;Mg the support of the
L highest elements of x in absolute value, and by xL the best L-term approximation
to x. We also define

�L.x/ WD kx � xLk1 (5.1)

to capture the compressibility of the vector x. Recall that for x 2 R
M , the `1-norm

is defined as kxk1 WD PM
iD1 jxij. When �L.x/ D 0, the vector x is called L-sparse.
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If �L.x/ D O.L1�
1
� / for some � 2 .0; 1/, the vector is called .�;L/-compressible

(Needell and Tropp 2009).

5.4 Sparsity Meets Dynamics for Spectrotemporal Receptive
Field Plasticity Analysis

In this section, we focus on the analysis of spectrotemporal receptive field (STRF)
plasticity as an identification problem under the foregoing MAP estimation frame-
work. The responses of a group of neurons in the primary auditory cortex (A1) can
be characterized by their STRFs, where each neuron is tuned to a specific region in
the time-frequency plane, and only significantly spikes when the acoustic stimulus
contains spectrotemporal contents matching its tuning region (Depireux et al. 2001).
In addition, several experimental studies have revealed that receptive fields undergo
rapid changes in their characteristics during attentive behavior in order to capture
salient stimulus modulations (Fritz et al. 2003, 2005; Mesgarani et al. 2010). Our
goal is therefore to capture both the adaptivity and sparsity of these receptive fields
using scalable and robust algorithms. It is worth mentioning that the approach taken
here integrates that pioneered by Emery N. Brown in Brown et al. (2001) with the
theory of compressed sensing (CS).

5.4.1 Problem Definition

We first give a brief introduction to point process models (Daley and Vere-Jones
2007). Consider a stochastic process defined by a sequence of discrete events at
random points in time, noted by � J

1 D Œ�1; �2; : : : ; �J�
>, and a counting measure

given by

dN.�/ D
JX

kD1
ı.� � �k/; and N.�/ D

Z �

0

dN.u/; (5.2)

where ı.:/ is the Dirac’s measure. The conditional intensity function (CIF) for this
process, denoted by �.� jH� /, is defined as

�.� jH� / WD lim
"!0

P .N.� C "/� N.�/ D 1jH� /

"
; (5.3)

where H� denotes the history of the process as well as the covariates up to time
� . The CIF can be interpreted as the instantaneous rate given the history of the
process and the covariates. A point process model is fully characterized by its CIF.
For instance, �.� jH� / D � corresponds to the homogenous Poisson process with
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rate �. A discretized version of this process can be obtained by binning N.�/ within
an observation interval of Œ0;T � by bins of length�, that is

yt WD N.t�/ � N..t � 1/�/; t D 1; 2; : : : ;T; (5.4)

where T WD dT =�e and N.0/ WD 0. In what follows, fytgT
tD1 will be considered as

the observed spiking sequence, which will be used for estimation purposes. Also, by
approximating Eq. (5.3) for small � � 1, and defining �t WD �.t�jHt�/, we have

P.yt D 0/ D 1 � �t�C o.�/;
P.yt D 1/ D �t�C o.�/;
P.yt � 2/ D o.�/:

(5.5)

In discrete time, the orderliness of the process is equivalent to the requirement that
with high probability not more than one event fall into any given bin. In practice, this
can always be achieved by choosing � small enough. An immediate consequence
of Eq. (5.5) is that fytgT

tD1 can be approximated by a sequence of Bernoulli random
variables with success probabilities f�t�gT

tD1.
A popular class of models for the CIF is given by generalized linear models

(GLMs). In its general form, a GLM consists of two main components: an obser-
vation model (which is given by Eq. (5.5) in this paper) and an equation expressing
some (possibly nonlinear) function of the observation mean as a linear combination
of the covariates. In neuronal systems, the covariates consist of extrinsic covariates
(e.g., neural stimuli) as well as intrinsic covariates (e.g., the history of the process).
In this paper, we only consider GLMs with purely extrinsic covariates, although
most of our results can be generalized to incorporate intrinsic covariates as well.

At time t, let st denote the stimulus, Œ!0;t; !1;t; : : : ; !M�2;t �> denote the vector
of stimulus modulation parameters, and �t denote the baseline firing rate. The
stimulus modulation parameters and the baseline firing rate are typically assumed to
be constant. But, in order to capture the dynamics of these parameters, we consider
the foregoing general time-varying form. We adopt a logistic regression model for
the CIF as follows:

logit.�t�/ WD log

�
�t�

1 � �t�

�
D �t C

M�2X

iD0
!i;tst�i: (5.6)

By defining � t WD Œ�t; !0;t; !1;t; : : : ; !M�2;t�> and xt WD Œ1; st; : : : ; st�MC2�>, we
can equivalently write:

�t� D logit�1.�>
t xt/ WD exp.�>

t xt/

1C exp.�>
t xt/

: (5.7)

The model above is also known as the logistic-link CIF model. The significance of
this model is that logit�1.:/ maps the real line .�1;C1/ to the unit probability
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interval .0; 1/, making it a feasible model for describing statistics of binary events
independent of the scaling of the covariates and modulation parameters. We refer
to xt and � t as the covariate vector and the modulation parameter vector at time t,
respectively.

In our applications of interest in analyzing spectrotemporal receptive field
plasticity, the modulation parameter vector exhibits a degree of sparsity (Truccolo
et al. 2005; Chen et al. 2011). That is, only certain components in the stimulus
modulation have significant contribution in determining the statistics of the process.
These components can be thought of as the preferred or intrinsic tuning features of
the underlying neuron.

The identification problem of this section can be stated as follows: given binary
observations fytgT

tD1 and covariates fxtgT
tD�MC1 from a point process with a CIF

given by Eq. (5.7), the goal is to estimate the M-dimensional parameter vectors
f� tgT

tD1 in an online and stable fashion.

5.4.2 `1-Regularized Exponentially Weighted Maximum
Likelihood Estimation

In order to allow the identification problem to operate at possibly a different time-
scale than the sampling interval, we consider piece-wise constant dynamics for the
modulation parameter vector. That is, we assume that � t remains constant over
windows of arbitrary length W � 1 samples, for some integer W, such that K WD T

W
is also an integer (without loss of generality). By segmenting the corresponding
spiking data fytgT

tD1 into K windows of length W samples each, the CIF for each
time point .k � 1/W C 1 � t � kW is governed by � t D �k, for k D 1; 2; : : : ;K.

Invoking the Bernoulli approximation to the spiking statistics for � � 1, and
assuming conditional independence of the spiking events, the joint log-likelihood of
the observations within window i evaluated at a generic � can be expressed as:

Li.�/ WD
WX

jD1

n
n.i�1/WCjx>

.i�1/WCj�� log

1C exp

�
x>
.i�1/WCj�

��o
: (5.8)

In order to enforce adaptivity in the log-likelihood function, we adopt the
forgetting factor mechanism of the recursive least squares (RLS) algorithm, where
the log-likelihood of each window is exponentially weighted regressively in time,
with a forgetting factor 0 < ˇ � 1. At window k, we define:

Lˇ.�k/ WD
kX

iD1
ˇk�iLi.�k/: (5.9)
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This model corresponds to pobs;2 in Table 5.1. Note that for ˇ D 1, L1.�k/ coincides
with the natural data log-likelihood. Next, in order to promote sparsity, we regularize
the exponentially weighted log-likelihood in order to estimate �k as:

b�k D argmax
�k

˚
Lˇ.�k/ � �k�kk1

�
; (5.10)

where � is a regularization parameter controlling the trade-off between the log-
likelihood fit and the sparsity of estimated parameters.

The following theorem from Sheikhattar et al. (2016) quantifies the benefits of
the objective function in Eq. (5.10):

Theorem 1 (Theorem 1 of Sheikhattar et al. (2016)) Suppose that binary obser-
vations from a point process with a CIF given by Eq. (5.7) are given over K
windows of length W each. Suppose that the stimulus sequence fstgT

tD�MC1 consists
of independent (but not necessarily identically distributed) random variables with
a variance of �2 which are uniformly bounded by a constant B > 0 in absolute
value. Consider the setting where �k D � for all k. Then, under mild technical
assumptions, for an arbitrarily chosen positive constant d > 0, there exist constants
C, C0, and C00 such that for M > 10L, 1� C0

L2 log M
� ˇ < 1, K � log 2

log. 1ˇ /
, and a choice

of � D C00
q

log M
1�ˇ , any solutionb� to Eq. (5.10) satisfies the bound

���b���

���
2
�C

p
.1�ˇ/L log MCpC�L.�/

4
p
.1�ˇ/L log M;

with probability at least 1 � 5
Md .

Proof The proof uses techniques from compressed sensing as well as the concen-
tration of dependent random variables. See Sheikhattar et al. (2016) for details.

The result of Theorem 1 has several implications. First, assuming that �L.�/ D
0, the error bound scales with

p
.1 � ˇ/L log M, the sparsity level, as opposed

to
p
.1 � ˇ/M for the maximum likelihood (ML) estimate, implying a putative

performance gain of order O


M
L log M

�
in terms of estimation error. Nevertheless,

the bound holds for general non-sparse � , but is sharpest when �L.�/ is negligible.
Second, the theorem prescribes a lower bound on the forgetting factor which results
in significant performance improvement. Third, the theorem reveals the scaling
of the regularization parameter in terms of M and ˇ. In particular, this scaling
is significant as it reveals another role for the forgetting factor mechanism: not
only the forgetting factor mechanism allows for adaptivity of the estimates, it also
controls the scaling of the `1-regularization term with respect to the log-likelihood
term. Fourth, unlike conventional results in the analysis of adaptive filters which
concern the expectation of the error in the asymptotic regime, our result holds
for a single realization with probability polynomially approaching 1, in the non-
asymptotic regime.
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5.4.3 Adaptive Parameter Identification

Several standard optimization techniques, such as interior point methods, can be
used to find the maximizer of Eq. (5.10). However, most of these techniques operate
offline and do not meet the real-time requirements of the adaptive filtering setting
where the observations arrive in a streaming fashion. In order to avoid the increasing
runtime complexity and memory requirements of the batch-mode computation, we
seek a recursive approach which can perform low-complexity updates in an online
fashion upon the arrival of new data in order to form the estimates. To this end, we
adopt the proximal gradient approach. Each iteration of the algorithm moves the
previous iterate along the gradient of the log-likelihood function, which will then
pass through a shrinkage operator.

Let yk WD Œy.k�1/WC1; y.k�1/WC2; : : : ; ykW �
> denote the vector of observed spikes

within window k, for k D 1; 2; : : : ;K. Similarly, let �k WD �
�.k�1/WC1; �.k�1/WC2; : : : ;

�kW
�>

denote the vector of CIFs within window k. By extending the domain of the
logit�1.�/ to vectors in a component-wise fashion, we define �k.�/ for any window
k and any parameter � to be:

�k.�/ WD 1

�
logit�1

�
Xk�

�
; (5.11)

where Xk WD �
x.k�1/WC1; x.k�1/WC2; : : : ; xkW

�>
is the data matrix of size W�M with

rows corresponding to the covariate vectors in window k. Suppose that at window
k, we have an iterate denoted by b� .`/k , for ` D 0; 1; : : : ;R, with R being an integer

denoting the total number of iterations. The gradient of Lˇ.�/ evaluated at b� .`/k can
be written as:

r�L
ˇ

b� .`/k

�
D

kX

iD1
ˇk�iX>

i "i


b� .`/k

�
DW gk


b� .`/k

�
; (5.12)

where "i.�/ WD yi � �i.�/� represents the innovation vector of the point process at
window i. The proximal gradient iteration for the `1-regularization can be written in
the compact form as:

b�.`C1/k D S�˛


b� .`/k C ˛gk


b� .`/k

��
(5.13)

where S� .�/ is the element-wise soft thresholding operator at a level of � defined as:

.S� .x//i WD sgn.xi/.jxij � �/C;



5 Sparsity Meets Dynamics 121

for i D 1; 2; : : : ;M, with sgn denoting the standard signum function, and .a/C WD
maxfa; 0g. The final estimate at window k is obtained following the Rth iteration,
and is denoted by b�k WD b� .R/k . In order to achieve a recursive updating rule for gk,
we can rewrite Eq. (5.12) as:

gk


b� .`/k

�
D ˇ gk�1


b� .`/k

�
C X>

k "k


b� .`/k

�
: (5.14)

However, in an adaptive setting, we only have access to values of gk�1 evaluated at
b!.1WR/

k�1 . In order to turn Eq. (5.14) into a fully recursive updating rule, we exploit the
smoothness of the logistic function and employ the Taylor series expansion of the
CIF to approximate the required recursive update. To this end, by retaining the first
two terms in the Taylor expansion of �i.�/, we get:

�i


b� .`/k

�
� � �i

�b� i
�
�C �i

�b� i
�
Xi


b� .`/k �b� i

�
; (5.15)

where �i.b� i/ is a diagonal W �W matrix with the .m;m/-th diagonal element given
by �.i�1/WCm�.1��.i�1/WCm�/. Using the first-order approximation above, we can
approximate the gradient gk by g1k, as:

g1k

b� .`/k

�
D

kX

iD1
ˇk�i X>

i


"i.b� i/� �i.b� i/Xi

�b� .`/k �b� i
��
: (5.16)

By defining:

uk WD
kX

iD1
ˇk�i X>

i


"i.b� i/C �i.b� i/Xib� i

�
; and Bk WD

kX

iD1
ˇk�i X>

i �i.b� i/Xi;

we can express g1k

b� .`/k

�
as:

g1k

b� .`/k

�
D uk � Bkb� .`/k D ˇ g1k�1


b� .`/k

�
C X>

k "k


b� .`/k

�
:

which replaces the gradient gk


b� .`/k

�
in the shrinkage step given by Eq. (5.13). It is

then straightforward to check that both uk and Bk can be updated recursively (Babadi
et al. 2010) as:

uk D ˇ uk�1 C X>
k


"k


b� .R/k

�
C �k


b� .R/k

�
Xkb� .R/k

�
;

Bk D ˇ Bk�1 C X>
k �k


b� .R/k

�
Xk:
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Note that the update rules for both Bk and uk involve simple rank-W operations.
We refer to the resulting filter as the `1-regularized Point Process Filter of the First
Order (`1-PPF1).

Next, we will briefly describe how to characterize the statistical confidence
bounds for the `1-PPF1 estimates. Confidence bounds are crucial for interpreting
the results of our analysis as they allow to test the validity of hypotheses. Although
construction of confidence bounds for linear models in the absence of regularization
is well understood and widely applied, regularized ML estimates are usually deemed
as point estimates for which the construction of statistical confidence regions is not
straightforward. A series of recent results in high-dimensional statistics (Javanmard
and Montanari 2014; Van de Geer et al. 2014; Zhang and Zhang 2014) have
addressed this issue by providing techniques to construct confidence intervals
for `1-regularized ML estimates of GLMs. These approaches are based on a
careful inspection of the Karush-Kuhn-Tucker (KKT) conditions for the regularized
estimates. To this end, they provide a procedure to decompose the estimates into
a bias term plus an asymptotically Gaussian term (referred to as “de-sparsifying”
in Van de Geer et al. (2014)), which can be computed using a nodewise regression
(Meinshausen and Bühlmann 2006) of the covariates.

In what follows, we give a brief description of how the methods of Van de Geer
et al. (2014) apply to our setting, and refer the reader to Sheikhattar et al. (2016) for
details. Following the techniques in Van de Geer et al. (2014), the estimateb�k as the
maximizer of Eq. (5.10) can be decomposed as:

b�k D b� kgk.b�k/Cbwk; (5.17)

where b� k is an approximate inverse to the Hessian of Lˇ.�/ evaluated at b�k, gk

is the gradient of Lˇ.�/ previously defined in Eq. (5.12), and bwk is an unbiased
and asymptotically Gaussian random vector with a covariance matrix of cov.bwk/ D
b� kGk.b�k/b�>

k , with

Gk.b�k/ WD
kX

iD1
ˇ2.k�i/X>

i "i.b�k/"i.b�k/
>Xi: (5.18)

The first term in Eq. (5.17) is a bias term which can be directly computed given
b� k. Given cov.bwk/, statistical confidence bounds for the second term at desired
levels can be constructed in a standard way. The main technical issue in the
aforementioned procedure in our setting is the computation of b� k in a recursive
fashion. Since the rows of b� k are computed using `1-regularized least squares, we
use the SPARLS algorithm (Babadi et al. 2010) as an efficient method to carry out
the computation in a recursive fashion.
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5.4.4 Application: Spectrotemporal Receptive Field Plasticity
Analysis

In Fritz et al. (2003), it is suggested that this rapid plasticity has a significant role in
the functional processes underlying active listening. However, most of the widely
used estimation techniques (e.g., normalized reverse correlation) provide static
estimates of the receptive field with a temporal resolution of the order of minutes.
Moreover, they do not systematically capture the inherent sparsity manifested in the
receptive field characteristics.

We model the STRF as an .I � J/-dimensional matrix, where I and J denote the
number of time lags and frequency bands, respectively. By vectorizing this matrix,
we obtain an .M � 1/-dimensional vector !k at window k, where M D I � J C 1.
Augmenting the baseline rate parameter �k, we can model the activity of the A1
neurons using the logistic CIF with a parameter �k WD Œ�k;!k�

>. The stimulus
vector at time t, st is given by the vectorized version of the spectrogram of the
acoustic stimulus with J frequency bands and I lags. In order to capture the sparsity
of the STRF in the time-frequency plane, we further represent !k over a Gabor time-
frequency dictionary consisting of Gaussian windows centered around a regular
subset of the I � J time-frequency plane. That is, for !k D ˚�k, where ˚ is the
dictionary matrix and �k is the sparse representation of the STRF. Note that the
resulting prior on �k is a special case of the prior p2 in Table 5.3. The estimation
procedures of this paper can be applied to �k, by absorbing the dictionary matrix
into the data matrix Xk at window k.

We apply the `1-PPF1 filter to multi-unit spike recordings from the ferrets A1
during a series of passive listening conditions and active auditory task conditions
(data from the Neural Systems Laboratory, University of Maryland, College Park).
During each active task, ferrets attended to the temporal dynamics of the sounds,
and discriminated the rate of acoustic clicks (Fritz et al. 2005). The STRFs were
estimated from the passive condition, where the quiescent animal listened to a series
of broadband noise-like acoustic stimuli known as Temporally Orthogonal Ripple
Combinations (TORC). The experiment consisted of 2 active and 11 passive blocks.
Within each passive block, 30 TORCs were randomly repeated a total of 4–5 times
each. In our analysis, we pool the spiking data corresponding to the same repeated
TORC within each block. Therefore, the time axis corresponds to the experiment
time modulo repetitions within each block. We discretize the resulting duration of
T D 990 s to time bins of size � D 1 ms, and segment data to windows of size
W D 10 samples (10 ms). The STRF dimensions are 50 � 50, regularly spanning
lags of 1–50 ms and frequency bands of 0:5–16kHz (in logarithmic scale). The
dictionary ˚ consists of 13 � 13 Gabor atoms, evenly spaced within the STRF
domain. Each atom is a two-dimensional Gaussian kernel with a variance of D2=4

per dimension, where D denotes the spacing between the atoms. We selected a
forgetting factor of ˇ D 0:9998, a step size of ˛ D 4.1�ˇ/

MW N�2 , where N�2 is the
average variance of the spectrogram components, R D 1 iteration per sample, and a
regularization parameter of � D 40 via twofold even-odd cross validation.
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Figure 5.1a shows a schematic depiction the experimental setup. The sequence
of passive (green) and active (red) tasks is shown in Fig. 5.1b. Figure 5.1c depicts
five snapshots taken at f180; 360; 540; 630; 990gs corresponding to the end-points

Fig. 5.1 Analysis of ferret STRF plasticity. (a) The response of ferret A1 neurons to TORC
stimuli is captured by multi-unit recordings during a series of passive and active auditory tasks.
(b) Snapshots of the STRF at five selected points in time, marked by the dashed vertical lines. (c)
The time-course of three selected points (S1; S2, and S3) in the STRF marked on the leftmost panel.
The colored hulls show 95% confidence intervals. The `1-PPF1 filter is capable of detecting rapid
changes in the STRF, while capturing the sparsity of spectrotemporal tuning. Figure modified from
Sheikhattar et al. (2016)
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of the f2; 4; 6; 7; 11gth passive tasks. The bottom row shows the time-course of three
selected points (marked as S1, S2, and S3 in the leftmost panel) of the STRF during
the experiment. The STRF snapshots at times 180 and 540 s correspond to 90 s after
the two active tasks, respectively, and verify the sharpening effect of the excitatory
region (�30ms, 8 kHz) due to the animal’s attentive behavior following the active
task reported in Fritz et al. (2003). Moreover, the STRF snapshots at times 360 and
630 s reveal the weakening of the excitatory region long after the active task and
returning to the pre-active state, highlighting the plasticity of A1 neurons. Previous
studies have revealed the STRF dynamics with a resolution of the order of minutes
(Mesgarani et al. 2010). The result in Fig. 5.1 provides a temporal resolution of the
order of seconds, while capturing the STRF sparsity in a robust fashion (Sheikhattar
et al. 2016).

5.5 Sparsity Meets Dynamics for Signal Deconvolution

In this section, we consider signal deconvolution from two-photon calcium imaging
data as an inverse problem (Kazemipour et al. 2017). In many signal processing
applications such as estimation of brain activity from MEG time-series (Phillips
et al. 1997), estimation of time-varying networks (Kolar et al. 2010), EEG analysis
(Nunez and Cutillo 1995), calcium imaging (Vogelstein et al. 2010), functional
magnetic resonance imaging (fMRI) (Chang and Glover 2010), and video com-
pression (Jung and Ye 2010), the signals often exhibit abrupt changes that are
blurred through convolution with unknown kernels due to intrinsic measurement
constraints. Extracting the underlying signals from blurred and noisy measurements
is often referred to as signal deconvolution.

Traditionally, state-space models have been used for such signal deconvolution
problems, where the states correspond to the unobservable signals. Gaussian state-
space models in particular are widely used to model smooth state transitions. When
applied to observations from abruptly changing states, however, Gaussian state-
space models exhibit poor performance in recovering sharp transitions of the states
due to their underlying smoothing property. Our goal is therefore to construct state-
space models, along with fast and robust estimation algorithms, to capture abrupt
state transitions in calcium imaging data arising from spiking activity, from noisy
and undersampled observations. The approach taken here builds up on joint work
of the author and his colleagues including Emery N. Brown (Ba et al. 2012), in
modeling the sparsity of state innovations under the CS framework (Kazemipour
et al. 2017).

5.5.1 Problem Formulation

Consider a linear state-space model given by
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xt D �xt�1 C wt; yt D Atxt C vt; (5.19)

where fxtgT
tD1 2 R

M denote the sequence of unobservable states, � is the state
transition matrix satisfying k�k < 1, wt 2 R

M is the state innovation sequence,
fytgT

tD1 2 R
Nt are the linear observations, At 2 R

Nt�M denotes the measurement
matrix, and vt 2 R

Nt denotes the measurement noise. The main problem is to
estimate the unobserved sequence fxtgT

tD1 (and possibly �), given the sequence of
observations fytgT

tD1. This problem is in general ill-posed, when Nt < M, for some t.
We therefore need to make additional assumptions in order to seek a stable solution.

As in the previous section, we assume that the state innovations are compressible,
i.e. wt D xt � �xt�1 is .Lt; �/-compressible with L1 � Lt for t 2 ŒT�nf1g. We thus
denote the model of Eq. (5.19) by a compressible state-space model. We further
assume that 1 � Lt < Nt � M.

For simplicity of notation, we define x0 to be the all-zero vector in R
M . For a

matrix A, we denote restriction of A to its first n rows by .A/n. We say that the
matrix A 2 R

N�M satisfies the restricted isometry property (RIP) (Candès 2006) of
order L, if for all L-sparse x 2 R

M, we have

.1 � ıL/kxk22 � kAxk22 � .1C ıL/kxk22; (5.20)

where ıL 2 .0; 1/ is the smallest constant for which Eq. (5.20) holds (Candès and
Wakin 2008). We assume that the rows of At are a subset of the rows of A1, i.e.

At D .A1/Nt , and defineeAt D
q

N1
Nt

At. Other than its technical usefulness, the latter

assumption helps avoid prohibitive storage of all the measurement matrices.
The inverse problem of this section can be stated as follows: given under-

determined and noisy observations fytgT
tD1 from an ensemble of neurons and a

compressible signal evolution model given by Eq. (5.19), the goal is to estimate
the underlying signal sequence fxtgT

tD1 in a stable fashion.

5.5.2 A MAP Formulation for Sparse Signal Deconvolution

In order to promote sparsity of the state innovations, we consider the dynamic `1-
regularization problem defined as

min
fxtgT

tD1;�

TX

tD1

kxt � �xt�1k1p
Lt

s.t. kyt � Atxtk2 �
s

Nt

N1
�: (5.21)

where � is an upper bound on the observation noise, i.e., kvtk2 � � for all t. Note
that this problem is a variant of the dynamic CS problem introduced in Ba et al.
(2012).

In order to cast this problem in the MAP framework as an inverse problem, we
consider the modified Lagrangian form of Eq. (5.21) given by
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min
fxtgT

tD1;�

�

TX

tD1

kxt � �xt�1k1p
Lt

C 1

Nt

kyt � Atxtk22
2�2

: (5.22)

for some constants �2 and � � 0. Note that if vt � N .0; nt�
2I/, then Eq. (5.22) is

algebraically similar to the MAP estimator of the states in Eq. (5.19), assuming that
the state innovations were independent Laplace random variables with respective
parameters �=

p
st. Note that this prior coincides with p3 in Table 5.3. We will later

use this analogy to derive fast solutions to the optimization problem in Eq. (5.22).
The following theorem establishes the properties of the minimizer in Eq. (5.21):

Theorem 2 (Theorem 1 in Kazemipour et al. (2017)) Let fxtgT
tD1 2 R

M be a
sequence of states with a known transition matrix � D �I, where j� j < 1 and eAt ,
t � 1 satisfies RIP of order 4L with ı4L < 1=3. Suppose that N1 > N2 D N3 D
� � � D NT. Then, the solution fbxtgT

tD1 to the dynamic CS problem (5.21) satisfies

1
T

PT
tD1 kxt �bxtk2 � 1��T

1��

12:6


1C 1

T

q
N1
N2

� 1
T

�
�C 3

T

PT
tD1

�Lt .xt��xt�1/p
Lt

�
:

Proof The proof is given in Kazemipour et al. (2017).
The first term on the right-hand side of the statement of Theorem 2 implies

that the average reconstruction error of the sequence fxtgT
tD1 is upper bounded

proportional to the noise level �, which implies the stability of the estimate. The
second term is a measure of compressibility of the innovation sequence and vanishes
when the sparsity condition is exactly met.

5.5.3 Fast Iterative Solution via the EM Algorithm

Due to the high dimensional nature of the state estimation problem, algorithms with
polynomial complexity exhibit poor scalability. Moreover, when the state transition
matrix is not known, the dynamic CS optimization problem (5.22) is not convex
in
�fxtgT

tD1;�
�
. Therefore standard convex optimization solvers cannot be directly

applied. This problem can be addressed by employing the expectation-maximization
(EM) algorithm (Shumway and Stoffer 1982). A related existing result considers
weighted `1-regularization to adaptively capture the state dynamics (Charles and
Rozell 2013). Our approach is distinct in that we derive a fast solution to (5.22)
via two nested EM algorithms, in order to jointly estimate the states and their
transition matrix. The outer EM algorithm converts the estimation problem to a form
suitable for the usage of the traditional fixed-interval smoothing (FIS) by invoking
the EM interpretation of the iterative re-weighted least squares (IRLS) algorithms
(Ba et al. 2012). The inner EM algorithm performs state and parameter estimation
efficiently using the FIS. We refer to our estimated as the fast compressible state-
space (FCSS) estimator.
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In order to employ the EM theory, we first note that the problem of Eq. (5.22) can
be interpreted as a MAP problem: the first term corresponds to the state-space prior
� log p.xtjxt�1;�/ D � log pLt .xt � �xt�1/, where pLt.x/ � exp .��kxk1=pLt/

denoting the Laplace distribution; the second term is the negative log-likelihood
of the data given the state, assuming a zero-mean Gaussian observation noise with
covariance �2I.

It is more convenient to work with the -perturbed `1-norm defined by

kxk1; WD
q

x21 C 2 C
q

x22 C 2 C � � � C
q

x2p C 2: (5.23)

Note that for  D 0, kxk1; coincides with the usual `1-norm. We define the -
perturbed version of the dual problem (5.22) by

min
fxtgT

tD1;�

�

TX

tD1

kxt � �xt�1k1;p
Lt

C 1

Nt

kyt � Atxtk22
2�2

: (5.24)

As it will become evident shortly, this slight modification is carried out for the sake
of numerical stability. The -perturbation only adds a term of the order O.p/ to the
estimation error bound of Theorem 2, which is negligible for small enough  (Ba
et al. 2012).

If instead of the `1;-norm, we had the square `2 norm, then the above problem
could be efficiently solved using the FIS. The outer EM algorithm transforms the
problem of Eq. (5.24) into a quadratic form, by invoking the equivalence of the
IRLS algorithm as an instance of the EM algorithm for solving `1;-minimization
problems via the Normal/Independent (N/I) characterization of the -perturbed
Laplace distribution (Ba et al. 2012). That is, given the estimates fbx.`/t gT

tD1; b� .`/

at the end of the `-th iteration, the outer EM algorithm transforms the optimization
problem to:

min
fxtgT

tD1;�

�

2

MX

jD1

TX

tD1

.xt � �xt�1/2j C 2

p
Lt

r
bx.`/t � b� .`/bx.`/t�1

�2
j

C 2

C
TX

tD1

1

Nt

kyt � Atxtk22
2�2

;

(5.25)

in order to find fbx.`C1/t gT
tD1 and b� .`C1/. Under mild conditions, convergence of the

solution of Eq. (5.25) to that of Eq. (5.22) was established in Ba et al. (2012). The
objective function (5.25) is still not jointly convex in

�fxtgT
tD1;�

�
. Therefore, to

carry out the optimization, i.e. the outer M-step, we will employ another instance
of the EM algorithm, which we call the inner EM algorithm, to alternate between
estimating of fxtgT

tD1 and � . To this end, let W.`/
t be a diagonal matrix such that
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W.`/

t

�

j;j
D Lt

�1=2
�
bx.`/t � b�

.`/
bx.`/t�1

�2
j

C 2
	�1=2

:

Consider an estimate b� .`;m/, corresponding to the m-th iteration of the inner EM
algorithm within the `-th M-step of the outer EM. In this case, Eq. (5.25) can be
thought of the MAP estimate of the Gaussian state-space model given by:

xt D b� .`;m/xt�1 C wt; wt � N


0; 1
�

W.`/
t

�1�

yt D Atxt C vt; vt � N .0;Nt�
2I/:

; (5.26)

In order to obtain the inner E-step, one needs to find the density of fxtgT
tD1 given

fytgT
tD1 and b� .`;m/. Given the Gaussian nature of the state-space in Eq. (5.26), this

density is a multivariate Gaussian density, whose means and covariances can be
efficiently computed using the FIS. For all t 2 ŒT�, the FIS performs a forward
Kalman filter and a backward smoother to generate (Rauch et al. 1965; Anderson
and Moore 1979):

x.`;mC1/
tjT WD E

n
xt

ˇ̌
ˇfytgT

tD1; b� .`;m/
o
; ˙

.`;mC1/
tjT WD E

n
xtx>

t

ˇ̌
ˇfytgT

tD1; b� .`;m/
o
; and

˙
.`;mC1/
t�1;tjT D ˙

.`;mC1/
t;t�1jT D E

n
xt�1x>

t

ˇ̌
ˇfytgT

tD1; b� .`;m/
o
:

Note that due to the quadratic nature of all the terms involving fxtgT
tD1, the outputs

of the FIS suffice to compute the expectation of the objective function in Eq. (5.25),
i.e., the inner E-step, which results in:

max
�

� �

2

 
�

 
TX

tD1
W.`/

t


x.`;mC1/

t�1jT x.`;mC1/>
t�1jT C ˙

.`;mC1/
t�1jT

�!
�>

!

C �

2
Tr

 
�

 
TX

tD1
W.`/

t


x.`;mC1/

t�1jT x.`;mC1/>
tjT C x.`;mC1/

tjT x.`;mC1/>
t�1jT C 2˙

.`;mC1/
t�1;tjT

�!!
;

(5.27)

to obtain b� .`;mC1/. The solution has a closed-form given by:

b� .`;mC1/ D
 

TX

tD1
2W.`/

t


x.`;mC1/

t�1jT x.`;mC1/>
t�1jT C ˙

.`;mC1/
t�1jT

�!�1

 
TX

tD1
W.`/

t


x.`;mC1/

t�1jT x.`;mC1/>
tjT C x.`;mC1/

tjT x.`;mC1/>
t�1jT C 2˙

.`;mC1/
t�1;tjT

�!
:

(5.28)
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This process is repeated for I1 iterations for the inner EM and I2 iterations for the
outer EM, until a convergence criterion is met.

5.5.4 Application: Spike Deconvolution from Two-Photon
Calcium Imaging Data

Calcium imaging takes advantage of intracellular calcium flux to directly visualize
calcium signaling in living neurons. This is done by using calcium indicators, which
are fluorescent molecules that can respond to the binding of calcium ions by chang-
ing their fluorescence properties and using a fluorescence or two-photon microscope
and a CCD camera to capture the visual patterns (Smetters et al. 1999; Stosiek et al.
2003). Since spikes are believed to be the units of neuronal computation, inferring
spiking activity from calcium recordings, referred to as calcium deconvolution,
is an important problem in neural data analysis. Several approaches to calcium
deconvolution have been proposed in the neuroscience literature, including model-
free approaches such as sequential Monte Carlo methods (Vogelstein et al. 2009) and
model-based approaches such as nonnegative deconvolution methods (Vogelstein
et al. 2010; Pnevmatikakis et al. 2016). These approaches require solving convex
optimization problems, which do not scale well with the temporal dimension of the
data. In addition, they lack theoretical performance guarantees and do not provide
clear measures for assessing the statistical significance of the detected spikes.

In order to construct confidence bounds for our estimates, we employ recent
results from high-dimensional statistics (Van de Geer et al. 2014). We first compute
the confidence intervals around the outputs of the FCSS estimates using the node-
wise regression procedure of Van de Geer et al. (2014), at a confidence level of 1� ˛

2
.

We perform the node-wise regression separately for each time t. For an estimatebxt,
we obtainbxu

t andbxl
t as the upper and lower confidence bounds, respectively. Next, we

partition the estimates into small segments, starting with a local minimum (trough)
and ending in a local maximum (peak). For the i-th component of the estimate, let
tmin and tmax denote the time index corresponding to two such consecutive troughs
and peaks. If the difference .bxl

tmax
/i � .bxu

tmin
/i is positive, the detected innovation

component is declared significant (i.e., spike) at a confidence level of 1 � ˛,
otherwise it is discarded (i.e., no spike). We refer to this procedure as Pruned-FCSS
(PFCSS).

We apply the FCSS algorithm for calcium deconvolution in a scenario where the
ground-truth spiking is recorded in vitro through simultaneous electrophysiology
(cell-attached patch clamp) and two-photon calcium imaging (See Kazemipour
et al. (2017) for experimental procedures). The calcium trace and the ground-
truth spikes are shown for a sample neuron in Fig. 5.2a. The FCSS denoised
estimate of the states (black) and the detected spikes (blue) using 95% confidence
intervals (orange hulls) and the corresponding quantities for the constrained f-oopsi
algorithm (Pnevmatikakis et al. 2016) are shown in Fig. 5.2b and c, respectively.
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Fig. 5.2 Ground-truth performance comparison between PFCSS and constrained f-oopsi. (a)
the observed calcium traces (black) and ground-truth electrophysiology data (blue). (b) PFCSS
state estimates (black) with 95% confidence intervals (orange) and the detected spikes (blue).
(c) The constrained f-oopsi state estimates (black) and the detected spikes (blue). The FCSS
spike estimates closely match the ground-truth spikes with only a few false detections, while the
constrained f-oopsi estimates contain significant clustered false detections. Figure modified from
Kazemipour et al. (2017)

Both algorithms detect the large dynamic changes in the data, corresponding to
the spikes, which can also be visually captured in this case. However, in doing
so, the f-oopsi algorithm incurs a high rate of false positive errors, manifested as
clustered spikes around the ground truth events. Similar to f-oopsi, most state-of-
the-art model-based methods suffer from high false positive rate, which makes the
inferred spike estimates unreliable. Thanks to the aforementioned pruning process
based on the confidence bounds, the PFCSS is capable of rejecting the insignificant
innovations, and hence achieve a lower false positive rate. One factor responsible
for this performance gap can be attributed to the underestimation of the calcium
decay rate in the transition matrix estimation step of f-oopsi. However, we believe
the performance gain achieved by FCSS is mainly due to the explicit modeling of
the sparse nature of the spiking activity by going beyond the Gaussian state-space
modeling paradigm.
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5.6 Sparsity Meets Dynamics for Spectral Decomposition

In this section, we consider spectral decomposition of time series observed in
noise as an inverse problem and thereby cast it as a MAP problem. Across
nearly all fields of science and engineering, non-stationary behavior in time series
data is a ubiquitous phenomenon. Common examples include speech (Quatieri
2008), image and video (Lim 1990) signals; neural spike trains (Truccolo et al.
2005) and EEG (Mitra and Bokil 2007) measurements; seismic and oceanographic
recordings (Emery and Thomson 2001) and radar emissions (Haykin and Steinhardt
1992). Due to the exploratory nature of these applications and the complexity of the
underlying spectrotemporal features, nonparametric spectral techniques, rather than
parametric approaches (Kitagawa and Gersch 1996), are among the most widely
used in the analysis of these data.

Nonparametric spectral techniques based on Fourier methods (Thomson
1982; Percival 1993; Thomson and Vernon 1998), wavelets (Daubechies 1990;
Daubechies et al. 2011), and data-dependent approaches, such as the empirical
mode decomposition (EMD) (Huang et al. 1998; Wu and Huang 2009), use sliding
windows to take account of the non-stationarity. Although analysis with sliding
windows is universally accepted, this approach has several drawbacks including
low spectral resolution due to short window lengths and lack of a mechanism to
integrate data from adjacent windows in order to capture the inherent temporal
smoothness as well as spectral sparsity of these data. Our goal is therefore to
capture the spectrotemporal dynamics of noisy time series whose non-stationary
mean is the superposition of a small number of smooth harmonic components. This
section is based on a joint work of the author and his colleagues, including Emery
N. Brown (Ba et al. 2014b).

5.6.1 Problem Formulation

Consider a discrete-time signal yt; t D 1; 2; : : : ;T obtained by sampling of an
underlying noisy continuous-time signal at a rate Fs above the Nyquist rate. Given
an arbitrary window of length W, let yk WD Œy.k�1/WC1; y.k�1/WC2; : : : ; ykW �

> for
k D 1; 2; : : : ;K with K WD T

W being an integer without loss of generality. For some
integer M, consider the following harmonic representation of yk as

yk D Fkxk C vk (5.29)

where .Fk/l;m WD cos

2�
�
.k�1/W Cl

�
m
M

�
and .Fk/l;mCM=2 WD sin


2�
�
.k�1/W C

l
�mCM=2

M

�
for l D 1; 2; : : : ;W and m D 0; 1; : : : ; M

2
� 1, xk 2 R

M is the vector of

harmonic coefficients and vk is independent, identically distributed, additive zero-
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mean Gaussian noise. By defining F as a T � MK block-diagonal matrix with Fk on
the diagonal blocks:

F WD

0

BBB@

F1
F2
: : :

FK

1

CCCA ; (5.30)

we may rewrite Eq. (5.29) in a compact form as

y D Fx C v; (5.31)

with new notations y D Œy1; y2; : : : ; yT �
> 2 R

T , x D Œx>
1 ; x

>
2 ; : : : ; x

>
K �

> 2 R
MK ,

and v D Œv>
1 ; v

>
2 ; : : : ; v

>
K �

> 2 R
T . The vector x can be viewed as a time-frequency

representation of the non-stationary signal y.
Our goal is to compute an estimate bx of x given the data y. Classical spectral

estimation techniques use sliding windows with overlap to implicitly enforce
temporal smoothness of the harmonic components, but they do not consider sparsity
in the frequency domain. In contrast, we take a direct approach which treats fxkgK

kD1
as a sequence of random variables and explicitly imposes a stochastic continuity
constraint on its elements across time, as well as a sparsity constraint across
frequency.

To this end, starting with an initial condition x0 D 0, we can express the
stochastic continuity constraint in the form of the first-order difference equation

xk D xk�1 C wk; (5.32)

where wk is a random innovation vector. To promote a desired spectrotemporal
structure, we consider an -perturbed variant of the prior p1 from Table 5.3:

log pinv.w1;w2; : : : ;wK/ / ��
MX

mD1

vuut
KX

kD1

q
.wk/2m C 2; (5.33)

where � > 0 and  > 0 is a small constant.
The inverse problem of this section can be stated as follows: given the noisy time-

series fytgT
tD1 and an evolution model of the underlying harmonic components given

by Eq. (5.32), the goal is to estimate the underlying harmonic sequence fxtgT
tD1 in a

robust and scalable fashion.
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5.6.2 A MAP Formulation for Spectral Decomposition

Given the observation model of Eq. (5.29) and the prior model (5.33), we can findbx
by solving the following MAP problem:

max
fxkgK

kD1

�
KX

kD1

1

2�2
kyk �Fkxkk22��

MX

mD1

vuut
KX

kD1

q
..xk/m � .xk�1/m/2 C 2: (5.34)

We call the MAP estimation problem of Eq. (5.34) the spectrotemporal pursuit (SP)
problem, and its solution the SP estimate. Note that we can absorb the constant
� in � and henceforth assume that � D 1. Similar to the previous sections, we
seek solutions which are iterative and therefore scale favorably with growing data
dimensions.

Using the equivalence of IRLS and EM algorithms for N/I densities (Ba et al.
2014a,b), an iterative algorithm can be obtained as follows. Suppose that at `-th
iteration an estimatebx.`/ is given. Then, we solve:

max
fxkgK

kD1

�
KX

kD1

1

2�2
kyk � Fkxkk22 �

MX

mD1

KX

kD1

..xk/m � .xk�1/m/2

2


Q.`/
k

�

m;m

: (5.35)

to find the estimate at iteration .` C 1/, where Q.`/
k is an M � M diagonal matrix

given by:


Q.`/

k

�

m;m
D
2

r
bx.`/k

�

m
�

bx.`/k�1

�

m

�2 C 2

vuut
KX

k0D1

r
bx.`/k0

�

m
�

bx.`�1/k0�1

�

m

�2 C 2

�
:

(5.36)
The solution to Eq. (5.35) is given by the FIS (Rauch et al. 1965), which exploits
tridiagonal structure of the quadratic cost function to obtain a recursive solution
via forward-backward substitution. In Ba et al. (2014b), it has been shown that as
` ! 1, the solution to Eq. (5.35) converges to a fixed point of Eq. (5.34). We repeat
the iterative process for a total of I iterations or until some convergence criterion is
met.

5.6.3 Application: Robust Spectrotemporal Decomposition
of EEG

We illustrate the application of SP by computing the spectrogram of frontal EEG
data recorded from a patient during propofol-induced general anesthesia for a
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surgical procedure (Ba et al. 2014b). The patient received a bolus intravenous
injection of propofol at approximately 3:5min, followed by a propofol infusion
which was maintained until minute 27, when the case ended.

When administered to initiate general anesthesia, propofol produces profound
slow (<1Hz) and delta (1–4 Hz) oscillations (Fig. 5.3, minute 5) (Purdon et al.
2013; Lewis et al. 2012). With maintenance of general anesthesia, using propofol
we observe an alpha oscillation (8–12 Hz) in addition to the slow and delta
oscillations. The presence of the alpha oscillations along with the slow and delta
oscillations is a marker of unconsciousness (Purdon et al. 2013; Lewis et al. 2012).
Developing a precise characterization of the spectrotemporal dynamics of neural
activity under propofol general anesthesia is important in understanding the neural
circuit mechanisms of this anesthetic.

We computed the spectrogram for T D 35min of EEG data, sampled at a
rate Fs D 250Hz, using the multitaper method (Thomson 1982; Babadi and
Brown 2014) with 1 s temporal resolution (Fig. 5.3a), multitaper method with 0:5Hz
frequency resolution (Fig. 5.3b) and the SP estimator (Fig. 5.3c). The right panels
show a zoomed-in views of the spectrogram from minute 15 to minute 18. For the
SP analysis, W D M D 500, K D 1050 and we select � by splitting the data into
two sequences consisting of its even and odd times, respectively, and performing a
form of twofold cross validation (Friedman et al. 2007). For each 2 s window of
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Fig. 5.3 Spectral decomposition of frontal EEG from a subject undergoing propofol-induced
general anesthesia. (a) Multitaper with 2 s temporal resolution, (b) multitaper with 0:5Hz
frequency resolution, and (c) SP estimate. The right panels show the respective zoomed-in view
from t D 15 min to t D 18 min. The color scale is in dB. The SP estimate significantly denoises
the spectrogram, and captures the spectrotemporal dynamics at high resolution. Figure modified
from Ba et al. (2014b)
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data, Fk is the 500 � 500 matrix which is the Fourier basis for the discrete-time
interval Œ.k � 1/W C 1; kW� for k D 1; 2; : : : ;K.

By the choice of the window length and time-bandwidth product in the multitaper
method (Babadi and Brown 2014), it is possible to achieve either high frequency or
high temporal resolution. In contrast, SP achieves high temporal resolution, high
spatial resolution, and significantly denoises the spectrogram. As a consequence,
in the SP analysis the slow and delta oscillations are clearly delineated during
the induction of anesthesia (minute 3:5), whereas during the maintenance period
(minutes 5–27), the oscillations are strongly localized in the slow, delta and alpha
bands. Furthermore, the denoising achieved by SP creates a �30 dB contrast
between these spectral bands and the other frequencies in the spectrum.

5.7 Concluding Remarks

In this chapter, we considered neural identification and inverse problems cast
in a Bayesian MAP estimation framework. We exploited two salient features of
neural data, namely dynamicity and sparsity, to construct biophysically inspired
forward models and priors. We further showed that it is possible to design inference
algorithms for solving these problems in a scalable and provably robust fashion.

As for a case study for neural identification under this framework, we analyzed
the STRF plasticity of neurons in the ferret primary auditory cortex. Our theoretical
analysis as well as application to real data revealed substantial gains in terms of
increasing the temporal resolution and capturing the sparsity in spectrotemporal
tuning. We also considered two inverse neural problems under this framework.
First, we employed state-space models with compressible innovations for signal
deconvolution from undersampled and noisy observations. We further showed that
it is possible to achieve robust and scalable spike deconvolution from two-photon
calcium imaging of ensemble neuronal activity using these models. Second, we
considered the problem of spectral decomposition of noisy non-stationary data
as an inverse problem. By invoking the sparsity in frequency and smoothness in
time under our framework, we analyzed EEG data from general anesthesia, which
highlighted the utility of our techniques in delineating spectrotemporal features of
EEG at high resolution.
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Chapter 6
Artifact Rejection for Concurrent TMS-EEG
Data

Wei Wu, Corey Keller, and Amit Etkin

6.1 Background

Neuroimaging has provided tools to non-invasively examine brain regions that
are activated during specific cognitive tasks, functionally correlated at rest, and
abnormal in neurological and psychiatric disorders. However, these findings provide
only an observational view of how brain activity and function are related, and
importantly lack the causal inference that is often necessary to dissect circuits and
guide therapeutic interventions. Transcranial magnetic stimulation (TMS) coupled
with electroencephalogram (EEG) provides the causal probe and measurement
tools, respectively, that can be utilized to study systems-level causal brain dynamics
in both healthy and clinical populations (Massimini et al. 2005; Ferrarelli et al.
2008; Morishima et al. 2009; Harquel et al. 2016). In this section, we provide a
brief introduction to TMS, and concurrent TMS and EEG as a causal neuroimaging
tool. We also highlight the challenges of TMS-EEG data analyses.

6.1.1 Transcranial Magnetic Stimulation (TMS)

TMS is a non-invasive brain stimulation technique based on the principle of
electromagnetic induction (Fig. 6.1a). The technique was first reported in 1985 by
Barker et al. on Lancet (Barker et al. 1985), in which they showed that it was
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Fig. 6.1 TMS and TMS-EEG. (a) TMS using a figure-of-eight coil. (b) A laboratory setup for
concurrent TMS-EEG recordings

possible to stimulate both nerve and brain using external magnetic stimulation, with
little or no pain. To perform TMS, a brief, strong current pulse is passed through
a coil of wire placed tangentially above the scalp, which results in a cascade of
effects: (1) A time-varying magnetic field is produced with lines of flux passing
perpendicularly to the plane of the coil, penetrating human tissues painlessly and
decaying by the square of the depth. (2) According to Faraday’s law of induction,
an electric field parallel to the coil is induced by the time-varying magnetic field.
The strength of the electric field is proportional to the rate of change of the
magnetic field. (3) The electric field causes current to flow in loops in the underlying
cortex, which stimulate neural tissues by altering the membrane potential of cortical
neurons.

The most frequently used TMS coil is composed of a pair of circular coils in a
figure-eight configuration, in which electric current passes in opposite directions
in each of the circular coils, converging up at the center point (Fig. 6.1a). This
makes stimulation more likely to occur at the center of the configuration than
elsewhere, enabling focal stimulation of brain tissue. Despite an infinite extent of
the stimulated area in theory, the effective spatial resolution of the figure-of-eight
TMS is in the order of a few millimeters. This is evidenced by the observation
that TMS over primary motor cortex evokes muscle twitches from the fingers,
hand, arm, face, and leg in a manner that matches the organization of the motor
“homunculus” (Metman et al. 1993). Positioning the coil on the scalp at locations
spaced between 0.5 and 1 cm apart is sufficient selectively to activate these different
muscles. Similarly, effective spatial resolution has been demonstrated in primary
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visual cortex. Depending on the intensity and experimental conditions, TMS over
visual cortex causes people to experience either a spot of light (phosphene) or a blind
spot (scotoma) in their visual field (Kammer 1998). The location of the phosphene
or scotoma corresponds with the coil position over the visual cortex. With coil
positions 0.5–1 cm apart, the region of the visual field in which the phosphene or
scotoma is induced can be controlled with an accuracy as precise as 1ı of visual
angle (estimates of the cortical distance representing the central 2ı of visual angle
of between 20 and 30 mm). However, an important limitation of TMS is that the
effects of stimulation are limited to superficial cortical regions.

Provided appropriate safety guidelines are followed, TMS is safe in humans as
shown through comprehensive surveys of potential adverse effects and complica-
tions (Rossi et al. 2009). TMS can be applied at varying intensities, and in single
pulses (single-pulse TMS), paired pulses (paired-pulse TMS), or in trains of repet-
itive pulses (repetitive TMS) delivered at a fixed frequency (conventional rTMS,
typically in the range of 1–20 Hz), or by combining different frequencies (e.g.,
continuous or intermittent theta burst stimulation). Single-pulse TMS (spTMS) has
largely excitatory effects and is typically employed to disrupt neural information
processing during cognitive tasks or probe cortical excitability and connectivity
relative to the resting state. Paired-pulse TMS is useful for assessing cortical
inhibition. In contrast to single-pulse and paired-pulse TMS, rTMS can induce a
lasting modification of neural activity, which can outlast the duration of the rTMS
train itself. Such a lasting effect may represent a change in plasticity mechanisms
(Ziemann 2004). Indeed, theta burst stimulation mimics paradigms used to induce
long-term depression (LTD) and long-term potentiation (LTP) in animal models
(Huang et al. 2005). In this chapter, we will focus on combining EEG with spTMS.

6.1.2 Concurrent TMS and EEG (TMS-EEG)

Most of the knowledge regarding the effect of TMS on the brain has been gathered
with studies that delivered single pulses to the motor cortex and measured the motor
evoked potential (MEP) induced by TMS in the contralateral peripheral muscles.
Despite that the MEP amplitude is a measure of corticospinal excitability, it provides
only an indirect assessment of cortical activity. Moreover, neuroimaging studies
have shown that stimulation over the motor cortex appears to activate a vastly
different set of brain regions than stimulation over non-motor regions involved in
cognitive processes such as the prefrontal cortex (Zheng et al. 2011). As such, it
remains unclear to what extent knowledge regarding stimulation parameters and
electrophysiological responses obtained in the motor cortex can be extrapolated
to other structurally and functionally distinct brain regions. There is hence a need
for strengthening the scientific understanding towards the cortical effects of TMS
over brain regions known to be directly involved in cognitive tasks, including
those that are both directly stimulated and other distal yet interconnected networks.
Nonetheless, with the exception of the visual cortex, which produces phosphenes
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or scotoma when being stimulated (Kammer 1998), the use of TMS outside of the
motor cortex has been largely precluded by the lack of appropriate readouts outside
of non-motor areas (Fitzgerald 2010).

The induced current in the stimulated area propagates to the interconnected
brain regions via short- or long-range cortico-cortical, thalamocortical, or cerebello-
cortical pathways. These brain activity changes can be directly assessed by coupling
TMS with functional neuroimaging techniques such as EEG and fMRI. In particular,
the successful combination of TMS and EEG (Fig. 6.1b) was first reported by
Cracco et al. (1989) who recorded TMS-evoked cortical responses in the hemisphere
contralateral to stimulation and the technique has since been utilized to examine
neurophysiological processes across a range of cortical regions (Farzan et al. 2009).
Combining TMS with EEG is particularly intriguing for the following reasons: (1)
EEG captures the cortical activity corresponding to different stages of processing
with high temporal resolution. Therefore, it provides precise information about the
spatiotemporal order of activations of distant cortical areas, being capable of tracing
the dynamics of causal interactions within functional brain networks. (2) With the
advances in EEG source localization methods (Wu et al. 2016), the availability of
high-density EEG allows us to study the brain response to TMS with both high
spatial and temporal resolution. (3) EEG recordings can be collected at the patient’s
bedside or clinics at a relatively low cost. (4) TMS-EEG can be utilized to assess
TMS-induced changes of brain oscillations. For instance, different cortical areas
are characterized by distinct “natural frequencies” (Rosanova et al. 2009), with
alpha oscillations in the occipital cortex, low-beta oscillations in the parietal cortex
and high-beta/gamma oscillations in the frontal cortex. Due to the unique utilities
of TMS-EEG, it has been widely used to study the cortical excitability as well
connectivity in both healthy and diseased brain.

Standard EEG systems are often sufficient in studies where one wants to monitor
EEG prior to the pulse or to measure changes of oscillatory activity several hundred
milliseconds afterwards. However, to ensure the signal quality and safety of TMS-
EEG, there are two technological barriers that need to be overcome (Ilmoniemi
and Kičić 2010): (1) If a standard EEG system is used together with TMS, it
can take hundreds of milliseconds for the amplifiers to recover from the large
induced voltage, which may saturate the amplifiers. (2) The large induced voltage
drives large eddy currents through the electrode-electrolyte interface, which may
increase the risk of skin burns when standard electrodes are used. Moreover, to
prevent overheating, the electrodes should have small diameters. Small sintered
pellet electrodes coated with Ag/AgCl are used in most existing commercial TMS-
EEG systems.

The induced voltage is often termed pulse artifact, which is induced in the loops
formed by the combinations of electrode leads, amplifier circuits, and the head by
electromagnetic induction. There are at least two approaches to prevent the pulse
artifact from saturating the amplifier. The first was first developed by Virtanen et al.
by using gain-control and sample-and-hold circuits that prevent the strong artifact



6 Artifact Rejection for Concurrent TMS-EEG Data 145

8

6

4

2

0

-2

-4
-200 -100 0 100 200

N100
N45

P60P30

P200

300 400 500
Time (ms)

A
m

pl
itu

de
 (

μv
)

Fig. 6.2 TMS-evoked potentials. The individual temporal positive/negative peaks (P30, N45, P60,
N100, P100) are visible in this EEG trace recorded at C1

from being passed along the amplifier circuits (Virtanen et al. 1999). The blocking
is triggered externally so that it begins immediately before the TMS pulse. The
second approach is to design amplifiers with broad dynamic ranges such that the
EEG signals can be recorded in a continuous mode (Bonato et al. 2006). This is the
predominant design adopted by existing TMS-compatible amplifiers.

TMS-evoked potentials (TEPs; see Fig. 6.2) represent the average EEG response
across stimulations, and are characterized by a series of deflections, largely similar
in timing across cortical stimulation sites, and highly test-retest reliable. Each
of these deflections is understood to represent the summation of excitatory and
inhibitory post-synaptic potentials from large populations of pyramidal neurons
(Rogasch and Fitzgerald 2013). Stimulation of M1 yields a series of time-locked
peaks on EEG with varying levels of reliability including the N15, P30, N45,
P60, N100, and P200 (Komssi and Kähkönen 2006). Early peaks, such as the
N15 and P30, likely reflect the excitability of the cortex, as the amplitude of
these peaks varies with other markers of cortical excitability such as MEPs
(Mäki and Ilmoniemi 2010). In contrast, pharmacological studies have linked the
N45 to GABAA-mediated inhibitory processes (Premoli et al. 2014), whereas
pharmacological (Premoli et al. 2014), functional (Nikulin et al. 2003), and
paired-pulse (Rogasch and Fitzgerald 2013) paradigms have linked the N100 to
GABAB-mediated inhibitory processes. The morphology and physiology of TEPs
following stimulation of other cortical regions remains less clear. Stimulation over
the dorsolateral prefrontal cortex (DLPFC) results in a waveform with reliable peaks
at N40, P60, N100 and P185, with paired-pulse evidence supporting the N100 peak
as also likely representing GABAB-mediated cortical inhibition (Rogasch et al.
2015). However, further detailed investigations of TEP physiology are required.
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6.1.3 Signal Processing Challenges

Analyzing TMS-EEG data faces a number of novel signal processing challenges.
First, in addition to the conventional EEG artifacts (Fisch 1999), TMS-EEG suffers
from multiple stimulation-related artifacts including those from the TMS discharge
(Veniero et al. 2009), scalp muscle activation (Mutanen et al. 2013), electrode
movement or polarization, sensory system activation (Massimini et al. 2005), eye
blinks, coil clicks (Braack et al. 2015), and coil recharge (Ilmoniemi and Kičić
2010). These artifacts may directly impact the spatiotemporal morphology of the
TEPs that are of interest in TMS-EEG (Rogasch et al. 2014). Recent advances in the
EEG recording hardware as well as experimental manipulations can help minimize
some of these artifacts. For instance, with direct current (DC)-coupling, broad
measurement ranges and high sampling rates, or with sample-and-hold circuits,
amplitude saturation caused by the TMS pulse can be prevented. In addition, delay
of the coil recharge can shift the recharge artifact beyond the time periods of interest.
However, it is not possible to avoid every stimulation-related artifact before data
analysis. For instance, although the scalp muscle activation can be reduced by
stimulating away from or reorienting or tilting the coils so they are not above regions
with dense scalp muscles such as temporalis and frontalis (Mutanen et al. 2013), it
is unavoidable when the regions of interest are located in the frontal and temporal
cortices. Second, removing artifacts from the TMS-EEG data becomes a laborious
endeavor, which is typically performed through manual identification/rejection of
artifactual channels and epochs as well as removal of artifact-associated independent
components (ICs) extracted by independent component analysis (ICA) (Rogasch
et al. 2017).

6.2 TMS-EEG Artifacts

Each spTMS pulse is followed by a large and transient pulse artifact in the EEG data
(Fig. 6.3). Depending on the intensity of the stimulation, the pulse artifact can be 4–
5 orders of magnitude larger than neural EEG signals. Under optimized recording
conditions the pulse artifact can return to the baseline level in a few milliseconds.

Figure 6.4 provides examples of ICs corresponding to other types of artifacts in
the TMS-EEG data. The decay artifact is a family of artifacts comprised of the TMS-
evoked muscle artifact, electrical artifact, and electrode movement artifact. Despite
being contributed by distinct mechanisms, these artifacts all have an exponentially
decay shape which slowly returns to the baseline within tens or hundreds of
milliseconds after the TMS pulse. The TMS-evoked muscle artifact is due to the
activation of a group of scalp muscles by the TMS pulse that manifests as a bipolar
signal in the EEG with peaks appearing near 10 ms after the TMS pulse. The
electrical artifact is a result of electrode polarization, which leads to the storage
of electrical charges at the electrode-electrolyte interface when the eddy current
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Fig. 6.3 Pulse artifact. With
low electrode impedance
(<5 k˝) and a high sampling
rate (e.g., > 5 kHz), the
duration of the stimulation
artifact is typically less than
10 ms

Fig. 6.4 TMS-EEG artifacts. Each artifact is extracted by ICA. The three panels are the scalp map
(top), time courses of four exemplary epochs (middle), and mean power spectrum across all epochs
(bottom). The signs of the scalp maps and time courses are arbitrary due to the scaling ambiguity
of ICA. The decay artifact includes the TMS-evoked muscle artifact, electrode movement artifact,
and electrode polarization artifact. The TMS-evoked blink artifact is time-locked to the TMS
pulse, whereas the vertical eye movement artifact is non-time-locked to the TMS pulse. The EKG
artifact is highly variable across subjects in its spatial distribution—the activation patterns may be
rotational with respect to one another. Unlike the TMS-evoked muscle artifact, the persistent EMG
artifact is higher in frequencies and may appear in any electrodes

is induced by the magnitude field. It takes up to hundreds of milliseconds for the
electrical charges to return to the normal level. Electrode movement can be caused
by scalp muscle twitches or the pressure of the TMS coil against the electrode.
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TMS can also cause time-locked reflex eye blinks in many individuals, partic-
ularly when frontal sites are stimulated. During eye blinks the eyelid slides down
over the cornea, which is positively charged with respect to the forehead. Thereby
the eyelid acts like a “sliding electrode,” short-circuiting the cornea to the scalp and
producing artifacts in the TMS-EEG. The artifact can be lateralized if the blinks
occur predominantly for one eye. Each eye blink artifact is shown as a peak in
the TMS-EEG. The vertical and horizontal eye movements also lead to artifacts in
the TMS-EEG, with similar mechanisms. The electrical field associated with the
corneo-retinal potential can be approximated by an equivalent dipole located near
the center of the eye. When the eyes move laterally or vertically, the orientations
of the ocular dipoles change in relation to the head. The regions of the scalp or
face toward which the eyes turn become more positive and the regions away from
which the eyes turn become more negative. eye movements result in prominent
voltage offsets in the TMS-EEG. TMS-evoked blink artifact should be differentiated
from the artifact due to vertical eye movement, which has similar scalp distribution
(though vertical eye movement propagates further back on the scalp) as eye blinks
but in general is not time-locked to the TMS pulses.

The EKG artifact is a poorly formed QRS complex time-locked to cardiac
contractions that is most prominent when the subject’s neck is short and wide (Fisch
1999). The scalp map of an EKG IC has a dipolar shape with symmetric positive and
negative poles centered on the lateral regions. However, depending on the direction
of the cardiac vectors, the exact direction of the dipole may vary across subjects,
with their scalp maps rotational relative to each other. It should also be noted that
for a single subject multiple EKG ICs may exist that capture different components
of the QRS complex (e.g., in Fig. 6.3, EKG IC1 and IC3 represent the R-wave while
EKG IC2 is also associated with the Q- and S-waves).

The persistent EMG artifact consists of rapid bursts of muscle action potentials.
The most common sources of this artifact are the frontalis and temporalis muscles.
The persistent EMG artifact has a broad frequency distribution from 0 to >200 Hz
with several more or less distinct spectral components, hence the traditional low-
pass filtering approach is unable to thoroughly remove it.

The above-mentioned types of artifacts are stereotyped artifacts associated with
fixed scalp distributions. These artifacts can be separated efficiently using blind
source separation techniques such as ICA. However, in the TMS-EEG there may
also be non-stereotyped artifacts with changing scalp distributions over time, such as
those arising from subject motion (e.g., head movement, scalp scratch, jaw clench,
talking, swallowing, throat clearing). These artifacts violate the assumptions of the
ICA and thus needs to be removed prior to applying ICA.

Other types of artifacts are the TMS-evoked sensory artifacts, including the
TMS-evoked auditory artifact and TMS-evoked somatosensory artifact. The TMS-
evoked auditory artifact is the auditory evoked potential (AEP) caused by the loud
click from the TMS coil by each TMS discharge. The TMS-evoked somatosensory
artifact is somatosensory evoked potential (SEP) produced by the TMS-elicited
scalp sensations from either muscle movements or direct simulation of the nerve
fibers on the scalp. Both the AEP and SEP typically peak at around 100 and 200 ms
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following the TMS pulses, although the AEP is more centrally located on the scalp
and SEP is contralateral to the stimulation site. Since they can spatio-temporally
overlap with the N100 and P200 TEPs, the AEP and SEP are difficult to deal with
from a signal processing viewpoint. Hence, it is crucial to try to minimize these
artifacts through experimental manipulations or designs. For instance, for the AEP
one can use the noise-cancellation earphones with masking white noise to suppress
the air-conducted auditory artifacts, and a thin layer of foam between the coil and
EEG cap to reduce the bone-conducted auditory artifacts. For the SEP, nice control
conditions where the sensory effect is similar to that of the tested conditions are
essential.

6.3 Existing Methods for TMS-EEG Artifact Rejection

6.3.1 ICA-Based Approaches

Early automated EEG data cleaning methods used statistical thresholding
approaches to detect artifacts in channel space (Junghöfer et al. 2000); however,
researchers quickly shifted to the use of more advanced techniques, including
regression, adaptive filtering, time-frequency decomposition, and blind source
separation (Urigüen and Garcia-Zapirain 2015). Of particular interest is ICA, a blind
source separation technique that effectively decomposes the multichannel EEG data
into multiple ICs belonging to either artifacts or neural sources, building on the
observation that artifact and neural signals possess distinguishable spatiotemporal
patterns (Delorme et al. 2007; Nolan et al. 2010; Mognon et al. 2011; Winkler
et al. 2011; Frølich et al. 2015). Artifact rejection then becomes a binary pattern
classification problem of distinguishing between artifactual and neural ICs.

Both unsupervised and supervised methods have been proposed to solve this
classification problem. For the unsupervised methods, Viola et al. developed a semi-
automatic algorithm based on user-defined templates to correct eye blink, horizontal
eye movement, and electrocardiogram (EKG) artifacts (Viola et al. 2009). Mognon
et al. introduced the ADJUST (Automatic EEG artifact Detection based on the
Joint Use of Spatial and Temporal features) algorithm that uses an expectation-
maximization (EM)-based approach to automatically threshold the spatiotemporal
features for different artifact types (Mognon et al. 2011). Nolan et al. described
the FASTER (Fully Automated Statistical Thresholding for EEG artifact Rejection)
algorithm that rejects bad channels, epochs, and ICs by statistically thresholding a
handful of spatiotemporal features (Nolan et al. 2010). For the supervised methods,
Winkler et al. developed the MARA (Multiple Artifact Rejection Algorithm)
algorithm in which a sparse linear classifier was trained to automatically classify
the ICs (Winkler et al. 2011). It was found that the use of two spatial, one temporal,
and three spectral features could achieve the best classification results. Furthermore,
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MARA could generalize to a variety of EEG paradigms and might improve the
performance of brain-computer interfaces (BCIs) (Winkler et al. 2014).

6.3.2 Signal Space Projection Approaches

Despite the efficacy of ICA-based artifact rejection approaches, they are most suited
for removing artifacts of moderate size. Artifacts that are 2–3 orders of magnitude
larger than neural signals of interest, which arise frequently from stimulating sites
directly above scalp muscles or nerves (e.g., ventral lateral prefrontal cortex), are
difficult to be removed by these approaches. In particular, Hernandez-Pavon et al.
showed that large artifacts can distort the spatial maps of the neural signals obtained
by ICA.

To address this issue, a subspace approach was proposed to suppress the artifacts
in the noise subspace while the neural signals in the signal subspace remain largely
intact (Mäki and Ilmoniemi 2011). To determine the noise subspace, three methods
were suggested: principal component analysis, wavelet analysis, and whitening. In
Casula et al. (2017), an adaptive detrend algorithm (ADA) was developed to fit the
decay artifact by choosing between a linear model and a bi-exponential model based
on the Akaike information criterion. These approaches can be used in conjunction
with ICA to achieve more complete artifact rejection.

6.4 ARTIST: A Fully Automated Artifact Rejection
Algorithm for TMS-EEG

Developing an automated algorithm to remove artifacts would reduce bias from
human influence (e.g., due to fluctuating changes in judgment or varying levels
of artifact rejection skills), decrease processing time, and allow for near real-time
processing for closed-loop applications. While there has been a recent push to
develop automated artifact rejection methods for standard EEG data (Junghöfer et al.
2000; Nolan et al. 2010; Mognon et al. 2011; Winkler et al. 2014; Bigdely-Shamlo
et al. 2015), to our knowledge only semi-automated methods for concurrent TMS-
EEG data have been reported (Rogasch et al. 2017). The predominant ones were
based on blind source separation that identified artifactual components via time-
consuming and potentially error-prone visual inspection. In particular, TMSEEG
and TESA are two MATLAB toolboxes designed for the ICA-based artifact
rejection and analysis of TMS-EEG data (Atluri et al. 2016; Rogasch et al. 2017).
While these previous efforts have improved data quality, we still currently lack a
fully automated and accurate TMS-EEG artifact rejection algorithm. Development
of such an algorithm would allow a broader application of TMS-EEG to both the
lab and clinical settings.
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Automatic artifact rejection for TMS-EEG data is challenging for the following
reasons. First, the morphology of the same artifact type may vary across subjects
and stimulation sites, requiring that robust and invariant features be identified.
Second, there are artifact types unique to TMS-EEG data, including TMS-evoked
scalp muscle artifacts and electrode movement/polarization artifacts. These artifacts
are time-locked to the TMS pulse and can overlap with the potentials of interest.
Moreover, due to their large amplitude and rapid changes, these artifacts, henceforth
referred to collectively as the decay artifacts, can have considerable impact on the
signals in the nearby time periods by interacting with the frequency filtering. In
addition, the typical TMS-EEG time course may contain a series of temporally
segregated TEPs (Ilmoniemi and Kičić 2010). For automated artifact rejection,
new features are required to capture the spatiotemporal characteristics of these
components. Third, TMS-EEG has been used to probe the causal brain dynamics
by stimulating varying brain regions, subjects, or populations in different studies
(Massimini et al. 2005; Ferrarelli et al. 2008; Harquel et al. 2016). It remains
unknown whether an automated artifact rejection method can be trained once and
successfully applied to new data. In order to address these challenges, in this section
we describe a fully automated ICA-based artifact rejection algorithm that combines
temporal and spectral features to separate artifacts from neural sources. We first
describe the basis of the artifact rejection pipeline and subsequently quantify the
accuracy of our algorithm benchmarked against manual rejection. Overall, we
provide the first evidence of a fully automated artifact rejection algorithm for
TMS-EEG that is comparable to manual artifact rejection and generalizes across
stimulation sites, subjects, and populations.

6.4.1 Overview of the Method

The workflow of ARTIST can be found in Fig. 6.5. The algorithm consists of three
stages, each aimed at removing specific types of artifacts. The first stage removes
large-amplitude TMS-related artifacts, including the TMS pulse artifact and decay
artifacts. The second stage rejects bad epochs and channels. The third stage removes
the remaining artifacts, including the residual decay artifacts, ocular artifacts, EKG
artifacts, and persistent EMG artifact. The details and rationale of each step of
ARTIST are described below.

6.4.2 Removing Large-Amplitude Artifacts

With low electrode impedance (<5 k�) and a high sampling rate (e.g., >5 kHz),
the duration of the stimulation artifact is typically less than 10 ms. The enormous
strength of the stimulation artifact precludes the use of signal processing approaches
from removing the artifact while keeping the neural information intact (Ilmoniemi
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Fig. 6.5 Workflow of the ARTIST algorithm. ARTIST consists of three stages, each aimed at
removing certain types of artifacts. Stage 1 removes large-amplitude TMS-related artifacts (TMS
pulse artifact and decay artifacts) from the continuous data. Stage 2 filters the continuous data
to remove the AC line noise and high-frequency noise, and then rejects bad epochs and channels
from the epoched data. Stage 3 removes the remaining artifacts (residual decay artifacts, ocular
artifacts, EKG artifact, and persistent EMG artifact) from the epoched data, after which the data
are re-referenced to the common average and baseline corrected

and Kičić 2010). We thus discard the initial 10 ms post-TMS data segment and
then use the cubic interpolation to replace the discarded segment. To reduce the file
size, the EEG data are down-sampled to 1 kHz afterwards. The cubic interpolation
ensures smooth transition edges and therefore avoids the ringing artifact introduced
by the anti-aliasing filter during the downsampling step (Rogasch et al. 2017).

Frequency filters are effective tools to remove unwanted components (e.g., DC
drift, AC line noise, high-frequency noise, et al.) that do not spectrally overlap
with neural information within the data. Nonetheless, frequency filtering of EEG
data containing strong decay artifacts can lead to substantial ringing artifacts in
the nearby time period (Schröger 2012), also known as the Gibbs phenomenon in
signal processing. More specifically, low-pass and notch filtering often lead to fast
changing ringing artifacts, while high-pass filtering causes slow drift of the EEG.
These artifacts can even appear in the baseline EEG prior to the TMS pulse if zero-
phase filtering in both forward and backward directions is applied (Rogasch et al.
2017). Hence, it is crucial to remove the strong decay artifacts from the EEG before
any frequency filtering is performed.

In ARTIST, strong decay artifacts are removed in a first ICA run. The following
equation gives the generative model of the ICA:

X D BZ (6.1)

where X is the EEG data matrix of C channels (rows) by T time points (columns).
B D Œb1;b2; � � � ;bK � is the mixing matrix of C channels (rows) by K numbers of
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ICs (columns), with each column being the spatial map of an IC. Z is the component
signal of K ICs (rows) by T time points (columns), with each row being the time
course of an IC (concatenated across epochs for epoched data). In this model, only X
is known; both B and Z are unknown. ICA aims to estimate Z from X, based on the
assumption that the time courses of the ICs are statistically independent from each
other. In ARTIST, ICA is operated by the Infomax algorithm (Bell and Sejnowski
1995). To address the scaling ambiguity of the ICA (i.e., a scaling of the columns
of B can be offset by applying an inverse scaling of the corresponding rows of Z),
each column of the estimated B is normalized to have unit variance.

To remove strong decay artifacts, slow DC drift is first removed from the
continuous EEG data by subtracting the mean of each epoch from each time point
in the epoch. Next, EEG data are fed into ICA, and ICs with mean magnitude above
a certain threshold (30�v by default) within the first 50 ms after the TMS pulse are
rejected. Note that baseline correction is not used for removing the DC drift since it
may reduce the reliability of ICA (Groppe et al. 2009).

6.4.3 Temporal Filtering

Following decay artifact removal, continuous EEG recordings are high-pass filtered
(1 Hz cutoff, zero-phase FIR filter), which facilitates ICA estimation by first
increasing the mutual independence between sources, since low frequency trends
are likely dependent, and then by enhancing the dipolarity of the ICs (Winkler et al.
2015). In addition, a 100 Hz zero-phase FIR low-pass filter is employed to attenuate
high-frequency noise, and a 60 Hz zero-phase FIR notch filter removes 60 Hz AC
line noise. The filtered data are then epoched with respect to the TMS pulse (e.g.,
�500 to C1500ms).

6.4.4 Automated Rejection of Bad Epochs

Bad epochs are those contaminated with non-stereotyped artifacts such as those
arising from subject motion (e.g., head movement, scalp scratch, jaw clench, talking,
swallowing, throat clearing). In general, motion artifact is spatially widespread and
may contaminate all channels in an epoch. These artifacts must be pruned prior to IC
rejection as they may introduce nonlinearities into the EEG data, requiring a large
number of ICs to capture the variability of all the artifactual contributions and thus
reducing the number of ICs available for separating other neural and artifact sources
(Delorme et al. 2007).

For bad epoch rejection, we define the z-score of the magnitude of each epoch
(0–50 ms post-TMS EEG is excluded from the analysis time window to decrease
interference from the residual decay artifact) and channel as follows:
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zn;c D an;c � mc

sc
(6.2)

where an;c is the average magnitude of the n-th epoch and c-th channel, mc is the
mean of the average magnitude across epochs for the c-th channel, and sc is the
standard deviation of the average magnitude across epochs for the c-th channel. The
epoch-channel combinations where zn;c is greater than a predefined threshold (3 by
default) are then determined. Among them, epochs that appear in more than 20% of
all channels are rejected in all channels. For epochs appearing in no more than 20%
of all channels, the EEG values in these channels are replaced from the adjacent
channels by the spherical interpolation approach (Perrin et al. 1989). Note that it is
assumed here that the proportion of bad epochs is low. For data sets with artifacts
on a large number of epochs, the average magnitude and standard deviation may be
quite high, and an undesirably low number of epochs will be rejected.

6.4.5 Automated Rejection of Bad Electrodes

Bad electrodes, including faulty, disconnected, and flat electrodes, produce abnor-
mal activity distinct from neighboring electrodes. Therefore, to remove bad elec-
trodes, the maximum correlation coefficient of the EEG at each electrode with
the rest of the electrodes is calculated for each epoch (0–50 ms post-TMS EEG is
excluded from the analysis time window to decrease interference from the residual
decay artifact).

The EEG values in the rejected channels are then replaced from the adjacent
channels by the spherical interpolation approach. Note that we interpolate the
rejected channels to make the montage consistent across the stimulation sites,
subjects, and populations, so that the ICs can be analyzed in a standardized manner.
Although the electrode interpolation may alter the performance of the subsequent
ICA run, we anticipate that the influence is small when the number of the rejected
channels is low. Assessing the impact of the electrode interpolation on ICA is
beyond the scope of this chapter.

The performance of bad electrode rejection can be affected by the choice of the
reference that may alter the EEG spatial correlation structure. Hence, it is crucial
to choose a reference that is clean and as inactive as possible. Referencing to a
particular electrode runs the risk of contaminating the EEG at all the electrodes if
the EEG at the reference electrode is highly noisy, thereby potentially inflating the
correlation coefficients between the EEG at different electrodes. To avoid this, the
common average reference is a typically used “inactive” reference but it may be
highly skewed by an extreme outlier electrode. To address the interaction between
referencing and bad electrode rejection, we use a robust referencing algorithm
(Bigdely-Shamlo et al. 2015) that finds the “true” common average reference and
detects bad electrodes in an iterative manner. More specifically, the algorithm
proceeds as follows:
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Initialization: EEG = EEG data, Bad electrode list = [].
1. EEGtemp = EEG�median(EEG), where median(EEG) is the median of the EEG

at all the electrodes;
2. Detect bad electrodes from EEGtemp based on the maximum correlation coeffi-

cient and add them to the bad electrode list;
3. EEGtemp = EEG�mean(EEG), where mean(EEG) is the mean of the EEG with

all the bad electrodes interpolated;
4. Repeat steps 2–3 until the bad electrode list does not change.
5. Reject and interpolate the bad electrodes in EEG;
6. EEG = EEG�mean(EEG).

The maximum correlation criterion can only identify single noisy electrodes not
resembling any other electrodes. However, in some situations a local cluster of
electrodes may become artifactual together in which case electrode correlations will
be high within each cluster. To address this issue, the random consensus (RANSAC)
method is employed to detect noisy clusters of electrodes following the maximum
correlation criterion (Bigdely-Shamlo et al. 2015). More specifically, RANSAC
uses a random subset (25% by default) of electrodes to predict the EEG of each
electrode (excluded from the subset) in each epoch. The prediction is repeated 50
times. The correlation coefficients of the predicted EEGs and the actual EEG of
each electrode are then calculated. An electrode is bad if the 50 percentile of the
correlation coefficients is less than a threshold (0.75 by default) on more than a
certain fraction of epochs (0.4 by default).

6.4.6 Automated Rejection of Bad Components

Following bad electrode and epoch rejection, the remainder of EEG artifacts,
including the residual decay artifact, ocular artifact, EKG artifact, and persistent
EMG artifact, are removed via automated IC rejection in a second ICA run. A
summary of automated IC rejection is shown in Fig. 6.6. In particular, based upon
the features defined in Winkler et al. (2011) for standard EEG, we proposed a
set of features that capture the spatio-temporal-spectral patterns of the neural and
artifactual sources for TMS-EEG. Note that these features are used in conjunction
rather than in isolation to determine the label of each IC.

(1) Dynamical Range f1
The dynamical range feature is defined as the log absolute difference of the
maximum and minimum activation in the scalp map b (where b denotes a
specific column of matrix B in Eq. (6.1))

f1 D log j max
i
.bi/� min

i
.bi/j
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1• Spatial range f

Spatial features
11• EKG temporal feature f

Spectral-temporal features

Labels provided 
by EEG experts

Classifier weights
Fig. 6.6 Pattern classification to remove bad components. (a) Spatial and (b) spectral-temporal
features of the training ICs are used to train a Fisher linear discriminant classifier. The IC labels
are provided by EEG experts. The outputs of the pattern classifier are a set of weights that are then
applied to the ICs of each new data set to reject artifactual components

where bi denotes the scalp map of the i-th IC. An artifactual IC oftentimes has
a large dynamical range. Note that the logarithmic transform is employed to
improve the normality of the feature.

(2) Regional Activation f2�6
We consider the regional activation to be the absolute value of the average over
the activations in the electrodes located within the central, frontal, occipital,
and temporal regions of the scalp (Fig. 6.7a),

f2 D log jmean.bi/j; i 2 central region

f3 D log jmean.bi/j; i 2 frontal region

f4 D log jmean.bi/j; i 2 occipital region

f5 D log jmean.bi/j; i 2 left temporal region

f6 D log jmean.bi/j; i 2 right temporal region

For any electrode montage, these regions can be automatically defined based
on the spherical coordinates .r; �; �/ of the electrodes, where r is the radial
distance from the center of the head, � is the polar angle from the z-axis
(toward vertex), and � is the azimuthal angle in the .x; y/ (toward nose, toward



6 Artifact Rejection for Concurrent TMS-EEG Data 157

Fig. 6.7 Electrodes used for constructing different spatial features. (a) Electrodes for the regional
activation features. The electrode montage follows an equidistant arrangement extending down
from the cheekbone back to the inion. (b) A subset of 34 electrode for assessing the inter-
montage generalization performance of ARTIST. (c) Electrodes for the horizontal eye movement
and blink/vertical eye movement features. (d) Outermost electrodes used to compute the EKG
spatial feature

left ear) plane. Specifically, the electrodes contained in each region are defined
as follows: central .� < 70ı/; frontal .j� j � 60ı; j�j � 60ı/; occipital
.j� j � 70ı; 155ı � j�j � 180ı/; left temporal .j� j � 70ı; 30ı � � � 150ı/;
left temporal .j� j � 70ı;�150ı � � � �30ı/.

(3) Border Activation f7
The maximum activation of a neural IC’s scalp map is unlikely at a border
electrode. Therefore, if the maximum activation in the scalp map occurs
at a border electrode (Fig. 6.7a), the border activation feature is set to 1,
otherwise 0:

f7 D 1; if arg max
i
.jbij/ 2 border region

The horizontal eye movement artifact has a distinctive scalp map with
activations of opposing polarities in the left and right anterior electrodes above
the eyes (Fisch 1999) (Fig. 6.7c). This allows us to define the corresponding
feature as the absolute difference between the mean weight of the electrodes
above the left eyes and that of the electrodes above the right eyes:
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f8 D log jmean.b.i/LE/� mean.b.i/RE/j

where b.i/LE and b.i/RE denote the weights of the electrodes above the left and right
eyes in the scalp map of the i-th IC, respectively. The electrodes contained
in LE and RE are defined as follows: LE.100ı � � � 130ı; 40ı � � �
60ı/I RE.100ı � � � 130ı;�60ı � � � �40ı/.

(4) Blink/Vertical Eye Movement f9
Similarly, the blink/vertical artifact IC has a scalp map with predominantly
middle anterior activations (Fisch 1999) (Fig. 6.7c). The absolute mean weight
of the anterior electrodes in the middle of both eyes:

f9 D log jmean.b.i/B /j

where b.i/B denote the weights of the anterior electrodes in the middle of both
eyes in the scalp map of the i-th IC. The electrodes contained in B are defined
as follows: B.90ı � � � 100ı and j�j � 40ı/.

(5) EKG Spatial Feature f10
Typically, the scalp map of an EKG IC has a dipolar shape with symmetric pos-
itive and negative poles centered on the lateral regions. However, depending on
the direction of the cardiac vectors, the exact direction of the dipole may vary
across subjects, with their scalp maps rotational relative to each other (see the
EKG ICs in Fig. 6.3). In order to achieve rotational invariance, the following
detection algorithm is proposed to detect the EKG spatial map:

(i) The two lateral regions of opposing polarities are first identified for
each IC. Specifically, each set of outermost electrodes (Fig. 6.7d) that
span an azimuthal angle of 60ı are determined. The positive lateral
region is identified as the set of outermost electrodes with the maximum
weight sum, and the negative lateral region is identified as the outermost
electrodes with the minimum weight sum.

(ii) A template bK is made by setting the weights of the outermost electrodes
in the positive lateral region to 1’s, the weights of the outermost
electrodes in the negative lateral region to �1’s, and the weights of the
remaining electrodes to 0’s.

(iii) For each IC, if the absolute correlation coefficient between the scalp map
b and the template bK exceeds a preset threshold  (0.6 by default), the
binary EKG spatial feature f10 is set to 1, otherwise 0:

f10 D 1; if jcorr.b;bK/j > 

(6) EKG Temporal Feature f11
The EKG artifact has a length of approximately 50 ms in each QRS complex
and a frequency between 1 and 1.67 Hz. Inspired by prior EKG literature
(Kadambe et al. 1999), here we use a robust algorithm based on the maximal
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Fig. 6.8 EKG temporal features and power spectrum features. (a) EKG temporal feature. Left
panel: a persistent EMG IC. Right panel: an EKG IC. For each IC, the third panel shows the
magnitude (jzij) of the time course concatenated across epochs. Peak detection on jzij suffers from
a high number of false positives. The bottom panel shows the results of peak detection on the
wavelet reconstructed signal (juij). The red circles represent the detected peaks. For the EKG IC,
the QRS complexes are accurately detected in the wavelet reconstruction, whereas for the persistent
EMG IC, no supra-threshold peaks are detected in the wavelet reconstruction. (b) Spectral features
by fitting using 1=f function (Eq. 6.3). Left panel: a neural IC, with the alpha-band fit error of 1.66
and log.b/ D �5:30. Right panel: a persistent EMG IC, with the alpha-band fit error of �0:36 and
log.b/ D 8:53

overlap discrete wavelet transform (MODWT) (Percival and Walden 2006)
to detect the QRS complexes in the time course of each IC (Fig. 6.8a). By
using a wavelet that resembles the QRS complex in shape, higher specificity
of the EKG IC can be achieved by detecting peaks at an appropriate scale in
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the wavelet subspace than in the original signal space. More specifically, our
detection algorithm proceeds as follows:

(i) For the i-th IC, let zi denote the i-th row of Z in Eq. (6.1), normalized to
have unit variance. Decompose zi using the Daubechies least-asymmetric
wavelet with four vanishing moments (“sym4”). The depth of the
decomposition, M, is determined by Fs

2MC1 <
1000
50

< Fs
2M , where Fs is

the sampling rate of the EEG data. For instance, when Fs = 1000 Hz,
M D 5.

(ii) Reconstruct a signal ui using only the scaling coefficients at scale M,
which corresponds to Fs

2MC1 � Fs
2M Hz.

(iii) Identify the number of peaks in juij. The minimum inter peak distance is
set to 600 ms to match the frequency of the EKG artifact.

(iv) If the number of peaks is greater than a preset threshold J (empirically
determined to be 0:8 � NT in ARTIST, where N is the total number of
epochs and T is the length of each epoch in second), then set the binary
EKG temporal feature f11 to 1, otherwise to 0:

f11 D 1; if #peaks > J

(7) Current Source Density Norm f12
Artifactual ICs are often described by sources with complicated patterns and
large overall power. The source activity s can be estimated using the weighted
minimum norm estimation approach (Hämäläinen and Ilmoniemi 1994) on
a boundary element head model built from the average structural MRI of
40 subjects (Fischl et al. 1999). To compensate the bias towards superficial
sources, depth weighting that scales the source activity by the L2 norm of the
columns of the lead field matrix is performed. The current source density norm
feature f12 is then defined as the L2 norm of s estimated from b:

f12 D log k s k2D log

sX

i

s2i

(8) Maximum Magnitude f13
The maximum magnitude feature f13 is defined as the maximum magnitude:

f13 D log max
t

jZi;tj

(9) Short-Time Magnitude f14�16
The log mean magnitudes of different time windows are computed to capture
the decay artifact and various TEP peaks. The time windows considered in
ARTIST are 0–60, 60–140, and 140–220 ms:

f14 D log jmean.jZi;tj/j; t 2 Œ0; 60�ms
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f15 D log jmean.jZi;tj/j; t 2 Œ60; 140�ms

f16 D log jmean.jZi;tj/j; t 2 Œ140; 220�ms

These are designed to capture TEP peaks that are typically present when
different brain areas are stimulated (Rosanova et al. 2009; Harquel et al. 2016),
such as N45, P60, N100, and P200 (see neural IC4 and IC5 in Fig. 6.3 for
examples). They can also be used to capture the artifacts that are time-locked
to the TMS (e.g., the decay artifact). Computing the mean magnitudes for
relatively broad timeframes allows one to quantify the TEP peaks without
allowing for spurious fluctuations (which would occur if they have a narrow
temporal width) and capture peaks that are significantly earlier or later than
typical TMS peaks owing to inter-subject or inter-site variability.

(10) Skewness f17
Asymmetric probability distributions are more common in artifacts. The skew-
ness is a high-order statistics that measures the asymmetry of the probability
distribution of the TMS-EEG data (Hair et al. 2007):

� D E

h�Z � �
ı

�3i

where � is the mean, ı is the standard deviation, and EŒ�� is the expectation
operator. We compute f17 as the log value of the mean absolute skewness across
epochs.

(11) Band-Power for EEG Rhythms f18�21
To capture the various EEG rhythms, the log band-power is computed for the
� (4–7 Hz), ˛ (8–12 Hz), ˇ (13–30 Hz), and � (31–50 Hz) bands. The gamma
band-power is also useful for detecting persistent EMG artifacts.

(12) Spectral Features f22�23
Typical EEG power spectra follow the 1=f shape, with the exception of the
alpha band, where the alpha rhythm in the EEG data is typically stronger
than expected in a 1=f spectrum (Luck 2014) (Fig. 6.8b). We thus extract two
spectral features after fitting the following 1=f curve to the power spectrum of
each IC, P(between 1 and 35 Hz but excluding the alpha band), by using the
nonlinear least squares:

OP D a

f b
C c .b > 0/

where OP denotes the fitted power spectrum. The first spectral feature f22 is
the log mean squared fit error between the actual power spectrum of the IC
and fitted 1=f spectrum within the alpha band, which is useful for identifying
neural signals:

f22 D log.k P˛ � OP˛ k2/
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where P˛ is the power spectrum within the alpha band, and OP˛ is the fitted
1=f spectrum within the alpha band. The second spectral feature f23 is log.b/,
which is useful for rejecting persistent EMG artifacts, as they tend to have
higher b than neural ICs (Fig. 6.10).

The resulting 23 features are aggregated to form a feature vector that classifies
each IC as neural or artifactual. The Fisher linear discriminant analysis (FLDA)
classifier (Bishop 2006) was utilized due to its fast speed, interpretability, and as it
is not prone to overfitting (provided the number of the features is comparable with
the size of the training set). The ICs labeled as artifactual are rejected by subtracting
their summed back-projections from the TMS-EEG data. The artifact-corrected data
are then re-referenced to the common average and baseline corrected (relative to the
�400 to �100ms baseline by default) prior to the subsequent quantitative analyses.

6.5 Results

In this section, we provide results on experimental TMS-EEG data to validate the
ARTIST algorithm.

6.5.1 TMS-EEG Data Collection

In order to determine the robustness of ARTIST, we used TMS-EEG data of 12
healthy control (HC) subjects collected from two separated studies (6 HCs in study
1 and 6 HCs in study 2; 7 females, aged 30:11 ˙ 8:68 year-old) who gave their
informed consent to participating in the studies. The studies were approved by the
Institutional Review Board of Stanford University and the Palo Alto VA.

Following an anatomical MRI (T1-weighted, 3T) to determine MRI-guided
spTMS targets, subjects received spTMS using a Cool-B B65 butterfly coil and
a MagPro X100 TMS stimulator (MagVenture, Denmark). Stimulations were
delivered to 15 cortical targets, including the V1, bilateral primary motor cortices
(M1), bilateral posterior dorsal lateral prefrontal cortices (pDLPFC), bilateral
anterior dorsal lateral prefrontal cortices (aDLPFC), bilateral frontal eye fields
(FEF), bilateral inferior parietal lobules (IPL), bilateral intraparietal sulci (IPS), and
bilateral angular gyri (ANG). For V1 and M1, the target sites were defined in the
standard Montreal Neurological Institute reference. For pDLPFC, aDLPFC, FEF,
IPL, IPS, and ANG, the stimulation sites were identified as the peak coordinates in
clusters derived from brain networks parcellated from a separate group of subjects’
resting-state fMRI data (Chen et al. 2013) using ICA. These targets were then
transformed to individual subject native space using nonlinear spatial normalization
with FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and used for TMS targeting. The
resting motor threshold (rMT) was determined as the minimum stimulation intensity

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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that produced visible finger movement of the right hand at least 50% of the times
when the subject’s left M1 is stimulated. TMS coil placement was guided by Visor2
LT 3D neuro-navigation system (ANT Neuro, Netherlands) based on co-registration
of the functionally defined target to each participant’s structural MRI (T1 weighted,
slice distance 1 mm, slice thickness 1 mm, sagittal orientation, acquisition matrix
256�256) acquired with a 3T GE DISCOVERY MR750 scanner. The TMS coil was
placed in a posterior to anterior direction, with an angle of 45 degrees to the nasion-
inion axis (studying the optimal coil angles is beyond the scope of this paper). Each
target site was stimulated with 60 pulses (biphasic TMS pulses, 280�s pulse width,
120% rMT, 1500 ms recharge delay), interleaved at a random interval of 3 ˙ 0:3 s.
A thin foam pad was attached to the surface of the TMS coil to decrease electrode
movement. The subjects were instructed to relax and to fixate at a cross located on
the opposing wall while stimulations were administered by a research assistant.

We recorded 64-channel EEG data using two 32-channel TMS-compatible
BrainAmp DC amplifiers (sampling rate: 5 kHz; measurement range: ˙16.384 mV;
cut-off frequency range of the analog filter: 0–1 kHz) and the Easy EEG cap
with extra flat, freely rotatable, sintered Ag-AgCl electrodes designed specifically
for TMS applications (BrainProducts GmbH, Germany). The electrode montage
followed an equidistant arrangement extending from below the cheekbone back
to below the inion (Fig. 6.6a). Electrode impedances were kept below 5 k˝ . An
electrode attached to the tip of the nose was used as the reference. DC correction
was manually triggered at the end of the stimulations at each site to prevent the
saturation of the amplifier due to the DC drift.

All EEG data analyses were performed in MATLAB (R2014b, MathWorks)
using custom scripts built upon the EEGLAB (Delorme and Makeig 2004) tool-
boxes. In ARTIST, following frequency filtering, the EEG data were epoched �500
to C1000ms relative to the TMS pulse. For both ICA runs, dimensionality reduction
was performed beforehand via PCA. The retained principal components account for
99:5% of the total variance. The decay artifact ICs of the first ICA run and all the ICs
of the second ICA run were considered in the following classification assessment.
Note that ICs of the second ICA run with negligible variance (<0.2% of the total
variance) would not affect reconstruction and were therefore always discarded. After
artifact rejection, baseline correction was performed �400 to �100ms relative to the
TMS pulse.

Manual IC classification was developed from both the population #1 HC data
(N D 6 subjects, n D 2198 ICs) and the population #2 HC data (N D 6 subjects,
n D 2212 ICs). Three EEG experts with extensive experience in TMS-EEG manual
artifact rejection manually classified each IC to either “non-artifact” or “artifact.”
The final label of each IC was determined by consensus, i.e., the category that
received the most number of the EEG experts’ votes. In order to avoid losing
significant neural information, the experts were instructed to keep ICs that appear
partly artifactual and partly neural. To determine if ARTIST helps reduce bias from
human influence, manual ratings were also performed by two novice EEG users
who had received one training session of 2 h on TMS-EEG artifact rejection and
practiced on TMS-EEG data sets of only two stimulation sites from a single subject.
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6.5.2 Quantification of IC Classification Accuracy and
Post-Processing Performance

Using the TMS-EEG data described above, we benchmarked ARTIST against
MARA (Winkler et al. 2011), which is a state-of-the-art supervised IC rejection
algorithm developed for cleaning standard EEG data, to determine IC classification
accuracy, with manual artifact rejection results by the EEG experts as the gold-
standard. In accordance with Winkler et al. (2011), the following six features are
used in MARA: skewness, log(b), alpha band power, fit error, dynamical range,
and current source density. In order to assess their generalization capability across
stimulation sites, subjects, and populations, ARTIST and MARA’s artifact rejection
performance was evaluated using two metrics: (1) IC classification accuracy and (2)
correlation coefficient between the group TEPs of auto- and hand-cleaned data.

More specifically, IC classification accuracies were first computed on the
population #1 data using split-half accuracy, inter-subject accuracy, and inter-site
accuracy. To compute split-half accuracy, ICs were randomized and the FLDA
classifier was subsequently trained on half of the randomized ICs and tested on
the remaining half. This process was repeated for 20 iterations and averaged to
obtain the split-half accuracy. The leave-one-out strategy was employed to calculate
the inter-subject/site accuracy. More specifically, in each iteration the FLDA was
trained on the ICs of a different set of N � 1 subjects/sites and tested on the ICs
of the remaining subject/site. The inter-subject/site accuracy is the average of the
classification accuracy across N iterations (N D 6 for inter-subject accuracy and
N D 15 for inter-site accuracy).

Furthermore, to show that ARTIST generalizes across populations, we demon-
strated the quality of the automated artifact rejection by testing the classifier trained
from the population #1 HC TMS-EEG data (N D 6) on the population #2 HCs
(N D 6). To show that ARTIST generalizes across electrode montages, we tested the
classifier trained from the population #1 HC TMS-EEG data using the full set of 64
electrodes on the population #2 HC data with a subset of 34 electrodes (Fig. 6.4b).
To compare the TEPs from the auto-cleaned data with the TEPs of the hand-cleaned
data, in addition to calculating the IC classification accuracy, we calculated the
within-subject correlation coefficient between the TEPs of the hand-cleaned and
auto-cleaned data.

6.5.3 Manual Classification Results

Among all the population #1 HCs’ ICs, manual processing by the three EEG experts
concluded that 1257 ICs (57.19%) were artifactual and 941 (42.81%) were neural
in origin. For population #2, 1285 ICs (58.09%) were artifactual and 927 (41.91%)
were neural. The percentage of inter-rater agreement (i.e., the three experts rated
identically) is 93.92%, indicating consistency among experts.
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Compared to the gold-standard IC classification by the EEG experts, clas-
sification accuracies by the two EEG novice users were 89.68% and 83.38%,
respectively. The sensitivity and specificity were 87.89% and 91.88% for novice
user 1, and 98.69% and 64.63% for novice user 2, respectively. The low sensitivity
and specificity between the novice users highlights the potential for considerable
between-rater variability in IC classification.

6.5.4 Intra-Population IC Classification Results

Compared to IC classification by the EEG experts, inter-subject accuracies across
the 6 population #1 HCs were 95:93˙1:74% (mean ˙ SD) for ARTIST, and 92:57˙
4:31% for MARA, significantly higher for ARTIST (p < 0:05; Wilcoxon signed
rank test). The classification accuracies for each subject are listed in Table 6.1. Inter-
site accuracy across the 15 sites was calculated to be 96:23˙2:09% for ARTIST and
93:14˙2:33% for MARA, significantly higher for ARTIST (Fig. 6.9b; n D 15 sites;

Fig. 6.9 Classification accuracies of ARTIST compared with MARA. (a) Split-half classification
accuracy. (b) Inter-site classification accuracy. (c) Split-half classification accuracy for various
types of EEG artifacts for ARTIST and MARA

Table 6.1 Classification accuracies (%) for six subjects in leave-one-subject-out classification

Method Subject A Subject B Subject C Subject D Subject E Subject F mean ˙ SD

ARTIST 94.89 94.80 94.48 95.12 98.38 97.93 95:93˙ 1:74

MARA 90.42 93.32 94.00 85.12 95.14 97.42 92:57˙ 4:31
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p < 10�4; Wilcoxon signed rank test). The split-half accuracy over 20 iterations was
96:20˙0:33% for ARTIST, and 92:03˙0:58% for MARA, significantly higher for
ARTIST (Fig. 6.9a; p < 10�4; Wilcoxon signed rank test). Moreover, for ARTIST,
the sensitivity and specificity of the artifact IC detection were 96:83 ˙ 0:97% and
95:70˙ 0:99%, respectively.

Further breakdown of the split-half classification accuracy by artifact/neural
types demonstrated that ARTIST outperformed MARA for each type by 5.77%
on average (Fig. 6.9c). The improvement was particularly noteworthy for the EKG
and TEP ICs, for which the accuracies were increased by 19.51% and 7.08%,
respectively (all p < 10�4; Wilcoxon signed rank test).

6.5.5 Inter-Population IC Classification and Post-Processing
Results

Next, following both manual and automated ICA rejection methods, and using the
classifiers trained from the population #1 HCs (N D 6), we classified the ICs of the
population #2 HCs (N D 6) not used in building the classifier. We also compared
the butterfly TEP plots and global mean field power (GMFP) between IC rejection
methods.

The inter-population classification accuracies across the 6 population #2 HCs
were 95:10˙2:15% for ARTIST and 91:37˙2:04% for MARA, significantly higher
for ARTIST (p < 0:05; Wilcoxon signed rank test). ARTIST also outperformed
both novice users, whose classification accuracies were 88:30˙2:70% and 81:96˙
2:77% (p < 0:05 for both novice user 1 and 2; Wilcoxon signed rank test).

6.5.6 Intra-Population IC Classification Results

For the post-processing results, qualitatively, manual rejection and ARTIST pro-
duced similar butterfly TEP plots (Fig. 6.10a) and GMFP (Fig. 6.10b), whereas
MARA differed considerably from the manual rejection in the N100 peak for
both groups. For ARTIST, the within-subject correlation coefficient with the TEP
time series from the manual rejection was significantly higher than for MARA
(p < 0:005; paired Wilcoxon signed rank test). The within-subject correlation
coefficient (averaged over channels and subjects) between the log of the GMFP
time series from the manual rejection and ARTIST was greater than 0.95 for
each site tested (Fig. 6.11a), significantly higher than that between the manual
rejection and MARA (p < 0:005; paired Wilcoxon signed rank test). Finally,
for each subject, based on the GMFP time series, the peak magnitude of each
TEP component (P45, N100, and P200) was extracted. Each TEP component
demonstrated strong GMFP correlation between manual rejection and ARTIST



6 Artifact Rejection for Concurrent TMS-EEG Data 167

Fig. 6.10 TMS evoked potentials (TEPs) and global mean field power (GMFP) from manual and
automated ICA rejection algorithms in population #2 subjects (N D 6). (a) TEPs. Time (in ms)
of each scalp map is displayed above. The stimulation site is the right angular gyrus. (b) GMFP.
Dotted red vertical line represents time of TMS pulse application. A substantial proportion of the
N100 TEP was incorrectly rejected by MARA

(Fig. 6.11b; RP200 = 0.989, RN100 = 0.980, RP45 = 0.964), and weaker correlation
between manual rejection and MARA (Fig. 6.10b; RP200 = 0.960, RN100 = 0.944,
RP45 = 0.879). The significant performance enhancement in ARTIST compared to
MARA for the P45 component may be explained by the fact that the early potentials
are more susceptible to the interference from the TMS-evoked muscle artifact.

To demonstrate the generalization across electrode montages, ARTIST classifiers
trained from the population #1 HCs (N D 6) using the full set of 64 electrodes were
used to classify the ICs extracted from the population #2 HCs (N D 6) using a
subset of 34 electrodes (Fig. 6.4b). The three EEG experts again manually rated
all the ICs associated with the 34 electrodes for the population #2 HCs (N D 6).
The inter-population classification accuracies across the 6 populations #2 HCs were
95:56˙ 1:81%.
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Fig. 6.11 Correlations between GMFP from the manual and automated rejection algorithms in
population #2 subjects (N D 6). (a) Within-subject correlation coefficient for each stimulation site.
Each vertical bar represents within-subject correlation coefficient when each site is stimulated. (b)
Scatter plots. From left to right: quantification of GMFPs at P200, N100, and P45 time components.
Each circle represents the GMFPs computed from manual rejection (x-coordinate) vs. automated
rejection (y-coordinate), corresponding to one site and subject

6.6 Discussions and Emerging Directions

In summary, this chapter provided an overview of TMS-EEG artifact rejection and
presented a fully automated algorithm ARTIST based on a set of novel features
that captured the spatio-temporal-spectral profiles of neural and non-neural sources.
ARTIST achieved an IC classification of 95% across a large number of TMS-
EEG data sets (n D 90 stimulation sites) when compared to manual artifact
rejection by EEG experts. This accuracy was retained across stimulation sites,
subjects, populations, and electrode montages, demonstrating high generalization
performance. Moreover, ARTIST significantly outperformed a state-of-the-art auto-
mated algorithm, MARA, by an average of more than 5% across artifact/non-artifact
types, and artifact rejection by relatively novice individuals. Finally, reliable post-
processing results were obtained using the ARTIST-cleaned data, as shown by
the strong within-subject correlations attained for the GMFP and TEP time series
between hand-cleaned and ARTIST-cleaned data.

6.6.1 Potential Applications and Advances

To our knowledge, ARTIST is the first fully automated artifact rejection algorithm
for the analysis of TMS-EEG data. Using MATLAB R2014b on a desktop with
3 GHz Intel Core i7 CPU and 16 GB RAM, the average CPU runtime of ARTIST on
the TMS-EEG data of one stimulation site (60 trials; inter-stimulus interval of 3˙
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0:3 s) is 1.2 min, compared to the average time of 7 min by the EEG experts using the
semi-automated pipeline that manually classifies the ICs. Therefore, this algorithm
will greatly improve the precision and processing time of TMS-EEG experiments,
allowing the analysis of the large-scale TMS-EEG connectome data sets to be
completed within a short period of time (Harquel et al. 2016). This also opens up
the potential for processing data in nearly real time, which could lead to monitoring
of ongoing brain states as well as closed-loop applications. Furthermore, the high
level of IC classification accuracy observed in both populations demonstrates
the generalizability of the ARTIST algorithm across populations. Moreover, as
TMS-EEG methods are more broadly disseminated and used by the neuroscience
community, likely users will increasingly be relatively novice individuals in terms of
manual artifact rejection skills. The clear superiority of the performance of ARTIST
when compared to our novice raters (who were themselves inconsistent with each
other) demonstrates the capacity of this algorithm to standardize the objective and
high-quality rejection of TMS-EEG artifacts and support automated processing.

6.6.2 Considerations, Limitations, and Future Directions

The EKG artifact has received little attention in traditional automated EEG artifact
rejection approaches. In ARTIST, the EKG spatial feature and temporal feature
were proposed for detecting the EKG IC. The EKG spatial feature is robust to
the variability of the EKG topography across subjects, and the EKG temporal
feature detects the QRS complexes in wavelet subspace, which is less prone to false
positives than peak detection in the original subspace (Fig. 6.5a). Together, these
two features enable a high classification rate for the EKG IC (98.68%; Fig. 6.7c).

It may be argued that artifacts not time-locked or phase-locked to the TMS
pulse do not heavily affect post-processing as they are cancelled out through epoch
averaging when the TEP is calculated. However, when one is interested in the
spectral content of the TMS-EEG data, the spectral power of the artifacts is not
suppressed by epoch averaging. Hence, it is important that major artifacts are
removed prior to spectral analyses of the data. The performance of the ICA-based
artifact rejection depends crucially on ICA’s ability to separate artifacts and neural
sources into distinct components, which can be distorted by a number of factors.
First, it has been shown that large (e.g., thousands of microvolts) TMS-evoked
muscle artifacts could lead to substantial error in the estimation of the IC spatial
maps, and several methods were proposed to suppress the muscle artifacts prior to
the ICA (Hernandez-Pavon et al. 2012; Korhonen et al. 2011). These methods can
be combined with ARTIST to further improve its performance. Second, to ensure
reliability of the IC estimation it is important to feed sufficient amount of EEG data
into the ICA. As a rule of thumb, the minimum number of data samples required
for a reliable ICA is kCN (where C is the number of the ICs, N is the number of
the channels, and k is a constant depending on the number of ICs). To decompose
a large number of channels, k may need to be at least 20 (Onton et al. 2006). Thus,



170 W. Wu et al.

when N is large, dimensionality reduction approaches should be used to reduce C.
In the data analysis presented in this paper, we used PCA to reduce the number
of ICs in the ICA. The number of ICs can be determined in a more principled
manner under more formal statistical frameworks (Beckmann and Smith 2004; Wu
et al. 2016). However, in some cases ICA may produce ICs with strong presence of
both neural signals and artifacts that could be classified either way. In the manual
rating stage these ICs were classified as neural to prevent the loss of important
neurophysiological information. When used for training, ARTIST is able to learn
to similarly classify the ambiguous ICs as neural.

We highlight several lines of future work related to ARTIST. First, ARTIST
is designed based on the spTMS-EEG data, but it also serves as the cornerstone
to develop automated artifact rejection algorithms for other types of TMS-EEG
data under similar frameworks, including the concurrent repetitive TMS-EEG
data (Hamidi et al. 2010) and paired-pulse TMS-EEG data (Casula et al. 2016).
The key is to define features that are tailored to the specific time scales of
different data types. Second, although we assessed the inter-site/subject/population
classification performance of ARTIST, it remains to be verified if the algorithm
generalizes well across TMS-EEG data sets collected in different labs, where the
specific experimental protocols, environment, and EEG amplifiers may vary. Third,
although the Infomax algorithm was chosen to solve the ICA in ARTIST, other
ICA algorithms can also be considered, including FastICA (Hyvarinen 1999) and
TDSEP (Ziehe and Müller 1998), which is a computationally efficient algorithm
purely based on second-order statistics. Future work will compare various ICA
algorithms and assess how they influence TMS-EEG artifact rejection differently.
Finally, TMS-evoked eye blinks that are temporally overlapping with the TEPs may
violate the statistical independence assumption of the ICA. To address this issue,
new approaches that use different criteria for removing the decay artifacts and TMS-
evoked eye blink artifacts should be developed.
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Chapter 7
Characterizing Complex Human Behaviors and
Neural Responses Using Dynamic Models

Sridevi V. Sarma and Pierre Sacré

7.1 Introduction

Many experiments conducted in neuroscience entail applications of stimuli and
recordings of behavioral responses and neural activity. Traditional approaches to
understanding how the brain encodes stimuli often compute correlations between
stimuli and neural activity time-locked to behavioral events. For example, when
studying motor control, investigators train a participant to move the arm in
different directions while activity from premotor and primary motor regions are
measured (Carpenter et al. 1999; Schieber 2004). Then, to understand how neurons
encode movement direction, firing rates of neurons are modeled as functions of
behavior right after the onset of movement (Agarwal et al. 2015). In this example,
both direction of movement and neural activity are measured outputs, and behavior
is primarily driven by a target cue.

Now, let’s consider experiments wherein behavior is not only driven by stimuli
provided by the experimentalist, but also by internal factors within the participant
that are not easily measurable. A first example is when participants are performing
a gambling task, wherein they are betting virtual money and then perhaps get
emotional if they are winning or losing (Sacré et al. 2016a,b,c). Although objective
measures of emotion have been proposed such as skin conductance response
and heart rate variability, these measures are typically delayed or only accurate
over several minutes, while emotions can fluctuate at a faster time scale during
gambling (Mauss and Robinson 2009). A second example is when participants are
performing a Stroop-like task, wherein distractors are present to confuse participants
while they attempt to make correct associations between presented stimuli and
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appropriate responses (Shoham et al. 2003; Smith et al. 2015). During this task,
participants make errors and their motivational and attentional states vary over the
session. Motivation and attention are not directly measurable, yet they may influence
behavior in a profound way (Shoham et al. 2003).

In both of the gambling and Stroop-like tasks described above, behavioral
responses and neural activity are influenced by external stimuli and internal states
of participants. Thus, when looking for neural correlates, how behavior changes
with stimuli and underlying dynamic state variables must first be characterized. In
this chapter, we present a systematic approach based on existing methodologies to
(1) estimate internal dynamic states of participants from measured data to explain
behavior variability within and across participants, and (2) identify neural substrates
of behavior and internal states. The proposed approach is a two-step procedure
wherein one first constructs participant-specific state-space models that capture the
dynamics of internal states and how they evolve with administered stimuli, and how
measured behavior depends on these states and stimuli; and then, one relates stimuli,
responses, and states back to neural activity. We discuss the challenges that arise in
each step of the process and provide suggestions on how to successfully complete
these two steps. We present examples from two data sets involving a gambling and
Stroop-like task.

7.2 Methods

In this section, we first describe a general dynamic state-space modeling framework
and the maximum likelihood procedure used to estimate parameters of participant-
specific models of behavior. Then, we discuss how to map model variables and
estimated internal states back to neural data using nonparametric statistical tests
and point process models (PPMs).

7.2.1 Dynamic State-Space Modeling

The first step of the proposed approach is to build a mathematical model with
inputs u and outputs y that explains the variability that we observe in the data. In
this context, we can distinguish between two types of models. A model is static (or
without memory) if the value of the output signal at a particular time depends only
on the value of the input signal at the same time. Otherwise, it is dynamic (or with
memory).

The general dynamic state-space model for a discrete-time system can be written
as follows

xkC1 � f� .xkC1 j xk;uk/; (7.1a)

yk � h�.yk j xk;uk/; (7.1b)
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where xk 2 R
n is the n-dimensional state-vector, uk 2 R

m is the m-dimensional
input-vector, and yk 2 R

p is the p-dimensional output-vector. The state-transition
map f� and the measurement map h� are conditional probability distributions of
xkC1 given .xk;uk/, and of yk given .xk;uk/, respectively. The initial state vector x0

is distributed according to p�.x0/. The model parameters are denoted by � . It is
often convenient to define its equivalent static model, that is, yk � Qh�.yk j uk/ D
h�.yk j 0;uk/, where the state-vector is fixed to zero for all k.

For our neuroscience applications, the inputs uk represent stimuli (or functions of
stimuli) of the task on trial k, the outputs yk represent measured behavioral responses
(or functions of responses) in the task (e.g., reaction time, correct/incorrect answer)
on trial k, and the states xk represent internal states on trial k that influence behavior
(e.g., attentional state, motivation, emotion).

As a first step to model behavioral data, it often is sufficient to begin with a time-
invariant state-space model with a linear state equation and a generalized linear
output equation, which reduces to

xkC1 D A xk C B uk C wk; (7.2a)

yk � h.yk j C xk C D uk;	/; (7.2b)

where wk 2 R
n is the n-dimensional zero-mean Gaussian noise-vector with

unknown covariance matrix ˙ w and h is a probability distribution from the
exponential family, that is conditioned on an affine combination of states and
inputs and the dispersion parameter 	. The initial state vector x0 is assumed to
follow a Gaussian distribution with mean Nx0 and covariance matrix ˙ 0. The model
parameters are then � D fA;B;˙w; Nx0;˙ 0;C;D;	g.

The model estimation problem then boils down to: given N input-output mea-
surements u1WN D fu1; : : : ;uNg and y1WN D fy1; : : : ; yNg, estimate the model
parameters � and the state x1WN D fx1; : : : ; xNg. One approach is to estimate �

and p�.x1WN j u1WN ; y1WN/ from data to maximize the likelihood function (Van Trees
1968; Louis 1991; Moon 1996). The likelihood function is the family of probability
distributions considered as a function of � , for fixed y1WN and u1WN . It is often more
convenient to work with its logarithm, which is called the log-likelihood function,
and denoted as `:

`.�/ D log p�.y1WN j u1WN/: (7.3)

Now, the problem is to estimate the value of the parameters � . A widely used
method, called maximum likelihood estimation, is to estimate � as

O�ml D arg max
�2�

p�.y1WN j u1WN/ D arg max
�2�

`.�/; (7.4)

where � 2 � gives the prior information or other constraints on the parameter
vector � . In the context of the estimation of a dynamic model, the state is not
observed and we can write the likelihood as follows

p�.y1WN j u1WN/ D
Z

X
p�.x1WN ; y1WN j u1WN/ dx: (7.5)
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One way to solve this problem is to use the expectation-maximization (EM)
algorithm. The EM algorithm is an iterative algorithm that is composed of two steps
at each iteration: an expectation step and a maximization step.

E-step The idea of the E-step is to take the expectation with respect to the
unknown underlying states, using the current estimate of the parameters �� and
conditioned upon the observation, that is,

Q.� j ��/ D E



log

�
p�.x1WN ; y1WN j u1WN/
p��.x1WN ; y1WN j u1WN/

�
j U1WN D u1WN ;Y1WN D y1WN ;��

�
;

(7.6)

D
Z

X
log

�
p�.x1WN ; y1WN j u1WN/
p��.x1WN ; y1WN j u1WN/

�
p��.x1WN j u1WN ; y1WN/ dx:

(7.7)

M-step The idea of the M-step is to provide a new estimate ��� of the parameters,
that is,

��� D arg max
�2�

Q.� j ��/: (7.8)

Finally, there are several ways to establish the degree of agreement between the
model and observed data. In particular, they are mainly two families of statistics
that we can compute: the first family measures the goodness-of-fit of the model
with the data and the second family measures the improvement of goodness-of-fit
from a static model to a dynamic model. In both families, we can use different test
statistics such as log-likelihood, deviance and Pearson residuals, predictive power,
etc. The first family is interested in the absolute value of this statistic; while the
second family is interested in the relative difference between the statistics for the
dynamic and static models. The statistical significance of these test statistics can be
evaluated using a nonparametric permutation test.

7.2.2 Neural Correlates Informed by State-Space Model

The second step of the proposed approach is to relate the model variables (inputs,
outputs, and estimated states) back to the neural data. Below we describe this second
step if one has recorded continuous neural activity or spike train observations.

7.2.2.1 Continuous Neural Data

If neural activity measured is continuous (e.g., local field potential, electroen-
cephalogram, electrocorticography), then a common approach to analyzing the data
is to move to the spectral domain. In particular, select a time window of interest
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(e.g., 500-ms window time-centered to an applied stimulus). Then, compute a
spectrogram including frequencies of interest (e.g., 2–150 Hz) for that time window
for each trial. This will generate a stack of spectrograms, one for each trial in the
recorded session.

Once the stack of spectrograms is computed, identify time-frequency clusters
within the stack that distinguish between two conditions of interest (e.g., high bet
vs low bet, or moving up vs moving down). In particular, take a model variable
of interest (e.g., player’s card) and split trials into those when the variable takes
on low values and those when the variable takes on high values. Low-value trials
may be defined, for example, as the bottom third of the variable distribution over all
trials, and high-value trials may be defined as the top third. Then apply a cluster-
based nonparametric statistical test to leverage the dependency between adjacent
time-frequency windows in order to avoid over-penalizing with multiple comparison
corrections (Maris and Oostenveld 2007).

For each window in the spectrogram, create a null distribution by shuffling the
condition labels 1000–5000 times between trials within each participant. Within
each shuffle, compute a t-statistic and a p-value for each window of the newly
labeled spectrograms (independent two-sample t-test with both tails, unequal sam-
ple sizes, and unequal variances). Clusters are formed by grouping windows with
significant p-values (e.g., p < 0:05) that are adjacent in either time or frequency.
The cluster-level test statistic is then calculated by taking the sum of absolute values
of the t-statistics for each window in the cluster. This prioritizes clusters that have
both strong differences and large sizes. A null distribution of cluster statistics is
created using the same process but with the 1000–5000 spectrograms obtained from
the originally shuffled labels. The observed cluster statistic is then compared against
this null distribution of cluster statistics in order to obtain the final p-value of the test.

Data from all patients can be pooled together but the labels are permuted within
each participant only. This process of finding time-frequency cluster correlated to
a model or task variable can be repeated for each variable and the estimated state
trajectories across participants.

7.2.2.2 Spike Train Data

If neural activity is measured as spike trains, then one can use point process models
to identify how behavior influences neuronal spiking activity. Several examples
of how PPMs are estimated used for different experimental setups are given
in Coleman and Sarma (2007), Coleman and Sarma (2010), Santaniello et al. (2010),
Santaniello et al. (2012), Sarma et al. (2010), Sarma et al. (2012).

A point process is a series of 0/1 random events that occur in continuous time.
For a neural spike train, the 1’s are individual spike times and the 0’s are the times
at which no spikes occur. To define a point process model of neural spiking activity,
in this analysis, one can consider an observation interval .0;T�, and let Nk.t/ be the
number of spikes counted in the interval .0; t� for t 2 .0;T� for a trial k.
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A point process model of a neural spike train can be completely characterized by
its conditional intensity function (CIF) �k.t j Ht/ defined as follows:

�k.tjHt;uk; xk/ D lim
�!0

Pr.Nk.t C�/� Nk.t/ D 1 j Ht;uk; xk/

�
; (7.9)

where Ht denotes the history of spikes and covariates up to time t. It follows
from (7.9) that the probability of a single spike in a small interval .t; t C �� is
approximately

Pr.spike in .t; t C�� on trial k j Ht;uk; xk/ D �k.t j Ht;uk; xk/�: (7.10)

Details can be found in Cox and Isham (1980), Snyder and Miller (1991).
The CIF generalizes the rate function of a Poisson process to a rate function

that is history dependent. Because the CIF completely characterizes a spike train,
defining a model for the CIF defines a model for the spike train (Brown et al. 2003).

For neural correlate analyses, use a generalized linear model (GLM) to define
CIF models by expressing for each neuron, the log of its CIF in terms of the
neurons spike history Ht, relevant model inputs uk, and the state trajectory xk. The
GLM is an extension of the multiple linear regression model, in which the variable
being predicted (e.g., in this case spike times) need not be Gaussian (McCullagh
and Nelder 1989). GLM also provides an efficient computational scheme for
model parameter estimation and a likelihood framework for conducting statistical
inferences (McCullagh and Nelder 1989).

One can express the CIF for each neuron at each time step (e.g., millisecond)
as a function of task stimuli which can turn on and/or off over time, the state
variable value which typically is constant over a trial, and the neuron’s spiking
history. Instead of estimating the CIF continuously throughout the entire trial, one
can estimate it over time windows around key epochs and at discrete time intervals
each 1 ms in duration.

In particular, one can express the CIF as follows:

�k.t j Ht;uk; xk;�/ D �S.uk j �/ �X.xk j �/ �H.t j Ht;�/ (7.11)

where �S.uk j �/ describes the effect of the stimulus on the neural response,
�X.xk j �/ describes the effect of the state variable on the neural response, and
�H.t j Ht;�/ describes the effect of spiking history on the neural response. � is
a parameter vector to be estimated from data. The units of �S.t j �/ is spikes per
second and �H.t j Ht;�/ is dimensionless. Finally, one can compute maximum-
likelihood (ML) estimates for � and 95% confidence intervals of � for each neuron
using glmfit in MATLAB.

It is important to establish the degree of agreement between a PPM and
observations of the spike train and associated experimental variables is a prerequisite
for using the point process analysis to make scientific inferences. One can use
Kolmogorov-Smirov (KS) plots based on the time-rescaling theorem to assess
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the model goodness-of-fit. The time-rescaling theorem is a well-known result in
probability theory, which states that any point process with an integrable CIF
may be transformed into a Poisson process with unit rate (Johnson and Kotz
1970). A KS plot, which plots the empirical cumulative distribution function of
the transformed spike times versus the cumulative distribution function of a unit
rate exponential, is used to visualize the goodness-of-fit for each model. The model
is better if its corresponding KS plot lies near the 45ı line. One can compute the
95% confidence bounds for the degree of agreement using the distribution of the
KS statistic (Johnson and Kotz 1970). If a model’s KS plot was within the 95%
confidence bounds, then it can be included it in the analyses.

7.3 Results

In this section, we present two applications where we applied our approach to reveal
new insights on the neural mechanisms involved in a Stroop-like task where spike
train observations were made and a gambling task where local field potentials were
measured.

7.3.1 Multi-Source Interference Task

This example is taken from Sklar et al. (2017). Two participants being treated at the
Columbia University Medical Center performed the behavioral task in their hospital
rooms using methods previously described in Johnson et al. (2014). Behavioral data
were simultaneously acquired on the same time base as the electrophysiology data.
Participants performed the multi-source interference task (MSIT) (Shoham et al.
2003). The MSIT is a Stroop-like task in which the participant is presented with
three integers ranging from 0 to 3. Two of the three integers presented are the same
integer. The goal of the MSIT is to indicate the identity of the different integer on
the number pad (e.g., cue: 0 2 0; correct response: button 2; Fig. 7.1b).

Conflict is introduced in this task by changing the position of the target number
(e.g., 0 0 1; correct response: button 1; Simon or spatial interference) or by
changing the identity of the distracting integers to potential responses (e.g., 1 2
1; correct response: button 2; Eriksen or flanker interference). Additionally, both
types of interference can occur (e.g., 3 1 3; correct response: button 1). These four
groups of trials were presented randomly, with a uniform frequency distribution.

7.3.1.1 Dynamic State-Space Modeling

In this study, we hypothesized that the “cognitive state” of each participant
influences behavior and modulates neuronal activity in the dorsal anterior cingulate
cortex (dACC). In particular, we hypothesized that when participants require more
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L R

3 0 0

fixation cross (t = - 0.5 s)
stimulus onset (t = 0)

response (t = r(t))

3 0 0
feedback (t = r(t) + [0.3 0.8])

(A)

(B)

Fig. 7.1 MSIT task and microwire recording locations. (a) Microwire recording locations in the
dACC. Colors represent recording locations corresponding to each participant on each hemisphere
(L and R). (b) MSIT task diagram showing an example trial structure. In each trial, a fixation cross
appears on the screen for 0.5 s prior to the stimulus presentation. The stimulus remains on the
screen until the participant indicates her response on the button pad. Feedback is delivered between
0.3 and 0.8 s after the participant indicates her response. Figure reproduced with permission
from Sklar et al. (2017)

cognitive control, (1) they are more likely to react to the stimulus slowly and (2)
their cingulate neurons are modulated. Since such a cognitive state is not directly
measurable, we compute it from measurable data.

Before constructing the state-space model of behavior, we first looked to see
whether behavior varied for different stimuli, and for the same stimuli over the
session. To examine behavioral variability, we plotted a moving average reaction
time for each stimulus type (easy, hard, Simon, Flanker). As shown in Fig. 7.2, the
reaction times for each stimulus type change over time, suggesting dynamics in the
behavior that may be explained by a latent state variable.

Therefore, we constructed a cognitive state variable xk that updates for each trial k
as follows:

xkC1 D a xk C
5X

iD1
bi ui;k D a xk C B uk (7.12)

where uk D Œu1;k; u2;k; u3;k; u4;k; u5;k�> is an input column vector dependent on the
trial conditions:

• u1;k D 1 if no interference on trial k, and 0 otherwise;
• u2;k D 1 if both interferences on trial k, and 0 otherwise;
• u3;k D 1 if spatial interference on trial k, and 0 otherwise;
• u4;k D 1 if flanker interference on trial k, and 0 otherwise;
• u5;k D 1 if trial type on trial k changed from previous trial, and 0 otherwise.
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Fig. 7.2 Relationship between reaction time variability and cognitive state. (Top) Moving average
of reaction times for each trial type for participant 1 (left) and participant 2 (right). The estimated
cognitive states are overlaid in black. (Bottom) Correlation plots between actual reaction times and
xk and predicted reaction times for participant 1 (left) and participant 2 (right). Figure reproduced
with permission from Sklar et al. (2017)

The parameter a represents the decaying influence of previous trials on the cognitive
state, and B D Œb1; b2; b3; b4; b5� dictate the effects that the trial conditions have on
the state xkC1. The solution to the state-space equation is

xk D ak x1 C
5X

iD1

k�1X

sD1
a.k�s�1/ bi ui;s; (7.13)

which can be used to determine the parameters fa;Bg by inserting the solution xk

as a covariate into a GLM. The output of the GLM is yk, defined as the log of the
reaction time modeled as

yk D log.rk/ D xk C D uk C d0 C k; (7.14)
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where rk is the reaction time of the trial, the k are independent zero-mean Gaussian
random inputs with variance �2 , and D is a vector of the form of B, that represents
the direct influence of the current input on the reaction time of a trial.

The state-space model above includes a state that is completely deterministic,
and the output is stochastic. If the state is deterministic, then the EM algorithm is
unnecessary. It is worth beginning with a deterministic state variable to help identify
model structure (what inputs to include into the state-space model) that best explains
the observed data.

To estimate the parameters a, B, D, and d0 of the state-space model, we gridded
the parameter space a and for each parameter value, (1) we computed each term
of the sum of the state trajectory (7.13) for bi D 1 over the session, then (2) we
substituted xk by each term of the sum in a GLM and estimated B and D that
maximize the data likelihood function. We then selected � D fa;B;D; d0g that
produce the maximum of all likelihoods over the entire grid.

Figure 7.2 overlays the estimate state variables (black trajectories) for the two
participants. The state trajectories follow the dynamics of mean reaction times over
the session for one or more stimuli. For participant 1 (left panel), the estimated xk

attempts to capture the variability of reaction times over the session for all four
task types, but is not able to characterize behavior for all stimuli. In this case,
a second state variable may better explain the behavior. On the other hand, the
reaction time dynamics for participant 2 (right panel) are very similar across all
stimuli suggesting that a scalar state variable is sufficient to explain participant 2’s
variability in behavior.

The bottom panels in Fig. 7.2 show the correlation plots between actual reaction
times and rk and predicted reaction times, Ork for participant 1 (left) and participant 2
(right), where log.Ork/ D xk C OD uk C Od0. The state-space models for both participants
suggest that the inclusion of the state helps explain the variability in reaction times
over the session that cannot be entirely explained with task stimuli that changes over
the session.

7.3.1.2 Neural Correlates Informed by Dynamic State-Space Model

Now that behavior is sufficiently explained by the state-space model described
above, we search to explain neuronal responses to both task stimuli and cognitive
state estimates. We thus formulated a PPM to relate the spiking of each dACC
neuron for each participant to factors associated with the neuron’s spiking history
and the cognitive state variable. We use these model parameters to analyze temporal
dynamics in neuronal activity due to the cognitive state variable after the stimulus
is shown.

As described in Sect. 7.2.2.2, we use the GLM framework to define the CIFs of
our PPMs by expressing, for each neuron, the log of its CIF in terms of the neuron’s
spike history and relevant covariates (Truccolo et al. 2005). We express the CIF
for each neuron as a function of the neuron’s spiking history, �H

k , in the preceding
240 ms and our derived cognitive state variable, �X . Specifically, for trial k and time
bin t:

�k.t j Ht;�/ D �X.xk j �/ �H.t j Ht;�/; (7.15)
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such that

�X.xk j �/ D ˛ xk (7.16)

and

log.�H.t j Ht;�// D �0 C
8X

jD1
�j nt�5jWt�5.j�1/ C

8X

jD1
ˇj nt�40�25jWt�40�25.j�1/;

(7.17)
where nAWB is the number of spikes observed in the time interval ŒA;B/ during
the epoch analyzed. The f�jg coefficients capture short-term history effects going
back to 40 ms in the past in 5-ms bins. The fˇjg coefficients capture long-term
history effects going back to 240 ms in the past in 25-ms bins, and ˛ captures the
effect of the cognitive state. We computed ML estimates for all coefficients and
their associated 95% confidence intervals for each neuron model using glmfit in
MATLAB.

We examined the activity of 12 units (10 in patient 1 and 2 in patient 2).
Figure 7.3a shows the spiking frequency in two units from both participants during
the first second after stimulus presentation in each trial. These spike counts are
overlaid with the cognitive state variables xk for each participant. The neurons’
spiking frequencies appear to have a negative correlation with xk dropping markedly
when xk rises.

In participant 1, we found 10 units whose activity was predicted using the
cognitive state variable (the GLM fit coefficient for the xk covariate was significantly
non-zero, with p < 0:05). Some units had increased activity as xk increased, while
some displayed decreased activity. The covariate coefficients for participant 1’s
PPM are shown in Fig. 7.3b. The dependence on short- and long-term spiking
history is displayed in the lower two plots and shows refractoriness in the first
15 ms after a spike, and an increased likelihood to fire in the 25–100 ms interval.
The upper right plot displays the PPM coefficient for xk with 2 standard deviation
error bars. For this unit, xk was a strong predictor of the spiking behavior, with
spiking probability decreasing for higher xk. The upper left plot shows the goodness
of fit of the model using a KS plot, with 95% confidence bars. In participant 2,
two units’ spiking could be significantly predicted by xk (see Sklar et al. (2017) for
details). The PPM coefficients and goodness of fit for participant 2 for one neuron
are also shown in Fig. 7.3b. This unit had significantly longer inter-spike-intervals,
so the coefficient values for the short-term history bins have higher uncertainty.

These preliminary results suggest that neurons in the dACC slowly track
subjects’ overall need for cognitive control, while simultaneously maintaining faster
task-related dynamics. A latent cognitive state variable correlates with both reaction
times and neuronal activity in two patients. These results provide support for an
additional representation of task state or attentional motivation in the dACC.
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Fig. 7.3 Neural correlates of cognitive states. (a) Cognitive states over sessions overlaid with
spike counts for one unit for participant 1 (left), and one unit for participant 2 ( right). (b) Point
process model for same unit as above from participant 1 (the 1st and 2nd columns) for first second
after stimulus onset, and same unit as above from participant 2 (the 3rd and 4th columns). Top
left: KS plot. Top right: coefficient for xk. Bottom left: long-term history coefficients with 95%
confidence bounds. Bottom right: short-term history coefficients with 95% confidence bounds.
Figure reproduced with permission from Sklar et al. (2017)

7.3.2 Gambling Task

This example is taken from Sacré et al. (2016a). Five participants being treated at
the Cleveland Clinic Epilepsy Center performed the behavioral task in their hospital
rooms using methods previously described in Johnson et al. (2014). The gambling
task (Fig. 7.4 top left) is based on a simple game of high card where participants
would win virtual money if their card beat the computer’s card. Specifically, in the
beginning of each trial, the participant controls a cursor via a planar manipulandum
to a fixation target. During fixation, participants must center the cursor in less than
8 s. Once centered, the participant is shown his card (only 2, 4, 6, 8, or 10 are in
the deck) for a duration of 2 s. The card is randomly chosen with equal distribution.
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Fig. 7.4 Timeline of the gambling task. After fixation, subjects were shown their card. Once the
bets were shown, subjects selected one of the choices and then were shown the computer’s card
following a delay. Feedback was provided afterwards by displaying the amount won or lost

The computer’s card is initially hidden. The screen then shows the two possible
choices: a high bet ($20) or a low bet ($5). The participant has 6 s to select one
with his cursor. Following selection, the computer’s card, which follows the same
distribution, is revealed. If the computer’s card is larger than the player’s card, then
the participant loses the amount he bets. If the computer’s card is smaller than the
player’s card, then the participant wins the amount he bet.

For this task, the expected reward and variance of the reward are functions of
the player’s card and bet. For example, on 10-card trials, the expected reward is
higher for a high bet than for a low bet and the variance of reward is small for both
decisions. On 6-card trials, the expected reward is zero for both betting decisions;
but the variance of reward is higher for a high bet than for a low bet.

In this task, bets and reaction times for each trial, k, were the behavior variables
measured. Neural activity was measured with stereotactic EEG depth electrodes.
Participants were implanted with 10–14 depth electrodes, each having 10–16
contacts. See Sacré et al. (2016a) for details.

To explore behavioral variability in the data, one can plot behavioral responses
to each stimulus type over trials. In our gambling task, we plot the fraction of high
bets (smoothed by taking a moving average) on each card-type trials for each patient
over his/her session. This is shown in Fig. 7.5a.
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Fig. 7.5 Relationship between betting variability and internal state. (a) Moving average of the
proportion of high bets over session for different card-type trials (overlapping windows of length
2wC1, with w D 10). (b) Estimated state trajectory overlaid with bets on 6-card trials over session
for one patient. (c) Estimated probability of betting high as a function of estimated state trajectory
overlaid with bets (red for a high bet, blue for a low bet) for each 6-card trial

7.3.2.1 Dynamic State-Space Modeling

As seen in Fig. 7.5a, most of the within-participant variability is observed on 6-card
trials across all participants. We hypothesized that participants bets on 6-card trials
were influenced by past outcomes or a latent state variable that accumulated past
outcomes. Specifically, we constructed a fading memory state model of cumulative
mismatched expectations that we referred to as “luck” xk on trial k. The luck variable
is the scalar state variable that updates as follows:

xkC1 D a xk C ek x0 D 0; (7.18)

where a is a decay factor (0 � a � 1) and ek is the mismatched expectations on
trial k, that is, the difference between the actual outcome (loss D �1, draw D 0, or
win D 1) and expected outcome given the player card pck (computed as 1

5.pck�6/ ).
Note that ek enters the state evolution equation only during trials where expectations
are mismatched.

Next, we estimated a in Eq. (7.18) by varying it between 0 and 1 in 0:01

increments and computed the Pearson’s correlation coefficient between luck and
gamma band power in the orbitofrontal cortex (OFC) at the beginning of each trial
before the player sees his/her card (see Fig. 7.6). Thus, in this case, the OFC gamma
power at the beginning of a trial was first found to be correlated to whether or not the
player bets high if he/she receives a 6 card on that trial, and then the state-evolution
model was constructed though a grid search.
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Fig. 7.6 Oscillatory power before the Show Card. (a) The average spectrograms show differences
between high-bet and low-bet conditions on 6-card trials. One significant cluster (p D 0:042)
resulted from the cluster-based nonparametric statistical test. The cluster contained frequencies
between 36 and 50 Hz at a timing between 1000 and 800 ms before the Show Card. This frequency
range matches the traditional lower gamma band. Plots of average oscillatory power (36–50 Hz)
over time for 6-card trials resulting in high and low bets show the modulation of the power in the
gamma band preceding the Show Card. Time bins with significant differences are marked by the
grey bar. Error bars represent one standard error of the mean. The number n denotes the number
of trials pooled across patients. (b) The average spectrograms show differences between high-luck
and low-luck conditions on all trials. One significant cluster (p D 0:040) resulted from the cluster-
based nonparametric statistical test. The cluster is located in the similar time-frequency region as
the cluster emerging from the high-bet and low-bet conditions on 6-card trials. Figure reproduced
with permission from Sacré et al. (2016a)

To see whether xk explains the variability of behavior on 6-card trials, one can
overlay the state xk with bets on all trials across the session as shown in Fig. 7.5b.

To complete the state-space model, the output equation model is then a standard
GLM for Bernoulli betting observations:

pk D 1

1C e�.d0Cc xk/
; for k such that pck D 6: (7.19)

Equation (7.19) is a standard GLM when xk is known or estimated a priori. If xk

is not estimated ahead of time, then the EM algorithm can be used. One can also
overlay the behavioral data with the output models for Opk. An example of this is
shown in Fig. 7.5c.
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In this example, since the output equation is constructed using a standard GLM,
the fitted model can be evaluated by checking the significance of the parameter c in
front of the state variable. The model showed that the state of “luck” significantly
influenced betting decisions (c D 0:20, p D 0:028). This indicates positive luck
biases participants to bet high on 6 cards.

7.3.2.2 Neural Correlates Informed by Dynamic State-Space Model

In this example, we obtained continuous local field potential recordings from the
OFC and thus analyzed data in the spectral domain. To compute spectrograms, three
orthogonal tapers were used with a 300-ms window sliding at 50-ms steps. Fre-
quencies under 10 Hz were dropped because of the Rayleigh criterion and analyzed
upwards to 100 Hz. Afterwards, each frequency bin’s power was normalized based
on the power across the entire recording session by fitting the log of the power
in each frequency bin to a standard normal distribution. The mean and standard
deviation used for the normalization were computed from the power between the
5th and 95th percentiles of the data set. This calculation was performed for every
electrode’s recording with the final normalized power being averaged across all
electrodes in the brain region of interest (OFC in our example). In addition, we
removed artifacts by identifying time points in the spectrograms for which the
median of the absolute value of the power across all frequencies is larger than 2.5.
Finally, in order to remove the effect of 60 Hz power-line noise, we ignored the
frequency bins between 56.66 and 63.33 Hz in all analyses.

OFC oscillatory power was compared between the set of trials where subjects
end up betting high on a 6 card and the set where they end up betting low. The
average normalized spectrograms for both high and low bet trials showed that high
bet trials have higher 40–50 Hz oscillatory power about 1000 ms preceding the
show card epoch (Fig. 7.6a). To determine statistical significance of this effect, we
used a cluster-based nonparametric statistical test described above. Clusters here
are defined as a set of adjacent time-frequency windows whose activity is different
between trials where the subjects end up betting high versus low.

To examine the correlation between OFC activity and the state variable, we
separated the trials between high-luck and low-luck conditions (defined as the
bottom third and top third of the values taken by luck variable for all patients)
and computed the average normalized spectrograms for both conditions. High-luck
trials showed higher OFC oscillatory power than low-luck trials (Fig. 7.6b, first
and second panels). Interestingly, the cluster-based nonparametric statistical test
identified a significant cluster (p D 0:040) in the time-frequency vicinity of the
cluster identified when separating trials based on high-bet and low-bet conditions
on 6-card trials (Fig. 7.6b, third panel).

These findings suggest OFC may play a pivotal role in processing a subject’s
internal (emotional) state during financial decision-making.
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7.4 Discussion

In this discussion, we highlight four important lessons to use a two-step state-space
modeling approach described in this chapter to explore links between behavior and
neural activity in humans.

Lesson 1: Investigating Variability in Behavioral Data The first lesson is to
always start data analyses by exploring the variability in the behavioral data prior to
building a model. A good understanding of the variability existing in the behavioral
data is the key to a useful model. There are essentially two sources of variability in
a participant’s behavior. The first source is that the behavior changes as the stimulus
changes, which is expected. The second source is that the participant’s behavior
changes in a “smooth” way over trials during which the same stimulus is applied.
This can happen when internal states, such as motivation and attention, vary over
trials. If the latter variability is observed in the data, then a state-space modeling
framework is appropriate. In the two examples described above, we plot behavior
and see both sources of variability and thus move forward with model development.
If the second source of variability is not present, then a simple GLM of the behavior
may suffice in explaining the first source of behavioral variability, which is how a
stimulus impacts behavior.

Lesson 2: Identifying Model Structure The second lesson is to identify a
model structure that explains the variability that we observed. The design of the
measurement map h� is the easiest part at most of the time: it involves a combination
of states xk and inputs uk. The design of the state-transition map f� is usually more
complex. A useful analysis to guide the design of the state-transition map is to
investigate the influence of candidate inputs by quantifying the influence of the value
of candidate inputs at the previous trial k � 1 on the behavior at trial k.

Lesson 3: Estimating State-Space Model Step by Step The third lesson is to
estimate the model parameters and the state for each trial step by step. A good
approach is to start by estimating the parameters of the static model, that is, the
model where the state is fixed to 0. Then, it is also sometimes useful to estimate the
parameters of the dynamic model where we fix the noise in the state evolution to
zero. Finally, we can estimate the parameters of the whole dynamic model by using
the previous estimates as a first guess for this more complex estimation problem.
The decomposition into these different steps helps to interpret the meaning of each
parameter and its influence on the state.

Lesson 4: Dealing with Multiple Comparisons in Neural Data Analysis The
fourth lesson is to deal with multiple comparisons in neural data analysis. Indeed,
we are often interested in looking at the neural activity from multiple brain regions
(when available) and at different epochs during the task. A standard approach to
tackle this multiple comparisons problem is to correct the significance threshold by
controlling the false discovery rate (e.g., q D 0:05).
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Chapter 8
Brain–Machine Interfaces

Maryam M. Shanechi

8.1 An Overview of Motor BMIs

Motor brain–machine interfaces (BMI) have the potential to restore movement to
patients with disabling neurological injury or disease. Motor BMIs allow subjects to
control external devices by modulating their neural activity. To do so, BMIs record
the neural activity from motor cortical areas, use a mathematical transform called
the “decoder” to infer the subject’s motor intent and move an external device, and
provide visual feedback of the generated movement to the subject (Fig. 8.1), closing
the loop. Thus motor BMIs can be viewed as closed-loop control systems in which
the brain is the controller and the neuroprosthetic is the plant.

Early studies (Humphrey et al. 1970; Fetz 1969) showed that movement kine-
matics in non-human primates (NHP) can be estimated from motor cortical neural
populations (Humphrey et al. 1970) and that NHPs can volitionally modulate their
neural activity based on biofeedback (Fetz 1969). These studies demonstrated the
feasibility of motor BMIs. Since then motor BMI studies have shown that rodents,
NHPs, and humans can operate external devices using their neural activity (Chapin
et al. 1999; Serruya et al. 2002; Taylor et al. 2002; Carmena et al. 2003; Musallam
et al. 2004; Santhanam et al. 2006; Hochberg et al. 2006, 2012; Velliste et al. 2008;
Kim et al. 2008; Mulliken et al. 2008; Li et al. 2009, 2011; Ganguly and Carmena
2009; Suminski et al. 2010; Mahmoudi and Sanchez 2011; O’Doherty et al. 2011;
Gilja et al. 2012, 2015; Orsborn et al. 2012, 2014; Hauschild et al. 2012; Shanechi
et al. 2012, 2013a, 2016, 2017; Collinger et al. 2013; Willett et al. 2013; Thakor
2013; McMullen et al. 2014; Aflalo et al. 2015). Moreover, by combining decoding
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Fig. 8.1 Schematic of BMIs.
BMIs are closed-loop control
systems in which the brain
controls the prosthetic plant
by modulating its neural
activity. BMIs provide
feedback to the subject often
in the form of visual feedback
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with stimulation, motor BMIs have been able to control the subject’s native limb
(Moritz et al. 2008; Ethier et al. 2012; Shanechi et al. 2014; Bouton et al. 2016;
Capogrosso et al. 2016).

While various invasive and non-invasive neural signal modalities could be used
as the control signal in BMIs, the highest levels of performance to date have been
achieved by using intracortical spiking activity recorded from penetrating electrodes
(Chapin et al. 1999; Serruya et al. 2002; Taylor et al. 2002; Musallam et al. 2004;
Santhanam et al. 2006; Carmena et al. 2003; Hochberg et al. 2006, 2012; Velliste
et al. 2008; Kim et al. 2008; Mulliken et al. 2008; Li et al. 2009, 2011; Ganguly
and Carmena 2009; Suminski et al. 2010; Mahmoudi and Sanchez 2011; O’Doherty
et al. 2011; Gilja et al. 2012, 2015; Orsborn et al. 2012, 2014; Hauschild et al. 2012;
Shanechi et al. 2012, 2013a, 2014, 2016, 2017; Collinger et al. 2013; Willett et al.
2013; Thakor 2013; Moritz et al. 2008; Ethier et al. 2012; Aflalo et al. 2015; Bouton
et al. 2016; Capogrosso et al. 2016). To move these BMI towards clinical viability,
a critical component that should be improved is the decoding algorithm.

Most BMI decoders control the continuous kinematics of the neuroprosthetic
(Taylor et al. 2002; Serruya et al. 2002; Carmena et al. 2003; Hochberg et al.
2006, 2012; Velliste et al. 2008; Kim et al. 2008; Mulliken et al. 2008; Ganguly
and Carmena 2009; Suminski et al. 2010; Li et al. 2009, 2011; Mahmoudi and
Sanchez 2011; O’Doherty et al. 2011; Gilja et al. 2012, 2015; Orsborn et al. 2012,
2014; Hauschild et al. 2012; Collinger et al. 2013; Willett et al. 2013; Thakor
2013; Shanechi et al. 2013a, 2016, 2017; McMullen et al. 2014; Aflalo et al. 2015).
Some BMI studies have also decoded discrete movement targets (Musallam et al.
2004; Santhanam et al. 2006; Shanechi et al. 2013a; Aflalo et al. 2015) or an entire
sequence of targets before movement initiation (Shanechi et al. 2012). Moreover,
some work have jointly decoded the target and kinematics of movement (Yu et al.
2007; Srinivasan et al. 2006; Mulliken et al. 2008; Shanechi et al. 2013b,a). In this
chapter we focus on BMI decoding algorithms for control of continuous movement
given their potential for generalizability to various tasks.
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To develop a motor BMI decoder, multiple computational elements should be
designed. First, we need to decide on a parametric model structure to characterize
the relationship between the spikes and kinematic states. This model structure is
referred to as the “encoding model.” Second a calibration or training method should
be developed to learn the encoding model parameters for each subject. Finally,
BMI design could benefit from modeling how movements are generated within the
closed-loop system. In this chapter, we discuss these elements and how they can
be used to design BMI decoders that use spiking activity. Our emphasis will be on
recent designs that have significantly improved performance by using tools from
control theory, statistical inference, and adaptive estimation. These designs have the
potential to bring BMI systems closer to clinical viability.

8.2 BMI Decoding Structures

To design a decoder, we need to decide on the choice of a parametric model structure
to characterize the relationship between the spikes and the kinematic states. This
model structure is referred to as the “encoding model.” In the vast majority of BMIs,
the input has been taken as the binned spike counts (or equivalently the firing rates)
computed in bin sizes typically of 50–100 ms length (Serruya et al. 2002; Taylor
et al. 2002; Carmena et al. 2003; Velliste et al. 2008; Kim et al. 2008; Mulliken
et al. 2008; Li et al. 2009, 2011; Ganguly and Carmena 2009; Suminski et al. 2010;
Hochberg et al. 2006, 2012; Gilja et al. 2012, 2015; Orsborn et al. 2012, 2014;
Hauschild et al. 2012; Collinger et al. 2013; Willett et al. 2013). Consequently, the
encoding model in these systems has been constructed by assuming that movements
are represented linearly in the spike counts. These linear encoding models have led
to decoders such as the population vector (PV), the optimal linear estimator (OLE),
the Wiener filter, and the Kalman filter (KF). However, spikes can be modeled as a
time-series of 0’s and 1’s, representing the absence or presence of a spike at a given
time, respectively. This binary time-series can be modeled as a point process (Brown
et al. 1998, 2001; Kass and Ventura 2001; Truccolo et al. 2005). Point process
models have been studied in offline or numerical simulation studies, for example
to model the spiking activity in the hippocampus (Brown et al. 1998) or for offline
motor decoding (Eden et al. 2004; Srinivasan et al. 2006; Shanechi et al. 2013b).
Recent algorithmic advances have led to closed-loop BMIs that use the spikes
directly at their millisecond time-scale using point process modeling (Shanechi et al.
2013a, 2016, 2017), resulting in performance improvements (Shanechi et al. 2017).
Here we first review the linear filters that have been vastly used in the BMI field and
then discuss the recent BMI architectures that have incorporated the spikes directly
using point process modeling.
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8.2.1 Wiener and Kalman Filters

Early BMI studies used linear filters that take as input binned spike counts or
equivalently the estimated firing rates within a given time bin. These decoders
included the Wiener filter (Serruya et al. 2002; Carmena et al. 2003; Mulliken et al.
2008; Ganguly and Carmena 2009; Suminski et al. 2010; Hochberg et al. 2006;
Willett et al. 2013) and the closely related PV (Taylor et al. 2002; Velliste et al. 2008)
and OLE algorithms (Collinger et al. 2013; Chase et al. 2009; Koyama et al. 2009).
These algorithms estimate the kinematics as a linear function of the firing rates over
a desired time-window, and have been incorporated in many BMI systems in animal
and human studies (Serruya et al. 2002; Carmena et al. 2003; Mulliken et al. 2008;
Ganguly and Carmena 2009; Suminski et al. 2010; Hochberg et al. 2006; Willett
et al. 2013; Collinger et al. 2013; Chase et al. 2009; Koyama et al. 2009; Taylor
et al. 2002; Velliste et al. 2008). However, these decoders do not include a model of
the movement in their computations. Since movements have structure, a kinematic
model of movement can further help with decoding.

Recursive Bayesian decoders (Kailath et al. 2000) can include such a dynamical
model of movement. To date, the most commonly used Bayesian decoder in the
BMI field has been the Kalman filter. Kalman filters also use as their input the
binned spike counts (Kim et al. 2008; Mulliken et al. 2008; Li et al. 2011, 2009;
Hochberg et al. 2012; Gilja et al. 2012; Orsborn et al. 2012, 2014; Hauschild
et al. 2012). A recursive Bayesian estimator consists of a prior state model and
an observation model. The state model p.x0; � � � ; xt/ characterizes the kinematic
states and the observation model p.y0; � � � ; ytjx0; � � � ; xt/ relates the neural activity
to these kinematics. The filter then computes the posterior density, p.xtjy0; � � � ; yt/

at time t based on the observations up to that time. Recursive Bayesian filters are
derived by solving the Bayes’ rule and Chapman-Kolmogorov system of equations
(Arulampalam et al. 2002). The recursions consist of a prediction step that predicts
the kinematic state at time t from its estimate at time t � 1, and an update step that
corrects this prediction using the neural observation at time t. The prediction step
finds the prediction density p.xtjy1; � � � ; yt�1/ as

p.xtjy1; � � � ; yt�1/ D
Z

p.xtjxt�1/p.xt�1jy0; � � � ; yt�1/dxt�1 (8.1)

where p.xtjxt�1/ is the known prior state transition model and p.xt�1jy0; � � � ; yt�1/
is the previous time-step posterior density. The above is the Chapman-Kolmogorov
equation. Using the Bayes’ rule, the update step finds the posterior density as

p.xtjy1; � � � ; yt/ D p.ytjxt/p.xtjy1; � � � ; yt�1/R
p.ytjxt/p.xtjy1; � � � ; yt�1/dxt

(8.2)

where p.ytjxt/ is the observation model. This creates the recursion as the present
step posterior is written as a function of the last step posterior. The minimum mean-
squared error (MMSE) estimate of the kinematic states Oxt is given by the mean of
the posterior density at time t, denoted as xtjt (Kailath et al. 2000).
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The Kalman filter is a special case of a recursive Bayesian decoder where the
prior state model and the observation model are linear and Gaussian. In this case,
the state and observation models are given as

xt D Axt�1 C wt (8.3)

yt D Hxt C qt (8.4)

This model is also referred to as a state-space model. Here A is the dynamics matrix,
and wt and qt are zero-mean white Gaussian state and observation noises with
covariances W and Q, respectively. A can be selected by fitting it to arm movements
while obeying physical laws (e.g., position is the integral of velocity), and H and Q
are the observation model parameters and need to be learned in decoder training
(see Sect. 8.3). Denoting the posterior covariance by �tjt and the prediction mean
and covariance by xtjt�1 and �tjt�1, respectively, the Kalman prediction and update
steps are

xtjt�1 D Axt�1jt�1 (8.5)

�tjt�1 D A�t�1jt�1A> C W (8.6)

Kt D �tjt�1H>.H�tjt�1H> C Q/�1 (8.7)

�tjt D .I � KtH/�tjt�1 (8.8)

xtjt D xtjt�1 C Kt.yt � Hxtjt�1/ (8.9)

where Kt is the standard Kalman gain. Kalman filters have been extensively used in
BMIs (Kim et al. 2008; Mulliken et al. 2008; Li et al. 2011; Hochberg et al. 2012;
Gilja et al. 2012; Orsborn et al. 2012, 2014; Hauschild et al. 2012) including clinical
trials (Hochberg et al. 2012; Gilja et al. 2015).

The above linear filters all take as input the spike counts computed in bin lengths
typically of 50–100 ms. They then model these counts as a Gaussian process tuned
to kinematics as in Eq. (8.4). However, spikes happen at a millisecond time-scale.
Hence linear filters control the BMI at slower time-scales than the millisecond-
by-millisecond time-scale of the spikes. Moreover, from the central limit theorem
(Kailath et al. 2000), the Gaussian approximation on the spike counts is reasonable
in the limit of a large number of spikes per bin. Thus the accuracy of the assumptions
in these linear filters depends on their bin width and may not hold at fast time-scales
(i.e, short bin-widths). These filters are thus time-scale dependent. Recent studies
have designed BMIs that run at the millisecond time-scale of the spiking activity
using point process modeling to improve performance and robustness by allowing
for rapid adaptation, control and feedback rates (Shanechi et al. 2013a, 2016, 2017).
Before presenting these high-rate BMI designs, we first present the point process
model and the corresponding point process filter (PPF).
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Fig. 8.2 Control-theoretic high-rate BMI using adaptive OFC-PPF. Figure is adapted from
Shanechi et al. (2016). (a) PPF processes the spikes directly by modeling them as a binary
time-series. This allows the PPF to have fast millisecond-by-millisecond adaptation, control, and
feedback rates. (b) The process of adaptive OFC-PPF BMI architecture is shown. During CLDA,
the OFC model is used to infer the motor intent of the subject based on the task goal (e.g., the
instructed target in a center-out task) and the visual feedback of the kinematics. A parameter PPF
is then used to estimate the parameters of the encoding models based on the OFC-inferred intended
kinematics and the simultaneously recorded spiking activity. These estimated parameters are used
in the PPF kinematic decoder. After performance converges, adaptation stops and the trained PPF
kinematic decoder is used by the subject to control the BMI

8.2.2 Point Process Filters

To directly model the spikes, we can bin them in small intervals � such that each
interval contains at most one spike (typically 1–5 ms). The resulting time-series will
be binary and consist of a sequence of 0’s and 1’s (Fig. 8.2a). This binary time-series
can then be modeled as a point process (Brown et al. 1998, 2001; Kass and Ventura
2001; Eden et al. 2004; Truccolo et al. 2005). We denote the spiking activity of
an ensemble of C neurons by N1; � � � ;Nt where Nt D .N1

t ; � � � ;NC
t / is the binary

spike events of the C neurons at time t. We assume that neurons are conditionally
independent given the kinematics states. The point process observation model for a
neural population is then given by Brown et al. (1998), Brown et al. (2001), Kass
and Ventura (2001), Eden et al. (2004), Truccolo et al. (2005)

p.Ntjxt/ D
Y

c

�
�c.tjxt;


c
t /�

�Nc
t e��c.tjxt ;


c
t /� (8.10)

Here �c.tjxt;

c
t / is the instantaneous firing rate of neuron c at time t, and 
c

t is the
model parameters for neuron c that need to be estimated in BMI training.
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The instantaneous firing rate of motor cortical neurons can be characterized as a
modified cosine tuning model (Moran and Schwartz 1999; Truccolo et al. 2005) by

�c.tjxt;

c
t / D �c.tjvt;


c
t / D exp.ˇc

t C ˛c
t
>vt/

D exp.Œ1; v>
t �


c
t /; (8.11)

where xt D Œdt; vt�
> is the kinematic state where the components represent position

and velocity in the two dimensions, respectively. Here 
c
t D Œˇc

t I ˛c
t � are the

encoding model parameters to be learned (see Sect. 8.3).
The prior kinematic model for the PPF can be written in the same form as (8.3)

in the Kalman filter but adjusting for a smaller time-scale. For example, to enforce
continuity in the evolution of velocity, this prior model can be written as

xt D Axt�1 C wt;A D

2

664

1 0 � 0

0 1 0 �

0 0 a 0

0 0 0 a

3

775 ;W D diag

2

664

0

0

w
w

3

775 (8.12)

where a and w are fit to the subject’s end-point manual kinematics using maximum-
likelihood (ML) estimation (Orsborn et al. 2012; Shanechi et al. 2016).

PPF recursions can be derived by solving the general equations in Eqs. (8.1) and
(8.2) for the prior model in Eq. (8.12) and the point process observation model in
Eq. (8.10) using Laplace-type approximations (Brown et al. 1998; Eden et al. 2004;
Truccolo et al. 2005; Shanechi et al. 2013a, 2016). For the log-linear function in
Eq. (8.11), PPF can be written as (Shanechi et al. 2013a)

xtjt�1 D Axt�1jt�1 (8.13)

�xtjt�1 D A�xt�1jt�1A
> C W (8.14)

��1
xtjt

D ��1
xtjt�1

C
CX

cD1
Q̨ c

t�1jt�1 Q̨c>
t�1jt�1�c.tjvtjt�1;
c

t�1jt�1/� (8.15)
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CX

cD1
Q̨ c

t�1jt�1.N
c
t � �c.tjvtjt�1;
c

t�1jt�1/�/ (8.16)

where 
c
t�1jt�1 D Œˇc

t�1jt�1;˛
c
t�1jt�1�

> are the estimated parameters found during

BMI training (Shanechi et al. 2016) (see Sect. 8.3), and Q̨ c
t�1jt�1 D Œ0;˛c

t�1jt�1�
>.

PPF was first used on offline decoding of rat locations in a maze based on
the hippocampal place cell spiking activity (Brown et al. 1998). Later work used
PPF for decoding of movement intention in numerical simulation or offline studies
(Brockwell et al. 2004; Srinivasan et al. 2006; Shanechi et al. 2013b; Eden et al.
2004; Truccolo et al. 2005). As we will show in Sect. 8.3, recently BMI work has
used adaptive filtering and control-theoretic modeling (Shanechi et al. 2013a,b) to
enable the development of closed-loop PPF BMIs (Shanechi et al. 2016, 2017).
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8.3 BMI Calibration

Regardless of the decoder structure, its parameters need to be learned for each
subject based on data. Thus the decoder calibration or training method is another
critical element of a BMI system. The majority of BMIs to date have been trained in
open-loop experiments prior to real-time control. In these open-loop experiments,
subjects are instructed to move their arms or imagine movements while their
neural activity is being recorded. The obtained datasets are then used to fit the
model parameters, for example using least-squares or ML methods. However, recent
studies have shown that neural representations of movement can be different for
movement of a BMI compared to arm movements or to motor imagery (Taylor et al.
2002; Carmena et al. 2003; Ganguly and Carmena 2009). These changes in neural
representation have motivated the design of adaptive algorithms that learn the model
parameters as subjects control the BMI in closed loop (Taylor et al. 2002; Velliste
et al. 2008; Gilja et al. 2012; Orsborn et al. 2012; Collinger et al. 2013; Mahmoudi
and Sanchez 2011; Hochberg et al. 2012; Dangi et al. 2014; Shanechi et al. 2016,
2017). These methods are often termed closed-loop decoder adaptation (CLDA)
algorithms.

CLDA algorithms have been guided by a closed-loop control view of the BMI
(Fig. 8.1) and have improved performance compared to open-loop training methods.
A CLDA is typically comprised of three elements. First, decoder parameters are
initialized, for example, based on arm reaching movements (Gilja et al. 2012) or
randomly (Orsborn et al. 2012; Shanechi et al. 2016). The subject then uses the
initialized decoder to make BMI movements towards instructed targets. However,
these BMI movements are not precise given the suboptimality of the initialized
decoder. Hence as the second element, an intention estimation method is used to
infer the intended kinematics during adaptation. Finally, as the third element, an
algorithm is used to fit the parameters based on the inferred intentions and the
recorded neural activity.

A common approach for intention estimation, sometimes termed the CursorGoal
method (Gilja et al. 2012; Fan et al. 2014), infers the intended velocity by assuming
that the subject aims to go straight towards the target at each time. Hence the
direction of the intended velocity is found by rotating the decoded velocity at each
time towards the instructed target. CursorGoal does not infer the intended speed and
instead sets it equal to the decoded speed. At the target, the intended speed is set
to zero.

In addition to the method of intention estimation, a CLDA algorithm should
devise a technique to learn the parameters based on the inferred intentions and
the recorded neural activity. Most CLDA methods for Kalman filters have been
batch-based. These methods collect batches of neural activity on the time-scale of
minutes, and refit the decoder parameters within these batches using ML estimation
(Gilja et al. 2012; Orsborn et al. 2012; Dangi et al. 2014). Parameter estimates from
previous batches are then either replaced with these new estimates (Gilja et al. 2012)
or averaged with previous batch estimates either continuously (Dangi et al. 2014),
or intermittently using a method termed SmoothBatch (Orsborn et al. 2012).
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CursorGoal intention estimation combined with batch-based ML methods has
been the basis for CLDA training of closed-loop Kalman filters (Gilja et al. 2012,
2015; Orsborn et al. 2012, 2014; Dangi et al. 2014). CLDA methods have improved
the performance of Kalman filters compared to open-loop training (Gilja et al.
2012). As we discuss in the next sections, the CursorGoal method of intention
estimation does not infer the speed and moreover does not model the closed-loop
processes within the BMI. Moreover, batch-based CLDA methods result in a slow
rate of adaptation on a time-scale of minutes. To resolve these issues, recent PPF
BMIs have explicitly modeled the BMI as a closed-loop controller to infer the
intended movement and have enabled a high millisecond-by-millisecond rate of
adaptation (Shanechi et al. 2016, 2017). Having provided an overview of the BMI
designs to date, we will now discuss this new control-theoretic PPF BMI design.

8.4 Control-Theoretic High-Rate BMIs Using Optimal
Feedback-Control Modeling and Adaptive Point Process
Filtering

In this section, we present our recent work that has enabled the development
of control-theoretic high-rate BMIs resulting in improvement in robustness and
performance (Shanechi et al. 2016, 2017). There are two main elements that have led
to these designs. First, these designs have explicitly modeled the BMI as an optimal
feedback control (OFC) system to better infer the brain’s motor intentions. The OFC
model has been used as a method of intention estimation during decoder adaptation.
Second, these BMIs have enabled adaptation, control, and feedback at the fast
millisecond-by-millisecond rate of the spiking activity using point process modeling
and PPF parameter and kinematic decoding. We refer to this BMI architecture as the
adaptive OFC-PPF.

In the following sections, we first present the computational elements of adaptive
OFC-PPF. We then present recent experimental data in Shanechi et al. (2016, 2017)
that show how adaptive OFC-PPF improves both the transient and the steady-
state operation of BMIs. During the learning phase, adaptive OFC-PPF allows for
faster parameter convergence compared to batch-based methods because of the
fast adaptation rates. Moreover, it results in a more accurate steady-state decoder
because of the OFC method of intention estimation (as compared with CursorGoal).
During steady-state operation, the resulting PPF decoder significantly improves
performance compared to the state-of-the-art Kalman filter due to the fast control
rate, the fast feedback rate, and the point process mathematical encoding model.
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8.4.1 Optimal Feedback-Control Model of Brain Behavior in
Closed-Loop BMI Control

A BMI system can be modeled as an optimal feedback-control system (Shanechi
et al. 2013a,b, 2016, 2017). In this model, the brain is the controller and selects the
next neural command based on the visual feedback of the prosthetic device and the
task goal. This OFC model is inspired by the theories of the natural sensorimotor
control (Todorov and Jordan 2002; Todorov 2004; Shadmehr and Krakauer 2008).
The OFC model can be constructed by specifying an approximate forward kine-
matics model, quantifying the task goals as cost functions, and modeling the visual
feedback. Adaptive OFC-PPF decoder uses this OFC model of the brain’s control
behavior to infer the subject’s intended kinematics during decoder adaptation.

We model the evolution of the kinematic states x0; : : : ; xt in the OFC model as

xt D Axt�1 C But�1 C wt�1: (8.17)

Here A and B are parameters that can be fitted based on the subject’s manual
movements, ut is the brain’s control command at time t, and wt is a zero-mean white
Gaussian state noise with covariance matrix W, which represents the uncertainty in
the forward model. We assume that the visual feedback is perfect and instantaneous,
i.e., that the subject observes the decoded kinematics xtjt at each time. This OFC
model also assumes that the brain has learned an internal forward model of
movement as evidenced in prior studies (Shadmehr and Krakauer 2008; Golub et al.
2012).

To infer the intended kinematics, we construct a cost function that quantifies
the goal of the task and then minimize the expected value of this cost function
over choices of ut. In BMI training, model adaptation is typically performed in a
supervised session in which subjects are instructed to move the prosthetic (e.g.,
cursor) towards known targets. Hence the goal in this supervised training task is to
reach the target and to stop there while using minimum effort. Again, taking the
kinematic state to be xt D Œdt; vt�

>, where the components represent the cursor’s
position and velocity in the two dimensions, and denoting the target position by d�,
we form the cost function as

J D
1X

tD1
k dt � d� k2 Cwv k vt k2 Cwr k ut k2; (8.18)

where the three terms in the sum enforce positional accuracy, stopping condition,
and energetic efficiency, respectively. The scalar weights wr and wv in the cost
function (8.18) can be approximately chosen such that the OFC model generated
movements resemble naturalistic movements. These weights can be then validated
and refined experimentally (Shanechi et al. 2016). The optimal control solution
ut at each time that minimizes the expected cost is given by a linear function of
the brain’s estimate of the state at that time (Bertsekas 2005). This is the standard
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linear-quadratic-Gaussian (LQG) solution. Given the assumption of noiseless visual
feedback, this estimate is equal to the displayed state on the screen, xtjt i.e.,

ut D �L.xtjt � x�/; (8.19)

where x� D Œd�; 0�> is the target state for position and velocity, and L is the steady-
state solution to the discrete form of the algebraic Riccati equation found recursively
and offline (Bertsekas 2005).

To learn the decoder parameters, we use the OFC model to infer the intended
velocity. The OFC model just needs knowledge of the task goal and of the visual
feedback to the subject, which are both independent of the quality of the kinematic
decoder. The visual feedback is just the decoded kinematics xtjt and the task goal is
quantified as in Eq. (8.18). Hence the intended kinematics at each time, denoted by
Qxt D Œ QdtI Qvt�

>, are found from Eqs. (8.19) and (8.17) as

Qxt D .A � BL/xtjt C BLx�: (8.20)

8.4.2 Spike-Event-Based Adaptation Using OFC-PPF

We can now use the OFC-inferred velocity and the recorded neural activity to
estimate the parameters. It is possible to fit the generalized linear model (GLM)
parameters using batch-based ML methods (Gilja et al. 2012; Orsborn et al. 2012;
Truccolo et al. 2005). For example, we can design a SmoothBatch algorithm that
finds the ML estimate of the point process parameters in Eq. (8.11) in batches of
90 s length using GLM methods, and average these batch estimates over time with
a half-life of 180 s (Orsborn et al. 2012). However, such a batch-based technique
would result in a slow rate of adaptation on the time-scale of minutes. Thus we
develop an adaptive algorithm for parameter adaptation with every spike event by
developing a parameter PPF decoder that runs in parallel to the kinematics decoder
(Fig. 8.2b).

The observation model for the parameter PPF is given by Eq. (8.10). We construct
the prior model for the parameters of each neuron as a random-walk to enforce
continuity in the evolution of parameters


c
t D 
c

t�1 C qt�1; (8.21)

where qt is white Gaussian noise with covariance matrix Q and accounts for model
mismatch. The choice of Q dictates the learning rate of the adaptive decoder. This
learning rate can be selected based on the fundamental tradeoff that it dictates
between the parameter error and convergence time as we have shown in Hsieh and
Shanechi (2015).
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For the parameters, let’s denote the one step prediction mean by 
c
tjt�1 D

E.
c
t jN1Wt�1/, the prediction covariance by �
c

tjt�1
, the minimum mean-squared

error (MMSE) estimate by 
c
tjt, and its covariance by �
c

tjt
. The parameter PPF is

again obtained using a Laplace-type (Eden et al. 2004) approximation as


c
tjt�1 D 
c

t�1jt�1 (8.22)

�
c
tjt�1

D �
c
t�1jt�1

C Q (8.23)

�
c
tjt

�1 D �
c
tjt�1

�1 C sts
>
t �c.tj Qvt;


c
tjt�1/� (8.24)


c
tjt D 
c

tjt�1 C�
c
tjt
st.N

c
t � �c.tj Qvt;


c
tjt�1/�/ (8.25)

where st D Œ1; Qv>
t �

> (see Eq. (8.11)), and Qvt (i.e., the intended velocity) is given as
in Eq. (8.20). Hence adaptive OFC-PPF estimates each neuron’s parameters at each
time step using Eqs. (8.22)–(8.25).

It is important to emphasize that adaptive OFC-PPF does not perform joint
estimation of parameters and kinematics as is done in the simulation studies in
Eden et al. (2004) and Kowalski et al. (2013). Instead, in adaptive OFC-PPF, the
parameter decoder is not affected by the kinematics decoder, which could be quite
poor initially. Adaptive OFC-PPF uses the OFC model to provide the intended
kinematics to the parameter estimator as in Eq. (8.20). This ensures that the poor
decoded kinematics do not disrupt the adaptation of the parameters. This disruption
can occur as joint estimation requires a prior joint distribution to be placed on the
kinematics and parameters. This prior joint distribution, however, cannot be easily
defined in BMI experiments since parameters and their uncertainty are initially
unknown. Indeed a joint estimator is sensitive to this prior joint distribution and
to the relative uncertainty placed on the initial parameters and kinematics (dictated
by the relative noise covariances in the prior models of kinematics and parameters in
Eqs. (8.17) and (8.21) and by the selected covariances on their initial estimates). For
poor initial parameters, if a small amount of noise is used in their prior model, the
joint estimator will likely not converge as it assumes that the parameters are closer
to the true values than they actually are. The joint estimator will instead mostly
update the decoded kinematics while assuming the wrong parameters. In contrast, in
adaptive OFC-PPF the decoded kinematics merely provide the visual feedback term
in the OFC model since the subject observes these decoded kinematics regardless
of their quality. Thus adaptive OFC-PPF convergence is not affected by the initial
kinematic decoder quality.
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8.5 Adaptive OFC-PPF Improves the Speed and Accuracy of
Parameter Estimation

We tested the adaptive OFC-PPF in closed-loop NHP experiments to assess its speed
and accuracy for closed-loop parameter adaptation. NHP’s performed a self-paced
delayed center-out reaching task under BMI control. During BMI control, the arms
were confined within a primate chair. Trials involved moving from a center target
to one of eight peripheral targets, holding there for 250 ms to receive a reward, and
then moving back to the center and holding there for 250 ms to initiate a new trial
(Shanechi et al. 2016, 2017). As our main measure of decoder performance we used
the success-rate defined as the number of trials reached per minute. We first assessed
the benefit of adaptive OFC-PPF for decoder training and adaptation.

8.5.1 OFC Intention Estimation Improves PPF Performance

We assessed the effect of the OFC component of adaptive OFC-PPF. To do so,
we first used the adaptive OFC-PPF across 12 days of NHP experiments to train
a steady-state PPF decoder. The subjects then used this PPF decoder to perform
the center-out movement task (Fig. 8.3a). We also conducted another 12 days of
experiments in which we ran the adaptive PPF algorithm, but this time incorporated
the CursorGoal method for intention estimation instead of OFC (Fig. 8.3a). We
compared the steady-state performance of the resulting PPF decoders. We found that
using the OFC intention estimation increased the success rate of the PPF decoder by
26% (Fig. 8.3b), largely due to an improved speed. In particular, reach times were
24% shorter with OFC-PPF compared with CursorGoal-PPF (Shanechi et al. 2016).

8.5.2 Spike-Event-Based Adaptation Improves the Speed of
Performance Convergence

We also studied the effect of the time-scale of adaptation. In particular, we compared
the speed by which adaptive OFC-PPF converged to proficient control compared
to batch-based methods that update the parameters on the slower time-scale of
minutes. To do so, we also ran experiments with a SmoothBatch OFC-PPF in
which we trained the PPF with slower adaptation time-scales using the batch-
based ML method of SmoothBatch (Orsborn et al. 2012), while keeping all the
other components of the algorithm the same. SmoothBatch adapts the parameters
smoothly once every 90 s. We compared the times it took for the performances of
adaptive OFC-PPF and SmoothBatch OFC-PPF to converge (i.e., to reach 90% of
the maximum performance). On average across 12 days of experiments with each
decoder, while the eventual steady-state success rate was the same, adaptive OFC-
PPF converged much faster to this steady-state level compared with SmoothBatch
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Fig. 8.3 Closed-loop intention estimation when subject is performing a self-paced center-out BMI
task. (a) Sample decoded trajectories (black), the decoded velocities (orange), and the inferred
intended velocities in the center-out task. The intended velocity computed by the CursorGoal
method of intention estimation (Gilja et al. 2012) is shown in red. The intended velocity computed
by an OFC model in which a in Eq. (8.12) is fit to the subject’s arm movements is shown in
magenta; the intended velocity computed by an OFC model that assumes the subject’s control
command directly sets the intended velocity, i.e., that a D 0 in Eq. (8.12), is shown in blue. Figure
is adapted from Shanechi et al. (2016). (b) OFC method of intention estimation (blue bar) improves
the performance of the learned PPF decoder compared with CursorGoal (red bar), suggesting that
OFC better infers the subject’s motor strategy
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Fig. 8.4 Spike-event-based adaptation enables faster convergence. Average success rate across
sessions as a function of time into the adaptive session for SmoothBatch OFC-PPF in (a) and
adaptive OFC-PPF in (b). Blue curves show the mean success rate over 12 days of experiments
for each decoder and shading reflects the standard deviation across these days. Success rate is
calculated in sliding 2 min windows. Initially, assisted training was provided to the subject to
keep them engaged in the task given the poor quality of the initialized decoders. Assistance
stopped when the subject’s non-assisted success rate exceeded the desired minimum threshold
of 5 trials/min (Shanechi et al. 2016). The red bar shows the time range in which the BMI
architecture stopped the assisted training across days. Spike-event-based adaptation resulted in
faster convergence and less variability compared with SmoothBatch adaptation that had slower
adaptation time-scale of 90 s. Figure is adapted from Shanechi et al. (2016)

OFC-PPF. The success rate in SmoothBatch OFC-PPF converged in 18:7˙ 3:2min
(mean ˙ s.e.m.) compared to 6:5˙ 0:7 min for adaptive OFC-PPF (Fig. 8.4).
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8.5.3 Adaptive OFC-PPF Is Robust to Parameter Initialization

We investigated whether adaptive OFC-PPF was robust to parameter initialization.
In general, we initialized the decoder with parameters fitted during sessions in which
NHPs simply observed the movement of the cursor. We refer to this initialization as
the visual feedback seed. These initialized decoders were poor and could not be
operated by the subjects (average success rate was zero). Hence across tens of days
of experiments, adaptive OFC-PPF could always result in high performance despite
the poor initial decoder. As a control, we also conducted 2 days of experiments
in which we started the adaptive OFC-PPF once from a visual feedback seed and
once from a seed that was obtained by randomly permuting the visual feedback
seed across neurons. We found that adaptive OFC-PPF resulted in similar high
performance regardless of the seed (Shanechi et al. 2016).

8.6 PPF Outperforms State-of-the-Art Closed-Loop Kalman
Filters

Significant progress has been made in the design of BMIs. In the last few years
the field has converged to decoding spike counts using Kalman filters (KF) that are
trained in closed-loop BMI operation (Gilja et al. 2012; Orsborn et al. 2012, 2014;
Hochberg et al. 2012). The PPF BMI is different from the KF BMIs in three major
elements, the control rate, the feedback rate, and the mathematical encoding model.
The control rate indicates how often neural commands are sent from the brain to
the prosthetic and the feedback rate indicates how often feedback of the generated
movement is provided to the subject. The state-of-the-art KF is a rate-dependent
decoder. KF is only optimal when the spike count within a bin is approximately
Gaussian distributed. Typical KF-BMIs run at 10–20 Hz such that the bins are
relatively large for the count to satisfy this assumption. In contrast, PPF processes
every spike event directly. Thus, PPF enables a fast control and a fast feedback rate
by controlling the prosthetic with every spike event and by providing feedback with
every spike event (Figs. 8.5 and 8.6). Finally, the mathematical encoding model used
in PPF BMIs is a point process unlike KF-BMIs that use a Gaussian encoding model
over the spike counts. We thus explored whether the PPF-BMI could outperform the
state-of-the-art KF-BMI and the contribution of each of the above three elements to
such improvement (Shanechi et al. 2017).

We compared the PPF-BMI to KF-BMI in two NHPs and across tens of days.
We found that monkeys could control the PPF-BMI significantly better than the
KF-BMI. All performance measures were significantly improved in the PPF-BMI
(Shanechi et al. 2017). Success rate on the center-out task in PPF-BMI was 32%
and 24% higher than the KF-BMI in the two monkeys, respectively (Fig. 8.5a, b).
We also compared the two decoders on other tasks, including a challenging obstacle
avoidance task (Fig. 8.5c). Performance was again significantly higher for the PPF-
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Fig. 8.6 Rapid control and feedback rates enhance neuroprosthetic control. (a) Subject performing
the self-paced delayed center-out BMI task. (b) The process of generating the controlled and
feedback positions in PPF, FS-PPF, and SS-PPF is shown for a hypothetical spike train. We changed
the control rate by adjusting how often the PPF decoded position was sent to the cursor to control
the task. Task success was based on these controlled positions. We changed the feedback rate by
adjusting how often the controlled positions were displayed to the subject. PPF consists of both a
fast control and a fast feedback rate, FS-PPF consists of a fast control and a slow feedback rate,
and SS-PPF consists of a slow control and a slow feedback rate. Figure is adapted from Shanechi
et al. (2017)

BMI, for example path-lengths were reduced by 30% using the PPF-BMI. These
results show that NHPs can control the PPF-BMI significantly better than the KF-
BMIs.
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8.7 Rapid Control and Feedback Rates and the Point Process
Encoding Model Result in Performance Improvement

We explore the factors that led to the significant improvement of the PPF-BMI over
the KF-BMI. In particular, we dissociated the influence of each of the factors that
were different between the two BMI decoders: the control rate, the feedback rate,
and the point process mathematical encoding model.

To dissociate the effect of control and feedback rates from the mathematical
encoding model, we explored these rate effects using the PPF. By manipulating the
control and feedback rates, we designed three variants of the PPF-BMI: A BMI with
slow control and slow feedback rate, termed SS-PPF; A BMI with fast control rate
and slow feedback rate termed FS-PPF, and the default PPF-BMI with fast control
and fast feedback rates (Fig. 8.6). Comparing SS-PPF with FS-PPF allowed us to
explore the effect of the control rate. Comparing FS-PPF with PPF then elucidated
the effect of feedback rate.

We found that increasing the control rate significantly improved BMI perfor-
mance. Even when feedback rate was slow, allowing the NHP to send control
commands faster to the prosthetic improved BMI control. While future studies
are required to understand the neural basis of this improvement, we found that
this improvement was consistent with the hypothesis that BMI control involved a
feedforward control strategy using a high-rate internal forward model (Shanechi
et al. 2017). We also found that increasing the feedback rate further improved
BMI performance by comparing FS-PPF and PPF. This may suggest that BMI
control also relies on a feedback control strategy. Together, these results suggest that
BMI control may involve a hybrid of feedforward and feedback control strategies,
consistent with theories from motor control (Desmurget and Grafton 2000).

We also assessed the contribution of the point process encoding model to
performance improvement. To do so, we compared the KF and PPF at the same
control and feedback rates. We used both a fast rate and a slow rate to make
the comparisons. We found that regardless of the rate, PPF significantly improved
performance over the KF. This result indicates that the point process encoding model
can be controlled better than the Gaussian encoding model used in the KF, and more
accurately models the spiking activity (Shanechi et al. 2017).

8.8 Conclusion

In this chapter, we first reviewed the computational elements involved in designing
a BMI decoder and provided an overview of the most common decoders used in
the field. We then focused on our recent work on a control-theoretic high-rate
decoder design that explicitly modeled the BMI as an optimal feedback-control
system and the spikes as point processes. We showed that this design improved both
the transient operation of the BMI during the training and parameter adaptation
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phase, and the steady-state operation of the BMI. The OFC model resulted in a
better estimation of the motor intent during closed-loop parameter adaptation and
hence led to more accurate steady-state PPF decoders. The fast rate of closed-loop
adaptation in the adaptive PPF improved the speed of performance convergence
compared with common batch-based techniques. Finally, at steady state, the PPF
BMI significantly improved the performance of the state-of-the-art KF BMIs
because of a faster control rate, a faster feedback rate, and the point process
encoding model.

Despite significant progress on BMI systems in recent years, these systems
still require significant improvement to become clinically viable. For example,
while BMI designs can perform 2D computer interface tasks well, they need to
be extended to allow for proficient control of dexterous high degree-of-freedom
movements, such as those of a robotic limb in 3D space. The tools presented in this
chapter can help pave the way for the design of such generalizable BMI architectures
in multiple ways.

BMI systems can be viewed as feedback-control systems in which the brain
is the controller of the prosthetic plant (Fig. 8.1). This view, for example, has
motivated the design of CLDA algorithms (Taylor et al. 2002; Velliste et al. 2008;
Collinger et al. 2013; Mahmoudi and Sanchez 2011; Hochberg et al. 2012; Gilja
et al. 2012; Orsborn et al. 2012; Dangi et al. 2014; Shanechi et al. 2016, 2017;
Hsieh and Shanechi 2015). The closed-loop control view further motivates the
explicit use of the tools of control theory to build better BMIs. Using control-
theoretic models of BMI, such as the optimal feedback control model presented
here (Shanechi et al. 2013a,b, 2016, 2017; Hsieh and Shanechi 2015), will help
make BMI designs generalizable to prosthetics with different dynamics and to more
complex tasks with various goals (Shanechi et al. 2016). The use of control-theoretic
models can also provide algorithmic design guidelines for future neuroprosthetics.
As we discussed, the fast control and feedback rates are essential in improving BMI
performance. Previous studies have also shown the importance of short delays for
neuroprosthetic performance (Willett et al. 2013). A control-theoretic model can
characterize these system properties such as delays and rates, and thus predict their
influence on closed-loop performance. Control-theoretic models can also be used to
understand the effects of BMI learning on neural adaptation and plasticity (Ganguly
and Carmena 2009; Jarosiewicz et al. 2008; Chase et al. 2012).

In this chapter we mainly reviewed designs using the spiking activity as the
control signal. However, various neural signal modalities can be incorporated
in BMIs, including spikes, local field potentials (LFP), and electrocorticogram
(ECoG). Recent technological advances have allowed for simultaneous recording
of these various scales of neural activity, from small-scale spikes to large-scale
LFP and ECoG. Allowing decoders to concurrently extract information from all
these modalities could significantly improve BMI performance. Our recent work
has developed multiscale state-space models that simultaneously model spikes, LFP,
and ECoG using a combination of point process and Gaussian encoding models to
improve decoding performance and robustness (Hsieh and Shanechi 2016, 2017;
Abbaspourazad and Shanechi 2017).
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The brain is highly plastic and non-stationary and can adapt to control a BMI
decoder over time (Taylor et al. 2002; Carmena et al. 2003; Ganguly and Carmena
2009; Orsborn et al. 2014), a process referred to as neural adaptation. Here we
presented some of the recent closed-loop decoder adaptation techniques that aim to
track the changes in neural representation as a result of neural adaptation. Decoder
and neural adaptation in BMIs create a “two-learner system” (Orsborn et al. 2014)
and can interact. It is critical to model this interaction in future studies, and study
the effect that the time-scales and the speed of adaptation have in this interplay. We
have shown that even with the fast adaptation time-scale of the adaptive PPF, neural
adaptation can still occur and improve the performance of BMI (Shanechi et al.
2016; Orsborn et al. 2014). Another critical design element in an adaptive algorithm
is the learning rate, which dictates how fast model parameters are updated based on
neural activity. Our recent work has designed principled calibration algorithms to
optimally select the learning rate for a desired parameter error and convergence time
(Hsieh and Shanechi 2015). This calibration algorithm can also help adjust the speed
of adaptation and consequently provide a tool to study the two-learner system. The
examination of how the time-scales of neural and decoder adaptation may interfere
from a theoretical perspective is also important in future studies (Merel et al. 2015).

Taken together, using the tools of control theory and statistical inference have
great potential in improving BMI decoder designs. Such algorithmic advances could
improve the performance and robustness of BMI systems. Such advances can help
pave the way for BMI clinical viability to improve the quality of life for millions of
disabled patients.
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Chapter 9
Control-Theoretic Approaches for Modeling,
Analyzing, and Manipulating Neuronal
(In)activity

ShiNung Ching

9.1 Introduction

Dynamical systems theory and computational modeling have proven to be powerful
approaches in neuroscience, insofar as they enable an increased understanding of the
mechanisms that underlie different behavioral regimes. An exemplar of this power
can be found in the study of inactivated brain dynamics associated with general
anesthesia. In the state of the general anesthesia the brain often manifests oscillatory
dynamics with structured spatial organization (Brown et al. 2010). However, the
spatial resolution with which these dynamics are observed means that a purely data-
driven approach to understanding their origins, especially at a neuronal circuit level,
is challenging. In this regard, modeling and dynamical systems analysis can advance
our understanding beyond observation alone (Ching and Brown 2014; McCarthy
et al. 2012).

An example of how modeling can clarify biophysical mechanisms can be found
in the phenomenon of burst suppression, a pattern of the electroencephalogram
(EEG) characterized by quasi-periodic alternations of high-voltage activity (burst)
and isoelectric silence (suppression) that occurs in deep general anesthesia as
well as pathological states of unconsciousness. While the major features of burst
suppression (e.g., slow cycling of bursts and suppressions distributed across the
scalp) have been relatively well-characterized, a mechanism for how the phe-
nomenology is generated in the cortex remained elusive until a series of modeling
results established a hypothesis involving slow homeostatic interactions of neural
activity and metabolic substrate (Ching et al. 2012b). These models successfully
accounted for the observed features of burst suppression while also generating
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testable predictions regarding finer aspects of the phenomenon, such as parametric
sensitivity of burst suppression ratio to the level of anesthetic drug (Liu and Ching
2017). They also helped to enable the development of new engineering solutions to
better manage burst suppression in clinical scenarios.

But perhaps even more powerful that this mechanistic elucidation is the potential
for modeling to suggest links between brain dynamics and function. In this regard,
dynamical systems analysis can play an instrumental role. This process is exempli-
fied by the characterization of anesthesia-induced synchronized alpha oscillations.
More specifically, it has been known that the general anesthetic drug propofol
induces 11–14 Hz alpha oscillations that tend to be coherent across the frontal
regions of the scalp as measured by EEG (Cimenser et al. 2011; Purdon et al. 2013).
Modeling has helped to clarify a potential mechanism for these oscillations, namely
the elongation of inhibitory time-scales (due to propofol) leading to synchronization
with intrinsic rhythms in the thalamus, thus promoting synchronization (Ching
et al. 2010; Vijayan et al. 2013). Such modeling efforts help to create a set of
structured hypotheses that can guide experiments. Indeed, recent invasive recordings
substantiate the notion of propofol-induced thalamocortical synchronization (Flores
et al. 2017). Moreover, the modeling provides a hypothesis not just for the origin
oscillations, but the link between the oscillations and the state of unconsciousness.
Namely, the notion that thalamocortical synchronization impairs or impedes the
normal dynamics and information propagation needed to sustain cognitive function.

This latter hypothesis is, at a conceptual level, related to the formalisms of
systems and control theory, which focuses on how the dynamics of a system affects
the ability to manipulate it via exogenous inputs (Sontag 2013). In the above
anesthesia context, the thalamocortical system, by virtue of being in a synchronous
dynamical regime, is harder to “control,” (for example via ascending excitation or
afferent sensory activity). This chapter will discuss a line of study related to the
formalization of this idea with specific focus on mathematically linking neuronal
circuit dynamics to control and information processing properties. While focus will
be directed at understanding inactivated neuronal regimes, such as during general
anesthesia, the overall framework is quite generalizable and other examples of
theoretical neuroscience studies will be presented, including efforts to understand
the effects of neural plasticity on circuit sensitivity. Such efforts have the potential to
lead not just to new hypothesis, but advances in practical approaches for data-driven
inference of brain states as well as optimization of extrinsic control strategies to
manipulate brain activity, and examples of these applications will also be discussed.

9.2 Neural Trajectories and Control-Theoretic Analysis of
Brain Dynamics

Quantitative electrophysiology has traditionally been centered on so-called spectral
analysis, in which a signal is decomposed into constituent frequency components
(e.g., EEG bands) by expansion in the Fourier basis. As a companion to such
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A B C

Fig. 9.1 Control-theoretic analysis. In systems theory, dynamics are analyzed as a property of the
underlying physical system and not activity per se. (a) A plane is observed flying in a straight line.
That observation alone does not describe the dynamics. (b) In reality, the aircraft could, at any
time, execute a set of possible trajectories, constrained and subject to its dynamics. Within this
“reachable set,” certain trajectories might be harder to realize than others, e.g., the red versus blue
maneuvers. (c) A substantial focus in brain medicine has centered on observing and statistically
characterizing brain activity, e.g., via electrophysiological recordings. A particular observation
(e.g., (i)), is only one possible realization within the reachable set of “neural trajectories” (e.g.,
(ii)). Within the reachable set, certain trajectories (patterns) may be harder to realize than others
(e.g., (iii)). We may hypothesize that states of brain inactivity, such as general anesthesia, are
associated with neuronal dynamics that ultimately contracts the set of reachable neural trajectories

descriptive analyses, EEG activity can be viewed through the lens of systems theory,
which does not determine the patterns embedded in the signal per se, but rather
attempts to directly reveal the characteristics of the neural substrate (i.e., the neural
circuit dynamics) that underlie those patterns. In particular, control theory can help
to reveal the input to output transformations mediated by the dynamics in ques-
tion, thus allowing inferences on signal propagation and, potentially, information
processing.

Dynamical systems and control theory, a branch of mathematics and engineering,
centers on the characterization of complex systems subject to exogenous stimuli.
The central question in control theory is: how easy is it to control a given system, for
example an airplane (see Fig. 9.1)? Answering these questions is possible because,
for such engineered systems, we have excellent models for how these systems
behave subject to the laws of physics that is, we understand their dynamics.

Although our understanding of neuronal dynamics is grossly incomplete com-
pared to engineered systems, we can nevertheless formulate tractable, biophysical,
dynamical-systems models that capture key spatiotemporal features of neuronal
activity at microscopic and macroscopic scales, for example those discussed
above as well as neural field models that describe the EEG activity induced by
certain classes of anesthetic drugs (Ching and Brown 2014). Such models can be
coupled with systems-theoretic analysis in order to describe electrical activity in
the inactivated brain. By virtue of using a generative model, this approach has the
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advantage of directly yielding mechanistic characterizations: for instance, are the
circuit dynamics more, or less, labile (see Fig. 9.1d)? In addition to mechanistic
interpretations, practical solutions for neuromonitoring can also be realized by
opening a wider space of model-based metrics upon which to build biomarkers;
and the overall paradigm can be readily applied to a wide range of neurological
conditions.

Thus, in the sense of systems theory, states of altered arousal including general
anesthesia can be fundamentally characterized by a contraction in lability, i.e.,
the dynamic range of realizable neuronal trajectories. Said more mathematically:
suppose A is the set of all neural activation patterns that are realized in the course
of normal cognition and function. Now, suppose that B is the set of all realizable
patterns during general anesthesia or perhaps, injury. Then,B  A . In other words,
the inactivated brain, in addition to being less active, is also less labile—it simply
cannot do as much. Such a hypothesis is in line with anecdotal observations that
EEG waveforms of brain injured patients are less dynamic in a manner that is
not restricted to rhythmicity (though, oscillations may be a particularly important
manifestation of said dynamics).

We will proceed to discuss various ways in which these systems-theoretic
concepts can be examined in the context of brain dynamics.

9.3 Reachability and Controllability as Surrogates for
Information Processing

9.3.1 Anesthesia as a Contraction in Reachability

To illustrate the major premise of this chapter we can return to the examples
discussed in the Introduction section, namely dynamical systems-based models for
neuronal networks in the context of general anesthetic drugs. Specifically, in Ching
et al. (2010), a biophysical model was developed to explain the genesis of 11–
13 Hz alpha oscillations that occur concomitant with loss of consciousness, due
to the anesthetic drug propofol (see time-frequency spectrogram in Fig. 9.2a). The
model attributes this electrophysiological phenomenon to the effect of propofol
on GABAergic inhibition in thalamocortical networks (see Fig. 9.2b). Specifically,
amplifying the weight of this connection, wIE , caused the synchronization of
neurons into 11–13 Hz oscillations (see Fig. 9.2b, c). In the sense of dynamical
systems, this effect can be understood as the emergence of a stable limit cycle
in the network via a bifurcation with respect to wIE. While such analysis is itself
interesting, even more intriguing is considering the extent to which these emergent
dynamics might be causal to the associated behavior, i.e., loss of consciousness.
In considering this, we go beyond intrinsic dynamics and consider the inputs that
impinge on the network.
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Fig. 9.2 (a) The general anesthetic propofol produces narrowband 11–13 Hz EEG activity
concomitant with loss of consciousness (LOC) (spectrogram adapted from Purdon et al. (2013). (b)
We have developed dynamical systems models for thalamic networks, a central relay center in the
brain, wherein the actions of propofol amount to potentiation of inhibitory synaptic connections,
here schematized through wIE . (c) Model output spectrogram from Ching et al. (2010) for
parametric modulation of wIE , noting similarity with part (a). The nonlinear controllability index,
obtained from a low dimensional version of the model, indicates a precipitous loss of controllability
at parameterizations concomitant with LOC

Specifically, we note that the neuronal region in question, the thalamus, does not
exist in isolation—in fact, it is a primary relay center in the brain (see Fig. 9.2b),
receiving feedforward excitation from a host of afferent sensory modalities, as well
as feedback excitation from higher cortical areas. Thus, we can pose the following
systems-theoretic hypothesis: that loss of consciousness is associated with changes
in the controllability of the network with respect to these different inputs. Or, said
more strongly, that a contraction in the reachable space of thalamic networks leads
to a loss of the information processing required in order to support cognition.

To discuss an analysis framework compatible with the above hypothesis, we will
consider models of the general form:

Pxi D f˛i .xi/C g .x/C
X̋

jD1

ijrj; Prj D �u

i

�
rbasej � rj

�C
�X

kD1
�jkh.Fk/: (9.1)

Here, the variables xi 2 R
n describe the state of the ith neuron in the modeled

network, x D Œx1; : : : ; xM� describes all neurons in the network and the vector
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F.t/ 	 .F1.t/;F2.t/; : : : ;F�.t// denotes a time-varying input (stimulus) in a �-
dimensional space of features. The variables ri 2 R

n describe receptor neuronal
activity, such that each receptor neuron is tuned via h.�/ to specific features via
the weights �jk. The function f˛i.�/ describes the intrinsic neuronal dynamics,
parametrized by ˛i 2 R

q. The function g.�/ governs network structure and
dynamics.

The main question, enabled by this modeling formalism, is how the dynamics of
such a neuronal network mediate the transformation between the afferent stimulus
contained in F.t/ and the consequent network trajectory x.t/. In control theory, these
properties are captured through the notion of controllability, and its generalization,
reachability. Controllability is a general systems-theoretic property that describes
the ability of an input to “steer” a system along arbitrary state trajectories (Kalman
1959; Khalil and Grizzle 2002). In the context of neural activity, controllability asks:
could a particular spiking pattern or brain activation trajectory, chosen at random, be
induced, or “reached,” via an input? If any pattern can be reached, then the network
is controllable. In this sense, controllability describes a system’s expressiveness.
The larger the space of reachable trajectories, the more diverse the range of inputs
that can, for instance, be encoded. Importantly, there exists a fundamental tradeoff
between controllability and the ability of a system to reject disturbances or noise
(Freudenberg et al. 2003; Khalil and Grizzle 2002). Systems-theoretic analysis of
sensitivity—the resiliency of trajectories to external perturbations—can characterize
this tradeoff.

However, attempting to perform formal reachability analysis on high dimensional
networks of the form (9.1) is analytically challenging. Indeed, exact analysis is
usually only possible by making potentially strong assumptions about linearity of
dynamics or focussing on structural aspects of the underlying dynamical system
(Liu et al. 2011). Further, controllability is not a monolithic concept—systems may
be technically “controllable,” even though the inputs required to effect the control
may be, for all intents and purposes, infeasible (Cowan et al. 2012).

Nevertheless, for certain small network configurations, a controllability analysis
can be carried out. As a demonstration of the concept, we considered small thalamic
network motifs. Despite their limited scale, the dynamics of such motifs are
informative because they tend to be overrepresented in larger network topologies
(Milo et al. 2002).

We proceeded to perform a (local) nonlinear controllability analysis on a 2-
neuron motif (Fig. 9.2b) from the model in Ching et al. (2010). Note that the
controllability of a nonlinear dynamical system is characterized through the Lie
algebra generated by its vector field (Khalil and Grizzle 2002; Hermann and Krener
1977). In the case of a linear system, this amounts to a rank condition on the well-
known controllability matrix (Chen 1995). Here, an analogous matrix is computed
via evaluation of Lie brackets from network outputs. Specifically, the network Lie
brackets can be computed analytically (using symbolic manipulation software) and
evaluated to construct the nonlinear controllability matrix (Khalil and Grizzle 2002).
The singular values of this matrix are used to compute the controllability index
(Haynes and Hermes 1970) through which a relativistic notion of controllability for
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different network parameterizations can be studied. Indeed, such an approach has
previously been used to show the effect of symmetries in small networks in Whalen
et al. (2015). Figure 9.2b shows this controllability index as a function of wIE ,
i.e., the modeled action of propofol. The result affirms the conceptual hypothesis
that controllability deteriorates rapidly with increasing drug dose. In other words,
according to the model, the dynamics of the network under propofol are not as
labile as they are without the drug , which is indeed consistent with the motivating
premise, i.e., contracted reachability as a hypothetical systems-theoretic mechanism
for unconsciousness.

9.3.2 Controllability and Plasticity

The systems-theoretic analytical approach can be generalized to many questions
in theoretical neuroscience. For example, the notion of controllability is directly
related to the sensitivity of networks to afferent inputs, which is a key issue in
sensory neuroscience (see, Fig. 9.3 and recall Eq. (9.1)). Consider, for instance,
a behavioral experiment involving repetitive presentations of a sensory stimulus
(Fig. 9.3b). We posit the following question: with each successive presentation,
how “different” should a competing stimulus be in order for discernment to occur.
Here, difference can be understood in two ways: (i) the intensity, or energy, of
the competing stimulus; and (ii) its orientation, or novelty, with respect to the
background.

These questions can be accessed by using analyses adapted from the systems-
theoretic notions of controllability and reachability, or, again, the ability of a
dynamical system to be “steered” with respect to exogenous inputs. Further, it
is straightforward to examine how such control-theoretic properties change as a
function of time, due to the dynamics of neural plasticity (Kumar and Ching
2016). Such an analysis proceeds by using contemporary controllability metrics
(Pasqualetti et al. 2014) as well as assays of sensitivity to orientation and stimulus
novelty (Menolascino and Ching 2017). This latter measure describes the difference
in angular orientation of the current input u.t/ with respect to a past input v.t/ in
terms of the inner product

Z T

0

u.t/ � v.t � T/dt (9.2)

Equipped with this measure, we obtain the minimally novelty input (relative to prior
inputs) that induces a given state transfer. In this way, the metric can characterize
the smallest change in orientation required for a discernible trajectory change. By
combining this analysis with conventional minimum energy-based analysis (i.e, the
smallest

R T
0 ku.t/k22dt required for the same state change), we can comprehensively

assess controllability in a time- and stimulus-dependent fashion.
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Fig. 9.3 (a) We consider control-theoretic properties of prototypical sensory networks whose
inputs F(t) exist in a high-dimensional feature-space. (b) A repetitive stimulus induces trajectories
(c, d) without, and in the presence of, plasticity. We ask how “different” a competing stimulus
should be, at moments in time (blue, green points) in order to induce an altered (discernible)
trajectory

To illustrate this analysis, we proceed to deploy this paradigm to study recurrent,
E–I rate networks wherein the dynamics of the ith neuron are described by:

�i
dri

dt
D �ri C 1

1C exp

�
PN

j¤iD1.�1/˛wi;jrj C Ii.t/
�� (9.3)

Here, ri is the time-varying firing rate of the neuron, �i is the time constant in
milliseconds, wi;j is the synaptic weight (connectivity strength) of the synapse from
neuron j to neuron i, Ii.t/ is the external input to the neuron i, and N is the total
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number of neurons in the network. ˛ D 1 if the neuron j is inhibitory, and ˛ D 2

if the neuron j is excitatory. Activity-dependent dynamical evolution of the synaptic
weight wi;j is described by the Oja rule

�i;j
dwi;j

dt
D rirj � ˇr2i wi;j: (9.4)

Here, �i;j is the time constant in milliseconds and ˇ > 0 is a constant. For our study,
we consider 20% of the neurons in the network as inhibitory. Further, we exclude E–
E synaptic connections. With this setup of the recurrent network, we first obtain the
baseline firing rate of neurons as well as the synaptic weights by stimulating these
neurons with constant input currents (i.e., Ii.t/ D Ii) over a sufficiently long period
of time such that the steady state of the network is reached. The time constants
�i and �i;j are chosen from uniform distributions U .40; 60/ and U .1000; 1500/,
respectively. The initial synaptic weights are chosen from a uniform distribution
1
NU .0; 1/, which are then normalized to ensure that

PN
jD1 w2i;j D 1 for all i D

1; 2; : : : ;N. The parameter ˇ is set to 1.
Next, we study the effect of the long-term plasticity on the network dynamics

by repeating a designed, constant, stimulus, presented on top of a nonzero baseline
input. In each successive trial, the stimulus is presented for a specified time duration
(T1), then turned off (for a duration T2). Figure 9.4a shows the firing rate trajectories
of neurons, projected into a three-dimensional space using principal component
analysis (PCA), in a recurrent network of 10 neurons. Here, trajectories become
overlapped after about 8 presentations.

We proceed to characterize the network controllability at the end of each stimulus
trial. To do so, we locally linearize Eq. (9.3) with respect to ri (state dynamic
matrix) and Ii.t/ (input matrix), i D 1; 2; : : : ;N. We then compute the minimum
(average) novelty and energy required to drive the linearized network with fixed
synaptic weights a unit distance in the direction of minimum-energy eigenvector
of the Controllability Gramian. Figure 9.4b, c shows novelty-based and minimum
energy-based characterizations, respectively. As shown here, in this particular case,
the long-term plasticity reconfigures the network (in terms of synaptic weights) such
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Fig. 9.4 Effects of long-term plasticity on the controllability of a rate-based sensory network.
(a) Firing rate trajectories over many stimulus trials in a network of 10 neurons, projected in
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that the network becomes “easier” to control (less energy and novelty are required).
Moreover, a sudden change is observed in both novelty and the minimum energy
after 8 stimulations. We confirm such drastic changes in the controllability in our
simulations by studying various networks, both by changing network parameters
and the size of the network (figures not shown).

These simulation results reveal the significance of plasticity in modifying the
control-theoretic properties of large neuronal networks. The utility of this theory
will ultimately be in the prediction and explanation of behavioral responses in
complex, overlapping stimulus environments. Many additional details regarding
these results can be found in Kumar and Ching (2016).

9.3.3 Controllability Analysis in Neuroscience

For the reasons outlined in this section, controllability analysis is emerging as a
powerful tool in the analysis of brain networks. Particular applications include the
analysis of large scale brain networks parameterized from diffusion tensor imaging
and functional magnetic resonance imaging (fMRI) (Gu et al. 2015). Perhaps the
major challenge in this line of research will be reconciling the theoretical formalism
with the analytical challenges that often necessitate making simplifying assumptions
on the dynamics of the networks in question. One path to obviating these challenges
may be to focus analysis on smaller circuit configurations at either region or
neuronal scale (Ching and Ritt 2013; Li et al. 2013; Whalen et al. 2015).

In the context of small spiking networks, the use of statistical models, such
as the popular point-process family (Truccolo et al. 2005), may prove fruitful
in understanding controllability. This class of models allows for more relaxed,
probabilistic notions of controllability such as the notion of a viable pattern set.
Specifically, consider an arbitrary M-dimensional point process-generalized linear
model (PP-GLM) defined over I intervals. Given a probability threshold 
, the 
-
Viable Pattern Set, ˙.
I M; I/, is the set of patterns for which there exists u 2
U , i.e.,

˙.
I M; I/ D fN j P.N j u/ > 
; u 2 U g; (9.5)

where U denotes the set of admissible inputs. That is, ˙.
I M; I/ amounts to a
reachable set of spiking patterns for a specific probability/likelihood level, subject
to input constraints. By performing optimization over 
, such an analysis can be
used to assay the controllability of small network configurations. For example,
Fig. 9.5 illustrates the approximate reachable set size as a function of connectivity
strength for symmetric and asymmetric network configurations. Two observations
are of note in this figure. First, a small amount of connectivity (via the connectivity
strength) is advantageous for controllability, beyond which controllability decreases
monotonically. Second, an asymmetric topology is, in general, more controllable
than a symmetric topology, consistent to dynamical studies in 3-neuron motifs
(Whalen et al. 2015).
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Fig. 9.5 (a) Symmetric
and assymetric morifs,
(b) Generalized linear model
(GLM)-based control analysis
can disassociate symmetric
and asymmetric connectivity
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Many additional details regarding these results on statistical characterizations of
controllability at the spatial scale of spiking networks can be found in Nandi et al.
(2017a).

9.4 Model-Based Control of Dynamics and Brain Network
Activity

The above analysis frameworks serve as an important precursor to actual neurocon-
trol, i.e., the direct manipulation of brain activity through exogenous stimulation.
The applications of such manipulation are broad, including: neurostimulation to
abate pathological dynamical phenomena such as seizure-like activity (Ching et al.
2012a; Ehrens et al. 2015) or subcortical synchronization in the context of motor
disorders (Santaniello et al. 2015); stimulation to induce structured patterns of
neural activity in studies of neural coding (Ching and Ritt 2013; Nandi et al.
2017a; Ritt and Ching 2015) using electrical or optical stimulation; or identification
of structural connections within the brain through active probing (Lepage et al.
2013a,b).
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9.4.1 Spike Control in Small Network Motifs

One example of a neurocontrol problem pertinent to optogenetic neurocontrol
(Ching and Ritt 2013) involves inducing structured spike patterns in small networks
of neurons. Consider the well-studied leaky integrate-and-fire (IF) neuron model
in which the dynamics of the membrane potential vi.t/ of the ith neuron (in a
population) is given by:

Ci
dvi.t/

dt
D .Vrest � vi.t//

Ri
C ˇiu.t/ (9.6)

where Vrest is the resting potential, Ri is the total membrane resistance, Ci is the total
membrane capacitance, u.t/ is the external (control) input. If at time ts, any neuron
reaches the threshold voltage VT , i.e. v.ts/ D VT , a spike is said to be generated.
After each spike, the membrane potential is reset via

v.tCs / D Vrest (9.7)

Thus, the dynamics of Eq. (9.6) are linear, complicated largely by the presence
of the discontinuous state reset Eq. (9.7). Note that the input is not indexed by i
which highlights the notion of underactuation, wherein a single (stimulating) input
impinges on the entire population, which is a likely scenario in currently available
neurostimulation technologies.

Mathematically, we can formulate the control design of u.t/ to create precise
spiking in populations of IF neurons. Consider M uncoupled IF neurons of the
form (9.6), with re-arranged parameters described by:

0

B@
Pv1
:::

PvM

1

CA D

0

B@
�a1 : : : 0

: : :

0 : : : �aM

1

CA

0

B@
v1
:::

vM

1

CAC

0

B@
b1
:::

bM

1

CA u

D f .V; u/ D AV C bu

(9.8)

where, from Eq. (9.6), ai D 1
RiCi

, bi D ˇi
Ci

, ai; bi > 0 for i D 1; : : : ;M and the
origin translated to eliminate Vrest. Suppose our goal is to induce a spike in a given
neuron, while other neurons stay silent. Without loss of generality for a target spike
in Neuron 1 in a population of M neurons we can set up the following regularized
time optimal problem:

minimize
u2U J.u/ D

Z �

0

dt C 1

2
� .wV.�//>w V.�/

s.t. v1.�/ D VT

(9.9)

where w D Œ0 k2 : : : kM�, ki � 0, 8 i D 2 : : :M, the admissible set U D ŒU1;U2�

and � is the regularization constant.
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Along with the selectivity if we want to minimize the energy of the control u.t/ as
well, we can add one more term in the integral of the objective. Once again without
loss of generality for a target spike in Neuron 1 in a population of M neurons, we
formulate the following regularized minimum time-energy optimal control problem:

minimize
u2U J.u/ D

Z �

0

�
1C 1

2

u2

�
dt C 1

2
� .wV.�//>wV.�/

s.t. v1.�/ D VT

(9.10)

where 
 is the second regularization constant for the trade-off between the time and
energy in the objective and the admissible set U D R.

Details regarding the solutions to these and related problems can be found in
Ching and Ritt (2013), Nandi et al. (2017a,b). We illustrate the numerical results for
a population of M D 7 neurons with L D 2 inputs and random parametrization for
the resistance and capacitance of each cell, so that

EŒR� D 0:5G�; �ŒR� D 0:05G�

EŒC� D 300 pF; �ŒC� D 2 pF

VT D 30mV; ˇ D 2

U1 D �2:5 nA; U2 D 2:5 nA .for P2/

w D Œ0 1 : : : 1�:

(9.11)

In Fig. 9.6c, we plot the solution of Eq. (9.10) demonstrate the effect of regular-
ization for the selective spiking problem. In the left panel .� D 0/ and along with
the intended spikes in Neuron 1, we observe collateral spiking in the population.
In the right panel .� ¤ 0/ and we see that selectivity is improved by adding
regularization. These solutions are obtained numerically by solving Eq. (9.10)
as two point boundary value problem. By embedding this method in a greedy
algorithm, we are able to effect control of longer spiking patterns, as illustrated
in Fig. 9.6d.

9.4.2 Control via Pharmacology

Finally, we can return to anesthesia and brain inactivation. As we noted in the
introduction, an increased understanding of dynamics can aid in the development
of new engineering solutions for dosing neural pharmacology. Such designs can be
similarly formulated as an exogenous neurocontrol problem (Kumar et al. 2016), for
applications including closed-loop control of medical coma (Chemali et al. 2013;
Ching et al. 2013; Liberman et al. 2013).



232 S. Ching

Rectangular
Pulse

t

Control
Signal u(t)

t

A

B

u1

u2

0

30

0

12

6

0 40 80 120 160

V
o
ltag

e
C
o
n
tro

l

Time

V2

V3

V4

V5

V1

Target Spike Achieved Spike

C

D

Fig. 9.6 (a) Typical neurostimulation paradigms in neuroscience involve applying perturbative
pulses to cell populations. (b) Principled control design can enable the creation of more structured
patterns/trajectories of spiking activity. (c) Left: The voltage trajectories and controls are shown as
a function of time with no regularization on the terminal states .� D 0; 
 D 0:1/ in P3. In this case
four collateral spikes are induced along with Neuron 1. Right: Voltage trajectories and controls are
shown for the regularized problem with .� D 5VT ; 
 D 0:1/. In this case too the selective spiking
in Neuron 1 is ensured. Note that for both the cases � D 0; � D 5VT , the optimal controls take the
form of exponential kernels. (d) Circles in the top two rows: Target and achieved spikes placed at
corresponding times, color coded to represent neuron indices. Top Panel: Neuron voltages excited
by the one step greedy design. Bottom Panel: Optimized control generated stepwise for each spike
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Almost generically, neurally active drugs such as general anesthetics act by
binding to targets at the molecular receptor level, leading to altered synaptic
transmission (Ching and Brown 2014). Thus, control design for pharmacology can
be conceived of in terms of drug–receptor interaction wherein the final goal is to
achieve a certain state in the receptor space, i.e., the fraction of receptors bound
for each of N receptors. The premise is that brain dynamics and corresponding
behavioral outcomes can be more accurately and more generally mapped in the
receptor space, rather than to particular site concentration of a specific drug.
Consequently, dosing strategies involving potentially complex combinations of
drugs can be studied and optimized.

The problem at hand is nontrivial since individual drugs can target multiple
receptors and the same type of receptor can be targeted by multiple drugs. For
example, propofol, an anesthetic drug that produces a spectrum of behavioral effects
from paradoxical excitation to unconsciousness, targets at least GABAA and HCN1
receptors (Ching et al. 2010; Vijayan et al. 2013). As in the case of neurostimulation,
attempting to modulate binding to both receptors independently is an underactuated
control problem, where the number of inputs (drugs, here just one) is less than
the dimensionality of the system to be controlled (receptors, here two). On the
other hand, certain classes of drugs overlap in their primary receptor targets. In
such a case, the system at hand has fewer degrees of freedom than it has inputs.
Multivariate control-theoretic methods can be used to handle both of these types of
design scenarios (Kumar et al. 2016) and we highlight a few salient details of this
approach herein.

Specifically, we demonstrate the use of our design methodology to induce a
well-defined dynamical regime in a biophysical neuronal network. Specifically,
we consider the phenomenon of paradoxical excitation due to the anesthetic drug
propofol (McCarthy et al. 2008, 2012), wherein, at low drug concentration, an
excitable behavioral state is manifest and, further, is associated with relatively
electrophysiological activity in the “ˇ” (13–20 Hz) band.

We considered the biophysical neuronal network model for paradoxical exci-
tation formulated in McCarthy et al. (2008). In this model, the concentration of
propofol maps directly to the dynamics of the GABAA inhibitory synaptic current.
In order to implement our design, we use existing in vitro descriptions of propofol
affinity (Eghbali et al. 2003; Jin et al. 2009) to model the intermediate dynamics
of the drug binding to the GABAA receptors themselves. Because of the inherently
diffusive nature though which drugs permeate in the body, we can in general assume
a linear n compartment pharmacokinetics model of the form:

dX.t/

dt
D AX.t/C Bu.t/: (9.12)

Here, the ith component of X.t/ 2 R
n�1C represents the concentration of the drug

in the ith compartment, A 2 R
n�n models the rates of diffusion (pharmacokinetics

parameters) between the compartments, u.t/ 2 R
1�1C is the rate of infusion of the

drug to the central compartment (infusion site), and B 2 R
n�1C is a scaling constant.
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The concentration xnC1.t/ of the drug at the effect site is given by

dxnC1.t/
dt

D keo.x1.t/ � xnC1.t//: (9.13)

Here, keo is a rate constant and x1.t/ is the effect site concentration.
Interaction of a drug with its molecular targets is typically described by the

following kinetic reaction:

ŒCe�C ŒR� , Œk.1/�Œk.2/�ŒCeR� (9.14)

Here ŒCe� D xnC1 is the concentration of the drug at the effect site, ŒR� is the
number of free receptors, and ŒCeR� is the number of bound receptors. The constants
k.1/ and k.2/ are the rates of binding and unbinding, respectively. Thus, the rate of
change of ŒCeR� is expressed as

dŒCeR�

dt
D k.1/xnC1ŒR� � k.2/ŒCeR�: (9.15)

By letting y D ŒCeR�=.ŒCeR� C ŒR�/ denote the fraction of receptors that are bound
at time t (and since the total number of receptors (i.e., ŒCeR�C ŒR�) is fixed) we can
rewrite Eq. (9.15) as

dy.t/

dt
D k.1/xnC1.t/.1 � y.t// � k.2/y.t/: (9.16)

In the presence of multiple drugs binding to a single receptor, the dynamics of the
fraction of bound receptors of type j with respect to drug i (i.e., yi;j) at time t is then
given by

dyi;j.t/

dt
D k.1/i;j xnC1;i.t/

 
1 �

mX

lD1
yl;j.t/

!
� k.2/i;j yi;j.t/: (9.17)

Here xnC1;i is the concentration of drug i at the effect site at time t, k.1/i;j and k.2/i;j are
the rate constants of binding and unbinding, respectively, of receptors of type j with
drug i, and m is the total number of drugs. At time t, the total fraction of bound
receptors of type j is given by

yj.t/ D
mX

iD1
yi;j.t/: (9.18)

Equations (9.12), (9.13), (9.17), and (9.18) represent a nonnegative dynamical
system which completely describes the dynamics from drug infusion to receptor
binding.
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Fig. 9.7 Design of optimal dosing to target paradoxical excitation with propofol. (a) Spectrogram
of the model output as a function of the fraction of GABAA receptors bound by propofol. (b) The
model consists of reciprocally coupled Excitatory and Inhibitory neurons, each modeled using
voltage gated conductance equations. The fraction of receptors bound modulates the GABA-ergic
synaptic conductance and decay time. The design objective here is to induce the paradoxically
elevated firing rate, corresponding to approximately 70% of receptors bound. (c) The optimal dose
trajectories. (d) Model output frequency and (e) fraction bound trajectories are shown for `1 and
`2-based cost functions

What remains to be specified is a mapping from y.t/ to some physiological
measurable, such as the aforementioned “ˇ” power. If a one-to-one mapping can
be found, then the control design can proceed through a variety of contemporary
control design methods. Figure 9.7a shows the neuronal firing rate of this model as
a function of the fraction of GABAA receptors bound by propofol. As shown, the
model exhibits an increase in neuronal firing rate over a narrow window of fraction
bound. This increase is the putative “paradoxical” excitation, since ostensibly,
inhibition is increasing monotonically relative to binding.

Here, for illustrative purposes, we formulate a design objective to induce this
paradoxical state noting from Fig. 9.7a that it corresponds to approximately a 0.715
fraction bound.

We proceed to design several different control strategies by optimizing different
objective functions. Figure 9.7c shows the sparse dosing of propofol obtained by

minimizing the `1 norm based cost function (i.e., p1
PNp.k/�1

lD0 ju1.k C l j k/j
with p1 D 1). As shown in this figure, the optimal strategy is temporally sparse
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and, indeed, assumes the form of a bolus—a quick “push” of concentration at
the beginning of the design window that ensures that the receptor trajectory
rises to the target (i.e., 0.715) according to the intrinsic dynamics (Fig. 9.7d, e).
Figure 9.7c also depicts the dosing solution obtained by minimizing the `2 norm

based quadratic cost function (i.e.,
PNp.k/�1

lD0 p22u2.k C l j k/2). As shown in this
figure, propofol is administered at a relatively low rate, but continuously, leading to
a more gradual binding that nevertheless achieves the desired state at the specified
time (Fig. 9.7d, e).

The two solutions are, clearly, qualitatively different, however, the absolute
quantity of drug used is commensurate in both cases. Hence, the final decision
on strategy may be determined by secondary constraints, such as wanting to rise
through intermediate states as quickly as possible (e.g., in the bolus-type strategy).

9.5 Conclusion

With the advent of new recording modalities, observing the activity in neural circuits
is possible with ever-increasing spatial and temporal precision. Such capacity offers
tantalizing possibilities for understanding the processes that govern cognition, as
well as clinically important brain states such as general anesthesia and disorders of
consciousness. However, to fully realize this potential will require not just the tech-
nology itself, but also accompanying theoretical innovations within mathematics
and engineering. Perhaps most obvious is the need for advances in data science and
statistics, in order to enable direct interpretation and extraction of salient features
from neural recordings. However, in parallel, theoretical approaches in dynamical
systems modeling and control-theoretic analysis can be powerful tools for generat-
ing mechanistic insight and hypotheses. Further, such methods can directly interface
with technologies for manipulating brain activity that can work in a experiment-
theory-validation loop towards both scientific and clinical endpoints. This chapter
has provided several examples that demonstrate the conceptual advances that can
be realized through such an interdisciplinary framework. In this regard, the further
integration of neuroscience with engineering and mathematics—especially in the
early training of students—promises to unlock even greater successes, as evidenced
by the breadth and significance of research in this monograph.
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Chapter 10
From Physiological Signals to Pulsatile
Dynamics: A Sparse System Identification
Approach

Rose T. Faghih

10.1 Introduction

Observed pulsatile physiological experimental data such as neuroendocrine data
and electrodermal activity (EDA) data are stimulated by a well-known sequence of
impulsive brain signals. An important question in neural signal analysis involves
determining the timing and amplitude of brain impulsive signals from single or
concurrent time series of pulsatile physiological experimental data. Solution of
this problem has important implications for understanding normal and patholog-
ical neuroendocrine and affective states. Transmission of information via pul-
satile/intermittent signaling is very different from continuous signaling and some
disorders are associated with dysregulation of the physiological pulsatile activity.
Hence, understanding the underlying nature of pulsatile release of physiological
data via mathematical formalization can be beneficial to understanding the patho-
logical states and could lay the basis for a physiologically based approach for
administering medications.

As pointed out in Faghih et al. (2014), current data analysis methods for
observed pulsatile experimental data either assume that the timing of the impulses
belongs to a certain class of stochastic processes (Johnson 2003) or are based
on pulse detection techniques (Vidal et al. 2012). The problem of recovering the
number, timing, and amplitude of brain impulsive profiles as well as the model
parameters of the underlying physiological interactions from a limited number of
observations is ill-posed and there could be multiple solutions. One method used
for analyzing observed pulsatile experimental data is to assume a point process
model for the pulses and embedding a birth-death process in a Markov chain Monte
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Carlo (MCMC) algorithm (Johnson 2003). Another method for analyzing observed
pulsatile experimental data is using a Bayesian approach to solve for the pulses, and
the underlying model parameters (Keenan et al. 2005). Moreover, observed pulsatile
experimental data has been analyzed via pulse detection algorithms and removing
peaks with heights smaller than some threshold (Vidal et al. 2012). Pulse detection
methods might work well for the type of pulsatile data in which one pulse decays
significantly before the next pulse occurs; however, for pulsatile experimental data
in which one pulse can occur before the previous one has significantly decayed
to near zero, the extraction of the pattern of pulses may be less clear. By taking
advantage of the sparse nature of the pulsatile physiological data and adding more
constraints for recovering the underlying impulsive profile, we illustrate that we
can deconvolve the observed pulsatile physiological data (Faghih et al. 2014). We
formulate this question as a non-convex optimization problem, and solve it using
a coordinate descent algorithm that has a principled combination of (i) compressed
sensing for recovering the amplitude and timing of the impulses, and (ii) generalized
cross validation for finding the number of impulses (Faghih et al. 2014). Here, the
key is using the characteristic of the sparsity of underlying brain impulsive profile
(i.e., there are a small number of impulses that are important) to recover the timing
and amplitude of individual brain pulses using compressed sensing techniques.
Compressed sensing is an approach for perfect reconstruction of sparse signals
using fewer measurements than required by the Shannon/Nyquist sampling theorem
(Boufounos et al. 2007). When only a small number of coefficients in an impulsive
profile are large (i.e., most coefficients are small or zero), small coefficients can
be discarded, and a sparse representation of the impulsive profile can be recovered
using optimization or greedy algorithms (Boufounos et al. 2007). In finding the
number of impulses, there is a trade-off between capturing the residual error and
the sparsity. We use generalized cross-validation (GCV) (Golub et al. 1979) to find
the number of pulses such that there is a balance between the residual error and
the sparsity (Faghih et al. 2014). As a result of the deconvolution, we can recover
the physiologically plausible brain impulsive profiles that upon interactions with
biological or measurement processes lead to observed pulsatile experimental data
(Faghih et al. 2014).

Analyzing two sets of simultaneously recorded pulsatile experimental data (i.e.,
stimulator and final output of the physiological process that eventually affects other
tissues) that are released due to the same impulsive brain regulator as well as
interactions of the two signals controlled via feedback loops is more challenging.
Determining the number, timing, and amplitudes of pulsatile events from simultane-
ously recorded data is challenging because of several factors (Faghih et al. 2015a):
(i) stimulator pulse activity, (ii) kinematics of stimulator and final output of the
physiological process, (iii) the sampling interval, and (iv) the measurement error. To
analyze simultaneously recorded pulsatile experimental data, Van Cauter proposed
a method for recovering episodic pulsatile data fluctuations (Van Cauter 1981) for
each of the two pulsatile profiles (Refetoff et al. 1985; Linkowski et al. 1985). Then,
by analyzing the timing of the detected pulse peaks from each of the two pulsatile
profiles and the respective durations those pulses overlapped (Refetoff et al. 1985;
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Linkowski et al. 1985), they detected concomitant pulses. It has been illustrated
that (Faghih et al. 2015a), by combining a minimal physiological model with sparse
recovery techniques to recover the stimulator secretory events from concurrent data,
we can recover physiologically plausible timing and amplitudes for the underlying
pulses by concurrent analysis of two hormone profiles.

Due to the distinct information that gets relayed to target cells via pulsatile
signaling (Faghih et al. 2015b), it is important to understand the physiology under-
lying pulsatile release of observed pulsatile experimental data. The intermittent
control that is observed in pulsatile control of observed pulsatile experimental data
is not one of the traditional control-theoretic methods normally used in control
engineering. This type of control is a special case of bang-bang control, in which
an action leads to instantaneous changes in the states of the system (Sethi and
Thompson 2006). Impulse control occurs when there is not an upper bound on
the control variable and an infinite control is exerted on a state variable in order
to cause a finite jump (Sethi and Thompson 2006). To characterize the pulsatile
control underlying cortisol secretion, we utilize a mathematical formulation for a
controller that gives rise to the desired impulses as opposed to continuous control
and achieves impulse control (Faghih et al. 2015b). We postulate that this controller
is minimizing the number of secretory events that result in cortisol secretion, which
is a way of minimizing the energy required for cortisol secretion; this controller
maintains the pulsatile experimental data within a specific range while following the
first-order dynamics underlying the observed pulsatile physiological experimental
data (Faghih et al. 2015b). This novel approach results in pulse control where the
pulses and the obtained pulsatile signal have rhythms that are in agreement with the
known desired physiological variations. The proposed formulation is a first step in
developing intermittent bio-inspired controllers for controlling pathological states
related to pulsatile signals such as cortisol.

10.1.1 Chapter Structure

In this chapter, two important questions that deal with pulsatile physiological
signals are addressed: (i) analyzing signals with pulsatile dynamics using a minimal
multi-rate physiological model (Sect. 10.2), (ii) designing intermittent inputs for
achieving desired pulsatile dynamics (Sect. 10.3). To further motivate the potential
applications, in Sect. 10.1.2, we discuss the pulsatile dynamics in neuroendocrine
system (particularly, cortisol secretion), followed by a brief discussion of pulsatile
dynamics in electrodermal activity in Sect. 10.1.3, and end the introduction with
examples of potential applications in Sect. 10.1.4. The multi-rate formulation
for analyzing signals with pulsatile dynamics in Sect. 10.2 can be applied to
deconvolution of single time series (Sect. 10.2.3) as well as concurrent time-series
(Sect. 10.2.4). We illustrate that this approach can be applied to deconvolution of
single physiological time-series with pulsatile dynamics by deconvolving cortisol
and skin conductance data (Sect. 10.2.3). Moreover, we illustrate that this approach
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can be applied to concurrent physiological time-series with pulsatile dynamics by
deconvolving simultaneously recorded cortisol and adrenocorticotropic hormone
(ACTH) time-series (Sect. 10.2.4). Moreover, we illustrate that intermittent input
design for achieving desired pulsatile dynamics can be accomplished for both
constant (Sect. 10.3.2) and time-varying (Sect. 10.3.3) demand and holding costs.
In particular, by considering circadian demand and holding costs, we illustrate
that we can obtain pulsatile dynamics that are in agreement with experimental
pulsatile cortisol data (Sect. 10.3.3). We conclude this chapter with discussion and
some concluding remarks (Sect. 10.4). This chapter summarizes and generalizes
the concepts that appeared in Rose T. Faghih’s PhD thesis (Faghih 2014). Detailed
discussion of the specific applications that deal with analyzing cortisol, EDA, and
concurrent ACTH and cortisol data has appeared in Faghih et al. (2014, 2015a,c),
respectively. A detailed discussion of characterizing pulsatile dynamics of cortisol
release via intermittent input design is discussed in detail in Faghih et al. (2015b).

10.1.2 Pulsatile Dynamics in Neuroendocrine Systems

Hormones are chemical messengers that are released from the endocrine glands
into the circulation, and relay information to cells and control a wide range of
physiologic functions (Kettyle and Arky 1998). The neuroendocrine system consists
of several glands that produce hormones in a hierarchical manner, and some
hormones are secreted in pulsatile episodes as opposed to a continuous manner
(Vis et al. 2010). For some hormones, neural interactions in the hypothalamus
result in release of hormone-releasing hormones from the hypothalamus, which have
an impulsive profile. Then, these impulsive hormone-releasing hormones induce
secretion of pituitary hormones from the pituitary in a pulsatile manner, and the
pituitary hormones lead to release of hormones from target glands. These hormones,
which are absorbed from the blood, implement regulatory functions in different
tissues and have a feedback effect on release of hormone-releasing hormones and
pituitary hormones. A key factor in the pulsatile neuroendocrine systems is the
pulsatile feedback control of hormone release (Kettyle and Arky 1998). In order to
understand the physiology and effects of drugs, quantification of pulsatile episodes
of hormone release is crucial.

Since secretion of most endocrine hormones is driven by a similar control
mechanism, understanding how one pulsatile hormone is secreted adds insight to
how the rest of the pulsatile hormones are secreted. As a prototype, we focus
on the hypothalamic-pituitary-adrenal (HPA) axis and cortisol secretion. A similar
control feedback system underlies the release of growth hormone, thyroid hormone,
estrogen, and testosterone. In a healthy person, these hormones have pulsatile
dynamics with regular periodic patterns. For example, the 24-h cortisol profile
consists of episodic release of 15 to 22 pulses with varying amplitudes in a regular
circadian pattern; the lowest amplitude occurs between 8 PM and 2 AM, followed
an increase throughout the late night, reaching the highest amplitude between 8 AM
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and 10 AM, and then, declining throughout the day (Brown et al. 2001). Moreover,
these pulsatile hormones have an ultradian rhythm that allows for amplitude and
frequency encoding of information (Walker et al. 2010; Lightman and Conway-
Campbell 2010). Pulsatile signaling is an efficient way of transmitting information
that leads to rapid changes in hormone concentration and allows for target receptor
recovery (Walker et al. 2010). The transcriptional program prompted by hormone
pulses is considerably different from constant hormone treatment (Stavreva et al.
2009), and characterization of pulsatile dynamics underlying hormone release has
great potential for optimal treatment of hormonal disorders. In this chapter, we
characterize the pulsatile dynamics underlying cortisol secretion.

10.1.2.1 Hypothalamic-Pituitary-Adrenal Axis

Cortisol is a steroid hormone that regulates the body’s metabolism and response
to stress and inflammation (Brown et al. 2001). Stress includes physical stress (e.g.,
infection and thermal exposure) and psychological stress (e.g., fear and anticipation)
(Gupta et al. 2007). Cortisol relays rhythmic impulsive brain signals to synchronize
bodily systems with environmental variations (Savić and Jelić 2005). To release
cortisol, first in the hypothalamus, corticotropin releasing hormone (CRH) is
released in pulses. Then, stimulated by CRH, ACTH is synthesized and released
from the anterior pituitary (Dallmant and Yates 1969). Furthermore, via stimulation
of adrenal glands by ACTH, cortisol is produced and secreted (Kyrylov et al. 2005;
Brown et al. 2001). The secreted cortisol diffuses into the circulation and is absorbed
by different tissues to implement regulatory functions as a steroid hormone. Then,
cortisol is cleared from the circulation by the liver (Brown et al. 2001). Moreover,
cortisol has a feedback effect on the hypothalamus and anterior pituitary (Gupta
et al. 2007; Kyrylov et al. 2005; Brown et al. 2001). Since dysregulation of cortisol
pulsatility is linked to some psychiatric and metabolic disorders (Walker et al. 2010),
and cortisol pulsatile activity is essential for target cell gene expression (McMaster
et al. 2011; Walker et al. 2012), in this chapter, we mainly focus on characterizing
the pulsatile dynamics underlying release of cortisol.

10.1.3 Pulsatile Dynamics in Electrodermal Activity

Another example of a physiological signal with pulsatile dynamics is EDA. While
this chapter mainly focusses on the HPA axis, to illustrate that the applications of
the methods presented in this chapter are beyond neuroendocrine hormones, we
briefly discuss EDA and in Sect. 10.2.3 analyze skin conductance data. EDA is a
measure of neurophysiologic arousal and is composed of separate, discrete, and
temporally short bursts triggered by sympathetic nervous system activity (Faghih
et al. 2015c; Wallin 1981). Temporal and spatial summation of spikes triggered
by sudomotor nerve lead to a skin conductance response (SCR), and increased
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SCR frequency or amplitude is associated with increased sympathetic nervous
system activity (Lidberg and Wallin 1981); hence, skin conductance data is collected
during psychophysical tasks relevant for anxiety disorders (Faghih et al. 2015c).
Deconvolution of skin conductance data helps better understand brain activity in
complex behaviors and reduce the dimensionality problems in presence of large
scale data in stimulus-response affective experiments where the goal is to recover
one’s emotional response. An example of such experiments is fear conditioning and
extinction experiments discussed in Faghih et al. (2015c), in which the underlying
stimulus (visual cue or mild electrical shock) was recovered.

10.1.4 Potential Applications of Characterization of Pulsatile
Physiological Signals

Identification of the amplitude and timing of pulsatile physiological experimen-
tal data allows for quantifying normal and abnormal pulsatile activity to better
understand pathological states, and can potentially be used in designing optimal
approaches for treating disorders linked to dysregulation of pulsatile activity of such
signals. To better motivate the potential applications of characterization of pulsatile
physiological signals, we briefly discuss disorders linked to pulsatile physiological
signals analyzed in this chapter.

10.1.4.1 Neuroendocrine Disorders

Neuroendocrine disorders may exist in the form of endocrine gland hyposecretion
(hormone deficiency), endocrine gland hypersecretion (hormone excess), or tumors
of endocrine glands, and may be treated using surgery, tablets, or injections. The
dosage (amount and timing) of medications used for treatment is not based on
a systemic perspective and is not done optimally, and can have side effects. A
desired treatment should use an optimal dosage by employing a model that predicts
the dose-response. Many endocrine disorders affect the patient’s performance in
various ways, and it is important to have a general model for hormone secretion
to potentially be able to use an optimal approach in treating hormonal disorders
to minimize the side-effects of the medication. Normal endocrine secretion is
necessary for cardiovascular health, and the cardiovascular system benefits from
correcting endocrine disorders (Rhee and Pearce 2011).

Cortisol Disorders and Beyond

Cortisol is crucial in neurogenesis, metabolism, stress response, cognition, and
response to inflammation (Sarabdjitsingh et al. 2012), and diseases that are linked
to abnormalities in the HPA axis include diabetes, visceral obesity and osteoporosis,
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life-threatening adrenal crises, and disturbed memory formation (Vinther et al. 2011;
Conrad et al. 2009). The disorders linked to cortisol might be due to changes in the
pulsatile episodes or changes in sensitivity of the adrenal glands to ACTH (Young
et al. 2001). A sparse system identification approach allows us to investigate the
role of the amplitude and frequency of the pulses as well as the sensitivity of the
hypothalamus, the pituitary, or the gland to the stimulus. Moreover, a model that
predicts the dose-response can eventually lead to an optimal dosage (amount and
timing) treatment protocol.

One instance of a cortisol disorder is adrenal deficiencies that might be due
to impairment of the adrenal glands, impairment of the pituitary gland or the
hypothalamus. An example of a disorder caused by adrenal deficiency is Addison’s
disease. Persistent vomiting, anorexia, hypoglycemia, unexplained weight loss,
fatigue, and muscular weakness can be caused by adrenal deficiency (Ten et al.
2001). A patient who suffers from Addison’s disease takes cortisone once or twice
a day for their cortisol deficiency which does not seem optimal as in a healthy
subject there are 15 to 22 secretory events that lead to the observed cortisol levels
over 24 h. It is possible to personalize the medication and use intermittent control
to mimic the physiology of a healthy subject so that patients maintain hormonal
levels (e.g., cortisol levels) that are similar to healthy subjects. Similarly, such
bio-inspired controllers can be used for controlling other hormones (e.g., growth
hormone in children with growth failure, or gonadal hormones in women with
infertility). Furthermore, inspired by the pulse controller proposed in this research,
in brain-machine interface (BMI) design, it is possible to design pulse controllers
instead of continuous controllers to improve the battery life of the brain implant.

Mental Health Disorders

As pointed out, another example of a physiological signal with pulsatile dynamics
is EDA and skin conductance data normally collected during psychophysical tasks
relevant for anxiety disorders (Faghih et al. 2015c). Since an SCR can be considered
as a potential indicator of an arousal event, and in different types of stress-related
disorders such as post-traumatic stress disorder (PTSD), sparse recovery of arousal
events from skin conductance data could potentially be used as a predictor for
changes in brain functions to distinguish between healthy subjects and different
types of mental disorders. Moreover, it could potentially be used to investigate
whether treatment is working and if the clinical symptoms are improving.
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10.2 A Multi-Rate Formulation for Analyzing Signals with
Pulsatile Dynamics

Motivated by the applications of analyzing pulsatile physiological signals, we start
with proposing a general model and sparse recovery approach for analyzing such
signals, and apply our framework to a few examples of pulsatile experimental
data. The first-order kinetics underlying the physiological processes that lead to the
observed pulsatile profile can be represented in the form of a continuous-time state-
space model from which a multi-rate discrete analog of the system can be obtained.
The state-space system takes the form:

Px.t/ D Ax.t/C Bu.t/ (10.1)

y.t/ D Cx.t/C �.t/ (10.2)

where A is the state or system matrix (physiological rates and gains such as infusion
and decay rates or negative feedback are defined in matrix A as unknown �j’s for
i D 1; 2; : : : ; n, where there are n such rates and gains in A and the rest of entries
of A are nonzero), B is the input matrix (it indicates how the input affects the state),
C is the output matrix (it indicates which states are observed), x represents the
state vector (e.g. different hormone concentrations that have a pulsatile profile), y is
the output vector that represents the observed pulsatile time-series, �.t/ represents
the measurement noise, u.t/ is the input or the control which in our formulation
represents an abstraction of the discrete impulsive secretory events that lead to the
observed pulsatile experimental data. u.t/ takes the form:

u.t/ D
mX

iD1
qiı.t � �i/ (10.3)

where qi denotes the amplitude of a secretory event initiated at time �i, and m
denotes the number of the secretory events. Our goal is to estimate the model
parameters (�j’s), the number of the secretory events (m), and the amplitudes (qi

for i D 1; 2; : : : ;m) and timing (�i for i D 1; 2; : : : ;m) of the secretory events using
the observed noisy measurements of the pulsatile time-series collected in w-unit
time intervals (e.g., w might take a value of 10-min intervals for cortisol data or
might take a value of 5-ms intervals for skin conductance data).

Assuming that the input and the states are constant over one-unit time intervals
(T D 1), by letting 
 D eAT , and � D R T

0
eA.T��/d� , we can represent the system

in discrete form:

xŒk C 1� D 
xŒk�C � uŒk� (10.4)

yŒk� D CxŒk�C �Œk� (10.5)
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Considering that pulsatile time-series are observed every w unit times (e.g.,
every 10 min for cortisol data or every 5 ms for skin conductance data), assuming
that we would like to consider a one-unit time resolution for the input, by letting
Ad D 
w, Bd D �


.w�1/� 
.w�2/� : : : �
�
, �dŒk� D �Œwk�, zŒk� D xŒwk�,

udŒk� D �
uŒwk� uŒwk C 1� � � � uŒwk C w � 1�

�>
, we can represent the multi-rate

system as:

zŒk C 1� D AdzŒk�C BdudŒk� (10.6)

yŒk� D CzŒk�C �dŒk� (10.7)

where Ad and Bd are functions of � D �
�1 � � � �n

�>
. Then, using the state transition

matrix, and considering that the system is causal and N data points are available,
we can represent the system as:

yŒk� D FŒk�z0 C DŒk�u C �dŒk� (10.8)

where FŒk� D CAd
k, z0 D zŒ0�, DŒk� D C



Ad

k�1Bd Adk�2Bd � � � Bd 0 � � � 0„ƒ‚…
N�k

�
, and

u D �
udŒ0� udŒ1� � � � udŒk � 1� � � � udŒN � 1��>. u represents the entire input over

the duration of the study, sampled every unit time (e.g., every minute for cortisol,
every ms for skin conductance data). We consider de novo synthesis for unobserved
states in this formulation (zero initial condition). Moreover, we assume that the
initial observed levels of observed states are the initial conditions, and hence let
z0 D zŒ0�. Then, let y D �

yŒ1� yŒ2� � � � yŒN�
�>

, where y represents all the data points.

Moreover, let F� D �
FŒ0� FŒ1� � � � FŒN � 1�

�>
, D� D �

DŒ0� DŒ1� � � � DŒN � 1��>,

and �y D �
�dŒ1� �dŒ2� � � � �dŒN�

�>
. Hence, we can represent this system as:

y D F�z0 C D� u C �y (10.9)

where F� and D� are functions of � and the sparse vector u. yl, F�l , D�l , and �l

correspond to the rows of y, F� , D� , and �y, respectively that correspond to the lth
observed state for l D 1; 2; : : : ;L where L is the number of observed states; then,
for l D 1; 2; : : : ;L, the system can equivalently be represented as:

yl D F�l z0 C D�l u C �l (10.10)

where yl represents the observed pulsatile time-series for l D 1; 2; : : : ;L, collected
at w-unit time intervals, and z0 is a vector of the initial conditions of the states. u
represents the entire input over the entire experiment. Elements of u take nonzero
values qi at times �i for i D 1; 2; : : : ;m when there is a secretory event, and are zero
otherwise. F�l and D�l are functions of �j for j D 1; 2; : : : ; n.
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10.2.1 Optimization Formulation for Deconvolution of
Pulsatile Signals

We can formulate this problem as an optimization problem:

min
LP

lD1
1

�2l

����yl � F�l z0 � D�l u

����
2

2

(10.11)

s.t.
umin � kuk0 � umax

u � 0

S� � q

where S and q depend on the physiological constraints. �l represent the standard
deviation of the measurement errors for each yl pulsatile time series. In this
optimization problem, solving for u is a combinatorial problem, which is generally
NP-hard, and is solved using greedy algorithms and `p-optimization algorithms.
The greedy algorithms include Matching Pursuit (MP), Orthogonal MP, Iterative
Hard Thresholding, Hard Thresholding Pursuit, Gradient Descent with Sparsifi-
cation, and Compressive Sampling Matching Pursuit (He et al. 2012). In the
`p-optimization algorithms, the `0-norm is approximated by an `p-optimization
problem where 0 < p < 2 (He et al. 2012). The `p-optimization algorithms are
more accurate than the greedy algorithms, but computationally more expensive (He
et al. 2012). It is possible to cast the above optimization problem as:

min
u�0
S��q

J�.�;u/ D
LX

lD1

1

�2l

����yl � F�l z0 � D�l u

����

2

2

C �kukp
p (10.12)

where the `p-norm (0 < p � 2) is an approximation to the `0-norm and � is chosen
such that the sparsity of u is between umin to umax. Then, using a coordinate descent
approach, this optimization problem can be solved iteratively using the following
steps until convergence is achieved:

1.

u.lC1/ D argmin
u�0

J�.�
.l/;u/ (10.13)

2.

� .lC1/ D argmin
S��q

J�.�;u.lC1// (10.14)

In order to solve Eq. (10.13), an iteratively reweighted least squares (RWLS)
algorithm called FOCUSS which enforces a certain degree of sparsity can be
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employed (Zdunek and Cichocki 2008). In order to solve Eq. (10.14), different
optimization methods such as Levenberg-Marquardt or interior point method can
be used. One should select the appropriate optimization algorithm based on their
data such that none of the estimated �j values stagnates at the boundary conditions.
Since this optimization problem is non-convex, there are multiple local minima;
a reasonable procedure is to utilize different initializations, and choose the local
minimum that minimizes the problem in Eq. (10.12) and provides the best goodness
of fit. Our approach uses a coordinate descent approach; the convergence properties
of coordinate descent algorithms are well studied and discussed in Attouch et al.
(2010).

10.2.2 Sparse Input Recovery from Pulsatile Signals

The sparse input can be recovered using an extension of the FOCUSS algorithm. The
FOCUSS algorithm uses a reweighted norm minimization approach and minimizes
the `2-norm at each iteration to find the solution; the iteration refines the initial
estimate to the final localized energy solution (Gorodnitsky and Rao 1997). In the
FOCUSS algorithm, assuming that a gradient factorization exists, the stationary
points of Eq. (10.13) satisfy u D PuD>

� .D�PuD>
� C �I/�1y� (Gorodnitsky and Rao

1997), where Pu Ddiag.juij2�p/, and y� D y � F�z0. By iteratively updating �
and u until convergence, we can solve for the sparse vector u. In the optimization
problem in Eq. (10.12), � balances between the sparsity of u and the residual error
ky� � D�uk2. The sparsity of u increases with �.

A version of the FOCUSS algorithm called FOCUSSC (Murray 2005) allows
for solving for u such that the maximum sparsity of u is n (for example, n D 22 for
24-h cortisol data) and u is nonnegative. This algorithm uses a heuristic approach
for updating �, which tunes the trade-off between the sparsity and the residual error
by increasing � to a maximum regularization �max as the residual error decreases.

For r D 0; 1; 2; : : : , FOCUSSC works as follows:

1. P.r/u Ddiag.ju.r/i j2�p/

2. �.r/ D �
1 � ky��D�u.r/k2ky�k2

�
�max; � > 0

3. u.rC1/ D P.r/u D>
� .D�P.r/u D>

� C �.r/I/�1y�
4. u.rC1/

i � 0 ! u.rC1/
i D 0

5. After more than half of the selected number of iterations, if ku.rC1/k0 > n, select
the largest n elements of u.rC1/ and set the rest to zero.

6. Iterate

FOCUSSC usually converges within 10 to 50 iterations (Murray 2005). In this
algorithm, the sparsity is determined by � (the sparsity of u increases with �), and �
balances between sparsity and the residual error. Since FOCUSSC (Murray 2005)
uses a heuristic approach for finding �, it can overfit the data and find a less sparse
solution.
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Considering the ill-posedness of deconvolution problems, small variations in
the data can result in large changes in the solution, and a balanced choice of
regularization is required to filter out the effect of noise. Tikhonov regularization,
truncated singular value decomposition, and the method of L-curve are well-known
methods used when dealing with such problems (Hansen 1999); among these
methods, the L-curve method appears to be the most commonly used; however,
the L-curve method is computationally expensive, requiring computation of the
solution for several samples of the parameter (Zdunek and Cichocki 2008). Zdunek
et al. point out that GCV is usually more accurate in estimating the regularization
parameter than the L-curve method (Zdunek and Cichocki 2008). In the GCV
technique, the optimal choice of regularization minimizes the predictive mean-
squared error. Hence, to balance between sparsity and the residual error, the
GCV-FOCUSSC (Faghih et al. 2014) algorithm can be used. The GCV-FOCUSSC
algorithm is based on FOCUSSC (Murray 2005) that solves for nonnegative u such
that u has a certain maximum sparsity n (i.e., n D 22 for the HPA axis), and uses the
GCV (Golub et al. 1979) technique for estimating the regularization parameter. In
particular, GCV-FOCUSSC is closely related to a special version of the FOCUSS
algorithm (Zdunek and Cichocki 2008), which uses the GCV technique for updating
the regularization parameter �. Choosing an optimal � value that balances between
the noise and sparsity is important in detecting the sparsity level. If � is too small,
overfitting can occur and noise can be detected as signal; on the other hand, if �
is too large, it leads to data underfitting, and as a result, the signal will not be
constructed completely.

The GCV function is defined as:

G.�/ D Nk.I � H�/y„k2
.trace.I � H�//2

; (10.15)

where N is the number of data points, and H� is the influence matrix. For the
FOCUSS algorithm, H� D D�PuD>

� .D�PuD>
� C �I/�1. The GCV technique was

employed for estimating the regularization parameter for the FOCUSS algorithm
through singular value decomposition (Zdunek and Cichocki 2008):

G.�/ D
N
PN

iD1 �2i


�

�2i C�
�2

PN
iD1 �

�2i C�
�2 ; (10.16)

where  D R>y� D �
�1 �2 � � � �L

�>
and D�P1=2u D R˙ Q> with ˙ D diagf�ig; R

and Q are unitary matrices and �i’s are the singular values of D�P1=2u . Furthermore,
G.�/ is minimized such that � is bounded between some minimum and maximum
values (�min and �max) using an implementation of the golden section (GS) search
(Zdunek and Cichocki 2008). Although the GS search only finds a local extremum,
considering that G.�/ is unimodal, the GS search always finds the desired solution
given a large range for � (Zdunek and Cichocki 2008). We recommend using a
range of zero to 10 for �.
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For r D 0; 1; 2; : : : , GCV-FOCUSSC works as follows:

1. P.r/u Ddiag.ju.r/i j2�p/

2. u.rC1/ D P.r/u D>
� .D�P.r/u D>

� C �.r/I/�1y,

3. u.rC1/
i � 0 ! u.rC1/

i D 0

4. �.rC1/ D argmin
0���10

G.�/ D Nk.I�D�P.r/u D>

� .D�P.r/u D>

� C�I/�1/y�k2
.trace.I�D�P.r/u D>

� .D�P.r/u D>

� C�I/�1//2
.

5. Iterate until convergence

10.2.3 Application 1: Deconvolution of Single Time-Series
Pulsatile Data

As pointed out, cortisol data is an example of pulsatile physiological experimental
data. In order to model the first-order kinetics underlying cortisol synthesis in the
adrenal glands, cortisol infusion to the blood, and cortisol clearance by the liver,
Eq. (10.1) can be described as:

dx1.t/

dt
D ��1x1.t/C u.t/ (10.17)

dx2.t/

dt
D �1x1.t/ � �2x2.t/ (10.18)

where x1 is the cortisol concentration in the adrenal glands and x2 is the serum
cortisol concentration. �1 and �2, respectively, represent the infusion rate of cortisol
from the adrenal glands into the blood and the clearance rate of cortisol by
the liver (Faghih et al. 2014). u.t/ is an abstraction of the hormone pulses that
result in cortisol secretion as defined in Eq. (10.3). In this formulation, Eq. (10.17)
represents the first-order kinetics underlying cortisol synthesis in the adrenal glands
while Eq. (10.18) represents the first-order kinetics underlying cortisol infusion to
the blood, and cortisol clearance by the liver. Figure 10.1 shows an example of
experimental cortisol data from a healthy female participant (Klerman et al. 2001),
and model-predicted cortisol estimates, and the estimated amplitude and timing
of hormone pulses (Faghih et al. 2014). Details about the data can be found in
Klerman et al. (2001) and details about the analysis and more examples of cortisol
deconvolution can be found in Faghih et al. (2014). The circadian amplitudes of
the recovered pulses demonstrate the known circadian variation of cortisol; the
recovered pulses are small at the beginning of the scheduled sleep, and there is
a large pulse towards the end of the sleep period. There are multiple small and
medium sized pulses during the wake period. The number of detected pulses are
within the physiologically plausible range (Brown et al. 2001; Veldhuis et al. 1989;
Faghih et al. 2011; Faghih 2010).
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Fig. 10.1 Estimated deconvolution of the experimental 24-h cortisol levels in a healthy female
participant. (a) Top panel shows the measured 24-h cortisol time series (red stars), and the
estimated cortisol levels (black curve). (b) Bottom panel shows the estimated pulse timing and
amplitudes (black vertical lines with dots) for one of the participants. The shaded gray area
corresponds to sleep period and the white area corresponds to wake period. The same data collected
in Klerman et al. (2001) and analyzed in Faghih (2014)

One should note that alternatively, we could consider the same model for
analyzing skin conductance data, in which case, x1 is a hidden state variable that
stimulates the skin conductance levels and x2 represents the skin conductance levels;
�1 and �2 are time constants in the model. u.t/ is an abstraction of the discrete and
temporally short bursts triggered by sympathetic nervous system activity (Faghih
et al. 2015c). Figure 10.2 shows an example of experimental skin conductance data
from a healthy female participant during the anger phase of an emotion study (Vyzas
and Picard 1999), model-predicted skin conductance estimates, and the estimated
amplitude and timing of potential arousal impulses of the brain. Details about the
data can be found in Vyzas and Picard (1999). Another example of deconvolution of
skin conductance data experiments is fear conditioning and extinction experiments
discussed in Faghih et al. (2015c).
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Fig. 10.2 Estimated deconvolution of the experimental electrodermal activity in a healthy female
participant. (a) Top panel shows the measured 24-h skin conductance time series (red stars), and
the estimated skin conductance levels (black curve) during the anger phase of an emotion study.
(b) Bottom panel shows the estimated pulse timing and amplitudes (black vertical lines with dots)
for one of the participants during the anger phase of an emotion study. The same data collected and
used in Vyzas and Picard (1999)

10.2.4 Application 2: Deconvolution of Concurrent Pulsatile
Data

Various models of the HPA axis and cortisol secretion have been proposed where
cortisol synthesis in the adrenal glands is modeled based on the first-order kinetics
of cortisol secretion (Brown et al. 2001; Faghih 2010; Faghih et al. 2011; Gupta et al.
2007; Vinther et al. 2011; Conrad et al. 2009). Mathematical models for concurrent
ACTH and cortisol measurements include Faghih et al. (2015a), Peters et al. (2007),
Lönnebo et al. (2007), Van Cauter (1981), Refetoff et al. (1985), and Linkowski
et al. (1985). Equations (10.19)–(10.21) model the HPA axis and cortisol and ACTH
release and are based on the model in Faghih et al. (2015a):

dx1.t/

dt
D ��1x1.t/ � �2x3.t/C u.t/ .Anterior Pituitary/ (10.19)

dx2.t/

dt
D �3x1.t/ � �4x2.t/ .Adrenal Glands/ (10.20)

dx3.t/

dt
D �4x2.t/ � �5x3.t/ .Serum/ (10.21)
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Fig. 10.3 Estimated deconvolution of experimental 24-h concurrent ACTH and cortisol levels in a
healthy female participant. (a) Top panel shows the measured 24-h ACTH time series (blue stars),
and the estimated ACTH levels (purple curve). (b) Middle panel shows the measured 24-h cortisol
time series (red stars), the estimated cortisol levels (purple curve) using concurrent measurements
of ACTH and cortisol, and the estimated cortisol levels (black curve) from deconvolution of only
cortisol measurements. (c) Bottom panel shows the estimated pulse timing and amplitudes (purple
vertical lines with dots) using concurrent measurements of ACTH and cortisol, and the estimated
pulse timing and amplitudes (black vertical lines with dots) using only cortisol measurements
for one of the participants. The shaded gray area corresponds to sleep period and the white area
corresponds to wake period. The same data were collected in Klerman et al. (2001) and analyzed
in Faghih (2014)

where x1 is the serum ACTH concentration, x2 is the cortisol concentration in the
adrenal glands, x3 is the serum cortisol concentration, and �3 is the ACTH gain. �1
and �2 represent the infusion rate of ACTH from the anterior pituitary to the blood
and the cortisol negative feedback gain, respectively. �4 and �5 represent the coef-
ficients corresponding to infusion of cortisol into the circulation from the adrenal
glands and clearance of cortisol by the liver, respectively. u.t/ is an abstraction
of the secretory events in the anterior pituitary that result in ACTH release and
consequent cortisol release. Figure 10.3 shows an example of experimental ACTH
and cortisol data from a healthy female participant (Klerman et al. 2001), model-
predicted ACTH and cortisol estimates, and the estimated amplitude and timing
of hormone pulses. The model-predicted ACTH and cortisol estimates (purple
curves), and the estimated amplitude and timing of hormone pulses (purple vertical
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lines with dot) were obtained by deconvolving concurrent ACTH and cortisol data
(Faghih et al. 2015a). The model-predicted cortisol estimates (black curves), and
the estimated amplitude and timing of hormone pulses (black vertical lines with
dots) were obtained by deconvolving cortisol data. As illustrated in Fig. 10.3, the
timing of most of the significant pulses recovered from concurrent measurements
of ACTH and cortisol is in agreement with the timing of most significant pulses
recovered only from cortisol measurements for most participants. Details about the
data can be found in Klerman et al. (2001) and details about the analysis and more
examples of concurrent deconvolution of ACTH and cortisol can be found in Faghih
et al. (2015a). These examples suggest that using only cortisol data one can find the
timing of most of the significant secretory events in the HPA axis, namely the timing
of pulses that are crucial in both cortisol and ACTH pulsatile profiles.

10.3 Impulsive Input Design for Achieving Desired Pulsatile
Dynamics

Motivated by the potential applications of bio-inspired intermittent controllers, we
assume that the first-order kinetics underlying a physiological process, the demand
for the observed pulsatile profile, and the upper bound on the desired pulsatile
profile are known, and the goal is to find an impulsive brain signal that achieves a
pulsatile profile that satisfies the physiological constraints. In this formulation, we
assume that the first-order kinetics that lead to the pulsatile profile take the form of
Eqs. (10.1) and (10.2), where the system is known (i.e., A, B, and C are known).
Moreover, the demand for the pulsatile profile is defined by a known time-varying
function h.t/ and should be satisfied. Furthermore, the upper bound on the pulsatile
profile that the body can produce or a holding cost so that the pulsatile profile
would not be much above the demand is a known time-varying function q.t/ and
should be satisfied. Both h.t/ and q.t/ are slowly varying compared to the pulsatile
dynamics. The impulsive profile (control) that results in the pulsatile profile u.t/
is nonnegative. Assuming that the body is minimizing the number of resources
(control), our goal is to construct an optimization formulation that can lead to an
impulsive profile that achieves the desired pulsatile dynamics given the underlying
physiological process as well as demand and holding cost constraints. Hence, one
possible optimization formulation for intermittent control of the pulsatile profile is
as follows (Faghih et al. 2015b):

min
u

kuk0 (10.22)

s.t.
u.t/ � 0

Px D Ax.t/C Bu.t/
y.t/ D Cx.t/
h.t/ � y.t/ � q.t/
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The state-space system in Eqs. (10.1) and (10.2) can alternatively be represented

as Eq. (10.9) where F� and D� are known. Then by letting h D �
h1 h2 � � � hN

�>

where hk is the pulsatile profile demand at k and q D �
q1 q2 � � � qN

�>
where qk is

the upper bound at k for k D 1 to N. Hence, we can alternatively solve the discrete
analog of the formulation in Eq. (10.22) as (Faghih et al. 2015b):

min
u

kuk0 (10.23)

s.t.
u � 0

y D F�z0 C D�u
h � y � q

10.3.1 Algorithm for Impulsive Input Design

Given that `0 problems are generally NP-hard, instead an `1-norm relaxation of
such problems can be solved. In solving `1-norm problems, there is a dependence
on the amplitude of the coefficients over which the `1-norm is minimized, and there
is more penalty on larger coefficients than on smaller ones. However, it is possible
to strategically construct a reweighted `1-norm such that nonzero coefficients are
penalized in a way that the cost further resembles the `0-norm (Faghih et al. 2015b).
If large weights are put on small entries, the solution concentrates on entries with
small weights, and a cost function that is more similar to an `0-norm cost function
can be solved such that nonzero entries are discouraged in the recovered signal
(Candes et al. 2008). To find such weights for `1-norm cost function, Candes et al.
have proposed an iterative algorithm for enhancing the sparsity using reweighted `1
minimization, which solves min

u
kuk0 (Candes et al. 2008). This algorithm is based

on Fazel’s log-det heuristic algorithm for minimizing the number of nonzero entries
of a vector (Fazel 2002). The convergence of this log-det heuristic algorithm has
been studied in Lobo et al. (2007). The algorithm for designing an impulsive profile
that achieves desired pulsatile dynamics is as follows (Faghih et al. 2015b):

1. For the future time period � where � is an integer multiple of unit-time, initialize
the diagonal matrix O.0/ with entries o.0/i D 1, i D 1; : : : ; � C 1 on the diagonal
and zeros elsewhere.

2. Solve

u.`/ D arg min
u

kO.`/uk1
s.t.

u � 0

y D F� z0 C D�u
h � y � q
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3. Update the weights o.`C1/i D 1

jui
.`/jC , i D 1; : : : ; � C 1.

4. Go to step 5 on convergence or when ` reaches a certain number of iterations.
Otherwise, increment ` and go to step 2.

5. After a time period �
2
, go to step 1 to update u for the next time period � .

6. Repeat this process for the desired time period for which obtaining pulsatile
dynamics is desired.

The idea is that by solving u.`C1/ Darg min
u

P�C1
iD1

jui j
jui

.`/jC iteratively, the algorithm

attempts to solve for a local minimum of a concave penalty function that is more
similar to the `0-norm (Candes et al. 2008). The parameter  is used to ensure that
weights on the recovered zero entries will not be set to 1 at the next step, which
would prevent us from obtaining estimates at the next step (Faghih et al. 2015b). 
should be slightly larger than the expected nonzero amplitudes of the signal that is to
be recovered, and a value of at least 0.001 is recommended (Candes et al. 2008). This
algorithm does not always find the global minimum and as  ! 0, the likelihood
of stagnating at an undesirable local minimum increases. For  values closer to
zero, the iterative reweighted `1-norm algorithm stagnates at an undesirable local
minimum (Candes et al. 2008). Based on our empirical observations for convergence
of the algorithm, we use ` D 10 when running the algorithm for this formulation
(Faghih et al. 2015b).

10.3.2 Special Case 1: Impulsive Input Design for Constant
Demand and Holding Cost

Assuming that the demand and holding cost are constant, the optimal solution is
achieved when the initial condition starts at the holding cost; then, the state decays
to the lower bound that satisfies the demand, followed by an impulse that causes
a jump in the state which brings it back to the holding cost, and then again the
state decays to the lower bound that satisfies the demand and the same jump to
the holding cost occurs again, and the same process keeps repeating (Faghih et al.
2015b). Figure 10.4 shows that solving the optimization problem (10.22) results in
impulse control for a constant demand of 6 and a constant holding cost of 14 by
considering the model in Eqs. (10.17) and (10.18) where �1 D 0:0585 �2 D 0:0122,
 D 0:01, and � D 360. There are 12 constant impulses obtained over a 24-h period,
which occur periodically. This example is just a simple toy problem illustrating that
the optimization formulation in Eq. (10.22) can achieve intermittent control using a
low energy input.
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Fig. 10.4 Pulsatile profile and impulsive control obtained for constant demand and holding cost.
(a) Top panel displays the optimal pulsatile profile (black curve), constant holding cost/upper
bound (red curve), and constant demand/lower bound (blue curve). (b) Bottom panel displays
the intermittent control. The optimization problem obtained 12 impulses over 24 h by assuming
one-minute intervals (the obtained control takes 12 non-zero values out of 1440 possibilities, i.e.,
impulses, while it is zero everywhere else). This example is presented as a toy problem and does
not have any physiological implications for cortisol secretion as it does not include the circadian
rhythm observed in cortisol secretion. This figure is from the open-access paper (Faghih et al.
2015b) distributed under Creative Commons Attribution License

10.3.3 Special Case 2: Impulsive Input Design for Circadian
Demand and Holding Cost

Since inducing constant CRH levels results in pulsatile cortisol release (Walker
et al. 2010) while constant ACTH levels do not result in pulsatile release of
cortisol (Spiga et al. 2011), Walker et al. suggest a sub-hypothalamic pituitary-
adrenal system in intermittent control of cortisol secretion (Walker et al. 2012).
Hence, the dynamics in the anterior pituitary control pulsatile secretion of cortisol
(Faghih et al. 2015b). In healthy humans, cortisol levels have a regular circadian
pattern and we can assume that the body is satisfying a circadian demand for
cortisol as well as a circadian holding cost. Figure 10.5 shows that solving the
optimization problem (10.22) by considering the model in Eqs. (10.17) and (10.18)
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Fig. 10.5 Pulsatile profile and impulsive control obtained for circadian demand and holding cost.
(a) Top panel displays the optimal pulsatile profile (black curve), circadian holding cost/upper
bound (red curve), and circadian demand/lower bound (blue curve). (b) Bottom panel displays
the intermittent control. The optimization problem obtained 16 impulses over 24 h by assuming
one-minute intervals (the obtained control takes 16 non-zero values out of 1440 possibilities, i.e.,
impulses, while it is zero everywhere else). This figure has been modified from the open-access
paper (Faghih et al. 2015b) distributed under Creative Commons Attribution License

where �1 D 0:0585 and �2 D 0:0122 and parameters  D 0:0055 and � D 360 for
two-harmonic bounds with a circadian rhythm, the obtained control is intermittent
control. A lower bound of
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were used for this simulation (Faghih et al. 2015b). There are 16 impulses over a
24-h period with time-varying circadian amplitudes and ultradian timings (Faghih
et al. 2015b); the obtained control is within the physiologically plausible range of
15 to 22 pulses (Brown et al. 2001; Veldhuis et al. 1989). There are more impulses
with higher amplitudes during the day than at night. Around 6 AM, cortisol levels
increase and are at higher values between 10 AM to 12 PM, followed by a gradual
decrease to low values at night. The state starts at the circadian holding cost and
decays to the lower bound that satisfies the circadian demand at which point an
impulse causes a jump to reach the circadian holding cost. Then, the state decays
again to the lower bound that satisfies the circadian demand and this process repeats.
This example illustrates that the optimization formulation in Eq. (10.22) can achieve
intermittent control of cortisol release, and result in a physiologically plausible
pulsatile cortisol profile similar to those observed in healthy human data (Faghih
et al. 2015b).

10.4 Discussion and Concluding Remarks

Understanding and modeling the physiological processes underlying release of
pulsatile physiological signals is a challenging problem for various factors: (i)
simultaneous release and clearance of pulsatile signals, (ii) the unknown timing
and amount of the underlying impulsive brain profile, (iii) potential consecu-
tive impulses, (iv) variations in impulsive profiles and model parameters of the
physiological processes depending on the participant’s state (e.g., mental state or
sleep-wake state), (v) inter-individual variation, even among healthy individuals,
and (vi) unknown process and measurement noise.

Modeling concurrent measurements of pulsatile physiological signals is even a
more challenging problem for several reasons: (i) significant periods of the two
pulsatile physiological signals might be different from each other due to some
nonlinearities in the input-output relation of the concurrent pulsatile physiological
signals or due to noise, (ii) one pulsatile physiological signal might decay faster than
the other one, and when the data has a low resolution, in the high frequency pulsatile
signal, the response to a smaller impulse might have already decayed out while the
response might be observed in the low frequency pulsatile signal, (iii) there might
be pulsatile activity in data from one pulsatile signal without a response in the other
pulsatile signal which makes it challenging to model the interactions using a simple
linear model.

Data analysis methods for modeling pulsatile experimental physiological data
either assume the timing of the impulses belongs to a certain class of stochastic
processes (Johnson 2003) or use pulse detection algorithms (Vidal et al. 2012).
While these procedures work well for the cases that pulses are readily identifiable,
analyzing pulsatile physiological data is more challenging when the timing of
the pulses is not as clearly defined. In this chapter, we modeled brain impulsive
profiles that result in cortisol and skin conductance time series as well as concurrent
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ACTH and cortisol data. This was achieved using a coordinate descent approach
to estimate the parameters underlying the physiological processes and recover
the sparse impulsive brain signals. To recover the accurate number of underlying
pulses, it is important to select a regularization parameter that balances between
capturing the sparsity and the residual error. In the algorithm presented in this
chapter, generalized cross-validation was used to choose the number of pulses.
This algorithm works well even when the brain impulses are not easily identifiable
without making assumptions about the inter-arrival times of the impulses, and
timings of pulses can belong to various classes of distributions of inter-arrival times.
The algorithm provided is a general framework that can be implemented on single
as well as multiple time series and is not limited to the examples presented; it can
be applied to other pulsatile physiological signals such as other hormones (e.g.,
growth hormone, thyroid hormone, and gonadal hormones). This algorithm makes it
possible to capture the variation in the timing and amplitude of the underlying brain
impulsive profile as well as the parameters underlying the physiological processes
underlying the observed experimental pulsatile physiological signal. Using the
multi-rate approach presented here, it is possible to detect the underlying brain
impulsive profile with a higher resolution than the pulsatile experimental data. While
the algorithm presented here uses a deterministic approach for deconvolution of
signals with pulsatile dynamics, it is possible to consider a Gaussian distribution
for the `2-norm and a Laplace distribution for the `1-norm in the cost function
in Eq. (10.12) to cast the parameter estimation problem as a Bayesian estimation
problem and obtain confidence intervals for the model parameters underlying the
physiological process and the brain impulsive profile.

For the case of endocrine hormones, currently stimulation tests are used for
diagnosis of hormonal disorders due to problems in the pituitary or the hormone
producing glands. Using data from multiple healthy human subjects, and a minimal
physiological model and the deconvolution algorithm presented here, we could find
a range for model parameters for the healthy population to recognize the cause of the
disorder for specific patients. For example, if a patient has elevated cortisol levels,
the model can distinguish whether it is due to ACTH synthesis, or cortisol clearance
by the liver as the algorithm provided here is a novel way of recovering the model
parameters underlying the physiological processes and the brain secretory events
simultaneously.

Some physiological signals are released in pulses and intermittent signaling
might be an optimal approach for relaying information as opposed to continuous
signaling. Here, we presented an optimization formulation for a physiologically
plausible controller that achieves intermittent control. In the proposed formulation,
we assumed that the body satisfies demand and holding cost constraints as well as
the first-order dynamics underlying the release of the pulsatile physiological signal.
We have illustrated an example in which the proposed optimization formulation
yields impulse control for cortisol release with physiologically plausible number,
timing, and amplitude of secretory events and cortisol profile. One should note that
the iterative algorithm for enhancing the sparsity by reweighted `1 minimization
(Candes et al. 2008) used to solve the optimization formulation does not always
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find the global minimum; while here this method was used to solve examples of
optimization problems formulated in Eq. (10.22), for arbitrary choices of  and � ,
the algorithm for enhancing the sparsity by reweighted `1 minimization (Candes
et al. 2008) might stagnate at local minima and not achieve the optimal solution.
However, problem (10.22) can be solved using other methods as well. One should
note that abrupt changes in the physiological process could also result in impulse
control. For example, if the infusion rate of cortisol starts from a constant level and
decreases abruptly to a new constant level, a very large level of cortisol should be
produced in a short time to maintain the desired cortisol level (Faghih et al. 2015b).
Another example could be when both the infusion and the clearance rates could
change abruptly to different levels periodically with the overall effect of clearing
cortisol faster or infusing cortisol to the circulation more slowly to require a very
large cortisol secretory event in a short time to maintain the desired cortisol levels
(Faghih et al. 2015b). Then, impulse control can be achieved as long as there is not
an upper bound on the control variable; a mathematical example of a model with
a time-varying rate that achieves impulse control is given in Sethi and Thompson
(2006). Another possibility is that the timing of the impulses are functions of the
states and are activated when a resetting condition is satisfied (Faghih et al. 2015b).
A mathematical example of such a model is given in Wang and Balakrishnan (2008)
where the cost function minimizes the energy in the input and the state. Also,
another possibility is that different costs are associated with the control at different
times of the day (Faghih et al. 2015b).

While in this chapter we presented examples that dealt with intermittent input
design for constant and circadian demand and holding cost, the proposed opti-
mization formulation can be tailored to include the constraints underlying release
of different pulsatile physiological signals. For example, it can be applied to
thyroid hormone secretion or gonadal hormone secretion or growth hormone
secretion. Since transcriptional program stimulated by pulses is very different from
constant signaling, intermittent input design/control can be beneficial for treating
some disorders related to pulsatile physiological signals optimally. Furthermore,
inspired by the pulse controller proposed in this research, in BMI design, it is
possible to design intermittent controllers instead of continuous controllers to
improve the battery life of the brain implant. Moreover, this type of bio-inspired
pulse controller can potentially be used to control psychiatric disorders such as
post-traumatic stress disorder, major depression, and addiction. For example, in
psychiatric disorders, in theory, one could potentially measure electrodermal activity
and use the deconvolution algorithm presented in this chapter to detect the brain
impulsive profile to eventually recover the emotional shocks experienced by the
patient, and ideally utilize an intermittent controller to stimulate ventromedial
prefrontal cortex to reverse the effect of the emotional shocks experienced by the
patient (Faghih et al. 2015b). In conclusion, by using a sparse system identification
approach for analyzing experimental pulsatile physiological signals presented here
and then by designing bio-inspired intermittent controllers discussed in this chapter,
it is potentially possible to design BMIs or wearable-machine interfaces for optimal
treatment of disorders linked to pulsatile physiological signals that are generated due
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to impulsive brain signals. The potential applications of this type of architecture go
beyond neuroendocrine and mental disorders presented here and can be applied to
disorders that naturally arise in neuroscience.
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Chapter 11
Neural Engine Hypothesis

Hideaki Shimazaki

11.1 Introduction

Humans and animals change sensitivity to sensory stimulus either adaptively to the
stimulus conditions or following a behavioral context even if the stimulus does
not change. A potential neurophysiological basis underlying these observations is
gain modulation that changes responsiveness of neurons to stimulus; an example is
contrast gain-control found in retina (Sakmann and Creutzfeldt 1969) and primary
visual cortex under anesthesia (Ohzawa et al. 1985; Laughlin 1989), or in higher
visual area caused by attention (Reynolds et al. 2000; Martínez-Trujillo and Treue
2002). Theoretical considerations suggested the gain modulation as a nonlinear
operation that integrates information from different origins, offering ubiquitous
computation performed in neural systems (see Salinas and Sejnowski (2001),
Carandini and Heeger (2012) for reviews). Regulation of the level of background
synaptic inputs (Chance et al. 2002; Burkitt et al. 2003), shunting inhibition (Doiron
et al. 2001; Prescott and De Koninck 2003; Mitchell and Silver 2003), and synaptic
depression (Abbott et al. 1997; Rothman et al. 2009) among others have been
suggested as potential biophysical mechanisms of the gain modulation (see Silver
(2010) for a review). While such modulation of the informative neural activity is a
hallmark of computation performed internally in an organism, a principled view to
quantify the internal computation has not been proposed yet.

Neurons convey information about the stimulus in their activity patterns. To
describe probabilities of a combinatorially large number of activity patterns of the
neurons with a smaller number of activity features, the maximum entropy principle
has been successfully used (Schneidman et al. 2006; Shlens et al. 2006). This

H. Shimazaki (�)
Kyoto University, Kyoto, Japan and Honda Research Institute Japan, Saitama, Japan
e-mail: h.shimazaki@i.kyoto-u.ac.jp

© Springer International Publishing AG 2018
Z. Chen, S.V. Sarma (eds.), Dynamic Neuroscience,
https://doi.org/10.1007/978-3-319-71976-4_11

267

mailto:h.shimazaki@i.kyoto-u.ac.jp
https://doi.org/10.1007/978-3-319-71976-4_11


268 H. Shimazaki

principle constructs the least structured probability distribution given the small set
of specified constraints on the distribution, known as a maximum entropy model.
It explains probabilities of activity patterns as a result of nonlinear operation on
the specified features using a softmax function. Moreover, the model belongs to an
exponential family distribution, or a Gibbs distribution. Equivalence of inference
under the maximum entropy principle with aspects of the statistical mechanics
and thermodynamics was explicated through the work by Jaynes (1957). Recently
thermodynamic quantities were used to assess criticality of neural activity (Tkac̆ik
et al. 2014, 2015). However, analysis of neural populations under this framework
only recently started to include “dynamics” of a neural population (Shimazaki et al.
2009, 2012; Shimazaki 2013; Kass et al. 2011; Kelly and Kass 2012; Granot-Atedgi
et al. 2013; Nasser et al. 2013; Donner et al. 2017), and has not yet reached maturity
to include computation performed internally in an organism.

Based on a neural population model obtained under the maximum entropy
principle, this study investigates neural dynamics during which gain of neural
response to a stimulus is modulated with a delay by an internal mechanism to
enhance the stimulus information. The delayed gain modulation is observed at
different stages of visual pathways (McAdams and Maunsell 1999; Reynolds et al.
2000; Lee et al. 2003). For example, effect of contrast gain-control by attention
on response of V4 neurons to high contrast stimulus appears 200–300 ms after the
stimulus presentation, but is absent during 100–200 ms time period during which
the neural response is returning to a spontaneous rate (Reynolds et al. 2000). This
process is expected for dynamics of neurons subject to a feedback gain-modulation
mechanism, e.g., via recurrent networks (Salinas and Abbott 1996; Spratling and
Johnson 2004; Sutherland et al. 2009). Similar modulation of the late activity
component of neurons is discussed as underpinnings of working memory (Supèr
et al. 2001), sensory perception (Cauller and Kulics 1991; Sachidhanandam et al.
2013; Manita et al. 2015), and reward value (Schultz 2016). We demonstrate that our
hypothetical neural dynamics with delayed gain-modulation forms an information-
theoretic cycle that generates entropy ascribed to the stimulus-related activity using
entropy supplied by the internal gain-modulation mechanism. The process works
analogously to a heat engine that produces work from heat supplied by reservoirs.
We hypothesize that neurons in the brain act in this manner when it actively
modulates the incoming sensory information to enhance perceptual capacity.

This chapter is organized as follows. In Sect. 11.2, we construct a maximum
entropy model of a neural population by constraining two types of activities, one
that is directly regulated by stimulus and the other that represents background
activity of neurons, termed “internal activity.” We point out that modulation of the
internal activity realizes gain-modulation of stimulus response. In Sect. 11.3, we
explain the conservation of entropy, equation of state for the neural population, and
information on stimulus. In Sect. 11.4, we construct cycles of neural dynamics that
model stimulus-evoked activity during which the stimulus information is enhanced
by the internal gain-modulation mechanism. We define entropic efficiency of gain-
modulation performed to retain the stimulus information. An ideal cycle introduced
in this section achieves the highest efficiency. The chapter ends with discussion
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in which the state-space model of the neural population is argued as a potential
approach to test the hypothesis. Thermodynamic formulation and derivations of free
energies for a neural population are summarized in Appendix.

11.2 A Simple Model of Gain Modulation by a Maximum
Entropy Model

11.2.1 Maximum Entropy Model of Spontaneous Neural
Activity

We start by modeling spontaneous activity of N spiking neurons. We represent
a state of the i-th neuron by a binary variable xi D .0; 1/ (i D 1 � � � N). Here
silence of the neuron is represented by “0” whereas activity, or a spike, of the
neuron is denoted by “1.” The simultaneous activity of the N neurons is represented
by a vector of the binary variables, x D .x1; : : : ; xN/. The joint probability mass
function, p.x/, describes the probability of generating the pattern x. There are 2N

different patterns. We characterize the combinatorial neural activity with a smaller
number of characteristic features Fi.x/ (i D 1; : : : ; d, where d < 2N), based on the
maximum entropy principle. Here Fi.x/ is the i-th feature that combines the activity
of individual neurons. For example, these features can be the first and second order
interactions, Fi.x/ D xi for i D 1; : : : ;N, and FNC.N�i=2/.i�1/Cj�i.x/ D xixj for
i < j. The maximum entropy principle constructs the least structured probability
distribution while expected values of these features are specified (Jaynes 1957). By
representing expectation by p.x/ using a bracket h�i, these constraints are written as
hFi.x/i D ci (i D 1; : : : ; d), where ci is the specified constant.

Maximization of a function subject to the equality constraints is formulated
by the method of Lagrange multipliers that alternatively maximizes the following
Lagrange function

L Œp� D �
X

x

p.x/ log p.x/� a
X

x

p.x/ �
X

i

bi

(
X

x

p.x/Fi.x/� ci

)
;

(11.1)

where a and bi (i D 1; : : : ; d) are the Lagrange multipliers. The Lagrange function
is a functional of the probability mass function. By finding a zero point of its
variational derivative, we obtain

p.x/ � exp

 
�
X

i

biFi.x/

!
: (11.2)
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The Lagrange parameters bi are obtained by simultaneously solving @L
@bi

D
hFi.x/i � ci D 0 for i D 1; : : : ; d. Many gradient algorithms and approximation
methods have been developed to search the parameters. Activities of retinal ganglion
cells (Schneidman et al. 2006; Shlens et al. 2006; Tkac̆ik et al. 2014, 2015),
hippocampal (Shimazaki et al. 2015), and cortical neurons (Tang et al. 2008; Yu
et al. 2008; Shimazaki et al. 2012) were successfully characterized using Eq. (11.2).
In the following, we use a vector notation b0 D .b1; : : : ; bd/

> and F.x/ D
.F1.x/; : : : ;Fd.x//>. Here H0 	 b>

0 F.x/ is a Hamiltonian of the spontaneously
active neurons. In statistical mechanics, Eq. (11.2) is identified as the Boltzmann
distribution with a unit thermodynamic beta. If the features contain only up to the
second order interactions, the model is equivalent to the Ising or spin-glass model
for ferromagnetism.

11.2.2 Maximum Entropy Model of Evoked Neural Activity

In this subsection, we model evoked activity of neurons caused by changes in
extrinsic stimulus conditions. We define a feature of stimulus-related activity as
X.x/ D b>

1 F.x/, where elements of b1 dictate response properties of each feature
in F.x/ to a stimulus. For simplicity, we represent the stimulus-related activity by
this single feature, and consider that the evoked activity is characterized by the two
summarized features, H0.x/ and X.x/. To model it, we constrain expectation of the
internal and stimulus features using U and X, respectively. Here we assume that
F.x/, b0, and b1 are known and fixed. For example, this would model responses of
visual neurons when we change contrast of a stimulus while fixing the rest of the
stimulus properties. The maximum entropy distribution subject to these constraints
is again given by the method of Lagrange multipliers. The Lagrange function is
given as

L Œp� D �
X

x

p.x/ log p.x/

� a
X

x

p.x/� ˇ

(
X

x

p.x/H0.x/� U

)
C ˛

(
X

x

p.x/X.x/� X

)
:

(11.3)

Here a, ˇ, and ˛ are the Lagrange parameters. By maximizing the functional L
with respect to p, we obtain the following maximum entropy model,

p.x/ D expŒ�ˇH0.x/C ˛X.x/�  .ˇ; ˛/�; (11.4)

where  .ˇ; ˛/.D 1C a/ is a logarithm of a normalization term. It is computed as

 .ˇ; ˛/ D log
X

x

e�ˇH0.x/C˛X.x/: (11.5)
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We call  .ˇ; ˛/ a log-partition function. The Lagrange multipliers, ˇ and ˛, are
adjusted such that hH0.x/i D U and hX.x/i D X. Equation (11.4) is a softmax
function (generalization of a logistic function to multinomial outputs) that returns
the population output from a linear sum of the features weighted by �ˇ and ˛. With
this view, we may alternatively regard ˇ or ˛ as an input parameter that controls
U and X. Hereafter we simply call U internal activity, and X stimulus-related
activity. Similarly, we call ˇ an internal component, and ˛ a stimulus component.
We consider that the stimulus component ˛ can be controlled by changing extrinsic
stimulus conditions that an experimenter can manipulate. The stimulus component
is written as ˛.s/ if it is a function of a scalar stimulus condition s, such as stimulus
contrast for visual neurons. In contrast, the internal component ˇ is not directly
controllable by the stimulus conditions. The spontaneous activity is modeled at
ˇ D 1 and ˛ D 0.

11.2.3 Gain Modulation by Internal Activity

We give a simple example of the maximum entropy model to show how the
internal activity modulates the stimulus-related activity. Figure 11.1a illustrates an
exemplary model composed of 5 neurons. With these particular model parameters
(see figure caption), the stimulus component ˛ controls activity rates of the first
three neurons and their correlations. The internal component ˇ controls background
activity rates of all neurons. In our settings, decreasing ˇ increases the baseline
activity level of all neurons. Figure 11.1b displays activity rates of the individual
neurons (hxii for i D 1; : : : ; 5) as a function of the stimulus component ˛ with a
fixed internal component ˇ. Increasing ˛ under these conditions activates the first
three neurons without changing the activity rates of Neuron 4 and 5.1 Furthermore,
the response functions of the three neurons shift toward left when the background
activity rates of all neurons is increased by decreasing the internal component
ˇ (Fig. 11.1b dashed lines). Thus Neuron 1–3 increase sensitivity to stimulus
component ˛. This type of modulation is called input-gain control. For example,
if ˛ is a logarithmic function of contrast s of visual stimulation presented to an
animal while recording visual neurons (˛.s/ D log s), increasing the modulation
(decreasing ˇ) makes neurons respond to multiplicatively smaller stimulus contrast.
This models the contrast gain-control observed in visual pathways (Sakmann and
Creutzfeldt 1969; Ohzawa et al. 1985; Reynolds et al. 2000; Martínez-Trujillo
and Treue 2002). Other types of nonlinearity in the input-output relation can be
constructed, depending on the nonlinearity in ˛.s/.

1The activity rates of Neuron 4, 5 do not depend on ˛ because b0 does not contain interactions
that relate Neuron 1–3 with Neuron 4, 5. If there are non-zero interactions between any pair from
Neuron 1–3 and Neuron 4, 5 in b0, the activity rates of Neuron 4, 5 increase with the increased
rates of Neuron 1–3.
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Fig. 11.1 A simple model of gain modulation by a maximum entropy model of 5 neurons. (a) An
illustration of neurons that are activated by a stimulus (neurons in a pink area) and controlled by
an internal mechanism (neurons in a yellow area). The model is constrained by features containing
up to the second order statistics: F.x/ D .x1; : : : ; x5; x1x2; x1x3; x2x3; : : : ; x4x5/>, where the first
5 elements are parameters for the individual activities xi (i D 1; : : : ; 5) and the rest of the elements
is the joint activities of two neurons xixj (i < j). We assume that the stimulus-related activity is
characterized by b1 D .1; 1; 1; 0; 0; 0:3; 0:3; 0:3; 0; : : : ; 0/. The first 3 elements are parameters
for individual activity of the first three neurons xi (i D 1; 2; 3). The value 0:3 is assigned to the
joint activities of the first three neurons, namely the features specified by x1x2; x1x3, and x2x3. The
internal activity is characterized by b0 D .2; 2; 2; 2; 2; 0; : : : ; 0/, which regulates activity rates
of individual neurons but does not change their interactions. (b) The activity rates of neurons as
a function of the stimulus component ˛ at fixed internal components, ˇ D 1:0 (solid line) and
ˇ D 0:8 (dashed line). (c) The stimulus component X as a function of ˛ at different internal
components. (d) The relation between the stimulus-related activity X and internal activity U. (e)
The Fisher information about the stimulus component ˛

Figure 11.1c displays a relation of the stimulus component ˛ with the stimulus-
related activity X at different internal component ˇ. Similarly to the activity rates
(Fig. 11.1b), the stimulus-related activity X is augmented if the internal component
ˇ is decreased. This nonlinear interaction between ˛ and ˇ is caused by the neurons
that belong to both stimulus-related and internal activities. In this example, the
stimulus component ˛ also increases the internal activity U (Fig. 11.1d) because
of increased activity rates of the shared neurons 1, 2, 3. Finally, Fig. 11.1e displays
the variance of stimulus feature X.x/ as a function of ˛. It quantifies the information
about the stimulus component ˛, which we will discuss in the next section.
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11.3 The Conservation of Entropy, Equation of State, and
Stimulus Information for a Neural Population

11.3.1 Conservation of Entropy for Neural Dynamics

The probability mass function, Eq. (11.4), belongs to the exponential family distri-
bution. The Lagrange parameters are called natural or canonical parameters. The
activity patterns of neurons are modeled as a linear combination of the two features
H0.x/ and X.x/ using the canonical parameters .�ˇ; ˛/ in the exponent. Expecta-
tion of the features are called the expectation parameters U and X. Either natural
or expectation parameters are sufficient to specify the probability distribution. We
review dual structure of the two representations (Amari and Nagaoka 2000), and
show that the relation provides the conservation law of entropy.

Negative entropy of the neural population is computed as

�S D hlog p.x/i
D �ˇhH0.x/i C ˛hX.x/i �  .ˇ; ˛/

D �Uˇ C X˛ �  .ˇ; ˛/: (11.6)

Since the log-partition function of Eq. (11.4) is a cumulant generating function, U
and X are related to the derivatives of  .ˇ; ˛/ as

@ .ˇ; ˛/

@̌
D �hH0.x/i D �U; (11.7)

@ .ˇ; ˛/

@˛
D hX.x/i D X: (11.8)

Equations (11.6)–(11.8) form a Legendre transformation from .ˇ; ˛/ to �S.U;X/.
The inverse Legendre transformation is constructed using Eq. (11.6) as well:
 .ˇ; ˛/ D �ˇU C ˛X � .�S.U;X//. Thus dually to Eqs. (11.7) and (11.8), the
natural parameters are obtained as derivatives of the entropy with respect to the
expectation parameters,

�
@S

@U

�

X

D ˇ; (11.9)

�
@S

@X

�

U

D �˛: (11.10)

The natural parameters represent sensitivities of the entropy to the independent
variables U and X. From these results, the total derivative of S.U;X/ is written as

dS D
�
@S

@U

�

X

dU C
�
@S

@X

�

U

dX

D ˇdU � ˛dX: (11.11)
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This explains a change of neurons’ entropy by changes in the internal and stimulus-
related activities. We denote an entropy change caused by the internal activity as
dSint 	 ˇdU, and an entropy change caused by the extrinsic stimulus as dSext 	
˛dX, respectively. Then Eq. (11.11) is written as

dS D dSint � dSext: (11.12)

We remark that dS is an infinitesimal difference of entropies at two close states,
and its integral does not depend on a specific transition between the two states. In
contrast, dSint and dSext represent production of entropy separately by the internal
and stimulus-related activities, and their integrals depend on the specific paths.
Equation (11.12) constitutes the conservation of entropy for neural dynamics. We
stress that although it is the first law of thermodynamics, the neurons considered
here interact with an environment differently from conventional thermodynamic
systems.2 While internal energy of the conventional systems is indirectly controlled
via work and heat, we consider that the internal activity of neurons is controlled
directly by the organism’s internal mechanism. Thus we use dSint and dSext, rather
than the work and heat, as quantities that neurons exchange with an environment.

11.3.2 Equation of State for a Neural Population

Equation (11.8) is an equation of the state for a neural population, which we rewrite
here as

X.ˇ; ˛/ D @ .ˇ; ˛/

@˛
: (11.13)

Through the log-partition function  , this equation relates state variables, ˇ, ˛, and
X, similarly to, e.g., the classical ideal gas law that relates temperature, pressure, and
volume. Figure 11.1c displayed the equation of state. We note that is related to the
Gibbs free energy (see Appendix). Furthermore, without loss of generality, we can
assume that the hamiltonian of the silent state is zero: H0.0/ D X.0/ D 0, where
x D 0 denotes the simultaneous silence of all neurons. We then obtain p.0/ D e� ,
namely

� .ˇ; ˛/ D log p.0/: (11.14)

2We obtain dU D TdS � fdX, using ˇ 	 1=T and ˛ 	 ˇf in Eq. (11.11). In this form, the
expectation parameter U is a function of .S;X/. According to the conventions of thermodynamics,
we may call U internal energy, T temperature of the system, and f force applied to neurons by a
stimulus. It is possible to describe the evoked activity of a neural population using these standard
terms of thermodynamics. However, this introduces the concepts of work and heat, which may not
be relevant quantities for neurons to exchange with environment.
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Thus � .ˇ; ˛/ is a logarithm of the simultaneous silence probability.3 Since
d.log p.0// D dp.0/=p.0/, �d gives a fractional increase of the simultaneous
silence probability of the neurons. Accordingly, Eq. (11.13) states that the stimulus-
related activity X equals to the fractional decrease of the simultaneous silence
probability by a small change of ˛, given ˇ.

The opposite representation of the equation of state, ˛ as a function of X given ˇ,
is obtained as follows. From Eq. (11.13), we have d D Xd˛ given that ˇ is fixed.
Let  0 and X0 be  and X at ˛ D 0. Then, if the internal component ˇ is fixed, the
stimulus component ˛ at X is given by

˛.ˇ;X/ D
Z  

 0

�
1

X

�

ˇ

d 0 D
Z X

X0

�
1

X0
@ 

@X0

�

ˇ

dX0: (11.15)

Here

@ 

@X

�

ˇ
is a fractional decrease of the simultaneous silence probability when X

shifts to X C dX while ˇ is fixed.

11.3.3 Information About Stimulus

The Fisher information J.˛/ provides the accuracy of estimating a small change in
the stimulus component ˛ by an optimal decoder. More specifically, the inverse of
the Fisher information provides a lower bound of variance of an unbiased estimator
for ˛ from a sample. For the exponential family distribution, it is given as the second
order derivative of the log-partition function with respect to ˛, which is also the
variance of stimulus feature X.x/:

J.˛/ 	
*�
@ log p.x/
@˛

�2+
D @2 .ˇ; ˛/

@˛2

D @X

@˛
D hX.x/2i � hX.x/i2: (11.16)

The first equality in the second line of Eq. (11.16) is obtained using the first order
derivative of  , namely the equation of state (Eq. (11.13)). The second equality in
Eq. (11.16) represents the fluctuation-dissipation relation of the stimulus feature.
The equalities show that the Fisher information can be computed in three different
manners given that the internal component ˇ is fixed: (1) the second derivative of

3Importantly, � is a logarithm of the simultaneous silence probability predicted by the model,
Eq. (11.4). The observed probability of the simultaneous silence could be different from the
prediction if the model is inaccurate. For example, an Ising model may be inaccurate, and it was
shown that neural higher-order interactions may significantly contribute to increasing the silence
probability (Ohiorhenuan et al. 2010; Shimazaki et al. 2015).
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 with respect to ˛ using the simultaneous silence probability, (2) the derivative of
X with respect to ˛ using the equation of state, or (3) the variance of the stimulus
feature.

The Fisher information computed at two fixed internal components was shown
in Fig. 11.1e. The stimulus component ˛ becomes relatively dominant in charac-
terizing the neural activity if the internal component ˇ decreases. This results in
the larger Fisher information J.˛/ for the smaller internal component ˇ at given ˛.
If the stimulus condition s controls the stimulus component as ˛.s/, and it is not
related to ˇ, the information about s is given as @˛.s/

@s J.˛/ @˛.s/
@s .

11.4 Information-Theoretic Cycles by a Neural Population

We now introduce neural dynamics that models dynamical gain-modulation per-
formed by an internal mechanism while neurons are processing stimulus. Since there
are neurons that belong to both stimulus-related and internal activities, the internal
mechanism changes not only the internal activity but also the stimulus-related
activity, which realizes the modulation. From an information-theoretic point of
view, this process converts entropy generated by the internal mechanism to entropy
associated with stimulus-related activity after one cycle of the neural response is
completed. To explain this in detail, we first provide an intuitive example of delayed
gain-modulation using a dynamical model, and then provide an ideal cycle that
efficiently enhances stimulus information. Using the latter model, we explain why
the process works similarly to a heat engine, and show how to quantify efficiency of
the gain-modulation performed by the internal mechanism.

11.4.1 An Example of Delayed Gain-Modulation

We first consider a simple dynamical model of delayed gain-modulation. We use the
feature vector, b0 and b1 based on those used in Fig. 11.1. In this model, neurons
are activated by a stimulus input, which subsequently increases modulation by an
internal mechanism (Fig. 11.2a). Such a process can be modeled through dynamics
of the controlling parameters given by

�˛ P̨ .t/ D �˛.t/C s e�t=�˛ (11.17)

�ˇ P̌.t/ D �ˇ.t/C ˇ0 � �˛.t/ (11.18)

for t � 0. Here s is intensity of an input stimulus. Neurons are initially at a
spontaneous state: ˛.0/ D 0 and ˇ.0/ D ˇ0 D 1. The top panel of Fig. 11.2b
displays the dynamics of ˛.t/ and ˇ.t/. The population activity is sampled from
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Fig. 11.2 The delayed gain-modulation by internal activity. The parameters of the maximum
entropy model (N D 5) follow those in Fig. 11.1. (a) An illustration of delayed gain-modulation
described in Eqs. (11.17) and (11.18). The stimulus increases the stimulus component ˛ that
activates Neuron 1, 2, and 3. Subsequently, the internal component ˇ is increased, which increases
the background activity of all 5 neurons. We assume a slower time constant for the gain-modulation
than the stimulus activation (�ˇ D 0:1 and �˛ D 0:05). (b) Top: Dynamics of the stimulus and
internal components (solid lines, � D 0:5). The internal component ˇ without the delayed gain-
modulation (� D 0) is shown by a dashed black line. Middle: Activity rates [a.u.] of Neuron
1–3 with (solid red) and without (dashed black) the delayed gain-modulation. Bottom: The Fisher
information about stimulus component ˛ (Eq. (11.16)). (c) The X-˛ (left) and U-ˇ (right) phase
diagrams. A red solid cycle represents dynamics when the delayed gain-modulation is applied
(� D 0:5). The dashed line is a trajectory when the delayed gain-modulation is not applied to
the population (� D 0). (d) Left: The U-ˇ phase diagrams of neural dynamics with different
combinations of �ˇ and � that achieve the same level of the maximum modulation (the minimum
value of ˇ D 0:9). Right: The Fisher information about the stimulus component ˛ for different
cycles. The color code is the same as in the left panel. The inset shows the Fisher information about
the stimulus intensity s (Eq. (11.19))

the maximum entropy model with these dynamical parameters. Here we consider a
continuous-time representation of the maximum entropy model4 (Kass et al. 2011;

4Under the assumption that rates of synchronous spike events scale with O.�k/, where � is a
bin size of discretization and k is the number of synchronous neurons. It was proved (Kass et al.
2011) that it is possible to construct a continuous-time limit (� ! 0) of the maximum entropy
model that takes the synchronous events into account. Here we follow their result to consider the
continuous-time representation.
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Kelly and Kass 2012). The activity rates of neurons are increased by the delayed
gain-modulation (solid lines in Fig. 11.2b, middle panel) from those obtained
without the modulation (� D 0; dashed lines). Accordingly, the information about
the stimulus component ˛ contained in the population activity as quantified by the
Fisher information (Eq. (11.16)) increases and lasts longer by the delayed gain-
modulation (Fig. 11.2b, bottom panel). Note that in this example, the information
about the stimulus strength s is carried in both ˇ.t/ and ˛.t/ as time passes. The
result obtained from the Fisher information about s using both ˇ.t/ and ˛.t/ is
qualitatively the same as the result of the Fisher information about ˛ (not shown).5

The U-ˇ phase diagram (Fig. 11.2c, left panel) shows that dynamics without
the gain-modulation is represented as a line because ˇ is constant. In contrast,
dynamics with the gain-modulation forms a cycle because weaker and then stronger
modulation (larger and then smaller ˇ) is applied to neurons when the internal
activity U increases and then decreases, respectively. Similarly, the dynamics forms
a cycle in the X-˛ plane (Fig. 11.2c, right panel) if the stimulus activity X is
augmented by the delayed gain-modulation. By applying the conservation law for
entropy (Eq. (11.12)) to the cycle, we obtain

0 D
I
ˇdU �

I
˛dX: (11.20)

Here
H
ˇdU 	 �Sint is entropy produced by the internal activity during the cycle

due to the delayed gain-modulation, and
H
˛dX 	 �Sext is entropy produced by

the activity related to extrinsic stimulus conditions. These are the areas within the
circles in the phase diagrams. Equation (11.20) states that the two cycles have the
same area (�Sint D �Sext).

The left panel in Fig. 11.2d displays the U-ˇ phase diagram for dynamics with
given maximum strength of modulation (the minimum value of ˇ). Among these
cycles, larger cycles retain the information about the stimulus component ˛ for a
longer time period (Fig. 11.2d, right panel). The same conclusion is made from the
Fisher information about s (Fig. 11.2d, an inset in right panel). The larger cycles
were made because the modulation was only weakly applied to neurons when
the internal activity U increased, then the strong modulation was applied when U
decreased. Such modulation is considered to be efficient because it allows neurons to
retain the stimulus information for a longer time period by using the slow time-scale
of ˇ without excessively increasing activity rates of neurons at its initial rise. In the

5When ˛ and ˇ are both dependent on the stimulus, the Fisher information about s is given as

J.s/ D @�.s/>

@s
J
@�.s/

@s
; (11.19)

where �.s/ 	 Œ�ˇ; ˛�> and J is a Fisher information matrix given by Eq. (11.24), which will be
discussed in the later section. We computed Eq. (11.19) using analytical solutions of the dynamical

equations given as ˛.t/ D st
�˛

e�t=�˛ and ˇ.t/ D 1� s�
�ˇ��˛

n
�˛�ˇ

�ˇ��˛
.e�t=�ˇ � e�t=�˛ /� te�t=�˛

o
.
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next section, we introduce the largest cycle that maximizes the entropy produced by
the gain-modulation when the maximum strength of the modulation is given. Using
this cycle, we explain how the cycle works analogously to a heat engine, and define
efficiency of the cycle to retain the stimulus information.

11.4.2 The Efficient Cycle by a Neural Population

The largest cycle is made if the modulation is not applied when the internal
activity U increases, then applied when U decreases. Figure 11.3 displays a cycle
of hypothetical neural dynamics that maximizes the entropy production when the
ranges of the internal component and activity are given. The model parameters
follow those in Fig. 11.1. This cycle is composed of four steps. The process starts at
the state A at which neurons exhibit spontaneous activity (ˇ D ˇH D 1, ˛ D 0).
Figure 11.3a displays a sample response of the neural population to a stimulus
change. Figure 11.3b and c display the X-˛ and U-ˇ phase diagrams of the cycle.
Heat capacity of the neural population and the Fisher information about ˛ are shown
in Fig. 11.3d. Details of the cycle steps are now described as follows.

A!B Increased stimulus response The stimulus-related activity X is increased by
increasing the stimulus component ˛ while the internal component is fixed
at ˇ D ˇH . In this process the internal activity U also increases.

B!C Internal computation An internal mechanism decreases the internal com-
ponent ˇ while keeping the internal activity (dU D 0). In this process the
stimulus-related activity X decreases. The process ends at ˇ D ˇL.

C!D Decreased stimulus response The stimulus-related activity X is decreased
by decreasing the stimulus component ˛ while the internal component is
fixed at ˇ D ˇL. In this process the internal activity U also decreases.

D!A Internal computation An internal mechanism increases the internal com-
ponent ˇ while keeping the internal activity (dU D 0). In this process the
stimulus-related activity X increases. The process ends at ˇ 	 ˇH .

The processes B!C and D!A represent additional computation performed by
an internal neural mechanism on the neurons’ stimulus information processing. It is
applied after the initial increase of stimulus-related activity during A!B, therefore
manifests delayed modulation. Without these processes, the neural dynamics is
represented as a line in the phase diagrams. The Fisher information about ˛ also
increases during the process between C and D (Fig. 11.3d, right panel). We reiterate
that the Fisher information quantifies the accuracy of estimating a small change in
˛ by an optimal decoder. Thus operating along the path between C and D is more
advantageous than the path between A and B for downstream neurons if their goal
is to detect a change in the stimulus-related activity of the upstream neurons that is
not explained by the internal activity.
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Fig. 11.3 The efficient circle by a neural population (N D 5). The parameters of the maximum
entropy model follow those in Fig. 11.1. The cycle starts from the state A at which ˇ D ˇH D 1

and ˛ D 0. See the main text for details of the steps. The efficiency of this cycle is 0:14. (a) Top:
Spike raster plots during the cycle. Middle: Activity rates of neurons. Bottom: The cycle steps.
(b) The X-˛ phase diagram. (c) The U-ˇ phase diagram. (d) Left: X v.s. heat capacity. The heat
capacity is defined as C D hh2i�hhi2, where h D � log p.x/ is information content. Right: Fisher
information about the stimulus component ˛

11.4.3 Interpretation as an Information-Theoretic Cycle

We start our analysis on the cycle by examining how much entropy is generated by
the internal and stimulus-related activities at each step. First, we denote by �Sint

AB
and �Sint

CD the entropy changes caused by the internal activity during the process
A!B and C!D, respectively. Since the internal component ˇ is fixed at ˇH during
the process A!B, we obtain�Sint

AB D ˇH�U, where�U is a change of the internal
activity (see Fig. 11.3c). This change in the internal activity is positive (�U > 0).
Since the internal activity does not change during B!C and D!A, a change of
the internal activity during C!D is given by ��U (Note that the internal activity
is a state variable). We obtain �Sint

CD D �ˇL�U for the process during C!D. The
total entropy change caused by the internal activity during the cycle is given as
�Sint

AB C�Sint
CD D .ˇH � ˇL/�U, which is positive because ˇH > ˇL and �U > 0.

Thus the internal activity contributes to increasing the entropy of neurons during the



11 Neural Engine Hypothesis 281

Fig. 11.4 An
information-theoretic cycle
by a neural population
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cycle. Second, we denote by�Sext the total entropy change caused by the stimulus-
related activity during the cycle. According to the conservation law (Eq. (11.12))
applied to this cycle, we obtain

0 D �Sint
AB C�Sint

CD ��Sext: (11.21)

Note that the sign of�Sext D �Sint
AB C�Sint

CD is positive. Hence the stimulus-related
activity contributes to decreasing the entropy of neurons during the cycle.

This cycle belongs to the following cycle that is analogous to a heat engine
(Fig. 11.4). In this paragraph, we temporarily use receive entropy and emit entropy
to express the positive and negative path-dependent entropy changes caused by
the internal or stimulus-related activity in order to facilitate comparison with a
heat engine.6 In this cycle, neurons receive entropy as internal activity from an
environment (�Sint

in > 0) and emit entropy to the environment (�Sint
out < 0).

The received entropy as the internal activity is larger than the emitted entropy
(�Sint

in C �Sint
out > 0). The surplus entropy is emitted to the environment in the

form of the stimulus-related activity (��Sext < 0). Thus we may regard the cycle
as the process that produces stimulus-related entropy using entropy supplied by
the internal mechanism. We hereafter denote this cycle as an information-theoretic
cycle, or engine. The cycle in Fig. 11.2 is also regarded as an information-theoretic
cycle by separating the process at which the internal activity is maximized.
The conservation law prohibits a perpetual information-theoretic cycle that can
indefinitely produce the stimulus-related entropy without entropy production by the
internal mechanism.7

6Here we use entropy synonymously with heat in thermodynamics to facilitate the comparison with
a heat engine. However this is not an accurate description because the entropy is a state variable.
7This is synonymous with the statement that the first law prohibits a perpetual motion machine of
the first kind, a machine that can work indefinitely without receiving heat.
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11.4.4 Efficiency of a Cycle

As we discussed for the example dynamics in Fig. 11.2, we may consider that
the modulation is efficient if it helps neurons to retain stimulus information
without excessively increasing the internal and stimulus-related activities during
the initial response. Such a process was achieved when gain-modulation was only
weakly applied to neurons when the internal activity U increased, then strong gain
modulation was applied when U decreased. We can formally assess this type of
efficiency by defining entropic efficiency, similarly to thermal efficiency of a heat
engine. It is given by a ratio of the entropy change caused by the stimulus-related
activity as opposed to the entropy change gained by the internal activity as:

� 	 �Sext

�Sint
in

D 1 � j�Sint
outj

�Sint
in

: (11.22)

For the proposed information-theoretic cycle in Fig. 11.3, it is computed as

�e D 1 � j�Sint
CDj

�Sint
AB

D 1 � ˇL

ˇH
; (11.23)

which is a function of the internal components, ˇH and ˇL. This cycle is the most
efficient in terms of the entropic efficiency defined by Eq. (11.22) when the highest
and lowest internal components and activities are given. The square cycle in the
U-ˇ phase diagram (Fig. 11.3c) already suggests this claim, and we can formally
prove this by comparing the information-theoretic cycle with an arbitrary cycle
C whose internal component ˇ satisfies ˇL � ˇ � ˇH.8 Thus the proposed
cycle bounds efficiency of the additional computation made by the delayed gain-
modulation mechanism. Here we now call the proposed cycle in Fig. 11.3, the ideal
information-theoretic cycle. Note that this cycle is similar to, but different from the
Carnot cycle (Carnot 1824) that can be realized by replacing the processes B!C
and D!A with adiabatic processes. The Carnot cycle achieves the highest thermal
efficiency.

8Let us consider the efficiency � achieved by an arbitrary cycle C during which the internal
component ˇ satisfies ˇL � ˇ � ˇH . Let the minimum and maximum internal activity in the
cycle be Umin and Umax. We decompose C into the path C1 from Umin to Umax and the path C2
from Umax to Umin during which the internal component is given as ˇ1.U/ and ˇ2.U/, respectively.
Because the cycle acts as an engine, we expect ˇ1.U/ > ˇ2.U/. The entropy changes produced by
the internal activity during the path Ci (i D 1; 2) is computed as �Sint

C1
D R Umax

Umin
ˇ1.U/ dU �

ˇH

R Umax
Umin

dU D ˇH.Umax � Umin/ and j�Sint
C2

j D j R Umin
Umax

ˇ2.U/ dUj � jˇL

R Umin
Umax

dUj D
ˇL.Umax � Umin/. Hence we obtain j�Sint

C2
j=�Sint

C1
� ˇL=ˇH , or � � �e.
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11.4.5 Geometric Interpretation

Finally, we introduce geometric interpretation of the cycle, and consider conditions
that realize the information-theoretic cycle. Let us denote the internal and stimulus
components as � D Œ�ˇ; ˛�> . In addition, we represent the expected internal and
stimulus features by � D ŒU;X�>. The parameters � and � form dually flat affine
coordinates, and are called � and �-coordinates in information geometry (Amari and
Nagaoka 2000).

A small change in � is related to a change in � as d� D Jd�. Here J is the Fisher
information matrix with respect to � . It is given as

J D

 hb0;b0i hb0;b1i

hb1;b0i hb1;b1i
�
; (11.24)

where hbi;bji 	 b>
i Gbj .i; j D 0; 1/ is an inner product of the vectors bi and

bj with a metric given by G D hF.x/F.x/>i � hF.x/ihF.x/i>. Note that hb0;b0i
is equivalent to Eq. (11.16). In general, in order to make a change of the internal
component ˇ influence the stimulus-related activity X, therefore controls stimulus
information, one requires hb0;b1i ¤ 0 because dX D �hb1;b0idˇ C hb1;b1id˛
from d� D Jd� . This condition indicates that the modulation by an internal
mechanism is achieved through the activity features shared by the two components.
Accordingly, this condition is violated if neurons participate in the stimulus-related
activity and neurons subject to the internal modulation do not overlap (namely if
neurons that appear in the features corresponding to non-zero elements of b0 are
separable from those of b1).

For the ideal information-theoretic cycle, we indicate the parameters at A, B, C,
and D using a subscript of � or �. For example, the parameters at A are �A and
�A. The first process A!B of the ideal information-theoretic cycle is a straight
line (geodesic) between �A and �B in the curved space of �-coordinates. It is
called e-geodesic. In addition, the internal component ˇ is fixed while the stimulus
component decreases, therefore the e-geodesic is a vertical line in the �-coordinates.
The second process B!C is the shortest line between �B and �C in the curved space
of �-coordinates. The path is called an m-geodesic. In addition, the internal activity
U is fixed while the stimulus-related activity decreases, therefore the m-geodesic is
a vertical line in the �-coordinates. Similarly, the process C!D is an e-geodesic,
and the process D!A is an m-geodesic.

The change in the internal component ˇ during the processes along m-geodesic
manifested the internal computation in the ideal information-theoretic cycle. The
small change in � is related to the change in � by d� D J�1d�. Since the m-
geodesic processes B!C and D!A are characterized by d� D Œ0; dX�>, the small
change in �-coordinates is given as

d� D

�hb0;b1i

hb0;b0i
�

jJj�1dX; (11.25)
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Conversely, the internal mechanism needs to change the internal and stimulus
component according to the above gradient in order to accomplish the most efficient
cycle. Thus the internal mechanism need to access the stimulus component ˛ in
order to realize the ideal information-theoretic cycle. Again, if hb0;b1i D 0, the
internal componentˇ is not allowed to change, which however means that the entire
process does not form a cycle. Therefore we impose hb0;b1i ¤ 0.

11.5 Discussion

In this study, we provided hypothetical neural dynamics that efficiently encodes
stimulus information with the aid of delayed gain-modulation by an internal
mechanism, and demonstrated that the dynamics forms an information-theoretic
cycle that acts similarly to a heat engine. This view provided us to quantify the
efficiency of the gain-modulation in retaining the stimulus information. The ideal
information-theoretic cycle introduced here bounded the entropic efficiency.

As an extension of a logistic activation function of a single neuron to multinomial
outputs, the maximum entropy model explains probabilities of activity patterns by
a softmax function of the features, therefore allows nonlinear interaction of the
inputs (here ˇ and ˛) in producing the stimulus-related activity X (Fig. 11.1). This
interaction was caused by shared activity features in b1 and b0. The gain modulation
more effectively changes the stimulus-related activity if the features of the stimulus-
related and internal activities resemble (i.e., hb1;b0i is close to 1), which may have
implications in similarity between evoked and spontaneous activities (Kenet et al.
2003) that can be acquired during development (Berkes et al. 2011).

The model’s statistical structure common to thermodynamics (the Legendre
transformation; see Appendix) allowed us to construct the first law for neural
dynamics (Eq. (11.12)), the equation of state (Eq. (11.13)), fluctuation-dissipation
relation (Eq. (11.16)), and neural dynamics similar to a thermodynamic cycle
(Figs. 11.2 and 11.3) although we emphasized the differences from conventional
thermodynamics in terms of the controllable quantities. The dynamics forms a cycle
if the gain modulation is applied after the initial increase of the stimulus-related
activity. This scenario is expected when the stimulus response is modulated by a
feedback mechanism of recurrent networks (Salinas and Abbott 1996; Spratling and
Johnson 2004; Sutherland et al. 2009), and is associated with short-term memory of
the stimulus (Salinas and Abbott 1996; Salinas and Sejnowski 2001; Supèr et al.
2001). Consistently with the idea of efficient stimulus-encoding by a cycle, effect
of attentional modulation on neural response typically appears several hundred
milliseconds after stimulus onset (later than the onset of the stimulus response)
(Motter 1993; Luck et al. 1997; McAdams and Maunsell 1999; Seidemann and
Newsome 1999; Reynolds et al. 2000; Ghose and Maunsell 2002) although the
temporal profile can be altered by task design (Luck et al. 1997; Ghose and
Maunsell 2002). Further, the modulation of late activity components is ubiquitously
observed in different neural systems (Cauller and Kulics 1991; Supèr et al. 2001;
Sachidhanandam et al. 2013; Manita et al. 2015; Schultz 2016).
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cba

Fig. 11.5 The state-space method for estimating time-varying Ising model for monkey V4 data.
(a) Top: Simultaneously recorded spiking data from 45 neurons while grating stimulus is presented
to a monkey. Bottom: spiking probability (black, data; green, model fit). Gray area indicates
the period of stimulus presentation. (b) Top: Time-varying parameters of an Ising model (i.e.,
individual and pairwise interaction parameters) are estimated by fitting the state-space model using
an expectation-maximization (EM) algorithm. Bottom: the means and standard deviations of the
Ising parameters. (c) Estimated dynamics of thermodynamic quantities (from top to bottom: silence
probability, entropy, fractional entropy for correlations, heat capacity). The figure is modified from
(Donner et al. 2017)

To test the hypothesis that neurons act as an information-theoretic engine using
empirical data, the internal and stimulus feature need to be specified. Since even
spontaneous neural activity is known to exhibit ongoing dynamics (Kenet et al.
2003), estimation of these features is nontrivial. The optimal sequential Bayesian
algorithms have been proposed to smoothly estimate the parameters of the neural
population model when they vary in time (Shimazaki et al. 2009, 2012; Shimazaki
2013; Donner et al. 2017), based on the paradigm developed by Brown and
colleagues (Brown et al. 1998; Smith and Brown 2003) for joint estimation of
the state-space and parameter estimation for point process observations. With the
recent advances in applying various approximation methods to this model, it was
demonstrated that the method is applicable to simultaneously analyzing a large
number of neurons, and trace dynamics of thermodynamic quantities of the network
such as the free energy, entropy, and heat capacity (Donner et al. 2017) (see
Fig. 11.5). Hence this and similar approaches can be used to select dominant features
of spontaneous and evoked activities, and then to estimate the time-varying internal
and stimulus-related components. Efficiency of the cycles computed from the data
can be used to test the hypothesis that the neurons are working as an information-
theoretic engine. Further, by including multiple stimulus features in the model, the
theory is expected to make quantitative predictions on competitive mechanisms of
selective attention (Moran and Desimone 1985; Motter 1993; Luck et al. 1997;
Reynolds et al. 1999). The conservation law of entropy imposes competition among
the stimuli given a limited entropic resource generated by the internal mechanism.
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The current theory assumes a quasi-static process for a neural response as we
use an equilibrium model of the neural population at each point of time. For
this to be a good approximation of neural dynamics, network activity caused by
stimulus presentation may need to change more slowly than the time-scale of
individual neurons under the examination, which may be expected as several tens of
milliseconds for cortical neurons based on synaptic and membrane time constants
and axonal delays. Otherwise, the theory needs to be extended to account for non-
equilibrium processes by considering causal relations of past population activity on
a current state of the population. It is possible to include the history effect on the
population activity in the model (Shimazaki et al. 2012) or by using non-equilibrium
models such as a kinetic Ising model. It will be an important challenge to consider
a thermodynamic paradigm for a neural population including the second law for
such non-equilibrium processes based on the recent advances in the field, where the
second law of thermodynamics was generalized for a causal system with feedback
(Sagawa and Ueda 2010, 2012; Ito and Sagawa 2013, 2015).

In summary, a neural population that works as an information-theoretic engine
produces entropy ascribed to stimulus-related activity out of entropy supplied by an
internal mechanism. This process is expected to appear during stimulus response
of neurons subject to feedback gain-modulation. It is thus hoped that quantitative
assessment of the neural dynamics as an information-theoretic engine contributes to
understanding neural computation performed internally in an organism.
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Appendix: Free Energies of Neurons

In this appendix, we introduce thermodynamic formulation and free energies of a
neural population. Let us first discuss the relation of state variables and free energies
that appear in our analysis of the neural population with those found in conventional
thermodynamics. Assume that the small change in internal activity of neurons has
the following linear relations to entropy S, expected feature X, and the number of
neurons N:

dU D TdS C fdX C �dN: (11.26)

Equation (11.26) is the first law of thermodynamics, and the parameters are
temperature T, force f , and chemical potential�. The first law describes the internal
activity as a function of .S;X;N/. In thermodynamics, the Helmholtz free energy
F D U�TS, Gibbs free energy G D F�fX, or enthalpy H D U�fX is introduced to
change the independent variables to .T;X;N/, .T; f ;N/, and .S; f ;N/, respectively.
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These free energies are useful to analyze isothermal or other processes in which
only one of the independent variables is changed. For example, the Helmholtz free
energy can be used to compute the work done by force f under the isothermal
condition. However, the concepts of the force and work may not be directly relevant
to information-theoretic analysis of a neural population. Here we introduce the free
energies that are more consistent with the framework based on entropy changes.

The first law is alternatively written as

dS D ˇdU � ˛dX � �dN; (11.27)

Here we used ˇ D 1=T, ˛ D f=T, and � D �=T. This first law describes a small
entropy change as a function of .U;X;N/. The parameters are defined as

ˇ.U;X;N/ D
�
@S

@U

�

X;N

; (11.28)

˛.U;X;N/ D �
�
@S

@X

�

N;U

; (11.29)

�.U;X;N/ D �
�
@S

@N

�

U;X

: (11.30)

We change the independent variable U to ˇ. For this goal, here we define the scaled
Helmholtz free energy F as

F D S � ˇU: (11.31)

Note that F D �ˇF. It is a function that changes the independent variables from
.S;X;N/ to .ˇ;X;N/. This can be confirmed from the total derivative of F : dF D
dS � d.ˇU/ D �Udˇ � ˛dX � �dN. From this equation, we have

U.ˇ;X;N/ D �
�
@F

@̌

�

X;N

; (11.32)

˛.ˇ;X;N/ D �
�
@F

@X

�

N;ˇ

; (11.33)

�.ˇ;X;N/ D �
�
@F

@N

�

ˇ;X

: (11.34)

The entropy change caused by the stimulus-related activity when X changes from X1
to X2 is given by the area under the curve of ˛.ˇ;X;N/ in the X-˛ phase plane. From
Eq. (11.33), if the process satisfies dˇ D dN D 0, the entropy change is computed
as reduction of the scaled Helmholtz free energy as

�Sext D
Z X2

X1

˛.ˇ;X;N/ dX D F .ˇ;X2;N/ � F .ˇ;X1;N/: (11.35)
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Further change of the independent variables from .ˇ;X;N/ to .ˇ; ˛;N/ is done
by introducing the scaled Gibbs free energy:

G D F C ˛X D S � ˇU C ˛X: (11.36)

Note that G D �ˇG. The independent variables of the Gibbs free energy are
.ˇ; ˛;N/ since dG D dF C .d˛X C Xd˛/ D �Udˇ C Xd˛ � �dN. From this
equation, we find

�
@G

@̌

�

˛;N

D �U.ˇ; ˛;N/; (11.37)

�
@G

@˛

�

ˇ;N

D X.ˇ; ˛;N/: (11.38)

Note that the definition of the Gibbs free energy by Eq. (11.36) is obtained from
Eq. (11.6) if we identify G D  . Accordingly, Eqs. (11.37) and (11.38) coincide
with Eqs. (11.7) and (11.8).

The Legendre transformation that changes the state variable N to � is given by

G C �N D S � ˇU C ˛X C �N: (11.39)

Since d.G C �N/ D dG C .d�N C �dN/ D �Udˇ C Xd˛ C Nd� , the natural
independent variables is now .ˇ; ˛; �/. From the extensive property of S, X, and N,
we have the Gibbs-Duhem relation,

� Udˇ C Xd˛ C Nd� D 0: (11.40)

Thus this free energy is identical to zero, and we obtain G D ��N.
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Chapter 12
Inferring Neuronal Network Mechanisms
Underlying Anesthesia-Induced Oscillations
Using Mathematical Models

Sujith Vijayan and Michelle McCarthy

12.1 Introduction

General anesthesia is administered to over 100,000 people daily, yet we are just
beginning to understand the mechanisms through which anesthetics act. During the
administration of a general anesthetic, as the depth of anesthesia increases, patients
transition through a series of stereotypical brain states, each marked by prominent
oscillatory activity in the EEG. Examples of oscillatory activity with anesthesia
include increases in beta (13–30 Hz) frequency oscillations with low doses of
propofol (McCarthy et al. 2008) and increases in alpha (8–13 Hz) oscillations at
anesthetic doses of GABAa-potentiating drugs such as propofol and sevoflurane
(Akeju et al. 2014). In contrast, the EEG during ketamine displays prominent
low gamma �30–40 Hz oscillations (Akeju et al. 2016). These dynamical states
also correlate with different behavioral states (for example, drowsy, unable to
respond, etc.). Therefore, gaining an understanding of the systems and circuit level
mechanisms through which general anesthetics act may provide insight into how
these dynamics bring about the concomitant behavioral states, allowing for better
design of anesthetics, as well as providing a deeper understanding of the neural
mechanisms underlying brain dynamics more generally.

One approach to understanding the mechanisms underlying the neural dynamics
seen during general anesthesia is via mathematical modeling, which allows the
investigator to examine and perturb the neural activity of a system, especially at
large scale levels, in a very precise manner that is not often easily achieved using
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traditional physiological techniques. Mathematical modeling investigations can
identify novel mechanisms that may be responsible for the observed brain dynamics
and provide experimentally testable hypotheses. Examples of mathematical models
providing insight into brain dynamics include theoretical work on “interneuronal
network gamma” in which, as the name suggests, interneurons form network
oscillations at gamma frequency (Cannon et al. 2014). These mathematical models
have been experimentally tested in recent experiments in which cortical fast spiking
interneurons were optogenetically driven in vivo resulting in a selective increase in
gamma oscillations (Cardin et al. 2009).

In this chapter, we will discuss modeling work that has been used to understand
the systems and circuit level mechanisms underlying the various brain states during
the administration of the general anesthetic propofol. Along the way we will discuss
the common mathematical modeling techniques used to identify candidate genera-
tive circuit and systems level mechanisms responsible for given brain dynamics.

12.2 Biophysical Modeling

Various types of models are employed to investigate brain dynamics. Some com-
monly employed models are mean field models, leaky integrate and fire models, and
Hodgkin-Huxley models. Each has its strengths and weaknesses. Mean field models,
such as the Wilson-Cowan model (Wilson and Cowan 1972), easily allow for the
investigation of large scale population activity, but at the cost of biophysical detail.
Hodgkin-Huxley models are more biophysically detailed than mean field models,
often incorporating many of the ionic currents known to exist in a given class of
neurons, and ranging in anatomical detail from a single compartment to models that
incorporate the fine details of dendritic arborizations. However, Hodgkin-Huxley
models are not as conducive to examining large scale population activity as mean
field models, since Hodgkin-Huxley models require more computational resources
due to their greater biophysical detail (Hodgkin and Huxley 1952). In the propofol
work presented below, single compartment Hodgkin-Huxley models are employed
so we provide more details about such models here. The membrane potentials of
such single compartment Hodgkin-Huxley models are governed by the ordinary
differential equation:

CM
dV

dt
D �

X
IM �

X
ISyn (12.1)

where the product of the change in the membrane potential with respect to time
(dV=dt) and the membrane capacitance (CM) is equal to the product of negative one
and the sum of the membrane currents (IM) and the synaptic currents (ISyn). The
membrane currents that are incorporated into a model of a particular cell type are
usually dictated by experimental evidence. In the original equations developed by
Hodgkin and Huxley (1952), the membrane currents consisted only of the spiking
currents, which include the fast sodium current (INa), the fast potassium current (IK),
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and a leak current (IL) as well as an applied current (Iapp). The spiking currents were
Ohmic and governed by the following equation:

Iion D gion.V � Eion/ (12.2)

In this equation, Iion D INa, IK or IL. The conductance of each ionic current
is represented by gion and Eion is the equilibrium potential for each respective
ionic current. In Hodgkin and Huxley’s original experiments, they found that the
conductance of the ionic channels was best described by incorporating activation
and inactivation gating variables to the ionic conductance:

gion D Ngionmahb: (12.3)

where Ngion is the maximal conductance of the ionic current, m is the fraction of
open activation gates, and h is the fraction of open inactivation gates. Accordingly,
m; h 2 Œ0; 1�. The constants a and b are the number of activation or inactivation
gates, respectively, and take integer values � 0. The gating variables (m,h) are first-
order ordinary differential equations written as:

dx

dt
D x1.V/� x

�x.V/
for x D m; h (12.4)

The kinetics of the gating variables are determined by the time constant of decay (�x)
and the steady state activation curve (x1). Both these functions are often dependent
on the voltage (V) of the neuron and both can be measured experimentally.

The synaptic currents are also Ohmic and follow the equation:

Isyn D gsyn.V � Esyn/ (12.5)

Here syn stands for the post-synaptic receptor type, which could be GABA (gamma-
aminobutyric acid, including GABAa and GABAb), AMPA, or NMDA among
others. The reversal potential of the synaptic current (Esyn) depends on the ionic
species which flows across the membrane after the synaptic receptor is activated.
For example, chloride ions flow across the GABAa channel, so EGABAa is the reversal
potential for chloride ion. The synaptic conductance also has a gating variable that
depends on the pre-synaptic voltage:

gsyn D Ngsyns: (12.6)

Since the gating variable s represents the fraction of open channels, s 2 Œ0; 1�. Like
the gating variables for the membrane currents, the dynamics of the variable s follow
a first order differential equation:

ds

dt
D g.Vi/

�r
.1 � s/� s

�syn
(12.7)
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Here, �syn is the time-constant of decay of the synaptic gating variable and �r is
the synaptic rise time-constant. The rate function for the open state of the synaptic
receptor, g.Vi/, is dependent on the pre-synaptic voltage (Vi) and can be functionally
defined as:

g.Vi/ D 1C tanh.Vi=10/

2
(12.8)

Here we briefly described basic Hodgkin-Huxley-type equations. For the interested
reader, there are many good textbooks that cover more details about modeling
neurons using Hodgkin-Huxley dynamics (Koch and Segev 1998; Izhikevich 2007;
Börgers 2017).

12.3 State Changes During the Administration of Propofol

As the patient is administered propofol and the depth of anesthesia is increased,
there is a characteristic sequence of spatio-temporal changes in brain dynamics.
Prior to the administration of propofol, as the patient is lying down with their
eyes closed, alpha activity (8–13 Hz) is often observed over the occipital cortex. At
low concentrations of propofol, patients become excited rather than sedated. This
excitation, aptly referred to as paradoxical excitation, is marked by the disinhibition
of motor activity and the emergence in the EEG of relatively fast oscillatory activity
in the beta band (12.5–25 Hz). As the concentration of propofol increases and
patients enter a deeper anesthetic state, there is a spatial shift in the alpha power from
the back of the brain to the front of the brain. This spatial shift in power is referred to
as anteriorization. At a behavioral level anteriorization co-occurs with behaviorally
defined loss of consciousness (LOC), when patients stop responding (e.g., making
a button press) in the context of a behavioral task. As the concentration of propofol
increases further, patients enter an even deeper state of anesthesia referred to as
burst suppression, which is marked at the level of the EEG by alternations between
periods of quiescence and high amplitude activity at a wide spatial scale. If the
concentration is increased even further, the EEG activity becomes relatively flat.

12.3.1 Modeling Cortical Networks During Propofol-Induced
Paradoxical Excitation

Many anesthetics, including propofol, work by potentiating GABAa receptors,
which are the main receptors providing fast inhibition in CNS circuits. However,
low doses of propofol paradoxically can increase behavioral excitation along with
increased EEG beta oscillations (Gugino et al. 2001).
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Since the EEG can record electrical activity from up to a billion neurons (Nunez
and Srinivasan 2006), rhythmic activity in the EEG is thought to represent coor-
dinated activity of networks of neurons. Using biophysical models with Hodgkin-
Huxley-type conductances introduces computational constraints on the number of
neurons that can be simulated. However, even networks of 240 biophysical neurons
can be sufficient to give insight into the underlying physiological and network
mechanisms that may be producing rhythmic activity in the EEG. Moreover, critical
insight into dynamics can be obtained with even a two- or three-neuron network.
For example, the main insight into the dynamics potentially underlying propofol-
induced paradoxical excitation arose from two- and three-cell models.

With a simple network of two neurons, (a pyramidal cell receiving GABAa

inhibition from an inhibitory interneuron) one can reproduce a commonly known
phenomenon: post-inhibitory rebound spiking (Fig. 12.1). Post-inhibitory rebound
spiking can occur when certain membrane currents are present that cause the
membrane to respond to hyperpolarization with excitation. Examples of such
membrane currents needed to produce post-inhibitory rebound spiking include the
hyperpolarization-activated H-current (Ascoli et al. 2010) or the T-type calcium
current (Alvina et al. 2010). Thus, a simple two-cell model can explain at least
one means of producing excitation from inhibition.

A similar two-cell model with an intrinsic membrane M-current in the post-
synaptic neuron can also produce post-inhibitory rebound spiking (Fig. 12.1). This
occurs because the M-current is a non-inactivating potassium current with a slow
time constant of decay. Thus, the M-current decreases in response to inhibition,
which in turn gives excitation to the neuron. Since the time constant of the M-current
is generally slower than the time constant of the GABAa response, inhibition due to
GABAa can be followed by excitation due to lowered M-current and this can result
in rebound spiking. However, we note that the cell containing an M-current does

Fig. 12.1 Post-inhibitory rebound spiking of a neuron with an M-current as a function of the time-
constant of inhibition (� ) of the GABAa current
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not always respond to GABAa-mediated inhibition with rebound excitation. If the
time course of the GABAa conductance is too brief or too long, then no rebound
excitation occurs (Fig. 12.1).

This simple two-cell model thus gives a critical insight into dynamics that might
be at work in propofol-induced paradoxical excitation. This is because propofol
dose-dependently increases the conductance and time-constant of the GABAa

synapse. Thus, at baseline, the GABAa kinetics are fast enough that rebound
excitation does not occur by this mechanism, while with low-doses of propofol,
post-inhibitory rebound can occur and with even greater GABAa potentiation,
rebound excitation again ceases. The two-cell model shows us that the kinetics of the
M-current can create a window of excitation dependent on the level of potentiation
of the inhibitory GABAa synapse.

We can observe a related though different form of excitation with potentiated
inhibition in our two-neuron model if we add an excitatory AMPA connection
from the pyramidal neuron to the inhibitory interneuron (Fig. 12.2a). In this system,
the spiking frequency of the two cell network is set by the level of background

Fig. 12.2 Two and three-cell networks show paradoxical excitation with propofol. (a) Two-cell
network of one pyramidal cell with and M-current and one inhibitory interneuron reciprocally
connected. Baseline conditions exist up to 2000 ms, then low-dose propofol is simulated after
2000 ms. Note that the spiking frequency decreases with propofol if the baseline spiking rate is
gamma, whereas the spiking rate increases with propofol if the baseline spiking rate is at alpha
range (�11 Hz). (b) Three-neuron network of one pyramidal cell and two interneurons (all cells
with M-current) connected all-to-all. Propofol is simulated after 2200 ms. Note the interneurons
form an anti-synchronous beta rhythm with propofol and the pyramidal cell is suppressed
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excitation (applied current) to the pyramidal cell. When the pyramidal cell spikes,
the interneuron is excited by the AMPA current and also spikes a few milliseconds
after the pyramidal cell. If the background excitation to the pyramidal cell is
high such that the network has a low-gamma (30–45 Hz) frequency rhythm, then
potentiating GABAa, consistent with low doses of propofol, slows the rhythm to a
beta. This is the expected consequence of extra inhibition to a network. However,
unexpectedly, if the network has a low baseline spiking rate in the alpha range
(�10 Hz), potentiating the GABAa synapse has the effect of speeding up the rhythm
to the beta frequency range (�14 Hz). As a consequence of the expected slowing
down of higher than beta frequency rhythms and the unexpected speeding up of
lower than beta frequency rhythms, independent two-cell oscillators over a range
of frequencies from alpha to gamma will converge into the beta frequency range
(McCarthy et al. 2008).

The speeding up of alpha frequency rhythms into the beta frequency range
following GABAa potentiation comes about from the interaction of the GABAa

kinetics with the M-current kinetics. As we observed in the case of post-inhibitory
rebound excitation, the slow return of the M-current to its baseline following
hyperpolarization can create a temporal window of excitation after the GABAa
inhibition has mostly worn off. If the baseline rhythm is slow enough (e.g., alpha
frequency range), then the pyramidal neuron is given enough time between spikes
for this temporal window of excitation to be expressed resulting in advancement of
the pyramidal cell spiking before its usual spike time based purely on its applied
current level. Thus, the rhythm is sped up, in this case from alpha to beta frequency.
If the network rhythm is faster and in the gamma frequency range, then this window
of excitation provided by the M-current is never reached before the next pyramidal
cell spike. Thus, for the higher frequency rhythms, the dominant effect of increasing
GABAa potentiation is slowing of the network rhythm. These phenomena, that of
lower frequency rhythms speeding up and higher frequency rhythms slowing down
can also be observed by using phase response curves (McCarthy et al. 2008).

Another paradoxically exciting phenomenon occurs in three-cell networks. In the
three-cell network, two inhibitory interneurons and one pyramidal cell neuron are
connected all-to-all (Fig. 12.2b). As in the reciprocally connected two-cell network,
the spiking rate of the pyramidal cell determines the network spiking rate, with
the two interneurons spiking in response to AMPA input from the pyramidal cells.
Potentiating GABAa consistent with low doses of propofol speeds up a baseline
theta (6 Hz) rhythm to mid-beta frequency (19 Hz). Although this phenomenon is
similar to what was observed before (i.e., speeding up of alpha frequency rhythms
in the two-cell network), the underlying mechanism is distinct. Indeed, the two-cell
network can only speed up the network rate by several hertz at most, whereas in the
three-cell network, we observe more than a tripling of the baseline frequency.

The underlying mechanism for beta frequency generation in the three-cell model
is a switch from synchrony of the interneurons at baseline to the formation of an
anti-synchronous interneuron rhythm after potentiation of the GABAa kinetics. This
phenomenon is only observed if the interneurons have an M-current and thus they
are a type of interneuron we label as a low-threshold spiking cell, or LTS cell.
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Since the LTS cells have an M-current and are reciprocally connected by GABAa

synapses, the same GABAa-M-current interactions that cause rebound spiking in our
two-cell models are present also in the LTS cell interactions. However, at baseline
each LTS cell only spikes in response to the pyramidal cell input and does not
rebound spike in response to inhibition from the other LTS cell. This is due to a
phase-dependence of the effect of the GABAa current on the M-current. Specifically,
when inhibition arrives during the repolarization phase of neuronal spiking, the M-
current is only minimally suppressed and the neuron does not achieve the level of
excitation necessary to rebound spike. However, this phase-dependence is lost when
the GABAa current is potentiated by propofol. Since the LTS cells can respond
to inhibition with a rebound spike and since the rebound spikes are on a faster
time scale than the baseline network rhythm, the LTS cells form a stable anti-
synchronous beta frequency oscillation. This has the effect of suppressing the one
pyramidal cell in the three-cell network, since the pyramidal cell’s natural spiking
rate (6 Hz) is slower than the beta inhibition it is receiving. However, in slightly
larger networks consisting of 12 pyramidal cells and 2 reciprocally connected LTS
cells, the pyramidal cells can participate sparsely in the beta rhythm (McCarthy et al.
2008).

It is interesting that the GABAa-M-current interaction gives the correct timescale
for the production of beta frequency rhythms. It is thought that the time-constants
of the GABAa current and the M-current interact to create this time scale. However,
the exact mechanism is not clear as the M-current has a theta time scale without
inhibition and the GABAa current is relatively fast with a time constant of 10 ms
when simulating low-dose propofol. The beta-determining factors in the GABAa-
M-current interaction, to the best of our knowledge, are yet to be fully explained.

The small two- and three-cell networks gave the underlying intuition into the
dynamical interactions on the neuronal and network level that form the basis
of two forms of paradoxically exciting phenomena that might be observed as
GABAa potentiation is increased by propofol. Larger scale models of up to 240
neurons confirm that the dynamics that appear in the two- and three-neuron models
are also appreciated in larger scale models. Indeed, networks consisting of 240
neurons of three commonly found cell types in cortex (pyramidal cells, LTS
cells and fast spiking interneurons) show that the network produces a prominent
beta frequency rhythm upon potentiation of GABAa consistent with low doses of
propofol (McCarthy et al. 2008). The LTS neurons form anti-synchronous clusters
of cells, which help to pattern the pyramidal cells into a beta frequency rhythm.
Model EEG rhythms also increase in the beta frequency range with simulations of
low doses of propofol largely due to the patterning of the pyramidal cells by the
interneurons.

Thus, we use this example to demonstrate how simple biophysical models can be
used to infer critical membrane interactions within neurons and synaptic interactions
between neurons that lead to oscillatory network dynamics in larger scale systems.
Identifying potential underlying mechanisms producing beta frequency rhythmicity
with propofol not only suggests network mechanisms at work during propofol-
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induced paradoxical excitation, but also gives insight into other neuronal systems
which may be using the same underlying mechanism to produce beta frequency
oscillations. In particular, the M-current/GABAa interaction has been used to
suggest striatal circuits as a potential source of the exaggerated beta-frequency
rhythms that emerge in basal ganglia circuits in Parkinson’s disease (McCarthy
et al. 2011). Thus, unraveling the circuit mechanism underlying anesthetic states
provides additional insight into normal, baseline network activity as well as how
neuronal circuits may become altered due to neuromodulatory changes that occur
with neurologic disease.

12.3.2 Dynamical System Analysis of Propofol Paradoxical
Excitation Model

By potentiating GABAa synapses, propofol produces a window of excitation in
post-synaptic cells that have an M-current such that post-inhibitory rebound spiking
is observed only if the GABAa potentiation is not too small or too large. Unlike
the classic version of post-inhibitory rebound spiking in which the voltage of the
cell is held hyperpolarized for a length of time and then depolarized in a step-like
manner, the voltage of the post-synaptic cells depends on progressively changing
interaction between the GABAa inhibition and the M-current. This dynamic creates
a window of excitation (e.g., during low doses of propofol) as opposed to a GABAa-
potentiation-threshold resulting in a rebound spike (Fig. 12.1).

Mathematical methods exist that can further disentangle the interaction of time-
scales when the time-scales are separated “enough.” Specifically, the methods of
geometric singular perturbation theory (GSPT) are widely used to lend insight into
the dynamics of fast-slow systems, in which some variables in an interacting system
of equations operate on a time scale substantially faster than other variables. Such is
the case in the cortical network producing propofol-induced paradoxical excitation
beta: the time scale of the M-current and the GABAa current are substantially slower
than the time scales of the other variables in the model equations.

Visualization of the dynamics is best if the system is under 3 dimensions. Our
original 200+ neuron model of propofol-induced paradoxical excitation has several
hundreds of dimensions and is thus intractable in this form. However, we recall
that the beta oscillations emerge from post-inhibitory rebound spiking of the LTS
cells: a phenomenon we have shown by simulations to depend on the interaction of
the GABAa and the M-current in these cells. Thus, we can reduce the complexity
of our system by looking at the response of one LTS cell to inhibition, with
inhibition introduced as a step function with exponential decay. This approximation
of GABAa inhibition does not significantly change the GABAa dynamics and
moreover releases the system of equations from explicit dependence on a pre-
synaptic LTS cell. Such a reduction reduces the dimensions of our system from
1000+ to 6 dimensions, which can be written as:
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cm
dv

dt
D

spiking currents‚ …„ ƒ
�NgNam3h.v � ENa/� Ngkn4.v � Ek/� NgL.v � EL/

M-current‚ …„ ƒ
�Ngmw.v � Ek/

inhibitory (GABAa) current‚ …„ ƒ
�Ngis.v � Ei/ CIapp

(12.9)

dx

dt
D x1.v/ � x

�x.v/
for x D m; h; n;w

ds

dt
D � s

�s
:

In these equations, the time constant of the M-current (�w) depends on the voltage
(v), which makes it difficult to directly compare with the time constant of the
GABAa synapse, �s, which is constant. Thus, in order to determine the interaction
of these two time-constants in further analysis, �w is allowed to be constant. With
�w as a parameter, we still observe a �s-dependent window of rebound spiking.
Thus the dynamics we wish to characterize using GSPT are still present. Within
the physiological range, �w functions to determine the range of the �s-dependent
window, with the width of the window increasing as �w increases (see Fig. 6 in
McCarthy et al. 2012).

These simplifications and the reduction to 6-dimensions aids our ability to
analytically examine the dynamical interaction between the M-current and the
GABAa current, the w and s variables in the system of equations, respectively.
To begin, an analysis of the time scales of the system is necessary. By a method
called “non-dimensionalization,” we can make each of our 6 variables unit-less, and
thus directly compare the time scales of each (Segel and Edelstein-Keshet 2013).
By non-dimensionalization, we find that all the spiking variables (m; h; n, and v) are
fast variables. Interestingly, the number of slow variables depends on the decay time
constant of the GABAa inhibition, �s. This is important in light of the finding that
the decay time of GABAa-mediated inhibition in CNS circuits can vary widely from
at least 1–70 ms (Traub et al. 2005). Additionally, it is important to the problem of
propofol-induced rebound excitation since as the dose of propofol is increased, the
time constant of GABAa inhibition can increase (Kitamura et al. 2003). Specifically,
in this set of equations, when �s is at its baseline value of �5 ms then w (the M-
current variable) is the only slow variable and the entire system of equations has
three time scales (fast, medium and slow), with �s being the medium time-scale
variable. However, when �s is slightly higher (�10 ms) as observed with the addition
of propofol, then both w and s are considered slow variables and the system of
equations has two time scales (fast and slow).

As �s increases and transitions from spiking to non-spiking solutions, the values
of �s around this transition make the problem a two time-scale problem. As such,
we can use the methods of geometric singular perturbation theory to understand
the underlying mathematical nature of the transition from spiking to non-spiking
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solutions as the time-constant of GABAa increases. In order to do this, we first
define our singular perturbation parameters as " D �max=�s and N" D �s=�w and re-
scale time by letting � D "t. In these equations, �max D 3, which is an approximation
of the maximum value of all �x for all x in Eq. (12.9) in the subthreshold range. Thus,
we obtain the slow (singularly perturbed) system of equations:

"cm
dv

d�
D �NgNam3h.v � ENa/� Ngkn4.v � E/ � NgL.v � EL/

� Ngmw.v � E/� Ngis.v � E/C Iapp

"
dx

d�
D x1.v/ � x

�x.v/
for x D m; h; n (12.10)

dw

d�
D N".w1.v/ � w/

�max

ds

d�
D � s

�max

In the singular limit of Eq. (12.10), when " = 0, we have a 2D system of
differential equations evolving on a 2D surface (the critical manifold) in 3D
.v; s;w/-space.

0 D F.v/� Ngmw.v � Ek/� Ngis.v � Ei/ 	 f .v;w; s/ (12.11)

Pw D N".w1.v/ � w/

�max
(12.12)

Ps D � s

�max
: (12.13)

In these equations, F.v/ D �NgNam31h1.v � ENa/ � Ngkn41.v � Ek/ � NgL.v �
EL/ C Iapp. We note that f .v; s;w/ is an important geometric structure called the
critical manifold. It is the set of equilibrium points of the fast (singularly perturbed)
system (i.e., the system of Eq. (12.10) with the singular perturbation parameters "
and N" but without the rescaling of time). The critical manifold is also the geometric
structure on which the dynamics of the slow system evolve in the singular limit.
In the subthreshold range of voltage (less than approximately 50 mV), the critical
manifold forms two sheets separated by a fold curve in (v; s;w)-space (Fig. 12.3,
the projection of the fold curve onto the .v; s/-plane is represented by the red line).
Interestingly, in this problem the value of v on the fold curve is a constant (i.e.,
vc D �63:29mV). This need not be the case. The fold curve is of importance as
it represents the spiking threshold in the singular limit. It is a spiking threshold
because for values of v < vc, the critical manifold is an attracting surface, along
which dynamics of the slow system flow in the singular limit. However for values
of v > vc the critical manifold is a repelling surface. Thus the fold curve is the
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Fig. 12.3 The critical manifold in .v; s;w/-space. The black arrows indicate fast attracting and
fast repelling dynamics towards and away from the critical manifold, respectively. The red line
represents the projection of the fold curve onto the .v; s/-plane

curve in the singular limit at which the slow dynamics cease and the fast dynamics
again become relevant. Thus, most solution that can reach the fold curve in the
singular limit is a “spiking solution.” (Canard solutions are exceptions and will not
be discussed here). Those solutions that fail to reach the fold curve are “non-spiking
solutions .” Special structures on the critical manifold determine what separates
spiking solutions from non-spiking solutions, as we now demonstrate with this
example.

Projecting the critical manifold onto the (v; s)-plane allows for better visualiza-
tion of the dynamics around the fold curve (Szmolyan and Wechselberger 2001).
Since the projection of the system is singular at the fold curve, the structure that
separates “spiking” from “non-spiking” solutions, we desingularize the projected
system by rescaling time by � D �fv N� . This desingularization allows us to
characterize the dynamics near the fold curve. In this rescaling, fv is the first
derivative of f as defined in Eq. (12.11), with respect to v. Note that points on the
critical manifold for which fv < 0 are attracting with respect to the fast (singularly
perturbed) system (Eq. (12.9)) and the points for which fv > 0 are repelling with
respect to the fast (singularly perturbed) system. The points fv D 0 are the fold
curve. Note that by rescaling time by �fv , we have reversed the direction field
on the repelling surface (the surface where fv > 0) of the critical manifold. After
desingularization, our projected system follows the equations:

v0 D � 1

�max
N"Ngm.v � E/.w1 � w.v; s//C 1

�max
Ngi.v � E/s 	 H.v; s/ (12.14)

s0 D 1

�max

�
F0.v/� F.v/

.v � E/

�
s 	 G.v; s/: (12.15)
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In this system, the derivative is taken with respect to N� . We find folded singularities
(singularities of this system of equations that lie on the fold curve) by setting
H.v; s/ D 0. We note that G.v; s/ D 0 on the fold curve because F0.v/� F.v/

.v�E/ D fv
and fv D 0 on the fold curve. Solving for the folded singularities, we find they are
described by:

sc D



w1.vc/ � F.vc/

Ngm.vc � E/

�� Ngm

Ngi

�� N"
1 � N"

�
: (12.16)

Equation (12.16) shows us how the position of the folded singularity depends on
the parameters of the original system (Eq. (12.9)), especially Ngm and Ngi, the maximal
conductances of the M-current and the GABAa-current, respectively. Furthermore,
after linearization of Eqs. (12.14) and (12.15), we can determine the stability of the
folded equilibrium by looking at the determinate of the Jacobian matrix. We find that
for all values of �w and �s within the physiological range, the folded equilibrium is a
folded saddle. Figure 12.4 shows a representative phase diagram for specific values
of �s and �w. The stable eigenspace of the folded saddle forms a separatrix separating
“spiking” and “non-spiking” solutions in the singular limit. The spiking solutions
are the solutions that can reach the fold curve and thus are the solutions to the right
of the stable eigenspace of the folded saddle in Fig. 12.4. The non-spiking solutions

Fig. 12.4 The .v; s/-phase plane for �s = 100 ms and �w = 117 ms. The fold curve is represented by
the black horizontal line. The folded saddle equilibrium is denoted with a black dot. The stable and
unstable eigenspaces of the folded saddle are the red-dashed and green-dashed lines, respectively.
Solution trajectories for initial conditions starting off the stable and unstable eigenspaces are shown
in blue
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fall to the left of the stable eigenspace of the folded saddle and are prevented from
reaching the fold curve as the unstable eigenspace of the folded saddle draws these
solutions away from the fold curve.

Our analysis of the slow system now allows us to understand the transition from
spiking to non-spiking solutions as �s increases. On the critical manifold, initial
conditions to the right of the stable manifold of the folded saddle are “spiking”
solutions and those that are on the left are “non-spiking” solutions. Since the
variable s moves slowly compared to v, we can approximate the initial condition
of s on the critical manifold as its initial condition in the full system. In particular,
s D 0:727 at the start of inhibition. Furthermore, for a fixed value of s, there exists
one equilibrium point of the fast subsystem and it is to this point that v approaches
on the critical manifold (McCarthy et al. 2012). Numerically, this equilibrium point
takes the value �67:71 for the variable v. Thus, we approximate the initial condition
on the critical manifold as .v; s/ D .�67:71; 0:727/. By numerically finding the
value of s on the critical manifold where the stable manifold of the folded saddle
intersects with v D �67:71, we can determine if the initial condition for s (i.e.,
s D 0:727) is on the spiking or non-spiking side of the stable manifold of the folded
saddle. In the particular case when �w D 117ms, we find that when �s is greater
than approximately 100 ms we have non-spiking solutions and when �s is less than
100 ms, we have spiking solutions. This confirms what we observed in simulations
(as �s is increased the dynamics of the neuron transition from spiking to non-spiking
in response to inhibition (Fig. 12.1)) and also gives us geometric insight into why
this transition occurs.

One benefit of characterizing the system using GSPT is that it allows us to
visualize how rebound spiking depends on the specific parameters in our system. For
example, as Ngm increases the value of the folded saddle equilibrium (sc) increases
(Eq. (12.16)), allowing for a potentially larger region of the critical manifold that
contains non-spiking solutions (note that the region of the critical manifold that
allows for non-spiking solutions also depends on the position of the stable manifold
of the folded saddle). This supports our intuition, since Ngm represents the maximal
conductance of the M-current, which is a non-inactivating potassium current that
stabilizes the neuronal voltage against depolarization. Thus, increasing the maximal
conductance of this current makes spiking less likely.

In contrast, increasing Ngi, decreases the value of sc and potentially allows for
more spiking solutions in the singular limit. This is an unintuitive result since we
expect increasing inhibition in our system will result in less spiking. However,
simulations confirm this prediction as we find solutions to the full system of
equations (Eq. (12.9) with s dependent on the pre-synaptic voltage of a spiking
GABAergic neuron) with �s D 10ms do not rebound spike after inhibition when
Ngi is low but will rebound spike if Ngi is higher (Fig. 12.5). Thus, GSPT can not only
lead to non-intuitive insight into the range of dynamics of spiking neuron solutions
but also allow us to determine the underlying mathematical structure that forms the
basis of these dynamics.
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Fig. 12.5 Computer simulations of a neuron with M-current receiving inhibition. Simulations with
(a) a low GABAa maximal conductance (gi D 0:165mS/cm2) and (b) a maximal conductance that
is 4 times higher. Both simulations use �i D 10ms

12.3.3 Anteriorization

As mentioned earlier, during the administration of propofol, there is a stage
called anteriorization during which alpha power undergoes a spatial shift from
the back to the front of the brain. Behaviorally defined LOC occurs concomitant
with anteriorization. Furthermore, if propofol administration is stopped and the
patient allowed to recover, as the frontal alpha power dissipates the patient regains
consciousness (e.g., begins to respond again within the context of a behavioral task).
Therefore, gaining a mechanistic and circuits-level understanding of anteriorization
may provide insight into what leads to loss of consciousness and allow the
development of better anesthetics. In order to gain a mechanistic understanding of
anteriorization, Vijayan et al. (2013) constructed a computational model, combining
a frontally projecting thalamocortical model (Fig. 12.6) that is capable of generating
frontal alpha (Ching et al. 2010) with a thalamic model capable of generating
occipital alpha (Vijayan and Kopell 2012). In their model, the thalamic part of each
component consists of reticular nucleus (RE) cells and thalamocortical (TC) cells
(see Destexhe et al. (1996) for details of the currents incorporated into each cell
type). The TC cells excite the RE cells via AMPA and the RE cells in turn inhibit
the TC cells via GABA. The thalamic part of the occipital component also contains
a specialized subset of TC cells called high-threshold thalamocortical (HTC) cells.
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Fig. 12.6 Cartoon of network architecture. The frontal component consists of a thalamic compo-
nent (TC and RE cells) and a cortical component (PY and IN cells), while the occipital component
consists of only a thalamic component (TC cells, RE cells, and HTC cells, the putative generators
of occipital alpha). Modified from Vijayan et al. (2013)

HTC cells have the same connectivity as TC cells, but are gap junction-coupled
and burst at the alpha frequency at relatively depolarized membrane potentials
(Hughes et al. 2004; Lorincz et al. 2009; Vijayan and Kopell 2012). HTC cells
are thought to be the generators of occipital alpha in vivo (Lorincz et al. 2009). A
variant of IT channels, a calcium current, ITHT , which is active at more depolarized
membrane potentials, is thought to mediate the alpha frequency bursting in HTC
cells (Hughes et al. 2004; Lorincz et al. 2009; Vijayan and Kopell 2012); ITHT

currents are incorporated into HTC cells in the model of Vijayan and Kopell (2012).
The TC cells in the frontal component of the model have excitatory projections to
cortical pyramidal cells (PY) and interneurons (IN), and the PY neurons in turn
send excitatory projections (via AMPA) back to the TC cells and RE cells. The
PY cells also send excitatory projections to the IN, which inhibits the PY cells via
GABA (see Ching et al. (2010), Vijayan and Kopell (2012) for additional details
about the cortical component). When the model parameters are set to quiet awake
conditions, the cells in the frontal component fire irregularly and the frontal LFP
is relatively flat (Fig. 12.7a), while the HTC cells in the occipital component burst
at the alpha frequency and alpha power is seen in the occipital LFP (Fig. 12.7b).
The anesthetic propofol is known to increase GABAa conductances and reduce Ih, a
hyperpolarization activated current. To mimic the effects of propofol, Vijayan et
al. reduced Ih conductances and increased GABAa conductances in their model
(Vijayan et al. 2013). In the occipital component, these changes resulted in the
silencing of the HTC cells, causing a relatively flat occipital LFP (Fig. 12.7d). The
HTC cells are silenced because the reduction in Ih conductances causes them to
become more hyperpolarized (Ih has a relatively high reversal potential), moving
the ITHT currents out of their operating range and thus preventing HTC cells from
bursting at the alpha frequency (Fig. 12.7d). In contrast, in the frontal component,
the actions of propofol result in all frontal cell types bursting at the alpha frequency,
producing alpha power in the LFP (Fig. 12.7c).

The frontal alpha emerges due to several actions of propofol. In the cortical
portion of the frontal component, increased GABAa conductances result in an
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Fig. 12.7 Simulation traces during anteriorization. (a) Activity of the frontal component during
quiet awake activity. Spiking activity of PY cells (first row), TC cells (second row), and RE cells
(third row), and power spectrum of LFP (bottom row). (b) Activity of the occipital component
during quiet awake activity. Spiking activity of HTC cells (first row), TC cells (second row),
and RE cells (third row), and LFP power spectrum (bottom row). (c) Frontal component after
administration of propofol. Rows same as in (a). (d) Occipital component after administration of
propofol. Rows same as in (b). Modified from Vijayan et al. (2013)

increase in the inhibition of PY cells by the IN, reducing the firing rate of PY cells
into the alpha range (Fig. 12.8a-b). In the thalamic portion of the frontal component,
increased GABAa conductances cause the RE cells to increase their inhibition of TC
cells, causing the TC cells to become hyperpolarized. This hyperpolarization allows
the currents IT and Ih, which operate at alpha time constants, to become engaged.
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Fig. 12.8 Cartoon of mechanism responsible for the emergence of frontal alpha during the
administration of propofol. (a, b) Increased inhibition from IN to PY cells, due to the increase
in GABA conductances, brings frontal spiking activity into the alpha range. (c, d). Increased
inhibition from RE cells to TC cells, due to the increase in GABA conductances, results in
hyperpolarization of TC cells. Hyperpolarization-activated currents in TC cells cause them to
rebound spike and excite RE cells, which in turn inhibit TC cells, starting the cycle again. This
ping-pong-like interaction between TC and RE cells happens at an alpha time scale because the
currents engaged in TC cells at relatively hyperpolarized membrane potentials have an alpha time
scale. (e) The alpha activity in the thalamic and cortical components reinforces each other, resulting
in hypersynchronous frontal alpha activity. Modified from Ching and Brown (2014)

The activation of these currents causes TC cells to rebound spike and excite the
RE cells, which in turn inhibit TC cells again (Fig. 12.8c-d). The back-and-forth
activity between TC cells and RE cells occurs at the alpha frequency due to the
alpha time scales of the intrinsic currents that are involved. Furthermore, the cortical
and thalamic alpha activity reinforce each other, resulting in a hypersynchronous
alpha activity (Fig. 12.8e). The underlying mechanism of the emergent frontal alpha
activity provides us with clues and predictions as to why anteriorization may lead to
loss of consciousness. For example, the hypersynchronous alpha activity, which in
our model is both thalamic and cortical in nature, may prevent external stimuli from
being processed properly or routed from the thalamus to the cortex. Thus external
stimuli may not be perceived, resulting in LOC that coincides with anteriorization.
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12.4 Discussion and Conclusion

Models based on known biophysical properties of neural systems allow us to investi-
gate neural dynamics and to gain insight into underlying circuit-level mechanisms in
a fashion that is often difficult to do in an experimental setting. The neural models
employed in such investigations vary in their level of detail. There is a trade-off
between the level of biophysical detail used in a particular model type and the
computational power needed to simulate networks of the same size. Somewhat
related is that specific neural model types may be more conducive to looking at
specific types of phenomena. For example, mean field models, which typically lack
the biophysical detail of Hodgkin-Huxley models, may be particularly well suited
to investigating large scale phenomena, where such detail may not be critical to
capturing and explaining the observed neural dynamics.

In this chapter we describe how modeling has been employed to investigate
the neural dynamics observed during the administration of the general anesthetic
propofol and to decipher how concomitant behavioral changes may relate to the
observed neural dynamics. In particular, we discuss our use of single compartment
Hodgkin-Huxley models, both large and reduced models, and the tools of dynamical
systems theory, such as geometric singular perturbation theory, to elucidate the
neural mechanisms underlying the dynamics observed during propofol-induced
anesthesia. These investigations provided not only possible explanations for the
concomitant behavioral phenomena, but also experimentally testable hypotheses
about how propofol-induced neural dynamics emerge. For example, the modeling
work suggests that the frontal alpha that emerges during anteriorization is the
result of a hypersynchronous loop in which the thalamus and the frontal cortex
reinforce each other’s firing in the alpha band. The reason behaviorally defined
loss of consciousness coincides with anteriorization may be because this hyper-
synchronous thalamocortical alpha activity may prevent or disrupt external stimuli
from being routed via the thalamus to the cortex. These modeling results point to an
experimentally testable prediction, that during the emergence of frontal alpha there
is highly coherent alpha activity between the frontal cortex and frontally projecting
thalamic nuclei.

Much still remains to be understood about how general anesthetics act, that
is, how circuit-level mechanisms bring about the neural activity that arises during
their administration. In particular, different anesthetics, when administered, produce
diverse sets of changes in the spatio-temporal neural dynamics and the circuit-level
mechanisms responsible for these neural activity patterns remains to a large extent
a mystery. We hope we have imparted how mathematical modeling can serve as an
invaluable tool in unraveling these remaining mysteries of general anesthesia and
more generally in deciphering the circuit-level mechanisms of brain dynamics.
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Appendix

For the model of propofol-induced paradoxical excitation, all cells had the spiking
currents (INa; IK ; IL) formulated using Hodgkin-Huxley-type conductances, which
were used in previous modeling work (Olufsen et al. 2003). The gating functions for
the sodium current activation (m) and inactivation (h) variables have rate functions
defined by

˛m D 0:32.V C 54/

1 � exp Œ�.V C 54/=4�
(12.17)

ˇm D 0:28.V C 27/

exp Œ.V C 27/=5�� 1 (12.18)

˛h D 0:128 exp Œ�.V C 50/=18� (12.19)

ˇh D 4

1C exp Œ�.V C 27/=5�
(12.20)

The fast potassium channel had four activation gates described by the rate
functions

˛m D 0:032.V C 52/

1 � exp Œ�.V C 52/=5�
(12.21)

ˇm D 0:5 exp Œ�.V C 57/=40� (12.22)

The leak current (IL) had no gating variables. The M-current as formulated in
Mainen and Sejnowski (1996) has one activation gate and no inactivation gates. The
gating function for activation gate is described by the rate functions

˛m D Qs10
�4.V C 30/

1 � exp Œ�.V C 30/=9�
(12.23)

ˇm D � Qs10
�4.V C 30/

1 � exp Œ.V C 30/=9�
(12.24)

Qs D Q.37 ıC�23 ıC/=10
10 D 3:209 (12.25)

where Q10 D 2:3.
The two synaptic currents (IAMPA and IGABAa) have an activation gate dependent

on the pre-synaptic voltage. The AMPA current is

IAMPA D Ngese.V � Ee/ (12.26)

where se is the sum of the synaptic activation variables from all pre-synaptic
pyramidal cells in the network. Thus, for the j-th interneuron in the network,
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se D 1

N

NX

kD1
Sekij (12.27)

where N denotes the number of pyramidal cells pre-synaptic to the j-th interneuron.
The kinetics of the AMPA activation variable from pyramidal cell k to interneuron j
are described by:

dSekij

dt
D gee.Vk/.1 � Sekij/ � Sekij

�e
(12.28)

The decay time constant for the AMPA current is �e D 2ms and the rate for the
open state of the AMPA current, gee.Vk/ is dependent on the membrane voltage of
the k-th e-cell:

gee.Vk/ D 5

�
1C tanh

�Vk

4

��
(12.29)

The GABAa current is formulated as:

IGABAa D Ngisi.V � Ei/ (12.30)

where si is the gating variable for inhibitory GABAa current:

si D 1

N

NX

kD1
Sikij for interneuron to interneuron connections (12.31)

si D 1

N

NX

kD1
Sikem for interneuron to pyramidal cell connections (12.32)

where N represents the number of pre-synaptic interneurons.
Furthermore, the GABAa synaptic kinetics of the gating variable from the k-th

interneuron to the j-th interneuron (Sikij ) follows:

dSikij

dt
D gii.Vk/.1 � Sikij/� Sikij

�i
(12.33)

When propofol is not present, �i D 5ms; for low-dose propofol �i D 10 and the
rate function for the open state of the GABAa receptor is:

gix.Vk/ D 2C 2 tanh
Vk

4

�
; for x D i or e (12.34)

More details about this model can be found in McCarthy et al. (2008).
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I do not know where to begin. The news of this monograph, written as part of my
recent 60th birthday celebration, was a complete surprise. I am immensely grateful
to Sridevi V. Sarma and Zhe (Sage) Chen for their brilliant efforts organizing and
editing the final work. Sri and Sage are truly a pair extraordinaire: great scientists
with boundless energy and the ultimate can-do attitudes.

I want to thank Rob Kass and Ralph Lydic for the kind sentiments expressed
about me and about my work in their forewords. I was honored when nearly 25
years ago, Rob like me was bitten by the neuroscience bug and suggested that we
begin regular conversations about the challenging statistical problems in neural data
analysis. It was great to know that a statistician of Rob’s stature thought these
problems were important/interesting and that moreover, he was willing to think
hard about how to solve them. I have known Ralph since the 1980s and my days
as an M.D. Ph.D. student at Harvard. At that time, Ralph was embarking on his
path-breaking work with Helen Baghdoyan characterizing the neural circuitry of
sleep regulation. Later, he turned his research to understanding the links between
general anesthesia and sleep. Therefore, Ralph was the ideal partner, along with
our neurologist colleague Nicholas Schiff, to work out in 2010, the relationships
between general anesthesia, sleep and coma (Brown, Lydic & Schiff, New England
Journal of Medicine, 2010).

I am especially grateful to each of the authors most of whom I had the privilege
of working with either as one of my graduate students, one of my postdocs or both.
They are: Behtash Babadi, Zhe Chen, ShiNung Ching, Uri T. Eden, Amit Etkin,
Rose T. Faghih, Loren M. Frank, Corey Keller, Michelle McCarthy, Michael J.
Prerau, Pierre Sacré, Srideva V. Sarma, Maryam M. Shanechi, Hideaki Shimazaki,
Long Tao, Sujith Vijayan, and Wei Wu. It was kind and generous of them to
contribute to this monograph work highlighting some of their newest ideas on neural
signal processing, neural control and anesthesiology. I read each chapter with great
interest, knowing that here, as in the past, I would learn a lot from the careful,
insightful thinking of my trainees.
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I admit frankly that I am biased and that I believe in two things. Neuroscience has
the coolest signal processing and data analysis questions around. Anesthesiology is
the coolest clinical neuroscience discipline and the coolest medical specialty around.
Working with my colleagues, I have learned to savor the good fortunes of conducting
research guided by this biased perspective. Once again, I thank you all!
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(OFC) system)
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CursorGoal intention estimation method,

204–205, 209, 210

D
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Gaussian process factor analysis (GPFA), 54,
59, 72

General anesthesia, neuronal network
dynamics

burst suppression, 219–220
neuronal trajectories, 221–222
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Golden section (GS) search, 250
GPFA, see Gaussian process factor analysis

(GPFA)
Granger causality, 112
Grid cells, 85

H
Hamiltonian Monte Carlo (HMC) sampling,

62
Hemodynamic response function (HRF), 8
Hidden Markov model (HMM), 7, 54, 55, 60,

61
Hidden semi-Markov model (HSMM), 76
Hierarchical ACA (HACA), 74
Hierarchical Dirichlet process (HDP), 61
High-threshold thalamocortical (HTC) cells,

307
HMM, see Hidden Markov model (HMM)
Hodgkin-Huxley differential equations, 32, 37
Hodgkin-Huxley (H-H) model, 16

greater biophysical detail, 294
kinetics of gating variables, 295
maximal conductance of ionic current, 295
membrane capacitance, 294
not conducive as mean models, 294
only of spiking currents, 294–295

Hormonal disorders, 243, 261
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17, 230
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Linear encoding models, 199
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expectation parameters, 273
infinitesimal difference of entropies,

274
negative entropy of neural population,

273
organism’s internal mechanism, 274

contrast gain-control in retina, 267
free energies of neurons, 286–288

gain modulation by maximum entropy
model

evoked neural activity, 270–271
internal activity, 271–272
spontaneous neural activity, 269–270

information-theoretic cycles, neural
population

delayed gain-modulation, 276–279
efficient cycle, neural population,

279–280
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maximum entropy principle, 267–268
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MAP formulation for, 134
nonparametric spectral techniques, 132
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forward models, 111
inference algorithms, 112
notation and preliminaries, 115–116
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fast iterative solution via EM algorithm,

127–130
linear state-space model, 125
MAP formulation, 126–127
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spike recordings, 111
state-space models, robust statistics,
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adaptive parameter identification,
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application, 123–125
Bernoulli random variables, 117
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modulation parameter vector, 118
point process models, 116
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Neuronal dynamics
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neurocontrol, 229
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general anesthesia, 220, 222–225
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robust to parameter initialization, 211
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PPF, see Point process filter (PPF)
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GABAA receptors, 233–236
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systems-theoretic hypothesis, 223–224
thalamocortical synchronization, 220
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Psychological stress, 243
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compressed sensing, 240
cortisol secretion, 241, 251, 253, 258
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HPA axis, 242, 243
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algorithms, 256–257
circadian demand and holding cost,

258–260
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257–258
intermittent control, 241
multi-rate formulation, 261

concurrent ACTH and cortisol levels,
deconvolution of, 253–255
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246–247
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of, 248–249

single time-series pulsatile data,
deconvolution of, 251–253

sparse input recovery, FOCUSS
algorithm, 249–251

neuroendocrine disorders
cortisol disorder, 244–245
hormone deficiency/excess, 244
mental health disorders, 245
tumors, 244

pulsatile control, 241
pulse detection methods, 240

Pulse detection methods, 240

Q
Quantitative electrophysiology, 220

R
Random consensus (RANSAC), 155
Receptive fields (RFs), 4, 60
Recursive Bayesian decoders, 200–201
Recursive filtering algorithm, 69
Recursive least squares (RLS) algorithm,
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Resting motor threshold (rMT), 162
Reweighted least squares (RWLS)

algorithm, 248

S
Sequential Monte Carlo (SMC) algorithm, 37
Sevoflurane, 293
Shannon/Nyquist sampling theorem, 240
Signal-to-noise (SNR) ratio, 2
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Single-cell decoding
context-dependent changes
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mean firing rate, 96–98

decoding context probabilities, 93–94
empirical firing rate distribution model,
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mean firing rate model, 91–92

Skin conductance response (SCR), 243–245
Slow wave sleep (SWS), 64
SmoothBatch algorithm, 207, 209–210
Somatosensory cortex (S1), 67
Somatosensory evoked potential (SEP), 148
SPARLS algorithm, 122
Sparse system identification approach, 245
Sparsity

dynamics, spectral decomposition
EEG, 134–136
EMD, 132
harmonic representation, 132
MAP formulation for, 134
nonparametric spectral techniques, 132
sliding windows, 132
stochastic continuity constraint, 133

EEG/MEG, 112
forward models, 111
inference algorithms, 112
notation and preliminaries, 115–116
receptive fields, 111
signal deconvolution

compressible state-space model, 126
fast iterative solution via EM algorithm,

127–130
linear state-space model, 125
MAP formulation, 126–127
RIP, 126
two-photon calcium imaging data,

130–131
spike recordings, 111
state-space models, robust statistics,

113–115
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adaptive parameter identification,
120–122

application, 123–125
Bernoulli random variables, 117
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GLMs, 117
logistic-link CIF model, 117
modulation parameter vector, 118
point process models, 116
regularized exponentially weighted

maximum likelihood estimation,
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Spectral analysis, 220
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application, 123–125
Bernoulli random variables, 117
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